
Technological and Pedagogical
Innovations for Teaching Introductory
Discrete Mathematics to Computer

Science Students

Adam Blank
CMU-CS-14-114

August 2014

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Randy Bryant, Chair

Klaus Sutner
Marsha Lovett

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c 2014 Adam Blank

This research was sponsored by the National Science Foundation under grant numbers IIS-0910453, IIS-
0968487, IIS-1054630, and DUE-1245735, the Department of Education under grant number R305B090023,
and The David and Lucille Packard Foundation under grant number 200934720.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: discrete mathematics, introductory course, compiler, runtime analysis,
assessment, peer review

For my father.

iv

Abstract
Students studying computer science usually encounter an introductory

discrete math course in their first or second year of undergraduate educa-
tion. Before this course, the only computer science they have seen is often
programming, and as a result they have a very narrow definition of our field.
The realization that math—in particular, math that is very different than
what they’ve seen in high school and calculus—is a large part of computer
science can be very jarring and unwelcome. Moreover, these courses often si-
multaneously introduce the concept of a proof and formalism, numerous new
symbols and terminology, have difficult content, and have slow grading.

We present several technological and pedagogical solutions to these prob-
lems wrapped together in a course implementation, piloted at Carnegie Mel-
lon University as 15-151. 15-151 deliberately addresses and embraces these
concerns rather than trying to avoid them. In particular, it invites students
to explore content applications by programming, write and discuss proofs to-
gether in groups, use a “computational environment” to explore syntax and
semantics, and read and evaluate each other’s proofs to understand their
errors and speed up grading.

vi

Acknowledgments

I owe a great debt to a number of people who have made 15-151 and this thesis possible.

First, I want to thank everyone who has assisted me an an advisory role over the
years: Randy Bryant, Klaus Sutner, Marsha Lovett, Emma Brunskill, Luis von Ahn,
and Mark Stehlik. Their patience with me and constant advice have pushed me to do
my best work and guided me through difficult choices, and I cannot express my gratitude
enough.

Randy has been infinitely patient as I have gone on teaching tangents and changed
research directions. Throughout changing perspectives and goals, Randy has been the
glue that has held everything together. His advice and insight have been invaluable to
me, in my reseach, in writing this document, and in accomplishing my goals. Without
Randy’s faith in me, 15-151 and this thesis would not exist–and my future would be very
different.

Klaus has given me advice and guided me, both in my undergraduate research and
as I continued on to graduate school. He was always willing to meet with me when I
frequently dropped in unannounced, and he has constantly solved problems for me as
they have arisen. When I wanted to teach 15-151, Klaus gave up teaching CDM for
a year to co-teach with me, so it could happen. Klaus has consistently given me the
freedom–both logistically and pedagogically–to try out new ideas; many of these ideas
ultimately made it into this thesis, but Klaus helped me to explore even those ideas that
didn’t.

Marsha has consistently been available to supplement and foster the experimental
teaching I was doing with her vast knowledge of educational research and her enthusiasm.
We have talked through a variety of concerns and experimental designs as they have come
up, and she has helped solve numerous problems.

Luis has offered advice and assistance in a wide variety of capacities; he helped me
develop and let me try out my initial grading ideas, mentored me when I interned at
Duolingo, and showed me that courses can be very different. Emma has pushed me out
of my comfort zone and broadened the variety of approaches and results I have aimed
for. Mark helped me persue my unique approach to my undergraduate degree (which
prepared me for what came next), helped me make 15-151 happen, and has given an
unreasonable amount of his time to me. Tom Cortina has helped me navigate various
policy and student concerns, and he has always been available to lend an ear.

vii

Second, I also want to thank everyone else who has been there for me personally and
professionally throughout. Josh Zimmerman has constantly been there for me to make
me smile. He has listened to numerous rants about teaching and helped me improve my
writing, my courses, and my mood. Max Illfelder has inspired confidence when things
weren’t going well and a reality check when they were. Dmitriy Chernyak has suggested
homework problems, listened to (and critiqued) ideas, and reviewed this document.
Brendan Sullivan tested out various technologies and pedagogical ideas, and he has
inspired a variety of new approaches to teaching material. Rosie Battenfelder has copied
numerous handouts for 15-151, and always been happy to have a conversation. Deb
Cavlovich has helped me figure out how to navigate the various issues that have come
up over the past few years. Catherine Fichtner has always been positive, welcoming, and
available to listen.

Third, I thank every one of my teaching assistants for all their hard work and ideas.
None of this would have been possible without you.

Finally, I thank all my students. There is no point in improving education if there
is nobody to benefit from it. It has been a pleasure to teach all of you. Many of your
suggestions have significantly impacted my work, and I am very grateful for them.

viii

Contents

1 Introduction 1

I Developing a Discrete Mathematics Course for Freshmen Com-
puter Science Students 3

2 Discrete Mathematics for CS Majors 4
2.1 Meta Content . 4

2.1.1 Calculus, Computer Science, and You 4
2.1.2 Programming, Computer Science, and You 6
2.1.3 Intrinsic Motivation . 8
2.1.4 Proofs and Rigor . 9
2.1.5 Mathematical Problem Solving . 11
2.1.6 Collaborative Learning . 12

2.2 Domain Content . 12
2.2.1 Essential Preliminary Content . 12
2.2.2 Graphs and Relations . 13
2.2.3 Number Theory, and Algebra . 14
2.2.4 Combinatorics and Probability . 16
2.2.5 Theory of Computation . 17

2.3 Application Content . 17
2.3.1 Basic Logic . 18
2.3.2 Induction, Asymptotic Analysis, Relations, and Functions 18
2.3.3 Number Theory and Group Theory 18
2.3.4 Computability Theory . 18
2.3.5 Probability . 19

2.4 Course Sequencing . 19
2.4.1 Summary of Various Universities 19

2.5 Our Implementation at CMU: 15-151 . 20
2.5.1 Overview of Carnegie Mellon Introductory CS Courses 20
2.5.2 Implementation Goals and Details 21
2.5.3 Postmortem: 15-151 Structure . 23

ix

3 Pedagogy in the Discrete Math Classroom 25
3.1 Transition from High School . 26
3.2 Course Meetings . 26

3.2.1 Lecture . 26
3.2.2 Recitation . 28
3.2.3 Workshops . 28

3.3 Exams and Quizzes . 30
3.3.1 Exams . 30
3.3.2 QuickChecks: Formative Assessment 30

3.4 Results and Conclusions . 31

II Using Technology to Teach Discrete Mathematics 32

4 fSetØyg: A Programming Language for Teaching Discrete Mathematics 33
4.1 Motivation . 33
4.2 fSetØyg Language Description . 35

4.2.1 Primitive Types . 36
4.2.2 Primitive Operations . 37
4.2.3 Variables and Statements . 37
4.2.4 Functions . 38
4.2.5 Input and Output . 39
4.2.6 Conditionals and Loops . 39
4.2.7 Set Comprehensions . 39
4.2.8 Quantifier Expressions . 40
4.2.9 Decorators . 41

4.3 Language Design . 41
4.3.1 Type Coercion and Internal Representation 41
4.3.2 Total Ordering on Sets . 42
4.3.3 Guaranteed Termination . 42
4.3.4 Automatic Memoization . 44
4.3.5 Libraries and Definition Files . 44

4.4 Standard Libraries in fSetØyg . 45
4.4.1 Standard Type Libraries . 45
4.4.2 Standard Function Libraries . 45

4.5 Teaching Discrete Mathematics with fSetØyg 46
4.5.1 Logic . 46
4.5.2 Sets . 51
4.5.3 Foundations of Mathematics . 55
4.5.4 Examples, Patterns, and Direct Proofs 56
4.5.5 Recurrences and Combinatorics . 59
4.5.6 Pilot Results . 59

4.6 Future Work . 60
4.6.1 Backed by Z3 . 60

x

5 Symbolic Algorithm Complexity Analysis 63
5.1 Overview . 64
5.2 Pedagogical Outcomes . 64

5.2.1 Standard Approaches . 66
5.3 SubfSetØyg . 68

5.3.1 Syntax . 69
5.3.2 Semantics . 70

5.4 Our Approach . 70
5.4.1 The Standard Interpreter . 70
5.4.2 Abstract Interpretation and Symbolic Algebra Library 70
5.4.3 Overview of Complexity Analyses 72
5.4.4 Output Complexity . 72
5.4.5 Time Complexity . 76
5.4.6 Closed Forms . 77

5.5 Pedagogical Outcomes of Our Approach 77
5.6 Case Study in 15-151 . 78

III Coping with Consistency, Timeliness, and Quality of Feed-
back in Large Courses 79

6 Judgement-based Grading 80
6.1 What is Grading? . 80

6.1.1 Defining Grading . 81
6.1.2 Grading Agents . 81

6.2 Grading. . . Grading . 82
6.2.1 Criteria for Scoring . 82
6.2.2 Criteria for Feedback . 82
6.2.3 Criteria for Grading Pool Compatibility 84
6.2.4 Criteria for Grader Efficiency . 85
6.2.5 Criteria for Instructor Usage . 85

6.3 Restricting Domain Content and Prompts 86
6.3.1 Fuzzy-Objective . 86
6.3.2 Non-fuzzy-Objective . 86
6.3.3 Non-objective Prompts . 86

6.4 Standard Grading Systems . 87
6.4.1 “It feels like a. . . ” Grading . 87
6.4.2 Rubric Grading . 87
6.4.3 Scoring Guidelines . 88
6.4.4 Machine Grading . 89

6.5 Our Approach: Judgement-based Grading 89
6.5.1 List Judgement-based Grading . 89
6.5.2 Templated Judgement-based Grading 89

6.6 Evaluating Judgement-based Grading . 95

xi

7 Verifications 97
7.1 Related Work . 98

7.1.1 Theorem Provers . 98
7.1.2 Peer Grading of Essays . 99
7.1.3 Peer Grading of Code . 99

7.2 Our Approach . 99
7.3 Research Questions . 100
7.4 Preliminary Results . 101

7.4.1 Grading Effort . 101
7.4.2 Student Ability . 101

7.5 Future Work . 103

IV Conclusion 105

8 Conclusion 106

Appendices 108

A Formal SubfSetØyg Semantics 109
A.1 Static Semantics . 109
A.2 Dynamic Semantics . 109

A.2.1 Stepping of Expressions . 110
A.2.2 Stepping of Commands . 110
A.2.3 Stepping of Programs . 111

B Verification Study: Pre-test and Post-test 113

Bibliography 118

xii

List of Figures

2.1 A pre-requisite map for discrete math related meta topics 5
2.2 A machine-checkable proof that f(x) = f(y)) x = y where f(x) = 2x . . 9
2.3 A detailed formal proof that p) q; q) r ` p) r 10
2.4 A human-readable proof that f(x) = f(y)) x = y where f(x) = 2x . . . 10
2.5 A prerequisite map for the essential preliminary discrete math topics . . . 13
2.6 A prerequisite map for graphs and relations 14
2.7 A prerequisite map toward RSA . 15
2.8 A prerequisite map for combinatorics and probability topics 16
2.9 A prerequisite map for computability and complexity topics 17
2.10 Carnegie Mellon CS introductory sequence 21

3.1 Flow of learning from instruction to assessment in our model 25

4.1 fSetØyg total ordering of hereditarily finite sets 43
4.2 fSetØyg code that computes the gcd function 44
4.3 Web interface for fSetØyg truth table exercise. 48
4.4 Web interface for fSetØyg negation exercise. 49
4.5 Future fSetØyg code to solve Sudoku puzzles 61
4.6 Future fSetØyg code that exibits the undecidability of the halting problem 61
4.7 Translation of the code in Figure 4.5 to Z3 bindings in Python 62

5.1 The complexity analysis pipeline. 65
5.2 Runtimes for inputs to Fibonacci of increasing sizes 67
5.3 Runtimes for inputs to Timsort of increasing sizes (zoomed) 68

6.1 The judgement list in our original prototype system 90
6.2 A grader choosing to begin with a pre-populated set of judgements 90
6.3 A grader reviewing the states of submissions 91
6.4 A grader in the middle of grading a submission 92
6.5 Top: A grader choosing a judgement; Bottom: A student reviewing feed-

back on a submission . 93
6.6 A grader searching through judgements 93
6.7 A grader choosing the best fitting explanation (or adding a new one) . . . 94
6.8 A grader filling in a template for a particular student 94
6.9 A grader allocating points to judgements 95

xiii

xiv

Chapter 1

Introduction

Mathematical Foundations for Computer Science are generally considered to be a core
part of undergraduate computer science curricula [Ral05, Dev01, Fra06, Hen01]. In fact,
the joint ACM and IEEE task force on computing curricula suggest in their recent 2013
curriculum guidelines that 37 of the 165 “Tier-1 Core” (absolutely essential) course hours
be spent on these preliminary topics [oCC13]. Importantly, as the technical report notes,
the boundaries between these preliminaries and various applications and extensions are
not always clear, and content decisions can lead to drastically different course sequence
implementations. Even once content is chosen, there are various practical barriers that
arise in the courses teaching it.

First, these courses are difficult ! They cover a wide variety of material which often
feels completely unmotivated to students. Since most of these courses cover logic and
sets, they introduce an entire set of symbols, grammar, and writing style that is as
comprehensive as learning a new language.

Second, enrollment is large and increasing, and the students have varied backgrounds
and interests. In recent years, a wide variety of universities have seen exploding en-
rollment in introductory courses and large increases in the number of intended ma-
jors [LR14], and it does not look like this is likely to stop. As the student population
increases, students’ interests and backgrounds diverge even more significantly. Some
students come into the computer science major with no experience while others believe
computer science is entirely about programming. Some of our students dislike math and
others have just taken a calculus sequence. These facts cause the design of prerequisite
foundations courses to seriously consider both the incoming and outgoing perceptions of
the students. In particular, we can very easily overwhelm, discourage, or under-prepare
students.

Finally, grading proofs is time consuming and resource intensive but necessary to
teach students how to write valid arguments. Even if there are enough graders, they are
often unqualified or do not prioritize feedback. This can result in feedback that is either
incorrect or significantly delayed which makes it very difficult for students to learn.

Given that these concerns face all foundations sequences, any implementation should
be able answer all of the following in the affirmative:

� Does our course design cover all essential topics without overwhelming students?

1

� Does our course design address all important “meta issues” (with respect to student
attitudes and prior knowledge)?

� Does our course design include interesting, motivational applications without over-
loading students with too much material?

� Does our instruction foster deep learning, so that students are ready for later
courses that build on this material?

� Do our assessments help students explore the new language (i.e. logic, sets, proofs)
we are teaching without increasing student effort significantly?

� Is our feedback consistent, timely, and of good quality?
� Do students utilize and learn from the feedback they are given?

In practice, each of these points individually is a tall order, and there is likely not
a single implementation that actually solves all of them. In this thesis, we propose
solutions and our prototype implementation of our solutions for each probing question.

We begin by discussing common choices of “meta content” and content. We provide
recommendations on “clusters” of this content and how to enforce the “meta content” out-
comes. Then, we review a variety of existing foundations for CS course sequences. Addi-
tionally, we present the unique situation at Carnegie Mellon and our re-implementation
of their first course (Chapter 2). To complement choices in content, courses must choose
instructional strategies. We discuss various strategies that have a basis in educational
research and can increase student understanding and enjoyment in foundations courses,
and our particular implementation of these strategies at CMU (Chapter 3).

To simultaneously improve assessment and feedback, we propose a new programming
language that acts as a “computational environment” for exploring the mathematical
language taught in these courses and our results in using its prototype (Chapter 4). We
detail a symbolic complexity analysis assignment that cleanly integrates this language
and many of the topics students learn as preliminaries in foundations courses into a “cool
application” of these topics (Chapter 5).

Finally, we discuss a new way of structuring grading called Judgement-based grading,
and two implementations of it that increase consistency, speed, quality, and coordination
of grading (Chapter 6). Furthermore, we explain how Judgement-based grading can
be used to back a form of peer-review of proofs by novice students that we leverage
to decrease necessary grading resources and increase student learning (Chapter 7). We
discuss promising preliminary results for both Judgement-based grading and peer-review
that uses it.

2

Part I

Developing a Discrete Mathematics
Course for Freshmen Computer Science

Students

3

Chapter 2

Discrete Mathematics for CS Majors

We begin this chapter with an in-depth dissection of the “meta content” that must be
addressed, either implicitly or explicitly, when teaching computer science students proofs
and discrete foundations for the first time. In particular, we review students’ backgrounds
and preconceptions coming into the course.

Then, we separate the possible course content into “clusters”, explore the ways these
clusters are usually implemented in a curriculum, and discuss drawbacks and benefits to
several common choices.

We review various implementations of splitting up domain content over a curriculum
and various motivational computer science applications of the material. Finally, as a
case study, we consider the curriculum at Carnegie Mellon and our implementation of
such a course: “15-151: Mathematical Foundations of Computer Science.”

2.1 Meta Content

Given the unique position that introductory discrete math courses have in CS curricula
as both a transition from programming, prerequisite fulfillment for a large variety of
courses, and an introduction to formal reasoning and proofs, it is unsurprising that they
are difficult and often distressing for students. Instructors who teach these courses must
be keenly aware of the meta content associated with these courses. The meta content
is, in many ways, more important than the domain content being taught in the course.

2.1.1 Calculus, Computer Science, and You

Students taking an introductory discrete math course have usually learned two ap-
proaches to handle what they call “math”:
(1) “watch-and-repeat”, in which the teacher gives them a pattern or algorithm to follow,

and they do so without thinking about it
(2) “plug-and-chug”, in which they arbitrarily plug values into an equation to “find the

answer”

4

Pre-requisites

Programming
Experience

Understanding of
CS as more

than programming

Declared Major

Calculus

Personal
Maturity

Group
Work

Lots of
Resources

Understanding of
Math as more

than plug-and-chug

Formalism What is
a Proof? Rigor

Mathematical
Maturity

Math is useful
for CS

Figure 2.1: A pre-requisite map for discrete math related meta topics

This insanity [Loc], of course, inspires many of them to hate “math” and many of the
others to think they’re bad at it. So, it is no surprise that a course that alleges to teach
them more math is met with groans and worry. If this were not painful enough, many
of them “learned induction” and “learned combinatorics” in high school; so, they expect
it to not be difficult. These expectations compounded with an insistence for them to
actually think, rather than repeat or chug, can compound their fears that they’re bad
at math. Those fears then can convert to worries that computer science is not for them.
So, what do we do? We recommend the following:

� Discuss the difference between “math” (what they know) and math (what
you’re teaching). Do this clearly and at the beginning of the course. Compare
and contrast what problems, solutions, and expectations look like in both domains.
Repeated differentiation between their prior knowledge and expectations for the
course can preemptively prepare them for when their prior mathematical knowledge
will be insufficient to support the “new math” they are learning. Enforcing this
difference can help them understand that it is okay that they cannot directly build
on what they already know [ABD+10].

� Get them interested and invested. Use cool applications and interesting prob-
lems. Give them opportunities to explore their interests further. Student perceived
value of discrete mathematics is often very low when coming into the course; it is
the job of the instructor to help students see intrinsic or instrumental value of
these topics. Claiming that it “will be obvious later” rarely works, and can often
back-fire and cause students to distrust the instructor. Furthermore, “fake” value
(applications that really are not; prerequisites that also have low intrinsic value,
etc.) often does not add very much [ABD+10]. We discuss how to foster intrinsic
motivation and provide some possible choices for “cool applications” later in this
chapter.

� Make them feel safe. Provide an environment known for second chances and

5

extra help. Make policies that provide second chances. Because students often
do not feel confident either in the new college setting or in a math setting, prior
experiences and stereotype (and other) threats can predispose students to give up
easily. Counteracting this with policy and course environment as much as possible
can somewhat mitigate this.

� Make your expectations clear. This is particularly important when it comes
to the question “what is a proof?”, because the topic is inherently poorly defined.
Student perception that expectations or instructions are arbitrary can increase
negative feelings and lower barriers to giving up.

� Talk to them about the “growth mindset” . Many students believe that they
were not born “math people”, and, thus, they have no control over how they perform
on mathematical tasks. This sort of thinking is called the “fixed mindset” by Dweck
(a psychologist). It is particularly a problem in a foundations course, because it
motivates students to give up on difficult problems rather than working on them.

The “growth mindset” is effectively the opposite: these students believe that
their intelligence is flexible and that by working hard they can make new pathways
in their brains. Students with a “fixed mindset” do significantly worse than those
with a “growth mindset” over time, and, furthermore, students who are encour-
aged to think with a “growth mindset” can actually completely turn around their
performance [Dwe08].

The instructor’s mindset has a notable effect on the students. Instructors
who believe in the “fixed mindset” generally (unconsciously) give less productive
feedback and (unconsciously) encourage students to think with a “fixed mindset”
as well.

While the research is not entirely conclusive on which mindset is actually the
biologically correct one, many researchers believe in significant “neural plasticity”
(which backs up the “growth mindset”). Furthermore, making an analogy between
math/programming (which people believe not everyone can do) and reading (which
we believe everyone should be able to do) helps as well [Wil09].

The original research has been discussed for computer science [MT08], as well as
applied in a programming context [CCD+10, SHM08]. Explaining that this course
is intended to help them train their brains to think in a new way, and backing it up
with this research can inspire confidence–particularly in at-risk groups [ACM09].

2.1.2 Programming, Computer Science, and You

Very commonly, when students choose to pursue the computer science major, they are
basing their decision on how much they enjoy programming. While programming ability
and enjoyment is a great signal for computer science aptitude, if it is the only signal
students are using (and it often is), the first non-programming course students take in
the major can create a very large internal struggle as students’ initial perceptions meet
reality.

6

Furthermore, this problem is not trivially solvable by trying to describe that computer
science “involves a lot of math”, because this has the possibility of over-correcting in either
direction. Since students have the perception that math is just “watch-and-repeat” and
“plug-and-chug”, or, better yet “math is calculus”, pushing them to recognize that math
is needed in computer science can deter students for whom it should not. On the other
end of the spectrum is a student who saw basic induction/combinatorics/probability in
high school in algebra or pre-calculus.

In this situation, the student might vastly underestimate how difficult these topics
can actually be, and more importantly he or she can believe they are ahead of the other
students. Various, more complicated, strategies can be (and are) attempted to explain
what a computer science major entails to incoming students, but the point we intend
to make here is that in the status quo many students enter CS programs with an overly
narrow view of computer science as programming.

While this is not necessarily a problem, it should certainly factor into the design
of a foundations course. In particular, we recommend that foundations of math for
cs courses embrace this student preconception rather than either downplaying it (e.g.
exclaiming “There is more to computer science than just programming!”) or ignoring it
(e.g. no programming, coding, or connections to programming as examples, assignments,
explanations) We recommend the following:

� Make connections to programming as a theme and through examples.
When teaching new concepts, try as often as possible to point out the similarities
to programming. A few examples are induction/recursion, scope of quantifiers/s-
cope of functions, and poorly-formed expressions/invalid syntax. It is important
to use this as a theme throughout the course rather than just appealing to it a few
times, because it makes the course feel less foreign and intimidating.

� Use programming assignments to keep their attention and force them to
work through details. Computer science students generally (but not always)
prefer demonstrating understanding via programming (because it is familiar) to
writing proofs. As such, mixing programming and proofs on the homework and
showing how the relate and complement each other can be very useful to help
students understand the material. Additionally, students can check the results of
their programs on examples very easily, but checking their proofs is a significantly
harder skill to learn. Finally, another advantage of programming assignments over
proofs assignments is that they are significantly easier to grade! In the past, we’ve
given assignments like “implement a relations library and use it to compute certain
interesting things” or “here is a combinatorial problem, implement a program that
counts. . . ”.

� Give them an environment with immediate feedback to explore sets, logic,
etc. and test their assumptions. We discuss our preliminary implementation of
such an environment in Chapter 4.

� Be careful not to abuse their programming ego, if they have one. One of the
downsides of associating programming with discrete math is that it can undermine
their confidence in programming, or, worse, activate certain prior struggles. Be-

7

cause this is possible, courses have to be careful to make sure that the programming
part of the assignment is not too difficult. Choosing an expressive programming
language can help with this. Also, surveying students to make sure they enjoy the
programming assignments can make a difference.

� Make sure to emphasize the relation to different kinds of programmers.
To over-simplify, some students are primarily interested in building things (web
applications, programs with cool results, mobile applications, etc.), and other stu-
dents are primarily interested in understanding how things work (what things
are behind the compiler, parallelism, how does the machine work). These students
have very different outlooks on the foundations course. The first group wants to
know why the math will be useful to them in writing programs, and the second
group wants to know how it will help them understand programs, the machine, etc.
It is important to make sure motivations include perspectives for both groups.

2.1.3 Intrinsic Motivation

While computer science students taking a foundations course are often self-motivated for
programming tasks, they are very rarely intrinsically motivated for mathematical tasks.
As we would like to convince students that math is interesting and useful in its own
right, this is a large deficit we are starting at. So, it is very important to understand
how to increase (or accidentally) decrease student intrinsic motivation.

Deci, Koestner, and Ryan have done several meta-analyses of studies to under-
stand what types of rewards increase and decrease intrinsic motivation [DKR01, DKR99,
ECP99]. We summarize the most relevant results here.

A tangible reward is a non-verbal reward that has significance to the receiver (a
grade, money, a certificate, cupcakes during recitation). The meta-analysis showed that
unexpected tangible rewards do not have a significant effect on college students, but
expected tangible rewards decrease intrinsic motivation with an effect size of d = �0:36.
Furthermore, Butler and Nisan compared feedback, numerical scores, and no response,
and found that feedback (without a score) led to increased intrinsic motivation and future
performance [BN86]. These conclusions indicate that, whenever possible, we should avoid
(or possibly delay) grades in favor of feedback.

A verbal reward is positive feedback from a respected figure (such as the instructor).
If the verbal reward is perceived as “controlling”, meaning that the student believes
that the rewarder is trying to get the student to do something, it can have a negative
effect, but if the reward is perceived as “informational” (e.g. telling the students they are
performing better than other classes), it can have a positive effect size of d = 0:43. Our
recommendation here is to emphasize how well the class is doing, and possibly explicitly
ask TAs to give positive feedback to struggling students to keep them motivated.

Helping students care about our material intrinsically is particularly difficult, because
of the perceptions they have coming in that we discussed in the last two sub-sections.
But, these perceptions make intrinsic motivation all the more important if we want
students to continue with computer science!

8

2.1.4 Proofs and Rigor

The goal in teaching students about proofs is to help them write in a clear, deliberate,
and precise way. Unfortunately, it is not exactly agreed upon just how formal is the
right amount of formal. Moreover, as students progress through courses, the standards
for “rigor” nearly always decrease. In essence, is because we begin trusting that they
understand the details, and, so, we no longer require them. However, lowering the
standards too early can result in students skipping steps that they really did not realize
need to exist.

On a high level, there are three “standards” of proof which are common among mathe-
maticians and computer scientists: machine-checkable proofs, formal proofs, and human-
readable proofs.

A machine-checkable proof is formally specified and intended for a computer to
interpret using languages like Cog or Agda. Since these proofs are specified for computers,
they often contain details that a human reader might find trivial or, conversely, miss
details a human evaluator might not understand as can be seen in Figure 2.2 [Pie13]. This
mismatch between the details and the audience, along with the irrelevant programming
knowledge that must be acquired to use it, make this type of proof undesirable for
teaching budding computer scientists and mathematicians their first type of proof.

Theorem double_injective’ : forall n m, double n = double m
�> x = y.

Proof.
intros n. induction n as [| n’].
Case "n = O". simpl. intros m eq. destruct m as [| m’].
SCase "m = O". reflexivity.
SCase "m = S m’". inversion eq.

Case "n = S n’".
intros m eq.
destruct m as [| m’].
SCase "m = O". inversion eq.
SCase "m = S m’".
assert (n’ = m’) as H.
SSCase "Proof of assertion". apply IHn’.
inversion eq. reflexivity.

rewrite �> H. reflexivity. Qed.

Figure 2.2: A machine-checkable proof that f(x) = f(y)) x = y where f(x) = 2x

A detailed formal proof works from a small set of known truths (axioms) and applies
a series of formal rules to make new truths (inference rules). Only a small subset of
mathematicians who are concerned about the “foundations of mathematics” generally
think about these proofs. Due to their extremely high level of detail, this type of proof
is not appropriate for students who are attempting to prove (eventually) complex results.
Figure 2.3 on page 10 shows a detailed axiomatic proof of a very simple proposition.

Finally, human-readable proofs are written for human mathematicians and/or com-
puter scientists. These proofs emphasize the important, novel parts of the argument.

9

1. p) q Premise
2. q) r Premise
3. (q) r)) (p) (q) r))) Intro.
4. p) (q) r) MP: 3, 2
5. (p) (q) r))) ((p) q)) (p) r))) Distrib.
6. (p) q)) (p) r) MP: 5, 4
7. p) r MP: 6, 1

Figure 2.3: A detailed formal proof that p) q; q) r ` p) r

They act as templates which provide enough information for an interested person to
formalize it as a detailed formal proof or a machine-checkable one. Figure 2.4 on page 10
shows a human-readable proof of the same claim as Figure 2.2.

Suppose f(x) = f(y). Then, 2x = 2y. Dividing both sides by 2, we see
that x = y which is what we were trying to prove.

Figure 2.4: A human-readable proof that f(x) = f(y)) x = y where f(x) = 2x

Some courses begin by asking students to write formal proofs (or nearly formal proofs,
in the sense that the justifications are not required to be theorem names and numbers).
Many courses simultaneously let students write (near) formal proofs and human-readable
proofs from the beginning, allowing steps to be skipped or lack justification eventually.
It is important, however, to force students to write human-readable proofs eventually,
because, like essays and code, there is a stylistic element to writing proofs. We have
found that calling it “proof design” rather than “proof style” communicates the idea more
clearly to students, but nonetheless, it is incredibly important to grade proofs not only
on their correctness, but on their formatting and clarity as well.

However, some problems arise when proof design becomes an important criterion for
correctness. First, because it is likely no two instructors will expect exactly the same
standard, it is important to communicate to students exactly the standard expected; so,
the students do not feel like they are being graded arbitrarily. It is crucial that this
standard is reflected in the solutions you hand out.

One issue that will likely come up in grading proof design is students who have
already learned some things about proofs will often object to your particular standard,
particularly if it is overly rigorous at the beginning, because they see no need for it
or something different was expected in a different course they took. The only real
solution is to explain that when grading, everyone has to be held to the same standard,
and leaving out steps is either an indication of not understanding something–or already
understanding it. Unfortunately, because the majority of students leave out steps due to
not understanding why they are important, the grading has to err on the side of rigor.

Another concern is that students will think they should memorize words “that you
want them to say”; to deal with this, you can either provide multiple examples of phras-

10

ings or evaluate them conceptually (e.g. give them a question with multiple wordings
written out and ask them which ones work/do not work) and why.

In general, no matter what type of proof students are expected to write, they will
often care much more about the answer than the proof itself; generally, this is because
high school has trained them to only care about the answer (and not really the work).
Dealing with this by deemphasizing the answer (making it worth 1 point) is often not well
received, but it is important. Instead, overemphasizing justification will give students
something to look toward.

2.1.5 Mathematical Problem Solving

Many foundations courses intend for students to improve at problem solving via the
problems they discuss and solve throughout the course. “Problem solving” includes
understanding problem statements, using heuristics to approach problems, choosing good
strategies, working toward a solution (possibly struggling), dealing with dead-ends and
frustration, and ultimately piecing together a solution that actually works. First, we
outline two existing approaches to teaching problem solving.

Shoenfeld has a massive set of literature on helping students develop strategies for
most of these things in an elective course with fewer than 10 students [AKMS98]. In
particular, his uses rare lectures, student presentations, small-group work, whole-class
discussions, and individual work (homework) to help students work on these skills. He
spends a significant amount of effort in this course creating a “mathematical community”
in which students critique and help each other, explore interesting problems, and inves-
tigate areas of mathematics in whichever direction the community finds interesting. The
problems Shoenfeld uses are intended to be not trivial, but accessible to a wide audience,
ideally solvable in multiple ways, demonstrate either content or methods, and not need
“tricks” to solve.

CS304 at Stanford, originated by Polya and taught by Knuth many times is another
approach for a different audience. The instructor begins the course by choosing around
five unsolved problems. Like Shoenfeld’s course, the number of students is very small
(less than 10-15). CS304 differs from Shoenfeld’s course in several important ways.
First, students are expected to combine math and programming to solve the problems.
Second, in Knuth’s words “[t]his is a class on how to do research”; so, the students come
in prepared to solve more simple problems [RK89].

The big differences between these two courses and a foundations sequence are (1)
foundations courses are usually much larger, and (2) the course is not optional. Addi-
tionally, we would ideally like to incorporate the ideas about teaching students who are
new to problem solving (from Shoenfeld) with using programming and computer science
applications as the targets (from Knuth).

Scale eliminates our ability to do presentations and makes building a “mathematical
community” significantly more difficult. But we can still ask students to do group work,
and choose problems that fit Shoenfeld’s criteria. Additionally, later in the sequence,
we can choose problems that are similar to the ones in CS304 with the exception that
we simplify them, make them less open ended, or do not grade on completion. Our

11

implementation (Chapter 3) attempts to incorporate many of these ideas, and we talk
about how one might go about implementing them more explicitly there.

2.1.6 Collaborative Learning

Because foundations courses can present difficult problems, they naturally create fantas-
tic opportunities for students to help each other and communicate over problems. We
believe this is a fundamental skill for computer science students (if not everybody) to
learn, and fostering it explicitly, and guiding students on how to work together can make
a large difference. We discuss ways to do this, in depth, in Chapter 3, as well.

2.2 Domain Content

There is far too much potential discrete mathematics content to fit into a single course
(or even multiple courses); so, it is natural that various curricula pick and choose which
topics to include to various degrees. In this section, we break down the domain content
into clusters that nearly always appear together due to applications and dependencies.
We provide a high-level discussion of the considerations involved in choosing a particular
cluster of content and possible unintended results of particular choices. We intend this
clustering to allow course sequence developers and instructors to more easily see the
wealth of potential content and to give a local picture of possible topics to cover or
remove to fit the meta content.

2.2.1 Essential Preliminary Content

Logic, sets, functions, induction, and proof strategies are so essential that any first
discrete math course missing one or more of these topics is incomplete. Every non-
preliminary topic relies on at least one of these, and most of them rely on several.
Furthermore, many topics not even directly related to this material (algorithms, AI,
machine learning, programming languages) all rely on many of these topics or, at the
very least, the understanding of what a proof is.

Since one of the major outcomes of foundations courses is to communicate the concept
of proofs, it can be advantageous to introduce proof strategies as early as possible. A
natural impediment to introducing proofs is the lack of formal systems to prove things
about ! Sets, logic, summations, and recurrences serve very well as this basis. As a result,
it is very common for courses to begin with one of these schema:

� Logic ! Sets ! Proofs
� Sets ! Proofs
� Logic ! Proofs
It is important to distinguish between teaching students proof strategies and teaching

students how to select a proof strategy. These are separate outcomes, and it is very
common to teach the first, but not the second. Understanding how to approach an

12

Basic Logic

Basic Mathematical Objects

Proof Strategies

Induction

Functions

Propositional
Logic Syntax

FOL Syntax
Propositional

Logic Semantics

Boolean Algebra

FOL Semantics
"Practical"

Quantification

Sets and Operations

...

Summations
Induction on
the Naturals

Recurrences Strong Induction

Direct Proofs

Implication Proofs

Selecting a
Proof Strategy

Contradiction Proofs

Structural Induction

Function Properties

Function Composition

Function Inverses

Figure 2.5: A prerequisite map for the essential preliminary discrete math topics

open-ended question is significantly more difficult to learn, and it is easy to avoid forcing
students to learn it by providing hints that indicate how to proceed.

Unfortunately, many of these preliminary topics are dry or not immediately appli-
cable to computer science–particularly to students who still think computer science is
programming. For this reason, while courses cover all of these topics, they often delay
many of them until the need arises for an application. For example, discussing functions
(e.g. bijections, inverses, compositions, etc.) is often delayed until they can be compared
to relations, become necessary to discuss infinite cardinalities, or are needed to explain
RSA.

In the case that a curriculum has a required functional programming course, it is
common to teach structural induction in that course instead (and require the foundations
course as a prerequisite to ensure students have mathematical maturity).

2.2.2 Graphs and Relations

Graphs and binary relations are natural, primitive structures that are both used to
formalize many concepts in computer science. There is also a very natural connection
to make between connected components and equivalence closures. As a result, when

13

courses cover graphs as formal objects, they are almost always covered in sequence with
relations. When graphs are covered, there are several different sub-clusters of material
that can be covered. If graphs are treated as a data structure, which is often left to a
data structures course, then various implementations of graphs as adjacency lists and
adjacency matrices (and powers of the adjacency matrix) can be covered.

Graphs

Relations

Graph
Implementations

Mathematical
Graphs

Graph
Induction

Trees

Bipartite Graphs

DAGs

...

APPLICATION:
Stable Marriage

THEOREM:
Hall's Theorem

Graph Colorings

THEOREM:
Four Color Theorem

Equivalence
Closures

...
Definition of

Functions
as Relations

Relation
Properties

Equivalence
Relations

Equivalence
Classes

Partitions

THEOREM:
Equivalence Classes

are the same as
Partitions

Figure 2.6: A prerequisite map for graphs and relations

More commonly though, graphs are treated as formal objects and trees, colorings,
matchings, and/or networks are covered. It is surprisingly rare for courses that cover
formal graphs to ask students to explore applications (beyond theorems like the four
color theorem or algorithms like Gale-Shapley).

2.2.3 Number Theory, and Algebra

Number theory and, if it is covered, algebra, are basically always covered as an excuse
to discuss RSA. This, by itself, is not a large problem, but it should be noted that the
particular machinery needed to understand why RSA works (i.e., Euler’s Theorem via
Lagrange’s Theorem or Lagrange’s Theorem for the special case of Z�n) is particularly
unintuitive, and having seen the proof does not really provide much insight; rather, it can
make RSA feel more like magic! This is particularly true if students are uncomfortable
with the concept of making calculations in (Z�n;+;�).

14

Relations

Number Theory

Algebra

...

Relation
Properties

Equivalence
Relations

THEOREM:
Wilson's
Theorem

Modular
Arithmetic

Inverses mod n

THEOREM:
Fermat's

Little
Theorem

Primes

THEOREM:
Fundamental Theorem

of Arithmetic

THEOREM:
Infinitely Many Primes

GCD

Chinese Remainder
Theorem

Totient Function

THEOREM:
Euler's

Theorem

...

APPLICATION:
Fast Modular
Computation

"Abstract Thinking"

Group Axioms

Z_n^* APPLICATION:
Lagrange Interpolation

...

APPLICATION:
RSA

Figure 2.7: A prerequisite map toward RSA

Abstract properties of operations like associativity or existence of inverses are com-
pletely foreign to many students; so, not only do they not understand them applied to
Z�n, specifically, but there is a disconnect as to why we even switch to this field over
the one they’ve been using for their entire lives. None of these problems is insurmount-
able, but the treatment of number theory and algebra need to be very carefully nuanced
to get these points across. As a result, we recommend that, if possible, introductory
foundations courses avoid RSA. Courses that insist on covering RSA should devote a
significant amount of time to the extra meta goal of helping students become comfortable
with abstract algebra. Some work has been done on using exploratory environments for
abstract algebra which could prove useful [CP97, Bos97, She97, Kal97].

One very common approach to number theory is to prove a theorem grab bag (fun-
damental theorem of arithmetic, infinitely many primes, Wilson’s Theorem, Fermat’s
Little Theorem/Euler’s Theorem, existence and uniqueness of inverses mod n, etc.).
While many of these theorems are individually interesting and deep, proving them in
lecture results in students feeling like number theory is a grab bag of impossible tricks
that they would have never come up with on their own.

It is our belief that many of these theorems are better suited to being guided exercises,
and, furthermore, that rather than presenting them all together as “number theory”, it
is less overwhelming for the students if they are presented with the proof strategies. So,
infinitely many primes would be an early example of a contradiction proof, and existence
and uniqueness of inverses mod n would go with uniqueness of representation.

15

2.2.4 Combinatorics and Probability

For evident reasons, combinatorics usually directly precedes probability and statistics.
Combinatorics is a golden opportunity to help students become more comfortable with
recurrences as combinatorial objects. While examples like poker hands are very useful
as practice questions, these sorts of examples make combinatorics seem even more out
of place than it already does. In particular, if combinatorics is being taught in (or right
after) a course that heavily stresses proofs and formal arguments, very great care has to
be taken to motivate why we are allowed to make vague counting arguments and claim
two sets have the same cardinality.

Pre-requisites

Combinatorics

Probability

Statistics

Discrete Distributions

Continous Distributions

Calculus

...

Programming
Experience

APPLICATION:
Simple ML

APPLICATION:
Probabilistic Algorithms

APPLICATION:
Markov Processes

... ...

...

...

Figure 2.8: A prerequisite map for combinatorics and probability topics

Probability can be entirely motivated as a formalism to analyze “events of probabilis-
tic code” rather than to analyze “events in a sample space.” This is particularly useful
as a way to (1) force students to be precise, and (2) keep computer science in students’
minds without overloading them early on with real applications. Some courses only cover
discrete distributions the first time and leave continuous ones for later. Regardless of
when continuous distributions are covered, there is the distinct concern that students
likely have not used calculus in at least a year.

In particular, it is unreasonable to expect that students (at least initially) have done
integrals of anything other than polynomials in quite some time. This is an artifact of
the tendencies for calculus to be an early freshman course, computer science to cover
discrete math first, and probability to be left until later. There are reasonable ways to
deal with this potential issue, but ignoring it is likely to lose a non-trivial percentage of

16

the students who understand but need to look up how to do calculations.

2.2.5 Theory of Computation

Theory of Computation is probably the most varied set of topics in introductory dis-
crete math courses. On one end of the range, some curricula require students to have
heard of the halting problem and/or DFAs. Other curricula introduce students to the
whole Chomsky Hierarchy in their first course in discrete math. Some courses are very
rigorous about the topics they cover in this sequence, and others require students to
create DFAs/regular expressions/etc but not prove things about them. These variety
of goals cause the courses to be fundamentally different. In the version where only the
halting problem is discussed, it is usually tacked onto diagonalization or induction. In
the proof-based course that covers large portions of the Chomsky Hierarchy, working
toward understanding what types of formal languages exist is the primary goal of the
course.

Our recommendation is to carefully consider the downstream courses before choosing
which direction to go in. For some students, the halting problem, DFAs, regular expres-
sions, etc. can be incredibly good motivators for why math is important in Computer
Science which can make an introductory discrete math course much less dry. Addition-
ally, giving students an idea of what theoretical computer science looks like can have a
large affect on what electives students choose (both positive and negative!).

Computability Theory

Complexity Theory

...
THEOREM:

Halting Problem
is Undecidable

APPLICATION:
 Parsing

... "APPLICATION":
 P vs. NP

Figure 2.9: A prerequisite map for computability and complexity topics

2.3 Application Content

Applications and “cool” programs and theorems can be used to help students get more
invested in the course material. We discuss some applications to investigate and programs
to write that might help decrease the feeling that math is not useful in Computer Science
and get students more invested in the domain content.

We do not go into major detail here; instead, we provide an overview of some possible
choices for applications. In later chapters of this thesis (Chapter 4, Chapter 5), we go
into significant detail for the first two applications here. We have used the other two
applications several times in previous courses and seen them succeed, as well.

17

This list is not intended to be exhaustive, rather, we hope to inspire further discussion
on what constitutes a good introductory application. For instance, all of our examples
are small programming projects intended to connect with students’ understanding of
programming, but we believe that non-programming must exist as well with the same
positive properties.

2.3.1 Basic Logic

Logic is unbelievably dry, but it can be used to solve amazing problems. Giving students
a framework in which they use a SAT solver and a logical description of a well-known
problem (e.g. Sudoku) to solve a problem could be a really interesting example or
introduction. We propose using a modification of one of the tools we’ve developed (see
Section 4.5) to tightly integrate this. In fact, the language fSetØyg which we introduce
in Chapter 4 is exactly an attempt to make logic more interesting.

2.3.2 Induction, Asymptotic Analysis, Relations, and Functions

Most curricula have a course which is devoted to helping students understand program
correctness and analysis. We often ask students to manually trace through code to
compute complexity bounds–implicitly asking them to understand an algorithm that
usually works. We can (and did!) provide a framework for students to do this analy-
sis symbolically using a toy language. This assignment uses real math to solve a real
problem—and then, it becomes applicable again later, when we get to computability, as
it is undecidable in general. See Chapter 5 for a more complete discussion of this idea.

2.3.3 Number Theory and Group Theory

Students are very often fascinated with cryptography, secret sharing, and redundancy.
This is exactly what makes RSA such a killer application. We point out that another one,
Lagrange Interpolation, is much easier to understand and implement. It has two very
clear applications: one for correcting erasures and the other Shamir’s Secret Sharing
Algorithm (where k parties are needed to unlock a secret). Furthermore, it has the
absolutely amazing quality of showing the usefulness of group theory, in practice, because
it is identical to the Chinese Remainder Theorem in a different field.

2.3.4 Computability Theory

For courses that go very heavily into computability theory, if you’re already covering
CFGs, DFAs, and regular expressions, a great assignment would be to ask students to
use all of these things to implement grep!

18

2.3.5 Probability

If the course covers continuous distributions and statistics, these can be pooled to ask
the students to do very simple machine learning on real data.

2.4 Course Sequencing

Fundamentally, there are three common ways to split up the material that might appear
in this sequence of introductory courses:
(1) It can be split up into two courses: a course on preliminaries, proofs, and some

content; a second course on a selection of the remaining content. This choice seems
popular for schools that are on the quarter system.

(2) Preliminaries, proofs, and a majority of content (except computability) are all taught
in one very difficult course.

(3) One course on preliminaries, proofs, and some of the content; required “higher level”
electives to fill in the remaining content.
Each of these strategies is used by at least one top CS university, and they each have

their own set of advantages and disadvantages. We make the common ways of sequencing
mathematical foundations for CS explicit, because our implementation, at CMU, follows
none of them. In fact, the previous implementation at CMU did took another, distinct
approach not represented in any of the other universities as well.

2.4.1 Summary of Various Universities

We provide an approximation of the implementations various universities have for their
foundations course sequences. We deliberately leave out CMU, which we discuss in the
next section in greater depth. This summary is an approximation, as we are sure the
content changes from time to time, and we have not looked at every lecture of every
course over every year.

University Prelim Graph Relation Numb. Thy Algbr. 1 Computability Complexity Combi. Prob.
MIT (s) X + X X X X HP X X D + S
Berkeley (s) X X X X X X HP X X D + C + S
Stanford (q) X X X X X X + X �second course�!
UW (q) + X X X X X + �second course�!
Cornell (s) X X X X ? X DFAs X �second course�!
UIUC (s) X X X X X X �second course�! �optional course�!

Table Key: Xmeans covered; X means not covered; + means a lot is covered;? means sometimes covered;

HP is halting problem; D is discrete; C is continuous; S is statistics.

For reference, we include the numbers for the courses we based this information on:

19

MIT: 6.042
Berkeley: EECS 70
Stanford: CS 103, CS 109
UW: CSE 311, CSE 312
Cornell: CS 2800, various options
UIUC: CS 173, MATH 461/463

A quick glance at this table reveals some notable commonalities and differences be-
tween these approaches. First, no two of these approaches is the same ! Number theory
(with an eye toward RSA) is extremely common, while algebra (Groups/Rings/Fields)
is extremely uncommon. Nearly everyone covers the halting problem and gives a basic
overview of the mathematical definition of a graph. Every university we looked at covers
discrete probability, but many ignore continuous probability and/or basic statistics.

2.5 Our Implementation at CMU: 15-151

Because we attempt to take our own advice, many of the principles we’ve described
about various types of meta content are apparent in 15-151. In this section, we situate
our course in the CS introductory curriculum at Carnegie Mellon, discuss our primary
goals, and briefly review how well we met these goals.

2.5.1 Overview of Carnegie Mellon Introductory CS Courses

By the beginning of freshman year, CMU students have already declared their majors.
Of the CS students, approximately 70% have had prior programming experience, and the
others all take the first introductory programming course, 15-112, in the fall semester.
Regardless of prior experience, CS students take 15-151 (or, previously, 21-127).

We briefly discuss the interaction each of the CS introductory courses has with 15-151:
15-112: Fundamentals of Programming. This course does not get to recursion

until week seven; so, we cannot give very many programming assignments until after
then. Perhaps more importantly, this course is very time consuming for students; so,
they are constantly fighting a battle between spending time on 112 and spending time
on 151.

15-122: Principles of Imperative Computation. This course very heavily pro-
motes contracts and invariants, but it only covers sketches of proofs related to them,
because 15-151 is a co-requisite–not a prerequisite. 15-122 also covers asymptotics from
an empirical perspective. All of the students who had previous programming experience
take 15-122 simultaneously with 15-151.

15-150: Principles of Functional Programming. This course covers the funda-
mentals of functional programming in SML. As a result, structural induction, recursive
data types, and recursive programs are its bread-and-butter. Because students usually
take this course the semester after 15-151, we help foreshadow its contents, but, for the
most part, we treat these topics as “off limits.”

20

Freshman Fall Freshman Spring

15-112
Intro. Prog.

15-122
Imperative Prog.

15-150
Functional Prog.

15-251
Discrete Math and

Computation

15-151 or 21-127
Intro. Discrete

Math

Figure 2.10: Carnegie Mellon CS introductory sequence

15-251: Great Theoretical Ideas in Computer Science This course covers effec-
tively a superset of the material we cover. It is required for the major, and almost all
CS freshmen take it the semester after they take 15-151. This may sound strange, but
it is intentional, and we discuss it below.

The first three courses on this list (15-112, 15-122, and 15-150) are relatively new, as
of a re-design of CMU’s curriculum several years ago [BSS10]. After this re-design, 21-
127 (the math department’s version of 15-151) and 15-251 remained the same. Although
the instructors of 15-251 have been aware of the changes to 15-151, it still remained
relatively constant.

2.5.2 Implementation Goals and Details

Content
Course Prelim Graph Relation Numb. Thy Algbr. 1 Computability Complexity Combi. Prob.
21-127 X X X X X X X X X X
15-151 X X X X X X X X X D
15-251 X + ? X X X + X X D

Preparation for Future Courses (15-251, 15-150)

15-251 is a difficult course. The lectures act like a survey course, in which, each week the
course progresses to a new topic (a new course), and covers the first few lectures of that
course. Then, the homework is (usually) chosen to be relatively difficult problems from
the material covered. 15-251’s drop rate is very high, and the homework routinely takes

21

students upwards of 30 hours a week. 15-251’s primary “meta goal” is to teach students
how to approach new, interesting, difficult problems, and finishing the course report
that they learned a lot (but not very much domain content). This course is taken by
second semester freshmen. 30% of these students programmed for the first time
fifteen weeks before beginning 15-251. 15-151, then, has the remarkably obvious
meta goal of ensuring that students who are about to take 15-251 are ready to do so. It
is significantly preferable to force students to take an easier introductory discrete math
course for a second time to allowing them to move on and get crushed because they did
not have an appropriate background going into 15-251.

The way 15-151 accomplishes this is by spending twice as much time covering the
material 15-251 covers in the first half of the semester. This controlled and monitored
overlap allows students to ease, relatively slowly, into an understanding what the math
for computer science looks like. Then, when they finally get to 15-251, they ease into
very difficult problems by working with content they are extra prepared for.

Formalism and Proof

Although 15-151 covers content, the primary content goal is actually one of the meta
goals in a standard course: proof design (or “What is a proof and how do I write one?”).
We want students to fundamentally understand basic proof strategies, the mathemat-
ical language that is used to communicate ideas, and how to put together a coherent
argument.

Transition Students from “Programming” to “Computer Science”

As 70% of the students in 15-151 have programmed before, 15-151 is also tasked with the
job of convincing those students that while programming has a place in computer science;
so, do other things. We do this using the applications and programming assignments
that we’ve already discussed in this chapter.

Separate Problem Solving from Formalism

Although problem solving is a meta goal of 15-151, it was not a mastery goal ; in other
words, we wanted to expose students to problem solving so that it would not be surprising
later, but we tried to avoid testing particularly difficult problems which would require a
mastery of problem solving on exams. We made this decision, because 15-251 is almost
entirely a course about problem solving; so, our goal was to make sure students had
minimal exposure and were comfortable with it before moving on.

Not just another math course!

One of the biggest differences between 21-127 (the course students previously took) and
15-151 is that 15-151 is in the CS department, and we know our students are interested
in Computer Science. So, we took full advantage of this. We provided CS applications

22

and motivations; we engaged the students in programming exercises; we made explicit
connections to other courses in the core of the CS major. Interestingly, CMU was the
only school (in the chart above) that asked the math department to teach the first
foundations course.

2.5.3 Postmortem: 15-151 Structure

We (anecdotally) succeeded at many of these goals, but there were some places for
improvement as well. We detail these successes and improvements in this sub-section.

From student accounts, they were very well prepared for 15-251. For the first part
of the course (that repeats some of the content in 15-151), despite the problems being
more difficult in 15-251, many people reported it being very easy. Additionally, their
performance backs up this feeling.

While our students definitely succeeded at learning formalism, we did not do a
good enough job explaining exactly what we were expecting. Our transition to letting
them be less formal was also not as complete as it should have been. Despite this, we
believe that students really did understand the benefits of being somewhat formal, even
if they did not agree with the extent which we required it.

Our transition to non-calculus math succeeded. Students eventually understood
that the answer is a small piece of the result. A particularly effective motivator was an
explicit comparison to “high-school math” in the first lecture.

Although our separation between formalism and problem solving seems to
have helped prepare students for 15-251, we believe it made us less able to help students
develop intrinsic motivation for the material. We did not teach very many natively
interesting parts of computer science (because they are taught in 15-251), and formalism
is hard to get excited about without these.

“15-151 is harder than 21-127”

A common student complaint during (and after) the course is that 15-151 was harder than
it’s predecessor. While it is true that some of the questions in 15-151 were intentionally
more difficult than their 21-127 analogs, we did our best to offset this in multiple ways.
First, those difficult questions were almost exclusively on the homework. Second, we
eliminated time pressure on exams by designing exams to be completable in a significantly
shorter time period than the students had. Third, we gave a significantly more generous
curve than 21-127 gives. And finally, we gave significant, extra support to the students
via the course model and office hours. We believe that, ultimately, students learned
significantly more, and were happy they had taking 15-151 when they got to 15-251.

While the (final) grades students got in 15-151 were not always analogous to those
they might have received in 21-127, it is important to remember that one of the explicit
goals we took on was to pass only students who could succeed at 15-251. Unfortunately,
21-127 has a history of being very inconsistent in this respect.

Our strategy allows students who were not ready for 15-251 at the end of the semester
the opportunity (though, they admittedly often did not see it that way) to take 21-127

23

afterwards and see the material again before moving on to 15-251. In the past, concepts
did not provide a signal in this respect: students would often arrive in 15-251 with no
hope of passing. And, unfortunately, they would get stuck in 15-251: a course where
the problems are incredibly difficult and the basic concepts are assumed when what they
really needed was a review of those basic concepts. Furthermore, traditionally, 15-251 is
somewhat more reasonable in the Fall, as opposed to the Spring, putting students who
needed a second semester to get ready in a prime position to succeed the first time in
15-251.

In an ideal curriculum, the need for such a solution would not be necessary, but
15-251 is traditionally taken by students in the Spring of their Freshman year. Given
our data that students who take 15-112 (introductory programming) in their Freshman
Fall are significantly more likely to be in the group that needs the extra time, and that
independent research ([HM00, WS01]) supports this, we recommend one of the following:

� Make 15-112 a prerequisite for 15-151 instead of a co-requisite (or recommend that
students take 21-127 after they have completed 15-112)

� Make 15-122 a prerequisite for 15-251
These changes either force or increase incentives for students who are less sure what

computer science involves to delay their foundations course until they at least have a
grasp of programming.

24

Chapter 3

Pedagogy in the Discrete Math
Classroom

In this chapter, we describe a way to provide the students with multiple opportunities for
exposure (lecture, group work, homework), extra opportunities for practice (group work,
homework, recitation), and an aligned form of summative assessment (untimed exams).
This model allows students to get a deep understanding of discrete math and proofs,
because we expose it in a variety of ways, let them actively work on problems, and help
them form bridges between various levels of abstraction. Our model of a discrete math
classroom uses collaborative learning as both a means to practicality of implementation
and a desired outcome of the course. At MIT, the main foundations course, 6.042, uses
some very similar ideas, and we describe how our implementation differs throughout.

Lecture
exposure to
abstractions,
connections,
facts, and
examples

Workshop
low-stress, active,

collaborative
attempt to
synthesize

Recitation
re-iteration of
abstractions,
connections,
facts, and
examples

QuickCheck
low-stress

identification
of issues and
concerns

Homework
more difficult,
active attempt
to synthesize

Exams
opportunity to
demonstrate
understanding

Figure 3.1: Flow of learning from instruction to assessment in our model

25

3.1 Transition from High School

As most instructors who have taught freshmen know, there is a substantial difference
between first-semester freshmen, second-semester freshmen, and other undergraduates.
For many students, it is their first extended period away from home, and it is their first
time with the freedom to make all of their own choices. In particular, time management
becomes a very important skill to learn and master. For better or worse, this heavily
influences the design of the course as well as its policies. We made as much of an effort
as possible to be firm in policies, but forgiving in individual instances.

We suspect some of the most major differences between our implementation and 6.042
stem from the fact that the majority of their students are sophomores, not first-semester
freshmen.

Computer Science students at Carnegie Mellon have almost universally been at the
top of their class up until this point. This creates the very real possibility that the
introductory discrete math course is the first time they will ever be given a question they
legitimately wo not be able to solve which, in turn, creates the first time students ever
need to ask for help. This can be very demoralizing to students, and it too influences
policies and design of the course. We kept very careful track of students who were
struggling and did our best to seek them out to give them extra help. Because of the
impact this issue has on enjoyment, we paid special attention to it and attempted several
solutions throughout the iterations of 15-151. In particular, our most important goal was
to make students comfortable coming to office hours as soon as possible.

3.2 Course Meetings

Unlike most other undergraduate courses, 15-151 meets five days a week: three days
of “lecture” and two days of “recitation”. The “lecture” days are split between more
traditional lectures, in which we present new material, and workshops, in which students
solve problems and write proofs in small groups. In total, the second time 15-151 ran,
there were 19 lecture days and 22 workshop days; so, they were split about evenly. We
further break down the goals of each course meeting as follows:

� 16 days on proof writing
� 29 days on learning discrete mathematics
� 7 days on problem solving
� 3 days on avoiding mistakes
� 6 days on exploring a particular extension of a topic

3.2.1 Lecture

Students are expected to actively participate in lecture. Most lectures involve large “check
your understanding” components, in which students talk to each other to solve short,
conceptual problems. This is a form of “peer instruction”, piloted by Eric Mazur, for

26

usage in teaching introductory physics classes [Maz09], and such techniques have become
increasingly popular since. Peer instruction traditionally uses clickers and multiple choice
questions, but our questions vary from discussing how to write part of a proof to checking
if a function is injective. In a divergence from most courses of this type, we do not have a
flipped classroom. The students are not expected to do reading or watch lectures outside
of class time. For example, 6.042 does have a completely flipped classroom. As a result,
they are able to spend all of their class time is what we call workshops.

The biggest sacrifice we make for not flipping the class room is that we prove very few
“fundamental” results during lecture. In 15-151, these sorts of results generally appear
toward the end of the list of the workshop questions. The reasoning for this is simple:
if students are unable to do more elementary proofs or exercises with a topic, they will
likely not understand a proof of a complicated result, and their time is better spent
trying to understand more basic material, anyway.

Fostering an “Active Classroom”

We found that the most significant piece of creating an “active classroom” was to es-
tablish new expectations for the students. This amounts to convincing the students to
participate (productively or not) early in the course; then, as the course progresses, they
naturally continue to participate and attempt every posed question.

In the first run of 15-151, we wrote a simple web application called “CourseTime”
which allowed students to enter answers (often proofs; sometimes results) to posed ex-
ercises during lecture. “CourseTime” allowed the instructor to simultaneously push the
question to all the student groups, monitor the results and time, and choose solutions to
show to the class. Ultimately, we found the system to waste time, because the entry for-
mat for symbols (i.e. LATEX) is far too slow for introductory students. However, aspects
of the system worked very well:

� Because there was something collected, students almost universally participated
� Because we displayed solutions anonymously, students were able to claim them
when they were proud and remain anonymous otherwise

� Because we knew how many solutions were submitted, we had a good idea of how
many students had finished solving the problem

Perhaps the most interesting thing is that the attitude of participation continued
once we stopped using the system (because of the time concerns) and asked students
to solve problems in groups anyway. A variety of students even volunteered to answer
questions without the system.

In the second run of 15-151, we never used “CourseTime” at all and attempted to eye-
ball how many students had finished. In many cases, students did not attempt problems,
and fewer students answered questions.

27

Postmortem: Active Lectures

In general, students responded positively to the active lectures; most of them usually
at least attempted the questions posed. Attendance at lectures was nearly full– despite
explicitly telling the students that it was not required!

Our approach certainly makes it take longer to cover domain content, but, in our
case, this was something we could afford! Even at our slower speed, we covered at least
as much material as the traditional 21-127 course. We believe that most students felt
more productive and comfortable in our form of lecture, as opposed to traditional ones.

3.2.2 Recitation

Recitation time is mostly spent on more simple examples intended to drive home the
most important points from lecture and workshop. Days where there is no new topic to
discuss are often spent discussing common mistakes or reviewing a particularly difficult
topic.

We anticipate that some might claim that recitation for this course (in particular,
two of them a week) is overkill. It is worthy of note that the first time 15-151 ran, we
attempted to use this time for entirely supplementary material, and we found that the
extra support that spending recitation on review gave was absolutely worth the time
spent on it.

Again, we suspect that this is influenced substantially by the fact that students in
15-151 are all first-semester freshmen. This is supported by the fact that 6.042 has no
recitations at all.

3.2.3 Workshops

Workshops are a type of course meeting held in some of the lecture time slots. Students
work in small groups of roughly 3 people to practice what they learned in lecture by
solving problems, and writing up their solutions on a whiteboard. Importantly, students
get feedback on their proof writing immediately–without any negative consequences to
their grade. It also provides them with an opportunity to learn to work better in groups
to solve problems.

Workshops intentionally have more problems than we expect students to solve. In
fact, only two groups ever completely finished a workshop. The last problem is usually
substantially more difficult than the others to give students who are faster a chance to
solve more interesting problems.

We do not score participation, beyond students who do not attempt to solve anything
at all. We labeled some homework questions as “checkpoint” questions; for these ques-
tions, we expected students to bring some indication of effort to the workshop. These
“checkpoint” questions were an attempt to force students to review basic definitions be-
fore the workshop, but we did factor them into credit for the workshop. 6.042 has short
quizzes at the beginning of class, called preparation checks, if there is no other quiz
scheduled for that day that serve a similar purpose.

28

In order to keep students on task, we assign groups randomly, and we ensure no
student will be assigned a group-mate multiple times. We change the group assignments
every 2-3 workshops.

Postmortem: Workshops

Workshops are significantly more “active” and interesting for students. Many students
looked forward to workshops to help solidify their understanding of topics they had
learned recently. This extra practice led to misconceptions being cleared up earlier than
normal (i.e. in the workshop formative assessments rather than the exam summative
assessments), because TAs and instructors checked their work at most steps. Although
students were still not particularly interested in correcting their work, the format of
workshops allows TAs and instructors to convince them that corrections can be learning
experiences as well.

Students work in groups on their homework in 15-151, but they have little previous
experience with teamwork. Workshops gave us a chance to help students develop best
teamwork practices and monitor that development.

Perhaps the biggest downside to workshops is the increase in resources (TAs, prepa-
ration time). Depending on how many TAs a course has, their availability, and their
understanding of material, it can be a tall order to pay and maintain the extra hours.
For reference, during workshops in 15-151, one teaching assistant was assigned to be-
tween 9 and 13 students; given that we only had 8 teaching assistants, we solved this
mathematical problem by having three smaller lectures with fewer students in each one.

Two outstanding research problems that we have begun considering but do not have
any results on yet are:

� Students (in our case freshmen) who come in under-prepared can both make their
group go considerably slower, and be completely left behind by a group rushing to
finish.

� Although there is a lot of research on grouping younger children by ability and in-
terest, to our knowledge there is very little about college-age students–particularly
in a problem-solving environment.

The questions in each workshop varied from beginning with a basic review of defi-
nitions to difficult, homework-level problems placed last. We–intentionally–put no re-
quirements on how many problems students had to solve, but we did insist they go in
order. This had a natural effect of groups speeding through problems they considered
easy, and eventually getting stuck (for some time) at problems at their proximal zone
of development. In other words, most workshops, we challenged nearly everybody and
helped them solve problems they would not have been able to before class.

For almost the entire semester, lectures and workshops were in a 1:1 ratio. We
introduced a new topic in lecture, students tried to use it two days later in workshop, and
solidified their understanding on a homework assignment. Perhaps the only exception
to this is the part of the course about “proof strategies”, in which we explained the
proof format quickly at the beginning of the workshop, and let students dig in. This

29

was particularly convenient, because going through an entire lecture explaining a proof
strategy without being able to ask questions rarely results in full understanding.

Ultimately, we consider workshops to have been very successful. Without them, we
would not have been able to simultaneously challenge everyone, help students learn to
work in groups, or provide such varied content.

3.3 Exams and Quizzes

In the 15 week semester, we have three exams, each of which is cumulative, but focused
on the recent material, and a final. If students do not miss more than three workshops,
we completely drop their lowest exam score and replace it with their final exam score.
The intention here is to give students a second chance.

3.3.1 Exams

In the spirit of testing understanding and not how quickly students can solve problems,
we give students three hours to complete an exam designed to take between 1

3
and 1

2
of

that time period. We also allow them cheat sheets on most of the exams, because we are
far more interested in conceptual understanding than memorization. Even with cheat
sheets, one of the questions on the exam is often a problem that they’ve seen somewhere
else in the course.

Unfortunately, some students still felt time-pressured; ideally, we would have given
take-home exams, but given the level of cheating that occurred, we were uncomfortable
with that choice.

We found that many students who did poorly on the first exam justified their scores
by noting that they could just drop that exam. Unfortunately, this allowed them to
convince themselves that they would magically do better on the second exam. So, they
did not attempt to correct their study habits and understanding of material. Perhaps
only allowing them to drop the second or third exam would fix this problem.

3.3.2 QuickChecks: Formative Assessment

QuickChecks are quizzes that are proctored in recitation intended to be exactly like a very
short exam (usually one question). Depending on the QuickCheck, students get between
5 and 10 minutes to complete it. The major way that QuickChecks differ from quizzes
is that they do not factor into students’ grades. They serve an entirely formative role;
since they mirror exam questions, not being able to solve one is an indication to students
that they would bomb that part of the exam. Additionally, they give students low-stakes
practice with time pressure. QuickChecks are collected and corrected; so, students get
feedback and have an incentive to actually try. In recitation, after the QuickCheck is
collected, TAs immediately go over the solution and any questions or concerns students
have. In this way, the question is still fresh in their mind.

6.042 has “miniquizzes” which are factored into students’ grades.

30

In our opinion, QuickChecks were one of the best ideas from the course. They give
students a reason to attempt at least one problem every recitation, and with a little
extra effort, they get significantly more formative feedback. By reviewing the solution
immediately after the QuickCheck, while their ideas are still fresh, we help students
correct misconceptions before they get too far.

3.4 Results and Conclusions

Ultimately, we set out to create a course that supported the many meta-goals of a discrete
mathematics for computer science students course. We believe that we supported our
meta-goals as follows.

� We supported formalism providing extra attempts for students to master the var-
ious subtleties of a “formal proof” in workshop and recitation. All of the handouts
and slides had complete proofs (sometimes annotated). We often discussed exam-
ples of proofs that were not formal enough and why in lecture.

� We successfully used programming to make them like math by creating pro-
gramming assignments to tie together math and programming, some of them were
not particularly engaging to students, but others were among the most liked as-
signments in the course.

� We provided a significant number of opportunities for students to practice working
in a group during lecture, workshops, and homeworks.

� While we were not particularly interested in mathematical problem solving as a
meta-goal of our course, we did want a weaker form: “mathematical maturity”. In
our case, we wanted them to mathematically mature enough to succeed in 15-251.
To accomplish this, we provided a variety of difficulty of questions, but continually
exposed them to a small amount of problem solving on each summative assessment.
Students who continued on to 15-251, generally said that it was significantly easier
than for their counterparts who took 21-127, at least for the first half of the course.

� We used time during lecture to convince students that math is important to
computer science. Any time we moved on to a new topic, before discussing the
base material, we gave an overview of the variety of applications of the topic.

We believe our strategies in 15-151 were successful (despite a few techniques that did
not quite work), because students were engaged, interested, challenged, and successfully
prepared for the rest of the Computer Science major.

31

Part II

Using Technology to Teach Discrete
Mathematics

32

Chapter 4

fSetØyg: A Programming Language for
Teaching Discrete Mathematics

Introductory discrete mathematics courses are almost always responsible for introducing
students to the symbols, phrases, and definitions that are used in proofs. This can be very
difficult for students, because the syntax is usually completely foreign, and the semantics
of written mathematics can be very confusing. For example, classical implication is very
counter-intuitive, because students often initially believe that it is related to causality,
but it is not.

Learning the “language of mathematics” is just as difficult as learning a new program-
ming language or a foreign language, and, because of this, it is very important that these
courses help students in whatever way possible. fSetØyg gives students a computational
environment in which they can explore mathematical language. Instead of guessing if a
statement they wrote on paper is true, they can check their understanding by instanti-
ating it in various ways using fSetØyg. Because students must learn the syntax of the
“language of mathematics” as part of the course normally, fSetØyg provides very little
overhead.

We begin this chapter by discussing, in more detail, why a language like fSetØygmight
be useful in this setting (and particularly useful for computer science students). Then,
we give a description of the syntax and interesting semantic choices for the language.
Finally, we provide some sample exercises that show how students might use fSetØyg,
both to learn simple things like how to negate a logical statement, and, also, to test
hypotheses while solving problems.

4.1 Motivation

Generally, when computer science students take foundations of mathematics courses,
they (1) are familiar or comfortable with programming, and (2) unfamiliar or un-
comfortable with logic, sets, and formalism. We designed our programming language,
fSetØyg, to have syntax and semantics as close as possible to the logic, sets, and formal-
ism that are new to students. This allows us minimum overhead (in teaching syntax)

33

and maximum leverage (in teaching semantics) in teaching students the “language of
mathematics”.

Depending on the course, the “language of mathematics” can be slightly different,
but the general idea is nearly always identical. The differences are usually on the token
level (symbols and keywords), and they can be changed trivially. The “language” we
are teaching is actually as complicated as any real-world language like English. Part
of teaching proofs is helping students understand that there is a structure to them in
the same way that there is a structure to essays. While we do not pretend that they
will always do the equivalent of a “five paragraph essay”, we start there, because it is
easiest to emulate and explain. Consider the following (annotated) example of a proof
that might show up in a foundations course:

Claim: A n C � (A nB) [(B n C)
Proof:

Introduction
(
We want to show that for any x, x 2 A n C) (A nB) [(B n C),
because this is the definition of subset.

Declarations

8<
:Let A;B;C be sets. Suppose x 2 A n C. Then, by
definition of set difference, x 2 A ^ x 62 C.

Sub-strategy

8>>>>>>>>>><
>>>>>>>>>>:

We continue by cases: x 62 B or x 2 B.

Case 1

8<
:Suppose x 62 B. Then, because we also know that
x 2 A, by definition of set difference, x 2 A nB.

Case 2

8<
:Now, suppose x 2 B. Then, because we also know that
x 62 C, by definition of set difference, x 2 B n C.

Sub-Conclusion
�
Thus, it follows that x 2 (A nB) [(B n C)

Conclusion

8<
:Finally, since x 2 A n C) (A nB) [(B n C),
the claim follows by definition.

In this example, we’ve annotated specific parts of the “language of mathematics”
to indicate special words and vocabulary. Specifically, the red phrases are “connecting
phrases”–in a way, they are similar to “transitions” in an essay. Clearly, these sorts
of phrases are exchangeable, but their presence is important. The blue symbols are
vocabulary that students have to learn. The purple words are overloaded English words
that have a more specific meaning in the “language of mathematics”, and these pieces of
vocabulary can be particularly difficult for students, because they are written the same
way as the informal ones.

This example also demonstrates that this language has sentence fragments (e.g. AnC
is a fragment, but A nC � B is a sentence). We’ve also carefully demonstrated that the
proof can be broken up into “sections” which mirror those of an essay.

The important conclusion here is that the language they are learning is complicated,
and we expect them to go from nothing to writing essays in one course. When we teach
logic and sets, students need to learn vocabulary, syntax, sentence structure When we

34

teach proofs, they need all of this and how to put the structure together.
fSetØyg is intended to help students learn many of these pieces in the following ways:

(1) Use their understanding of programming to help them learn the new syntax. Stu-
dents often do not realize that there is an actual syntax, they think it is okay to get
symbols “sort of right”. They do understand the idea of “invalid syntax” in a pro-
gram though! So, by asking them to write some programs using the mathematical
language, we get this for free.

(2) Use their understanding of programming to help them learn the new semantics. A
student who sees the claim above (A nC � (A nB)[(B nC)) might not understand
what it even means. As the vocabulary of the new language increases, students get
more confused. Using fSetØyg, a student might write the following program:

1 A := {1, 3, 5}
2 B := {2, 4, 6}
3 C := {4, 9, 2}
4 print A n C, (A n B) [(B n C)

Importantly, there is no reading/appealing to more definitions ! While learning to
read and understand definitions is absolutely an important skill, some students will
take longer to be able to do it. This allows them to verify that their understanding
is (or is not!) correct.

(3) Use their understanding of programming to give them more intuition on the things
they are trying to prove. In other words, if the question were asking instead: “Prove
or disprove: A n C � (A n B) [(B n C)”, a student could write a program to try to
figure this out. For example:

1 for A 2 P([3]):
2 for B 2 P([3]):
3 for C 2 P([3]):
4 if not subset(A n C, (A n B) [(B n C)):
5 print "Counter�example:", A, B, C
6 print "Done with all tried examples."

Again, the point to stress here is that they are using a for loop and an if statement.
Everything else here is just the “mathematical language” that they’re trying to learn.

4.2 fSetØyg Language Description

fSetØyg’s syntax is modeled on a combination of Python and an unambiguous version of
the part of the “language of mathematics” typically taught in an introductory discrete
mathematics course. Whenever possible, it matches the symbols and words that students
are expected to use in proofs to communicate mathematically. As it takes after Python,
whitespace is significant. In an attempt to match notation as much as possible, fSetØyg
allows programmers to interchange Unicode symbols for keywords. For instance, the
symbol “8” is interchangeable with the keyword forall.

35

4.2.1 Primitive Types

In fSetØyg, all values are sets. For convenience, if fSetØyg can infer that the user intends
to treat a value as one of the three primitive types, it will pretty print it. But users need to
understand the underlying set representation, because occasionally sets are coincidentally
another type. This is an intentional design decision intended to help students understand
how to build other types out of sets.

It is perhaps useful to think of this set-based representation as analogous to the two’s
complement representation of integers, as it applies to C. That is, writing the expression
2147483647 + 1 in C will overflow, and unless the user understands the underlying bit
representation, the result will seem incorrect.

Sets

In fSetØyg, there are no urelements1. The set type is the set of hereditarily finite sets.
Formally, let V0 := ∅ and Vk := P(Vk�1) for k 2 N n f0g. Then, S is a value in fSetØyg

if and only if S 2 V! :=
1[
k=0

Vk.

The easiest way to instantiate a set is as a set literal. The empty set is written as
@, ∅, or {}. If e1; e2; : : : ; ek are expressions, then fe1; e2; : : : ; ekg is a valid expression as
well. In other words, the standard set notation is valid fSetØyg code.

Natural Numbers

fSetØyg allows the programmer to use natural numbers as shorthand for the sets they
actually represent. Theoretically, fSetØyg could use any reasonable definition, but it
uses the von Neumann ordinals, as they have a number of useful properties. The von
Neumann ordinals are defined as follows:

� 0 := ∅
� n := (n� 1) [fn� 1g

Unrolling the definition, you can see that n = f0; 1; : : : ; n�1g. Since this is a definition,
the numerals and corresponding sets may be used interchangeably in code.

Booleans

fSetØyg allows the programmer to use T and F as shorthand for true and false, respec-
tively. When a set is used as an operand to a boolean operation (such as and, or, etc.),
the empty set evaluates to F and all other sets evaluate to T. This naturally corresponds
to the question 9x:x 2 S for any set S. Only primitive boolean operations built into the
language return T or F, and this limitation was intentional; so, that it can be used as an
introductory boolean algebra exercise.

1A urelement is an “atomic” non-set element that may be a member of a set.

36

4.2.2 Primitive Operations

Set Algebra

fSetØyg supports basic set operations like union, intersection, and difference. In fSetØyg
code, union is written either as e1 [e2 or e1 union e2. Similarly, intersection is e1 \ e2
or e1 intersect e2, and difference is e1 n e2 or e1 minus e2. fSetØyg has no concept of a
“universe”; so, attempting to calculate values like \∅ raise a run-time error.

Boolean Algebra

fSetØyg has native support for boolean algebra as well. Conjunction, disjunction, and
negation are built-in (as and, or, not) respectively. Implication (implies) and bi-
implication (iff) are mapped to the user-defined functions with those names. In other
words, once the user implements them, the syntax is as expected.

Boolean Operators

Since all values are sets and numbers are interpreted as von Neumann ordinals, the
only boolean operator necessary is set containment. In fSetØyg, this is just e1 2 e2,
or e1 in e2. Like with implication, <, >, �, �, �, and = may be implemented by the
user. This is useful as an early exercise to help verify students understand von Neumann
ordinals and basic set operations. The “special function names” to define the behavior
of these operations are as follows: lt, gt, geq, leq, and subset.

In practice, fSetØyg implements < as a very complicated ordering that respects nat-
ural numbers, pairs, nesting, and cardinality. This became necessary to ensure design
decisions (see below) were implemented correctly. Additionally, in the interest of speed,
equality testing is also built into fSetØyg directly.

Additionally, the user may specify a powerset function which will allow the compiler
to treat the subset function as a partial order wherever necessary.

4.2.3 Variables and Statements

Variables in fSetØyg can be local or global, and they always have type set. Automatic
type promotion from “boolean” to “natural number” to “set” is done by the compiler,
as required. Variables are declared using v1 := e1, where v1 is a variable identifier
and e1 is an expression. fSetØyg also allows several “definition statements” in which
users can specify representation of more complicated structures. The most important
is pair. To define the internal representation of the expression (v1; v2), the user may
write (v1; v2) := e1, where v1 and v2 are free in e1. The intended representation is the
Kuratowski definition of pair, namely: (v1; v2) := ffv1g; fv1; v2gg. The standard library
provides such a definition. To make pairs useful, the user must also define projection
functions, �1 and �2, which can be implemented in fSetØyg as pi1 and pi2. This makes a
nice early exercise for sets. fSetØyg also allows the user to define [n] by writing [v1] := e1
for a variable v1 and an expression e1.

37

4.2.4 Functions

All functions in fSetØyg take a single argument of type set and return a set. As a
convention, if a function is intended to be nullary, it should always be given the argument
∅. Note that function names and variable names are distinct; so, a user may specify
a function called f and a variable called f in the same scope. The BNF for function
definitions and function calls is as follows:

hfunction-calli ::= name (hexpri)

hfunction-definition-stmti ::= hfunc-def-inlinei | hfunc-def-suitei

Functions must be declared before use. fSetØyg supports three notations for functions

One-line “Mathematical” Functions

For simple manipulations, fSetØyg allows users to write single line functions. Notation-
ally, these are intended to mirror function definitions like f(x) = x2 or f(S) = S [f5g.
As such, the BNF is
hfunc-def-inlinei ::= hfunction-namei (hargument-namei) := hexpri \n

Standard “Programming” Functions

Multi-line functions mirror more traditional programmatic function definitions. They are
indent-delimeted, and they do require the usage of the return keyword. A “function”
that does not end all paths in a return e1 statement is considered invalid. Otherwise,
the notation is identical to a one-line function:
hsuitei ::= \n indent hstmt-listi dedent

hfunc-def-suitei ::= hfunction-namei (hargument-namei) := hsuitei

Piecewise Functions

fSetØyg allows the user to create multiple clauses of a function. For instance, Fibonacci
in fSetØyg might be written:

1 f(0) := 0
2 f(1) := 1
3 f(n) := f(n�1) + f(n�2)

Each of these clauses may be either a one-line or multi-line function, themselves. If there
are redundant clauses, fSetØyg throws a compiler error. But functions do not necessarily
have to be exhaustive. For instance, one could write the negation function in fSetØyg as:

1 neg(T) := F
2 neg(F) := T

In this case, evaluating the expression neg(5) would cause a run-time error. This dis-
tinction is necessary to preserve the user experience that there is only one type.

38

4.2.5 Input and Output

fSetØyg deliberately does not allow access to files (or file descriptors). fSetØyg has two
functions that allow the user to “print”: print and printx. These two functions are
identical, except that print always appends a newline, whereas printx does not. print
statements are defined with the following BNF:

hprint-stmti ::= print hprint-listi

hprint-listi ::= hexpri
| string
| hprint-listi, hexpri
| hprint-listi, hstringi

That is, users may print expressions and “strings”. For instance,
print "this is {1,2} union {3,4}", {1,2} union {3,4}.

4.2.6 Conditionals and Loops

Conditionals and loops in fSetØyg derive their syntax from Python. They are white-
space delimited, and the initial statement is terminated with a colon. There is no “else
if” construct. There are two types of for loops: one that iterates over numbers and
another which iterates over the elements of a set.

Since sets are unordered structures, there are no guarantees on the order of execution
of the loops that iterate over sets. Each element is guaranteed to be iterated over,
however. All numerical loops start at zero and loop until the upper bound. In other
words, if the upper bound of the loop is n, then the for loop iterates exactly n times.

Upon each iteration, any changes to the upper bound/set being iterated over and
the variable of iteration will be reset to their proper values. In this way, unless the user
returns inside a loop, they will always execute each iteration exactly once. The BNF
for conditionals and loops is as follows:

hconditional-stmti ::= if hexpri : hsuitei
| if hexpri : hsuitei else : hsuitei

hloop-stmti ::= for name in hexpri : hsuitei
| for name to hexpri : hsuitei

4.2.7 Set Comprehensions

Many languages (like Python and Haskell) provide “list comprehensions” which (in
Python syntax) look like:

1 [f(x) for x in L if cond]

A similar, but more general, notation is used to specify sets in mathematics. fSetØyg
attempts to emulate this generalized notation and allows users to enter sets like:

39

1 f(x,y) | x in [5] and x < yg
2 fx | subset(x, Y)g
3 fx | y in [2] and z in [3] and x = y∗zg

To accomplish this, fSetØyg automatically infers free variables in set comprehensions
wherever possible. Without any intervention, fSetØyg handles all built-in functions and
relations. Additionally, users can specify how their functions should be interpreted in set
comprehensions (as partial orders) and fSetØyg will automatically start understanding
them. For instance, if a user specifies that a (decision function) A(x; y) is a partial order
on N, then fSetØyg can start inferring that x 2 N. The fSetØyg compiler attempts to
infer free variables by using the built-in and user specified rules recursively. If there
are multiple restrictions, fSetØyg will take the most restrictive universe that it can.
Additionally, the compiler uses a topological sort to ensure that the dependencies are
actually well-defined. Examples (in real code) of how this is useful are plentiful:

Here, the compiler can automatically infer the fact that the domain of x is the set
N := [10], without this being explicitly specified.

1 N := [10]
2 print {x | y in N minus {0,1} and z in N minus {0,1} and x = y∗z}

In this code, the compiler can infer the domain of y, and, so it is okay that y’s universe
is not specified.

1 equivalence_classes(p) :=
2 S := pi1(p)
3 dom := pi1(pi2(p))
4 codom := pi2(pi2(p))
5 return { {y | (x,y) in S} | x in dom}

The grammar for set comprehensions is very simple. fSetØyg supports explicitly
defining the universe for a variable and also letting fSetØyg try to infer it:
hset-comprehensioni ::= { name in hset-expressioni | hexpri }

| { hexpri | hexpri }

4.2.8 Quantifier Expressions

fSetØyg supports first-order logic expressions as a primitive. It insists on a notation
that is not quite standard to force students to understand that notation in math, like in
programming, must be consistent. In particular, quantified statements in fSetØyg look
like 8(x 2 N):P (x). It does, additionally, support quantifying over multiple variables
simultaneously, as is common in mathematics, as well. Here is the BNF:
hquantifieri ::= 8 | forall | 9 | exists

hvar-pair-expressioni ::= (name , name)

hquantified-expressioni ::= hquantifieri (name in hset-expressioni) . hexpri
| hquantifieri (hvar-pair-expressioni in hset-expressioni)

. hexpri

40

4.2.9 Decorators

Another idea that fSetØyg borrows from Python (or Java) is the idea of a function
decorator (or annotation). As of the current implementation, specific decorators are
built into the language, but a future version should allow users to define their own.
fSetØyg provides three very important decorators:

Requires Decorator. Invariants and contracts are a key concept taught in 15-
122, Carnegie Mellon’s CS2 course. Since many of the students in 15-122 also take the
introductory discrete math course, we added a decorator that is identically named to
the on in 15-122’s language C0 (a safe “subset” of C). The @requires annotation takes
an expression and evaluates it at runtime, throwing an assertion error if the expression
evaluates to 0.

Recurse Decorator. This will be discussed in significantly more detail later in this
chapter, but the recurse decorator takes a function of a function’s arguments and throws
a runtime error if a recursive call does not evaluate to a strictly smaller value.

No-Memoization Decorator. By default, fSetØyg memoizes every function. This
decorator (basically useful for “print” functions) tells fSetØyg that it should not use a
memoized value.

The BNF just allows users to prepend one or more decorators to a function definition:
hrequires-stmti ::= @requires(hexpri , string)

hrecurse-stmti ::= @recurse(hexpri)

hnomemo-stmti ::= @nomemo

hfunc-with-decoratorsi ::= hfunction-definition-stmti
| hrequires-stmti \n hfunc-with-decoratorsi
| hrecurse-stmti \n hfunc-with-decoratorsi
| hnomemo-stmti \n hfunc-with-decoratorsi

4.3 Language Design

fSetØyg has several design decisions which deliberately differ from most standard lan-
guages. Each of these was a deliberate decision that influences how fSetØyg can be used
as a pedagogy tool. We discuss the specific implementation and goals for these features
in this section.

4.3.1 Type Coercion and Internal Representation

From the user’s perspective, every variable has the same type. This allowed students
to get familiar with the idea that everything necessary for computation can be built
out of sets. Unfortunately, just because something is possible does not mean that one
would want to do it in practice. In particular, because the von Neumann definition of
the natural numbers grows exponentially in the number of empty sets, if the compiler
actually used it, fSetØyg would be unable to print out the value of 15�f∅g, for instance.

41

fSetØyg is as lazy as possible about representing sets. All sets are internally repre-
sented as balanced trees, and the fSetØyg compiler makes function calls to a (modified)
version of the pblSet library.

All sets contain the following fields in the internal representation. These are updated
whenever sets are mutated.

� bool num_nonnumber – This field records the number of sets that cannot be inter-
preted as numbers that are in the set.

� long max_number – This field records the maximum number stored in the set. It
is -1 if there are no numbers in the set.

� long nesting_number – This field records the depth of the set; that is, the deepest
number of { in the set. Numbers are considered to have a nesting number of 0.

� bool is_lazy – A lazy set is one which represents a number, but does not ac-
tually have the recursive elements in it. This is useful to avoid storing the set
representation if it is never seen by the user.

� long size – This is the cardinality of the set.
We say a set, s, can be considered a number iff s.num_nonnumber == 0 and jsj �

1 == s.max_number. That is, s only contains other numbers and the maximum number
it contains is one smaller than its value. Then, the numerical value of s is just its size.

4.3.2 Total Ordering on Sets

fSetØyg provides a total ordering, �, on sets that extends several partial orderings. In
particular, the following properties are true of the total ordering:

� If S1 < S2, S1 � S2.
� If S1 � S2, S1 � S2

� F 6� 0, 0 6� F
� If S1 2 N and S2 62 N, S1 � S2

� (A1; B1) � (A2; B2)=)(A1 � A2 _B1 � B2)

The total ordering is computed recursively as is shown in Figure 4.1.

4.3.3 Guaranteed Termination

fSetØyg is deliberately not Turing-complete. In order to facilitate reasoning about ter-
mination, fSetØyg does not have while loops, requires certain restrictions on recursion,
and function definition. In this way, students are forced to make their programs correct
at the stage of writing–rather than delaying to the proof stage. This is discussed more
in the particular examples from the classroom. Here we are more concerned with how
fSetØyg forces termination of programs.

Since all sets in fSetØyg are finite, the only possible sources of non-termination occur
in loops and recursion. We discuss the design decisions that disallow non-termination in
these cases as well. Formally, one could prove that all fSetØyg programs terminate using

42

1 int set_elem_compare(a, b) {
2 if (is_set(a)) { a = coerce_to(a, SET); }
3 if (is_set(b)) { b = coerce_to(b, SET); }
4 if (type(a) == type(b) {
5 if (sets_equal(a, b)) { return 0; }
6 if (type(a) == NUMBER) {
7 return coerce_to(a, NUMBER) � coerce_to(b, NUMBER);
8 }
9 else if (|a| != |b|) { return |a| � |b|; }

10 else if (nesting_number(a) != nesting_number(b)) {
11 return nesting_number(a) � nesting_number(b);
12 }
13 else {
14 /∗ Find the largest element in one set but not in the other ∗/
15 iterator iterA = largest_to_smallest(a);
16 iterator iterB = largest_to_smallest(b);
17 while (na=iterA.next() && nb=iterB.next() && !set_elem_compare(na, nb));
18 return set_elem_compare(na, nb);
19 }
20 }
21 return type(a) � type(b);
22 }

Figure 4.1: fSetØyg total ordering of hereditarily finite sets

a structural induction proof on the formal semantics of the grammar, but we omit this
in favor of a more high-level explanation.

Finite Loops. As described in the grammar, fSetØyg only has two types of loops:
for-to and for-in. Both of these loops lock the iterator and upper bound in user-
inaccessible variables that get reset every iteration. Additionally, since all sets are finite,
all for-in loops must end, and all upper bounds are natural numbers. Most notably
missing is a form of unbounded looping which would allow non-termination.

Strictly-Smaller Recursion. Every time a recursive call is made in fSetØyg, a
dynamic check is performed on the total ordering of sets, �, between the initial argument
and the new one. If this ordering does not say the new argument is smaller, the program
halts with a run-time error.

No Co-Recursion. Some languages allow functions to be used before definition or
stubs of functions that will be defined later. fSetØyg disallows these features to avoid
co-recursive functions that occur in cycles.

It is worthy of note that these precautions to avoid non-termination really do make
some functions uncomputable in fSetØyg. For example, the Ackermann function:

A(m;n) =

8>><
>>:
n+ 1 if m = 0

A(m� 1; 1) if m > 0 and n = 0

A(m� 1; A(m;n� 1)) if m > 0 and n > 0:

43

is not computable in fSetØyg under these rules, as one might expect. fSetØyg pro-
vides a mechanism to explicitly specify a function of the arguments that is decreasing
on the total ordering (rather than just the whole argument). This mechanism is the
@recurse(f(arg)) decorator which replaces the check for a0 � a with f(a0) � f(a). For
instance, using the @recurse decorator, the gcd function can be written in fSetØyg as
can be seen in Figure 4.3.3 on page 44.

1 @recurse(pi1(arg) + pi2(arg))
2 @requires(x >= 0, "err2")
3 gcd((x,y)) :=
4 if x = 0:
5 return y
6 if y = 0:
7 return x
8
9 if x < y:

10 return gcd((x, y�x))
11 else:
12 return gcd((x�y,y))

Figure 4.2: fSetØyg code that computes the gcd function

4.3.4 Automatic Memoization

By default, fSetØyg memoizes every function. Since the only real side-effect is a print,
almost all the functions that students write should be memoized, and understanding
when memoizing is helpful is not a relevant detail for many of the use cases of fSetØyg.
Ideally, fSetØyg would have included a purity checker that automatically memoizes if
and only if there were no side-effects, but there was not enough time to add this feature.
Instead, fSetØyg provides a @nomemo decorator that tells fSetØyg to not memoize that
function.

The implementation of auto-memoization is fairly straight-forward. The compiler
creates a global table for each function that stores inputs and their respective outputs,
as they are called. Then, a clause to check if the input is already in the table is injected
at the beginning of the function.

4.3.5 Libraries and Definition Files

fSetØyg provides a way of “using” libraries, other files, etc. like most languages. fSetØyg
uses “definition” files, in the spirit of C header files, to define (1) which libraries are used
by the library (uses), (2) what functions are provided by the library (provides), and (3)
the definitions provided by the library (defines). fSetØyg expects every program to have
a corresponding .def file which may include none or all of these sections, depending on
the program. The standard fSetØyg library provides a variety of primitive definitions,

44

functions, and “types”. The compiler automatically resolves all dependencies between
libraries by searching on the user’s SETTY_PATH. If there is a circular dependency, it
alerts the user.

4.4 Standard Libraries in fSetØyg

Although everything in fSetØyg is a set, users may define their own “types” built on top
of sets. This is particularly useful when teaching a variety of mathematical structures.
Students can start by building them out of sets and defining functions on top of them.

4.4.1 Standard Type Libraries

By convention, every user-defined “type”, type should define three functions:
� is_type – Although one cannot tell if a set was intended to be of a particular type,
it is often useful to ensure that it has the right structure.

� type_print – print statements treat everything as sets, but each type has a “canon-
ical” way of printing out in standard mathematics.

� type_printx – This function should always just be the same as type_print, except
there should be no trailing newline.

The standard library implements booleans, pairs, lists (as cons cells), rational num-
bers (as canonicalized pairs), and relations (as sets of pairs). Depending on the exercise
and/or course, these standard types can be left out or enhanced.

4.4.2 Standard Function Libraries

The rest of the standard library implements the “special” functions (like equals, iff, lt),
and other very primitive functions that are necessary in many programs. We found it
very useful to implement most of the standard library with the students in an early
recitation to make sure they understood everything. The standard library consists of
three modules:
Logic Module. The logic module defines the implies(p, q) and iff(p, q) functions.
“Preliminaries” Module. The preliminaries module defines important set and numer-

ical operations on top of the built-ins. In particular, it provides:
� equals(x, y) which returns T iff x = y.
� subset(x, y) which returns T iff x � y.
� cardinality(x) which returns jxj.
� lt, leq, gt, and geq which define <;�; >;� on numbers, respectively.
� powerset(x) which returns P(x) = fy j y � xg.

Arithmetic Module. The arithmetic module provides basic arithmetic operations. In
particular, it defines:

45

� min(S) returns the minimum element in S; it raises a runtime error if S = ∅.
� max(S) returns the maximum element in S; it raises a runtime error if S = ∅.
� sum(S) returns

X
x2S

x.

� even(n) returns T iff n is even.
� odd(n) returns T iff n is odd.
� power(x, y) returns xy.
� gcd(x, y) returns gcd(x; y).

The specific implementations of these functions can be found in Appendix ??.

4.5 Teaching Discrete Mathematics with fSetØyg

The design and implementation decisions for fSetØyg are intended to facilitate the goal
of providing students with a computational environment for various concepts in basic
mathematics. fSetØyg can be used to automate student checking and experimentation in
foreign topics. Additionally, in various settings, fSetØyg can even be used to automate
grading of exercises, and, as a result, students can get more practice. In this section, we
outline a variety of exercises over a variety of topics that use fSetØyg.

4.5.1 Logic

When students encounter propositional and first-order logic for the first time, they are
often confused by both the syntax and semantics. Implementing logical predicates and
examples can help students get a better understanding.

Teaching Semantics of Propositional and First-order Logic

Classical implication and bi-implication can be very confusing for students when they
first see them. Students can write definitions for these (and other) logical connectives
in fSetØyg and write code to print out the truth tables to check their correctness. For
example, we gave students these two predicates:

1 part_a(p) := :p _ p
2 part_b((p, q)) := ((:p _ q)) (p) q)) ^ ((p) q)) (:p _ q))

And an example of printing out the truth table for part_a in fSetØyg:
1 # Print the header
2 print "p | :p _ p"
3 print "�������"
4
5 # Print the rows of the truth table
6 for p 2 {T, F}:
7 print p, "|", part_a(p) # Part A!
8 print "������"

46

Then, we ask them to write the code to print out the truth table for part_b:

Exercise 1. Print the rows of the truth table. Use the example above to help!
1 print "p | q | ((:p _ q)) (p) q)) ^ ((p) q)) (:p _ q))"
2 print "���������������������������������������"
3 print "do something here!"

This exercise has several benefits over the standard “here is a formula, write a truth
table for it” exercise:

� It can be auto-graded, and students can get multiple attempts as a result.
� It turns the tedium of writing out all the cells into writing a program (which they’re
all somewhat familiar with). This is particularly important, because it can help
them see the parallel between what they’ve already seen (programming) and logic.

� Students write nested for loops which helps them see why there are 2n rows.
Because fSetØyg coerces types automatically, the code the students initially write

prints out 0’s and 1’s instead of T’s and F’s!. We told the students that this is a syntactic
problem and ask them to fix it.

Exercise 2. In your truth tables above, fSetØyg printed out 0’s and 1’s instead of T’s
and F’s. Think of some boolean expression such that p ?? ?? , p, where each ?? is a
placeholder for a single operation or value. Go back and fix the truth tables to use this
expression so that fSetØyg prints with T’s and F’s.

To avoid overhead with UNIX and infrastructure this early in the course, we gave
students a web interface pictured in Figure 4.3 to fill in these problems. As mentioned
before, this allowed us to auto-grade the question and give immediate feedback.

Grammar and Syntax of Logic

Because it is a programming language, fSetØyg is very strict about grammar. For exam-
ple, to express “Every natural number is greater than or equal to 0”, we could write

1 8(n 2 N). n � 0

This has the benefit of forcing students to think of the sentence formally. In particular,
the parentheses and the period are part of the syntax of the language. Leaving them out
would be like leaving out commas and semi-colons in English—grammatically incorrect.
Pointing this out to students can help them think of the “mathematical language” they’re
learning more formally.

Translating Between English and Logic

Another very common exercise early in discrete math courses is to ask students to trans-
late back and forth between english and symbolic logic. fSetØyg makes one direction

47

Figure 4.3: Web interface for fSetØyg truth table exercise.

(from informal to formal) very easy, and, again, autogradable. For example, we can give
students the sentence

There is an x in A such that for all b in B, b > x.
and ask them to fill in formal with a formal definition of that sentence:

1 formal(_) := unimplemented

The other direction is harder but can be done indirectly. Generally, the intended
learning outcome of asking students to translate formal logical statements into English
is to make sure students understand what the symbols mean. By asking students to define
predicates used in a sentence to make it true and false, we can test their understanding
without asking them to explicitly give the English sentence. For example, we can give
students the following exercise:

Exercise 3. Define f_true below such that if f = f_true, then formal = T. Similarly,
define a function f_false such that if f = f_false, then formal = F.

1 formal(_) := 8(x 2 N). 8(y 2 N). f(x) = f(y)) x = y
2 f_true(x) := unimplemented
3 f_false(x) := unimplemented

Negating Statements

As an extension of the previous exercise, we can also ask students to negate their state-
ments (pushing in negation symbols as far as possible). This requires a post-processing
step to check that the negations are really pushed all the way in, but it can be done with
a simple sed script. Again, for this exercise, we gave students a web interface, pictured
in Figure 4.4, to limit technical overhead.

48

Figure 4.4: Web interface for fSetØyg negation exercise.

To allow students to test their negations and sentences, we gave them a box where
they could define the function f and the sets A and B that are used throughout the
problem. Then, fSetØyg can tell them if their sentences work on those values or not.
Additionally, to get practice writing simple fSetØyg functions, we can ask students to
define the absolute difference jx� yj, where x and y are natural numbers. It was used in
the later parts of the problem. We can ask a variety of questions using different English
phrasings to test this outcome. We give some examples below.
For each part of Exercise 4, consider the informal logical sentence provided. For (a)
and (e), we have translated it into symbols for you. For (b), (c), and (d), translate
this sentence into logical symbols, and define formal_part as your answer. Negate
formal_part, and use logical equivalences to get rid of any negation symbols. Then,
define neg_part as your answer.

Exercise 4(a). “For every x in A, there is some b in B such that b > x.”
1 formal_a(_) := 8(x 2 A). 9(b 2 B). b > x
2 neg_a(_) := unimplemented

For this question, we provide an example of a student’s attempts and fSetØyg’s responses
to them.

1 neg_a(_) := not forall x. exists b. b > x

Notice that the student has used the english versions of the keywords here–fSetØyg has
no problem with this. It will, however, give a syntax error, as quantifiers must specify the
domain of individuals; the error message should actually explain why this is important
in addition to what has happened. Additionally, the grader would complain about the
usage of “not”, as the problem forbids it.

1 neg_a(_) := : forall x in A. exists b in B. b > x

49

The compiler will still complain about the quantifiers, but this time it is a matter of
syntax. fSetØyg requires parentheses around the variables and their types for quantifiers,
because it reinforces the idea that logical statements are part of a formal language. The
grader will still complain about the :, because it is still logically a “not”.

1 neg_a(_) := exists (x in A). forall (b in B). b <= x

This time, the compiler and grader will accept the student submission.

Exercise 4(b). “There is an x in A such that for all b in B, b > x.”
1 formal_b(_) := unimplemented
2 neg_b(_) := unimplemented

Exercise 4(c). “For all x; y in the naturals, if f(x) = f(y), then x = y.”
1 formal_c(_) := 8(x 2 N). 8(y 2 N). f(x) = f(y)) x = y
2 neg_c(_) := unimplemented

Exercise 4(d). “For each b 2 N, there is a natural number x where f(x) = b.”
1 formal_d(_) := unimplemented
2 neg_d(_) := unimplemented

Exercise 4(e). “For all x; y 2 N, for all natural numbers e, there is one called d such
that if abs_diff((x; y)) is less than d, then abs_diff((f(x); f(y))) is less than e.”

1 formal_e(_) := 8(x 2 N). 8(y 2 N). 8(e 2 N). 9(d 2 N). abs_diff((x,y)) < d)
abs_diff((f(x),f(y))) < e

2 neg_e(_) := unimplemented

Exercise 4(f). “For all natural numbers e, there is a d 2 N s.t.for all x; y in the naturals,
if abs_diff((x; y)) is less than d, then abs_diff((f(x); f(y))) is less than e.”

1 formal_f(_) := unimplemented
2 neg_f(_) := unimplemented

Exchanging Quantifiers

We use the issue of exchanging quantifiers as an example of how fSetØyg can help stu-
dents investigate logical formulae.

For each part of Exercise 5, consider the following definitions of ef, and fe:

1 ef(_) := 9(x 2 N). 8(y 2 N). g((x, y))
2 fe(_) := 8(y 2 N). 9(x 2 N). g((x, y))

50

Many of the parts of this question do not have unique solutions. Your goal is to
find *a* solution that works.

Exercise 5(a). Define g(x; y) such that ef and fe are both true.
1 g_always_true((x,y)) := unimplemented
2 print ef(@) ^ fe(@)

Exercise 5(b). Define g(x; y) such that ef and fe are both false.
1 g_always_false((x, y)) := unimplemented
2 print :ef(@) ^ :fe(@)

Exercise 5(c). Define g(x; y) such that exactly one of ef and fe is true.
1 g_exactly_one((x, y)) := unimplemented
2 print (ef(@) _ fe(@)) ^ :(ef(@) ^ fe(@))

Exercise 5(d). Is it possible to define g(x; y) such that the truth values of ef and fe
from (c) are swapped? Use your answer, define relate such that (1) relate is always
true, and (2) relate relates the truth values of ef and fe.

1 relate(_) := unimplemented
2 print relate(@) = T

Again, the interactive process of trying to find a solution and incrementally editing
it until the compiler says it works allows students much better feedback than just a
normal paper exercise.

4.5.2 Sets

Just like with logical formulae, fSetØyg forces a particular grammar for sets and set
comprehensions and allows students to explore various concepts by asking fSetØyg.

Playing with Sets

Many of the earliest misconceptions that students have with sets center around the empty
set and various set operations. fSetØyg can help students clear this up. We provide an
example of a series of probing questions.

In fSetØyg, you can define variables by writing x := y. For instance, if we wanted
a name for the empty set:

1 empty1 := ∅
2 empty2 := @
3 if empty1 = empty2:
4 print "the empty sets are equal!"

51

Here is a function to create a set containing a single element:
1 singleton(x) := {x}

Exercise 6(a). Write a function doubleton that creates a set containing x and y.
1 doubleton((x,y)) := unimplemented

Exercise 6(b). Can you choose d_x and d_y to make the following if statement true?
We pass @ into d_x and d_y as “dummy arguments”–they are not actually used.

1 d_x(_) := unimplemented
2 d_y(_) := unimplemented
3 if singleton(d_x(@)) = doubleton((d_x(@), d_y(@))):
4 print "Yay!"

Exercise 6(c). Define a functions is_empty that returns T iff the set is the empty set.
1 is_empty(S) := unimplemented

Exercise 6(d). Define a function has_empty that returns T iff the set contains the
empty set.

1 has_empty(S) := unimplemented

52

Exercise 6(e). Consider the following fSetØyg code. Guess its output. Then, run it.
1 if is_empty(@):
2 print "@ is empty."
3 if has_empty(@):
4 print "@ has empty."
5 if is_empty({@}):
6 print "{@} is empty."
7 if has_empty({@}):
8 print "{@} has empty."

Exercise 6(f). Consider the following fSetØyg code. Guess its output. Then, run it.
1 A := {1,2,3}
2 B := {2,3,4}
3 C := {{1,2}, {1,3}}
4 print A [B
5 print A n B
6 print A \ C
7 print \ C
8 print [C
9 print [@
10 print \ @

Cardinality

We can ask another line of questions for cardinality.

Exercise 7(a). Recall that [n] = f1; 2; : : : ; ng. Consider the following:
1 card_union((n,m)) := |[n] [[m]|
2 print card_union((10000000, 1000000))

This definition will give the correct answer. . . if it ever finishes. Unfortunately, we can
make n and m arbitrarily large, and the normal definition of cardinality in fSetØyg has
O(jSj) runtime. Can you define card_S differently so that it is not linear any more?

1 card_S((n, m)) := unimplemented

(The answer to this one is to take the max of the two inputs; the cardinality questions
are particularly interesting, because the original implementations actually work–so, they
can still be used as a sanity check.)

Exercise 7(b). Consider another one with the same problem:
1 card_intersection((n, m)) := |[n] \ [m]|
2 print card_intersection((10000000, 1000000))

Try defining card_S2 as well.

1 card_S2((n, m)) := unimplemented

53

Exercise 7(c). We defined subset in class. Give a definition of it in fSetØyg.
1 subset((a,b)) := unimplemented

Exercise 7(d). Consider the following fSetØyg code. Guess its output. Then, run it.
1 print P({1})
2 print P(∅)

Exercise 7(e). What is jP(∅)j? Try using fSetØyg to check your answer.

Exercise 7(f). What is jP([n])j? Try defining your answer in fSetØyg.

Set Comprehensions

When set comprehensions are introduced, students are often confused by both the syntax
(where are the variables being bound?) and the semantics (what exactly goes in the set?).
fSetØyg allows students to check their syntax; so, that they know they are turning in a
valid expression. It also allows them to print out what their set has in it. This can be
useful to check if they’ve missed a silly case (e.g. their definition of primes includes 0 or
1). As usual, we provide some probing questions.
For each part of Exercise 8, we will ask you to write a set comprehension to define
the given set. As an example to start you off, we define evens, the set of even
natural numbers, and evens_less_than_ten, the set of evens that are less than 10:

1 is_even(n) := n � ((n / 2) ∗ 2) = 0
2 evens(_) := {x 2 N | is_even(x)}
3 evens_less_than_ten(_) := {x | x < 10 and x 2 evens(_)}

Exercise 8(a). Now, define odds(S) (the set of members of S that are odd) and
odds_less_than_x((S, x)) (the odds in S that are less than 10). Make sure that you
do not use x to mean two different things!

1 odds(S) := unimplemented
2 odds_less_than_x((S, x)) := unimplemented

Exercise 8(b). Define the subset of S of non-negative multiples of 151.
1 multiples_of_151(S) := {}

A Pythagorean triple is (a; b; c) such that a2+b2 = c2 and a; b; c are positive integers.
fSetØyg does not have syntax for triples; so, you should make them out of pairs
instead. To represent (a; b; c) in fSetØyg, use ((a,b),c).

Exercise 8(c). Define the set of Pythagorean triples using only elements of S.
1 pythagorean_triples(S) := {}

54

Exercise 8(d). Define the collection of all sets of elements of S with at least two
members.

1 sets_of_S_with_2(S) := {}

Exercise 8(e). Define the set of prime numbers in S.
1 primes(S) := {}

Exercise 8(f). Go back and test your answers using various definitions. We’ve provided
up_to_500 as a test case. Can you think of any others?

1 up_to_500(_) := {0} [[500]

4.5.3 Foundations of Mathematics

Because fSetØyg defines every type using sets, it provides the opportunity to teach foun-
dations of mathematics. In particular, we can guide students through the definitions and
their motivations:
(a) If we define what “zero” is and what “the successor of x” is, we define all of the

natural numbers. Consider the following definition:

1 zero(_) := @
2 succ(n) := {n}

(b) This definition seems “reasonable”, and we can do a lot with it, but the most impor-
tant thing we would like to be able to do is define x < y using only set operations.
There is no natural way to do this with this definition. Consider this definition
instead:

1 zero(_) := @
2 succ(n) := n [{n}

(c) Can you define nth, which returns succ applied to 0 n times, in terms of [n]?

1 nth(n) := unimplemented

(d) How can we define x < y with this definition?

1 lt((x, y)) := unimplemented

(e) Consider this definition of pairs:

1 (x, y) := {{x},{x,y}}

(f) A definition of pairing (putting two elements together) is useless without a definition
of “unpairing” (taking the elements back out). Can you think of a definition of pi1
(“extract the first element of the pair”) using only set operations?

55

1 pi1(p) := unimplemented

(g) We’ll give you a working definition for pi2 (“extract the second element”). But here,
we’ll give you a bad definition (pi2bad) that does not work. Can you find an input
that pi2bad fails on?

1 pi2bad(p) := ([p) n {pi1(p)}

4.5.4 Examples, Patterns, and Direct Proofs

fSetØyg (like many other programming languages) can be used to help students do large
computations [Sut05, Mar10]. Unlike most other languages, fSetØyg is ideal for most
questions asked in an introductory discrete mathematics course, because of its simple,
“math” syntax

Examples

One very useful strategy that most courses try to communicate to students is to try
small examples. In the case of an existential quantifier, all we need for the proof is
an example. Students can use fSetØyg to help them work out small examples and test
solutions. We provide two examples of how translating into fSetØyg makes this easier.

Consider the following homework question we gave in 15-151:
Let n 2 N such that n > 0, and S = [n]� [n]. Let T be the set

T = f(x; y) 2 Z� Z j 0 � nx+ y � (n+ 1) � n2 � 1g

Prove that S � T . Also, determine and prove whether or not S = T .
The question of interest here is really T � S. Part of the problem is for the student

to figure this out. It could help to translate this into fSetØyg. Here is a first attempt:
1 Z := {0} [[500]
2 cross(S) := {(x, y) | x 2 S ^ y 2 S}
3 ZxZ := cross(Z)
4 Ss := cross([n])
5 Ts := {(x,y) 2 ZxZ | 0 � nx + y � (n+1) ^ nx + y � (n+1) � n∗n � 1}
6
7 print Ss n Ts

Aha! This throws an error that n is undefined, which, of course makes sense. The
reason this is relevant is that a common mistake on this problem is to not realize that
these sets are parametrized in n. Writing them out formally forces the student to realize
this. In a “fixed” version, of course, we are still slightly incorrect, because fSetØyg only
supports positive numbers. We can add a loop at the end to figure out what is going on:

1 Z := {0} [[500]
2 ZxZ := {(x,y) | x 2 Z ^ y 2 Z}

56

3 S(n) := [n] � [n]
4 T(n) := {(x,y) 2 ZxZ | 0 � nx + y � (n+1) ^ nx + y � (n+1) � n∗n � 1}
5
6 for n 2 Z:
7 print S(n) n T(n)

And another homework question:
Let X and x be sets. Prove or disprove each direction of the equality.

(X n fxg) [fxg = X

The idea is similar here. Let us take a wide variety of sets and check if the two sides
are equal:

1 PX := P({1,2,3})
2 for X in PX:
3 for x in {1,2,3}:
4 if (X n {x}) [{x} 6= X:
5 print X, "and", x, "are not equal"

Patterns

Another useful strategy that we try to communicate to students is pattern recognition.
fSetØyg can help with this by doing the small examples for students. All they have to
do is write code.

Consider another 15-151 homework question:
Write down the positive integers, delete every second, and form the partial sums
of those remaining:

1 �2 3 �4 5 �6 7 �8 9 ��10 11

1 4 9 16 25 36

Claim: The nth item in the sequence is n2.
To solve this problem, first, we translate the algorithm into code:

1 LIMIT := {0} [[1000]
2 sum := 0
3 n := 1
4 for i in {2x + 1 | x in LIMIT}:
5 sum := sum + i
6 if sum 6= n∗n:
7 print "The partial sum for", n, "is not", n∗n, ". It is", sum
8 n++
9 print "The partial sums are correct up to", max(LIMIT)

If we find a counter-example, we are done! If we do not find a counter-example, we
should start looking for a proof of correctness.

57

Here is one more example:
Write down the odd numbers starting with 43. Circle 43, delete one number,
circle 47, delete two numbers, circle 53, delete three numbers, circle 61, and so
on:

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

73 75 77 79 81 83 85 87 89 91 93 95 97 99 101

103 105 107 109 111 113 115 117 119 121 123 125 127 129

Claim: The circled numbers in this sequence are all prime.
Again, we can translate this into fSetØyg code:

1 is_prime(n) := <implemented in a previous exercise>
2 LIMIT := {0} [[1000]
3 to_skip := 0
4 skipped := 0
5 for i in {2x + 1 | x in LIMIT ^ x > 42}:
6 if to_skip > skipped:
7 skipped++
8 else:
9 to_skip++

10 skipped := 0
11 if not is_prime(i):
12 printx "Found a counter�example:", i, ". This was the"
13 printx to_skip
14 print "ith number circled."

Direct Proofs

These direct proofs are just more of the same.
(1) Let SidesOf(x; y) be “the number of sides of x is y”.

8(x 2 f0; 1g):9(y 2 f4;�g):SidesOf(y; x+ 4)()(p _ :p)

For this one, we have to do a bit of modelling. There is no 4 in fSetØyg. So, for a
shape, let us just use [n] to mean “a shape with n sides”. Then, SidesOf(shape, sides)
is just |shape| = sides:

1 triangle := [3]
2 square := [4]
3 SidesOf((shape, sides)) := |shape| = sides

Now, to solve the problem:
1 for p in {T, F}:
2 print 9(x 2 {0, 1}).9(y 2 {triangle, square}). SidesOf((y, x+4)) , (p_:p)

(2)
9(x 2 f∅; f0gg):[8(y 2 ∅):jyj = 0 ^ jyj 6= 0]()[jf0gj = jP(x)j]

This one is directly translatable:

58

1 print 9(x 2 {@, {0}}). [8(y 2 @). |y| = 0 ^ |y| 6= 0] , [|{0}| = |P(x)|]

4.5.5 Recurrences and Combinatorics
The Fibonacci Numbers pop up a lot in seemingly strange situations. They are
defined in terms of a recurrence. We will study recurrences later in the course,
but for now, all you have to know is that the later terms are defined using the
previous ones. The Fibonacci numbers are defined as follows:

f0 = 0

f1 = 1

fn = fn�1 + fn�2

So, for instance, to generate f3, we see that f3 = f2 + f1 = (f1 + f0) + f1 =
(1 + 0) + 1 = 2.
Prove that there is no largest even Fibonacci number.

Because fSetØyg memoizes functions, we can easily calculate things like Fibonacci
numbers. Furthermore, the “translation” into fSetØyg is basically the same as the math.
That is:

1 f(0) := 0
2 f(1) := 1
3 f(n) := f(n�1) + f(n�2)

The benefit is clear. fSetØyg allows us to write the mathematical definition, but it
makes it execute quickly. We can explore recurrences and various properties via this.
You can imagine another place where fSetØyg shines is in enumeration problems. A
common question is to find partitions of a set. This can be done idiomatically in fSetØyg
as follows:

1 partitions(n) := (@, @)
2 partitions(n) := {(X [{n}, Y) | (X, Y) 2 partitions(n�1)} [
3 {(X, Y [{n}) | (X, Y) 2 partitions(n�1)}

4.5.6 Pilot Results

In the second run of 15-151, we used fSetØyg for all the programming assignments, and
we used many of the exercises outlined above. Unfortunately, the overhead of UNIX and
some initial bugs proved to outweigh potential benefits. Additionally, the slower feedback
cycle of a compiled language proved to be a non-trivial deterrent; this is especially true,
because it forced them to drop into the uncomfortable UNIX environment even more
frequently. Furthermore, we failed to stress the idea that fSetØyg should be used as a
computational environment as much as we should have.

One of the original goals of fSetØyg was to make it more clear how a language could
be built out of mathematical primitives. The features of the language designed around

59

this goal (everything is a set, print {0,1} ! 2, all functions take one argument, etc.)
ended up making these difficult concepts the only thing students associated with the
language. In other words, the goal to teach foundations of mathematics overshadowed
all the other goals to the point where they were not even seen as goals.

4.6 Future Work

We believe the issues we had with the first run are mostly solvable now that we know
about them. We plan to write a new version of fSetØyg over the summer with different
design considerations. The new version of the language will be interpreted, not compiled.
We plan to use emscripten or a tool like it to compile the new interpreter to javascript.
This would allow students to access the language from a friendly browser environment
based on repl.it.

Perhaps most importantly, we will be dropping reliance on set theory. Sets will still
be a primitive type, but so will naturals, products, lists, and functions.

4.6.1 Backed by Z3

The new version of fSetØyg will be backed by Z3, a theorem prover from Microsoft
Research. This will allow us to have two very important new features. The first new
feature is the support of arbitrary, potententially infinite, sets. We can store known
constraints on sets and when it becomes necessary to know what is in the set, we can
ask Z3. The second new feature is support for a form of logic programming in which
the programmer lists constraints on a predicate, and a satisfying predicate is found. We
provide two examples of where this second feature might be useful.

Sudoku

Consider the following code in which we suppose the existence of a puzzle_solution for
the Sudoku puzzle puzzle:

We can then use Z3 to actually solve the puzzle (if there is a solution). Approximate
code (using the Python bindings for Z3) can be seen in Figure 4.7, below.

Halting Problem

The second application is as a demonstration of computability. Using the same suppose
and insist keywords from before, we can demonstrate that the halting problem is un-
decidable. The interesting part is that the new version of fSetØyg should be able to
determine this just from the code !

60

1 puzzle = [[1, 2, 0, 0, ...], ...]
2 VALS := {0} [[8]
3 suppose exists (puzzle_solution : VALS ∗ VALS ∗ [9] �> bool) such that:
4 insist 8(i,j 2 VALS). puzzle[i][j] != 0) puzzle_solution(i, j, puzzle[i][j])
5 insist 8(i,j 2 VALS). 9(n 2 [9]). puzzle_solution(i, j, n)
6 insist 8(n 2 [9]). 8(i, j 2 VALS). 8(n2 2 [9] n {n}). puzzle_solution(i, j, n)

) :puzzle_solution(i, j, n2)
7 insist 8(n 2 [9]). 8(i 2 VALS). 9(j 2 VALS). puzzle_solution(i, j, n)
8 insist 8(n 2 [9]). 8(j 2 VALS). 9(i 2 VALS). puzzle_solution(i, j, n)
9

10 BOXES := {{(i + 3∗bi, j + 3∗bj) | i,j 2 {0, 1, 2}} | bi, bj 2 {0, 1, 2}}
11
12 insist 8(n 2 [9]). 9((i, j) 2 BOXES). puzzle_solution(i, j, n)
13 as puzzle_solution

Figure 4.5: Future fSetØyg code to solve Sudoku puzzles

1 suppose exists (halts string �> bool) such that:
2 CONFUSE() :=
3 me := get_my_source()
4 if halts(me):
5 while True: pass
6 insist not halts(me)
7 else:
8 return True
9 insist halts(me)

10 as halts

Figure 4.6: Future fSetØyg code that exibits the undecidability of the halting problem

61

1 from z3 import ∗
2 solution = Function(’solution’, IntSort(), IntSort(), IntSort(), BoolSort())
3
4 constraints = []
5
6 for i in range(len(puzzle)):
7 for j in range(len(puzzle)):
8 if puzzle[i][j] != 0:
9 # The result must match what we already know.

10 constraints.append(solution(i, j, puzzle[i][j]))
11
12 # Every cell must have some value
13 constraints.append(Or([solution(i, j, n) for n in range(1, 10)]))
14
15 #...but only one value
16 constraints.append(And([
17 Implies(
18 solution(i, j, n),
19 And([Not(solution(i, j, np)) for np in range(1, 10) if np != n])
20)
21 for n in range(1, 10)]))
22
23
24 # Every row must have some value
25 constraints.append(And([
26 And([
27 Or([solution(i, j, n) for j in range(9)])
28 for i in range(9)])
29 for n in range(1, 10)]))
30
31 # Every column must have some value
32 constraints.append(And([
33 And([
34 Or([solution(i, j, n) for i in range(9)])
35 for j in range(9)])
36 for n in range(1, 10)]))
37
38 # Every box must have some value
39 constraints.append(And([
40 And([
41 Or([solution(i + boxi∗3, j + boxj∗3, n) for i in range(3) for j in range(3)])
42 for boxi in range(0, 2) for boxj in range(0, 2)])
43 for n in range(1, 10)]))
44
45 s = Solver()
46 s.add(constraints)
47
48 if s.check() == sat:
49 m = s.model()
50 r = [[[n for n in range(1, 10) if is_true(m.evaluate(solution(i, j, n)))][0]

for j in range(9)] for i in range(9)]
51 print_matrix(r)
52 else:
53 print "failed to solve"

Figure 4.7: Translation of the code in Figure 4.5 to Z3 bindings in Python
62

Chapter 5

Symbolic Algorithm Complexity
Analysis

In this chapter, we describe an assignment where students write several static analyzers
that, when given the source code of a program (in a subset of the Setty language),
generate estimated asymptotic bounds of various features (output, steps of computation)
of the program. Instead of running the program on various inputs, students decompose
the program into structures (loops, if statements, function calls, etc.) and feed pieces
of the result to a symbolic algebra library.

The assignment is intended as a teaching exercise in combining mathematics (iter-
ation, induction, asymptotics, computability) and programming. As a result, we take
certain liberties and restrictions for granted, but the algorithm gives reasonable results
on many inputs.

In our case study, we made the mistake of asking students to use a mostly object-
oriented style (using Python) which ultimately did more harm than good, because most
of the functions that the students wrote were recursive, and there was a lot of “magic
code” where student-written functions were called by staff-written functions. As a result,
we present a slightly tweaked version of the assignment we gave in 15-151, in the hope
that it solves several small problems we encountered.

It is crucial to distinguish between the programming languages pedagogical presen-
tation and the formalism throughout this chapter, because the ultimate consumers are
intended to be students with a relatively weak math background. For instance, a for-
mal definition of the semantics of SubfSetØyg is irrelevant to the learning outcomes, but
crucial to the design of the language and how easy the algorithms will ultimately be to
implement. Furthermore, depending on the students, presenting this as inference rules
could be reasonable, but it likely would not be. We describe the parts that the students
implement using a more pedagogical presentation and relegate much of the formalism
to Appendix A.

63

5.1 Overview

We begin with an informal discussion of the four complexity analyses the students are
asked to write. Because the target language can make these analyses vary drastically, we
describe the specific one we recommend, a “subset of fSetØyg”, called SubfSetØyg, that
focuses on language features we care about in Section 5.3.

� time-upper(F) : N! N, a symbolic upper bound on the runtime of F .
� output-upper(F) : N! N, a symbolic upper bound on the return value of F .
� time-lower(F) : N! N, a symbolic lower bound on the runtime of F .
� output-lower(F) : N! N, a symbolic lower bound on the return value of F .

For example, consider the following SubfSetØyg function, F :

1 F(n) :=
2 out := 1
3 for i ! n:
4 out := out ∗ n
5 return out

We can see that the time complexity is O(n), because the loop always runs n it-
erations, and the output complexity is O(nn), because F always returns out which
started as 1 and was multiplied by n, n times. To compute these bounds for an arbitrary
SubfSetØyg program, we run it through the pipeline shown in Figure 5.3.

We don’t discuss parsing the language, because it is irrelevant to the assignment;
though a parser and AST should obviously be provided to students.

5.2 Pedagogical Outcomes

Before describing the specifics of the assignment, we give a broad overview of the in-
tended outcomes, other possible assignments and approaches in the same space, and
what students might implement for the assignment.

This assignment is intended to help with the instruction of several topics. In partic-
ular, we are concerned with Big-Oh Analyses, Recurrences and Closed Forms, Confusion
Between Analyses.

Learning Big-Oh

Nearly every Computer Science curriculum discusses “big-oh analysis” at some point.
For better or worse, the topics covered under this umbrella vary drastically. Topics that
might or might not be covered include:

� An informal description of how the analysis “ignores details”
� A description of “common Big-Oh classes”: linear, logarithmic, quadratic, exponen-
tial, etc.

� A “procedure” for determining what class a function is in

64

Program source code

Sub{SetØy} Abstract
Syntax Tree

Function Abstract
Syntax Tree

Simplfied Abstract
Syntax Tree

Abstracted
Big-Oh AST

String Representation
of Big-Oh AST

1 f(n) :=
2 a := 5
3 for i to n:
4 a := a + 1
5 a := a * n
6 return a

FunctionCall(name=f , arg=n, function=
FunctionDef(name=f , arg=n, body=

Assignment(variable=a, value=5)

Loop(upper_bound=n, loop_variable=i, body=
Assignment(variable=a, value=

Addition(variable=a, value=1)

)

Assignment(variable=a, value=
Multiplication(variable=a, value=n)

)

)

Return(variable=a)

)

)

+

+

+

+

0 1

+

1 1

∗

+

+

0 +

+

+

+

0 1

1

1

1

+

+

+

+

0 1

1

1

1

n

1

+

4 ∗

8 n

n

O(n)

Parser

Abstract Interpretation
of Symbolic Complexity

Function Simplifier

Big-Oh Simplifier

Function Stringify

Parser

Abstract Interpretation
of Symbolic Complexity

Func
tion

Simp
lifier

Big-Oh Simplifier

Function Stringify

Figure 5.1: The complexity analysis pipeline.

65

� A formal definition of O(�)
� Proofs (and disproofs) that functions are in various classes
� Different analyses (output, time, space, etc.)
� The limit definition of O(�)
�
(�);�(�); o(�); : : :

None of these is good or bad in isolation, but there is often a non-trivial bridge
between the first few and the rest. As always, we are interested in helping students who
are comfortable with programming and helping them get more comfortable with math.

Transfer from Simple Recursion to Recurrences

There is often an additional boundary between writing simple recursive functions and
understanding how recurrences “work”. By asking students to programmatically convert
procedures to recurrences (in particular, different ones like time and output) allows
them to experiment and try to understand what the recurrence actually means.

Additionally, we prefer that students have a deep understanding of why they can an-
alyze functions the way they do–and, we claim asking them to implement what amounts
to their procedure bridges exactly this gap. Furthermore, they see real-world uses for
closed forms of summations and recurrences which are a lot more interesting than “here
is a function, write a recurrence for it”.

Confusion Between Analyses

Because most students only see “runtime” analysis first (and reasonably so!), when they
are eventually told about other analyses like output, space, etc., they often see them
as unimportant, or worse confuse them with runtime analysis ! By asking students to
analyze programs in multiple ways, we reinforce the differences. In fact, in the loop time
analysis, they actually use their output analysis !

5.2.1 Standard Approaches

It should be noted that we are not suggesting that the standard approaches we are
about to discuss should not be used. In fact, we believe they should both be discussed
before this assignment. The main point of this section is to demonstrate some common
misunderstandings that occur through these methods and how our approach (following
them up) can help students remove these misconceptions.

Walking Through Code

One of the standard approaches is to break down the code into pieces and evaluate
explaining that loops are “O(n) times the inside”, or another similar wording. (This is
clearly a vast over-simplification of this approach, but it is often characterized by this
sort of wording.)

66

This approach is particularly good for intuition, because students are forced to break
down the structure of a program, but because they do not think of the syntax of a
program as a recursive structure, this can make it feel like guess-work. There is also a
strong disconnect between this approach and the formal definition of Big-Oh. Further-
more, some students treat each program as a distinct problem and are not directly able
to create a generic approach from the individual examples. Finally, these examples tend
to be very small programs which can lead to the impression that the approach is not
useful or uncommon in the “real world”.

Timing Graphs and Regressions

Another common approach is to time a program on multiple inputs, and create a best-
fit curve that matches the points. First, we point out that because all computers are
different and the timings will never be ideal, this approach is not particularly reliable
and there are very frequently anomalous points in the curve, but we do not view this as a
particularly important concern. Like the previous approach, this one is not particularly
helpful for helping students work with the formal definitions–and unlike the previous
approach, the times do not help develop students’ intuition.

Another concern is that because some programs (particularly those with exponential
runtimes) take a prohibitively long amount of time to run, students might not run
them on enough inputs. We ran a timing analysis on a (non-memoized, exponential)
implementation of the Fibonacci function, and these were our results:

Figure 5.2: Runtimes for inputs to Fibonacci of increasing sizes

The trend-lines are polynomials with degree 1, 2, 3, 4, and 5 that are best fits; a
naive student might be convinced by this graph that Fibonacci is O(n3).

A different function (Timsort) exposes two more possible concerns. First, the linear
and quadratic trend-lines look basically identical which could be very confusing. Second,

67

some functions behave very differently on various ranges of inputs (Timsort is technically
O(n2) on small inputs and expected O(nlg(n)) on larger inputs.) So, the range the
student chooses might be very misleading as well.

Figure 5.3: Runtimes for inputs to Timsort of increasing sizes (zoomed)

5.3 SubfSetØyg

Because this assignment will likely be the first time students will be doing an analysis
of programs, there are some important distinctions to make before even describing the
assignment. The most important one is the distinction between the target language of
the analysis and the programming language they will be writing the analysis in. The
target language is incredibly important, because the pieces of the analysis vary drastically
based on it; the only real requirements of the language the analysis is written in are: (1)
a symbolic algebra library is available, and (2) students are already familiar with it. If
students already know a functional language, we recommend they use that; otherwise,
we recommend Python or Java.

The requirements of the target language are significantly more stringent. It should
look like psuedocode, and the semantics should seem familiar to students. The target
language must not have an unbounded loop construct or co-recursion, because this con-
struct is significantly more difficult to deal with than others. It should have as few types
and built-ins as possible. It is no coincidence that fSetØyg’s design satisfies many of these
constraints; the target language we suggest is effectively a subset of fSetØyg, which we
call SubfSetØyg.

68

5.3.1 Syntax

Here we give a BNF of the SubfSetØyg syntax. We give formal names to each construct,
so that the analysis will be more clear later. On the left is the formal name, in the middle
is the syntax, and on the right is the intended meaning.

Prog P ::= define(X;x;m;P)
X(x) :=

m
P

defines a procedure

e e expression
Cmd m ::= ret(e) return e return

seq(m1;m2)
m1

m2
sequencing, right-associative

" terminal
assn(x; e) x := e sets an assignable’s value

if(b;m1;m2)

if b:
m1

else:
m2

conditional

for(x; 0; e;m)
for x to e:

m
bounded, indexed iteration

Exp e ::= X X function variable
true T truth
false F falsity
eq(e1; e2) e1 = e2 equality
lt(e1; e2) e1 < e2 less than
and(b1; b2) b1 and b2 conjunction
or(b1; b2) b1 or b2 disjunction
not(b) not b negation
x x nat variable
nat[n] n numeral
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 � e2 multiplication
divide(e1; e2) e1=e2 integer division
minus(e1; e2) e1 � e2 subtraction capped at 0
power(e1; e2) e1^e2 exponentiation
call(X; e) X(e) application

69

5.3.2 Semantics

The intended semantics (which we describe in full detail later) should be clear from
context. The assignment should provide students with an interpreter for the language
implementing these semantics; so, students can figure out the semantics from exam-
ples and running code. Additionally, since they are theoretically familiar with fSetØyg
already, they should already have an intuitive understanding of these semantics from
when they used it previously.

5.4 Our Approach

It is best to view this project as multiple parts which should be completed in order. In
this section, we give a brief overview of each piece and what we describe to the students
followed by an in depth discussion of background, formalism, and algorithms.

5.4.1 The Standard Interpreter

Students are given code that implements the standard SubfSetØyg semantics; it
already records the total number of steps to evaluate programs. If they have not
already seen the language, we describe it and give a few example programs. We
walk students through running a few functions and inputs and discuss that we want
to output complexities instead of direct answers. We also describe the format of
the programs we will be analyzing (e.g. function definitions followed by a function
call).

SubfSetØyg Concrete Semantics

We provide the formal semantics of SubfSetØyg, which would be implemented in code
for students, in Appendix A.

5.4.2 Abstract Interpretation and Symbolic Algebra Library

We introduce students to the idea of a symbolic algebra library and explain all the
simple functions (add, mul, div, . . .), as well as canonical, big-oh, etc. functions.
Then, we ask students to replace all the expression steps with symbolic algebra
functions. We make the point that the program they are writing is not computing
a precise value, but trying to approximate it with a symbolic function in terms of
the input, instead.

Abstract Interpretation

Formally, the concept that makes these analyses work is abstract interpretation. We
do not recommend that any of the formalism (or, really even the name) be explained to

70

students, but the general idea is important for them to understand so they can do the
assignment. We give a quick overview of abstract interpretation for completeness.

Abstract Interpretation [Cou05] is a type of static analysis that can give approximate
answers to questions that are often undecidable. One considers a “concrete semantics”
which is an exact answer to the analysis being considered, as well as an “abstract seman-
tics” which approximately answers the analysis by grouping together various answers
that the concrete semantics might give. For instance, below we have a concrete seman-
tics made up of subsets of the natural numbers which is approximated by the lattice
f>; even; odd;?g. The blue arrows represent an “abstraction function” which takes con-
crete values and represents them with an abstract value; the red arrows represent a
“concretezation function” which represents abstract values with the canonical concrete
value that they represent.

N

� � �

f0g

∅

f0; 3; 5; 7; : : : g f0; 2; 4; 6; : : : g

� � � � � �f3g f5g f4g f6g

>

even odd

?

Symbolic Algebra Requirements

In the standard concrete semantics of SubfSetØyg, programs evaluate to numbers, but
the analyses we are interested in work over a lattice of symbolic functions. We are not
particularly interested in the actual symbolic library used, but we specify the syntax
we expect in the next section. Importantly, we assume our symbolic library has the
following functions:

� canonical(f) – returns the canonical representation of of any symbolic function f ;
for example, we would expect

canonical(add(add(const[1]; const[2]); var[n]))) = add(var[n]); const[3])

� big-oh(f) – returns the canonical function for which O(f) = big-oh(f)
� big-omega(f) – returns the canonical function for which
(f) = big-omega(f)
� big-theta(f) – returns the canonical function for which �(f) = big-theta(f)
� equals(f; g) – returns true if the canonical representations of f and g are the same,
false if they can easily be determined to be different, and ? otherwise

71

We also assume expressions in our library use the following syntax:

Exp e ::= const[c] c constant function
infinity infty maps all inputs to 1
var[n] n variable function
add(e1; e2) e1 + e2 addition
mul(e1; e2) e1 � e2 multiplication
div(e1; e2) e1=e2 division
sub(e1; e2) e1 � e2 subtraction
pow(e1; e2) e1^e2 exponentiation
max(e1; e2) max(e1; e2) max
min(e1; e2) min(e1; e2) min
log(e1; e2) log_e1(e2) log
replace(e1; var[n]; e2) [e2=n]e1 replace variable
sum(e1; var[n]; e3) sum e1 from n=0 to e3 summation

iter(e1; e2; var[n1]; e3; var[n2])

(init n1 as e3
for (n2 to e2)f

run e1
g
n1

indexed iteration

recurrence(e1; e2; e3; var[n]) T (n) = e1T (e2(n)) + e3(n) recurrence

5.4.3 Overview of Complexity Analyses

Because this assignment is intended to mesh the mathematics students have learned with
the programming, we deliberately give a math-dense presentation of the analyses to the
students.

For simplicity, we only analyze SubfSetØyg programs of the form

P = define(X1;x1;m1; define(X2;x2;m2; define(� � � ; call(X;x)))

When analyzing such a program P , we say we are analyzing the SubfSetØygfunction
X(x), where x is a symbolic variable.

For each of output and time complexity, we provide students with the concrete
semantics (e.g., the semantics we’re trying to approximate), and the abstract semantics
(e.g., the semantics they will implement). Their job is to change the interpreter to
actually implement these analyses.

5.4.4 Output Complexity

We discuss in more depth what we mean by “output complexity”. We tell students
that we are going to replace the standard number input to the function with a

72

variable that could represent any number. Then, we discuss an example that should
output a logarithmic answer, but instead will (eventually) output O(n). We either
explain or ask why that is still a correct answer. We provide each of the if, for,
and recurrence algorithms. Note that any of the commands can be omitted from
the language if the assignment goals are supposed to be different. In this analysis,
we are interested in approximating the output of a SubfSetØyg function F (x).

Concrete Semantics

Given a SubfSetØyg function F(x), consider the mathematical function f = F. Then, con-
sider the least upper bound in the symbolic functions lattice, U , such that big-oh(U) >
big-oh(X) for all X in the lattice where f(x) 2 O(U). That is, U is the tightest Big-Oh
class in the lattice that is representative of the output of F.

The symbolic function U is the concrete semantics of our analysis. This, however, is
incredibly difficult (or impossible) to compute.

Similarly, we are concerned with a largest lower bound, L for the Big-Omega anal-
ysis. These actually must be considered together for the abstract analysis, because, for
instance,

big-oh(f=g) = big-oh(f)=big-omega(g)

So, we will assume they are computed simultaneously.

Abstract Semantics

Our abstract semantics over-approximates U by modifying the original concrete seman-
tics in various ways. We describe the changes to the concrete semantics of SubfSetØyg
that are necessary to complete this analysis.

First, we consider symbolic functions of the variable x to be values instead of just
functions of constants. All of the values originally in the analysis should be turned
into their analogs in the symbolic function syntax. For instance, the rule that steps
plus(e1; e2) to n, where n = e1 + e2 should instead step it to add(e1; e2), since in this
case e1 and e2 should already be “values” which means they are symbolic functions of x.
Note that division and subtraction must feed through the second value from the lower
bound analysis, because of the reason discussed in the concrete semantics section.

Second, we must approximate each of the individual commands: if statements, for
loops, and recursion. Instead of formally describing the semantics, we provide a high-
level description of the algorithms, because it is more faithful to the description we
provided to the students.

If Statements. Since we are trying to approximate all of the inputs at the same
time, it does not make sense to ask “which branch does the program take?”. We told
students that they could attempt to determine if one branch is always taken as extra
credit, but we did not require they even attempt it. Instead, we simultaneously evaluate
both branches separately and merge the variable assignments. For example, consider
the following code:

73

1 a := 4
2 b := 5
3 if a < b:
4 c := n∗n
5 d := 5
6 else:
7 c := n
8 e := 10

Running the true branch results in fa : 4; b : 5; c : n2; d : 5g, and running the false branch
results in fa : 4; b : 5; c : n; e : 10g. Then, since we are interested in the Big Oh result,
we take the pairwise maximums of the assignments resulting in fa : 4; b : 5; c : n2; d :
5; e : 10g.

Complications arise if either or both branches of the if statement have a return. In
that case, we continue two simultaneous evaluations until both step to a return. In other
words, instead of stepping to a single command, we step to two commands which are
both stepped simultaneously.

For Loops. Our symbolic algebra syntax provides

iter(e1; e2; var[n1]; e3; var[n2])

which represents an indexed iterated function. In particular, it represents the value of
output after code like the following:

1 output := initial_value
2 for i ! UPPERBOUND(: : :):
3 output := LOOPBODY(i, output)

This is easy to add to our symbolic algebra library as a variety of cases; for instance,
if the loop body is output := output * i, then at the end of the loop, output should
be

initial_value
UPPERBOUND(:::)Y

i=0

i = initial_value � UPPERBOUND(: : :)!

Most common cases are as simple as this. So, then, the task becomes turning loop
bodies that rely on multiple input variables into loop bodies that only rely on one. The
algorithm we used was as follows:

� Abstractly interpret the entire loop once; then, the variables mapping contains
symbolic functions in terms of various variables.

� For each of the variable mappings, check if the loop changed them.
� For each variable mapping that changed, determine which variables the computed
symbolic function is in terms of.

� Find any variable that is dependent on at most itself and the iteration variable.
Then, convert all references to this variable to iter symbolic functions, and repeat
the check for dependencies.

� If we ever get stuck updating variables, then set the output of everything to infty
to make sure our analysis is sound.

74

For example,
1 j := 5
2 for i to n: # i not dependent
3 i := j # because resets on iteration
4 j := i+1 # j only dependent on self
5 k := j # k dependent on j

Since j is only dependent on the iteration variable and itself, it is of the form:
1 j := 5
2 for i to n:
3 j := j+1

And we can replace its value with iter(j + 1;n; j; 5; i).

Recursion. A generic recurrence (for a program) takes on the following form:

f(n) =
qX

i=0

ai � f(gi(n)) + c(n)

That is, it is a sum of recursive calls where each recursive call is a function of its
arguments and an additional amount of work that is non-recursive.

Our algorithm handles recursion by constructing the recurrence from the program
and feeding this recurrence to the symbolic algebra analysis using the recurrence con-
structor.

Depending on what one wants to teach the students about, we can ask students to
implement simple summation closed forms and/or closed forms for recurrences (either
by the Master Theorem or directly).

In particular, we found that limiting our attention to programs with recurrences of
this form

f(n) = a � f(g(n)) + c(n)

worked well.
In this representation, g(n) represents some function on n such that n > g(n) for all

n 2 N. a is the number of recursive calls, and c(n) is the amount of non-recursive work
we do.

Recall that the goal is turn the function call into a symbolic function that represents
it. So, whenever we want to step a recursive call, we can accurately step it to some
recurrence(�) (doing every other construct normally). This will yield a correct, but
unsimplified output.

For example, consider the following recursive function:
1 f(x) :=
2 if x > 5:
3 y := 5
4 z := f(x�1) + x
5 return y ∗ f(x�1) + 2 + z
6 else:
7 return 2 ∗ f(x�1) + 2

75

If we are stepping call(f ;x), we would get:

max(5�recurrence(1;x�1; 0;x)+2+recurrence(1;x�1; 0;x)+x; 2�recurrence(1;x�1; 0;x)+2))

The max is the result of our if algorithm; we choose those particular parameters,
because they represent the recursive call (with no extra overhead). Now, what remains
is to “simplify” this expression; so, that it is in a usable format. In other words, we would
like to combine the overhead and various recurrences together. This can be accomplished
with a recursive function that combines by cases on which type of symbolic function it
is given.

In particular, the result for this recurrence should be

recurrence(6;x� 1; 2 + z;x)

, which can be easily analyzed by the symbolic algebra library.

All of the other parts of the interpretation can be done exactly, and we do not need to
change them. It is important to note that all of the changes we made over-approximate
the output; so, our abstract semantics will always be sound.

5.4.5 Time Complexity

We discuss the difference between output complexity and time complexity. We
tell students that our time complexity analysis might use our output analysis, but
that we do not really care about the values of the variables any more; so, they
should create a new copy of the original interpreter and work from there for the
time complexity analysis. We tell students to change the step counter to use the
symbolic algebra function. Then, we describe each of the if, for, and recurrence
algorithms. In this analysis, we are interested in approximating the number of steps
of a SubfSetØyg function F (x).

Concrete Semantics

Consider the 7! relation (defined as the standard semantics) of SubfSetØyg. Every
SubfSetØyg function, F , takes some number, S(F; x), of steps when given the input x
until it is a value. The concrete semantics of this analysis is the analogous to the concrete
semantics for the output analysis, except of S instead of F directly. That is, U is the least
upper bound in the symbolic functions lattice, U , such that big-oh(U) > big-oh(X) for
all X in the lattice where S(F; x) 2 O(U). Similarly, we are concerned with a largest
lower bound, L for the Big-Omega analysis.

Abstract Semantics

Our abstract semantics over-approximates U by modifying the original concrete seman-
tics in various ways. We describe the changes to the concrete semantics of SubfSetØyg
that are necessary to complete this analysis.

76

Just like before, we consider symbolic functions of the variable x to be values instead
of just functions of constants. Unlike before, we do not need to keep track of any of the
variables. Instead we keep track of a symbolic function representing how many steps
we have taken; it should be incremented every time we use a rule. Also just like with
output, we must approximate each of the individual commands.

If Statements. The idea is identical to the output analysis; we continue two analyses
(one for the true branch, one for the false branch) until they both step to a return, and
then we take the maximum of the two step functions.

For Loops. We step through the loop body once, yielding a step count S; then, our
step count is just output_complexity(upper_bound)� S.

Recursion. Here, we can calculate all of the necessary pieces individually by running
through the code a single time. The non-recursive work is just the step count of running
through the function; the number of recursive calls can be counted directly; we should
take the max of all the recursive call arguments.

5.4.6 Closed Forms

If it is a learning outcome, we can ask students to implement closed forms of
summations and/or recurrences. In the version we gave, we asked students to
implement the Master Method, because of the mileage that can be gotten out of it.

5.5 Pedagogical Outcomes of Our Approach

We believe that writing down the algorithms they have been using to compute com-
plexities can be very illuminating. This is particularly true when they realize that the
reason they had to do output complexity first is because they actually use it when they
are computing time complexity.

This assignment definitely satisfies our original goal of giving a “cool” demonstration
of how math can be useful in Computer Science, and while the assignment is somewhat
involved the result feels like a very big accomplishment for what is actually not that much
work (assuming some of the complexities of how the symbolic algebra library works are
hidden).

The analysis does not always work perfectly which provides an opportunity to dis-
cuss (1) why that is, and (2) that Big-Oh is just an upper bound.

The assignment neatly complements limitations of computation, as the language de-
liberately does not have unbounded recursion. Depending on the course, this (and other
phenomena like it) could be completely motivated talking points.

Finally, depending on the level and interests of the students, pieces can be included
or removed very easily which makes for a very customizable set of outcomes and prereq-
uisites.

It should be noted that there are several drawbacks to the assignment. First, it
necessitates introducing interpretation and the idea of “programs about programs”, but
this is necessary anyway when one talks about the halting problem. Second, it requires

77

a minimal understanding of iterated functions, but again, this can be a positive, if the
course discusses functions/induction/etc.

5.6 Case Study in 15-151

The second time we taught 15-151, we used this assignment, and we believe it was a
success overall, but there are some things we would do differently next time.

Many of the problems that arose in our implementation of the assignment were due
to the immature code base, and bad decisions about what should actually be in the
assignment description and starter code. In particular, we gave the students a “shell” of
an interpreter, rather than the concrete interpreter for the language; we believe providing
the entire interpreter would have reduced the overhead in understanding interpretation.
Our organization of code in the object oriented style (which students were largely not
familiar with) also caused confusion, because students were unable to reason about when
or how the analysis was getting called recursively. Finally, the assignment description
wasn’t entirely robust, and we should have been more explicit about implementations of
several of the algorithms.

These issues aside, students seemed to enjoy the assignment. We believe it reinforced
many of the pedagogical outcomes as intended, and it definitely showed students how
the mathematics we were teaching fits in a programming context.

78

Part III

Coping with Consistency, Timeliness,
and Quality of Feedback in Large

Courses

79

Chapter 6

Judgement-based Grading

In this chapter, we discuss grading content in domains with student work that is written
in a fuzzy medium (e.g. a short essay or mathematical proof) that contain very little
subjective content. In particular, our focus has been on the proof domain, but almost
all of the discussion applies equally to short answer questions about literature, science,
and many other domains.

We begin by explicitly providing a high-level model of grading (who are the actors,
what does the output look like). Then, we discuss a variety of criteria that can be used
to determine the quality of grading. We discuss common schemes for grading and pro-
vide an overview of our new grading method “Judgement-based Grading”. Throughout
the discussion of each of these systems, we “grade the grading”–each of the methods
emphasizes a different subset of the quality criteria.

6.1 What is Grading?

We begin by defining some terminology that will be useful throughout our discussion.
� A prompt is a piece of prose that is given to students in an attempt to assess their
understanding of a concept/idea/fact/etc.

� A submission is a student artifact that attempts to respond to a prompt.
� We say a prompt is subjective precisely when multiple reasonable experts in the
domain might generate multiple distinct submissions; that is, if there are multiple
correct responses that cannot be reconciled with each other.

� A submission is fuzzy if it is not relatively simple to programmatically determine its
correctness. So, for instance, a multiple-choice prompt would result in a submission
that is not fuzzy, but an essay prompt would result in a fuzzy submission.

� A score is a result drawn from a very limited pool of possible scores (e.g. a number,
percentage, GPA, letter grade) that is intended to indicate the level of match
between the set of “gold standard” submissions and a particular submission.

� Feedback, as defined by Hattie [HT07] is “information about the content and/or
understanding of the constructions that students have made from the [prompt and

80

submission].” Hattie goes on to describe the three major questions good feedback
must answer (paraphrased):

What are my goals?
What progress am I making?
What do I do next?

6.1.1 Defining Grading

Finally, we can define grading as the combination of two mappings:
� A grader-driven mapping from (prompt, grading agents, submission) to (score,
feedback)

� A student-driven mapping from (score, feedback, student) to (student adjustment,
instructor adjustment)

Or, to put it another way, we consider the adjustments students and instructors make
(which can be evaluated using future summative assessments) to be part of the grading
process ; the moment when graders “release grades” is only part-way through the process.
Because we cannot change the second mapping, our goal in grading must be to make
the first mapping compatible with the second one.

6.1.2 Grading Agents

It is important to understand that the set of “grading agents” is not uniform. We say
a grading agent is trained if they are aware of the instructor’s preferred grading best
practices and domain content—not just one or the other. This definition is deliberately
restrictive; we differentiate trained agents from qualified ones who might not have ever
graded or be aware of how to grade, but understand the domain content enough that
given (hopefully minimal training), they can be trained agents. A typical set of grading
agents contains a combination of the following types of people, of varied quantity and
allocated effort:

� An expert grader (e.g., the instructor, a domain authority) is a respected grader
who, given enough time and effort, would generate the “gold standard” of grading.

� A journeyman grader (e.g., an experienced undergraduate or graduate TA) is a
qualified grader who, given enough time and effort, would generate a reasonable
approximation of the “gold standard” of grading if they were trained.

� A novice grader (e.g., an unexperienced undergraduate TA) is a grader who is
grading or TAing for the first time. With enough resources, they are sometimes
paired with a journeyman or expert grader to review their work. They often make
up the majority of the graders, and are rarely trusted to review submissions without
some guidelines given by a journeyman or expert grader.

� An unqualified grader (e.g., an undergraduate TA used to “fill the last TA spot”)
is a grader who is not competent in the domain content. They are often indis-

81

tinguishable from novice graders at first glance, but they will generate very faulty
output in the grading process.

6.2 Grading. . . Grading

In this section, we attempt to outline various criteria that we believe determine the
quality of the grader-driven grading mapping. These criteria provide a way to compare
and evaluate various implementations of the grading mapping. They span a wide variety
of parts of the grading process. As before, we concern ourselves not only with criteria
that effect the correctness and speed of generation of the feedback and score, but also
how compatible the feedback and score are with student/instructor consumption.

Throughout these criteria, we assume the prompt and grading pool are fixed. We
make no claim that every criterion is equally important, but a grading system that
accounts for strictly more criteria is better. Furthermore, if a grading system ignores
an entire category of criteria, it has a severe deficiency.

6.2.1 Criteria for Scoring

Timeliness. Because scores offer a signal (albeit a poor one) to students about what
they understand and what they do not, it is imperative to provide students with
the scores in a timely manner. Similarly, instructors need averages/medians to
possibly re-target or review material if they differ significantly from expectations.

Correctness. Since scores are usually used to compute student final grades, correctness
is obviously important. It should be noted that edge cases on correctness can often
err on the low side, as long as the grading system allows for students to request
re-grades.

Consistency. Whatever scale/criteria/features are used must be consistent throughout
the grading and over all students. This is particularly important in courses which
use non-standard cutoffs of some kind to generate final grades in the course, but
even in other courses, it is important to promote fairness across grading.

6.2.2 Criteria for Feedback

Timeliness. Feedback, particularly good feedback, offers students a very strong signal
about what they can improve and how to do so; as feedback is delayed, students
become significantly less likely to read and integrate it into future assessments. Fur-
thermore, slow feedback becomes a huge source of resentment toward the graders
(who are often the course staff) and instructor(s). According to Hattie [HT07],
“the effect sizes from delayed feedback were -0.06 for easy items, 0.35 for midrange
items, and 1.17 for difficult items.”

Answers Hattie’s Questions. If the feedback provided to students answers all three
of Hattie’s questions, it is significantly more useful and actionable for students.

82

Tone. Extrinsic rewards and feedback perceived as “controlling” generally have a very
negative effect size. Arguably, no feedback is a better alternative to telling stu-
dents no actionable information in the feedback. Furthermore, if the feedback is
condescending, does not explain why the errors were errors (particularly on stylis-
tic errors), students respond very negatively and will often argue until the end of
the semester, refusing to change.

Personalization and Style. Over the course of our prototype systems, we have tried
multiple styles of feedback. Throughout, we have found that perceived personalization–
that is, that the student believes the feedback was written explicitly for their
submission even if it was not–has a large effect on how important students view
feedback. Consider the following styles of feedback for the same error (for demon-
stration purposes, assume the actual submission uses k, and that x was intended
by the grader to “stand in” for an arbitrary variable):
� The proof misuses the induction predicate in a way that assumes the conclu-
sion.

� Your submission accidentally assumes the conclusion in the IH.
� Your submission assumes P (x)=)P (x+ 1) in the induction hypothesis.
� Your submission assumes P (k)=)P (k+1) in the induction hypothesis.
Then, in your induction step, you proceed to prove P (k)=)P (k + 1); you
probably meant to assume P (k) instead. You actually used that assumption
instead!

There are a number of interesting progressions and features throughout these ex-
amples, and based on our experience talking with students, their improvement, and
how often they reviewed their feedback, we believe they are significant.

(1) “The proof” vs. “Your submission”
“The proof” sounds “robotic” and students view the feedback as more general
and less applicable to their own situation. “Your submission” sounds more
friendly, even though the content is no different.

(2) “Induction Hypothesis” vs. “IH”
Although this is a typical abbreviation, jargon should be avoided as much as
possible in feedback, it makes it harder to understand, which means it is more
likely for a student to stop trying to understand it.

(3) “P(x)” vs. “P(k)”
Despite the clear usage of a “stand in” variable, students are more likely to
believe the feedback is actually an error, rather than their error if it does not
match exactly with their submission.

(4) General vs. Specific
To answer Hattie’s questions, feedback must do more than provide what the
error is. In the last incarnation of the feedback, it goes into more detail,
describing the exact situation that happened in the submission, how to fix it,
and attempting to convince the student that the feedback is not an error. It

83

should be noted that despite all of this, the feedback is still general enough to
apply to a large percentage of submissions!

Location Information. Feedback is often about an attribute of the submission that is
localized to a very particular spot (or multiple spots). If the feedback is not associ-
ated directly with that spot, it can be difficult for students to find it. Furthermore,
even if the location is marked, if the feedback is not visible at exactly that location,
there is still a disconnect.

Feedback is Prioritized. For better or worse, many students are driven by the score
and pay little attention to the feedback itself. A grading system should try to
combat this in any way possible.

6.2.3 Criteria for Grading Pool Compatibility

Many courses use what we call a grading pool (a pool of varied graders) rather than a
single grader. Grading pools become particuarly important in large courses where it is
infeasible to use a single grader. A grading system must take extra considerations into
account if it is to be compatible with varied grading pools.

Supports A Grading Pool. Many courses ask multiple graders to grade in a variety of
fashions. Some common allocations are “one grader to one prompt”, “many graders
to one prompt”, and “one grader to one course section”. Each of these have their
own challenges. “One grader to one prompt” challenges timeliness and correctness,
because each grader is not balanced and checked, and each individual grader must
grade a large number of submissions; however, this style makes consistency rela-
tively easy. “Many graders to one prompt” makes timeliness easier, but consistency
(graders must work together) significantly more difficult; furthermore, because this
style generally requires more graders, the average quality of grading can go down.
Finally, allocating graders over course section instead of prompt causes a signifi-
cant consistency loss, because every section is graded consistently internally, but
over the whole course, each section might be extremely different. Any grading
system intended to be used with a grading pool must consider these concerns.

Minimizes Necessary Training. Because the quality of the agents in the grading pool
is not uniform, any unqualified or novice agents will need training. If a grading
system requires significant training from an expert grader, that can be very costly.

Grows with Scale. If the grading strategy is very resource intensive, this could present
a major problem. An ideal grading system will not treat every grading agent
equally, because they are not! It can be very useful to only ask experts to do
“expert tasks”, journeymen to do “journeymen tasks”, etc.

Minimizes Damage of Known Grading Phenomena. There are a number of known
phenomena when grading that reduce impartiality (e.g. looking at student names,
grading submissions that diverge drastically as “special cases”, and following guide-
lines syntactically rather than semantically). A good grading system will minimize
these concerns.

84

6.2.4 Criteria for Grader Efficiency

Maximizes Speed per Submission. All student submissions are not created equally;
some submissions are particularly difficult to grade and others are very easy. Me-
dian and average speed per submission are reasonable indicators of grader efficiency.

Minimizes Repetitive Work. When graders are forced to repeat the same work (e.g.
writing the same piece of feedback) repeatedly, it (1) decreases quality as they
grade more submissions, and (2) makes graders more hesitant to continue grading.

Maximizes Grading Malleability. Fairly frequently, as grading progresses graders re-
alize they have made errors. In particular, several distinct concerns are
� A mistake was much more frequent/less frequent than expected, and con-
sequently, the grader would like to retroactively change the scoring of that
mistake on all submissions.

� A piece of feedback was poorly worded, or a grader better understood the
mistake a group of students made when reading a different wording of it.
Consequently, the grader would like to clarify the feedback for all of the stu-
dents who made that mistake.

� The grades students received turned out to be far too high or too low, at the
instructor’s discretion; ideally, this would be fixable by finding and fixing the
actual deductions that did or did not happen and why. (Generally, instructors
will just curve the exam instead, which does not actually fix the problem; it
just masks it.)

Uses Technology Appropriately. Some (or all) parts of grading might be better done
by a computer. A reasonable grading system will leverage technology whenever
possible. This is particularly true for repetitive or automatable parts of grading.

Guides Graders through Grading. To minimize required training, the grading pro-
cess should be difficult to do incorrectly ; that is, the grading system should force
graders to avoid making errors as much as possible.

Provides Escalation Opportunity. Occasionally, graders need to “escalate” submis-
sions. This happens in grading pools when novice graders need more help; some-
times, graders want another pair of eyes to verify that their analysis of the submis-
sion is correct. Another (hopefully occasional) reason for escalation is the finding
of a cheating case.

Availability. Ideally, grading should be able to occur anywhere; there are positives and
negatives to “grading parties” (where the entire grading staff grades in the same
room, at the same time), but sometimes graders cannot be present.

6.2.5 Criteria for Instructor Usage

Easily Monitorable. Ideally, an instructor would be able to assess the percentage com-
pletion of grading. This is both for accountability (is one grader not doing his
work?), for planning purposes (announcing to the class when grading will be fin-

85

ished), and for re-allocation purposes (getting help to a grader who was allocated
too much work accidentally).

Easily Summarizable. An instructor should be able to easily understand what mis-
understandings the students have. In particular, an instructor should be able to
modify future lessons to deal with obvious concerns based on assessment perfor-
mance.

6.3 Restricting Domain Content and Prompts

Different types of domain content and prompts require different grading procedures and
systems. In part, this is because the types of criteria that graders should be concerned
with can differ drastically, but more importantly, a grading system that works very well
in one domain might be ill-suited or just worse for another domain. We make two
distinctions that we believe characterize the space well: fuzzy vs. non-fuzzy submissions
and objective vs. non-objective domains.

Because we were primarily concerned with informal proofs, the combination we are
most concerned with throughout the remainder of this chapter is fuzzy and objective. In
this section, however, we briefly overview examples of domains/prompts that fall under
all four quadrants, as well as grading strategies for the three quadrants we will not focus
on.

6.3.1 Fuzzy-Objective

Fuzzy, objective domains/prompts are particularly difficult to automate, because state-
of-the-art natural language processing, while amazing, can miss nuances and subtleties
that are very important to the output of grading. Examples that fit into these quadrants
are actually surprisingly diverse: programming “style”, short answer questions in many
domains (science and literary, to name two), math calculations that request students
“show their work”, grammar correction, and, of course, informal mathematical proofs are
all common and difficult grading problems.

6.3.2 Non-fuzzy-Objective

One of the major reasons we do not focus on this quadrant is that there is nearly always
a better way to grade these items than strategies used in the fuzzy-objective quadrant.
The examples in this quadrant are typical: multiple choice questions, programming
correctness, and formal proofs. These can all be graded with programmatic solutions at
a higher speed and accuracy than would ever be possible for human graders.

6.3.3 Non-objective Prompts

Any non-objective domain is either (1) not intended to scale, or (2) very difficult or
impossible to quantify. A prototypical example of these quadrants is the SAT essay.

86

Another example is creative writing. These quadrants tend to either avoid feedback
entirely, grade on effort, grade on “insight”, or some other amorphous quantity.

6.4 Standard Grading Systems

In this section, we review the types of grading systems typically used in fuzzy-objective
domains. We discuss the criteria they excel at–and those that they fail to deal with.

6.4.1 “It feels like a. . . ” Grading

“It feels like a. . . ” grading is a very poorly defined process in which a score is generated
for the student submission at the whim of the grader. Occasionally, it is supplemented
with “overall” feedback that might give a few points to fix on, but the feedback is rarely
anything specific. Given the lack of emphasis on feedback as an important item at all,
we will not spend a significant amount of effort on this strategy.

6.4.2 Rubric Grading

Rubric grading (not to be confused with “scoring guidelines”, discussed below) is a stan-
dard technique to facilitate grading is a scoring rubric [ML00]. A rubric is defined by

� a set of “dimensions” of grading (grammar, thesis, evidence)
� a set of “levels” indicating how good the work is
� a set of descriptors for each dimension � level
Rubrics have many advantages as compared to “holistically grading” submissions by

assigning them subjective values based on the instructor’s perceived quality of submis-
sion. We review our criteria for grading systems, starting with the positive features and
then reviewing the negative ones. We note up front that there is an explicit tension in
this grading system between training and existing agents in the pool. Unfortunately,
grading agents need to be experts to successfully use this grading system effectively.

Positives

Assuming we have expert graders, correctness and consistency of scores and feedback are
very high with rubrics. Because the system emphasizes feedback over scores, nearly all
of the criteria for feedback are also of very high quality. Because the instructor tends to
grade a large majority of submissions using this system, the instructor usage criteria are
also largely perfect.

Negatives

The criteria that rubric grading fails on are grading pool compatibility and grader ef-
ficiency. Even if the graders try to use technology (e.g. Microsoft Word’s feedback
features), there are not many places for technology to penetrate the procedure. Grading

87

is not at all malleable, the grader is fully in control of the procedure, and grading is very
time consuming. Fundamentally, this grading system is not at all scalable.

6.4.3 Scoring Guidelines

Scoring guidelines are a list of attributes that are written before grading occurs by
an expert grader. These attributes are generally all positive (submissions should do
x; y; z; : : :) or all negative (submissions should not do a; b; c; : : :). This is a very common
strategy for courses with large groups of teaching assistants and AP exam grading. While
this system, overall, is more suitable to fuzzy, objective domains, it still has many
drawbacks.

Positives

This grading system handles the criteria for scoring very well ; it allows journeymen and
novice graders to grade quickly and consistently; for the most part, scores are within an
allowable delta of correct, as well. This form of grading supports nearly every type of
grading pool, as long as the grading guidelines are written before grading is supposed
to begin. Depending on the quality of the feedback provided, graders can be incredibly
efficient with this strategy; if the guidelines are positive ones, a common strategy is
to put check marks next to locations that satisfy the guidelines, allowing grading to
go extremely quickly. Generally, this strategy allows the instructor to choose either
availability or escalation opportunities.

Negatives

Unfortunately, scoring guidelines fail on nearly every feedback criterion. If significant
feedback is provided, it is usually written down–and it is very repetitive to write the same
piece of feedback on every submission with that mistake. Graders are rarely trained to
write down more than “key words” or the guideline itself as feedback, and because they
are in-experienced and going quickly, tone can be very negative and personalization is
lacking. Because scores are sometimes put online (via blackboard or another system)
and feedback usually must be picked up in person, the scores are prioritized over the
feedback, as well. In our opinion, the negatives on the feedback criteria are the most
serious for this grading system.

Scoring guidelines can minimize training, but at the expense of poor feedback and
much damage due to known grading phenomena. Experienced graders can help novices
and journeymen by working with them to explicitly guide them through grading, but this
creates a serious deficit to efficiency. Furthermore, this system is not at all malleable ;
it fails on all possible reasons feedback/scores would need to be changed. To change
anything, all submission that were already graded must be re-graded. Guidelines also
fail to produce useful signals to the instructor for monitoring grading or summarizing it.

88

6.4.4 Machine Grading

Machine grading (usually supported by machine learning) replaces human graders with
an algorithm that determines a score and occasionally outputs feedback. Feedback on
these systems tends to miss nearly all of the criteria, unless the system has been explicitly
designed for the prompt in question. These scoring machines also tend to be completely
opaque, and because they work off of data, they may be within an acceptable range of
correctness for scoring, but instructors will likely not match exactly with their determi-
nation of correctness. It is worthy of note that for non-objective domains or grading that
does not require feedback, machine grading is a significantly more reasonable strategy.

6.5 Our Approach: Judgement-based Grading

We propose a modified version of scoring guidelines called judgement-based grading. We
call a single grading criterion (a correct or incorrect attribute of the submission) a judge-
ment. With judgement-based grading, the judgements are a by-product of the grading
process. And the point values are not even considered until all the submissions have
been reviewed. Graders review submissions by attributing any applicable judgements to
each submission they see, adding new ones as they see fit–this is very similar to grading
with scoring guidelines except it uses our web interface and the grader does not see or
consider point values during this process. The simplest version of the interface, which
we indeed implemented in our first prototype, would provide graders with a list of check
boxes (one for each judgement) to click.

6.5.1 List Judgement-based Grading

Our first implementation of Judgement-based Grading centered around a semi-static list
with check-boxes. The submission appeared on the left, and the grader had a categorized
list of judgements to select from. A grader added a new judgement by clicking below the
list. After reviewing all the submissions, a grader would “allocate” points to judgements,
and the scores would be automatically generated.

The major benefit of this implementation was that it increased grading speed; how-
ever, it did not address many of the important criteria we evaluate grading systems on.
For example, students saw their feedback as a list of judgements next to their proof, and
they could click on an @ to see the location they were attached to. We created a second,
more complete implementation which we discuss below.

6.5.2 Templated Judgement-based Grading

The general idea in the new system is similar to the old one, but it had more features
and a more complicated type of judgements that allow it to be more useful. We begin
by briefly describing the procedure a grader would go through on our newer prototype.

89

Figure 6.1: The judgement list in our original prototype system

Setup Step

In the first step, “Setup”, a grader could partially pre-create the judgements by drawing
on “common pools of judgements” or previous incarnations of the same prompt.

Figure 6.2: A grader choosing to begin with a pre-populated set of judgements

Submission Review Step

Then, the system would provide them with a view of the state of each submission (which
graders have worked on it, when the grading was last edited, etc.), or allow them to start
reviewing a random submission. The “random submissions” were not exactly random;
the system uses several features of submissions to determine how to group and order
them. For instance, it is relatively easy to determine if a submission will be frustrating

90

to grade by its length. If students were allowed to work together to solve problems in
groups, another useful ordering is to put an entire group’s submissions in order. This
allows less cognitive load for the remaining members of the group after the first person.

In the image below, we superimpose three different “states” in the same image. The
top two rows show a partial screenshot of a listing of all the submissions; the middle
shows what a “buzzed” submission looks like (we discuss this later), and the bottom
filters to only show ungraded submissions.

Figure 6.3: A grader reviewing the states of submissions

Upon choosing a submission, the grader is provided with two menus (“Judgements”
and “Submissions”) that allow them to mark up a particular submission. When using
List Judgement-based grading, the judgements are chosen and locations are attached
to the judgements; the newer system asks the grader to choose locations (or location
agnostic “comments”), and judgements can be applied on top of those locations. The
Judgements menu allows graders to create and modify locations; the submission menu
allows graders to change the state of the submission.

We bring special attention to two features: stashing and buzzing. Stashing is the
equivalent of “putting the submission on the bottom of the pile”; it keeps the grader in
the state of grading the submission, but when asked, the system will provide any other
submission first. Buzzing asks the grader to write a short message and choose another
grader; then it sends an email to the other grader with the message and a link to the
submission.

Judgement Attribution: Choosing a Judgement

Once the grader chooses a location with an attribute worth commenting, she moves on
to choosing or creating a judgement to match her comment.

91

Figure 6.4: A grader in the middle of grading a submission

In List Judgement-based Grading, judgements are a string of text describing the
error and/or feedback. Our newer system has a slightly more complicated model. A
judgement is made up of a “judgement schema” and a set of “explanations”; each schema
and explanation is a “templated sentence”. Intuitively, the schema is intended to briefly
give an overview of the mistake or attribute being commented on, and explanations are
sometimes associated with that schema. In other words, because a particular mistake
can present in different ways (with possible different solutions or analogies useful in each
situation), the explanations are intended to drill down to the correct instance.

A templated sentence is a string of text that might have tags and templates in it.
Tags are hash tags–just like on Twitter! They are used for categorization of judgements;
tags with a double hash at the beginning do not show up in the sentence. A template is
a variable or phrase that is a stand-in for a real variable or instance in a submission; the
template can be instantiated differently at every location it occurs, or it can retain the
original template, instead.

A student reviewing their feedback can click on a location and see the context and the
selection; the schema shows up without templates or tags in bold, and the explanations
show up as a paragraph.

Judgement Attribution: Customizing the Judgement

When a grader is trying to find a judgement, she may filter by one or many tags. Once
she has found the judgement she is looking for, she pins it.

Then, she can choose explanations or add new ones, and instantiate templates. If the
same template appears in multiple templated sentences in the same judgement (e.g. mul-
tiple explanations or an explanation and the schema) or multiple times in one templated
sentence, instantiating it once replaces it in all instances.

92

Figure 6.5: Top: A grader choosing a judgement; Bottom: A student reviewing feedback
on a submission

Figure 6.6: A grader searching through judgements

Judgement Review

In all instances, the grader cannot give feedback without using an explanation or judge-
ment. During Judgement Review, a list of judgements, their explanations, and their
frequencies is provided and they can be edited, re-assigned, etc. The next step in grad-
ing is point allocation–the first time in the whole procedure where the graders think
about point values.

93

Figure 6.7: A grader choosing the best fitting explanation (or adding a new one)

Figure 6.8: A grader filling in a template for a particular student

Point Allocation

Point allocation is the process during which judgements turn into a rubric. For each
judgement, the grader chooses four options: (1) how important is the judgement, (2)
how should the judgement affect the score, (3) how much should the judgement affect
the score by, and (4) in what way should the judgement be applied.

When students see their feedback, they get a score for the problem, but they do not
ever see the numerical value the judgement changed their score by; instead they see
“This judgement is <very important>.”, or an equivalent.

94

Figure 6.9: A grader allocating points to judgements

“Minus” and “Plus” affect the score the same way standard additive and subtractive
grading guidelines do; “Min” and “Max” indicate that any submission receiving that
judgement should receive a minimum or maximum of that many points; “Extra Credit”
is applied on top of the calculated score.

The “Per” judgements indicate how many times the judgement should be applied.
For instance, at the beginning of the term, an instructor might not want to penalize for
a particular judgement because they want to treat it as a formative experience; in such
a case, the “Per” option would be never. Alternatively, a student who makes the same
stylistic mistake all throughout a multi-part problem should probably not be penalized
every time it is made; in such a case, “Per Problem” would make it only affect the score
once.

6.6 Evaluating Judgement-based Grading

Finally, we evaluate our system on our own criteria.
The system ensures that scoring is identical throughout by calculating submission

scores via a deterministic algorithm. The correctness of scoring is at least as good as
with scoring guidelines, because ultimately, an expert will likely to the point allocation.
Arguably, the (positive) difference provided by our system is that the point allocation
occurs after the submission review; so, the allocator is significantly more informed about
student understanding.

For a similar reason, our system is reasonably good at supporting a grading pool.
Submissions can be sliced in any way, and there is no dependency on paper to limit
timing. Because the system guides graders through the phases of grading, training is as
minimal as possible. The system is very good at allocating types of graders to tasks; it
is backed by a permissions model in which the instructor(s) can limit which graders can
complete each phase; in particular, instructors can request k trusted graders to complete
judgement reviews. The system, at no time, shows graders any names, does not allow a
grader to edit a score as a “special case”, and the templates make it clear when a part
of the judgement is semantic instead of syntactic; so, we argue that Judgement-based
grading does a good job of minimizing damage from known grading phenomena.

Judgement-based grading tries to get as much grader efficiency as possible. Instead

95

of writing every piece of feedback many times, the system is a write-once-use-forever
system; as a result, grading malleability is obviously handled well. Graders have mul-
tiple points at which they can easily change entire sections of the grading everywhere.
Judgement-based grading attempts to use technology to handle any repetitive or error-
prone parts of the grading process (e.g. writing judgements, finding judgements, adding
up scores). If the system fails to guide a grader correctly, and a bad judgement is created,
it should be discovered in review or by a fellow grader. “Buzzing” is an explicit answer
to allow asynchronous escalation, and the lack of paper and easy communication makes
the grading very available.

Judgement-based grading provides the instructor with an easily monitorable view of
what grading is done and who is responsible for what is left. Additionally, it summarizes
the most common judgements, score distribution (and how it changes as point alloca-
tion changes), and we believe the system can be easily extended to display any other
summaries that might be useful.

Our system attempts to require good feedback in several ways. The two-tier feed-
back is an attempt to get graders to provide actionable items (in the explanations) and
answer Hattie’s questions. Graders have no medium for providing extrinsic rewards, and
judgements worded in a “controlling tone” can be edited by the judgement reviewer. We
believe personalization is where our system really shines. Because templates and ex-
planations allow multiple levels of reuse, the comments–although very general, and not
particularly customized–make students feel like they were written explicitly for them.
Throughout using our second prototype system, many students were not even aware
how much re-use there was in the feedback they received. The system forces locations
to be chosen before the judgements, and the judgements are displayed in-line. Finally,
by never showing the students the actual effects of the individual judgements on their
score, they are forced to try to understand the feedback itself rather than try to “get
back three points”.

In addition to fitting the majority of our criteria, judgement-based grading allows us
to expose only parts of the judgement attribution step to the students for peer evaluation
which we discuss in 7.

There are some potential concerns with Judgement-based grading as a grading system.
First, because there is a new application for both the instructor and the graders to learn,
which increases training costs and requirements. Second, because all grading is done
on the computer, it is easier to get distracted by the Internet or a game; this concern
sounds trivial, but it is surprisingly damaging, because of how distasteful grading can be
to complete. Finally, and most crucially, because the system require that every concern
be explained before point values are effected, it is possible that grading time is increased;
in our experience, the decrease in grading time due to lack of repetition far outweighs it.

96

Chapter 7

Verifications

Student learning relies very heavily on timely and reliable feedback in introductory proof
courses, because students have a limited number of chances to improve their content
understanding and writing style. The current method we use to provide this feedback–
having a teaching assistant or instructor grade all the assignments manually–is funda-
mentally unscalable. Since this method of providing feedback is already problematic for
large classes (with enrollments of more than 100 students), there is no hope of scaling it
a MOOC (Massively Open Online Course) with 10,000 or more students.

Furthermore, writing proofs intimidates students, because it requires them to not
only understand content but to also write in a clear, deliberate, and precise way. As a
result, students often have tremendous difficulty with the first course(s) that requires
them to write proofs.

We aim to alleviate both of these problems by introducing a peer evaluation system
which helps students learn and also helps teaching assistants and graders to grade more
quickly and accurately. We approach this problem as one of human computation, where
we break up the task into small pieces that non-experts (the students) are capable of
doing.

Our approach attempts to simultaneously give students more opportunities to learn
and give graders some assistance. In order to help the students learn more deeply, we
ask them to do peer evaluations of several proofs on most homework assignments. We
aggregate and combine these peer evaluations together to help the grader provide fair
assessment and detailed feedback while expending less effort and time than normal.

Though peer evaluation systems are fairly common, grading proofs presents a novel
challenge, because they are simultaneously fuzzy and objective. Because mistakes in
the proof-domain are almost entirely objective in nature, it is possible to disassociate
the scoring of submissions from the attributing of mistakes to submissions. Another
challenge is that even individual errors in proofs can be complex and difficult to describe
and understand.

So, our system must guide non-experts (or unqualified graders, in the terminology
from Chapter 6) through the evaluation of the proofs if graders are to get any useful
information from it. We approach the problem as one of human computation, in which
the understanding of non-experts is collected and combined to produce a correct and

97

useful solution.
Our system has the potential to increase student learning in several unique ways

because of our approach. Typically, proofs courses include some form of proof review,
but these questions tend to be infrequent and contrived. By asking students to regularly
do proof evaluations, we hone their proof review skill on examples that are often close
to the proofs they might write [Bal12]. Training the students to be good proof reviewers
is often a meta-goal of introductory proofs courses.

When using our system to evaluate proofs, students must examine and select from a
list of possible mistakes. We believe that by studying this list, they will better understand
the mistakes they could make themselves. This understanding can also generalize to the
mistakes they might make on future problems.

Finally, by giving students more examples of proofs to evaluate, we give them more
opportunities to see proofs throughout the course. By reviewing several submissions for
the same question, students get a chance to try to understand several different approaches
beyond the one they used. This can help students learn more tricks and patterns relevant
to each proof topic. In a similar vein, by showing students proofs written by several
authors, we give them the experience of being the audience for whom they are writing.
This can help them adopt good stylistic features which they see and stop using styles
that make the proof harder to read.

We have implemented a prototype of our system and begun testing it in several math
and computer science courses at Carnegie Mellon University. Through the prototype,
we have seen that the student reviews very often provide the grader the entire list of
mistakes necessary to grade the proof. Additionally, we ran a small-scale controlled
experiment to test if using our approach resulted in students improving their skills at
reviewing and/or writing proofs in comparison to just solving more proof questions. We
found that our approach does not increase students’ reviewing skill but does increase
their problem solving/writing skill.

7.1 Related Work

There is a significant body of related work on theorem provers and peer review, but this
work tends to explore different types of proofs or topic domains.

7.1.1 Theorem Provers

There are several existing environments that facilitate writing formal ([SS94]) and machine-
checkable (coq, agda) proofs, and systems such as Sieg’s ProofTutor have been success-
fully used in formal logic courses. One possible solution to our research problem might
be to use one of these well-established systems in the classroom. Unfortunately, writing
detailed axiomatic proofs is tedious and does not transfer well to writing human-readable
proofs.

98

7.1.2 Peer Grading of Essays

Prior peer review systems have been developed in other domains. PeerScholar [PJ08]
has explored some related problems, but their results are all in the domain of scientific
essays in which students are graded on holistic content and grammatical features of their
writing. Our domain of proof differs from the essay domain that PeerScholar targets
because of their large objective component. There are only a limited number of mistakes
students make for any particular proof topic. In comparison, there are infinitely many
grammatical mistakes that students can make, and because of all the irregularities in
natural language, naturally occurring examples that can help other students fix their
mistakes are rare.

7.1.3 Peer Grading of Code

Other work [Tan11, Con11] has been done to analyze peer grading of code style. Al-
though code style review is much closer to proof review, it still has several important
differences. Most of the style features which peer reviewers attempt to find can be easily
described and tend to be the same or very similar over all programs. Conversely, the
errors which students make in proofs are often specialized to topic (and a few are even
further specialized to problem-specific).

Furthermore, grading coding style does not require domain-expertise. The features
typically assessed (“the code has mixed tabs and spaces”) are low-level, and reviewers do
not need to understand the code to evaluate if they apply or not. In contrast, proofs
can be arbitrarily complicated, there can be multiple solutions to a single problem, and
there is more than one correct way to describe results.

7.2 Our Approach

Our approach uses peer grading as a form of human computation. Intuitively, although
the students in the course are only just learning how to write proofs, we scaffold the peer
grading in such a way that they can contribute useful work and learn as well.

We leverage the fact that Judgement-based Grading (Chapter 6) is already friendly
to unqualified graders by augmenting it with an explicit division of labor between qual-
ified graders and the students, and a process that is even more guided for students. In
particular, to help students review proofs, the system provides them with a list of judge-
ments (correct or incorrect attributes of a submission) entered by a qualified grader in
the grading pool prior to the peer reviewing. To determine what the judgements should
be, the qualified grader reviews ten student submissions, grading them normally. In our
experience, the generated list contains nearly all of the errors a student could make–and
it is easily augmented later if students discover missing judgements. We have found over
the course of using our prototype system that the average number of distinct errors for
any given question is approximately 25. This means that in most cases, the number

99

of judgements which students must understand to helpfully evaluate proofs is relatively
small.

We decompose the problem of reviewing proofs mainly by separating point allocation
and mistake attribution (Judgement-based Grading). To accommodate this, our ap-
proach uses a modified form of rubric grading that can be used to facilitate both normal
grading and our version of peer evaluation.

We call the process of reviewing a single proof a verification. Adding student verifi-
cation to an assignment necessitates several changes to the normal homework assignment
process.

When using verifications, students submit their homework using our website. If at
all possible, students typeset their homework using a system like LATEX, but we deployed
a system to scan in student submissions in batch form to remove this restriction last
semester. When the deadline for the homework occurs, the graders for the verified
questions grade 10-15 submissions to populate the judgements. In practice, this small
number of submissions generates the majority of judgements the question will need. If
the question was used previously or there is another source of judgements, they are used
either in addition to or in place of this step. When this step is finished, the course staff
releases the verification assignment to the students.

Students are given a quota of verifications to complete. In general, they receive no
more than two different questions with between three and four verifications for each.
Once the verification due date arrives, a grader for a verification problem gets aggregate
information from all the students who looked at each proof. Our interface collates this
information for them to make it more useful. In practice, all of this extra contextual
information speeds up the grading process significantly. Our system automatically pro-
vides feedback to the students about the accuracy of their grading. If the grader would
like to change the grades the students receive for their accuracy, the interface provides a
way to do this.

7.3 Research Questions

We are interested in the educational effects of introducing our peer evaluation system
into introductory proofs classes. In particular, the research questions we would like to
answer are:

� Does using verifications reduce the amount of effort and time graders spend on the
proofs?

� Will reviewing other students’ proofs (both correct and incorrect) [ZZ11, TMM+09,
GR07] help students learn how to write proofs more quickly and correctly?

� Is the ability to review proofs correlated to skill at writing them?
� Can reviewing other students’ proofs give some benefits which just writing proofs
alone cannot?

100

7.4 Preliminary Results

7.4.1 Grading Effort

We have deployed our system in several courses at Carnegie Mellon as case studies, but,
here, we present the results from the most recent course, Mathematical Foundations for
Computer Scientists (15-151). Based on several of the questions students were asked
to verify in 15-151, we found that asking students to complete between three and five
verifications provided graders with a superset of the actual judgement set 83% of the time.
This means that a grader almost always only has to look at around 10 judgements instead
more than 20. In practice, almost all of the teaching assistants who used verifications
told us that they preferred to grade a question where students had done verifications to
grading a normal question and that it was significantly faster.

7.4.2 Student Ability

To determine if verifications effect students’ ability to write proofs or do verifications,
we ran a controlled experiment.

Participants

Twenty-seven undergraduate students ages 18-24 years old participated in this study. All
students were currently enrolled in an introductory discrete mathematics course and had
not completed any verifications previously. Participants were given $40 as compensation
for their involvement.

Procedure

This study was approved by the institutional review board at Carnegie Mellon University.
All participants gave informed consent. Before they began they were randomly put in
the control group (“do more proofs”) or the experimental group (“do more verifications”).

The main procedure of the experiment was as follows:

(1) All participants completed a pre-test in which they reviewed one Mathematical In-
duction proof and answered one proof-based induction question. Participants were
given 20 minutes to complete this pre-test.

(2) Control Group. Participants were given 30 minutes to solve proof-based induction
questions. We prepared three questions which was more than any participant
finished.

Experimental Group. Participants were given 30 minutes to review as many proofs
as possible. We prepared seven proofs to be reviewed which was more than any
participant finished.

101

Both Groups. In addition to the proofs to review or questions to solve, both groups
were given a reference solution to the induction proof they solved on the pre-
test.

(3) All participants were given a 10 minute break while the experiment proctor (who
was a qualified instructor or teaching assistant of an introductory proofs course)
graded (1) the question participants solved on the pre-test and (2) the practice the
participant did.

(4) All participants were given 5 minutes to review the graded proofs and reviews.
(5) All participants completed a post-test in which they reviewed one Mathematical

Induction proof and answered one proof-based induction question. Participants were
given 20 minutes for to complete this post-test.

Materials

We generated all study materials from questions given in previous instances of Carnegie
Mellon introductory proofs courses. Before running the study, we asked several prior
teaching assistants to do each of the questions to review ambiguities and help us generate
time periods.

The list of judgements for induction proofs was generated by teaching assistants using
our verification system in previous semesters. The list used to grade student proofs was
identical to the one used in the pre-test and post-test in the verification.

The pre-test and post-test can be found in Appendix B.

Results

We aimed to measure two distinct outcomes: (1) accuracy of verifying, and (2) correct-
ness of induction hypotheses. For both outcomes, we measured individual (post-test) -
(pre-test) scores.

To measure accuracy of verifying, we computed a “verification score” for each sub-
ject for both their pre-test and post-test by counting the number of false positives and
false negatives. We found no statistical difference between the experimental and control
groups in their verification difference score.

To measure improvement on induction hypothesis details, we computed an “IH cor-
rectness score” for each subject for both their pre-test and post-test by counting the
number of false positives and false negatives only including items that were about
correctness of the induction hypothesis. Table 1 shows the means and standard de-
viations for both control and experimental groups for the difference in post-test and
pre-test IH correctness scores. Note that these scores represent “how many fewer IH mis-
takes” a subject made; so, higher is better. We found there was a statistical difference
(d = 0:39; p < 0:029) between the control and experimental groups. We removed two
participants (one from the control group and one from the experimental group) from this
analysis, because they used a non-strong induction hypothesis in their post-test.

102

Intervention M SD

Proofs (control) 1.0 2.0
Verifications (experimental) 2.0 3.0

Table 7.1: Mean and Standard Deviation for IH correctness difference for control and
experimental groups

Discussion

We discuss this more in future work, but a likely reason students do not improve on
verification accuracy is that their attention was split between a long list of judgements
and a long proof. This results in students being unable to apply what they know even if
they understand the incorrect points.

The significant effect on student performance suggests that verifications do a better
job at helping students to formulate their induction hypotheses than solving more proofs
questions does. We believe this result is related to the “worked examples” phenomenon
that has been heavily studied in several content areas, and adds to the literature on
faulty worked examples [TMM+09].

7.5 Future Work

We created the current version of our system as a prototype to evaluate if our approach
was feasible. Our initial results have been positive, and we have already begun the
next step of creating a more complete system with additional features we have found
necessary.

Our results thus far indicate that asking students to review a several page proof and
select judgements from a pool of 20-30 overwhelms them and detracts from the effect
verifications could have. As an attempt to fix this problem, we are deploying a new,
more decomposed version of our verifications this fall. We split the reviewing of each
individual submission into three stages completed by multiple people. In addition to our
previous decomposition, we split up errors into their locations and descriptions.

The first stage of our new system is called Location Finding. In this task, a student
reviews a single proof and selects sections of text where he or she believes the submitter
made an error and provides a sentence explaining the error in their own words. Addi-
tionally, the student can describe “global” errors in the proof that do not occur in a single
location. Students are encouraged to select any location they believe might represent an
error so as to get a superset of the errors of the proof. Since multiple students find the
location errors for each proof, the locations with true errors are likely to be chosen many
times.

The second stage is called Judgement Matching. In this task, a student reviews a
series of locations (which were found by somebody else in the first stage) where the
submitter likely made an error and he or she either claims there is no error or matches
it to one of the pre-populated judgements. This task helps standardize the feedback so

103

the grader can actually use it. Additionally, it forces students to think about what the
judgements actually mean.

The third stage is called Judgement Refinement. In this task, a student receives
several pairs of locations and judgements (generated by stages one and two) and provides
an alternate wording of the judgement.

We have found that many of the possible benefits of verifications only manifest them-
selves far in the future. This makes it difficult to motivate verifications for students.
Along with deploying the new decomposition, in the next version of verifications, we will
ask the students to do a review of their own proof after they review others. Further-
more, they will receive back some percentage of the points they lost for finding their own
errors. We believe this will be enough of an incentive to get the students to try hard on
their verifications.

Once the base system consistently works well, there are many enhancements to refine
it. Ideally, we would not need the grader to aggregate the feedback from the students;
perhaps, with a large enough data set, we can use machine learning to aggregate the
feedback automatically. The verification experience would be enhanced if we used a
better distribution method that matched tasks to students based on accuracy and/or
the perceived learning benefit they might get out of it. Another helpful improvement
might be to tell students who are doing verifications which judgements are likely to apply
to the proof. We might be able to accomplish this, again, using machine learning.

Verifications are intended to help deal with scale in grading. A clear application of
this technology is to MOOCs where the student-to-teacher ratio is absurdly high. A
reasonably accurate version of our system could provide in depth feedback to students
at little cost to instructors.

Finally, we hope to generalize our technique to other domains that are not proof-
based. In theory, many of the same pieces would work in any domain with objective
truths in the submissions. We hope to eventually explore other domains like code and
essays and see if our approach adds anything to the existing techniques in those domains.

104

Part IV

Conclusion

105

Chapter 8

Conclusion

Designing, teaching, and grading an introductory mathematical foundations for computer
science course is a tall order. Existing implementations vary drastically and have a wide
variety of success. We designed “Mathematical Foundations for Computer Science”, a new
course in Carnegie Mellon’s School of Computer Science intended to try new pedagogical
strategies and focus on mathematics as a tool for computer science students–who are often
hostile to it. We taught this course twice, tweaking our strategies somewhat the second
time. We believe parts of the construction and implementation of this course could be
useful to instructors interested in creating a similar course sequence elsewhere.

At the beginning of this thesis, we claimed that any introductory mathematical foun-
dations for computer science course should solve several difficult problems. This thesis
provides information and strategies necessary to attack all avenues of these problems.

References for Math for CS Courses Designers

When designing a course, the references we provide in Chapter 2 of domain clusters,
student attitudes and preconceptions, meta-content, and sample course sequences at a
variety of universities should help instructors cover all essential topics without over-
whelming students, and address all important “meta issues” (with respect to student
attitudes and prior knowledge). We discuss a variety of interesting, motivational appli-
cations, and a novel assignment (Chapter 5) in great depth.

Novel Pedagogy and Systems for Math for CS Courses

When teaching these courses, we aim for deep learning, and we attempt to set up a
foundation for later courses. We discussed some interesting pedagogy we used in our
implementation, and possible fixes and extensions thereof. The novel programming lan-
guage, fSetØyg, we developed to help students learn the “language of mathematics” and
the semantics of set theory and logic, leveraging their existing comfort with program-
ming, contributes to deep learning as well. fSetØyg also provides an environment to
allow students multiple attempts at assessments on these topics–converting them from
summative to formative.

106

Judgement-based Grading provides a grading system and implementation that forces
better quality and useful feedback while decreasing effort and time necessary to provide
them. Additionally, we believe the structure and quality of the feedback makes students
more likely to take advantage of it and use it to learn. Finally, verifications help students
get better at writing proofs, as well as getting them more involved in the grading process.

Future Work

The solutions we’ve developed are varied and diverse, and many of them need work
to be usable at a larger scale. However, while not completely mature, we believe our
solutions can be extended and modified to solve the fundamental problems in teaching
an introductory mathematics for computer science course.

107

Appendices

108

Appendix A

Formal SubfSetØyg Semantics

A.1 Static Semantics

We omit the static semantics of SubfSetØyg, but they consist primarily of the judgement
type: “m well-formed”, which checks that every path of every command ends in a ret.

A.2 Dynamic Semantics

Program states in SubfSetØyg must keep track of the following:
(1) The set of defined function identifiers and their current values
(2) The set of defined value identifiers and their current values
(3) A “call stack” of executing functions

Let FunIde be the set of valid function identifiers in SubfSetØyg, and VarIde be the
set of valid nat and bool identifiers in SubfSetØyg. Formally, we define these concepts
inductively, as follows.

ProgramState P ::= (F;K)

CallStack K ::= ∅ j (V;K)

VarMapping V ::= VarIde*fin N
FunMapping F ::= FunIde*fin (Cmd�VarIde)

To define the dynamic semantics of SubfSetØyg, we inductively define the following
judgements:

e val \e is a value00

F;K : e 7! e0 \e steps to e0"
F : m j K 7! m0 j K 0 \m steps to m0; updating K to K 0"

P j F;K 7! P 0 j F 0;K 0 \P steps to P 0; updating F to F 0 and K to K 0"

109

A.2.1 Stepping of Expressions

Primitives are already values, and variables step to their current value:

T val F val nat[n] val
V (x) = n

F; (V;K) : x 7! n

To evaluate equality (and less than), first evaluate the left operand, then the second,
then compare them:

F;K : e1 7! e01
F;K : eq(e1; e2) 7! eq(e01; e2)

b1 val F;K : e2 7! e02
F;K : eq(b1; e2) 7! eq(e1; e02)

b1 val b2 val
F;K : eq(b1; b2) 7! b1 = b2

We omit lt, as it is nearly identical to eq. To evaluate conjunction (and disjunction),
short circuit if possible, or evaluate if necessary:

F;K : b1 7! b01
F;K : and(b1; b2) 7! and(b01; b2)

b1 val b1 = F
F;K : and(b1; b2) 7! F

b1 val b1 = T b2 o S1 7�! b02 o S2

F;K : and(b1; b2) 7! and(b1; b02)
b1 val b2 val

F;K : and(b1; b2) 7! b2

We omit or, as it is very similar to and. Negation is similarly simple:

F;K : b 7! b0

F;K : not(b) 7! not(b0)
b val

F;K : not(b) 7! :b

To evaluate addition, we evaluate the first argument, then the second argument, then
add them:

F;K : e1 7! e01
F;K : plus(e1; e2) 7! plus(e01; e2)

e1 val F;K : e2 7! e02
F;K : plus(e1; e2) 7! plus(e1; e02)

e1 val e2 val e1 + e2 = n

F;K : plus(e1; e2) 7! n

We omit times, divide, minus, and power as they are nearly identical to plus.

A.2.2 Stepping of Commands

Sequencing of commands is stepped from left to right. We step the left command until
it is a terminal. Then, if it is a ret, we are done; otherwise, we step the right command

110

until it is a terminal.
F : m1 j K 7! m0

1 j K
0

F : seq(m1;m2) j K 7! seq(m0

1;m2) j K
0

F : m2 j K 7! m0

2 j K
0

F : seq(";m2) j K 7! seq(";m0

2) j K
0

F : seq(ret(e);m2) j K 7! ret(e) j K 0 F : seq("; ret(e)) j K 7! ret(e) j K 0

To step assignment, we first evaluate the expression to be assigned, and then replace
the value of the assignable with it.

F;K : e 7! e0

F : assn(x; e) j K 7! assn(x; e0) j K

e val
F : assn(x; e) j (V;K) 7! " j (V n f(x;_)g [f(x; e)g;K)

To step a conditional, we evaluate the condition, and step to the corresponding com-
mand.

F;K : b 7! b0

F : if(b;m1;m2) j K 7! if(b0;m1;m2) j K

b val b = T
F : if(b;m1;m2) j K 7! m1 j K

b val b = F
F : if(b;m1;m2) j K 7! m2 j K

To step a for loop, we evaluate the upper bound, set the iterator to 0 in the state,
and repeatedly sequence the body of the for loop until the iterator hits the upper bound.

F;K : e 7! e0

F : for(x;n; e;m) j K 7! for(x;n; e0;m) j K

e val
F : for(x; 0; e;m) j (V;K) 7! for(x; 1; e;m) j ((V n f(x;_)g [f(x; 0)g;K)

e val i < e

F : for(x; 0; e;m) j (V;K) 7! for(x; 1; e;m) j (V n f(x;_)g [f(x; i+ 1)g;K)

e val i = e

F : for(x; i; e;m) j K 7! " j K

A.2.3 Stepping of Programs

Defining a function adds the necessary information to the state and steps to the remaining
program.

(X; (_;_)) 62 F

define(X;x;m;P) j F;K 7! P j F [f(X; (m;x))g;K

111

To evaluate a function call, we first fully evaluate the argument, then we get the
command from our state, add a frame to the call stack, and evaluate to the command
stored for that function.

(X; (_;_)) 2 F F;K : e 7! e0

F;K : call(X; e) 7! call(X; e0)

(X; (m;x)) 2 F e val
call(X; e) j F;K 7! eval(X;m) j F; (X; f(x; eg);K)

F : m j K 7! m0 j K 0

eval(X;m) j F;K 7! eval(X;m) j F;K 0

Finally, we must consider ret. We only step ret when we are completely done
evaluating a function. If this is the case, we pop the top element of the call-stack when
we return.

F;K : e 7! e0

F : ret(e) j K 7! ret(e0) j K
e val

eval(ret(e)) j F; ((X;V);K) 7! e j F;K

112

Appendix B

Verification Study: Pre-test and
Post-test

113

P
ar
t
I:

R
ev

ie
w
in
g
M
a
th
em

a
ti
ca

l
P
ro
o
fs

In
th

is
pa

rt
,

yo
u

w
ill

re
vi

ew
a

pr
o

of
.

A
ss

es
s

th
e

pr
o

of
by

fi
rs

t
re

vi
ew

in
g

th
e

ba
se

ca
se

(s
)

an
d

re
vi

ew
in

g
an

y
op

ti
on

s
re

la
te

d
to

th
em

.
O

nc
e

yo
u’

ve
do

ne
th

e
ba

se
ca

se
s,

m
ov

e
on

th
e

in
du

ct
io

n
hy

p
ot

he
si

s,
an

d
th

en
fi

na
lly

m
ov

e
on

to
th

e
in

du
ct

io
n

st
ep

.
A

s
yo

u
se

le
ct

th
in

gs
w

ro
ng

w
it

h
th

e
pr

o
of

,
yo

u
sh

ou
ld

as
su

m
e

th
at

al
le

rr
or

s
yo

u’
ve

se
le

ct
ed

ju
dg

em
en

ts
fo

r
ar

e
co
rr
ec
te
d

fo
r

th
e

re
m

ai
nd

er
of

th
e

pr
o

of
.

1
.
In
d
u
ct
io
n

C
on

si
de

r
th

e
fo

llo
w

in
g

pr
ob

le
m

:

P
ro

ve
∃(
c
>

0)
.
∃(
n
0
≥

0)
.
∀(
n
≥

n
0
).
A
(n
)
≤

c2
n

,
w

he
re

A
(n
)

is
de

fi
ne

d
as

fo
llo

w
s:

A
(0
)
=

0

A
(1
)
=

0

A
(n
)
=

1
+
A
(n
−
1)

+
A
(n
−
2)

fo
r
n
≥

2

C
on

si
de

r
th

e
fo

llo
w

in
g

pr
o

of
:

L
et

f
(n
)
=

A
(n
).

W
e

w
an

t
to

pr
ov

e
∃(
c
>

0)
∃(
n
0
≥

0)
.
∀(
n
≥

n
0
).
f
(n
)
≤

c2
n

.
L

et
c
=

1,
n
0
=

2.
W

e
go

by
in

du
ct

io
n

on
n

.

B
a
se

C
a
se

(n
=

2)
.

f
(2
)
=

1
b

ec
au

se
f
(0
)
=

0
=

f
(1
)

22
=

4

f
(2
)
≤

22

In
d
u
ct
io
n
H
yp

o
th
es
is
.

S
up

p
os

e
f
(k
)
≤

2k
is

tr
ue

fo
r

so
m

e
k
∈
N

,
k
≥

n
0
,
k
≤

n
−
1.

In
d
u
ct
io
n
S
te
p
.

N
ot

e
th

at
f
(n
)
=

1
+

f
(n
−

1)
+

f
(n
−

2)
,

by
ou

r
re

cu
rr

en
ce

.
S

o,
f
(n
)
≤

1
+
2n

−
1
+
2n

−
2

by
th

e
IH

.
W

e
se

e
th

at
2n

=
2n

−
2
+
2n

−
2
+
2n

−
1

by
al

ge
br

a.
S

in
ce

1
≤

2n
−
2
,
f
(n
)
≤

2n
.

S
o,
∃(
c
>

0)
∃(
n
0
≥

0)
.
∀(
n
≥

n
0
).
f
(n
)
≤

c2
n

is
tr

ue
.

T
he

ac
tu

al
qu

es
ti

on
is

on
th

e
ne

xt
pa

ge
.

F
ee

l
fr

ee
to

fl
ip

b
et

w
ee

n
th

is
pa

ge
an

d
th

e
ne

xt
on

e
w

hi
le

an
sw

er
in

g
th

is
qu

es
ti

on
.

P
ag

e
2

of
4

P
re
-T

es
t

P
ar
ti
ci
p
a
n
t
ID

:

IN
S
T
R
U
C
T
IO

N
S
:

•
T

he
re

ar
e

tw
o

se
ct

io
ns

on
th

is
P

re
-T

es
t.

•
T

he
fi

rs
t

se
ct

io
n

w
ill

as
k

yo
u

to
fi

nd
er

ro
rs

in
M

at
he

m
at

ic
al

P
ro

of
s.

•
T

he
se

co
nd

se
ct

io
n

w
ill

as
k

yo
u

to
w

ri
te

a
pr

o
of

us
in

g
M

at
he

m
at

ic
al

In
du

ct
io

n.

•
P

le
as

e
re

ad
al

l
of

th
e

in
st

ru
ct

io
ns

ca
re

fu
lly

an
d

w
ri

te
do

w
n

al
l

of
yo

ur
w

or
k.

P
ag

e
1

of
4

114

P
ar
t
II
:
W

ri
ti
n
g
M
a
th
em

a
ti
ca

l
P
ro
o
fs

In
th

is
pa

rt
,

yo
u

w
ill

w
ri

te
a
fu
ll
m
at
he
m
at
ic
al
pr
o
of

in
re

sp
on

se
to

an
in

du
ct

io
n

qu
es

ti
on

.
P

le
as

e
m

ak
e

su
re

to
sh

ow
al

lo
f

yo
ur

w
or

k
an

d
cl

ea
rl

y
in

di
ca

te
w

hi
ch

pa
rt

(s
)

ar
e

th
e

pr
o

of
.

1
.
In
d
u
ct
io
n

D
efi

ne
f n

an
d
g n

as
fo

llo
w

s
fo

r
n
∈
N

:

f 0
=

1

f 1
=

5

f 2
=

10

f n
=

2f
n
−
1
−
4f

n
−
2

fo
r
n
≥

3

g 0
=

1

g 1
=

5

g 2
=

10

g 3
=

0

g 4
=
−
40

g n
=

2g
n
−
1
−
3g

n
−
2
−
2g

n
−
3
+
4g

n
−
4

fo
r
n
≥

5

P
ro

ve
th

at
f n

=
g n

fo
r

al
l
n
∈
N

.
Y

ou
m

ay
as

su
m

e
th

at
f n

=
g n

fo
r
n
∈
{0
,1
,2
,3
}

w
it

ho
ut

pr
o

of
fo
r
th
is
pr
o
of

on
ly

.

P
ag

e
4

of
4

D
ir
ec
ti
o
n
s:

•
F

or
ea

ch
of

th
e

st
at

em
en

ts
b

el
ow

,
w

ri
te

T
if

it
ap

pl
ie

s
to

th
e

pr
o

of
an

d
F

ot
he

rw
is

e.

•
F

or
ea

ch
of

th
e

st
at

em
en

ts
b

el
ow

,
in

di
ca

te
su

pp
or

ti
ng

lo
ca

ti
on

s
in

th
e

pr
o

of
by

us
in

g
th

e
st

at
em

en
t

nu
m

b
er

.

1
(

)
U

se
s

at
le

as
t

on
e

va
ri

ab
le

w
it

ho
ut

de
cl

ar
at

io
n

or
qu

an
ti

fi
ca

ti
on

2
(

)
Q

ua
nt

ifi
es

at
le

as
t

on
e

va
ri

ab
le

m
ul

ti
pl

e
ti

m
es

3
(

)
S

ev
er

al
co

ns
eq

ut
iv

e
st

ep
s

of
th

e
pr

o
of

ar
e

un
re

la
te

d
or

un
co

nn
ec

te
d.

4
(

)
S

ta
rt

s
fr

om
th

e
co

nc
lu

si
on

an
d

ar
ri

ve
s

at
so

m
et

hi
ng

w
hi

ch
is

tr
ue

w
it

ho
ut

ex
pl

ic
it

ly
st

at
in

g
th

e
w

or
k

is
re

ve
rs

ib
le

5
(

)
U

se
s
P
(n
)

or
re

fe
rs

to
“t

he
cl

ai
m

”
w

it
ho

ut
de

fi
ni

ng
it

6
(

)
U

se
s

a
fu

nc
ti

on
as

a
st

at
em

en
t

or
th

e
re

ve
rs

e
(e

.g
.

pr
ov

es
“P

(n
)
=

n
+
1”

by
in

du
ct

io
n

on
n

)

7
(

)
S

ta
te

s
“a

ss
um

e
P
(k
)”

w
it

ho
ut

de
fi

ni
ng

k
(e

it
he

r
b

ef
or

e
or

af
te

r)

8
(

)
T

o
o

fe
w

(b
ut

at
le

as
t

on
e)

ba
se

ca
se

(s
)

ar
e

gi
ve

n
to

es
ta

bl
is

h
th

e
in

du
ct

io
n

hy
p

ot
he

si
s.

9
(

)
T

he
pr

o
of

in
cl

ud
es

an
un

ne
ce

ss
ar

y
ba

se
ca

se
.

10
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

as
su

m
es

th
e

co
nc

lu
si

on
of

th
e

pr
o

of
.

11
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

do
es

no
t

sa
y

“a
ss

um
e,

”
“s

up
p

os
e,

”
or

so
m

et
hi

ng
si

m
ila

r.

12
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

as
su

m
es

P
(k
)
=
⇒

P
(k

+
1)

in
st

ea
d

of
ju

st
P
(k
).

13
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

as
su

m
es

th
e

st
at

em
en

t
ho

ld
s

fo
r

“s
om

e
k
≤

L
,
k
≥

0”
in

st
ea

d
of

“a
ll

k
≤

L
,k
≥

0”
w

he
re

L
is

th
e

va
ri

ab
le

in
du

ct
ed

on
in

th
e

st
ro

ng
in

du
ct

io
n

hy
p

ot
he

si
s.

14
(

)
S

ta
te

s
in

th
e

IH
“a

ss
um

e
fo

r
so

m
e
L

th
at

P
(k
)

is
tr

ue
fo

r
al

l
0
≤

k
≤

L
”,

bu
t

th
en

go
es

on
in

th
e

In
du

ct
io

n
S

te
p

to
sh

ow
th

at
P
(k

+
1)

is
tr

ue
.

15
(

)
T

he
in

du
ct

io
n

st
ep

as
su

m
es

th
e

co
nc

lu
si

on
(i

nd
ep

en
de

nt
ly

of
th

e
in

du
ct

io
n

hy
p

ot
he

si
s)

.

16
(

)
T

he
pr

o
of

do
es

no
t

ex
pl

ic
it

ly
in

vo
ke

th
e

in
du

ct
io

n
hy

p
ot

he
si

s.

17
(

)
T

he
in

du
ct

io
n

st
ep

in
vo

ke
s

th
e

in
du

ct
io

n
hy

p
ot

he
si

s
w

he
re

it
do

es
no

t
ap

pl
y.

P
ag

e
3

of
4

115

P
ar
t
I:

R
ev

ie
w
in
g
M
a
th
em

a
ti
ca

l
P
ro
o
fs

In
th

is
pa

rt
,

yo
u

w
ill

re
vi

ew
a

pr
o

of
.

A
ss

es
s

th
e

pr
o

of
by

fi
rs

t
re

vi
ew

in
g

th
e

ba
se

ca
se

(s
)

an
d

re
vi

ew
in

g
an

y
op

ti
on

s
re

la
te

d
to

th
em

.
O

nc
e

yo
u’

ve
do

ne
th

e
ba

se
ca

se
s,

m
ov

e
on

th
e

in
du

ct
io

n
hy

p
ot

he
si

s,
an

d
th

en
fi

na
lly

m
ov

e
on

to
th

e
in

du
ct

io
n

st
ep

.
A

s
yo

u
se

le
ct

th
in

gs
w

ro
ng

w
it

h
th

e
pr

o
of

,
yo

u
sh

ou
ld

as
su

m
e

th
at

al
le

rr
or

s
yo

u’
ve

se
le

ct
ed

ju
dg

em
en

ts
fo

r
ar

e
co
rr
ec
te
d

fo
r

th
e

re
m

ai
nd

er
of

th
e

pr
o

of
.

1
.
In
d
u
ct
io
n

C
on

si
de

r
th

e
fo

llo
w

in
g

pr
ob

le
m

:

P
ro

ve
∃(
c
>

0)
.
∃(
n
0
≥

0)
.
∀(
n
≥

n
0
).
A
(n
)
≤

c2
n

,
w

he
re

A
(n
)

is
de

fi
ne

d
as

fo
llo

w
s:

A
(0
)
=

0

A
(1
)
=

0

A
(n
)
=

1
+
A
(n
−
1)

+
A
(n
−
2)

fo
r
n
≥

2

C
on

si
de

r
th

e
fo

llo
w

in
g

pr
o

of
:

W
e

w
an

t
to

pr
ov

e
∃(
c
>

0)
.∃
(n

0
≥

0)
.
∀(
n
≥

n
0
).
A
(n
)
≤

c2
n

.
L

et
c,
n

b
e

ar
bi

tr
ar

y
an

d
fi

xe
d

as
c
=

1,
n
=

0.
W

e
go

by
in

du
ct

io
n

on
n

.

B
a
se

C
a
se

(n
=

0)
.
A
(0
)
=

0
<

20
=

1.

In
d
u
ct
io
n
H
yp

o
th
es
is
.

T
he

cl
ai

m
is

tr
ue

fo
r

al
l
k

w
hi

ch
ar

e
≤

n
bu

t
gr

ea
te

r
th

an
n
0
.

In
d
u
ct
io
n
S
te
p
.
A
(k

+
1)

=
1
+
A
(k
)
+
A
(k
−
1)

by
de

fi
ni

ti
on

of
A

⇐
⇒

A
(k
)
≤

2k
an

d
A
(k
−

1)
≤

2k
−
1

by
th

e
IH

.

It
fo

llo
w

s
th

at
A
(k

+
1)
≤

1
+
2k

+
2k

−
1
≤

2k
+
2k

=
2k

+
1

by
al

ge
br

a,
an

d
b

ec
au

se
1
≤

2k
−
1
.

T
hu

s,
si

nc
e

ou
r

ba
se

ca
se

an
d

in
du

ct
io

n
st

ep
ho

ld
,

ou
r

cl
ai

m
is

tr
ue

fo
r

al
l
k
≥

n
0
.

T
he

ac
tu

al
qu

es
ti

on
is

on
th

e
ne

xt
pa

ge
.

F
ee

l
fr

ee
to

fl
ip

b
et

w
ee

n
th

is
pa

ge
an

d
th

e
ne

xt
on

e
w

hi
le

an
sw

er
in

g
th

is
qu

es
ti

on
.

P
ag

e
2

of
4

P
o
st
-T

es
t

P
ar
ti
ci
p
a
n
t
ID

:

IN
S
T
R
U
C
T
IO

N
S
:

•
T

he
re

ar
e

tw
o

se
ct

io
ns

on
th

is
P

os
t-

T
es

t.

•
T

he
fi

rs
t

se
ct

io
n

w
ill

as
k

yo
u

to
fi

nd
er

ro
rs

in
M

at
he

m
at

ic
al

P
ro

of
s.

•
T

he
se

co
nd

se
ct

io
n

w
ill

as
k

yo
u

to
w

ri
te

a
pr

o
of

us
in

g
M

at
he

m
at

ic
al

In
du

ct
io

n.

•
P

le
as

e
re

ad
al

l
of

th
e

in
st

ru
ct

io
ns

ca
re

fu
lly

an
d

w
ri

te
do

w
n

al
l

of
yo

ur
w

or
k.

P
ag

e
1

of
4

116

P
ar
t
II
:
W

ri
ti
n
g
M
a
th
em

a
ti
ca

l
P
ro
o
fs

In
th

is
pa

rt
,

yo
u

w
ill

w
ri

te
a
fu
ll
m
at
he
m
at
ic
al
pr
o
of

in
re

sp
on

se
to

an
in

du
ct

io
n

qu
es

ti
on

.
P

le
as

e
m

ak
e

su
re

to
sh

ow
al

lo
f

yo
ur

w
or

k
an

d
cl

ea
rl

y
in

di
ca

te
w

hi
ch

pa
rt

(s
)

ar
e

th
e

pr
o

of
.

1
.
In
d
u
ct
io
n

P
ro

ve
th

at
n
n
>

3
·n

!
fo

r
al

l
n
>

3
by

in
du

ct
io

n.

P
ag

e
4

of
4

D
ir
ec
ti
o
n
s:

•
F

or
ea

ch
of

th
e

st
at

em
en

ts
b

el
ow

,
w

ri
te

T
if

it
ap

pl
ie

s
to

th
e

pr
o

of
an

d
F

ot
he

rw
is

e.

•
F

or
ea

ch
of

th
e

st
at

em
en

ts
b

el
ow

,
in

di
ca

te
su

pp
or

ti
ng

lo
ca

ti
on

s
in

th
e

pr
o

of
by

us
in

g
th

e
st

at
em

en
t

nu
m

b
er

.

1
(

)
U

se
s

at
le

as
t

on
e

va
ri

ab
le

w
it

ho
ut

de
cl

ar
at

io
n

or
qu

an
ti

fi
ca

ti
on

2
(

)
Q

ua
nt

ifi
es

at
le

as
t

on
e

va
ri

ab
le

m
ul

ti
pl

e
ti

m
es

3
(

)
S

ev
er

al
co

ns
eq

ut
iv

e
st

ep
s

of
th

e
pr

o
of

ar
e

un
re

la
te

d
or

un
co

nn
ec

te
d.

4
(

)
S

ta
rt

s
fr

om
th

e
co

nc
lu

si
on

an
d

ar
ri

ve
s

at
so

m
et

hi
ng

w
hi

ch
is

tr
ue

w
it

ho
ut

ex
pl

ic
it

ly
st

at
in

g
th

e
w

or
k

is
re

ve
rs

ib
le

5
(

)
U

se
s
P
(n
)

or
re

fe
rs

to
“t

he
cl

ai
m

”
w

it
ho

ut
de

fi
ni

ng
it

.

6
(

)
U

se
s

a
fu

nc
ti

on
as

a
st

at
em

en
t

or
th

e
re

ve
rs

e
(e

.g
.

pr
ov

es
“P

(n
)
=

n
+
1”

by
in

du
ct

io
n

on
n

)

7
(

)
S

ta
te

s
“a

ss
um

e
P
(k
)”

w
it

ho
ut

de
fi

ni
ng

k
(e

it
he

r
b

ef
or

e
or

af
te

r)

8
(

)
T

o
o

fe
w

(b
ut

at
le

as
t

on
e)

ba
se

ca
se

(s
)

ar
e

gi
ve

n
to

es
ta

bl
is

h
th

e
in

du
ct

io
n

hy
p

ot
he

si
s.

9
(

)
T

he
pr

o
of

in
cl

ud
es

an
un

ne
ce

ss
ar

y
ba

se
ca

se
.

10
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

as
su

m
es

th
e

co
nc

lu
si

on
of

th
e

pr
o

of
.

11
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

do
es

no
t

sa
y

“a
ss

um
e,

”
“s

up
p

os
e,

”
or

so
m

et
hi

ng
si

m
ila

r.

12
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

as
su

m
es

P
(k
)
=
⇒

P
(k

+
1)

in
st

ea
d

of
ju

st
P
(k
).

13
(

)
T

he
in

du
ct

io
n

hy
p

ot
he

si
s

as
su

m
es

th
e

st
at

em
en

t
ho

ld
s

fo
r

“s
om

e
k
≤

L
,
k
≥

0”
in

st
ea

d
of

“a
ll

k
≤

L
,k
≥

0”
w

he
re

L
is

th
e

va
ri

ab
le

in
du

ct
ed

on
in

th
e

st
ro

ng
in

du
ct

io
n

hy
p

ot
he

si
s.

14
(

)
S

ta
te

s
in

th
e

IH
“a

ss
um

e
fo

r
so

m
e
L

th
at

P
(k
)

is
tr

ue
fo

r
al

l
0
≤

k
≤

L
”,

bu
t

th
en

go
es

on
in

th
e

In
du

ct
io

n
S

te
p

to
sh

ow
th

at
P
(k

+
1)

is
tr

ue
.

15
(

)
T

he
in

du
ct

io
n

st
ep

as
su

m
es

th
e

co
nc

lu
si

on
(i

nd
ep

en
de

nt
ly

of
th

e
in

du
ct

io
n

hy
p

ot
he

si
s)

.

16
(

)
T

he
pr

o
of

do
es

no
t

ex
pl

ic
it

ly
in

vo
ke

th
e

in
du

ct
io

n
hy

p
ot

he
si

s.

17
(

)
T

he
in

du
ct

io
n

st
ep

in
vo

ke
s

th
e

in
du

ct
io

n
hy

p
ot

he
si

s
in

a
pa

rt
of

th
e

ar
gu

m
en

t
un

re
la

te
d

to
th

e
in

du
ct

io
n

hy
p

ot
he

si
s.

P
ag

e
3

of
4

117

Bibliography

[ABD+10] SA Ambrose, MW Bridges, M DiPietro, Marsha C Lovett, and Marie K
Norman. How learning works: Seven research-based principles for smart
teaching. John Wiley & Sons, 2010. 2.1.1

[ACM09] J Aronson, Geoffrey Cohen, and W McColskey. Reducing Stereotype Threat
in Classrooms: A Review of Social-Psychological Intervention Studies on
Improving the Achievement of Black Students. Issues & Answers. Regional
Educational Laboratory . . . , (076), 2009. 2.1.1

[AKMS98] A Arcavi, C Kessel, L Meira, and JP Smith. Teaching mathematical problem
solving: An analysis of an emergent classroom community. Research in
collegiate mathematics education, . . . , 1998. 2.1.5

[Bal12] Andreia Balan. Assessment for learning: a case study in mathematics
education. PhD thesis, Malmö University, 2012. 7

[BN86] Ruth Butler and Mordecai Nisan. Effects of no feedback, task-related com-
ments, and grades on intrinsic motivation and performance. Journal of
educational psychology, 78(3):210–216, 1986. 2.1.3

[Bos97] Nigel Boston. A Use of Computers to Teach Group Theory and Introduce
Students to Research. Journal of Symbolic Computation, 23(5-6):453–458,
May 1997. 2.2.3

[BSS10] Randal E. Bryant, Klaus Sutner, and Mark J. Stehlik. Introductory com-
puter science education at carnegie mellon university: A deans’ perspective.
Technical Report CMU-CS-10-140, Carnegie Mellon University, Computer
Science Department, August 2010. 2.5.1

[CCD+10] Quintin Cutts, Emily Cutts, Stephen Draper, Patrick O’Donnell, and Peter
Saffrey. Manipulating mindset to positively influence introductory program-
ming performance. Proceedings of the 41st ACM technical symposium on
Computer science education - SIGCSE ’10, page 431, 2010. 2.1.1

[Con11] Mike Conley. The Wisdom of Peers: A Motive for Exploring Peer Code
Review in the Classroom. PhD thesis, University of Toronto, 2011. 7.1.3

[Cou05] P. Cousot. Abstract interpretation. MIT course 16.399, http://web.mit.
edu/16.399/www/, Feb.–May 2005. 5.4.2

[CP97] John Cannon and Catherine Playoust. Using the Magma Computer Algebra

118

http://web.mit.edu/16.399/www/
http://web.mit.edu/16.399/www/

System in Abstract Algebra Courses. Journal of Symbolic Computation,
23(5-6):459–484, May 1997. 2.2.3

[Dev01] Keith Devlin. Viewpoint: the real reason why software engineers need math.
Communications of the ACM, 44(10):0–1, 2001. 1

[DKR99] E L Deci, R Koestner, and R M Ryan. A meta-analytic review of exper-
iments examining the effects of extrinsic rewards on intrinsic motivation.
Psychological bulletin, 125(6):627–68; discussion 692–700, November 1999.
2.1.3

[DKR01] E. L. Deci, R. Koestner, and R. M. Ryan. Extrinsic Rewards and Intrinsic
Motivation in Education: Reconsidered Once Again. Review of Educational
Research, 71(1):1–27, January 2001. 2.1.3

[Dwe08] Carol S Dweck. Mindsets and Math / Science Achievement. 2008. 2.1.1
[ECP99] Robert Eisenberger, Judy Cameron, and David W. Pierce. Effects of Reward

on Intrinsic Motivation–Negative, Neutral, and Positive: Comment on Deci,
Koestner, and Ryan, 1999. 2.1.3

[Fra06] DJ Frailey. What math is relevant for a CS or SE student?: an employer’s per-
spective. ACM SIGSOFT Software Engineering Notes, 31(3):6–7, 2006.
1

[GR07] Cornelia S Große and Alexander Renkl. Finding and fixing errors in worked
examples: Can this foster learning outcomes? Learning and Instruction,
17(6):612–634, 2007. 7.3

[Hen01] Peter B. Henderson. Mathematical Reasoning In Software Engineering Edu-
cation. ACM SIGCSE Bulletin, 46(9):45–50, 2001. 1

[HM00] Dianne Hagan and Selby Markham. Does it help to have some programming
experience before beginning a computing degree program? ACM SIGCSE
Bulletin, pages 25–28, 2000. 2.5.3

[HT07] John Hattie and Helen Timperley. The power of feedback. Review of edu-
cational research, 77(1):81–112, 2007. 6.1, 6.2.2

[Kal97] Erich Kaltofen. Teaching computational abstract algebra. Journal of Sym-
bolic Computation, 05363:503–515, 1997. 2.2.3

[Loc] Paul Lockhart. A mathematician’s lament. 2.1.1
[LR14] Ed Lazowska and Eric Roberts. Tsunami or sea change? responding to the

explosion of student interest in computer science. NCWIT 10th Anniversary
Summit, May 2014. 1

[Mar10] Bill Marion. Computer algebra systems in discrete mathematics. Journal of
Computing Sciences in Colleges, 26(2):139–148, 2010. 4.5.4

[Maz09] E. Mazur. Farewell, lecture? Science, 323:50–51, 2009. 3.2.1
[ML00] Barbara M Moskal and Jon A Leydens. Scoring rubric development: Validity

and reliability. Practical Assessment, Research & Evaluation, 7(10):71–

119

81, 2000. 6.4.2
[MT08] Laurie Murphy and Lynda Thomas. Dangers of a fixed mindset: implications

of self-theories research for computer science education. ACM SIGCSE
Bulletin, pages 271–275, 2008. 2.1.1

[oCC13] ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer science
curricula 2013. Technical report, ACM Press and IEEE Computer Society
Press, December 2013. 1

[Pie13] Benjamin Pierce. Software foundations, 2013. 2.1.4
[PJ08] Dwayne E Paré and Steve Joordens. Peering into large lectures: examining

peer and expert mark agreement using peerscholar, an online peer assessment
tool. Journal of Computer Assisted Learning, 24(6):526–540, 2008. 7.1.2

[Ral05] Anthony Ralston. Do we need ANY mathematics in computer science cur-
ricula? ACM SIGCSE Bulletin, 37(2):6, June 2005. 1

[RK89] KA Ross and DE Knuth. A programming and problem-solving seminar.
1989. 2.1.5

[She97] Gary J. Sherman. Trying to Do Group Theory with Undergraduates and
Computers. Journal of Symbolic Computation, 23(5-6):577–587, May 1997.
2.2.3

[SHM08] Beth Simon, Brian Hanks, and Laurie Murphy. Saying isn’t necessarily be-
lieving: influencing self-theories in computing. Proceedings of the Fourth
International Workshop on Computing Education Research, pages 173–
184, 2008. 2.1.1

[SS94] Richard Scheines and Wilfried Sieg. Computer environments for proof con-
struction. Interactive Learning Environments, 4(2):159–169, 1994. 7.1.1

[Sut05] Klaus Sutner. Cdm: Teaching discrete mathematics to computer science
majors. J. Educ. Resour. Comput., 5(2), June 2005. 4.5.4

[Tan11] Mason Tang. Caesar: a social code review tool for programming education.
Master’s thesis, Massachusetts Institute of Technology, 2011. 7.1.3

[TMM+09] Dimitra Tsovaltzi, Erica Melis, Bruce M Mclaren, Michael Dietrich, Georgi
Goguadze, and Ann-Kristin Meyer. Erroneous examples: A preliminary in-
vestigation into learning benefits. In Learning in the Synergy of Multiple
Disciplines, pages 688–693. Springer, 2009. 7.3, 7.4.2

[Wil09] By Daniel T Willingham. Is It True That Some People Just CanâĂŹt Do
Math? American Educator, 33(4):14–20, 2009. 2.1.1

[WS01] BC Wilson and Sharon Shrock. Contributing to success in an introductory
computer science course: a study of twelve factors. ACM SIGCSE Bulletin,
pages 184–188, 2001. 2.5.3

[ZZ11] Jessica M Zerr and Ryan J Zerr. Learning from their mistakes: Using stu-
dents’ incorrect proofs as a pedagogical tool. PRIMUS, 21(6):530–544, 2011.

120

7.3

121

	1 Introduction
	I Developing a Discrete Mathematics Course for Freshmen Computer Science Students
	2 Discrete Mathematics for CS Majors
	2.1 Meta Content
	2.1.1 Calculus, Computer Science, and You
	2.1.2 Programming, Computer Science, and You
	2.1.3 Intrinsic Motivation
	2.1.4 Proofs and Rigor
	2.1.5 Mathematical Problem Solving
	2.1.6 Collaborative Learning

	2.2 Domain Content
	2.2.1 Essential Preliminary Content
	2.2.2 Graphs and Relations
	2.2.3 Number Theory, and Algebra
	2.2.4 Combinatorics and Probability
	2.2.5 Theory of Computation

	2.3 Application Content
	2.3.1 Basic Logic
	2.3.2 Induction, Asymptotic Analysis, Relations, and Functions
	2.3.3 Number Theory and Group Theory
	2.3.4 Computability Theory
	2.3.5 Probability

	2.4 Course Sequencing
	2.4.1 Summary of Various Universities

	2.5 Our Implementation at CMU: 15-151
	2.5.1 Overview of Carnegie Mellon Introductory CS Courses
	2.5.2 Implementation Goals and Details
	2.5.3 Postmortem: 15-151 Structure

	3 Pedagogy in the Discrete Math Classroom
	3.1 Transition from High School
	3.2 Course Meetings
	3.2.1 Lecture
	3.2.2 Recitation
	3.2.3 Workshops

	3.3 Exams and Quizzes
	3.3.1 Exams
	3.3.2 QuickChecks: Formative Assessment

	3.4 Results and Conclusions

	II Using Technology to Teach Discrete Mathematics
	4 {Sety}: A Programming Language for Teaching Discrete Mathematics
	4.1 Motivation
	4.2 {Sety} Language Description
	4.2.1 Primitive Types
	4.2.2 Primitive Operations
	4.2.3 Variables and Statements
	4.2.4 Functions
	4.2.5 Input and Output
	4.2.6 Conditionals and Loops
	4.2.7 Set Comprehensions
	4.2.8 Quantifier Expressions
	4.2.9 Decorators

	4.3 Language Design
	4.3.1 Type Coercion and Internal Representation
	4.3.2 Total Ordering on Sets
	4.3.3 Guaranteed Termination
	4.3.4 Automatic Memoization
	4.3.5 Libraries and Definition Files

	4.4 Standard Libraries in {Sety}
	4.4.1 Standard Type Libraries
	4.4.2 Standard Function Libraries

	4.5 Teaching Discrete Mathematics with {Sety}
	4.5.1 Logic
	4.5.2 Sets
	4.5.3 Foundations of Mathematics
	4.5.4 Examples, Patterns, and Direct Proofs
	4.5.5 Recurrences and Combinatorics
	4.5.6 Pilot Results

	4.6 Future Work
	4.6.1 Backed by Z3

	5 Symbolic Algorithm Complexity Analysis
	5.1 Overview
	5.2 Pedagogical Outcomes
	5.2.1 Standard Approaches

	5.3 Sub{Sety}
	5.3.1 Syntax
	5.3.2 Semantics

	5.4 Our Approach
	5.4.1 The Standard Interpreter
	5.4.2 Abstract Interpretation and Symbolic Algebra Library
	5.4.3 Overview of Complexity Analyses
	5.4.4 Output Complexity
	5.4.5 Time Complexity
	5.4.6 Closed Forms

	5.5 Pedagogical Outcomes of Our Approach
	5.6 Case Study in 15-151

	III Coping with Consistency, Timeliness, and Quality of Feedback in Large Courses
	6 Judgement-based Grading
	6.1 What is Grading?
	6.1.1 Defining Grading
	6.1.2 Grading Agents

	6.2 Grading…Grading
	6.2.1 Criteria for Scoring
	6.2.2 Criteria for Feedback
	6.2.3 Criteria for Grading Pool Compatibility
	6.2.4 Criteria for Grader Efficiency
	6.2.5 Criteria for Instructor Usage

	6.3 Restricting Domain Content and Prompts
	6.3.1 Fuzzy-Objective
	6.3.2 Non-fuzzy-Objective
	6.3.3 Non-objective Prompts

	6.4 Standard Grading Systems
	6.4.1 ``It feels like a…'' Grading
	6.4.2 Rubric Grading
	6.4.3 Scoring Guidelines
	6.4.4 Machine Grading

	6.5 Our Approach: Judgement-based Grading
	6.5.1 List Judgement-based Grading
	6.5.2 Templated Judgement-based Grading

	6.6 Evaluating Judgement-based Grading

	7 Verifications
	7.1 Related Work
	7.1.1 Theorem Provers
	7.1.2 Peer Grading of Essays
	7.1.3 Peer Grading of Code

	7.2 Our Approach
	7.3 Research Questions
	7.4 Preliminary Results
	7.4.1 Grading Effort
	7.4.2 Student Ability

	7.5 Future Work

	IV Conclusion
	8 Conclusion
	Appendices
	A Formal Sub{Sety} Semantics
	A.1 Static Semantics
	A.2 Dynamic Semantics
	A.2.1 Stepping of Expressions
	A.2.2 Stepping of Commands
	A.2.3 Stepping of Programs

	B Verification Study: Pre-test and Post-test
	Bibliography

