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Abstract
Designing successful agents for multiagent strategic settings is a challenging

problem for several reasons. First, many games of interest are far too large to be
solved (for a relevant game-theoretic solution concept) by the best current algo-
rithms. For example, no-limit Texas hold ’em has approximately 10165 nodes in its
game tree, while the best algorithms for computing a Nash equilibrium only scale to
games with around 1017 states. A second challenge is that it is not even clear that our
goal should be computing a Nash equilibrium in the first place. In games with more
than two players (or two-player games that are not zero sum (competitive)), playing
a Nash equilibrium has no performance guarantee. Furthermore, even in two-player
zero-sum games, we can often obtain significantly higher payoffs by learning to ex-
ploit mistakes of a suboptimal opponent than by playing a Nash equilibrium.

The leading paradigm for addressing the first challenge is to first approximate
the full game with a strategically similar but significantly smaller game, and then to
solve this smaller abstract game. All of this computation is done offline in advance,
and the strategies are then looked up in a table for actual game play. We have de-
veloped new algorithms for improving each step of this paradigm. Specifically, I
present new algorithms for performing game abstraction and for computing equilib-
ria in several game classes, as well as new approaches for addressing the problem
of interpreting actions for the opponent that have been removed from the abstraction
and further post-processing techniques that achieve robustness against limitations of
the abstraction and equilibrium-finding phases.

I then describe two new game-solving paradigms: in the first, relevant portions
of the game are solved in real time to a better degree of accuracy than the abstract
game, which is solved offline according to the leading paradigm, and in the second,
qualitative representations of the structure of equilibrium strategies are leveraged to
improve the speed of equilibrium finding. The latter paradigm can be utilized to ob-
tain human-understandable knowledge from strategies, which are often represented
as massive binary files, thereby enabling improved human decision-making.

In the final portion of the thesis, I address the second challenge by presenting
new algorithms for effectively learning to exploit unknown static opponents in large
imperfect-information games after only a small number of interactions. Further-
more, I present new algorithms for exploiting weak opponents that are able to guar-
antee a good worst-case performance even against strong dynamic opponents.

The approaches are domain independent and apply to any games within very
broad classes, which include many important real-world situations. While most of
the approaches are presented in the context of two-player zero-sum games, they also
apply to games with more than two agents, though in some cases this results in a
modification of theoretical guarantees. One application domain that was considered
was two-player no-limit Texas hold ’em. Several of the approaches were utilized to
create an agent that came in first place in the most recent (2014) AAAI Annual Com-
puter Poker Competition, beating each opposing agent with statistical significance.
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Chapter 1

Overview

Important problems in nearly all disciplines and on nearly all application domains involve mul-
tiple agents behaving strategically; for example, deploying officers to protect ports, determining
optimal thresholds to protect against phishing attacks, and finding robust policies for diabetes
management. Such problems are modeled under the framework of game theory. In many im-
portant games there is information that is private to only some agents and not available to other
agents—for instance, in auctions each bidder may know his own valuation and only know the
distribution from which other agents’ valuations are drawn.

This thesis presents new approaches for strategic agents acting in large imperfect-information
games. It includes novel algorithms, theoretical analysis, and detailed discussion from large-
scale implementation of the approaches.

There are several major challenges that must be confronted when designing successful agents
for large multiagent strategic environments. First, standard solution concepts such as Nash equi-
librium lack theoretical justification in certain classes (e.g., games with more than two players).
Second, computing these concepts is difficult in certain classes from a complexity-theoretic per-
spective. Third, computing these concepts is difficult in practice for many important games even
for cases when they are well-motivated and polynomial-time algorithms exist (e.g., two player
zero-sum (competitive) games), due to enormous state spaces. And fourth, for all game classes,
it is not clear if the goal should even be to compute a Nash equilibrium; one could achieve sig-
nificantly higher payoff by learning to exploit opponents’ mistakes. However, such exploitation
must be done in a way that does not open oneself up to being exploited in turn by strong deceptive
opponents.

While the approaches are domain independent, most of them have been motivated by and
applied to the domain of poker. Poker has emerged as a major AI challenge problem. Poker
is not simply a toy game; it is tremendously popular for humans, and online poker is a multi-
billion dollar industry. For the past ten years, there has been a competition between the strongest
computer poker agents held annually at the top AI conference. The version of two-player no-limit
Texas hold ’em played in the competition has approximately 10165 states in its game tree. Several
of the techniques presented in this thesis were utilized to create an agent for two-player no-limit
Texas hold ’em that is currently the strongest agent in the world: it beat each opposing agent with
statistical significance in the most recent (2014) AAAI Annual Computer Poker Competition.
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Chapter 2

Game Theory Background

A game is an abstract model of strategic interaction between multiple agents, or players. For-
mally, a strategic-form game G consists of a finite set of players N = {1, . . . , n}, a finite set of
pure strategies Si for each player, and a utility function ui : ×Si → R for each player. Here ×Si
denotes the space of pure strategy profiles—vectors of pure strategies, one per player. To play a
game, each agent i simultaneously selects a pure strategy si ∈ Si, and then receives a payoff of
ui(s1, . . . , sn). In general, players are allowed to randomize over their pure strategies, and need
not play deterministically. Let Σi denote the space of probability distributions over Si, which we
call the mixed strategy space of player i. When each agent i plays σi ∈ Σi, the expected payoff
to player i is

ui(σ1, . . . , σn) =
∑
s1∈S1

. . .
∑
sn∈Sn

[
ui(s1, . . . , sn)

n∏
j=1

σj(sj)

]
.

Note that we have overloaded the utility operator to be defined over Σ = ×Σi, the space of mixed
strategy profiles. If the players are following the mixed strategy profile σ ∈ Σ, let σ−i denote
the vector of strategies taken by all players other than i, and let Σ−i denote the space of mixed
strategies for these players. The support of a mixed strategy σi is the set of pure strategies for
player i played with nonzero probability under σi. Mixed strategy σi weakly dominates σ′i if
ui(σi, σ

∗
−i) ≥ ui(σ

′
i, σ
∗
−i) for all σ∗−i ∈ Σ−i, where the inequality is strict for at least one σ∗−i.

If the other agents are playing strategy profile σ−i, then a best response (aka nemesis) for
player i is any strategy in arg maxσ′i∈Σi

ui(σ
′
i, σ−i). A Nash equilibrium is a strategy profile σ

such that σi is a best response to σ−i for all i. Thus, in a Nash equilibrium, all players are
simultaneously playing a best response to the strategy profile of the other agents, and no agent
has an incentive to deviate to a different strategy given that the other agents follow the prescribed
profile.

John Nash first introduced the Nash equilibrium in 1951, and in that paper he proved that
a Nash equilibrium exists in every strategic-form game [86]. Subsequently, the Nash equilib-
rium has emerged as the central solution concept in the field of game theory. If all agents were
perfectly rational, then we would intuitively expect them to follow a Nash equilibrium; if they
instead followed a non-equilibrium strategy profile, then at least one agent could improve his
performance by playing a different strategy, in which case it would not be rational for him to
follow the prescribed strategy profile.
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The Nash equilibrium solution concept is particularly compelling in a class of games known
as two-player zero-sum games (aka matrix games). A two-player game is zero sum if u1(s) +
u2(s) = 0 for all s ∈ ×iSi. These are fully non-cooperative, competitive games where one
player’s loss is exactly equal to the other player’s gain. In this class of games, we have the
following result, which is called the minimax theorem:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

The minimax theorem was first published by John von Neumann [113] in 1928, several decades
before Nash’s existence theorem. This theorem states that there exists a unique value v∗ such
that player 1 can guarantee himself an expected payoff of at least v∗ regardless of the strategy
chosen by player 2, and similarly that player 2 can guarantee himself an expected payoff of at
least −v∗ regardless of the strategy chosen by player 1. We refer to v∗ as the value of the game.
Sometimes we will write v1 = v∗ as the value of the game to player 1, and v2 = −v∗ as the value
of the game to player 2. Any equilibrium strategy for a player will guarantee an expected payoff
of at least the value of the game to that player.

Define the exploitability of σi to be the difference between the value of the game and the
performance of σi against its nemesis, formally:

expl(σi) = vi −min
σ′−i

ui(σi, σ
′
−i).

Since there always exists a nemesis that is a pure strategy, this expression is equal to vi −
mins−i∈S−i

ui(σi, s−i). For any ε ≥ 0, define SAFE(ε) ⊆ Σi to be the set of strategies with
exploitability at most ε. The set SAFE(ε) is defined by linear constraints: σi ∈ SAFE(ε) if and
only if ui(σi, s−i) ≥ vi − ε for all s−i ∈ S−i. Define an ε-safe best response of player i to σ−i to
be any strategy in

argmaxσi∈SAFE(ε)ui(σi, σ−i).

In two-player zero-sum games, the Nash equilibrium strategies for player 1 are precisely
those strategies that guarantee a worst-case expected payoff of at v∗ (and similarly, the Nash equi-
librium strategies for player 2 are precisely those strategies that guarantee a worst-case expected
payoff of at least −v∗). For any non-equilibrium strategy for player 1, there exists some strategy
for player 2 such that player 1’s expected payoff is strictly less than v∗. Thus, Nash equilibrium
strategies have a strictly better worst-case guarantee than all other strategies. If we assume play-
ers took turns having the role of player 1 and player 2, then a Nash equilibrium strategy would
guarantee at least breaking even against any opponent, while for every non-equilibrium strategy,
there exists some counter strategy against which it would lose.

An additional property of Nash equilibria in two-player zero-sum games is that they are
exchangeable: if (σ1, σ2) and (σ′1, σ

′
2) are Nash equilibria, then (σ1, σ

′
2) and (σ′1, σ2) are also Nash

equilibria. Thus, if player 1 follows his portion of the strategy profile from one Nash equilibrium,
and player 2 follows his portion of the strategy profile from a different Nash equilibrium, the
overall strategy profile played still constitutes a Nash equilibrium.

One final property of Nash equilibria in two-player zero-sum games is that they can be com-
puted in polynomial time using a linear programming (LP) formulation [22]. This means that,
at least in theory, an efficient procedure exists for computing a Nash equilibrium that will scale
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to large games. As we will see, this does not necessarily mean that we can compute a Nash
equilibrium in a satisfactory amount of time for specific games we are interested in, which may
be extremely large. Best responses can be computed much more efficiently than Nash equilibria.
Computing a best response involves a single matrix-vector multiplication followed by a traversal
up the game tree, both of which take linear time in the size of the game tree.

Unfortunately, none of these properties that make Nash equilibrium compelling in two-player
zero-sum games hold in more general classes of games. In two-player general-sum games and
games with more than two players, there can exist multiple equilibria, each yielding different
payoffs to the players. If one player follows one equilibrium while other players follow a different
equilibrium, the overall strategy profile is not guaranteed to be an equilibrium. And furthermore,
if one player plays an equilibrium strategy, he could do arbitrarily poorly if the opponents do
not follow their components of that same equilibrium. In addition, the problem of computing a
Nash equilibrium in these game classes has recently been shown to be PPAD-complete, and it
is widely conjectured that no efficient algorithms exist [21, 23]. So even if we wanted to play a
Nash equilibrium in these games, we may not be able to compute one, even in relatively small
games. In two-player general-sum and multiplayer games, the Nash equilibrium is a much less
satisfactory solution concept than in two-player zero-sum games.

Even in two-player zero-sum games, the Nash equilibrium is not the end of the story. For
one, algorithms may not scale to specific games we are interested in. Furthermore, we can often
obtain a significantly higher payoff than the value of the game against suboptimal opponents
who are not playing an equilibrium strategy. Against such opponents, it may be desirable to try
to learn and exploit their mistakes rather than to simply follow a static equilibrium strategy. Of
course, such opponent exploitation would be similarly beneficial in general-sum and multiplayer
games as well.

Despite the theoretical limitations described above, we will follow traditional terminology
and refer to the problem of computing an (approximate) Nash equilibrium of a game as solving
the game. The first portion of the thesis will focus on new approaches for solving games, while
the latter portion will address the problem of developing game-playing agents that potentially
deviate from a Nash equilibrium strategy in order to exploit opponents’ mistakes.

2.1 Extensive-form games

While the strategic form can be used to model simultaneous actions, another representation,
called the extensive form, is generally preferred when modeling settings that have sequential
moves. The extensive form can also model simultaneous actions, as well as chance events and
imperfect information (i.e., situations where some information is available to only some of the
agents and not to others). Extensive-form games consist primarily of a game tree; each non-
terminal node has an associated player (possibly chance) that makes the decision at that node,
and each terminal node has associated utilities for the players. Additionally, game states are
partitioned into information sets, where the player whose turn it is to move cannot distinguish
among the states in the same information set. Therefore, in any given information set, a player
must choose actions with the same distribution at each state contained in the information set. If
no player forgets information that he previously knew, we say that the game has perfect recall.
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A (behavioral) strategy for player i, σi ∈ Σi, is a function that assigns a probability distribution
over all actions at each information set belonging to i.

In theory, every extensive-form game can be converted to an equivalent strategic-form game;
however, there is an exponential blowup in the size of the game representation, and therefore
such a conversion is undesirable. Instead, new algorithms have been developed that operate
on the extensive form representation directly. It turns out that the complexity of computing
equilibria in extensive-form games is similar to that of strategic-form games; a Nash equilibrium
can be computed in polynomial time in two-player zero-sum games (with perfect recall) [72],
while the problem is hard for two-player general-sum and multiplayer games.

For many years, the standard algorithm for computing an equilibrium in two-player zero-sum
extensive-form games with perfect recall was a linear programming formulation [72]. This for-
mulation works by modeling each sequence of actions for each player as a variable, and is often
called the sequence form LP algorithm. The most scalable current general-purpose linear pro-
gramming technique (CPLEX’s barrier method) scales to games with around 108 nodes in their
game tree, and runs into memory limitations for larger games. By contrast, full best responses
can be computed in time linear in the size of the game tree, while the best known techniques for
computing ε-safe best responses have running times roughly similar to an equilibrium computa-
tion [65].

Unfortunately, many interesting games have far more than 108 states in their game tree. To
solve such games, newer algorithms have been developed that are able to scale to games with
approximately 1017 states in their game tree. These algorithms are iterative and converge to a
Nash equilibrium in the limit. While the LP algorithm is able to compute an exact equilibrium,
in practice these iterative algorithms can only compute an approximate, or ε-, equilibrium. An
ε-equilibrium is a strategy profile in which each player achieves a payoff of within ε of his best
response.

Two main iterative algorithms have been used for solving these larger games. The first,
called EGT, is based on a generalization of Nesterov’s excessive gap technique [55]. Recently,
a more scalable version has been developed that converges to an ε-equilibrium in O(ln(1

ε
)) it-

erations [49]. The other algorithm, called counterfactual regret minimization (CFR), stores the
cumulative regret of each action at each information set, contingent on the information set be-
ing reached [125], as well as the average action probability vector at each information set. At
each iteration, each action is selected in proportion to its counterfactual regret. This algorithm
is run against itself in self play, and the average strategy for each player is proven to converge
to an equilibrium. CFR guarantees convergence to ε-equilibrium in O( 1

ε2
) iterations, though

each individual iteration is much faster than an iteration of EGT. Several sampling schemes have
been used that significantly improve the performance of CFR in practice in various classes of
games [40, 41, 67, 77].

Both algorithms parallelize well, and have been shown to scale effectively in practice to very
large games, such as Texas hold ’em. While EGT has a better asymptotic performance guarantee
in terms of the number of iterations needed for convergence, each iteration of EGT takes much
longer than each iteration of CFR. Overall, these algorithms have selective superiority, and it is
not clear which will perform best on a given game. Unlike EGT, CFR can still be run on games
that have imperfect recall, as well as two-player general-sum and multiplayer games [1, 39, 78,
120], though there are no significant general theoretical guarantees in such settings.
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2.2 Repeated games
In repeated games, the stage game is repeated for a finite number T of iterations. At each
iteration, players can condition their strategies on everything that has been observed so far. In
extensive-form games, generally only the actions of the opponent along the path of play are
observed; in games with imperfect information, the opponent’s private information may also be
observed in some situations.

2.3 Other game representations
While the majority of this thesis will deal with strategic-form and extensive-form games (both
one shot and repeated), some parts will deal with other game representations, in particular
stochastic games and continuous games. A stochastic game is a collection of games (often
these are strategic-form games, though we will consider the case when they are extensive-form
imperfect-information games); the agents repeatedly play a game from this collection, and then
transition probabilistically to a new game depending on the previous game played and the ac-
tions taken by all agents in that game. Continuous games generalize finite strategic-form games
to the case of (uncountably) infinite strategy spaces. Many natural games have an uncountable
number of actions; for example, games in which strategies correspond to an amount of time,
money, or space. While Nash equilibria have been proven to exist in some classes of games,
simple examples have also been constructed that do not contain an equilibrium. Algorithms have
been developed for computing equilibria in certain subclasses; however, there are natural game
classes for which neither the algorithms nor the existence results apply.
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Chapter 3

Poker

While all of the new algorithms and techniques we present in this thesis are domain-independent
and apply to broad classes of games, we will primarily be evaluating them in the domain of Texas
hold ’em poker. Poker has received significant academic interest since the founding of the field
of game theory [86, 114]. This interest has been heightened in recent years due to the emergence
of poker as a central AI challenge problem and the development of the Annual Computer Poker
Competition (ACPC). Two-player poker is a two-player zero-sum extensive-form game with per-
fect recall; therefore, the algorithms described in Section 2.1 will apply. We will be considering
several variants of poker including no-limit Texas hold ’em, the most popular variant of poker
among humans. Two-player no-limit Texas hold ’em is played competitively by humans, and
it is the game of most active research in the computer poker community currently. For further
information about AI research in poker, we refer the reader to recent survey articles [96, 99].

Two-player no-limit Texas hold ’em (NLHE) works as follows. Initially two players each
have a stack of chips (worth $20,000 in the computer poker competition). One player, called the
small blind, initially puts $50 worth of chips in the middle, while the other player, called the big
blind, puts $100 worth of chips in the middle. The chips in the middle are known as the pot, and
will go to the winner of the hand.

Next, there is an initial round of betting. The player whose turn it is to act can choose from
three available options:
• Fold: Give up on the hand, surrendering the pot to the opponent.
• Call: Put in the minimum number of chips needed to match the number of chips put into

the pot by the opponent. For example, if the opponent has put in $1000 and we have put
in $400, a call would require putting in $600 more. A call of zero chips is also known as a
check.

• Bet: Put in additional chips beyond what is needed to call. A bet can be of any size from
1 chip up to the number of chips a player has left in his stack, provided it exceeds some
minimum value1 and is a multiple of the smallest chip denomination (by contrast, in the
limit variant, all bets must of a fixed size, which equals the big blind for the first two rounds
and twice the big blind for the final two rounds). A bet of all of one’s remaining chips is

1The minimum allowable bet size is the big blind for the first bet of a round and the size of the previous bet in
the current round for subsequent bets.
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called an all-in bet. If the opponent has just bet, then our additional bet is also called a
raise. In some variants, the number of raises in a given round is limited (for limit it is
limited to three and for no-limit it is unlimited), and players are forced to either fold or call
at that point.

The initial round of betting ends if a player has folded, if there has been a bet and a call, or
if both players have checked. If the round ends without a player folding, then three public cards
are revealed face-up on the table (called the flop) and a second round of betting takes place. Then
one more public card is dealt (called the turn) and a third round of betting, followed by a fifth
public card (called the river) and a final round of betting. If a player ever folds, the other player
wins all the chips in the pot. If the final betting round is completed without a player folding, then
both players reveal their private cards, and the player with the best five-card hand (out of his two
private cards and the five public cards) wins the pot (it is divided equally if there is a tie).

In the AAAI computer poker competitions, each match consists of 3000 duplicate hands:
3000 hands are played normally, then the players switch positions and play the same 3000 hands
(with no memory of the previous hands). This is a well-known technique for reducing the vari-
ance so that fewer hands are needed to obtain statistical significance.

Some techniques presented in this thesis will be analyzed on simplified poker variants. The
rules of these additional variants will be described in the chapter where they are first studied.
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Chapter 4

Leading Game-Solving Paradigm

Two-player no-limit Texas hold ’em has about 10165 states in its game tree, while the limit variant
has about has about 1017 game states [63]; so neither of these can be solved directly using EGT
or CFR, which only scale to games with up to 1017 states. The traditional approach for solving
games of this magnitude is depicted in Figure 4.1. First, the original game is approximated
by a smaller abstract game that hopefully retains much of the strategic structure of the initial
game. Abstraction in games is quite different than in single-agent settings. For example, it is
not monotonic: if we refine an abstraction, we may get strategies that have higher exploitability
in the original game [119]. The first abstractions for two-player Texas hold ’em were manually
generated [9, 105], while current abstractions are computed automatically [42, 43, 48, 68, 120].
For smaller games, such as Rhode Island hold ’em, abstraction can be performed losslessly,
and the abstract game is actually isomorphic to the full game [44]. However, for larger games,
such as Texas hold ’em, we must be willing to incur some loss in the quality of the modeling
approximation due to abstraction.

In general, extensive-form games can have enormous strategy spaces for two primary rea-
sons: the game tree has many information sets, or players have many actions available at each
information set (e.g., when actions correspond to real numbers from some large set). There are
two kinds of abstraction to deal with these two sources of complexity: information abstraction
and action abstraction.1 In information abstraction, one groups information sets of a player to-
gether in order to reduce the total number of information sets, coarsening the moves of chance.
(Essentially this forces the player to play the game the same way in two different states of knowl-
edge.) In action abstraction, one reduces the size of the action space. The typical approach for
performing action abstraction is to discretize an action space into a smaller number of allow-
able actions; for example, instead of allowing agents to bid any integral amount between $1 and
$1000, perhaps we limit the actions to only multiples of $10 or $100. This approach applies to
almost any game where action sizing is an issue, such as bet sizing in poker, bid sizing in auc-
tions, offer sizing in negotiations, allocating different quantities of attack resources or defense
resources in security games, and so on. While there has been some recent work on algorithmic

1There has also been some recent work on player abstraction that constructs abstractions that have fewer agents
than the initial game [121, 123]. In this thesis I focus on studying games with a small number of agents; however,
I expect player abstraction to play a very important role as game-theoretic algorithms continue to scale and games
with more agents are studied more seriously.
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Figure 4.1: Leading paradigm for solving large games.

approaches to action abstraction [17, 53, 54] the leading approach has been to generate action ab-
stractions manually using knowledge from domain experts. By contrast, the leading approaches
for information abstraction have all been algorithmic, and I will present describe several of them
in Part II.

The second step in the leading game-solving paradigm is to compute an ε-equilibrium in the
smaller abstracted game, using a custom equilibrium-finding algorithm such as CFR or EGT.

The final step is to construct a strategy profile in the original game from the approximate
equilibrium of the abstracted game by means of a reverse mapping procedure. When the action
spaces of the original and abstracted games are identical, the final step is often straightforward,
since the equilibrium of the abstracted game can be played directly in the full game. However,
I will show that, even in this simplified setting, often significant performance improvements can
be obtained by applying a nontrivial reverse mapping. I will introduce several procedures that
modify the action probabilities of the abstract equilibrium strategies by placing more weight on
certain actions [38]. These post-processing procedures are able to achieve robustness against
limitations of the abstraction and equilibrium-finding phases of the paradigm.

When the action spaces of the original and abstracted games differ, an additional procedure
is needed to interpret actions taken by the opponent that are not allowed in the abstract game
model. Such a procedure is called an action translation mapping. The typical approach for
performing action translation is to map the opponent’s action to a nearby action that is in the
abstraction (perhaps probabilistically), and then respond as if the opponent had taken this action.
I will present a new approach with theoretical advantages over the best prior approaches that also
outperforms them empirically.

14



While the first two steps of the paradigm have received significant attention over the last
several years, the final step has received considerably less attention and is often overlooked. I
will show that there are significant benefits to rigorous, theoretically-principled study of reverse
mapping. Even with great abstraction and equilibrium-finding algorithms, the performance im-
provement by using more sophisticated reverse mapping techniques can be enormous.
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Part II

New Approaches for Game Solving within
the Leading Paradigm
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Chapter 5

Potential-Aware Imperfect-Recall
Abstraction with Earth Mover’s Distance
in Imperfect-Information Games

As described in Chapter 4, significant amounts of abstraction, and particularly information ab-
straction, are needed to apply algorithms for approximating equilibrium strategies in large im-
perfect-information games. One approach for determining which information sets should be
grouped together is to come up with a measure of ‘strength’ for each state, then run a cluster-
ing algorithm, such as k-means, using the difference in ‘strength’ as the distance metric. For
example, in poker, a natural measure of a hand’s strength is the equity (probability of winning
plus one-half the probability of tying) against a uniform random draw of private cards for the
opponent, assuming a uniform random rollout of the remaining public (i.e., shared) cards. This
is also known as the expected hand strength (EHS) metric. For example, if a player is dealt two
aces as his two private cards in Texas hold ’em, he will win 84.93% of the time and will tie
0.55% of the time against a random hand assuming a random rollout of the public cards, giving
his hand an equity of 0.852. Similarly, the equity of two kings is 0.824. Since these two val-
ues are similar, it is likely that they would be grouped together by a clustering algorithm. Early
approaches for abstraction in poker used EHS (or EHS exponentiated to some power) to cluster
hands [9, 42, 120, 125].

While EHS is a reasonable first-order-approximation for the strength of a hand, it fails to
account for the entire probability distribution of hand strength. For example, the hands KcQc
(king and queen of clubs) and 6c6d (six of clubs and six of diamonds) have expected hand
strengths of 0.634 and 0.633 respectively, which suggests that they have very similar strength.
However, looking at the full distributions of hand strength, as opposed to just its expectation,
paints a very different picture, as previous work has shown [47, 68]. Figures 5.1 and 5.2 (which
are similar to part of Figure 2 from Johanson et al.’s work [68]) show the full histograms of
expected hand strength for the two hands, where each bar corresponds to the probability mass of
the given level of hand strength. For example, if the public board cards are 7dQh4h2s3c, then
KcQc has an equity of 0.856 against a uniform random opponent hand; so the histogram entry
corresponding to the column for an equity of 0.84–0.86 is incremented by one for this hand (prior
work has assumed that the equities are divided into 50 regions of size 0.02, as do these figures).
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As the figures indicate, despite the fact that these hands have similar expected hand strengths,
their full distributions are very different. For example, 6c6d frequently has an equity between
0.5 and 0.7 and rarely has an equity between 0.7 and 0.9, while the reverse is true for KcQc.

Figure 5.1: Equity distribution for 6c6d. Figure 5.2: Equity distribution for KcQc.

An abstraction algorithm that considers the full distributions of hand strength, as opposed
to just the expectation, is called distribution aware. The leading abstraction algorithm for
imperfect-information games generates abstractions that are distribution aware [68], and it has
been shown empirically that the distribution-aware approach significantly outperforms EHS-
based approaches [45, 68]. The natural metric for computing distances between histograms of
hand-strength distributions is the earth mover’s distance (EMD). Informally, EMD is the “mini-
mum cost of turning one pile into the other, where the cost is assumed to be amount of dirt moved
times the distance by which it is moved.” Earlier work on distribution-aware abstraction used the
L2 distance metric instead [47], which has been shown to be significantly less effective because
it does not properly account for how far the “dirt” needs to be moved (only how much needs to be
moved). Using one-dimensional histograms as done above, EMD can be computed by a straight-
forward linear time procedure that scans the histogram and keeps track of how much dirt needs to
be transported between consecutive bins. However, computing EMD is much more challenging
as the dimensionality of the data increases, and as we will present later, multi-dimensional EMD
computation will be needed in more sophisticated abstraction algorithms.

In the domain of Texas hold ’em poker, the leading abstraction algorithm works as fol-
lows [68]. In the first round, there is no card abstraction, and each hand is in its own bucket.
In the second and third rounds, abstractions are computed as follows. First, an equity histogram
is constructed for each hand, similarly to those in Figures 5.1 and 5.2. For example, for the flop,
we will create a histogram for the hand where the private cards are Kc3h and the public cards
are KsTd8h. Then k-means is used to compute an abstraction with a desired number of clusters,
using the EMD between each pair of histograms as the distance metric. One important feature
of these abstractions is that they have imperfect recall: a player can be made to forget informa-
tion that he knew earlier in the hand. For example, the hands Kc3h-KsTd8h and Kc4h-KsTd8h
will likely be grouped together on the flop, even though the player could distinguish between
Kc3h and Kc4h in the preflop round. Imperfect recall abstractions have been demonstrated to
lead to significantly stronger performance than perfect recall for an abstraction of a given size,
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because they allow the player to have a more refined view of the present since he is allowed to
forget details about the past [120].1 That algorithm computes abstractions for the flop and turn
rounds independently using this approach. It computes the abstraction for the final round using
a different approach (k-means with L2 over vectors of EHS against first-round clusters of the
opponent).

As described above, the equity histograms for the flop (and turn) rounds consider distri-
butions over future strength at the final round of the game (i.e., after all the public cards are
dealt). However, it is possible that two flop hands have very similar distributions over strength
after the river is dealt, but they realize the equity at very different rates throughout the hand.
Section 5.1 provides example situations of how this can arise, both in poker and in a general
domain-independent game. Thus, a natural direction to explore is whether one might benefit
by considering the distribution over strength in all future rounds, not just the final round. An
abstraction algorithm that takes all future rounds into account is called potential aware. Prior
work on potential-aware abstraction [47] applied only to perfect-recall abstraction and used the
L2 distance metric, both of which have significant shortcomings, as described above.

I will present the first algorithm for computing potential-aware imperfect-recall abstractions,
using EMD as the distance metric [35]. We design a new abstraction algorithm that combines
these three threads, each of which has been shown helpful separately in the past. Computing
imperfect-recall abstractions is significantly more challenging than in the perfect-recall case,
since the set of hands that must be clustered at each step is much larger. Additionally, computing
EMD in this setting is significantly more challenging than in the one-dimensional distribution-
aware setting, and is also much more challenging than computing L2 distance in the potential-
aware setting. The best commercially-available algorithm for computing (multi-dimensional)
EMD [87, 88] is far too slow to compute abstractions in poker, and we develop a fast custom
heuristic for approximating EMD in our setting. Experiments on no-limit Texas hold ’em show
that our algorithm leads to a statistically significant improvement in performance over the previ-
ously best abstraction algorithm.

5.1 Potential-aware abstraction

In this section, we present examples that demonstrate the difference between potential-aware ab-
straction and the leading distribution-aware approach, which considers distributions over future
strength at the final round of the game. The examples show that it is possible for two different
states of private information to have very similar (even identical) histograms over equity at the
end of the game, but to realize this equity in very different ways throughout the play of the game.
We first present a domain-independent example in Section 5.1.1, followed by an example of a
poker situation demonstrating this phenomenon in Section 5.1.2.

1A downside of using imperfect-recall abstractions is that they typically cause equilibrium-finding algorithms to
lose their convergence guarantees.
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5.1.1 Domain-independent example

We consider the following game. A player is initially given private signal xi, and then chance
makes up to two moves before the game ends. The information equity trees for x1 and x2 are
given in Figures 5.3 and 5.4. The opponent is also given a private signal from some distribution,
and the equities of the initial player against the opponent’s distribution are given in the leaves
of the trees. If the player has x1, then chance selects the right branch with probability 1 in the
first round, then selects each branch with probability 1

2
in the second round. If chance selects the

right branch in the second round, then the player has an equity of 1; otherwise, he has equity 0.
If the player has x2, then chance selects each branch with probability 1

2
in the first round, and

selects the right branch with probability 1 in the second round (for each choice of actions in the
first round). If chance selected the left branch in the first round, then the player’s equity is 0; if
chance selected the right branch in the first round, then his equity is 1.

Figure 5.3: Information equity tree for private
signal x1.

Figure 5.4: Information equity tree for private
signal x2.

If we use the traditional distribution-aware approach of considering equity assuming the end
of the game is reached, then equity histograms for both x1 and x2 are the same and given in
Figure 5.5: with probability 1

2
, the player will have equity 0, and with probability 1

2
, he will

have equity 1. For this example, we assume that the equities are broken into five equally-sized
intervals. (Several of the strongest poker agents use fifty intervals each of width 0.02.) Since
these histograms are identical, the EMD between the two states corresponding to the two private
signals respectively would be zero, so they would be treated as being identical.

However, these two states are actually quite different if we consider how the equity changes
between the first and second round, as opposed to just jumping to the end of the game. With
x2, the player will know for sure whether he has an equity of 0 or 1 after chance’s first move,
while with x1 he will not. To perform potential-aware abstraction, the first step is to compute the
histograms for both players at the possible states in the second round. The histogram for x1 after
chance selects the right branch (i.e., at B) is also the histogram given in Figure 5.5; the histogram
for x2 after chance selects the left branch (i.e., at D) has unit mass in the left-most column (equity
of 0–0.2); and the histogram for x2 after chance selects the right branch (i.e., at E) has unit mass
in the right-most column (equity of 0.8–1).

Next, we compute the histograms for x1 and x2 at the first round, with respect to the possible
states that could be reached at the second round. The histogram for x2 is given in Figure 5.6.
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The possible states B, D, and E correspond to the second round states in the information equity
trees. We omit additional states that could have originated from x3, x4, etc. (they will all have
probability 0). As the figure shows, with x2 the player will be in states D and E with probability
1
2
. The histogram for x1 will have unit mass in the column for state B. Unlike the histograms

above, whose x-axis is cardinal (i.e., equity), the x-axis of these histograms is not even ordinal
(the next-round states can be listed in any arbitrary order).

Figure 5.5: Histogram of equity for both pri-
vate information x1 and x2 at round 1, as-
suming the game reaches the end of the final
round.

Figure 5.6: Histogram for private signal x2 at
round 1 over non-ordinal information states
at round 2.

To transform this new histogram for x1 into the histogram for x2, we must move a mass of 1
2

from the B column to both the D and E columns. Thus, the EMD is 1
2
d(B,D)+ 1

2
d(B,E), where

the ground distances d(B,D) and d(B,E) are computed using the second-round histograms
described above. To transform the histogram at B into the histogram at D, we must move a
mass of 1

2
from the rightmost column to the leftmost column; so d(B,D) = 1

2
· 4 = 2. Similarly,

d(B,E) also equals 2. So the EMD between the two, non-ordinal first-round histograms is 1
2
·2+

1
2
·2 = 2. Thus, potential-aware abstraction will treat x1 and x2 differently, and potentially group

them into different clusters (while the distribution-aware approach will treat them as identical, as
shown above).

5.1.2 Poker example
Earlier in this chapter (Figures 5.1 and 5.2) we provided a canonical example of two Texas hold
’em hands with similar EHS, but very different histograms over equity at the end of the hand
(KcQc vs. 6c6d). We now present an example of two hands that have similar histograms over
equity at the final round (and thus also similar EHS), but realize their equity in very different
ways throughout the hand.

Consider the two flop hands TcQd-7h9hQh and 5c9d-3d5d7d (the first two cards are the
private cards, and the next three are the public flop cards). These are both relatively strong
hands. The first hand has top pair (a pair of queens), and the second hand has second pair (a pair
of fives) plus a flush draw (another diamond on the board would complete a flush). The hands
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both have very similar EHS, assuming both the turn and river are dealt; TcQd-7h9hQh has EHS
0.683 and 5c9d-3d5d7d has EHS 0.679. These two hands also have very similar full distributions
over equity at the final round, as can be seen in Figures 5.7 and 5.8. The EMD between these
two distributions is 0.559, where the unit is equity intervals (assuming fifty intervals of width
0.02, and a total unit mass for both distributions). This value is sufficiently low that these two
hands are grouped into the same bucket by the leading distribution-aware abstraction algorithm
(and therefore, they would be treated as being identical by equilibrium-finding algorithms).

Figure 5.7: Equity distribution for TcQd-
7h9hQh on the river (final betting round).

Figure 5.8: Equity distribution for 5c9d-
3d5d7d on the river (final betting round).

However, despite similarities between the equity distributions after the river is dealt, these
two hands realize their equity very differently throughout the hand. Figures 5.9 and 5.10 show
their expected hand strength distributions on the turn (the next public card), assuming a uniform
random distribution for the river card and the opponent’s cards. These two distributions are very
different; for example, a large portion of the time TcQd-7h9hQh will have a turn equity between
0.68 and 0.78, while 5c9d-3d5d7d has a large portion of its equity in the 0.56–0.66 range.

We note that Figures 5.9 and 5.10 depict the distributions of expected turn hand strength,
as opposed to full distributions over distributions of river hand strength (since each turn card
will lead to a distribution over strength in the next round, not a single value). For example, for
the hand TcQd-7h9hQh, if the turn card is Ad, the hand’s expected equity, assuming a uniform
random river card and uniform random hand for the opponent, is 0.695 (though it will vary for
individual river cards); so the interval for 0.68–0.7 in the histogram would be incremented by
one for that turn card. This is significantly more simplistic than our potential-aware approach,
which takes into account the full distribution of turn ‘buckets’, which are themselves distribu-
tions over equity intervals after the river. However, comparing these distributions is still useful
for several reasons. First, if the full distributions over turn hand strength (which are, themselves,
distributions over river hand strength) were similar, then the distributions over the expectation
of turn hand strength distributions would necessarily be similar as well; thus, the fact that the
expectation distributions differ significantly indicates that the full distributions also differ sig-
nificantly. And second, it is not feasible to compactly represent the full distributions visually,
while the distributions of expected hand strength can be represented easily as two-dimensional
histograms.
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Figure 5.9: Equity distribution for TcQd-
7h9hQh on the turn (next betting round).
Each point is the expected hand strength for
a given turn card assuming a uniform random
distribution for the river card and the oppo-
nent’s cards.

Figure 5.10: Equity distribution for 5c9d-
3d5d7d on the turn (next betting round). Each
point is the expected hand strength for a given
turn card assuming a uniform random distri-
bution for the river card and the opponent’s
cards.

While the EMD between the river equity distributions depicted in Figures 5.7 and 5.8 is
0.559, the EMD between full turn distributions using the potential-aware approach is 4.519 (us-
ing comparable units). Potential-aware abstraction is able to correctly identify that these hands
are quite different, and places them into different buckets due to their large EMD (while the prior
abstraction algorithm places them in the same bucket).

5.2 Algorithm for potential-aware imperfect-recall abstrac-
tion, with EMD

In this section, we present our new algorithm for computing potential-aware imperfect-recall
abstractions using EMD. We first present our main algorithm, followed by a heuristic for quickly
approximating the EMD in our setting that we use to make the algorithm practical for large
games such as Texas hold ’em.

Our abstraction algorithm, depicted in Algorithm 1, works as follows. Assume the informa-
tion tree has r+1 levels (0–r), and for each level n, a number of clusters Cn is specified as input.
For the final rounds n = r̂, . . . , r, an arbitrary abstraction algorithm Sn is used, with distance
function dn, to produce Cn clusters; let An denote the resulting abstraction, and let mn

i denote
the mean of the i’th cluster in An. Next, we compute the abstraction at round r̂ − 1 as follows.
First, we compute the distance dni,j between each pair of round-(n+1) means mn+1

i and mn+1
j ,

using the distance metric dn+1 (for the application to poker, the means are multidimensional vec-
tors (histograms) and dn+1 is the earth mover’s distance). Next, we compute histograms Hn(xn),
where the i-th element of Hn(xn) is the fraction of the time that chance’s next move will send xn

into cluster i in An+1. Finally, we compute the abstraction An at round n, by clustering the his-
tograms Hn into Cn clusters using clustering algorithm Ln (prior work in poker uses k-means).
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The distance metric used, denoted dn, is the EMD between the histograms, using dni,j as the
ground distance between components i and j of a histogram. We then compute the new cluster
means mn

i , and continue in the same fashion for n = r̂ − 2, . . . , 0. The resulting abstraction,
An, has imperfect recall since we cluster all of the histograms Hn(xn) without any regard for the
information known at the corresponding states at previous stages of the game, and potentially we
cluster two states together that contain information that we could distinguish between at earlier
rounds.

Algorithm 1 Main algorithm for computing potential-aware imperfect-recall abstractions
Inputs: {Cn} : n = 0, . . . , r; {Sn}, {dn} : n = r̂, . . . , r; {Ln} : n = 0, . . . , r̂ − 1

for n = r to r̂ do
Compute abstraction An with Cn clusters using abstraction algorithm Sn with distance

function dn

end for
for n = r̂ − 1 to 0 do

for i = 1 to Cn do
mn+1
i ← mean of cluster i in An+1

end for
for i = 1 to Cn − 1 do

for j = i+ 1 to Cn do
dni,j ← distance between mn+1

i and mn+1
j using distance function dn+1

end for
end for
for each point xn at round n do

Hn(xn)← histogram for xn over clusters from An+1

end for
Compute abstraction An over histograms Hn using clustering algorithm Ln and distance

function dn (i.e., EMD with dni,j as the ground distance) to produce Cn clusters
end for

To compute the distances in the main loop of Algorithm 1 we implemented the fastest
commercially-available multi-dimensional EMD algorithm [87, 88]; however, it was far too slow
for the domain of Texas hold ’em. So we were forced to develop a faster heuristic for approx-
imating EMD in this setting. Our heuristic is given in Algorithm 2. The context is that we are
running k-means to compute an abstraction at level n of the tree, for which we must compute the
distance between each ‘point’ and each mean. The ‘points’ correspond to the histogramsHn(xn)
over clusters in An+1, and were computed in the previous step of Algorithm 1. The naı̈ve way
of representing them would be as vectors of dimension Cn+1. However, this vector may be very
sparse. For example, if Cn+1 = 5000 (as in our experiments), but the current point can only
transition into 50 next-round clusters with positive probability, we would like to take advantage
of a sparser representation rather than represent it as a vector of size 5000. Instead, we represent
the point as a vector of length 50 (in this example), where each index corresponds to the index of
the next-round cluster we transition to. For example, if a point can transition to clusters 3, 5, or
10, for different chance moves, then we represent the point as the vector (3, 5, 10), where each of
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Algorithm 2 Algorithm for efficiently approximating EMD in our setting
Inputs: Point xn with N elements; mean m with Q elements; sortedDistances[i][j], ordered-
Clusters[i][j], for 1 ≤ i ≤ Cn+1, 1 ≤ j ≤ Q

targets[]← array of size N with all elements equal to 1
N

meanRemaining[]← copy of m
done[]← array of size N with all elements set to false
totCost← 0
for i = 1 to Q do

for j = 1 to N do
if done[j] == true then

continue
end if
pointCluster← xn[j]
meanCluster← orderedClusters[pointCluster][i]
amtRemaining← meanRemaining[meanCluster]
if amtRemaining == 0 then

continue
end if
d← sortedDistances[pointCluster][i]
if amtRemaining < targets[j] then

totCost += amtRemaining * d
targets[j] -= amtRemaining
meanRemaining[meanCluster]← 0

else
totCost += targets[j] * d
targets[j]← 0
meanRemaining[meanCluster] -= targets[j]
done[j]← true

end if
end for

end for
return totCost

these will have probability 1
3
. Each point xn in Algorithm 2 corresponds to such a vector, where

N denotes the length. For simplicity we assume that all of the elements are distinct, though
repeated elements can be dealt with straightforwardly.

We similarly take advantage of sparsity in representing the means. While each mean could
potentially have Cn+1 entries, many of these entries may be zero. Instead, we simply represent
the mean m as the vector of the nonzero entries, of which we assume there are Q. In order to
identify which clusters the entries correspond to, and to make our overall implementation more
efficient, we utilize several data structures. First, we precompute an array called sortedDistances,
where sortedDistances[i][j] is the distance between next-round cluster i and the j-th closest clus-
ter to i for which the current mean has non-zero probability, where distances have already been
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computed using dn+1. We also use a structure orderedClusters, where orderedClusters[i][j] is the
index of the cluster that the mean assigns non-zero probability to that is j-th closest to cluster i.
These arrays are precomputed in advance of the EMD computation; while they require some time
to compute, the EMD computations are by far the bottleneck of the algorithm. This additional
computation helps us overall since it significantly speeds up the EMD computations.

Given these data structures as input, we now approximate EMD as follows. First, we start
with the first entry of xn; we call the round-(n+1) cluster to which this belongs ‘pointCluster.’
We then find the closest cluster to pointCluster that corresponds to a nonzero element in the
mean; this will be the element orderedClusters[pointCluster][1], which we call ‘meanCluster.’
We shift as much mass as possible between from this mean element to the corresponding point
element. The cost is increased by the amount of mass we shift multiplied by the distance. We
then update the remaining point mass and mean mass at the elements we have considered, and
continue for the remaining point indices j = 2, . . . , N . Next, we set i = 2, and repeat the same
procedure, now shifting as much mass as is available from the second closest nonzero mean
cluster to each cluster of the point. We repeat this for i = 3, . . . , Q, until the mean vector has
been fully transformed into the point vector. We then output the resulting total cost.

As mentioned above, the fastest commercially-available algorithm for computing EMD [87,
88] is far too slow to be effective in Texas hold ’em. (This was despite the fact that we integrated
the data structures described above with this algorithm to exploit sparsity, as well as applied
several other enhancements to improve performance of k-means, such as a pruning technique
that exploits the triangle inequality [26] and parallelizing each step using 64 cores.) For the
point-mean distances in the first round of k-means, the exact EMD algorithm averaged 11.4 ms
per computation, while our heuristic averaged only 0.008 ms per computation. Furthermore,
the exact algorithm scales extremely poorly as the dimensionality of the inputs increases. Since
the initial means are themselves data points, their dimensionality is small; however, for future
rounds of k-means, the means are weighted averages over all points in their cluster, and have
higher dimensionality. Our new algorithm performs well even in the future rounds of k-means
as this dimensionality increases, while the exact algorithm scales very poorly.

There are many potential further improvements to approximating EMD and doing clustering
in this context. However, even with the techniques we already developed and tested, the approach
outperforms the previously best abstraction algorithm, as the experiments in the next section will
show.

5.3 Experiments

We evaluated our abstraction algorithm in a very large sequential imperfect-information game,
two-player no-limit Texas hold ’em. While our abstraction algorithm works for any number of
agents and does not assume a zero-sum game, we focused on this two-player zero-sum game in
the experiments—as is most common in this field—so that we can compute a near equilibrium
to a large abstraction, and thereby evaluate the results.
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5.3.1 Head-to-head performance vs. best prior abstraction algorithm

We ran two different sets of experiments corresponding to two different manually-generated
betting abstractions. In both experiments, we compared performance to the previously best ab-
straction algorithm [68]. In each experiment, we used the same betting abstraction for us and
for the benchmark. In the first experiment, we used the betting abstraction that was used by the
agent that finished in 2nd place in the 2012 Annual Computer Poker Competition. We chose to
test on this relatively small betting abstraction so that we could obtain a good level of conver-
gence to equilibrium in the abstract game. In the second experiment, we used a very large betting
abstraction; it is about 8 times larger than the version used by our 2013 competition agent, and
currently beats the winner from the 2013 competition.

In both experiments, we used 169, 5000, 5000, and 5000 card buckets respectively in the four
betting rounds for both the new algorithm and the prior algorithm. This card abstraction is used
by our strongest agent that now beats the winner from the 2013 competition, and was also used
by the 2013 competition agent that finished in 3rd. Also, as is typical nowadays among all the
top teams, the first round has 169 buckets corresponding to no abstraction at all.

In each of the two experiments, we created an agent that was identical to the corresponding
opponent, except that it used our new algorithm to compute the abstraction for the flop round
(i.e., second betting round). For both flop abstraction algorithms, we conducted 25 restarts using
the k-means++ initialization procedure [6], and selected the run that produced the lowest within-
cluster sum of squares. We chose to focus on the flop round for the following reasons. First,
the strongest agents do not use any abstraction preflop (i.e., on the first betting round), and
there is no potential on the river (i.e., last betting round) since no further cards will be dealt; so
potential-aware abstraction would not help on those rounds. The approach is potentially useful
on the turn (i.e., third betting round) as well, but it appears to be computationally intractable,
even using our fast heuristic for EMD (there are around 1.3 million hands to be clustered on
the flop, and 55 million on the turn). For each of the generated abstractions (two new and
two benchmarks), we computed an approximate equilibrium for the abstraction using a sampled
version of counterfactual regret minimization [77].

In each of the two experiments, we ran 20,000 duplicate matches between our new agent
and the respective benchmark agent. In both experiments, our new approach led to a statistically
significant improvement over the old approach. In the first experiment, the new agent beat its
benchmark by 2.58 milli big blinds per hand (mbb/h) with a 95% confidence interval of ±1.56
mbb/h. In the second experiment, the new agent beat its benchmark by 2.22 mbb/h (±1.28
mbb/h).

5.3.2 Evaluating the approximation of potential-aware EMD

To evaluate how closely the distance computed by Algorithm 2 approximates the true potential-
aware EMD, we repeatedly generated the histograms (over turn buckets) for two random flop
hands, and computed the exact EMD between the histograms. If this distance was less than
some threshold, then we also ran Algorithm 2 to approximate the EMD. (We chose a threshold
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of 30002 since it appears that the vast majority of the closest point-mean distances were in the
0–2500 range, and we are mostly interested in how well our heuristic does at approximating
EMD for the point-mean pairs with low distance, since those represent the cluster to which a
point might actually be assigned. We are not as concerned about how far off our heuristic is for
distances that are extremely large, as they will likely be pruned and have no chance of being
assigned as the closest mean.) We computed the relative error between the EMD computed by
our heuristic and the true EMD, and averaged it over many samples. Our algorithm had average
relative error of 0.1496 (with 95% confidence interval ±0.0014).

For comparison, we also computed the EMD between the same flop hands using the previ-
ously best distribution-aware approach, where the histograms consider equity assuming the end
of the game is reached. That approach produced an average relative error of 0.2084 (±0.0014)
compared to the potential-aware EMD over the same sample. Thus, our potential-aware, but
heuristically-computed EMD, approximates the true potential-aware EMD 28.2% better than the
prior approach for computing EMD, which used exact calculation but was not potential aware.

Though we already demonstrated the superiority of our abstraction algorithm over the prior
algorithm in the experiments described in Section 5.3.1, these results provide a further sanity
check that Algorithm 2 does in fact lead to a better degree of approximation of potential-aware
EMD than the prior method. The results also indicate that there is still room for significant
improvement toward more accurate potential-aware EMD computation.

5.4 Summary and extensions

I presented the first algorithm for computing potential-aware imperfect-recall abstractions using
earth mover’s distance as a distance metric. This is the first algorithm that combines potential-
aware abstraction with imperfect recall. It is also the first time earth mover’s distance has been
used in potential-aware abstraction. Both of these are conceptually clear improvements, and
experiments showed in the large that the new algorithm outperforms the best prior abstraction
algorithm with statistical significance.

A future direction would be to develop more accurate and/or faster heuristics for approxi-
mating EMD in our setting, or faster algorithms for computing exact EMD. One technique for
achieving the latter would be to use a clustering algorithm that selects cluster centers that have
lower dimensionality than the centers selected by k-means, since the best commercially-available
algorithm for computing EMD is slow for points with high dimensionality. A promising ap-
proach is the k-medoids algorithm, which only uses data points as the cluster centers. However,
k-medoids is significantly slower than k-means and it requires additional memory, so it is unclear
whether it will be feasible to apply to poker or other large games. We would also like to extend
our approach to the turn round as well, though this appears to be infeasible, even using our fast
heuristic, due to the large number of turn hands that need to be clustered. One technique that
may help is to sample a subset of the turn hands and perform clustering only over that subset.

2These values must be divided by 1081 for the total histogram mass to be normalized to one, since for each flop
hand there are 47·46

2 = 1081 combinations of turn and river cards, and these combinations constitute the elements
in the histograms.
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We expect our algorithm to be applicable to games beyond no-limit Texas hold ’em (NLHE).
We would expect it to lead to an even more significant performance improvement over the prior
approach in certain other popular variants of poker, such as pot-limit Omaha hold ’em (aka PLO),
since the strength of hands changes much more significantly between rounds than in Texas hold
’em, so taking the full trajectory of strength into account would be more important in that game.
PLO also has a significantly larger state space than Texas hold ’em (in all rounds), and therefore
we would expect abstraction to play a larger role than in NLHE. In particular, there are many
more hands for the preflop and flop rounds in PLO than in NLHE, and we expect our approach to
help the most when performing abstraction in the earlier rounds, since that is where there is the
biggest difference between the distribution of hand strength assuming the final round is reached
and the full trajectory of hand strength distributions in all future rounds.

We would also like to apply our algorithm to games outside of poker. It would be applicable
to any large sequential game of imperfect information where information abstraction is necessary,
and it would be especially useful for games where the strength of private information can change
significantly between rounds, since the algorithm accounts for the full trajectory of strength over
all future rounds.
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Chapter 6

Hierarchical Abstraction Algorithm that
Enables Massive Distributed Equilibrium
Computation

The equilibrium-finding algorithm used by today’s strongest Texas hold ’em agents is a Monte
Carlo version of the counterfactual regret minimization algorithm (MCCFR) [77]. That algo-
rithm involves repeatedly sampling chance outcomes and actions down the tree, and updating
regret and average strategy values that are stored at each information set.

On a shared-memory architecture, MCCFR can be parallelized straightforwardly; however,
true shared-memory architectures typically come with relatively little memory and relatively
few cores, and it would be desirable for scalability to be able to run on architectures that have
more memory (in order to be able to run on larger, more detailed abstractions) and more cores
(for speed). However, on distributed architectures and supercomputers with high inter-blade1

memory access latency, straightforward MCCFR parallelization approaches lead to impractically
slow runtimes because when a core does an update at an information set it needs to read and write
memory with high latency. Our approach solves this problem.2

To obtain these benefits, our algorithm creates an information abstraction that allows us to
assign different components of the game tree to different blades so the trajectory of each sample
only accesses information sets located on the same blade [18]. At a high level, the first stage
of our hierarchical approach is to cluster public information at some early point in the game
(public flop cards in the case of Texas hold ’em poker—see Chapter 3 for the rules), giving a
global basis for distributing the rest of the game into non-overlapping pieces; then our algorithm
conducts clustering of private information. A key contribution is the specific way to cluster the
public information. As we will detail in Section 6.1, two prior abstraction algorithms motivated
by similar considerations have been developed for poker by others [60, 120], but ours differs in

1Such supercomputers consists of blades, which are themselves computers that are plugged into racks. A core
can access memory on its blade faster than memory on other blades—seven times faster on the computer we used.
On regular distributed systems, the difference between local and remote memory access is even greater.

2Note that a recent parallel implementation of MCCFR that uses a new version of CFR called CFR+ and involves
breaking the game into public subgames also successfully keeps the memory local [15]. Vanilla CFR+ is now the
fastest solving variant.
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that it does not use hand-crafted poker features, is applicable to the large, and does not have the
conceptual weaknesses from which they suffer.

We developed an equilibrium-finding algorithm that can be applied to this abstraction. It is
a modified version of external-sampling MCCFR [77]. Applied to TH, it samples one pair of
preflop (i.e., first betting round) hands per iteration. For the later betting rounds, each blade
samples public cards from its public cluster and performs MCCFR within each cluster. Our
algorithm weighs the samples to remove bias. Ours is similar to the algorithm of Jackson [60].
However, we implement MCCFR instead of chance-sampled CFR, and split only based on public
information (chance actions) rather than players’ actions. Another related prior approach used
vanilla CFR (which converges significantly slower in practice) and split based only on players’
actions (which does support nearly as much parallelization) [62].

The new abstraction and equilibrium-finding algorithms enabled an equilibrium computation
of unprecedented size on a supercomputer with high inter-blade memory access latency. Ex-
periments also show that this run outperforms the strongest prior approach executed on a large
shared-memory server with low memory latency but fewer cores. An agent for two-player no-
limit Texas hold ’em that was generated using these techniques won the 2014 Annual Computer
Poker Competition (ACPC), beating each opponent with statistical significance.

6.1 Abstraction algorithm

Our new hierarchical abstraction algorithm is domain independent, although in many places
of the description we present it in the context of poker for concreteness. In order to enable
distributed equilibrium finding, it creates an information abstraction that assigns disjoint com-
ponents of the game tree to different blades so that sampling in each blade will only access
information sets that are located on that blade.

At a high level, the first stage of our hierarchical abstraction algorithm is to cluster public
information at some early point in the game (public flop boards, i.e., combinations of public flop
cards, in the case of TH), giving a global basis for distributing the rest of the game into non-
overlapping pieces. Then, as a second stage our algorithm conducts clustering of information
states (that can include both public and private information) in a way that honors the partition
generated in the first stage.

As an example, suppose that in the first stage we cluster public flop boards into 60 buckets.
Suppose bucket 4 contains only the boards AsKhQd and AsKhJd. Then we cluster all private
hands for each betting round, starting with the flop, i.e., the second round (we assume the ab-
straction for the preflop round has already been computed—the strongest agents, including ours,
use no abstraction preflop). We perform abstraction over full (five-card) flop hands separately
for each of the 60 blades. For blade 4, only the hands for which the public board cards are
AsKhQd or AsKhJd are considered (for example, 5s4s-AsKhQd and QcJc-AsKhJd). There are
2,352 such hands. If we allowed an abstraction at the current round with 50 private buckets per
blade, we would then group these 2,352 hands into 50 buckets (using some abstraction algorithm;
we discuss ours in detail later). We then perform a similar procedure for the third (aka turn) and
fourth (aka river) rounds, ensuring that the hands for each blade are limited only to the hands that
contain a public flop board that was assigned to that blade in the first stage of the algorithm.
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A game has perfect recall if, informally, no player ever forgets information that he knew at an
earlier point in the game. This is a useful concept for several reasons. First, certain equilibrium-
finding algorithms can only be applied to games with perfect recall [55, 72]. Second, other
equilibrium-finding algorithms, such as CFR [125] and its sampling variants, have no theoretical
guarantees in games that have imperfect recall, though they can still be applied. (One notable
exception is recent work giving a theoretical guarantee of the performance of CFR in one class
of imperfect-recall games called well-formed games [78].) And third, Nash equilibria are not
even guaranteed to exist in general in behavioral strategies in games with imperfect recall.

Despite these limitations, poker agents using abstractions with imperfect recall have consis-
tently been shown to outperform agents that use perfect recall abstractions [120]. Intuitively,
perfect-recall abstractions force agents to distinguish all information at a later round in the tree
that they were able to distinguish at an earlier round, even if such a distinction is not very signif-
icant at the later round. For example, if an agent can distinguish between Kh3c and Kh4c in the
preflop round (as is the case in the abstractions of the best agents), then a perfect-recall abstrac-
tion would force them to be able to distinguish between Kh3c on a KsJd9h flop, and Kh4c on the
same flop, despite the fact that the 3c vs. 4c distinction is extremely unlikely to play a strategic
role in the hand. On the other hand, with imperfect recall, agents are not forced to remember all
of these distinctions simply because they knew them at a previous round, and are free to group
any hands together in a given round without regard to what information was known about them
in prior rounds of the abstraction. The most successful prior abstraction algorithms use imperfect
recall [35, 68].

Unfortunately, running CFR on imperfect-recall abstractions on a machine with high inter-
blade memory access latency can be problematic, since regrets and strategy values at different
buckets along a sample may be located on different blades. We now describe in detail our new
approach that enables us to produce strong abstractions for this setting. Our approach requires
players to remember certain information throughout the hand (public flop bucket), but does not
force players to distinguish between other pieces of information that they may have been able to
distinguish between previously (if such distinctions are no longer relevant). Thus, our approach
achieves the benefits of imperfect recall to a large extent (though not the flexibility of full imper-
fect recall) while achieving partitioning of the game into disjoint pieces for different blades to
work on independently.

6.1.1 Main abstraction algorithm
Our main abstraction algorithm, Algorithm 3, which is domain independent, works as follows.
Let r̂ be the special round of the game where we perform the public clustering. For the initial
r̂−1 rounds, we compute a (potentially imperfect-recall) abstraction using an arbitrary algorithm
Ar for round r. For example, in poker the strongest agents use no abstraction in the preflop round
(and even if they did use abstraction for it, it would not require public clustering and could be
performed separately). Next, the public states at round r̂ are clustered into C buckets. The
algorithm for this public clustering is described in Section 6.1.2. Once this public abstraction
has been computed, we compute abstractions for each round from r̂ to R over all states of private
information separately for each of the public buckets that have been previously computed. These
abstractions can be computed using any arbitrary approach, Ar. For our poker agent, we used an
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abstraction algorithm that had previously been demonstrated to perform well as the Ar’s [68].

Algorithm 3 Main abstraction algorithm
Inputs: number of roundsR; round where public information abstraction is desired r̂; number of
public buckets C; number of desired private buckets per public bucket at round r, Br; abstraction
algorithm used for round r, Ar

for r = 1 to r̂ − 1 do
cluster information states at round r using Ar

end for
cluster public information states at round r̂ into C buckets (e.g., using Algorithm 4)
for r = r̂ to R do

for c = 1 to C do
cluster private information states at round r that
have public information in public bucket c into Br

buckets using abstraction algorithm Ar
end for

end for

6.1.2 Algorithm for computing abstraction of public information
The algorithm used to compute the abstraction of public information at round r̂ is shown as
Algorithm 4. For TH, this corresponds to computing a bucketing of the public flop boards. To do
this, we need a distance function di,j between pairs of public states (or, equivalently, a similarity
function si,j that can be transformed into a distance function). We use this distance function to
compute the public abstraction using the clustering algorithm described in Section 6.1.3.

Two prior approaches have been applied to abstract public flop boards. One uses poker-
specific features that have been constructed manually [60]. The second, due to Waugh et al.,
uses k-means clustering with L2 distance over transition tables that were constructed from a
small perfect-recall base abstraction with 10 preflop buckets and 100 flop buckets [120]. The
entry T [f ][i][j] in the table gives the probability of transitioning from preflop bucket i to flop
bucket j in the abstraction when the public flop board is f . In addition to potentially prohibitive
computational challenges of scaling that approach to large base abstractions (such as the one
we will use, which has 169 preflop and 5,000 flop buckets), there are also conceptual issues, as
the following example illustrates. Consider the similar public flop boards AhKs3d and AhKs2d.
Suppose the base abstraction does not perform abstraction preflop and places 4c3s-AhKs3d and
4c2s-AhKs2d into the same flop bucket, (which we would expect, as they are very similar—
both have bottom pair with a 4 “kicker”), say bucket 12, while it places 4c3s-AhKs2d and 4c2s-
AhKs3d into bucket 13 (these hands are also very similar—the worst possible non-pair hand with
a “gutshot” straight draw). Suppose 4c3s is in bucket 7 preflop and 4c2s is in bucket 8. Then the
transition table for AhKs2d would have value 0 for the probability of transitioning from preflop
bucket 7 into flop bucket 12, while it would have value 1 for transitioning from preflop bucket
8 into flop bucket 12 (and the reverse for AhKs3d). So the L2 distance metric would maximally
penalize the boards for this component, despite the fact that they should actually be considered
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very similar based on this component, since they map hands that are extremely similar to the
same bucket. Our new approach accounts for this problem by building a distance function based
on how often public boards result in a given flop bucket in the base abstraction for any private
cards (not necessarily the same private cards, as the prior approach has done).

We have developed an efficient approach that was able to use the strong 169-5,000-5,000-
5,000 imperfect-recall abstraction as its base. We refer to this abstraction as A. The algorithm
is game independent, and pseudocode (that is not specific to poker) is presented in Algorithm 4.
As in Waugh’s approach described above, we first compute a transition table T that will be
utilized later in the algorithm, though our table will contain different information than theirs.
For concreteness, and to demonstrate the implementation used by our agent so that it can be
replicated, we will describe how the table is constructed in the context of TH poker.

We first construct a helper table called PublicFlopHands. The entry PublicFlopHands[i][j]
for 1 ≤ i ≤ 1, 755, 1 ≤ j ≤ 3 gives the j’th public flop card corresponding to index i, using
a recently developed indexing algorithm that accounts for all suit isomorphisms [118] (there are
52·51·50

6
= 22, 100 total public flop hands, but only 1,755 after accounting for all isomorphisms).

We specify one such canonical hand for each index. Next, using this table, we create the tran-
sition table T , where the entry T [i][j] for 1 ≤ i ≤ 1, 755, 1 ≤ j ≤ 5, 000 gives the number
of private card combinations for which a hand with public flop i transitions into bucket j of
the abstraction A, which has B = 5, 000 buckets. This is computed by iterating over all pub-
lic flop indices, then looking up the canonical hand in PublicFlopHands, and iterating over the
49·48

2
= 1, 176 possible private card combinations given that public flop hand. We then construct

the 5-card flop hand by combining the two private cards with the given public flop hand, look up
the index of this hand (again using Waugh’s indexing algorithm), and then look up what bucket
A places that flop hand index into. Thus, the creation of the transition table involves iterating
over 1, 755 · 1, 176 = 2, 063, 880 combinations, which can be done quickly.

In poker-independent terms, T [i][j] stores how often public state i will lead to bucket j of the
base abstraction, aggregated over all possible states of private information. In contrast, Waugh’s
table stores separate transition probabilities for each state of private information.

We would like our distance function to assign a small value between public states that are
frequently grouped into the same bucket by A, since we already know A to be a very strong
abstraction. We compute distances by iterating over the B (private) buckets in round r̂ of A.
We initialize a variable si,j which corresponds to the similarity between i and j to be zero. For
each bucket b, let ci denote the number of private states with public state i that are mapped to
b under A (and similarly for cj). For example, suppose i corresponds to the public flop board
of AsQd6h and b = 7. Then ci would denote the number of private preflop card combinations
(x,y), such that the flop hand xy-AsQd6h is placed in bucket 7 under A. We then increment si,j
by the minimum of ci and cj . For example, if ci = 4 and cj = 12, this would mean that i and j
are both placed into the current bucket b four times. Then the distance di,j is defined as V−si,j

V
,

which corresponds to the fraction of private states that are not mapped to the same bucket of A
when paired with public information i and j.3

3Note that d is not a distance metric. It is possible to have di,j = 0 for boards that are different, if the boards send
the same number of preflop hands into each flop bucket in A. Thus, we view d as an arbitrary matrix of distances
rather than viewing the space as a metric space. This will affect selection of the clustering algorithm, described in
Section 6.1.3.
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Algorithm 4 Algorithm for computing abstraction of public information
Inputs: number of public buckets C; number of public states M ; number of private information
sets per public state V ; prior abstraction A with B buckets; transition table T for public states
into buckets of A; clustering algorithm L

for i = 1 to M − 1 do
for j = i+ 1 to M do

si,j ← 0
for b = 1 to B do

ci ← T [i][b], cj ← T [j][b], si,j += min(ci, cj)
end for
di,j ← V−si,j

V

end for
end for
Cluster the M public states into C clusters using L with distance function d

For our application of Algorithm 4 to poker, the number of public buckets we used is C = 60,
the total number of private states for each public state is V = 1, 176, andB = 5, 000 as described
above. The full number of public flop boards after accounting for all suit isomorphisms is M =
1, 755. Thus, to compute all of the distances we must iterate over BN(N−1)

2
= 7.7 billion triples.

This can be performed quickly in practice, since for each item we only need to perform lookups
in the precomputed transition table.

6.1.3 Public abstraction clustering algorithm
Given the distance function we have computed, we next perform the clustering of the public
states into C public clusters, using the procedure shown in Algorithm 5. The initial clusters c0

are computed by applying k-means++ [6], using the pairwise point distance function di,j , which
is taken as an input. The k-means++ initialization procedure only requires knowing distances
between data points, not distances from a point to a non-data-point. Next, for each iteration t,
we iterate over all points i. We initialize clusterDistances to be an array of size K of all zeroes,
which will denote the distance between point i and each of the current clusters. We then iterate
over all other points j 6= i, and increment clusterDistances[ct−1[j]] by di,j . Once we have iterated
over all values of j, we let ct[i] denote the cluster with smallest distance from i. If no clusters
changed from the clustering at the previous iteration, we are done. Otherwise, we continue this
procedure until T iterations have been performed, at which point we output cT [i] as the final
abstraction.

This algorithm only takes into account distances between pairs of data points, and not dis-
tances between points in the space that are not data points (such as means). Clustering algorithms
that are designed for metric spaces, such as k-means, are not applicable to this setting.4

4We could have used the k-medoid algorithm (though it has a significant computational overhead over our ap-
proach, both in terms of running time and memory), or used the objective of minimizing the average distance of each
point from the points in a cluster (rather than the sum). It would be interesting to explore the effect of using different
choices for the clustering objective on abstraction quality. We chose the sum objective because it is computationally
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Algorithm 5 Clustering algorithm for public abstraction
Inputs: Number of public states to cluster M ; desired number of clusters K; distances di,j
between each pair of points; number of iterations to run T

Compute initial clusters c0 (e.g., using k-means++)
for t = 1 to T do

for i = 1 to M do
clusterDistances← array of size K of zeroes
for j = 1 to M , j 6= i do

clusterDistances[ct−1[j]] += di,j
end for
ct[i]← cluster with smallest distance

end for
if no clusters were changed from previous iteration then break
end if

end for

6.2 Equilibrium-finding algorithm

To solve the abstract game, one needs an algorithm that converges to a Nash equilibrium. The
most commonly used equilibrium-finding algorithm for large imperfect-information extensive-
form games is counterfactual regret minimization (CFR) and its extensions.

There is a large benefit to not needing to sample all actions at every iteration of CFR, and the
variants that selectively sample more promising actions more often are Monte Carlo CFR (MC-
CFR) and Pure CFR. The external sampling variant of MCCFR converges faster than Pure CFR
in practice but requires twice as much memory [39]. We build our equilibrium-finding algorithm
starting from MCCFR because it converges faster and we are no longer memory constrained
since we can run on distributed architectures.

External-Sampling MCCFR (ES-MCCFR) does a separate iteration for each player. On a
player’s iteration, ES-MCCFR samples opponent action and chance nodes down the tree (while
exploring all of the player’s actions). Actions are selected according to regret minimization.
Regret is updated in the player’s information sets, while average strategy is updated for encoun-
tered opponent information sets. This is problematic on a machine with high inter-blade memory
access latency because the information sets traversed on a single iteration can be located on dif-
ferent blades. On the supercomputer we used, for example, accessing memory on the same blade
takes 130 nanoseconds, while accessing memory on different blades takes about one microsec-
ond.

As discussed in the previous section, our new abstraction addresses this issue by ensuring that
after a certain point (for the flop through river rounds in the case of TH) all remaining information
sets encountered in the current MCCFR iteration are stored on the same blade (i.e., the blade that
the public flop was assigned to in the first stage of the abstraction algorithm.)

My collaborator Noam Brown has developed a modification of MCCFR specifically for ar-

feasible and gives a clustering with clusters of more balanced sizes than the average objective.
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chitectures with high inter-blade memory access latency, which is able to capitalize on the ab-
straction that has been computed using the new hierarchical abstraction algorithm described in
Section 6.1. The algorithm designates one blade as the “head” blade, which stores the regrets
and average strategies for the top part of the game tree (preflop round in TH). The algorithm
samples private information and conducts MCCFR on the head blade. When an action sequence
is reached that transitions outside the top of the game tree (to the flop in TH), the algorithm sends
the current state to each of the child blades. Each child blade then samples public information
from its public bucket and continues the iteration of MCCFR. Once all the child blades complete
their part of the iteration, their values are returned to the head blade. The head blade calculates
a weighted average of these values, weighing them by the number of choices of public informa-
tion (possible flops in TH) that they sampled from. The head node then continues its iteration
of MCCFR, repeating the process whenever the sample exits the top part (a flop sequence is
encountered) until the iteration is complete.

6.3 Experiments

We experimented on the version of two-player no-limit Texas hold ’em (nlhe) used in the ACPC,
which has 10165 nodes [63] in its game tree. Our agent used the new hierarchical abstraction and
distributed equilibrium-finding algorithms described in this chapter, as well as the new action
translation mapping which will be described in Chapter 7 and the new post-processing technique
which will be described in Section 8.7.

We used our new abstraction algorithm to create an information abstraction with 169 preflop
buckets, 60 public flop buckets, and 500 private buckets for the flop, turn, and river for each of
the public flop buckets, that is, 30,000 total private buckets for each of the three postflop rounds.
Our action abstraction had 6,104,546 nodes (including leaves). In total, our abstract game then
had 5.49 · 1015 nodes (including leaves), 6.6 · 1010 information sets (not including leaves), and
1.8 · 1011 infoset actions (a new measure of game size that is directly proportional to the amount
of memory that CFR uses [63]). This is six times larger than the largest abstractions used by
prior nlhe agents—and, to our knowledge, the largest imperfect-information game ever tackled
by an equilibrium-finding algorithm. This scale was enabled by our new, distributed approach.

We ran our equilibrium-finding algorithm for 1,200 hours on a supercomputer (Blacklight)
with a high inter-blade memory access latency using 961 cores (60 blades of 16 cores each, plus
one core for the head blade), for a total of 1,153,200 core hours. Each blade had 128 GB RAM.

The results from the 2014 ACPC against all opponents are shown in Table 6.1. The units are
milli big blinds per hand (mbb/h), and the ± indicates 95% confidence intervals. Our agent beat
each opponent with statistical significance, with an average win rate of 479 mbb/h. It won both
of the scoring categories: the total bankroll (which ranks agents by the total amount won against
all opposing agents) and the bankroll instant run-off (which iteratively removes the agent with
lowest total bankroll—this scoring rule favors agents that are close to equilibrium).

We also compared our algorithm’s performance to using the prior best approach on a low-
latency shared-memory server with 64 cores and 512 GB RAM. This is at the upper end of
shared-memory hardware commonly available today. The algorithm run on the server used ex-
ternal sampling MCCFR on an imperfect-recall card abstraction with 169, 5,000, 5,000, and
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O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13
261 ± 47 121 ± 38 21 ± 16 33 ± 16 20 ± 16 125 ± 44 499 ± 68 141 ± 45 214 ± 57 516 ± 61 980 ± 34 1474 ± 180 1819 ± 111

Table 6.1: Win rate (in mbb/h) of our agent in the 2014 Computer Poker Competition against
opposing agents.

5,000 bucket in the four respective betting rounds (this size was selected because it is slightly
under the capacity of 512 GB RAM). We computed that information abstraction using the state-
of-the-art non-distributed abstraction algorithm [35]. We used the same action abstraction as for
the distributed case. The abstract game then had 1.5 · 1014 nodes (including leaves), 1.1 · 1010

information sets (not including leaves), and 3.1 · 1010 infoset actions.
We benchmarked both against the two strongest agents from the 2013 competition, Fig-

ure 6.1.5 The new approach outperformed the old against both agents for all timestamps tested.
So, it is able to effectively take advantage of the additional distributed cores and RAM.

Figure 6.1: Win rates over time against the two strongest agents from the 2013 poker competition.

6.4 Summary and extensions
We introduced a distributed version of the most commonly used algorithm for large-scale equi-
librium computation, counterfactual regret minimization (CFR), which enables CFR to scale to
dramatically larger abstractions and numbers of cores. Specifically, we based our algorithm on
external-sampling Monte Carlo CFR. The new algorithm begets constraints on the abstraction so
as to make the pieces running on different computers disjoint. We introduced an algorithm for
generating such abstractions while capitalizing on state-of-the-art abstraction ideas such as im-
perfect recall and the earth-mover’s-distance similarity metric. Our techniques enabled an equi-

5Both our distributed and parallel algorithms were evaluated in play with purification (except no post-processing
of the first action), which had been shown to perform best among prior techniques. This is also one of the bench-
marks we evaluate in the experiments presented in Table 8.5.
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librium computation of unprecedented size on a supercomputer with a high inter-blade memory
latency. Prior approaches run slowly on this architecture. Our approach also leads to a signifi-
cant improvement over using the prior best approach on a large shared-memory server with low
memory latency. We applied these techniques to generate an agent for two-player no-limit Texas
hold ’em. It won the 2014 Annual Computer Poker Competition, beating each opponent with
statistical significance.

The techniques are game independent. While we presented them for a setting that does not
require abstraction before the public information arrives, and there is only one round of public
information, they can be extended to settings with any sequence of interleaved public and private
information delivery—while keeping the information sets on different blades disjoint. Also,
while we presented techniques for two levels in the distribution tree (one blade to handle the top
part and the rest split disjointly among the other blades), it is easy to see how the same idea can
be directly extended to trees with more than two levels of blades.
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Chapter 7

Action Translation

Thus far, I have described approaches for the first two steps of the leading paradigm from Fig-
ure 4.1. In many games, once the abstract equilibrium has been computed, it can be implemented
directly in the real game, and the “reverse mapping” step is trivial. However, as I will show, there
can be significant benefits to performing more sophisticated reverse-mapping algorithms. First,
if we performed action abstraction when constructing the abstraction, we need a technique for
determining how to respond when the opponent takes an action that has been removed from the
model [34]. For example, we may have limited bids to multiples of $100, but the opponent makes
a bid of $215. We need an intelligent way of interpreting and responding to such actions which
are not in our abstraction. The standard approach for doing this is to apply an action translation
mapping [48], [103]), which maps the observed action a of the opponent to an action a′ in the ab-
straction; then we simply respond as if the opponent had played a′ instead of a. A natural action
translation mapping would be to map the observed action to the closest action in our abstraction
(according to a natural distance metric); in the example just described, this mapping would map
the bid of $215 to $200. However, this is just one possible mapping, and significantly more
sophisticated ones are possible.

This chapter will present a new approach for the action translation problem, which an essen-
tial step if action translation has been performed. Next, in Chapter 8, I will describe further post-
processing approaches can be applied in addition to action translation, and also in games where
no action abstraction was performed. Those approaches work by modifying the action prob-
abilities of the abstraction equilibrium in desirable ways. Action translation and these further
post-processing approaches together comprise the final “reverse mapping” step of the leading
paradigm.

Several prior action translation mappings have been proposed for the domain of no-limit
Texas hold ’em [3, 48, 97, 103]. However, these have all been based on heuristics and lack
any theoretical justification. We show that most of the prior approaches violate certain natural
desiderata and that all of them are highly exploitable in simplified games. (Exploitability in such
simplified games is a standard evaluation technique since it cannot be computed in the large.)
We present a new mapping, called the pseudo-harmonic mapping, that satisfies these desiderata
and has significantly lower exploitability than the prior mappings. Thus, we expect our mapping
to perform much better than the prior ones against sophisticated adaptive opponents who are
specifically trying to exploit our mapping. (For one, any strong human poker player would try
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this against a computer program.) Furthermore, we observe that the cost of this worst-case per-
formance benefit (low exploitability) is not high in practice; our mapping performs competitively
with the prior mappings against no-limit Texas hold ’em agents submitted to the 2012 Annual
Computer Poker Competition.

7.1 Problem formulation
Suppose the set of allowable actions at a given information set is some subset of the real interval
S = [T , T ]. (In no-limit poker, T will be zero and T will be the stack size of the player to
act.) An action abstraction at this information set will correspond to a finite increasing sequence
(A0, . . . , Ak) with T ≤ A0 and Ak ≤ T . (In our experiments we will set A0 = T and Ak = T ;
that is, the interval boundaries will be in our abstraction. In abstractions where that is not the
case, actions that fall outside of [A0, Ak] can simply be mapped to A0 or Ak.)

Now suppose the opponent takes some action x ∈ S. Let A = max{Ai : Ai ≤ x}, and let
B = min{Ai : Ai ≥ x}. Then x ∈ [A,B], where T ≤ A ≤ B ≤ T . The action translation
problem is to determine whether we should map x toA or toB (perhaps probabilistically). Thus,
our goal is to construct a function fA,B(x), which denotes the probability that we map x to A
(1−fA,B(x) denotes the probability that we map x toB). This is our action translation mapping.
Ideally we would like to find the mapping that produces the lowest exploitability when paired
with a given action abstraction and equilibrium-finding algorithm. We call the value x∗ for which
fA,B(x∗) = 1

2
the median of f (if it exists).

7.2 No-Limit poker
We will evaluate different action translation mappings empirically in several variants of two-
player no-limit poker. The rules of no-limit Texas hold ’em are described in Chapter 3, and the
rules of several new variants considered are described here.

7.2.1 Clairvoyance game
In the clairvoyance game [4], player P2 is given no private cards, and P1 is given a single card
drawn from a distribution that is half winning hands and half losing hands. Both players have
stacks of size n, and they both ante $0.50 (so the initial size of the pot is $1). P1 is allowed to
bet any amount x ∈ [0, n]. Then P2 is allowed to call or fold (but not raise).

7.2.2 Kuhn poker
No-limit Kuhn poker is similar to the clairvoyance game, except that both players are dealt a
single private card from a three-card deck containing a King, Queen, and a Jack [4, 76].1 For
Kuhn poker and the clairvoyance game, we restrict all bets to be multiples of $0.10.

1In limit Kuhn poker, player 2 is allowed to bet following a check of player 1; this is not allowed in no-limit
Kuhn poker.
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7.2.3 Leduc hold ’em

In Leduc hold ’em, both players are dealt a single card from a 6-card deck with two Kings, two
Queens, and two Jacks. Both players start with $12 in their stack, and ante $1 [103, 119]. There
is initially a round of betting, then one community card is dealt and there is a second round of
betting. Any number of bets and raises is allowed (up to the number of chips remaining in one’s
stack).

7.2.4 Texas hold ’em

For comparison to the new variants, I briefly summarize Texas hold ’em again here. In Texas
hold ’em, both players are dealt two private cards from a 52-card deck. Using the parameters of
the Annual Computer Poker Competition, both players have initial stacks of size 20,000, with
a small blind of 50 and big blind of 100. The game has four betting rounds. The first round
takes place before any public information has been revealed. Then three public cards are dealt,
and there is a second betting round. One more public card is then dealt before each of the two
remaining betting rounds.

7.3 Action translation desiderata

Before presenting an analysis of action translation mappings for the domain of poker, we first
introduce a set of natural domain-independent properties that any reasonable action translation
mapping should satisfy.

1. Boundary Constraints. If the opponent takes an action that is actually in our abstraction,
then it is natural to map his action to the corresponding action with probability 1. Hence
we require that f(A) = 1 and f(B) = 0.

2. Monotonicity. As the opponent’s action moves away from A towards B, it is natural to
require that the probability of his action being mapped to A does not increase. Thus we
require that f be non-increasing.

3. Scale Invariance. This condition requires that scaling A, B, and x by some multiplicative
factor k > 0 does not affect the mapping. In poker for example, it is common to scale all
bet sizes by the size of the big blind or the size of the pot. Formally, we require

∀k > 0, x ∈ [A,B], fkA,kB(kx) = fA,B(x).

4. Action Robustness. We want f to be robust to small changes in x. If f changes abruptly
at some x∗, then the opponent could potentially significantly exploit us by betting slightly
above or below x∗. Thus, we require that fA,B is continuous in x, and preferably Lipschitz
continuous as well.2

2A function f : X → Y is Lipschitz continuous if there exists a real constantK ≥ 0 such that, for all x1, x2 ∈ X,
dY (f(x1), f(x2)) ≤ KdX(x1, x2).
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5. Boundary Robustness. We also want f to be robust to small changes in A and B. If a
tiny change in A (say from A1 to A2) caused fA,B(x) to change dramatically, then it would
mean that f was incorrectly interpreting a bet of size x for either A = A1 or A = A2, and
could be exploited if the boundary happened to be chosen poorly. Thus, we require that f
be continuous and ideally Lipschitz continuous in A and B.

7.4 Prior mappings

Several action translation mappings have been proposed for no-limit Texas hold ’em [3, 48, 97,
103]. In this section we describe them briefly. In later sections, we will analyze the mappings
in more detail, both empirically and theoretically. For all the mappings, we assume that the pot
initially has size 1 and that all values have been scaled accordingly.

7.4.1 Deterministic arithmetic

The deterministic arithmetic mapping is the simple mapping described in the introduction. If
x < A+B

2
, then x is mapped to A; otherwise x is mapped to B. In poker, this mapping can be

highly exploitable. For example, suppose A is a pot-sized bet (e.g., of 1) and B is an all-in (e.g.,
of 100). Then the opponent could significantly exploit us by betting slightly less than A+B

2
with

his strong hands. Since we will map his bet to A, we will end up calling much more often than
we should with weaker hands. For example, suppose our strategy calls a pot-sized bet of 1 with
probability 1

2
with a medium-strength hand. If the opponent bets 1 with a very strong hand, his

expected payoff will be 1 · 1
2

+ 2 · 1
2

= 1.5. However, if instead he bets 50, then his expected
payoff will be 1 · 1

2
+ 51 · 1

2
= 26. In fact, this phenomenon was observed in the 2007 Annual

Poker Competition when the agent Tartanian1 used this mapping [48].

7.4.2 Randomized arithmetic

This mapping improves upon the deterministic mapping by incorporating randomness [3, 48]:

fA,B(x) =
B − x
B − A

Now a bet at x∗ = A+B
2

is mapped to both A and B with probability 1
2
. While certainly an

improvement, it turns out that this mapping is still highly exploitable for similar reasons. For
example, suppose the opponent bets 50.5 in the situation described above, and suppose that we
will call an all-in bet with probability 1

101
. Then his expected payoff will be

1

2
(1 · 1

2
+ 51.5 · 1

2
) +

1

2
(1 · 100

101
+ 51.5 · 1

101
) = 13.875.

This mapping was used by the agent AggroBot [3].
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7.4.3 Deterministic geometric
In contrast to the arithmetic approaches, which consider differences from the endpoints, the
deterministic geometric mapping uses a threshold x∗ at the point where the ratios of x∗ to A
and B to x∗ are the same [48]. In particular, if A

x
> x

B
then x is mapped to A; otherwise x is

mapped to B. Thus, the threshold will be x∗ =
√
AB rather than A+B

2
. This will diminish the

effectiveness of the exploitation described above; namely to make a large value bet just below
the threshold. This mapping was used by the agent Tartanian2 in the 2008 Annual Computer
Poker Competition [48].

7.4.4 Randomized geometric 1
Two different randomized geometric approaches have also been used by strong poker agents.
Both behave similarly and satisfy fA,B(

√
AB) = 1

2
. The first has been used by at least two

strong agents in the competition, Sartre and Hyperborean [97, 103]:

gA,B(x) =
A
x
− A

B

1− A
B

hA,B(x) =
x
B
− A

B

1− A
B

fA,B(x) =
gA,B(x)

gA,B(x) + hA,B(x)
=

A(B − x)

A(B − x) + x(x− A)

7.4.5 Randomized geometric 2
The second one was used by another strong agent, Tartanian4, in the 2010 competition:

fA,B(x) =
A(B + x)(B − x)

(B − A)(x2 + AB)

7.5 Our new mapping

The prior mappings have all been based on heuristics without theoretical justification. We pro-
pose a new mapping that is game-theoretically motivated as the generalization of the solution to
a simplified game—specifically, the clairvoyance game described in Section 7.2.1. The clairvoy-
ance game is small enough that its solution can be computed analytically [4]:
• P1 bets n with probability 1 with a winning hand.
• P1 bets n with probability n

1+n
with a losing hand (and checks otherwise).

• For all x ∈ [0, n], P2 calls a bet of size x with probability 1
1+x

.

It was shown by Ankenman and Chen [4] that this strategy profile constitutes a Nash equilib-
rium.3 Here is a sketch of that argument.

3In fact, these betting and calling frequencies have been shown to be optimal in many other poker variants as
well.
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Proposition 1. The strategy profile presented in Section 7.5 is a Nash equilibrium of the clair-
voyance game.

Proof. First, it is shown that player 2 must call a bet of size x with probability 1
1+x

in order to
make player 1 indifferent between betting x and checking with a losing hand. For a given x,
player 1 must bluff x

1+x
as often as he value bets for player 2 to be indifferent between calling

and folding. Given these quantities, the expected payoff to player 1 of betting size x will be
v(x) = x

2(1+x)
. This function is monotonically increasing, and therefore player 1 will maximize

his payoff by setting x = n and going all-in.

It turns out that player 2 does not need to call a bet of size x 6= n with exact probability 1
1+x

:
he need only not call with such an extreme probability that player 1 has an incentive to change
his bet size from n to x (with either a winning or losing hand). In particular, it can be shown that
player 2 need only call a bet of size x with any probability (which can be different for different
values of x) in the interval

[
1

1+x
,min

{
n

x(1+n)
, 1
}]

in order to remain in equilibrium. Only the
initial equilibrium is reasonable, however, in the sense that we would expect a rational player 2
to maintain the calling frequency 1

1+x
for all x so that he continues to play a properly-balanced

strategy in case player 1 happens to bet x.
Using this as motivation, our new action translation mapping will be the solution to

fA,B(x) · 1

1 + A
+ (1− fA,B(x)) · 1

1 +B
=

1

1 + x
.

Specifically, our mapping is

fA,B(x) =
(B − x)(1 + A)

(B − A)(1 + x)
.

This is the only mapping consistent with player 2 calling a bet of size x with probability 1
1+x

for
all x ∈ [A,B].

This mapping is not as susceptible to the exploitations previously described. The median of
f is

x∗ =
A+B + 2AB

A+B + 2
.

As for the arithmetic and geometric mappings, we define both deterministic and randomized
versions of our new mapping. The randomized mapping plays according to f as described above,
while the deterministic mapping plays deterministically using the threshold x∗.

If we assumed that a player would call a bet of size x with probability 1
x

instead of 1
1+x

,

then the median would be the harmonic mean of the boundaries A and B: 2AB
A+B

. Because of this
resemblance,4 we will call our new mapping the pseudo-harmonic mapping. We will abbreviate
the deterministic and randomized versions of the mapping as Det-psHar and Rand-psHar.

4We call our mapping pseudo-harmonic because it is actually quite different from the one based on the harmonic
series. For example, for A = 0 and B = 1 the median of the new mapping is 1

3 , while the harmonic mean is 0.
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7.6 Graphical examples

In Figure 7.1 we plot all four randomized mappings using A = 0.01 and B = 1. As the figure
shows, both of the randomized geometric mappings have a median of 0.1 pot, while the median
of the arithmetic mapping is around 0.5 pot and the median of the pseudo-harmonic mapping is
around 0.34 pot. In this case, the mappings differ significantly.

In Figure 7.2, we plot the mappings using A = 1 and B = 4. In this case the pseudo-
harmonic mapping is relatively similar to the geometric mappings, while the arithmetic mapping
differs significantly from the others.

Figure 7.1: Randomized mappings with A = 0.01, B = 1.

7.7 Theoretical analysis

Before we present an axiomatic analysis of the mappings, we first note thatA = 0 is somewhat of
a degenerate special case. In particular, the geometric mappings are the constant function f = 0
for A = 0, and they behave much differently than they do for A > 0 (even for A arbitrarily
small). So we will analyze these mappings separately for the A = 0 and A > 0 cases. In many
applications it is natural to have A = 0; for example, for the interval between a check and a pot-
sized bet in poker, we will have A = 0 and B = 1. So the degenerate behavior of the geometric
mappings for A = 0 can actually be a significant problem in practice.5

5Some poker agents never map a bet to 0, and map small bets to the smallest positive betting size in the abstraction
(e.g., 1

2 pot). This approach could be significantly exploited by an opponent who makes extremely small bets as
bluffs, and is not desirable.
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Figure 7.2: Randomized mappings with A = 1, B = 4.

All of the mappings satisfy the Boundary Conditions for A > 0, while the geometric map-
pings violate them for A = 0, since they map A to 0 instead of 1. All of the mappings satisfy
(weak) Monotonicity (though the deterministic ones violate strict Monotonicity, as do the geo-
metric ones for A = 0). All mappings satisfy Scale Invariance.

It is easy to see that the deterministic mappings violate Action Robustness, as they are clearly
discontinuous at the threshold (this is true for any deterministic mapping). The randomized map-
pings satisfy Action Robustness, as their derivatives are bounded. The deterministic mappings
all violate Boundary Robustness as well, since increasing A from A1 to A2 will cause f(x) to
change abruptly from 0 to 1 for some values of x near the threshold. It is natural to use the L∞

norm to define distances between mappings, since a mapping could be exploited if it behaves
poorly on just a single action. Formally,

d(fA1,B1 , fA2,B2) = max
x∈S
|fA1,B1(x)− fA2,B2(x)|,

where S = [A1, B1] ∩ [A2, B2] is nonempty. Using this definition, Rand-Arith and Rand-psHar
are Lipschitz continuous in both A and B (even for A = 0), while Rand-Geo-1 and Rand-Geo-2
are discontinuous inA forA = 0, and Lipschitz discontinuous inA forA > 0.We present proofs
for Rand-psHar and Rand-Geo-2 (the proofs of the results for Rand-Geo-1 are analogous to the
proofs for Rand-Geo-2).
Proposition 2. Rand-psHar is Lipschitz continuous in A.

Proof. Let A1, A2 ∈ (0, B], A1 6= A2 be arbitrary, and without loss of generality assume A1 <
A2. Let

K =
1 +B

(B − A1)(1 + A2)
.
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Then

max
x∈[A2,B]

∣∣∣∣(B − x)(1 + A1)

(B − A1)(1 + x)
− (B − x)(1 + A2)

(B − A2)(1 + x)

∣∣∣∣
=

(A2 − A1)(1 +B)

(B − A1)(B − A2)
max

a∈[A2,B]

∣∣∣∣B − x1 + x

∣∣∣∣
=

(A2 − A1)(1 +B)

(B − A1)(B − A2)
· B − A2

1 + A2

= K|A2 − A1|

Proposition 3. For any B > 0, Rand-Geo-1 and Rand-Geo-2 are not continuous in A, where A
has domain [0, B).

Proof. We present the proof for Rand-Geo-2. It is similar for Rand-Geo-1. Let B > 0 be
arbitrary, let ε = 0.5, and let δ > 0 be arbitrary. Let A1 = 0 and A2 = δ

2
. Then fA1,B(A2) = 0

and fA2,B(A2) = 1. So we have

max
x∈[A2,B]

|fA2,B(x)− fA1,B(x)|

≥ |fA2,B(A2)− fA1,B(A2)| = 1 > ε.

But |A2 − A1| = δ
2
< δ. So Rand-Geo-2 is not continuous in A at A = 0.

Proposition 4. For any B > 0, Rand-Geo-1 and Rand-Geo-2 are not Lipschitz continuous in A,
where A has domain (0, B).

Proof. We present the proof for Rand-Geo-2. It is similar for Rand-Geo-1. Let B > 0, K > 0
be arbitrary. For now, assume that 0 < A < A′ < B. Then

maxx∈[A′,B] |fA,B(x)− fA′,B(x)|
|A′ − A|

≥ |fA,B(A′)− fA′,B(A′)|
|A′ − A|

=
1− fA,B(A′)

|A′ − A|

=
B(A′ + A)

(B − A)(A′2 + AB)

This quantity is greater than K if and only if

A2(BK) + A(B + A′2K −KB2) + (A′B − A′2BK) > 0.

Let µ(A) denote the LHS of the final inequality. Note that µ(A)→ (A′B − A′2BK) as A→ 0.
Since µ(A) is continuous, there exists some interval I = (A,A) with 0 < A < A < min{ 1

4K
, B

2
}

such that µ(A) > 0 for all A ∈ I. Let A be any value in I, and let A′ = 2A. Then we have found
A,A′ satisfying 0 < A < A′ < B such that

maxx∈[A′,B] |fA,B(x)− fA′,B(x)|
|A′ − A|

> K.

So Rand-Geo-2 is not Lipschitz continuous in A.
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To give some intuition for why Boundary Robustness is important, we examine the effect of
increasing A gradually from 0 to 0.1, while holding B = 1 and x = 0.25 fixed. Table 7.1 shows
the value of fA,B(x) for several values of A, for each of the randomized mappings. For the two
mappings that satisfy Boundary Robustness—Rand-Arith and Rand-psHar—the values increase
gradually as A is increased: Rand-Arith increases from 0.75 at A = 0 to 0.833 at A = 0.1,
while Rand-psHar increases from 0.6 to 0.733. The two geometric mappings increase much
more sharply, from 0 to 0.667 and 0.641 respectively. In practice, we may not know the optimal
values to use in our abstraction ex ante, and may end up selecting them somewhat arbitrarily.
If we end up making a choice that is not quite optimal (for example, 0.01 instead of 0.05), we
would like it to not have too much of an effect. For non-robust mappings, the effect of making
poor decisions in these situations could be much more severe than desired.

A
0 0.001 0.01 0.05 0.1

Rand-Arith 0.75 0.751 0.758 0.789 0.833
Rand-Geo-1 0 0.012 0.111 0.429 0.667
Rand-Geo-2 0 0.015 0.131 0.439 0.641
Rand-psHar 0.6 0.601 0.612 0.663 0.733

Table 7.1: Effect of increasing A while holding B = 1 and x = 0.25 fixed.

7.8 Comparing exploitability
The exploitability of a strategy is the difference between the value of the game and worst-case
performance against a nemesis. In particular, Nash equilibrium strategies are precisely those that
have zero exploitability. Since our main goal is to approximate equilibrium strategies, minimiz-
ing exploitability is a natural metric for evaluation. The clairvoyance game, Kuhn poker, and
Leduc hold ’em are small enough that exploitability can be computed exactly.

7.8.1 Clairvoyance game
In Table 7.2, we present the exploitability of the mappings described in Section 7.4 in the clair-
voyance game. We varied the starting stack from n = 1 up to n = 100, experimenting on 7
games in total. (A wide variety of stack sizes relative to the blinds are encountered in poker in
practice, so it is important to make sure a mapping performs well for many stack sizes.) For these
experiments, we used the betting abstraction {fold, check, pot, all-in} (fcpa). This abstraction
is a common benchmark in no-limit poker [48, 53, 54, 103]: “previous expert knowledge [has]
dictated that if only a single bet size [in addition to all-in] is used everywhere, it should be pot
sized” [54].

For the abstract equilibrium, we used the equilibrium strategy described in Section 7.5.6 The
6We also experimented using the Nash equilibrium at the other extreme (see Section 7.5), and the relative per-

formances of the mappings were very similar. This indicates that our results are robust to the abstract equilibrium
strategies selected by the solver.
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entries in Table 7.2 give player 2’s exploitability for each mapping. The results show that the
exploitability of Rand-psHar stays constant at zero, while the exploitability of the other mappings
steadily increases as the stack size increases. As we have predicted, the arithmetic mappings are
more exploitable than the geometric ones, and the deterministic mappings are more exploitable
than the corresponding randomized ones.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.01 0.24 0.49 1.12 2.38 6.12 12.37
Rand-Arith 0.00 0.02 0.09 0.36 0.96 2.82 5.94

Det-Geo 0.23 0.28 0.36 0.63 0.99 1.68 2.43
Rand-Geo-1 0.23 0.23 0.23 0.24 0.36 0.66 1.01
Rand-Geo-2 0.23 0.23 0.23 0.25 0.36 0.65 1.00
Det-psHar 0.15 0.19 0.33 0.47 0.59 0.67 0.71

Rand-psHar 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7.2: Exploitability of mappings for the clairvoyance game, using betting abstraction {fold,
check, pot, all-in}.

7.8.2 Kuhn poker

We conducted similar experiments on the more complex game of Kuhn poker; the results are
given in Table 7.3. As in the clairvoyance game, Rand-psHar significantly outperformed the
other mappings, with an exploitability near zero for all stack sizes. Interestingly, the relative
performances of the other mappings differ significantly from the results in the clairvoyance game.
Rand-Arith performed second-best while Det-psHar performed the worst.7

It turns out that for each stack size, player 1 has a unique equilibrium strategy that uses a bet
size of 0.4 times the pot (recall that we only allow bets that are a multiple of 0.1 pot). So we
thought it would be interesting to see how the results would change if we used the bet size of
0.4 pot in our abstraction instead of pot. Results for these experiments are given in Table 7.4.
Surprisingly, all of the mappings became more exploitable (for larger stack sizes) when we used
the “optimal” bet size, sometimes significantly so (for n = 100 Det-Arith had exploitability 0.301
using the first abstraction and 3.714 using the second abstraction)! This is very counterintuitive,
as we would expect performance to improve as we include “better” actions in our abstraction.
It also casts doubt on the typical approach for selecting an action abstraction for poker-playing
programs; namely, emulating the bet sizes that human professional poker players use.

7We do not allow player 2 to fold when player 1 checks for these experiments, since he performs at least as
well by checking. The results are even more favorable for Rand-psHar if we remove this restriction because player
2 is indifferent between checking and folding with a Jack, and the abstract equilibrium strategy our solver output
happened to select the fold action. The geometric mappings are unaffected by this because they never map a bet
down to a check, but the other mappings sometimes do and will correctly fold a Jack more often to a small bet. In
particular, Rand-psHar obtained exploitability 0 for all stack sizes using fcpa.
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We decided to investigate this paradox further, and computed the bet size that minimized
exploitability for each of the mappings. The results are given in Table 7.5.8 Interestingly, the
unique full equilibrium bet size of 0.4 was very rarely the optimal bet size to use. The optimal
bet size varied dramatically as different stack sizes and mappings were used. In some cases it
was quite large; for example, for n = 100 it was 71.5 for Det-psHar and 29.8 for Det-Geo.
The results indicate that the optimal action abstraction to use may vary considerably based on
the action translation mapping used, and can include surprising actions while excluding actions
that are played in the full equilibrium (even when these are the only actions played in any full
equilibrium). This suggests that when using multiple actions in an abstraction, a mix of both
“optimal” offensive actions (which are actually taken by the agent) and defensive actions (which
are not taken themselves, but reduce exploitability due to an imperfect abstraction) may be more
successful than focusing exclusively on the offensive ones. This is consistent with the approach
that some teams in the competition have been using where they insert large defensive actions into
the abstraction on the opponent’s side.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.205 0.205 0.244 0.271 0.287 0.298 0.301
Rand-Arith 0.055 0.055 0.055 0.055 0.055 0.055 0.055

Det-Geo 0.121 0.121 0.121 0.217 0.297 0.366 0.399
Rand-Geo-1 0.121 0.121 0.121 0.121 0.121 0.121 0.121
Rand-Geo-2 0.121 0.121 0.121 0.121 0.121 0.121 0.121
Det-psHar 0.171 0.171 0.233 0.365 0.454 0.520 0.545

Rand-psHar 0.029 0.029 0.029 0.029 0.029 0.029 0.029

Table 7.3: Exploitability of mappings for no-limit Kuhn poker, using betting abstraction {fold,
check, pot, all-in}.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.088 0.110 0.285 0.485 0.848 1.926 3.714
Rand-Arith 0.012 0.033 0.068 0.157 0.336 0.871 1.764

Det-Geo 0.086 0.114 0.294 0.425 0.548 0.714 0.873
Rand-Geo-1 0.071 0.085 0.095 0.116 0.145 0.203 0.269
Rand-Geo-2 0.071 0.083 0.094 0.114 0.144 0.203 0.269
Det-psHar 0.064 0.090 0.302 0.420 0.500 0.556 0.574

Rand-psHar 0.008 0.010 0.017 0.027 0.037 0.047 0.054

Table 7.4: Exploitability of mappings for no-limit Kuhn poker, using betting abstraction {fold,
check, 0.4 pot, all-in}.

8For ties, we reported the smallest size.
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Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.3 0.4 0.7 0.9 0.9 1.0 1.0
Rand-Arith 0.3 0.5 0.6 0.8 0.9 1.0 1.0

Det-Geo 0.3 0.2 1.0 2.6 2.5 14.6 29.8
Rand-Geo-1 0.2 0.1 0.3 0.4 1.0 1.0 1.0
Rand-Geo-2 0.2 0.1 0.3 0.3 1.0 1.0 1.0
Det-psHar 0.4 0.3 2.3 7.9 4.5 49.9 71.5

Rand-psHar 0.1 0.4 0.5 0.6 0.6 0.7 0.7

Table 7.5: Optimal bet sizes for player 2 of action translation mappings for no-limit Kuhn poker,
using betting abstraction with fold, check, all-in, and one additional bet size.

7.8.3 Leduc hold ’em

We also compared exploitability on Leduc hold ’em—a much larger poker variant than the clair-
voyance game and Kuhn poker. Unlike these smaller variants, Leduc hold ’em allows for multiple
bets and raises, multiple rounds of betting, and shared community cards. Thus, it contains many
of the same complexities as the variants of poker commonly played by humans—most notably
Texas hold ’em—while remaining small enough that exploitability computations are tractable.

P1 exploitability P2 exploitability Avg. exploitability
Det-Arith 0.427 0.904 0.666

Rand-Arith 0.431 0.853 0.642
Det-Geo 0.341 0.922 0.632

Rand-Geo-1 0.295 0.853 0.574
Rand-Geo-2 0.296 0.853 0.575
Det-psHar 0.359 0.826 0.593

Rand-psHar 0.323 0.603 0.463

Table 7.6: Exploitability of mappings for each player in no-limit Leduc hold ’em using the fcpa
betting abstraction.

Exploitabilities for both players using the fcpa abstraction are given in Table 7.6. The re-
sults indicate that Rand-psHar produces the lowest average exploitability by a significant margin,
while Det-Arith produces the highest exploitability. Interestingly, Rand-psHar did not produce
the lowest exploitability for player 1; however, its exploitability was by far the smallest for player
2, making its average the lowest. Player 2’s exploitability was higher than player 1’s in general
because player 1 acts first in both rounds, causing player 2 to perform more action translation to
interpret bet sizes.
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7.9 Experiments in Texas hold ’em

We next tested the mappings against the agents submitted to the no-limit Texas hold ’em divi-
sion of the 2012 Annual Computer Poker Competition. We started with our submitted agent,
Tartanian5 [33], and varied the action translation mapping while keeping everything else about
it unchanged.9 Then we had it play against each of the other entries.

Action Translation Mapping
Det-Arith Rand-Arith Det-Geo Rand-Geo-1 Rand-Geo-2 Det-psHar Rand-psHar

azure.sky 3135 ± 106 3457 ± 90 2051 ± 96 2082 ± 97 2057 ± 97 2954 ± 96 3041 ± 109
dcubot 880 ± 52 752 ± 51 169 ± 47 156 ± 47 141 ± 46 754 ± 36 622 ± 47
hugh 137 ± 84 122 ± 86 -103 ± 50 -98 ± 52 -117 ± 52 -102 ± 30 42 ± 72

hyperborean -189 ± 79 -272 ± 77 -216 ± 78 -203 ± 77 -161 ± 75 -161 ± 36 -276 ± 77
little.rock -115 ± 100 -107 ± 95 -48 ± 92 -22 ± 91 -85 ± 89 165 ± 63 93 ± 87
lucky7.12 772 ± 104 510 ± 105 465 ± 82 471 ± 78 462 ± 78 536 ± 94 565 ± 74

neo.poker.lab 6 ± 97 -37 ± 106 11 ± 101 24 ± 98 31 ± 100 8 ± 31 -9 ± 103
sartre 94 ± 65 -3 ± 65 51 ± 64 86 ± 64 26 ± 64 56 ± 38 50 ± 65

spewy.louie 457 ± 118 421 ± 116 572 ± 102 530 ± 106 475 ± 103 614 ± 60 484 ± 109
uni.mb.poker 856 ± 84 900 ± 87 1588 ± 102 1567 ± 101 1657 ± 104 1148 ± 61 1103 ± 90

Avg. 609 571 454 459 449 597 568

Table 7.7: No-limit Texas hold ’em results in milli big blinds per hand. The entry is the profit
of our agent Tartanian5 using the mapping given in the column against the opponent listed in the
row.

The results are in Table 7.7 (with 95% confidence intervals included). Surprisingly, Det-Arith
performed best using the metric of average overall performance, despite the fact that it was by
far the most exploitable in simplified games. Det-psHar, Rand-Arith, and Rand-psHar followed
closely behind. The three geometric mappings performed significantly worse than the other four
mappings, (and similarly to each other).

One interesting observation is that the performance rankings of the mappings differed signif-
icantly from their exploitability rankings in simplified domains (with Det-Arith being the most
extreme example). The results can be partially explained by the fact that none of the programs in
the competition were attempting any exploitation of bet sizes or of action translation mappings
(according to publicly-available descriptions of the agents available on the competition website).
Against such unexploitative opponents, the benefits of a defensive, randomized strategy are much
less important.10 As agents become stronger in the future, we would expect action exploitation
to become a much more important factor in competition performance, and the mappings with
high exploitability would likely perform significantly worse. In fact, in the 2009 competition, an
entrant in the bankroll category (Hyperborean) used a simple strategy (that did not even look at
its own cards) to exploit opponents’ betting boundaries and came in first place [103].

9Tartanian5 used Det-psHar in the actual competition.
10This is similar to a phenomenon previously observed in the poker competition, where an agent that played a

fully deterministic strategy outperformed a version of the same agent that used randomization [38].
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7.10 Summary and extensions
We have formally defined the action translation problem and analyzed all the prior action transla-
tion mappings which have been proposed for the domain of no-limit poker. We have developed a
new mapping which achieves significantly lower exploitability than any of the prior approaches
in the clairvoyance game, Kuhn poker, and Leduc hold ’em for a wide variety of stack sizes.
In no-limit Texas hold ’em, our mapping significantly outperformed the mappings used by the
strongest agents submitted to the most recent Annual Computer Poker Competitions (Det-Geo,
Rand-Geo-1, and Rand-Geo-2). It did not outperform the two less sophisticated (and highly
exploitable) mappings Det-Arith and Rand-Arith because the opponents were not exploitative
(though the performance differences were small). We also introduced a set of natural domain-
independent desiderata and showed that only our new randomized mapping (and Rand-Arith,
which we showed to be highly exploitable) satisfy all of them.

In the course of this work, we observed several paradoxical and surprising results. In Kuhn
poker, all of the action translation mappings had lower exploitability for large stack sizes when
using an abstraction with a suboptimal action (a pot-sized bet) than when using an abstraction
that contained the optimal action (a 0.4 times pot bet), even when all equilibrium strategies use
the latter bet size. When we computed what the optimal action abstractions would have been for
each mapping, they often included actions that differed significantly from the unique equilibrium
actions. In addition, we observed that the naı̈ve deterministic arithmetic mapping actually out-
performed all the other mappings against agents submitted to the 2012 Annual Computer Poker
Competition despite the fact that it had by far the highest exploitability in simplified domains
(and violated many of the desiderata).

This work suggests many avenues for future research. One idea would be to consider more
complex action translation mappings in addition to the ones proposed in this paper. For example,
one could consider mappings that take into account game-specific information (as opposed to the
game-independent ones considered here which only take as input the action size x and the adja-
cent abstract actions A and B). It also might make sense to use different mappings at different
information sets (or even between different actions at the same information set). For example,
we may want to use one mapping to interpret smaller bets (e.g., between 0 and a pot-sized bet),
but a different one to interpret larger bets. In addition, our paradoxical results in Kuhn poker
suggest that, when using multiple actions in an abstraction, a mix of both “optimal” offensive
actions and defensive actions may be more successful than focusing exclusively on the offensive
ones. Finally, we would like to use our framework (and the new mapping) in other domains. Ac-
tion abstraction, and therefore also translation, are necessary for solving almost any game where
action sizing is an issue, such as bid sizing in auctions, offer sizing in negotiations, and allocating
different quantities of attack resources or defense resources in security games.
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Chapter 8

Post-Processing

In Chapter 7, I described a new approach for interpreting actions of the opponent that have been
removed from the abstraction by mapping them probabilistically to actions in the abstraction.
In this chapter, I will describe further post-processing techniques that can be applied in addi-
tion to action translation, and also in games where no action abstraction was performed. These
approaches, combined with the action translation approach presented in the previous chapter,
comprise the final “reverse mapping” step of the leading paradigm depicted in Figure 4.1.

One of the key ideas that motivate our approaches is that the exact action probabilities of a
mixed strategy equilibrium in an abstraction can exemplify overfitting to the particular abstrac-
tion used. (Our results confirm this.) Ideally, we would like to extrapolate general principles
from the strategy rather than just use values that were finely tuned for a specific abstraction. This
is akin to the classic example from machine learning, where we would prefer a degree-one poly-
nomial that fits the training data quite well to a degree-hundred polynomial that may fit it slightly
better.1 (Subsequent to the appearance of the earlier versions of our paper, others have also shown
that overfitting strategies to a particular abstraction is a very significant and real problem in large
imperfect-information games [66].) An example depicting this overfitting phenomenon, which
was presented in that prior work [66], appears in Figure 8.1. As the figure shows, exploitability
within the abstraction decreases monotonically as the equilibrium-finding algorithm is run longer
(as we would expect), while exploitability in the full game starts increasing at an intermediate
point in time to do the strategies being overfit to the abstraction.

We present a family of modifications to the standard approach that work by constructing
non-equilibrium strategies in the abstract game, which are then played in the full game. Our new
procedures, called purification and thresholding, modify the action probabilities of an abstract
equilibrium by placing a preference on the higher-probability actions [38]. The main intuition
behind our algorithms is that we should ignore actions that are played with small probability in
the abstract equilibrium, as they are likely due to abstraction coarseness, overfitting, or failure of
the equilibrium-finding algorithm to fully converge.

Using a variety of experimental domains, we show that our new approach leads to signifi-
cantly stronger play than the standard abstraction/equilibrium approach. For example, our pro-

1Note that an important difference between our setting and the classic machine learning setting is that we are
applying our techniques after the equilibrium computation has been performed, while regularization in machine
learning is done during the learning phase.
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Figure 8.1: Abstraction equilibrium strategies can be overfit to the abstraction.

gram that uses purification won the two-player no-limit Texas hold ’em total bankroll division
of the 2010 Annual Computer Poker Competition (ACPC), held at AAAI. Surprisingly, we also
show that purification significantly improves performance (against the full equilibrium strategy)
in random 4 × 4 matrix games using random 3 × 3 abstractions. We present additional results
(both theoretical and empirical), including: worst-case theoretical results, empirical and theo-
retical results on specific support properties for which purification helps in matrix games, and
experimental results in well-studied large imperfect-information games (Leduc hold ’em and
Texas hold ’em).

Finally, we introduce a family of post-processing techniques that generalize purification and
thresholding, leading to improved performance in two-player no-limit Texas hold ’em against the
strongest prior agents. Our techniques combine 1) the observation that rounding action probabil-
ities mitigates the above-mentioned issues, 2) the new observation that similar abstract actions
should be bucketed before such rounding so that fine-grained action discretization (aka action
abstraction) does not disadvantage those actions, and 3) the new observation that biasing to-
ward actions that reduce variance is helpful in a strong agent and our experiments show that this
increases expected value as well.

8.1 Purification and thresholding

Suppose we are playing a game Λ that is too large to solve directly. As described in Chapter 4,
the standard approach would be to construct an abstract game Λ′, compute an equilibrium σ′ of
Λ′, then play the strategy profile σ induced by σ′ in the full game Λ.

One possible problem with this approach is that the specific strategy profile σ′ might be
very finely tuned for the abstract game Λ′, and it could perform arbitrarily poorly in the full
game (see the results in Section 8.3). Ideally we would like to extrapolate the important features
from σ′ that will generalize to the full game and avoid playing a strategy that is overfit to the
particular abstraction. This is one of the key motivations for our new approaches, purification
and thresholding.
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8.1.1 Purification
Let σi be a mixed strategy for player i in a strategic-form game, and let Si = arg maxj σi(j),
where j ranges over all of player i’s pure strategies. Then we define the purification pur(σi) of
σi as follows:

pur(σi)(j) =

{
0 : j /∈ Si
1
|Si| : j ∈ Si

If σi plays a single pure strategy with highest probability, then the purification will play that
strategy with probability 1. If there is a tie between several pure strategies of the maximum prob-
ability played under σi, then the purification will randomize equally between all maximal such
strategies. Thus the purification will usually be a pure strategy, and will only be a mixed strategy
in degenerate special cases when several pure strategies are played with identical probabilities.

If σi is a behavioral strategy in an extensive-form game, we define the purification similarly;
at each information set I , pur(σi) will play the purification of σi at I.

8.1.2 Thresholding
The effects of purification can be quite extreme in some situations. For example, if σi plays
action a with probability 0.51 and action b with probability 0.49, then b will never be played
after purification. We also consider a more relaxed approach, called thresholding, that only
eliminates actions below a prescribed ε to help alleviate this concern.

Thresholding works by setting all actions that have weight below ε to 0, then renormalizing
the action probabilities. Pseudocode is given below in Algorithm 6. One intuitive interpretation
of thresholding is that actions with probability below ε may just have been given positive proba-
bility due to noise from the abstraction (or because an equilibrium-finding algorithm had not yet
taken those probabilities all the way to zero), and really should not be played in the full game.
Additionally, low probability actions are often played primarily to protect a player from being
exploited, and this may be an overstated concern against realistic opponents (as discussed further
in Section 8.2.2).

Algorithm 6 Threshold(σi, ε)

for j = 1 to |Si| do
if σi(j) < ε then

σi(j)← 0
end if

end for
normalize(σi)
return σi

8.2 Evaluation metrics
In recent years, several different metrics have been used to evaluate strategies in large games.
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8.2.1 Empirical performance
The first metric, which is perhaps the most meaningful, is empirical performance against other
realistic strategies. For example, in the ACPC, programs submitted from researchers and hobby-
ists from all over the world compete against one another. Empirical performance is the metric
we will be using in Section 8.6 when we assess our performance in Texas hold ’em.

8.2.2 Worst-case exploitability
The worst-case exploitability of player i’s strategy σi is the difference between the value of the
game to player i and the payoff when the opponent plays his best response to σi (aka his nemesis
strategy). Formally it is defined as follows:

expl(σi) = vi − min
σ−i∈Σ−i

ui(σi, σ−i).

Worst-case exploitability is a common metric for assessing the quality of strategies in games [45,
66, 119].

Any equilibrium has zero exploitability, since it receives payoff vi against its nemesis. So if
our goal were to approximate an equilibrium of the full game, worst-case exploitability would
be a good metric to use, since it approaches zero as the strategy approaches equilibrium.

Unfortunately, the worst-case exploitability metric has several drawbacks. First, it cannot
be computed in very large games (though very recent advancements have made it possible to
compute full best responses offline in two-player limit Texas hold ’em, which has about 1018

game states [66], and we will be leveraging that algorithm in our experiments).
Second, exploitability is a worst-case metric that assumes the opponent is able to optimally

exploit us in the full game (i.e., he knows our full strategy and is able to efficiently compute a
full best response in real time). In fact, it is quite common in very large games for agents to sim-
ply play static, fixed strategies the entire time, since the number of interactions is generally tiny
compared to the size of the game, and it is usually quite difficult to learn to effectively exploit
opponents online. For example, in recent computer poker competitions, almost all submitted pro-
grams simply play a fixed strategy. In the 2010 ACPC, many of the entrants attached summaries
describing their algorithm. Of the 17 bots for which summaries were included, 15 played fixed
strategies, while only 2 included some element of attempted exploitation. If the opponents are
just playing a fixed strategy and not trying to exploit us, then worst-case exploitability is too pes-
simistic of an evaluation metric. Furthermore, if the opponents have computational limitations
and use abstractions, then they will not be able to fully exploit us in the full game.

8.2.3 Performance against full equilibrium
In this paper, we will also evaluate strategies based on performance against equilibrium in the
full game. The intuition behind this metric is that in many large two-player zero-sum games,
the opponents are simply playing fixed strategies that attempt to approximate an equilibrium
of the full game (using some abstraction). For example, most entrants in the ACPC do this.
Against such static opponents, worst-case exploitability is not very significant, as the agents are
not generally adapting to exploit us.
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This metric, like worst-case exploitability, is not feasible to apply on very large games. How-
ever, we can still apply it to smaller games as a means of comparing different solution techniques.
In particular, we will use this metric in Sections 8.4 and 8.5 when presenting our experimental
results on random matrix games and Leduc hold ’em. This metric has similarly been used on
solvable problem sizes in the past to compare abstraction algorithms [45].

8.3 Theory: selective superiority
So which approach is best: purification, thresholding, or the standard abstraction/equilibrium
approach? It turns out that using the performance against full equilibrium metric, there exist
games for which each technique can outperform each other. Thus, from a worst-case perspective,
not much can be said in terms of comparing the approaches.

Proposition 5 shows that, for any equilibrium-finding algorithm, there exists a game and an
abstraction such that purification does arbitrarily better than the standard approach.
Proposition 5. For any equilibrium-finding algorithms A and A′, and for any k > 0, there exists
a game Λ and an abstraction Λ′ of Λ, such that

u1(pur(σ′1), σ2) ≥ u1(σ′1, σ2) + k,

where σ′ is the equilibrium of Λ′ computed by algorithm A′, and σ is the equilibrium of Λ
computed by A.

Proof. Consider the game in Figure 8.2. Let Λ denote the full game, and let Λ′ denote the

L M R
U 2 0 −3k − 1
D 0 1 −1

Figure 8.2: Two-player zero-sum game used in the proof of Proposition 5.

abstraction in which player 2 (the column player) is restricted to only playing L or M, but the
row player’s strategy space remains the same. Then Λ′ has a unique equilibrium in which player
1 plays U with probability 1

3
, and player 2 plays L with probability 1

3
. Since this is the unique

equilibrium, it must be the one output by algorithm A′. Note that player 1’s purification pur(σ′1)
of σ′ is the pure strategy D.

Note that in the full game Λ, the unique equilibrium is (D,R), which we denote by σ. As
before, since this equilibrium is unique it must be the one output by algorithm A. Then we have

u1(σ′1, σ2) =
1

3
(−3k − 1) +

2

3
(−1) = −k − 1

u1(pur(σ′1), σ2) = −1.

So u1(σ′1, σ2) + k = −1, and therefore

u1(pur(σ′1), σ2) = u1(σ′1, σ2) + k.
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We can similarly show that purification can also do arbitrarily worse against the full equilib-
rium than standard unpurified abstraction, and that both procedures can do arbitrarily better or
worse than thresholding (using any threshold cutoff). We can also show similar results using an
arbitrary multiplicative (rather than additive) constant k.

8.4 Random matrix games

The first set of experiments we conduct to demonstrate the power of purification is on random
matrix games. This is perhaps the most fundamental and easy to analyze class of games, and is
a natural starting point when analyzing new algorithms.

8.4.1 Evaluation methodology
We study random 4 × 4 two-player zero-sum matrix games with payoffs drawn uniformly at
random from [-1,1]. We repeatedly generated random games and analyzed them using the fol-
lowing procedure. First, we computed an equilibrium of the full 4 × 4 game Λ; denote this
strategy profile by σF . Next, we constructed an abstraction Λ′ of Λ by ignoring the final row and
column of Λ. In essence, Λ′ is a naı̈ve, random abstraction of Λ, since there is nothing special
about the final row or column. As in Λ, we computed an equilibrium σA of Λ′. We then com-
pared u1(σA1 , σ

F
2 ) to u1(pur(σA1 ), σF2 ) to determine the effect of purification on performance of

the abstract equilibrium strategy for player 1 against the full equilibrium strategy of player 2.
To solve the full and abstract games, we used two different procedures. For our first set of

experiments comparing the overall performance of purified vs. unpurified abstract equilibrium
strategies, we used a standard algorithm involving solving a single linear program [72]. For our
results on supports, we used a custom support enumeration algorithm (similar to the approach
of Porter et al. [93]). We note that it is possible that the specific algorithm used may have a
significant effect on the results (i.e., certain algorithms may be more likely to select equilibria
with specific properties when several equilibria exist).

u1(pur(σA1 ), σ
F
2 ) (purified average payoff) −0.050987± 0.00042

u1(σ
A
1 , σ

F
2 ) (unpurified average payoff) −0.054905± 0.00044

Number of games where purification led to improved performance 261569 (17.44%)
Number of games where purification led to worse performance 172164 (11.48%)

Number of games where purification led to no change in performance 1066267 (71.08%)

Table 8.1: Results for experiments on 1.5 million random 4×4 matrix games using random 3×3
abstractions. The ± given is the 95% confidence interval.

8.4.2 Experimental results and theory
In our experiments on 4 × 4 random games, we performed 1.5 million trials; the results are
given in Table 8.1. The first row gives the average value of u1(pur(σA1 ), σF2 ) over all trials, while
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the second row gives the average value of u1(σA1 , σ
F
2 ). We conclude that purified abstraction

outperforms the standard unpurified abstraction approach using 95% confidence intervals.
The next three rows of Table 8.1 report the number of trials for which purification led to an

increased, decreased, or unchanged payoff of the abstract equilibrium strategy of player 1 against
the full equilibrium strategy of player 2. While purification clearly improved performance more
often than it hurt performance (17.44% vs. 11.48%), for the overwhelming majority of cases it
led to no change in performance (71.08%). In particular, Proposition 6 gives two general sets of
conditions under which purification leads to no change in performance.
Proposition 6. Let Λ be a two-player zero-sum game, and let Λ′ be an abstraction of Λ. Let σF

and σA be equilibria of Λ and Λ′ respectively. Then

u1(σA1 , σ
F
2 ) = u1(pur(σA1 ), σF2 )

if either of the following conditions is met:

1. σA is a pure strategy profile
2. support(σA1 ) ⊆ support(σF1 )

Proof. If the first condition is met, then pur(σA1 ) = σA1 and we are done. Now suppose the second
condition is true and let s, t ∈ support(σA1 ) be arbitrary. This implies that s, t ∈ support(σF1 )
as well, which means that u1(s, σF2 ) = u1(t, σF2 ), since a player is indifferent between all pure
strategies in his support at an equilibrium. Since s and twere arbitrary, player 1 is also indifferent
between all strategies in support(σA1 ) when player 2 plays σF2 . Since purification will just select
one strategy in support(σA1 ), we are done.

To understand our results further, we investigated whether they would vary for different sup-
ports of σF . In particular, we kept separate tallies of the performance of pur(σA1 ) and σA1 for
each support of σF . We observed that pur(σA1 ) outperformed σA1 on many of the supports, while
they performed equally on some (and σA1 did not outperform pur(σA1 ) on any). These results are
all statistically significant using 95% confidence intervals. A summary of the results from these
experiments is given in Observation 1.
Observation 1. In random 4×4 matrix games using 3×3 abstractions, pur(σA1 ) performs better
than σA1 using a 95% confidence interval for each support of σF except for supports satisfying
one of the following conditions, in which case neither pur(σA1 ) nor σA1 performs significantly
better:

1. σF is the pure strategy profile in which each player plays his fourth pure strategy
2. σF is a mixed strategy profile in which player 1’s support contains his fourth pure strategy,

and player 2’s support does not contain his fourth pure strategy.

To interpret Observation 1, consider the following example. Suppose the support for player 1
includes his first three pure strategies, while the support for player 2 includes his final three pure
strategies; denote this support profile by S∗. Now consider the set U of all games for which our
equilibrium-finding algorithm outputs an equilibrium profile σF with support profile S∗. Since
S∗ does not satisfy either condition of Observation 1, this means that, in expectation over the set
of all games in U,

u1(pur(σA1 ), σF2 ) > u1(σA1 , σ
F
2 )
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(i.e., purification improves the performance of the abstracted equilibrium strategy of player 1
against the full equilibrium strategy of player 2).

We find it interesting that there is such a clear pattern in the support structures for which
pur(σA1 ) outperforms σA1 . We obtained identical results using 3×3 games with 2×2 abstractions.
We did not experiment on games larger than 4× 4. While we presented experimental results that
are statistically significant at the 95% confidence interval, rigorously proving that the results of
Observation 1 hold even on 4 × 4 games with 3 × 3 abstractions remains a challenging open
problem. Resolving this problem would shed some light on the underlying reasons behind the
observed performance improvements of purification in random matrix games, which are quite
surprising and unintuitive. In addition, we conjecture that a more general theoretical result will
hold for general matrix games with any size, using any size random abstractions.

8.5 Leduc hold ’em
Leduc hold ’em is a simplified poker variant that has been used in previous work to evaluate
imperfect-information game-playing techniques (e.g., [119]). Leduc hold ’em is large enough
that abstraction has a non-trivial impact, but unlike larger games of interest (e.g., Texas hold
’em) it is small enough that equilibrium solutions in the full game can be quickly computed.
That is, Leduc hold ’em allows for rapid and thorough evaluation of game-playing techniques
against a variety of opponents, including an equilibrium opponent or a best responder.

Prior to play, a deck of six cards containing two Jacks, two Queens, and two Kings is shuffled
and each player is dealt a single private card. After a round of betting, a public card is dealt face
up for both players to see. If either player pairs this card, he wins at showdown; otherwise the
player with the higher ranked card wins. For a complete description of the betting, we refer the
reader to Waugh et al. [119].

8.5.1 Experimental evaluation and setup
To evaluate the effects of purification and thresholding in Leduc hold ’em, we compared the
performance of a number of abstract equilibrium strategies altered to varying degrees by thresh-
olding against a single equilibrium opponent averaged over both positions.2 The performance of
a strategy (denoted EV for expected value) was measured in millibets per hand (mb/h), where
one thousand millibets is a small bet. As the equilibrium opponent is optimal, the best obtainable
performance is 0 mb/h. Note that the expected value computations in this section are exact.

We used card abstractions mimicking those produced by state-of-the-art abstraction tech-
niques to create our abstract equilibrium strategies. Specifically, we used the five Leduc hold
’em card abstractions from prior work [119], denoted JQK, JQ.K, J.QK, J.Q.K and full. The
abstraction full denotes the null abstraction (i.e., the full unabstracted game). The names of
the remaining abstractions consist of groups of cards separated by periods. All cards within a
group are indistinguishable to the player prior to the flop. For example, when a player using the
JQ.K abstraction is dealt a card, he will know only if that card is a king, or if it is not a king.
These abstractions can only distinguish pairs on the flop. By pairing these five card abstractions,

2The experiments in this section were conducted by Kevin Waugh.
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one abstraction per player, we learned twenty four abstract equilibrium strategies using linear
programming techniques. For example, the strategy J.Q.K-JQ.K denotes the strategy where our
player of interest uses the J.Q.K abstraction and he assumes his opponent uses the JQ.K abstrac-
tion.

8.5.2 Purification vs. no purification
In Table 8.2 we present the performance of the regular and purified abstract equilibrium strategies
against the equilibrium opponent. We notice that purification improves the performance in all but
5 cases. In many cases this improvement is quite substantial. In the cases where it does not help,
we notice that at least one of the players is using the JQK card abstraction, the worst abstraction
in our selection. Prior to purification, the best abstract equilibrium strategy loses at 43.8 mb/h to
the equilibrium opponent. After purification, 14 of the 24 strategies perform better than the best
unpurified strategy, the best of which loses at only 1.86 mb/h. That is, only five of the strategies
that were improved by purification failed to surpass the best unpurified strategy.

8.5.3 Purification vs. thresholding
In Figure 8.3 we present the results of three abstract equilibrium strategies thresholded to varying
degrees against the equilibrium opponent. We notice that, the higher the threshold used the better
the performance tends to be. Though this trend is not monotonic, all the strategies that were
improved by purification obtained their maximum performance when completely purified. Most
strategies tended to improve gradually as the threshold was increased, but this was not the case
for all strategies. As seen in the figure, the JQ.K-JQ.K strategy spikes in performance between
the thresholds of 0.1 and 0.15.

From these experiments, we conclude that purification tends to improve the performance of
an abstract equilibrium strategy against an unadaptive equilibrium opponent in Leduc hold ’em.
Though thresholding is itself helpful, it appears that the improvement generally increases with
the threshold whenever thresholding improves a strategy, with the biggest improvement achieved
using full purification.

8.6 Texas hold ’em

In the 2010 Annual Computer Poker Competition, the CMU team (Ganzfried, Gilpin, and Sand-
holm) submitted bots that used both purification and thresholding to the two-player no-limit
Texas hold ’em division. We present the results in Section 8.6.1. Next, in Section 8.6.2, we
observe how varying the amount of thresholding used effects the exploitabilities of two bots
submitted to the two-player limit Texas hold ’em division.

8.6.1 A champion no-limit Texas hold ’em program
The two-player no-limit competition consists of two sub-competitions with different scoring
rules. In the instant-runoff scoring rule, each pair of entrants plays against each other, and the
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Strategy Base EV Purified EV Improvement
JQ.K-J.QK -119.46 -37.75 81.71
J.QK-full -115.63 -41.83 73.80
J.QK-J.Q.K -96.66 -27.35 69.31
JQ.K-J.Q.K -96.48 -28.76 67.71
JQ.K-full -99.30 -39.13 60.17
JQ.K-JQK -80.14 -24.50 55.65
JQ.K-JQ.K -59.97 -8.31 51.66
J.Q.K-J.QK -60.28 -13.97 46.31
J.Q.K-J.Q.K -46.23 -1.86 44.37
J.Q.K-JQ.K -44.61 -3.85 40.76
full-JQK -43.80 -10.95 32.85
J.QK-J.QK -96.60 -67.42 29.18
J.QK-JQK -95.69 -67.14 28.55
full-J.QK -52.94 -24.55 28.39
J.QK-JQ.K -77.86 -52.62 25.23
J.Q.K-full -68.10 -46.43 21.66
full-JQ.K -55.52 -36.38 19.14
full-J.Q.K -51.14 -40.32 10.82
JQK-J.QK -282.94 -279.44 3.50
JQK-full -273.87 -279.99 -6.12
JQK-J.Q.K -258.29 -279.99 -21.70
J.Q.K-JQK -156.35 -188.00 -31.65
JQK-JQK -386.89 -433.64 -46.75
JQK-JQ.K -274.69 -322.41 -47.72

Table 8.2: Effects of purification on performance of abstract strategies against an equilibrium
opponent in mb/h.

68



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Threshold

EV
 a

ga
in

st
 e

qu
ilib

riu
m

 (m
b/

h)

 

 
J.Q.K−J.Q.K
J.QK−JQK
JQ.K−JQ.K

Figure 8.3: Effects of thresholding on performance of abstract strategies against an equilibrium
opponent in mb/h.

bot with the worst head-to-head record is eliminated. This procedure is continued until only a
single bot remains. The other scoring rule is known as total bankroll. In this competition, all
entrants play against each other and are ranked in order of their total profits. While both scoring
metrics serve important purposes, the total bankroll competition is considered by many to be
more realistic, as in many real-world multiagent settings the goal of agents is to maximize total
payoffs against a variety of opponents.

We submitted bots to both competitions: Tartanian4-IRO (IRO) to the instant-runoff com-
petition and Tartanian4-TBR (TBR) to the total bankroll competition. Both bots use the same
abstraction and equilibrium-finding algorithms. They differ only in their reverse-mapping algo-
rithms: IRO uses thresholding with a threshold of 0.15 while TBR uses purification. IRO finished
third in the instant-runoff competition, while TBR finished first in the total bankroll competition.

Although the bots were scored only with respect to the specific scoring rule and bots submit-
ted to that scoring rule, all bots were actually played against each other, enabling us to compare
the performances of TBR and IRO. Table 8.3 shows the performances of TBR and IRO against
all of the bots submitted to either metric in the 2010 two-player no-limit Texas hold ’em compe-
tition.

One obvious observation is that TBR actually beat IRO when they played head-to-head (at a
rate of 80 milli big blinds per hand). Furthermore, TBR performed better than IRO against every
single opponent except for one (c4tw.iro). Even in the few matches that the bots lost, TBR lost
at a lower rate than IRO. Thus, even though TBR uses less randomization and is perhaps more
exploitable in the full game, the opponents submitted to the competition were either not trying
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c4tw.iro c4tw.tbr Hyperborean.iro Hyperborean.tbr PokerBotSLO SartreNL IRO TBR
IRO 5334 ± 109 8431 ± 156 -248 ± 49 -364 ± 42 108 ± 46 -42 ± 38 -80 ± 23
TBR 4754 ± 107 8669 ± 168 -122 ± 38 -220 ± 39 159 ± 40 13 ± 33 80 ± 23

Table 8.3: Results from the 2010 Annual Computer Poker Competition for two-player no limit
Texas hold ’em. Values are in milli big blinds per hand (from the row player’s perspective) with
95% confidence intervals shown. IRO and TBR both use the same abstraction and equilibrium-
finding algorithms. The only difference is that IRO uses thresholding with a threshold of 0.15
while TBR uses purification.

or not able to find successful exploitations. Additionally, TBR would have still won the total
bankroll competition even if IRO were also submitted.

These results show that purification can in fact yield a big gain over thresholding (with a
lower threshold) even against a wide variety of realistic opponents in very large games.

8.6.2 Assessing worst-case exploitability in limit Texas hold ’em
Despite the performance gains we have seen from purification and thresholding, it is possible that
these gains come at the expense of worst-case exploitability (see Section 8.2.2). Exploitabilities
for several variants of a bot we submitted to the two-player limit division of the 2010 ACPC
(GS6.iro) are given in Table 8.4; the exploitabilities were computed in the full unabstracted
game using a recently developed approach [66].

Interestingly, using no rounding at all produced the most exploitable bot, while the least
exploitable bot used an intermediate threshold of 0.15. There is a natural explanation for this
seemingly surprising phenomenon. If there is too much thresholding, the resulting strategy does
not have enough randomization, so it signals too much to the opponent about the agent’s private
information. On the other hand, if there is too little thresholding, the strategy is overfit to the
particular abstraction.

Hyperborean.iro was submitted by the University of Alberta to the same competition; ex-
ploitabilities of its variants are shown as well. Hyperborean’s exploitabilities increased mono-
tonically with the threshold, with no rounding producing the least exploitable bot.

Exploitability Exploitability
Threshold of GS6 of Hyperborean

None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841

Purified 349.873 437.242

Table 8.4: Worst-case exploitabilities of several strategies in two-player limit Texas hold ’em.
Results are in milli big blinds per hand. Bolded values indicate the lowest exploitability achieved
for each strategy.

These results show that it can be hard to predict the relationship between the amount of round-
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ing and the worst-case exploitability, and that it may depend heavily on the abstraction and/or
equilibrium-finding algorithm used. While exploitabilities for Hyperborean are more in line with
what one might intuitively expect, results from GS6 show that the minimum exploitability can
actually be produced by an intermediate threshold value. One possible explanation of this differ-
ence is that thresholding and purification help more when coarser abstractions (i.e., smaller ab-
stract games relative to the full game) are used, while in finer-grained abstractions, they may not
help as much, and may even hurt performance.3 The fact that the exploitability of Hyperborean
is smaller than that of GS6 suggests that it was computed using a finer-grained abstraction.4

8.7 New generalized family of post-processing techniques

We observe that combining reverse mapping and thresholding leads to the issue that discretizing
actions finely in some area of the action space disfavors those actions because the probability
mass from the equilibrium finding gets diluted among them. To mitigate this problem, we pro-
pose to bucket abstract actions into similarity classes for the purposes of thresholding (but not
after thresholding). For example, in no-limit poker any bet size is allowed up to the number of
chips a player has left. In a given situation our betting abstraction may allow the agent to fold,
call, bet 0.5 pot, 0.75 pot, pot, 1.5 pot, 2 pot, 5 pot, and all-in. If the action probabilities are
(0.1, 0.25, 0.15, 0.15, 0.2, 0.15,0, 0, 0), then purification would select the call action, while the
vast majority of the mass (0.65) is on betting actions. In this example, our approach—detailed
below—would make a pot-sized bet (the highest-probability bet action).

Finally, we observe that biasing toward conservative actions that reduce variance (e.g., the
fold action in poker) is helpful in a strong agent (variance increases the probability that the
weaker opponent will win).5 Our experiments show that preferring the conservative “fold” action
in TH increases expected value as well. One reason may be that if an agent is uncertain about
what should be done in a given situation (the equilibrium action probabilities are mixed), the
agent will likely be uncertain also later down that path and it may be better to end the game here
instead of continuing to play into a part of the game where the agent is weak.

Our new post-processing technique combines all the ideas listed above [18].6 It first separates
the available actions into three categories: fold, call, and bet. If the probability of folding exceeds
a threshold parameter, we fold with probability 1. Otherwise, we follow purification between
the three options of fold, call, and the “meta-action” of bet. If bet is selected, then we follow
purification within the specific bet actions. (Purification is a special case of our family where the
threshold parameter is 1 and there is no “bundling” of similar actions.)

Clearly, there are many variations of this technique—so it begets a family—depending on
what threshold for definitely using the conservative action (fold) is used, how the actions are

3It is worth noting that purification and thresholding cannot help us against an equilibrium strategy if the abstrac-
tion is lossless; but even if it is lossless the algorithms may still help against actual (non-equilibrium) opponents.

4While such a monotonicity of exploitability vs. abstraction size is not guaranteed [119], empirically it has been
demonstrated that in practice [68] exploitability typically decreases with increasing abstraction size.

5The idea folding with probability 1 in information sets where the approximate equilibrium gives a reasonably
high probability for folding came from discussions with Eric Jackson.

6Noam Brown helped contribute to the development of this technique.
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bucketed for thresholding, what thresholding value is used among the buckets, and what thresh-
olding value is used within (each of possibly multiple) meta-actions.

We studied the effect of using our new post-processing techniques on the final strategies com-
puted by our distributed equilibrium computation that was described in Chapter 6. We compared
using no threshold, purification, a threshold of 0.15,7 and using the new technique with a thresh-
old of 0.2.8 We tested against the two strongest agents from the 2013 competition (these were
the same opponents that we evaluated our approaches against in Chapter 6). Results are shown
in Table 8.5. The new post-processor outperformed the prior ones both on average performance
and on worst observed performance.

Hyperborean Slumbot Avg Min
No Threshold +30 ± 32 +10 ± 27 +20 +10
Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19
New-0.2 +39 ± 26 +103 ± 21 +71 +39

Table 8.5: Win rate (in mbb/h) of several post-processing techniques against the strongest two-
player no-limit Texas hold ’em agents from the 2013 Computer Poker Competition.

8.8 Summary and extensions

We presented two new reverse-mapping algorithms for large games: purification and threshold-
ing. One can view these approaches as ways of achieving robustness against one’s own lossy
abstraction. From a theoretical perspective, we proved that it is possible for each of these al-
gorithms to help (or hurt) arbitrarily over the standard approach, and that each can perform
arbitrarily better than the other. However, in practice both purification and thresholding seem to
consistently help over a wide variety of domains.

Our experiments on random matrix games show that, perhaps surprisingly, purification helps
even when random abstractions are used. Our experiments on Leduc hold ’em show that purifica-
tion leads to improvements on most abstractions, especially as the abstractions become more so-
phisticated. Additionally, we saw that thresholding generally helps as well, and its performance
improves overall as the threshold cutoff increases, with optimal performance usually achieved at
full purification. We also saw that purification outperformed thresholding with a lower threshold
cutoff in the Annual Computer Poker Competition against a wide variety of realistic opponents.
In particular, our bot that won the 2010 two-player no-limit Texas hold ’em bankroll competi-
tion used purification. Finally, we saw that these performance gains do not necessarily come
at the expense of worst-case exploitability, and that intermediate threshold values can actually
produce the lowest exploitability. There is a natural explanation for this seemingly surprising
phenomenon. If there is too much thresholding, the resulting strategy does not have enough ran-

7This value was a prior benchmark [38]. Our exploratory data analysis concurred that it is a good choice.
8This was a good choice based on exploratory analysis, and it performed clearly better than 0.1 against both

opponents.
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domization, so it signals too much to the opponent about the agent’s private information. On the
other hand, if there is too little thresholding, the strategy is overfit to the particular abstraction.

Our results open up many interesting avenues for future work. In Section 8.4, we presented
several concrete theoretical open problems related to understanding the performance of purifica-
tion in random matrix games. In particular, larger games (with different degrees of abstraction)
should be studied, and perhaps general theorems can be proven to augment our (statistically
significant) empirical findings.

Future work should also investigate possible deeper connections between purification, ab-
straction, and overfitting from a learning-theoretic perspective. Is there a formal sense in which
purification and thresholding help diminish the effects of overfitting strategies to a particular ab-
straction? Is such overfitting more prone to occur with coarser abstractions, or with some abstrac-
tion algorithms more than others? Perhaps the results also depend crucially on the equilibrium-
finding algorithm used (especially for games with many equilibria). A better understanding of
these phenomena could have significant practical and theoretical implications.

In addition, we have just considered some of the families of modifications to the leading
abstraction/equilibrium paradigm. Many other approaches are possible; for example, rounding
probabilities to intermediate values (rather than to 0), or randomizing equally between the k
highest-probability actions. We would like to experiment further with the different approaches
within the family we have developed, as well as study new families of approaches, in order to
understand better when certain approaches would be preferred over others.
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Chapter 9

Computing Equilibria in Multiplayer
Stochastic Imperfect-Information Games

Thus far, I have described approaches which were applied to solve two-player zero-sum games.
In this chapter, I describe algorithms that we have applied to a three-player game. As discussed
in Chapter 2, games with more than two agents are significantly more challenging to reason
about and compute strong strategies for than two-player zero-sum games: computing a Nash
equilibrium is PPAD-hard, and there is little theoretical justification for why Nash equilibrium
strategies would perform well against unknown opponents (or even against “rational” opponents,
for many possible definitions of rationality). That said, the study of algorithms for approximating
Nash equilibria in these games is still worthwhile for several reasons. First, it could be possible to
develop algorithms that work well in practice despite a lack of theoretical performance or runtime
guarantees. Second, it could be possible to develop algorithms with theoretical performance
and/or runtime guarantees in certain interesting game classes, despite a lack of a general worst-
case guarantee. And third, it is my personal belief that Nash equilibrium strategies would still
perform extremely well in many interesting games with more than two players, despite the lack
of a general worst-case guarantee. For instance, many of the strongest high-stakes human players
for 6-player variants of poker try to approximate Nash equilibrium strategies for many situations.
Part of my longer-term research vision beyond this thesis is to develop a better understanding for
why Nash equilibrium is a compelling solution concept even in these game classes.

In this chapter, I will present new algorithms for approximating equilibrium strategies in a
class of multiplayer games—undiscounted multiplayer stochastic games, where the stage games
are imperfect-information games. This game class includes a format of multiplayer poker tour-
naments that are played competitively for high stakes on several online poker sites. While the
algorithms are not guaranteed to converge to equilibrium, we have observed empirically that they
converge to ε-equilibrium strategies for extremely small ε in a realistic three-player poker tourna-
ment endgame. I also present proofs that several of the algorithms cannot converge to anything
but a Nash equilibrium (i.e., if they converge, then the resulting strategies are guaranteed to be
an equilibrium). I present detailed analysis of the computed approximate equilibrium strategies
and draw several conclusions about poker strategy, some of which challenge popular heuristics
from the poker community.

The algorithms presented are the first algorithms for provably computing an ε-equilibrium of
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a large stochastic game for small ε. An efficient algorithm that minimizes external regret in both
the perfect and imperfect information case is also described.

A stochastic game is a collection of games (often these are strategic-form games); the agents
repeatedly play a game from this collection, and then transition probabilistically to a new game
depending on the previous game played and the actions taken by all agents in that game. We
will consider stochastic games where the individual stage games are themselves extensive-form
imperfect-information games. Unlike extensive-form games, stochastic games have a potentially
infinite duration. In discounted stochastic games, the expected payoff of a player is the weighted
sum of payoffs from each iteration, where weights are multiplied by some constant factor λ at
each time step; in undiscounted stochastic games, the expected payoff is the limit of the average
iteration payoff. Prior algorithms are guaranteed to converge to an equilibrium in certain classes
of stochastic games [16, 58, 70, 79, 116]. However, no known algorithms are guaranteed to
converge to an equilibrium in three-player stochastic games (even in the zero-sum case). In fact,
it is unknown whether a Nash equilibrium is even guaranteed to exist in undiscounted stochastic
games with more than two players.

9.1 Stochastic games

A stochastic game is a collection of games (often these are strategic-form games); the agents re-
peatedly play a game from this collection, and then transition probabilistically to a new game de-
pending on the previous game played and the actions taken by all agents in that game. (Stochastic
games generalize Markov decision processes (MDPs) to the multiagent setting.) We will consider
stochastic games where the individual stage games are themselves extensive-form imperfect-
information games. Unlike extensive-form games, stochastic games have a potentially infinite
duration. In discounted stochastic games, the expected payoff of a player is the weighted sum of
payoffs from each iteration, where weights are multiplied by some constant factor λ at each time
step; in undiscounted stochastic games, the expected payoff is the limit of the average iteration
payoff.

As in other classes of games, the standard solution concept in stochastic games is the Nash
equilibrium. Prior algorithms are guaranteed to converge to an equilibrium in certain classes of
games; however, no known algorithms are guaranteed to converge to an equilibrium in three-
player stochastic games (even in the zero-sum case). In fact, it is unknown whether a Nash
equilibrium is even guaranteed to exist in undiscounted stochastic games with more than two
players.

Friend-or-Foe Q-learning [79] and Nash-Q [58] is proven to converge if the overall stochastic
game has a global optimum (a strategy profile that maximizes the payoff for each agent) or a
saddle point (Nash equilibrium such that if any agent deviates, all others become better off)—
and furthermore, the algorithm needs to know which of these two settings it is operating in.
Other algorithms are guaranteed to converge to an optimal Nash equilibrium in team stochastic
games—games in which all agents receive the same payoff [16, 116]. Interesting algorithmic
results have also been proven for planning in general-sum stochastic games [70]. That paper does
not specify a Nash selection function; we provide such a function that is effective in practice.
Their algorithm Finite-VI resembles our algorithm VI-FP from [29], which we will review, but
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they do not have algorithms resembling those that we will introduce in this paper. Furthermore,
their algorithms find equilibria only in finite-horizon games; ours also do in infinite games. In
summary, the settings of prior work are quite restrictive, and all of those algorithms have only
been tested on tiny problems, if at all.

In contrast, I will present algorithms for computing approximate jam/fold equilibrium strate-
gies in a three-player no-limit Texas hold ’em tournament [29, 30]. The tournament does not
fall into the classes of games for which prior algorithms are guaranteed to converge, and further-
more the game is significantly larger than the games previously solved. Additionally, the stage
games have imperfect information: players are dealt private cards at each game state and must
choose their action without knowing the cards dealt to the other players. The tournament uses
the actual parameters of tournaments played on the most popular poker site, Pokerstars. It can
be formulated as a stochastic game with 946 states, each with 26×169 possible actions.

Formally, a stochastic game G is a tuple (N,S,A, p, r) where N = {1, . . . , n} denotes a
finite set of players, and S denotes a finite set of states. A is a tuple (A1, . . . , An) where for
each i ∈ N, s ∈ S, Ai(s) is a finite set corresponding to player i’s available actions at state
s. For s ∈ S let A(s) denote the vector (A1(s), . . . , An(s)). For each s, t ∈ S and a ∈ A(s),
ps,t(a) denotes the probability that we transition from state s to state t when all players play their
component of the action vector a. Finally, r : S → Rn denotes the payoff function, where for
each s ∈ S, r(s) is a vector whose i’th component is the payoff to player iwhen state s is reached
(in some formulations the reward function has domain S × A).

At each state s, player i can choose any probability distribution σ over actions in Ai(s).
Let σ(ai) denote the probability he selects action ai. Let a = (a1, . . . , an), and define σ(a) =∏

i σ(ai). Then we extend our definition of the transition function so that

ps,t(σ) =
∑
a∈A(s)

[σ(a)ps,t(a)] .

A policy π for player i is a choice of probability distributions over actions in Ai(s) at each state
s.

If we let st denote the current state at time t then the goal of agent i is to maximize
∞∑
t=0

γtri(st),

where 0 < γ ≤ 1 is the discount rate. If γ = 1 then we say that the game is undiscounted, and
otherwise we say that it is discounted.

We say that a state s is terminal if ps,t(a) = 0 for all t 6= s, a ∈ A(s) and ps,s(a) = 1 for all
a ∈ A(s). If we ever arrive at a terminal state s, then we will remain at s for the remainder of the
game. A state is nonterminal if it is not a terminal state.

A stochastic game with one agent is called a Markov decision process (MDP).

9.2 Poker tournaments and jam/fold strategies
Tournaments are an extremely popular form of poker; they work as follows. Some number of
players (say 10) all pay an entry fee (say $10) and are given a number of chips (say 1500), which
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have no monetary value per se except that a player is eliminated from the tournament when
he runs out of chips. The first six players eliminated from the tournament lose their entry fee,
while the three top finishers receive 50%, 30%, and 20% of the sum of the entry fees ($100)
respectively. Usually the blinds increase every five or ten minutes in online tournaments, starting
at SB = 10, BB = 20 and approximately doubling at every level. Since chips have no explicit
monetary value, tournaments are actually stochastic games, where each state corresponds to a
vector of stack sizes.

When blinds become sufficiently large relative to stack sizes, rationality dictates more ag-
gressive play. For example, suppose a player has 1000 chips at the 100/200 level (SB = 100, BB
= 200) and is considering making a preflop raise smaller than going all-in. If he makes a mini-
mum raise to 400 and someone re-raises for all his chips, then the original raiser will only need
to put in 600 more chips into a pot of 1700. If all chips had the same value, then he would only
need to expect to win with probability 600

1700+600
= 0.261 to make calling correct. Since even the

worst starting hand has close to this probability of beating the best starting hand, it will almost
always be correct to call. If he had gone all-in preflop instead of raising only to 400, the result
would probably have been the same in this case; furthermore, he would have been more likely to
win the blinds for free, since opponents are more likely to call a raise of 200 than a raise of 800.

In line with this example, common strategy when blinds become sufficiently high relative to
stack sizes is to either go all-in or fold preflop (this is known as a jam/fold strategy). Following
this reasoning, Miltersen and Sørensen [82] compute jam/fold strategies for tournaments with
two players and the fixed parameters SB = 300, BB = 600, and 8000 total chips (at the time, these
defined the normal parameters for the two-player endgame in tournaments on PartyPoker.com).
In fact, if we letGi,si denote the restriction of the original tournament in which player i starts with
si chips and is limited to playing a jam/fold strategy (while the other player is not), they show
that for any value of s1, V1(G1,s1) + V2(G2,8000−s1) ≥ 0.986 (where the winner gets payoff 1, the
loser gets payoff 0, and Vi denotes the value of the game to player i). Thus, neither player can
guarantee more than 0.014 by deviating to a non-jam/fold strategy; this provides a justification
for restricting attention to jam/fold strategies. Additionally, they note that the probability each
player wins the tournament is very close to the proportion of chips he has (i.e., player i will win
with probability very close to si

s1+s2
).

9.3 VI-FP algorithm

When blinds become sufficiently large relative to stack sizes in tournaments, rationality dictates
more aggressive play. In particular, prior work suggests that it is near optimal for players to either
go all-in or fold preflop [29, 82] (such strategies are called jam/fold strategies). In this section
I present a new algorithm for computing an approximate jam/fold equilibrium in a three-player
tournament [29]. The algorithm consists of iteration at two nested levels. The “inner loop” uses
an extension of smoothed fictitious play to determine ε-equilibrium strategies for playing a hand
at a given state (stack vector) given the values of possible future states. This is done for all states.
The iteration of the “outer loop” adjusts the values of the different states in light of the new
payoffs obtained from the inner loop. Then the inner loop is executed again until convergence,
then the outer loop, and so on. The algorithm terminates when no state’s payoff changes by more
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than δ between outer loop iterations. As the outer loop resembles Value Iteration and the inner
loop uses smoothed Fictitious Play, we refer to this algorithm as VI-FP.

9.3.1 Inner loop
In standard fictitious play, each player plays a best response to the average strategies of his
opponents thus far. Similarly, in smoothed fictitious play each player i applies the following
update rule at each time step t to obtain his current strategy sti:

sti =

(
1− 1

t

)
st−1
i +

1

t
s′ti , (9.1)

where s′ti is a best response of player i to the profile st−1
−i of the other players played at time t− 1

(strategies can be initialized arbitrarily at t = 0). This algorithm was originally developed as a
simple learning model for repeated games, and was proven to converge to a Nash equilibrium
in two-player zero-sum games [27]. However, it is not guaranteed to converge in two-player
general-sum games or games with more than two players.

In poker tournaments the strategy spaces are exponential in the number of possible private
signals. In particular, in Texas hold ’em there are 169 strategically distinct preflop hands (see,
e.g., [42]) and two jam/fold moves each player can make at each information set. Therefore, the
strategy spaces (for any given stack vector) are of size 2169, 22×169, and 23×169 for the button,
small blind, and big blind, respectively (the big blind does not need to act when the other two
players fold). To deal efficiently with this exponential blowup, the algorithm works with the
extensive form of the game instead of enumerating the strategies. In the extensive form, each
player’s best response can be computed by traversing his information sets one at a time. The
button has 169 information sets, the small blind has 2 × 169, and the big blind has 3 × 169.
Therefore, the best response (for each player in turn) can be computed efficiently.

While fictitious play is not guaranteed to converge, we fortunately have the following result:
Theorem 1. (Fudenberg and Levine [27]) Under fictitious play, if the empirical distributions
over each player’s choices converge, the strategy profile corresponding to the product of these
distributions is a Nash equilibrium.

9.3.2 Outer loop
As stated earlier, poker tournaments are stochastic games in which each state corresponds to a
vector of stack sizes. In particular, we analyze the tournament in which there are 13500 total
chips, and blinds are SB = 300, BB = 600. These correspond to common endgame parameters of
sit-and-go tournaments at Pokerstars, the most popular online poker site. Each state in our game
G is defined by a triple (x1, x2, x3), where x1 denotes the stack of the button, x2 denotes the stack
of the small blind, x3 denotes the stack of the big blind,

∑
i xi = 13500, and all xi are multiples

of 300. When one of the xi becomes zero, that player is eliminated, and we can already solve
the remaining game with the prior techniques because there are at most two players left. So we
can ignore states in which stacks are zero from our model and just substitute the corresponding
payoffs to players when we arrive in such states. G has 946 non-terminal states.
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The algorithm for solving the game works as follows. First we initialize the assignment V 0

of payoffs to each player at each game state using a heuristic from the poker community known
as the Independent Chip Model (ICM), which asserts that a player’s probability of winning is
equal to his fraction of all the chips; his probability of coming in second is asserted to be the
fraction of remaining chips conditional on each other player coming in first, etc. [29]. ICM has
been shown to be quite accurate when two players remain in the tournament [82]; when three
players remain it has been shown to be relatively accurate overall, although in some states it is
significantly inaccurate [29].

Next, suppose we start at some game state x0. If we assume that the payoffs of V 0 at all
states are the actual values of those game states to the players, then the whole stochastic game
just becomes a standard game in which every transition from x0 leads to a terminal payoff. So
we can run the fictitious play algorithm described in the previous section at state x0 until it
(hopefully) converges. Supposing it does converge to an approximate equilibrium, each player
will now have some new expected payoff at state x0 if that equilibrium is played. (These payoffs
might differ from V 0.) If we do this for all 946 game states, we come up with a new assignment
V 1 of payoffs to each player at each game state. Now suppose we repeat this process and that
hypothetically the payoffs remain the same between iterations k and k + 1 (all the payoffs in
V k and V k+1 are equal). This would suggest that the strategies computed by fictitious play at
iteration k (assuming they converge) are close to an equilibrium of the full game G.

Now, stated explicitly with tolerances, the overall algorithm works as follows. First, fix
γ, δ > 0. Initialize the V 0 to ICM, and run fictitious play using V 0 as payoffs until an γ-
equilibrium is reached (a strategy profile in which no player can gain more than γ in expectation
by deviating). Then use the payoffs V 1 which result from the computed strategy profile and
repeat. The algorithm halts when it reaches an iteration k such that each payoff of V k differs
from the corresponding payoff of V k−1 by less than δ.

Algorithm 7 VI-FP(γ, δ)

V 0 = ICM
diff =∞
i = 0
while diff > δ do

i = i+ 1
regret←∞
S ← initializeStrategies()
while regret > γ do

S = fictPlay()
regret← maxRegret(S)

end while
V i ← getNewValues(V i−1,S)
diff← maxDev(V i, V i−1)

end while
return S
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9.4 Our ex post check

In the experimental results with VI-FP, both the inner and outer loops converged. However,
we observe that this does not guarantee that the final strategies constitute an approximate equi-
librium. For example, suppose we initialized all the payoffs at nonterminal states to be $100
(higher than the first-place payoff) and initialized payoffs at the terminal states using ICM. Then
the optimal strategy for each player would be to fold every hand (except for the shortest stack if
he is all-in), and the algorithm would converge to this profile (in a single outer-loop iteration).
However, this profile is clearly not an equilibrium of the game, as the players will not receive
any payoff (while they would receive at least $20 if the game ended after some finite time). Thus
there exist initializations for which VI-FP converges to a non-equilibrium profile. I suspect also
that VI-FP can fail to converge even if some nonterminal states are initialized pessimistically
and/or there is positive probability that the game will end (unlike in the example above where
the optimal strategy is for every player to fold every hand, under which the game will not end);
this merits further study.

Despite this fact, we suspected that the computed strategies formed an approximate equilib-
rium (as the strategies seemed very reasonable and we used an intelligent initialization). To verify
this, we developed an ex post checking procedure to make sure. It computes the best response of
each player to the computed strategy profile and determines the improvement in payoff (while the
overall algorithm is somewhat obvious, it is difficult in our setting for reasons described below).
If the improvement is less than ε for each player, then the original strategies indeed constitute an
ε-equilibrium.

Stepping back to the big picture, VI-FP is an incomplete algorithm; but if it converges, our
ex post check can be used to check the quality of the solution. Furthermore, the check can be
applied at every iteration of the outer loop, even if VI-FP does not converge. As we will see, we
have developed several new algorithms for solving stochastic games that cannot converge to a
non-equilibrium strategy profile (as VI-FP can). Thus, if the new algorithms converge we will
not need to waste extra resources performing the ex post check after every iteration, as we are
guaranteed to be at an equilibrium.

We will now describe the ex post check in detail. The first step is to construct the MDP in-
duced by the strategy profile s∗ (computed by VI-FP). Denote this MDP byM. Each nonterminal
state si of M is determined by a nonterminal state vi of the stochastic game G (stack vector) and
a position αi (button, small blind, or big blind). So, M contains 946 × 3 = 2838 nonterminal
states. In addition, M contains a terminal state for each terminal of G corresponding to each
stack vector with at most two nonzero stacks that is reachable from a nonterminal state (say that
a state s2 is reachable from state s1 if there exists an a ∈ A(s1) such that ps1,s2(a) > 0).

The set of actions available at each state is essentially the set of jam/fold strategies available
at that stack vector in G. If αi is the button then there are 2169 possible actions at state si; if
αi is the small blind there are 22×169 actions; and if αi is the big blind there are 23×169 actions.
The transitions of M are determined by the probability distribution over states when player αi
chooses action ai and the other players follow the strategy profile s∗−i. It is important to note
that in a transition to a nonterminal state the position changes; that is, if we are at state si with
position αi equal to the button and transition to state sj, the new position αj is the big blind
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(because blinds move clockwise). Finally, the rewards at each nonterminal state are 0, and at
each terminal state they are the ICM payoff of the corresponding stack vector (since previous
two-player results showed that ICM payoffs very closely approximate equilibrium payoffs in
this case).

An optimal policy for M corresponds to a best response of each player in G to the profile s∗.
However, we cannot apply the standard value or policy iteration algorithms for solving the MDP
because we are in the undiscounted setting (since the players only care about their final payoffs).
Instead we turn to variants of these algorithms that work when the objective is expected total
reward and the following conditions hold: 1) for all states s and policies π, the value of state
s under π is finite and 2) for each s there exists at least one available action a that gives non-
negative reward. In the results below, we refer to these conditions as “our setting.”

For value iteration, the change from the classic discounted setting is the initialization:
Theorem 2. (Puterman [95]) In our setting, if v0 is initialized pessimistically (i.e., ∀s, v0(s) ≤
v∗(s)), value iteration converges (pointwise and monotonically) to v∗.

9.4.1 Policy iteration
We refer the reader to [95] for a thorough description of the standard policy iteration algorithm,
and present the modified algorithm needed to obtain convergence in our setting here (while not-
ing deviations from the classic setting). Policy iteration converges to an optimal policy in our
setting if 1) our initial policy obtains non-negative expected total reward (which is obviously the
case here), 2) we choose the minimal non-negative solution of the system of equations in the
evaluation equation in the evaluation step (if there is a choice), and 3) if the action chosen for
some state in the previous iteration is still among the optimal actions for that state, then select it
again.

Since step 2 is critical for our new algorithms for solving multi-player stochastic games in
the next section, we will explain it in more detail here. For each state i in the MDP M, v(i)
is a variable corresponding to its value. Thus, the equation in step 2 is linear in the unknowns
v(i), i = 1, . . . , |S|, where |S| is the number of states in M. Thus we have a linear system of
|S| equations with |S| unknowns. If the equations are linearly independent, then there will be a
unique solution which can be computed by matrix inversion. If there are no solutions, then we are
in a degenerate case and the MDP has no optimal policy (it can be proven that this can never be
the case in our setting). If there are multiple solutions, then we select the minimal non-negative
solution (see [95] for a further explanation). In all of our experiments the coefficient matrix had
full rank and hence the system had a unique solution.

In the rest of this paper we will refer to step 2 of Algorithm 8 as EvaluatePolicy().
Theorem 3. (Puterman [95]) Let S be the set of states in M . Suppose S and A(s) are finite.
Then, for some finite N , vN = v∗ and πN = π∗.

9.4.2 Ex post check algorithm
Since we already have a policy s∗ that we expect to be near-optimal (and the corresponding
values from the final iteration of the outer loop) from VI-FP, we would like to use these values
to obtain a warm start for v0 in the ex post check. However, this would not work with the value
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Algorithm 8 Policy iteration for our setting

1. Set n = 0 and initialize the policy π0 so it has non-negative expected reward.

2. Let vn be the solution to the system of equations

v(i) = r(i) +
∑
j

pπ
n

ij v(j)

where pπn

ij is the probability of moving from state i to state j under policy πn. If there are
multiple solutions, let vn be the minimal non-negative solution.

3. For each state s with action space A(s), set

πn+1(s) ∈ argmax
a∈A(s)

∑
j

paijv
n(j),

breaking ties so that πn+1(s) = πn(s) whenever possible.

4. If πn+1(s) = πn(s) for all s, stop and set π∗ = πn. Otherwise increment n by 1 and return
to Step 2.

iteration algorithm because v0 would not be simultaneously pessimistic for each player (at any
state) because we are in a zero-sum game (unless the values from VI-FP were precisely correct).
On the other hand, we can use s∗ as the initial policy in policy iteration because it clearly obtains
non-negative expected total reward. Therefore we opt for using the warm start and choose policy
iteration in the ex post check.

Algorithm 9 Ex post check
Create MDP M from the strategy profile s∗.
Run Algorithm 8 on M (using initial policy π0 = s∗) to get π∗.
return maxi∈N,s∈S ui(π

∗
i (s), s

∗
−i(s))− ui(s∗i (s), s∗−i(s))

Proposition 7. Algorithm 9 correctly computes the largest amount any agent can improve its
expected utility by deviating from s∗.

Proof. By Theorem 3, the policy iteration step of the ex post check converges in finite time
to an optimal policy of the MDP M determined by s∗. Since the agent assumes that all other
players are following s∗ at every state of M, the final policy π∗ is a best response to s∗. Thus the
algorithm returns the largest amount any agent can gain by deviating from s∗.

As in VI-FP, for efficiency in Step 3 of the policy iteration (Algorithm 8) we do not compute
best responses in the exponential strategy space directly, but instead we consider the extensive
form and compute best responses by traversing each agent’s information sets in turn. Again, this
avoids the exponential blowup.

We executed the ex post check on the strategies output by VI-FP. It converged in just two
iterations. The conclusion from that experiment is that for any starting state of the tournament,
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no player can gain more than $0.049 by deviating from s∗. This represents less than 0.5% of the
tournament entry fee. In other words, while VI-FP does not guarantee that convergence is to an
equilibrium, it happened to indeed converge to a strategy profile that is an ε-equilibrium for very
small ε.

9.5 New algorithms for solving stochastic games
The approaches used in the ex post check motivate new algorithms for equilibrium finding as
well. We now present those new algorithms. They apply to multi-player stochastic games of
either perfect or imperfect information in which best responses can be computed efficiently. Un-
like VI-FP, each of the new algorithms has the following guarantee: if the algorithm converges,
the final strategy profile is an equilibrium.

9.5.1 PI-FP: Policy Iteration as outer loop; Fictitious Play as inner loop
Our first new algorithm is similar to VI-FP except now the value updates take the form of Step 2
of Algorithm 8. After the inner loop of fictitious play converges at each stack vector to an ε-
equilibrium s′ (assuming the currently outer-loop values), we evaluate the expected payoffs at
all stack vectors under the profile s′ by constructing the induced MDP and finding the minimal
solution of the system of equations determined by Step 2 of Algorithm 8. (We initialize the
payoffs using ICM.) Thus, PI-FP differs from VI-FP in how the values are updated in the outer
loop, while the inner loop remains the same.

Algorithm 10 PI-FP(γ, δ)

V 0 ← ICM
diff←∞
i← 0
while diff > δ do

i← i+ 1
regret←∞
S0 ← initializeStrategies()
while regret > γ do

Si = fictPlay()
regret← maxRegret(Si)

end while
M i ← createTransitionMatrix(Si)
V i ← evaluatePolicy(M i)
diff← maxDev(V i, V i−1)

end while
return Si

Proposition 8. If the sequence of strategies {sn} determined by iterations of the outer loop of
this algorithm converges, then the final strategy profile s∗ is an equilibrium.
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Proof. Let M denote the induced MDP determined by the profile s∗ and define π0 to be the
policy such that π0(s) = s∗i (s) for all states s in M, where i is the player corresponding to state
s. Now suppose we run Algorithm 8 on M using π0 as our initial policy. By the convergence of
PI-FP, we must have π1(s) = π0(s) for all s. Thus Algorithm 8 converges in one iteration on
M, and we have π∗ = π0 = s∗i . So, all players are playing a best response to each other under
profile s∗, i.e., s∗ is an equilibrium.

While VI-FP might converge to a non-equilibrium given a poor initialization (e.g., if all
values are initialized to be above the first-place payoff), PI-FP can still recover from a poor
initialization since it uses the values resulting from evaluating the policy, not the values from the
initialization.

9.5.2 FP-MDP: switching the roles of Fictitious Play and MDP solving
Our next new algorithm involves reversing the roles of the inner and outer loops from the previous
two algorithms: now fictitious play serves as the outer loop and MDP solving as the inner loop.
As argued previously, we prefer policy iteration to value iteration for this application because it
allows us to get a good warm start more easily (although value iteration may be preferable in
some applications). (We initialize values using ICM and generate our initial strategy profile s0

as before.) As in the ex post check, we construct the MDP induced from the strategy profile s0

and compute the best response for each player using policy iteration. We combine the computed
best responses with s0 using the fictitious play updating rule to obtain s1, and repeat until the
sequence {sn} (hopefully) converges. We can use several different termination criteria, such as
specifying a number of outer loop iterations or specifying a minimum deviation for the values or
strategies between two outer loop iterations.

Algorithm 11 FP-MDP
S0 = initializeStrategies()
i = 0
while termination criterion not met do

M i = constructMDP(Si)
S ′ = solveMDP(M i)
Si+1 = i

i+1
Si + 1

i+1
S ′

i = i+ 1
end while
return Si

Proposition 9. If the sequence of strategies {sn} determined by iterations of the outer loop of
this algorithm converges, then the final strategy profile s∗ is an equilibrium.

Proof. By Theorem 3, policy iteration will converge to an optimal (deterministic) policy at each
step t of the inner loop, which corresponds to a best response to the strategy profile st−1

−i . Thus
by Theorem 1, convergence of the outer loop implies we are at an equilibrium.

Again, unlike VI-FP, FP-MDP can potentially recover from poor initializations because it
only uses the values resulting from evaluating the policy.

85



9.5.3 FTPL-MDP: a polynomial time algorithm for regret minimization
Note that we could use any suitable MDP-solving algorithm in the inner loop of FP-MDP. In
particular there exists a linear programming (LP) formulation for our setting [95]. We can treat
this as a polynomial-time best-response oracle. If we replace fictitious play in the outer loop
of FP-MDP with the follow-the-perturbed-leader (FTPL) algorithm [69], we obtain an efficient
procedure for minimizing external regret in large multi-player stochastic games. FTPL is similar
to fictitious play (Eq. 9.1) except that instead of playing the best response to the profile st−1

−i at
time t, player i picks the strategy j that maximizes ui(j, st−1

−i ) + Zj,t, where Zj,t corresponds to
random noise. The FTPL algorithm minimizes external regret; that is, if the game is repeated
n times and a player follows the algorithm, then the per-period difference between the expected
payoff of his best fixed strategy in hindsight and his expected payoff by following the FTPL
algorithm approaches 0 (as 1√

n
).

Algorithm 12 FTPL-MDP
S0 ← initializeStrategies()
i← 0
while termination criterion not met do

Ŝi ← randomPerturbation(Si)
M i ← constructMDP(Ŝi)
S ′ ← solveMDP-LP(M i)
Si+1 ← i

i+1
Si + 1

i+1
S ′

i← i+ 1
end while
return Si

9.6 Experiments

We conducted experiments comparing the performance of VI-FP with PI-FP and FP-MDP on
the tournament using the payouts $50, $30, and $20. The results are shown in Figure 9.1. The
x-axis is the running time (in minutes, using 16 3GHz processors), and the y-axis is the maximal
amount (in dollars) a player could improve by deviating from the current outer loop strategy
profile of the algorithm (i.e., the ε of ε-equilibrium). The y-axis value is the maximum ε over
all players and over all possible starting stack vectors of the tournament. The solid line denotes
VI-FP, the dashed line denotes PI-FP, and the dashed/dotted line denotes FP-MDP. The graph
was generated by running the ex post check algorithm over the strategies computed at the end of
each outer-loop iteration of the algorithms.

Since the outer loops for the algorithms take different amounts of time, the graph contains
different numbers of data points for the different algorithms (the outer loop for VI-FP and PI-
FP takes about 2 hours while it takes about 40 minutes for FP-MDP). We halted the first two
algorithms when ε fell below 0.05, which represents 0.1% of the first place payoff; we halted the
second new algorithm after 20 hours, as it failed to achieve ε = 0.05.
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Figure 9.1: Epsilon as a function of running time.

PI-FP was the fastest to reach the target accuracy. VI-FP also reached it, but took almost
three times as long. FP-MDP did not reach that accuracy in 20 hours.

9.7 Implementation discussion

9.7.1 11-card rollout
The main computational challenge of this project was precomputing the probabilities of all of
the events that occur when all three players are all-in preflop (e.g., player 1 wins, players 2 and
three tie for second): there are 13 such probabilities for each set of hole cards. In order to do this,
we had to perform an 11-card rollout—essentially iterating over all possible hole cards for the
players (6 total) and all possible sets of community cards (5 total). The straightforward approach
of iterating over all (

52

2

)(
50

2

)(
48

2

)(
46

5

)
= 2.51× 1015

possibilities would take too long, and we were forced to find ways of exploiting suit symmetries
to hopefully reduce the running time.

Exploiting suit symmetries

Gilpin, Sandholm and Sørensen [47] faced similar issues when they performed a nine-card rollout
for two players. Unfortunately their techniques do not extend directly to three players, and we
were forced to come up with a new method of exploiting symmetries which works as follows.
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First, fix an order of the players a, b, c and number the cards from 0 to 51 (0 is 2♣, 1 is 2♦,
etc.). Also order the suits from 0 to 3: (♣,♦,♥,♠). For each player, fix an ordering of his hole
cards: a1 < a2, b1 < b2, and c1 < c2. We restrict a1 to be of suit 0, then proceed as follows in
the order a2, b1, b2, c1, c2. Each of these cards can either be a suit of one of its predecessors, or
can be 1 more than the maximum suit of one of its predecessors. For example, a2 can either have
suit 0 or 1, since its only predecessor a1 had suit 0. Then every set of hole cards for the three
players is equivalent (up to a permutation of players and suits) to a set of cards meeting the above
requirements; thus we only need to iterate over this smaller set of hole cards in the rollout.

We will now give an example that demonstrates how to transform a particular hand to the
canonical form discussed in the preceding paragraph. Suppose the three sets of hole cards are as
follows: (7♠, K♥), (A♦, A♣), (6♦, J♠). Since the 6♦ is the lowest of the six cards, we fix the
last player to be player 1. Similarly we fix the first player to be player 2 since 7♠ is the lowest
card of the remaining players, and the middle player becomes player 3. Since player 1’s lowest
card must be a club, we must apply a permutation mapping ♦ → ♣. Since 6♦ and J♠ are of
different suits, we must map ♠ → ♦. So far we have a1 = 6♣, a2 = J♦. Since ♠ has already
been mapped to a suit, we set b1 = 7♦. Now K♥ does not match any of the suits seen so far: so
we must set it to the lowest ranked unseen suit, which is ♥. So our permutation maps ♥ → ♥
and therefore ♣ → ♠. Thus b2 = K♥, c1 = A♣, c2 = A♠.

Indexing in the rollout

The previous section discussed how we were able to reduce the number of possible hole card
combinations we needed to iterate over. Once we fixed a set of six hole cards for the players, we
now had to iterate over all possible sets of five community cards. Let us denote the hole cards
as in the previous section and call the community cards t1, . . . , t5. Without loss of generality, we
can assume that t1 < t2 < . . . < t5: this reduces the number of community card possibilities
we need to iterate over by a factor of 5! = 120. However, while the authors of [47] were able to
come up with some clever ways of further reducing the number of community card possibilities
with two players, this proved to be more difficult with three players and we were not able to do
so. So for each set of hole cards, we were forced to iterate over

(
46
5

)
= 1370754 combinations of

community cards.
Given a fixed set of hole cards and community cards, our strategy for computing the de-

sired probabilities was the following. First, we construct the seven-card hand for the first player
(a1, a2, t1, t2, t3, t4, t5), and do the same for the other two players. We next compute the ranking
of this hand, which denotes the value of the best possible five-card hand our of these seven cards.
Since performing all of these calculations at run time would make the rollout take too long, we
precomputed all of these rankings of seven card hands and output them to a file, which we read
into an array before we started the seven card rollout. The straightforward method of doing this
would require an array with 527 = 1012 elements. Such a large array would slow down the
rollout too much, so we were forced to find a way to make it smaller. Fortunately, we were able
to apply the same indexing technique used by Gilpin, Sandholm and Sørensen [13, 47]. The
colexicographical index of a set of integers x = {x1 . . . , xk} ⊂ {0, . . . , n − 1} with xi < xj
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whenever i < j is

colex(x) =
k∑
i=1

(
xi
i

)
.

This index has the important property that for a given n, each of the
(
n
k

)
sets of size k has a distinct

colexicographical index. Furthermore, these indices are compactly encoded as the integers from
0 to

(
n
k

)
− 1. Since the ranking of a hand is not affected by the order of the seven cards, we can

assume without loss of generality that the cards are given in increasing order. So if we index
each seven-card hand by the index obtained after permuting the cards so they are in increasing
order, we only require an array of size

(
52
7

)
= 133784650. This results in a reduction of memory

by a factor of 7685, which proved to be crucial given the number of iterations we had to perform.
With these techniques, the computation of determining the 11-card rollout took a month

using 16 processors. The output includes for each combination of three pairs of hole cards the
probability distribution over rollout outcomes (who wins, who comes second, and who comes
third, treating outcomes with ties counting as separate outcomes). We then stored that database,
which is used heavily in our equilibrium-finding algorithm discussed above.

9.7.2 Indexing within the equilibrium finding

Another implementation issue of note arose when we needed to access the rollout probabilities
within our equilibrium computation. First, notice that each player is playing a strategy that
only depends on his hand ranking and not the specific cards per se. That is, each player treats
Q♥8♠ and Q♦8♣ the same strategically, even though the actual cards are different (there are
169 strategically distinct hands). The straightforward method of reading in the output of the
11-card rollout would involve using an array with 526 × 13 = 2.57× 1011 entries (13 outcomes
for each set of 6 hole cards). However, for the purposes of our algorithm, we can combine all of
the results in which a player has two different but strategically equivalent hands together into a
single entry of the array. Thus we can collapse this array into one of size 1693 × 13 which has
about 63 million entries. However, even after this reduction the time needed to access elements
of this array made the running time too long (since the accesses were nested inside several loops
in each iteration of the inner loop).

We observed that we could obtain a further reduction in memory by fixing a permutation of
the hand rankings. That is, suppose the three hand rankings are a, b, and c. The array described
in the previous paragraph would have up to six different entries corresponding to different per-
mutations of these rankings. However, suppose we fix an ordering of the hand rankings and
suppose a ≤ b ≤ c using this ordering (note that there can be equalities: for example, two play-
ers can be dealt pocket aces). Then our new array would just have an element corresponding to
the triple (a, b, c) and not all of the other permutations. However, we cannot use the indexing
scheme of the previous section because of the possibility of equalities between hand rankings.
Fortunately, Troels Sørenson suggested to us the following indexing scheme, which is able to
deal with multisets of this form. Now we define the multiset-colexicographical index of a set of
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integers x = {x1 . . . , xk} ⊂ {0, . . . , n− 1} with xi ≤ xj whenever i < j to be

multi− colex(x) =
k∑
i=1

(
xi + i− 1

i

)
.

Using this indexing scheme, we only require an array of size 881805 × 13, which has about 11
million entries. This is about a factor of 5.5 further reduction and proved to be enough for our
algorithm to run sufficiently fast.

We also found it useful to map each stack vector s = (s1, s2, s3) to a unique index using the
following formula, where we assume 0 < si ≤ n and si is an integer for each i (we divided the
stacks by 300 before applying this):

stack − colex(s) = (s2 − 1) +

s1−1∑
i=1

n−i−1∑
j=1

1

= −0.5s2
1 + s1(n− 0.5) + s2 − n.

9.8 Poker strategy observations

9.8.1 Prior results for a two-player poker tournament
A recent paper [82] computes near-optimal jam/fold strategies for tournaments with two players
and the fixed parameters SB = 300, BB = 600, and 8000 total chips (at the time, these defined
the normal parameters for the heads-up endgame in tournaments on PartyPoker.com). In fact,
if we let Gi,si denote the restriction of the original tournament in which player i starts with si
chips and is limited to playing a jam/fold strategy (while the other player is not), they show that
for any value of s1, V1(G1,s1) + V2(G2,8000−s1) ≥ 0.986 (where the winner gets payoff 1, the
loser gets payoff 0, and Vi denotes the value of the game to player i). Thus, neither player can
guarantee more than 0.014 by deviating to a non-jam/fold strategy; this provides a justification
for restricting attention to jam/fold strategies. They compute the optimal jam/fold strategies for
the full stochastic games G1,s1 and G2,s2 , where they consider all states in which stack sizes are
a multiple of 50. One important conclusion they draw is that for any starting stack sizes s1, s2,
the probability that player i will win is very close to

si
s1 + s2

. (9.2)

In addition to being simple, this formula is nice for another reason. Consider the following game:
two players start with stacks s1 and s2, and each round they flip a coin and the loser pays the
winner some fixed number ε chips until one player has no more chips. This is just the gambler’s
ruin problem, with the same solution: player i wins with probability si

s1+s2
.

An additional noteworthy conclusion of [82] is that the optimal strategy involves very little
randomization: at each state each player only needs to randomize (play an action with probability
not equal to 0 or 1) with at most one hand. They also note that there is no general strength-ranking
of hands: there exist hands A and B and stack vectors v and w such that A should be jammed
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and B should be folded at v, but B should be jammed and A should be folded at w. Finally, they
prove that the optimal strategy for a single hand of a cash game is almost identical to that of a
tournament.

9.8.2 Independent Chip Model (ICM)
It is not clear which of the conclusions that hold for two players extend to more players; however,
one thing that is clear is that chips and money do not necessarily coincide with more than two
players (while they do with two players). For example, suppose the chip stacks are 5000, 4900,
and 100 with blinds at 50/100. If the player with 100 folds and the player with 5000 jams, should
the playerAwith 4900 be indifferent between taking a 50-50 for all his chips (in this hypothetical
example we assume he is sure it will be a 50-50 if he calls)? In a single hand of a cash game he
should be indifferent, because the expected payoff of calling and folding are both 0 (ignoring the
blinds which are negligible compared to the relevant stack sizes). However this is not the case in
a tournament with 50/30/20 payoffs. If he folds, then the short stack will be eliminated very soon
and A will expect to come in first and second with probability 1

2
: so his expected payoff is $40.

If he calls, then he will basically guarantee winning the tournament if he wins, but will come in
third if he loses. So his expected payoff is $35. So he will gain $5 on average by folding.

Unfortunately, there is no obvious way of generalizing equation (9.2) to come up with a
heuristic for performing expected value calculations in tournaments with more than two players;
however, the following formula has been proposed and has received widespread acceptance in
the poker community for the last several years [110]:

Ui = P1 ∗
si
S

+ P2 ×
∑
j 6=i

[
sj
S
× si
S − sj

]
+ P3 ×

∑
j 6=i

∑
k 6=i,k 6=j

[
sj
S
× sk
S − sj

× si
S − sj − sk

]
,

where Ui denotes the expected payoff (ignoring the entry fee) of player i, si denotes his stack,
S =

∑
j sj, and P1, P2, P3 are the payoffs to the top three finishers. This formula is referred to

as the Independent Chip Model (ICM), and all of the popular tournament software tools (such
as [107]) use ICM to determine expected payoffs.

9.8.3 Assessing the Independent Chip Model
After we computed the approximate equilibrium strategies in the tournament, we compared the
payoffs for each player at each stack vector (when our new equilibrium strategy is played) to
ICM predictions. Our findings are listed in Table 9.1. The left column denotes the absolute value
of the difference between the ICM prediction and our final result in dollars (where the total prize
pool is $100). Since there are 946 possible stack scenarios and three players, there are 2838 total
deviations. The average deviation was $0.3703, and the range was from $4.42× 10−5 to $2.99.

The largest deviation of $2.99 occurs at the following stacks: s1 = 300, s2 = 12300, s3 = 900
(for button, small blind, big blind). ICM predicts that the prize winnings of the big blind are
$28.848, while we obtain $25.856. ICM also undervalues the button’s prize equity by $2.49
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Table 9.1: Deviations between ICM and our payoffs
Range Frequency
0-0.1 510

0.1-0.2 460
0.2-0.3 368
0.3-0.4 363
0.4-0.5 403
0.5-1 626
1-3 108

($22.96 vs. $25.45), and undervalues the small blind’s equity by $0.50 ($48.19 vs. $48.69) at
these stacks. The reason for this large deviation is that ICM thinks that the big blind is three
times as likely to win the tournament as the button (because his stack is three times as large);
however, this does not take into account the fact that the big blind must post 2

3
of his stack as

blinds the next hand. If the button folds on the next hand and the small blind jams, the big blind
will be getting 6–1 odds to call. If he calls and loses then he will finish in 3rd, while if he wins
then he will almost ensure finishing in second. On the other hand, if he folds then both he and
the button will be all-in on the next hand, and it will be a coin-flip as to who will finish in second
and third. Thus, the prize equities of the button and big blind should actually be very close to
each other (as our results confirm).

9.8.4 Comparing tournament strategies and single-hand strategies
In this section we compare the strategies we computed for tournaments with the strategies we
computed for a single hand. Interestingly, the conclusions are very different from those resulting
from the same comparison in the two-player game [82]. In the multiplayer setting, there is a big
difference between the tournament case and the single-hand case, while in the two-player setting
there was not.

Tables 9.2– 9.7 give our computed approximate equilibrium strategies for all players in a
tournament with even chip stacks s1 = s2 = s3 = 4500 and blinds at SB = 300, BB =
600, while tables 9.8–!9.13 give the strategies for a single hand of a cash game with the same
parameters. Each square in the tables represents one of the 169 distinct starting hands, with
suited hands being in the upper right and unsuited hands in the lower left. The numbers in each
square denote the probability the player should jam with that hand, rounded to the nearest 1%.
A ‘P’ (for ‘push’) means that the probability of jamming is 100%, and ‘F’ (for ‘fold’) means the
probability of jamming is 0%. So for example, in Table 9.4 the small blind should jam 93 suited
with probability 0.23, and should always fold 93 unsuited.
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Tournament strategy with equal stacks
(suited hands in upper right, unsuited in lower left)

Table 9.2: Button
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P 99 99 99 99 99 97 25
Q P P P P 99 99 99 96 95 31 8 1 1
J P P 99 P 99 99 99 94 F F F F F
T P P 99 99 P 99 99 94 F F F F F
9 P 99 95 93 94 P 99 95 6 F F F F
8 P 13 1 F F F P 96 17 F F F F
7 P 5 F F F F F P 82 F F F F
6 99 2 F F F F F F P F F F F
5 99 1 F F F F F F F P F F F
4 99 1 F F F F F F F F P F F
3 99 F F F F F F F F F F 99 F
2 99 F F F F F F F F F F F 99

Table 9.3: Small blind after button jams
A K Q J T 9 8 7 6 5 4 3 2

A P P P P 99 98 F F F F F F F
K P P F F F F F F F F F F F
Q P F P F F F F F F F F F F
J P F F P F F F F F F F F F
T 99 F F F P F F F F F F F F
9 F F F F F P F F F F F F F
8 F F F F F F 99 F F F F F F
7 F F F F F F F 98 F F F F F
6 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F

Table 9.4: Small blind after button folds
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P 99 99 99 99 99
J P P P P P P P 99 99 99 99 99 94
T P P P P P P P 99 99 99 99 93 88
9 P P P 99 99 P P 99 99 99 90 23 2
8 P P 99 99 99 99 P 99 99 99 99 2 2
7 P P 91 91 99 99 99 P 99 99 99 3 2
6 P P 90 3 3 87 94 99 P 99 99 92 2
5 P 99 3 2 1 2 2 3 91 P 99 99 85
4 P 99 3 2 1 1 1 1 2 3 P 93 2
3 P 99 2 1 F F F F F 1 1 P 2
2 P 99 2 1 F F F F F F F F P

Table 9.5: Big blind after jam/fold
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P 99 99 89 87 F F F
K P P 99 99 89 F F F F F F F F
Q P 99 P F F F F F F F F F F
J P F F P F F F F F F F F F
T P F F F P F F F F F F F F
9 99 F F F F P F F F F F F F
8 99 F F F F F P F F F F F F
7 F F F F F F F P F F F F F
6 F F F F F F F F P F F F F
5 F F F F F F F F F 99 F F F
4 F F F F F F F F F F 15 F F
3 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F
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Table 9.6: Big blind after fold/jam
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P 99
K P P P P P P 99 99 87 4 F F F
Q P P P 99 99 98 3 F F F F F F
J P P 99 P 98 1 F F F F F F F
T P P 91 F P F F F F F F F F
9 P 99 F F F P F F F F F F F
8 P 6 F F F F P F F F F F F
7 P 2 F F F F F P F F F F F
6 99 F F F F F F F P F F F F
5 99 F F F F F F F F P F F F
4 99 F F F F F F F F F P F F
3 99 F F F F F F F F F F 3 F
2 5 F F F F F F F F F F F F

Table 9.7: Big blind after jam/jam
A K Q J T 9 8 7 6 5 4 3 2

A P 96 1 F F F F F F F F F F
K 2 P F F F F F F F F F F F
Q F F P F F F F F F F F F F
J F F F P F F F F F F F F F
T F F F F 1 F F F F F F F F
9 F F F F F F F F F F F F F
8 F F F F F F F F F F F F F
7 F F F F F F F F F F F F F
6 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F
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Single hand strategy with equal stacks
(suited hands in upper right, unsuited in lower left)

Table 9.8: Button
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P 98 F
Q P P P P P P P 96 94 F F F F
J P P P P P P 98 95 F F F F F
T P P P P P P 98 96 F F F F F
9 P P F F 20 P 99 97 F F F F F
8 P 2 F F F F P 98 95 F F F F
7 P F F F F F F P 97 F F F F
6 P F F F F F F F P 94 F F F
5 P F F F F F F F F P F F F
4 P F F F F F F F F F P F F
3 P F F F F F F F F F F P F
2 P F F F F F F F F F F F P

Table 9.9: Small blind after button jams
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P 1 1 1 F F F F
Q P P P P P 1 F F F F F F F
J P P 91 P P 1 F F F F F F F
T P P 1 F P 1 F F F F F F F
9 P 1 F F F P F F F F F F F
8 P F F F F F P F F F F F F
7 P F F F F F F P F F F F F
6 P F F F F F F F P F F F F
5 P F F F F F F F F P F F F
4 1 F F F F F F F F F P F F
3 1 F F F F F F F F F F P F
2 1 F F F F F F F F F F F P

Table 9.10: Small blind after button folds
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P P P P P P
J P P P P P P P P P P 99 99 99
T P P P P P P P P 99 99 99 17 F
9 P P P P P P P P 99 99 F F F
8 P P P P P 99 P P 99 99 98 F F
7 P P P P 99 99 99 P 99 99 98 F F
6 P P P F F F 8 98 P 99 99 11 F
5 P P P F F F F F F P 99 98 F
4 P P P F F F F F F F P 98 F
3 P P 4 F F F F F F F F P F
2 P P F F F F F F F F F F P

Table 9.11: Big blind after jam/fold
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P 92 1 1 1
Q P P P P P P 89 1 1 P F F F
J P P P P P 95 1 F F F F F F
T P P P 48 P 95 1 F F F F F F
9 P P 1 F F P F F F F F F F
8 P 1 F F F F P F F F F F F
7 P 1 F F F F F P F F F F F
6 P 1 F F F F F F P F F F F
5 P 1 F F F F F F F P F F F
4 P F F F F F F F F F P F F
3 P F F F F F F F F F F P F
2 P F F F F F F F F F F F P
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Table 9.12: Big blind after fold/jam
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P P P 99 96 1
J P P P P P P P 98 1 F F F F
T P P P P P P P 5 F F F F F
9 P P P P 97 P 99 1 F F F F F
8 P P P 93 F F P F F F F F F
7 P P 97 F F F F P F F F F F
6 P P 1 F F F F F P F F F F
5 P P F F F F F F F P F F F
4 P P F F F F F F F F P F F
3 P P F F F F F F F F F P F
2 P 99 F F F F F F F F F F P

Table 9.13: Big blind after jam/jam
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P 5 3 2
K P P P P P P 2 1 1 1 F F F
Q P P P P P P 2 F F F F F F
J P P P P P P 3 F F F F F F
T P 8 2 2 P P P F F F F F F
9 P 1 F F F P P 2 F F F F F
8 4 F F F F F P P F F F F F
7 2 F F F F F F P 7 F F F F
6 1 F F F F F F F P F F F F
5 1 F F F F F F F F P F F F
4 1 F F F F F F F F F P F F
3 1 F F F F F F F F F F P F
2 F F F F F F F F F F F F 2

Table 9.14 gives the total probabilities of the different outcomes when both players use their
computed strategies in a tournament and a single hand. The chart suggests that the equilibrium
strategies are fairly similar in a tournament and single hand for the first player to enter the pot,
but that players should be much more aggressive in a single hand when someone else has already
jammed. The difference is most significant in the final situation: big blind jams with probability
0.197 in a single hand after both of the other players jam, but only probability 0.021 in a tourna-
ment (a factor of 9.4 difference). In a tournament, the big blind only calls with the four highest
pocket pairs and AKs (‘s’ denotes ‘suited,’ ‘o’ denotes ‘offsuit’). In a single hand, his range
includes hands like 33, A9o, K9s, QJo, T8s, and 87s.

Table 9.14: Differences between tournament and single hand strategy with equal stacks.
Situation Tournament prob. Single hand prob.

Button jam 0.376 0.355
SB jam after jam 0.088 0.234
SB jam after fold 0.652 0.633

BB jam after jam/fold 0.145 0.308
BB jam after fold/jam 0.273 0.466
BB jam after jam/jam 0.021 0.197

Interestingly, despite the fact that the small blind jams slightly more often following a fold in
the tournament than single hand, the big blind jams following fold/jam almost twice as often in a
single hand as in a tournament. Hands that the small blind jams following a fold in a tournament
but not a single hand include T3s, 94s, 52s, 96o, 65o. The small blind also jams some hands
in a single hand that he folds in a tournament such as Q5o and Q4o. Despite the fact that the
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small blind is jamming less often following a fold in the single hand, the big blind still calls with
dozens of marginal hands that he would fold in a tournament, including 33, 22, A2o, K5s–K2s,
K8o–K2o, Q8s–Q3s,Q9o–Q7o, J9s–J7s, JTo–J8o, T9s–T8s, T9o, and 98s.

9.8.5 Nonexistence of a fixed ranking of hands
Two player results [82] show that there is no single ranking of the hands (i.e., there exist two
hands h and h′ such that at one stack vector, h should be jammed and not h′, but at another stack
vector, h′ should be jammed and not h). In particular, when SB = 1800, BB = 6200 the small
blind should fold 43s and jam J2o, but when SB = 3600 and BB = 4400 the small blind should
jam 43s and fold J2o. We obtain similar results with three players. For example, we observe
such a phenomenon in the small blind’s strategy given a fold between the cases of equal stacks
(Table 9.4) and the stacks: BUT = 3300, SB = 1500, BB = 8700 (Table 9.15). In the latter,
the small blind jams with Q2o–Q5o, J5o–J6o but folds T2s–T4s, 94s–95s, 96o–97o, 84s–85s,
86o–87o, 74s–75s, 76o, 63s–65s, 65o,52s–54s, 43s (all of which mark deviations from the first
case).1

Table 9.15: Small blind strategy after button folds with stacks (3300, 1500, 8700).
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P P P P P P
J P P P P P P P P P P 99 97 91
T P P P P P P P P 99 90 F F F
9 P P P P P P P P 95 F F F F
8 P P P P P 97 P 97 90 F F F F
7 P P P P 95 21 F P 85 F F F F
6 P P P 96 F F F F P F F F F
5 P P P 91 F F F F F P F F F
4 P P P F F F F F F F P F F
3 P P 97 F F F F F F F F P F
2 P P 93 F F F F F F F F F P

It is also interesting to compare our results to the Karlson-Sklansky (K-S) hand ranking sys-
tem; these rankings are given in Table 9.16, where 0 denotes the best hand and 168 denotes
the worst hand. This system has often been proposed as a good heuristic for evaluating hand
strength, and many software tools use hand ranges based on K-S rankings. However, our results
for the even stack case show that equilibrium strategies might drastically contradict K-S rank-
ings. For example, in the even stack case after the button has folded (Table 9.4) the small blind
should fold Q5o (K-S ranking 84), but jam with 52s (K-S ranking 155). Interestingly, it seems

1Note that we are just computing one equilibrium, and it is still possible that other equilibria do exist that are
consistent with a fixed ranking of hands. So we cannot not conclude with certainty that there is no fixed ranking of
hands consistent with an equilibrium. This is a question I would like to study further in the future.
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that equilibrium strategy actually agrees pretty closely with K-S rankings for players acting af-
ter another player has already jammed. For example, strategy for the big blind contradicts K-S
rankings only on a few hands.

Table 9.16: Karlson-Sklansky hand rankings
A K Q J T 9 8 7 6 5 4 3 2

A 0 2 6 10 12 17 19 23 27 25 28 32 34
K 4 1 20 24 30 42 46 47 50 53 55 58 59
Q 8 33 3 39 45 52 60 67 69 72 75 77 81
J 13 38 51 5 48 62 71 79 87 89 91 96 99
T 16 44 56 65 7 68 78 88 97 106 107 112 116
9 22 49 64 76 86 9 83 94 104 114 123 127 132
8 26 54 74 85 95 102 11 100 108 118 128 138 141
7 31 57 80 92 103 111 117 14 113 122 133 142 151
6 36 61 82 101 110 119 126 131 15 125 137 146 155
5 35 63 84 105 120 129 136 140 144 18 134 145 154
4 37 66 90 109 124 139 147 150 153 152 21 149 157
3 40 70 93 115 130 143 156 159 161 160 163 29 162
2 43 73 98 121 135 148 158 164 166 165 167 168 41

9.8.6 Rarity of randomization
As in the two-player case [82], we observe that approximate equilibrium strategy for three players
involves little randomization (many of the probabilities are actually very close — but not equal
to — 0% or 100% because we halted fictitious play as soon as the ε-approximation guarantee
was met which did not allow it to fully converge). For example, the tables show that in the case
of even stacks, our equilibrium involves randomization on only a few hands. In fact, the small
blind’s strategy after button jams, and the big blind’s strategy following two jams, involve no
randomization. In all other stack sizes we make the similar observation that each player only
needs to randomize on at most a small number of hands.

9.9 Summary and extensions

Computing a Nash equilibrium in multi-player stochastic games is a notoriously difficult prob-
lem. We pointed out that the best prior algorithm could converge to a non-equilibrium strategy
profile; however, we developed an ex post check procedure that confirmed that the actual strategy
profile computed for a large three-player poker tournament actually constitutes an ε-equilibrium
for very small ε. We also presented several new algorithms for solving multi-player stochastic
games of imperfect information and proved that they can never converge to a non-equilibrium.
Experiments on the poker tournament showed that one of the new algorithms (PI-FP) outper-
forms the prior algorithm VI-FP; thus the equilibrium guarantee comes at no cost in run time.
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Finally, we presented a polynomial-time algorithm for minimizing external regret in the same
class of games.

We find it interesting that the algorithms converged to an equilibrium consistently and quickly
despite the fact that they are not guaranteed to do so. None of the algorithms are guaranteed to
converge at all, and the original algorithm was not even guaranteed to be at an equilibrium even
if it did converge. Hopefully the results of this paper could lead to the investigation of more
general settings under which these convergence properties can be proven. While fictitious play
is not guaranteed to converge in three-player games, it converged in every iteration of all of
our algorithms; perhaps there is a more general class of multi-player games (that includes poker
tournaments) for which fictitious play is guaranteed to converge. Furthermore, the value iteration
of the outer loop of the original algorithm converged despite the fact that the initializations were
clearly not pessimistic for every player; perhaps the assumptions of Theorem 2 can be weakened
to allow limited optimistic initializations in some settings.
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Part III

New Game-Solving Paradigms
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Chapter 10

Endgame Solving in Large
Imperfect-Information Games

So far we have presented new approaches for game solving that fit within the leading paradigm.
In the leading paradigm, strategies are computed offline in advance, and the strategies are then
looked up in a table for actual game play. I now present a new paradigm, in which we retain
the abstract equilibrium strategies for the initial portion of the game tree (called the trunk), and
discard the strategies for the final portion (called the endgames). Then, in real time, we solve the
relevant endgame that we have reached to a greater degree of accuracy than the initial abstract
strategy, where we use Bayes’ rule to compute the distribution of players’ private information
leading into the endgames from the precomputed trunk strategies. This approach, which we call
endgame solving, is depicted in Figure 10.1 [36].

Figure 10.1: Endgame solving (re-)solves the relevant endgame that we have actually reached in
real time to a greater degree of accuracy than in the offline computation.

We present the first theoretical analysis of endgame solving in imperfect-information games,
and show that it can actually produce highly exploitable strategies in some games. In fact, we
show that it can fail even in a simple game with a unique equilibrium and a single endgame, even
if our base strategy were an exact equilibrium (of the full game) and we were able to compute
an exact equilibrium in the endgame. However, we show that endgame solving can guarantee a
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low exploitability (difference between game value and payoff against a nemesis) in some games
when the opponent is given sufficient exploitative power within the endgame.

Endgame solving has been used by several prior agents for the limit variation of TH (where
bets must be of a single fixed size). The agent GS1 precomputed strategies only for the first
two rounds, using rough approximations for the payoffs at the leaves of that trunk based on the
(unrealistic) assumption that there was no betting in future rounds [42]. Then in real time, the
relevant endgame consisting of the final two rounds was solved using the LP algorithm. GS2
precomputed strategies for the first three rounds, using simulations to estimate the payoffs at the
leaves; it then solved the endgames for the final two rounds in real time [43].

However endgame solving has not been implemented by any competitive agents for the sig-
nificantly larger and more challenging domain of no-limit Texas hold ’em (NLTH) prior to our
work. We present a new algorithm that is capable of scaling to extremely large games such
as no-limit Texas hold ’em, and incorporates several algorithmic improvements over the prior
approaches (the benefits described in this paragraph would be improvements over the prior ap-
proaches even for the limit variant). First, the prior approaches assume that the private hand
distributions leading into the endgame are independent, while they are actually dependent and
the full joint distribution should be computed. The naı̈ve way of accomplishing this would re-
quire O(n2) strategy table lookups, where n is the number of private hands (1081 for the final
round of poker), and computing these distributions would become the bottleneck of the algo-
rithm and make the real-time computation intractable; however, we developed a technique for
computing the joint distributions that requires just O(n) strategy table lookups. Second, the
prior approaches use a single perfect-recall card abstraction that has been precomputed offline
(which assumes a uniform random distribution for the opponent’s hand distributions). In contrast,
we use an imperfect-recall card abstraction1 that is computed in real time in a finer granularity
than the initial offline abstraction and that is tailored specifically to the relevant distribution of
the opponent’s hands at the given hand history. Furthermore, the prior approaches did not com-
pare performance between endgame solving and not using it (since the base strategies were not
computed for the endgames), while we provide such a comparison.

Very recent work, which appeared subsequently to the first version of our present work, has
presented an approach for decomposing imperfect-information games into smaller games that
can be solved independently offline that provides theoretical guarantees on full-game exploitabil-
ity. This approach, called CFR-D, has been applied to the relatively small domain of limit Leduc
hold ’em, which has 936 information sets in its game tree [19]. It is possible that this approach
will soon be practical for larger games such as NLTH, though no successful implementation on
this domain has been reported. Challenges for extending this approach to larger domains in-
clude the computation of counterfactual values for each state of private information at the start
of the endgame, and needing to construct and solve larger endgames that result from adding in
an additional action for each state of private information for each agent that obtains this counter-
factual value for avoiding the endgame. I have also learned from personal communication with
the authors that CFR-D has performed worse empirically in head-to-head performance than the
procedure described in this work, despite the additional theoretical guarantee.

1Imperfect-recall abstractions allow for greater flexibility in which hands can be grouped together, and signifi-
cantly improve performance over perfect-recall abstractions [68, 120].
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A second related (offline) approach includes counterfactual values for game states that could
have been reached off the path to the endgames [61]. This approach has been demonstrated
to be effective in limit Leduc hold ’em, and has also been implemented in NLTH, though no
experimental results are given for that domain. For NLTH, it is implemented by first solving
the game in a coarse abstraction, then fixing the strategies for the preflop (first) round, and re-
solving for certain endgames starting at the flop (second round) after common preflop betting
sequences have been played. All of this computation is done offline. In contrast, our approach
enables us to solve endgames at the river (final round) in real time. It is infeasible to solve the
river endgames using the prior approach for several reasons. First, there are far too many of
them to be solved individually in advance (there is a different one for each sequence of public
cards and betting actions). Second, by the time play gets down to the river, there are many
possible alternative actions that a player could have taken to avoid reaching the given endgame,
and counterfactual values for each of these would need to be computed and then included in
the solution to the endgame solver; this would likely be infeasible to do in real time. Solving
the river endgames, as opposed to the flop endgames which the prior approach does, is very
important because CFR only occasionally samples from a specific river endgame during the
course of the initial equilibrium computation, while it very frequently samples from the flop
endgames that follow common preflop betting sequences. So, our approach is addressing a more
pressing limitation.

Our approach has significant benefits over the standard approach for solving large imperfect-
information games, including computation of exact (rather than approximate) equilibrium strate-
gies (within a given abstraction), the ability to compute certain equilibrium refinements that
cannot be computed in the full offline computation (such as undominated and ε-quasi-perfect
equilibrium), finer-grained abstraction in the endgames, abstraction that takes into account re-
alistic distributions of players’ private information entering the endgame (as opposed to the
typical assumption of uniform random distributions), and a solution to the “off-tree” problem
that arises when the opponent has taken actions that are not allowed in the abstraction. We
present an efficient algorithm for performing endgame solving in large imperfect-information
games, and present a novel variance-reduction technique for evaluating the performance of an
agent that uses endgame solving. Experiments on no-limit Texas hold ’em show that using our
algorithm leads to a significantly stronger performance against the strongest 2013 poker compe-
tition agents. I demonstrate that certain equilibrium refinements are feasible to compute in large
imperfect-information games for the first time—particularly undominated Nash equilibrium and
ε-quasi-perfect equilibrium. I show that undominated Nash equilibrium is a useful concept in
realistic large imperfect-information games by showing that the equilibrium computed in a well-
studied poker variant by the standard approach is dominated. I show that these concepts can
be integrated with endgame solving and present results indicating that they can lead to stronger
performance.

10.1 Endgame solving

Definition 1. (E, ti, t−i) (or E for brevity) is an endgame of game G if the following properties
hold:
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1. The set of E’s nodes is a subset of the set of G’s nodes.
2. If s′ is a child of s in G and s is a node in E, then s′ is also a node in E.
3. If s is in the same information set as s′ in G and s is a node in E, then s′ is also a node in
E.

4. The initial probabilities of private information for the agents entering E are defined by the
Bayesian conditional probabilities assuming the agents have followed strategies ti, t−i in
the portion of the game preceding E.

For example, we can consider endgames in poker where several rounds of betting have taken
place and several public cards have already been dealt. In these endgames, we can assume
players have a joint distribution of private information from nodes prior to the endgame that are
induced from the precomputed base approximate-equilibrium strategy using Bayes’ rule. Given
this distribution as input, we can then solve individual endgames in real time using more accurate
abstractions. We can view the endgames as new games where nature makes an initial move by
assigning private information according to the joint distribution induced by the trunk strategies.

Unfortunately, this approach has some fundamental theoretical shortcomings. It turns out that
even if we computed an exact equilibrium in the trunk (which is an unrealistically optimistic as-
sumption in large games) and in the endgame, the combined strategies for the trunk and endgame
may fail to be an equilibrium in the full game. One obvious reason for this is that the game may
contain many equilibria, and we might choose one for the trunk that does not match up correctly
with the one for the endgame; or we may compute different equilibria in different endgames that
do not balance appropriately. However, Proposition 10 shows that it is possible for this procedure
to output a non-equilibrium strategy profile in the full game even if the full game has a unique
equilibrium and a single endgame.
Proposition 10. There exist games—even with a unique equilibrium and a single endgame—for
which endgame solving can produce a non-equilibrium strategy profile.

Proof. Consider a sequential version of Rock-Paper-Scissors where player 1 acts, then player 2
acts without observing player 1’s action. This game has a single endgame—when it is player
2’s turn to act—and a unique equilibrium—where each player plays each action with probability
1
3
. Now suppose we restrict player 1 to follow the equilibrium in the initial portion of the game.

Any strategy for player 2 is an equilibrium in the endgame, because each one yields her expected
payoff 0. In particular, suppose our equilibrium solver outputs the pure strategy Rock for her.
This is clearly not an equilibrium of the full game.

Rock-Paper-Scissors (RPS) is somewhat of an extreme example though, because player 1
does not actually make any moves in the endgame. At the other extreme, if the endgame were
the entire game, then endgame solving would produce an exact equilibrium. As a slightly less
extreme example, consider the game in Figure 10.2, where P1 selects an action ai, and then a
sequential imperfect-information gameGi is played. Suppose we are solving endgames after P1’s
initial action. Then we will solve the endgame Gi and produce strategies with zero exploitability
in the full game. Endgame solving could be very useful in this game for several reasons. First, if
the number of initial actions n for P1 were extremely large, it may be infeasible to solve and/or
store solutions to all of the endgames in advance of game play. Endgame solving would only
require solving the endgames that are actually reached during game play, and would be feasible
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even if n is extremely large as long as the number of game repetitions were relatively small. And
second, the typical approach would actually not even involve solving each of the Gi separately
in advance; it would be to solve the full game, which includes each of the Gi as well as P1’s
initial actions. It is very possible that equilibrium-finding algorithms would not scale to the full
game and/or it would not fit in memory, while equilibria could be computed quickly and fit into
memory for the individual endgames Gi.

Figure 10.2: Player 1 selects his action ai, then the players play imperfect-information game Gi.

One could imagine much more complex trunk games than the above example with imper-
fect information and multiple actions for both players where it is difficult to know for sure how
“important” the trunk strategies are for the endgames. In such games, it may be possible for
endgame solving to still guarantee a reasonably low exploitability in the full game. As Proposi-
tion 11 shows, in general, the more exploitative power the opponent has within the endgame, the
lower the full-game exploitability of the strategies produced by (approximate) endgame solving
are.
Proposition 11. If every strategy that has exploitability strictly more than ε in the full game has
exploitability of strictly more than δ within the endgame, then the strategy output by a solver
that computes a δ-equilibrium in the endgame induced by a trunk strategy t would constitute an
ε-equilibrium of the full game when paired with t.

Proof. Suppose a strategy is a δ-equilibrium in the endgame induced by t, but not an ε-equilib-
rium in the full game when paired with t. Then by assumption, it has exploitability of strictly
more than δ within the endgame, which leads to a contradiction.

Intuitively, Proposition 2 says that endgame solving produces strategies with low exploitabil-
ity in games where the endgame is a significant strategic portion of the full game, that is, in
games where any endgame strategy with high full-game exploitability can be exploited by the
opponent by modifying his strategy just within the endgame.

One could classify different games according to how they fall regarding the premise of Propo-
sition 11, given a subdivision of the game into a trunk and endgames, and given fixed strategies
for the trunk. If the premise is satisfied, then we can say that the game/subdivision satisfies the
(ε, δ)-endgame property. An interesting property would be the smallest value ε∗(δ) such that the
game satisfies the (ε, δ)-endgame property for a given δ. For instance, the game in Figure 10.2
would have ε∗(δ) = δ for all δ ≥ 0, while RPS would only have ε∗(δ) = 1 for each δ ≥ 0. While
Proposition 11 is admittedly somewhat trivial, such a classification could be useful in developing
a better understanding of when endgame solving would be helpful in general.
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10.2 Benefits of endgame solving

Even though we showed in the previous section that endgame solving may lead to highly ex-
ploitable strategies in some games, it has many clear benefits in large imperfect-information
games, which we now describe. These benefits and techniques are enabled by using endgame
solving (rather than being techniques that help alongside endgame solving).

10.2.1 Exact computation of Nash equilibrium in abstracted endgames
The best algorithms for computing approximate equilibria in large games of imperfect informa-
tion scale to about 1017 nodes. However, they are iterative and guarantee convergence only in
the limit; in practice they only produce approximations of equilibrium strategies (within a given
abstraction). Sometimes the approximation error is quite large. For example, a recent nlhe agent
reported having an exploitability of 800 milli big blinds per hand (mbb/h) even within the abstract
game [33] (an agent that folds every hand would only have an exploitability of 750 mbb/h). The
best general-purpose LP algorithms find an exact equilibrium, though they only scale to games
with around 108 nodes [42]. While the LP algorithms do not scale to reasonable abstractions of
full TH, we can (and do) use them to exactly solve abstracted endgames that have up to around
108 nodes.2

10.2.2 Ability to compute certain equilibrium refinements
The Nash equilibrium (NE) solution concept has some theoretical limitations, and several equi-
librium refinements have been proposed which rule out NEs that are not rational in various
senses. In general, these solution concepts guarantee that we behave sensibly against an op-
ponent who does not follow his prescribed equilibrium strategy (i.e., he takes actions that should
be taken with probability zero in equilibrium). Specialized algorithms have been developed for
computing many of these concepts [81, 83, 84]. However, those algorithms do not scale to large
games. In TH, computing a reasonable approximation of a single Nash equilibrium already takes
months (using the leading algorithms, CFR or EGT), and no algorithms have been published
in the literature that compute any of the common refinements that scale to games of that size
(though based on personal communication with Michael Bowling, there may be modifications of
CFR that compute approximations of some of these). However, when solving endgames that are
significantly smaller than the full game, it can be possible to compute certain refinements. An
undominated Nash equilibrium (UNE) can be computed by solving two LPs instead of one and
an ε-quasi-perfect-equilibrium by solving a single LP (though the second one is not technically

2I note that the distinction between “exact” and “approximate” equilibrium computation is not quite as clearcut
as this section has suggests. Barrier methods for a linear program have error, and historically their use in games has
not included an examination of the extent of this error. On the other hand, the excessive gap technique (EGT) has
such a fast convergence rate that after a polynomial number of iterations it is guaranteed to reach error below the
rational number precision needed for the solution, thus giving an exact solution. Based on personal communication
with several people I suspect that the LP outperforms the other approaches on sufficiently small games, but this has
not been thoroughly investigated and hopefully future work will do so. I thank Michael Bowling for pointing out
this clarification.
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a refinement and has documented numerical stability issues). We have implemented algorithms
for computing both of these on large no-limit Texas hold ’em endgames, which demonstrates for
the first time that they are feasible to compute in imperfect-information games of this magnitude.
Preliminary experiments indicate that in UNE is useful is no-limit Texas hold ’em, though those
results were not statistically significant; these are described in Section 10.7.

10.2.3 Finer-grained, history-aware, and strategy-biased abstraction
Another important benefit of endgame solving in large games is that we can compute better ab-
stractions in the endgame that is actually played than if we are forced to abstract the entire game
at once in advance. In addition to allowing us to compute finer-grained abstractions, endgame
solving enables us to compute an abstraction specifically for the situation at hand. In other words,
we can condition the abstraction on the path of play so far (both the players’ actions and nature’s
actions). For example, in poker, we can condition the abstraction on the betting history (which
offline game-solving approaches do not do) and on the board cards (which offline game-solving
approaches cannot afford to do at an equally fine granularity).

The standard approach for performing information abstraction is to bucket information sets
together for hands that perform similarly against a uniform distribution of the opponent’s pri-
vate information [42, 68].3 However, the assumption that the opponent has a hand uniformly
at random is extremely unrealistic in many situations; for example, if the opponent has called
large bets throughout the hand, he is unlikely to hold a very weak hand. Ideally, a successful
information abstraction algorithm would group hands together that perform similarly against the
relevant distribution of hands the opponent actually has—not a naı̈ve uniform random distribu-
tion. Fortunately, we can accomplish such strategy-biased information abstraction in endgames.
Our algorithm is detailed in Section 10.3.

10.2.4 A solution to the off-tree problem
When we perform action abstraction, the opponent may take an action that falls outside of our
action model for him. When this happens, an action translation mapping (aka reverse mapping)
is necessary to interpret his action by mapping it to an action in our model [34, 103]. However,
this mapping may ignore relevant game state information. In poker, action translation works by
mapping a bet of the opponent to a ‘nearby’ bet size in our abstraction; however, it does not
account for the size of the pot or remaining stacks. For example, suppose remaining stacks are
17,500, the pot is 5,000, and our abstraction allows for bets of size 5,000 and 17,500. Suppose
the opponent bets 10,000, which we map to 5,000 (if we use a randomized mapping, we will
do this with some probability). So we map his action to 5,000, and simply play as if he had bet
5,000. If we call his bet, we will think the pot has 15,000 and stacks are 12,500. However, in
reality the pot has 25,000 and stacks are 7,500. These two situations are completely different and
should be played very differently (for example, we should be more reluctant to bluff in the latter
case because the opponent will be getting much better odds to call). This is known as the off-tree

3Recent work has also considered an approach where the opponent’s preflop hands are first grouped into several
buckets, then hands for the later rounds are grouped together if they perform similarly against each of the preflop
buckets [68].
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problem. Even if one is using a very sophisticated translation algorithm, one will run into the
off-tree problem.4

When performing endgame solving in real time, we can solve the off-tree problem com-
pletely. Regardless of the action translation used to interpret the opponent’s actions prior to the
endgame, we can take the stack and pot sizes (or any other relevant game state information) as
inputs to the endgame solver. Our endgame solver in poker takes the current pot size, stack sizes,
and prior distributions of the cards of both players as inputs. Therefore, even if we mapped the
opponent’s action to 5,000 in the above example, we correct the pot size to 25,000 (and the stack
sizes accordingly) before solving the endgame.

10.3 Endgame solving algorithm

In this section we present our algorithm for endgame solving in imperfect-information games
with very large state and action spaces. Pseudocode is given in Algorithm 13. The core algorithm
is domain independent, although we present the signals as card-playing hands for concreteness.
An example poker hand illustrating each step of the algorithm is given in Section 10.4.

Algorithm 13 Algorithm for endgame solving
Inputs: number of information buckets per agent ki; abstraction parameter T ; action abstractions
Bi with bi action sequences; clustering algorithms Ci; equilibrium-finding algorithm Q; number
of private hands H; hand rankings R[]

Compute joint hand-strength distribution D[i][j]
E1, E2 ← array of dimension H of zeroes
for h1 = 1 to H do

r1 ← R[h1], s1, s2 ← 0
for h2 = 1 to H do

r2 ← R[h2], s1 += D[h1][h2], s2 += D[h2][h1]
if r2 < r1 then

E1[h1] += D[h1][h2], E2[h1] += D[h2][h1]
else if r1 == r2 then

E1[h1] += D[h1][h2]
2

, E2[h1] += D[h2][h1]
2

end if
end for
E1[h1] = E1[h1]

s1
, E2[h1] = E2[h1]

s2
end for
ki ← b Tbi c for i = 1, 2
Ai ← information abstraction created by clustering elements of Ei into ki buckets using Ci
for i = 1, 2
Solve game with information abstractions Ai and action abstractions Bi using Q

4Some agents try to solve this problem by taking an action that is designed specifically to get us back “on-path”;
however, this is not always desirable or even possible.
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The first step is to compute the joint input distribution of private information using Bayes’
rule. The naı̈ve approach for doing this would require iterating over all possible private hand
combinations h1, h2 for the players, and for each pair looking up the probability that the base
agent would have taken the given action sequence. This requires O(n2) lookups to the strategy
table, where n is the number of possible hands (n = 1081 for the final round in poker). It turns
out that this computation would become the bottleneck of the entire endgame solving algorithm
and would make real-time endgame solving computationally infeasible. For this reason, prior
approaches for endgame solving have made the (significantly) simplifying assumption that the
distributions are independent [42, 43]. However, we developed an algorithm that does this with
just O(n) table lookups. Pseudocode for our algorithm is given in Algorithm 14.

In short, the algorithm first computes the distributions separately for each player (as done by
the independent approach), then multiplies the probabilities together for hands that do not share a
common card (and setting the joint probability to zero otherwise). In order to make sure hands are
indexed properly in the array, we must make use of two helper indexing functions, Algorithms 15
and 16. The former gives an algorithm for indexing the two-card private hands, and the latter
gives an algorithm for indexing the 7-card river hand consisting of the two private cards and
five public cards. Then, in Algorithm 14, we iterate over all sets of private hands (p1, p2), and
create an array called IndexMap that maps the 7-card hand index to the corresponding 2-card
hand index. In the course of this loop, we also look up the probability that each player would
play according to the observed betting history in the precomputed trunk strategies, which we
then normalize in accordance with Bayes’ rule.

In advance of applying Algorithm 14, we compute a table of the conflicts between each pair
of private-hand indices, where we set IC[i][j] to 1 if hand with indices i and j share a card in
common, and 0 otherwise. Then, we set the joint probability D[i][j] to equal the product of the
two independent probabilities D1[i], D2[j] if there is no constraint between the indices, and we
set it to zero otherwise. Note that this algorithm actually runs in O(n2), where n is the number
of private hands. However, the n2 loop only involves the simple step of looking up an element in
the IC array, which is performed extremely quickly. The time-consuming part of the computation
is looking up the strategy probabilities P1, P2, which involves accessing several elements in the
massive binary strategy file. Our algorithm performs this task only O(n) times, while the naı̈ve
approach would do this O(n2) time, and make real-time endgame solving intractable. (Note that
each private hand consists of the two cards p1, p2, so while the main loop in Algorithm 14 iterates
over both p1 and p2, it is only iterating once over the H private hands and is O(n)).5

Next we compute arrays E1, E2 that contain the equities for each state of private information
against the opponent’s distribution. For player 1, we do this by adding D[h1][h2] to E1[h1] for
each hand h2 such that the rank of it on the given board is lower than that of h1, and adding
D[h1][h2]

2
for each hand with equal rank.6 We then normalize the entries of E1[h1], and compute

E2 analogously. E1[h1] is now the probability that player 2 has a hand worse than h1, given the
prior distribution D and the current history of betting and public cards.

5Note that a similar “inclusion-exclusion” trick was also helpful in reducing the running time of a crucial sub-
routine of an algorithm for best-response calculation from O(n2) to O(n) to enable best-response computation in
limit Texas hold ’em [66].

6The rank of a hand given a set of public cards is an integral-valued mapping such that stronger hands have a
higher value; for example, a royal flush has the highest rank.
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Algorithm 14 Algorithm for computing hand distributions
Inputs: Public board B; number of possible private hands H; betting history of current hand h;
array of index conflicts IC[][]; base strategy s∗

D1, D2 ← array of dimension H of zeroes
for p1 = 0 to 50, p1 not already on B do

for p2 = p1 + 1 to 51, p2 not already on B do
I ← IndexFull(B, p1, p2)
IndexMap[I]← IndexHoles(p1, p2)
P1 ← probability P1 would play according to h
with p1, p2 in s∗

P2 ← probability P2 would play according to h
with p1, p2 in s∗

D1[I] += P1, D2[I] += P2

end for
end for
Normalize D1 and D2 so all entries sum to 1
for i = 0 to H do

for j = 0 to H do
if !IC[IndexMap[i]][IndexMap[j]] then

D[i][j]← D1[i] ·D2[j]
else

D[i][j]← 0
end if

end for
end for
Normalize D so all entries sum to 1
return D

Algorithm 15 Algorithm for computing private hand index
Inputs: Private hole cards h1, h2

if h2 < h1 then t← h1, h1 ← h2, h2 ← t
end if
return

(
h2
2

)
+
(
h1
1

)

In advance of gameplay, we have computed separate action abstractions for the endgame
solver to use for each pot/stack size that could be encountered. This allows us to solve the “off-
tree problem,” since we are taking into account the actual pot size even the opponent took an
action outside the action abstraction earlier in the hand. We have constructed these abstractions
so that the larger pot sizes (which have shallower stacks) have more bet sizes available for each
history, for several reasons; the first is that the tree is smaller in these situations due to the
shallower stack sizes (once players are “all-in,” no additional bets are allowed), and the second is
that hands with larger pot sizes are more important, since more money is won and lost on them,
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Algorithm 16 Algorithm for computing index of 7-card hands on a given board
Inputs: Private hole cards h1, h2, board B consisting of five public cards

if h2 < h1 then, t← h1, h1 ← h2, h2 ← t
end if
n1 ← 0, n2 ← 0
for i = 1 to 5 do

for j = 1 to 2 do
if B[i] < hj then ++nj
end if

end for
end for
return

(
h2−n2

2

)
+
(
h1−n1

1

)

and we would like to ensure that more bet sizes are accounted for on these hands. Bi denotes
the action abstraction to use for the given pot size at hand, and bi denotes the number of betting
sequences of Bi, for i = 1, 2.

Next, we compute a card abstraction Ai by grouping Ei into ki buckets, using some clus-
tering algorithm Ci, for i = 1, 2. Here ki = T

bi
, where T is a parameter of the algorithm (for

our agent we used T = 7500). While much prior work on poker has used k-means as the stan-
dard clustering algorithm, the following example demonstrates why this would be problematic.
Suppose there are many hands with an equity of 0.775, and also many hands with an equity of
0.772. Then k-means would likely create separate clusters for these two equity values, and pos-
sibly group hands with very different equities (e.g., 0.2 and 0.3) together if few hands have those
equities. To address this concern we used percentile hand strength, which also happens to be
easier to compute. To do this, we break up the interval [0,1] into ki regions of equal length (each
of size 1

ki
). We then group hand hi into bucket bEi[hi]

ki
c. (For our poker agent we actually use

a slight modification of this approach where we create a special bucket just for the hands with
Ei[hi] ≥ α, to ensure that the strongest hands are grouped separately (we used α = 0.99 for our
agent). Then the remaining α mass is divided according to the previously described procedure.)
Sometimes this algorithm results in significantly fewer than ki buckets, since there may be zero
hands with Ei within certain intervals. We take this into account, and reduce the number of
buckets in the card abstraction accordingly before solving the endgame. Note that the card ab-
stractions Ai may be very different for the two players (and have different numbers of buckets);
this differs from all the standard approaches, which use the same abstraction for all players.

Finally, we compute an (exact) equilibrium in the abstracted endgame by applying an equilib-
rium-finding algorithm Q to the game with card abstractions Ai and betting abstractions Bi.
While the card abstractions were computed independently (based on equities derived from the
joint distribution), we use the joint distribution for determining the probabilities that players are
dealt hands from their respective buckets when constructing the endgame. For our agent, we
used Gurobi’s parallel LP solver [59] as Q. As discussed in Section 10.2.2, one could instead
use an algorithm that is guaranteed to compute a certain equilibrium refinement.
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Algorithm 17 Algorithm for computing endgame information abstractions
Inputs: Equity arrays Ei; desired number of buckets per agent ki; parameter for top bucket α;
total number of possible private hands H
J ← α

k1−1

A1 ← array of zeroes of size H
U1 ← array of booleans initialized to false of size H
for h = 1 to H do

if E1[h] ≥ α then b← k1 − 1
else

b← bE1[h]
J
c

end if
if U1[b] == FALSE then U1[h]← TRUE
end if

end for
M1 ← array of zeroes of size k1, g ← 0
for i = 0 to ki do

M1[i]← g
if U1[i] == TRUE then g = g + 1
end if

end for
for h = 1 to H do

if E1[h] ≥ α then A1[h]←M1[k1 − 1]
else

A1[h]←M1

[
bE1[h]

J
c
]

end if
end for
Compute A2 analogously

10.4 Example

In this section we demonstrate the operation of our algorithm on an example hand of no-limit
Texas hold ’em. Recall that blinds are $50 and $100 and that both players start with $20,000. In
the example hand, we are in the small blind with 8dTh. We raise to $250, the opponent re-raises
to $750, and we call (there is now $1500 in the pot). The flop is Jc6s2c. The opponent checks
and we check. The turn is Kd. The opponent checks, we bet $375, and he calls (there is now
$2250 in the pot). The river is Qc. Up until this point we have just played according to the
precomputed base strategy; the endgame solving algorithm begins now.

According to the pseudocode for Algorithm 13, the first step is to compute the joint prior
hand distribution D from the base strategies, using Algorithm 14. This took 0.433 seconds. We
then compute the equities Ei for each player, using Algorithm 13. This took 0.015 seconds.

The next step is to look at the betting abstraction that has been precomputed for this specific
pot/stack size (pot size of $2250 and stack sizes of $18875). Note that for this particular hand all
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of the opponent’s actions before the river fell inside of our betting abstraction; however, if they
had not, and we were forced to use an action translation mapping to map his action to an action
in our betting abstraction, we would be able to correct our misperception of the pot size at this
point, by selecting the precomputed betting abstraction for the actual pot/stack size (as opposed
to the size that assumed he played an action in our betting abstraction). This solves the “off-tree”
problem, discussed in the paper.

The betting abstraction for a pot size of $2250 has 196 betting sequences for each player.
For this hand we used a betting abstraction parameter of T = 10000 (while for the experiments
described in the paper, we used T = 7500). Therefore, we will use ki = b10000

196
c = 51 card

buckets for each player for this hand.
Next, we compute card abstractions for both players, using Algorithm 17. We used used

a top bucket parameter of α = 0.995 (while for the experiments described in the paper, we
used α = 0.99). After applying our card abstraction algorithm for both players, the resulting
abstractions had 38 and 35 buckets respectively for the two players (since not all of the 51 hand
equity intervals contained hands). Computing these took 0.008 seconds.

Our actual hand (8dTh) had rank 296 (out of 1081) and actually had an equity of 0 vs. the
opponent’s hand distribution (we thought the opponent would never play the hand the way he did
so far with a worse hand than 8dTh). This places us in bucket 0 (the worst bucket, out of 35).
By contrast, if the opponent had our hand, he would have an equity of 0.336 against our hand
distribution, and would be in bucket 8 (where his buckets range from 0–37).

We then construct the LP matrices for the resulting abstracted endgame, which took 0.15
seconds, and then compute an exact equilibrium by solving the LP using Gurobi’s parallel LP
solver (it took 1.051 seconds to construct the LP instance and 5.328 seconds to solve it). If
we were computing an undominated equilibrium, we would need to solve a second LP, using
the procedure described in Section 10.7.1. Overall, the endgame solving algorithm took 6.985
seconds for this hand.

The opponent checked for his initial action on the river. The betting abstraction for this hand
had nine available options for the first action for each player: check, 0.1 pot, 1

3
pot, 2

3
pot, pot,

1.5 pot, 2 pot, 3 pot, all-in. The strategy from our endgame solver said for us to check with
probability 0.742, bet 2

3
pot with probability 0.140, bet pot with probability 0.103, and bet 2 pot

with probability 0.014. 7 We ended up betting 2
3

pot and the opponent folded.

10.5 Experiments on no-limit Texas hold ’em
We tested our algorithm against the two strongest agents from the 2013 poker competition. The
base agent was a version of the agent we submitted to the 2014 AAAI computer poker compe-

7We find it very interesting that the exact equilibrium strategies (for the given abstraction) involve so much
randomization between different bet sizes. Even strong human players generally do not randomize between different
bet sizes at a single information set (though they often bet different amounts at different information sets). It is very
difficult to draw such conclusions about properties of exact equilibrium strategies from iterative algorithms for
approximating equilibria, such as counterfactual regret minimization, since we are not sure whether the algorithm
has fully converged at a given information set. Computing exact equilibria in endgames can give us more of a lens
into properties of exact equilibrium strategies that could perhaps lead to improved game-solving algorithms, and
furthermore are interesting on their own.
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tition (that came in first place) from shortly before the competition. Ordinarily it would be very
time consuming to differentiate the performance of the base strategies from the endgame solver
with statistical significance, since the endgame solver plays relatively slowly (it averaged around
8 seconds per hand, which still kept us well within the competition time limit of 7 seconds per
hand on average, since only around 25% of hands make it to the final betting round). A useful
variance-reduction technique is to only consider hands where both agents make it to an endgame.
In Section 10.6 we prove that this technique is unbiased. The results using this evaluation metric
are given in Table 10.1, where the ± indicates 95% confidence intervals.

Hyperborean.iro Slumbot
+87 ± 50 +29 ± 25

Table 10.1: Improvement by using endgame solving against the strongest agents from the 2013
poker competition over all hands where both agents made it to some endgame (i.e., to the river
betting round). Units are milli big blinds per hand.

The base agent used a procedure called purification on all rounds (except for the first preflop
action); this procedure selects the maximal probability action at each information set with prob-
ability 1 instead of randomizing according to the abstract equilibrium strategy (ties are broken
uniformly at random) [38]. This parameter setting was shown to be the best in our thorough
experiments in prior years, and we had used this as the standard setting when evaluating our
base agent. The main motivation for purification is that it compensates for the failure of it-
erative equilibrium-finding algorithms to fully converge to equilibrium in the abstract game (a
phenomenon that has been documented by prior agents, e.g., [33]). The endgame solving agent
did not use any rounding for the river, as the endgame equilibria are exact (within the chosen
abstraction), and the problem of the equilibrium-finding algorithm failing to converge is not
present. Both agents used the pseudo-harmonic action translation mapping [34] for all rounds to
interpret actions taken by the opponent that fall outside of the action abstraction.

The results are from 100 duplicate matches against Hyperborean and 155 duplicate matches
against Slumbot. Since each match is 3,000 hands, this means we played 600,000 and 930,000
hands; out of these hands, both versions of our agent made it to the river round on 173,568 and
318,700 hands against the respective opponents. If we had used the standard duplicate approach
for evaluating performance, we would not have been able to statistically differentiate the base
agent from the endgame solver over this sample. However, we were able to obtain statistically
significant results using our new evaluation approach. Additional results using a prior version of
our algorithm against the strongest 2012 agents, which also include experiments for undominated
equilibrium, are in Section 10.7.4.

10.6 Variance-reduction technique
When comparing the performance of one version of an agent A1 to another version that is iden-
tical except that it plays differently on endgames A2, one would like to take advantage of the
fact that the agents play identically up until the endgames in order to evaluate the performance
difference more efficiently. Ideally, we could play A1 against a given opponent, and when the
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endgame is reached, evaluate how both A1 and A2 would do on that same endgame given the
trunk history. However, such a technique is not possible on the poker competition test server. All
that is allowed is to play A1 and A2 against an opponent for a full set of matches. The agents
may reach endgames on different hands, or may reach different endgames even on the same
hands (since both our agent and the opponent may be playing randomized strategies before the
endgames).

One possible approach for reducing variance would be to only consider hands where both A1

and A2 arrive at the same endgame (the same betting history was played). It turns out that this
approach is actually biased, so it cannot be applied to accurately measure performance. A second
approach, that it turns out is unbiased, would be to only consider the hands where both agents
arrive at some endgame (though not necessarily the same one). If we only consider these hands,
then the difference in performance between the two agents is an unbiased estimator of their true
performance difference. This would allow us to achieve statistical significance using a smaller
sample of hands.
Proposition 12. Let A1 and A2 be two algorithms that differ in play only for endgames. Then
the difference in performance looking at only the hands where both make it to the same endgame
is not an unbiased estimator of the overall performance difference.

Proof. Suppose there were only two betting sequences and both make it to the river, where the
first one (A) happens 99% of the time and the second one (B) happens 1% of the time. Then
the probability that both hands hit the river with B on any particular hand is 0.01%, and the
probability that both hands hit the river with A with any particular hand is 98.01%. So if you
look at all hands where both hit the river with the same sequence, there would be only 1 (B) for
every 9802 (A) sequences.

Proposition 13. Let A1 and A2 be two algorithms that differ in play only for endgames. Then
the difference in performance looking at only the hands where both make it to some (but not
necessarily the same) endgame is an unbiased estimator of the overall performance difference.

Proof. For each history that leads into an endgame hi, let pi be the probability that hi is played
when we use the base strategy against the opponent O. Let U(A1, O, hi) denote the expected
payoff when following algorithm A1 against an opponent who plays strategyO following history
hi (define U(A2, O, hi) analogously). Then the expectation of the difference in payoff between
playing A1 (base strategy) and A2 (endgame solver) against O is

∑
i

[pi (U(A1, O, hi)− U(A2, O, hi))]

=
∑
i

[piU(A1, O, hi)]−
∑
i

[piU(A2, O, hi)]

Suppose that we look at performance over all hands where both algorithms make it to some
endgame. The probability that A1 makes it to the endgame with history hi and A2 makes it to the
endgame with history hj is pipj . Thus, the expectation of the payoff difference is
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∑
i

∑
j

[pipj (U(A1, O, hi)− U(A2, O, hj))]

=
∑
i

∑
j

[pipjU(A1, O, hi)]−
∑
i

∑
j

[pipjU(A2, O, hj)]

=
∑
i

[
piU(A1, O, hi)

∑
j

pj

]
−
∑
j

[
pjU(A2, O, hj)

∑
i

pi

]
=

∑
i

[piU(A1, O, hi)]−
∑
j

[pjU(A2, O, hj)]

=
∑
i

[piU(A1, O, hi)]−
∑
i

[piU(A2, O, hi)]

10.7 Equilibrium refinements that can be integrated with
endgame solving

As discussed in Section 10.2.2, the Nash equilibrium (NE) solution concept has some theoreti-
cal limitations, and several equilibrium refinement concepts have been proposed which rule out
NE strategy profiles that are not rational in various senses. Common equilibrium refinements
for extensive-form games of imperfect information include undominated Nash equilibrium, per-
fect Bayesian equilibrium, sequential equilibrium, normal-form trembling hand perfect equilib-
rium, extensive-form trembling hand perfect equilibrium, normal-form proper equilibrium, and
extensive-form proper equilibrium. In general, these solution concepts guarantee that we behave
sensibly against an opponent who does not follow his prescribed equilibrium strategy (i.e., he
takes actions that should be taken with probability zero in equilibrium).

Specialized algorithms have been developed for computing many of these concepts [81, 83,
84]. However, those algorithms do not scale to large games. In Texas hold ’em, computing a
reasonable approximation of a single Nash equilibrium already takes months (using the leading
algorithms, CFR or EGT), and there are no known algorithms for computing any of the refine-
ments listed above that scale to games of that size. However, when solving endgames that are
significantly smaller than the full game, we will show that it can be possible to compute certain
refinements. Specifically, we will consider undominated Nash equilibrium and ε-quasi-perfect
equilibrium. (Note that while a quasi-perfect equilibrium is guaranteed to be a Nash equilibrium
(in fact, it is a refinement of undominated Nash equilibrium), an ε-QPE is not, and technically it
is not an equilibrium refinement.)

10.7.1 Undominated Nash equilibrium
An undominated Nash equilibrium (UNE) is a Nash equilibrium where no player’s strategy is
weakly dominated by another strategy.
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Definition 2. A strategy s∗ for player i weakly dominates strategy s′ if for all pure strategies s−i
for the opponent, ui(s∗, s−i) ≥ ui(s

′, s−i), where the inequality is strict for at least one s−i.
In two-player games, a strategy is a UNE if and only if it is a trembling-hand perfect equilib-

rium (a popular equilibrium refinement).
It seems intuitive that we would never want to play a dominated strategy s′, since we could

guarantee at least as good a payoff if we played some other strategy s∗ instead. However, standard
equilibrium-finding algorithms may find an equilibrium that is dominated. One example of this
phenomenon is the equilibrium strategy profile computed by Gordon for one-card poker, which
used the LP formulation to find an equilibrium. This strategy profile, as well as the rules of
one-card poker, are presented in Section 10.7.3.

In these equilibrium strategies, player 1 always checks initially with a 5–8 and bets with
positive probability with a 2–4 and 9–A. In response to a bet by player 1, player 2 always folds
with a 2–4, always calls with a 9–A, and calls with probability strictly between 0 and 1 with
5–8. In particular, player 2 calls with a 5 with probability 0.251, with a 6 with probability 0.408,
with a 7 with probability 0.583, and with an 8 with probability 0.759. Denote this strategy by
s′. Now suppose player 2 instead called with a 5 with probability 0.01 and called with an 8 with
probability 1, while keeping all other probabilities the same. Denote this new strategy by s∗.
Clearly s∗ weakly dominates s′ (it performs strictly better if player 1 decides to bet with some
probability with a 5, 6, 7, or 8). It is also clear that s∗ also constitutes an equilibrium strategy for
player 2.

We can see that the strategies for player 1 are also dominated, as he calls with a 4 vs. a bet
with positive probability, while he also folds with an 8 with positive probability (player 2 never
bets with a 4–8).

While we did not compute the initial equilibrium strategies s′, we are the first to observe that
they are dominated.

It turns out that we can compute a UNE by the procedure described in Algorithm 18. The
algorithm follows pretty straightforwardly from a previously-known result that any strategy that
is a best response to a fully mixed strategy of the opponent is undominated [111]; however, we
are unable to find the algorithm described explicitly in any published work. Furthermore, we are
the first to investigate its usefulness in practice in large games.

Algorithm 18 Algorithm for computing an undominated equilibrium strategy for player i.
Input: game G, fully mixed strategy for the opponent y (e.g., the uniform random strategy)

1. Compute the value, vi, of G for player i by computing a Nash equilibrium.

2. Compute the best response of player i to y subject to the constraint that the worst-case
expected payoff of agent i is at least vi.

Proposition 14. Algorithm 18 computes an undominated equilibrium strategy for player i.

Proof. Suppose the algorithm outputs a mixed strategy σi that is weakly dominated by another
mixed strategy σ′i. Then ui(σ′i, s−i) ≥ ui(σi, s−i) for all pure strategies s−i for the opponent,
where the inequality is strict for at least one s−i. Let σm−i be the fully mixed strategy for the
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opponent, and let σm−i(s−i) denote the probability that it selects pure strategy s−i. Then

ui(σi, σ
m
−i) =

∑
s−i

[
σm−i(s−i)ui(σi, s−i)

]
<

∑
s−i

[
σm−i(s−i)ui(σ

′
i, s−i)

]
= ui(σ

′
i, σ

m
−i).

This contradicts the fact that σi is a best response to σm−i. Thus σi is not weakly dominated by
any strategy.

The first step of Algorithm 18 can be accomplished using the LP formulation [72], while
the second step can be accomplished by solving the LP formulation for computing a best re-
sponse [72] with additional constraints ensuring that player i guarantees a worst-case expected
payoff of at least vi. To show how the second step works8, we first present the LP formulation for
computing a best response for player 1 to a given strategy y of player 2 in a two-player zero-sum
extensive-form game of imperfect information, which is described in [72]:

maximizex xTAy

subject to xTET = eT

x ≥ 0

We modify this procedure as follows to compute a best response for player 1 to strategy y
of player 2 subject to the additional constraint that the worst-case expected payoff is at least v1,
where v1 is the value of the game to player 1 (and all matrices and vectors are as defined in [72]).
We have already computed v1 in Step 1 of Algorithm 18, and we assume it is an input to Step 2.
The vector y is any fully-mixed strategy for player 2 (i.e., any strategy that puts positive weight
on each action at each information set), and in our experiments we will be assuming it is the
strategy that plays uniformly at random at each information set. The formulation for player 2 is
analogous.

maximizex xTAy

subject to xTET = eT

x ≥ 0

xTA ≥ −qF
q[0] = −v1

8Note that the second step does not compute a full best response to y, but only a best response out of strategies
that have worse-case expected payoff at least vi (i.e., a best response to y out of equilibrium strategies).
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Thus, overall this approach takes about twice as long as the standard approach for computing
an NE, since it involves solving two LPs of approximately the same size instead of one. If we
wanted a UNE strategy for both players, we could solve a third LP to obtain the strategy for
the other player. In our experiments, we used the uniform random strategy as the fully mixed
strategy of the opponent. Algorithm 18 scales to games with around 108 nodes in the game tree,
since it is based on the LP formulation; however—unlike for finding just any NE—there are no
known algorithms for UNE that would scale to larger games, such as the abstractions for full
no-limit Texas hold ’em used by the strongest agents.

10.7.2 ε-Quasi-perfect equilibrium
Another solution concept that we considered is the ε-quasi-perfect equilibrium (ε-QPE). Infor-
mally, a player following a QPE takes observed as well as potential future mistakes of his op-
ponents into account but assumes that he himself will not make a mistake in the future, even if
he observes that he has done so in the past. The formal definitions of QPE and ε-QPE are fairly
elaborate, and we omit them for brevity. But we note that a Nash equilibrium of a modified
game G(ε) where we require the realization weight of any sequence σ of actions that can be
played to be at least ε|σ|, where |σ| is the number of actions in the sequence σ, is guaranteed to
be an ε-QPE. This gives rise to an algorithm consisting of a single LP solve for computing an
ε-QPE [84], making it potentially useful in practice. A full QPE can be computed in polynomial
time as well, though the algorithm involves solving linear programs containing coefficients with
a very large number of digits, and it is not practical [84]. Note that while a QPE is guaranteed to
be a Nash equilibrium (in fact, it is a refinement of UNE), an ε-QPE is not, and technically it is
not an equilibrium refinement.

ε-QPE has several potential advantages over UNE: it can be computed in one LP solve (rather
than two), and QPE is a stricter solution concept than UNE. However, it also has several disad-
vantages. First, it uses an additional parameter ε, and it is not clear how that should be chosen.
We can show that an ε-QPE is guaranteed to have exploitability at most ε|A||M |, where |A| is
the maximum number of actions at an information set, and |M | is the maximum absolute value
of a payoff. However, this bound is not necessarily useful, as for any ε > 0 and δ > 0, we can
construct a game that has an ε-QPE with exploitability exceeding δ (by increasing |M | and/or
|A|). This analysis indicates that ε may be required to be quite small in order to achieve a low
exploitability in a given game. Another issue with ε-QPE is that the algorithm for computing it
runs into numerical stability issues when ε is too small, since the ε|σ| terms are extremely close
to zero. This can result in standard LP solvers outputting solutions that are infeasible and/or
suboptimal. We actually obtained worse performance when we tried solving for an ε-QPE within
the endgames in preliminary experiments than when we solved for an NE or UNE. This suggests
that the disadvantages outweigh the advantages.

10.7.3 One-card poker
One-card poker is a two-person zero-sum poker game, consisting of a thirteen-card deck and a
single round of betting. In Section 10.7.1, we showed that the (exact) equilibrium strategies that
have previously been computed for it using the standard LP approach are (weakly) dominated.
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Thus, this game provides a demonstration that the undominated Nash equilibrium is a useful
solution concept in realistic large imperfect-information games.

Here are the full rules of one-card poker:

• Two players: P1 and P2
• Both players ante $1
• Deck containing thirteen cards: 2–A
• Each player is dealt one card uniformly at random
• P1 acts first and can either bet $1 or check

If P1 bets, P2 can call or fold

− If P1 bets and P2 calls, then whoever has the higher card wins the $4 pot

− If P1 bets and P2 folds, then P1 wins the entire $3 pot

If P1 checks, P2 can bet $1 or check.

− If P1 checks and P2 bets, then P1 can call or fold.

· If P1 checks, P2 bets, and P1 calls, then whoever has the higher card wins
the $4 pot

· If P1 checks, P2 bets, and P1 folds, then P2 wins the $3 pot

− If P1 checks and P2 checks, then whoever has the higher card wins the $2 pot

The equilibrium strategies computed by Gordon using the LP formulation are available at

http://www.cs.cmu.edu/˜ggordon/poker/,

and are replicated in Tables 10.2 and 10.3.

Holding 2 3 4 5 6 7 8 9 T J Q K A
Bet initially 0.454 0.443 0.254 0.000 0.000 0.000 0.000 0.422 0.549 0.598 0.615 0.628 0.641

Call after 0.000 0.000 0.169 0.269 0.429 0.610 0.760 1.000 1.000 1.000 1.000 1.000 1.000check–bet

Table 10.2: Equilibrium strategy for player 1 in one-card poker, computed using the LP formu-
lation. The first row is the probability of betting with each hand in the initial betting round, and
the second row is the probability of calling after player 1 checks initially and player 2 bets.

Holding 2 3 4 5 6 7 8 9 T J Q K A
Bet vs. check 1.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Call vs. bet 0.000 0.000 0.000 0.251 0.408 0.583 0.759 1.000 1.000 1.000 1.000 1.000 1.000

Table 10.3: Equilibrium strategy for player 2 in one-card poker. The first row is the probability
of betting with each hand after player 1 checks, and the second row is the probability of calling
after player 1 bets.
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10.7.4 Prior experiments against 2012 poker competition agents

We ran additional experiments on two-player no-limit Texas hold ’em using an agent that per-
formed well in the 2012 poker competition as the base agent. These experiments used a prior
version of our endgame solving algorithm that did not implement several of the features of our
new algorithm (we will not describe full details of the prior approach here). Also note that the
base agent for these experiments was different from the base agent in the experiments described
in the main submission, and that our new variance-reduction technique was not used. We include
these older results primarily because they present preliminary evidence that the undominated
Nash equilibrium solution concept is useful in this domain, though results are not statistically
significant.

The results (shown in Table 10.4) indicate that solving endgames led to improved perfor-
mance against each of the strongest opponents from the 2012 computer poker competition. In
some cases this improvement was quite dramatic; against the base agent and O2, our win rate
improved by over 100 mbb/h. Furthermore, against each opponent, computing an undominated
equilibrium for the endgames outperformed the approach of computing a potentially dominated
one.

Base
Vanilla Undominated

endgame solver endgame solver
Base — 115 ± 35 120 ± 42
O1 -161 ± 36 -124 ± 44 -105 ± 59
O2 56 ± 38 214 ± 56 238 ± 76
O3 -102 ± 30 -48 ± 43 -39 ± 63
O4 165 ± 63 204 ± 58 273 ± 84

Table 10.4: No-limit Texas hold ’em results against the strongest competitors from the 2012
Annual Computer Poker Competition. The payoffs are given in milli big blinds per hand for the
agent listed in the column, and the 95% confidence intervals are reported.

10.8 Summary and extensions

We demonstrated that endgame solving can be successful in practice in large imperfect-informa-
tion games despite the fact that the strategies it computes is not guaranteed to constitute an equi-
librium in the full game (which we showed). We also showed that endgame solving guarantees
a low exploitability in certain games, and presented a framework that can be used to evaluate its
applicability more broadly. We described several benefits of endgame solving in large imperfect-
information games, including exact computation of Nash equilibria in abstracted endgames, the
ability to compute certain equilibrium refinements, the ability to compute finer-grained, history-
aware, and strategy-biased abstractions in endgames, and a solution to the off-tree problem.
We presented an efficient algorithm for performing endgame solving in very large imperfect-
information games and showed that it led to a significantly stronger performance against the
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strongest no-limit Texas hold ’em agents from the 2013 computer poker competition, utilizing a
new variance-reduction technique that we described.

This work opens many interesting avenues for future research. We showed that endgame
solving can produce strategies with high exploitability in certain games, while it guarantees low
exploitability in others. It would be interesting to study where different game classes fall on this
spectrum. It is possible that for interesting classes of games—perhaps even classes that include
variants of poker—endgame solving is guaranteed to produce strategies with low exploitability.
We would also like to study various subdivisions of a game into a trunk and endgames, to ex-
periment on additional game classes, to experiment with the refinements we described, and to
develop improved variance-reduction techniques.
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Chapter 11

Computing Equilibria by Incorporating
Qualitative Models

In this chapter we develop an additional new paradigm for solving large games. Rather than
construct a smaller game using an abstraction algorithm, we propose solving an infinite approx-
imation of the original game, then mapping the equilibrium of the infinite game to a strategy
profile in the original game. Perhaps counterintuitively, it is often the case that the infinite ap-
proximation can be solved much more easily than the finite game. We show that sometimes very
fine abstractions would be needed to match the solution quality of our approach.

Our main algorithmic innovation takes advantage of the fact that in many multiagent settings
it is significantly easier to infer qualitative models of the structure of equilibrium strategies than
it is to actually compute an equilibrium. For example, in (sequences of) take-it-or-leave-it offers,
equilibria involve accepting offers above a certain threshold and rejecting offers below it [100].
Threshold strategies are also common in auctions (e.g., [11]) and in deciding when to make and
break partnerships and contracts (e.g., [101]). In poker the hole cards are private signals, and in
equilibrium, often the same action is taken in continuous regions of the signal space (e.g., [4]).

We develop an approach for exploiting such qualitative models in equilibrium finding. We
study a broad class of imperfect-information games where players are given private signals at
the start. We first consider the two-player (general-sum) case in which private signals are drawn
independently from finite sets. For this case, we develop an algorithm based on a mixed integer
linear feasibility program (MILFP) formulation that provably computes an equilibrium assuming
we are given a “correct” qualitative model as input. The size of the program is polynomial in the
parameters of the problem and the constraints are very sparse, suggesting that it can be solved
quickly in practice. Our experiments confirm that the algorithm runs very fast on a simplified
endgame of limit Texas hold ’em, leading to a significant performance improvement.

Next, we generalize our algorithm to computing equilibria in the following important exten-
sions: many players, continuous private signal distributions, dependent private signal distribu-
tions, and multiple candidate qualitative models that satisfy a certain technical property (some
of which can be incorrect). In most of these cases, we present the first algorithm that provably
solves the class of games. We also develop new mixed-integer programming based algorithms
for computing equilibria in general multiplayer normal and extensive-form games based on the
extension of our initial algorithm to the multiplayer setting, which may be of independent inter-
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est.
The remainder of this chapter is organized as follows. In Section 11.1, we introduce continu-

ous games and present relevant definitions and results. In Section 11.3, we present a continuous
two-player game that is used to motivate the use of qualitative models and the setting of the
remainder of the paper. Section 11.4 presents the main setting of our paper, and Section 11.5
introduces parametric (i.e., qualitative) models. Section 11.6 presents our main algorithm for
solving large two-player games given a parametric model, as well as a proof of correctness of the
algorithm. Section 11.7 presents several extensions of our main algorithm. Finally, Section 11.8
describes our experimental results: in Section 11.8.1 we present evidence that approximating
large finite games with infinite games can outperform abstraction-based approaches; in Sec-
tion 11.8.2 we demonstrate that our main algorithm leads to improved play in two-player limit
Texas hold ’em; and in Section 11.8.3 we demonstrate the effectiveness of our approach in the
multiplayer setting.

11.1 Continuous Games

Continuous games generalize finite strategic-form games to the case of (uncountably) infinite
strategy spaces. Many natural games have an uncountable number of actions; for example,
games in which strategies correspond to an amount of time, money, or space. One example of a
game that has recently been modeled as a continuous game in the AI literature is computational
billiards, in which the strategies are vectors of real numbers corresponding to the orientation,
location, and velocity at which to hit the ball [5].
Definition 3. A continuous game is a tuple G = (N,S, U) where
• N = {1, 2, 3, . . . , n} is the set of players,
• S = (S1, . . . , Sn) where each Si is a metric space corresponding to the set of strategies of

player i, and
• U = (u1, . . . , un) where ui : S → R is the utility function of player i.
The main result regarding the existence of a Nash equilibrium in continuous games is the

following [28]:
Theorem 4. Consider a strategic-form game whose strategy spaces Si are nonempty compact
subsets of a metric space. If the payoff functions ui are continuous, there exists a (mixed strategy)
Nash equilibrium.

While this existence result has been around for a long time, there has been very little work
on practical algorithms for computing equilibria in continuous games. One interesting class of
continuous games for which algorithms have been developed is separable games [109]:
Definition 4. A separable game is a continuous game with utility functions ui : S → R taking
the form

ui(s) =

m1∑
j1=1

. . .

mn∑
jn=1

aj1...jni f j11 (s1) . . . f jnn (sn),

where aj1...jni ∈ R and the f ji : Si → R are continuous.
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As we will see, this is a significant restriction on the utility functions, and many interesting
continuous games are not separable. Additionally, algorithms for computing approximate equi-
libria have been developed for several other classes of infinite games, including simulation-based
games [115] and graphical tree-games [106].

For a broad class of games, we will show that the equilibrium existence theorem above does
not hold directly, but we can nevertheless prove the existence of an equilibrium by incorporating
a qualitative equilibrium model. However, we show that these games are not separable, so the
prior algorithm does not apply. These are the topics of the next two sections. After that, we will
develop new algorithms for solving these games.

11.2 Measure theory background
Some additional math background is needed to prove some theoretical results in this chapter.
Most of the definitions presented here are taken or adapted from [2].
Definition 5. A nonempty family A of subsets of a set T is an algebra of sets if it is closed under
finite unions and complementation. That is,

G,H ∈ A→
[
G ∪H ∈ A and GC = T\G ∈ A

]
.

A σ-algebra is an algebra that is also closed under countable unions. That is,

{Gi} ⊂ A implies ∪∞i=1 Gi ∈ A.

Definition 6. A measurable space is a pair (T,Σ), where T is a set and Σ is a σ-algebra of
subsets of T.
Definition 7. LetAT andAY be nonempty families of subsets of T and Y, respectively. A function
f : T → Y is (AT , AY )-measurable if f−1(A) belongs to AT for each A in AY . We say that f is
AT -measurable when AY is clearly understood, and we say that f is measurable when both AY
and AT are clearly understood.
Definition 8. Let Σ be a σ-algebra over a set T. A function µ from Σ to the extended real number
line is called a measure if it satisfies the following properties:

1.
µ(E) ≥ 0 for all E ∈ Σ.

2.
µ(∅) = 0.

3. For all countable collections {Ei} of pairwise disjoint sets in Σ:

µ (∪iEi) =
∑
i

µ(Ei).

Definition 9. A measure space is a triplet (T,Σ, µ), where Σ is a σ-algebra of subsets of T and
µ : Σ→ [0,∞] is a measure. If µ(T ) = 1, then µ is a probability measure.
Definition 10. Let (T,Σ) and (Y,Θ) be measurable spaces. A Markov kernel is a mapping
k : T ×Θ→ [0, 1] satisfying the following two properties.
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1. For each t ∈ T, the set function k(t, ·) : Θ→ [0, 1] is a probability measure.
2. For each θ ∈ Θ, the mapping k(·, θ) : T → [0, 1] is Σ-measurable.

Definition 11. Let (T,Σ) be a measurable space and let Y be a finite set. A discrete Markov
kernel is a mapping k : T × Y → [0, 1] satisfying the following two properties.

1. For each t ∈ T, the set function k(t, ·) : Y → [0, 1] is a probability mass function.
2. For each y ∈ Y, the mapping k(·, y) : T → [0, 1] is Σ-measurable.

Definition 12. Let Σi be the set of all intervals of the form (a, b), (a, b], [a, b), [a, b] for a ≤ b
that are completely contained in Xi. (Note that Xi is defined in Definition 19). Then Σi is a
σ-algebra, and (Xi,Σi) is a measurable space.
Definition 13. Let Λi denote the set of all discrete Markov kernels from (Xi,Σi) to Ci (note that
we assume Ci is finite). We call Λi the mixed strategy space of player i.

The following definitions and theorem were presented and proved in [109], and are used for
the proof of Proposition 19 in Section 11.3.

Let ∆i denote the space of Borel probability measures over Ŝi, which we call the set of mixed
strategies of player i. Let Vi denote the space of all finite-valued signed measures on Ŝi.
Definition 14. Two measures σi, τi ∈ Vi are almost payoff equivalent if uj(σi, s−i) = uj(τi, s−i)

for all j 6= i and all s−i ∈ Ŝ−i.
Let 0 denote the zero measure in Vi, and define

Yi = {measures almost payoff equivalent to 0}.

Definition 15. The rank of a continuous game is the n-tuple ρ = (ρ1, . . . , ρn) where ρi =
dim ∆i

Yi
. A game has finite rank if ρi <∞ for all i.

Theorem 5. A continuous game is separable iff it has finite rank.

11.3 Motivating example

Consider the following simplified poker game [4]. Suppose two players are given private signals,
x1 and x2, independently and uniformly at random from [0,1]. Suppose the pot initially has size ρ
(one can think of this as both players having put in an ante of ρ

2
, or that we are at the final betting

round—aka final street—of a multi-street game). Player 1 is allowed to bet or check. If player 1
checks, the game is over and the player with the lower private signal wins the pot (following the
convention of [4]). If player 1 bets, then player 2 can call or fold. If player 2 folds, then player
1 wins the pot. If player 2 calls, then whoever has the lower private signal wins ρ+ 1, while the
other player loses 1. This situation can be thought of as an abstraction of the final street of a hand
of limit Texas hold ’em where raising is not allowed and player 2 has already checked.

It seems natural to define the strategy space S1 of player 1 as the set of functions from [0, 1]
to {check, bet} (i.e., to {0, 1}), and to define S2 for player 2 as the set of functions from [0, 1] to
{fold, call} (i.e., to {0, 1}). Let pi(a1, a2, x1, x2) denote the payoff of player i when the players
play actions ai and are given private signals xi. Formally, pi is defined as follows:
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p1(1, 0, x1, x2) = ρ

p1(0, a2, x1, x2) =


0 : x1 > x2

ρ : x1 < x2
ρ
2

: x1 = x2

p1(1, 1, x1, x2) =


−1 : x1 > x2

ρ+ 1 : x1 < x2
ρ
2

: x1 = x2

p2(a1, a2, x1, x2) = ρ− p1(a1, a2, x1, x2)

Given this definition of pi, the the utility of player i under the strategy profile s = (s1, s2) is
defined as

ui(s) =

∫ 1

x1=0

∫ 1

x2=0

pi(s1(x1), s2(x2), x1, x2)dx2dx1.

We would like to represent each player’s strategy set as a compact metric space, so that we
can apply Theorem 4. Unfortunately, the naive representation does not yield compact metric
spaces; so, we need to go through a number of transformations to achieve this goal. In particular,
by iteratively eliminating dominated strategies, we arrive at a representation where each player’s
strategy space is isomorphic to a compact subset of a Euclidean space.

In order for ui(s) to be defined, we must restrict the strategy spaces Si to consist of only
the measurable functions. In addition, if we want to turn Si into a metric space, we need
to define a distance function. A natural distance function to use is the L1 distance function:
di(si, s

′
i) =

∫
Xi
|si(xi) − s′i(xi)|dxi. Note that (Si, di) does not quite define a metric space be-

cause the condition di(s, t) = 0 iff s = t is not satisfied. To turn it into a metric space, we can
let ∼ be the equivalence relation defined by s ∼i s′ iff di(s, s′) = 0. If we then let Si equal the
set of equivalence classes with respect to ∼i, then (Si, di) is a metric space.

Unfortunately, the metric space (Si, di) is not compact, and we cannot apply Theorem 4 to
guarantee the existence of an equilibrium.
Proposition 15. The metric space (Si, di) is not compact.

Proof. We prove this by showing that the space is not totally bounded; that is, that we cannot
cover the space with a finite number of ε-balls for at least one ε. Let ε = 0.5, and let {f1, . . . , fk}
be a finite set of elements of Si which is claimed to be a cover. For each j ∈ {1, . . . , k}, let
gj = {x : fj(x) = 0}, and let hj = {x : fj(x) = 1}. By the measurability of fj, both gj and
hj must consist of the union of intervals of [0, 1] of the following form: (a, b), (a, b], [a, b), [a, b].
Note that we can partition the interval [0, 1] by 0 = y0 < y1 < . . . < ym−1 < 1 = ym such
that (yi′ , yi′+1) is completely contained in one of the intervals of either gj or hj for all i′, j. Now
consider the function f ∗ defined as follows: for each interval [yi′ , yi′+1], f ∗ equals 0 for the first
half of the interval and equals 1 for the second half. Thenf ∗ will agree with each fj for exactly
half of the length of each interval. So di(f

∗, fj) = 0.5 = ε for all j; thus the set of ε-balls
centered at {f1, . . . , fk} is not a cover and we are done.

Similarly, the space fails to be compact if we use other common distance functions, such
as the discrete metric, any Lp metric, or L∞. So we can not simply use one of those distance
functions instead of L1 to get around Proposition 15.
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However, the following observations allow us to restrict our attention to a much smaller set
of strategies.
Definition 16. Let Si be the set of pure strategies of player i. Then si ∈ Si is weakly dominated
for player i if there exists a strategy s∗i ∈ Si such that for all strategy profiles s−i ∈ S−i for the
other players, we have ui(s∗i , s−i) ≥ ui(si, s−i).

Definition 17. Let si be an equivalence class of player i’s pure strategies with respect to ∼i.
Then si is weakly dominated if si is weakly dominated for all si ∈ si.
Definition 18. The equivalence class si is undominated if it is not weakly dominated.
Proposition 16. The equivalence class of strategies s2 ∈ S2 of player 2 is undominated only if
it contains a unique strategy of the following form: call if x2 ≤ x∗2 and fold otherwise, for some
x∗2.

Proof. First note that any equivalence class that contains a strategy of the desired form can
only contain a single such strategy (since otherwise it would contain two strategies that do not
have zero distance from each other). Now suppose s2 is undominated but does not contain any
strategies of the desired form. Let s2 ∈ s2 be arbitrary. Then there must exist an interval α1 of
one of the following forms with a < b: (a, b), (a, b], [a, b), [a, b], and an interval α2 of one of the
following forms with c < d: (c, d), (c, d], [c, d), [c, d], with b < c, where s2 calls with all private
signals in α2 and folds with all private signals in α1. Now define s∗ to be the strategy that calls
with all signals in α1, folds with all signals in α2, and agrees with s2 otherwise. It is clear that s∗

(weakly)-dominates s2, and we have a contradiction. So all equivalence classes of strategies that
are undominated must be of the desired form.

We can remove all of the strategies from S2 that are dominated according to Proposition 16
from our consideration, forming a much smaller strategy space. In addition, we can remove the
strategies not satisfying the threshold property given in the proposition from each equivalence
class s2 ∈ S2, thus turning the equivalence classes into singletons. In the remainder of our
discussion, we will let S2 denote this smaller set.

We can now iteratively remove many strategies from S1 by the following observation.
Proposition 17. The equivalence class of strategies s1 ∈ S1 of player 1 is a best response to
some element of S2 only if it contains a unique strategy of the following form: bet if x1 ≤ x∗1,

check if x∗1 ≤ x1 ≤ x∗1 and bet if x∗1 ≤ x1 ≤ 1, for some x∗1 ≤ x∗1
1.

Proof. The uniqueness part follows from the same reasoning as the proof of Proposition 16. Now
suppose player 2 is playing the following strategy: call if x2 ≤ x∗2 and fold otherwise. Let x1

denote player 1’s private signal.

• Case 1: 0 ≤ x1 ≤ x∗2
2
.

Then the expected payoff of betting is

(1− x∗2)ρ+ (x∗2 − x1)(ρ+ 1)− x1 = (1− x1)ρ+ x∗2 − 2x1,

and the expected payoff of checking is (1− x1)ρ. So player 1’s best response is to bet.

1One can think of [0, x∗1] as player 1’s “value betting” range—where he bets hoping to get called by worse
hands—and [x∗1, 1] as his “bluffing” range—where he bets hoping to get better hands to fold.
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• Case 2: x∗2
2
≤ x1 ≤ x∗2.

Then the formulas for the expected payoffs of betting and checking are the same as in Case
1. However, now the expected payoff of checking is larger, so player 1’s best response is
to check.

• Case 3: x∗2 ≤ x1 ≤ x∗2 ·
ρ+1
ρ
.

The expected payoff of betting is

(1− x∗2)ρ− x∗2 = ρ− ρx∗2 − x∗2,

while the expected payoff of checking is (1−x1)ρ. So player 1’s best response is to check.
• Case 4: x∗2 ·

ρ+1
ρ
≤ x1 ≤ 1.

The formulas for the expected payoffs are the same as in case 3, but now player 1’s best
response is to bet.

After removing the dominated strategies, the new strategy space for player 1 becomes iso-
morphic to a compact subset of R2, and the new strategy space for player 2 becomes isomorphic
to a compact subset of R. Let Ŝ1 and Ŝ2 now refer to these new strategy spaces.

It turns out that the functions ui are continuous in s for both players using the new strategy
spaces, if we define the distance between two strategy profiles s = (s1, s2) and s′ = (s′1, s

′
2) as

d(s, s′) = d1(s1, s
′
1) + d2(s2, s

′
2).

Proposition 18. For both players, the utility functions ui are continuous in s.

Proof. Let ε > 0 be arbitrary, and let δ = ε
2ρ+2

. Let s, s′ ∈ S be arbitrary, with s = (s1, s2) and
s′ = (s′1, s

′
2), and suppose that ||s− s′|| ≤ δ. Note that

||s− s′|| =
∫ 1

x=0

|s1(x)− s′1(x)|dx+

∫ 1

x=0

|s2(x)− s′2(x)|dx

and ||u1(s)− u1(s′)|| equals∣∣∣∣∫
X

∫
Y

[u1((s1(x), s2(y)), (x, y))− u1((s′1(x), s′2(y)), (x, y))] dydx

∣∣∣∣ .
Note that the maximum possible value of the integrand is 2ρ+ 2. So

||u1(s)− u1(s′)|| ≤

(2ρ+ 2)

∫ 1

x=0

∫ 1

y=0

I1(s1(x), s2(y), s′1(x), s′2(y))dydx,

where I1(s1(x), s2(y), s′1(x), s′2(y)) equals 0 iff s1(x) = s′1(x) and s2(y) = s′2(y) and equals 1
otherwise. With this definition, we have

I1(s1(x), s2(y), s′1(x), s′2(y)) ≤ |s1(x)− s′x(s)|+ |s2(y)− s′2(y)|.
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So we have
||u1(s)− u1(s′)|| ≤

(2ρ+ 2)

∫
X

∫
Y

[|s1(x)− s′1(x)|+ |s2(y)− s′2(y)|] dydx

= (2ρ+ 2)

[∫
X

|s1(x)− s′1(x)|dx+

∫
Y

|s2(y)− s′2(y)|dy
]

= (2ρ+ 2)||s− s′|| ≤ 2(ρ+ 2)δ = ε.

The continuity of u2 in s follows from the same argument, and we are done.

It follows from Theorem 4 that the game has a Nash equilibrium using the new strategy
spaces Ŝ1 and Ŝ2.

Now that the existence of an equilibrium is guaranteed, we must figure out how to compute
one. It turns out that the game is not separable, so one cannot apply the algorithm from prior
work [109].
Proposition 19. This game is not separable.

Proof. Suppose there exists a measure (not equal to 0) for player 2 that is almost payoff equiva-
lent to 0; call this τ2. (Note that 0 refers to always folding.) Let

k =
3
∫ 1

0
xdτ2(x)

4
.

Now let s1 ∈ Ŝ1 be the strategy of always raising in [k, 1] and always folding in [0, k). Then
when player 1 has private signal in [k, 1], he will have a negative profit since he will raise and
will win less than 1

4
of the time when he is called. When player 1 has private signal in [0, k), his

payoff will be 0 since he will fold. So u1(s1, τ2) < 0. However, if player 2 plays 0, then player
1 will have positive profit in [k, 1] since he will raise and player 2 will fold, and will have zero
profit in [0, k), since he folds. So u1(s1, 0) > 0. Therefore, u1(s1, τ2) 6= u1(s1, 0), and τ2 is not
almost payoff equivalent to 0. So we have a contradiction, and must have Y2 = ∅. So ρ2 = ∞,
and the game does not have finite rank. Therefore, by Theorem 5, it is not separable.

However, it turns out that we can still solve this game quite easily if we notice that every
equilibrium will have x∗1 ≤ x∗2 ≤ x∗1. Given this guess of the form of an equilibrium, it is easy
to compute an equilibrium by noting that a player must be indifferent between two actions at
each threshold. For example, at x∗1 player 1 must be indifferent between betting and checking.
His expected payoff of betting is (1− x∗2)ρ + (x∗2 − x∗1)(ρ + 1)− x∗1 and his expected payoff of
checking is ρ(1 − x∗1). Setting these two expressions equal to each other yields x∗2 = 2x∗1. We
can create a linear equation similarly for the other two thresholds. Thus we have a system of
n linear equations with n unknowns (where n is the total number of thresholds), which can be
solved efficiently by matrix inversion.

132



11.4 Our setting
The main setting of the rest of the paper will be a generalization of the setting of the above
example along several dimensions.
Definition 19. A continuous Bayesian game is a tuple G = (N,X,C, U, F ) where
• N = {1, 2, 3, . . . , n} is the set of players,
• X = (X1, . . . , Xn) where each Xi is a compact subset of R corresponding to the set of

private signals of player i,
• C = (C1, . . . , Cn) where each Ci is a compact subset of R corresponding to the set of

actions of player i,
• U = (u1, . . . , un) where ui : C × X → R is the measurable utility function of player i,

and
• F = (F1, . . . , Fn) where Fi : Xi → [0, 1] is the cumulative distribution function (CDF) of

the private signal distribution of player i (i.e., Fi(xi) = Pr(Xi ≤ xi)).

The strategy space Si of player i is the set of all measurable functions from Xi to Ci. In this
paper we will assume that the sets Ci are finite.

Let Λi be the mixed strategy space of player i defined according to Definition 13. Let Λ =
×iΛi. A (mixed) strategy profile is σ = (σ1, . . . , σn), where σi ∈ Λi. Recall that σi(xi, ci)
denotes the probability that player i will take action ci given private signal xi.

Then define

ûi(σ,x) =
∑
c1∈C1

. . .
∑
cn∈Cn

[
ui(c,x)

n∏
j=1

σj(xj, cj)

]
.

Define ui|xi(σ), where σ ∈ Λ, xi ∈ Xi, as follows:

ui|xi(σ) =

∫
X1

. . .

∫
Xi−1

∫
Xi+1

. . .

∫
Xn

ûi(σ,x)fn(xn) . . . fi+1(xi+1)fi−1(xi−1) . . . f1(x1)

dxn . . . dxi+1dxi−1 . . . dx1,

where fi(xi) = d
dxi
F (xi) is the probability density function of Xi. This denotes the expected

utility of player i given that he has received private signal xi when strategy profile σ is played.
For i ∈ N, xi ∈ Xi, σi ∈ Λi and σ−i ∈ ×j 6=iΛj , define ui|xi(σi, σ−i) as the expected utility

of player i given private signal xi when he plays σi and the other players play σ−i.
According to the definition of Nash equilibrium, player i can play arbitrarily in cases where

he has a private signal that has zero measure in the signal distribution Fi. Such behavior can
result in equilibria that violate our qualitative models (discussed later) even when “equivalent”
equilibria exist that satisfy the models. Thus, we define a slightly stronger notion of equilibrium
in order to rule out arbitrary behavior in these regions of measure zero. In other words, we
require an agent to play rationally even if he gets a private signal that has zero probability. (This
strengthening of the equilibrium concept is analogous to perfect Bayesian equilibrium, where
each agent has to act rationally even in information sets that are reached with zero probability
due to the strategies of the players. In our case the reaching with zero probability is due to
nature’s action, i.e., giving the agents types.)
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Definition 20. Strategy profile σ ∈ Λ is an every-private-signal Bayesian (EPSB) equilibrium of
G if for all i ∈ N , for all xi ∈ Xi, and for all τi ∈ Λi, we have ui|xi(σi, σ−i) ≥ ui|xi(τi, σ−i).

Proposition 20. Let G be a game of the form given in Definition 19. Then G has an EPSB
equilibrium if and only if it has an equilibrium.

Proof. Consider some equilibrium σ. For i ∈ N, let

Zi = {xi ∈ Xi : ui|xi(σi, σ−i) 6= arg max
τi∈Λi

ui|xi(τi, σ−i)}.

Since σ is an equilibrium, Zi must have measure zero for all i. Now suppose for all i ∈ N and
all xi ∈ Zi, player i plays σ′i ∈ arg maxτi∈Λi

ui|xi(τi, σ−i) and plays σi otherwise. Call the new
profile γ. Then γ and σ differ only on a set of measure zero, and thus γ is an equilibrium. Since
each player is playing a best response given each possible private signal under γ, γ is an EPSB
equilibrium.

The other direction is trivial because every EPSB equilibrium is also an equilibrium.

We now strengthen the notions of best response and dominated strategies analogously. These
will be useful when we analyze our algorithms.
Definition 21. Strategy σi is an EPSB best response for player i ∈ N to profile σ−i if for all
xi ∈ Xi and for all τi ∈ Λi, we have ui|xi(σi, σ−i) ≥ ui|xi(τi, σ−i).

Definition 22. Strategy σi is an EPSB ε-best response for player i ∈ N to profile σ−i if for all
xi ∈ Xi and for all τi ∈ Λi, we have ui|xi(σi, σ−i) ≥ ui|xi(τi, σ−i)− ε.
Definition 23. Strategy σi is EPSB-undominated if for all τi ∈ Σi there exist xi ∈ Xi, σ−i ∈ Σ−i
such that ui|xi(σi, σ−i) > ui|xi(τi, σ−i).

11.5 Parametric models

In many multiagent settings, it is significantly easier to infer qualitative models of the structure of
equilibrium strategies than it is to compute an equilibrium. The introduction gives several exam-
ples, including sequences of take-it-or-leave-it offers, certain auctions, and making or breaking
partnerships and contracts. In general, we call the values that divide the different strategic re-
gions thresholds (e.g., x∗1, x∗1, and x∗2 in the example above), and refer to the guess of the structure
of an equilibrium defined by these thresholds a parametric model. Many additional examples of
games that are solved by the procedure used in the above example appear in [4].
Definition 24. A parametric model of gameG = (N,X,C, U, F ) is a tuple P = (T,Q,≺) where
• T = (T1, . . . , Tn), where Ti denotes the number of regions for player i,
• Q = (Q1, . . . , Qn), where Qi is a sequence {qij : 1 ≤ j ≤ Ti}, where qij ∈ Ci denotes the

action taken by player i in his j’th region of the model (at a boundary the lower region’s
action is taken), and

• ≺ is a partial ordering over the set of tuples (yij, yi′j′), where yij ≺ yi′j′ if we require that
the lower threshold of player i’s j’th region is less than or equal to the lower threshold of
player i′’s j′’th region.
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We saw in Section 11.3 that restricting the strategy spaces of a game by forcing all strategies
to conform to a specified parametric model can allow us to both guarantee the existence of an
equilibrium and to actually compute one when neither of these could be accomplished in the
original game by previously known techniques.

11.6 Our main algorithm

In this section we present our algorithm for computing an equilibrium given a parametric model.
While parametric models associate a pure action for each interval of signals, this can be prob-
lematic when the probability of obtaining individual private signals is nonzero. In this case, our
algorithm will actually output mixed strategies.

For now we assume the game is finite, has two players, and a single parametric model is
specified. We will extend the algorithm to more general settings along each of these dimensions
in Section 11.7.

11.6.1 Constructing a MILFP
Given a problem instance G = (N,X,C, U, F ) and a parametric model P, we first construct
a mixed integer linear feasibility program (MILFP) that contains both integer and continuous
variables. Since Xi is finite for all players, we assume without loss of generality that it is the set
of integers from 1 to n. Let {ti} denote the union of the sets of thresholds for both players under
P. For each threshold ti, we introduce two real-valued variables, xi and yi, where xi corresponds
to F1(ti) and yi corresponds to F2(ti). For each threshold ti and each integer j ∈ [1, n], we
introduce an indicator (0–1 integer) variable, zi,j , such that zi,j = 1 implies j − 1 ≤ ti ≤ j. So,
overall we have 2|T | + |T ||S| variables, where |T | is the number of thresholds in P and |S| is
the number of private signals.

Indifference constraints As the example in Section 11.3 demonstrates, we want to obtain
indifference between two actions at each threshold. Thus, we have |T | equality constraints where
each is of the form f(x, y) = 0 where f is linear in the xi and yi.

Threshold ordering constraints In order to guarantee that the solution conforms to the para-
metric model, we must add inequality constraints corresponding to the partial ordering ≺ . If
ti ≺ tj, then we add the constraints xi ≤ xj, yi ≤ yj.

Consistency constraints Next, we require that for each i, xi and yi are consistent in the sense
that there exists some value for ti such that F1(ti) corresponds to xi and F2(ti) corresponds to
yi. To accomplish this, we include indicator constraints of the following form for each i, j:

(zi,j = 1)⇒ (F1(j − 1) ≤ xi ≤ F1(j)) (11.1)

(zi,j = 1)⇒ (F2(j − 1) ≤ yi ≤ F2(j)) , (11.2)
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where we define F1(−1) = F2(−1) = 0. Stated explicitly, we add the following 4 linear inequal-
ities for each i ∈ [1, |T |], j ∈ [0, n]:

xi − F1(j − 1)zi,j ≥ 0 xi − zi,j(F1(j)− 1) ≤ 1

yi − F2(j − 1)zi,j ≥ 0 yi − zi,j(F2(j)− 1) ≤ 1

Finally, we must ensure that for each i, zi,j = 1 for precisely one j (i.e., ti ∈ [j − 1, j] for some
j). We accomplish this by adding the equality constraint

∑n
j=0 zi,j = 1 for each i.

Thus, there are O(|T ||S|) consistency constraints, where |S| is the number of private signals.
There are more consistency constraints than constraints of any other type, and thus the MILFP
has O(|T ||S|) total constraints.

11.6.2 Obtaining mixed strategies from the MILFP solution
Once we obtain the xi and yi by solving the MILFP, we must map them into mixed strategies
of the game. Suppose player 1 is dealt private signal z ∈ [1, n] and consider the interval I =
[F1(z − 1), F1(z)]. Now define the intervals Ji = [xi−1, xi] where we define x−1 = 0. Let Oi

denote the overlap between sets I and Ji. Then player 1 will play the strategy defined by region
i with probability Oi∑

iOi
. The strategy for player 2 is determined similarly, using the yi and F2.

11.6.3 Algorithm correctness
We are now ready to prove that our algorithm indeed yields an equilibrium.
Lemma 1. Suppose 0 ≤ x1 ≤ . . . ≤ xn ≤ 1 and 0 ≤ y1 ≤ . . . ≤ yn ≤ 1 and there exists a
k ∈ [1, n] s.t. xk 6= yk. Then there exists a j ∈ [1, n] s.t. xj 6= yj and yj−1 ≤ xj ≤ yj+1 (where
we define x0 = y0 = 0 and xn+1 = yn+1 = 1).

Proof. Let
i′ = min

i
s.t. xi 6= yi.

• Case 1: xi′ < yi′
Suppose xi′ < yi′−1. Then xi′−1 < yi′−1 which contradicts the definition of i′. So yi′−1 ≤
xi′ < yi′ and we are done.

• Case 2: xi′ > yi′
Let

z(i) = max
j

s.t. xj ≤ yi

and let
i∗ = min

i>i′
s.t. z(i) ≥ i.

Clearly i∗ exists since z(n+ 1) = n+ 1.

Subcase 2.1: i∗ = i′ + 1.
By assumption we have xi∗−1 > yi∗−1. Suppose xi∗−1 > yi∗ . By definition of i∗ we
have z(i∗) ≥ i∗ and therefore xi∗ ≤ yi∗ . Since xi∗−1 ≤ xi∗ , we have a contradiction.
Thus yi∗−1 < xi∗−1 ≤ yi∗ and we are done.
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Subcase 2.2: i∗ > i′ + 1.
Suppose that xi∗−1 ≤ yi∗−1. By definition of i∗ we have z(i∗ − 1) < i∗ − 1. This
implies that xi∗−1 > yi∗−1 which gives a contradiction. Now suppose that xi∗−1 >
yi∗ . We have z(i∗) ≥ i∗ and therefore xi∗ ≤ yi∗ which gives a contradiction since
xi∗−1 ≤ xi∗ . So yi∗−1 < xi∗−1 ≤ yi∗ and we are done.

Theorem 6. Suppose that for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB best
responses of player i to σ−i satisfy the given parametric model. Then our algorithm outputs an
equilibrium.

Proof. Suppose our algorithm outputs a non-equilibrium, s. Then there exists a player i and an
EPSB best response σi to s−i such that not all of the thresholds of σi and si are equal. Let {uj}
denote the thresholds of σi and {vj} denote the thresholds of si. By Lemma 1 there exists a j
such that uj 6= vj and uj−1 ≤ vj ≤ uj+1. Denote by a1 and a2 the two actions that player i is
indifferent between at vj . Suppose a1 is played at vj under σi. Now define the strategy profile s′i
as follows: s′i is identical to σi except with private signal vj action a2 is played. Clearly player i
is playing an EPSB best response since σi is an EPSB best response and he is indifferent between
a1 and a2 against s−i at vj. So s′i is an EPSB best response of player i to s−i; however, s′i violates
the parametric model. This contradicts the premise.

The theorem directly implies the following corollary. In some settings it may be easier to
check the premise of the corollary than the premise of the theorem.
Corollary 1. Suppose all EPSB-undominated strategies follow the given parametric model. Then
our algorithm outputs an equilibrium.

11.7 Extensions to more general settings

In this section we describe several important extensions of our approach to more general settings.

11.7.1 Continuous private signal distributions
In this subsection we generalize the approach to continuous private signal distributions. If the
CDFs Fi are continuous and piecewise linear, we only need to alter the consistency constraints.
Suppose that {ci} denotes the union of the breakpoints of the CDFs of the Fi, and suppose
Fi(x) = ai,jx+ bi,j for cj−1 ≤ x ≤ cj (where c−1 = 0).

Recall that for a given threshold tk, we have introduced variables xk and yk in the MILFP
such that tk corresponds to F1(xk) and F2(yk). In the case of continuous CDFs, we actually have
tk = F1(xk) = F2(yk). To achieve this, we will introduce new variables tk corresponding to the
actual thresholds, and include the following linear constraints for all k, j:

(zk,j = 1)→
(
tk =

xk − b1,j

a1,j

)
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(zk,j = 1)→
(
tk =

yk − b2,j

a2,j

)
.

These constraints replace Constraints 11.1 and 11.2 from the discrete case.
Using the technique described in Section 11.7.3, we can also approximately solve the prob-

lem for continuous CDFs that are not piecewise linear by approximating them with piecewise
linear functions.

11.7.2 Dependent private signals

Many common real-world situations have dependent private signal distributions. For example,
in card games such as Texas hold ’em, the cards dealt to each player depend on what was dealt
to the other players (if one player is dealt the ace of spades, another player cannot also have it).

We will assume the private signals are given by a joint probability density function (PDF)
h(x, y) (rather than independent CDFs F1 and F2 as before). Instead of having |T | variables xi
and yi corresponding to both players’ CDFs at the different thresholds, if the private signals are
dependent, we will use |T |2 variables xij, yij where xij corresponds to Pr(X ≤ ti|Y = tj) and
yij corresponds to Pr(Y ≤ tj|X = ti). We also need to add |T |2|S|2 indicator variables (where
|S| is the number of private signals) and corresponding consistency constraints using the given
joint PDF h(x, y). Thus, the overall size of the CSP is larger by approximately a factor of |T ||S|.

To construct the new consistency constraints, we define the following functions q1 and q2:

q1(x, y) ≡ Pr(X ≤ x|Y = y) =

∫ x
−∞ h(v, y)dv∫∞
−∞ h(v, y)dv

.

q2(x, y) ≡ Pr(Y ≤ y|X = x) =

∫ y
−∞ h(x, v)dv∫∞
−∞ h(x, v)dv

.

We will replace Constraints 11.1 and 11.2 from the independent case with the following con-
straints:

(zi,j,k,m = 1)⇒ (q1(k − 1,m) ≤ xi,j ≤ q1(k,m))

(zi,j,k,m = 1)⇒ (q2(k,m− 1) ≤ yi,j ≤ q2(k,m)) .

11.7.3 Many players

In games with more than two players, the indifference constraints are no longer linear func-
tions of the variables (while all other constraints remain linear). With n players the indifference
constraints are degree n − 1 polynomials. Therefore, there is a need to represent products of
continuous variables, xixj , using linear constraints only since we wish to model the problem as
a MILFP.
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Approximating products of continuous variables using linear constraints

In this subsection we describe how a modeling technique [10] can be applied to approximate the
nonlinear functions by piecewise linear functions. First we define two new variables

β1 =
1

2
(xi + xj)

β2 =
1

2
(xi − xj),

noting that β2
1 − β2

2 = xixj. To approximate w1 = β2
1 , we select k breakpoints from the interval

[0,1]—in our experiments we will use qi = i−1
k−1

, where k(ε) is a function of an input parameter
ε. Next, we add the constraint

k∑
i=1

λ1iq
2
i = w1,

where the λ1i are continuous variables. Next we add the constraint

k∑
i=1

λ1iqi = β1.

We also add the constraint
k∑
i=1

λ1i = 1,

where we also require that at most two adjacent λ′1is are greater than zero (we accomplish this
in the standard way of adding a binary indicator variable per segment and the appropriate con-
straints, called SOS2 constraints). Then if we define the variable uij to represent the product
xixj, we just need to add the constraint

uij = w1 − w2,

where w2 and its additional constraints are defined analogously to w1.
Finally, we replace each indifference equation f(x) = 0 with the inequalities f(x) ≤ ε

2
and

f(x) ≥ − ε
2

where ε is an approximation parameter given as input to the algorithm.

Tying the accuracy of the approximation to the accuracy of the equilibrium

Suppose we select k + 1 breakpoints per piecewise linear curve, with

k ≥

√
(T + 2)(n−1)M(n− 1)

ε
, (11.3)

where T is the maximal number of thresholds of one of the parametric models for a player, M is
the difference between the maximum and minimum possible payoff of the game, n is the number
of players, and ε is an approximation parameter given as input to the algorithm.
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Lemma 2. Suppose we obtain piecewise linear approximation f̂(x) of f(x) = x2 over [a, b]
using k + 1 breakpoints q0, . . . , qk with qi = a + (b − a) i

k
. If k ≥ b−a

2
√
ε
, then |f̂(x) − f(x)| ≤ ε

for all x ∈ [a, b].

Proof. Let x ∈ [a, b] be arbitrary and suppose qi ≤ x ≤ qi+1. Then we have

f̂(x) = f̂(qi) +
x− qi
qi+1 − qi

(f̂(qi+1)− f̂(qi)).

It is clear that f̂(x) ≥ x2, so consider the difference g(x) = f̂(x)−x2. Since g(qi) = g(qi+1) = 0,
the derivative of g must be zero at its maximum over the range [qi, qi+1]. Note that

g′(x) =
f̂(qi+1)− f̂(qi)

qi+1 − qi
− 2x.

Setting this equal to 0 yields

x∗ =
f̂(qi+1)− f̂(qi)

2(qi+1 − qi)
=

q2
i+1 − q2

i

2(qi+1 − qi)
=
qi+1 + qi

2
.

Thus the maximal value of g is

g(x∗) = f̂(qi) +
x∗ − qi
qi+1 − qi

(f̂(qi+1)− f̂(qi))− (x∗)2

=

(
b− a

2k

)2

≤ ε.

Theorem 7. Suppose that for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB ε-best
responses of player i to σ−i satisfy the given parametric model. Furthermore suppose that the
number of breakpoints satisfies Equation 11.3. Then our algorithm outputs an ε-equilibrium.

Proof. By Lemma 2 we have

|f̂(x)− f(x)| ≤ ε

4(T + 2)(n−1)M(n− 1)
for all x ∈ [0, 1].

Suppose the indifference inequalities have the form ĥ(x) ≤ ĝ(x) + ε
2

and ĝ(x) ≤ ĥ(x) + ε
2
. Note

that each term of g(x) and h(x) is a polynomial of degree n − 1 with coefficients of absolute
value at most M. Also, note that there are at most (T + 2)(n−1) such terms.

So |ĝ(x)− g(x)| ≤ ε
4

and |ĥ(x)− h(x)| ≤ ε
4
. So by the triangle inequality,

|g(x)− h(x)| ≤ |g(x)− ĝ(x)|+ |ĝ(x)− ĥ(x)|+ |h(x)− ĥ(x)| = ε.

Suppose our algorithm outputs a non-equilibrium, s. Then there exists a player i and an
EPSB best response σi to s−i such that not all of the thresholds of σi and si are equal. Let {uj}
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denote the thresholds of σi and {vj} denote the thresholds of si. By Lemma 1 there exists a j
such that uj 6= vj and uj−1 ≤ vj ≤ uj+1. Denote by a1 and a2 the two actions that player i is
ε-indifferent between at vj . Suppose a1 is played at vj under σi. Now define the strategy profile
s′i as follows: s′i is identical to σi except with private signal vj action a2 is played. Then player
i is playing an EPSB ε-best response since σi is an EPSB best response and he is ε-indifferent
between a1 and a2 against s−i at vj. So s′i is a pure strategy EPSB ε-best response of player i to
s−i; however, s′i violates the parametric model. This contradicts the premise.

For particular games, the number of breakpoints needed to obtain a desired ε can actually
be far smaller. For example, if each indifference equation consists of the sum of at most T ∗

expressions, for T ∗ < (T + 2)(n−1), then we can replace (T + 2)(n−1) with T ∗ to create a tighter
upper bound. Additional constant-factor improvements to Equation 11.3 will be described in
detail in Section 11.8.3.

Additionally, even though the number of breakpoints in Equation 11.3 is exponential in the
number of players, we can actually model the problem as a MILFP using a polynomial number
(in n) of constraints and variables (i.e., using a number of constraints and variables that is log-
arithmic in the number of breakpoints). This is accomplished by a recently published way of
modeling piecewise linear functions in a MIP [112]. (It uses a binary rather than unary encoding
to refer to the pieces via indicator variables.)

New MIP algorithms for computing equilibria in normal and extensive-form games

It is worth noting that the modeling approach of Section 11.7.3 can be used to develop new algo-
rithms for computing an ε-equilibrium in general-sum games with two or more players in both
normal and extensive form. In particular, the MIP Nash algorithm for computing an equilibrium
in two-player general-sum normal-form games [102] can be directly extended to a MIP formula-
tion of multiplayer normal-form games which contains some nonlinear constraints (correspond-
ing to the expected utility constraints). If we apply our approach using sufficiently many break-
points, we can obtain an ε-equilibrium for arbitrary ε by approximating the nonlinear constraints
by piecewise linear constraints. Additionally, we can represent the equilibrium-computation
problem in multiplayer extensive-form games as a MIP if we write out the expected utility con-
straints separately on a per-information-set basis. This leads to a new algorithm for computing
equilibria in multiplayer extensive-form games, an important class of games for which no algo-
rithms for computing a Nash equilibrium with solution guarantees were known.

11.7.4 Multiple parametric models
Quite often it is prohibitively difficult to come up with one parametric model, P , that is correct,
but one can construct several parametric models, Pi, and know that at least one of them is cor-
rect. This is the case for our experiments on Texas hold ’em in Section 11.8.2. This scenario
could arise for several reasons; for example, often we can immediately rule out many parametric
models because all strategies that satisfy them are dominated. We now generalize our approach
to this situation.

We define the notion of model refinement in a natural way:
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Definition 25. P = (T,Q,≺) is a refinement of P ′ = (T ′, Q′,≺′) if for each i ∈ N, Q′i is a (not
necessarily contiguous) subsequence of Qi.

Definition 26. P is a US-refinement of P ′ if Q′i corresponds to a unique subsequence of Qi for
each i.
For example, if N = {1} and Q′1 = {1, 2} while Q1 = {1,2,3,2}, then P is a refinement of P ′,
but is not a US-refinement.

We now generalize our algorithm to the setting where the Pi have a common US-refinement
P ′. We first define an indicator variable ζi corresponding to each model. Next we replace each
indifference constraint f(x) = 0 corresponding to model Pi by the following two inequalities,
where K is a sufficiently large constant: f(x)−Kζi ≥ −K and f(x) +Kζi ≤ K.

Next we add certain inequalities corresponding to the models Pi that differ from P ′. For
simplicity, we will demonstrate these by example. Suppose that, under P ′, player 1 plays action
a1 in his first region, a2 in his second region, and a3 in his third region. Suppose that in P1

he plays a1 in his first region and a3 in his second region (recall that P ′ is a refinement of P1).
Then we must add two constraints that ensure that at the first threshold of P1, both a1 and a3 are
(weakly) preferred to a2. In general, whenever actions of P ′ are omitted by a Pi, we must add
constraints to the neighboring actions at their intersection ensuring that they are preferred to the
omitted actions.

We also replace each order constraint xj − xj′ ≤ 0 corresponding to model Pi by xj −
xj′ + Kζi ≤ K. Finally, we add the equality

∑
i ζi = 1 to ensure that only the constraints

corresponding to one of the candidate parametric models are used in the solution.
The following theorem states that our approach is correct even in this setting where there are

multiple parametric models, assuming they have a common US-refinement.
Theorem 8. Let there be two players. Let {Pi} be a set of parametric models with a common
US-refinement. Suppose that for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB best
responses of player i to σ−i satisfy at least one of the Pi (not necessarily the same Pi). Then our
algorithm outputs an equilibrium.

Proof. Suppose P ′ is the common US-refinement of the Pi. Suppose our algorithm outputs a
non-equilibrium, s. Then there exists a player i and an EPSB best response σi to s−i such that
not all of the thresholds of σi and si are equal. Since P ′ is a refinement of each Pi, σi must satisfy
P ′. Let {uj} denote the thresholds of σi and {vj} denote the thresholds of si.

• Case 1: There exists a vj that differs from all of the uj.
Then vj must lie in the interior of some region of σi—suppose action a1 is played in this
region. Suppose vj separates actions a2 and a3. If a1 6= a2, a3, then our algorithm requires
that a2 and a3 are both (weakly) preferred to a1 at vj. Suppose that player i plays σi except
with private signal vj plays a2. Then this must also be a pure-strategy EPSB best response
to s−i. However, it contradicts the premise of the theorem because no Pi can be a strict
refinement of P ′.

• Case 2: For all vj, there exists a uk such that uk = vj.

Subcase 2.1: There exists a vj such that uk = vj and the action-regions that vj
separates are not both equal to the action regions that uk separates.
Suppose vj separates a1, a2 while uk separates b1, b2, and that a1 6= b1, b2. Then player
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i can play σi except with private signal uk play a1. This must also be a pure-strategy
EPSB best response to s−i, since our algorithm ensures that a1 is (weakly) preferred
to all other actions at vj. However, it contradicts the premise of the theorem because
no Pi can be a strict refinement of P ′.
Subcase 2.2: For all vj, there exists a uk such that uk = vj and vj, uk separate the
same action-regions.
Since not all of the thresholds of σi and si are equal, there must exist an additional
uk that does not equal any of the vj. Suppose that uk lies between vj and v′j, and
suppose that action a is played in this region under si. By the premise of this subcase,
a cannot be the action of either of the regions separated at uk. Also by the premise of
this subcase, a must be played both below and above uk. However, this would mean
that σi has two regions where a is played corresponding to the single region of si,
which contradicts the fact that P ′ is a US-refinement of the Pi.

We can also obtain a result with an ε guarantee similar to Theorem 7 for the case of more
than two players.

It is worth noting that the number of variables and constraints in the new MILFP formulation
is still O(|S||T |) (assuming a constant number of parametric models). Alternatively, we could
have solved several MILFP’s—one for each parametric model. While each MILFP would be
smaller than the one we are solving, each would still have O(|S||T |) variables and O(|S||T |)
constraints, and thus have the same size asymptotically as our formulation. This alternative
formulation is also potentially effective, assuming we have access to several processors to run
the threads in parallel.

11.8 Experiments
We now present results from several experiments that investigate the practical applicability of
our algorithm and extensions, as well as the overall procedure of solving large finite games by
approximating them by continuous games.

11.8.1 Approximating large finite games by continuous games
In Section 11.3 we saw an example of a game with infinite strategy spaces that could be solved
by an extremely simple procedure (once we guessed a correct parametric model). If instead the
set of private signals were the finite set {1, . . . , n}, then it is clear that as n gets large, the running
time of computing an exact equilibrium of the game will get arbitrarily large; on the other hand,
solving the infinite approximation as n goes to infinity will still take essentially no time at all,
and we would expect the solution to the infinite game to be very close to the solution of the
finite game. In this section we will consider a similar game and show that very fine-grained
abstractions would be needed to match the solution quality of our approach.

Kuhn poker is a simplified version of poker that was one of the first games studied by game
theorists [76]. It works as follows. There are two players and a deck containing three cards: 1,
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n 50 100 150 200 250
v(Gn) −0.0576 −0.0566 −0.0563 −0.0561 −0.0560
π(σn) −0.0624 −0.0612 −0.0579 −0.0583 −0.0560

Figure 11.1: Worst-case payoff of playing the projection of the equilibrium ofG∞ (π(σn)) versus
the value of Gn (v(Gn)).

2, and 3. Each player is dealt one card at random, and both players ante $1. Player 1 acts first
and can either check or raise by $1. If player 1 raises, player 2 can either call—in which case
whoever has the higher card wins the $4 pot—or fold—in which case player 1 wins the entire $3
pot. If player 1 checks, player 2 can check—in which case whoever has the higher card wins the
$2 pot—or bet. If player 1 checks and player 2 bets, player 1 can call—in which case whoever
has the higher card wins the $4 pot—or fold, in which case player 2 wins the $3 pot.

Generalized Kuhn poker, Gn, has the same rules as Kuhn poker except that the deck contains
n cards instead of 3. Define G∞ to be the same as Gn except the players are both dealt a
real number drawn uniformly at random from the unit interval [0, 1]. Informally, G∞ is like the
limit as n approaches infinity of Gn. It turns out that G∞ has a relatively simple pure strategy
Nash equilibrium that is derived in [4]. It can be computed by solving a system of six linearly
independent indifference equations with six unknowns.

Once the infinite game, G∞, has been solved, its solution can be projected down to a corre-
sponding strategy profile in Gn: call this profile σn. We ran experiments for several settings of
n. We compared the performance of σn against its nemesis to the value of the game to player 1
(i.e., how an optimal strategy performs): the results are summarized in Figure 11.1. The payoffs
agree to four decimal points when n = 250.

Next, we considered different abstractions of G250 obtained by grouping consecutive private
signals together. For each abstraction, we computed an equilibrium in the corresponding ab-
stracted game, then determined the payoff of player 1’s component of that equilibrium against
its nemesis in the full game G250. As Figure 11.2 shows, 125 buckets are needed to obtain

# buckets 2 5 10 25 50 125
payoff −0.2305 −0.0667 −0.0593 −0.0569 −0.0562 −0.0560

Figure 11.2: Experiments for G250.

agreement with the value of the game to four decimal places—something that σ250 accomplishes
as we showed above. As n gets even larger, we would expect to require even more buckets in
our abstraction to obtain a strategy with exploitability as low as that of σn. Thus we can po-
tentially obtain a given level of exploitability with a much lower runtime with our projection
approach, since the computation required by abstraction-based approaches increases dramati-
cally as n increases, while solving G∞ and projecting its solution down to Gn requires very little
computation.

To put these results in perspective, the game tree for two-player limit Texas hold ’em has
approximately 9.17 × 1017 states, while recent solution techniques can compute approximate
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equilibria for abstractions with up to 1010 game states (e.g., [46]). Thus the ratio of the number of
states in the largest solvable abstraction to the number of states in the full game is approximately
10−8. On the other hand, we saw in G250 that we require at least half of the number of states
in the full game in our abstraction to compete with the solution generated by the infinite game
(assuming we are restricting ourselves to uniform abstractions). Thus, it is conceivable that
one can come up with an infinite approximation of Texas hold ’em (or one of its subgames)
that results in less exploitable strategies than the current strategies obtained by abstraction-based
approaches.

In the next section we conduct an investigation of the feasibility of applying the algorithm
and extensions developed in this paper to large real-world games, using Texas hold ’em as a
benchmark.

11.8.2 Two-player limit Texas hold ’em

We ran our algorithm on a game similar to the river endgame of a hand of limit Texas hold ’em.
In this game, there is an initial pot of ρ, and both players are dealt a private signal from [0,1]
according to piecewise linear CDFs F1 and F2. Player 1 acts first and can either check or bet $1.
If player 1 checks, then player 2 can check or bet; if he checks the game is over, and if he bets
then player 1 can call or fold. If player 1 bets, then player 2 can fold, call, or raise (by 1). If
player 1 bets and player 2 raises, then player 1 can either call or fold. Thus, our game is similar
to Game 10 in [4], except that we do not assume uniform private signal distributions.

To obtain a wide range of interesting prior distributions, we decided to use the actual prior
distributions generated by a high caliber limit Texas hold ’em player. Once the river card is dealt
in Texas hold ’em, there is no more information to be revealed and the game becomes a 1-street
game like the game described above (except that in limit Texas hold ’em the private signals are
dependent2, and up to three raises are allowed in each betting round). If we assume that the full
strategies of both players are known in advance, then when the river card is dealt we can create
a distribution over the possible 5-card hand rankings each player could have, given the betting
history so far (e.g., the probability he has a royal flush, a full house with 9’s over 7’s, etc.).

In particular, we obtained the strategies from GS4—a bot that performed competitively in the
2008 AAAI computer poker competition. To test our algorithm, we created a new bot GS4-MIP
that plays identically to GS4 on the first three streets, and on the river plays according to our
algorithm. Specifically, we assume that both players’ hand rankings on the river are distributed
assuming they had been following the strategy of GS4 until that point; these determine the private
signal distributions.

Given this game model, we developed three different parametric models that we expected
equilibria to follow (depending on the private signal distributions at the given hand). This is
noteworthy since [4] only considers a single parametric model for their game, and our experi-
ments revealed that if we did not include all three models, our MILFP would sometimes have

2We do not expect the dependence to have a large effect in practice for this game due to the large number of
possible private signals. In addition, we have developed an efficient extension of our MILFP to deal with the case
of dependent private signals (see Section 11.7.2), which can be used if we expect dependence to have a significant
effect.
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no solution, demonstrating that all three models are necessary. The models are given in Fig-
ures 11.3– 11.5. It is easy to see that the first model is a US-refinement of the other two. To solve
the MILFP, we used CPLEX’s MIP solver on a single machine.

The first parametric model, shown in Figure 11.3, is identical to the model presented in [4]
(with the thresholds renamed). For player 1, the action before the hyphen specifies the first action
taken in the betting round, and the action after the hyphen specifies the next action taken if the
betting gets back to player 1. For example, between thresholds b and c player 1 will check first,
and if player 2 bets he will call. A bluff denotes a bet with a bad hand (where the player betting
is hoping the other player folds). So with a private signal between d and 1 player 1 will bet,
and he will fold if player 2 raises. For player 2, the first action listed denotes the action taken
when player 1 bets, and the second action (after the slash) denotes the action taken when player
1 checks. For example, between f and g player 2 will call if player 1 bets and check if player 1
checks. The second parametric model, shown in Figure 11.4, is identical to the first model except
that threshold i is shifted above threshold d. In the third parametric model (Figure 11.5), player
1 only checks when he is first to act (and never bets).

Figure 11.3: First parametric model.

Once we solved this simplified game, we used a very naive mapping to transform it to a
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Figure 11.4: Second parametric model.

strategy in the full 3-raise game3. Since this mapping was so simple, we suspect that most of the
success of the strategy was due to the solution computed by our algorithm.

We ran GS4-MIP against the top five entrants of the 2008 AAAI computer poker competition,
which includes GS4. For each pairing, we used 20,000 duplicate hands to reduce the variance.
GS4-MIP performed better against 4 of the 5 competitors than GS4 did. In the match between
GS4-MIP and GS4, GS4-MIP won at a rate of 0.018 small bets per hand. This is quite significant
since most of the top bots in the competition were separated by just 0.02–0.03 small bets per hand
overall, and the only difference between GS4 and GS4-MIP is on the river street, which is reached
only on some hands. Additionally, GS4-MIP averaged only 0.49 seconds of computation time
per hand on hands that went to the river (and 0.25 seconds of computation per hand overall) even
though it was solving a reasonably large MIP at runtime4 (1,000–2,000 rows and several hundred

3For example, we assumed player 1 will put in a second raise with hands in the top half of player 2’s raise range.
We omit a full discussion of our transformation to the 3-raise game, since it is fairly tangential.

4The reason we need to solve the MIP at runtime is that we have to solve a different MIP for each betting
sequence up until the river and each set of community cards (in the full game, not in the abstract game). Since there
is such a large number of such subgames, it is much easier to just solve them quickly at runtime than to solve them
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Figure 11.5: Third parametric model.

columns). The actual competition allows an average of 7 seconds per hand, so our algorithm was
well within the time limit. Perhaps it is the sparsity of the constraints that enabled CPLEX to
solve the problems so quickly, as the majority of the constraints are indicator constraints which
only have a few non-zero entries.

It is worth noting that our algorithm is perhaps not the most effective algorithm for solving
this particular problem; in the discrete case of actual Texas hold ’em, the river subgame can be
formulated as a linear program (which can probably be solved faster than our MILFP). On the
other hand, continuous games, two player general-sum games, and multiplayer games cannot be
modeled as linear programs while they can be solved with our approach. Furthermore, the results
in the previous subsection show that large finite two-player zero-sum games can sometimes be
solved more effectively (both according to runtimes and quality of solutions) by approximating
them by a continuous game that is easier to solve, than by abstracting the game and solving a
smaller finite game.

all in advance.
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11.8.3 Multiplayer experiments

To test the extensions of our algorithm to continuous distributions and multiple players, we ran
our algorithm on the following simplified three-player poker game. The game has one betting
round, and all players are given a private signal in [0, 1]. Player 2 initially has $1 invested in the
pot, while player 3 has $2 invested in the pot (i.e., the small and big blinds). Player 1 is first to
act and he can either fold or raise to $4. If player 1 folds, then player 2 can fold or raise to $4.
If a player is facing a raise in front of him, then he can either call or fold. Thus, this game is an
extension of the game in Section 11.3 to multiple players.

It is easy to see that all EPSB-undominated strategies will have the following form. If a
player is first to enter the pot, he will raise with his better hands and fold with his worse hands
(and never bluff). If a player is facing a raise ahead of him, he will call with his better hands
and fold with his worse hands. Thus given each betting history, the parametric model for each
player will just have a single threshold. The full parametric model is shown in Figure 11.6. For
player 2, the first action listed denotes the action taken when player 1 raises, and the second
action (after the slash) denotes the action taken when player 1 folds. For player 3, the first action
listed denotes the action taken when player 1 raises and player 2 calls, the second action denotes
the action taken when player 1 raises and player 2 folds, and the third action denotes the action
taken when player 1 folds and player 2 raises.

We ran our algorithm on this game using a variety of continuous piecewise-linear cumulative
distribution functions, and obtained rapid convergence to an ε-equilibrium for tiny ε for all games
on which we experimented. In the remainder of this section, we will describe our results with
uniform CDFs (i.e., each player is given his private signal uniformly at random from [0, 1]) in
detail.

Figure 11.7 shows our experimentally-obtained values of ε, as well as the worst-case theoret-
ical values of ε according to Equation 11.3. As noted in Section 11.7.3, the worst-case bound for
k as a function of ε is very loose, and we expect to require a much smaller value of k to obtain
a given ε in practice. Our results confirm this conjecture on this game. Figure 11.7(a) shows our
experimental values of ε as a function of the number of breakpoints. We obtained an ε of 0.01
using just 5 breakpoints, and observed a rapid decrease of ε to about 10−5 as we increased the
number of breakpoints to 50. Figure 11.7(b) shows the ε guaranteed according to Equation 11.3.
In sharp contrast, an ε of almost 25 is guaranteed using 5 breakpoints, which is meaningless
since the difference between the best and worst-case payoffs of the game is only 12. Even using
50 breakpoints only guarantees an ε of 0.24, which is also essentially meaningless for practical
purposes. So our results confirm that we are in fact able to obtain good performance results in
practice despite the fact that our worst-case theoretical bound is not very meaningful for such
small numbers of breakpoints.

Conditional parametric model representation

In some cases, it can be beneficial to use an alternate, but equivalent, representation of paramet-
ric models. For example, in this game, rather than use a model for player 3 with three different
thresholds, we could instead use three parametric models for player 3—where each one cor-
responds to a different nonterminal betting sequence of the other two players (e.g., raise/call,
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Figure 11.6: Parametric model for the three-player poker game.

raise/fold, or fold/raise)—see Figure 11.9. Then each of these parametric models would only
have a single threshold, thus simplifying the representation of each model (though there are
more of them). We call such a representation a conditional parametric model, due to the fact that
a player’s model is conditional on the action sequences of the other players.

The equivalent conditional parametric model representation for the model presented in Fig-
ure 11.6 is given in Figure 11.9. The first column denotes player 1’s action, the second column
denotes player 2’s action when player 1 raises, the third column denotes player 2’s action when
player 1 folds, the fourth column denotes player 3’s action when player 1 raises and player 2
calls, the fifth column denotes player 3’s action when player 1 raises and player 2 folds, and the
sixth column denotes player 3’s action when player 1 folds and player 2 raises.

These two representations are equivalent in terms of their expressive power, the representa-
tion sizes of the action spaces, and the MILFP program that gets generated. For example, while
only one column corresponds to player 3’s action space in Figure 11.6 and three columns do in
Figure 11.9, the length of the size of player 3’s action (e.g., FOLD/FOLD/CALL) is three times
larger in Figure 11.6.

It is easy to see that conditional parametric models are equivalent to our standard parametric
models both in terms of representation power and size, and that they will create the exact same
MILFP. However, they often lead to a simpler visual representation, making them more useful
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(a) Empirical solution quality as a function of the number of breakpoints.

(b) Solution quality guaranteed by our theory as a function of the number of breakpoints.

Figure 11.7: Experimental values of, and the theoretical bound on, ε.
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Figure 11.8: Running time (in seconds) as a function of the number of breakpoints.

in certain situations. In addition, T in Equation 11.3 (recall this refers to the maximum number
of thresholds in a parametric model of any player) can now be replaced by T̂ which denotes
the maximum number of thresholds in a conditional parametric model of any player. In our
example, T is three while T̂ is only one. This actually gives an exponential improvement with
respect to the number of players in the worst-case number of breakpoints needed according to
Equation 11.3 in cases where T̂ < T .

Computing best responses

To determine the ε’s in the experiments, we need to be able to compute the best response for
each player to a given strategy profile of the other players. This is relatively easy if we are sure
in advance that for each strategy profile of the other players, there exists a best response that
conforms to the given parametric model (e.g., as in the premise of Theorem 6). However, often
we are not sure in advance that this is the case, and might only be able to come up with a set of
parametric models such that a best response satisfies at least one of them.

In the game considered in this section, it is not the case that every best response satisfies the
given parametric model. For example, suppose that if player 1 raises, then players 2 and 3 will
call with every hand. Then player 1 will only want to raise some of his hands, and fold his bad
hands. Thus his threshold will be below the calling thresholds of the other players, which differs
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Figure 11.9: Conditional parametric model representation of the model given in Figure 11.6.

from the equilibrium parametric model given above.
We now present an algorithm for computing a best response in the setting where we are able

to construct a set of parametric models for which we can prove that for each player and a given
strategy profile of the other players, there exists a best response that satisfies at least one of the
models. It is easy to see that our game satisfies this property. First, notice that every EPSB-
undominated strategy for each player must satisfy the given threshold structure. However, it is
not clear how the thresholds for the different players will relate to each other. But note that given
strategies of the other players, there are at most 4 possible parametric models consistent with the
threshold structure (i.e., the relevant threshold of the player in question must lie somewhere with
respect to the other thresholds).

Our algorithm is the following. For each player, we fix the given strategies σ−i of the other
players and iterate over all the possible parametric models. Then we compute the best response
for the given player i using each fixed model. This can be accomplished by treating the values
xi = Fi(ti) of player i’s CDF evaluated at the thresholds as variable, and writing the formula for
the expected profit of player i given σ−i in terms of the xi’s. This yields a polynomial function
of degree at most n in terms of the xi’s, where n is the number of players. This constrained
optimization problem can be solved efficiently by standard techniques (e.g., using Matlab which
presumably uses Newton’s method), to determine the expected profit of the best response satis-
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fying the given parametric model. We do this for each model, and take the highest value—call it
π∗. The difference between π∗ and the expected payoff of player i under σ yields εi—the differ-
ence between the payoff of his best response and his actual payoff. We do this for each player,
and set ε equal to the maximum of the εi’s.

This algorithm can be used as an ex-post checking procedure even if the premises of Theo-
rem 6 (i.e., every EPSB-best response satisfies the given parametric model) or of Theorem 8 are
not satisfied. As long as we can construct a set S of parametric models such that there (provably)
exists a best response of each player i to the strategy profile σ−i of the other players output by our
algorithm that is consistent with a model in S, then we have computed an ε-equilibrium of the
game, where ε is determined by the above procedure. Thus, the results of this section show that
our algorithm can still be successful even in cases for which the premises of our theorems are
not met. This is important, especially in light of the relatively strong premises of the theorems.
Future work could look into relaxing the premise of the theorems, and proving the correctness of
our algorithm in a wider range of settings.

Algorithm performance

Figure 11.8 shows the running times of our experiments, as a function of the number of break-
points used. As shown in the figure, runtimes increased steadily from 0.3 seconds with 5 break-
points to 8.9 seconds with 50 breakpoints.

Despite a clear positive correlation, the runtimes do not increase monotonically with the
number of breakpoints. This is due to the fact that CPLEX is solving a fundamentally different
MILFP for each number of breakpoints, and the runtimes of CPLEX’s MIP solver are notori-
ously unpredictable (even on inputs that are seemingly quite similar). We saw a similar deviation
from monotonicity of ε as a function of the number of breakpoints in Figure 11.7(a). Therefore,
for large problems one may want to try several different numbers of breakpoints, since even con-
secutive values can lead to drastically different runtimes and values of ε. The optimal number to
use will clearly depend on the desired ε and running time limitations. However, one implication
of our results is that often far fewer breakpoints are needed to obtain a given ε than one might
expect based on our theoretical bound in Equation 11.3. So a reasonable algorithm to use in
practice might be to start by running our algorithm with some small number of breakpoints (such
as 5), then increment the number of breakpoints by 1 and repeat until a desired ε or time limit
is reached. This procedure could be easily parallelized by running our algorithm with different
numbers of breakpoints on different cores, since the computations do not depend on each other.

11.9 Summary and extensions

We presented a new approach for solving large (even infinite) multiplayer games of imperfect
information. The key idea behind our approach is that we include additional inputs in the form
of qualitative models of equilibrium strategies (how the signal space should be qualitatively
partitioned into action regions). In addition, we showed that our approach can lead to strong
strategies in large finite games that we approximate with infinite games. We proved that our main
algorithm is correct even if given a set of qualitative models (with a common US-refinement) of
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which only some are accurate.
In two player settings, our algorithm finds an exact equilibrium. The solution technique uses

a mixed integer linear feasibility program. With more than two players, the models include
nonlinear elements, which we approximate with piecewise linear functions. We showed how
the accuracy of ε-equilibrium depends on the number of those pieces—both with a worst-case
theorem and experiments that show that significantly fewer pieces are needed in practice.

For settings where our algorithm outputs a solution but we do not know that even one of
the qualitative models is correct, we developed an ex post procedure for checking whether the
solution is an equilibrium or an ε-equilibrium. The ex post check works under a significantly
weaker assumption than our theorems, namely that we use qualitative models for which we can
prove that for each player and the given strategy profile of the other players, there exists a best
response that satisfies at least one of the models.

Experiments suggest that approximating a finite game with an infinite one can outperform
abstraction-based approaches on some games. We constructed a game in which only a tiny
amount of abstraction can be performed while obtaining strategies that are no more exploitable
than the equilibrium strategies of our infinite approximation. Thus our approach presents a viable
alternative to abstraction-based approaches. This is particularly promising in light of the recently
uncovered abstraction pathologies.

We also showed how to extend our algorithm to the cases of more than two players, con-
tinuous private signal distributions, and dependent private signal distributions. In most of these
cases, we presented the first algorithm that provably solves the class of games. Our experiments
show that the algorithm runs efficiently in practice in both two-player and multi-player settings.
It leads to a significant performance improvement in two-player limit Texas hold ’em poker—the
most studied imperfect-information game in computer science—by solving endgames.

While in this paper we inferred the infinite approximations of finite games and the parametric
models manually, future research could attempt to develop methods for generating them system-
atically and automatically. It is also possible that in future research one could prove that our
approach works under less restrictive premises than are currently used in the main theorems.
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Part IV

Exploiting Suboptimal Opponents
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Chapter 12

DBBR: A Scalable, Domain-Independent
Opponent Exploitation Algorithm

The previous portions of the thesis have focused on the problem of approximating Nash equi-
librium strategies in large games. While equilibrium strategies guarantee a good performance in
the worst case (at least in two-player zero-sum games), they potentially fail to take advantages
of opponents’ mistakes. I now turn to the problem of exploiting the mistakes of suboptimal
opponents.

The natural approach for opponent exploitation is to try to learn a model of the opponent’s
strategy (based on prior game iterations and possibly additional historical data about the given
opponent or other agents), then to maximally exploit this model. However, this approach has
several drawbacks. First, it is incredibly difficult to learn an accurate model of the opponent’s
strategy quickly in large games. For example, no-limit Texas hold ’em has approximately 10165

states in its tree, while typical matches in the poker competition consist of just 3000 hands. So
we only observe the opponent’s actions at a minuscule portion of the information sets. The
guarantees of no-regret learning algorithms are meaningless in such situations. This is further
complicated by the fact that we may only see the opponent’s private information after some hands
and not others (e.g., in poker we only get to see the opponent’s hand if no player folded in any
betting round). For these reasons, opponent exploitation has been largely abandoned in recent
years as a viable approach for strong agents in large imperfect-information games, in favor of the
game-solving approach previously described.

An additional problem with this approach to opponent exploitation is that it can lead the
exploiter to play a highly exploitable strategy himself. In general, a full best response will be a
deterministic strategy that can be arbitrarily exploitable. This is problematic for several reasons.
First, our model of the opponent will not be exact. If our model is wrong, we would like to not
perform too poorly. Second, the opponent may not simply be playing a static strategy, and may
try to deceive us by playing one way at the start of a match, then altering his strategy to exploit
us once we start to exploit his initial strategy; this is known as the “get taught and exploited
problem” [98]. A third reason is that if we play a maximal best response, it may be easier for the
opponent to recognize his mistakes and fix his strategy (possibly exploiting us along the way).

Therefore, we would like to perform exploitation in a way that is robust to deviations of the
opponent’s strategy from our model. One approach that has been proposed is the ε-safe best
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response [64, 65]. In this approach, we assume the opponent plays according to our opponent
model σ∗ with some probability p, and that he can play arbitrarily with probability 1 − p. Our
strategy will be the solution to this new game. The parameter p is adjusted so that some desired
level of exploitability ε for our own strategy is obtained. These techniques find optimal tradeoffs
between exploitation and exploitability; the construction of an opponent model is a subproblem
of these techniques, and DBBR can be integrated within their framework. Our new approach
DBBR relaxes the need of opponent private observations when building a model, which is a
precursor step to BR, RNR, and DBR.

Many multiagent-learning and opponent exploitation algorithms make very strong assump-
tions about access to data and observability of play. It is extremely rare to have a large amount
of labelled data on the specific opponent at hand. Often we have unlabelled, or semi-labelled,
data from the play of some pool of agents, which may or may not resemble the given opponent
in any meaningful way. In many situations there may be no historical data available at all, and if
we hope to exploit mistakes of an opponent, we must learn to do so in real time solely based on
our observations of his play in prior game iterations.

A recent approach precomputes several exploitative strategies in advance using the proce-
dure described above, then decides dynamically between then in real time using a no-regret
algorithm [8]. However, this approach is also limited by the issues discussed above; specifically,
it relies on having access to massive amounts of labelled data, and also relies on the fact that the
given opponent will play similarly to the opponents represented in the dataset (and that we can
determine which expert to play very quickly with partial observability of the opponent’s private
information).

We present new approaches for opponent exploitation that do not rely on such strong (and
often unrealistic) assumptions. They are able to effectively learn to exploit opponents in real time
in large imperfect-information games after only a small number of interactions, without access
to any historical data, and with partial or no observability of the opponent’s private information
in past game iterations. In addition, we show that in some games, it is actually possible to exploit
suboptimal opponents significantly more than playing a static Nash equilibrium strategy while
still guaranteeing zero exploitability in the worst case.

12.1 Introduction

While much work has been done in recent years on abstracting and computing equilibria in large
extensive-form games, relatively less work has been done on exploiting suboptimal opponents
(aka opponent modeling), in large part because the problem is significantly harder. While playing
an equilibrium guarantees at least the value of the game in a two-player zero-sum game, often
much higher payoffs can be obtained by deviating from equilibrium to exploit opponents who
make significant mistakes. For example, against a poker opponent who always folds, the strategy
of always raising will perform far better than any equilibrium strategy (which will sometimes
fold with bad hands).

Texas hold ’em poker has emerged as the main testbed for evaluating algorithms in extensive-
form games. In addition to its tremendous popularity, it also contains enormous strategy spaces,
imperfect information, and stochastic events; such elements also characterize most of the chal-
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lenging problems in computational game theory and multiagent systems. In light of these factors
and the AAAI annual computer poker competition, poker has emerged as an important, visible
challenge problem for AI as a whole, and multiagent systems in particular.

It is worth noting, however, that a fair amount of prior work has been done on opponent
exploitation in significantly smaller games. For example, Hoehn et al. [56] ran experiments on
Kuhn poker, a small two-player poker variant with about 20 states in its game tree. Recent
work has also been done on opponent exploitation in rock-paper-scissors [80] and the repeated
prisoners’ dilemma [20]. However, these algorithms do not scale to large games. In contrast, the
game tree of limit Texas hold ’em has about 1018 states.

A potential drawback of evaluating algorithms on one specific problem is that we run the risk
of developing algorithms that are so game specific that they will not generalize to other settings.
Heeding this risk, in this work we abandon many of the game-specific assumptions taken by
prior approaches. Rather than relying on massive databases of human poker play [24, 91] and
expert-generated features or prior distributions [56, 108], we will instead rely on game-theoretic
concepts such as Nash equilibrium and best response, which apply to all games.

In addition, we require our algorithms to operate efficiently in real time (online), as opposed
to algorithms that perform offline computations assuming they have access to a large number of
samples of the opponent’s strategy in advance [65, 92]. That prior work also assumed access
to historical data which included the private information of the opponents (i.e., their hole cards)
even when such information was only observed by the opponent. In many multiagent settings,
an agent must play against opponents about whom he has little to no information in advance, and
must learn to exploit weaknesses in a small number of interactions. Thus, we assume we have no
prior information on our opponent’s strategy in advance, and our algorithms will operate online.

Our main algorithm, called Deviation-Based Best Response (DBBR), works by noting de-
viations between the opponent’s strategy and that of a precomputed approximate equilibrium
strategy, and constructing a model of the opponent based on these deviations. Then it computes
and plays a best response to this opponent model (in real time). Both the construction of the
opponent model and the computation of a best response take time linear in the size of the game
tree and can be performed quickly in practice. As discussed above, we evaluate our algorithm
empirically on limit Texas hold ’em; it achieves significantly higher win rates against several
opponents — including competitors from recent AAAI computer poker competitions — than an
approximate equilibrium strategy does.

We will assume that the moves of all players other than chance are observed by all players;
for example, in poker all moves other than the initial dealing of the cards are publicly observed.
In this setting, we can partition all game states into public history sets, PHi, where states in the
same public history set correspond to the same history of publicly observed actions. Note that
each public history set must consist of a set of information sets of player i. For public history set
n ∈ PHi, let An denote the set of actions of player i at n. In general when we omit subscripts,
player i will be implied.

Recent solution techniques can compute equilibria for games with up to 1017 states [15].
Such algorithms typically take several weeks or months to compute an ε-equilibrium for small
ε. On the other hand, best responses can be computed much faster, and in abstractions with 1012

states they can be computed in about an hour. If coarser abstractions are used, best responses can
be computed in minutes or even seconds, and can potentially be used as a subroutine in adaptive
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real-time algorithms.

12.2 DBBR: an efficient real-time opponent modeling algo-
rithm

In this section we present our algorithm, Deviation-Based Best Response (DBBR). It works by
observing the opponent’s action frequencies over the course of game, then using these observa-
tions to construct a model of the opponent’s strategy. Essentially, we would like to conservatively
assume that the opponent is playing the best (i.e., least exploitable) strategy that is consistent with
our observations of his play. The obvious way to accomplish this would be to add linear con-
straints to the LP for finding an equilibrium [73] that force the opponent model to conform with
our observations. However, such a computation could take several weeks, and would not be
practical for real-time play in large games.

To obtain a more practical algorithm, we must find a faster way of constructing an opponent
model from our observations. DBBR constructs the model by noting deviations of our opponent’s
observed action frequencies from equilibrium frequencies. For example, in poker suppose an
equilibrium strategy raises 50% of the time when first to act, while the opponent raises only 30%
of the time. While the opponent might be raising any 30% of hands, a safe guess might be to
assume that he is raising his ‘best’ 30% of hands; we can construct such a strategy by starting
with the equilibrium strategy, then removing the ‘worst’ 20% of hands from the raising range.
Our algorithm is based on this intuition.

12.2.1 Overview of the algorithm
Pseudocode for a high-level overview of DBBR is given in Algorithm 19. In the first step, an
approximate equilibrium σ∗ of the game is precomputed offline. Next, when the game begins,
the frequencies of the opponent’s actions at different public history sets are recorded. These are
used to compute the opponent’s posterior action probabilities: the probabilities with which he
chooses each action at each public history set n ∈ PH−i. (We say that the elements of PH−i
are numbered according to breadth-first-search (BFS) traversal order.) Next, we compute the
probability the opponent is in each bucket at n given our model of his play so far; we refer
to these probabilities as the posterior bucket probabilities. We then compute a full model of
the opponent’s strategy by considering the deviations between the opponent’s posterior action
probabilities and those of σ∗ at n. Based on these deviations, we iterate over all buckets and
shift weight away from the action probabilities in σ∗ until we obtain a strategy consistent with
our model of the opponent’s action probabilities. Finally, after we have iterated over all public
history sets, we compute a best response to the opponent model. The next subsections will
discuss the different components of the algorithm in detail.

12.2.2 Computing posterior action probabilities
In the course of our play against the opponent, we observe how often he chooses each action a
at each public history set n; we denote this quantity by cn,a. One idea would be to assume the

162



Algorithm 19 High-level overview of DBBR
Compute an approximate equilibrium of the game.
Maintain counters from observing opponent’s play throughout the match.
for n = 1 to |PH−i| do

Compute posterior action probabilities at n.
Compute posterior bucket probabilities at n.
Compute full model of opponent’s strategy at n.

end for
return Best response to the opponent model.

opponent will play action a with probability

cn,a∑
a′ cn,a′

.

However, doing this could be problematic for a few reasons. First, we might not have any
observations at a given set n, in which case this quantity would not even be defined. More
generally, the quality of our observations might vary dramatically between public history sets;
for example, we have a lot more confidence in sets for which we have 1000 observations than
sets for which we have just 1 or 2, and we would like our algorithm to reflect this. A similar
observation was the motivation behind a recent paper [64], though that work assumed that the
opponent’s private information was observable.

Our algorithm works by choosing a combination of the observed probability and the proba-
bility under the equilibrium strategy σ∗, where the weight on the observed frequencies is higher
at public history sets for which we have more observations. Specifically, we use a Dirichlet prior
distribution, where we assume we have seen Nprior fictitious hands at the given public history
set for which the opponent played according to σ∗. Let p∗n,a denote the probability that σ∗ plays
action a at public history set n. We compute the posterior action probabilities, αn,a, as follows:

αn,a =
p∗n,a ·Nprior + cn,a

Nprior +
∑

a′ cn,a′
. (12.1)

12.2.3 Computing posterior bucket probabilities

Since we are constructing the model of the opponent’s strategy using a BFS ordering of the public
history sets, we assume that we have already set his strategy for all ancestors of the current set
n (including the parent n′). Let sn′,b,a denote our model of the probability that the opponent
plays his portion of the strategy sequence leading to n′, then chooses action a in bucket b at state
n′; this quantity has already been computed by the time we get to n in the algorithm. We can
use these probabilities to construct the posterior probability, βn,b, that the opponent is in bucket
b (i.e., in poker, the opponent has those private cards) at public history set n. Pseudocode for
this procedure is given in Algorithm 20, where hb denotes the probability that chance makes the
moves needed to put the opponent in bucket b.
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Algorithm 20 ComputeBucketProbs(n)

for b = 1 to |Bn| do
n′ ← parent(n)
a← action taken to get from n′ to n.
βn,b ← hb · sn′,b,a

end for
Normalize the values βn so they sum up to 1.

12.2.4 Computing the opponent model

In this section we will present three different techniques for computing the opponent model.
Recall that our high-level goal is to compute the ‘best’ (i.e., least exploitable) strategy for the
opponent that is consistent with our observations of his behavior. We could accomplish this by
performing an equilibrium-like computation; however, such a computation is too challenging to
be performed in real time.

Rather than find the strategy consistent with our observations that is least exploitable, we
will instead find the strategy that is ‘closest’ to the precomputed equilibrium. It turns out that
this can be accomplished efficiently in practice, and intuitively we would expect strategies closer
to equilibrium to be less exploitable.

Weighted L1-distance minimization

Recall that the L1 distance between two vectors x and y is defined as

||x− y||1 =
k∑
i=1

|xi − yi|. (12.2)

While this function treats all indices of the vector equally, in some cases we might want to put
more weight on some components than on others. If p is a probability distribution over the
integers from 1 to k, we define the weighted L1 distance between x and y as

k∑
i=1

pi · |xi − yi|. (12.3)

Now, suppose we are at public history set n, where βn,b denotes the posterior probability that
we are in bucket b, as computed by Algorithm 20. If we let the yi’s in Equation 12.3 correspond
to the equilibrium probabilities of taking each action, and let the pi’s correspond to the βn,b’s,
then we can formulate the problem of finding the strategy closest to the precomputed equilibrium,
subject to the posterior action probabilities αn,a, as an L1-distance minimization problem.

Formally, we can formulate the optimization problem as follows, for a given public history
set n:
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minimize
∑
b∈Bn

∑
a∈An

[
βn,b · |xn,b,a − σ∗n,b,a|

]
(12.4)

subject to
∑
b∈Bn

[βn,b · xn,b,a] = αn,a for all a ∈ An∑
a∈An

xn,b,a = 1 for all b ∈ Bn

0 ≤ xn,b,a ≤ 1 for all a ∈ An, b ∈ Bn

Recall that Bn denotes the set of all buckets we could be in at public history set n, while An
denotes the set of actions at n. The variables xn,b,a correspond to the model of the opponent’s
strategy that we are trying to compute. Note that we can do this optimization separately for each
public history set n; it makes more sense to do many smaller optimizations than to do a huge one
for all public history sets at once, since the computations of the actions taken at different states
do not depend on each other.

So as discussed above, we will perform a separate optimization at each n according to the
program of Equation 12.4. It turns out that this can be cast as a linear program (LP) and solved
efficiently using CPLEX’s dual simplex algorithm for solving LPs. Doing this for each public
history set n yields the opponent model x. Note that the program could have many solutions, and
that CPLEX will just output the first solution it encounters (and not necessarily the solution that
performs best in practice). This means that there might actually exist a strategy that minimizes
L1 distance from equilibrium that performs better in practice than the strategy output by CPLEX.

Weighted L2-distance minimization

While Section 12.2.4 uses the weighted L1 distance to measure the proximity of two strategies,
we could also use other distance metrics. In this section we will consider another common
distance function: the weighted L2 distance.

Similarly to Equation 12.2, the L2 distance between x and y is defined as

||x− y||2 =

√√√√ k∑
i=1

(xi − yi)2. (12.5)

Analogously to the L1 case, we define the weighted L2 distance between x and y as

√√√√ k∑
i=1

pi · (xi − yi)2. (12.6)
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The new program for computing the opponent model at n is the following:

minimize
∑
b∈Bn

∑
a∈An

[
βn,b · (xn,b,a − σ∗n,b,a)2

]
(12.7)

subject to
∑
b∈Bn

[βn,b · xn,b,a] = αn,a for all a ∈ An∑
a∈An

xn,b,a = 1 for all b ∈ Bn

0 ≤ xn,b,a ≤ 1 for all a ∈ An, b ∈ Bn

Note that we can omit the square root, since it is a monotonic operator. The resulting for-
mulation in Equation 12.7 is a quadratic program (QP), which can also be solved efficiently in
practice using CPLEX. As in the L1 case, we can formulate and solve a separate optimization
problem for each public history set n to compute the opponent model x.

Our custom weight-shifting algorithm

While the previous two sections described how to compute an opponent model using two popular
distance functions, perhaps we can do even better by designing our own custom algorithm that
takes into account the conservative reasoning about the opponent that we discussed earlier. In
this section we will describe such an algorithm. In particular, it takes into account the fact that
we already know an approximate ranking of the buckets at each public history set from the
approximate equilibrium σ∗.

For example, suppose the opponent is only raising 30% of the time when first to act, while σ∗

raises 50% of the time in that situation (as given in the example at the beginning of this section).
Instead of doing a full L1 or L2-minimization explicitly, we could use the following heuristic
algorithm: sort all buckets by how often the opponent raises with them under σ∗, then greedily
keep removing buckets from his raising range until the weighted sum (using the βn,b’s as weights)
equals 30%. This is a simple greedy algorithm, which can be run significantly more efficiently
in practice than the L1 and L2-minimization procedures described in the last two subsections,
which must repeatedly use CPLEX at runtime.

For simplicity, we present our algorithm for the case of three actions, although it extends
naturally to any number of actions. First we initialize the opponent’s strategy at n, σn, to the
equilibrium σ∗. We also initialize our current model of his action probabilities γn to p∗n,a, the
equilibrium action probabilities.

Next, we check whether the opponent is taking action 3 more often than he should at n by
comparing αn,3 to γn,3. If he is, we are going to want to increase the probabilities he plays action
3 in various buckets; otherwise, we will decrease these probabilities. For now, we will assume
that αn,3 > γn,3 (the other case is handled analogously).

We start by adding weight to the bucket that plays action 3 with the highest probability at n;
denote this bucket by b̂. If

γn,3 + βn,b̂ · (1− σn,b̂,3) < αn,3, (12.8)

we set σn,b̂,3 = 1, since that will not cause γn,3 to exceed αn,3 once it is adjusted. Otherwise, we

increase σn,b̂,3 by (αn,3−γn,3)

βn,b̂
. (Recall that βn,b̂ denotes the posterior probability that the opponent

166



holds bucket b̂ at n, as computed in Algorithm 20.) Let ∆ denote the amount by which we
increase σn,b̂,3. We will also increase the action probability γn,3 by βb̂ ·∆.

Next we must compensate for this increase of the probability of playing action 3 in bucket
b̂ by decreasing the probabilities of playing actions 1 and/or 2. Let a denote the action (1 or 2)
played with lower probability in σn in bucket b̂, and let a denote the other action. If σn,b̂,a ≥ ∆,
then we set σn,b̂,a = σn,b̂,a − ∆ and update γn,a accordingly. Otherwise, we set σn,b̂,a = 0 and
remove the remaining probability ∆− σn,b̂,a from σn,b̂,a.

If the inequality of Equation 12.8 held above, then our opponent model probabilities still do
not agree with the posterior action probabilities, and thus we must continue shifting probability
mass; we continue by setting b̂ to the bucket that plays action 3 with the second highest proba-
bility at n, and repeating the above procedure. Otherwise, we are done setting the probabilities
for action 3, and we perform a similar procedure to shift weight between the probabilities that he
plays actions 1 and 2 until they agree with αn.

We have now constructed an opponent model that agrees with our posterior action probabil-
ities. Note that we had to iterate over possibly all of the buckets at public history set n. Since
each bucket is contained in only one public history set, the algorithm’s run time is linear in the
size of the game tree.

Additionally, although we presented this algorithm for the case of three actions at n, it eas-
ily generalizes to more actions. Rather than just designating a and a, we will sort all actions
in the order of how often they are played in bucket b̂, and proceed through this list adjusting
probabilities as in the three-action case.

12.2.5 Full algorithm

In practice, constructing an opponent model and computing a best response at each repetition
of the game (e.g., hand in poker) might be too slow. This can be mitigated by doing so only
every k repetitions. In addition, we may want to start off playing the equilibrium σ∗ for several
repetitions so that we can obtain a reasonable number of samples of the opponent’s play, rather
than trying to exploit him immediately. Overall, our full algorithm will have three parameters: T
denotes how many repetitions to first play the equilibrium σ∗ before starting to exploit, k denotes
how often to recompute an opponent model and best response, and Nprior from Equation 12.1 is
the parameter of the action probability prior distributions. Pseudocode for the algorithm is given
in Algorithm 21, where M is the number of repetitions in the match.

12.3 Experiments and discussion

We used two-player limit Texas hold ’em as our experimental domain. It is a large-scale game
with 1018 states in the game tree. It is the most-studied full-scale poker game in computer science,
and is also played by human professionals. The rules are described in Chapter 3.
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Algorithm 21 DBBR(T,k,Nprior)
for iter = 1 to T do

Play according to the precomputed equilibrium strategy σ∗

end for
opponent model = ComputeOppModel(Nprior)
σBR = ComputeBestResponse(opponent model)
for iter = T + 1 to M do

if iter is a multiple of k then
opponent model = ComputeOppModel(Nprior)
σBR = ComputeBestResponse(opponent model)

end if
Play according to σBR

end for

12.3.1 Experimental results

We ran our algorithm against several opponents; the results are shown in Table 12.1. The first four
opponents—Random, AlwaysFold, AlwaysCall, and AlwaysRaise—play naı̈vely as their names
suggest. GUS2 and Dr. Sahbak were entrants in the 2008 AAAI computer poker competition, and
Tommybot was an entrant in the 2009 competition; we selected these bots to experiment against
because they had the worst performances in the competitions, and we expect opponent modeling
to provide the biggest improvement against weak opponents. Against stronger opponents one
might prefer to always play the precomputed equilibrium rather than turning on the exploitation.
This can be accomplished by periodically looking at the win rate, and only attempting to exploit
the opponent if a win rate above some threshold is attained.

GS5 is a bot we entered in the 2009 AAAI computer poker competition that plays an approxi-
mate-equilibrium strategy. It was computed using an abstraction which had branching factors of
15, 40, 6, and 6 respectively in the four betting rounds. The parameter values we used in DBBR
(as described in Section 12.2.5) were T = 1000, k = 50, Nprior = 5, with GS5 playing the
role of the initial approximate-equilibrium strategy (i.e., we ran GS5 for the first 1000 hands of
each match and recomputed an opponent model and best response every 50 hands subsequently).
Since each match consists of 3000 duplicate hands, this means that GS5 and DBBR play the
same strategy for the first third of each match.

We set T = 1000 since it is essential that our algorithm obtains a reasonable number of
samples of the opponent’s play (in different parts of the game tree) before attempting to exploit.
As discussed in the next paragraph, our main motivation in setting k was to allow us to update the
opponent model as frequently as we could while remaining under the competition time limit. For
Nprior, we wanted to choose a small number so that our observations would quickly trump the
prior for common public history sets, but so that the prior would have more weight if we had just
one or two observations. Note that setting Nprior = 5 means that our prior and our observations
will have equal weight in our model when we have observed the opponent’s action 5 times at the
given public history set. Changing the parameter values could certainly have a large effect on the
results, and should be studied further.
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Unfortunately GS5 was too large to use as the approximate-equilibrium strategy in our real-
time opponent modeling updates. Therefore, we also precomputed an approximate-equilibrium
σ∗ that used a much smaller abstraction than GS5: the branching factors of its abstraction were
8, 12, 4, and 4. While σ∗ is clearly an inferior strategy to GS5, it was small enough to allow us to
construct opponent models and compute best responses in just a few seconds, keeping us within
the time limit of the AAAI competition.

We experimented with all three of the approaches for computing the opponent model de-
scribed in Section 12.2.4: the three algorithms DBBR-L1, DBBR-L2, and DBBR-WS (i.e.,
‘Weight-Shifting’) correspond to the three different algorithms in that section. We ran all three
of these algorithms against each of the opponents described above (with the exception of Tom-
mybot, which we were not able to play against DBBR-L1 and DBBR-L2 due to technical issues).

As shown in Table 12.1, DBBR-WS performed significantly better against all of the oppo-
nents than GS5 did (in one case, the win rate was over twice as high). Furthermore, DBBR-WS
beat GUS2 by more than any other bot in the 2008 competition did, and its win rates against Dr.
Sahbak and Tommybot were surpassed by the win rate of just a single bot.

Random AlwaysFold AlwaysCall AlwaysRaise GUS2 Dr. Sahbak Tommybot
GS5 0.854 ± 0.008 0.646 ± 0.0009 0.582 ± 0.005 0.791 ± 0.009 0.636 ± 0.004 0.665 ± 0.027 0.552 ± 0.008

DBBR-WS 1.769 ± 0.025 0.719 ± 0.002 0.930 ± 0.014 1.391 ± 0.034 0.807 ± 0.011 1.156 ± 0.043 1.054 ± 0.044
DBBR-L1 2.164 ± 0.036 0.717 ± 0.002 0.935 ± 0.017 0.878 ± 0.032 0.609 ± 0.054 1.153 ± 0.074
DBBR-L2 2.287 ± 0.046 0.716 ± 0.002 0.931 ± 0.026 1.143 ± 0.084 0.721 ± 0.050 1.027 ± 0.072

Table 12.1: Win rate in small bets/hand of the bot listed in the row. The ± given is the standard
error (standard deviation divided by the square root of the number of hands).

12.3.2 Comparing the opponent modeling algorithms
It is not totally clear from the results in Figure 12.1 which of the three algorithms for constructing
the opponent model — L1, L2, or our weight-shifting algorithm — is best. For example, DBBR-
WS obtains a win rate of 1.391 sb/h against AlwaysRaise while DBBR-L1 obtains a win rate
of 0.878 sb/h, but DBBR-L1 obtains a win rate of 2.164 sb/h against Random while DBBR-WS
obtains only 1.769 sb/h. Similarly, for all other pairings there exist opponents such that one bot
achieves a higher win rate against one opponent, but not against the other opponent. So there is
no clear total ordering of the three algorithms.

That being said, DBBR-L2 does at least as well (or essentially the same) against all of the op-
ponents as DBBR-L1, except for Dr. Sahbak; this suggests that DBBR-L2 is a stronger program.
As between DBBR-L2 and DBBR-WS, it really seems to depend on the opponent. DBBR-WS
performs significantly better against AlwaysRaise, GUS2, and Dr. Sahbak and slightly better
against AlwaysFold than DBBR-L2; however, DBBR-L2 performs significantly better against
Random and slightly better against AlwaysCall than DBBR-WS. So DBBR-WS performs sig-
nificantly better against three of the six opponents than DBBR-L2 (and essentially the same
against two opponents), suggesting that it is a better algorithm.

In addition, DBBR-WS performs significantly better against both of the actual opponents
from the AAAI competition (GUS2 and Dr. Sahbak) than DBBR-L2, which suggests that it
might perform better in practice against realistic opponents. This fact, combined with the fact
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that DBBR-WS is more efficient than the other algorithms, which have to perform many op-
timizations using CPLEX at runtime, suggest that DBBR-WS is a better algorithm to use in
practice.

Note that this does not imply that the weighted L1 and L2 distance functions are poor distance
metrics; it just means that the particular solution output by CPLEX does not do as well as the
solution output by DBBR-WS. It is very possible that if CPLEX used different LP/QP algorithms,
it might find a solution that does significantly better. This would certainly be a worthwhile avenue
for future work.

12.3.3 Win rates over time

One might expect that DBBR1 would immediately begin exploiting the opponents at hand 1001—
when it switches from playing an approximate equilibrium to opponent modeling—and that the
win rate would increase steadily. In fact, this happened in the matches against most of the bots.
For example, Figure 12.1(a) shows that DBBR’s profits against AlwaysFold increase linearly
over time, and Figure 12.1(b) shows that DBBR’s win rate increases in a concave fashion.

Surprisingly, we observed a different behavior in the matches against several other opponents.
In the matches against AlwaysRaise and GUS2, the win rate decreases significantly for the first
several hundred hands before it starts to increase, as shown in Figures 12.2(b) and 12.3(b). This
happens because the approximate-equilibrium strategy plays some action sequences with very
low probability, leading it to not explore the opponent’s full strategy space in the 1000 hands.
This will lead to a significant disparity between the prior and actual strategies of the opponent
at hand 1001 if the opponent’s strategy differs significantly from the approximate equilibrium in
those unexplored regions. This in turn may cause DBBR to think it can immediately exploit the
opponent in certain ways, which turn out to be unsuccessful; but eventually as DBBR explores
these sequences further and gathers more observations, it figures out successful exploitations.

The following hand from our experiments between DBBR and AlwaysRaise exemplifies this
phenomenon. The hand was the 1006’th hand of the match. There were many raises and re-
raises during the preflop, flop, and turn betting rounds. When the river card came, DBBR had
only a ten high (a very weak hand in this situation). However, based on its observations during
the first 1005 hands, it knew that AlwaysRaise had a very wide range of hands given this betting
sequence, many of which were also weak hands (though probably still stronger than ten high).
On the other hand, DBBR had very few observations of how AlwaysRaise responds to a series
of raises on the river, since GS5 made those plays very rarely during the first 1000 hands; hence,
DBBR resorted to the prior to model the opponent, which had the opponent folding all of his
weak hands to a raise (since GS5 would do this). So DBBR thought that raising would get the
opponent to fold most of his hands, while in reality AlwaysRaise continues to raise with all of
his hands. In this particular hand, DBBR lost a significant amount of money due to the additional
raises he made on the river with a very weak hand.

1The results in this section refer to our main algorithm, DBBR-WS.
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(a) (b)

Figure 12.1: Profits and win rates over time of DBBR-EM against AlwaysFold.

(a) (b)

Figure 12.2: Profits and win rates over time of DBBR-EM against AlwaysRaise.

(a) (b)

Figure 12.3: Profits and win rates over time of DBBR-EM against competition agent GUS2.
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12.4 Summary and extensions
We presented DBBR, an efficient real-time algorithm for opponent modeling and exploitation
in large extensive-form games. It works by observing the opponent’s action frequencies and
building an opponent model by combining information from a precomputed equilibrium strategy
with the observations. This enables the algorithm to combine game-theoretic reasoning and pure
opponent modeling, yielding a hybrid that can effectively exploit opponents after a small number
of interactions.

Our experiments in full-scale two-player limit Texas hold’em poker show that DBBR is effec-
tive in practice against a variety of opponents, including several entrants from recent AAAI com-
puter poker competitions. DBBR achieved a significantly higher win rate than an approximate-
equilibrium strategy against all of the opponents in our experiments. Furthermore, it achieved a
higher win rate against the opponents from previous competitions than all of the entrants from
that year’s competition achieved (except for at most one). We compared three different algo-
rithms for constructing the opponent model, and conclude that our custom weight-shifting algo-
rithm outperforms algorithms that employ weighted L1 and L2-distance minimization.

While DBBR is able to effectively exploit weak opponents, it might actually become sig-
nificantly exploitable to strong opponents (e.g., opponents who operate in a finer-grained ab-
straction). Thus, we would like to only attempt to exploit weak opponents, while playing the
equilibrium against strong opponents. This can be accomplished by periodically looking at the
win rate, and only attempting to exploit the opponent if a win rate above some threshold is at-
tained. Our current work involves developing automated schemes that alternate between DBBR
and equilibrium play based on the specific opponent at hand. In addition, DBBR could be ex-
tended to the setting where the opponent’s private information from the previous game iteration
is sometimes observed. Finally, future work could look at more robust versions of DBBR, where
the opponent model allows the opponent to sometimes deviate from his observed action proba-
bilities, or a safer strategy than the actual best response is used.
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Chapter 13

Safe Opponent Exploitation

In repeated interactions against an opponent, an agent must determine how to balance between
exploitation (maximally taking advantage of weak opponents) and exploitability (making sure
that he himself does not perform too poorly against strong opponents). In two-player zero-sum
games, an agent can play a minimax strategy, which guarantees at least the value of the game
in expectation against any opponent. However, doing so could potentially forego significant
profits against suboptimal opponents. Thus, an equilibrium strategy has low (zero) exploitability,
but achieves low exploitation. On the other end of the spectrum, agents could attempt to learn
the opponent’s strategy and maximally exploit it (using algorithms such as DBBR, which was
described in the preceding chapter); however, doing so runs the risk of being exploited in turn
by a deceptive opponent. This is known as the “get taught and exploited problem” [98]. Such
deception is common in games such as poker; for example, a player may play very aggressively
initially, then suddenly switch to a more conservative strategy to capitalize on the fact that the
opponent tries to take advantage of his aggressive “image,” which he now leaves behind. Thus,
pure opponent exploitation potentially leads to a high level of exploitation, but at the expense of
exploitability. Respectively, the game-solving community has, by and large, taken two radically
different approaches: finding game-theoretic solutions and opponent exploitation.

We are interested in answering a fundamental question that helps shed some light on this
tradeoff:

Is it possible to exploit the opponent more than any equilibrium strategy of a
stage game would, while simultaneously guaranteeing at least the value of the
full game in expectation in the worst case?

If the answer is no, then fully safe exploitation is not possible, and we must be willing to accept
some increase in worst-case exploitability if we wish to deviate from equilibrium in order to
exploit suboptimal opponents. However, if the answer is yes, then safe opponent exploitation
would indeed be possible.

One may think (and this author did) that safe opponent exploitation is not possible [32]. The
intuition for that argument was that the opponent could have been playing an equilibrium all
along, and when we deviate from equilibrium to attempt to exploit him, then we run the risk of
being exploitable ourselves. However, that argument is incorrect. It does not take into account
the fact that our opponent may give us a gift by playing an identifiably suboptimal strategy, such
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as one that is strictly dominated.1 If such gift strategies are present in a game, then it turns out
that safe exploitation can be achieved; specifically, we can deviate from equilibrium to exploit
the opponent provided that our worst-case exploitability remains below the total amount of profit
won through gifts (in expectation).

Is it possible to obtain such gifts that do not correspond to strictly-dominated strategies? What
about other forms of dominance, such as weak, iterated, and dominance by mixed strategies?
Recently it was claimed that all non-iteratively-weakly-dominated strategies are best responses
to each equilibrium strategy of the other player [117]. This would suggest that such undominated
strategies cannot be gifts, and that gift strategies must therefore be dominated according to some
form of dominance. We disprove this claim and present a game in which a non-iteratively-
weakly-dominated strategy is not a best response to an equilibrium strategy of the other player.
Safe exploitation is possible in the game by taking advantage of that particular strategy. We define
a formal notion of gifts, which is more general than iteratively-weakly-dominated strategies,
and show that safe opponent exploitation is possible specifically in games in which such gifts
exist [37].

Next, we provide a full characterization of the set of safe exploitation strategies, and we
present several efficient algorithms for converting any opponent exploitation architecture (that is
arbitrarily exploitable) into a fully safe opponent exploitation procedure. One of our algorithms
is similar to a procedure that guarantees safety in the limit as the number of iterations goes to
infinity [80]; however, the algorithms in that paper can be arbitrarily exploitable in the finitely-
repeated game setting, which is what we are interested in. The main idea of our algorithm is
to play an ε-safe best response (a best response subject to the constraint of having exploitability
at most ε) at each time step rather than a full best response, where ε is determined by the total
amount of gifts obtained thus far from the opponent. Safe best responses have also been studied
in the context of Texas hold ’em poker [65], though that work did not use them for online oppo-
nent exploitation. We also present several other safe algorithms which alternate between playing
an equilibrium and a best response depending on how much has been won so far in expectation.
Algorithms have been developed which guarantee ε-safety against specific classes of opponents
(stationary opponents and opponents with bounded memory) [94]; by contrast, our algorithms
achieve full safety against all opponents.

It turns out that safe opponent exploitation is also possible in extensive-form games, though
we must redefine what strategies constitute gifts and must make pessimistic assumptions about
the opponent’s play in game states off the path of play. We present efficient algorithms for safe
exploitation in games of both perfect and imperfect information, and fully characterize the space
of safe strategies in these game models. We also show when safe exploitation can be performed
in the middle of a single iteration of an extensive-form game. This may be useful when a mistake
is observed early on.

We compare our algorithms experimentally on Kuhn poker [76], a simplified form of poker
which is a canonical problem for testing game-solving algorithms and has been used as a test
problem for opponent-exploitation algorithms [56]. We observe that our algorithms obtain a
significant improvement over the best equilibrium strategy, while also guaranteeing safety in
the worst case. Thus, in addition to providing theoretical advantages over both minimax and

1We thank Vince Conitzer for pointing this out to us.
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fully-exploitative strategies, safe opponent exploitation can be effective in practice.

13.1 Uses, applicability, and generality of the approach

In this section we suggest two alternative uses of the approach, as well as discuss its applicability
and generality.

13.1.1 Two alternative uses of the methodology

We can view safe exploitation as a meta-algorithm that enforces the safety of any opponent
exploitation procedure by ensuring that it does not risk too much at any point. An opponent
exploitation architecture consists of two components: 1) an opponent modeling algorithm, which
takes as input the observations of both players’ actions (to the extent that they are observable)
and constructs a model of the opponent’s strategy, and 2) a strategy selection algorithm, which
takes the opponent model and the observations as input and outputs an exploitative strategy. This
strategy may not be safe in general.

The first way to use our safe exploitation methodology is to obtain safety by curtailing the
strategies that the architecture may propose. This is depicted in Figure 13.1.

Opponent 
Modeling 
Algorithm 

Strategy 
Selection 
Algorithm 

Safety Enforcer 

Strategy Observations 

Figure 13.1: Our safe exploitation methodology used as a meta-algorithm which makes any
opponent exploitation architecture safe. An opponent exploitation architecture consists of two
components: an opponent modeling algorithm and a strategy selection algorithm.

The second way to use the methodology is to view our safe exploitation algorithms as alter-
natives to standard exploitation algorithms within the opponent exploitation paradigm. Our safe
algorithms still work with any opponent modeling algorithm to construct an opponent model,
but replace a potentially unsafe strategy selection algorithm with a new algorithm that guaran-
tees safety. This is depicted in Figure 13.2.
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Opponent 
Modeling 
Algorithm 

Strategy 
Selection 
Algorithm 

Strategy 

Safe  
Strategy 
Selection 
Algorithm 

Observations 

Strategy 

Figure 13.2: Our safe exploitation methodology used to replace the strategy selection component
while retaining the opponent modeling component of any opponent exploitation architecture.

13.1.2 Bounds suffice for using the methodology
We expect our algorithms to be useful in practice in many real-world domains, for example,
in (cyber)security games. It has been observed that human adversaries in such domains often
behave irrationally, and there can be significant benefits to exploiting their mistakes [12, 89, 90].
However, the cost of making a mistake ourselves is extremely high in such domains, for example,
since human lives could be at stake. Algorithms that can exploit irrational opponents while still
guaranteeing safety would be very desirable.

Furthermore, perhaps the main criticism of security games to date is that the numeric payoffs
for the attacker and defender are questionable. Our approach does not require an exact model
of the game. We only need a lower bound on the gifts (mistakes) that the opponent has given
us and an upper bound on the loss from our exploitation. This would be especially useful in
security games, since it guarantees robustness even when the game models are not accurate.
(Another advantage is that our approach applies also to multi-step games, which are a richer,
more powerful framework than the security game models used to date—Stackelberg games—
where the defender moves once and then the attacker moves once.)

13.1.3 The methodology also applies to infinitely repeated, general-sum,
and multiplayer games

Our methodology also applies to two-player zero-sum infinitely repeated games. While some of
our algorithms specifically depend on the finite time horizon and will not extend to the infinite
setting, several of them do not, and will apply straightforwardly. In particular, the algorithm that
is most aggressive (among safe algorithms) and performed best in the experiments does not rely
on a finite horizon.

For general-sum and multiplayer games, our methodology applies straightforwardly if we
replace the minimax value with the maximin value (i.e., maximizing our expected payoff min-
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imized over the others’ strategies) in our algorithms. In two-player zero-sum games, these two
values coincide, and any equilibrium strategy guarantees at least this value in expectation in the
worst case. In general-sum and multiplayer games, these properties do not hold; however, in
many settings it could be very desirable to exploit opponents’ mistakes while still guaranteeing
the maximin value. For example, this could be extremely useful in security domains, which are
often modeled as non-zero-sum games [74]—since safety is of high importance.

13.1.4 Safe exploitation can be viewed as selection among equilibria of the
repeated game

As we discuss in Section 13.2, in repeated games, the set of safe strategies is the same as the
set of maximin strategies in the repeated game (and therefore, the set of Nash equilibria in
the case where the repeated game is a two-player zero-sum game). Thus, one can view our
safe exploitation algorithms as procedures for selecting among equilibria of the repeated game.
In the context of non-repeated games, our work can be viewed as equilibrium selection in the
non-repeated game. However, in both repeated and non-repeated games, as we will discuss in
Section 13.6.3, our equilibrium refinement differs from subgame perfection [104], and thus also
from all the usual equilibrium refinements, which are further refinements of subgame perfection.

13.2 Safety
One desirable property of a strategy for a repeated game is that it is safe:
Definition 27. A safe strategy for a repeated game is a strategy that guarantees a worst-case
payoff of at least vi per period in expectation.

The set of safe strategies is the same as the set of minimax strategies in the full repeated
game. Clearly playing a (stage-game) minimax strategy at each iteration is safe, since it guaran-
tees at least vi in each iteration. However, a minimax strategy may fail to maximally exploit a
suboptimal opponent. On the other hand, deviating from stage-game equilibrium in an attempt to
exploit a suboptimal opponent could lose the guarantee of safety and may result in an expected
payoff below the value of the game against a deceptive opponent (or if the opponent model is
incorrect). Thus, a natural question to consider is whether there exist strategies that are safe, yet
deviate from stage-game equilibrium strategies (in order to exploit an opponent’s mistakes).

13.2.1 A game in which safe exploitation is not possible
Consider the classic game of Rock-Paper-Scissors (RPS), whose payoff matrix is depicted in
Figure 13.3. The unique equilibrium σ∗ is for each player to randomize equally among all three
pure strategies.

Now suppose that our opponent has played Rock in each of the first 10 iterations (while we
have played according to σ∗). We may be tempted to try to exploit him by playing the pure
strategy Paper at the 11th iteration. However, this would not be safe; it is possible that he has
in fact been playing his equilibrium strategy all along, and that he just played Rock each time
by chance (this will happen with probability 1

310
). It is also possible that he will play Scissors in
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R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Figure 13.3: Payoff matrix of Rock-Paper-Scissors.

the next round (perhaps to exploit the fact that he thinks we are more likely to play Paper having
observed his actions). Against such a strategy, we would actually have a negative expected total
profit—0 in the first 10 rounds and -1 in the 11th. Thus, our strategy would not be safe. By
similar reasoning, it is easy to see that any deviation from σ∗ will not be safe, and that safe
exploitation is not possible in RPS.

13.2.2 A game in which safe exploitation is possible
Now consider a variant of RPS in which player 2 has an additional pure strategy T. If he plays
T, then we get a payoff of 4 if we play R, and 3 if we play P or S. The payoff matrix of this new
game RPST is given in Figure 13.4. Clearly the unique equilibrium is still for both players to
randomize equally between R, P, and S. Now suppose we play our equilibrium strategy in the
first game iteration, and the opponent plays T; no matter what action we played, we receive a
payoff of at least 3. Suppose we play the pure strategy R in the second round in an attempt to
exploit him (since R is our best response to T). In the worst case, our opponent will exploit us in
the second round by playing P, and we will obtain payoff -1. But combined over both time steps,
our payoff will be positive no matter what the opponent does at the second iteration. Thus, our
strategy constituted a safe deviation from equilibrium. This was possible because of the existence
of a ‘gift’ strategy for the opponent; no such gift strategy is present in standard RPS.

R P S T
R 0 -1 1 4
P 1 0 -1 3
S -1 1 0 3

Figure 13.4: Payoff matrix of RPST.

13.3 Characterizing gifts
What exactly constitutes a gift? Does it have to be a strictly-dominated pure strategy, like T in the
preceding example? What about weakly-dominated strategies? What about iterated dominance,
or dominated mixed strategies? In this section we first provide some negative results which show
that several natural candidate definitions of gifts strategies are not appropriate. Then we provide
a formal definition of gifts and show that safe exploitation is possible if and only if such gift
strategies exist.
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Recent work has asserted the following:2

Assertion 1. [117] An equilibrium strategy makes an opponent indifferent to all non-[weakly]-
iteratively-dominated strategies. That is, to tie an equilibrium strategy in expectation, all one
must do is play a non-[weakly]-iteratively-dominated strategy.

This assertion would seem to imply that gifts correspond to strategies that put weight on
pure strategies that are weakly iteratively dominated. However, consider the game shown in
Figure 13.5.

L M R
U 3 2 10
D 2 3 0

Figure 13.5: A game with a gift strategy that is not weakly iteratively dominated.

It can easily be shown that this game has a unique equilibrium, in which P1 plays U and D
with probability 1

2
, and P2 plays L and M with probability 1

2
. The value of the game to player

1 is 2.5. If player 1 plays his equilibrium strategy and player 2 plays R, player 1 gets expected
payoff of 5, which exceeds his equilibrium payoff; thus R constitutes a gift, and player 1 can
safely deviate from equilibrium to try to exploit him. But R is not dominated under any form of
dominance. This disproves the assertion, and causes us to rethink our notion of gifts.
Proposition 21. It is possible for a strategy that survives iterated weak dominance to obtain
expected payoff worse than the value of the game against an equilibrium strategy.

We might now be tempted to define a gift as a strategy that is not in the support of any
equilibrium strategy.

L R
U 0 0
D -2 1

Figure 13.6: Strategy R is not in the support of an equilibrium for player 2, but is also not a gift.

However, the game in Figure 13.6 shows that it is possible for a strategy to not be in the
support of an equilibrium and also not be a gift (since if P1 plays his only equilibrium strategy
U, he obtains 0 against R, which is the value of the game).

Now that we have ruled out several candidate definitions of gift strategies, we now present
our new definition, which we relate formally to safe exploitation in Proposition 22.
Definition 28. A strategy σ−i is a gift strategy if there exists an equilibrium strategy σ∗i for the
other player such that σ−i is not a best response to σ∗i .3

2This is made as a statement of fact in prior work [117], and not in the form of an assertion.
3This definition of gift strategies coincides with the strategies for the opponent specified by the third step of

a procedure for selecting a particular equilibrium of a (one-shot) two-player zero-sum game, known as Dresher’s
procedure [25, 111]. The procedure assumes the opponent will make a mistake (i.e., by playing a gift strategy),
then selects a strategy that maximizes the minimum gain resulting from a possible mistake of the opponent. It has
been shown that the strategies selected by this procedure coincide with the proper equilibria of the game [111],
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When such a strategy σ−i exists, player i can win an immediate profit beyond vi against an
opponent who plays σ−i by simply playing the safe strategy σ∗i ; then he can play a potentially
unsafe strategy (that has exploitability below some limit) in future iterations in an attempt to
exploit perceived weaknesses of the opponent. Using this definition, RPS and the game depicted
in Figure 13.6 have no gift strategies for either player, while T is a gift for player 2 in RPST, and
R is a gift for player 2 in the game depicted in Figure 13.5.
Proposition 22. Assuming we are not in a trivial game in which all of player i’s strategies are
minimax strategies, then non-stage-game-equilibrium safe strategies exist if and only if there
exists at least one gift strategy for the opponent.

Proof. Suppose some gift strategy σ−i exists for the opponent. Then there exists an equilibrium
strategy σ∗i such that ui(σ∗i , σ−i) > vi. Let ε = ui(σ

∗
i , σ−i) − vi. Let s′i be a non-equilibrium

strategy for player i. Suppose player i plays σ∗i in the first round, and in the second round does
the following: if the opponent did not play σ−i in the first round, he plays σ∗i in all subsequent
rounds. If the opponent did play σ−i in the first round, then in the second round he plays σ̂i,
where σ̂i is a mixture between s′i and σ∗i that has exploitability in (0, ε) (we can always obtain
such a mixture by putting sufficiently much weight on σ∗i ), and he plays σ∗i in all subsequent
rounds. Such a strategy constitutes a safe strategy that deviates from stage-game equilibrium.

Now suppose no gift strategy exists for the opponent, and suppose we deviate from equilib-
rium for the first time in some iteration t′. Suppose the opponent plays a nemesis strategy at time
step t′ (to the strategy we are playing at time step t′), and plays an equilibrium strategy at all
future time steps. Then we will win less than v∗ in expectation against his strategy. Therefore,
we cannot safely deviate from equilibrium.

The following procedure gives an efficient algorithm, consisting of solving two linear pro-
grams (LPs), to determine whether a gift strategy for the opponent exists in a two-player zero-
sum strategic-form game (and therefore whether safe exploitation is possible).

an equilibrium refinement concept defined by Myerson 1978. Thus, proper equilibrium strategies exploit all gift
strategies, and one could equivalently define gift strategies as strategies that are not a best response to a proper
equilibrium strategy of the opponent. One could view proper equilibria, as well as some other equilibrium refinement
concepts (e.g., trembling-hand perfect equilibrium) as approaches for exploiting mistakes of the opponent in (non-
repeated) games—although they are typically thought of as means to prescribe action probabilities for information
sets that are reached with zero probability in equilibrium. In contrast, our main focus is on repeated games, although
our techniques apply to single-shot games as well. Furthermore, we will show in Section 13.6.3 that even in single-
shot games, our safe exploitative strategies differ from the strategies prescribed by subgame perfection [104], and
thus our approach differs from all prior refinements that are further refinements of subgame perfection. So, our work
can be viewed as providing novel equilibrium selection concepts and procedures. In broad strokes, at every point
in the game, prior refinements try to play as well as possible against an (almost) rational opponent (e.g., one who
“trembles” with small probability), while ours exploits an opponent model (which does not have to be rational in any
way) as much as possible subject to safety. So, our approach can exploit the opponent significantly more than prior
equilibrium refinements. (Some of the prior refinements also assume that we will “tremble” with small probability
ourselves; this is not motivated by exploitation, but rather so that we know how to respond to actions further down
the tree at information sets that would otherwise be reached with probability zero.) Another difference is that in our
technique, a safe, maximally exploitative strategy can be computed in polynomial time both in theory and practice.
In contrast, while proper equilibrium strategies can be computed in polynomial time in theory for both strategic-form
and extensive-form games, those polynomial-time algorithms are numerically unstable in practice [81, 83].
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1. Compute an equilibrium by solving the LP; this determines the value of the game to player
i, vi.

2. Solve the LP that maximizes the expected payoff of player i against the uniform random
strategy of the opponent, subject to the constraints that player i’s strategy is an equilibrium
(these constraints will use vi). Let v̂ denote the optimal objective value of this LP.

3. If v̂ > vi, then at least one gift strategy for the opponent exists; otherwise no gift strategies
exist.

Proposition 23. The above procedure determines in polynomial time whether a gift strategy for
the opponent exists in a given two-player zero-sum game.

Proof. Suppose a gift strategy s−i for the opponent exists. Then there exists an equilibrium
strategy σ∗i such that ui(σ∗i , s−i) > vi. For every other strategy t−i for the opponent, we have
ui(σ

∗
i , t−i) ≥ vi. Thus, player i’s expected payoff of playing σ∗i against the uniform random

strategy will strictly exceed vi, and v̂ > vi.
Now suppose no gift strategies exist. Then for all equilibrium strategies σ∗i and all strategies

s−i for the opponent, we have ui(σ∗i , s−i) = vi. Thus, all equilibrium strategies will obtain
expected payoff vi against the uniform random strategy, and we have v̂ = vi.

The procedure is polynomial time since it consists of solving LPs of polynomial size (the LP
formulations for computing a best response as well as the equilibrium constraints are described
by, for example, Koller et al. [72]).

13.4 Safety analysis of some natural exploitation algorithms
Now that we know it is possible to safely deviate from equilibrium in certain games, can we
construct efficient procedures for implementing such safe exploitative strategies? In this section
we analyze the safety of several natural exploitation algorithms. In short, we will show that all
prior algorithms and natural other candidate algorithms are either unsafe or unexploitative. We
introduce algorithms that are safe and exploitative.

13.4.1 Risk What You’ve Won (RWYW)
The “Risk What You’ve Won” algorithm (RWYW) is quite simple and natural; essentially, at
each iteration it risks only the amount of profit won so far. More specifically, at each iteration t,
RWYW plays an ε-safe best response to a model of the opponent’s strategy (according to some
opponent modeling algorithm M ), where ε is our current cumulative payoff minus (t − 1)v∗.
Pseudocode is given in Algorithm 22.
Proposition 24. RWYW is not safe.

Proof. Consider RPS, and assume our opponent modeling algorithm M says that the opponent
will play according to his distribution of actions observed so far. Since initially k1 = 0, we
must play our equilibrium strategy σ∗ at the first iteration, since it is the only strategy with
exploitability of 0. Without loss of generality, assume the opponent plays R in the first iteration.
Our expected payoff in the first iteration is 0, since σ∗ has expected payoff of 0 against R (or
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Algorithm 22 Risk What You’ve Won (RWYW)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do

πt ← argmaxπ∈SAFE(max{kt,0})M(π)
Play action ati according to πt

Update M with opponent’s actions, at−i
kt+1 ← kt + ui(a

t
i, a

t
−i)− v∗

end for

any strategy). Suppose we had played R ourselves in the first iteration. Then we would have
obtained an actual payoff of 0, and would set k2 = 0. Thus we will be forced to play σ∗ at the
second iteration as well. If we had played P in the first round, we would have obtained a payoff
of 1, and set k2 = 1. We would then set π2 to be the pure strategy P, since our opponent model
dictates the opponent will play R again, and P is the unique k2-safe best response to R. Finally,
if we had played S in the first round, we would have obtained an actual payoff of -1, and would
set k2 = −1; this would require us to set π2 equal to σ∗.

Now, suppose the opponent had actually played according to his equilibrium strategy in itera-
tion 1, plays the pure strategy S in the second round, then plays the equilibrium in all subsequent
rounds. As discussed above, our expected payoff at the first iteration is zero. Against this strat-
egy, we will actually obtain an expected payoff of -1 in the second iteration if the opponent
happened to play R in the first round, while we will obtain an expected of 0 in the second round
otherwise. So our expected payoff in the second round will be 1

3
· (−1) + 2

3
· 0 = −1

3
. In all

subsequent rounds our expected payoff will be zero. Thus our overall expected payoff will be
−1

3
, which is less than the value of the game; so RWYW is not safe.

RWYW is not safe because it does not adequately differentiate between whether profits were
due to skill (i.e., from gifts) or to luck.

13.4.2 Risk What You’ve Won in Expectation (RWYWE)

A better approach than RWYW would be to risk the amount won so far in expectation. Ideally
we would like to do the expectation over both our randomization and our opponent’s, but this
is not possible in general since we only observe the opponent’s action, not his full strategy.
However, it would be possible to do the expectation only over our randomization. For example,
suppose we play according to the equilibrium σ∗ at one iteration of RPS, and end up selecting
action R, while the opponent selects action P; then our actual payoff is -1, but our expected
payoff (over our own randomization) is 0. It turns out that we can indeed achieve safety using
this procedure, which we call RWYWE. Pseudocode is given in Algorithm 23. Here ui(πti , a

t
−i)

denotes our expected payoff of playing our mixed strategy πti against the opponent’s observed
action at−i. The difference between RWYWE and RWYW is in the step for updating kt: RWYW
uses ui(ati, a

t
−i) while RWYWE uses ui(πti , a

t
−i). As the latter quantity will generally have lower

variance than the former, one can view RWYWE as a variance-reduction procedure over RWYW.
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Algorithm 23 Risk What You’ve Won in Expectation (RWYWE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do

πt ← argmaxπ∈SAFE(kt)M(π)
Play action ati according to πt

The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

Lemma 3. Let π be updated according to RWYWE, and suppose the opponent plays according
to π−i. Then for all n ≥ 0,

E[kn+1] =
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.

Proof. Since k1 = 0, the statement holds for n = 0. Now suppose the statement holds for all
t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , an+1

−i )− v∗]
= E[kn+1] + E[ui(π

n+1
i , an+1

−i )]− E[v∗]

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , an+1

−i )]− v∗

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗

=
n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗

Lemma 4. Let π be updated according to RWYWE. Then for all t ≥ 1, kt ≥ 0.

Proof. By definition, k1 = 0. Now suppose kt ≥ 0 for some t ≥ 1. By construction, πt has
exploitability at most kt. Thus, we must have

ui(π
t
i , a

t
−i) ≥ v∗ − kt.

Thus kt+1 ≥ 0 and we are done.

Proposition 25. RWYWE is safe.
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Proof. By Lemma 3,
T∑
t=1

ui(π
t
i , π

t
−i) = E[kT+1] + Tv∗.

By Lemma 4, kT+1 ≥ 0, and therefore E[kT+1] ≥ 0. So

T∑
t=1

ui(π
t
i , π

t
−i) ≥ Tv∗,

and RWYWE is safe.

RWYWE is similar to the Safe Policy Selection Algorithm (SPS) [80]. The main difference
is that SPS uses an additional decay function f : N→ R setting k1 ← f(1) and using the update
step

kt+1 ← kt + f(t+ 1) + ui(π
t, at−i)− v∗.

They require f to satisfy the following properties
1. f(t) > 0 for all t

2. limT→∞

∑T
t=1 f(t)

T
= 0

In particular, they obtained good experimental results using f(t) = β
t
. They are able to show that

SPS is safe in the limit as T → ∞;4 however SPS is arbitrarily exploitable in finitely repeated
games. Furthermore, even in infinitely repeated games, SPS can lose a significant amount; it
is merely the average loss that approaches zero. We can think of RWYWE as SPS but using
f(t) = 0 for all t.

13.4.3 Best equilibrium strategy
Given an opponent modeling algorithm M , we could play the best Nash equilibrium according
to M at each time step:

πt = argmaxπ∈SAFE(0)M(π).

This would clearly be safe, but can only exploit the opponent as much as the best equilibrium
can, and potentially leaves a lot of exploitation on the table.

13.4.4 Regret minimization between an equilibrium and an opponent ex-
ploitation algorithm

We could use a no-regret algorithm (e.g., Exp3 [7]) to select between an equilibrium and an
(unsafe) opponent exploitation algorithm at each iteration. As prior work has pointed out [80],
this would be safe in the limit as T → ∞. However, this would not be safe in finitely-repeated
games. Even in the infinitely-repeated case, no-regret algorithms only guarantee that average
regret goes to 0 in the limit; in fact, total regret can still grow arbitrarily large.

4We recently discovered a mistake in their proof of safety in the limit, though this does not affect the correctness
of the result. A corrected proof is available at http://webdocs.cs.ualberta.ca/˜bowling/papers/
04aaai-fallsymp-errata.pdf.
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13.4.5 Regret minimization in the space of equilibria
Regret minimization in the space of equilibria is safe, but again would potentially miss out on a
lot of exploitation against suboptimal opponents. This procedure was previously used to exploit
opponents in Kuhn poker [56].

13.4.6 Best equilibrium followed by full exploitation (BEFFE)
The BEFFE algorithm works as follows. We start off playing the best equilibrium strategy ac-
cording to some opponent modelM . Then we switch to playing a full best response for all future
iterations if we know that doing so will keep our strategy safe in the full game (in other words, if
we know we have accrued enough gifts to support full exploitation in the remaining iterations).
Specifically, we play a full best response at time step t if the amount of gifts we have accumu-
lated, kt, is at least (T − t + 1)(v∗ − ε), where ε is the exploitability of a full best response.
Otherwise, we play the best equilibrium. Pseudocode is given in Algorithm 24.

Algorithm 24 Best Equilibrium Followed by Full Exploitation (BEFFE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do

πtBR ← argmaxπM(π)
ε← v∗ −minπ−i

ui(π
t
BR, π−i)

if kt >= (T − t+ 1)(v∗ − ε) then
πt ← πtBR

else
πt ← argmaxπ∈SAFE(0)M(π)

end if
Play action ati according to πt

The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

This algorithm is similar to the DBBR algorithm [32], which plays an equilibrium for some
fixed number of iterations, then switches to full exploitation. However, BEFFE automatically
detects when this switch should occur, which has several advantages. First, it is one fewer pa-
rameter required by the algorithm. More importantly, it enables the algorithm to guarantee safety.
Proposition 26. BEFFE is safe.

Proof. Follows by same reasoning as proof of safety of RWYWE, since we are playing a strategy
with exploitability at most kt at each iteration.

One possible advantage of BEFFE over RWYWE is that it potentially saves up exploitability
until the end of the game, when it has the most accurate information on the opponent’s strategy
(while RWYWE does exploitation from the start when the opponent model has noisier data). On
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the other hand, BEFFE possibly misses out on additional rounds of exploitation by waiting until
the end, since it may accumulate additional gifts in the exploitation phase that it did not take into
account. Furthermore, by waiting longer before turning on exploitation, one’s experience of the
opponent can be from the wrong part of the space; that is, the space that is reached when playing
equilibrium but not when exploiting. Consequently, the exploitation might not be as effective
because it may be based on less data about the opponent in the pertinent part of the space. This
issue has been observed in opponent exploitation in Heads-Up Texas hold ’em poker [32].

13.4.7 Best equilibrium and full exploitation when possible (BEFEWP)
BEFEWP is similar to BEFFE, but rather than waiting until the end of the game, we play a full
best response at each iteration where its exploitability is below kt; otherwise we play the best
equilibrium. Pseudocode is given in Algorithm 25.

Algorithm 25 Best Equilibrium and Full Exploitation When Possible (BEFEWP)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do

πtBR ← argmaxπM(π)
ε← v∗ −minπ−i

ui(π
t
BR, π−i)

if ε <= kt then
πt ← πtBR

else
πt ← argmaxπ∈SAFE(0)M(π)

end if
Play action ati according to πt

The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

Like RWYWE, BEFEWP will continue to exploit a suboptimal opponent throughout the
match provided the opponent keeps giving us gifts. It also guarantees safety, since we are still
playing a strategy with exploitability at most kt at each iteration. However, playing a full best
response rather than a safe best response early in the match may not be the greatest idea, since
our data on the opponent is still quite noisy.
Proposition 27. BEFEWP is safe.

13.5 A full characterization of safe strategies in strategic-
form games

In the previous section we saw a variety of opponent exploitation algorithms, some which are safe
and some which are unsafe. In this section, we fully characterize the space of safe algorithms.
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Informally, it turns out that an algorithm will be safe if at each time step it selects a strategy
with exploitability at most kt, where k is updated according to the RWYWE procedure. This
does not mean that RWYWE is the only safe algorithm, or that safe algorithms must explicitly
use the given update rule for kt; it just means that the exploitability at each time step must be
bounded by the particular value kt, assuming that k had hypothetically been updated according
to the RWYWE rule.5

Definition 29. An algorithm for selecting strategies is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the rule

kt+1 ← kt + ui(π
t, at−i)− v∗.

Proposition 28. A strategy π (for the full game, not the stage game) is safe if and only if it is
expected-profit-safe.

Proof. If π is expected-profit-safe, then it follows that π is safe by similar reasoning to the proof
of Proposition 25.

Now suppose π is safe, but at some iteration t′ selects πt′ with exploitability exceeding kt′ ,
as defined in Definition 29 (assume t′ is the first such iteration); let e′ denote the exploitability
of πt′ . Suppose the opponent had been playing the pure strategy that selects action at−i with
probability 1 at each iteration t for all t < t′, and suppose he plays his nemesis strategy to πt′ at
time step t′ (and follows a minimax strategy at all future iterations). Then our expected payoff in
the first t′ iterations is

t′−1∑
t=1

ui(π
t, at−i) + v∗ − e′

<
t′−1∑
t=1

ui(π
t, at−i) + v∗ − kt′

=
t′−1∑
t=1

ui(π
t, at−i) + v∗ −

(
t′−1∑
t=1

ui(π
t, at−i)− (t′ − 1)v∗

)
(13.1)

= t′v∗.

In Equation 13.1, we use Lemma 3 and the fact that E[kt
′
] = kt

′
, since the opponent played a

deterministic strategy in the first t′ − 1 rounds. We will obtain payoff at most v∗ at each future
iteration, since the opponent is playing a minimax strategy. So π is not safe and we have a
contradiction; therefore π must be expected-profit-safe, and we are done.

5We could generalize the approaches to play strategies in SAFE(f(kt)) at each time step rather than SAFE(kt),
where f(kt) ≤ kt is an arbitrary function that is a potentially lower upper bound on the exploitability. This would
result in a larger worst-case payoff guarantee when f(kt) < kt, but potentially at the expense of exploitation (since
we are now restricting our space of strategies to a smaller set). In the opposite direction, we could also select
strategies in SAFE(kt + δ) for δ > 0; this would lead to strategies that are approximately safe (within an additive
factor δ), and potentially achieve higher levels of exploitation.
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13.6 Safe exploitation in extensive-form games

In extensive-form games, we cannot immediately apply RWYWE (or the other safe algorithms
that deviate from equilibrium), since we do not know what the opponent would have done at
game states off the path of play (and thus cannot evaluate the expected payoff of our mixed
strategy).

13.6.1 Extensive-form games of perfect information

In extensive-form games of perfect information, it turns out that to guarantee safety we must
assume pessimistically that the opponent is playing a nemesis off the path of play (while play-
ing his observed action on the path of play). This pessimism potentially limits our amount of
exploitation when the opponent is not playing a nemesis, but is needed to guarantee safety. We
present an extensive-form version of RWYWE below as Algorithm 26. As in the strategic-form
case, the time step t refers to the iteration of the repeated game (not to the depth of the tree
within a single iteration); the strategies refer to behavioral strategies for a single iteration of the
full extensive-form game.

Algorithm 26 Extensive-Form RWYWE
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do

πt ← argmaxπ∈SAFE(kt)M(π)
Play action ati according to πt

The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
τ t−i ← strategy for the opponent that plays at−i on the path of play, and plays a best response

to πt off the path of play
kt+1 ← kt + ui(π

t
i , τ

t
−i)− v∗

end for

Lemma 5. Let π be updated according to Extensive-Form RWYWE, and suppose the opponent
plays according to π−i. Then for all n ≥ 0,

E[kn+1] ≤
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.

Proof. Since k1 = 0, the statement holds for t = 0. Now suppose the statement holds for all
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t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , τn+1

−i )− v∗]
= E[kn+1] + E[ui(π

n+1
i , τn+1

−i )]− E[v∗]

≤

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , τn+1

−i )]− v∗

≤

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗

=
n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗

Lemma 6. Let π be updated according to Extensive-Form RWYWE. Then for all t ≥ 1, kt ≥ 0.

Proof. By definition, k1 = 0. Now suppose kt ≥ 0 for some t ≥ 1. By construction, πt has
exploitability at most kt. Thus, we must have

ui(π
t
i , τ

t
−i) ≥ v∗ − kt.

Thus kt+1 ≥ 0 and we are done.

Proposition 29. Extensive-Form RWYWE is safe.

Proof. By Lemma 5,
T∑
t=1

ui(π
t
i , π

t
−i) ≥ E[kT+1] + Tv∗.

By Lemma 6, kT+1 ≥ 0, and therefore E[kT+1] ≥ 0. So

T∑
t=1

ui(π
t
i , π

t
−i) ≥ Tv∗,

and Extensive-Form RWYWE is safe.

We now provide a full characterization of safe exploitation algorithms in extensive-form
games—similarly to what we did for strategic-form games earlier in the paper.
Definition 30. An algorithm for selecting strategies in extensive-form games of perfect informa-
tion is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the same rule as
Extensive-Form RWYWE.
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Lemma 7. Let π be updated according to Extensive-Form RWYWE, and suppose the opponent
plays according to π−i = τ−i, where τ−i is defined in Algorithm 26. Then for all n ≥ 0,

E[kn+1] =
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.

Proof. Since k1 = 0, the statement holds for t = 0. Now suppose the statement holds for all
t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , τn+1

−i )− v∗]
= E[kn+1] + E[ui(π

n+1
i , τn+1

−i )]− E[v∗]

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , τn+1

−i )]− v∗

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗

=
n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗

Proposition 30. A strategy π in an extensive-form game of perfect information is safe if and only
if it is expected-profit-safe.

Proof. If π is expected-profit-safe, then it follows that π is safe by similar reasoning to the proof
of Proposition 29.

Now suppose π is safe, but at some iteration t′ selects πt′ with exploitability exceeding kt′ ,
as defined in Definition 30; let e′ denote the exploitability of πt′ . Suppose the opponent had been
playing the pure strategy that selects action at−i with probability 1 at each iteration t for all t < t′,
and suppose he plays his nemesis strategy at time step t′ (and follows a minimax strategy at all
future iterations). Then our expected payoff is

t′−1∑
t=1

ui(π
t, at−i) + v∗ − e′

<
t′−1∑
t=1

ui(π
t, at−i) + v∗ − kt′

=
t′−1∑
t=1

ui(π
t, at−i) + v∗ −

(
t′−1∑
t=1

ui(π
t, at−i)− (t′ − 1)v∗

)
= t′v∗.

In Equation 13.2, we use Lemma 7 and the fact that E[kt
′
] = kt

′
, since the opponent played a

deterministic strategy in the first t′ − 1 rounds. We will obtain payoff at most v∗ at each future
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iteration, since the opponent is playing a minimax strategy. So π is not safe and we have a
contradiction; therefore π must be profit-safe, and we are done.

13.6.2 Extensive-form games of imperfect information
In extensive-form games of imperfect information, not only do we not see the opponent’s action
off of the path of play, but sometimes we do not even see his private information. For example,
in an auction we may not see the opponent’s valuation, and in a poker hand we will not see the
opponent’s private cards if he folds (while we will see them if neither player folds during the
hand). The extent to which his private information is revealed will in general depend on the rules
and information structure of the game. We consider the two cases—when his private information
is observed and unobserved—separately.

Setting where the opponent’s private information is observed at the end of the game

When the opponent’s private information is observed at the end of each game iteration, we can
play a procedure similar to Extensive-Form RWYWE. Here, we must pessimistically assume
that the opponent would have played a nemesis at every information set off of the path of play
(though we do not make any assumptions regarding his play along the path of play other than
that he played action at−i with observed private information θt−i). Pseudocode for this procedure
is given in Algorithm 27.

Algorithm 27 Safe exploitation algorithm for extensive-form games of imperfect information
where opponent’s private information is observed at the end of the game
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do

πt ← argmaxπ∈SAFE(kt)M(π)
Play action ati according to πt

The opponent plays action at−i with observed private information θt−i, according to unob-
served distribution πt−i

Update M with opponent’s actions, at−i, and his private information, θt−i
τ t−i ← strategy for the opponent that plays a best response to πt subject to the constraint

that it plays at−i on the path of play with private information θt−i
kt+1 ← kt + ui(π

t
i , τ

t
−i)− v∗

end for

Proposition 31. Algorithm 27 is safe.

Proof. Follows by identical reasoning to the proof of Proposition 29, using the new definition of
τ .

Definition 31. An algorithm for selecting strategies in extensive-form games of imperfect infor-
mation is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)
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at each time step t from 1 to T , where initially k1 = 0 and k is updated using the same rule as
Algorithm 27.
Proposition 32. A strategy π in an extensive-form game of imperfect information is safe if and
only if it is expected-profit-safe.

Proof. Follows by similar reasoning to the proof of Proposition 30, using the new definition of
τ .

Setting where the opponent’s private information is not observed

Unfortunately we must be extremely pessimistic if the opponent’s private information is not
observed, though it can still be possible to detect gifts in some cases. We can only be sure we
have received a gift if the opponent’s observed action would have been a gift for any possible
private information he may have. Thus we can run an algorithm similar to Algorithm 27, where
we redefine τ t−i to be the opponent’s best response subject to the constraint that he plays at−i with
some private information.

The approaches from this subsection and the previous subsection can be combined if we
observe some of the opponent’s private information afterwards but not all. Again, we must be
pessimistic an assume he plays a nemesis subject to the restriction that we plays the observed
actions with the observed part of his private information.

13.6.3 Gift detection and exploitation within a game iteration
In some situations, we can detect gift actions early in the game that enable us to do safe exploita-
tion even in the middle of a single game iteration. For example, an opponent may make a bet
size known to be suboptimal early in a poker hand.

As a second, concrete example, consider the extensive-form game where players play the
game depicted in Figure 13.7 followed by the game depicted in Figure 13.8. (The second game
is the first game with all payoffs doubled, so the extensive-form game is not quite the same as
just repeating the first stage game twice.) The unique stage-game equilibrium for both rounds
is for P1 to play up (U and u) and for P2 to play left (L and `). Down is strictly dominated
for P1, and is therefore a gift. P2 can exploit this gift by playing r in the second round if he
observes that player 1 has played D in the first round (since r outperforms ` against d). If P1 does
in fact play D in the first round, P2 gains at least 3, and P2 will risk at most 2 by playing r in
the second round; so this exploitation would be safe. The extensive-form representation is given
in Figure 13.9. All subgame perfect equilibrium strategies [104] for P2 involve him playing `
(`1/`2/`3/`4), while there exist safe exploitative strategies that put positive weight on r3 and r4.
Since subgame perfect equilibrium is the coarsest of the traditional equilibrium refinements, this
example demonstrates that our approach provides a new equilibrium refinement that differs from
all the traditional ones.

In general, one can use a variant of the Extensive-Form RWYWE update rule to detect gifts
during a game iteration, where we redefine τ t−i to be the opponent’s best response to πti subject to
the constraint that he has taken the observed actions along the path of play thus far. This allows
us to safely deviate from equilibrium to exploit him even during a game iteration.

192



L R
U 4 5
D 1 0

Figure 13.7: Payoff matrix for first stage game of extensive-form game where we can detect and
exploit a gift within a game iteration.

` r
u 8 10
d 2 0

Figure 13.8: Payoff matrix for second stage game of extensive-form game where we can detect
and exploit a gift within a game iteration.

13.7 Experiments

We ran experiments using the extensive-form imperfect-information variants of several of the
safe algorithms presented in Section 13.4. The domain we consider is Kuhn poker [76], a sim-
plified form of poker which has been frequently used as a test problem for game-theoretic algo-
rithms [31, 51, 53, 56, 71].

13.7.1 Kuhn poker

Kuhn poker is a two-person zero-sum poker game, consisting of a three-card deck and a single
round of betting. Here are the full rules:
• Two players: P1 and P2
• Both players ante $1
• Deck containing three cards: K, Q, and J
• Each player is dealt one card uniformly at random
• P1 acts first and can either bet $1 or check

If P1 bets, P2 can call or fold

− If P1 bets and P2 calls, then whoever has the higher card wins the $4 pot

− If P1 bets and P2 folds, then P1 wins the entire $3 pot

If P1 checks, P2 can bet $1 or check.

− If P1 checks and P2 bets, then P1 can call or fold.

· If P1 checks, P2 bets, and P1 calls, then whoever has the higher card wins
the $4 pot

· If P1 checks, P2 bets, and P1 folds, then B wins the $3 pot

− If P1 checks and P2 checks, then whoever has the higher card wins the $2 pot
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Figure 13.9: Extensive-form representation of a game where we can detect and exploit a gift
within a game iteration. X:Y denotes the Yth information set of Player X. Dotted lines tie together
nodes within an information set. At leaves of the game tree, the payoff of Player 1 is listed first,
followed by the payoff of Player 2.

The value of the game to player 1 is − 1
18
≈ −0.0556. For any 0 ≤ α ≤ 1 the following

strategy profile is an equilibrium (and these are all the equilibria) [76].
• P1 bets with a J in the first round with probability α

3

• P1 always checks with a Q in the first round
• P1 bets with a K in the first round with probability α
• If P1 bets in the first round, then:

P2 always folds with a J

P2 calls with a Q with probability 1
3

P2 always calls with a K
• If P1 checks in the first round, then:
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P2 bets with a J with probability 1
3

P2 always checks with a Q

P2 always bets with a K
• If P1 checks and P2 bets, then:

P1 always folds with a J

P1 calls with a Q with probability α
3

+ 1
3

P1 always calls with a K

Note that player 2 has a unique equilibrium strategy, while player 1 has infinitely many
equilibrium strategies parameterized by a single value (α). In our experiments, we play the role
of player 1 while the opponent plays the role of player 2.

Player 2 has four actions that are played with probability zero in his equilibrium strategy.
These actions are 1) calling a bet with a J, 2) folding to a bet with a K, 3) checking a K if player
1 checks, and 4) betting a Q if player 1 checks. The first three of these are dominated, while the
fourth is iteratively dominated. In this game, it turns out that the gift strategies for player 2 are
exactly the strategies that play at least one of these four actions with positive probability.

13.7.2 Experimental setup

We experimented using several of the safe strategies described in Section 13.4—RWYWE, Best
Equilibrium, BEFFE, and BEFEWP. For all algorithms, we used a natural opponent modeling
algorithm similar to prior work [32, 56]. We also compare our algorithms to a full best response
using the same opponent modeling algorithm. This strategy is not safe and is highly exploitable
in the worst case, but it provides a useful metric for comparison.

Our opponent model assumes the opponent plays according to his observed frequencies so
far, where we assume that we observe his hand at the end of each game iteration as prior work
on exploitation in Kuhn poker has done [56]. We initialize our model by assuming a Dirichlet
prior of 5 fictitious hands at each information set at which the opponent has played according to
his unique equilibrium strategy, as prior work in Texas hold ’em has done [32].

We adapted all five algorithms to the imperfect-information setting by using the pessimistic
update rule described in Algorithm 27. To compute ε-safe best responses, which is a subroutine
in several of the algorithms, we used the procedure described in Section 13.7.3. We ran the
algorithms against four general classes of opponents.
• The first class of opponent chooses a mixed strategy in advance that selects an action uni-

formly at random at each information set, then follows this strategy for all game iterations.
(Similar random opponents were used also in prior work when experimenting on Kuhn
poker [56]).

• The second opponent class is also static but more sophisticated. At each information set the
opponent selects each action with probability chosen uniformly randomly within 0.2 of the
equilibrium probability (recall that player 2 has a unique equilibrium strategy). Thus, these
opponents play relatively close to optimally, and are perhaps more indicative of realistic
suboptimal opponents. As in the first class, the strategy is chosen in advance, and played

195



in all iterations.
• The third class of opponents is dynamic. Opponents in this class play the first 100 hands

according to a uniform random mixed strategy that is chosen in advance, then play a true
best response (i.e., nemesis strategy) to our player’s strategy for the remainder of the match.
So, after the first 100 hands, we make the opponent more powerful than any real opponent
could be in practice, by assuming that the opponent knows our mixed strategy for that
iteration.

• Finally, the fourth class is the static unique Nash equilibrium strategy of player 2.
We ran all five algorithms against the same 40,000 opponents from each class. (For the

dynamic opponents, this means that we selected 40,000 different choices of the mixed strategy
σ′ that is played for the initial 100 iterations; for each of these choices, we ran each of the five
algorithms against an opponent algorithm that uses σ′ for the first 100 iterations, followed by a
best response to our strategy for the next 900 iterations.) Each match against a single opponent
consisted of 1,000 hands, and we assume that the hands for both players were dealt identically
for each of the algorithms against a given opponent (to reduce variance). For example, suppose
algorithm A1 is dealt a K and opponent O is dealt a Q in the first hand of the match. Then in the
runs of all other algorithms A against O, A is dealt a K and O is dealt a Q in the first hand. The
95% confidence intervals are reported for all experiments.

13.7.3 Algorithm for computing safe responses in extensive-form games
The following LP [72] efficiently computes a best response for player 1 to a given strategy y of
player 2 in a two-player zero-sum extensive-form game of imperfect information. This algorithm
utilizes the sequence form representation of strategies and runs in polynomial time.

maximizex xTAy

subject to xTET = eT

x ≥ 0

We modify this procedure as follows to compute an ε-safe best response for player 1 to
strategy y of player 2, where v1 is the value of the game to player 1 (and all matrices and vectors
are as defined by Koller et al. [72]). This new formulation is used as a subroutine in several of
the algorithms in the experiments.

maximizex xTAy

subject to xTET = eT

x ≥ 0

xTA ≥ −qF
q[0] = ε− v1
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13.7.4 Experimental results
The results from our experiments are given in Table 13.1. Against random opponents, the order-
ing of the performances of the safe algorithms was RWYWE, BEFEWP, BEFFE, Best Equilib-
rium (and all of the individual rankings are statistically significant using 95% confidence inter-
vals). Against sophisticated static opponents the rankings of the algorithms’ performances were
identical, and all results are statistically significant except for the difference between RWYWE
and BEFEWP. (Recall that the value of the game to player 1 is − 1

18
≈ −0.0556, so a nega-

tive win rate is not necessarily indicative of losing). In summary, against static opponents, our
most aggressive safe exploitation algorithm outperforms the other safe exploitation algorithms
that either stay within equilibrium strategies or use exploitation only when enough gifts have
been accrued to use full exploitation, and furthermore all of our new algorithms outperform Best
Equilibrium (which plays the best stage game equilibrium strategy at each iteration). Against the
dynamic opponents, our algorithms are indeed safe as the theory predicts, while the best response
algorithm does very poorly (and much worse than the value of the game). As a sanity check, the
experiments show that against the equilibrium opponent, all the algorithms obtain approximately
the value of the game as they should.

Table 13.1: Win rate in $/hand of the five algorithms against opponents from each class. The ±
given is the 95% confidence interval.

Opponent
Random Sophisticated static Dynamic Equilibrium

RWYWE 0.3636 ± 0.0004 -0.0110 ± 0.0004 -0.02043 ± 0.00044 -0.0556 ± 0.0004
BEFEWP 0.3553 ± 0.0004 -0.0115 ± 0.0004 -0.02138 ± 0.00045 -0.0556 ± 0.0004
BEFFE 0.1995 ± 0.0004 -0.0131 ± 0.0004 -0.03972 ± 0.00044 -0.0556 ± 0.0004

Best Equilibrium 0.1450 ± 0.0004 -0.0148 ± 0.0004 -0.03522 ± 0.00044 -0.0556 ± 0.0004
Best response 0.4700 ± 0.0004 0.0548 ± 0.0004 -0.12094 ± 0.00039 -0.0556 ± 0.0004

In some matches, RWYWE accumulates gifts throughout the match, and kt increases steadily.
An example of the graph of profit and kt for one such opponent is given in Figure 13.10. In this
situation, the opponent is frequently giving us gifts, and we quickly start playing (and continue
to play) a full best response according to our opponent model.

In other matches, kt remains very close to 0 throughout the match, despite the fact that profits
are steadily increasing; one such example is given in Figure 13.11. Against this opponent, we
are frequently playing an equilibrium or an ε-safe best response for some small ε, and only
occasionally playing a full best response. Note that kt falling to 0 does not necessarily mean that
we are losing or giving gifts to the opponent; it just means that we are not completely sure about
our worst-case exploitability, and are erring on the side of caution to ensure safety.

13.8 Summary and extensions

We showed that safe opponent exploitation is possible in certain games, disproving a recent (in-
correct) statement. Specifically, profitable deviations from stage-game equilibrium are possible
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Figure 13.10: Profit and kt over the course of a match of RWYWE against a random opponent.
Profits are denoted by the thick blue line using the left Y axis, while kt is denoted by the thin
green line and the right Y axis. Against this opponent, both kt and profits steadily increase.

in games where ‘gift’ strategies exist for the opponent, which we defined formally and fully
characterized. We considered several natural opponent exploitation algorithms and showed that
some guarantee safety while others do not; for example, risking the amount of profit won so far
is not safe in general, while risking the amount won so far in expectation is safe. We described
how some of these algorithms can be used to convert any opponent exploitation architecture into
a safe one. Next we provided a full characterization of safe algorithms for strategic-form games,
which corresponds to precisely the algorithms that are expected-profit safe. We also provided
algorithms and full characterizations of safe strategies in extensive-form games of perfect and
imperfect information.

In our experiments against static opponents, several safe exploitation algorithms significantly
outperformed an algorithm that selects the best Nash equilibrium strategy; thus we conclude that
safe exploitation is feasible and potentially effective in realistic settings. Our most aggressive
safe exploitation algorithm outperformed the other safe exploitation algorithms that use exploita-
tion only when enough gifts have been accrued to use full exploitation. In experiments against an
overly strong dynamic opponent that plays a nemesis strategy after 100 iterations, our algorithms
are indeed safe as the theory predicts, while the best response algorithm does very poorly (and
much worse than the value of the game).

The approach can also be used in settings where we do not have an exact game model—such
as in (cyber)security games—because we only need to lower bound the gifts that the opponent
has given us and upper bound the maximum expected loss from the exploitative action we are
planning to take currently. It can also be extended easily to the setting where we are able to lose
some amount δ > 0, as opposed to guaranteeing total safety.

Several challenges must be confronted before applying safe exploitation algorithms to larger
extensive-form games of imperfect information, such as Texas hold ’em poker. First, the best
known technique for computing ε-safe best responses involves solving a linear program on par
with performing a full equilibrium computation; performing such computations in real time, even
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Figure 13.11: Profit and kt over the course of a match of RWYWE against a random opponent.
Profits are denoted by the thick blue line using the left Y axis, while kt is denoted by the thin
green line and the right Y axis. Against this opponent, kt stays relatively close to 0 throughout
the match, while profit steadily increases.

in a medium-sized abstracted game, is not feasible in Texas hold ’em. Perhaps the approaches
of BEFEWP and BWFEE, which alternate between equilibrium and full best response, would be
preferable to RWYWE in such games, since a full best response can be computed much more
efficiently in practice than an ε-safe best response. In addition, perhaps performance can be
improved if we integrate our algorithms with lower-variance estimators of our winnings due to
the opponent’s mistakes [14, 122, 124].
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Part V

Conclusion
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Chapter 14

Reiteration of Game-Solving Challenges

Designing strong agents in multiagent strategic settings is a challenging problem for several rea-
sons. First, there is a fundamental conceptual challenge: in games with more than two players
and games that are not zero sum, there is no theoretical justification for why an agent should fol-
low a Nash equilibrium strategy. There may exist many Nash equilibria, each yielding different
payoffs to the different agents; if we follow one equilibrium while the opponents follow a differ-
ent one, we can perform arbitrarily poorly; and even if all agents follow the same equilibrium as
we have computed, one agent’s deviation could reduce our payoff in addition to his own. Even
in two-player zero-sum games, refinements of the Nash equilibrium concept have been proposed
that are desirable in various ways, and it is not clear that simply following an arbitrary Nash
equilibrium is the best thing to do, even ignoring the aspect of opponent exploitation.

Second, even if we decided that a Nash equilibrium was the correct solution to compute,
computing one is hard from a complexity-theoretic perspective in many important game classes.
It is PPAD-hard in games with more than two players and non zero-sum games, even for strategic-
form games, and therefore it is widely conjectured that no polynomial-time algorithms exist.

Third, even for classes where computing a Nash equilibrium can be done theoretically in
polynomial time, such as two-player zero-sum extensive-form games of imperfect information,
it can be extremely difficult to compute, or even approximate, one in practice for many interesting
games, due to their massive state spaces. For example, a popular variant of poker—two-player
no-limit Texas hold ’em—has around 10165 nodes in its game tree, while the best exact algorithm
(linear program) scales to approximately 108 states, and the best algorithms for approximating
an equilibrium scale to approximately 1017 states.

And fourth, even if we were able to compute a Nash equilibrium for game classes where it is
a compelling solution concept—e.g., two-player zero-sum games—we could potentially achieve
a significantly higher payoff by learning to exploit weaknesses of opponents than by following
equilibrium strategies in each round. Ideally we would like to perform such opponent exploita-
tion in a robust way that performs well even against strong, potentially deceptive opponents.
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Chapter 15

Contributions

I have presented new approaches and paradigms that address these challenges. The leading
paradigm for solving large imperfect-information games consists of three main components—
abstraction, equilibrium computation, and reverse mapping. The approaches within this para-
digm are geared at addressing the third main game-solving challenge: that of approximating
equilibrium strategies in settings that are too large to apply polynomial-time algorithms.

I have presented new approaches for each step of the paradigm. I presented the first algorithm
for performing potential-aware imperfect-recall abstraction using the earth-mover’s distance met-
ric. I presented a new hierarchical abstraction algorithm that enables massive distributed equilib-
rium in large imperfect-information games. I presented a new algorithm for translating actions
for the opponent that have been removed from the action abstraction. I presented new post-
processing techniques that improve performance in a variety of domains. And I presented algo-
rithms for approximating equilibrium strategies in multiplayer stochastic imperfect-information
games. Many of these approaches were utilized by our two-player no-limit Texas hold ’em agent
that won the 2014 AAAI Annual Computer Poker Competition.

I have also presented two new game-solving paradigms. The first involves solving relevant
portions of the game that we have actually reached in real time to a greater degree of accuracy
than the abstract approximate equilibrium strategies that have been computed offline. I presented
theoretical analysis that shows that this approach can produce highly exploitable strategies in
certain games, while it guarantees low exploitability in others. I described several clear ben-
efits provided by endgame solving in large imperfect-information games, and presented an ef-
ficient algorithm for conducting it that is significantly more efficient than the naı̈ve approach
(that approach would require O(n2) lookups in the strategy table, while our approach requires
O(n)). I showed that utilizing this paradigm leads to significantly stronger performance against
the strongest prior no-limit Texas hold ’em agents.

The second new paradigm leverages qualitative representations of the structure of equilib-
rium strategies to improve the speed of equilibrium finding. I presented a complete algorithm
that guarantees computing an equilibrium assuming one of a set of qualitative representations
correctly describes the structure of equilibrium strategies. I presented a set of three qualitative
strategy models that describe equilibrium strategies for the final round of limit Texas hold ’em
given any distribution of private information for the agents as input. In addition to leading to
faster equilibrium-finding algorithms, this paradigm can be used to represent and extract knowl-
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edge from strategies that is human understandable. The approaches in the leading paradigm
typically produce strategies that are represented as massive binary files and unintelligible hu-
mans. Simple qualitative model representations of these complex strategies can lead to improved
human understanding and decision making.

To address the fourth game-solving challenge, I presented a new algorithm for opponent
modeling in large imperfect-information games that successfully learns to exploit a variety of
opponents very quickly. I also presented new algorithms for performing opponent exploitation
safely that guarantee strong performance even against strong dynamic opponents. These algo-
rithms can be viewed as meta-procedures that take any opponent modeling algorithm as an input,
and ensure safety by restricting the amount we risk attempting to do the exploitation.

The approaches are domain independent. Many of them have been benchmarked in well-
studied challenge problems, such as no-limit Texas hold ’em, for concreteness; however they
apply to very broad classes, which include many important situations beyond those considered.
For example, most of the approaches apply to any extensive-form imperfect-information game.

While most of the approaches are presented in the context of two-player zero-sum games,
they are also applicable to multiplayer games and games that are not zero sum, which addresses
the first and second challenges. Many of the approaches are applicable to these games directly
with no modification of the analysis needed: for example, the abstraction, translation, and post-
processing algorithms. The qualitative model approach is also applicable with a modification
of analysis, which is presented. The opponent exploitation algorithm would be applicable if we
store observations of joint opponent action profiles, since best responses to given strategies can
be computed efficiently in these game classes. The endgame solving approach would also be
directly applicable to games with more than two agents if the resulting endgames contain only
two agents: this is often the case, for example, in many popular poker variants, where there may
be 6 or 9 players at the table to start the hand, but only 2 players remain in the hand after the first
or second round of betting. Endgame solving could take any distribution of private information
as inputs for the two-player endgame, regardless of the number of agents who were present ini-
tially. I expect this approach to be extremely useful for future research in games with more than
two agents, as it is more difficult to compute strong game-theoretic strategies offline, and real-
time solving of specific portions of the tree will be important. Endgame solving would also be
applicable to endgames containing more than two agents if an equilibrium-finding algorithm is
available that solves such games effectively. Furthermore, for any of these game sizes, endgame
solving can take arbitrary distributions of private information for the agents as inputs; in particu-
lar, one need not input the distributions induced from the precomputed approximate equilibrium
strategies using Bayes’ rule, and could input an opponent model that differs significantly from
equilibrium. Thus, endgame solving can be an extremely useful tool for opponent exploitation,
in addition to the initial use of approximating equilibrium strategies.

The equilibrium-finding algorithms presented also apply directly to games with more than
two agents, though they do not have guarantees of convergence to equilibrium. Both the dis-
tributed equilibrium-solving algorithm for imperfect-information games and the algorithms for
stochastic imperfect-information games can be applied directly to games with more than two
agents: for the latter, we show that the algorithms can never converge to a non-equilibrium
(though they are not guaranteed to converge at all), and we experimented on a three-player
game. Variants of counterfactual-regret minimization similar to the distributed algorithm have
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been demonstrated to be very successful in large imperfect-information games, though the main
theoretical result thus far is relatively modest: that the computed strategies are guaranteed to not
put weight on dominated actions or strategies [39]. I also presented experimental results for the
qualitative model algorithm on a three-player imperfect-information game.

The safe exploitation algorithms can also be applied to games with more than two agents;
however, they would have to substitute the maximin value for the game value in all of the al-
gorithms and theoretical guarantees, since the game value is not defined for these games. The
maximin value is the payoff that can be guaranteed in the event of worst-case opponents. In
general playing a maximin strategy that guarantees this payoff would be very conservative, and
therefore the new theoretical guarantees would be significantly more modest than in the two-
player zero-sum setting.
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Chapter 16

Future Research

I conclude by outlining several key problems for future study that this thesis paves the road for.
1. What is the “right” game-theoretic solution concept for multiplayer and non zero-

sum games, and to what extent will this depend on the particular game or game class?
Nash equilibrium has no theoretical justification in these game classes, and playing one
could perform arbitrarily poorly at least in theory against certain opponents in certain
games. Empirically, agents that are computed using algorithms that aim to approximate
Nash equilibrium strategies have performed well in the 3-player limit Texas hold ’em poker
competition [39], though there have not been many participants traditionally in that divi-
sion. I personally believe that an agent that followed Nash equilibrium strategies would
perform extremely well in variants of poker with more than two players: this opinion is
largely based on my experience as a professional high-stakes poker player who has spe-
cialized in variants with more than two players. There has been significant recent interest
in game-theoretic analysis within the poker community for multiplayer variants of poker,
e.g., [4, 57].

2. What is the “right” refinement of Nash equilibrium for both two-player zero-sum
games and for multiplayer/non zero-sum games, and to what extent will this depend
on the particular game or game class?
I have shown that undominated Nash equilibrium is a useful concept in certain interesting
games, that both it and ε-quasi perfect equilibrium can be computed efficiently in practice
in large imperfect-information games, that both can be efficiently integrated with endgame
solving, and that preliminary experiments indicate that undominated equilibrium improves
performance in practice for endgame solving.
It would be interesting to run more experiments with these, both in poker and in other
domains, to understand better when they improve performance over computing just a Nash
equilibrium. It would also be interesting to examine whether algorithms can be devised for
other refinements (e.g., proper equilibrium) that will scale to large games.
I think that we are very far from understanding the correct equilibrium refinement concept
in even the simplest possible no-limit poker game. I have described the Clairvoyance game
in Section 7.2.1, and presented the infinite set of equilibrium strategies in Section 7.5. I
argued that a particular equilibrium is compelling: the one where we call a bet of size
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x with probability 1
1+x

for all x (this is the same equilibrium that has previously been
computed by Ankenman and Chen for this game [4]). The intuition for why I believe
this is compelling is that if the opponent bets x, as opposed to the “optimal” size n that
he should bet in equilibrium, then a reasonable deduction is that he isn’t even aware that
n would have been the optimal size, and believes that x is optimal. Therefore, it would
make sense to play a strategy that is an equilibrium in the game where the opponent is
restricted to only betting x (or to betting 0, i.e., checking). Doing so would correspond to
the particular equilibrium that I have prescribed. The other equilibria pay more heed to the
concern that the opponent could exploit us by deviating to bet x instead of n; but in fact,
I argue that we need not be as concerned about this possibility, since a rational opponent
who knew to bet n would not be betting x.
Interestingly, the equilibrium I have singled out as being compelling does not coincide to
any traditional Nash equilibrium refinements. One popular refinement is the normal-form
proper equilibrium (NFPE). Based on personal communication with Troels Sørensen and
Jiřı́ Čermák, we have computed the unique NFPE for the clairvoyance game where player
1 is allowed to bet 0, 1, or 2. It differs from the equilibrium I propose; in the NFPE P2
calls vs. a bet of 1 with probability 5

9
, while in the one I prescribe above he calls with

probability 1
2
.

I believe that all of the (infinitely many) equilibria for this game satisfy each of the popular
refinement concepts besides NFPE. So, the one I believe is compelling does not coincide
with traditional solution concepts, and perhaps this will motivate a new refinement concept
that can be computed efficiently.

3. Can we develop approaches for approximating Nash equilibrium in multiplayer and
non zero-sum games that work well in practice?
I have presented algorithms that provably compute ε-equilibrium strategies in a 3-player
poker tournament endgame. However, I cannot prove that these algorithms will always
converge, and I have not experimented with them on other games. Other algorithms based
on counterfactual regret minimization have been successfully applied to other variants of
poker, e.g., [1, 39]. However, it is not clear whether the strategies that they compute are
close to Nash equilibrium. Counterfactual regret minimization has been shown to converge
to equilibrium in some games, but to not converge in others.

4. Can we develop improved theoretical guarantees for existing algorithms for approxi-
mating Nash equilibrium in multiplayer non zero-sum games?
For the algorithms that I have presented for multiplayer stochastic imperfect-information
games, I prove that if they converge, then the resulting strategies are guaranteed to be
an equilibrium. Recent work shows that the strategies output by counterfactual regret
minimization are guaranteed to not contain any dominated actions [39]. It would be nice
to prove stronger theoretical results for these algorithms, at least for certain interesting
game classes.

5. Can we develop practical abstraction algorithms with theoretical guarantees or pro-
vide theoretical guarantees for existing algorithms?
The main abstraction algorithms that have been successful in practice for agents in large
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imperfect-information games are heuristic and have no theoretical guarantees. It is ex-
tremely difficult to prove meaningful theoretical guarantees when performing such a large
degree of abstraction, e.g., approximating a game with 10165 states by one with 1014 states.
There has been some recent work done on abstraction algorithms with theoretical guaran-
tees, though that work does not scale to games nearly as large as no-limit Texas hold ’em.
One line of work performs lossless abstraction, that guarantees that the abstract game is
exactly isomorphic to the original game [44]. This work has been applied to compute equi-
librium strategies in Rhode Island hold ’em, a medium-sized (3.1 billion nodes) variant of
poker.
Recent work has also presented the first lossy abstraction algorithms with bounds on the
solution quality [75]. However, the algorithms are based on integer programming formu-
lations, and only scale to a tiny poker game with a 5 card deck.
It would be very interesting to bridge this gap between heuristics that work well in prac-
tice for large games with no theoretical guarantees, and the approaches with theoretical
guarantees that have more modest scalability.

6. Can we provide a theoretical proof that purification leads to improved performance
in 4x4 matrix games with uniform [-1,1] payoffs, and can we generalize this result?
In Section 8.4 I demonstrated, via simulation, that applying purification to the equilibrium
of a random 3 × 3 abstraction improves performance with statistical significance against
the full equilibrium strategy for the 4 × 4 game. It would be interesting to prove this
formally and to generalize the result to games of arbitrary dimension.
In Observation 1 I described an observation on the specific structure of the games where
purification improves performance. Again this observation was based purely on simula-
tions, which were statistically significant, and I would like to prove this, and generalized
versions, theoretically.

7. Why do post-processing approaches such as purification and thresholding improve
performance in practice?
While experiments show that the new post-processing techniques I have presented consis-
tently improve performance across several domains and against many different opponents,
the theoretical reason for this observed improvement is unclear. There are two main hy-
potheses that come to mind. First, as described in Chapter 8 and depicted in Figure 8.1,
there is an overfitting phenomenon, as the full-game exploitability of strategies computed
by an equilibrium-finding algorithm within an abstraction may increase, despite the fact
that the exploitability within the abstraction continues to decrease. The post-processing
techniques can help mitigate this overfitting by adding preference for higher-probability
actions since it may be better to generally extrapolate that the actions are “good” than to
try to infer the specific probabilities from the abstract equilibrium.
A second hypothesis is that the techniques compensate for the failure of iterative approxi-
mate equilibrium-finding algorithms to fully converge within given amounts of time. For
example, as described in Section 10.2.1, our 2012 no-limit Texas hold ’em agent had an
exploitability of 800 milli big blinds per hand (mbb/h) even within the abstract game [33]
(by comparison, an agent that folds every hand would only have an exploitability of 750
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mbb/h). When the equilibrium-finding algorithms are far from convergence, they may still
place significant probability mass on “bad” actions. For instance, if the computed strate-
gies say to take an action with probability 0.08, it is very reasonable to assume (though
of course not certain) that the probability would have fallen to 0 had we run the algorithm
longer.
It would be interesting to distill out which of these factors is most influential behind the
successful performance of the approaches. My personal belief is that the latter issue, on
the convergence of equilibrium-finding algorithms, plays a bigger role. This is based on
empirical observations that the algorithms take an extremely long time to converge on the
games of the magnitude currently being solved, and often produce strategies with high
exploitability even within the abstraction, as described above.
However, the fact that the techniques improve performance even in small matrix games
and the smaller Leduc hold ’em poker variant, where the equilibrium finding is exact and
therefore the above issue does not arise, implies that the convergence issue is not the only
explanation for the observed improvement, and overfitting is certainly likely to play at least
some role.
Geoff Gordon has recently proposed a third hypothesis related to covariances and strategy
divergence that could also help explain the observed performance improvement; this merits
further study as well.

8. Is our action translation mapping “optimal?”
The new action translation mapping I presented in Chapter 7, the pseudo-harmonic map-
ping, produced the lowest exploitability in all of the games considered. Not surprisingly
it produced zero exploitability in the small game from which it was derived (the clairvoy-
ance game). It also produced by far the lowest exploitability in Kuhn poker for a variety of
stack sizes and action abstractions, and for no-limit Leduc hold ’em for a popular action
abstraction. Alarmingly however, the exploitability was still relatively far from zero for
the latter game, despite being lower than the exploitabilities of the other approaches.
There are three possible explanations for this. First, it is possible that better translation
mappings exist that would produce lower exploitability given an action abstraction. Sec-
ond, it is possible that no better translation mappings exist, and that no mapping can pro-
duce lower exploitability using the particular action abstraction in Leduc hold ’em, and
that the high exploitability is simply due to the abstraction being very coarse. And third, it
is possible that no mappings within our framework of action translation can produce lower
exploitability when paired with this action abstraction; however, different frameworks of
approaches might improve performance. For example, our framework only allows the
translation mapping to consider the two neighboring action sizes in the action abstraction,
and not any additional game state information. Furthermore, for poker, it restricts the
agent to always check or call in response to a bet that is mapped down to zero, to always
go all-in ourselves in response to a bet that is mapped to an all-in, and to get confused
sometimes when we get “off-tree” after translating opponent actions, which causes us to
have a misperception of the pot size. While our solutions for these issues are natural, it
is possible that more complex frameworks can address them even better, preferably in a
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theoretically-principled way.
Regarding the first point, I would be very surprised if a better mapping within the frame-
work described than the pseudo-harmonic mapping existed, due to the theoretical results
and derivation from analytical solutions of fundamental poker games. This could be as-
sessed conclusively for the no-limit Leduc issue posed above. I have formulated a linear
program that computes the “optimal” translation mapping, given a particular action ab-
straction and an abstract equilibrium. Implementing and applying this would determine
whether our approach is optimal within the class of translation mappings, or whether bet-
ter mappings exist.
Regarding the second point, I think that the action abstraction of fold-pot-call-allin in this
game is extremely coarse, and am not surprised if even the strategy with lowest exploitabil-
ity within that abstraction still has high full-game exploitability.
Regarding the third point, I think addressing these other fundamental limitations of the
action translation framework is a very interesting and important direction for future study.
While the approaches which I have described above have worked well so far in practice for
no-limit Texas hold ’em, they are somewhat game-specific and not theoretically principled,
and it would be nice to explore other domains and gain a better theoretical perspective of
these issues.
It would also be very interesting to consider additional action translation axioms; per-
haps there exist further natural axioms that only the pseudoHarmonic mapping satisfies
(currently the randomized arithmetic mapping also satisfies all the axioms, though it has
extremely high exploitability in certain games, which we show). Separately, it would be
interesting to consider whether this mapping is optimal for certain general game classes.

9. Solving the “off-tree problem.”
The “off-tree problem,” which is discussed in Section 10.2.4, occurs when the opponent
has taken an action outside our action abstraction which we have had to translate back to
an action in the abstraction. Even if we are using a very sophisticated action translation
mapping, such a mapping will still abstract away relevant game state information. For ex-
ample, in poker, the agent’s perception of the pot size will be incorrect after translating an
action for the opponent outside the betting tree. See Section 10.2.4 for a specific example
of this phenomenon. Some agents, such as prior versions of the University of Alberta’s
Hyperborean agent, attempt to mitigate this problem by specifically taking actions aimed
to get us back on the tree (e.g., making a bet that we would not ordinarily make to correct
for the pot size disparity described above). However, this is problematic too, as it requires
us to take an undesirable action.
The endgame solving approach I have presented provides a solution to this problem by
inputting the correct pot size to the endgame solving algorithm in the case of poker, even
if this differs from what our perception of it was at that point due to the opponent taking
an action outside of the action abstraction. In general, real-time endgame solving could
correct for any misperceptions in game state information that have been accumulated along
the course of game play.
However, this solution would only apply to the endgames. This would not apply to the
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trunk portion of the game prior to the endgames, or if we are not applying endgame solv-
ing at all. It would be interesting to explore additional approaches geared specifically at
addressing the off-tree problem independently of endgame solving.

10. Does endgame solving decrease exploitability in no-limit Texas hold ’em endgames?
As I pointed out, endgame solving has theoretical limitations and can significantly in-
crease exploitability in certain games, even in games with a unique equilibrium and single
endgame. However, I showed that it produces low exploitability in other games, and I de-
scribed several further theoretical benefits in Section 10.2. While it improved performance
empirically in no limit Texas hold ’em endgames, it is not clear if it reduced exploitability.
I personally believe that our endgame solving algorithm leads to a significant decrease in
exploitability in the no-limit Texas hold ’em endgames. The main intuition the fact that we
compute an exact equilibrium (within an extremely good and fine-grained abstraction, both
for states of information and actions), which would guarantee that our strategies would
be well-balanced for all action sizes; i.e., our ratios of “value bets” with strong hands to
“bluffs” with weak hands would be appropriate for all bet sizes, and our calling frequencies
with mediocre hands would be similarly appropriate (e.g., as indicated by reasoning along
similar lines to the analysis presented in Section 7.5). By contrast, currently the strategies
output by counterfactual regret minimization can be arbitrarily “unbalanced” for particular
bet sizes, though they are of course guaranteed to be an exact equilibrium in the limit as
the algorithm converges. The opponent can significantly exploit us in this case by, e.g.,
betting the specific size at which our strategies are most “unbalanced.”
It seems difficult to assess the exploitability of the approach in no-limit Texas hold ’em
endgames, as a full-game best response calculation is infeasible. One idea would be to
compute the exploitability of the original strategies (not involving endgame solving) just
within the abstraction in the endgames. Endgame solving guarantees an exact equilibrium
within the abstract endgame, since it is using an exact equilibrium solver. If the original
strategies have extremely high exploitability within the abstract endgames, that would in-
dicate that they likely have extremely high exploitability in the full game as well (if the
original strategies constituted an exact equilibrium, then they would be guaranteed to have
exploitability zero in the endgames induced by following the original strategies for the
trunk). Though it would not be clear what threshold to use for determining whether the
exploitability within the abstract endgames is high or low. This comparison would not
conclusively indicate whether endgame solving improves exploitability, but an extremely
high value for this quantity would provide compelling evidence that it does.
Many strong human poker players use algorithms akin to our endgame solving algorithm
to improve their abilities. For example, a software program calls GTORangeBuilder solves
endgames determined by distributions of private information for both agents specified by
the user [52]. This program was created subsequently to the first version of our work
on endgame solving, and is significantly less sophisticated; e.g., it restricts the agents
to follow a much coarser action abstraction algorithm than our approach scales to. This
tool illustrates several of the key extensions of endgame solving that I have described in
Chapter 15: that it can apply to games with more than two agents as long as only two
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remain in the endgame, and that it can take any distribution of private information as input,
and can therefore be utilized for opponent exploitation in addition to the initial goal of
approximating equilibrium strategies.

11. Techniques for computing best responses and exploitability in imperfect-recall games
As described above, it is not feasible to compute best responses in extremely large imper-
fect-information games, and it is particularly challenging in games with imperfect recall
(the abstraction algorithms used by the strongest agents have imperfect recall). This makes
it extremely difficult to assess the strength of strategies we have computed other than by
just examining their performance against other agents. A recent breakthrough allowed for
best response computation in the limit Texas hold ’em variant [66] (though the need for
such computation has been diminished due to recent computation of near exact equilibrium
strategies for that variant [15]), though approaches that are scalable to no-limit Texas hold
’em even using coarse action abstractions have been evasive.

12. For what games and decompositions does endgame solving improve performance?
I have presented an example game in which endgame solving leads to a significantly high
exploitability, an example game where it leads to zero exploitability, and demonstrated its
usefulness in practice in no-limit Texas hold ’em using endgames consisting of the final
betting round. I have presented a general framework for assessing its usefulness in general
games given a decomposition of the game into a trunk and endgames in Section 10.1.
It would be interesting to apply this framework to different domains and subdivisions to
understand better when and why it is helpful.

13. Developing improved variance-reduction techniques
One major challenge for large-scale game solving is developing efficient procedures for
evaluating agent performance. No-limit Texas hold ’em in particular has an extremely large
variance, and it often requires many samples of play to evaluate performance with statisti-
cal significance. This is particularly challenging for agents that take significant amounts of
time by performing real-time computation (e.g., by applying endgame solving or real-time
opponent exploitation algorithms).
We have developed a new variance reduction procedure, which is described in Section 10.6,
that is specifically geared towards reducing variance in the evaluation of an endgame
solving algorithm. It works by comparing the performance between the base agent and
endgame solving agent only over the sample of hands where both make it to an endgame
(we show that only considering the hands where they make it to the same endgame would
be biased). We showed that we were able to obtain statistical significance for the perfor-
mance improvement of our endgame solving algorithm over the base strategy using this
new variance-reduction technique, while we would not have using the prior approach over
that sample, even utilizing the traditional “duplicate” variance-reduction procedure (where
all hands are duplicated with the cards reversed). It would be interesting to explore im-
proved variance-reduction procedures specifically geared towards endgame solving; for
example, I strongly suspect that the new approach I presented can be integrated with a
variant of duplicate scoring to reduce variance further in this setting. Perhaps further im-
provement can be achieved by integrating our technique with other more sophisticated
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approaches, such as DIVAT and MIVAT [122, 124]. Without such approaches, it is ex-
tremely difficult to assess endgame solving approaches with statistical significance (for
instance, I was not able to obtain statistical significance when evaluating the integration of
equilibrium refinement techniques with endgame solving described in Section 10.7.4 for
this reason), and it will be very difficult to make research advances on this front.
It would also be extremely useful to develop improved variance-reduction techniques that
are not specific to endgame solving. For example, there has been discussion recently of
adding a new 6-player no-limit Texas hold ’em variant to the AAAI Annual Computer
Poker Competition. However, the main concern is that it would be extremely difficult to
obtain statistical significance. I think there are many interesting research challenges in this
area. For instance, how to select optimal permutations of the agents, how many to select,
and whether duplicate scoring or existing variance-reduction approaches can be integrated.

14. Is our opponent modeling algorithm DBBR effective in other domains?
I presented a new domain-independent algorithm that effectively models and exploits op-
ponents in extremely large imperfect-information games. The algorithm computes an ap-
proximate equilibrium strategy that is used as a prior, and constructs an opponent model
by computing the “closest” strategy for the opponent to this prior subject to additional
constraints that his strategy conforms to our observations of his play thus far (i.e., the
frequencies with which he has taken each action at every history of publicly observable
actions), using an appropriate distance metric.
This seems like a natural approach to apply to many domains, particularly those where
there is limited historical data available for the set of opponents we wish to play against,
and we must utilize a prior model that does not have access to such data.
An alternative approach for this setting would be to model the opponent as playing the
strategy with maximum entropy that matches our observations of his play thus far. This
approach could be preferable to DBBR if we expect the opponent strategy to be extremely
far from the prior strategy we have precomputed, or if we are unable to compute a good
prior strategy. It would be interesting to explore connections between these approaches
and experiment in different settings.
It would also be interesting to consider extensions of DBBR to the setting where we can
precompute several approximate equilibrium strategies in advance, as opposed to just one.
We would then need to develop a technique to compute the strategy for the opponent that
is closest to this set of strategies subject to our observations (as opposed to minimizing dis-
tance from just a single strategy). We could even further extend this approach by allowing
for sets of prior strategies that are not all necessarily approximate equilibrium strategies
(for instance, we could have a set of opponent models that has been precomputed from
historical data).

15. Can we design robust exploitation approaches that perform well against a population
consisting of a mixture of weak opponents and strong dynamic ones?
Our algorithm DBBR was designed to specifically exploit static weak opponents, and ad-
mittedly could perform extremely poorly against strong dynamic opponents. This is true
of many pure exploitation algorithms. For example, a recent effective approach for online
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exploitation that uses regret minimization between several precomputed strategies often
does extremely well at exploiting weak opponents in the competition, but is not competi-
tive against the strong agents [8]. Our safe exploitation approaches are not scalable yet to
games of this size, primarily because of the challenge of computing ε-safe best responses
efficiently in real time.
Developing scalable algorithms that exploit mistakes of weak opponents and also perform
well against strong, potentially dynamic opponents is a very important problem. As de-
scribed above, endgame solving can be utilized for exploitation in addition to its initially
proposed use for approximating equilibrium, and it performs such exploitation in an inher-
ently robust way, as it is computing equilibrium strategies in an induced endgame given
strategies for both agents (that can possibly be computed via the application of an opponent
modeling algorithm) as inputs. I think that the integration of ideas from the approaches
of endgame solving, DBBR, and the algorithms I have presented for safe exploitation can
lead to significant progress on this problem.

16. Can we develop a principled approach for generating strong game-theoretic strate-
gies that are human understandable?
The strategies typically computed for large games are represented as massive binary files
and totally unintelligible to humans. One important by-product of the work I presented
in Chapter 11 is that often the structure of equilibrium strategies can be represented in a
very compact, human-understandable format. I presented three qualitative models that,
together, describe the equilibrium strategies for final-round endgames for the limit variant
of Texas hold ’em for any input card distributions that were encountered in practice (where
the input card distributions were computed by applying Bayes’ rule to the approximate
equilibrium strategies that were precomputed in advance). Such representations can make
equilibrium strategies more accessible to humans, thereby leading to improved human
decision making.
I would like to explore more general principled approaches for computing strategies that
are human understandable that extend far beyond poker. One simple approach I investi-
gated for matrix games was to compute an equilibrium refinement corresponding to the
Nash equilibrium with minimal support; intuitively we would expect strategies with small
support to be easier to represent and understand. However, even this problem proved to
be very difficult, and the integer-program formulation I devised and implemented had an
extremely high running time even in very small games. I suspect that even this seemingly
simple problem is computationally intractable even for two-player zero-sum strategic-form
games.

17. Can we develop a small set of qualitative models for no-limit Texas hold ’em like we
did for limit Texas hold ’em endgames?
I developed a set of qualitative models that describe equilibrium strategy in limit Texas
hold ’em endgames. It would be very interesting to see if similar analysis could devise
models for no-limit Texas hold ’em, based on the strategies that were computed by our
champion agent from the 2014 competition. No-limit Texas hold ’em is a much more pop-
ular variant for humans than limit, and this would potentially have significant impact and
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interest within the human poker-playing community. However, it is much more challeng-
ing, because we would need to incorporate different betting sizes into the model (limit just
has a single fixed size), represent our action facing all possible bet sizes for the opponent,
etc. However, I still suspect that good compact representations exist for this problem.

18. Can we develop improved opponent modeling and exploitation algorithms that lever-
age large amounts of historical data?
Our exploitation DBBR was specifically designed for the setting where no historical data
was available for the class of opponents we expected to encounter. However, in many cases,
some amount of historical data is available, and we would like to devise approaches that
are able to capitalize on it. As one obvious modification, we could simply revise DBBR
to utilize any prior strategy for the opponent, not necessarily an approximate-equilibrium
strategy. For example, if we are able to compute a “population average” strategy for the
pool of opponents we expect to encounter based on historical data, we could use this as the
prior. More sophisticated approaches could use a full distribution of strategies as the prior
and posterior opponent models as opposed to single point estimates.
The related work of Bard et al. described above [8] takes into account historical data to
an extent: it constructs a small set of exploitative strategies from computing responses
to specific opponent strategies based on this data, which it selects between in real time.
However, the historical data is not utilized in real time in terms of Bayesian reasoning in
constructing the opponent model.
It would very be interesting to consider approaches that are able to incorporate historical
data effectively online within the Bayesian setting.

19. Can effective opponent modeling algorithms be developed for the settings where the
opponent’s private information is never, sometimes, or always revealed after a game
iteration?
Various research on imperfect-information games has made various assumptions about the
revelation of private information about the opponent. For example, our exploitation al-
gorithm DBBR assumed that we never observed the opponent’s private information after
a hand, while for the experiments for our safe exploitation algorithms in Kuhn poker we
assumed the opponent’s private information was always revealed. This variability in mod-
eling has made the literature on this problem somewhat disorganized and complicates the
problem of comparing different approaches.
Future research should develop approaches that apply to all settings. For example, in
poker, the opponent’s private information is actually revealed if both agents make it to the
“showdown” (which occurs if neither player has folded in any betting round), while the
opponent’s private information is not revealed if a player has folded. (In the historical log
files from previous competitions however, the private information of all agents is listed
regardless of the betting sequence, and therefore exploitation algorithms that utilize histor-
ical data would be able to leverage data labels for this domain.) Thus, effective approaches
should be developed that apply if the opponent’ private information is not revealed, but are
able to capitalize on it further when it is revealed. While neither our implementation of
DBBR nor the safe exploitation algorithms apply to this setting, the approaches could be
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modified for this setting in various ways. The safe exploitation algorithms would need to
make extremely pessimistic assumptions about the opponent in this setting (which are de-
scribed in Section 13.6.2), which would likely make them far too conservative in practice.
One approach that would enable DBBR to apply to this setting would be to set the opponent
model to be the deterministic action that was observed with the given private information
if it was revealed (and to randomize according to the frequencies of observation if multiple
actions have been observed), and if it was not revealed to follow the existing approach.
Improved algorithms can also integrate existing approaches that have been developed for
evaluating strategies using importance sampling [14].
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University, May 2006.

[4] Jerrod Ankenman and Bill Chen. The Mathematics of Poker. ConJelCo LLC, 2006.

[5] C. Archibald and Y. Shoham. Modeling billiards games. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Budapest,
Hungary, 2009.

[6] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[7] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal of Computing, 32:48–77, 2002.

[8] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online implicit agent
modelling. In Proceedings of the International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2013.

[9] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-theoretic optimal strategies for
full-scale poker. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[10] Johannes Bisschop. AIMMS—Optimization Modeling. Paragon Decision Technology,
2006.

[11] Liad Blumrosen, Noam Nisan, and Ilya Segal. Auctions with severely bounded commu-
nication. Journal of Artificial Intelligence Research, 28:233–266, 2007.

[12] Jim Blythe, Aaron Botello, Joseph Sutton, David Mazzaco, Jerry Lin, Marc Spraragen,
and Mike Zyda. Testing cyber security with simulated humans. In Innovative Applications
of Artificial Intelligence (IAAI), pages 1622–1627, 2011.
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