
Early Implementation Experience with
Wearable Cognitive Assistance Applications

Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, Brandon Amos
Padmanabhan Pillai†, Alex Hauptmann, Mahadev Satyanarayanan

April 2015
CMU-CS-15-103

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†Intel Labs

Abstract

A cognitive assistance application combines a wearable device such as Google Glass with cloudlet
processing to provide step-by-step guidance on a complex task. In this paper, we focus on user
assistance for narrow and well-defined tasks that require specialized knowledge and/or skills. We
describe proof-of-concept implementations for four different tasks: assembling 2D Lego models,
freehand sketching, playing ping-pong, and recommending context-relevant YouTube tutorials. We
then reflect on the difficulties we faced in building these applications, and suggest future research
that could simplify the creation of similar applications.

This research was supported by the National Science Foundation (NSF) under grant numbers IIS-1065336 and
IIS-1251187. Additional support was provided by the Intel Corporation, Google, Vodafone, and the Conklin Kistler
family fund. Any opinions, findings, conclusions or recommendations expressed in this material are those of the
authors and should not be attributed to their employers or funding sources.

Keywords: cognitive assistance, wearable computing, mobile computing, Google Glass, cloudlet,
cloud offloading, offload shaping, computer vision

1 Introduction
Instructors are extremely helpful in human’s learning experience. They teach you how to perform
a complex task by offering verbal guidance and demonstrating the procedure. When you make
progress, they congratulate you and provide instructions for the next step. If you make an error,
they quickly catch it and tell you how to fix it.

In the past year, we have been developing a wearable cognitive assistance system that acts as
a virtual instructor to offer similar help. It combines a wearable device such as Google Glass and
cloud processing to guide you through a complex task. It uses wearable sensors such as camera and
microphone to continuously capture a user’s progress, and leverage modern computer vision and
signal processing techniques to understand the user’s state. Verbal feedback are then whispered
into the user’s ears, along with visual cues to be displayed on Glass’s screen. Figure 1 presents
some hypothetical use cases.

In its most general form, a cognitive assistant could offer guidance to virtually all facets of
everyday life, running twenty four by seven. For example, a recent work [5] targets improving
social life quality for people under cognitive decline. However, the lack of robustness in computer
vision algorithms, the network instability as a user moves, and the limitation in battery life of
wearable devices, all make this dream extremely challenging. Therefore, our initial goal focuses
on user assistance for narrow and well-defined tasks within a short period of time. We use task
assistance to refer to this special genre of cognitive assistance applications.

In this paper, we provide detailed description of four task assistance applications that we have
recently built, as an extended version of a recent paper [3]. The first application offers step-by-
step instructions to help a user assemble two dimensional Lego models. The second modifies
existing software to teach drawing-by-observation techniques. The third application helps a user
to play better Ping-pong. Finally, the fourth application tries to help with multiple tasks. It delivers
relevant YouTube tutorial videos to a user based on the user’s context.

These implementations have confirmed the feasibility of building such task assistance applica-
tions, and have taught us a lot. Our goal in writing this paper is to share the lessons we have learned,
and to identify valuable research directions. In the next section, we briefly review Gabriel [5], the
common platform under all applications. From Section 3 to Section 6, we describe details of each
application one by one. Finally, we discuss challenges in building such applications and possible
solutions in Section 7.

2 The Gabriel Platform on Cloudlet
A cognitive assistance application augments human perception by offering visual and verbal cues.
This is very latency sensitive as it is shaped by the demands of human cognition. It also re-
quires intensive computation to apply multiple complex algorithms to the incoming video and
audio streams to extract meaningful feedback. For reasons that have been extensively discussed in
previous works [5, 6, 14], the only viable approach to meet both the latency and compute require-
ment is to use a wearable device such as Google Glass to collect sensor data and offer feedback,
while offloading almost all the computation to a cloudlet. A cloudlet is a small distributed clus-
ter that is one wireless hop away from a wearable device, offering low-latency, high-bandwidth
communication and rich computational resources. Only through this approach can we offer crisp

1

Jane wants to try butterscotch pudding today for
the first time. She starts her “Recipe” applica-
tion in Glass, selects butterscotch from pudding
menu. After making several steps correct, the
Glass whispers “Good job! Now gradually whisk
in one cup of cream and stir it until smooth”.
Jane poured half a cup, since this is all she has
at home, hoping this is not a critical step. This
is quickly caught by the Glass, which then yells
“This is not enough. Please go and buy more.”

(a) Cooking

Bob just moved to Pittsburgh and bought a lot
of new furniture from Ikea. Different from past
experience of reading from instruction sheets,
he now starts the “Assembly Assistant” Glass
application to guide him in the assembly steps.
Bob feels it’s much easier to read instructions
from Glass and finishes everything ahead of
schedule. When he tries to sit on the chair he
last assembled, the Glass warns him that he
didn’t screw the last nail tight enough...

(b) Furniture Assembly

Figure 1: Task Assistance Scenarios

Device
Comm

UPnP

PubSubWearable device

Face recognition

User assistance

Object Recognition
(STF)

OCR

Motion classifier

Activity Inference

Augmented Reality

Object Recognition
(MOPED)

Control VM

Video/Acc/GPS/
sensor streams

Sensor control Context Inference

Cloudlet

User Guidance VM

Cognitive VMs

Sensor flows
Cognitive flows
VM boundary

Wireless
connection

 many other
cognitive VMs here

Figure 2: The Gabriel Architecture for Cognitive Assistance (Source: Ha et al [5])

interaction while allowing devices to have acceptable battery life and to remain small, lightweight,
and cool enough to wear.

We have created the Gabriel [5] platform that runs on top of a cloudlet for cognitive assistance
applications. Its goal is to provide common system and library support for most of the applications,
allowing developers to focus on application-specific challenges. Particularly, Gabriel offers “plug-
and-play” simplicity in reusing existing cognitive applications and developing new applications.
Moreover, it uses application-layer flow control mechanism to guarantee low latency communica-
tion between a wearable device and different application software.

Figure 2 illustrates Gabriel’s back-end processing structure. An ensemble of cognitive appli-
cations, each encapsulated in a virtual machine (VM) to form a cognitive VM, independently pro-
cesses the incoming flow of sensor data from a Glass device. A single control VM is responsible for
all interactions with the Glass device. It also does common preprocessing, such as down sampling
or reformatting of incoming streams, to serve all cognitive VMs. Gabriel uses a publish-subscribe
(PubSub) mechanism to distribute the sensor streams from control VM to cognitive VMs. The
outputs of the cognitive VMs are sent to a single User Guidance VM that integrates these outputs
and performs higher-level cognitive processing. From time to time, this processing triggers output
for user assistance.

2

(a) Example Models (b) Empty Board

Input frames
Board detector

Lego localizer

Matrix generator

Symbolic representation

generator

Next step

generator

Verbal

guidance

generator

Visual

guidance

generator

Guidance

generator

Symbolic representation

(c) Workflow

Figure 3: Lego Task

The context inference module in Gabriel understands a user’s context using outputs from cog-
nitive VMs, and adjusts Glass’s sensing and transmission policy accordingly. In its simplest form,
it turns on/off a particular sensor based on applications’ needs. For more fine-grained control, the
offload shaping technique can be used [7]. For example, if all cognitive applications require sharp
images as input, detecting blurry frames on the mobile device and dropping them before transmis-
sion can save wireless bandwidth, improve cloudlet scalability and enhance battery life. This early
discard idea is a good complement to the general rule of preferential processing on cloudlets.

All of the following task assistance applications run on top of Gabriel. Each of them is imple-
mented as a cognitive VM and receives a user’s video streams from the PubSub system.

3 Lego Assistant
The first application we have implemented is a Lego Assistant that guides a user in assembling
two dimensional Lego models using the Lego product Life of George [13]. Figures 3(a) shows
some example models a user can build. From step to step, the Lego models are put on the board
(Figure 3(b)) that comes with the product to be recognized. A YouTube video demonstrating this
application can be found at http://youtu.be/uy17Hz5xvmY.

3.1 Cloudlet Workflow
Video captured by Glass camera is streamed to the cloudlet. As figure 3(c) shows, the processing
workflow for each video frame has two major phases. In the first phase, the frame is analyzed to
extract a symbolic representation of the current state of the Lego task. This phase has to be tolerant
of considerable variation in lighting levels, light sources, position of the viewer with respect to the

3

(a) Input image (b) Detected dark parts (c) Detected board (d) Board border

(e) Perspective correction (f) Edge detection (g) Background subtracted (h) Lego with side parts

(i) Lego detected (j)
Unrotated

(k) Color
quantized

(l)
Partitioned

[[0, 3, 3, 3, 3, 0],

 [3, 3, 3, 1, 1, 3],

 [0, 6, 1, 6, 1, 1],

 [0, 1, 1, 1, 1, 0],

 [4, 4, 6, 4, 4, 4],

 [4, 4, 6, 4, 4, 4],

 [1, 4, 4, 4, 4, 1],

 [0, 5, 5, 5, 5, 0],

 [0, 5, 0, 0, 5, 0],

 [6, 6, 0, 6, 6, 0]]

(m) Matrix (n) Synthe-
sized image

Figure 4: Lego: Symbolic Representation (Source: [15])

board, task-unrelated clutter in the image background, and so on. The symbolic representation is
an idealized representation of the input image that excludes all irrelevant details. One can view this
phase as a task-specific “analog-to-digital” conversion of sensor input — the enormous state space
of the input image is simplified to the much smaller state space of the symbolic representation.
Technically, of course, all processing is digital. As shown in Figure 4(m), the symbolic represen-
tation for this task is a two-dimensional matrix with values representing brick color. The second
phase operates exclusively on the symbolic representation. By comparing it to expected task state,
user guidance is generated.

This approach of first extracting a symbolic representation from the Glass sensor streams, and
then using it exclusively in the rest of the workflow, is also how the other tasks (Sections 4 to 6)
are implemented. We cautiously generalize from these four examples that this two-phase approach
may be the canonical way to structure the implementation of any wearable cognitive assistance
application. Broader validation will be needed to strengthen this observation.

3.2 Extracting the Symbolic Representation
We use the OpenCV image processing library in a series of steps that are briefly summarized below.
Figure 4(a) is an example input frame. As Figure 3(c) shows, the symbolic representation generator
for each frame consists of three steps: board detector, Lego localizer, and matrix generator.

Board detector: The first step is to find the board, using its distinctive black color and dot pattern.
Reliable detection of black color is harder than it may seem. Sole reliance on thresholding on the
absolute brightness would fail because of variation in lighting conditions. Therefore, we subtract
the original image by a blurred version of it, and then threshold the difference to give a robust

4

…

(a) An example of state list representation of task

“As a first step, please find a 1x4 green piece and

put it on the board.”

“Great! Now find a 1x2 red piece and put it on the

top left of current model. ”

“You are quite close. Now slightly move the 1x1

yellow piece to the right by 2 brick size.”

(b) Example of verbal guidance messages (c) Example of visual guidance animation

Figure 5: Example of guidance generation for Lego Assistant (Source: [15])

black detector (Figure 4(b)). This effectively leverages the relative brightness value rather than the
absolute one.

A rectangular shape near the dense black dots are considered to be the board (Figure 4(c))
We then extract the boundary and four corners of the board by doing line detection and intersec-
tion calculation. Perspective transformation is performed to convert the board to a standard view
(Figure 4(e)).

Lego localizer: We perform edge detection to distinguish the Lego model from the board back-
ground (Figure 4(f)). We then apply dilations and erosions to find the largest blob near the center
of the board (Figure 4(g)). Unfortunately, sole reliance on edge detection is not robust. The sides
of Lego bricks, especially the heavy colored ones (e.g. yellow, red, etc.) have more texture than
the surface, leading to uncertainty in detection. We correct for this by finding the sides using color
detection, adding them to the Lego shape obtained by edge detection (Figure 4(h)), and then per-
forming erosion to remove the side parts (Figure 4(i)). The amount of erosion is calculated from
the perspective transform matrix. For robust color detection, we use the gray world assumption [1]
to adjust the colors on board before detecting them.

Matrix generator: In the final set of steps, we rotate the image to an upright orientation (Fig-
ure 4(j)). Each pixel is then quantized to one of the Lego brick colors (Figures 4(k) and 4(l)), with
magenta color representing uncertainty. Final assignment of brick color is done by a weighted
majority vote of colors within the block, with pixels near the block center being assigned more
weight. Figure 4(m) shows the final matrix representation. Figure 4(n) is a synthesized image
representation for this matrix.

3.3 Generating Guidance
A Lego task is represented as a linked list of Lego states, starting from the beginning state (nothing)
to the target state (the user’s goal). Figure 5(a) shows an example of our task. Based on the matrix
representation of the current Lego state, our system tries to find an optimal next step towards the
task target. If the user’s state falls into the state list of task representation, then we simply convey

5

(a) Target (b) Polygon (c) Feedback

Figure 6: Guidance by Drawing Assistant

information about the next state in the list. If a user fails to follow the instruction, an naive approach
is to tell the user to revert back to the previous state. Our system tries to be smarter than this, using
the technique detailed in [15].

The guidance delivered to a user consists of both verbal and visual parts. The verbal guidance
is whispered to the user through Android text-to-speech API, describing the next brick to pick and
where it should be placed. The visual guidance displays an animation on Glass’s screen, showing
the same process as explained in the verbal instruction. Figure 5(b) and (c) show some guidance
examples.

3.4 Performance
The Lego Assistant has been demonstrated live at different occasions and has shown very robust
performance. The extraction of symbolic representation takes about half a second for full process-
ing of an image, and much less if some of the steps are not needed. For example, if no clear board
can be detected in an image, Lego localizer and matrix generator won’t execute. We also require
two consecutive frames to generate the same state result before delivering guidance to the user.
This ensures high accuracy, but doubles the response time as a user makes progress.

4 Drawing Assistant
In contrast to the Lego Assistant, which is entirely new, the second application explores the chal-
lenges of modifying an existing application to provide wearable cognitive assistance. Our Drawing
Assistant is built upon previous work by Iarussi et al. [8] that guides a user in practicing classic
drawing-by-observation technique. As originally implemented, the application automatically gen-
erates outline for a target object and displays it on a computer screen for the user to follow. It then
recognizes the user’s sketches on a pen-tablet and offers feedback information on the computer
screen. For example, Figure 6(a) is a target drawing that a user tries to copy, and the blue polygon
in Figure 6(b) is the outline generated by the Drawing Assistant. Figure 6(c) shows an example
feedback image provided by the application in response to the user’s attempt to copy the polygon.

6

(a) Input image (b) Detected dark parts (c) Detected paper

(d) Perspective correction (e) Detected sketch (f) Cleaned polygon

Figure 7: Drawing: Symbolic Representation

This application, as well as many other similar ones [12], requires the drawing to be done on a
computer-friendly input device, such as a pen-tablet. Our Drawing Assistant uses Google Glass to
extend this application to work with arbitrary drawing instruments and surfaces: e.g., using pencil
on paper, oil paint on canvas, or colored markers on a whiteboard. It first extracts drawing-relevant
information from an arbitrary image and converts a user’s sketches into a clean binary image.
This image serves as the symbolic representation of this application, and is essentially what the
original software gets directly from the pen-tablet input. We splice this extracted information into
the existing guidance logic of the application, and the rest of the system works with little change.

4.1 Extracting the Symbolic Representation
For ease of exposition, we assume that the user is drawing with a pen on paper. The processing
for other media (e.g. colored markers on a whiteboard) is similar. To understand a user’s drawing,
the first step is to locate the paper from any arbitrary background. Similar to the black detection
problem in the Lego assembly task, detecting “white” paper is not as easy as looking directly at the
RGB values. Therefore, we use an approach similar to the board localization approach in the Lego
Assistant. It thresholds on the difference between the input image and its blurred version, which
results in a reliable detection of the easel surface (Figure 7(b)). This is followed by a quadrilateral
detection which represents the paper (Figure 7(c)). Line and corner detection are then applied to
perspectively transform the paper image to a standard rectangle shape (Figure 7(d)).

The second step tries to identify all the pixels associated with the user’s sketches. To do this,
we use the difference of Gaussian approach and thresholding to find darker areas in the paper.
However, as seen in Figure 7(e), this detection can be noisy because of shadows and creases on
the paper. Therefore, we filter out the noisy parts based on their size, shape, and distance to other
components. The result is a clean polygon (Figure 7(f)), which is the symbolic representation.

4.2 Generating Guidance
The symbolic representation mentioned above is fed to the largely unmodified application in place
of the pen-based input it was designed for. The application uses Shape Context descriptor to com-

7

(a) Input image (b) Rough table detec-
tion

(c) Refined table detec-
tion

(d) Detected ping-pong
ball

(e) Rotated frame (f) White wall based de-
tection

(g) Optical flow-
sampled

(h) LK optical flow

Figure 8: Ping-pong: Symbolic Representation

pare the polygon shape drawn by user and that shown in the target. It then sends back the feedback
image to be shown on the Glass’s screen. For example, Figure 6(c) is an example feedback derived
from a user’s drawing in Figure 7(f) and target outline in Figure 6(b). Note that the color of the
outline polygon in feedback images represents the correctness of different parts of the user’s at-
tempt: blue is good, while red means not good. The dashed red lines indicate erroneous alignment
between corners.

4.3 Performance
The symbolic representation extraction for Drawing Assistant works reasonably accurate, and has
a latency of tens of millisecond. We have tested the system with several users. While some of
them complain about the limited size of Google Glass display for recognizing detailed feedback
information, they all appreciate the idea of capturing drawings on different media using Google
Glass to offer feedback. They also wish the application to be extended to provide feedback for
general sketches, but not only the outline polygons.

5 Ping-pong Assistant
To explore the impact of tight real-time constraints, we have built a Ping-pong Assistant. Its
goal is to help a user to choose the optimal direction to hit the ball to the opponent, where the
suggested direction is based on the observed ball and opponent position. Note that we are not
trying to compensate for the lack of the user’s own visual processing. That would be necessary, for
example, if we were to tackle the far more challenging and difficult task of enabling a blind person
to play. At this early stage of our work, our goal is merely to help a novice have a better chance to
win by whispering hints.

8

5.1 Extracting the Symbolic Representation
In our prototype, we use a 3-tuple as the symbolic representation. The first element is a boolean
indicating whether the player is in a rally or not. The second element is a floating point number in
the range from 0 to 1, describing the position of the opponent (extreme left is 0 and extreme right
is 1). The third element uses the same notation to describe the position of ball. We generate this
3-tuple for each pair of consecutive video frames.

Table detector: As shown in Figure 8(b), simple color detection can be used to approximately lo-
cate the table. However, this is not robust because of lighting variations and sometimes occlusions
from the opponent. For example, the table surface close to the top table edge is not included in
the rough detection. To fix this, we dilate the detected area, use white table edges to remove low
possibility areas, and then use the Douglas-Peucker algorithm [4] to approximate the table area
with polygons. Multiple iterations of this procedure yield a clean final result (Figure 8(c)). The
top edge is also detected using the polygon information and marked in green in the figure.

Opponent detector: To detect the opponent, we focus on the area above the top edge of the table.
Using the table information obtained above, we rotate and cut the area above the top edge of the
table to get a square shape containing the opponent (Figure 8(e)). Within this standardized area,
we use three approaches to locate the opponent. We combine the three approaches using weighted
average to achieve higher accuracy.

The first approach assumes that the background is mostly white wall, and selects the area
with least white color (Figure 8(f)). This approach is simple and fast, but error-prone when the
background is not clean. The second approach is based on human motion calculated by optical
flow, using two consecutive frames as input. It samples the image and calculates the flow at each
sample point. The small green dots in Figure 8(g) are the sample points, while the arrows describe
the direction and magnitude of flow. By appropriate low-pass filtering, we can find the position
with strongest motion, and hence the opponent’s likely location. Note that when the Glass wearer
moves, the background objects will also move and confuse the motion detector. To compensate for
this, the strongest motion area is selected after subtracting all optical-flow vectors by the average
of these vectors. The third approach is similar to the second, but calculates flow only at detected
interest points (green circles in Figure 8(h)).

Ball detector: For every area whose color is close to yellow, we determine if it is the ball based
on its shape, size, position relative to table, and the ball’s position in the previous frame. Once the
ball is detected (Figure 8(d)), we find its coordinates in the input image and calculate its position
relative to the table by using the transformation matrix described above for the opponent detector.

5.2 Generating Guidance
Guidance is generated based on a recent history of states. For example, if we see the opponent is
standing at the right, and the ball has been hit to the right several times, we will suggest that the
user hit to the left. The Ping-pong assistant will offer speech guidance only, since the user’s eyes
will be focusing on tracking the ball. The guidance is very simple, just “left” or “right.” The same
guidance will not be repeated within three seconds.

9

Deep convolutional neural

network

Dense trajectory

Time

Low-level features

objects

people

actions/sports

scene
Generic semantic

concepts

Cloudlet

Complex tasks

cooking

changing a flat tire

...

Semantic

concepts

index

Tutorial video

indexes

User-

generated

Metadata

index

Relevant tutorial videos

Streamed

Video

Figure 9: Pipeline for Discovering User Context

Semantic Examples
Category
People male, baby, teenager, girl, 3 or more people
Scene beach, urban scene, outdoor, forest
Object car, table, dog, cat, guitar, computer screen
Action shaking hand, cooking, sitting down, dancing
Sports cycling, skiing, bullfighting, hiking, tennis

Figure 10: Concept Examples

5.3 Performance
As a first step, we have collected a small number of videos capturing the viewpoint of one user
playing ping-pong in a certain playing environment. The parameters for the symbolic representa-
tion extractor are tuned on these videos and the algorithm works reasonably well for this dataset.
The accuracy degrades as we apply the algorithm to different users because of variations in users’
habits in playing ping-pong and their different viewpoints. In terms of speed, the latency to extract
symbolic representation is about 70 milliseconds when only the white-wall approach for oppo-
nent detection is used, but increases by fifty percent when all the three approaches are used in
combination to improve accuracy.

6 Assistance from Crowd-sourced Videos
Millions of crowd-sourced tutorial videos exist online, and YouTube itself hosts more than 83
million, covering a wide range of tasks. We wondered whether we could leverage them to provide
assistance for different tasks. To explore this possibility, we build an application that can character-
ize a user’s context. It then searches a corpus of pre-indexed YouTube tutorial videos, and returns
the best-match to be played on the user’s Glass. Imagine a user learning to cook a new dish, our
application can deliver a YouTube tutorial instructing to make the same dish using similar tools.
We call this application YouTube Assistant for brevity. It offers useful, though non-interactive,
tutorials in a wide range of user contexts by leveraging the crowd-sourced YouTube videos.

10

6.1 Extracting the Symbolic Representation
In contrast to previous applications, YouTube assistant operates on short video segments rather than
individual frames. Therefore, the first step on the cloudlet is to group image streams to short video
files. In our prototype, each video segment is six seconds long, and two consecutive segments have
a three seconds overlap. This overlap yields a higher chance to capture user’s actions. Multiple
video segments are processed in parallel to improve throughput.

We compose previous works [9, 16] and use the workflow in Figure 9 to discover user context.
We first extract low level features from the video segment, and then convert them into a list of
generic semantic concepts, such as scene, object, person, and actions. This concept list is effec-
tively the symbolic representation. Figure 10 lists some example concepts that we can detect. We
further classify concepts into activity categories. The activity category, combined with concept
list, is then used to search for relevant tutorials.

Low level feature extraction: We extract dense trajectory feature descriptors [16, 17] from each
video segment. This captures the local points randomly sampled from each frame and tracks the
points in a dense optical flow field. Alternatively, low level features can be obtained from deep
convolutional neural networks [11]. Searching directly based on the low-level features is extremely
hard because they lack any semantic meanings and have very high dimension.

Concept detector: We apply our off-the-shelf concept detector from SPCL pipeline [9] to extract
semantic concepts. The detector is trained offline from over two million Internet amateur video
segments [10]. Training on these videos reduces the domain difference between the training data
and the testing video captured by Glass. The 3,000+ semantic concepts recognized by this detector
represent a broad range of real world events.

Activity detector: We further characterize the user’s task with higher level activities based on the
concepts detected. For example, “cooking omelette” is an activity characterized by the presence
of object “egg” and “butter”, scene “indoor” and action “cooking” or “moving arm”. By adding a
concept layer before the activity detection, we have significantly scaled up the activities that can
be detected.

6.2 Generating Guidance
We have downloaded around 72,000 tutorial videos from YouTube and indexed them based on the
video’s metadata (titles and descriptions) and the semantic concepts extracted from the video con-
tent. Once the user’s concept list and activity is extracted, we use the standard language model [18]
to find the most relevant video tutorial from our video pool. The YouTube link of the suggested
video is then sent back to the user. If the user taps his Glass device, the tutorial will start playing
using Android YouTube API.

6.3 Performance
The context detector in this application consumes large amount of time. On a modern desktop
workstation with Intel R© CoreTM i7 4-core processor and 32GB of memory, it takes about one minute
to extract concepts from a six second video segment. We have spawned multiple processes to run
the context detector in parallel, which has significantly improved system throughput. However,

11

improving latency is much harder. Adding more computing resources won’t help due to the single-
thread nature as the code is written. We will have to rewrite the algorithm in a more parallel way
to reduce system response time.

7 Future Directions
In this work, we implement proof-of-concept cognitive assistance systems to provide step-by-
step, closed-loop, task-specific guidance using a Glass-like wearable device. The Lego, Drawing,
and Ping-pong Assistants all react to a user’s task-relevant actions with predefined guidance. The
YouTube Assistant is a little different: it first recognizes a user’s context and then delivers guidance
through searching crowed-sourced tutorials at runtime. The versatility, generality and ease of use
of Gabriel as a “plug-and-play” platform is confirmed by our implementation experience. While
the feasibility of wearable cognitive assistance is no longer in doubt, we have also identified areas
where substantial improvement is needed. Below we discuss these improvement possibilities from
three aspects.

7.1 Faster prototyping
Developing a new task assistant is complex and challenging today, especially to make it robust in
different environments. We wonder if some higher-level libraries and toolkits could simplify the
process of prototyping a new application.

Better interface for OpenCV: Much of the difficulty lies in using computer vision technologies
to extract the symbolic representation. We have used OpenCV extensively ourselves. It helps, but
is not enough. Even for a job as simple as color detection, we still have to spend many hours
in tuning the parameters and make it robust across different lighting conditions. We believe an
easy-to-use, GUI-based toolkit for quick testing and debugging of OpenCV-based functions can
significantly improve the application development cycle and enhance productivity.

Easy to share library support: Applications should also be able to easily reuse state-of-art
computer vision algorithms. For example, a lot of assembly tasks may all depend on the most
accurate object detection library, or the context detection technique as used in YouTube Assistant.
Facilitating this requires some modification to existing Gabriel architecture. We can add another
layer of library VMs between the control VM and cognitive VMs. They provide results shared by
many cognitive VMs, and can be easily upgraded as new libraries are available. Tools to rapidly
adapt an existing detector to a specific application would also help. This is currently a slow process
involving manual curation of training data and building each model afresh.

Generating guidance for complex tasks: Generating guidance is simple when user state space
is small. A developer can list all expected user states and their corresponding guidance. The Lego
Assistant is one example. As long as a user follows the instructions in every step, appropriate
guidance can be made by matching the user’s state to the pre-defined list in the database. Things
become much more complex as user state space expands: if we allow a user to select his own path
to build a Lego model, it’s impossible to know user states ahead of time. In such cases, the concept
of “guidance-by-example” may help. For example, could we record multiple experienced users
performing a task, extract the correct sequence of state changes using symbolic representation

12

extractor, and then suggest an optimal next step by matching a new user’s state to these sequences?
The suggestion quality will increase as more users use the application.

7.2 Improving runtime performance
Extraction of a symbolic representation using computer vision tends to be slow, even on a cloudlet.
For example, as mentioned in Section 6, the latency for YouTube Assistant is more than one minute.
Parallelism can usually offer significant speedup in computer vision algorithms. This involves
exploiting both inter-frame parallelism to improve system throughput, as well as intra-frame par-
allelism to reduce latency. Processing multiple frames in parallel can be achieved by spawning
different VMs for the same task. Exploiting parallelism within a frame is much harder. It usually
needs significant restructuring of original code, such as making the code run on a GPU. We need
tools such as Sprout [2] to simplify this effort.

Generally, there is a tradeoff between the accuracy and speed of a computer vision algorithm.
The different opponent detection approaches in Ping-pong Assistant is a good example. Combining
different algorithms for higher accuracy has been extensively studied in the computer vision com-
munity. We wonder if we can combine different approaches for speed as well. For example, the
accuracy of an algorithm usually depends on image content, lighting conditions and background.
Since these are unlikely to change much during a single task execution, we could test different
algorithms in parallel at the start of the task and then select the optimal one for the rest of the task.

It is noticeable that not all cognitive assistance applications have the same latency requirement.
For example, the Ping-pong Assistant requires tens of millisecond response time, while the Draw-
ing Assistant can probably tolerate sub-second latency. The Gabriel system should provide a way
to easily identify an application’s needs, and adjust resource allocation accordingly.

7.3 Extending battery life
The battery life of Glass is only tens of minutes for the applications running on top of Gabriel. In
addition, it tends to get too hot to be comfortable. We should note here that the Gabriel client is not
doing any heavy computation. It merely transmits images and delivers visual and verbal guidance
to a user.

There is a clear need to exploit task-specific opportunities to reduce the transmission traffic
for energy efficiency. For example, there is typically a region of interest (ROI) that captures task-
related information in an image. The board in Lego Assistant and the paper in Drawing Assistant
are examples. Since the ROI typically does not move much between consecutive frames, we can
use the concept of offload shaping to reduce data transmission and cloudlet processing.

We can also exploit the fact that full processing and new guidance are only needed when task
state changes. It may be possible to perform continuous cheap processing, such as observing
accelerometer values, on the Glass device to see if a user’s state has changed. Only when it changes
do we need to capture frames and transmit them. Moreover, if we have a reasonable expectation of
how long a user needs to complete each step, we could temporarily stop all processing on Glass at
the beginning of a step, and resume after some expected time.

13

References
[1] J. M. Buenaposada and B. Luis. Variations of Grey World for face tracking. In Image

Processing & Communications 7, 2001.

[2] M.-Y. Chen, L. Mummert, P. Pillai, A. Hauptmann, and R. Sukthankar. Exploiting multi-level
parallelism for low-latency activity recognition in streaming video. In Proceedings of the first
annual ACM SIGMM conference on Multimedia systems, 2010.

[3] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann, and M. Satyanarayanan.
Early Implementation Experience with Wearable Cognitive Assistance Applications. In Pro-
ceedings of the 1st ACM Workshop on Wearable Systems and Applications (WearSys), Flo-
rence, Italy, 2015.

[4] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization, 10(2), 1973.

[5] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards Wearable
Cognitive Assistance. In Proceedings of the Twelfth International Conference on Mobile
Systems, Applications, and Services, Bretton Woods, NH, June 2014.

[6] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satyanarayanan. The
Impact of Mobile Multimedia Applications on Data Center Consolidation. In Proceedings of
the IEEE International Conference on Cloud Engineering, San Francisco, CA, March 2013.

[7] W. Hu, B. Amos, Z. Chen, K. Ha, W. Richter, P. Pillai, B. Gilbert, J. Harkes, and M. Satya-
narayanan. The Case for Offload Shaping. In Proceedings of HotMobile 2015, Santa Fe, NM,
February 2015.

[8] E. Iarussi, A. Bousseau, and T. Tsandilas. The drawing assistant: Automated drawing guid-
ance and feedback from photographs. In ACM Symposium on User Interface Software and
Technology (UIST), 2013.

[9] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann. Self-paced curriculum learning.
In AAAI, 2015.

[10] L. Jiang, S.-I. Yu, D. Meng, T. Mitamura, and A. G. Hauptmann. Bridging the ultimate se-
mantic gap: A semantic search engine for internet videos. In ACM International Conference
on Multimedia Retrieval, 2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–
1105, 2012.

[12] Y. J. Lee, C. L. Zitnick, and M. F. Cohen. Shadowdraw: real-time user guidance for freehand
drawing. ACM Transactions on Graphics (TOG), 30(4), 2011.

[13] Lego. Life of George. http://george.lego.com/, October 2011.

14

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-Based Cloudlets
in Mobile Computing. IEEE Pervasive Computing, 8(4), October-December 2009.

[15] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai. Cloudlets: at the Lead-
ing Edge of Mobile-Cloud Convergence. In Proceedings of 6th International Conference on
Mobile Computing, Applications and Services (MobiCASE), Austin, Texas, USA, November
2014.

[16] H. Wang and C. Schmid. Action recognition with improved trajectories. In Computer Vision
(ICCV), 2013 IEEE International Conference on, pages 3551–3558. IEEE, 2013.

[17] S.-I. Yu, L. Jiang, Z. Mao, X. Chang, X. Du, C. Gan, Z. Lan, Z. Xu, X. Li, Y. Cai, et al.
Informedia@ trecvid 2014 med and mer. In NIST TRECVID Video Retrieval Evaluation
Workshop, 2014.

[18] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc
information retrieval. In Proceedings of the 24th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 334–342. ACM, 2001.

15

	trcover.pdf
	wearsys2015.pdf

