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Abstract

Biological systems can possess multiple operational modes with specific nonlinear dynam-
ics in each mode. Hybrid automata and its variants are often used to model and analyze the
dynamics of such systems. Highly nonlinear hybrid automata are difficult to analysis and usu-
ally have many parameters. An important problem is to identify parameter values using which
the system can reach certain states of interests. We present a parameter identification frame-
work for biological hybrid systems using δ-complete decision procedures, which can solve
satisfiability modulo theories (SMT) problems over the reals with a wide range of nonlinear
functions, including ordinary differential equations (ODEs). We demonstrate our method using
two hybrid systems: the prostate cancer progression model and the cardiac cellular action po-
tential model. The results show that the parameter identification framework is convenient and
efficient for performing tasks such as model falsification, personalized therapy optimization as
well as disease-related parameter range identification.



1 Introduction
The functioning of a biological system depends on its dynamics, i.e., the evolution of its constituent elements
in space and time, as well as the interactions among these elements. Computational modeling and analysis
methods are playing a crucial role in understanding the complex dynamics of biological systems [1]. In
recent years, a variety of computational models have been developed, ranging from qualitative models that
focus on the generic properties of biological systems [2, 3] to quantitative models that can simulate the time
course of biological systems under various conditions [4, 5]. The choice of a modeling formalism depends
on the goals of the modeling effort as well as the biological context.

One of the key aspects of biological systems is the differing behavior of the cell in various states. For
example, different stages of the cell cycle are driven by the activation of different signaling pathways [6].
Hence in many settings, biological systems can possess multiple operational modes with specific nonlinear
dynamics in each mode. Multiple variants of the formalism called hybrid automata [7] is often used in this
context [8, 9, 10, 11, 12, 13].

Hybrid automata are well-studied formalisms that are used to model the behavior of hybrid systems,
which consist of discrete control computations in a continuous environment. The state space of a hybrid
automaton is defined by a finite set of continuous variables and modes. A system of differentials equations
over the variables is associated with each mode. At any given time the automaton will reside in one of its
modes and each variable will evolve according its differential equation in the mode. When the automaton
satisfies a jump condition, it will switch to a new mode. As a result the system will start evolving according
the differential equations associated with the new mode. It is worth to note that ODE models are special
cases of hybrid automata and the techniques we develop here can be adapted to ODE models as well.

A hybrid automaton model of a biological system often involves many parameters such as the rate
constants of the biochemical reactions, the initial conditions, and the threshold values in the jump conditions.
Almost always, only a few rate constants will be available or can be measured experimentally. One needs
to estimate the values of unknown rate constants by fitting the model to the experimental observations.
Furthermore, it is also crucial to figure out what initial conditions or jump conditions may lead to a disorder
or safety of the system, especially when studying hybrid systems for synthetic biology and clinical therapy
[14]. All these questions can be answered by the parameter synthesis procedure, which aims to identify sets
of parameters for which the system reach a given set of states. However, parameter synthesis for hybrid
systems is difficult due to the interplay between the continuous and discrete components of the dynamics.
The high expressive power of the mixed dynamics renders even simple reachability questions undecidable
[7]. Various lines of work have explored ways to mitigate this problem [15, 16, 17, 18, 19, 20].

In this paper, we propose a novel framework to tackle the parameter synthesis problem for nonlinear
hybrid models in biology using δ-complete decision procedures. We describe the set of states of interested
as a first-order logic formula and perform bounded model checking to determine reachability of these states.
We then adapt an interval constrains propagation (ICP) based algorithm to explore the parameter spaces and
identify the sets of resulting parameters. Note that determining the truth value of first-order sentences over
the reals with nonlinear real functions is a well-known undefinable problem. Here we employ our recently
developed δ-decision based framework to ask for answers that may have one-sided δ-bounded errors. That
is, given a first-order sentence φ, we ask whether φ is false, or some δ-relaxation of φ is true, which is
defined as a slight syntactic variation of φ. We have proved that the δ-complete decision procedures can
solve SMT problems over the reals with arbitrary computable real functions [21] including solutions of
Lipschitz-continuous ODEs [22].

We show the applicability of our method by carrying out two case studies. The first one involves a hybrid
system built by [23], which aims to study the hormone therapy for prostate cancer. We show that our method
is able to perform model selection by ruling out model candidates which hopelessly fit the experimental
observation. We also used our method to optimize personalized treatment schemes for individual patients to
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achieve maximum therapeutic efficacy. In the second case study we analyzed a cardiac cell model developed
by [24] in order to investigate the cardiac disorders. We identified parameter ranges for which a cardiac cell
may lose excitability. The results show that our method scales and can obtain biological insights that are
consistent with experimental observations.

Turning to related work, a survey of modeling and analysis of biological systems using hybrid models
can be found in [25]. Formal verification of hybrid systems is a well-established domain [26]. Analyzing
the properties of biochemical networks using model checking techniques [27] is being actively pursued by a
number of groups [28, 29, 30, 31, 32]. Of particular interest in our context are parameter synthesis methods
which identify range of parameters for which some qualitative behavior is exhibited. The method presented
in [33] can deal with parameter synthesis problem for piecewise affine linear systems. For nonlinear ODE
systems, [34] described a more efficient way to explore the parameter space based on adaptive sampling and
numerical simulation.

The rest of the paper is organized as follows. The next section introduces our δ-complete decision pro-
cedures over the reals. We formulated the parameter synthesis problem for hybrid automata in Section 2.2.
In Section 2.3, we present techniques for synthesizing parameters using δ-complete decision procedures. In
the subsequent section we present two case studies. In the final section, we summarize the paper and discuss
future work.

2 Methods

2.1 LRF -formulas and δ-decisions over the reals
We first briefly review our framework of δ-decision problems for first-order sentences over the reals with
computable real functions. The notion of computable functions over the real numbers are developed in
Computable Analysis [35]. In our recent work [21, 22], we developed a theory of decision problems over
the reals with computable functions. It suffices to note that most common continuous real functions are
computable, such as addition, multiplication, absolute value, min, max, exp, sin and solutions of Lipschitz-
continuous ordinary differential equations. Compositions of computable functions are computable. In fact,
the notion of computability of real functions directly corresponds to whether they can be numerically simu-
lated. We write F to denote an arbitrary collection of symbols representing computable functions over Rn
for various n. We consider the first-order formulas with a signature LRF = 〈0, 1,F , >〉. Note that constants
are seen as 0-ary functions in F . LRF -formulas are evaluated in the standard way over the corresponding
structure RF = 〈R,F , >〉. We use atomic formulas of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
where t(x1, ..., xn) are built up from functions in F . To avoid extra preprocessing of formulas, we give an
explicit definition of LRF -formulas as follows.

LRF -Formulas Let F be a collection of Type 2 functions, which contains at least 0, unary negation -,
addition +, and absolute value | · |. We define:

t := x | f(t(~x)), where f ∈ F , possibly constant;

ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces atomic formulas t > 0 with
−t ≥ 0, atomic formulas t ≥ 0 with−t > 0, switches ∧ and ∨, and switches ∀ and ∃. Implication ϕ1 → ϕ2

is defined as ¬ϕ1 ∨ ϕ2.
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We define

∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ),

∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v)→ ϕ),

where u and v denote LRF terms whose variables only contain free variables in ϕ, excluding x. It is easy to
check that ∃[u,v]x.ϕ ↔ ¬∀[u,v]x.¬ϕ. We say a sentence is bounded if it only involves bounded quantifiers.
A bounded LRF -sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn).

Q
[ui,vi]
i s are bounded quantifiers, and ψ(x1, ..., xn) is a quantifier-free LRF -formula. We write ψ(x1, ..., xn)

as ψ[t1(~x) > 0, ..., tk(~x) > 0; tk+1(~x) ≥ 0, ..., tm(~x) ≥ 0] to emphasize that ψ(~x) is a Boolean combina-
tion of the atomic formulas shown.

δ-Variants Let δ ∈ Q+ ∪ {0}, and ϕ an LRF -formula of the form

ϕ : QI11 x1 · · ·QInn xn ψ[ti(~x, ~y) > 0; tj(~x, ~y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ...,m}. The δ-weakening ϕδ of ϕ is defined as the result of replacing
each atom ti > 0 by ti > −δ and tj ≥ 0 by tj ≥ −δ. That is,

ϕδ : QI11 x1 · · ·QInn xn ψ[ti(~x, ~y) > −δ; tj(~x, ~y) ≥ −δ].

We then have the following main decidability result.

δ-Decidability Let δ ∈ Q+ be arbitrary. There is an algorithm which, given any bounded ϕ, correctly
returns one of the following two answers:

• “δ-True”: ϕδ is true.

• “False”: ϕ is false.

Note when the two cases overlap, either answer is correct.
We call this new decision problem the δ-decision problem for LRF -sentences. If an algorithm solves

the δ-decision problem correctly for a set S of LRF -sentences, we say it is δ-complete for S. From δ-
decidability, δ-complete decision procedures always exists for bounded LRF -formulas. In practice, we have
shown that the combination of the DPLL(T) framework and Interval Constraint Propagation (ICP) indeed
gives us a δ-complete decision procedure. We implemented such procedures in our tool dReal [36], which
solves formulas containing transcendental functions and ordinary differential equations. In what follows we
will see how δ-complete decision procedures provide the engine for parameter synthesis of biological hybrid
systems.

2.2 Parameterized LRF -representations of hybrid automata
We now describe hybrid automata using LRF -formulas, and define parameterization and perturbations on
them. A hybrid system [7] is a tuple H = 〈X , Q, flow, guard, reset, inv, init〉 where X ⊆ Rn specifies
the range of the continuous variables ~x of the system. Q = {q0, ..., qm} is a finite set of discrete control
modes. flow ⊆ Q × X × R × X specifies the continuous dynamics for each mode. The flow predicate is
usually defined either as explicit mappings from ~a0 and t to ~at, or as solutions of systems of differential
equations/inclusions that specify the derivative of ~x over time. jump ⊆ Q×X ×Q×X specifies the jump
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conditions between modes. inv ⊆ Q×X defines the invariant conditions for the system to stay in a control
mode. init ⊆ Q × X defines the set of initial configurations of the system. Without loss of generality we
always assume that q0 is the only intial mode, and initq0 ⊆ X denotes the initial values for the continuous
variables.

LRF -representations of hybrid automata LetH = 〈X ,Q, flow, jump, inv, init〉 be an n-dimensional
hybrid automaton. Let F be a set of real functions, and LRF the corresponding first-order language. We say
that H has an LRF -representation, if for every q, q′ ∈ Q, there exists quantifier-free LRF -formulas

φqflow(~x, ~x0, t), φ
q→q′
jump (~x, ~x′), φqinv(~x), φqinit(~x)

such that for all ~a,~a′ ∈ Rn, t ∈ R:

• R |= φqflow(~a,~a′, t) iff (q,~a,~a′, t) ∈ flow.

• R |= φq→q
′

jump (~a,~a′) iff (q, q′,~a,~a′) ∈ jump.

• R |= φqinv(~a) iff (q,~a) ∈ inv.

• R |= φqinit(~a) iff q = q0 and ~a ∈ initq0 .

We can write H = 〈X,Q, φflow, φjump, φinv, φinit〉 to emphasize that H is LRF -represented. But from
now on we simply write flow, jump, inv, init to denote these logic formulas, so that we can use H =
〈X,Q, flow, jump, inv, init〉 directly to denote the LRF -representation of H .

We say a hybrid automaton H has a computable representation, if H has an LRF -representation, where
F is an arbitrary set of computable functions. Combining continuous and discrete behaviors, the trajectories
of hybrid systems are piecewise continuous. This motivates a two-dimensional structure of time, with which
we can keep track of both the discrete changes and the duration of each continuous flow. A hybrid time
domain T is a subset of N × R of the form Tm = {(i, t) : i < m and t ∈ [ti, t

′
i] or [ti,+∞)}, where

m ∈ N ∪ {+∞}, {ti}mi=0 is an increasing sequence in R+, t0 = 0, and t′i = ti+1. We write the set of all
hybrid time domains as H. Suppose X ⊆ Rn and Tm is a hybrid time domain. A hybrid trajectory is any
continuous function ξ : Tm → X.We write ΞX to denote the set of all possible hybrid trajectories from H to
X . We can now define trajectories of a given hybrid automaton. The intuition behind the following definition
is straightforward. The labeling function σHξ (i) is used to map a step i to the corresponding discrete mode
in H . In each mode, the system flows continuously following the dynamics defined by flow(q, ~x0, t). Note
that (t − tk) is the actual duration in the k-th mode. When a switch between two modes is performed, it is
required that ξ(k+ 1, tk+1) is updated from the exit value ξ(k, t′k) in the previous mode, following the jump
conditions.

We say that ξ : Tm → X is a trajectory of H of discrete depth m, if there exists a labeling function
σHξ : N→ Q such that:

• σHξ (0) = q0 and RF |= initq0(ξ(0, 0)).

• For any (i, t) ∈ Tm, RF |= invσHξ (i)(ξ(i, t)).

• When i = 0, RF |= flowq0(ξ(0, 0), ξ(0, t), t).

• When i = k + 1, where 0 < k + 1 < m,

RF |= flowσHξ (k+1)(ξ(k + 1, tk+1), ξ(k + 1, t), (t− tk+1)) and

RF |= jump(σH(k)→σH(k+1))(ξ(k, t
′
k), ξ(k + 1, tk+1)).

We write JHK to denote the set of all possible trajectories of H .

4



Reachability Properties Let U ⊆ X × Q be a subset of the state space of H . H reaches U if there
exists ξ ∈ JHK such that there exists t ∈ R and n ∈ N satisfying

(ξ(t, n), σHξ (n)) ∈ U.

We say H is parameterized by ~p = (p1, ..., pm), if

H(~p) = 〈X,Q, flow(~p), jump(~p), inv(~p), init(~p)〉,

where ~p are among the free variables in theLRF -representation ofH . Thus, the parameter synthesis problem
for reachability asks for an assignment for ~a ∈ Rm such that H(~a) reaches U .

2.3 Synthesizing parameters with δ-decisions
We now show how to encode parameter synthesis problems for LRF -represented hybrid systems using LRF -
formulas. Throughout the following two definitions, let H = 〈X , Q, flow, jump, init〉 be an n-dimensional
LRF -represented hybrid system with |Q| = m, and unsafe an LRF -formula that encodes a subset U ⊆
X × Q. Let k ∈ N and M ∈ R be the bounds on steps and time respectively. Recall that q0 ∈ Q always
denotes the starting mode.

ReachkH,q′(~x
t
k) defines the states that H can reach, if after k steps of discrete changes it is in mode q′.

From there, if H makes a jump from mode q′ to q, then the states have the make a discrete change following
jumpq′→q(~x

t
k, ~xk+1). As last, in mode q′, any state ~xtk+1 that H can reach should satisfy the flow conditions

flowq(~x
t
k+1, ~xk+1, t) in mode q. Note that after each discrete jump, a new time variable tk is introduced and

independent from the previous ones. The (k,M)-reachability encoding of H and U , Reachk,M (H,U), is
defined as:

∃~a∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk(
initq0(~x0) ∧ flowq0(~a, ~x0, ~x

t
0, t0)

∧ ∀[0,t0]t∀X~x (flowq0(~a, ~x0, ~x, t)→ invq0(~a, ~x))

∧
k−1∨

i=0

( ∨

q,q′∈Q

(
jumpq→q′(~a, ~x

t
i, ~xi+1) ∧ flowq′(~a, ~xi+1, ~x

t
i+1, ti+1)

∧ ∀[0,t0]t∀X~x (flowq′(~a, ~xi+1, ~x, t)→ invq0(~a, ~x)))
))

∧ unsafe(~a, ~xtk)
)
.

H reaches U in k steps of discrete jumps with time duration less than M for each state, if and only if,
Reachk,M (H,U) is true.

3 Case Studies
We have developed an open-source tool dReach using OCaml to perform δ-complete reachability analysis
for hybrid systems. dReach is built upon our SMT solver dReal [36] that implements a δ-complete decision
procedure. All the experiments reported below were done using a machine with two Intel Xeon E5-2650
2.00GHz processors and 64GB RAM.
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3.1 Hormone therapy for prostate cancer
Prostate cancer is the second leading cause of cancer-related deaths among men in United States [37].
Hormone therapy in the form of androgen deprivation has been a cornerstone of the management of advanced
prostate cancer for several decades. However, controversy remains regarding its optimum application [38].
Continuous androgen suppression (CAS) therapy has many side effects including anemia, osteoporosis,
impotence, etc. Further, most patients experience a relapse after a median duration of 18-24 months of CAS
treatment, due to the proliferation of androgen-independent (AI) cancer cells.

In order to reduce side effects of CAS and to delay the time to relapse, intermittent androgen suppression
(IAS) was proposed aiming to limit the duration of androgen-poor conditions and avoid emergence of AI
cells [39]. In details, IAS therapy switches between on-treatment and off-treatment modes by monitoring the
serum level of a tumor marker called prostate-specific antigen (PSA): (i) when the PSA level decreases and
reaches a lower threshold value r0, androgen suppression is suspended; (ii) when the PSA level increases
and reaches a upper threshold value r1, androgen suppression is resumed by the administration of medical
agents.

Recent clinical phase II and III trials confirm that IAS has significant advantages in terms of quality of
life and cost. However, with respect to time to relapse and cancer-specific survival, the clinical trials suggest
that to what extent IAS is superior to CAS depends on the individual patient and the on- and off-treatment
scheme [40, 41, 42]. Thus, a crucial unsolved problem is how to design a personalized treatment scheme for
each individual to achieve maximum therapeutic efficacy.

To answer this question, mathematical models have been developed to study the dynamics of prostate
cancer under androgen suppression [43, 23, 44, 45]. Recently, attempts have been made to computationally
classify patients and obtain the optimal treatment scheme [46, 47]. However, these results relied on sim-
plifying nonlinear hybrid dynamical systems to more manageable versions such as piecewise linear models
[46] and piecewise affine systems [47]. In this section, we show that our δ-decision based parameter syn-
thesis approach can help to design personalized treatment scheme based on nonlinear hybrid systems with
arbitrary computable real functions. Here we focus on the hybrid model presented by [23], which describes
the growth of a prostate tumor as the dynamics of a mixed population of androgen-dependent (AD) and
androgen-independent (AI) cells.

The model has two modes which are shown in Figure 1. x(t), y(t), and z(t) represent the population
of AD cells, the population of AI cells, and the serum androgen concentration, respectively. The growth
dynamics of AD and AI cells are governed by their proliferation rate, apoptosis rate and mutation rate from
AD to AI phenotype, depending on androgen concentration z(t). The PSA level v (ng ml−1) is defined as
v(t) = x(t) + y(t). The treatment is suspended or restarted according to the value of v and dv/dt. In mode
2 (off-treatment), the androgen concentration is maintained at the normal level z0 by homeostasis. In mode
1 (on-treatment), the androgen is cleared at a rate 1/τ . Table 1 lists the values of model parameters.

3.1.1 Model selection

Based on different assumptions of the proliferation dynamics of AI cells, the above model has three varia-
tions, denoted as H1, H2, and H3, which are discriminated by the value of d, i.e.:

• H1: AI cells grow at the constant rate independent of the androgen level (d = 0)

• H2: AI cells do not grow when the androgen level is normal (d = 1− β2/α2)

• H3: AI cells decrease when the androgen level is normal (d = 1)
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Figure 1: The prostate cancer treatment model.

In order to perform model selection using δ-decision procedures, we specified the cancer relapse as
a state with “v > 30”, since the PSA level v reflects the total number of tumor cells. We then checked
whether each of the model candidates can reach a relapse state within a bounded time of 1000 days. Here
the treatment scheme threshold parameters were fixed as r0 = 4 (ng ml−1) and r1 = 10 (ng ml−1). The
range of the initial concentration of androgen was given as [10, 20] (nM).

Given the invariant v ∈ [0, 30], H1 andH2 are unable to reach a state with t = 1000. In other words, H1

and H2 will always lead to cancer relapse state no matter which initial androgen concentration was chosen.
This is conflict with the clinical observations by [40, 41]. In contrast, H3 is able to avoid the relapse state
and reproduce the experimental observation (see Figure 2). Thus, we completed the model selection process
by ruling out H1 and H2 and choose H3 for further analysis.

3.1.2 Personalized therapy design

We next apply our parameter synthesis method to selecting suitable therapy and designing personalized
treatment scheme for individual patients. Note that the parameter values in Table 1 were estimated from
clinical data of hundreds of patients [41]. Among patients, the values of some parameters vary, which
causes the variability in responsiveness to hormone therapy. We select a set of “personalized parameters”
including αy (the proliferation rate of AI cells), βy (the apoptosis rate of AI cells), m1 (the mutation rate
from AD to AI cells), and z(0) (the initial androgen level). The values of these parameters can be either
experimentally measured [48] or computationally determined from PSA time serials data [44].

Figure 3(a-c) illustrates the PSA dynamics of 3 patients with different personalized parameters under
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Table 1: Prostate cancer model parameter values

Parameter Bone metastasis Lymph node metastasis
αx 0.0204 d−1 0.0168 d−1

αy 0.0242 d−1 0.0277 d−1

βx 0.0076 d−1 0.0085 d−1

βy 0.0168 d−1 0.0222 d−1

k1 0.0 nM 0.0 nM
k2 2.0 2.0
k3 8.0 nM 8.0 nM
k4 0.5 0.5
m1 0.00005 d−1 0.00005 d−1

z0 20.0 nM 20.0 nM
τ 62.5 d 62.5 d

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

Time (day)

 

 

x (AD cells)
y (AI cells)
z (Androgen)
v (PSA)

Off OnOn Off On

Figure 2: Simulated time profiles of H3 model.

the same IAS treatment scheme (r0 = 4, r1 = 10). IAS prevents the relapse for Patient#1 and delays the
relapse for Patient#2, but does not help Patient#3. Figure 3(d) shows that, by modifying the IAS scheduling
parameters r0 and r1, the relapse of Patient#3 can be avoided or delayed. Thus, we can formulate the
personalized therapy design problem as a parameter synthesis procedure: (i) fill in parameter values of
a patient to H3; (ii) set the ranges of scheduling parameters as r0 ∈ [0, 8) (nM) and r1 ∈ [8, 15]; (iii)
check if H3 can reach a state with t = 1000 given the invariant v ∈ [0, 30] (i.e. no relapse). If the δ-
decision procedure returns False, it means that androgen suppression therapy is not suitable for the patient.
Otherwise, a treatment scheme containing feasible values of r0 and r1 will be returned, which could prevent
or delay the relapse of the patient. Note that if r0 = 0 is returned, it refers to the CAS scheme.

We tested our method on real patients data collected by [41]. The values of αy, βy, m1, and z(0) for
each selected patient were estimated by fitting the model to the PSA time serials data under the first 1.5
cycles of IAS therapy (data available at http://www.nicholasbruchovsky.com/clinicalResearch.html). Table
2 summarized the suggested treatment scheme for selected patients. The in silico validation results are
shown in Supplementary Materials.

3.2 Parameter identification for cardiac disorders
Mathematical modeling the dynamics of cardiac cells is important in understanding the mechanisms of
cardiac disorders. [24] has developed an extremely versatile electrical model for cardiac cells, referred as
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Figure 3: Simulated PSA profiles of patients with different parameters. (a) Patient#1: αy = 0.0242,
βy = 0.0168, m1 = 0.00005, z(0) = 12, r0 = 4, r1 = 10 (b) Patient#2: αy = 0.24, βy = 0.13,
z(0) = 13, m1 = 0.0001, r0 = 4, r1 = 10 (c) Patient#3: αy = 0.35, βy = 0.187, m1 = 0.00005,
z(0) = 10, r0 = 4, r1 = 10 (d) Patient#3: αy = 0.035, βy = 0.187, m1 = 0.00005, z(0) = 10,
r0 = 6, r1 = 15.

minimum resistor model (MRM), which reproduces experimentally measured characteristics of human ven-
tricular cell dynamics. Identifying the parameter ranges for which the MRM accurately reproduces cardiac
abnormalities will benefit the development of the treatment of cardiac disorders. For instance, improper
functioning of the cardiac cell ionic channels may cause the cells to lose excitability. Unexcitable cells can
induce ventricular tachycardia or fibrillation by blocking propagating electrical waves. In order to iden-
tify parameter ranges for which cardiac cells loss excitability, [49] linearized and transformed MRM into
a piecewise-multiaffine system called MHA so that parameters synthesis process can be performed using
the method proposed in [33]. However, due the the simplification, MRM and MHA have different sets of
parameters. In this section, we show how we identify MRM parameter ranges for cardiac disorders without
the help of linear approximation.

MRM contains 4 state variables and 26 parameters. An action potential (AP) is a change in the cell’s
transmembrane potential u, as a response to an external stimulus (current) ε. The flow of total currents is
controlled by a fast channel gate v and two slow gates w and s. In Mode 1, gates v and w are open and gate
s is closed. The transmembrane potassium current causes the decay of u. The cell is resting and waiting
for stimulation. We assume external stimulus ε equals to 1 and lasts for 1 millisecond. The stimulation
causes u increase which may trigger jump1→2 : u ≥ θo. In Mode 2, v starts closing. The decay rate of
u changes. The systems will jump to Mode 3 if u ≥ θw. In Mode 3, w is also closing. u is governed
by the potassium current and the calcium current. When u ≥ θv, Mode 4 can be reached which means a
successful AP initiation. In Mode 4, u reaches its peak due to the fast opening of sodium channel. The
cardiac muscle contracts and u starts decreasing. Figure 5 shows a witness trace computed by dReal when
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Table 2: Personalized hormone therapy scheme for selected patients

Patient ID αy βy m1 z(0) Suggested scheme
#8 0.025 0.021 3.0E-5 8.23 r0 = 5.0, r1 = 11.2
#10 0.019 0.009 5.9E-5 9.44 r0 = 4.1, r1 = 9.4
#45 0.012 0.041 1.0E-5 12.61 r0 = 3.8, r1 = 12.2
#97 0.031 0.015 2.3E-5 10.61 −
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Figure 4: The minimal resistor model of cardiac cells.

Mode 4 is reachable. The stimulus ε was reset every 500 milliseconds.
When the system can not reach a state in Mode 4, the cardiac cell loses the excitability, which might

lead to tachycardia and fibrillation. Starting with Mode 1, we then synthesized parameters using which the
system will never go into Mode 4. We obtained the following results (see Supplementary Materials for more
details):

τo1 ∈ (0, 0.006) ∨ τo2 ∈ (0, 0.13) ∨ 6.2 · τso1 + τso2 ≥ 9.9

The results suggest that when τo1 ∈ (0, 0.006), the system will always stay in Mode 1. When τo2 ∈
(0, 0.13), a state in Mode 3 can not be reached. Furthermore, whether the system can jump from Mode 3
to Mode 4 depends on the interplay between τso1 and τso2. Figure 6 visualizes these results by showing the
simulated time profiles with different parameter values.

4 Conclusion
Hybrid automata are well-studied formalisms for modeling the behavior of biological systems. In this article,
we have presented a framework using δ-complete decision procedures for the parameter identification of
hybrid biological systems. We have used the LRF -formulas to describe parameterized hybrid automata
and encode parameter synthesis problems. Determining the satisfiability of LRF -formulas with nonlinear
real functions is undecidable. To overcome this, we have employed the δ-decision procedures to perform
bounded model checking, and developed an interval constrains propagation based algorithm to obtain the
resulting parameters.

We have demonstrated the applicability of our method with the help of two hybrid biological models.
In the prostate cancer case study, our method successfully ruled out model candidates which hopelessly fit
the experimental observation. We also designed personalized treatment schemes for individual patients. By

10



Invariant

t

Xt X ′
t

T

X0

Fig. 4: Pruning with ∀t-Constraints

First-order Taylor Approximation

t

Xt

X ′
t

X0

T

Fig. 5: Pruning with Low-Order Taylor Approximations

Another useful heuristic in ODE pruning is to bound the
range of the derivatives for a vector space specified by !g, as in
the ODE system d!y/dt = !g(!y(t, !x0)). Suppose for any time
t ∈ [0, T ], the derivatives !g are bounded in [!lg, !ug]. Then by
the Picard-Lindelöf representation, we have

!xt =

∫ t

0

!g(!y(s, !y0))ds + !y0 ∈ [0, T ] · [!lg, !ug] + B!x0

We can use this formula to perform preliminary pruning on
!xt, which is especially efficient when combined with ∀t-
constraints. Figure 5 depicts this pruning method.

IV. EXPERIMENTS

Our tool dReal implements the procedures we studied
for solving SMT formulas with ODEs. It is built on several
existing packages, including opensmt [3] for the general
DPLL(T) framework, realpaver [14] for ICP, and CAPD [1]
for computing interval-enclosures of ODEs. The tool is open-
source at http://dreal.cs.cmu.edu. All benchmarks and data
shown here are also available on the tool website.

All experiments were conducted on a machine with a
3.4GHz octa-core Intel Core i7-2600 processor and 16GB
RAM, running 64-bit Ubuntu 12.04LTS. Table I is a summary
of the running time of the tool on various SMT formulas
generated from bounded model checking hybrid systems. The
formulas typically contain a large number of variables and
nonlinear ODEs. All the benchmarks are much beyond the
scope of existing tools.

P #M #D #O #V delta R Time(s) Trace
AF 4 3 20 44 0.001 S 43.10 90K
AF 8 7 40 88 0.001 S 698.86 20M
AF 8 23 120 246 0.001 S 4528.13 59M
AF 8 31 160 352 0.001 S 8485.99 78M
AF 8 47 240 528 0.001 S 15740.41 117M
AF 8 55 280 616 0.001 S 19989.59 137M
CT 2 2 15 36 0.005 S 345.84 3.1M
CT 2 2 15 36 0.002 S 362.84 3.1M
EO 3 2 18 42 0.01 S 52.93 998K
EO 3 2 18 42 0.001 S 57.67 847K
EO 3 11 72 168 0.01 U 7.75 –
BB 2 10 22 66 0.01 S 0.25 123K
BB 2 20 42 126 0.01 S 0.57 171K
BB 2 20 42 126 0.001 S 2.21 168K
BB 2 40 82 246 0.01 U 0.27 —-
BB 2 40 82 246 0.001 U 0.26 —-
D1 3 2 9 24 0.1 S 30.84 72K
DU 3 2 6 16 0.1 U 0.04 –

TABLE I: Experimental results. #M = Number of modes in the
hybrid system, #D = Unrolling depth, #O = Number of ODEs in the
unrolled formula, #V = Number of variables in the unrolled formula,
R = Bounded Model Checking Result (delta-SAT/UNSAT) Time =
CPU time (s), Trace = Size of the ODE trajectory, AF = Atrial
Filbrillation Model, CT = Cancer Treatment Model, EO = Electronic
Oscillator Model, BB = Bouncing Ball with Drag Model, D1,DU =
Decay Model.

Fig. 6: Above: Witness for the AF model at depth 23 and 1500
time units. Below: Experimental simulation data.

The AF model as we show in Table I is obtained from [15].
It is a precise model of atrial fibrillation, a serious cardiac
disorder. The continuous dynamics in the model concerns four
state variables and the ODEs are highly nonlinear, such as:

du

dt
= e + (u − θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2

(1 + e−2k(u−us))
− gs2s

dv

dt
= −g+

v · v
dw

dt
= −g+

w · w

Figure 5: The simulated time profile of MRM.

investigating a highly nonlinear model of the cardiac cell, we have identified critical parameters that can
induce cardiac disorders.

Our δ-decisions based parameter synthesis method has the potential to be applied to model classes
such as hybrid functional Petri nets models [50]. We plan to explore this in our future work. Another
interesting direction will be applying our method to tackling the parameter estimation problem, which is
currently one of the most important challenges in systems biology. By properly encoding the noisy web-lab
experimental data using logic formulas, bounded model checking can be utilized to estimate the unknown
parameter values. In this connection, a model checking based parameter estimation framework presented in
[51] promises to offer helpful pointers.
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