Mode, Reduction, and Termination Analysis for LolliMon

Ruy Ley-Wild
November 4, 2014
CMU-CS-14-141

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

LolliMon [10] is a linear logic programming language that combines backward-chaining, backtracking semantics for the asynchronous connectives and forward-chaining, committed choice for the synchronous connectives. Mode, reduction, and termination properties are important correctness criteria that can be verified automatically of both backward-chaining and forward-chaining logic programs by establishing suitable moding and subterm relationships between a clause’s head and its subgoals. This work combines existing techniques for termination checking of backward-chaining higher-order intuitionistic logic programs and complexity analysis of forward-chaining first-order logic programs, by devising mode, reduction, and termination analyses for the linear logic programming setting in LolliMon.

Note: This document was written as a project report for 15-819K Logic Programming taught by Frank Pfenning in the fall of 2006.
Keywords: linear logic, logic programming, mode analysis, reduction analysis, termination analysis
Abstract

LolliMon [10] is a linear logic programming language that combines backward-chaining, backtracking semantics for the asynchronous connectives and forward-chaining, committed choice for the synchronous connectives. Mode, reduction, and termination properties are important correctness criteria that can be verified automatically of both backward-chaining and forward-chaining logic programs by establishing suitable moding and subterm relationships between a clause’s head and its subgoals. This work combines existing techniques for termination checking of backward-chaining higher-order intuitionistic logic programs and complexity analysis of forward-chaining first-order logic programs, by devising mode, reduction, and termination analyses for the linear logic programming setting in LolliMon.

1 Introduction

LolliMon [10] is a logic programming language based on intuitionistic linear logic that combines backward-chaining, backtracking semantics for the asynchronous connectives and forward-chaining, committed choice for the synchronous connectives. The synchronous fragment is syntactically segregated by a monad and is used to transition from backward-chaining to forward-chaining. The forward-chaining phase in LolliMon finishes and returns to backward-chaining search when the linear context is quiescent (no forward steps are possible) and the unrestricted context is saturated (forward steps may be possible, but do not generate any new information).

Certain correctness properties of LolliMon logic programs can be checked automatically in a style similar to that found in Twelf [14]. Mode checking establishes a groundedness relationship between inputs and outputs,
reduction checking determines a subterm relationship between inputs and outputs, and termination checking ensures queries complete in finite time. Mode checking is available in the current implementation of LolliMon, but there is no formal description nor proof of correctness of mode, reduction, or termination analysis for LolliMon. This work gives a refined operational semantics for LolliMon and formal algorithms for mode, reduction, and termination analysis. We state correctness criteria for the analyses, but defer formal proofs of correctness to future work. Besides establishing the correctness of logic programs, these static analyses could be extended to an implementation of CLF in order to verify properties of proofs encoded in the framework.

Two main methods for fully automatic termination checking for higher-order term rewriting systems are van de Pol and Schwichtenberg’s strict functionals [20] and Jouannaud and Rubio’s recursive path orderings [9]. However, the presence of higher-order subgoals in the LF family of languages prevents direct application of these techniques. Rohwedder and Pfenning [19] develop mode and termination analyses for higher-order logic programs in Elf [13] whereby the properties are manually specified and automatically verified. The mode behavior of programs is given by specifying which parameters are inputs and outputs, and termination is specified by indicating which input terms must decrease in recursive subgoals. The correctness of these analyses is stated with respect to the operational semantics with an explicit success continuation and proven by induction on the computation sequence. Pientka and Pfenning [17, 15, 16] present sequent calculi for deriving subterm relationships in Twelf, reduction checking for proving outputs are subterms of inputs, and termination checking that permits course-of-value induction with the aid of reduction properties. They prove the consistency of the subterm sequent calculi by cut-admissibility, but do not prove the correctness of reduction or termination checking with respect to the operational semantics. Termination checking for higher-order logic programs in Twelf is applicable to the asynchronous fragment of LolliMon but is complicated by the richer formula (and proof term) language and the interaction with forward-chaining.

1.1 LolliMon

The Concurrent Logical Framework (CLF) [21] is a foundational dependent type theory based on linear logic that internalizes the ability to represent state and concurrency. The formula language syntactically distinguishes asynchronous (A) and synchronous (S) formulas, in the terminol-
A ::= P | {S} | T | A_1 & A_2
| S_2 \rightarrow A_1 | \forall x:A_2.A_1
S ::= Q | iQ | 1 | S_1 \otimes S_2
| \exists x:A_2.S_1 | A | !A

P, Q ::= a \cdot Z
N ::= H \cdot Z | \lambda x.N
H ::= c | x
Z ::= NIL | N; Z
\Gamma ::= \cdot | \Gamma, A
\Delta ::= \cdot | \Delta, A
\Psi ::= \cdot | S, \Psi

Figure 1: LolliMon Syntax
Mode, Reduction, and Termination Analysis for LolliMon

\[\Gamma; \Delta \Rightarrow A \]
Right inversion

\[\Gamma; \Delta; A \ll P \]
Left focusing

\[\Gamma; \Delta \rightarrow S \]
Forward chaining

\[\Gamma; \Delta; A < S \]
Monadic left focusing

\[\Gamma; \Delta; \Gamma'; \Delta'; \Psi \ll S \]
Left inversion

\[\Gamma; \Delta \gg S \]
Right focusing

\[\Gamma; \Delta; \Psi \ll \ll A \]
Left inversion (Asynchronous)

Figure 2: LolliMon Judgments

cussion on the operational semantics of proof search for LolliMon. Here we make saturation and quiescence explicit in by initiating left inversion \(\Gamma; \Delta; \Gamma'; \Delta'; \Psi \ll S \) (rule \(\ll L \)) with separate contexts \(\Gamma', \Delta' \) to accumulate the new formulas and only succeeding if new unrestricted or linear hypotheses have been created (rule \(\rightarrow \ll \)). An explicit success continuation semantics is obtained by having a stack of goals

\[S ::= \cdot | J/S \]

where \(J \) is one of the judgments, transforming each rule

\[
\frac{I_1 \ \ldots \ \ldots \ I_n}{J} \quad \sim \quad \frac{J_1/ \ldots /J_n/S}{J/S}
\]

and adding a rule that states the empty stack succeeds.

The term language was a prenex polymorphically typed \(\lambda \)-calculus and quantification was restricted to terms of type \(\tau \) in that type system. In this work restrict terms \(N \) to a simply-typed \(\lambda \)-calculus but reuse the formula language as the type system, thus allowing quantification over terms of type \(A \) restricted to intuitionistic implication and atomic types.

The original formulation of LolliMon included linear implication \(A_2 \rightarrow A_1 \) and intuitionistic implication \(A_2 \supset A_1 \) where the antecedent is asynchronous, here we generalize the language by allowing a synchronous antecedent in linear implication \(S_2 \rightarrow A_1 \) and removing intuitionistic implication because it can be encoded as \(!A_2 \rightarrow A_1 \). This means that when left focusing on a linear implication \(S_2 \rightarrow A_1 \) (rule \(\rightarrow \ll \)), we continue left focusing on \(A_1 \) and additionally right focus on \(S_2 \); and when right inverting
Figure 3: LolliMon Operational Semantics
Figure 4: LolliMon Operational Semantics (continued)
Mode, Reduction, and Termination Analysis for LolliMon

2 Project Results

This work presents mode, reduction, and termination analyses for LolliMon as syntax-directed inference rules that verify suitable moding and subterm relationships between terms in a clause's head and its subgoals. These analyses combine existing techniques for higher-order backward-chaining intuitionistic logic programs and complexity analysis of first-order forward-chaining logic programs. The novelty of this work stems from LolliMon's richer formula language, the semantics of linearity, and the mixed backward-chaining and forward-chaining search behavior. We assume mode, reduction, and termination are explicitly specified by mode, red, and term for each atom.

Since the syntax of LolliMon allows clauses such as $S \rightarrow A_1 \& A_2$ to have multiple heads, it is possible for a clause to be used in both backward- and forward-chaining. However, focusing on such a clause will only use one of the heads so it is possible to transform a clause with multiple heads
into multiple clauses with one head each. In this work we allow clauses with multiple heads, but restrict the analyses to backward-chaining clauses which only have (asynchronous) atomic or \(\top \) heads and forward-chaining clauses which only have monadic heads.

Backward- and forward-chaining clauses satisfy a specified mode or reduction property if the property of the head can be deduced from the properties of the subgoals. Due to the combination of backward- and forward-chaining in the operational semantics, it is necessary to perform a global analysis for termination checking in order to extract a dependence relation between synchronous and asynchronous atoms prior to checking each clause individually. Backward-chaining clauses satisfy termination if the recursive subgoals involve proper subterms of the terms in the head and the nonrecursive subgoals are known to be terminating. These criteria can be extended to mutually recursive atomic predicates [18], although incorporating this analysis is deferred to future work. The proof system for reduction and termination checking of backward-chaining higher-order logic programs in [16] serves as a basis for the analyses in the asynchronous phase. Termination of forward-chaining clauses that only generate unrestricted hypotheses can be verified by determining that the terms in the head are subterms (not necessarily proper) of the terms in the antecedents. Termination of forward-chaining clauses that generate linear hypotheses is subtle and in this work we discuss design considerations for handling the linear case, although the formal analysis does not account for this case.

2.1 Mode Checking

A mode specification \(\mu \) for an atom \(a \) consists of an input + or output − assignment to each of its arguments. Intuitively, an asynchronous atom \(a_P \) with mode specification \(\text{mode}(a_P) = \mu \) should satisfy the property that whenever a goal \(a_P \cdot Z \) is solved with ground input terms and the goal succeeds, then the output terms are also ground. A backward-chaining clause is well-moded if for each head it satisfies the mode specification, namely that if the input terms of a head are ground and the subgoals satisfy their mode property, then the output terms of that head are also ground. Since synchronous atoms are only generated by forward-chaining clauses, in order to maintain a ground context synchronous atoms have assign the output – mode to each argument.

Mode checking for a backward-chaining clause is performed by extracting from the head a proof obligation \(\sigma \) of which terms must be ground if the clause returns and an initial abstract substitution \(\hat{\sigma} \) of which variables
are assumed to be ground, then traversing the clause from the head outwards refining the abstract substitution assuming the subgoals are well-modeled, and checking that the final abstract substitution ensures the terms in the proof obligation are ground. The abstract substitution for backward-chaining clauses is refined by proceeding from the innermost to the outermost subgoal because that is the order in which subgoals are solved according to the operational semantics. Similarly, since forward-chaining clauses are used by solving subgoals from the outside in, the abstract substitution is refined from the outermost to the innermost goal and finally the head is checked to satisfy its mode specification. For synchronous atoms occurring as goals they can be assumed to be ground and occurring as heads they must be shown to be ground. Since there is one proof obligation per head, it is necessary to maintain a list ι of proof obligations and their associated abstract substitutions. Due to presence of higher-order subgoals, it is necessary to also check the well-moding of subclauses that are introduced to the context when solving a subgoal. The syntax of specifications, abstract substitutions, and proof obligations is given in Figure 5.

The auxiliary judgments are given in Figure 6 and the principal judgments are given in Figures 7, 8, and 9. We assume a judgment $\hat{\delta} \vdash N$ ground that check that a term N is ground under the abstract substitution $\hat{\delta}$, and lift it to similar judgments for spines and proof obligations. We also assume a judgment $\hat{\delta} \vdash N/\hat{\delta}'$ that refines $\hat{\delta}$ into $\hat{\delta}'$ assuming N is ground, and lift it to a judgment for spines. The judgment $\vdash \iota$ checks that each abstract substitution satisfies its associated proof obligation. When an atom is encountered at the head of a clause, the proof obligation and initial abstract substitution are extracted from the spine with the judgment $\hat{\delta}; o \overset{MCZ}{\rightarrow} \mu \sim Z \mid \delta'; o'$ by refining the initial substitution $\hat{\delta}$ into $\hat{\delta}'$ using terms that are ground on input and extending the initial proof obligations o with terms that should be ground on output. Dually, when an atom is encountered as a subgoal,
the judgment \(\hat{\sigma} \xrightarrow{MGZ} \mu \sim Z | \hat{\sigma} ' \) checks that the inputs are ground under the abstract substitution \(\hat{\sigma} \) and refines it into \(\hat{\sigma} ' \) assuming the outputs are ground.

The principal judgment \(\hat{\sigma} \vdash S \text{ mode} \) checks that a clause \(S \) is well-moded by checking that synchronous atoms are ground and that asynchronous clauses are well-moded according to whether they are backward- or forward-chaining. Backward-chaining clauses are checked by extracting a list of proof obligations and abstract substitution with the judgment \(\hat{\sigma} \xrightarrow{MBCA} A | \iota \) and ensuring the proof obligation is satisfied. Subgoals of backward-chaining clauses are used to refine the abstract substitution and check subclauses with the judgments \(\hat{\sigma} \xrightarrow{MBGA} A | \hat{\sigma} ' \) and \(\hat{\sigma} \xrightarrow{MBGS} S | \hat{\sigma} ' \), and a lifted version \(\iota \xrightarrow{MBGS} S | \iota ' \) for lists that keeps the proof obligation but refines the substitution. Forward-chaining clauses are checked with the judgment \(\hat{\sigma} \xrightarrow{MFCA} A \) by refining the abstract substitution with the judgments the judgments \(\hat{\sigma} \xrightarrow{MFGA} A | \hat{\sigma} ' \) and \(\hat{\sigma} \xrightarrow{MFGS} S | \hat{\sigma} ' \) and checking that the synchronous head is well-moded.

2.2 Reduction Checking

A reduction property is a specification of a subterm relationship between the arguments of an atom, which is useful for course-of-values induction. We assume each atom is assigned a reduction property \(\text{red}(a \cdot (x_1; \ldots; x_n)) = \mathcal{P} \) consisting of an order \(O \), a lexicographic \([O_1, O_2]\), or simultaneous order \([O_1, O_2]\) between arguments \(x_1, \ldots, x_n \). Intuitively, an atom satisfies a reduction property \(\mathcal{P} \) if whenever a goal \(a \cdot Z \) is solved and succeeds, the order relation \(\mathcal{P} \) holds of the specified arguments in \(Z \). Backward- and forward-chaining clauses satisfy a reduction property of a head if the reduction properties of the subgoals imply the reduction property of that head. Here we represent parameters as \(\forall x:A \), variables as \(\exists x:A \), and subgoals \(\exists !u:A \) with a mixed prefix context \(\Phi \). Figure 10 gives the syntax for orders, order relations, order contexts, and mixed prefix contexts based on the Twelf case.

We assume a sequent calculus with judgment \(\Phi; \Omega \rightarrow \mathcal{P} \), which establishes the subterm relation \(\mathcal{P} \) in the context of subterm relations \(\Omega \). Such a calculus can be adapted from [16] to the proof term language of LolliMon (and of CLF) and its consistency can be shown by proving cut-admissibility. The judgments \(\Phi \xrightarrow{RPA} A/\Omega \) and \(\Phi \xrightarrow{RPS} S/\Omega \) in Figure 11 extract the reduction property of every atom occurring in a backward- or forward-chaining
Figure 6: Mode Checking Auxiliary Judgments
\[\sigma \vdash S \text{ mode} \quad \text{[Well moded (clause)]} \]

\[\sigma \vdash Z \text{ ground} \quad \text{QMODE} \quad \sigma \vdash Z \text{ ground} \quad \text{\textit{IMODE}} \quad \sigma \vdash !a \cdot Z \text{ mode} \quad \text{\textit{IMODE}} \quad \sigma \vdash !1 \text{ mode} \]

\[\sigma \vdash S_1 \text{ mode} \quad \sigma \vdash S_2 \text{ mode} \quad \text{\textit{OMODE}} \quad \sigma, g/x \vdash S_1 \text{ mode} \quad \text{\textit{EMODE}} \quad \sigma \vdash \exists x : A_2 . S_1 \text{ mode} \]

\[(A \text{ backward}) \quad \sigma \xrightarrow{\text{MBCA}} A \mid t \quad \vdash t \quad \text{\textit{AMODE}_b} \]

\[(A \text{ forward}) \quad \sigma \xrightarrow{\text{MFCA}} A \quad \text{\textit{AMODE}_f} \]

\[(A \text{ backward}) \quad \sigma \xrightarrow{\text{MBCA}} !A \mid t \quad \vdash t \quad \text{\textit{!MODE}_b} \]

\[(A \text{ forward}) \quad \sigma \xrightarrow{\text{MFCA}} !A \quad \text{\textit{!MODE}_f} \]

Figure 7: Mode Checking Principal Judgments (1)
Mode, Reduction, and Termination Analysis for LolliMon

Figure 8: Mode Checking Principal Judgments (2)
Mode, Reduction, and Termination Analysis for LolliMon

Figure 9: Mode Checking Principal Judgments (3)
head and accumulate it into Ω. The judgments $\Phi; \Omega \overset{\text{RGA}}{\Rightarrow} A$ and $\Phi; \Omega \overset{\text{RGS}}{\Rightarrow} S$ in Figure 12 traverse a subgoal A or S and verify that subclauses satisfy their corresponding reduction properties. Figures 13, 14, and 15 present the principal judgment $\Phi; \Omega \vdash \text{red} S$ that checks the reduction property of backward and forward-chaining clauses via the judgments $\Phi; \Omega \overset{\text{RBCA}}{\Rightarrow} A$ and $\Phi; \Omega \overset{\text{RFCA}}{\Rightarrow} A$ which ensure that the reduction properties of the subgoals imply the reduction of the head and that the reduction property holds of each subclause assuming the reduction property of earlier (closer to the head for backward-chaining clauses) or later (further from the head for forward-chaining clauses) subgoals via the judgment $\Phi; \Omega \overset{\text{RBIA}}{\Rightarrow} S\gamma; A\zeta$. In the Twelf case reduction properties are assumed to be valid (true without any hypotheses), so the reduction properties of all subgoals are used to verify the reduction properties of any subclauses. This formulation of reduction checking differs in that only reduction properties that occur earlier (with respect to the proof search order) are used to prove the reduction property of subclauses.

2.3 Termination Checking

The termination property of an asynchronous atom is that left focusing on any clause with that atom in the head fails or succeeds in a finite number of steps. For LolliMon we conservatively establish termination provided subgoals of backward-chaining clauses are well-founded by invoking recursive calls with strictly smaller arguments (in the inductive argument given by $\text{term}(a \cdot Z) = O$) and forward-chaining clauses only generate unrestricted synchronous atoms with arguments that are no larger than those in the antecedents. We defer addressing forward-chaining clauses that generate linear synchronous atoms or asynchronous formulas to future work. Intuitively, the correctness criteria is that if a program satisfies the termi-

\[
\Omega ::= \cdot | \Omega, \mathcal{P} \quad \text{Order context}
\]
\[
\mathcal{P} ::= O_1 < O_2 \mid O_1 \leq O_2 \mid O_1 \equiv O_2 \mid \Pi x: A.\mathcal{P} \quad \text{Order relations}
\]
\[
O ::= N \mid \{O_1, O_2\} \mid \{O_1, O_2\} \quad \text{Orders}
\]
\[
\Phi ::= \cdot \mid \Phi, \forall x: A \mid \Phi, \exists x: A \mid \Phi, \exists! u: A \quad \text{Mixed prefix context}
\]

Figure 10: Reduction Checking Syntax
\[\Phi \overset{\text{RPA}}{\Rightarrow} A/\Omega \text{ and } \Phi \overset{\text{RPS}}{\Rightarrow} S/\Omega\]

[Reduction Properties (goal)]

\[
\begin{align*}
\Phi \overset{\text{RPA}}{\Rightarrow} A_1/\Omega_1 & \quad \Phi \overset{\text{RPA}}{\Rightarrow} A_2/\Omega_2 & \quad \Phi \overset{\text{RPA}}{\Rightarrow} A_1/\Omega \quad \Phi \overset{\text{RPA}}{\Rightarrow} A_2/\Omega_1,\Omega_2 & \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_2 \sim A_1/\Omega \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_1/\Omega \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_2/\Omega_1,\Omega_2 \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_1/\Omega \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_2/\Omega_1 & \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_1/\Omega \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_2/\Omega_1 \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_1/\Omega \quad \Phi \overset{\text{RPA}}{\Rightarrow} S_2/\Omega_1 & \quad \Phi \overset{\text{RPA}}{\Rightarrow} A_1/\Omega & \quad \Phi \overset{\text{RPA}}{\Rightarrow} A_2/\Omega_1,\Omega_2 & \quad \Phi \overset{\text{RPA}}{\Rightarrow} V_x:A_2 \overset{\text{RPA}}{\Rightarrow} A_1/\Omega & \quad \Phi \overset{\text{RPA}}{\Rightarrow} V_x:A_2.A_1/\Omega \\
\Phi \overset{\text{RPS}}{\Rightarrow} P/\text{red}(P) & \quad \Phi \overset{\text{RPS}}{\Rightarrow} S/\Omega & \quad \Phi \overset{\text{RPA}}{\Rightarrow} \{S\}/\Omega & \quad \Phi \overset{\text{RPA}}{\Rightarrow} \top & \quad \Phi \overset{\text{RPA}}{\Rightarrow} T/\Omega & \quad \Phi \overset{\text{RPS}}{\Rightarrow} i/\Omega & \quad \Phi \overset{\text{RPS}}{\Rightarrow} 1/\Omega & \quad \Phi \overset{\text{RPS}}{\Rightarrow} 1/\Omega & \quad \Phi \overset{\text{RPS}}{\Rightarrow} A/\Omega & \quad \Phi \overset{\text{RPS}}{\Rightarrow} !A/\Omega & \quad \Phi \overset{\text{RPS}}{\Rightarrow} !A/\Omega \end{align*}
\]

Figure 11: Reduction Checking Property Extraction
Figure 12: Reduction Checking Subgoals
\[\Phi; \Omega \vdash S \text{ red} \]

[Reduces (clause)]

\[\frac{\Phi; \Omega \rightarrow \text{red}(Q)}{\Phi; \Omega \vdash Q \text{ red}} \quad Q_{\text{RED}} \]
\[\frac{\Phi; \Omega \rightarrow \text{red}(Q)}{\Phi; \Omega \vdash Q \text{ red}} \quad i_{\text{RED}} \]
\[\frac{\Phi; \Omega \vdash Q \text{ red}}{\Phi; \Omega \vdash 1 \text{ red}} \quad 1_{\text{RED}} \]

\[\frac{\Phi; \Omega \vdash S_1 \text{ red}}{\Phi; \Omega \vdash S \text{ red}} \quad \otimes_{\text{RED}} \]
\[\frac{\Phi; \exists x : A_2; \Omega \vdash S_1 \text{ red}}{\Phi; \Omega \vdash \exists x : A_2 \cdot S_1 \text{ red}} \quad \exists_{\text{RED}} \]

\[\frac{(A \text{ backward}) \quad \Phi; \Omega \xrightarrow{\text{RBCA}} A}{\Phi; \Omega \vdash A \text{ red}} \quad \text{ARED}_b \]
\[\frac{(A \text{ forward}) \quad \Phi; \Omega \xrightarrow{\text{RFCA}} A}{\Phi; \Omega \vdash A \text{ red}} \quad \text{ARED}_f \]

\[\frac{(A \text{ backward}) \quad \Phi; \Omega \xrightarrow{\text{RBCA}} A}{\Phi; \Omega \vdash !A \text{ red}} \quad !\text{RED}_b \]
\[\frac{(A \text{ forward}) \quad \Phi; \Omega \xrightarrow{\text{RFCA}} A}{\Phi; \Omega \vdash !A \text{ red}} \quad !\text{RED}_f \]

Figure 13: Reduction Checking Principal Judgments (1)
Mode, Reduction, and Termination Analysis for LolliMon

Figure 14: Reduction Checking Principal Judgments (2)
Mode, Reduction, and Termination Analysis for LolliMon

\[
\Phi; \Omega \xrightarrow{\text{RFCA}} A
\]

[Reduces (forward, clause)]

\[
\Phi; \Omega \vdash S \text{ red} \\
\Phi; \Omega \xrightarrow{\text{RFCA}} [S] \\
\]

(no \text{PRFCA} rule)

\[
\Phi; \Omega \xrightarrow{\text{RFCA}} A_1 \quad \Phi; \Omega \xrightarrow{\text{RFCA}} A_2 \\
\Phi; \Omega \xrightarrow{\text{RFCA}} A_1 \& A_2
\]

(&\text{RFCA})

\[
\Phi \xrightarrow{\text{RPS}} S_2/\Omega_2 \\
\Phi, \Omega_2; \Omega \xrightarrow{\text{RFCA}} A_1 \\
\Phi; \Omega \xrightarrow{\text{RGS}} S_2
\]

(\text{-RFCA})

\[
\Phi; \Omega \xrightarrow{\text{RFCA}} S_2 \neg \neg A_1
\]

\[
\Phi, \forall x : A_2 ; \Omega \xrightarrow{\text{RFCA}} A_1 \\
\Phi; \Omega \xrightarrow{\text{RFCA}} \forall x : A_2 . A_1
\]

Figure 15: Reduction Checking Principal Judgments (3)

...
solve p as follows.

\[
\begin{array}{c}
\Gamma; \cdot \Rightarrow p \\
\Gamma; \ggp \Rightarrow p \\
\Gamma; \ggp \Rightarrow \{S_2\} < S_1 \\
\Gamma; \ggp S_1 \\
\Gamma; \ggp \{S_1\} \\
\Gamma; \ggp p \ggp S_1 \Rightarrow p \ggp \{S_1\}
\end{array}
\]

Similarly, the condition prevents forward-chaining clauses from invoking saturation as a subgoal because a synchronous atom q cannot occur in a clause $\{q\} \rightarrow \{q\}$ which would loop when trying to saturate and solve q as follows.

\[
\begin{array}{c}
\Gamma; \cdot \Rightarrow \{q\} \\
\Gamma; \ggp \{q\} \ggp \{q\} \\
\Gamma; \ggp \{q\} < q \\
\Gamma; \ggp q \\
\Gamma; \ggp \{q\}
\end{array}
\]

After checking the global subordination condition, we verify that each clause is terminating. The principal judgment $\Phi; \Omega \vdash S \text{ term}$ (Figure 16) verifies the termination property of a clause by verifying backward- and forward-chaining chaining asynchronous clauses terminate. For backward-chaining clauses, the judgment $\Phi; \Omega \overset{\text{TCA}}{\Rightarrow} \Lambda; \Phi_g$ (Figure 18) accumulates a stack of subgoals into the context Φ_g and then appeals to the judgment $\Phi; \Omega \overset{\text{TKA}}{\Rightarrow} P; \Phi_g$ (Figure 17) to check that the subclauses are terminating via the judgments $\Phi; \Omega \overset{\text{TCA}}{\Rightarrow} A < P$ and $\Phi; \Omega \overset{\text{TGS}}{\Rightarrow} S < P$ provided the subgoal atoms are known to be terminating or are recursive goals with strictly smaller arguments in the inductive argument, possibly using the reduction property of earlier (closer to the head) subgoals. Forward-chaining clauses are checked with the judgment $\Phi; \Omega \overset{\text{TCA}}{\Rightarrow} A; \Phi_g$ (Figure 19) by checking the termination of subclauses via the judgment $\Phi; \Omega \overset{\text{TGS}}{\Rightarrow} S < P$ and ensuring that unrestricted synchronous atoms generated by the clause satisfy
a specific subterm property. In particular, the judgment $\Phi; \Omega \vdash S \text{ term}$ verifies that every argument term in the unrestricted synchronous atom ιQ is no larger than the arguments of synchronous atoms in the subgoals. Intuitively, the subheight judgment $\Phi; \Omega \vdash S; \Phi_g$ extracts the (maximum) depth of each existential variable in the head Q and subgoals Φ_g, and ensures that maximum depth of each existential variable in the head is less than or equal to the maximum depth in the antecedent. This ensures that the height of arguments is non-increasing and due to the restriction of the analysis to unrestricted hypotheses in forward-chaining clauses, this bounds the size of the context to all formulas with arguments of size less than or equal to those in the initial database.
Mode, Reduction, and Termination Analysis for LolliMon

\[\Phi; \Omega \xrightarrow{TGA} P; \Phi_S \]

[Termination stack (backward or forward)]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TKA} P; \Phi_S \quad & \Phi; \Omega \xrightarrow{TKA} P, \forall A \\
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TKA} P; \Phi_S, \exists A: \forall x: \exists TKA \\
\end{align*}
\]

\[
\begin{align*}
\Phi \xrightarrow{RPA} S / \Omega' \quad \Phi; \Omega \xrightarrow{TGS} S < P \quad \Phi; \Omega, \Omega' \xrightarrow{TKA} P; \Phi_S \]

[Termination (backward or forward, goal)]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} A < P \quad \Phi; \Omega \xrightarrow{TGS} S < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} \text{term}(a \cdot Z') < \text{term}(a \cdot Z) \\
\Phi; \Omega \xrightarrow{TGS} a' \cdot Z' < a \cdot Z
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} a' \cdot Z' < a \cdot Z
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} S < P \\
\Phi; \Omega \xrightarrow{TGA} [S] < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} S < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} A_1 < P \\
\Phi; \Omega \xrightarrow{TGA} A_2 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} A_1 \& A_2 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} S_2 \rightarrow A_1 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGA} S_1 < P \\
\Phi; \Omega \xrightarrow{TGS} S_2 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} S_1 \& S_2 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} Q < P \\
\Phi; \Omega \xrightarrow{TGS} \exists x: A_2; \Omega \xrightarrow{TGS} A_1 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} A_1 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} 1 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} S_1 < P \\
\Phi; \Omega \xrightarrow{TGS} S_2 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} \exists x: A_2, S_1 < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} A < P
\end{align*}
\]

\[
\begin{align*}
\Phi; \Omega \xrightarrow{TGS} ! A < P
\end{align*}
\]

Figure 17: Termination Checking Principal Judgments (2)
2.4 Examples

In this section we consider several programs and how to apply the mode, reduction, and termination analyses, as well as some programs which can't be handled by the current formulation.

The following forward-chaining program saturates the context with natural numbers between zero and nine.

\[
\{ \text{digit} (s^9z) \}.
\]

Subordination determines \(\text{digit} \subseteq {} \) which is a valid relation because the synchronous atom \(\text{digit} \) does not invoke saturation. The first clause is terminating because it generates an unrestricted ground atom, so the condition on existential variables is trivial. The second clause is terminating because it generates an unrestricted ground atom and the depth of the variable \(N \) is zero in the head and one in the antecedent, so the \(\Phi;\Omega \xrightarrow{\text{SH}} \text{digit} N \subseteq \exists N:\text{nat}, \exists u:\text{digit} (sN) \) judgment holds.

The following forward-chaining program generates the symmetric closure \(s \) as a synchronous atom of a relation \(r \) represented by an asynchronous atom.

\[
\{r XY \rightarrow [s XY]\}.
\]

\(\{s XY \rightarrow [s Y X]\}. \)
Figure 19: Termination Checking Principal Judgments (4)
The mode assignment \(\text{mode}(r \cdot (X; Y)) = -, - \) and the default assignment \(\text{mode}(s \cdot (X; Y)) = -, - \) are easily verified because no rule proves \(r \) and in both clauses the variables are made ground by the antecedents and therefore are ground in the head. Termination is similar to the above case, although this program shows that unlike backward-chaining programs, it is possible to change the order of an atom’s arguments in forward-chaining clauses.

Similarly, the transitive closure \(t \) of a relation \(r \) can be shown to be well-moded and terminating. Moreover, it is possible to show that if the initial relation is reducing, then so is the transitive closure.

\[
\begin{align*}
!r XY & \rightarrow \{t XY\} \\
\neg t XY & \rightarrow \neg t YZ \rightarrow \{t XZ\}.
\end{align*}
\]

Assuming \(\text{red}(r \cdot (X; Y)) = X < Y \), it is possible to show that this program satisfies the reduction property \(\text{red}(t \cdot (X; Y)) = X < Y \). In the first clause, \(t \) satisfies the reduction property \(X < Y \) because \(r \) satisfies it. In the second clause, the inductive reduction properties \(X < Y \) and \(Y < Z \) can be used in the subterm sequent calculus to show \(t \) satisfies the reduction property \(X < Z \).

The following mixed-search implementation of CKY parsing in LolliMon can be shown to be well-moded and terminating.

\[
\begin{align*}
!\text{rule } X (\text{char } C) & \rightarrow \neg \text{str } I C \rightarrow \{\text{parse } X I I\} \\
!\text{rule } X (\text{jux } Y Z) & \rightarrow \neg \text{parse } Y I I J \rightarrow \neg \text{parse } Z (s J) K \rightarrow \{\text{parse } X I K\} \\
\text{load } N \text{ nil } S & \rightarrow \{\text{parse } S (s z) N\} \\
\text{load } I (C :: Cs) S & \rightarrow \neg \{\text{str } (s I) C \rightarrow \text{load } (s I) Cs S\} \\
\text{start } Cs S & \rightarrow \neg \{\text{load } 0 Cs S\}
\end{align*}
\]

It is possible to verify the clauses are well-moded by assigning modes to the asynchronous atoms

\[
\begin{align*}
\text{mode}(\text{str } (I; C)) &= -, - \\
\text{mode}(\text{rule } (X; R)) &= -, - \\
\text{mode}(\text{load } (I; Cs; S)) &= +, +, - \\
\text{mode}(\text{start } (Cs; S)) &= +, -
\end{align*}
\]

and the necessary assignment \(\text{mode}(\text{parse } (X; I; J)) = -, -, - \) for synchronous atoms. Since \(\text{str} \) and \(\text{rule} \) do not occur in the head of any clause, they trivially satisfy the mode specification. The first two clauses are well-moded
by analyzing each clause from left to right and establishing that the variables in the head are ground after the subgoals have been solved. The third clause is well-moded because \textit{parse}'s mode guarantees \(S \) is ground after saturation. The last two clauses are well-moded by standard reason for backward-chaining clauses. For termination, the subordination analysis determines \(\text{str, rule} \preceq \text{parse} \preceq \{\} \preceq \text{load} \preceq \text{start} \) which satisfies the global subordination condition because each asynchronous atom \(\text{str, rule, load, start} \) occurs on only one side of \(\{\} \) in the relation and the synchronous atom \(\text{parse} \) is below \(\{\} \). The atoms \text{str} and \text{rule} are trivially terminating because they do not occur at the head of any clause. The first clause is terminating because the depth of of the variables \(X \) and \(I \) in the conclusion is zero, which is equal to their height in the antecedents. Similarly, the second clause satisfies the the depth condition because the existential variables in the head occur at depth zero. The third clause is terminating because the subgoal involves a strictly subordinated atom. The fourth clause is terminating by specifying \(\text{term}(\text{load} \cdot (I; Cs; S)) = Cs \) because the second argument acts as the induction variable, which is also trivially satisfied by the third clause. The higher-order subgoal of the fourth clause also checks the termination of the subclause \(\text{str} (s I) \). Finally, the fifth clause is terminating because the subgoal involves a strictly subordinated atom.

One example that can’t be shown to terminate is \(_q (s X) Y \rightarrow \{ _q X (sY) \} \), which converges by using the first argument as an induction variable, but our analysis rejects the program because the depth of \(Y \) in the head is greater than its depth in the antecedent and it is not possible to specify termination orders of synchronous atoms. Handling forward-chaining clauses that generate linear hypotheses is subtle because of the interaction between linear consumption and linear production. For example, the clauses \(\top \rightarrow \{q\} \) and \(p \supset \{q\} \) are always applicable (assuming \(p \) is always satisfiable) and saturation would generate an unbounded number of copies of \(q \). This means that a forward-chaining clause that generates linear hypotheses must have at least one non-trivial atomic linear subgoal. However, this is not sufficient because \(p \rightarrow \{q\} \) could still diverge if \(p \) is always satisfiable and \(q \rightarrow \{q\} \) clearly loops. The latter example is also problematic because clauses such as \(_q \rightarrow _q' (s X) \rightarrow \{ _q \otimes _q' X \} \) consume a token from the context and immediately return it, although the database converges because the second argument is strictly decreasing. Again, the convergence of the clause is conditional on the linearity of \(q' \), because the clause would always be applicable if \(q' \) were unrestricted. Since linear goals may be solved by unrestricted means, it would be necessary to perform another static analysis that determines whether an atom may occur in the linear or unrestricted
context, or alternatively require a block declaration that makes the shape of
the context explicit. Some programming idioms do not satisfy the subterm
property between the head and subgoals but still converge because the size
of the context is strictly decreasing. For example $p \rightarrow q X \rightarrow \{q(sX)\}$ in-
formally counts the number of p's in the context and converges if p is truly
linear, although the depth of X in the head is not less than or equal to its
height in the antecedents. Due to the variety of termination arguments for
forward-chaining clauses with linear heads, it may be necessary to provide
multiple ways of specifying the termination property according to which
antecedents are truly linear, whether a rule shrinks the context or generates
hypotheses with strictly smaller arguments, and addressing the interaction
between clauses that terminate for different reasons.

3 Conclusion

We have presented a variant of LolliMon with synchronous atoms and
generalized linear implication together with an operational semantics that
makes saturation and quiescence explicit, as well as mode, reduction, and
termination analyses that handle the mixed backward-chaining and forward-
chaining search behavior. The termination analysis only accounts for backward-
chaining clauses and forward-chaining clauses that generate unrestricted
synchronous atoms, and we have discussed design considerations for han-
dling the general forward-chaining case. The next step will be to prove
soundness and completeness of the explicit operational semantics with re-
spect to the original semantics, extend termination analysis to handle gen-
eral forward-chaining clauses, and prove the correctness of the analyses
with respect to the operational semantics. The reduction and termination
analyses could be revised using contextual modal type theory [12] instead
of the mixed-prefix context presentation.

Termination of forward-chaining logic programs can be refined to es-

tablish asymptotic time complexity bounds on the running time of satu-
rating logical algorithms. Ganzinger and McAllester [11, 7, 8] give meta-
complextity results for forward-chaining first-order logic programming lan-
guages. The first results deal with bottom-up search without deletion and
union-find primitives, a richer language incorporates deletion of antecedent
formulas and rules with fixed priority which enable an encoding of union-
find, and a further extension allows deletion of arbitrary formulas (not only
those that appear in the antecedent) and variable priority as a function of
the object terms. The metacomplexity results permit the analysis of sat-
urating logic programs whose complexity is given in terms of the size of the initial database and the number of prefix firings (the number of ways the antecedent of a clause can be satisfied). The metacomplexity theorems are proven by translating logic programs into a restricted fragment of the language and giving an algorithm that generates the completed database within the purported time complexity. Their example saturating logical algorithms be encoded in LolliMon by simulating deletion with linear resource consumption, although LolliMon does not provide a logical foundation for rule priorities. In their setting deletion is irrevocable so a sufficient termination criterion is that terms in the conclusion are subterms (not necessarily proper) of the terms in the antecedents. Termination for saturating LolliMon logic programs may be verified by means of a similar metacomplexity result, although linearity will likely require a more complicated subterm criterion because linear production and consumption are complementary and certain LolliMon programs may oscillate between states even though the linear context remains bounded. The Ganzinger and McAllester algorithm for computing the saturated completion of a database according to rules with deletion may be adapted to the linear setting by relaxing the saturation and quiescence conditions and employing model checking techniques for determining when a local fixed point has been reached, even if the context oscillates. Another direction for research will be to extend the operational semantics as well as the static analyses to the dependent case of CLF.

Termination analysis of backward-chaining logic programs may also be refined into a nondeterministic time complexity metatheorem by considering the running time of a clause as a recurrence relation in terms of the running time of the subgoals. This approach would be similar to the complexity analyses of Debray, López García, Hermenegildo, and Lin [6, 4, 5] and could employ the techniques for automatic solution of recurrence relations developed by Bagnara, Zaccagnini, and Zolo [3, 2].

Once the theoretical foundations for termination and complexity analysis in LolliMon are settled, a termination checker and complexity synthesizer can be implemented in LolliMon, the algorithm in the proof of the metacomplexity theorem can be implemented separately or as a replacement for the existing LolliMon saturation/quiescence engine, and the subterm analysis can be extended to CLF proof terms.
4 Acknowledgments

I am grateful to thank Frank Pfenning for introducing me to the topic and discussing existing work, and to Brigitte Pientka for explaining the design considerations of reduction and termination checking for Twelf.

5 References

