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Abstract
Learning to understand the meaning of natural language is an important problem

within language processing that has the potential to revolutionize human interactions
with computer systems. Informally, the problem specification is to map natural lan-
guage text to a formal semantic representation connected to the real world. This
problem has applications such as information extraction and understanding robot
commands, and also may be helpful for other natural language processing tasks.

Human annotation is a significant bottleneck in constructing language under-
standing systems. These systems have two components that are both constructed
using human annotation: a semantic parser and a knowledge base. Semantic parsers
are typically trained on individually-annotated sentences. Knowledge bases are typ-
ically manually constructed and given to the system. While these annotations can be
provided in simple settings – specifically, when the knowledge base is small – the
annotation burden quickly becomes unbearable as the size of the knowledge base
increases. More annotated sentences are required to train the semantic parser and
the knowledge base itself requires more annotations. Alternative methods to build
language understanding systems that require less human annotation are necessary in
order to learn to understand natural language in these more challenging settings.

This thesis explores alternative supervision assumptions for building language
understanding systems with the goal of reducing the annotation burden described
above. I focus on two applications: information extraction and understanding lan-
guage in physical environments. In the information extraction application, I present
algorithms for training semantic parsers using only predicate instances from a knowl-
edge base and an unlabeled text corpus. This algorithm eliminates the requirement
for annotated sentences to train the semantic parser. I also present a new approach
to semantic parsing that probabilistically learns a knowledge base from entity-linked
text. This method reduces the amount of human annotation necessary to construct
the knowledge base. Understanding language in physical environments breaks the
assumptions of the approach above in that the learning agent must be able to perceive
its environment to produce a knowledge base. I present a model that learns to map
text to its real world referents that can be trained using annotated referents for entire
texts, without requiring annotations of parse structure or the referents of individual
words.
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Chapter 1

Introduction

This thesis is about building computer programs that understand the meaning of natural language.

This problem has captured the attention of artificial intelligence researchers since SHRDLU

(Winograd, 1970) and remains an important problem with numerous practical applications such

as personal voice assistants and information extraction systems. These applications will become

increasingly important in the future because natural language is the easiest way to interact with

robots and other embodied computer systems. Developing effective algorithms for understanding

natural language is a critical problem with numerous real-world applications.

Understanding the meaning of language is also an important problem within the field of nat-

ural language processing. World knowledge often behaves as a constraint or cue for our syntactic

interpretation. For example, consider the problem of identifying the correct prepositional phrase

attachment in the following sentences:

1. I caught the butterfly with the net.

2. I caught the butterfly with the spots.

In sentence (1), the preposition “with” modifies “caught,” while in sentence (2) it modifies

“butterfly.” Correctly disambiguating between these options requires understanding that, in the

world, it is reasonable to find butterflies with spots, but not butterflies with nets. As another
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example, in coreference resolution, identifying that “Barack Obama” corefers with “president

of the US” requires world knowledge about Obama’s political position. In both of these cases,

language understanding is necessary to determine what world knowledge can be applied to re-

solve these ambiguities. These examples suggest the potential applications for natural language

understanding (combined with world knowledge) in core NLP tasks.

The problem of understanding natural language can be factored into two subproblems. The

first is semantic parsing, which is the problem of mapping natural language text to a formal rep-

resentation of its meaning known as a logical form. For example, “president of the US” might

be semantically parsed to λx.PRESIDENTOF(x,US). A typical approach to this problem is to

train a machine learning model using a corpus of text with annotated logical forms. The sec-

ond is modelling the world, which is the problem of constructing a formal representation of the

real world. This representation describes the objects that exist in the world, along with their

properties and relations between them. Throughout this thesis, I assume that this component is

provided by a logical knowledge base containing entities (e.g., OBAMA) and predicate instances

(e.g., PRESIDENTOF(OBAMA,US)). This knowledge base is typically manually constructed

and provided to the system, though it can also be learned automatically. Logical forms can

be interpreted as queries against the knowledge base, and evaluating a logical form against the

knowledge base produces its denotation, which is typically a set of entities or a truth value. In

the running example, the denotation of λx.PRESIDENTOF(x,US) is the set of all US presidents,

including OBAMA. This approach to understanding natural language has been successfully ap-

plied to several question answering tasks (Zelle and Mooney, 1996; Zettlemoyer and Collins,

2005, 2007).

A noteworthy aspect of this problem definition is that language understanding is defined rel-

ative to a knowledge base. As in model-theoretic semantics (Dowty et al., 1981), understanding

is defined as the problem of mapping from text to elements of the knowledge base. Therefore,

the choice of the knowledge base determines the subset of language that can be understood. For

2



example, above, if the knowledge base did not have a PRESIDENTOF predicate, it would not

be possible to represent the meaning of “president of the US.” Any inference capabilities of the

system are also dependent on the knowledge base. In this formulation, the choice of knowledge

base has a tremendous impact on the capabilities of a language understanding system.

The object of this thesis is to enable us to understand natural language in more challenging

settings by eliminating the obstacle of human annotation. Current approaches to language under-

standing require humans to provide (1) per-sentence semantic annotations to train the semantic

parser and (2) a knowledge base. Per-sentence semantic annotations are labor intensive to create

and the number of annotations necessary grows with the number of predicates in the knowledge

base. Unfortunately, a broad knowledge base is necessary to understand language about a broad

variety of topics. Training semantic parsers for large knowledge bases requires us to move be-

yond using manually labeled data. (Indeed, the use of additional data in recent work on semantic

parsing to Freebase suggests that current data sets are too small (Berant and Liang, 2014; Cai

and Yates, 2013b).) Knowledge bases are similarly challenging to build and even the largest

knowledge bases remain incomplete (Bollacker et al., 2008; Lenat, 1995). In other settings, such

as understanding language in the context of a particular physical environment, the knowledge

base depends on the environment and therefore must be automatically produced by the language

understanding agent in order to generalize to new environments. These cases suggest that mov-

ing beyond a manually constructed knowledge base is also necessary. Eliminating the human

annotation bottleneck is required to enable us to understand language in these more challenging

settings.

In this thesis, I propose algorithms for language understanding that eliminate the need for

human annotation of both the knowledge base and the language’s semantics. The thesis of this

research is that language understanding systems can be constructed for both grounded and un-

grounded settings using existing resources with little to no additional human annotation. I sup-

port this thesis by providing a variety of learning algorithms that train language understanding

3



systems using easily-obtainable forms of supervision, such as unlabeled text, instead of human

annotated data. I first consider the ungrounded setting, in which the language understanding

agent is not embodied in a physical environment. Chapter 4 describes a training algorithm for

this setting where a knowledge base is given, but no per-sentence semantic annotations are nec-

essary. Chapter 5 further reduces the dependence on a knowledge base by instead learning pred-

icate instances automatically from unannotated text. These chapters demonstrate that, given a

knowledge base, a language understanding system can be constructed with no additional human

annotation. Chapter 6 considers the grounded case, where the language being interpreted refers

to objects in a physical environment perceived by the agent. The algorithm in this chapter re-

places both forms of annotation described above with annotated denotations, which intuitively

are the real-world referents of a statement. This chapter demonstrates that simple annotations, in

the form of denotations, are sufficient to train grounded language understanding systems.

1.1 Axes of Variation

Each chapter of this work considers a distinct approach to understanding natural language that

can be characterized by a small number of axes. I highlight these axes here; later chapters will

further elaborate on the benefits and limitations of each position. Table 1.1 summarizes the

positioning of prior work and the chapters of this thesis along these axes.

1. Learning the knowledge base – Language understanding is relative to a knowledge base,

yet constructing broad coverage knowledge bases remains an open problem. Thus, a nat-

ural question is whether the knowledge base can be learned automatically. This work

considers two distinct settings. The first is to simply assume that a large knowledge base

is given to the program. This approach is typical in prior work (e.g., (Zettlemoyer and

Collins, 2005)) and is taken in Chapter 4. The second is to learn the knowledge base while

learning to understand language. This approach is taken in Chapters 5 and 6. Somewhat

unintuitively, learning the knowledge base actually simplifies the language understanding

4



problem in an important respect: the program no longer has to learn a correspondence

between words and knowledge base predicates.

2. Predicate vocabulary – Manually created knowledge bases have a closed (and relatively

limited) vocabulary of formal predicates. For example, NELL (Carlson et al., 2010) con-

tains ∼ 600 predicates, such as ATHLETE(x) and TEAMPLAYSSPORT(x, y). The set of

predicates restricts the language that is understandable using the knowledge base. An open

predicate vocabulary can circumvent this limitation by treating every word as its own for-

mal predicate (Banko et al., 2007; Riedel et al., 2013). Chapters 5 and 6 both use open

predicate vocabularies.

3. Semantic parser supervision – A key issue addressed in this work is identifying natural

and useful sources of supervision for training semantic parsers. I consider two distinct

types of supervision: unlabeled text and denotations. Unlabeled text is used in Chapters

4 and 5, which both consider the ungrounded setting. Unlabeled text is easy to obtain,

and can be used as training data if we assume that it expresses true statements about the

world. Chapter 6 considers the grounded setting and uses annotated denotations, which are

the real-world referents for natural language statements. Although denotations are more

challenging to obtain than unlabeled text, they remain easier than full knowledge bases

and annotated logical forms. The grounded setting also seems to require at least a few

annotated denotations in order to learn the mapping from words to real-world objects.

4. Syntactic information – Current work on semantic parsing typically assumes that no syn-

tactic information is provided to the learning agent. I also make this assumption in Chapter

6. Although this assumption is reasonable when the language is simple, syntactic informa-

tion can provide an advantage when language becomes more complex. Chapter 4 finds that

syntactic information is extremely helpful for semantically analyzing complex language.

Chapter 5 takes this view to the extreme: it produces semantic parses using a rule-based

transformation of syntactic parses.
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These four axes are intended to describe the amount and type of human annotation necessary

to train the systems in each chapter. The primary axes are 1 and 3, which directly characterize the

two main forms of human annotation provided to language understanding systems. The other two

axes interact with these. Specifically, if no knowledge base is given (axis 1), an open predicate

vocabulary seems necessary (axis 2). Syntactic information (axis 4) turns out to be very useful

when less informative annotations are given to train the semantic parser (axis 3).

1.2 Chapter Overview

This thesis is organized as follows. Two introductory chapters provide context for the contribu-

tions of this thesis. Chapter 2 provides an introduction to semantic parsing, a key subproblem

of language understanding. This chapter also defines and standardizes the terminology used

throughout this thesis. Chapter 3 describes relevant prior work.

Chapter 4 introduces a distantly-supervised algorithm for training a semantic parser. This

algorithm uses a knowledge base and a large corpus of unlabeled sentences to train a semantic

parser, without any semantically-annotated sentences. The second part of this chapter extends

this distant supervision approach to incorporate syntactic information, resulting in a full syntactic

parser for English that also produces semantic analyses for portions of the input sentence. Both

parsers from this chapter are effective information extraction tools and can be used to answer

natural language queries against the NELL knowledge base.

Chapter 5 introduces a new approach to semantic parsing based on learning a knowledge base

instead of mapping text to an existing knowledge base. This approach uses manually-defined

rules to convert a sentence’s syntactic parse into a logical form containing predicates derived

from the words in the sentence. The denotations of these predicates are learned automatically

from an entity-linked text corpus using probabilistic matrix factorization. The combined system

is capable of producing the same model-theoretic semantics as a traditional semantic parser (as

in Chapter 4), but is not restricted to using predicates from a particular knowledge base. On

6
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a question answering task, this approach is capable of answering many questions that queries

against Freebase cannot.

Chapter 6 describes Logical Semantics with Perception (LSP), a model for understanding

natural language in grounded environments. For example, given the statement “blue mug on

the table,” LSP can identify the segment of an image depicting a blue mug on a table. This

model combines a semantic parser with a perception function that produces a logical knowledge

base from a physical environment. This chapter also describes a weakly-supervised algorithm for

training both the semantic parser and perception function from annotated denotations. A question

answering evaluation demonstrates that this weakly-supervised has comparable performance to

a fully-supervised baseline while requiring significantly less manual annotation.

Finally, Chapter 7 summarizes the lessons from this work and suggests directions for future

work.
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Chapter 2

Semantic Parsing with Combinatory

Categorial Grammar

Semantic parsing is the problem of mapping natural language text to a formal representation of

its meaning, known as a logical form. This problem is one of the two key subproblems of natural

language understanding: it is the problem of mapping from natural language text to an agent’s

internal representation of the world, given by a logical knowledge base. This chapter presents

a simple algorithm for learning a semantic parser that forms the basis for learning parsers in

later chapters of this dissertation. These later chapters weaken the supervision assumptions used

in this chapter and derive new learning algorithms for these settings. The algorithm presented

in this chapter is a highly-simplified variant of published algorithms (Zettlemoyer and Collins,

2005, 2007).

This chapter considers the problem of learning a semantic parser given (1) a logical knowl-

edge base and (2) an annotated training data set of language/logical form pairs. This prob-

lem setting has been successfully used in many language understanding applications, including

answering natural language questions against a database (Zelle and Mooney, 1996), coaching

RoboCup soccer (Ge and Mooney, 2009; Wong and Mooney, 2007), giving robots navigational

instructions (Artzi and Zettlemoyer, 2013; Chen and Mooney, 2011; Matuszek et al., 2010), and

9



parsing temporal expressions (Lee et al., 2014). For concreteness, this chapter focuses on an

imaginary natural language database query application, with input/output of the following form:

• Input (language): “what cities are in Texas?”

• Output (logical form): λx.CITY(x) ∧ LOCATEDIN(x, TEXAS).

The semantic parser built in this chapter has two components: a heuristically-defined gram-

mar, and a machine-learned parsing model. The grammar defines a set of possible logical forms

for every natural language sentence. It will be defined using Combinatory Categorial Grammar

(CCG), a grammar formalism that tightly couples syntax and semantics, naturally facilitating

semantic parsing. However, the grammar will generally permit multiple logical forms to be pro-

duced for every natural language sentence. The role of the parsing model is to select the correct

logical form from amongst these possibilities. The presented approach will estimate both the

grammar and the parsing model from a data set of sentences with annotated logical forms, as in

the example above.

The structure of this chapter is as follows. Section 2.1 describes the CCG grammar formal-

ism. Section 2.2 describes a simple method for using CCG to build a semantic parser. (Improve-

ments on this simple method are described later in Chapter 3.) Finally, Section 2.3 discusses the

benefits and limitations of the presented approach to semantic parsing.

2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman, 2000; Steedman and Baldridge, 2011) is a gram-

mar formalism that has been used extensively for both wide-coverage syntactic parsing (Auli

and Lopez, 2011a; Clark and Curran, 2007a; Hockenmaier, 2003a; Hockenmaier and Steed-

man, 2002b; Lewis and Steedman, 2014) and semantic parsing (Artzi and Zettlemoyer, 2013;

Artzi et al., 2014; Cai and Yates, 2013a,b; Krishnamurthy and Kollar, 2013; Krishnamurthy and

Mitchell, 2012, 2014; Kwiatkowski et al., 2010, 2011, 2013; Lee et al., 2014; Matuszek et al.,

10



Syntactic category Part of speech Example usage
N/N Adjective good person : N
NP/N Determiner the person : NP
S\N Intransitive Verb I ate : S
(S\N)/N Transitive Verb I ate strawberries : S
(S\N)/(S\N) Adverb I quickly ate : S
(N\N)/N Preposition person in Texas : N
(S\N)\(S\N)/N Preposition ate in Texas : S\N

Table 2.1: Common syntactic categories in CCG with explanations of their usage.

2012; Reddy et al., 2014b; Zettlemoyer and Collins, 2005, 2007). CCG’s use for semantic pars-

ing is motivated by its tight coupling of syntax and semantics: words and phrases in CCG are

mapped to both a syntactic and a semantic representation, and parsing naturally combines both

of these representations to produce representations of larger phrases. Several other considera-

tions also motivate the use of CCG for semantic parsing. First, it is well-studied by linguists,

and consequently many linguistic phenomena (e.g., various forms of coordination) have estab-

lished analyses (Steedman and Baldridge, 2011). Second, CCG has a wide-coverage syntactic

treebank (Hockenmaier and Steedman, 2002a) that can be used to assist with semantic parsing

(as in Chapters 4 and 5). The wide-coverage syntactic CCG parsers built with this treebank are

another useful resource (Clark and Curran, 2007a).

Structurally, CCG is a lexicalized grammar formalism, meaning it has a large set of syntactic

categories that are combined using a small number of parsing operations. Hence, much of the

grammatical information is encoded in the syntactic categories themselves. The intuition of CCG

is that, syntactically and semantically, words and phrases behave like functions. For example, an

adjective can combine with a noun to produce another noun, as in the phrase “small town.”

Thus, the set of adjectives can be naturally identified with the set of functions that take a noun

argument and return a noun. Syntactic categories in CCG explicitly encode such argument type

specifications. The meaning of a particular adjective is then a particular function in this set – that

is, one function represents the meaning of “small,” another “large,” etc. In CCG, this function

is the word’s logical form. Parsing in CCG combines adjacent words and phrases using a small

11



number of operations, such as functional application and composition. Hence, to parse the phrase

“small town,” the “small” function is applied to the argument “town.” This operation naturally

derives both a syntactic category and logical form for the combined phrase.

2.1.1 Syntactic Categories

CCG has two kinds of syntactic categories: basic and functional. Basic categories represent

phrases that do not accept arguments; typically, this set contains only N for noun, NP for noun

phrase, PP for prepositional phrase, and S for sentence.1 Functional categories represent phrases

that accept arguments. These categories are written as X\Y or X/Y where both X and Y

are syntactic categories. Both of these categories indicate functions that accept an argument of

category Y and return a value of category X . The direction of the slash determines where the

argument must appear: / indicates an argument on the right, and \ indicates an argument on the

left. For example, the category S\N represents an intransitive verb; it is a function that accepts

a noun on the left and returns a sentence. Functional categories can also be nested to represent

more complex phenomena. For example, the category (S\N)/N represents a transitive verb; it

is a function that first accepts a noun on the right, then a noun on the left, and returns a sentence.

Other common syntactic categories are listed in Table 2.1.

2.1.2 Semantics

The semantics of a sentence are given by its logical form, which is a statement in a typed lambda

calculus. In this thesis, logical forms can be interpreted as queries against a knowledge base.

They are defined in a lambda calculus with two basic semantic types, e for entity and t for truth

value. Functional types are built from these basic types, such as 〈e, t〉, representing functions

from entities to truth values.

1This set can be chosen to support specific applications. For example, wide-coverage syntactic parsers assign

separate basic syntactic categories to punctuation symbols.
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Logical forms are composed of the following items:

• Entities such as TEXAS, of type e. The set of entities is defined by the knowledge base.

• Predicates are functions from entities to truth values, such as CITY(x) and LOCATEDIN(x, y).

One argument predicates are called categories and have type 〈e, t〉. Two argument pred-

icates are called relations and have type 〈e, 〈e, t〉〉; these will be written as two-argument

functions for clarity, e.g., R(x, y), not R(x)(y). The set of predicates is also defined by the

knowledge base.

• Variables of any type. Throughout this thesis, the variables w, x, y, z denote entities and

f, g, h denote functions.

• Logical connectives such as conjunction ∧, disjunction ∨, and implication→, all of type

〈t, 〈t, t〉〉. Logical forms may also include negation ¬, with type 〈t, t〉 and equality =, with

type 〈e, 〈e, t〉〉.

• Quantification, including both existential ∃ and universal ∀ quantifiers. Quantifiers have

type 〈〈e, t〉, t〉.

• Lambda expressions representing functions. For example, λx.¬CITY(x) denotes the

function that takes an entity argument x and returns true if x is not a CITY. Lambdas

can be used to create functions with many different type specifications. For example, the

expression λf.λx.CITY(x) ∧ f(x) has type 〈〈e, t〉, 〈e, t〉〉.
Logical forms are programs that can be evaluated on a knowledge base to return a denotation.

If the logical form has type t, the denotation is a truth value; if it has type 〈e, t〉, the denotation

is a set of entities. The precise value of the denotation depends on the predicate instances in the

knowledge base. For example, consider evaluating λx.CITY(x) ∧ LOCATEDIN(x, TEXAS) on a

knowledge base that contains CITY(PLANO) and LOCATEDIN(PLANO, TEXAS). The denotation

of this logical form is the set of entities x for which it returns true, which in this case is the

set {PLANO}. In question answering applications, the denotation is the answer to the posed

question.
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The language for logical forms used in this thesis is a fairly typical language for representing

database queries. Other work commonly includes real numbers and functions that operate on

real numbers, such as COUNT or LARGEST (e.g, (Zettlemoyer and Collins, 2005)). These items

are omitted in this thesis because the knowledge bases used do not contain numerical informa-

tion. Naturally, other applications of semantic parsing may use different types and additional

items; for example, interpreting robot commands may require an action type and actions such as

TURNLEFT.

A correspondence between syntactic categories and semantic types ensures that parsing pro-

duces well-typed logical forms. A standard choice is to assign nouns N , noun phrases NP and

prepositional phrases PP the type 〈e, t〉, and sentences S the type t. Note that a function f of

type 〈e, t〉 is isomorphic to a set of entities, specifically, the set of entities for which f returns

true. Thus, the denotation of a noun is the set of entities it refers to and the denotation of a sen-

tence is either true or false.2 This association naturally extends to functional syntactic categories.

For example, adjectives N/N have semantic type 〈〈e, t〉, 〈e, t〉〉.

2.1.3 Lexicon

A CCG grammar is defined by a lexicon, which is a mapping from words to syntactic categories

and logical forms. The lexicon, along with the parsing operations described below, defines the

set of possible parses for every natural language statement. An example lexicon may include the

following entries:

2This correspondence results in a simple model-theoretic semantics for language (Dowty et al., 1981). Although

this simple semantics is sufficient to represent the phenomena considered in this thesis, many phenomena – such

as modelling the beliefs of other agents – require a more complex correspondence between syntactic and semantic

types. However, many knowledge bases available today do not represent these phenomena, so there is little im-

mediate value in a more complex semantic analysis. This semantics is also a reasonable starting point that can be

extended in future work.
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town := N : λx.CITY(x)

Texas := N : λx.x = TEXAS

Alex := N : λx.x = ALEX

large := N/N : λf.λx.f(x) ∧ MAJOR(x)

in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

in := (PP/N) : λf.f

lives := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ HASRESIDENCE(x, y)

is := (S\N)/N : λf.λg.∃x.f(x) ∧ g(x)

During parsing, these lexicon entries are used to initialize the set of possible syntactic cat-

egories and logical forms for each word. Note that a single word may have multiple lexicon

entries with distinct syntactic categories and logical forms; parsing must disambiguate between

these options. Further note that the lexicon entries with functional syntactic categories have a

one-to-one mapping between arguments of the syntactic category and arguments of the logical

form. For example, in the lexicon entry for “lives,” the argument f corresponds to the PP and the

argument g corresponds to the N . During parsing, f and g will be assigned values that represent

the semantics of the corresponding syntactic arguments.

2.1.4 Parsing

Parsing in CCG combines adjacent categories using a small number of parsing operations, or

combinators. These combinators simultaneously operate on syntactic categories and logical

forms, jointly deriving the syntax and semantics of the parsed text. A parse in CCG is known as

a derivation.

Application

The most commonly-used combinator in CCG is functional application:
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X/Y : f Y : g =⇒ X : f(g)

Y : g X\Y : f =⇒ X : f(g)

The first rule, forward application, states that the categoryX/Y can be applied to the category

Y on the right, returning category X . Similarly, the logical form f is applied to g to produce the

logical form for the returned category. Given the sample lexicon above, this rule can be used to

produce the following parse:

major
N/N : λf.λx.f(x) ∧ LARGE(x)

town
N : λx.CITY(x)

N : λx.CITY(x) ∧ LARGE(x)

The second rule, backward application, is analogous to the first, except that the argument

appears on the left. A grammar that only uses functional application is known as a Categorial

Grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953).

Composition

CCG extends Categorial Grammar with a number of additional combinators, such as forward

and backward composition:

X/Y : f Y/Z : g =⇒ X/Z : λz.f(g(z))

Y \Z : g X\Y : f =⇒ X\Z : λz.f(g(z))

The first composition rule states that the category X/Y can compose with the category Y/Z

to produce the category X/Z. This rule makes intuitive sense: Y/Z is a function that takes a Z

and produces a Y , so applying X/Y to the resulting Y gives us a function from Z to X , or the

categoryX/Z. The second composition rule is analogous to the first but in the opposite direction.

A simple example of composition is:

really
(S\N)/(S\N) : λf.f

lives
(S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ HASRESIDENCE(x, y)

(S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ HASRESIDENCE(x, y)
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In many cases, composition is used with coordination or type-raising to parse sentences that

cannot be parsed with only functional application. Examples of these uses are given below.

Composition also has several variants that compose deeper arguments. For example, the

following rule composes a one-argument category with a two-argument category:

X/Y : f (Y/W )/Z : λz.λw.g(z)(w) =⇒ (X/W )/Z : λz.λw.f(g(z)(w))

Another variant, crossed composition, can be used to compose syntactic categories with dif-

ferent argument directionalities:

X/Y : f Y \Z : g =⇒ X\Z : λz.f(g(z))

Y/Z : g X\Y : f =⇒ X/Z : λz.f(g(z))

Type-Raising

Type-raising is another permitted combinator. This is a unary combinator that can be applied to

a category in isolation:

X : f =⇒ Y/(Y \X) : λg.g(f)

Type-raising is often used with composition to combine categories with their arguments in a

different order than the one imposed by the category. For example, these two operations can be

used to combine a verb with its subject before its object:

Alex
N : λx.x = ALEX

S/(S\N) : λf.f(λx.x = ALEX)

lives
(S\N)/PP :

λf.λg.∃x, y.f(y) ∧ g(x) ∧ HASRESIDENCE(x, y)

S/PP : λh.(λf.λg.∃x, y.f(y) ∧ g(x) ∧ HASRESIDENCE(x, y))(h)(λx.x = ALEX)

simplified: S/PP : λh.∃x, y.h(y) ∧ x = ALEX ∧ HASRESIDENCE(x, y)

This parse first type-raises “Alex,” then composes the result with “lives” to obtain the desired

result. The first version of the resulting category shows the lambda calculus expression created

by directly following the rules for type-raising and composition. The second version simplifies

this expression according to the rules of lambda calculus.

17



Coordination

Coordination is represented in CCG by syntactic categories of the form (X\X)/X , such as

(N\N)/N to coordinate nouns, or ((S\N)\(S\N))/(S\N) to coordinate verbs. For example:

Alex

N : λx.x = ALEX

and

(N\N)/N : λf.λg.λx.f(x) ∨ g(x)

Texas

N : λx.x = TEXAS

N\N : λg.λx.f(x) ∨ x = TEXAS

N : λx.x = ALEX ∨ x = TEXAS

Additional Combinators

Finally, it is often useful to include additional unary and binary combinators in a CCG semantic

parser. These combinators are typically specially designed to simplify parsing for a particular

application. For example, wide-coverage syntactic parsers must process punctuation marks. The

following two rules can be used to combine commas with nouns:

N : f , : g =⇒ N : f

, : h =⇒ (N\N)/N : λf.λg.λx.f(x) ∨ g(x)

The first binary combinator allows a noun to absorb a comma on the right with no effect

on its semantics. In many cases, this is an appropriate way to semantically parse a comma.

However, a comma may also indicate a coordination, as in a comma-separated list. The second

unary combinator allows a comma to be type-changed to a coordination between nouns. Another

example of additional combinators are the binary rules used by the parser in Section 4.2 to

analyze noun compounds such as “Texas city.”

2.1.5 Parsing Algorithms

Combinatory Categorial Grammar belongs to the class of so-called mildly context-sensitive

grammar formalisms, meaning it is capable of generating non-context-free languages (Weir and
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Lexicon:
foo := A/A/A
foo := A/B/A

Derivations:
foo foo : A/A/A/A
foo foo : A/B/A/A
foo foo : A/A/B/A
foo foo : A/B/B/A

Figure 2.1: A CCG grammar that may require exponential time to parse with the CKY algorithm.
The string containing “foo” repeated n times has 2n possible syntactic categories for the parse
tree root, of the form A/[A or B]/.../A.

Joshi, 1988). Due to its enhanced generative power, parsing CCG with the CKY algorithm (Man-

ning and Schütze, 1999) may require time exponential in the length of the sentence. Figure 2.1

illustrates a simple grammar for which this is the case. The fundamental problem is that com-

position can be used to grow the number of arguments to a category during parsing, resulting in

an exponential number of possible syntactic categories at the root of the parse tree. However,

alternative algorithms exist for parsing CCG in O(n6) time (Kuhlmann and Satta, 2014; Vijay-

Shanker and Weir, 1990, 1993); these algorithms do not explicitly represent all possible syntactic

categories at each chart entry, allowing them to avoid an exponential running time.3

Despite these theoretical limitations, in practice, CCG parsing is performed using the CKY

algorithm. There are several common optimizations used to make parsing with CKY more

tractable:

1. Restrict the Grammar. Define a subset of the full grammar that contains a finite set of

syntactic categories, such as the categories that appear in a treebank. Restricting CCG to

a finite set of syntactic categories results in a context-free grammar, guaranteeing that the

CKY algorithm runs in polynomial time (Fowler and Penn, 2010). This restriction is rel-

atively minor, as the complex categories produced by repeated compositions are typically

not meaningful or useful.

2. Normal Form. Due to its additional combinators, CCG often permits multiple syntactic

3Note that categorial grammar – CCG restricted to only functional application – is context-free and therefore can

be parsed in O(n3) time using CKY.
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parses for a sentence that result in equivalent logical forms. For example, there are two

semantically equivalent parses of “clean major town:”

clean

N/N : λf.λx.f(x) ∧ CLEAN(x)

major

N/N : λf.λx.f(x) ∧ MAJOR(x)

town

N : λx.CITY(x)

N : λx.CITY(x) ∧ MAJOR(x)

N : λx.CITY(x) ∧ MAJOR(x) ∧ CLEAN(x)

clean

N/N : λf.λx.f(x) ∧ CLEAN(x)

major

N/N : λf.λx.f(x) ∧ MAJOR(x)

N/N : λx.CLEAN(x) ∧ MAJOR(x)

town

N : λx.CITY(x)

N : λx.CITY(x) ∧ MAJOR(x) ∧ CLEAN(x)

This example illustrates the problem of spurious ambiguity, which occurs when a phrase

that can be parsed using only functional application also permits additional, semantically-

equivalent parses using other combinators. These additional parses reduce parser efficiency

(Clark and Curran, 2007a).

A CCG parser can be constrained to produce only normal form syntactic derivations to

eliminate spurious ambiguity (Eisner, 1996). Informally, a syntactic derivation is normal

form if it only uses composition and type-raising where necessary. Normal form deriva-

tions can be obtained by restricting the combination of categories produced by composi-

tion. Specifically, a category produced by composition cannot be used in a subsequent

functional application as the primary functor, i.e., the function being applied. In the sec-

ond example above, this rule would prevent the composedN/N category for “clean major”

from combining with “town.” This rule is sufficient to completely eliminate spurious am-

biguity in grammars containing only functional application and composition, but may only

partially eliminate spurious ambiguity if other combinators are allowed.

3. Supertagging. Even with the above restrictions, wide-coverage CCG grammars permit a

large number of parses for any given sentence. These grammars have hundreds of syntactic
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categories and their lexicons contain numerous entries for certain words. For example, the

CCGbank lexicon contains 79 entries for “in.” Consequently, the space of parses for a

sentence can be too large to search in practice.

Supertagging is a method for improving parser efficiency by pruning the possible syntactic

categories for each token in a sentence before parsing (Bangalore and Joshi, 1999; Clark,

2002; Clark and Curran, 2004). Supertagging is performed by training a model to predict

a set of syntactic categories for each token using features of the surrounding tokens. Sub-

sequent parsing is restricted to the predicted set of syntactic categories. This technique is

effective because, even though a word may have many possible syntactic categories, some

categories are much more likely to appear in a particular sentence than others.

In this thesis, every semantic parser employs the context-free grammar optimization and the

wide-coverage parser described in Chapter 4 employs all of the above optimizations.

2.2 Building a Semantic Parser

This section describes how to build a semantic parser given a data set of sentences paired with

logical forms. The approach described is somewhat simplistic, but represents a reasonable start-

ing point for more advanced work on semantic parsing. Improvements on this basic approach

are described in Section 3.1.

The input to this approach is a knowledge base and a collection of sentences paired with

logical forms. The approach has two steps. First, it defines a grammar for the semantic parser

by creating a CCG lexicon and selecting combinators. This step is performed by a collection

of manually-defined heuristics and results in a grammar that permits many CCG parses for any

given sentence. The second step trains a machine learning model to select the correct parse from

among the many possibilities. This step formulates semantic parsing as a structured prediction

problem and trains a model using the structured perceptron algorithm.
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2.2.1 Data

This approach to building a semantic parser has two inputs: a knowledge base and a collection

of sentences with annotated logical forms. The knowledge base K = (E,R,C,∆), contains

entities e ∈ E, category predicates c ∈ C, relation predicates r ∈ R and predicate instances

{c(e), r(e1, e2)} ∈ ∆. The knowledge base defines the vocabulary of predicates and entities for

logical forms, and contains the predicate instances required to evaluate logical forms. (Evalu-

ating logical forms will not be necessary for training, but is typically desirable for downstream

applications.) Although not explicitly listed here, the knowledge base may also contain other

useful information, such as a type hierarchy or known names of entities.

The data for training is a collection of n tuples, {(si, `i)}ni=1, of sentences si paired with

logical forms `i. Each sentence is a sequence of words (not necessarily a grammatically correct

sentence), and each logical form is a lambda calculus statement. For concreteness, this section

focuses on the problem of querying a database with natural language. In this setting, the sentence

is a natural language query, e.g., si = “cities in Texas,” and the logical form is a database query,

e.g., `i = λx.CITY(x) ∧ LOCATEDIN(x, TEXAS). These annotated sentences are used to both

derive the grammar of the parser and train the structured prediction model.

2.2.2 Grammar Induction

The grammar G = (Λ, C) of a semantic parser has two components, a lexicon Λ and a set of

combinators C. These components together define the set of possible parses for each sentence.

The challenging portion of grammar induction is inducing the lexicon, as the combinators can

simply be selected from the set of possibilities described in Section 2.1.4.

Lexicon induction produces a CCG lexicon Λ for the semantic parser given a data set of

sentences paired with logical forms. A simple approach to lexicon induction is to define a col-

lection of heuristic rules that instantiate lexicon entries from training examples. For example, to

correctly parse the “cities in Texas” example above, the CCG lexicon should ideally contain the
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following entries:

cities := N : λx.CITY(x)

Texas := N : λx.x = TEXAS

in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

These entries can be generated by part-of-speech tagging the text then applying the following

heuristics:

1. Generate a lexicon entry with syntactic category N mapping every noun in the input to

every category c and entity e in the annotated logical form. The semantics of these entries

have the form λx.c(x) or λx.x = e.

2. Generate a lexicon entry with syntactic category (N\N)/N mapping every preposition in

the input to every relation in the annotated logical form. The semantics of this entry has

the form λf.λg.λx.∃y.f(y) ∧ g(x) ∧ r(x, y).

These heuristics are simple examples of the kinds of rules that can be employed. Real appli-

cations typically employ 10-15 such rules (Krishnamurthy and Mitchell, 2012; Zettlemoyer and

Collins, 2005, 2007). Additional information may also be used to generate lexicon entries, such

as the names of entities in the knowledge base.

Applying the above heuristics to the “cities in Texas” example results in the following lexicon

Λ:

cities := N : λx.CITY(x)

cities := N : λx.x = TEXAS

Texas := N : λx.CITY(x)

Texas := N : λx.x = TEXAS

in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

The generated lexicon includes the desired entries but also includes some implausible en-

tries, such as the second entry for “cities.” It is acceptable to generate these entries because the
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training process will learn that they are unlikely to appear in correct parses. However, these im-

plausible entries make parsing less efficient by increasing the size of the grammar, and they may

also reduce the generalization ability of the parser. Therefore, it is undesirable to include many

such entries in the lexicon. Several improved algorithms for inducing a lexicon are described

in Section 3.1.3; these algorithms aim to jointly learn both the lexicon and the semantic parsing

model.

The combinators C allowed by the grammar can simply be manually selected from the set of

possibilities permitted by CCG. For example, the parser can use functional application and com-

position, but not type-raising. Heuristic rules can also be used to define additional combinators;

Chapter 4 uses this approach to define a set of binary combinators for parsing noun compounds.

2.2.3 Semantic Parsing Model

Given a grammar G, the next step in the algorithm is to define a structured prediction model Γ

for the semantic parser. This model is used to disambiguate between the many logical forms for a

sentence permitted by the grammar. Given a sentence s, this model produces a score for a logical

form ` and syntactic CCG parse tree t according to:

Γ(`, t, s; θ,G) = θTφ(`, t, s)

Above, the tuple (`, t) represents a semantic parse of the sentence. It has two components

because multiple syntactic parse trees t can result in the same logical form ` and vice versa. The

feature function φ produces a feature vector for a semantic parse. These features are typically

counts of various substructures that occur in the parse (see below). The model parameters θ

contain a weight for each feature, and the score of a semantic parse (`, t) for the sentence s is

the inner product of the parameter and feature vectors. Although not represented in the above

equation, the grammar G defines the set of possible semantic parses (`, t) that can be scored

in this fashion. Throughout this thesis, semantic parsers are trained using discriminative non-

probabilistic linear models of the form above. However, probabilistic loglinear models can also

24



be used for semantic parsing (e.g., (Zettlemoyer and Collins, 2005)) using very similar training

algorithms.

Features

The feature function φ determines the parameterization of the semantic parsing model. In order

to enable efficient inference with CKY, these features must factorize according to the structure

of the parse tree. Given a sentence s and a semantic parse (`, t), let (w := X : l) ∈ LEX(`, t, s)

be the set of lexicon entries in the parse, and let (X Y =⇒ Z) ∈ COMB(`, t, s) be the set of

instantiated combinators. The feature function φ is the sum of distinct lexicon and combinator

feature functions, applied to each of these elements:

φ(`, t, s) =
∑

(w,X,l)∈LEX(`,t,s)

φlex(w,X, l) +
∑

(X,Y,Z)∈COMB(`,t,s)

φcomb(X, Y, Z)

The lexicon and combinator feature functions are typically composed of many indicator func-

tions, each of which returns the value 1 for a particular set of inputs and 0 otherwise. For example,

a lexicon feature function may return 1 only if w = city, X = N and ` = λx.CITY(x), effec-

tively detecting if the lexicon entry is town := N : λx.CITY(x). An example combinator feature

function may return 1 only if the combinator is the functional application N/N N =⇒ N .

φlex and φcomb both return vectors where each entry in the vector is the value of one such feature

function. φ(`, t, s) is produced by summing these vectors across all lexicon entries and instanti-

ated combinators; each entry of the resulting vector is the number of occurrences of a particular

feature in the entire parse.

Many additional features can be defined that factorize in this manner. For example, if the

sentence is part-of-speech tagged, the lexicon features can include an indicator feature for POS-

tag/syntactic category pairs. Or, if the grammar is annotated with head-passing rules, the combi-

nator features can include the head words of the combined spans.
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Inference

Inference in this model corresponds to predicting the most likely semantic parse for a sentence

s:

(`∗, t∗) ← arg max
(`,t)

θTφ(`, t, s)

Note that this maximization is defined over the set of semantic parses permitted by the gram-

mar G, though this dependence is left implicit. Assuming that φ factorizes according to the

structure of the parse tree, this maximization can be solved exactly using the CKY algorithm

(with the caveats described in Section 2.1.5).

2.2.4 Training

Training the semantic parser amounts to selecting the model parameters θ using a data set of

sentence/logical form pairs, {(si, `i)}ni=1. The structured perceptron algorithm is a simple way

to select θ (Collins, 2002; Zettlemoyer and Collins, 2007). This algorithm can be viewed as

minimizing the following objective function:

O(θ) =
n∑
i=1

|max
ˆ̀,t̂

Γ(ˆ̀, t̂, si; θ,G)−max
t∗

Γ(`i, t
∗, si; θ,G)|+

This objective function consists of two terms: the first term is the score of the highest-scoring

semantic parse of si under the current model and the second term is the score of the highest-

scoring semantic parse of si with the correct logical form, `i. | · |+ denotes the positive part of

the expression. Thus, the objective value for an example is nonzero only if the highest-scoring

semantic parse has an incorrect logical form.

This objective function can be minimized using stochastic subgradient descent. This algo-

rithm initializes the parameter vector to zero, then iterates over the examples in the data set
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performing a parameter update for each one. Let θj denote the parameter vector produced by the

jth iterative update, with θ0 = 0. Given the example (si, `i), the gradient update is:

ˆ̀, t̂ ← arg max
(`,t)

θTφ(`, t, si)

t∗ ← arg max
t

θTφ(`i, t, si)

θj+1 ← θj + φ(`i, t
∗, si)− φ(ˆ̀, t̂, si)

This update first solves two inference problems. The first inference problem is simply to

predict the best semantic parse (ˆ̀, t̂) of si given the current model parameters θj . The second

inference problem is to predict the best semantic parse that results in the correct logical form,

`i. This second problem may require an approximate inference algorithm – see Section 2.2.5

for details. Finally, the parameter update adds the features of the best correct parse to θ while

subtracting the features of the best predicted parse. Note that if the predicted parse is the same

as the correct parse, the parameters do not change.

The structured perceptron algorithm is not guaranteed to converge to a parameter value, so

training is performed by running a fixed number m of updates. The algorithm returns either

the final parameter vector, θm, or the average of the parameters across iterations, 1
m

∑m
i=1 θ

i.

Empirically, the average of the parameters results in better performance (Collins, 2002).

2.2.5 Additional Considerations

This section describes some common technical issues encountered when building semantic parsers.

Out-of-Vocabulary Words

At test time, a semantic parser is likely to encounter sentences containing words that did not

appear in the training data. As described, the semantic parser has no mechanism for handling
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these out-of-vocabulary words, and therefore it will not be able to parse these sentences.

There are two common solutions to this problem. One solution is to create default lexicon en-

tries for out-of-vocabulary words. These entries can be created by mapping all out-of-vocabulary

words to a special symbol, UNK, then including entries for UNK in the lexicon. This approach

is typically employed by wide-coverage syntactic parsers (Clark and Curran, 2007a).

If a complete syntactic parse is not necessary, another solution is to allow the parser to skip

words while parsing. Word skipping can be implemented by adding a special SKIP nonterminal

symbol to the grammar, allowing this nonterminal to be produced by every word, and allowing

it to combine with other nonterminals without changing the nonterminal. A parser with word

skipping will produce partial parse trees containing only a subset of the tokens in a sentence, i.e.,

the tokens that are not mapped to SKIP in the parse tree. This solution is often used in natural

language question answering applications.

Richer Syntactic Categories

CCG syntactic categories can be annotated with two kinds of additional information to produce

richer syntactic analyses. First, basic categories (e.g., S and NP ) may have associated syntac-

tic features given in square brackets. These features are used in CCGbank (Hockenmaier and

Steedman, 2002a) to distinguish variants of basic syntactic categories, e.g., S[dcl] indicates a

declarative sentence. These syntactic features can also be associated with variables whose values

are filled during parsing via unification. For example the adverb category (S[X]\N)/(S[X]\N)

contains the variable [X]. Applying this category to a declarative, intransitive verb (S[dcl]\N)

returns (S[dcl]\N), as the variable [X] is unified with [dcl]. These variables reduce the number

of syntactic categories required to model these features; in this case, a single adverb category

suffices even though intransitive verbs have multiple possible feature values.

Second, each category may be annotated with head passing and dependency information, in-

dicated using subscripts. For example, the preposition “in” may have the category (N1\N1)/N2.
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Parsing the phrase “town in Texas” with this category creates two predicate argument depen-

dencies, from “in” to “town” and “Texas”, respectively. The head word of the phrase is “town”

due to the coindexing of the argument and return categories in (N1\N1). Predicate-argument

dependencies are used to evaluate parser performance against CCGbank and to generate parse

tree features for training a parsing model.

Approximate Inference

Approximate inference is usually necessary to train a CCG semantic parser. The difficult infer-

ence problem is, given a sentence and logical form (si, `i), to find the highest-scoring syntactic

derivation t∗ that produces `i:

t∗ ← arg max
t

θTφ(`i, t, si)

This problem is difficult because the relationship between the derivation t and logical form

`i is complex. It is therefore unclear how to enforce local restrictions during parsing – that is,

on individual entries in the CKY chart – to guarantee that all syntactic derivations produce `i.

Consequently, this problem cannot be efficiently solved with CKY.

One approach to solving this inference problem is to implement a CKY-style parsing algo-

rithm that maintains both a syntactic category X and logical form ` in each chart entry. This

algorithm is inefficient because the number of possible logical forms for a span can grow ex-

ponentially in the length of the sentence, and hence parsing can take exponential time. Theo-

retically, this approach can find the exact maximizer t∗. In practice, however, the grammar is

usually too large to permit an exact search, so beam search is used to produce an approximate

result. Given a sentence, beam search generates a ranked list of semantic parses (tj, `j); if one

of these has the correct logical form, `j = `i, then tj is taken as the approximate maximizer.
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2.3 Discussion

This chapter has presented a simple algorithm for building a semantic parser with Combina-

tory Categorial Grammar (CCG). The algorithm has two steps. First, it defines a grammar for

the parser using a collection of heuristic lexicon induction rules. This grammar permits many

possible semantic parses for a sentence. Second, it trains a structured prediction model to pre-

dict which of these semantic parses is correct. This step uses a linear model trained with the

structured perceptron algorithm.

The presented algorithm for training a semantic parser has many shortcomings. Three sig-

nificant limitations are (1) the heuristic lexicon induction rules, (2) the training data requirement

of sentences with annotated logical forms and (3) the knowledge base must be known a priori.

Many solutions have been proposed for these problems; these are discussed in the following

chapter.
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Chapter 3

Related Work

This thesis is related to work from many different areas of natural language processing. Section

3.1 describes related work on semantic parsing, which is used throughout this thesis. Section

3.2 describes work on broad coverage syntactic parsing with Combinatory Categorial Grammar.

A syntactic CCG parser is trained in Chapter 4 and used in Chapter 5. Section 3.3 describes

related work on information extraction, which inspires the distantly-supervised training regime

in Chapter 4 and the probabilistic matrix factorization technique in Chapter 5. Finally, Section

3.4 covers work on jointly understanding natural language and perceiving the world, which is the

problem considered in Chapter 6.

3.1 Semantic Parsing

Semantic parsing is the problem of mapping natural language text to a formal representation of

its meaning, known as a logical form. In this thesis, a logical form is a statement in lambda

calculus; however, alternative formalisms have been used in prior work. In every formalism,

a logical form is a program that can be automatically evaluated by a computer against a world

representation (typically a logical knowledge base). Because the logical form can be evaluated,

it has a well-defined formal semantics.
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Many distinct formalisms and supervision assumptions have been proposed to train semantic

parsers. All of the work in this section requires a logical knowledge base to be given as input.

Work that uses a learned knowledge base is deferred to Section 3.4.

3.1.1 Formalisms

Many formalisms have been proposed for semantic parsing. Although superficially different,

most of these formalisms are very similar in that the semantic parser is defined by a grammar

and a machine-learned scoring model. The grammar defines the space of possible parses for each

sentence, and the scoring model is used to select a single parse from these possibilities. Thus, at

a high-level these techniques are similar to the basic approach described in Chapter 2.

The first approaches to semantic parsing were based on inductive logic programming (ILP).

ILP induces a logic program (e.g., in Prolog) from a collection of positive and negative examples

such that the program entails all of the positive examples and none of the negative examples.

The CHILL system induces a shift-reduce grammar from a corpus of sentences with annotated

logical forms, then learns control rules for this grammar with ILP (Zelle and Mooney, 1993,

1996). The ILP algorithm learns when each induced grammar rule should be applied, essentially

performing the role of the scoring model. On GEOQUERY, this approach achieves an accuracy

of 68%. The COCKTAIL system improves on the ILP heuristics used by CHILL to achieve an

accuracy of 79.4% (Tang and Mooney, 2001). SILT is a similar system whose grammar consists

of transformation rules from strings or parse trees to logical form. A heuristic scoring function

determines which rules to apply (Kate et al., 2005). This system performs somewhat worse than

COCKTAIL, with an accuracy around 65%.

Statistical techniques for parsing context-free grammars have also been used for syntactic

parsing. The SCISSOR system learns a context-free grammar whose nonterminals encode both

syntax and semantics (Ge and Mooney, 2005). This system learns a generative model over these

parse trees based on Collins model 2 (Collins, 1997) using fully annotated syntactic and semantic
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parse trees for training. SCISSOR is shown to compare favorably to prior work on GEOQUERY

and the ROBOCUP coaching data set. A similar, but unlearned, model has been used for direc-

tion following (MacMahon et al., 2006). Follow-up work pipelines this model, first syntactically

parsing the text with a syntactic parser then performing a semantic analysis according to the

structure of the syntactic parse tree (Ge and Mooney, 2009). Experimental results with this

pipelined model demonstrate that high syntactic parsing accuracy is critical to achieve high se-

mantic parsing performance. Another similar context-free grammar approach is to generate a

hybrid tree that contains both meaning representation and word nodes (Lu et al., 2008). This

work also trains a generative parsing model inspired by Collins, but uses Expectation Maximiza-

tion to avoid requiring annotated syntactic trees. When combined with a discriminative reranker,

this approach achieves good results. KRISP is a another semantic parsing system that induces

a context-free grammar over the text and logical form; however, this system uses SVMs with

string kernels to score the production rules invoked for each sentence span (Kate and Mooney,

2006). A final variant of this statistical parsing approach is implemented in WASP, which uses

probabilistic synchronous context-free grammars (PSCFG) (Wong and Mooney, 2006, 2007).

PSCFG is a variant of context free grammar that simultaneously generates two strings instead of

one (Wu, 1997). For semantic parsing, one side of the PSCFG generates natural language, and

the other side generates logical forms.

The previously mentioned techniques all construct semantic parsers using phrase-structure

grammars. DCS is a semantic parsing formalism that uses a dependency grammar (Berant et al.,

2013; Liang et al., 2011, 2013). In DCS, words invoke entities and predicates, and dependency

edges connect arguments of these predicates through join operations. Additional operations are

available to handle divergence of syntactic and semantic scope; these operations are used to

model quantifiers. Some other work has also explored dependency-based semantic parsing via a

conversion from dependency to CCG parses (Cantrell, 2009).

Combinatory Categorial Grammar (CCG) has also been used extensively to develop semantic
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parsers (Artzi and Zettlemoyer, 2013; Artzi et al., 2014; Cai and Yates, 2013a,b; Krishnamurthy

and Kollar, 2013; Krishnamurthy and Mitchell, 2012, 2014; Kwiatkowski et al., 2010, 2011,

2013; Lee et al., 2014; Matuszek et al., 2012; Reddy et al., 2014b; Zettlemoyer and Collins,

2005, 2007). Chapter 2 explains this formalism in detail. CCG was introduced for semantic

parsing by Zettlemoyer and Collins (Zettlemoyer and Collins, 2005). Much of the follow-up

work has focused on subproblems within semantic parsing, such as inducing the lexicon or using

less supervision. This work is described in more detail later in this section. All of the semantic

parsers in this thesis are built using CCG.

A limitation of the above parsing approaches is that the induced grammars can be overly

restrictive, disallowing potentially valid semantic parses. An alternative line of work has ex-

plored generating and scoring all possible logical forms for a given sentence (Clarke et al., 2010;

Goldwasser et al., 2011; Roth and Yih, 2007). This work formulates inference as an integer

linear program that maximizes the sum of an alignment score between words and predicates

and a predicate-argument score. In essence, this work uses a very permissive grammar formal-

ism, where words are mapped to predicates that can then be composed in any (type-consistent)

manner.

Finally, some work has aimed to formulate semantic parsing as instances of other NLP tasks.

Logical forms can be linearized into a string representation, which makes machine translation

a natural fit (Andreas et al., 2013). This approach achieves competitive results to state-of-the-

art systems on GEOQUERY while requiring very little additional engineering effort. Another

approach is to formulate semantic parsing as a paraphrasing problem (Berant and Liang, 2014).

Here, given input language, a number of candidate logical forms are generated. Canonical textual

representations of these logical forms are generated using templates, then a paraphrase model

scores the match between these representations and the input language. This model was designed

to improve performance on large knowledge bases, where it is difficult to resolve the mapping

from language to KB symbols.
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Given the diversity of grammar formalisms, it is natural to ask which is the best. However, on

small data sets such as GEOQUERY, the various formalisms perform roughly comparably. Con-

sidering the similarities between these formalisms, the performance differences between these

approaches are more likely the consequence of other design choices, such as of a discrimina-

tive or generative model, rather than the formalism itself. The large semantic parsing data sets

available today have less compositional language and performance is largely determined by the

parser’s ability to match words to KB symbols (Berant and Liang, 2014; Kwiatkowski et al.,

2013). Consequently, these results also do not demonstrate a clear advantage for any formalism.

3.1.2 Types of Supervision

Many forms of supervision have been explored in previous work, spanning labeled logical forms

to essentially no supervision whatsoever. This section covers each type of supervision, roughly

ordered by most to least annotation effort.

Logical Forms

Most of the early work on semantic parsing trained parsers on a corpus of sentences with an-

notated logical forms (Kate and Mooney, 2006; Kate et al., 2005; Kwiatkowski et al., 2010; Lu

et al., 2008; Wong and Mooney, 2006, 2007; Wu, 1997; Zelle and Mooney, 1993, 1996; Zettle-

moyer and Collins, 2005, 2007). In this setting, the training data consists of a knowledge base K

and a collection {(si, `i)}ni=1 of sentences si with annotated logical forms `i. A basic approach

to training a semantic parser with this form of supervision was described in Chapter 2.

This form of supervision, while effective, has fallen out of favor recently due to the per-

ceived difficulty of annotating logical forms. However, annotated logical forms do have some

advantages over other forms of supervision. Specifically, they are helpful for lexicon induction,

because an alignment between text and logical form fragments can be computed. These lexicon

induction techniques are discussed in Section 3.1.3.
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Question/denotation pairs

Another form of supervision is question/denotation pairs. A denotation is the value produced by

evaluating a logical form against a knowledge base; in question answering, the denotation is the

answer to the question. There are two common tasks that use this form of supervision. The first is

answering natural language questions using a database (as above) where that the semantic parser

is trained from question/answer pairs. This task was introduced by Liang et al. (Liang et al.,

2011), and has been used in several more recent works on semantic parsing (Berant and Liang,

2014; Berant et al., 2013). The second task is learning to interpret natural language directions to

navigate a robot through a virtual environment (Chen and Mooney, 2011; Matuszek et al., 2010;

Shimizu and Haas, 2009). The supervision provided in this task is natural language directions

paired with the correct path through the environment. A superficially different setting is training

a semantic parser given a feedback oracle that provides a binary correct/incorrect signal (Clarke

et al., 2010); however, since the oracle can be queried at will, the same algorithms for learning

from denotations function in this setting.

These tasks share a formalization. The training data consists of a knowledge base K and

a collection {(si, γi)}ni=1 of questions si with annotated denotations γi. In question answering,

the knowledge base is the database and the denotation is a set of entities that is the correct

answer to the question. In direction following, the knowledge base is a logical representation

of the robot’s environment, and the denotation is the correct path. (Presumably, the semantic

parser for direction following includes an action type that evaluates to paths in the environment.)

The semantic parser is trained to predict a logical form `∗i for si such that evaluating `∗i on K

produces the annotated denotation, i.e., EVAL(`i, K) = γi. An alternative view of this form of

supervision is that there is a set of correct logical forms for each sentence, specifically the set

{` : EVAL(`,K) = γi}.

There are three high-level algorithms for training semantic parsers from this kind of super-

vision. The first is to take a stagewise approach. This approach first infers a logical form `i for
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each training example si with the correct denotation. These logical forms are then presumed to

be correct, and therefore can used to train a semantic parser from sentence/logical form pairs.

Naturally, inducing the logical forms is the main challenge. This approach has been used in the

direction following setting, where it is straightforward to induce logical forms for simple paths

(e.g., the path for “go straight”) (Chen and Mooney, 2011). However, generating more complex

logical forms requires an additional mechanism to score language-logical form pairs.

The second approach is an Expectation-Maximization (EM) approach (Dempster et al., 1977)

that iteratively performs the following two steps. The E-step predicts a distribution over logical

forms with the correct denotation for each sentence using the current semantic parser parame-

ters. The M-step then retrains the semantic parser using the predictions of the previous step as

weighted labels. Kim and Mooney use such an EM approach to train a context-free grammar

semantic parser (Kim and Mooney, 2012). A discriminatively-reranked version of this algorithm

achieves state-of-the-art results on a simulated direction following data set (Kim and Mooney,

2013). The KRISPER (Kate and Mooney, 2007) and WASPER (Chen and Mooney, 2008) systems

can also be viewed as using non-probabilistic variants of EM.

The third, and most direct approach, is a stochastic gradient approach similar to the one

presented in Section 2.2.4. The difference is that, in this setting, the single correct logical form for

a sentence is replaced by the set of logical forms with the correct denotation. This modification

requires maximizing or marginalizing over this set during training, depending on the choice of

objective function. However, both of these operations can be performed approximately by using

a beam search and evaluating the resulting logical forms on the knowledge base. This technique

is used by all of the work on question answering (Berant and Liang, 2014; Berant et al., 2013;

Liang et al., 2011). A downside of this approach is that logical forms must be evaluated against

the knowledge base within the gradient computation, which can be inefficient.

An advantage of question/denotation pairs is that the task is formalism agnostic: the parser

does not have to output a logical form, just the correct answer. Furthermore, experimental results

37



suggest that semantic parsers trained with question/answer pairs have comparable performance

to parsers trained with logical forms (Liang et al., 2011).1 However, question/denotation pairs

are still expensive to annotate, though less expensive than logical forms.

Grounded language acquisition

Grounded language acquisition is the problem of learning the mapping between language and an

environment. As a motivating example of this problem, consider an agent watching a baseball

game and listening to the announcer’s commentary. In this example, the agent perceives both

language (the announcer’s statement) and the state of the world (the events in the baseball game).

Although the meaning of the language is not directly observed – it has no annotated semantics or

answer – there is clearly useful semantic information in the correlation between language and the

environment. Grounded language acquisition is the problem of learning to understand language

using this kind of supervision.

Grounded language acquisition can be formulated as a semantic parsing problem with an

indirect form of supervision. Here, the training data {(si, Ki)}ni=1 consists of sentences si paired

with formal representations of the environment Ki (i.e., knowledge bases). The object is to

predict a logical form `i for the sentence si such that EVAL(`i, Ki) = TRUE. The training signal

for the parser is the assumption that every sentence expresses a true fact about the environment,

which trains the parser to correlate language with the environment. Note that, since logical forms

are presumed to evaluate to TRUE, this setting is very similar learning from denotations, as above.

Much of the work on grounded language acquisition has been on the task of generating natu-

ral language sportscasts of RoboCup soccer games. This task is very simple because the correct

1It seems likely that, for each question, only a few possible logical forms evaluate to the correct answer. That

is, {` : EVAL(`,K) = γi} is small. This claim is more likely given the following additional restrictions on logical

forms: (1) questions typically reference an entity that should appear in the logical form; (2) the size of the logical

form is not too large; and (3) answers are sets of entities. If this claim is true, it is unsurprising that question-answer

pairs work well as there is little added ambiguity during training.
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logical form `i for each sentence si is a single relation instance. Chen and Mooney (Chen and

Mooney, 2008) study this problem and use KRISPER (Kate and Mooney, 2007) to train the se-

mantic parser. Follow up work extends this approach to a fully generative model trained with EM

(Kim and Mooney, 2010); this model adds an event selection component to an existing genera-

tive semantic parsing model (Lu et al., 2008). This method is demonstrated to improve upon the

matching between natural language and logical forms. This model was further improved by being

formulated as a single context-free grammar (Börschinger et al., 2011). However, this grammar

includes logical form fragments in the nonterminals, such as specific relation instances; this em-

bedding limits the approach to simple logical forms. An extension of this context-free grammar

approach has been used for direction following (Kim and Mooney, 2012); however, even this

approach cannot generate logical forms that are more complex than any logical form seen during

training.

The terminology surrounding “grounded language acquisition” is unfortunately ambiguous.

This term can refer to the problem setting described here, but has also been used to refer to

training semantic parsers from denotations, as above. It can also refer to work that interprets

language with respect to non-logical physical environments, e.g., images or actions of a robot

(see Section 3.4). In the remainder of this thesis, I reserve the term “grounded” to refer to

this third problem setting, where language is understood with respect to an environment and no

logical knowledge representation of this environment is provided to the understanding system.

This caveat is crucial, as otherwise all work on semantic parsing is “grounded” in a knowledge

base, rendering the term meaningless.

Distant Supervision

Semantic parsers have also been trained with distant supervision. In this setting, the input to

training is a corpus of unlabeled sentences {si}ni=1 and a large knowledge base K, such as NELL

(Carlson et al., 2010) or Freebase (Bollacker et al., 2008). This line of work is inspired by recent
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research that has demonstrated that accurate sentential relation extractors can be trained using

distant supervision (Bunescu and Mooney, 2007; Craven and Kumlien, 1999; Hoffmann et al.,

2011; Mintz et al., 2009; Riedel et al., 2010; Wu and Weld, 2010). These relation extraction

systems can extract hundreds of predicates, but lack a compositional semantic representation.

Note that the distant supervision setting is closely related to the grounded language acqui-

sition setting above. The difference in the distant supervision setting is that only one large

knowledge base is provided to the system, as opposed to multiple, smaller knowledge bases.

Furthermore, the unlabeled sentences are less likely to refer to predicate instances in the knowl-

edge base, as the sentences are drawn from the web as opposed to generated in the context of a

particular environment. Consequently, the distant supervision setting has much more ambiguity

in the mapping from language to the knowledge base.

Training algorithms vary in the distant supervision setting, as many different assumptions

can be made about the relationship between the language and the knowledge base. However, the

general structure of these algorithms is similar: they find sentences in the corpus that mention

entities (e1, e2) in the knowledge base, then assume that (some of) these sentences express rela-

tion instances r(e1, e2) from the knowledge base. This assumption provides the training signal

for the semantic parser.

Cai and Yates (Cai and Yates, 2013a,b) train a semantic parser by generating a data set of

sentences with labeled logical forms from the distant supervision inputs. This approach searches

the corpus for sentences that mention entity pairs that participate in a particular relation, then

uses an additional assessment stage to prune sentences that are unlikely to express the relation.

These sentences are then automatically labeled with a logical form for the relation. This data is

then fed into the UBL algorithm (Kwiatkowski et al., 2011) to train a semantic parser.

Reddy et al. (Reddy et al., 2014b) present a distantly-supervised graph-based approach to

semantic parsing. Unlike other approaches, this approach produces a graph-structured semantic

parse by directly transforming the output of a CCG syntactic parser. The supervision for this
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system is created by replacing entity mentions in sentences by variables, then training the se-

mantic parser to predict a denotation for this variable that includes the mentioned entity. (In

some cases, even stronger constraints can be applied. For example, if the mention is preceded

by the word “the,” then the correct denotation includes exactly one entity.) This system achieves

state-of-the-art results on both FREE917 and WEBQUESTIONS.

Chapter 4 also presents a distantly-supervised algorithm for training a semantic parser (Krish-

namurthy and Mitchell, 2012, 2014). This algorithm assumes that at least one sentence mention-

ing (e1, e2) expresses any relation r such that r(e1, e2). This assumption has been successfully

used for distantly supervised relation extraction (Hoffmann et al., 2011), where it has been shown

to outperform more naı̈ve labeling assumptions.

Unsupervised

Some work has trained semantic parsers in an unsupervised fashion, that is, without any per-

sentence semantic annotations or reference to relation instances in a knowledge base. These

parsers are trained using a corpus of sentences and the entity names in a knowledge base.

Goldwasser et al. (Goldwasser et al., 2011) present an EM-like algorithm for training a

semantic parser using only a corpus of sentences. The algorithm is similar to EM, except that an

alternative set of confidence measures are used to determine which model predictions to retrain

on. The system is evaluated on the GeoQuery data set and manages to achieve an accuracy of

66%. The evaluation suggests that the confidence measures are not very important – self-training,

i.e., retraining the semantic parser on all of its predictions on each iteration, achieves an accuracy

of 65%.

Grounded unsupervised semantic parsing (GUSP) (Poon, 2013) is another unsupervised ap-

proach. This system uses a dependency parse of the question as an input, assigning it a semantics

that factors according to the same parse structure (with some special operations to handle diver-

gence between syntax and semantics). The EM algorithm is used for training. On the ATIS data
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set, GUSP achieves an accuracy of 84%, which is comparable with state-of-the-art supervised

systems.

It is somewhat surprising that these unsupervised approaches are so effective. A partial ex-

planation for these results is that both approaches use intelligently initialized mappings from

words to knowledge base predicates. Both systems use entity and predicate names from the

knowledge base as well as similar names drawn from outside lexical resources, such as WordNet

(Miller, 1995) and DASH (Pantel et al., 2009). Restrictive type constraints and relatively small

knowledge bases also reduce the ambiguity faced by these systems. Larger knowledge bases will

make unsupervised learning more difficult; it would be interesting to see if such an unsupervised

approach can work on a more complex data set, such as Free917.

3.1.3 Lexicon Induction

A lexicon is a mapping from words to syntactic categories and logical forms that is the basis of

the grammar of a CCG semantic parser (see Section 2.1.3). Lexicon induction is the problem

of learning a lexicon from a data set. Although manual heuristics can be used for this problem,

they are time-consuming to design and may lead to a bloated lexicon. It is therefore desirable to

automatically learn the contents of the lexicon. Note that this problem is potentially difficult, as

it is a form of structure learning. The lexicon induction problem is typically considered in the

annotated logical form setting.

Zettlemoyer and Collins present two algorithms that combine a collection of manual heuris-

tics with a semantic parser training procedure that adds and removes lexicon entries (Zettlemoyer

and Collins, 2005, 2007). Here, the heuristics generate a large number of potential entries, but

only a few are included in the final lexicon by the training procedure. These algorithms differ in

that the first uses batch lexicon updates while the other uses online updates.

Kwiatkowski et al. (Kwiatkowski et al., 2010) present a distinct approach to lexicon induction

based on splitting logical forms. The lexicon is initialized with a single lexicon entry per training
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example. The logical form for this entry is then split using restricted higher-order unification;

given the logical form `, this process finds logical forms f, g such that f(g) = ` or λx.f(g(x)) =

`. The splits are made within a stochastic gradient procedure, considering only lexicon entries

appearing in the highest scoring parse of a training sentence.

Artzi et al. (Artzi et al., 2014) present a batch lexicon induction algorithm that focuses on

reducing the size of the learned lexicon. The batch approach enables the algorithm to aggregate

statistics about the number of times each lexicon entry is used to parse a training example, which

help the algorithm select the entries to include in the lexicon. This approach is shown to produce

smaller lexicons with approximately equivalent single-sentence semantic parsing performance.

Notably, several approaches to lexicon induction rely on word alignment algorithms from

machine translation. These word alignment algorithms are based on simple string-to-string trans-

lation models and are designed to learn word-to-word translation probabilities. When applied to

sentence/logical form pairs, they learn word-to-predicate translation probabilities. The GIZA++

word alignment system (Och and Ney, 2003) has been used to generate the lexicon (Ge and

Mooney, 2009) and initial feature scores (Kwiatkowski et al., 2010). In both cases, the word

alignment helps guide the search over lexicons toward promising lexicon entries.

3.2 Wide-Coverage Syntactic Parsing with CCG

Wide-coverage syntactic CCG parsers aim to produce syntactic CCG analyses of any sentence in

a language. Wide-coverage parsing is more difficult than semantic parsing in restricted domains

because it requires a larger vocabulary of words and processing more complex syntactic struc-

tures. Thus, wide-coverage parsers use sophisticated parsing models with considerably richer

features than semantic parsers. Efficiency is also a major concern, and much work has gone in

to developing faster CCG parsing algorithms.

CCGbank is the standard data set for training and evaluating syntactic CCG parsers (Hock-

enmaier and Steedman, 2002a). This data set is an automatic conversion of the Penn Treebank
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(Marcus et al., 1993) into the CCG formalism. In addition to annotated syntactic trees, this

corpus contains predicate-argument dependency structures between head words and their argu-

ments; these dependencies are similar to those produced by dependency parsing, except that they

additionally capture head passing and conjunctions. Precision and recall of dependency struc-

tures is typically used to evaluate syntactic CCG parsers. CCGbank is split into sections, with

sections 02-21 used for training (39,604 sentences), section 00 for validation (1,913 sentences),

and section 23 for evaluation (2,407 sentences).

3.2.1 Wide-Coverage Parsers

The first wide-coverage syntactic CCG parsers used generative parsing models. Hockenmaier

and Steedman (Hockenmaier and Steedman, 2002b) present a model that generates the syntactic

CCG tree in a similar manner as generative context-free grammar parsers (Collins, 1997). A

limitation of this approach is that it does not model long-range dependencies. Clark et al. (Clark

et al., 2002) present a conditional model that exclusively generates the sentence’s dependency

structures. However, this model is deficient in that the probabilities of all CCG parses for a

sentence do not sum to one. Hockenmaier (Hockenmaier, 2003a) unifies both approaches with

a properly-normalized generative model of both CCG syntactic trees and dependency structures.

Generative models have fallen out of favor for syntactic parsing because – unlike discriminative

models – they do not permit rich, overlapping sets of features.

More recent parsers use discriminative parsing models. The C&C parser uses a discriminatively-

trained log-linear model to score CCG parses, using a rich set of both syntactic and dependency

features (Clark and Curran, 2007a). This parser is available as a software package and is com-

monly used in applications. Follow-up work has trained this parser with the structured perceptron

algorithm (Clark and Curran, 2007b). The features of the syntactic parsing model in Chapter 4

are based on the C&C parser.

Fowler and Penn observe that a context-free subset of CCG is sufficient to model the CCG-
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bank grammar (Fowler and Penn, 2010). Based on this observation, they apply the Petrov and

Klein CFG parser (Petrov and Klein, 2007) for CCG parsing. This parser is a generative model

that automatically splits and merges syntactic categories to better model the observed syntactic

trees. This approach outperforms C&C.

Auli and Lopez (Auli and Lopez, 2011a) train a CCG parser using a softmax-margin objective

that aims to maximize dependency F-measure instead of conditional loglikelihood. This work is

motivated by the observation that the training loss should be similar to the test loss to ensure the

best performance (Och, 2003). A discriminative CCG parsing model with integrated supertagger

features (Auli and Lopez, 2011c), trained using this approach, achieves state-of-the-art CCG

parsing results on CCGbank.

3.2.2 Faster Parsing Algorithms

Supertagging is widely recognized as critical for producing efficient CCG parsers (Bangalore

and Joshi, 1999; Clark and Curran, 2004). A supertagger prunes the set of possible syntactic

categories for each token in a sentence before parsing, and subsequent parsing is restricted to the

assigned syntactic categories.

Some recent work has developed alternative parsing algorithms that are more efficient than

CKY. One approach is A* parsing (Klein and Manning, 2003), which uses A* search to intel-

ligently select entries of the CKY chart to expand. Initial work on A* parsing with CCG did

not show dramatic speed improvements (Auli and Lopez, 2011b), but recent work has developed

novel heuristics for the search that lead to a threefold speedup over CKY (Lewis and Steedman,

2014).

Another approach is shift-reduce parsing (Xu et al., 2014; Zhang and Clark, 2011), which

performs a beam search over parses while processing the sentence in left-to-right order. Although

this approach has yet to demonstrate significant speedups in CCG, shift-reduce parsing has been

shown to improve the speed of dependency parsers (Nivre et al., 2006), suggesting the promise
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of this approach. Another interesting aspect of shift-reduce parsing is that it does not require the

parser’s features to factorize according to local operations in the parse tree.

3.2.3 Semantics

Some work has also attempted to automatically derive logical semantic representations directly

from syntactic CCG parses. Boxer (Bos, 2005, 2008; Bos et al., 2004) is a rule-based system

that produces discourse representation structures (Kamp and Reyle, 1993) from the output of

the C&C parser. This system assigns a semantic representation to each token of a sentence

on the basis of its syntactic category, part-of-speech tag, and the word itself, then composes

these representations according to the structure of the CCG parse. The predicates in the output

semantic representation are derived directly from the words in the input text.

Lewis and Steedman (Lewis and Steedman, 2013) present a semantic analysis that combines

a rule-based system with distributional clustering of predicates. This system similarly uses a

collection of rules to assign a semantics to each token in a sentence, with predicates derived from

the words themselves. However, these per-word predicates are then clustered using distributional

similarity. This clustering process identifies synonyms, producing a more language-independent

semantic representation.

Note that these approaches do not produce a semantic representation tied to a knowledge

base. Consequently, these approaches cannot be directly used for the semantic parsing problems

described above. Chapter 5 extends the above approaches by learning predicate denotations in

terms of knowledge base entities. This procedure ties the semantic representation to a knowledge

base, providing the same kind of semantics as semantic parsers.
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3.3 Information Extraction

Information extraction systems aim to automatically populate a knowledge base by extracting

predicate instances from a corpus of text. These systems vary along two significant dimensions.

The first is whether the extractor is a sentential or aggregate extractor. Sentential extractors de-

termine whether a particular sentence s expresses a relation instance r(e1, e2), whereas aggregate

extractors determine whether the instance r(e1, e2) is expressed by one or more sentences in a

corpus. Aggregate extraction is easier than sentential extraction because it can use statistical

information from the entire corpus. This section focuses on sentential extractors, which are more

relevant for this thesis. The second is the kind of supervision provided to train the extractor,

which varies from fully labeled sentences to a handful of predicate instances and a corpus of

unlabeled text.

3.3.1 Supervised

Supervised relation extraction trains sentential relation extractors using sentences that are indi-

vidually annotated with expressed relation instances. Early work on relation extraction used the

ACE corpus (Doddington et al., 2004). This problem can be posed as supervised multiclass clas-

sification: given a sentence and a pair of mentions, predict which relation holds between them.

Various machine learning approaches have been proposed, such as SVMs (Zhou et al., 2005) and

kernel methods (Bunescu and Mooney, 2005; Culotta and Sorensen, 2004; Zelenko et al., 2002).

Unfortunately, the supervised learning paradigm is difficult to scale to large knowledge bases, as

it is expensive to annotate a sufficient quantity of labeled data.

3.3.2 Distant Supervision

Distant supervision is a recent trend in information extraction. Distantly-supervised extractors

are trained using a corpus of unlabeled text and a knowledge base, with no per-sentence relation
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annotations.

A key problem in this area is identifying which sentences express a given KB relation instance

r(e1, e2). One approach is to simply assume that every sentence that mentions both e1 and e2

expresses the relation r. Craven and Kumlien (Craven and Kumlien, 1999) use this assumption

to train a sentential relation extractor using a Naı̈ve Bayes classifier. Mintz et al. (Mintz et al.,

2009) use this assumption to train an aggregate relation extractor by summing the feature vectors

of each individual sentence. The Kylin system also uses this assumption to extract infobox

relation instances from Wikipedia articles (Wu and Weld, 2007; Wu et al., 2008). This system

tries to find each infobox instance in the text of the corresponding Wikipedia article. Later work

has relaxed this constraint to identify relation instances in any Wikipedia article (Nguyen and

Moschitti, 2011).

The distant supervision assumption used above is quite strong. A natural relaxation is the

expressed-at-least-once assumption: at least one sentence mentioning both e1 and e2 expresses

r(e1, e2). Bunescu and Mooney (Bunescu and Mooney, 2007) train a string-kernel SVM relation

extractor using this assumption, which they formulate as a form of multiple instance learning.

Riedel et al. (Riedel et al., 2010) find that this assumption outperforms the naı̈ve assumption.

MultiR (Hoffmann et al., 2011) further improves on this assumption by modelling mutual ex-

clusion between the multiple relations that may hold between a pair of entities. Surdeanu et al.

(Surdeanu et al., 2012) extend this model by learning the function mapping individual sentence

labels to aggregate labels.

A further problem with distant supervision is missing relation instances in the knowledge

base. Takamatsu et al. (Takamatsu et al., 2012) address this problem by focusing on learning

which textual patterns express each knowledge base relation. Min et al. (Min et al., 2013) model

instances missing in the database by adding an additional latent variable to the model of Surdeanu

et al. (Surdeanu et al., 2012). Xu et al. (Xu et al., 2013) propose a two-step procedure: first, a

passage retrieval model is used to fill in missing instances in the knowledge base; next, MultiR is
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trained on the filled-in knowledge base to produce relation extractors. Ritter et al. (Ritter et al.,

2013) extend MultiR with a model for missing relations that captures the difference between

relation instances in the knowledge base and those expressed in text.

Chapter 4 presents an algorithm for training a semantic parser from distant supervision. This

work extends the distant supervision assumptions above to work for a semantic parser that has a

more expressive knowledge representation than a relation extractor.

3.3.3 Open Information Extraction

A limitation of information extraction methods is their restriction to a closed vocabulary of pred-

icates. Closed predicate vocabularies have limited coverage, as they are typically manually de-

fined. Furthermore, such a vocabulary may abstract away potentially relevant semantic differ-

ences, for example, by mapping both “city” and “town” to the predicate CITY. An alternative

paradigm is an open information extraction, which assigns each natural language word or phrase

its own formal predicate (Banko et al., 2007; Etzioni et al., 2005). This approach has the potential

to capture subtle semantic differences and achieve high coverage.

Many systems have been built to automatically extract Open IE relation instances from

text. Given a manually-specified collection of textual predicates, KnowItAll (Etzioni et al.,

2005) automatically extracts predicate instances by bootstrapping from a collection of domain-

independent extraction patterns (similar to Hearst patterns (Hearst, 1992)). TextRunner is a self-

supervised system that extracts candidate relation instances from sentences and filters them with

a Naı̈ve Bayes classifier and via corpus-wide aggregation (Banko et al., 2007). This system was

then further improved upon using a CRF sequence tagging model (Banko and Etzioni, 2008)

and semantic role labeling (Christensen et al., 2010). Wu and Weld demonstrate that Wikipedia

infoboxes can be used to train relation-independent extractors (Wu and Weld, 2010). ReVerb

extracts open IE instances using simple part-of-speech and lexical heuristics (Fader et al., 2011).

Interestingly, this approach outperforms all of the prior machine learning approaches to Open IE.
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Ollie extends ReVerb to capture nominal relations by bootstrapping from ReVerb’s extractions

(Mausam et al., 2012).

Because Open IE instances lack canonical representations of predicates and entities, it is use-

ful to identify synonymous predicates and entities in a corpus of Open IE extractions. DIRT is

a system that clusters relations, represented as dependency paths, based on mutual information

statistics of their arguments (Lin and Pantel, 2001). Resolver (Yates and Etzioni, 2007) is a sys-

tem that identifies synonymous predicates and entities via a clustering procedure. This procedure

clusters both entity names and predicate names on the basis of string similarity and distributional

statistics.

Another approach to the redundancy problem is to use matrix factorization methods. These

methods fill in missing instances in the corpus on the basis of distributional similarities be-

tween relations and entities. The matrix factorization can be viewed as performing a soft clus-

tering. Precursors to these methods focused on the problems of finding analogies using distri-

butional similarity (Speer et al., 2008; Turney, 2008). Universal schema combines knowledge

base and Open IE relations in a single matrix (Riedel et al., 2013; Yao et al., 2013). Factoring

and completing this matrix produces predictions for knowledge base relation instances on the

basis of the observed open IE relations. This approach is shown to outperform state-of-the-art

distantly-supervised relation extraction systems (Riedel et al., 2013). A similar matrix factoriza-

tion method is used in Chapter 5 to learn the denotations of textual predicates.

3.4 Grounded Language Understanding

This section describes work on understanding the meaning of language in the context of a partic-

ular physical environment. This problem differs from semantic parsing in that the representation

of the environment is not given to the system. Thus, grounded language understanding systems

must learn to perceive their environment to produce a knowledge base against which language

can be interpreted.
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3.4.1 Understanding Visual Language

Roy (Roy, 2002) presents a model for grounding natural language object descriptions in virtual

scenes of rectangles. Given natural language descriptions paired with virtual scenes with a target

object, the model learns word classes, the grounded properties of each object, and syntactic

information in the form of typical word orderings. This information can be used to synthesize

new object descriptions, such as “the green rectangle to the right of the vertical red rectangle.”

Matuszek et al. present a model for mapping natural language object descriptions to sets

of image segments (Matuszek et al., 2012). The system’s perceptual model consists of one-

argument image segment classifiers that detect concepts such as “blue” and “block.” To interpret

an object description, these classifiers are composed according to a CCG semantic parse of the

description. A gradient descent algorithm is used to train both the image segment classifiers and

the semantic parser, using a small amount of fully-labeled data and additional weakly-labeled

data. The fully-labeled data is annotated with semantic parses, while the weakly-labeled data

is only annotated with denotations (i.e., the set of described objects). The FUBL algorithm

(Kwiatkowski et al., 2011) is run on the fully-labeled data to produce the semantic parser’s

lexicon.

Yu and Siskind present a model for mapping natural language event descriptions to videos

of the events (Yu and Siskind, 2013). This model uses a set of object detectors to automatically

identify objects in each frame of the video. The perceptual model represents the meaning of each

word as an HMM that generates object tracks in the video. To interpret an event description, these

HMMs are composed into a factorial HMM based on a semantic parse of the description. The

semantic parse is generated by a small, manually-defined context-free grammar.

Chapter 6 also considers the problem of understanding visual language. The model presented

has a richer knowledge representation than the work above, representing both sets of objects and

relations between them.
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3.4.2 Direction Following

Understanding natural language directions to robots provides numerous examples of models that

integrate language understanding with perceptual context. Spatial Description Clauses (SDCs)

(Kollar et al., 2010) represent the semantics of commands such as “go through the double doors”

using four fields: a figure (the person performing the action), a verb, a spatial relation, and a

landmark. This initial work used a sequence model to produce SDCs from text, which does

not permit them to recurse. The Generalized Grounding Graph (G3) model improves on SDCs

by incorporating recursion, producing a graphical model that factors according to the structure

of a phrase structure parse of the language (Tellex et al., 2011). Initial work on G3 required

annotation of not only the correct action to perform, but also all referenced locations and objects.

However, recent work has shown how to train the G3 given only the correct action (Tellex et al.,

2014). Additional work has modified this algorithm to search over planning constraints instead

of the action space of the robot, improving inference time (Howard et al., 2014).

Dzifcak et al. (Dzifcak et al., 2009) present a CCG-based semantic parsing approach to

interpreting robot commands. This system is built on top of existing action and perceptual prim-

itives, such as GOTO. The system use an incremental, heuristic semantic parser with a small,

manually built lexicon. The meaning of commands are represented both in terms of goals and

actions. This approach has also been extended to handle conversational disfluencies (Cantrell

et al., 2010). Skubic et al. (Skubic et al., 2004) present a similar parsing system for interpreting

spatial language commands to robots.

Andreas and Klein present a model for mapping natural language text to paths in continuous

spaces (Andreas and Klein, 2014). Paths are segmented and featurized, so text is grounded to

a sequence of vector values. The proposed model learns to align text segments to a sequence

index, then uses linear regression to predict each vector value. This model can be used for

direction following, but is also applicable to tasks such as predicting the shape of a stock chart

given a description of the stock’s performance.
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Abstract

This chapter presents an approach to training a semantic parser using only un-

labeled sentences and a knowledge base, without any annotated logical forms or

denotations. The key observation is that two sources of distant supervision can be

combined to train an accurate semantic parser: semantic supervision from a knowl-

edge base and syntactic supervision from dependency parsed sentences. An eval-

uation demonstrates that a semantic parser trained using this method outperforms

a state-of-the-art relation extraction system and is capable of predicting the correct

logical form for 56% of natural language questions against the NELL knowledge

base.

The second part of this chapter describes an extension to this algorithm that trains

a joint syntactic and semantic parser. This parser produces a full syntactic parse of

any English sentence while simultaneously producing logical forms for phrases that

have a semantic analysis. The training procedure for this parser combines semantic

supervision with syntactic supervision from CCGbank. An evaluation demonstrates

that this syntactic and semantic parser produces more complete semantic analyses

than the previous semantic parser, and that its syntactic analyses have near state-of-

the-art accuracy.



4.1 Introduction

Training semantic parsers for large knowledge bases such as NELL (Carlson et al., 2010) and

Freebase (Bollacker et al., 2008) is difficult because it is laborious to annotate a sufficient quan-

tity of training data. Furthermore, the amount of data that must be annotated grows roughly

proportionally to the number of predicates in the knowledge base, because the parser must learn

the various ways of referring to each one. Therefore, as knowledge bases continue to grow in the

future, data annotation will only become more difficult. More automated training methods are

required to produce semantic parsers for these large knowledge bases.

The first part of this chapter presents an algorithm for training a semantic parser without

per-sentence annotations of either logical forms or denotations. Instead, the approach exploits

two easily-obtainable sources of supervision: a large knowledge base and (automatically) de-

pendency parsed sentences from a large corpus that includes mentions of some facts from the

knowledge base. The semantic parser is trained to extract relation instances in the knowledge

base from the sentences, while simultaneously producing parses that syntactically agree with

their dependency parses. The minimal supervision requirements of this approach enable it to

train a semantic parser for any knowledge base without annotated training data. An evaluation

demonstrates that a semantic parser trained using this approach extracts binary relations with

state-of-the-art performance. It also maps natural language questions to Freebase queries with

56% accuracy, despite never seeing a labeled logical form or denotation.

A natural question arises from this initial work: how do we best incorporate syntactic in-

formation into semantic parsers? Most semantic parsers today are trained for question answer-

ing domains where the short question length reduces the importance of syntactic information.

However, syntactic information seems helpful for parsing more complex sentences, e.g., from

newswire or the web. Indeed, the evaluation of the distantly-supervised parser demonstrates that

syntactic information is necessary to produce accurate semantic parses of web sentences (Sec-
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tion 4.2.3). However, the proposed method for incorporating syntactic information is somewhat

unsatisfactory. It uses a pipelined approach: a fixed dependency parse is given as input, and the

semantic parse is constrained to follow the same syntactic structure. This method prevents any

interaction between syntactic and semantic parsing, even in cases where semantic information

could be used to disambiguate the syntactic structure. A possible improvement is to perform

a joint syntactic and semantic parse of the whole sentence, enabling syntax and semantics to

interact, and, ideally, improving both syntactic and semantic parsing performance.

The second part of this chapter presents an extension to the first algorithm that trains a joint

syntactic and semantic parser. This parser produces a full syntactic analysis of any English sen-

tence while simultaneously producing logical forms tied to a knowledge base for portions of the

sentence. The training procedure uses the same distant supervision method as above, except that

it replaces the dependency parsed sentences with annotated CCG syntactic trees from CCGbank

(Hockenmaier and Steedman, 2002a). Incorporating the wide-coverage syntactic information

from CCGbank enables the parser to parse arbitrary English sentences. Using this algorithm,

I train a parser called ASP that produces logical forms tied to the NELL knowledge base. An

evaluation demonstrates that ASP’s syntactic parsing ability is near state-of-the-art and that it

produces more complete logical forms than the first approach.

The material in this chapter is taken from (Krishnamurthy and Mitchell, 2012, 2014).

4.2 Training Semantic Parsers with Distant Supervision

This section describes a process for producing a semantic parser given a corpus of dependency-

parsed sentences and a knowledge base. The inputs to this process are:

1. A knowledge base K = (E,R,C,∆), containing entities e ∈ E, categories c ∈ C,

relations r ∈ R and predicate instances {c(e), r(e1, e2)} ∈ ∆.

2. A collection of dependency-parsed sentences s ∈ S.
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3. A procedure for identifying mentions of entities from K in sentences from S (e.g., string

matching).

Given these inputs, the semantic parser is produced in two steps. The first step is lexicon and

grammar induction, which is performed using a rule-based approach. This process is described

in Section 4.2.1, which also describes the features used by the semantic parser. The output of

this step is a parametric semantic parsing model Γ(`, t, s; θ) that defines a (non-probabilistic)

score for a semantic parse (`, t) of a sentence s given parameters θ. The second step estimates

the parameters θ of this semantic parsing model using the knowledge base as distant supervision.

Section 4.2.2 describes this training procedure. Finally, Section 4.2.3 describes experiments us-

ing this algorithm to train a semantic parser for 77 relations present in both NELL and Freebase.

4.2.1 Semantic Parsing Model

This section describes the Combinatory Categorial Grammar (CCG) semantic parser used in

distantly-supervised training.

Lexicon and Grammar

The parser has a lexicon containing entries of the following forms:

town := N : λx.CITY(x)

California := N : λx.x = CALIFORNIA

in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

in := (PP/N) : λf.f

lives := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ HASRESIDENCE(x, y)

is := (S\N)/N : λf.λg.∃x.f(x) ∧ g(x)

The lexicon includes entries for nouns, prepositions, verbs and named entities. Nouns are
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mapped to categories in the knowledge base, verbs and prepositions are mapped to relations, and

named entities are mapped to knowledge base entities. There are also special entries for forms

of “to be” that equate its two arguments. The process for generating lexicon entries is described

later in this section.

The grammar of the semantic parser uses only the forward and backward application combi-

nators. It also includes some additional type-changing rules that instantiate a relation between ad-

jacent nouns. These rules enable the parser to analyze noun compounds; for example, they enable

the parser to produce the logical form λx.∃y.CITY(x) ∧ LOCATEDIN(x, y) ∧ y = CALIFORNIA

for the phrase “California city.” The process for generating these type changing rules is de-

scribed later in this section. The parser is also allowed to skip words while parsing a sentence.

Word skipping is necessary because the sentences in the web corpus contain many out-of-domain

words whose semantics cannot be represented using predicates from the knowledge base. (Note

that the ASP parser described in Section 4.3 produces a full syntactic parse that includes these

tokens.)

Logical Forms

The logical forms generated by the parser are conjunctions of predicates from the knowledge

base with existentially-quantified variables and λ expressions. The syntactic types N and PP

are semantically represented as functions from entities to truth values (e.g., λx.CITY(x)), while

sentences S are statements with no λ terms, such as ∃x, y.x = CALIFORNIA ∧ CITY(y) ∧
LOCATEDIN(x, y).

Although these logical forms are more expressive than the relation instances extracted by a

relation extractor, they are less expressive than the logical forms generated by other semantic

parsers (e.g., (Zettlemoyer and Collins, 2005)). Other parsers can represent superlatives, nega-

tion, and other phenomena that cannot be represented as a conjunction of predicates. Some of

these phenomena, such as negation, can be easily incorporated into the current parser by manu-
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Part of Dependency Parse Pattern Lexical Category TemplateSpeech
Proper (name of entity e) w :=N : λx.x = e
Noun Sacramento Sacramento :=N : λx.x = SACRAMENTO

Common e1
SBJ
===⇒ [is, are, was, ...] OBJ⇐=== w w :=N : λx.c(x)

Noun Sacramento is the capital capital :=N : λx.CITY(x)

Noun e1
NMOD⇐===== e2 Type change N : λx.c(x) to N |N : λf.λx.∃y.c(x) ∧ f(y) ∧ r(x, y)

Modifier Sacramento, California N : λx.CITY(x) to N |N : λf.λx.∃y.CITY(x) ∧ f(y) ∧ LOCATEDIN(x, y)

Preposition

e1
NMOD⇐===== w PMOD⇐===== e2 w := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento in California in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

e1
SBJ
===⇒ VB* ADV⇐=== w PMOD⇐===== e2 w := PP/N : λf.λx.f(x)

Sacramento is located in California in := PP/N : λf.λx.f(x)

Verb

e1
SBJ
===⇒ w* OBJ⇐=== e2 w* := (S\N)/N : λf.λg.∃x, y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento governs California governs := (S\N)/N : λf.λg.∃x, y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

e1
SBJ
===⇒ w* ADV⇐=== [IN,TO] PMOD⇐===== e2 w* := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento is located in California is located := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

e1
NMOD⇐===== w* ADV⇐=== [IN,TO] PMOD⇐===== e2 w* := (N\N)/PP : λf.λg.λy.f(y) ∧ g(x) ∧ r(x, y)

Sacramento located in California located := (N\N)/PP : λf.λg.λy.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)
Forms of (none) w* := (S\N)/N : λf.λg.∃x.g(x) ∧ f(x)“to be”

Table 4.1: Dependency parse patterns used to instantiate lexicon entries for the semantic parser
lexicon Λ. Each pattern is followed by an example phrase that instantiates it. An * indicates
a position that may be filled by multiple consecutive words in the sentence. e1 and e2 are the
entities identified in the sentence, r represents a relation where r(e1, e2), and c represents a
category where c(e1). Each template may be instantiated with multiple values for the variables
e, c, r.

ally defining lexicon entries for a number of key words, such as “not.” Others, such as superla-

tives (e.g., “biggest”), are more challenging because the knowledge base does not have ordinal

values for implementing these kinds of comparisons.

Lexicon and Grammar Generation

The lexicon Λ and the type-changing rules used by the semantic parser are generated by apply-

ing dependency-parse-based heuristics to the sentences in the training corpus. The first step in

lexicon construction is to use the mention identification procedure to identify all mentions of

entities in the sentences S. This process results in (e1, e2, s) triples, consisting of sentences with

two entity mentions. The dependency path between e1 and e2 in s is then matched against the

dependency parse patterns in Table 4.1 to instantiate lexicon entries and add them to Λ. Each

pattern consists of a dependency path with optional part-of-speech or word restrictions for each

traversed node. If the pattern matches a path in the parse, the lexicon entry template on the right
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is instantiated and added to the lexicon. These templates are lexicon entries containing param-

eters c and r that are chosen at initialization time. Given the triple (e1, e2, s), relations r are

chosen such that r(e1, e2) ∈ ∆, and categories c are chosen such that c(e1) ∈ ∆ or c(e2) ∈ ∆.

The template is instantiated with every combination of these c and r values.

After creating lexicon entries from each sentence in S, infrequent entries are pruned to im-

prove parser efficiency. This pruning step is required because the common noun pattern generates

a large number of lexicon entries, the majority of which will never be used in a correct parse.

Pruning eliminates all common noun categories instantiated by fewer than 5 sentences. The other

rules are less fertile and therefore their output need not be pruned.

The type-changing rules included in the grammar are also determined by matching depen-

dency parse patterns to the training data (see Table 4.1). These rules change a category of the

form N : λx.f(x) to N |N : λg.λx.∃y.f(x) ∧ g(y) ∧ r(x, y). The purpose of these rules is to

model the semantics of noun compounds, such as “Texas city,” by instantiating a relation between

the two constituent nouns.

Semantic Parser Parameterization

The semantic parser Γ is a discriminative linear model:

Γ(`, t, s; θ) = θTφ(`, t, s)

The feature function φ contains two sets of features. The first set consists of lexicon features

that count the number of times each lexicon entry is used in the parse. The second set consists of

combinator features that count the number of times each combinator is applied to each possible

set of arguments. An argument is defined by its syntactic and semantic category, and in some

cases by its head word. The arguments for prepositional phrases PP and common nouns include

their head word, which allows the parser to distinguish between prepositional phrases headed

by different prepositions, as well as between different common nouns. All other arguments are

distinguished solely by syntactic and semantic category.
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4.2.2 Distantly-Supervised Training

The object of distantly-supervised training is to estimate parameters θ for a given semantic pars-

ing model Γ(`, t, s; θ) using a collection of dependency parsed sentences S and a knowledge

base K. This problem is ill-posed without additional assumptions: since the correct logical form

for a sentence is never observed, there is no a priori reason to prefer one semantic parse to an-

other, and therefore no reason to prefer any particular set of parameters. The training algorithm

makes two assumptions about correct semantic parses, which are encoded as distant supervision

constraints. These constraints make learning possible by adding an inductive bias:

1. Semantic constraint: Every relation instance r(e1, e2) ∈ ∆ is expressed by at least one

sentence in S that mentions both e1 and e2 (Hoffmann et al., 2011; Riedel et al., 2010).

2. Syntactic constraint: The correct semantic parse of a sentence s contains a subset of the

syntactic dependencies in a dependency parse of s.

Distantly-supervised training uses these constraints as a proxy for labeled logical forms. The

training algorithm has two steps. First, the algorithm constructs a graphical model that contains

both the semantic parser and constant factors encoding the above two constraints. Next, this

graphical model is used to optimize the semantic parser parameters θ to produce parses that sat-

isfy the distant supervision constraints. If the two above assumptions are correct and sufficiently

constrain the parameter space, then this procedure will identify parameters for an accurate se-

mantic parser.

Encoding the Distant Supervision Constraints

The first step of training constructs a graphical model containing the semantic parser and the

two distant supervision constraints. Let S(e1,e2) ⊆ S be the subset of sentences that mention

both e1 and e2. The semantic constraint couples the logical forms for all sentences S(e1,e2), so

the graphical model is instantiated once per (e1, e2) tuple. Figure 4.1 shows the graphical model
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Figure 4.1: Graphical model containing the semantic parser Γ and distant supervision constraints
Ψ and Φ, instantiated for an (e1, e2) tuple occurring in 2 sentences S1 and S2, with corresponding
logical forms L1 and L2. T1 and T2 represent the syntactic parses of each sentence and Z1 and Z2

are boolean variables representing the satisfaction of the syntactic constraint Φ. The knowledge
base contains 3 relations, represented by the Y variables.

instantiated in the case where S(e1,e2) contains 2 sentences and the knowledge base contains 3

relation types. The model has 5 types of random variables and values: Si = si represents a

sentence, Ti = ti represents a syntactic CCG parse, Li = `i represents a logical form, Zi = zi

represents the satisfaction of the syntactic constraint and Yr = yr represents the truth value

of relation r. Si, Ti, Li and Zi are replicated once for each sentence s ∈ S(e1,e2), while Yr is

replicated once for each relation type r in the knowledge base. In this section, boldface variables

indicate a collection of variables, e.g., ` = {`1, `2, ...}.

The graphical model is a linear model that defines a score for L,T,Y,Z given a collection of

sentences S. This score factorizes as:

f(Y = y,Z = z,L = `,T = t,S = s; θ) =
∑
r

Ψ(yr, `) +
∑
i

Φ(zi, ti, si) + Γ(`i, ti, si; θ)

This factorization contains three replicated factors. Γ represents the semantic parser, which

is parametrized by θ and produces a semantic parse (`i, ti) for each sentence si. Ψ and Φ are

deterministic factors representing the two distant supervision constraints. The following sections

describe each factor in more detail.
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Semantic Parser

The factor Γ represents the semantic parsing model provided as part of the input (Section 4.2.1).

Given a sentence s and parameters θ, the parser defines a score for a logical form ` and syntactic

tree t using features φ(`, t, s):

Γ(`, t, s; θ) = θTφ(`, t, s)

Semantic Constraint

The semantic constraint states that, given an entity tuple (e1, e2), every relation instance r(e1, e2) ∈
∆ must be expressed by a sentence in S(e1,e2). Furthermore, no logical form can express a re-

lation instance which is not in ∆. This constraint is identical to the multiple deterministic-OR

constraint used by Hoffmann et al. (Hoffmann et al., 2011) to train a sentential relation extractor.

The graphical model contains a semantic constraint factor Ψ and one binary variable Yr for

each relation r in the knowledge base. Yr represents whether r(e1, e2) is entailed by the logical

form of any sentence in S(e1,e2). The Ψ factor determines whether each logical form in ` entails

the relation r between e1 and e2. It then aggregates these sentence-level entailments using a

deterministic OR: if any sentence entails r(e1, e2) then Yr = 1. Otherwise, Yr = 0. This

constraint is implemented using the following formula:

Ψ(Yr, `) =


0 if Yr = 1 ∧ ∃i.ENTAILS(`i, r, e1, e2)

0 if Yr = 0 ∧ 6 ∃i.ENTAILS(`i, r, e1, e2)

−∞ otherwise

ENTAILS(`, r, e1, e2) is true if ` entails the relation r(e1, e2) and false otherwise. Applying

this function to the output of a semantic parser converts it into a sentential relation extractor.

Since the parser’s logical forms consist of conjunctions of predicates from the knowledge base,

ENTAILS(`, r, e1, e2) is true if ` contains the clauses r(x, y), x = e1 and y = e2.
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Syntactic Constraint

If used in isolation, the semantic constraint admits a large number of ungrammatical parses.

The syntactic constraint rules out ungrammatical parses by forcing the semantic parser to pro-

duce syntactic parses with the same predicate-argument structure as a dependency parse of the

sentence. The syntactic constraint is encoded in the graphical model by the Φ factors and Z

variables:

Φ(z, t, s) =


0 if z = AGREE(t,DEPPARSE(s))

−∞ otherwise

The AGREE function is defined as a function of the CCG dependency structures in the syn-

tactic CCG parse t. A dependency structure is created at each rule application between the head

words of the two combined subtrees; this structure is consistent with the dependency parse if the

two words have a dependency edge between them (in either direction). AGREE(t, DEPPARSE(s))

is true if and only if every dependency structure in t is consistent with DEPPARSE(s).

Parameter Estimation

The training data for the graphical model contains a single training example for every tuple of

entities (e1, e2). The input to the model is s = S(e1,e2), the set of sentences containing e1 and

e2. The distant supervision variables, y and z, are the predictions of the graphical model. y is

constructed by setting yr = 1 if r(e1, e2) ∈ ∆ and 0 otherwise. This setting trains the semantic

parser to extract every true relation instance between (e1, e2) from some sentence in S(e1,e2),

while simultaneously avoiding incorrect instances. Finally, z = 1, to force syntactic agreement

between the semantic and dependency parses. The training data for the model is therefore a

collection, {(sj, yj, zj)}nj=1, where j indexes entity tuples (e1, e2).

Training optimizes the semantic parser parameters θ to predict Y = yj,Z = zj given S = sj .

The parameters θ are estimated by running the structured perceptron algorithm (Collins, 2002) on

the training data defined above. The structured perceptron algorithm iteratively applies a simple
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update rule for each example (sj, yj, zj) in the training data:

`predicted, tpredicted ← arg max
`,t

(
max

y,z
f(y, z, `, t, sj; θt)

)
`actual, tactual ← arg max

`,t
f(yj, zj, `, t, sj; θt)

θt+1 ← θt +
∑
i

φ(`actuali , tactuali , si)−
∑
i

φ(`predictedi , tpredictedi , si)

Each iteration of training requires solving two maximization problems. The first maximiza-

tion, maxy,z,`,t f(y, z, `, t, sj; θt), is straightforward because y and z are deterministic functions of

` and t. Therefore, this problem can be solved by finding the maximum weight semantic parses

(`, t) given sj , then choosing values for y and z that satisfy the distant supervision constraints.

The second maximization, max`,t f(yj, zj, `, t, sj; θt), is more challenging. When yj and zj

are given, the inference procedure must restrict its search to the parses (`, t) that satisfy the distant

supervision constraints. Although the original formulation of the Ψ factors permitted tractable

inference, the inclusion of the ENTAILS function precludes efficient inference. However, this

maximization can be approximated using beam search. The approximate inference algorithm

first performs a beam search to produce k = 300 possible semantic parses for each sentence s.

Next, it checks the value of Φ for each generated parse and eliminates parses which do not satisfy

the syntactic constraint.1 Finally, it applies the ENTAILS function to each parse, then uses the

greedy approximate inference procedure from Hoffmann et al. (Hoffmann et al., 2011) for the Ψ

factors. This procedure can occasionally fail to find a collection of semantic parses that satisfy

both constraints; if this happens during training, the current training example is skipped.

1Note that the syntactic constraint Φ can also be enforced during the beam search as part of the CKY algo-

rithm. This choice would reduce the number of search errors by guaranteeing that every parse in the beam satisfies

the syntactic constraint. However, given the limited grammar of the semantic parser, such enforcement was not

necessary.
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4.2.3 Evaluation

This section evaluates the performance of a semantic parser for NELL trained using distant super-

vision. Empirical comparison is somewhat difficult because the most comparable previous work

– distantly-supervised relation extraction – uses a shallower semantic representation. The eval-

uation therefore has two components: (1) a binary relation extraction task, to demonstrate that

the trained semantic parser extracts instances of binary relations with performance comparable

to other state-of-the-art systems, and (2) a natural language database query task, to demonstrate

the parser’s ability to extract more complex logical forms than binary relation instances, such as

conjunctions of multiple categories and relations with partially shared arguments.

Data

The experiments use a subset of 77 relations from NELL that are also present in Freebase.2

All entities and predicate instances were taken from Freebase to eliminate the effect of NELL’s

potentially noisy knowledge base. The corpus of sentences was randomly sampled from a web

crawl3 and dependency parsed with MaltParser (Nivre et al., 2006). Long sentences tended to

have noisy parses while also rarely expressing relations, so sentences longer than 10 words were

discarded. Entities were identified by performing a simple string match between canonical entity

names in Freebase and proper noun phrases identified by the parser. In cases where a single

noun phrase matched multiple entities, the matching algorithm chose the entity participating in

the most relations. The resulting corpus contains 2.5 million (e1, e2, s) triples, with 10% reserved

for validation and 10% for testing. The validation set was used to estimate performance during

algorithm development, while the test set was used to generate the final experimental results. All

triples for each (e1, e2) tuple were placed in the same set.

Approximately 1% of the resulting (e1, e2, s) triples are positive examples, meaning there

2These relations are defined by a set of MQL queries and potentially traverse multiple Freebase relation links.
3The web crawl is a preliminary version of the ClueWeb 2009 corpus.

67



Relation Name
Relation

Sentences
Instances

CITYLOCATEDINSTATE 2951 13422
CITYLOCATEDINCOUNTRY 1696 7904
CITYOFPERSONBIRTH 397 440
COMPANIESHEADQUARTEREDHERE 326 432
MUSICARTISTMUSICIAN 251 291
CITYUNIVERSITIES 239 338
CITYCAPITALOFCOUNTRY 123 2529
HASHUSBAND 103 367
PARENTOFPERSON 85 356
HASSPOUSE 81 461

Table 4.2: Occurrence statistics for the 10 most frequent relations in the training data. Relation
Instances shows the number of entity tuples (e1, e2) that appear as positive examples for each
relation, and Sentences shows the total number of sentences in which these tuples appear.

exists some relation r where r(e1, e2) ∈ ∆. To improve training efficiency and prediction per-

formance, only 5% of the negative examples were used for training, producing a training set

of 125k sentences with 27k positive examples. The validation and test sets retain the original

positive/negative ratio. Table 4.2 shows some statistics of the most frequent relations in the test

set.

Relation Extraction Evaluation

The first experiment measures the semantic parser’s ability to extract relations from sentences

in the web corpus. The parser is compared to MULTIR(Hoffmann et al., 2011) a state-of-the-art

distantly-supervised relation extractor. This extractor uses the same distant supervision constraint

and parameter estimation procedure, but replaces the semantic parser with a linear classifier. The

features for this classifier include the dependency path between the entity mentions, the type of

each mention, and the intervening context (Mintz et al., 2009).

Both the semantic parser and MULTIR were trained by running 5 iterations of the structured

perceptron algorithm.4 At test time, both models predicted a relation r ∈ R or NONE for each

4The structured perceptron algorithm does not converge to a parameter estimate and performance did not seem

to improve beyond 5 iterations. The final iterate of the algorithm was used as the parameter estimate.
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Figure 4.2: Aggregate precision as a function of recall for MULTIR and the three semantic parser
variants.

(e1, e2, s) triple in the test set. To make these predictions, the parser parses the sentence without

any knowledge of the particular entities under consideration, then applies the ENTAILS function

defined in Section 4.2.2 to determine which relation (if any) holds between e1 and e2. The

experiments compare three versions of the semantic parser: PARSE, which is the basic semantic

parser, PARSE+DEP which additionally observes a dependency parse at test time, and PARSE-

DEP which is trained without the syntactic constraint. Note that MULTIR is most comparable to

PARSE+DEP, as MULTIR also uses a dependency parse of the sentence to construct its feature

vector.

The evaluation considers two performance measures: aggregate and sentential precision/recall.

Aggregate precision takes the union of all extracted relation instances r(e1, e2) from the test cor-

pus and compares these instances to the knowledge base. To produce a precision/recall curve,

each extracted instance r(e1, e2) is assigned the maximum score over all sentences which ex-

tracted it. This metric is easy to compute, but is a pessimistic performance estimate due to

missing relation instances in the knowledge base.
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Figure 4.3: Sentential precision as a function of the expected number of correct extractions for
MULTIR and the three semantic parser variants. The expected number of correct extractions is
directly proportional to recall.

Sentential precision measures the precision of the predicted relations for each (e1, e2, s) tuple.

This metric is evaluated by manually sampling and evaluating 100 test sentences per model from

which a relation was extracted. Unfortunately, it is difficult to compute recall for this metric,

since the true number of sentences expressing relations is unknown. Therefore, the experiments

report precision as a function of the expected number of correct extractions, which is directly

proportional to recall. The expected number of correct extractions at rank k in the list is k

multiplied by the precision at rank k.

Figure 4.2 displays aggregate precision/recall and Figure 4.3 displays sentential precision/recall

for all 4 models. Generally, PARSE behaves like MULTIR with somewhat lower recall. In the sen-

tential evaluation, PARSE+DEP outperforms both PARSE and MULTIR. The difference between

PARSE+DEP’s aggregate and sentential precision stems from the fact that PARSE+DEP extracts

each relation instance from more sentences than either MULTIR or PARSE. The difference in

performance between PARSE+DEP, PARSE and PARSE-DEP clearly demonstrates the value of

syntactic information, which improves performance when incorporated both at training and test

time. Precision in the aggregate experiment is low partially due to examples with incorrect en-
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Figure 4.4: Aggregate precision as a function of recall, ignoring the two most frequent relations,
CITYLOCATEDINSTATE and CITYLOCATEDINCOUNTRY.

tity disambiguation. Many Freebase entities have names that occur frequently in text but not as

mentions of these entities. The parser often predicts that these occurrences are entity mentions,

leading to incorrect extractions.

The skewed distribution of relation types also hides interesting differences between the mod-

els. Figure 4.4 compares the two syntactically-supervised parsers to MULTIR, ignoring the two

most frequent relations (which together make up over half of all relation instances). Both PARSE

and PARSE+DEP are considerably more precise than MULTIR on these less frequent relations

because the semantic parsers can share parameters between relations due to the compositional

structure of their parses. For example, the semantic parsers learn that “in” often combines with

a city to form a prepositional phrase; the parsers can apply this knowledge to identify city argu-

ments of any relation. However, MULTIR is capable of higher recall, since its dependency parse

features can represent syntactic dependencies that cannot be represented by the semantic parsers.

This limitation of the semantic parsers is a consequence of the heuristic lexicon initialization

procedure and could be rectified by a more sophisticated procedure.
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Example Query Logical Form

capital of Russia λx.CITYCAPITALOFCOUNTRY(x,RUSSIA)

wife of Abraham λx.HASHUSBAND(x,ABRAHAM)

vocalist from λx.MUSICIAN(x)∧
London, England PERSONBORNIN(x, LONDON)∧

CITYINCOUNTRY(LONDON, ENGLAND)

home of λx.HEADQUARTERS(CONOCOPHILLIPS, x)

ConocoPhillips ∧CITYINCOUNTRY(x,CANADA)

in Canada

Table 4.3: Example natural language questions and their annotated logical forms.

Semantic Parsing Evaluation

The second experiment measures the trained parser’s ability to correctly translate natural lan-

guage questions into logical queries against the knowledge base.

To avoid biasing the evaluation, the test corpus of questions was constructed in a data-driven

fashion. The test data was searched for sentences with two related entities separated by an “is

a” expression. The portion of the sentence before the “is a” expression was discarded and the

remainder retained as a candidate question. For example “Jesse is an author from Austin, Texas,”

was converted into the candidate question “author from Austin, Texas.” Each candidate question

was then annotated with a logical form using categories and relations from the knowledge base;

candidate questions without satisfactory logical forms were discarded. 50 validation and 50 test

questions were annotated in this fashion. The validation set was used to estimate performance

during algorithm development and the test set was used to generate the final results. Example

questions with their annotated logical forms are shown in Table 4.3.

Table 4.4 displays the results of the semantic parsing evaluation. Precision is the percentage

of successfully parsed questions for which the correct logical form was predicted. Recall is the

percentage of all questions for which the correct logical form was predicted. This evaluation

demonstrates that the semantic parser successfully interprets common nouns and identifies mul-
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Precision Recall

PARSE 0.80 0.56

PARSE-DEP 0.45 0.32

Table 4.4: Precision and recall for predicting logical forms of natural language queries against
Freebase. The table compares PARSE, trained with syntactic supervision to PARSE-DEP, trained
without syntactic supervision.

tiple relations with shared arguments. The performance difference between PARSE and PARSE-

DEP also demonstrates the benefit of including syntactic supervision. PARSE+DEP was excluded

from this evaluation as the construction of the test questions did not preserve the dependency

parse structure of the original sentence. For this evaluation, both parsers were prevented from

skipping words.

Examining the system output, there are two major sources of error. The first is missing

lexicon entries for uncommon words (e.g., “ex-guitarist”), which negatively impact recall by

making some queries unparsable. The second is difficulty distinguishing between relations with

similar type signatures, such as CITYLOCATEDINCOUNTRY and CITYCAPITALOFCOUNTRY.

4.3 Joint Syntactic and Semantic Parsing

This section describes an algorithm for producing a joint syntactic and semantic parser. This

parser produces a full syntactic parse of every sentence and also produces logical forms for por-

tions of the sentence that have a semantic representation within the parser’s predicate vocabulary.

The inputs to this algorithm are:

1. A knowledge base K = (E,R,C,∆), containing entities e ∈ E, categories c ∈ C,

relations r ∈ R and predicate instances {c(e), r(e1, e2)} ∈ ∆.

2. A collection of sentences S.

3. A collection L = {(si, ti)}ni=1 of sentences si with annotated syntactic CCG parse trees ti

(e.g., CCGbank).
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4. A procedure for identifying mentions of entities from K in sentences from S (e.g., string

matching).

As in the previous section, there are two steps in producing the parser. The first step gener-

ates a semantic parsing model Γ(`, d, t, s; θ) using grammatical information from CCGbank and

lexicon induction heuristics. This semantic parsing model is considerably more sophisticated

than the model from the previous section due to the added challenge of producing full syntactic

parses. The second training step uses the same distant supervision constraint from Section 4.2.2

to teach the parser semantics, but includes an additional term encouraging the parser to correctly

parse CCGbank sentences.

I demonstrate this approach by training a joint syntactic and semantic parser named ASP. ASP

produces a full syntactic analysis of every sentence while simultaneously producing logical forms

containing any of 61 category and 69 relation predicates from NELL. Experiments with ASP

demonstrate that jointly analyzing syntax and semantics improves semantic parsing performance

over prior work (Section 4.2) and a pipelined syntax-then-semantics approach. However, the

experiments also demonstrate that incorporating semantic information slightly reduces syntactic

parsing performance (by ∼ 0.5%). Despite this drop, ASP’s syntactic parsing performance is

within 2.5% of state-of-the-art.

4.3.1 The ASP Parsing Model

This section describes the Combinatory Categorial Grammar (CCG) parsing model used by ASP.

The input to the parser is a part-of-speech tagged sentence and the output is a syntactic CCG

parse tree, along with zero or more logical forms representing the semantics of subspans of

the sentence. The parser also outputs a collection of dependency structures summarizing the

sentence’s predicate-argument structure. Figure 4.5 illustrates ASP’s input/output specification.
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Lexicon

ASP uses a lexicalized and semantically-typed Combinatory Categorial Grammar (CCG) (Steed-

man, 1996). Example lexicon entries are:

person := N : PERSON : λx.PERSON(x)

London := N : CITY : λx.M(x, “london”, CITY)

great := N1/N1 : — : λf.λx.f(x)

bought := (S[dcl]\NP1)/NP2 : ACQUIRED : λf.λg.∃x, y.f(y) ∧ g(x) ∧ ACQUIRED(x, y)

Each lexicon entry maps a word to a syntactic category, semantic type, and logical form.

The semantic type is a new element of the lexicon entry (relative to the lexicon described in

Section 4.2.1) whose value is a category or relation predicate. These values are used by ASP

to enforce type constraints during parsing and to include semantics in the parser’s parameteriza-

tion. Lexicon entries can have the semantic type “—” to indicate words whose semantics cannot

be expressed using predicates from the ontology. The M predicate is used to represent entity

mentions; see the following section on logical forms for a full description.

The syntactic categories in ASP also use the feature and head passing mechanisms of CCG.

Briefly, atomic categories may have an associated feature, shown in square brackets, e.g., S[dcl].

A category can also associate a variable with a feature, which enables features to be passed

between categories using unification. The subscripts on each category are used to populate

predicate-argument dependencies and to pass head word information using unification. For ex-

ample, the head word of the parse in Figure 4.5 is “area,” due to the coindexing of the argument

and return categories in the category N1\N1. See Section 2.2.5 for a full description of features

and head passing.

Dependency Structures

Parsing a sentence produces a collection of dependency structures that summarize the predicate-

argument structure of the sentence. These dependency structures are the standard CCG syntactic
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dependencies (Clark and Curran, 2007a; Hockenmaier and Steedman, 2002a) augmented with

additional fields to capture semantic information. Dependency structures are 10-tuples, of the

form:

< head word, head POS, head semantic type, head word index, head word syntactic category, argu-

ment number, argument word, argument POS, argument semantic type, argument word index >

A dependency structure captures a relationship between a head word and its argument. The

syntactic category and the argument number determine which argument to the head is being

populated. Dependency structures also contain word index information that allows the parser

to include the distance between words in its parameterization. During parsing, whenever a sub-

scripted argument of a syntactic category is filled, a dependency structure is created between the

head of the applied category and its argument. For example, in Figure 4.5, the first application

fills argument 1 of “beautiful” with “London,” creating a dependency structure.

Logical Forms

ASP performs a best-effort semantic analysis of every parsed sentence, producing logical forms

for subspans of the sentence when possible. Logical forms are designed so that the meaning

of a sentence is a universally- and existentially-quantified conjunction of predicates with shared

arguments. This representation allows the parser to produce semantic analyses for a reasonable

subset of language, including prepositions, verbs, nouns, relative clauses, and conjunctions.

Figure 4.5 shows a representative sample of a logical form produced by ASP. Generally, the

parser produces a lambda calculus statement with several existentially-quantified variables rang-

ing over entities in the knowledge base. The only exception to this rule is conjunctions, which

are represented using a scoped universal quantifier over the conjoined predicates. Entity men-

tions appear in logical forms via a special mention predicate, M, instead of as database constants.

For example, “London” appears as M(x, “london”, CITY), instead of as a constant like LONDON.

The meaning of this mention predicate is that x is an entity which can be called “london” and
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belongs to the CITY category. This representation propagates uncertainty about entity references

into the logical form where background knowledge can be used for disambiguation. For exam-

ple, “London, England” is assigned a logical form that disambiguates “London” to a “London”

located in “England.”5 This mention predicate solves the entity disambiguation problem that was

a frequent source of errors in Section 4.2.3.

Lexicon entries with the semantic type “—” are automatically assigned logical forms based

on their head passing markup. For example, in Figure 4.5, the adjective “beautiful” is assigned

λf.f . This approach allows a logical form to be derived for most sentences, but (somewhat

counter-intuitively) can lose interesting logical forms from constituent subspans. For exam-

ple, the preposition “in” has syntactic category (N1\N1)/N2, which results in the logical form

λf.λg.g. This logical form discards any information present in the argument f . A simple

workaround to this problem is to extract a logical form from every subtree of the CCG parse.

Parameterization

The parser Γ is trained as a discriminative linear model of the form:

Γ(`, d, t, s; θ) = θTφ(d, t, s)

Given a parameter vector θ and a sentence s, the parser produces a score for a syntactic

parse tree t, a collection of dependency structures d and a logical form `. The feature function

φ contains four classes of features: lexicon features, combinator features, dependency features

and dependency distance features (see Table 4.5). These features are based on those of C&C

(Clark and Curran, 2007a), but modified to include semantic types. The lexicon features count

occurrences of each lexicon entry, and also include backoff features based on POS tags. The

combinator features count the number of times that each binary and unary combinator rule is

used in a parse. There is also an indicator feature for the parse tree’s root syntactic category.

The dependency features count the number of times each filled dependency is instantiated by a

5Specifically, λx.∃y.CITYLOCATEDINCOUNTRY(x, y) ∧ M(x, “london”, CITY) ∧ M(y, “england”, COUNTRY)
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parse, including various backoff features to POS tags. Finally, the dependency distance features

count the number of intervening words, punctuation marks, and verbs between a predicate and

its argument.

Importantly, the features are designed to backoff from syntactic and semantic information to

purely syntactic information. Note that every feature template in Table 4.5 that depends on se-

mantic type (either ht or at) has a corresponding backoff feature with the semantic type omitted.

This backoff property enables syntactic information from CCGbank to be transferred to semantic

parsing. Preliminary experiments without these backoff features led to extremely poor semantic

parsing results.

The parser also includes a hard type-checking constraint to ensure that logical forms are

well-typed. This constraint states that dependency structures with a head semantic type only

accept arguments that (1) have a semantic type and (2) are within the domain/range of the head

type. This constraint is enforced during parsing by assigning a weight of −∞ to any parse that

instantiates a dependency structure violating either of these two rules.

Supertagging

Parsing in practice can be slow because the parser’s lexicalized grammar permits a large number

of parses for a sentence. Supertagging is a method for improving parsing speed by pruning

the set of allowed syntactic categories for each token before parsing (see Section 2.1.5). ASP’s

supertagger is a logistic regression classifier that predicts the syntactic category of each token

from features of the surrounding tokens and POS tags. Subsequent parsing is restricted to only

consider categories whose probability is within a factor of α of the highest-scoring category.

The parser uses a backoff strategy, first attempting to parse with the supertags from α = 0.01,

backing off to α = 0.001 if the initial parsing attempt fails.

The supertagger is trained on Sections 02-21 of CCGbank. An evaluation on Section 00

shows that at α = 0.01, the correct syntactic category is within the predicted set of categories for
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98.3% of tokens. Furthermore, the supertagger predicts an average of 2.4 syntactic categories

per token. At α = 0.001, the correct syntactic category is within the predicted set for 98.9%

of tokens, and an average of 5.7 syntactic categories are predicted per token. This supertagger

is not as accurate as other supertaggers that model sequential sentence structure. For reference,

the supertagger of the C&C parser predicts an average of 1.72 syntactic categories per token at a

98.3% accuracy level, and 3.57 syntactic categories per token at a 99.2% accuracy level (Clark

and Curran, 2007a).

Lexicon and Grammar Generation

The grammar for ASP contains the annotated lexicon entries and grammar rules in Sections 02-21

of CCGbank and additional semantic entries produced using a set of dependency parse heuristics.

The lexicon Λ contains all words that occur at least 20 times in CCGbank. Any word oc-

curring fewer than 20 times was replaced by the symbol UNK-[POS], where [POS] is its part-

of-speech tag in the sentence. The resulting lexicon contains 9,528 unique words and 33,665

lexicon entries. The head passing and dependency markup was generated using the rules of the

C&C parser (Clark and Curran, 2007a). These lexicon entries were then automatically annotated

with logical forms based on their head passing markup. For example, the adjective category

N1/N1 is annotated with the logical form λf.f . All lexicon entries derived from CCGbank are

assigned the semantic type —.

This lexicon is augmented with additional entries whose logical forms contain NELL pred-

icates. These entries are instantiated using the dependency parse patterns listed in Table 4.6.

These patterns operate in the same manner as those in Section 4.2.1. When applied to the train-

ing corpus, these patterns heuristically identify verbs, prepositions, and possessives that express

relations, and nouns that express categories. The patterns also include special cases for forms

of “to be.” This process generates ∼4000 entries (not counting entity names), representing 69

relations and 61 categories from NELL.
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The parser’s combinators include function application, composition, and crossed compo-

sition, as well as several binary and unary type-changing rules that occur in CCGbank. All

combinators were restricted to only apply to categories that combine in Sections 02-21; this re-

striction has been shown to improve parsing speed without a material effect on syntactic parsing

performance (Clark and Curran, 2007a). Finally, the grammar includes a number of heuristically-

instantiated binary rules of the form , N → N\N that instantiate a relation between adjacent

nouns. These rules are similar to the noun compound rules from Section 4.2.1.

4.3.2 Training ASP

The training procedure for ASP is a refinement of the method from Section 4.2.2 that replaces

the syntactic constraint with a collection of annotated syntactic CCG parses L. The training pro-

cedure constructs a joint objective function O(θ) that decomposes into syntactic and semantic

components: O(θ) = Osyn(θ) +Osem(θ). The syntactic component Osyn is a standard syntac-

tic parsing objective constructed using the syntactic resource L. The semantic component Osem

is a distantly-supervised relation extraction task based on the semantic constraint from Section

4.2.2. Minimizing this joint objective trains the parser to simultaneously produce accurate syn-

tactic parses while also extracting knowledge base relations. These components of the objective

function are described in more detail in the following sections.

Syntactic Objective

The syntactic objective is the structured perceptron objective instantiated for a syntactic parsing

task. This objective encourages the parser to accurately reproduce the syntactic parses in the

annotated corpus L = {(si, ti)}ni=1:

Osyn(θ) =
n∑
i=1

|max
ˆ̀,d̂,t̂

Γ(ˆ̀, d̂, t̂, si; θ)−max
`∗,d∗

Γ(`∗, d∗, ti, si; θ)|+
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The first term in the above expression represents the best CCG parse of the sentence si ac-

cording to the current model. The second term is the best parse of si whose syntactic tree equals

the annotated syntactic tree ti. In the above equation | · |+ denotes the positive part of the ex-

pression. Minimizing this objective therefore finds parameters θ that reproduce the annotated

syntactic trees. Variables with a hat (e.g., ˆ̀) denote unconstrained model predictions and vari-

ables with a star (e.g., `∗) denote constrained model predictions given the correct syntactic parse

tree ti.

Semantic Objective

The semantic objective corresponds to a distantly-supervised relation extraction task that con-

strains the logical forms produced by the semantic parser. This objective function is taken di-

rectly from Section 4.2.2.

A training example in the semantic objective consists of the set of sentences mentioning a

pair of entities, S(e1,e2) = {s1, s2, ...}, paired with a binary vector representing the set of rela-

tions that the two entities participate in, y(e1,e2). The distant supervision constraint Ψ forces the

logical forms predicted for the sentences to entail the relations in y(e1,e2). Ψ is a determinis-

tic OR constraint that checks whether each logical form entails the relation instance r(e1, e2),

deterministically setting yr = 1 if any logical form entails the instance and yr = 0 otherwise.

Let (`,d, t) represent a collection of semantic parses for the sentences S(e1,e2). Let

Γ(`,d, t,S(e1,e2); θ) =
∑|S|

i=1 Γ(`i, di, ti, si; θ) represent the total weight assigned by the parser

to a collection of parses for the sentences S(e1,e2). For the pair of entities (e1, e2), the semantic

objective is:

Osem(θ) = |max
ˆ̀,d̂,̂t

Γ(ˆ̀, d̂, t̂,S(e1,e2); θ)− max
`∗,d∗,t∗

(
Ψ(y(e1,e2), `

∗) + Γ(`∗,d∗, t∗,S(e1,e2); θ)
)|+
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Optimization

Training minimizes the joint objective using the structured perceptron algorithm, which can be

viewed as the stochastic subgradient method (Ratliff et al., 2006) applied to the objective O(θ).

The parameters are initialized to zero, i.e., θ0 = 0. Each iteration samples either a syntactic

example (si, ti) or a semantic example (S(e1,e2), y(e1,e2)). If a syntactic example is sampled, the

following parameter update is applied:

ˆ̀, d̂, t̂ ← arg max
`,d,t

Γ(`, d, t, si; θ
t)

`∗, d∗ ← arg max
`,d

Γ(`, d, ti, si; θ
t)

θt+1 ← θt + φ(d∗, ti, si)− φ(d̂, t̂, si)

This update moves the parameters toward the features of the best parse with the correct syn-

tactic derivation, φ(d∗, ti, si). If a semantic example is sampled, the following update is applied

instead:

ˆ̀, d̂, t̂ ← arg max
`,d,t

Γ(`,d, t,S(e1,e2); θ
t)

`∗,d∗, t∗ ← arg max
`,d,t

Γ(`,d, t,S(e1,e2); θ
t) + Ψ(y(e1,e2), `)

θt+1 ← θt + φ(d∗, t∗,S(e1,e2))− φ(d̂, t̂,S(e1,e2))

This update moves the parameters toward the features of the best set of parses that satisfy the

distant supervision constraint. Training outputs the average of each iteration’s parameters, θ̄ =

1
n

∑n
t=1 θ

t. In practice, training performs only a single pass over the examples in the data set.

All of the maximizations above can be performed exactly using a CKY-style chart parsing

algorithm except for the last one. This maximization is intractable due to the coupling between

logical forms in ` caused by enforcing the distant supervision constraint. The training procedure

approximates this maximization in two steps. First, it performs a beam search to produce a list

of candidate parses for each sentence s ∈ S(e1,e2). It then extracts relation instances from each
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parse and applies the greedy inference algorithm from Hoffmann et al., (Hoffmann et al., 2011)

to identify the best set of parses that satisfy the distant supervision constraint. This procedure

skips any examples with sentences that cannot be parsed (due to beam search failures) or where

the distant supervision constraint cannot be satisfied.

4.3.3 Evaluation

The evaluation measures ASP’s syntactic and semantic parsing ability. The parser is trained on

CCGbank and a corpus of Wikipedia sentences using NELL’s predicate vocabulary. The syntactic

analyses of the trained parser are evaluated against CCGbank, and its logical forms are evaluated

on an information extraction task and against an annotated test set of Wikipedia sentences.

Data

The data sets for the evaluation consist of CCGbank, a corpus of dependency-parsed Wikipedia

sentences, and a logical knowledge base derived from NELL and Freebase. Sections 02-21 of

CCGbank were used for training, Section 00 for validation, and Section 23 for the final results.

The knowledge base’s predicate vocabulary is taken from NELL, and its instances are taken from

Freebase using a manually-constructed mapping between Freebase and NELL. Using Freebase

relation instances produces cleaner training data than NELL’s automatically-extracted instances.

The relation instances and Wikipedia sentences were used to construct a data set for distantly-

supervised relation extraction. This data set was constructed by identifying mentions of entities

in each sentence using simple string matching, then aggregating these sentences by entity pair.

20% of the entity pairs were set aside for validation. To improve performance, only 3% of the

entity pairs that do not participate in at least one relation were used for training. Furthermore,

sentences containing more than 30 tokens were removed. The resulting training corpus contains

25k entity pairs (half of which participate in a relation), 41k sentences, and 71 distinct relation

predicates.
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Syntactic Evaluation

The syntactic evaluation measures ASP’s ability to reproduce the predicate-argument dependen-

cies in CCGbank. As in previous work, the evaluation uses labeled and unlabeled dependencies.

Labeled dependencies are dependency structures with both words and semantic types removed,

leaving two word indexes, a syntactic category, and an argument number. Unlabeled depen-

dencies further eliminate the syntactic category and argument number, leaving a pair of word

indexes. Performance is measured using precision, recall, and F-measure against the annotated

dependency structures in CCGbank. Precision is the fraction of predicted dependencies which

are in CCGbank, recall is the fraction of CCGbank dependencies produced by the parser, and

F-measure is the harmonic mean of precision and recall.

The syntactic evaluation includes a purely syntactic version of ASP, called ASP-SYN, that

is trained using only CCGbank. Comparing against this parser measures the effect on syntactic

parsing performance of including the distantly-supervised relation extraction task during train-

ing.

Table 4.7 shows the results of the evaluation. For comparison, results for two existing syn-

tactic CCG parsers are included: C&C (Clark and Curran, 2007a), and the system of Hocken-

maier (Hockenmaier, 2003b). Both ASP and ASP-SYN perform reasonably well, within 2.5% of

the performance of C&C at the same coverage level. However, ASP-SYN outperforms ASP by

around 0.5%, suggesting that ASP’s additional semantic knowledge slightly hurts syntactic pars-

ing performance. This performance loss appears to be largely due to poor entity mention detec-

tion, as omitting entity mention lexicon entries at test time improves ASP’s labeled and unlabeled

F-scores by 0.3% on Section 00. The knowledge base contains many infrequently-mentioned en-

tities with common names, such as the city “Of” in Turkey. These mentions contribute confusing

semantic type information to the parser that can result in incorrect predictions. In this case, the

type information would suggest that “of” is a proper noun. This problem is similar to the one

noted in Section 4.2.3.

87



Labeled Dependencies Unlabeled Dependencies
P R F P R F Coverage

ASP 85.58 85.31 85.44 91.75 91.46 91.60 99.63
ASP-SYN 86.06 85.84 85.95 92.13 91.89 92.01 99.63

C&C (Clark and Curran, 2007a) 88.34 86.96 87.64 93.74 92.28 93.00 99.63
(Hockenmaier, 2003b) 84.3 84.6 84.4 91.8 92.2 92.0 99.83

Table 4.7: Syntactic parsing results for Section 23 of CCGbank. Parser performance is measured
using precision (P), recall (R) and F-measure (F) of labeled and unlabeled dependencies.

Semantic Evaluation Baselines

The information extraction and annotated sentence evaluations compare ASP to two baselines.

The first baseline, PIPELINE, is a pipelined syntax-then-semantics approach designed to mimic

Boxer (Bos, 2005). This baseline first syntactically parses each sentence using ASP-SYN, then

produces a semantic analysis by assigning a logical form to each word. This baseline is trained

using the semantic objective (Section 4.3.2) while holding fixed the syntactic parse of each sen-

tence. Note that, unlike Boxer, this baseline learns which logical form to assign to each word,

and its logical forms contain NELL predicates.

The second baseline, K&M-2012, is the distantly-supervised approach from Section 4.2,

representing the state-of-the-art in distantly-supervised semantic parsing. This approach trains a

semantic parser by combining distant semantic supervision with syntactic supervision from de-

pendency parses. The best performing variant of this system also uses dependency parses at test

time to constrain the interpretation of test sentences – hence, this system also uses a pipelined

syntax-then-semantics approach. To improve comparability, this approach was reimplemented

using the ASP parsing model, which has richer features than were used in the previous imple-

mentation.

Information Extraction Evaluation

The information extraction evaluation uses each system to extract logical forms from a large

corpus of sentences, then measures the fraction of extracted logical forms that are correct. The
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Sentence Extracted Logical Form
St. John, a Mexican-American born in San Francisco, Cal-
ifornia, her family comes from Zacatecas, Mexico.

λx.∃y, z.M(x, “st. john”)∧M(y, “san francisco”)∧
PERSONBORNINLOCATION(x, y) ∧
CITYLOCATEDINSTATE(y, z) ∧ M(z, “california”)

The capital and largest city of Laos is Vientiane and other
major cities include Luang Prabang, Savannakhet and
Pakse.

∃x, y.M(x, “vientiane”) ∧ CITY(x) ∧
CITYCAPITALOFCOUNTRY(x, y) ∧ M(y, “laos”)

Gellar next played a lead role in James Toback ’s critically
unsuccessful independent “Harvard Man” (2001), where
she played the daughter of a mobster.

λx.∃y.M(y, “james toback”) ∧
DIRECTORDIRECTEDMOVIE(y, x) ∧
M(x, “harvard man”)

Figure 4.6: Logical forms produced by ASP for sentences in the information extraction corpus.
Each logical form is extracted from the underlined sentence portion.

test set consists of 8.5k sentences sampled from the held-out Wikipedia sentences. Each system

was run on this data set, extracting all logical forms from each sentence that entailed at least one

category or relation instance. These extractions were ranked using the parser’s inside chart score,

and a random sample of 250 logical forms from each system were then manually annotated for

correctness. Logical forms were marked correct if all category and relation instances entailed by

the logical form were expressed by the sentence. Note that a correct logical form need not entail

all of the relations expressed by the sentence, reflecting an emphasis on precision over recall.

Figure 4.6 shows some example logical forms produced by ASP in the evaluation.

The annotated sample of logical forms allows us to estimate precision for each system as a

function of the number of correct extractions (Figure 4.7). The number of correct extractions

is directly proportional to recall and was estimated from the total number of extractions and

precision at each rank in the sample. At low recall levels, all three systems have high precision,

implying that their extracted logical forms express facts found in the sentence. However, ASP

produces 3 times more correct logical forms than either baseline because it jointly analyzes

syntax and semantics. The baselines suffer from reduced recall because they depend on receiving

an accurate syntactic parse as input; syntactic parsing errors cause these systems to fail.

Examining the incorrect logical forms produced by ASP reveals that incorrect mention detec-

tion is by far the most common source of mistakes. Approximately 50% of errors are caused by

marking common nouns as entity mentions (e.g., marking “coin” as a COMPANY). These errors
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Figure 4.7: Logical form precision as a function of the expected number of correct extracted
logical forms. ASP extracts more correct logical forms because it jointly analyzes syntax and
semantics.

occur because the knowledge base contains many infrequently mentioned entities with relatively

common names. Another 30% of errors are caused by assigning an incorrect type to a common

proper noun (e.g, marking “Bolivia” as a CITY). This analysis suggests that performing entity

linking before parsing could significantly reduce errors.

Annotated Sentence Evaluation

A limitation of the previous evaluation is that it does not measure the completeness of predicted

logical forms, nor estimate what portion of sentences are left unanalyzed. This second evaluation

measures these quantities.

The data for this evaluation consists of sentences annotated with logical forms for subspans.

Wikipedia sentences from the held-out set were manually annotated with logical forms for the

largest subspans for which a logical form existed. To avoid trivial cases, every annotated logical

forms contains at least one category or relation predicate and at least one mention. The annotated

logical forms also do not contain mentions of entities that are not in the knowledge base, as no

system would be able to correctly identify these mentions. The corpus contains 97 sentences

with 100 annotated logical forms.
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Logical Form Extraction Extraction
Accuracy Precision Recall

ASP 0.28 0.90 0.32

K&M-2012 0.14 1.00 0.06
PIPELINE 0.2 0.63 0.17

Table 4.8: Logical form accuracy and extraction precision/recall on the annotated test set. The
high extraction recall for ASP shows that it produces more complete logical forms than either
baseline.

Performance on this data set was measured using two metrics: logical form accuracy, and

extraction precision/recall. Logical form accuracy examines the predicted logical form for the

smallest subspan of the sentence that contains the annotated span, and marks this prediction

correct if it exactly matches the annotation. A limitation of this metric is that it does not assign

partial credit to logical forms that are close to, but do not exactly match, the annotation. The

extraction metric assigns partial credit by computing the precision and recall of the category

and relation instances entailed by the predicted logical form, using the instances entailed by the

annotated logical form as the gold standard. Figure 4.8 shows the computation of both error

metrics on two examples from the test corpus.

Table 4.8 shows the results of the annotated sentence evaluation. ASP outperforms both

baselines in logical form accuracy and extraction recall, demonstrating that it produces more

complete analyses than either baseline. The extraction precision of 90% suggests that ASP rarely

includes incorrect information in its predicted logical forms. However, the recall of 32% suggests

that semantic information present in the sentence is often not included in the predicted logical

form. Note that precision in this evaluation is higher than precision in Section 4.3.3 because

every sentence in the data set has a correct logical form. Many of the precision errors in the

previous evaluation occur because the parser predicts a logical form for sentences for which no

correct logical form exists.
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Sentence: De Niro and Joe Pesci in “Goodfellas” offered a virtuoso display of the director’s
bravura cinematic technique and reestablished, enhanced, and consolidated his reputation.
Annotation:

LF: λx.∀p ∈ {λd.M(d, “de niro”), λj.M(j, “joe pesci”)}∃y.p(x) ∧ STARREDINMOVIE(x, y) ∧
M(y, “goodfellas”)

Instances: STARREDINMOVIE(de niro, goodfellas), STARREDINMOVIE(joe pesci, goodfellas)
Prediction:

LF: λx.∀p ∈ {λd.M(d, “de niro”), λj.M(j, “joe pesci”)}∃y.p(x) ∧ STARREDINMOVIE(x, y) ∧
M(y, “goodfellas”)

Instances: STARREDINMOVIE(de niro, goodfellas), STARREDINMOVIE(joe pesci, goodfellas)
Logical form accuracy: 1 / 1 Extraction Precision: 2 / 2 Extraction Recall: 2 / 2

Sentence: In addition to the University of Illinois, Champaign is also home to Parkland College.
Annotation:

LF: ∃c, p.M(c, “champaign”) ∧ CITY(c) ∧ M(p, “parkland college”) ∧ UNIVERSITYINCITY(p, c)
Instances: CITY(champaign), UNIVERSITYINCITY(parkland college, champaign)

Prediction:
LF 1: λx.∃yM(y, “illinois”) ∧ M(x, “university”) ∧ CITYLOCATEDINSTATE(x, y)
LF 2: ∃c, p.M(c, “champaign”)∧CITY(c)∧M(p, “parkland college”)∧UNIVERSITYINCITY(p, c)
Instances: CITY(champaign), UNIVERSITYINCITY(parkland college, champaign),

CITYLOCATEDINSTATE(university, illinois)
Logical form accuracy: 1 / 1 Extraction Precision: 2 / 3 Extraction Recall: 2 / 2

Figure 4.8: Two test examples with ASP’s predictions and error calculations. The annotated
logical forms are for the italicized sentence spans, while the extracted logical forms are for the
underlined spans.
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4.4 Discussion

This chapter has presented two algorithms for training semantic parsers using distant supervision.

The key innovation used by both algorithms is a distant supervision constraint that trains a seman-

tic parser to extract the relations instances in a knowledge base from a large corpus of unlabeled

sentences. However, this semantic constraint alone is not sufficient – syntactic information was

shown to play a key role in producing accurate semantic parses. The two algorithms presented

here differ in their source of syntactic information. The first algorithm used a simple semantic

parser and constrained its parses to agree with dependency parses. The second algorithm trained

a joint syntactic and semantic parser using annotated syntactic trees from CCGbank.

The experimental results in this chapter demonstrated three major results. First, semantic

parsers trained with distant supervision are effective relation extraction and question answering

systems. Second, syntactic information is necessary to produce accurate semantic parses of

complex text, such as sentences from the web. Third, jointly inferring the syntactic and semantic

structure of a sentence enables a semantic parser to produce more accurate semantic parses than

pipelined syntax-then-semantics approaches.

The positioning of this chapter according to the axes of variation is as follows:

1. Learning the knowledge base – The knowledge base is given to the learning algorithm

and not automatically learned.

2. Predicate vocabulary – The semantic parsers use the closed predicate vocabulary of the

given knowledge base.

3. Semantic parser supervision – Unlabeled sentences from the web and a knowledge base

are used to train the semantic parser.

4. Syntactic information – Syntactic information was found to be very helpful in produc-

ing accurate semantic parses. Syntactic information was provided in the form of either

dependency parses or syntactic CCG parses.
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One lesson from this chapter is the limitations of language understanding system that relies

of a given, fixed knowledge base. Despite using a reasonably large subset of NELL (∼130

predicates), the parsers in this chapter can produce logical forms for only a tiny fraction of

sentences. For example, given a corpus of 8500 sentences, ASP produces logical forms for

around 900 sentences. Note that these logical forms are partial analyses, often entailing only

a single predicate instance. The limited coverage is largely a function of the knowledge base,

which does not contain the predicates necessary to semantically analyze most language. There

are also many cases where the mapping from language to the knowledge base is inexact; for

example, should the word “town” be mapped to the predicate CITY? These observations suggest

that it is necessary to open the predicate vocabulary and learn the knowledge base to obtain broad

coverage semantic analyses. The next chapter explores training language understanding systems

with an open predicate vocabulary.

This chapter also suggests that syntactically-parsed, but otherwise unlabeled, text is an effec-

tive source of supervision for training semantic parsers. The next chapter further explores the use

of such syntactically-parsed text as a source of supervision for training language understanding

systems.
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Chapter 5

Semantic Parsing with an Open Predicate

Vocabulary
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Abstract

The approaches described in the previous chapter trained a semantic parser to

map text to logical forms containing predicates from a fixed knowledge base. A

fundamental limitation of these approaches is that their coverage is restricted by

the closed predicate vocabulary of the knowledge base. This chapter describes a

new approach to building a language understanding system that uses an open predi-

cate vocabulary, enabling it to produce denotations for phrases such as “Republican

front-runner from Texas” whose semantics could not be represented using the knowl-

edge bases of the previous chapter. The system’s overall design is the opposite of

the previously-described approaches: it uses an unlearned, deterministic semantic

parser, and instead learns a distribution over knowledge bases. The semantic parser

is given by a collection of rules that converts a sentence’s syntactic CCG parse into a

logical form containing predicates derived from the words in the sentence. Instead of

a fixed knowledge base, the system has a learned probabilistic database representing

a distribution over knowledge bases. This probabilistic database is trained using a

corpus of entity-linked text and probabilistic matrix factorization with a novel rank-

ing objective function. An evaluation on a compositional question answering task

demonstrates that this open vocabulary approach to language understanding outper-

forms several competitive baselines and that it can correctly answer many questions

that cannot be answered by querying Freebase.



The traditional language understanding paradigm assumes that world knowledge can be en-

coded using a closed vocabulary of formal predicates. In this paradigm, the understanding system

is given a knowledge base as input, and the language understanding problem reduces to seman-

tic parsing (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005), i.e., mapping from text to

logical forms containing predicates from the given knowledge base. This paradigm has been suc-

cessfully used in applications such as answering questions using a large knowledge base (Berant

and Liang, 2014; Berant et al., 2013; Cai and Yates, 2013b; Krishnamurthy and Mitchell, 2012;

Kwiatkowski et al., 2013; Reddy et al., 2014a; Yahya et al., 2012) (Chapter 4).

However, the closed predicate vocabulary assumed by the traditional language understand-

ing paradigm has inherent limitations. First, a closed predicate vocabulary will have limited

coverage, as such vocabularies are typically manually constructed. The semantic evaluations

in Section 4.3.3 highlight this coverage problem: no logical form could be produced for most

sentences, and, when a logical form was produced, it represented the meaning of only a small

portion of the sentence. Second, a closed predicate vocabulary may abstract away potentially

relevant semantic differences. For example, the semantics of “Republican front-runner” cannot

be adequately encoded using Freebase predicates because it lacks the concept of a “front-runner.”

This concept could be encoded as “politician” at the cost of abstracting away the distinction be-

tween the two. As this example illustrates, these two problems are prevalent in even the largest

knowledge bases.

This chapter considers the problem of building a language understanding system with an open

predicate vocabulary. In an open predicate vocabulary, each natural language word or phrase is

given its own formal predicate (Banko et al., 2007; Riedel et al., 2013), thereby permitting the

system to capture subtle semantic distinctions and achieve high coverage. Using an open pred-

icate vocabulary considerably changes the design of a language understanding system. First, it

forces the system to learn its knowledge base, as the system no longer receives a knowledge

base as input. Second, it simplifies the problem of semantic parsing, as it is no longer neces-
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Input Text
Republican front-runner
from Texas

→

Logical Form
λx.∃y, z.FRONT-RUNNER(x)∧
y = /EN/REPUBLICAN ∧
NN(y, x) ∧ z = /EN/TEXAS ∧
FROM(x, z)

→
Entity Prob.
/EN/GEORGE BUSH 0.57
/EN/RICK PERRY 0.45
...

φ
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Probabilistic Database

Figure 5.1: Overview of the language understanding system in this chapter. Top left: the text is
converted to logical form by CCG syntactic parsing and a collection of manually-defined rules.
Bottom: low-dimensional embeddings of each entity (entity pair) and category (relation) are
learned from an entity-linked web corpus. These embeddings are used to construct a probabilistic
database. The labels of these matrices are shortened for space reasons. Top right: evaluating the
logical form on the probabilistic database computes the marginal probability that each entity is
an element of the text’s denotation.

sary to map between words and knowledge base symbols. The language understanding system

in this chapter is therefore quite different from those of the previous chapter, even though its

input/output specification is similar. The system can still predict the denotation of a text in terms

of knowledge base entities, but this prediction is based on an unlearned, deterministic semantic

parser, and a learned knowledge base.

The language understanding system in this chapter is a probabilistic model that defines a

distribution over denotations (sets of Freebase entities) given an input text. The model has two

components. The first component is a rule-based semantic parser that uses a syntactic CCG

parser and manually-defined rules to map entity-linked texts to logical forms containing pred-

icates derived from the words in the text (Figure 5.1, top left). The second component is a

probabilistic database with a possible worlds semantics that defines a distribution over denota-

tions for each textually-derived predicate. This database can be viewed as a distribution over

knowledge bases that assigns an independent truth probability to each predicate instance, such

as P (FRONT-RUNNER(/EN/GEORGE BUSH)) = 0.9 (Figure 5.1, bottom right). The probabilities
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in the database are computed from learned entity and predicate embeddings (Figure 5.1, bot-

tom left). Together, the semantic parser and probabilistic database define an exponentially-large

distribution over denotations for an input text; to simplify this output, inference in the model

computes the marginal probability, over all possible knowledge bases, that each entity is an ele-

ment of the text’s denotation (Figure 5.1, top right).

The learning problem in this approach is to train the probabilistic database to predict a de-

notation for each predicate. This problem is posed as probabilistic matrix factorization with a

novel query/answer ranking objective. This factorization learns a low-dimensional embedding of

each entity (entity pair) and category (relation) such that the denotation of a predicate is likely to

contain entities or entity pairs with nearby vectors. The database is trained using a collection of

logical form queries with observed entity answers that is automatically generated by analyzing

entity-linked text with the rule-based semantic parser. The query/answer ranking objective, when

optimized, trains the database to rank the observed answers for each query above unobserved an-

swers.

This chapter further presents an empirical evaluation of the trained open predicate vocabu-

lary language understanding system on a compositional question answering task. The evaluation

demonstrates that this system outperforms several baselines, and that the new training objective

improves performance over a previously-proposed objective. The evaluation also examines the

trade-offs between open and closed predicate vocabularies by comparing against an annotated

Freebase query for each question. This comparison reveals that, when Freebase covers the ques-

tion, it returns high precision answers. However, many of the questions not covered by Freebase

can be correctly answered using the open vocabulary approach.

The contents of this chapter are derived from Krishnamurthy and Mitchell (2015).
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5.1 System Overview

The system in this chapter aims to predict a denotation γ for a given natural language text s. The

denotation γ is the set of Freebase entities that s refers to; for example, if s = “president of the US,”

then γ = {/EN/OBAMA, /EN/BUSH, ...}.1 This prediction problem can be represented using the

following probabilistic model:

P (γ|s) =
∑
K

∑
`

P (γ|`,K)P (K)P (`|s)

The first term in this factorization, P (`|s), is a distribution over logical forms ` given the text

s. This term corresponds to the rule-based semantic parser (Section 5.2). This semantic parser is

deterministic, so this term assigns probability 1 to a single logical form for each text. The second

term, P (K), represents a distribution over knowledge bases, where each knowledge base is an

assignment of truth values to all possible predicate instances. This distribution is represented by

a probabilistic database (Section 5.3). The final term, P (γ|`,K), deterministically evaluates the

logical form ` on the knowledge base K to produce a denotation γ. This term represents query

evaluation against a fixed database as in other work on semantic parsing.

Section 5.4 describes inference in this model. To produce a ranked list of entities (Figure

5.1, top right) from P (γ|s), the system computes the marginal probability, over all possible

knowledge bases, that each entity is an element of the denotation γ. This problem corresponds to

query evaluation in a probabilistic database, which is known to be tractable in many cases (Suciu

et al., 2011).

Section 5.5 describes training, which estimates parameters for the probabilistic database

P (K). This step first automatically generates training data using the rule-based semantic parser.

This data is used to formulate a matrix factorization problem that is optimized to estimate the

1This chapter uses a simple model-theoretic semantics where the denotation of a noun phrase is a set of entities

and the denotation of a sentence is either true or false. However, for notational convenience, denotations γ will be

treated as sets of entities throughout.
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database parameters.

5.2 Rule-Based Semantic Parser

The first part of the language understanding system is a rule-based system that deterministically

computes a logical form for a text. This component is used during inference to analyze the

logical structure of text, and during training to generate training data (see Section 5.5.1). Several

input/output pairs for this system are shown in Figure 5.2.

The conversion to logical form has 3 phases:

1. CCG syntactic parsing parses the text and applies several deterministic syntactic trans-

formations to facilitate semantic analysis.

2. Entity linking marks known Freebase entities in the text.

3. Semantic analysis assigns a logical form to each word, then composes them to produce a

logical form for the complete text.

5.2.1 Syntactic Parsing

Syntactic parsing uses the ASP-SYN parser (Section 4.3.3) to produce a syntactic CCG parse of

the text. It then applies several deterministic transformations to make the syntactic parse more

amenable to semantic analysis. One transformation marks NP s in conjunctions by replacing

their syntactic category with NP [conj]. This transformation allows semantic analysis to distin-

guish between appositives and comma-separated lists. Another transformation makes all verb ar-

guments core arguments, i.e., using the category PP/NP as opposed to ((S\NP )\(S\NP ))/NP .

This step simplifies the semantic analysis of verbs with prepositional phrase arguments. The final

transformation adds a word feature to each PP category, e.g., mapping PP to PP [by]. These

features are used to generate verb-preposition relation predicates, such as DIRECTED BY.
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Dan Hesse, CEO of Sprint
λx.∃y.x = /EN/DAN HESSE ∧ CEO(x) ∧ OF(x, y) ∧ y = /EN/SPRINT

Yankees pitcher
λx.∃y.PITCHER(x) ∧ NN(y, x) ∧ y = /EN/YANKEES

Tom Cruise plays Maverick in the movie Top Gun.
∃x, y, z.x = /EN/TOM CRUISE∧ PLAYS(x, y)∧ y = /EN/MAVERICK (CHARACTER)∧ PLAYS IN(x, z)∧
z = /EN/TOP GUN

Figure 5.2: Example input/output pairs for our semantic analysis system. Mentions of Freebase
entities in the text are indicated by underlines.

5.2.2 Entity Linking

The second step is to identify mentions of Freebase entities in the text. This step could be

performed by an off-the-shelf entity linking system (Milne and Witten, 2008; Ratinov et al.,

2011) or string matching. However, this chapter uses the Clueweb 2009 text corpus and the

automatically generated entity linking provided in (Gabrilovich et al., 2013).

The semantic analysis system incorporates the provided entity links into the syntactic parse

provided that they are consistent with the parse structure. Specifically, it requires that each

mention is either (1) a constituent in the parse tree with syntactic category N or NP or (2) a

collection of N/N or NP/NP modifiers with a single head word. The first case covers noun

and noun phrase mentions, while the second case covers noun compounds. In both cases, a single

multi-word terminal spanning the mention is substituted into the parse tree and special semantic

rules for mentions are invoked during the next step.

5.2.3 Semantic Analysis

The final step uses the syntactic parse and entity links to produce a logical form for the text.

This step induces a logical form for every word in the text based on its syntactic CCG category.

Composing these logical forms according to the syntactic parse produces a logical form for the

entire text.

The semantic analyses of this component are based on a relatively naı̈ve model-theoretic se-
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mantics. They focus on language whose semantics can be represented with unary and binary

predicates, ignoring, for example, temporal scope and superlatives. Generally, the system mod-

els nouns and adjectives as unary predicates, and verbs and prepositions as binary predicates.

Special multi-word predicates are generated for verb-preposition combinations. Entity mentions

are mapped to the mentioned entity in the logical form. The system also includes special rules for

analyzing conjunctions, appositives, relativizing conjunctions and negation. A list of the most

important templates used to produce these logical forms is listed in Table 5.1.

There are several notable aspects of this component’s design. First, multi-argument verbs are

analyzed using pairwise relations, as in the third example in Figure 5.2. This analysis allows

the system to avoid reasoning about entity triples (quadruples, etc.), which are challenging to

model with a probabilistic database due to sparsity. Second, noun-preposition combinations are

analyzed as a category and relation, as in the first example in Figure 5.2. Preliminary experi-

ments found that creating a combined predicate for the noun and preposition results in worse

performance because it dramatically increases the sparsity of training instances for the combined

relations. Third, entity mentions with the N/N category are analyzed using a special noun-noun

relation, as in the second example in Figure 5.2. This analysis allows the matrix factorization to

learn that the noun-noun relation shares instances with other relations, for example, to learn that

“city in Texas” implies “Texan city.” Predicate names are created from the lowercased word with

no lemmatization or other normalization.

5.2.4 Discussion

The scope of this semantic analysis system is somewhat limited relative to other similar systems

(Bos, 2008; Lewis and Steedman, 2013) as it only outputs existentially-quantified conjunctions

of predicates. The goal in building this system was to analyze noun phrases and simple sentences,

for which this representation generally suffices. The reason for this focus is twofold. First, this

subset of language is sufficient to capture much of the language surrounding Freebase entities.
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Second, for various technical reasons, this restricted semantic representation is easier to use (and

more informative) for training the probabilistic database (see Section 5.5.3).

Note that this system can be straightforwardly extended to model additional linguistic phe-

nomena, such as additional logical operators and generalized quantifiers, by writing additional

rules. The semantics of logical forms including these operations are well-defined in the model,

and the system does not even need to be re-trained to incorporate these additions.

5.3 Probabilistic Database

The second part of the language understanding model is a probabilistic database. This database

represents a distribution over knowledge bases, where each knowledge base is an assignment of

truth values to every predicate instance. Equivalently, the probabilistic database can be viewed

as a distribution over databases.

Formally, a probabilistic database is a collection of random variables, each of which repre-

sents the truth value of a single predicate instance. Given entities e ∈ E, categories c ∈ C, and

relations r ∈ R the probabilistic database contains boolean random variables c(e) and r(e1, e2)

for each category and relation instance, respectively. All of these random variables are assumed

to be independent. Let a knowledge baseK represent an assignment of truth values to all of these

random variables, where c(e) = Kc,e and r(e1, e2) = Kr,e1,e2 . By independence, the probability

of a knowledge base can be written as:

P (K) =
∏
e∈E

∏
c∈C

P (c(e) = Kc,e)×∏
e1∈E

∏
e2∈E

∏
r∈R

P (r(e1, e2) = Kr,e1,e2)

The next section discusses how probabilistic matrix factorization is used to model the proba-

bilities of these predicate instances.
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5.3.1 Matrix Factorization Model

The probabilistic matrix factorization model treats the truth of each predicate instance as an

independent boolean random variable that is true with probability:

P (c(e) = TRUE) = σ(θTc φe)

P (r(e1, e2) = TRUE) = σ(θTr φ(e1,e2))

Above, σ(x) = ex

1+ex is the logistic function. In these equations, θc and θr represent k-

dimensional vectors of per-predicate parameters, while φe and φ(e1,e2) represent k-dimensional

vector embeddings of each entity and entity pair. This model contains a low-dimensional em-

bedding of each predicate and entity such that each predicate’s denotation has a high probability

of containing entities with nearby vectors. The probability that each variable is false is simply 1

minus the probability that it is true.

This model can be viewed as matrix factorization, as depicted in Figure 5.1. The category and

relation instance probabilities can be arranged in a pair of matrices of dimension |E| × |C| and

|E|2×|R|. Each row of these matrices represents an entity or entity pair, each column represents

a category or relation, and each value is between 0 and 1 and represents a truth probability (Figure

5.1, bottom right). These two matrices are factored into matrices of size |E| × k and k × |C|,
and |E|2 × k and k × |R|, respectively, containing k-dimensional embeddings of each entity,

category, entity pair and relation (Figure 5.1, bottom left). These low-dimensional embeddings

are represented by the parameters φ and θ.

5.4 Inference: Computing Marginal Probabilities

Inference computes the marginal probability, over all possible knowledge bases, that each entity

is an element of a text’s denotation. In many cases – depending on the text – these marginal

probabilities can be computed exactly in polynomial time.
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The inference problem is to calculate P (e ∈ γ|s) for each entity e. Because both the semantic

parser P (`|s) and query evaluation P (γ|`,K) are deterministic, this problem can be rewritten as:

P (e ∈ γ|s) =
∑
γ

1(e ∈ γ)P (γ|s)

=
∑
K

1(e ∈ J`KK)P (K)

Above, ` represents the logical form for the text s produced by the rule-based semantic parser,

and 1 represents the indicator function. The notation J`KK represents denotation produced by (de-

terministically) evaluating the logical form ` on the knowledge base K. This inference problem

corresponds to query evaluation in a probabilistic database, which is #P-hard in general. Intu-

itively, this problem can be difficult because P (γ|s) is a joint distribution over sets of entities

that can be exponentially large in the number of entities.

However, a large subset of probabilistic database queries, known as safe queries, permit

polynomial time evaluation (Dalvi and Suciu, 2007). Safe queries can be evaluated extensionally

using a probabilistic notion of a denotation that treats each entity as independent. Let J`KP denote

a probabilistic denotation, which is a function from entities (or entity pairs) to probabilities, i.e.,

J`KP (e) ∈ [0, 1]. The denotation of a logical form is then computed recursively, in the same

manner as a non-probabilistic denotation, using probabilistic extensions of the typical rules, such

as:

JcKP (e) =
∑
K

P (K)1(Kc,e)

JrKP (e1, e2) =
∑
K

P (K)1(Kr,e1,e2)

Jc1(x) ∧ c2(x)KP (e) = Jc1KP (e)× Jc2KP (e)

J∃y.r(x, y)KP (e) = 1−
∏
y∈E

(1− JrKP (e, y))

The first two rules are base cases that simply retrieve predicate probabilities from the prob-

abilistic database. The remaining rules compute the probabilistic denotation of a logical form
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from the denotations of its parts.2 The formula for the probabilistic computation on the right

of each of these rules is a straightforward consequence of the (assumed) independence of en-

tities. For example, the last rule computes the probability of an OR of a set of independent

random variables (indexed by y) using the identity A ∨ B = ¬(¬A ∧ ¬B). For safe queries,

J`KP (e) = P (e ∈ γ|s), that is, the probabilistic denotation computed according to the above rules

is equal to the marginal probability distribution. In practice, all of the queries in the experiments

are safe, because they contain only one query variable and do not contain repeated predicates.

For more information on query evaluation in probabilistic databases, I refer the reader to (Suciu

et al., 2011).

Note that inference does not compute the most probable denotation, maxγ P (γ|s). In some

sense, the most probable denotation is the correct output for a model-theoretic semantics. How-

ever, it is highly sensitive to the probabilities in the database, and in many cases it is empty

(because a conjunction of independent boolean random variables is unlikely to be true). Produc-

ing a ranked list of entities is also useful for evaluation purposes.

5.5 Training

The goal of training is to estimate the parameters θ and φ for the probabilistic database. This

section presents two different objective functions for estimating these parameters that use slightly

different forms of training data. The first objective is based on prior work and aims to rank

observed predicate instances above unobserved instances. The second objective is a novel query

ranking objective that aims to rank observed answers to queries above unobserved answers. In

both cases, training has two phases. The first step is to generate training data, in the form of

either observed assertions or query-answer pairs, by applying the rule-based semantic analysis

system to a corpus of entity-linked web text. The second step is to optimize the parameters of

2This listing of rules is partial as it does not include, e.g., negation or joins between one-argument and two-

argument logical forms. However, the corresponding rules are easy to derive.
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Original sentence and logical form
General Powell, appearing Sunday on CNN ’s Late Edition, said ...
∃w, x, y, z. w = /EN/POWELL ∧ GENERAL(w) ∧ APP.(w, x) ∧ SUNDAY(x) ∧ APP. ON(w, y) ∧ y =
/EN/LATE ∧ ’S(z, y) ∧ z = /EN/CNN ∧ SAID(w, ...)

Simplified logical form
∃w, y, z. w = /EN/POWELL∧GENERAL(w)∧APP. ON(w, y)∧y = /EN/LATE∧ ’S(z, y)∧z = /EN/CNN

Instances Queries Answers
GENERAL(/EN/POWELL) λw.GENERAL(w) ∧ APP. ON(w, /EN/LATE) /EN/POWELL
APP. ON(/EN/POWELL, /EN/LATE) λy.APP. ON(/EN/POWELL, y) ∧ ’S(/EN/CNN, y) /EN/LATE
’S(/EN/CNN, /EN/LATE) λz.’S(z, /EN/LATE) /EN/CNN

Figure 5.3: Illustration of training data generation applied to a single sentence. Two types of
training data are generated, predicate instances and queries with observed answers, by semanti-
cally analyzing the sentence and extracting portions of the generated logical form with observed
entity arguments. The predicate instances are extracted from the conjuncts in the simplified log-
ical form, and the queries are created by removing a single entity from the simplified logical
form.

the probabilistic database to rank observed assertions or answers above unobserved assertions or

answers.

5.5.1 Training Data

Training data is generated by applying the process illustrated in Figure 5.3 to each sentence in

an entity-linked web corpus. First, this process applies the rule-based semantic parser to the

sentence to produce a logical form. Next, it extracts portions of this logical form where every

variable is bound to a particular Freebase entity, resulting in a simplified logical form. Because

the logical forms are existentially-quantified conjunctions of predicates, this step simply discards

any conjuncts in the logical form containing a variable that is not bound to a Freebase entity.

From this simplified logical form, it generates two types of training data: (1) predicate instances,

and (2) queries with known answers (see Figure 5.3). In both cases, the corpus consists entirely

of assumed-true statements or queries with assumed-correct answers, making obtaining negative

examples a major challenge for training.
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5.5.2 Predicate Ranking Objective

Riedel et al. (Riedel et al., 2013) introduced a ranking objective to work around the lack of

negative examples in a similar matrix factorization problem. Their objective is a modified version

of Bayesian Personalized Ranking (Rendle et al., 2009) that aims to rank observed predicate

instances above unobserved instances.

The predicate ranking objective OP uses true predicate instances (Figure 5.3, bottom left)

as training data. This data consists of two collections, {(ci, ei)}ni=1 and {(rj, ej1, ej2)}mj=1, of

observed category and relation instances ci(ei) and rj(ej1, ej2). This objective is:

OP (θ, φ) =
n∑
i=1

log σ(θTci(φei
− φe′i)) +

m∑
j=1

log σ(θTrj (φ(ej1,ej2) − φ(e′j1,e
′
j2)))

where e′i is a randomly sampled entity such that (ci, e
′
i) does not occur in the training data.

Similarly, (e′j1, e
′
j2) is a random entity tuple such that (rj, e

′
j1, e

′
j2) does not occur. Maximizing

this function attempts to find θci , φei
and φe′i such that P (ci(ei)) is larger than P (ci(e

′
i)). During

training, e′i and (e′j1, e
′
j2) are resampled on each pass over the data set according to the empirical

frequency of each entity or tuple.

5.5.3 Query Ranking Objective

The previous objective aims to rank the entities within each predicate well. However, such

within-predicate rankings are insufficient to produce correct answers for queries containing mul-

tiple predicates – the scores for each predicate must further be calibrated to work well with each

other given the independence assumptions of the probabilistic database. Calibration is necessary

because the probability that an entity is in the denotation of a multiple predicate query, such as

λx.PRESIDENT(x) ∧ NN(/EN/US, x), is a function (in this case, the product) of the individual

predicate instance probabilities; thus, if one predicate returns a wider range of probabilities, it

will be more influential in the final ranking.
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The query ranking objective encourages good rankings for entire queries instead of single

predicates. The data for this objective consists of tuples, {(`i, ei)}ni=1, of a query `i with an entity

answer ei (Figure 5.3, bottom right). Each `i is a function with exactly one entity argument,

and `i(e) is a conjunction of predicate instances. For example, the last query in Figure 5.3 is

a function of one argument z, and `(e) is a single predicate instance, ’S(e, /M/072QMC). This

objective aims to rank the observed entity answer above unobserved entities for each query:

OQ(θ, φ) =
n∑
i=1

logPrank(`i, ei, e
′
i)

Prank generalizes the approximate ranking probability defined by the predicate ranking ob-

jective to more general queries. The expression σ(θTc (φe−φe′)) in the predicate ranking objective

can be viewed as an approximation of the probability that e is ranked above e′ in category c. Prank

uses this approximation for each individual predicate in the query. For example, given the query

` = λx.c(x)∧r(x, y) and entities (e, e′), Prank(`, e, e′) = σ(θc(φe−φe′))×σ(θr(φ(e,y)−φ(e′,y))).

This notion generalizes to other logical connectives in the same fashion as probabilistic database

queries. During training, e′i is resampled on each pass over the data set from the empirical distri-

bution of entities such that (`i, e
′
i) does not occur in the training data.

When `’s body consists of a conjunction of predicates, the query ranking objective simplifies

considerably. In this case, ` can be described as three sets of one-place predicates: categories

C(`) = {λx.c(x)}, left arguments of relations RL(`) = {λx.r(x, y)}, and right arguments of

relations RR(`) = {λx.r(y, x)}. Furthermore, Prank is a product so we can distribute the log:

OQ(θ, φ) =
n∑
i=1

∑
λx.c(x)∈C(`i)

log σ(θc(φei
− φe′i))

+
∑

λx.r(x,y)∈RL(`i)

log σ(θr(φ(ei,y) − φ(e′i,y)
))

+
∑

λx.r(y,x)∈RR(`i)

log σ(θr(φ(y,ei) − φ(y,e′i)
))

This simplification reveals that the main difference between OQ and OP is the sampling of
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the unobserved entities and tuples. OP samples them in an unconstrained fashion from their

empirical distributions for every predicate. OQ considers the larger context in which each pred-

icate occurs, with two major effects. First, more negative examples are generated for categories

because the logical forms ` are more specific. For example, both “president of Sprint” and “pres-

ident of the US” generate queries containing the PRESIDENT predicate; OQ will use entities that

only occur with one of these queries as negative examples for the other. Second, the relation

parameters are trained to rank tuples with a shared argument, as opposed tuples in general.

5.6 Evaluation

The evaluation uses a question answering task to evaluate the performance of this chapter’s open

predicate vocabulary approach to compositional semantics. Each test example is a (composi-

tional) natural language question whose answer is a set of Freebase entities. The presented ap-

proach is compared to several baselines based on prior work, as well as to a manually constructed

Freebase query for each example.

5.6.1 Data

The training and test data for the evaluation are derived from the Clueweb09 web corpus3 with

the corresponding Google FACC entity linking (Gabrilovich et al., 2013). The training data is

derived from 3 million webpages and contains 1.7m predicate instances, 1.1m queries, 150k

entities and 130k entity pairs. Predicates that appeared fewer than 6 times in the training data

were replaced with the predicate UNK, resulting in 16k categories and 1.4k relations.

The test data consists of fill-in-the-blank natural language questions such as “Incan emperor

” or “Cunningham directed Auchtre’s second music video .” These questions were created

by applying the training data generation process (Section 5.5.1) to a collection of held-out web-

3http://www.lemurproject.org/clueweb09.php
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pages. Each natural language question has a logical form containing at least one category and

one relation.

These experiments do not use existing data sets for semantic parsing into Freebase, as the

goal is to model the semantics of language that cannot necessarily be modelled using the Free-

base schema. Existing data sets, such as Free917 (Cai and Yates, 2013b) and WebQuestions

(Berant et al., 2013), would not evaluate performance on this subset of language. Consequently,

the evaluation uses a new data set with unconstrained language. However, to provide a compar-

ison against approaches that semantically parse to Freebase, the experiments compare against

annotated Freebase queries (Section 5.6.5).

All of the data for this evaluation is available online at http://rtw.ml.cmu.edu/

tacl2015_csf.

5.6.2 Methodology

The evaluation methodology is inspired by information retrieval evaluations (Manning et al.,

2008). Each system predicts a ranked list of 100 answers for each test question. The top 30 an-

swers of each system are then pooled and manually judged for correctness. The correct answers

from the pool are then used to evaluate the precision and recall of each system. In particular,

the evaluation computes average precision (AP) for each question and reports the mean average

precision (MAP) across all questions. It also reports a weighted version of MAP, where each

question’s AP is weighted by its number of correct answers. Average precision is computed as

1
m

∑m
k=1 Prec(k)× Correct(k), where Prec(k) is the precision at rank k, Correct(k) is an indi-

cator function for whether the kth answer is correct, and m is the number of returned answers (at

most 100).

Statistics of the annotated test set are shown in Table 5.2. A consequence of the unconstrained

data generation approach is that some test queries are difficult to answer: of the 220 queries, at

least one system is able to produce a correct answer for 116. The remaining queries are mostly
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# of queries 220
Avg. # of predicates / query 2.77
Avg. # of categories / query 1.75
Avg. # of relations / query 1.02
Avg. # of answers / query 1.92

# of queries with > 1 answer 116

Table 5.2: Statistics of the test data set.

unanswerable because they reference rare entities unseen in the training data.

5.6.3 Models and Baselines

The evaluation includes two baseline models based on existing techniques. The CORPUSLOOKUP

baseline answers test queries by directly using the predicate instances in the training data as its

knowledge base. For example, given the query λx.CEO(x)∧ OF(x, /EN/SPRINT), this model will

return the set of entities e such that CEO(e) and OF(e, /EN/SPRINT) both appear in the training

data. All answers found in this fashion are assigned probability 1.

The CLUSTERING baseline first clusters the predicates in the training corpus, then answers

queries using the clustered predicates. The clustering aggregates predicates with similar denota-

tions, ideally identifying synonyms to smooth over sparsity in the training data. This baseline is

closely based on Lewis and Steedman (Lewis and Steedman, 2013), though is also conceptually

related to approaches such as DIRT (Lin and Pantel, 2001) and USP (Poon and Domingos, 2009;

Titov and Klementiev, 2011). Clustering is performed using the Chinese Whispers algorithm

(Biemann, 2006) with predicate similarity scores calculated as the cosine similarity of their TF-

IDF weighted entity count vectors. The denotation of each cluster is the union of the denotations

of the clustered predicates, and each entity in the denotation is assigned probability 1.

The evaluation also includes two probabilistic database models, FACTORIZATION (OP ) and

FACTORIZATION (OQ), trained using the two objective functions described in Sections 5.5.2 and

5.5.3, respectively. Both objectives were optimized by performing 100 passes over the training
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MAP Weighted MAP

CLUSTERING 0.224 0.266
CORPUSLOOKUP 0.246 0.296

FACTORIZATION (OP ) 0.299 0.473
FACTORIZATION (OQ) 0.309 0.492

ENSEMBLE (OP ) 0.391 0.614
ENSEMBLE (OQ) 0.406 0.645

Upper bound 0.527 1.0

Table 5.3: Mean average precision for our question answering task. The difference in MAP
between each pair of adjacent models is statistically significant (p < .05) via the sign test.

data with AdaGrad (Duchi et al., 2011) using an L2 regularization parameter of λ = 10−4. The

predicate and entity embeddings have 300 dimensions.

Finally, initial experiments found that CORPUSLOOKUP has high precision but low recall,

while both matrix factorization models have high recall with somewhat lower precision. This

observation suggested that an ensemble of CORPUSLOOKUP and FACTORIZATION could out-

perform either model individually. The evaluation includes two ensembles, ENSEMBLE (OP )

and ENSEMBLE (OQ), created by calculating the probability of each predicate as a 50/50 mix-

ture of each model’s predicted probability.

5.6.4 Results

Table 5.3 shows the results of the MAP evaluation, and Figure 5.4 shows a precision/recall curve

for each model. The MAP numbers are somewhat low because almost half of the test queries

have no correct answers and all models get an average precision of 0 on these queries. The upper

bound on MAP is the fraction of queries with at least 1 correct answer. Note that the models

perform well on the answerable queries, as reflected by the ratio of the achieved MAP to the

upper bound. The weighted MAP metric also corrects for these unanswerable queries, as they

are assigned 0 weight in the weighted average.

These results demonstrate several findings. First, both FACTORIZATION models outperform
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Figure 5.4: Averaged 11-point precision/recall curves for the 116 answerable test questions.

the baselines in both MAP and weighted MAP. The performance improvement seems to be most

significant in the high recall regime (right side of Figure 5.4). Second, the query ranking objective

OQ improves performance over the predicate ranking objective OP by 2-4% on the answerable

queries. The precision/recall curves show that this improvement is concentrated in the low recall

regime. Finally, the ensemble models are considerably better than their component models;

however, even in the ensembled models, OQ outperforms OP by a few percent.

5.6.5 Comparison to Semantic Parsing to Freebase

A natural question is whether this chapter’s open vocabulary approach outperforms a closed

vocabulary approach for the same problem, such as semantic parsing to Freebase. In order to

answer this question, this evaluation compares the best performing model from the previous

evaluation to a manually constructed Freebase query for each test example. This comparison

illuminates the relative advantages of open and closed predicate vocabularies.

A Freebase MQL query was annotated for each natural language question in the test data set.

This annotation is somewhat subjective, as many of the questions can only be inexactly mapped
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Question: the Midwest supermarket chain
MQL Query:
[{"/business_operation/industry": {"mid": "/en/supermarket"},

"/organization/organization/geographic_scope":
[{"mid": "/en/midwest"}],

"mid": null,
"name": null}]

Question: mayor Stephen R. Reed
MQL Query:
[{"/government/politician/government_positions_held":

[{"/government/government_position_held/basic_title": {"mid": "/en/mayor"},
"/government/government_position_held/jurisdiction_of_office":

{"mid": null, "name": null}}],
"mid": "/en/stephen_r_reed"}]

Figure 5.5: Example questions from the test data set and their annotated Freebase MQL queries.
Entity IDs in the queries have been replaced for readability. Running these queries against Free-
base returns a list of values for the fields whose value is null.

# of annotated queries 142
> 1 answer 95
no answers 47

# unannotatable 78

Table 5.4: Statistics of the Freebase MQL queries annotated for the test data set.

on to the Freebase predicate vocabulary. The following guidelines were used in performing the

mapping: (1) all relations in the text must be mapped to one or more Freebase relations, (2) all en-

tities mentioned in the text must be included in the query, (3) adjective modifiers can be ignored

and (4) entities not mentioned in the text may be included in the query. The fourth condition is

necessary because many one-place predicates, such as MAYOR(x), are represented in Freebase

using a binary relation to a particular entity, such as GOVERNMENT OFFICE/TITLE(x, /EN/MAYOR).

Some example annotated Freebase MQL queries for the test data are shown in Figure 5.5.

Statistics of the annotated queries are shown in Table 5.4. Coverage is reasonably high: Free-

base queries were annotated for 142 examples (65% of the test set). The remaining unannotatable

examples are due to missing predicates in Freebase, such as a relation defining the emperor of

the Incan empire. Of the 142 annotated Freebase queries, 95 of them return at least one entity

answer. The queries with no answers typically reference uncommon entities which have few or
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no known relation instances in Freebase. The annotated queries contain 2.62 Freebase relations

on average.

This evaluation compares ENSEMBLE (OQ) to the manually annotated Freebase queries us-

ing the same pooled evaluation methodology. The set of correct answers contains the correct

predictions of ENSEMBLE (OQ) from the previous evaluation along with all answers returned by

Freebase. (That is, Freebase is assumed to have perfect precision.)

Results from this evaluation are shown in Table 5.5. In terms of overall MAP, Freebase

outperforms ENSEMBLE (OQ) by a fair margin. However, this initial impression belies a more

complex reality, which is shown by Table 5.6. This table compares both approaches by their rel-

ative performance on each test example. On approximately one-third of the examples, Freebase

has a higher AP than ENSEMBLE (OQ). On another third, ENSEMBLE (OQ) has a higher AP than

Freebase. On the final third, both approaches perform equally well – these are typically examples

where neither approach returns any correct answers (67 of the 75). Freebase outperforms in the

overall MAP evaluation because it tends to return more correct answers to each question.

Note that the annotated Freebase queries have several advantages in this evaluation. First,

Freebase contains significantly more predicate instances than the training data, which allows it to

produce more complete answers. Second, the Freebase queries correspond to the performance of

a perfect semantic parser, while current semantic parsers achieve accuracies around 68% (Berant

and Liang, 2014).

The results from this experiment suggest that closed and open predicate vocabularies are

complementary. Freebase produces high quality answers when it covers a question. However,

many of the remaining questions can be answered correctly using an open vocabulary approach.

This evaluation also suggests that recall is a limiting factor of the presented approach; however,

recall can be improved by simply using a larger training corpus.
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MAP

ENSEMBLE (OQ) 0.263
Freebase 0.385

Table 5.5: Mean average precision of the best performing model from the previous evaluation
compared to a manually constructed Freebase query for each test question. The numbers in this
table are not comparable to the numbers in Table 5.3 as the correct answers for each question are
different.

# of queries

Freebase higher AP 75 (34%)
equal AP 75 (34%)
ENSEMBLE (OQ) higher AP 70 (31%)

Table 5.6: Question-by-question comparison of model performance. Each test question is
placed into one of the three buckets above, depending on whether Freebase or ENSEMBLE (OQ)
achieved a better average precision (AP) for the question.

5.7 Discussion

This chapter presents an approach to building a language understanding system with an open

predicate vocabulary. The approach defines a probabilistic model over denotations (sets of Free-

base entities) conditioned on an input text. The model has two components: a rule-based se-

mantic parser that produces a logical form for the text, and a learned probabilistic database

representing a distribution over possible knowledge bases. Inference in the model is performed

by computing the marginal probability, over all possible knowledge bases, that an entity is an

element of the text’s denotation. A training phase learns the probabilistic database by applying

probabilistic matrix factorization to query/answer pairs that are automatically derived by running

the rule-based semantic parser on a large, entity-linked web corpus. Unlike in previous chapters,

a knowledge base is not required to train the system nor to compute denotations. An experimen-

tal analysis demonstrates that this approach outperforms several baselines, and can answer many

questions that cannot be answered by semantic parsing into Freebase.

Scaling up the size of the training corpus is a direction for future work. Both stages of

training, data generation and matrix factorization, can be parallelized using a cluster. It should
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be feasible to increase the quantity of training data by a factor of 10-100, for example, to train on

all of ClueWeb. Another possibility is to use a universal schema and directly include predicate

instances from Freebase in the matrix factorization (Riedel et al., 2013). Increasing the size of

the training corpus should improve recall, especially for uncommon entities.

There is an interesting connection between this work and compositional semantics with vec-

tor space models (Krishnamurthy and Mitchell, 2013; Socher et al., 2011). In both cases, the

meanings of individual words are represented as vectors. In that previous work, semantic com-

position is performed directly in the space of vectors (or matrices, etc.). However, in this chapter,

these vectors are first mapped to sets of entities, and composition is performed using using logi-

cal operations on these sets. This approach has the advantage of being able to straightforwardly

model phenomena that are challenging for vector space models, such as the action of subordinat-

ing conjunctions (e.g., “that” in “car that I drive”).

The positioning of this chapter according to the axes of variation is as follows:

1. Learning the knowledge base – The knowledge base is learned using probabilistic matrix

factorization.

2. Predicate vocabulary – An open predicate vocabulary is derived from an entity-linked

text corpus based on the output of a rule-based semantic analysis system.

3. Semantic parser supervision – Query/answer pairs, derived from entity-linked text, are

used to train the probabilistic database.

4. Syntactic information – A syntactic CCG parser, trained on CCGbank, is used to perform

the rule-based semantic analysis. The mapping from syntax to semantics is unlearned.

The major difference between this chapter and the previous one is the open predicate vocabu-

lary. This difference influences other aspects of the system’s design, with several consequences.

First, it forces the knowledge base to be automatically learned, as no predicate instances are

given as input. Second, it enables the system to use a fixed mapping from syntax to semantics,

as it is no longer necessary to map between words and symbols in a knowledge base. The overall
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approach is, in some sense, the exact opposite of the semantic parser from the previous chapter:

there, the semantic parser is learned and the knowledge base is fixed; here, the knowledge base

is learned and the semantic parser is fixed. From a machine learning perspective, training the

knowledge base via matrix factorization is considerably easier than training the semantic parser

with distant supervision, as there is no difficult inference problem during training.

The evaluation demonstrated that the open predicate vocabulary enables the system to an-

swer many questions that cannot be answered by Freebase. However, Freebase retained a recall

advantage when it could answer a question. These results suggest that there are complementary

roles for both open and closed predicate vocabularies. A direction for future work is combin-

ing these approaches, perhaps by constructing a semantic parser capable of using both kinds of

predicates.

A natural question is whether the rule-based semantic analysis system could be replaced with

a learned semantic parser. Although syntactic parsers for English can be trained with exist-

ing treebanks, these are expensive to produce and are not available for many other languages.

Furthermore, the syntactic parses in the treebank may differ from the ideal syntactic parse for

the purpose of semantic analysis. For example, type-raising is often used to perform quantifier

scoping, but the annotations in CCGbank do not relate these two phenomena. The next chapter

presents an algorithm that jointly learns both a knowledge base and a semantic parser.
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Chapter 6

Semantic Parsing for Grounded

Environments
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Abstract

This chapter presents Logical Semantics with Perception (LSP), a model for

grounded language acquisition that learns to map natural language stataments to

their referents in a physical environment. For example, given an image, LSP can map

the statement “blue mug on the table” to the set of image segments depicting blue

mugs on tables. LSP has two components: a semantic parser that is used to interpret

natural language statements, and a perception component that produces knowledge

bases from physical environments. This chapter also presents a weakly supervised

training algorithm for LSP that estimates the parameters of these components using

annotated referents for entire statements, without referents of individual words or

the parse structure of the statement. Experiments on scene understanding and geo-

graphical question answering demonstrate that LSP outperforms existing models and

that weakly supervised training is competitive with fully supervised training while

requiring significantly less annotation effort.



Learning the mapping from natural language to physical environments is a central problem

for natural language semantics. From a practical perspective, there are many important applica-

tions for this technology, such as enabling natural language interactions with robots and other

embodied systems. For example, a robot given the command “get the blue mug on the table”

must be able to identify the “blue mug on the table” in the environment in order to correctly

interpret the command. From a theoretical perspective, model-theoretic semantics argues that

understanding natural language is equivalent to understanding the real world situations in which

statements are true or false.

The problem of learning to map from natural language expressions to their referents in an

environment is known as grounded language acquisition. Although there are various settings

for this problem, the most interesting setting is when environments consist of raw sensor data

– for example, an environment could be an image collected from a robot’s camera. In such ap-

plications, grounded language acquisition has two subproblems: semantic parsing, learning the

compositional structure of natural language; and perception, learning the environmental referents

of individual words.

This chapter introduces Logical Semantics with Perception (LSP), a model for grounded lan-

guage acquisition that jointly learns to semantically parse language and perceive the world. LSP

models a mapping from natural language queries to sets of objects in a real-world environment.

The input to LSP is an environment containing objects, such as a segmented image (Figure 6.1a),

and a natural language query, such as “the things to the right of the blue mug.” Given these

inputs, LSP produces (1) a logical knowledge base describing objects and relationships in the

environment and (2) a semantic parse of the query. Evaluating the semantic parse on the pre-

dicted knowledge base gives the denotation (i.e., real-world referents) of the natural language

query (Figure 6.1b).1

1This chapter treats declarative sentences as if they were queries about their subject, e.g., the denotation of “the

mug is on the table” is the set of mugs on tables. Typically, the denotation of a sentence is either true or false; this

treatment is strictly more general, as a sentence’s denotation is nonempty if and only if the sentence is true.
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This chapter further presents a weakly supervised training algorithm that estimates parame-

ters for LSP using natural language queries annotated with their denotations in an environment

(Figure 6.1c). Such denotations represent a natural form of training data that could be obtained

by, for example, following a user’s pointing gesture while they describe an object (Kollar et al.,

2013). Training from denotations significantly reduces the amount of manual annotation re-

quired. In comparison, a fully supervised approach requires both a corpus of natural language

queries annotated with logical forms and a corpus of environments annotated with knowledge

bases. These annotations are not obtainable through natural interactions with non-expert users.

Experiments on two different applications demonstrate that (1) LSP outperforms the most

comparable state-of-the-art approach to grounded language acquisition and (2) weakly super-

vised training achieves nearly the same accuracy as fully supervised training. The first applica-

tion is scene understanding, where LSP maps descriptions of objects to image segments. The

second application is geographical question answering, where LSP answers questions about lo-

cations given a map of their boundaries represented as latitude/longitude polygons. LSP cor-

rectly answers 34% more questions in geographical question answering and 16% more questions

in scene understanding than a comparable state-of-the-art model (Matuszek et al., 2012). Fur-

thermore, in both applications, weakly supervised training achieves an accuracy within 6% of

that achieved by fully supervised training, while requiring significantly less annotation effort.

The contents of this chapter are derived from (Krishnamurthy and Kollar, 2013).

6.1 Logical Semantics with Perception

Logical Semantics with Perception (LSP) is a model for grounded language acquisition. LSP

accepts as input a natural language statement and an environment and outputs the objects in

the environment denoted by the statement. The LSP model has three components: perception,

semantic parsing and evaluation (see Figure 6.2). The idea behind this factorization is simple:

given a knowledge base describing the environment, a semantic parser can map natural language
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(a) An environment contain-
ing 4 objects.

Environment:

(image on left)

Knowledge Base

Query:
“things to the right
of the blue mug”

Semantic Parse

Grounding: {(2, 1), (3, 1)}
Denotation: {2, 3}

(b) LSP predicting the environmental
referents of a natural language query.

Language Denotation

The mugs {1, 3}
The objects on the table {1, 2, 3}
There is an LCD monitor {2}
Is the blue mug right {}of the monitor?
The monitor is behind {2}the blue cup.

(c) Training examples for
weakly supervised training.

Figure 6.1: LSP applied to scene understanding. Given an environment containing a set of ob-
jects (left), and a natural language query, LSP produces a semantic parse, logical knowledge
base, grounding and denotation (middle), using only language/denotation pairs (right) for train-
ing.

statements to sets of objects in the environment. Since no knowledge base is provided as input,

the model includes a perception component that predicts a knowledge base from an environment.

Given this knowledge base, the standard semantic parsing and evaluation pipeline is used to

predict denotations.

The output of LSP can be either a denotation or a grounding. A denotation is the usual

output of a semantic parser: the set of entity referents for the query as a whole. For the purpose

of evaluation, it is useful to also output a grounding, which is the set of entity referents for each

noun phrase in the query. The distinction between these two outputs is shown in Figure 6.1b.

In this example, the denotation is the set of “things to the right of the blue mug,” which does

not include the blue mug itself. On the other hand, the grounding is a set of tuples, where the

first component is the referent of “things” and the second component the referent of “blue mug.”

Note that the denotation is the projection of the grounding’s tuples on to their first element.

Groundings are used in the evaluation to determine if the model truly identified all of the named

objects in a query. However, only denotations are used during training, so groundings are ignored

in the following model description.

Formally, LSP is a linear model f that predicts a denotation γ given a natural language

statement s in an environment d. As shown in Figure 6.3, the structure of LSP factors into
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Environment d Know. Base K
MUG(1)
MUG(3)
BLUE(1)
TABLE(4)
ON-REL(1, 4)
ON-REL(3, 4)
...

(a) Perception fper produces a knowl-
edge base K from an environment d
using per-predicate classifiers.

Language s
“blue mug on table”

Logical form `
λx.∃y.BLUE(x) ∧

MUG(x) ∧
ON-REL(x, y) ∧
TABLE(y)

(b) Semantic parsing
fprs maps language s
to a logical form `.

Grounding: g = {(1, 4)}, Denotation: γ = {1}

{1}

{1}

BLUE(x)

{1, 3}

MUG(x)

{(1, 4), (3, 4)}

{(1, 4), (3, 4)}

ON-REL(x, y)

{4}

TABLE(y)

(c) Evaluation feval evaluates a logical
form ` on a logical knowledge base K to
produce a grounding g and denotation γ.

Figure 6.2: Overview of Logical Semantics with Perception (LSP).

perception (fper), semantic parsing (fprs) and evaluation (feval) components using several latent

variables:

f(γ,K, `, t, s,d; θ) = fper(K, d; θper) + fprs(`, t, s; θprs) + feval(γ,K, `)

An input to LSP is a set of one- and two-argument predicates (i.e., categories C and relations

R). These predicates are the interface between LSP’s perception and parsing components. The

perception function fper takes an environment d and produces a knowledge base K that assigns

truth values to instances of these predicates using parameters θper. The semantic parser fprs

takes a natural language statement s and produces a logical form ` and syntactic parse t using

parameters θprs. Finally, the evaluation function feval deterministically evaluates the logical

form ` on the knowledge base K to produce a denotation γ. Example inputs and outputs of these

components are illustrated in Figure 6.2.

The following sections describe the perception function (Section 6.1.1), semantic parser (Sec-

tion 6.1.2), evaluation function (Section 6.1.3), and inference (Section 6.1.4) in more detail.

6.1.1 Perception function

The perception function fper constructs a logical knowledge base K given an environment d.

Each environment contains a collection of entities e ∈ Ed. Perception produces a knowledge
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γ

feval

Kd
fper

ℓ s
fprs

t

Figure 6.3: Factor graph of LSP. The environment d and language s are given as input, from
which the model predicts a logical knowledge base K, logical form `, syntactic tree t and deno-
tation γ.

base consisting of ground predicate instances over these entities. For example, in Figure 6.2a,

the entire image is the environment, and each image segment is an entity. The logical knowledge

base K contains the shown predicate instances, where the categories include BLUE, MUG and

TABLE, and the relations include ON-REL.

The perception function scores logical knowledge bases using a collection of per-predicate

binary classifiers. These classifiers independently assign a score to whether each entity (entity

pair) is an element of each category (relation). Let γc ∈ K denote the set of entities which are

elements of category c; similarly, let γr ∈ K denote the set of entity pairs which are elements of

the relation r. Given these sets, the score of a logical knowledge base K factors into per-relation

and per-category scores h:

fper(K, d; θper) =
∑
c∈C

h(γc, d; θcper) +
∑
r∈R

h(γr, d; θrper)

The per-predicate scores are in turn given by a sum of per-element classification scores:

h(γc, d; θcper) =
∑
e∈Ed

γc(e)(θcper)
Tφcat(e)

h(γr, d; θrper) =
∑

(e1,e2)∈Ed

γr(e1, e2)(θ
r
per)

Tφrel(e1, e2)

Each term in the above sums represents a single binary classification, calculating a score

for whether a single entity (entity pair) belongs to a particular category (relation). γc and γr

are indicator functions for the sets they denote, i.e., γc(e) = 1 for entities e in the set, and 0

otherwise. Similarly, γr(e1, e2) = 1 for entity pairs (e1, e2) in the set, and 0 otherwise. The

features of these classifiers are given by φcat and φrel, which are functions that map entities and
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entity pairs to feature vectors. (Section 6.3.2 describes the features used for each application in

the evaluation.) The parameters of these classifiers are given by θcper and θrper. The perception

parameters θper contain one such set of parameters for every category and relation, i.e., θper =

{θcper : c ∈ C} ∪ {θrper : r ∈ R}.

6.1.2 Semantic parser

The semantic parser maps a natural language statement into a database query against the percep-

tion function’s predicted knowledge base K. This component is a CCG semantic parser with a

heuristically constructed lexicon and grammar. The lexicon includes entries such as:

mug := N : λx.MUG(x)

mugs := N : λx.MUG(x)

on := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ ON-REL(x, y)

on := PP/N : λf.f

placed := (S\N)/PP : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ PLACE-REL(x, y)

the := N/N : λf.f

blue := N/N : λf.λx.f(x) ∧ BLUE(x)

Generally, this grammar uses categories to represent the meanings of nouns and adjectives,

and relations to represent verbs and prepositions. The grammar does not model comparatives or

other phenomana that require higher-order functions. Section 6.3.3 describes the part-of-speech

heuristics that are used to produce the lexicon.

The semantic parser is a linear model over semantic parses (`, t) given language s:

fprs(`, t, s; θprs) = θTprsφprs(`, t, s)
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φprs(`, t, s) represents a feature function mapping semantic parses to vectors of feature values. In

this chapter, φprs contains lexicon indicator features and combinator features (see Section 2.2.3).

6.1.3 Evaluation function

The evaluation function takes a logical form ` and a knowledge baseK and produces a denotation

γ. This function is unlearned and deterministic: the denotation γ is always the result of evaluating

` as a query on K. The evaluation function assigns score 0 to this denotation, and score −∞ to

all other denotations.

6.1.4 Inference

The test-time inference problem in LSP is to predict a denotation γ for language s in an environ-

ment d. This inference problem is straightforward due to the deterministic structure of feval. The

highest-scoring γ can be found by independently maximizing fprs and fper to find the highest-

scoring logical form ` and knowledge base K. The highest-scoring denotation is then produced

by evaluating ` on K.

Another inference problem occurs during training: identify the highest-scoring logical form

and knowledge base that produce a particular denotation. This problem is no longer straightfor-

ward, since observing γ couples ` and K. An approximate inference algorithm for this problem

is described in Section 6.2.2.

6.2 Training from Denotations

This section describes a weakly supervised training algorithm for LSP that estimates parameters

using a corpus of natural language queries with annotated denotations. The algorithm jointly

trains both the parsing and the perception components of LSP to best predict the denotations

of the annotated training queries. Intuitively, this procedure trains a semantic parser with an
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unknown knowledge base, simultaneously learning how to semantically parse language and pop-

ulate the knowledge base.

The weakly supervised algorithm trains LSP as a maximum margin Markov network (Taskar

et al., 2004), a structured analog of a support vector machine, using the stochastic subgradient

method. The main difficulty is computing the subgradient, which requires computing values

for the model’s hidden variables (i.e., the logical knowledge base K and semantic parse `) that

produce the annotated denotations.

6.2.1 Stochastic Subgradient Method

The training data for the weakly supervised algorithm is a collection {(si, γi, di)}ni=1 consisting

of language si paired with its denotation γi in environment di. Given this data, LSP’s parameters

θ = [θprs, θper] are estimated by minimizing the following objective function:

O(θ) =
λ

2
||θ||2 +

1

n

[
n∑
i=1

ζi

]
(6.1)

where λ is a regularization parameter that controls the trade-off between model complexity and

slack penalties. The slack variable ζi represents a margin violation penalty for the ith training

example, defined as:

ζi = max
γ,K,`,t

[
f(γ,K, `, t, si, di; θ) + cost(γ, γi)

]−max
K,`,t

f(γi, K, `, t, si, di; θ)

The above expression is a structured analog of the hinge loss, where cost(γ, γi) is the margin

by which γi’s score must exceed γ’s score. Here, cost(γ, γi) is the Hamming cost: it adds a cost

of 1 for each entity e such that γi(e) 6= γ(e).

This objective is optimized using the stochastic subgradient method (Ratliff et al., 2006). The

first step in computing the subgradient gi is to solve the following inference problems:

γ̂, K̂, ˆ̀, t̂← arg max
γ,K,`,t

f(γ,K, `, t, si, di; θj) + cost(γ, γi) (6.2)

K∗, `∗, t∗ ← arg max
K,`,t

f(γi, K, `, t, si, di; θj) (6.3)
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The first set of values (e.g., ˆ̀) are the best explanation for the denotation γ̂ which most

violates the margin constraint. The second set of values (e.g., `∗) are the best explanation for

the true denotation γi. The subgradient update increases the weights of features that explain the

true denotation while decreasing the weights of features that explain the denotation violating the

margin. The subgradient factors into parsing and perception components: gi = [giprs, g
i
per]. The

parsing subgradient is:

giprs = φprs(ˆ̀, t̂, si)− φprs(`
∗, t∗, si)

The subgradient of the perception parameters θper factors into subgradients of the category

and relation classifier parameters. Recall that θper = {θcper : c ∈ C}∪{θrper : r ∈ R}. Let γ̂c ∈ K̂
be the best margin-violating set of entities for c, and γc∗ ∈ K∗ be the best truth-explaining set

of entities. Similarly define γ̂r and γr∗. The subgradients of the category and relation classifier

parameters are:

gi,cper =
∑
e∈Edi

(γ̂c(e)− γc∗(e))φcat(e)

gi,rper =
∑

(e1,e2)∈Edi

(γ̂r(e1, e2)− γr∗(e1, e2))φrel(e1, e2)

For each predicate, these subgradients correspond to the sum of several SVM-style subgradi-

ents, one per entity or entity pair in the environment.

6.2.2 Inference: Computing the Subgradient

Solving the maximizations in Equations 6.2 and 6.3 is challenging because the weights placed

on the denotation γ (either by cost(γ, γi) or conditioning γ = γi) couple fprs and fper. This

coupling makes inference in LSP no longer tractable. Exactly solving these inference problems

requires enumerating all possible logical forms `, and then, for each logical form, finding the

highest-scoring knowledge base K by propagating the weights on γ back through feval.

This exact inference procedure suggests a two-step approximate inference algorithm. The

first step is to perform a beam search over CCG parses to produce k possible logical forms
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`1, ..., `k. The second step is to find the best knowledge base K given each logical form `i;

this problem can be formulated as an integer linear program (ILP). The highest-scoring logical

form/knowledge base pair is the approximate maximizer. In the experiments, the first step uses a

beam size of 1000, and the second step solves the ILP for each of the 10 highest-scoring logical

forms.

Given a logical form ` output by beam search, the second step of approximate inference is to

compute the best values for the knowledge base K and denotation γ:

arg max
K,γ

fper(K, d; θper) + feval(γ, `,K) + ψ(γ) (6.4)

Above, ψ(γ) represents a set of weights on the entities in the predicted denotation γ. In Equa-

tion 6.2, ψ represents cost(γ, γi), which is encoded by setting ψ(γ) =
∑

e∈Ed
1[γi(e) = 0]γ(e)+

1[γi(e) = 1](1 − γ(e)), where 1[·] is the indicator function. In Equation 6.3, ψ is a hard

constraint enforcing γ = γi, which is encoded by setting ψ(γ) = −∞ ×∑e∈Ed
1[γi(e) =

0]γ(e) + 1[γi(e) = 1](1− γ(e)), with the convention that∞× 0 = 0.

The maximization in Equation 6.4 can be written as an ILP. For each category c, relation r and

entity e1, e2 ∈ Ed, the ILP includes binary variables γc(e1) and γr(e1, e2) representing whether

c(e1) and r(e1, e2) are true in K. It similarly includes binary variables γ(e) for the denotation γ.

fper and ψ are linear functions of these variables, and the ILP objective is:

fper(K, d; θper) + ψ(γ) =
∑
e1∈Ed

∑
c∈C

wce1γ
c(e1) +

∑
e1,e2∈Ed

∑
r∈R

wre1,e2γ
r(e1, e2) + ψ(γ)

where the weights wce1 and wre1,e2 determine how likely it is that each entity or entity pair belongs

to the predicates c and r:

wce1 = (θcper)
Tφcat(e1)

wre1,e2 = (θrper)
Tφrel(e1, e2)

feval is represented in the ILP using constraints and additional auxiliary variables. These

constraints couple the denotation γ and the logical knowledge base K such that γ is the result
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of evaluating ` on K. The precise structure of these constraints depends on the particular logical

form.

6.3 Evaluation

The evaluation performs two major comparisons. First, it compares weakly supervised and fully

supervised training to determine by how much they differ in performance. Second, it compares

LSP against an ablated version of LSP similar to the model of Matuszek et al. (Matuszek et al.,

2012) to provide a reference with prior work. This model cannot represent relational language,

so this comparison also measures the performance impact of modelling relations. The evaluation

also includes an error analysis that independently measures the performance of LSP’s component

semantic parser and perceptual classifiers.

The first part of this section describes some necessary set-up for the experiments. These

sections describe the data sets, features, construction of the CCG lexicon, and details of the

models. The data sets and additional evaluation resources are available online from http://

rtw.ml.cmu.edu/tacl2013_lsp/.

6.3.1 Data

The evaluation evaluates LSP on two applications: scene understanding (SCENE) and geographi-

cal question answering (GEOQA). Each application’s data set is a collection {(si, γi, di, `i, Ki)}ni=1,

consisting of natural language statements si with annotated denotations γi in environments di.

For fully supervised training, each statement is also annotated with a logical form `i, and each

environment with a knowledge base Ki. Statistics of these data sets are shown in Table 6.1 and

example environments and statements are shown in Figure 6.4.

The SCENE data set consists of segmented images of indoor environments containing a num-

ber of ordinary objects such as mugs and monitors. Each image is an environment, and each
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Data Set Statistics SCENE GEOQA

# of environments 15 10
Mean entities / environment d 4.1 6.9
Mean # of entities in denotation γ 1.5 1.2
# of statements 284 263
Mean words / statement 6.3 6.3
Mean predicates / log. form 2.6 2.8
# of preds. in annotated knowledge bases 46 38

Lexicon Statistics

# of words in lexicon 169 288
# of lexicon entries 712 876
Mean parses / statement 15.0 8.9

Table 6.1: Statistics of the two data sets used in the evaluation and of the generated lexicons.

image segment (bounding box) is an entity. Natural language descriptions of each scene were

collected from members of the Read the Web group and Amazon Mechanical Turk by asking

subjects to describe the objects in each scene. Each statement was then manually annotated with

a denotation and logical form, and each image with a knowledge base. In this data set, each

image contains the same set of objects; note that this does not trivialize the task, as the model

only observes visual features of the objects that are not consistent across environments.

The GEOQA data set consists of several maps containing entities such as cities, states, na-

tional parks, lakes and oceans. Each map is an environment, and its constituent entities are

described as polygons of latitude/longitude coordinates marking their boundaries. Each entity

has one known name (e.g., “Greenville”) that was used to query OpenStreetMap2 to produce its

boundary polygon. In this data set, each entity occurs on average in 1.25 environments; repeated

entities are mostly large locations, such as states and oceans. The language for this data set was

contributed by members of the Read the Web group, who were instructed to provide a mixture of

simple and complex geographical questions. Each question was then manually annotated with a

denotation (its answer) and a logical form, and each map with a knowledge base.

2 http://www.openstreetmap.org/.
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Shared features

bias 1

SCENE only

Histogram of Oriented Gradients
R

(Dalal and Triggs, 2005)
mean red / green / blue pixel value R
std. dev. red / green / blue pixel value R

GEOQA only

polygon area R
polygon perimeter R
category context indicator {0, 1}
entity indicator {0, 1}

(a) Listing of category features φcat

Shared features

bias 1
polygon intersection indicator {0, 1}
intersection area R
AVS features

R
(Regier and Carlson, 2001)
centroid distance R
horizontal / vertical centroid distance R
left / right / above / below indicator {0, 1}
SCENE only

(none)

GEOQA only

arg1 equals arg2 {0, 1}
relation context indicator {0, 1}

(b) Listing of relation features φrel

Table 6.2: Listing of features and the range of their values used in the perception function of LSP
for each application.

6.3.2 Features

Table 6.2 lists the category and relation features used by LSP’s perception function in each ap-

plications. The SCENE application uses a number of visual appearance features in φcat to capture

the visual properties of objects. The GEOQA application uses properties of each object’s poly-

gon, as well as a collection of distributional semantic features to distinguish between different

types of entities (e.g., states vs. lakes). These features are derived from phrase co-occurrences

with entity names in the Clueweb09 web corpus.3 The category features φcat include indicators

for the 20 contexts which most frequently occur with an entity’s name (e.g., “X is a city”). Sim-

ilar relation features are included for the 20 most frequent contexts between two entities’ names

(e.g., “X is the capital of Y ”). Finally, both applications share a set of spatial relation features

derived from the bounding polygons of each entity.

3 http://www.lemurproject.org/clueweb09/
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6.3.3 Lexicon

The semantic parser’s lexicon (Section 6.1.2) was automatically generated using part-of-speech

tag heuristics. The natural language statements in each application were POS tagged using the

Stanford POS tagger (Toutanova et al., 2003). The heuristics map these POS-tagged words to

lexicon entries containing category and relation predicates derived from the word’s lemma. Ad-

jectives are mapped to lexicon entries containing categories. Nouns are mapped to lexicon entries

containing either a category or a relation. Mapping nouns to relations is necessary for phrases

such as “to the right of,” where the noun “right” indicates a relation. Verbs and prepositions

produce lexicon entries containing a relation. The heuristics also generate semantically-empty

lexicon entries that allow words to have no physical interpretation. These rules are useful for

determiners. Finally, there are special heuristics for forms of “to be” and, in GEOQA, to handle

known entity names. The complete set of lexicon induction heuristics is listed in Table 6.3.

In order to facilitate an error analysis (Section 6.3.6), lexicon entries containing predicates

not used in any annotated logical form were filtered out. Many of the generated predicates are

intuitively meaningless (e.g., BLUE-REL(e1, e2)), so it is impossible to annotate ground truth

instances for them. Furthermore, it is possible that training will learn a consistent interpretation

for them, and that this interpretation can be used to correctly predict denotations. In this situation,

it is difficult to determine the correctness of a semantic parse that uses one of these predicates.

Eliminating these predicates simplifies a componentwise error analysis of the semantic parser

and perception function. Statistics of the filtered lexicons are shown in Table 6.1.

6.3.4 Models and Training

The evaluation compares three models. The first model is LSP-W, which is LSP trained using

the weakly supervised algorithm described in Section 6.2. The second model, LSP-CAT, repli-

cates the model of Matuszek et al. (Matuszek et al., 2012) by restricting LSP to use only category

predicates. LSP-CAT is constructed by removing all relation predicates in lexicon entries, map-
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ping entries like λf.λg.λx.∃y.r(x, y) ∧ g(x) ∧ f(y) to λf.λg.λx.∃y.g(x) ∧ f(y). This model

is also trained using the weakly supervised algorithm. The third model, LSP-F, is LSP trained

with full supervision, using the manually annotated semantic parses and logical knowledge bases

in the data sets. Given these annotations, training LSP amounts to independently training a se-

mantic parser (using sentences with annotated logical forms, {(si, `i)}) and a set of perceptual

classifiers (using environments with annotated logical knowledge bases, {(di, Ki)}). This model

measures the performance achievable with LSP given significantly more supervision.

All three variants of LSP were trained using the same hyperparameters. For SCENE, training

was performed using subgradient descent with 5 example minibatches and 100 passes over the

data with λ = 0.03. For GEOQA, training was performed using subgradient descent with 8 ex-

ample minibatches and 100 passes over the data with λ = 0.02. Empirically, model performance

was relatively stable while the regularization parameter λ ≤ 0.05. All experiments use leave-

one-environment-out cross-validation to estimate model performance. This procedure holds out

each environment in turn, trains each model on the remaining environments, then tests on the

held-out environment.

6.3.5 Results

The evaluation considers two prediction problems. The first problem is to predict the correct de-

notation γi for a statement si in an environment di. A correct prediction on this task corresponds

to a correctly-answered question. A weakness of this task is that it is possible to guess the right

denotation without fully understanding the language. For example, given a query like “mugs on

the table,” it might be possible to guess the denotation based solely on “mugs,” ignoring “table”

altogether. The grounding prediction task corrects for this problem. Here, each model predicts

a grounding, which is the set of all satisfying assignments to the variables in a logical form. For

example, for the logical form λx.∃y.LEFT-REL(x, y)∧MUG(y), the grounding is the set of (x, y)

tuples for which both LEFT-REL(x, y) and MUG(y) return true. Note that, if the predicted seman-
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Denotation γ 0 rel. 1 rel. other total

LSP-CAT 0.94 0.45 0.20 0.51
LSP-F 0.89 0.81 0.20 0.70
LSP-W 0.89 0.77 0.16 0.67

Grounding g 0 rel. 1 rel. other total

LSP-CAT 0.94 0.37 0.00 0.42
LSP-F 0.89 0.80 0.00 0.65
LSP-W 0.89 0.70 0.00 0.59

% of data 23 56 21 100

(a) Results on the SCENE data set.

Denotation γ 0 rel. 1 rel. other total

LSP-CAT 0.22 0.19 0.07 0.17
LSP-F 0.64 0.53 0.21 0.48
LSP-W 0.64 0.58 0.21 0.51

Grounding g 0 rel. 1 rel. other total

LSP-CAT 0.22 0.19 0.00 0.16
LSP-F 0.64 0.53 0.17 0.47
LSP-W 0.64 0.58 0.15 0.50

% of data 8 72 20 100

(b) Results on the GEOQA data set.

Table 6.4: Denotation and grounding prediction accuracy on the SCENE and GEOQA datasets.
LSP-CAT is an ablated version of LSP that only learns categories (similar to Matuszek et al.
(Matuszek et al., 2012)), LSP-F is LSP trained with annotated semantic parses and logical
knowledge bases, and LSP-W is LSP trained on sentences with annotated denotations. Re-
sults are separated by the number of relations in each test natural language statement. The best
performance in each column is shown in bold.

tic parse is incorrect, the predicted grounding for a statement may contain a different number

of variables than the true grounding; such groundings are incorrect. Figure 6.4 shows model

predictions for the grounding task.

Performance on both tasks is measured using exact match accuracy. This metric is the fraction

of examples for which the predicted set of entities (be it the denotation or grounding) exactly

equals the annotated set. This is a challenging metric, as the number of possible sets grows

exponentially in the number of entities in the environment. Say an environment has 5 entities

and a logical form has two variables; then there are 25 possible denotations and 225 possible

groundings. To quantify this difficulty, note that selecting a denotation uniformly at random

achieves 6% accuracy on SCENE, and 1% accuracy on GEOQA. Selecting a random grounding

achieves 1% and 0% accuracy, respectively.

Table 6.4 shows results for both applications using exact match accuracy. To better under-

stand the performance of each model, each test example is placed into one of three categories

based on the number of relations in its annotated logical form. The first two categories show
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performance on examples with 0 and 1 relations. The “other” category shows performance on

examples with more than one relation (very infrequent), or that include quantifiers, comparatives,

or other linguistic phenomena not captured by LSP.

The results from these experiments suggest three conclusions. First, modelling relations is

important for both applications, as (1) the majority of examples contain relational language, and

(2) LSP-W and LSP-F dramatically outperform LSP-CAT on these examples. The low per-

formance of LSP-CAT suggests that many denotations cannot be predicted from only the first

noun phrase in a statement, demonstrating that both applications require an understanding of re-

lations. Second, weakly supervised training and fully supervised training perform similarly, with

accuracy differences in the range of 3%-6%. The next section further examines the differences

between these two training regimes. Finally, when LSP predicts the correct denotation, it does

so because it understands the entity referents of every part of the statement. This conclusion is

supported by the small performance difference between the denotation and grounding prediction

tasks on the 1-relation examples. (Groundings cannot be correctly predicted for many of the

“other” examples due to the inclusion of unmodelled linguistic phenomena.)

6.3.6 Error Analysis

The error analysis analyzes the mistakes made by each individual model component to better

understand the causes of errors. Table 6.5 shows the accuracy of the semantic parser from each

trained model. Each held-out sentence si is parsed to produce a logical form `, which is marked

correct if it exactly matches the annotated logical form `i. A correct logical form implies a

correct grounding for the statement when the parse is evaluated on the annotated knowledge

base. Perfect semantic parsing accuracy is not achievable because some natural language queries

include unmodelled phenomena, such as comparatives. These results show that both LSP-W and

LSP-F have reasonably accurate semantic parsers, given these limitations. Common mistakes

include missing lexicon entries (e.g., “borders” is POS-tagged as a noun, so the GEOQA lexicon
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SCENE GEOQA

LSP-CAT 0.21 0.17
LSP-W 0.72 0.71
LSP-F 0.73 0.75

Upper Bound 0.79 0.87

Table 6.5: Accuracy of the semantic parser from each trained model. Upper bound is the highest
accuracy achievable without modelling comparatives and other linguistic phenomena not cap-
tured by LSP.

does not include a verb for it) and prepositional phrase attachments (e.g., 6th example in Figure

6.4).

Table 6.6 shows the precision and recall of the individual perceptual classifiers. These met-

rics were computed by comparing the annotated denotation of each predicate in the held-out

environment with the model’s predictions for the same predicate, treating each entity or entity

pair as an independent example for classification. Fully supervised training appears to produce

better perceptual classifiers than weakly supervised training; however, this result conflicts with

the full system evaluation in Table 6.4, where both systems perform similarly well. There are

two causes for this phenomenon: uninformative adjectives and unimportant relation instances.

Uninformative adjective predicates are responsible for the low performance of the category

classifiers in SCENE. Phrases like “LCD screen” in this domain are annotated with logical forms

such as λx.LCD(x) ∧ SCREEN(x). Here, LCD is uninformative, since SCREEN already denotes a

unique object in the environment. Therefore, it is not important to learn an accurate classifier for

LCD. Weakly supervised training learns that the denotation of LCD includes every object in the

environment, yet predicts the correct denotation for λx.LCD(x) ∧ SCREEN(x) using its SCREEN

classifier. This situation happens less frequently in GEOQA because the objects in this domain

typically have one word descriptions.

The discrepancy in relation performance occurs because the relation evaluation weights every

relation equally, whereas in reality some relations are more frequent. Furthermore, even within a

single relation, each entity pair is not equally important – for example, people tend to ask what is
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SCENE GEOQA
Categories P R F1 P R F1

LSP-CAT 0.40 0.86 0.55 0.78 0.25 0.38
LSP-W 0.40 0.84 0.54 0.85 0.63 0.73
LSP-F 0.98 0.96 0.97 0.89 0.63 0.74

Relations P R F1 P R F1

LSP-W 0.40 0.42 0.41 0.34 0.51 0.41
LSP-F 0.99 0.87 0.92 0.70 0.46 0.55

Relations (reweighted) P R F1 P R F1

LSP-W 0.98 0.98 0.98 0.86 0.72 0.79
LSP-F 0.98 0.95 0.96 0.89 0.66 0.76

Table 6.6: Precision, recall and F-score of the trained perceptual classifiers from each model,
measured against the annotated knowledge bases. LSP-CAT is excluded from the relation eval-
uations, since it does not learn relations. See the text for details of the reweighted relations
metric.

in a state, but not what is in an ocean. The reweighted relation metric is designed to account for

these factors. This metric uses annotated logical forms containing only one relation, of the form

λx.∃y.c1(x) ∧ r(x, y) ∧ c2(y), and measures the accuracy of the classifier for r on the set of x, y

pairs such that c1(x) ∧ c2(y). These entity pairs are the important ones for the relation classifier

to classify correctly, as the other pairs are ruled out by the category classifiers. Table 6.6 shows

that, using this metric, both training regimes have similar performance. This result suggests

that weakly supervised training adapts LSP’s relation classifiers to the relation instances that are

empirically important for grounding natural language.

6.4 Discussion

This chapter presents Logical Semantics with Perception (LSP), a model for grounded language

acquisition that combines a semantic parser with perceptual classifiers to map natural language

statements to their referents in a physical environment. It also presents a weakly-supervised train-

ing algorithm for LSP that trains both the semantic parser and perceptual classifiers using state-

ments with annotated denotations, without requiring annotated logical forms or the outputs of
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individual perceptual classifiers. An experimental evaluation demonstrates that LSP outperforms

similar prior work that cannot represent relational language, and that both weakly supervised and

fully supervised training result in comparable performance.

The positioning of this chapter according to the axes of variation is as follows:

1. Learning the knowledge base – The knowledge base is learned using perceptual classi-

fiers that use features of the environment to produce a knowledge base.

2. Predicate vocabulary – The semantic parsers use an open predicate vocabulary derived

from the training data by the lexicon induction heuristics.

3. Semantic parser supervision – Natural language statements with annotated denotations

were used to train both the semantic parser and perceptual classifiers.

4. Syntactic information – No syntactic information was used aside from part-of-speech

tags.

The perception component in this chapter is closely related to the learned probabilistic database

in Chapter 5. fper(K, d; θ) defines an unnormalized probabilistic database, i.e., a weight for ev-

ery knowledge base K. However, in this chapter, the weight of each predicate instance depends

on features of each entity and entity pair derived from the environment d, whereas the previous

chapter treated these feature vectors as latent variables to be learned. The fixed feature com-

putation allows the model in this chapter to be applied to previously unseen entities, unlike the

learned entity embeddings in the probabilistic database.

The experience of this chapter suggests that it is currently possible to learn a perceptually-

grounded semantics for many other applications using LSP and the training algorithms in this

chapter, as long as certain conditions are satisfied. First, there must be a feature representation

for entities and entity pairs in the environment that can be used in LSP’s perception function.

This is a minor condition: other fields of computer science have developed effective feature

representations for many kinds of environments, e.g., the HOG features in this chapter for image

segments. Thus, it is already possible to apply LSP to many other kinds of environments, such as
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3-dimensional space. Second, there must be annotated data, in the form of language/denotation

pairs, that can be used for training. Third, environments cannot contain large numbers of entities.

This condition is necessary in order to train LSP from denotations due to the ILP inference

algorithm within the subgradient computation (Section 6.2.2). The number of variables in the

ILP grows quadratically in the number of entities in the environment, so this approach does not

scale to environments with large numbers of entities. Fourth, the language’s meaning must be

representable using only category and relation predicates.

Relaxing each of the three final conditions is an open research problem, though there are

reasonable approaches to each one. The second condition can be relaxed by developing algo-

rithms that incorporate unlabeled data into training, e.g., in the form of unlabeled sentences from

the web. Unlabeled sentences can be used for training by assuming they express true facts. For

example, the sentence “a mug is a cup” expresses a constraint on the denotations of the MUG

and CUP predicates across all environments. Other forms of training data, such as image/caption

pairs, may also be useful. The third condition can be relaxed by developing better approximate

inference algorithms or by clevely engineering the form of the training data to avoid intractable

inference. (Note that training from denotations requires solving difficult inference problems, but

fully-supervised training does not.) The fourth condition can be relaxed by augmenting LSP’s

knowledge base with additional learned functions that model additional linguistic phenomena.

For example, in order to model the generalized quantifier “biggest,” the knowledge base must

contain a learned function that orders objects by size. It is reasonable to expect some progress on

all three of these problems, suggesting that it will be possible to learn a perceptually-grounded

semantics for more applications with more complex environments, large predicate vocabularies,

and more difficult linguistic phenomena.
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Chapter 7

Conclusion

Understanding natural language is a key problem for artificial intelligence research that has nu-

merous applications such as personal voice assistants, information extraction and other core NLP

tasks. However, natural language understanding systems today are developed using extensive hu-

man annotation, which limits their use. This thesis explores several ways to learn to understand

natural language without expensive human annotation. The thesis statement of this work is:

Language understanding systems can be constructed for both grounded and un-

grounded settings using existing resources with little to no additional human anno-

tation.

I evaluate the thesis statement by developing several algorithms for training language un-

derstanding systems in different settings with limited human annotation. Chapter 4 studies the

problem of training a semantic parser for a large knowledge base, such as NELL or Freebase.

Supervised algorithms for training semantic parsers fail in this setting because the number of

predicates in the knowledge base necessitates a large training set. This chapter presents two

distantly-supervised algorithms for training semantic parsers that eliminated the requirement for

these per-sentence semantic annotations, instead using a large corpus of unlabeled text, a large

knowledge base and a syntactic resource. These algorithms train semantic parsers using the as-
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sumption that each relation instance in the knowledge base is expressed by at least one sentence

in the unlabeled text corpus. An empirical evaluation of these algorithms found that a semantic

parser trained using distant supervision outperformed a state-of-the-art relation extraction sys-

tem. It further found that a joint syntactic and semantic parser predicted logical forms more

accurately than pipelined syntax-then-semantics approaches.

Chapter 5 considers the problem of building a language understanding system using a learned

knowledge base with an open predicate vocabulary. This problem is motivated by two observa-

tions: (1) developing a large knowledge base, such as Freebase or NELL, is labor-intensive, and

(2) even the largest knowledge bases today lack coverage due to their closed predicate vocabu-

laries. This chapter presents a language understanding system that can compute denotations for

compositional natural language queries, such as “Republican front-runner from Texas.” The sys-

tem uses a rule-based semantic parser to map from natural language text to logical forms whose

predicates are derived from the words in the text. The denotations of these predicates are then

automatically learned using probabilistic matrix factorization with a novel objective function.

This objective trains the system to rank correct entity answers to natural language queries above

unobserved answers. An experimental evaluation found that this approach outperformed several

existing approaches to learning a knowledge base, and furthermore is capable of answering many

natural language queries that Freebase cannot.

Finally, Chapter 6 considers the problem of training language understanding systems for

grounded settings, where the language understanding agent is situated in a physical environ-

ment. This setting is applicable to robots and other autonomous agents. This chapter presents

the Logical Semantics with Perception (LSP) model for grounded language understanding, which

augments the ungrounded language understanding framework from previous chapters with a per-

ception function that predicts a knowledge base for an environment. This chapter also presents a

weakly-supervised algorithm for training LSP using sentences with annotated denotations. These

examples represent a natural form of supervision that could be obtained by, for example, follow-
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Figure 7.1: Factor graph for language understanding systems. The input to a language under-
standing system is an environment d and a natural language sentence s, from which the model
predicts a knowledge base K, logical form ` and denotation γ. Each labeled factor corresponds
to a subproblem of language understanding.

ing a user’s pointing gesture while they describe an object. An experimental evaluation demon-

strated that LSP trained with this weakly-supervised algorithm performs comparably to LSP

trained with a fully-supervised algorithm while requiring considerably less human annotation.

There are several other lessons from the algorithms and experiments in this thesis that apply

to language understanding systems more generally. The following sections discuss some of these

lessons and propose directions for future work.

7.1 Lessons

7.1.1 Framework for Language Understanding

The factor graph in Figure 7.1 is a general framework for thinking about language understanding

problems. The goal of language understanding is to predict a denotation γ for a natural language

sentence s in an environment d. This prediction problem factors into three subproblems: per-

ception, semantic parsing, and evaluation. This factorization into three subproblems is a natural

consequence of the fact that language understanding systems must model both the compositional

semantics of language and the mapping between language and an environment. The semantic

parser models compositional semantics, perception models the language/environment mapping,

and evaluation combines these two components to produce a denotation.

There are two notable aspects of this language understanding framework. First, the central

problem is to predict the denotation of a sentence. This focus is a natural consequence of this
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framework’s origins in model-theoretic or truth-conditional semantics (Dowty et al., 1981). This

choice is motivated by two considerations: (1) understanding problems often require the ability

to map from natural language to non-linguistic entities, and (2) many other tasks, such as textual

entailment and question answering, can naturally be formulated as reasoning about denotations.

Mapping language to non-linguistic entities is required for both perceptually-grounded under-

standing (e.g., a robot) and virtual agents (e.g., a mobile phone voice assistant). Further note

that, by conditioning on the denotation, this framework naturally enables inferences about the

real world (represented by the environment d) given a sentence. Therefore, another perspec-

tive on this framework is that language understanding is fundamentally about mapping between

language and the real world.

Second, the semantic representation for logical forms ` and the range of values for denota-

tions γ are intentionally underspecified. The only requirement for the semantic representation is

that it can be (perhaps nondeterministically) evaluated using knowledge about the environment

K. Denotations throughout this thesis have been either sets of entities or truth values, but other

values are also possible, such as paths through an environment (Kollar et al., 2010). In my view,

the semantic representation is a means to the end of predicting denotations: what ultimately

matters is whether the question is answered correctly, or the robot performs the right action.

Thus, the semantic representation is best viewed as a modelling choice that impacts the language

understanding model’s expressivity and learnability. The logical language used throughout this

thesis is a reasonable semantic representation, but it has several limitations; for example, the

set of entities must be fixed beforehand and learning sometimes requires solving hard inference

problems. I anticipate that designing new semantic representations – using various denotation

prediction tasks for evaluation – will be a productive area for future work (see Section 7.2.1).

It is instructive to compare this framework for language understanding with other perspec-

tives on natural language semantics. The remainder of this section compares and contrasts these

perspectives.
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Frame Semantics

Frame semantics is a theory of natural language semantics where the meaning of a natural lan-

guage sentence is represented by a collection of frames. A frame is a description of a stereotypi-

cal relation, entity or event and its participants. For example, the Commercial Transaction Frame

describes buying and selling goods, and its participants include a buyer, a seller, an item and a

monetary amount. Although the theory does not inherently specify a vocabulary of frames, the

FrameNet (Baker et al., 1998) frame vocabulary is typically used in practice.

Frame semantics is best viewed as a choice of a semantic representation language, i.e., a

formalism for defining logical forms `. This representation is in many ways similar to the logical

language used throughout this work because frames can be viewed as predicates. However, frame

semantics underspecifies certain aspects of meaning (notably quantifiers); consequently frame

semantic representations do not have a natural evaluation function. Rather, frame semantics

is better viewed as a way of collapsing roughly synonymous natural language constructions to

the same semantic representation. Of course, it may still be possible to construct an evaluation

function for a frame semantic representation using machine learning.

Abstract Meaning Representation (AMR)

Abstract Meaning Representation (AMR) is a graph-based semantic representation designed to

provide a common formalism for all kinds of semantic annotations Banarescu et al. (2013). Thus,

AMR annotations incorporate coreference, semantic relations (based on PropBank Kingsbury

and Palmer (2002); Palmer et al. (2005)), discourse connectives, and temporal information. An

AMR annotation is most commonly viewed as a directed, rooted graph describing the entities,

relations and events in the sentence. However, every AMR graph to be converted into a equivalent

logical statement similar to those used throughout this thesis.

As with frame semantics, AMR is a semantic representation language. However, unlike

frame semantic representations, AMR annotations can be evaluated due to the equivalence be-
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tween AMR graphs and logical statements. (Note that evaluating AMR requires a knowledge

base, which can perhaps be learned as in Chapter 5). Furthermore, AMR is more expressive than

the existentially-quantified conjunctions used throughout this thesis: it can represent modals,

negation, coreference, and cross-sentence phenomena. AMR may be a good representation lan-

guage for ungrounded tasks that do not require the use of a specific predicate vocabulary (as in

Chapter 5). It may also be possible to design variants of AMR with different sets of predicates

for use in other language understanding applications.

Vector Space Semantics / Neural Networks

Vector space semantics treats the meaning of a natural language word or phrase as a vector in

some high-dimensional space. This perspective does not necessarily impose a fixed interpre-

tation of this vector nor a method for producing it. Consequently, this approach to semantics

is quite flexible and the properties of the vector representation depend on the particulars of the

application.

It is useful to categorize work in vector space semantics into two perspectives. The distri-

butional perspective argues that the meaning of a word is best described by the distribution of

its coocurrences with other words or documents Firth (1957). These distributional representa-

tions are empirically quite useful for representing the semantics of individual words Turney and

Pantel (2010), leading to the question of how to compose them to produce phrase and sentence

representations. Work using this perspective tends to learn word representations by counting

cooccurrences in an unsupervised way, typically with fixed composition functions (Coecke et al.,

2010; Grefenstette and Sadrzadeh, 2011). This perspective is best viewed as an alternative theory

of semantics where coocurrence is the primary modelling consideration. While this perspective

has been useful for some applications – specifically, tasks that require computing word simi-

larity – it is unclear how to use these models to predict denotations (see the discussion below).

However, the distributional information captured by this perspective is quite valuable and can be
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incorporated into other kinds of language understanding models (as in Chapter 5).

The prediction perspective argues that vectors are a flexible representation for encoding arbi-

trary semantic information, so predictive models that use vectors as their semantic representation

can be trained to perform well on many applications. Neural network models tend to rely on

this perspective (e.g., Socher et al. (2011)). Note that distributional information is often included

within these predictive models (e.g., using unsupervised pretraining). This perspective’s focus

on prediction aligns with the framework of this thesis, where the goal is to predict denotations.

Although no vector space model has yet been constructed for a denotation prediction task of sim-

ilar difficulty as those in this thesis, such a model seems possible and may have some advantages

over the approaches in this thesis due to the flexibility of vector representations.

Which components of the language understanding framework can be represented as vectors?

Generally, it seems unlikely that a vector can take the place of a logical form. For a vector

representation to serve this purpose, it would have to be evaluatable, thereby representing a

function from all possible environments to denotations. This mapping can require reasoning

about complex structure in the environment, for example, if the logical form contains a number

of relations and quantifiers. However, it does seem possible for vectors to encode denotations

themselves (e.g., sets of entities) because denotations are composed using simple operations

(e.g., intersection) according to local sentence structure. The environment could be incorporated

into such a vector space model at the level of individual words, allowing each word’s vector

in the sentence to represent its denotation. Semantic parsing may still play a role within these

models to determine the structure of the vector space composition. Such vector space models are

a promising area for future work (see Section 7.2.1).

Textual Entailment

Textual entailment is the problem of computing entailment relationships between a text and a

hypothesis Dagan et al. (2006). A text entails a hypothesis if, under all possible worlds where
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the text is true, the hypothesis is also true. For example, an entailment system should predict

that the text “Google files for its IPO” entails the hypothesis “Google goes public.” Note that

other tasks in semantics, such as question answering, can be reformulated as textual entailment

questions.

Textual entailment is best understood as an evaluation task for language understanding sys-

tems. A key motivation for this task is its representation independence: any semantic represen-

tation can be used as an intermediate representation in the process of making entailment judg-

ments. Thus, this task enables the comparison of different semantic representations on a common

inference problem. I argued above that such comparison is an essential next step in developing

effective semantic representations for language understanding, and textual entailment is a natural

task for performing this comparison (see Section 7.2.3).

Textual entailment systems cannot necessarily be used for language understanding because

these systems are not necessarily able to reason about non-linguistic entities. This limitation

prevents such systems from being applied to tasks that inherently require such reasoning; for

example, commanding a robot requires mapping from natural language to objects and locations

in the environment. Note, however, that it is possible to construct a textual entailment system by

augmenting the language understanding framework of this thesis with a distribution over envi-

ronments. Entailment judgments can then be made by conditioning the environment distribution

on the text being true, then computing the probability that the hypothesis is true under this distri-

bution. Thus, language understanding can be viewed as a subtask of textual entailment, but not

vice versa.

7.1.2 Unlabeled Text as Training Data

Unlabeled text is a key source of training data in this thesis. The common assumption made when

using unlabeled text is that sentences express true statements, i.e., the denotation of a sentence

is TRUE. This assumption provides a common starting point for using unlabeled text to train
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any language understanding system. Developing a training algorithm amounts to adapting this

assumption to suit the particular system being trained. For example, the query ranking objective

in Chapter 5 trains the probabilistic database to assign a higher truth probability to an observed

sentence than a random, unobserved sentence. The distant supervision procedure in Chapter 4

uses this assumption in the distant supervision constraint that forces the predicted logical forms

of unlabeled sentences to entail relation instances in the knowledge base. This assumption can

presumably be adapted in other ways to train more complex language understanding systems.

Syntactic information seems to be required in order to effectively use unlabeled text to train

a language understanding system. Syntactic information is necessary because most naturally-

occurring sentences (e.g., on the web) have complex syntactic structures that are difficult to

semantically parse correctly without some prior knowledge of syntax. This result is unfortunate,

as syntactic treebanks are themselves quite expensive to annotate. However, syntactic treebanks

already exist for many languages and they are a valuable investment given the wide applicability

of syntactic parsing to downstream tasks. In contrast, a corpus of semantically-annotated sen-

tences is less reusable as differences between semantic representations can make the annotations

inapplicable. Therefore, training language understanding systems using syntactic resources still

represents an overall reduction in human annotation effort.

7.1.3 Learning a Knowledge Base

A key idea in this thesis is to learn the knowledge base used by the language understanding

system. This learning problem is encapsulated in the perception factor in Figure 7.1. This idea

represents a significant departure from prior work on semantic parsing which assumes that a

fixed knowledge base is given to the system. Learning the knowledge base enables the system to

use an open predicate vocabulary, which in turn improves the system’s coverage. It also enables

the knowledge base to depend on an environment, which is necessary for grounded applications.

Learning a knowledge base can be naturally posed as binary classification, where per-predicate
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classifiers are trained to predict which entities are elements of each predicate’s denotation. This

framing of the learning problem works for both category and relation predicates. An observa-

tion from this thesis is that training these per-predicate classifiers is easier in the grounded setting

(Chapter 6), as feature vectors for entities can be deterministically derived from the environment.

In the ungrounded setting (Chapter 5), the features of each entity are parameters that must be es-

timated during training. An open question is how to learn more complex kinds of knowledge

base elements, such as n-ary predicates for n > 2, or generalized quantifiers (e.g., BIGGEST).

7.1.4 Intractable Inference

Intractable inference problems frequently arise when training language understanding systems.

There are two common intractable inference problems. The first is finding the best parse of a sen-

tence that produces a particular logical form or denotation. This inference problem is prevalent

in most work on semantic parsing, where it is typically approximately solved using beam search

(see Section 2.2.5). However, this inference problem becomes even more challenging when the

sentences increase in length (Chapter 4) or when the knowledge base is a random variable (Chap-

ter 6). Beam search still works in these regimes, but may require additional heuristics to perform

well.

The second intractable inference problem is, given a logical form ` and denotation γ, to find

the highest-scoring knowledge base where ` evaluates to γ. This problem can arise when training

a perception function. Whether or not this problem is intractable depends on the structure of the

logical form `. In this thesis, the main cause of intractable inference is existentially-quantified

variables in ` that couple the boolean membership variables for each entity in the denotation.

For example, consider the distribution over denotations for the logical form λx.∃y.r(x, y) ∧
c(y). The distribution over knowledge bases contains a boolean random variable c2(e) for each

entity e, and the probability that every entity x is an element of the denotation depends on all

of these variables. This problem occurs in the training procedure for LSP, necessitating the
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integer linear program inference algorithm. However, it is also possible to formulate the training

problem to avoid intractable inference. The training data generation procedure for the query

ranking objective (Chapter 5) is specifically designed to generate logical forms where inference

is tractable.

7.2 Future Work

7.2.1 Improved Machine Learning Models for Language Understanding

This thesis approached the problem of language understanding by building machine learning

models that implement a simple model-theoretic semantics. These models can be improved in

several ways.

The first direction for further research is to improve the expressivity of these models to rep-

resent more complex linguistic phenomena. In the ungrounded setting, a useful extension is to

represent events and time. These phenomena are important for information extraction, and seem

particularly well-suited to being extracted by semantic parsing. Another similar extension is to

model generalized quantifiers, such as counting and superlatives. Generalized quantifiers are

also interesting in the grounded setting, though this problem is more challenging because each

generalized quantifier has a domain-specific interpretation that must be learned.

A second direction is to explore new semantic representations that are explicitly designed for

machine learning. The view of this thesis is that the fundamental problem in language under-

standing is predicting the denotation of a given text (as in Figure 7.1). A semantic representation

defines the structure of a machine learning model for this denotation prediction problem by spec-

ifying the space of possible logical forms and knowledge bases. Crucially, the choice of semantic

representation also determines the difficulty of each of the three subproblems. This thesis pro-

vides several examples of different representations resulting in very different learning problems.

For example, in the setting with a given knowledge base (Chapter 4), perception is trivial but
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semantic parsing is challenging. In the setting with a learned knowledge base with an open

predicate vocabulary (Chapter 5), the difficulty of these problems is reversed. Therefore, it is

natural to ask whether some representations lead to better predictions or perhaps permit tractable

inference.

Within this second direction, vector space semantics or neural networks provide a partic-

ularly interesting class of semantic representations. These approaches represent the meaning

of language as a vector in a high-dimensional space and perform composition using (possibly

learned) mathematical operations on these vectors. This approach contrasts with the logical view

used in this thesis, where the meaning of language is represented as a lambda calculus state-

ment and composition is performed by semantic parsing. However, these two approaches can

be combined: Chapters 5 and 6 both trained collections of entity classifiers for predicates in the

knowledge base, the parameters of which can be viewed as vector representations of word mean-

ings. The question is thus whether vector space composition can be used to accurately predict

denotations. Vector space composition seems better suited for some phenomena, such as slightly

noncompositional word meanings, but worse for others. In either case, these vector space models

have the significant advantage of always permitting tractable inference.

A final direction is to incorporate machine learning directly into theories of model-theoretic

semantics to extend their expressivity. Such theories could incorporate probabilistic construc-

tions that could be useful for modeling possible worlds, hypotheticals and counterfactuals, all

of which seem to inherently depend on the language understanding agent’s predictions about

its environment. Another area where machine learning can help is in relaxing the assumptions

made by such theories, especially about the language understanding agent’s representation of the

world. Here, it is typical to assume that the agent has access to a knowledge base containing all

of the world’s entities and knowledge. However, many of these assumptions are unreasonable.

For example, it is unreasonable to assume that all of the world’s entities are given to the agent,

as it is easy to name new entities that no person has previously thought of. It may be possible
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to formulate new theories that make weaker assumptions by assuming the agent has access to

certain (machine-learnable) functions that can, for example, identify or invent new entities.

7.2.2 Improved Algorithms for Semantic Parsing

A second direction for future work is improved algorithms for two subproblems of semantic

parsing. The first problem is finding the highest-scoring CCG parse conditioned on a logical

form. This inference problem is critical for training a semantic parser, yet no exact algorithm

is known; instead, the current best practice is to perform beam search. However, beam search

can be slow even with small grammars, and often fails to find a solution with more complex

grammars. There are two possible approaches for developing a better inference algorithm. The

first approach is to extend algorithms from syntactic CCG parsing for finding the highest-scoring

CCG parse that produces a particular collection of dependency structures. The second approach

is to use properties of the particular logical forms in the lexicon to intelligently guide the beam

search – for example, to detect early in the search that a particular logical form can be discarded

because it contains a predicate that does not appear in the conditioned on logical form.

The second problem is inducing a lexicon for a semantic parser. Although several approaches

to lexicon induction exist, they have important limitations. The first approach, used in this thesis,

is to induce the lexicon using a collection of manually-engineered heuristics. However, this

requires human effort and may result in low coverage. A second approach is to perform a search

over lexicons while training the semantic parser. However, these algorithms require annotated

logical forms as input and cannot be used with weaker labels such as denotations or distant

supervision. Furthermore, it is difficult to analyze the properties of these algorithms. Developing

more principled and flexible approaches to lexicon induction is an area for future work.
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7.2.3 Grounded Knowledge Representations

A final direction for future work is to develop broad-coverage grounded knowledge representa-

tions for language understanding. A grounded knowledge representation is, essentially, a trained

perception model in the language understanding framework depicted in Figure 7.1. As an exam-

ple, LSP (Chapter 6) learned a grounded knowledge representation consisting of a collection of

category and relation classifiers for image segments. These representations can be substituted for

logical knowledge bases in many tasks with several advantages. First, the perceptual classifiers

in grounded representations implicitly encode complex properties of predicates. For example,

the LSP classifier for MUG encodes shape, size, and color information. Many properties that can

be encoded by such classifiers are difficult to represent in logical formalisms. Second, grounded

representations enable inference via reasoning over possible worlds. For example, LSP could

answer the question “are all mugs cups?” by searching a large image collection for all image

segments depicting mugs, then determining if those image segments also depict cups. Intu-

itively, this question asks, in all possible worlds, can every object called “mug” also be called

“cup?” The proposed inference algorithm directly tackles this question using a corpus of images

to approximate the distribution over possible worlds and the grounded knowledge representation

to identify mugs and cups. Reasoning over possible worlds in this fashion naturally incorporates

the complex correlations of the real world; such correlations are difficult, if not impossible, to

represent using logical rules.

There are several research directions for grounded knowledge representations. The first is to

develop algorithms for mapping from language to grounded representations of various concrete

domains, such as 3-dimensional space and images. Initial work in this area should build on ex-

isting grounded representations developed in other fields of computer science, such as robotics

and vision. Interestingly, these fields have grounded representations for some domains that are

classically difficult to represent in logic. For example, inverse reinforcement learning could be

used to model the goals, beliefs and desires of agents (Ng and Russell, 2000). More abstract
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domains, such as social relationships, may be representable using metaphors from concrete do-

mains (Lakoff and Johnson, 1980). It is important to develop algorithms for multiple domains,

as each domain will present unique modeling challenges. Identifying commonalities between

the various models will then enable us to work toward a unified framework for learning to under-

standing language in grounded settings.

A second direction is to build large grounded knowledge representations that have sufficient

coverage to be used in downstream inference tasks. However, annotating training data for these

grounded knowledge representations will be a major challenge. Thus, a particularly interesting

direction is to populate these representations by reading unstructured text. I call this problem

grounded information extraction. Algorithms for grounded information extraction will combine

the grounded language understanding models developed above with traditional information ex-

traction techinques, such as bootstrapping (Riloff and Jones, 1999), to populate large grounded

knowledge representations. A promising first step in this direction is to extend ImageNet (Deng

et al., 2009) with new categories by automatically reading object descriptions.

A final direction is to apply grounded knowledge bases to difficult natural language inference

tasks, such as textual entailment. The first step in this direction is to consider simplifications

of the inference task that rely on a particular kind of knowledge, such as visual knowledge.

These tasks could be used to develop inference algorithms (using the possible worlds technique

described above) and to compare against text-only approaches. The success of these inference

algorithms will largely depend on having accurate, high-coverage grounded knowledge repre-

sentations; ideally, these representations will be produced by grounded information extraction.

As the sophistication of modeling techniques improves, it will be possible to combine various

kinds of knowledge and perform more general inference tasks.
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