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Abstract

The presence of aliasing makes modular verification of object-oriented code difficult. If multiple
clients depend on the properties of an object, one client may break a property that others depend
on. We have developed a modular verification approach based on the novel abstraction of object
propositions, which combine predicates and information about object aliasing. In our methodol-
ogy, even if shared data is modified, we know that an object invariant specified by a client holds.
Our permission system allows verification using a mixture of linear and nonlinear reasoning. This
allows it to provide more modularity in some cases than competing separation logic approaches,
because it can more effectively hide the exact aliasing relationships within a module. We vali-
date our approach on an instance of the composite pattern that illustrates our system’s practicality.
We implement our methodology in the intermediate verification language Boogie (of Microsoft
Research), for the composite pattern example.





1 Introduction
We propose a method for modular verification of object-oriented code in the presence of aliasing,
i.e., the existence of multiple references to the same object. The seminal work of Parnas [22]
describes the importance of modular programming, where the information hiding criteria is used
to divide the system into modules. In a world where software systems have to be continually
changed in order to satisfy new (client) requirements, the software engineering principle of modu-
lar programming becomes crucial: it brings flexibility by allowing changes to one module without
modifying the others. Since Java is one of the most popular programming languages used in indus-
try, our verification methodology targets a Java-like language. The formal verification of modules
should ideally follow the same principle: the specification and verification of one method should
not depend on details that are private to the implementation of another method. This means that
modular verification should allow classes (i.e., modules) to be verified independently from each
other. An important instance of this principle comes in the presence of aliasing: if two methods
share an object, yet their specification is not affected by this sharing, then the specification should
not reveal the presence of the sharing.

We introduce the notion of an object proposition for the modular verification of object-oriented
code in the presence of aliasing. Object propositions combine predicates on objects with alias-
ing information about the objects (represented by fractional permissions). They are associated
with object references and declared by programmers as part of method pre- and post-conditions.
Through the use of object propositions, we are able to hide the shared data that two objects have
in common. The implementations of the two objects use fractions to describe how to access the
common data, but this common data need not be exposed in their external interface. Our solution is
therefore more modular than the state of the art with respect to hiding shared data, and furthermore
generalizes systems [3] for which there is good automated tool support.

Our main contributions are the following:

• A verification methodology that unifies substructural logic-based reasoning with invariant-
based reasoning. Linear permissions (object propositions where the fraction is equal to 1)
permit reasoning similar to separation logic, while fractional permissions (object proposi-
tions where the fraction is less than 1) introduce non-linear invariant-based reasoning. Un-
like prior work [5], fractions do not restrict mutation of the shared data; instead, they require
that the specified invariant be preserved.

• A proof of soundness in support of the system.

• Validation of the approach by specifying and proving partial correctness of the composite
pattern, demonstrating benefits in modularity and abstraction compared to other solutions
with the same code structure.

2 Overview
Our methodology uses abstract predicates [21] to characterise the state of an object. We embed
those predicates in a logical framework, and specifies sharing using fractions [5]. A fraction can be
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Figure 1: Linked queues sharing the tail

equal to 1 or it can be less than 1. Fractions are useful when there are multiple aliases that reference
the same object in the program. With the help of fractions, we can track how a reference is allowed
to read and modify the referenced object and, in the case of other references to the object, how
those references might access the object.

If the fraction is 1, it grants read/write access to some particular fields of the object (depending
on the fields that are mentioned in the accompanying predicate). If the fraction is less than 1,
there might be other references that also have read/write access to the same object. In the case
of fractions less than 1 to be usable, they must guarantee that they will never violate some object
invariant, expressed as a predicate.

Our main technical contribution is the novel abstraction called object proposition, that com-
bines predicates with aliasing information about objects. For example, to express that the object
q in Figure 1 has full control of a queue of integers in range [0, 10], we use the object proposition
q@1 Range(0, 10).

We want our checking approach to be modular and to verify that implementations follow their
design intent. In our approach, method pre- and post-conditions are expressed using object propo-
sitions over the receiver and arguments of the method. To verify the method, the abstract predicate
in the object proposition for the receiver object is interpreted as a concrete formula over the cur-
rent values of the receiver object’s fields (including for fields of primitive type int). Following
Fähndrich and DeLine [10], our verification system maintains a key for each field of the receiver
object, which is used to track the current values of those fields through the method. A key o.f → x
represents read/write access to field f of object o holding a value represented by the concrete value
x. At the end of a public method, we pack [7] the keys back into an object proposition and check
that object proposition against the method post-condition.

As a simple example, we consider two linked queues q and r that share a common tail p, in
Figure 1. In prior work on separation logic or dynamic frames, the specification of any method
has to describe the entire footprint of the method, i.e., all heap locations that are being touched
through reading or writing in the body of the method. That is, the shared data p has to be specified
in the specification of all methods that access the objects in the lists q and r. Using our object
propositions, we have to mention only a permission q@1 V alidQueue (r@1... respectively) in the
specification of a method accessing q (or r). The fact that p is shared between the two aliases is
hidden by the abstract predicate V alidQueue.

In Section 4 we discuss this example in more detail in order to illustrate the technical differ-
ences in verifying this example using object propositions versus prior approaches.
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3 Current Approaches
The verification of object-oriented code can be achieved using the classical invariant-based tech-
nique [2]. When using this technique, all objects of the same class have to satisfy the same invari-
ant. The invariant has to hold in all visible states of an object, i.e. before a method is called on
the object and after the method returns. The invariant can be broken inside the method as long as
it is restored upon exit from the method. This leads to a key limitation: the specifications that can
be written using the proof language and the verification that can be performed are limited. This
limitation shows itself in a number of ways. One sign is: the methods that can be written for each
class are restricted because now each method of a particular class has to have the invariant of that
class as a post-condition. Another sign is that the invariant of an object cannot depend on another
object’s state, unless additional features such as ownership are added. Leino and Müller [23] have
added ownership to organize objects into contexts. In their approach using object invariants, the
invariant of an object is allowed to depend on the fields of the object, on the fields of all objects
in transitively-owned contexts, and on fields of objects reachable via given sequences of fields. A
related restriction is that from outside the object, one cannot make an assertion about that object’s
state, other than that its invariant holds. Thus the classic technique for checking object invariants
ensures that objects remain well-formed, but it does not help with reasoning about how they change
over time (other than that they do not break the invariant).

Separation logic approaches [21], [8], [6], etc. bypass the limitations of invariant-based ver-
ification techniques by requiring that each method describe its footprint and the predicates that
should hold for the objects in that footprint. In this way not all objects of the same class have to
satisfy the same predicate. Separation logic allows us to reason about how objects’ state changes
over time. On the downside, now the specification of a method has to reveal the structures of ob-
jects that it uses. This is not a problem if the objects in the footprint are completely encapsulated.
But if they are shared between two structures, that sharing must be revealed when transitioning
between the “inside" and “outside" of the encapsulating abstraction. This is not desirable from an
information hiding point of view.

On the other hand, permission-based work [3], [7], [5] gives another partial solution for the
verification of object-oriented code in the presence of aliasing. By using share and/or fractional
permissions referring to the multiple aliases of an object, it is possible for objects of the same class
to have different invariants. This is different from the traditional thinking that an object invariant
is always the same for all objects. What share and/or fractions do is allow us to make different
assertions about different objects; we are not limited to a single object invariant. This relaxes the
classical invariant-based verification technique and it makes it much more flexible.

Moreover, developers can use access permissions [3] to express the design intent of their pro-
tocols in annotations on methods and classes. Our work uses fractional permissions [5] (which
are similar to access permissions in some respects) in the creation of the novel concept of object
propositions. The main difference between the way we use permissions and existing work about
permissions is that we do not require the state referred to by a fraction less than 1 to be immutable.
Instead, that state has to satisfy an invariant that can be relied on by other objects. Our goal is
to modularly check that implementations follow their design intent. The typestate [7] formulation
has certain limits of expressiveness: it is only suited to finite state abstractions. This makes it
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unsuitable for describing fields that contain integers (which can take an infinite number of values)
and can satisfy various arithmetical properties. Our object propositions have the advantage that
they can express predicates over an infinite domain, such as the integers.

Our fractional permissions system allows verification using a mixture of linear and nonlinear
reasoning, combining ideas from previous systems. The existing work on separation logic is an
example of linear reasoning, while the work on fractional permissions is an example of nonlinear
reasoning. In a linear system there can be only one assertion about each piece of state (such as
each field of an object), while in a nonlinear system there can be multiple mentions about the same
piece of state inside a formula. The combination of ideas from these two distinct areas allows our
system to provide more modularity than each individual approach. For example, in some cases our
work can be more modular than separation logic approaches because it can more effectively hide
the exact aliasing relationships.

4 Example: Queues of integers
In Figure 2, we present a class that defines object propositions which are useful for reasoning
about the correctness of client code and about whether the implementation of a method respects
its specification. Our specification logic is based on linear logic[12], a simplification of separation
logic that retains the advantages of separation logic’s frame rule1. Object propositions are thus
treated as resources that may not be duplicated, and which are consumed upon usage. Pre- and
post-conditions are separated with a linear implication( and use multiplicative conjunction (⊗),
additive disjunction (⊕) and existential/universal quantifiers (where there is a need to quantify over
the parameters of the predicates).

Newly created objects have a fraction of 1, and their state can be manipulated to satisfy different
predicates defined in the class. At the point where the fraction to the object is first split into two
fractions less than 1 (see Figure 8), the predicate currently satisfied by the object’s state becomes
an invariant that the object will always satisfy in future execution. Different references pointing to
the same object will always be able to rely on that invariant when calling methods on the object.

A critical part of our work is allowing clients to depend on a property of a shared object. In
this queue example, clients depend on the shared Link items being in a consistent range. Other
methodologies such as Boogie [1] allow a client to depend only on properties of objects that it
owns. Our verification technique also allows a client to depend on properties of objects that it
doesn’t (exclusively) own.

To gain read or write access to the fields of an object, we have to unpack it [7]. When we
unpack an object proposition (with a fraction of 1 or with a fraction of less than 1), we gain
modifying access. After a method finishes working with the fields of a shared object, our proof
rules in Section 6 require us to ensure that the same predicate as before the unpacking holds of that
shared object. If the same predicate holds, we are allowed to pack back the shared object to that
predicate. Since for a unique object (an object that is referenced with a fraction of 1), there is only
one reference in the system pointing to it and no risk of interferences, we don’t require packing

1we believe our methodology can be applied in a separation logic setting as well, but leave this extension to future
work, as linear logic is sufficient to express our ideas.
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class Link {
int val;
Link next;

predicate Range(int x, int y) ≡ ∃v, o, k
val→ v ⊗ next→ o
⊗ v ≥ x ⊗ v ≤ y
⊗ [o@k Range(x, y) ⊕ o == null]

predicate UniRange(int x, int y) ≡ ∃v, o
val→ v ⊗ next→ o ⊗ v ≥ x ⊗ v ≤ y
⊗ [o@1 UniRange(x, y) ⊕ o == null]

void addModulo11(int x)
this@k Range(0, 10) ( this@k Range(0, 10)
{val = (val + x)% 11;
if (next!=null) {next.addModulo11(x);}
}

void add(int z)
∀ x:int, y:int, x<y .this@1 UniRange(x, y)

( this@1 UniRange(x+ z, y + z)
{val = val + z;
if (next!=null) {next.add(z);}
}

}

Figure 2: Link class and range predicates
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to the same predicate for unique objects. We avoid inconsistencies by allowing multiple object
propositions to be unpacked at the same time only if the objects are not aliased, or if the unpacked
propositions cover disjoint fields of a single object.

The predicate Range(int x, int y) in Figure 2 ensures that all the elements in a linked queue
starting from the current Link are in the range [x, y]. The object proposition mentions o@k, thus
requiring the existence of a fraction giving access to each Link of the queue. In contrast, the
predicate UniRange(int x, int y) requires the presence of a unique permission to all elements in the
queue. These restrictions mean that the only method that can be called on a shared Link object
satisfying invariant Range(0, 10) is addModulo11. The specification of the addModulo11(int x)
method is the only one that does not break the invariant. If the programmer wants to modify some
value in the queue using the add(int z) method, the queue must be accessed through a fraction of 1.

Given a pre-condition and a desired post-condition, expressed as logical formulas over object
propositions, the proof rules in Section 6 are used to verify a segment of code. There is a proof
rule for each expression form, as well as a rule for sequencing statements/expressions (technically
with a let expression in our formalism). The soundness of the proof rules (defined later) means
that given a heap that satisfies the pre-condition formula, a program that typechecks and verifies
according to our proof rules will execute, and if it terminates, will result in a heap that satisfies
the postcondition formula. While our proof rules are not complete, they are sufficient to verify an
interesting set of programs and properties, including the examples in this paper.

We show some client code and its verification using object propositions:

Link la = new (Link(3, null),Range(0,10));
unpacked(la, 1) ⊗ ∃v, o . la.val→ v ⊗ la.next→ o
⊗ v == 3 ⊗ o == null

la@1 Range(0, 10)

la@1
2 Range(0, 10) ⊗ la@1

2 Range(0, 10)
Link p = new (Link(6, la),Range(0,10));
p@1 Range(0, 10) ⊗ la@1

2 Range(0, 10)

p@1
2 Range(0, 10) ⊗ p@1

2 Range(0, 10)
Link q = new (Link(1, p),Range(0,10));
q@1 Range(0, 10) ⊗ p@1

2 Range(0, 10)
Link r = new (Link(8, p),Range(0,10));
r@1 Range(0, 10) ⊗ q@1 Range(0, 10)

r@1
2 Range(0, 10) ⊗ r@1

2 Range(0, 10)⊗ q@1 Range(0, 10)
r.addModulo11(9);
q@1 Range(0, 10) ⊗ r@1

2Range(0, 10)

q@1
2 Range(0, 10) ⊗ q@1

2 Range(0, 10)⊗ r@1
2 Range(0, 10)

q.addModulo11(7);
q@1

2 Range(0, 10) ⊗ r@1
2 Range(0, 10)
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When first creating object la, we get an unpacked object proposition with a fraction of 1, along
with keys for each of the fields and assertions about the field values. We can pack these permissions
up into the predicate Range(0, 10), then split the fraction of 1 into two half fractions, as we have
to pass a permission to la to the constructor of Link when creating p. Since la can be accessed
through p from now on, we do not need to mention la in the following object proposition sets.
In this respect, our system is an affine one (as opposed to a linear one), because we can drop a
resource if we do not need it any more.

When creating the object q, we need to pass in a fraction to p. We obtain it by splitting the
current fraction of 1 to p into two fractions. Before calling method addModulo11 on r, we also
have to split the fraction to r so that a fraction can be passed to the method. The splitting of
fractions is similar when we call addModulo11 on q.

The specification in separation logic is more cumbersome and unable to hide shared data. To
express the fact that all values in a segment of linked elements are in the interval [n1, n2], we need
to define the following predicate :

Listseg(r, p, n1, n2) ≡ (r = p) ∨ (r → (i, s)?
Listseg(s, p, n1, n2) ∧ n1 ≤ i ≤ n2).

This predicate states that either the segment is null, or the val field of r points to i and the next
field points to s, such that n1 ≤ i ≤ n2, and the elements on the segment from s to p are in the
interval [n1, n2]. The verification of the same code in separation logic is shown below:

...
{}

Link la = new Link(3, null);
{Listseg(la, null, 0, 10)}

Link p = new Link(6, la);
{Listseg(p, null, 0, 10)}

Link q = new Link(1, p);
{Listseg(q, p, 0, 10) ? Listseg(p, null, 0, 10)}

Link r = new Link(8, p);
{Listseg(q, p, 0, 10) ? Listseg(r, p, 0, 10)
? Listseg(p, null, 0, 10)}

{Listseg(q, p, 0, 10) ? Listseg(r, null, 0, 10)}
r.addModulo11(9);
{Listseg(q, p, 0, 10) ? Listseg(r, null, 0, 10)}

*****missing step*****
{Listseg(q, null, 0, 10) ? Listseg(r, p, 0, 10)}

q.addModule11(7);
{Listseg(q, null, 0, 10) ? Listseg(r, p, 0, 10)}

...

In separation logic, the natural pre- and post-conditions of the method addModulo11 are
Listseg(this, null, 0, 10), i.e., the method takes in a list of elements in [0, 10] and returns a list

in the same range.
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Thus, before calling addModulo11 on r, we have to combine
Listseg(r, p, 0, 10) ? Listseg(p, null, 0, 10)
intoListseg(r, null, 0, 10). We observe the following problem: in order to call addModulo11

on q, we have to take out Listseg(p, null, 0, 10) and combine it with Listseg(q, p, 0, 10), to obtain
Listseg(q, null, 0, 10). But the specification of the method does not allow it, hence the missing
step in the verification above. The specification of addModulo11 has to be modified instead, by
mentioning that there exists some sublist Listseg(p, null, 0, 10) that we pass in and which gets
passed back out again. The modification is unnatural: the specification of addModulo11 should
not care that it receives a list made of two separate sublists, it should only care that it receives a list
in range [0, 10].

This situation is very problematic because the specification of addModulo11 involving sub-
lists becomes awkward. We can imagine an even more complicated example, where there are three
sublists that we need to pass in and out of addModulo11. It is impossible to know, at the time
when we write the specification of a method, on what kind of shared data that method will be used.
Separation logic approaches will thus have a difficult time trying to verify this kind of code, while
object propositions allow us to call methods on both lists, without requiring the combination of
two predicates.

4.1 Example: Cells in a spreadsheet
I consider the example of a spreadsheet, as described in [17]. In my spreadsheet each cell contains
an add formula that adds two integer inputs. Each cell may refer to other two cells. The general
case would be for each cell to have a dependency list of cells, but since my grammar does not
support arrays yet, I am not considering that case. Whenever the user changes a cell, each of the
two cells which transitively depend upon it must be updated.

A visual representation of this example is presented in Figure 3. In separation logic, the spec-
ification of any method has to describe the entire footprint of the method, i.e., all heap locations
that are being touched through reading or writing in the body of the method. That is, the shared
cells a3 and a6 have to be specified in the specification of all methods that modify the cells a1 and
a2.

In Figure 4, I present the code implementing a cell in a spreadsheet.
The specification in separation logic is unable to hide shared data. To express the fact that all

cells are in a consistent state where the dependencies are respected and the sum of the inputs is
equal to the output for each cell, I define the following predicate :

SepOK(cell) ≡ (cell.in1 → x1) ? (cell.in2 → x2) ? (cell.out → o) ? (cell.dep1 → d1) ?
(cell.dep2→ d2)?(x1+x2 = o)?(SepOK(d1.ce)∧d1.ce.“in+input”→ o)?(SepOK(d2.ce)∧
((d2.ce.in1→ o ∧ d2.input = 1) ∨ (d2.ce.in2→ o ∧ d2.input = 2))).

This predicate states that the sum of the two inputs of cell is equal to the output, and that the
predicate SepOK is verified by all the cells that directly depend on the output of the current cell.
Additionally, the predicate SepOK also checks that the corresponding input for each of the two
dependency cells is equal to the output of the current cell. This predicate only works in the case
when the cells form a directed acyclic graph (DAG). The predicate SepOK causes problems when
there is a diamond structure (not shown in Figure 3) or if one wants to assert the predicate about
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Figure 3: Add cells in spreadsheet
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class Dependency {
Cell ce;
int input;

}
class Cell {

int in1, in2, out;
Dependency dep1, dep2;

void setInputDep(int newInput) {
if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);
else dep1.ce.setInput2(newInput);

}
if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);
else dep2.ce.setInput2(newInput);

}
}

void setInput1(int x) {
this.in1 = x;
this.out = this.in1 + this.in2;
this.setInputDep(out);
}

void setInput2(int x) {
this.in2 = x;
this.out = this.in1 + this.in2;
this.setInputDep(out);
}

}

Figure 4: Cell class
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Figure 5: Cells in a cycle

two separate nodes whose subtrees overlap due to a DAG structure (e.g. a1 and a2 in Figure 3).
If the dependencies between the cells form a cycle, as in Figure 5, the predicate SepOK cannot
possibly hold.

Additionally we need another predicate to express simple properties about the cells:
Basic(cell) ≡ ∃x1, x2, o, d.(cell.in1→ x1) ? (cell.in2→ x2) ? (cell.out→ o) ? (cell.dep→

d).
Below I show a fragment of client code and its verification using separation logic.

{Basic(a2) ? Basic(a5) ? SepOK(a1)}
a1.setInput1(10);
{Basic(a2) ? Basic(a5) ? SepOK(a1)}
{∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗missing step ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗}
{Basic(a4) ? Basic(a1) ? SepOK(a2)}

a2.setInput1(20);

In the specification above,
SepOK(a1) ≡ a1.in1→ x1 ? a1.in2→ x2 ? a1.out→ o ? x1 + x2 = o ?

(SepOK(a4) ∧ a4.in1 = o) ? (SepOK(a3) ∧ a3.in1 = o)
and

SepOK(a2) ≡ a2.in1→ z1 ? a2.in2→ z2 ? a2.out→ p ? z1 + z2 = p ?
(SepOK(a3) ∧ a3.in2 = p) ? (SepOK(a5) ∧ a5.in1 = p)

In separation logic, the natural pre- and post-conditions of the method setInput1 are SepOK(this),
i.e., the method takes in a cell that is in a consistent state in the spreadsheet and returns a cell with
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the input changed, but that is still in a consistent state in the spreadsheet. Note that the pre-
condition does not need to be of the form SepOK(this, carrier) where carrier is all the cells
involved as in Jacobs et al.’s work [15]. This is because SepOK is a recursive abstract predicate
that states in its definition properties about the cells that depend on the current this cell and thus we
do not need to explicitly carry around all the cells involved. The natural specification of setInput1
would be SepOK(this)⇒ SepOK(this).

Thus, before calling setInput1 on a2, we have to combine SepOK(a3) ? SepOK(a5)
into SepOK(a2). We observe the following problem: in order to call setInput1 on a2, we
have to take out SepOK(a3) and combine it with SepOK(a5), to obtain SepOK(a2). But the
specification of the method does not allow it, hence the missing step in the verification above. The
specification of setInput1 has to be modified instead, by mentioning that there exists some cell
a3 that satisfies SepOK(a3) that we pass in and which gets passed back out again. Thus, if we
want to call setInput1 on a2, the specification of setInput1 would have to know about the
specific cell a3, which is not possible.

The specification of setInput1 would become
∀α, β, x . (SepOK(this) ∧ SepOK(this) ≡ α ? SepOK(x) ? β)
⇒ (SepOK(this) ∧ SepOK(this) ≡ α ? SepOK(x) ? β).
The modification is unnatural: the specification of setInput1 should not care about which

are the dependencies of the current cell, it should only care that it modified the current cell.
This situation is very problematic because the specification of setInput1 involving shared

cells becomes awkward. One can imagine an even more complicated example, where there are
multiple shared cells that need to be passed in and out of different calls to setInput1. It is
impossible to know, at the time when we write the specification of a method, on what kind of
shared data that method will be used.

In Figure 6, we present the Java class from Figure 4 augmented with predicates and object
propositions, which are useful for reasoning about the correctness of client code and about whether
the implementation of a method respects its specification. Since they contain fractional permis-
sions which represent resources that have to be consumed upon usage, the object propositions are
consumed upon usage and their duplication is forbidden. Therefore, we use linear logic [12] to
write the specifications. Pre- and post-conditions are separated with a linear implication ( and
use multiplicative conjunction (⊗), additive disjunction (⊕) and existential/universal quantifiers
(where there is a need to quantify over the parameters of the predicates).

Newly created objects have a fractional permission of 1, and their state can be manipulated
to satisfy different predicates defined in the class. A fractional permission of 1 can be split into
two fractional permissions which are less than 1, see Figure 8. The programmer can specify an
invariant that the object will always satisfy in future execution. Different references pointing to the
same object, will always be able to rely on that invariant when calling methods on the object.

A critical part of our work is allowing clients to depend on a property of a shared object. Other
methodologies such as Boogie [1] allow a client to depend only on properties of objects that it
owns. Our verification technique also allows a client to depend on properties of objects that it
doesn’t (exclusively) own.

To gain read or write access to the fields of an object, we have to unpack it [7]. After a
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class Dependency {
Cell ce;
int input;

predicate OKdep(int o) ≡ ∃c, k, i.this.ce→ c⊗ this.input→ i⊗
((i = 1⊗ c@1

2 In1(o)⊗ c@k OK())⊕ (i = 2⊗ c@1
2 In2(o)⊗ c@k OK()))

}
class Cell {

int in1, in2, out;
Dependency dep1, dep2;

predicate In1(int x1) ≡ this.in1→ x1

predicate In2(int x2) ≡ this.in2→ x2

predicate OK() ≡ ∃x1, x2, o, d1, d2.this@1
2 In1(x1)⊗ this@1

2 In2(x2)⊗
x1 + x2 = o ⊗ this.out→ o⊗ this.dep1→ d1⊗ this.dep2→ d2⊗
d1@1 OKdep(o)⊗ d2@1 OKdep(o)

void setInputDep(int i, int newInput) {
if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);
else dep1.ce.setInput2(newInput);

}
if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);
else dep2.ce.setInput2(newInput);

}
}

void setInput1(int x)
∀k.(this@k OK()( this@k OK())
{ this.in1 = x;

this.out = this.in1 + this.in2;
this.setInputDep(out);

}

void setInput2(int x)
∀k.(this@k OK()( this@k OK())
{ this.in2 = x;

this.out = this.in1 + this.in2;
this.setInputDep(out);

}

}

Figure 6: Cell class and OK predicate
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method finishes working with the fields of a shared object (an object for which we have a fractional
permission, with a fraction less than 1), our proof rules in Section 6 require us to ensure that the
same predicate as before the unpacking holds of that shared object. If the same predicate holds, we
are allowed to pack back the shared object to that predicate. Since for an object with a fractional
permission of 1 there is no risk of interferences, we don’t require packing to the same predicate
for this kind of objects. We avoid inconsistencies by allowing multiple object propositions to be
unpacked at the same time only if the objects are not aliased, or if the unpacked propositions cover
disjoint fields of a single object.

Packing/unpacking [7] is a very important mechanism in our system. The benefits of this
mechanism are the following:

• it achieves information hiding (e.g. like abstract predicates)

• it describes the valid states of the system (similar to visible states in invariant-based ap-
proaches)

• it is a way to store resources in the heap. When a field key is put (packed) into a predicate, it
disappears and cannot be accessed again until it is unpacked

• it allows us to characterize the correctness of the system in a simple way when everything is
packed

Another central idea of our system is sharing using fractions less than 1. The insights about
sharing are the following:

• with a fractional permission of 1, no sharing is permitted. There is only one of each ab-
stract predicate asserted for each object at run time, and the asserted abstract predicates have
disjoint fields.

• fractional permissions less than 1 enable sharing of particular abstract predicates, but only
one instance of a particular abstract predicate P on a particular object o can be unpacked at
once. This ensures that field permissions cannot be duplicated via shared permissions.

An important aspect of our system is the ability to allow predicates to depend on each other.
Intuitively, this allows “chopping up" an invariant into its modular constituent parts.

Like other previous systems, our system uses abstraction, which allows clients to treat method
pre/post-conditions opaquely.

The predicate OK() in Figure 6 ensures that all the cells in the spreadsheet are in a consistent
state, where the sum of their inputs is equal to their output. Since we only use a fractional permis-
sions k1, k2 < 1 for the dependency cells, it is possible for multiple predicates OK() to talk about
the same cell without exposing the sharing. More specifically, using object propositions we only
need to know a1@k OK() before calling a1.setInput1(10). Before calling a2.setInput1(20) we
only need to know a2@k OK(). Since inside the recursive predicateOK() there are fractional per-
missions less than 1 that refer to the dependency cells, we are allowed to share the cell a3 (which
can depend on multiple cells). Thus, using object propositions we are not explicitly revealing the
shared cells in the structure of the spreadsheet.
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Prog ::= ClDecl e
ClDecl ::= class C { FldDecl PredDecl MthDecl }

FldDecl ::= T f
PredDecl ::= predicate Q(T x) ≡ R
MthDecl ::= T m(T x) MthSpec { e; return e }

MthSpec ::= R( R
R ::= P | R ⊗ R | R ⊕ R |

∃z.R | ∀z.R | r.f → x | t binop t
P ::= r@k Q(t) | unpacked(r@k Q(t))
k ::= n1

n2
(where n1, n2 ∈ N and 0 < n1 ≤ n2)

e ::= t | r.f | r.f = t | r.m(t) | newC(t) |
if (t) { e } else { e } |
let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r@k Q(t)in e |
unpack r@k Q(t)in e

t ::= x | n | null | true | false
x ::= r | i

binop ::= + | − | % | = | ! = | ≤ | < | ≥ | >
T ::= C | int | boolean

Figure 7: Grammar of language and specification

5 Grammar
The programming language that we are using is inspired by Featherweight Java [13], extended to
include object propositions. We retained only Java concepts relevant to the core technical con-
tribution of this paper, omiting features such as inheritance, casting or dynamic dispatch that are
important but are handled by orthogonal techniques.

Below we show the syntax of our simple class-based object-oriented language. In addition to
the usual constructs, each class can define one or more abstract predicates Q in terms of concrete
formulas R. Each method comes with pre and post-condition formulas. Formulas include object
propositions P , terms, primitive binary predicates, conjunction, disjunction, keys, and quantifi-
cation. We distinguish effectful expressions from simple terms, and assume the program is in
let-normal form. The pack and unpack expression forms are markers for when packing and un-
packing occurs in the proof system. References o and indirect references l do not appear in source
programs but are used in the dynamic semantics, defined later. In the grammar, r represents a
reference to an object and i represents a reference to an integer.

In our system, we will assume that all the formulas R are in disjunctive normal form. A
formula R of our system is in disjunctive normal form if and only if it is an additive disjunction of
one or more multiplicative conjunctions of one or more of the predicates P , t1 binop t2 , r.f →
x , ∃z.P , ∀z.P.
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k ∈ (0, 1]

r@k Q(t) ` r@k
2 Q(t)⊗ r@k

2 Q(t)
(SPLIT)

Figure 8: Rule for splitting fractions

5.1 Permission Splitting
In order to allow objects to be aliased, we must split a fraction of 1 into multiple fractions less than
1 [5]. The fraction splitting rule is defined in Figure 8. An invariant of the rules is that a fraction of
1 is never duplicated. We also allow the inverse of splitting permissions: joining, where we define
the rules in Figure 9.

6 Proof Rules
This section describes the proof rules that can be used to verify correctness properties of code.
The judgement to check an expression e is of the form Γ; Π ` e : ∃x.T ;R. This is read “in
valid context Γ and linear context Π, an expression e executed has type T with postcondition
formula R”.This judgement is within a receiver class C, which is mentioned when necessary in
the assumptions of the rules. By writing ∃x, we bind the variable x to the result of the expression
e in the postcondition. Γ gives the types of variables and references, while Π is a pre-condition in
disjunctive normal form. The linear context Π should be just as general as R.

type context Γ ::= · | Γ, x : T
linear context Π ::=

⊕n
i=1 Πi

Πi ::= · | Πi ⊗ P | Πi ⊗ t1 binop t2 |
Πi ⊗ r.f → x | ∃z.P | ∀z.P

The static proof rules also contain the following judgements: Γ ` r : C, Γ; Π ` R and
Γ; Π ` r.T ;R. The judgement Γ ` r : C means that in valid type context Γ, the reference r has
type C. The judgement Γ; Π ` R means that from valid type context Γ and linear context Π we can
deduce that object proposition R holds. The judgement Γ; Π ` r.T ;R means that from valid type
context Γ and linear context Π we can deduce that reference r has type T and object proposition
R is true about r. The ⊗ linear logic operator is symmetric. Thus in the rules for adding fractions,
we can have a rule symmetric to (ADD2) that adds the fraction of a packed object propositions to
the fraction of an unpacked object proposition.

Before presenting the detailed rules, I provide the intuition for why my system is sound (the
formal soundness theorem is given below in Section9.1). The first invariant enforced by my system
is that there will never be two conflicting object propositions to the same object. The fraction
splitting rule can give rise to only one of two situations, for a particular object: there exists a
reference to the object with a fraction of 1, or all the references to this object have fractions less
than 1. For the first case, sound reasoning is easy because aliasing is prohibited.

The second case, concerning fractional permissions less than 1, follows an inductive argument
in nature. The argument is based on the property that the invariant of a shared object (one can
think of an object with a fraction less than 1 as being shared) always holds whenever that object is
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ε ∈ (0, 1) k ∈ (0, 1] ε < k

r@ε Q(t1)⊗ r@(k − ε) Q(t1) ` r@k Q(t1)
(ADD1)

ε ∈ (0, 1) k ∈ (0, 1] ε < k

unpacked(r@ε Q(t1))⊗ r@(k − ε) Q(t1) `
unpacked(r@k Q(t1))

(ADD2)

Figure 9: Rules for adding fractions

packed. The base case in the induction occurs when an object with a fraction of 1, whose invariant
holds, first becomes shared. In order to access the fields of an object, we must first unpack the
corresponding predicate; by induction, we can assume its invariant holds as long as the object is
packed. But we know the object is packed immediately before the unpack operation, because the
rules of my system ensure that a given predicate over a particular object can only be unpacked
once; therefore, we know the object’s invariant holds. Assignments to the object’s fields may later
violate the invariant, but in order to pack the object back up we must restore its invariant. For
a shared object, packing must restore the same predicate the object had when it was unpacked;
thus the invariant of an object never changes once that object is shared, avoiding inconsistencies
between aliases to the object. (Note that if at a later time we add the fractions corresponding to that
object and get a fraction of 1, we will be able to change the predicates that hold of that object. But
as long as the object is shared, the invariant of that object must hold.) Although theoretically an
object may have several different invariants, in all my examples in my thesis proposal each object
has only one invariant. In future work I would like to support multiple invariants for the same
object, but this thesis does not deal with this case.

This completes the inductive case for soundness of shared objects. The induction is done on
the steps when a predicate is packed or unpacked. All of the predicates we might infer will thus be
sound because we will never assume anything more about that object than the predicate invariant,
which should hold according to the above argument.

In the following paragraphs, we describe the proof rules while inlining the rules in the text. In
the rules below we assume that there is a class C that is the same for all the rules.

The rule TERM below formalizes the standard logical judgement for existential introduction.
The notation [e′/x]e substitutes e′ for occurrences of x in e. The FIELD rule checks field accesses
analogously.
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Γ ` t : T Γ; Π ` [t/x]R

Γ; Π ` t : ∃x.T ;R
TERM

Γ ` r : C r.fi : T is a field of C
Π ` r.fi → ri Γ; Π ` [ri/x]R

Γ; Π ` r.fi : ∃x.T ;R
FIELD

NEW checks object construction. We get a key for each field and the remaining linear context
Π1. The context Π1 contains the object propositions taken from Π from which we consumed the
keys.

fields(C) = T f Γ ` t : T

Γ; Π ` new C(t) : ∃z.C; z.f → t⊗Π1
NEW

IF introduces disjunctive types in the system and checks if -expressions. A corresponding ⊕ rule
eliminates disjunctions in the pre-condition by verifying that an expression checks under either
disjunct.

Γ; (Π⊗ t = true) ` e1 : ∃x.T ;R1

Γ ` t : bool Γ; (Π⊗ t = false) ` e2 : ∃x.T ;R2

Γ; Π ` if(t){e1}else{e2} : ∃x.T ;R1 ⊕R2
IF

LET checks a let binding, extracting existentially bound variables and putting them into the
context (a limitation of my current system is that universal quantification is supported only in
method specifications).

Γ; Π ` e1 : ∃x.T1;R1 ⊗Π2

(Γ, x : T1); (R1 ⊗Π2) ` e2 : ∃w.T2;R2

Γ; Π ` let x = e1 in e2 : ∃w.T2;R2
LET

Γ; Π1 ` e : ∃x.T ;R1 Γ; Π2 ` e : ∃x.T ;R2

Γ; (Π1
⊕

Π2) ` e : ∃x.T ;R1 ⊕R2
⊕

The CALL rule simply states what is the object proposition that holds about the result of the
method being called. This rule first identifies the specification of the method (using the helper
judgement MTYPE) and then goes on to state the object proposition holding for the result. The `
notation in the fourth premise of the CALL rule represents entailment in linear logic.

The reader might see that there are some concerns about the modularity of the CALL rule:
Π1 shouldn’t contain unpacked predicates. Indeed, it is important that the CALL rule tracks all
shared predicates that are unpacked. It does not track predicates that are packed, nor unpacked
predicates that have a fractional permission of 1. The normal situation is that all shared predicates
are packed, and any method can be called in this situation. In the intended mode of use, we only
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make calls with a shared unpacked predicate when traversing a data structure hand-over-hand as
in the Composite pattern, and we claim that modularity problems are minimized in this situation.
This does represent a limitation in our system, however, it is one that goes hand in hand with the
advantage of supporting shared predicates.

Γ ` r0 : C0 Γ ` t1 : T
Γ; Π ` [r0/this][t1/x]R1 ⊗Π1

mtype(m,C0) = ∀x : T .∃result.Tr;R′1( R
R1 ` R′1

Π1 cannot contain unpacked predicates

Γ; Π ` r0.m(t1) : ∃ result.Tr; [r0/this][t1/x]R⊗Π1
CALL

class C{...M...} ∈ CL
Tr m(Tx)R1( R {e1; return e2} ∈M
mtype(m,C) = ∀x : T .∃result.Tr;R1( R

MTYPE

The rule ASSIGN assigns an object t to a field fi and returns the old field value as an existential
x. For this rule to work, the current object this has to be unpacked, thus giving us permission to
modify the fields.

Γ; Π ` t1 : Ti; t1@k0 Q0(t0)⊗Π1

Γ; Π1 ` r1.fi : Ti; r
′
i@k

′ Q′(t′)⊗Π2

Π2 ` r1.fi → r′i ⊗Π3

Γ; Π ` r1.fi = t1 : ∃x.Ti;x@k′ Q′(t′)⊗ t1@k0 Q0(t0)
⊗ r1.fi → t1 ⊗Π3

ASSIGN

The rules for packing and unpacking are PACK1, PACK2, UNPACK1 and UNPACK2. As men-
tioned before, when we pack an object to a predicate with a fraction less than 1, we have to pack it
to the same predicate that was true before the object was unpacked. The restriction is not necessary
for a predicate with a fraction of 1: objects that are packed to this kind of predicate can be packed
to a different predicate than the one that was true for them before unpacking. For example, in
Figure 6, the method setInput1 has as pre-condition the object proposition this@k OK(). Since
the fraction k is universally quantified and can be less than 1, the this object in the post-condition
must be sure to satisfy the predicate OK() (which happens to also be an invariant in this example).
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Γ; Π ` r : C; [t2/x]R2 ⊗Π1

predicate Q2(Tx) ≡ R2 ∈ C
Γ; (Π1 ⊗ r@1 Q2(t2)) ` e : ∃x.T ;R

Γ; Π ` pack r@1 Q2(t2) in e : ∃x.T ;R
PACK1

Γ; Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ; Π ` pack r@k Q(t1) in e : ∃x.T ;R
PACK2

As mentioned earlier, we allow unpacking of multiple predicates, as long as the objects don’t
alias. We also allow unpacking of multiple predicates of the same object, because we have a single
linear write permission to each field. There can’t be any two packed predicates containing write
permissions to the same field.

Γ; Π ` r : C; r@1 Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C
Γ; (Π1 ⊗ [t1/x]R1) ` e : ∃x.T ;R

Γ; Π ` unpack r@1 Q(t1) in e : ∃x.T ;R
UNPACK1

Γ; Π ` r : C; r@k Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@k Q(t1)) ` e : ∃x.T ;R
∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ Π⇒ Π ` r 6= r′)

Γ; Π ` unpack r@k Q(t1) in e : ∃x.T ;R
UNPACK2

We have also developed rules for the dynamic semantics, that are used in proving the soundness of
our system. Section 9 describes in detail the dynamic semantics rules and the soundness theorem.
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Figure 10:

7 Specification for Modularity
To illustrate the modularity issues, we present here a more realistic example than the queue exam-
ple from Section 4. In Figure 10 we depict a simulator for two queues of jobs, containing large
jobs (size>10) and small jobs (size<11). The example is relevant in queueing theory, where an
optimal scheduling policy might separate the jobs in two queues, according to some criteria. The
role of the control is to make each producer/consumer periodically take a step in the simulation.
We have modeled two FIFO queues, two producers, two consumers and a control object. Each
producer needs a pointer to the end of each queue, for adding a new job, and a pointer to the start
of each queue, for initializing the start of the queue in case it becomes empty. Each consumer has
a pointer to the start of one queue because it consumes the element that was introduced first in that
queue. The control has a pointer to each producer and to each consumer. The queues are shared
by the producers and consumers, thus giving rise to a number of aliased objects with fractions less
than 1.

Now, let’s say the system has to be modified, by introducing two queues for the small jobs
and two queues for the large jobs, see right image of Figure 10. Ideally, the specification of the
control object should not change, since the consumers and the producers have the same behavior
as before: each producer produces both large and small jobs and each consumer accesses only one
kind of job. We will show in the following sections that our methodology does not modify the
specification of the control object, thus allowing us to make changes locally without influencing
other code, while (first-order) separation logic approaches [9] will modify the specification of the
controller.

The code in Figures 11, 12 and 13 represents the initial running example from Figure 10. The
predicates and the specifications of each class explain how the objects and methods should be used
and what is their expected behavior. For example, the Producer object has access to the two queues,
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public class Producer {
Link startSmallJobs,

startLargeJobs;
Link endSmallJobs,

endLargeJobs;

predicate BothInRange() ≡
∃o1, o2. startSmallJobs→ o1

⊗ startLargeJobs→ o2
⊗ o1@k1 Range(0, 10)
⊗ o2@k2 Range(11, 100)

public Producer
(Link ss, Link sl,
Link es, Link el) {

startSmallJobs = ss;
startLargeJobs = sl;
...}

public void produce()
this@k BothInRange()(
this@k BothInRange() {

Random generator = new Random();
int r = generator.nextInt(101);
Link l = new Link(r, null);
if (r <= 10)
{ if (startSmallJobs == null)

{ startSmallJobs = l;
endSmallJobs = l;}

else
{endSmallJobs.next = l;

endSmallJobs= l;}
}
else
{ if (startLargeJobs == null)

{ startLargeJobs = l;
endLargeJobs = l;}

else
{endLargeJobs.next = l;
endLargeJobs = l;}

}
}

}

Figure 11: Producer class

public class Consumer {
Link startJobs;

predicate ConsumeInRange(int x, int y) ≡
startJobs→ o ⊗ o@k Range(x, y)

public Consumer(Link s) {
startJobs = s;

public void consume()
∀ x:int, y:int.
this@k ConsumeInRange(x, y)
( this@k ConsumeInRange(x, y)

{ if (startJobs != null)
{System.out.println(startJobs.val);
startJobs = startJobs.next;}

}

Figure 12: Consumer class

public class Control {
Producer prod1, prod2;
Consumer cons1, cons2;

predicate WorkingSystem() ≡
prod1→ o1⊗ prod2→ o2
⊗ cons1→ o3⊗ cons2 → o4
⊗ o1@k1 BothInRange()
⊗ o2@k2 BothInRange()
⊗ o3@k3 ConsumeInRange(0, 10)
⊗ o4@k4 ConsumeInRange(11, 100)

public Control(Producer p1, Producer p2,
Consumer c1, Consumer c2) {

prod1 = p1; prod2 = p2;
cons1 = c1; cons2 = c2; }

public void makeActive( int i)
this@k WorkingSystem()(

this@k WorkingSystem() {
Random generator = new Random();
int r = generator.nextInt(4);
if (r == 0) {prod1.produce();}

else if (r == 1) {prod2.produce();}
else if (r == 2) {cons1.consume();}

else {cons2.consume();}
if (i > 0) { makeActive(i-1);}

}
}

Figure 13: Control class

22



it expects the queues to be shared with other objects, but also that the elements of one queue will
stay in the range [0,10], while the elements of the second queue will stay in the range [11,100].

Now, let’s imagine changing the code to reflect the modifications in the right image of Figure
10. The internal representation of the predicates changes, but their external semantics stays the
same: the producers produce jobs and they direct them to the appropriate queue, each consumer
accesses only one kind of queue (either the queue of small jobs or the queue of big jobs), and
the controller is still the manager of the system. The predicate BothInRange() of the Pro-
ducer class is exactly the same. The predicate ConsumeInRange(x,y) of the Consumer class
changes to
ConsumeInRange(x,y) ≡ startJobs1→ o1⊗ startJobs2→ o2

⊗ o1@k Range(x, y) ⊗ o2@k Range(x, y).
The predicate WorkingSystem() of the Control class does not change.
The local changes did not influence the specification of the Control class, thus conferring

greater flexibility and modularity to the code.
The current separation logic approaches do not provide this modularity. Distefano and Parkin-

son [9] introduced jStar, an automatic verification tool based on separation logic aiming at pro-
grams written in Java. Although they are able to verify various design patterns and they can define
abstract predicates that hide the name of the fields, they do not have a way of hiding the aliasing. In
all cases, they reveal which references point to the same shared data, and this violates the informa-
tion hiding principle. By using access permissions, we can hide what is the data that two objects
share. We present the specifications needed to verify the code in Figure 10 using separation logic.

The predicate for the Producer class is Prod(this, ss, es, sl, el), where :
Prod(p, ss, es, sl, el) ≡ p.startSmallJobs→ ss ? p.endSmallJobs→ es ?
p.startLargeJobs→ sl ? p.endLargeJobs→ el.
The precondition for the produce() method is:
Prod(p, ss, es, sl, el) ? Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100).
The predicate for the Consumer class is
Cons(c, s) ≡ c→ s.
The precondition for the consume() method is:
Cons(c, s) ? Listseg(s, null, 0, 10).
The predicate for the Control class is :
Ctrl(ct, p1, p2, c1, c2) ≡ ct.prod1→ p1 ? ct.prod2→ p2 ?
ct.cons1→ c1 ? ct.cons2→ c2.
The precondition for makeActive() is:
Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss, es, sl, el) ? Prod(p2, ss, es, sl, el) ?
Cons(c1, sl) ? Cons(c2, ss) ? Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100).
The lack of modularity will manifest itself when we add the two queues as in the right image

of Figure 10.
The predicates Prod(p, ss, es, sl, el) and Ctrl(ct, p1, p2, c1, c2) do not change, while the pred-

icate Cons(c, s1, s2) changes to
Cons(c, s1, s2) ≡ c.startJobs1→ s1 ? c.startJobs2→ s2.
The precondition for the consume() method becomes:
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Cons(c, s1, s2) ? Listseg(s1, null, 0, 10) ? Listseg(s2, null, 0, 10).
Although the behavior of the Consumer and Producer classes have not changed, the precondi-

tion for makeActive() in class Control does change:
Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss1, es1, sl1, el1) ? Prod(p2, ss2, es2, sl2, el2) ?
Cons(c1, sl1, sl2) ? Cons(c2, ss1, ss2) ? Listseg(ss1, null, 0, 10) ?
Listseg(ss2, null, 0, 10) ? Listseg(sl1, null, 11, 100) ? Listseg(sl2, null, 11, 100)
The changes occur because the pointers to the job queues have been modified and the separation

logic specifications have to reflect the changes. This leads to a loss of modularity.

8 Composite
The Composite design pattern [11] expresses the fact that clients treat individual objects and com-
positions of objects uniformly. Verifying implementations of the Composite pattern is challenging,
especially when the invariants of objects in the tree depend on each other [18], and when interior
nodes of the tree can be modified by external clients, without going through the root. As a result,
verifying the Composite pattern is a well-known challenge problem, with some attempted solu-
tions presented at SAVCBS 2008 (e.g. [4, 15]). We describe a new formalization and proof of the
Composite pattern using fractions and object propositions that provides more local reasoning than
prior solutions. For example, in Jacobs et al. [15] a global description of the precise shape of the
entire Composite tree must be explicitly manipulated by clients; in our solution a client simply has
a fraction to the node in the tree it is dealing with.

We implement a popular version of the Composite design pattern, as an acyclic binary tree,
where each Composite has a reference to its left and right children and to its parent. The code is
given below.

p u b l i c c l a s s Composi te {

p r i v a t e Composi te l e f t , r i g h t , p a r e n t ;
p r i v a t e i n t c o u n t ;

p u b l i c Composi te ( )
{
t h i s . c o u n t = 1 ;
t h i s . l e f t = n u l l ;
t h i s . r i g h t = n u l l ;
t h i s . r i g h t = n u l l ;
}

p r i v a t e vo id upda teCountRec ( )
{
i f ( t h i s . p a r e n t != n u l l )
{

t h i s . upda t eCoun t ( ) ;
t h i s . p a r e n t . upda teCountRec ( ) ;
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}
e l s e

t h i s . upda t eCoun t ( ) ;
}

p r i v a t e vo id upda t eCoun t ( )
{
i n t newc = 1 ;
i f ( t h i s . l e f t != n u l l )

newc = newc + l e f t . c o u n t ;
i f ( t h i s . r i g h t != n u l l )

newc = newc + r i g h t . c o u n t ;
t h i s . c o u n t = newc ;
}

p u b l i c vo id s e t L e f t ( Composi te l )
{
l . p a r e n t = t h i s ;
t h i s . l e f t = l ;
t h i s . upda teCountRec ( ) ;
}

p u b l i c vo id s e t R i g h t ( Composi te r ) {
r . p a r e n t = t h i s ;
t h i s . r i g h t = r ;
t h i s . upda teCountRec ( ) ;
}
}

Each Composite caches the size of its subtrees in a count field, so that a parent’s count depends on
its children’s count. The dependency is in fact recursive, as the parent and right/left child pointers
must be consistent. Clients can add a new subtree at any time, to any free position (where the
current reference is null). This operation changes the count of all ancestors, which is done through
a notification protocol. The pattern of circular dependencies and the notification mechanism are
hard to capture with verification approaches based on ownership or uniqueness.

We assume that the notification terminates (that the tree has no cycles) and we verify that the
Composite tree is well-formed: parent and child pointers line up and counts are consistent.

Previously the Composite pattern has been verified with a related approach based on access per-
missions and typestate [4]. This verification abstracted counts to an even/odd typestate and relied
on non-formalized extensions of a formal system, whereas we have formalized the proof system
and provide a full proof in the supplemental material. Our verification proves partial correctness
of this version of the Composite pattern.
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predicate count (int c) ≡ ∃ol, or, lc, rc. this.count→ c ⊗

c = lc + rc + 1 ⊗ this@
1

2
left(ol, lc)

⊗ this@1

2
right(or, rc)

predicate left (Composite ol, int lc) ≡ this.left→ ol ⊗(
(ol 6= null ( ol@

1

2
count(lc))

⊕ (ol = null ( lc = 0)
)

predicate right (Composite or, int rc) ≡ this.right→ or ⊗(
(or 6= null ( or@

1

2
count(rc))

⊕ (or = null ( rc = 0)
)

predicate parent () ≡ ∃op, c, k. this.parent→ op ⊗

op 6= this ⊗ this@
1

2
count(c) ⊗((

op 6= null ( op@k parent() ⊗

(op@
1

2
left(this, c)

⊕ op@
1

2
right(this, c))

)
⊕

(op = null ( this@
1

2
count(c))

)

Figure 14: Predicates for Composite

8.1 Specification
A Composite tree is well-formed if the field count of each node n contains the number of nodes of
the tree rooted in n. A node of the Composite tree is a leaf when the left and right fields are null.

The goals of the specification are to allow clients to add a child to any node of the tree that has
no left (or right) child. Since the count field of a node depends on the count fields of its children
nodes, inserting a child must not violate the transitive parents’ invariants.

We use the following methodology for verification: each node has a fractional permission
to its children, and each child has a fractional permission to its parent. We allow unpacking of
multiple object propositions as long as they satisfy the heap invariant: if two object propositions
are unpacked and they refer to the same object then we require that they do not have fields in
common.(Note that the invariant needs to hold irrespective of whether the object propositions are
packed or unpacked.)

The predicates of the Composite class are presented in Figure 14.
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The predicate count has a parameter c, which is an integer representing the value at the count
field. There are two existentially quantified variables lc and rc, for the count fields of the left child
lc and the right child rc. By c = lc+ rc+ 1 we make sure that the count of this is equal to the sum
of the counts for the children plus 1. By this@1

2
left(ol, lc)⊗ this@1

2
right(or, rc) we connect lc

to the left child (through the left predicate) and rc to the right child (through the right predicate).
The predicate left expresses that the predicate count(lc) holds for this.left, the left child of

this. The predicate right expresses that the predicate count(rc) holds for this.right, the right
child of this. The permission for the left (right) predicate is split in equal fractions between the
count predicate and the left (right) child’s parent predicate.

Inside the parent predicate of this, there is a fractional permission to the count predicate (and
implicitly to its count field) of this. The parent predicate contains only a fraction of k < 1

2
to

the parent of this so that any clients can use the remaining fraction to reference the node and add
children to the parent. A client can actually use this to update the parent field, but in order to pack
the parent predicate, the client has to conform to the well-formedness condition mentioned earlier.

If a new node is added to the tree as the left child of this, we need to change the count field of
this. The field left of this must be null and the permission with a half fraction has to be acquired
by unpacking the count predicate of this. This requires us to unpack the parent’s left predicate,
which requires the parent’s count predicate, and so on to the root node. We can only pack it back
when the tree is in a well-formed state. As the notification algorithm goes up the tree, from the
current node to the root, we successively unpack the predicates corresponding to each node and we
pack them back when the tree is well-formed. This ensures that if a new node is added, in order to
pack the predicates again, the count fields must be updated and consistent!

The proof of partial correctness of the Composite pattern is presented in the supplemental
material. The proof is currently done by hand.

The complete specification for each method is given below:

c l a s s Composi te {
p r i v a t e Composi te l e f t , r i g h t , p a r e n t ;
p r i v a t e i n t c o u n t ;

p u b l i c Composi te
( this@1

2 parent() ⊗
this@1

2 left(null, 0) ⊗ this@1
2 right(null, 0)

{ . . . }

p r i v a t e vo id upda teCountRec ( )
∃ k1. (unpacked(this@ k1 parent()) ⊗
∃ opp, lcc, k<1

2 .unpacked(this@1
2 count(lcc))

⊗this.parent→ opp ⊗ opp 6= this ⊗((
opp 6= null( opp@k parent() ⊗

(opp@1
2 left(this, lcc) ⊕ opp@1

2 right(this, lcc))
)
⊕

(opp = null( this@1
2 count(lcc))

)
⊗

∃ ol, lc, or, rc, lcc’. this.count→ lcc ⊗ lcc’ = lc + rc + 1 ⊗
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this@1
2 left(ol, lc) ⊗ this@1

2 right(or, rc)
( this@k1 parent())

{ . . . }

p r i v a t e vo id upda t eCoun t ( )
∃ c, c1, c2, nc. unpacked(this@1 count(c)) ⊗
this.count→ c ⊗ c = c1 + c2 + 1 ⊗
∃ ol, lc, or, rc. this@1

2 left(ol, lc) ⊗
this@1

2 right(or, rc) ⊗
∃ k1. unpacked(this@k1 parent())
( this@1 count(nc) ⊗
nc = lc + rc + 1 ⊗ ∃ k. unpacked(this@k parent())

{ . . . }

p u b l i c vo id s e t L e f t ( Composi te l )
this 6= l ⊗
∃k2.(∃ k1.this@k1 parent() ⊗ l@k2 parent() ⊗
this@1

2 left(null, 0)(
∃ k.this@k parent() ⊗ l@k2 parent())

{ . . . }
}

The constructor of the class Composite returns half of the permission for the left and right
predicate, and half of a permission to the parent predicate.

The method updateCountRec() takes in a fraction of k1 to the unpacked parent predicate and
a half fraction to the unpacked count predicate of this, and it returns the k1 fraction to the packed
parent predicate. This means that after calling this method, the parent predicate holds for this.

In the same way, the method updateCount takes in the unpacked predicate count for this
object and it returns the count predicate packed for this. Thus, after calling updateCount(), the
object this satisfies its count predicate.

The method setLeft(Composite l) takes in a fraction to the parent predicate of this, a frac-
tion to the parent predicate of l and the left predicate of this with a null argument (saying that
the left field of this is null and thus a client can attach a new left child here). The post-condition
shows that after calling setLeft, some of the permission to the parent predicate of this has been
consumed, while the fraction to the predicate parent of l stays the same.

9 Dynamic Semantics and Soundness
The dynamic semantics for our language is given in Figure 15. Below we describe the definitions
used for dynamic semantics support.
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µ, ρ, l → µ, ρ, ρ(l)
LOOKUP

o /∈ dom(µ) µ′ = µ[o→ C(ρ(l))]

µ, ρ, new C(l) → µ′, ρ, o
NEW

µ, ρ, e1 → µ′, ρ′, e′

µ, ρ, let x = e1 in e2 → µ′, ρ′, let x = e′ in e2
LET-E

l /∈ dom(ρ)

µ, ρ, let x = o in e2 → µ, ρ[l  o], [l/x]e2
LET-O

v ∈ {null, n, true, false}
µ, ρ, let x = v in e2 → µ, ρ, [v/x]e2

LET-V

µ(ρ(l1)) = C(o) fields(C) = Tf

µ, ρ, l1.f = l2 → µ[ρ(l1) [ρ(l2)/oi]C(o)], ρ, ρ(l2)
ASSIGN

µ, ρ, if (true) e1 else e2 → µ, ρ, e1
IF-TRUE

µ, ρ, if (false) e1 else e2 → µ, ρ, e2
IF-FALSE

µ(ρ(l1)) = C(o)
method(m,C) = Tr m(x){return e}

µ, ρ, l1.m(l2) → µ, ρ, [l1/this, l2/x]e
INVOKE

µ(ρ(l)) = C(o) fields(C) = Tf

µ, ρ, l.fi → µ, ρ, oi
FIELD

µ, ρ, pack r@k R1 in e1 → µ, ρ, e1
PACK

µ, ρ, unpack r@k R1 in e1 → µ, ρ, e1
UNPACK

Figure 15: Dynamic Semantics Rules

29



• Pi = unpacked(o@k1 Q) ∈ P ⇒ @Pj 6=i ∈ P such that Pj = unpacked(o@k2 Q)

• ∀o,Q
∑

oi=o,Qi=Q
ki ≤ 1, where oi@ki Qi or unpacked(oi@ki Qi)

• ∀i, j such that pred(Pi) 6= pred(Pj), fields(def(pred(Pi), Ci)) ∩ fields(def(pred(Pj), Cj)) =
∅, where fields(o.f → o′) = f , pred(o.f → o′) = ∅, pred(o@k Q) = Q and
pred(unpacked(o@k Q)) = Q

Figure 16: Heap Invariants

C(o) ∈ OBJECTS

µ ∈ r  OBJECTS (stores)
ρ ∈ l VALUES (environments)

F (Π) ::= (l ∪ r ∪ v) R (propositions)
Σ ::= r  PREDICATE (store types)
r ∈ OBJECTREFS

l ∈ INDIRECTREFS

v ∈ VARIABLES

R ∈ OBJECT PROPOSITIONS

The semantics is a mostly-standard small-step operational semantics; the rules are complete
except for standard rules to reduce binary and logical operators. We define the judgement µ, ρ, e →
µ′, ρ′, e′.

The main interesting feature is the use of indirect references, a proof technique adapted from
[25]. The LET-O rule shows that when the left-hand expression of a let reduces to a reference o,
instead of substituting o for x, we allocate a fresh indirect reference l, and add a mapping from l
to o in an environment ρ. The LOOKUP rule later reduces l to an o, so that execution is isomorphic
to a standard substitution-based semantics. However, the use of the ρ enviroment allows us to
distinguish references that came from different variables, because they will have different indirect
references l. This is useful for preservation, because the original variables may have had different
permissions, and we need to preserve those different permissions when the variables are substituted
with indirect references. Σ maps a reference to a predicate.Σ will contain actual values for the
arguments of the predicates, since Σ is used at runtime.

The ` PR represents the judgement that a program PR is well formed, meaning that all
methods obey their specification. There are necessary helper judgements for Program, Class
and Method. For space reasons, we do not present them here.

We define the consistency of the heap and environment, along with the semantics of predicates
using the judgment µ,Σ, F (Π), ρ ` o ok. We check consistency for each reference o. For space
reasons, we do not give the technical details o how we do this.

We do mention that in order to prove that the invariants ofP hold (that the heap is in a
consistent state), where P = objProps(µ,Σ, F (Π), ρ, o), the conditions in Figure 16 have to hold.
Note that in the third condition of Figure 16 def looks up the definition of the predicate of Pi in
the defining class Ci.

Now we state the main preservation theorem that underlies the soundness of our system:
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(Preservation Theorem)
If Γ; Π ` e : ∃x.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, e → µ′, ρ′, e′ and ` PR then there exists

Π′ , Γ′ and Σ′ such that Γ′; Π′ ` e′ : ∃x.T ;R and µ′,Σ′, F (Π′), ρ′ ok.
The proof uses induction over the derivation of µ, ρ, e → µ′, ρ′, e′ in the standard way. In the

proof, Π and Π′ do not contain the ⊕ symbol. If the ⊕ symbol is added to these contexts, it is
straightforward to use induction to prove preservation.

9.1 Proving the Preservation Theorem
Lemma 1 (Substitution) If (Γ, y : Ty); (Π1 ⊗ Ry) ` e : ∃x.T ;R and Γ; Π2 ` t : ∃x.Ty; [t/y]Ry

then Γ; ([t/y]Π1 ⊗ Π2) ` [t/y]e : ∃x.T ; [t/y]R.

Proof of Substitution Lemma
The proof is by induction on the derivation of (Γ, y : Ty); (Π1 ⊗ Ry) ` e : ∃x.T ;R. Note that

there is a clear correspondence between the structure of e and which rule is used to type it. Thus
the cases are on the structure of e rather than the rule by which the typing judgement was defined.
In the proof, Π1 and Π2 do not contain the⊕ symbol. If the⊕ symbol was added to these contexts,
it would be straightforward to use induction to prove the lemma using the rule ⊕.

1. e is a value v. The values that e can take in this case are null|true|false|n. We know
(Γ, y : Ty), (Π1 ⊗ Ry) ` v : ∃x : T.R. Since v is a value, R will be trivially equal to v.
Thus y does not appear in R and R = [t/y]R. Because [e1/y]e = v we trivially obtain that
Γ; ([t/y]Π1 ⊗ Π2) ` v : ∃x : T.[t/y]R.

2. e is a variable z,z 6= y. We know (Γ, y : Ty); (Π1 ⊗ Ry) ` z : ∃x.T ;R. Since z 6= y, we
know by inversion that R ∈ Π1, with R ≡ z@k Q(t1) and Q(t1) might contain y as a free
variable. Thus [t/y]R ∈ [t/y]Π1 and [t/y]e = z. We can deduce that Γ; ([t/y]Π1 ⊗ Π2) `
z : ∃x.T ; [t/y]R.

3. e is the variable y. Now [t/y]e = t and T = Ty and R = Ry. Thus, Γ; ([t/y]Π1 ⊗ Π2) ` t :
∃x.T ; [t/y]R.

4. e is r.fi. We know that (Γ, y : Ty); (Π ⊗ Ry) ` r.fi : ∃x.T ;R. We also know by inversion
that Π ⊗ Ry ` r.fi → ri and that Γ; (Π ⊗ Ry) ` [ri/x]R. Using the induction hypothesis
we have: ([t/y]Π⊗ Π2) ` [t/y](r.fi → ri) and Γ; ([t/y]Π⊗ Π2) ` [t/y][ri/x]R. Since r.fi
is just the syntactic representation of a field, the substitution will happen in ri: ([t/y]Π ⊗
Π2) ` (r.fi → [t/y]ri). Also, we can rewrite [t/y][ri/x]R as [([t/y]ri)/x][t/y]R and so
we have Γ; ([t/y]Π ⊗ Π2) ` [([t/y]ri)/x][t/y]R. Using the rule (FIELD), we obtain that
Γ; ([t/y]Π⊗ Π2) ` [t/y]r.fi : ∃x : T.[t/y]R, exactly what we wanted.

5. e is new C(t1). We know (Γ, y : Ty); (Π ⊗ Ry) ` new C(t1) : ∃z.C; z.f → t1. We
also know by inversion that (Γ, y : Ty) ` t1 : T . Using the induction hypothesis we have
Γ ` [t/y]t1 : T . Using the rule (NEW), we obtain that

Γ; ([t/y]Π⊗ Π2) ` [t/y]new C(t1) :

∃z.C; z.f → [t/y]t1, exactly what we wanted.
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6. e is if(t1){e1}else{e2}. We know (Γ, y : Ty); (Π ⊗ Ry) ` if(t1){e1}else{e2} :
∃x.T ;R1 ⊕ R2. We also know by inversion that (Γ, y : Ty); (Π ⊗ Ry ⊗ t1 = true) `
e1 : ∃x.T ;R1 and that (Γ, y : Ty); (Π ⊗ Ry ⊗ t1 = false) ` e2 : ∃x.T ;R2. Using the
induction hypothesis and knowing that Γ,Π2 ` t : ∃x.Ty; [t/y]Ry, we have Γ; ([t/y]Π ⊗
Π2 ⊗ t1 = true) ` [t/y]e1 : ∃x.T ; [t/y]R1 and that Γ; ([t/y]Π ⊗ Π2 ⊗ t1 = false) `
[t/y]e1 : ∃x.T ; [t/y]R2. By applying the (IF) rule, we obtain that Γ; ([t/y]Π ⊗ Π2) `
if(t1){e1}else{e2} : ∃x.T ; [t/y]R1 ⊕ [t/y]R2. Since [t/y]R1 ⊕ [t/y]R2 = [t/y](R1 ⊕
R2) we obtain that Γ; ([t/y]Π ⊗ Π2) ` if(t1){e1}else{e2} : ∃x.T ; [t/y](R1 ⊕ R2),
exactly what we wanted.

7. e is let x = e1 in e2. We know (Γ, y : Ty); (Π⊗Ry) ` let x = e1 in e2 : ∃w.T2;R. We
also know by inversion that (Γ, y : Ty); (Π⊗Ry) ` e1 : ∃x.T1;R1⊗Π2. Using the induction
hypothesis and knowing that Γ; Π3 ` t : ∃x.Ty; [t/y]Ry, we obtain that Γ; ([t/y]Π ⊗ Π3) `
[t/y]e1 : ∃x.T1; [t/y](R1 ⊗ Π2). We also know by inversion that (Γ, y : Ty, x : T1); (R1 ⊗
Π2) ` e2 : ∃w.T2;R2. This means that (Γ, x : T1); (Π3 ⊗ [t/y]R1 ⊗ [t/y]Π2) ` [t/y]e2 :
∃w.T2; [t/y]R2. Now, we can apply the (LET) rule and we obtain that Γ; ([t/y]Π ⊗ Π3) `
[t/y](let x = e1 in e2) : ∃w.T2; [t/y]R, which is exactly what we wanted.

8. e is pack r@k Q(t1) in e, with 0 < k < 1. We know that Γ; Π ` pack r@k Q(t1) in e :
∃x.T ;R. We also know by inversion that Γ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R. Using the
induction hypothesis and knowing that Γ; Π2 ` t : ∃x.Ty; [t/y]Ry, we obtain that

Γ; ([t/y](Π1 ⊗ r@k Q(t1)) ⊗ Π2) ` [t/y]e : ∃x.T ; [t/y]R. The other two premises of the
(PACK2) rule can also be obtained by inversion and they remain the same. From the first
premise Γ; Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗ Π1 we can deduce by induction
that Γ; ([t/y]Π⊗ Π2) ` [t/y]r : C; [t/y]([t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗ Π1)

So now we can apply the (PACK2) rule again and we get that

Γ; ([t/y]Π⊗ Π2) ` [t/y](pack r@k (Q(t1))) in [t/y]e : ∃x.T ; [t/y]R.

Thus, Γ; ([t/y]Π⊗ Π2) `
[t/y](pack r@k Q(t1) in e) : ∃x.T ; [t/y]R, exactly what we wanted.

9. e is pack r@1 Q2(t2) in e. The proof in this case is analogous to the one for the previous
case, but the fraction k will be replaced by 1 across the proof.

10. e is unpack r@k Q(t1) in e for 0 < k < 1. We know that Γ; Π ` unpack r@k Q(t1) in e :
∃x.T ;R. We also know by inversion that Γ; (Π1 ⊗ [t1/x]R1⊗
unpacked(r@k Q(t1)) ` e : ∃x.T ;R. Using the induction hypothesis and knowing that

Γ; Π2 ` t : ∃x.Ty; [t/y]Ry, we obtain that

Γ; ([t/y](Π1 ⊗ [t1/x]R1⊗
unpacked(r@k Q(t1))⊗Π2) ` [t/y]e : ∃x.T ; [t/y]R. The other premises of the (UNPACK2)
rule can also be obtained by inversion and they remain the same. From the first premise
Γ; Π ` r : C; r@k Q(t1) ⊗ Π1 we obtain by induction that Γ; ([t/y]Π ⊗ Π2) ` [t/y]r :
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C; [t/y](r@k Q(t1) ⊗ Π1). Now we can apply the (UNPACK2) rule again and we get
that Γ; ([t/y]Π ⊗ Π2) ` unpack [t/y]r@k [t/y]Q(t1) in [t/y]e : ∃x.T ; [t/y]R. Thus
Γ; ([t/y]Π⊗ Π2) `
[t/y](unpack r@k in Q(t1)) in [t/y]e : ∃x.T ; [t/y]R, exactly what we wanted to prove.

11. e is unpack r@1 Q(t1) in e. The proof in this case is analogous to the one for the previous
case, but the fraction k will be replaced by 1 across the proof.

12. e is r0.m(t1). We know that Γ; Π ` r0.m(t1) :

∃ result.Tr; [r0/this][t1/x]R⊗Π1. We know by inversion that Γ; Π ` [r0/this][t1/x]R1⊗Π1.
Using the induction hypothesis and knowing that

Γ,Π2 ` t : ∃x.Ty; [t/y]Ry, we obtain that

Γ; ([t/y]Π⊗ Π2) ` [t/y]([r0/this][t1/x]R1 ⊗ Π1). This is equivalent to writing

Γ; ([t/y]Π⊗ Π2) ` [r0/this][[t/y]t1/x][t/y]R1 ⊗ [t/y]Π1.

By inversion we know that Γ ` r0 : C0 and Γ ` t1 : T . Using the induction hypothesis
we obtain that Γ ` [t/y]r0 : C0 and Γ ` [t/y]t1 : T . Also by inversion we know that
mtype(m,C0) = ∀x : T .∃result.Tr;R′1( R and R1impliesR′1.

We can infer that [t/y]R1 ` [t/y]R′1 and that

mtype(m,C0) = ∀x : T .∃result : Tr.R
′
1 ( R will hold for [t/y]t1 : T (because of the ∀

quantifier of the (MTYPE) judgement). We can now apply the (CALL) rule again and we
obtain that

Γ; ([t/y]Π⊗ Π2) ` (([t/y]r0).m([t/y]t1)) :

∃ result.Tr; [[t/y]r0/this][[t/y]t1/x][t/y]R⊗ [t/y]Π1.

Since r0.m([t/y]t1) = [t/y](r0.m(t1)) and

[r0/this][[t/y]t1/x][t/y]R = [t/y]([r0/this][t1/x]R), we obtain that Γ; ([t/y]Π ⊗ Π2) `
[t/y](r0.m(t1)) : ∃ result.Tr; [t/y]([r0/this][t1/x]R ⊗ [t/y]Π1). This is exactly what we
wanted to prove.

13. e is r1.fi = t1. We know that Γ; Π ` (r1.fi = t1) :

∃x.Ti;x@k′ Q′(t′) ⊗ t1@k0 Q0(t0) ⊗ r1.fi → t1 ⊗ Π3. We know by inversion that Γ; Π `
t1 : Ti; t1@k0 Q0(t0) ⊗ Π1. Using the induction hypothesis and knowing that Γ; Π4 ` t :
∃x.Ty; [t/y]Ry, we obtain that Γ; ([t/y]Π1 ⊗ Π4) ` [t/y]t1 : Ti; [t/y](t1@k0 Q0(t0)). This
means that

[t/y](t1@k0 Q0(t0)) = ([t/y]t1)@k0 [t/y]Q0(t0). The other premises of the (ASSIGN) rule
can also be obtained by inversion. From the second premise Γ; Π1 ` r1.fi : Ti; r

′
i@k

′ Q′(t′)⊗
Π2 we get by induction that Γ; ([t/y]Π1 ⊗ Π4) ` r1.fi : Ti; [t/y](r′i@k

′ Q′(t′) ⊗ Π2). From
the third premise Π2 ` r1.fi → r′i ⊗ Π3 we get by induction that ([t/y]Π2 ⊗ Π4) ` r1.fi →
[t/y]r′i⊗ [t/y]Π3. So now we can apply the (ASSIGN) rule again and we get that Γ; ([t/y]Π⊗
Π4) ` r1.fi = [t/y]t1 : ∃x.Ti; [t/y](x@k′ Q′(t′))⊗ [t/y](t@k0 Q0(t0))⊗ r1.fi → [t/y]t1).
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Since (r1.fi = [t/y]t1) = ([t/y](r1.fi = t1)) and [t/y](x@k′Q′(t′)⊗[t/y](t1@k0Q0(t0))⊗ r1.fi →
[t/y]t1 = [t/y](x@k′ Q′(t′)⊗ t@k0 Q0(t0)⊗ r1.fi → t1), we finally obtain that

Γ; ([t/y]Π1 ⊗ Π4) ` [t/y](r1.fi = t1) :

∃x.Ti; [t/y](x@k′ Q′(t′) ⊗ t1@k0 Q0(t0) ⊗ r1.fi → t1 ⊗ Π3). This is exactly what we
wanted to prove.

We have now gone through all the induction cases and we have completed the proof of the
Substitution Lemma.

We also need to define the following lemma:

Lemma 2 (Memory Consistency)

1. If µ, (Σ, l  Q), (F (Π), l  R), ρ ok then µ, (Σ, ρ(l)  Q), (F (Π), ρ(l)  R), ρ ok,
where R = x@k Q.

2. If µ,Σ, F (Π), ρ ok and o /∈ dom(µ), then µ′ = µ[o C(ρ(l))],Σ′ = (Σ, o unpacked), F (Π′) =
F (Π), ρ ok.

3. If µ, (Σ, l  Q), (F (Π), l  R), ρ ok and l′ /∈ dom(ρ) then µ, (Σ, l′  Q), (F (Π), l′  
R), ρ[l′  ρ(l)] ok, where R = x@k Q.

4. If µ, (Σ1,Σ2), (F (Π1 ⊗ Π2)), ρ ok and

unpacked(r@k Q(t1)) ∈ Π1, then µ, (Σ2, r → Q(t1)), (F (Π2), r  r@k Q(t1)), ρ ok.

5. If µ, (Σ1,Σ2), (F (Π1 ⊗ Π2)), ρ ok and

[t2/x]R2 ∈ Π1, with predicate Q2(T x) ≡ R2 ∈ C, then

µ, (Σ2, r  Q2(t2)), (F (Π2), r  x@1 Q2(t2)), ρ ok.

6. If µ, (Σ0,Σ2), (F (Π0 ⊗ Π2)), ρ ok and r@k Q(t1) ∈ Π0

and predicate Q(T x) ≡ R1 ∈ C and

∀r′, x : ( unpacked(r′@k′ Q(x)) ∈ (Π0 ⊗Π2)⇒ Π0 ⊗Π2 ` r 6= r′) then µ,Σ′ = (Σ2, r  
unpacked),

F (Π′) = (F (Π2), F ([t1/x]R1 ⊗ r  unpacked(x@k Q(t1)))),

ρ ok.

7. If µ, (Σ0,Σ2), (F (Π0 ⊗ Π2)), ρ ok and r@k Q(t1) ∈ Π0

and predicate Q(T x) ≡ R1 ∈ C
then µ,Σ′ = (Σ2, r  unpacked),

F (Π′) = (F (Π2), F ([t1/x]R1)),

ρ ok.
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8. If µ,Σ, F (Π), ρ ok and µ(ρ(l)) = C(o) and fields(C) = Tf then µ,Σ′ = (Σ, oi →
Q), F (Π′) = (F (Π), oi  R), ρ ok, where R = x@k Q.

9. If µ,Σ = (Σ0, l2  Q′(t′)), F (Π) = (F (Π0), l2  y@k′ Q′(t′)⊗ x@k0 Q0(t0)⊗ t1.fi →
x), ρ ok and ρ(l2) = o2, then

µ′ = µ[ρ(l1) [o2/oi]C(o)],Σ′ = (Σ, o2  Q′(t′)),

F (Π′) = (F (Π), o2  y@k′ Q′(t′)⊗
x@k0 Q0(t0)⊗ t1.fi → x), ρ ok

Proof of memory consistency lemma

1. Environment map

Assuming µ, (Σ, l Q), (F (Π), l R), ρ ok we need to show that

µ, (Σ, ρ(l)  Q), (F (Π), ρ(l)  R), ρ ok, where R = x@k Q. Memory does not change.
The only object potentially affected is ρ(l), which is equal to o, say. Since props(µ, (Σ, l 
Q), (F (Π), l  R), ρ, o) = props(µ, (Σ, o  Q), (F (Π), o  R), ρ, o), we can conclude
that µ, (Σ, ρ(l)  Q), (Π, ρ(l)  R), ρ ` o ok, and therefore µ, (Σ, o  Q), (F (Π), o  
R), ρ ok.

2. New object

Assuming µ,Σ, F (Π), ρ ok and o /∈ dom(µ), we have to show that µ′ = µ[o C(ρ(l))],Σ′ =
(Σ, o unpacked), F (Π′) = F (Π), ρ ok. It must be that ρ(l) = o′ for some objects o′. The
only objects affected are o, o′. Since µ(o′) = µ′(o′) and

props(µ,Σ, F (Π), ρ, o′) = props(µ′,Σ′, F (Π′), ρ, o′) we can deduce that

µ′,Σ′, F (Π′), ρ ` o′ ok.

The heap invariants are satisfied and we can deduce that µ′,Σ′, F (Π′), ρ ` o ok. Thus,
µ′,Σ′, F (Π′), ρ ok.

3. Environment rename

Assuming µ, (Σ, l  Q), (F (Π), l  R), ρ ok and l′ /∈ dom(ρ), we have to show that
µ, (Σ, l′  Q), (F (Π), l′  R), ρ[l′  ρ(l)] ok, where R = x@k Q. The only object
affected can be ρ(l). By the same argument above, that the props sets are identical, we can
conclude that µ, (Σ, l′  Q), (F (Π), l′  R), ρ[l′  ρ(l)] ok.

4. Pack2

Assuming Ω1 = [µ,Σ = (Σ1,Σ2), F (Π) = (F (Π1 ⊗ Π2)), ρ] ok, we have to show that
Ω2 = [µ,Σ′ = (Σ2, r  Q(t1)), F (Π′) = (F (Π2), r  r@k Q(t1)), ρ] ok. Let’s take an
arbitrary o. Since µ and ρ don’t change, the only changes in the objProps corresponding
to Ω1 and to Ω2 come from the different o  R extracted from Π and from Π′. We have
to show that the heap invariants are preserved by the different o  R in F (Π′), knowing
that the invariants are preserved by the different o  R in F (Π1 ⊗ Π2). Knowing this, we
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deduce that the invariants cannot be broken by the assertions in Π2. Thus, we only have to
see if r  x@k Q(t1) is in contradiction with any assertions about r in Π2. We also know
that unpacked(r@k Q(t1)) is in Π1.

Since Ω1 ok, the only object propositions in Π2 about r have to be of the form r@k1 Q(t1)
such that the sum of k and the k1 fractions is less than 1. Π2 could also contain object
propositions of the form unpacked(r@k1 Qi()), but the fields in the predicates are disjoint,
according to the heap invariants. Thus, (Π2, r  r@k Q(t1)) satisfies the heap invariants,
Σ′ is compatible with Π′ and the primitives are preserved, so µ,Σ′,Π′, ρ ok.

5. Pack1

Assuming Ω1 = [µ, (Σ1,Σ2), F (Π1 ⊗ Π2), ρ] ok, we have to show that Ω2 = [µ,Σ′ =
(Σ2, r  Q2(t2)),

F (Π′) = (F (Π2), r  r@1 Q2(t2)), ρ] ok,

where [t2/x]R2 ∈ Π1, with predicate Q2(T x) ≡ R2 ∈ C. Let’s take an arbitrary
o. Since µ and ρ don’t change, the only changes in the objProps corresponding to Ω1 and
to Ω2 come from the different o  R extracted from F (Π1 ⊗ Π2) and from (F (Π2), r  
r@1 Q2(t2)). We have to show that the heap invariants are preserved by the different o R
in (F (Π2), r  r@1 Q2(t2), knowing that the invariants are preserved by the different
o  R in F (Π1 ⊗ Π2). Thus, we only have to see if r  r@1 Q2(t2) is in contradiction
with any assertions about r in F (Π2).

We know that [t2/x]R2 is in Π1 and that Ω1 ok. When the field keys that are present inR2 are
packed to the object proposition Q2 with a fraction of 1, these field keys cannot be used in
any other object propositions. Knowing this, we deduce that the invariants cannot be broken
by the assertions in Π2. It follows that

(F (Π2), r  r@1 Q2(t2)) satisfies the heap invariants. Since [t2/x]R2 ∈ Π1 and the
primitives corresponding to Π1 ⊗Π2 are ok, there can be no primitives in Π2 that contradict
[t2/x]R2. We know that predicate Q2(T x) ≡ R2 ∈ C and we can deduce that the
primitives corresponding to µ,Σ′, F (Π′), ρ are ok. Thus µ,Σ′, F (Π′), ρ ok.

6. Unpack2

Assuming Ω1 = [µ,Σ = (Σ0,Σ2), F (Π) = F (Π0 ⊗ Π2), ρ] ok, we have to show that

Ω2 = [µ,Σ′ = (Σ2, r  unpacked),

F (Π′) = (F (Π2), [t1/x]R1), ρ] ok.

Let’s take an arbitrary o. Since µ and ρ don’t change, the only changes in the objProps
corresponding to Ω1 and to Ω2 come from the different o  R extracted from F (Π0 ⊗ Π2)
and from F (Π′). We have to show that the heap invariants are preserved by the different o 
R in F (Π′), knowing that the invariants are preserved by the different o R in F (Π0⊗Π2).
Knowing this, we deduce that the invariants cannot be broken by the assertions in Π2. Thus,
we only have to see if r  unpacked(r@k Q(t1)) and [t1/x]R1 are in contradiction with
any assertions about r in F (Π2).
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Since ∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ (Π0 ∪ Π2)⇒ Π0,Π2 ` r 6= r′) the heap invariants
allow us to infer that Π2 does not contain any object that is unpacked from the predicate
Q and aliases with r. We also know that r@k Q(t1) ∈ Π0. Using the heap invariants,
we deduce that if there is an object proposition referring to r in Π2, this object proposition
must be r@k1 Q(t1) with the sum of fractions being less than 1. Π2 might also contain
r@k1 Q2(t2) such that the field keys of Q2 and Q are disjoint.

The formula [t1/x]R1 corresponds to r, after it got unpacked. In this formula there might be
object propositions referring to r or to other references that appear in Π2. Since r was packed
to Q, using object propositions from Π0, right before being unpacked and since Q(x) = R1,
we deduce that [t1/x]R1 will only contain object propositions that are already in Π0. This
means that the different o  R extracted from F (Π0 ⊗ Π2) are compatible with each other
and with r  unpacked(r@k Q(t1)) ( same reasoning as in the previous paragraph).

The heap invariants hold of Π′ because there is no object that aliases with r that is unpacked
fromQ in Π′, and also because r  unpacked(r@k Q(t1)), r@k Q(t1) and [t1/x]R1 do not
contain object propositions or primitives that are not compatible. Thus, µ,Σ′, F (Π′), ρ ok

7. Unpack1

The proof of this case is very similar to the proof of the previous case Unpack2.

8. Field read

Assuming µ,Σ, F (Π), ρ ok and µ(ρ(l)) = C(o) and

fields(C) = Tf , we have to show that µ,Σ′ = (Σ, oi  Q), F (Π′) = (F (Π), oi  
R), ρ ok, where R = x@k Q. The only object affected is oi.

Because of the way fieldProps(µ,Σ′) is defined, any object proposition about oi will be ex-
tracted from the object propositions referring to µ(ρ(l)), which are already in Π. This means
that props(µ,Σ, F (Π), ρ, oi) = props(µ,Σ′, F (Π′), ρ, oi) and µ,Σ′, F (Π′), ρ ` oi ok. Thus
µ,Σ′, F (Π′), ρ ok.

9. Assignment

Assuming µ,Σ = (Σ0, l2  Q′(t′)), F (Π) = (F (Π0), l2  l2@k
′ Q′(t′)), ρ ok and ρ(l2) =

o2, we have to prove that µ′ = µ[ρ(l1)  [o2/oi]C(o)],Σ′ = (Σ, o2  Q′(t′)), F (Π′) =
(F (Π), o2  o2@k

′ Q′(t′)), ρ ok. The only object that changes is oi.

Since props(µ,Σ, F (Π), ρ, oi) = props(µ′,Σ′, F (Π′), ρ, oi) and

µ,Σ, F (Π), ρ ` oi ok, we can conclude that

µ′,Σ′, F (Π′), ρ ` oi ok and thus µ′,Σ′, F (Π′), ρ ok.

The proof for the Preservation Theorem is done by induction on the dynamic semantics rules.
Proof of the Preservation Theorem
Case (LOOKUP)

1. By assumption
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(a) Γ,Π ` l : ∃ x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, l → µ, ρ, ρ(l)

2. By inversion on 1a

(a) Γ = (Γ1, l : T )

(b) F (Π) = (F (Π1), l R), where R = x@k Q

(c) Σ = (Σ1, l Q), where Σ1 is the store type corresponding to Π1.

3. µ, (Γ1, l : T ), (F (Π1), l R), (Σ1, l Q) ok -by 2

4. ρ(l) = o, for some o - by Object Proposition Consistency

5. (Γ, o : T ), (Π1, o R) ` o : ∃x.T ;R -by (TERM)

6. Let Γ′ = (Γ, ρ(l) : T ), F (Π′) = (F (Π1), ρ(l) R) and Σ′ = (Σ1, ρ(l) Q)

7. Γ′,Π′ ` ρ(l) : ∃x.T ;R -by 6,5

8. µ, (Σ1, ρ(l) Q), (F (Π1), ρ(l) R), ρ ok -by 3,4, memory consistency lemma

9. µ,Σ′, F (Π′), ρ ok -by 6, 8

10. q.e.d -by 7, 9

Case (NEW)

1. By assumption

(a) Γ,Π ` new C(l) : ∃y.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, new C(l)→ µ′, ρ, o

(d) o /∈ dom(µ)

(e) µ′ = µ[o→ C(ρ(l))]

2. By inversion on 1a

(a) ∃y.T ;R = ∃z.C; z.f → t⊗ Π1

(b) Γ = (Γ1, l : T )

(c) fields(C) = T f

3. Let Γ′ = (Γ, o : C), F (Π′) = (F (Π1), o (o.f → t))

4. Let Σ′ = (Σ, o unpacked)
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5. Γ′,Π′ ` o : ∃z.C; z.f → t⊗ Π1 -by (TERM)

6. µ[o  C(ρ(l))], (Σ, o  unpacked), (F (Π1), o  (o.f → t)), ρ ok -by memory consis-
tency lemma

7. q.e.d. -by 5, 6

Case (LET-O)

1. By assumption

(a) Γ,Π ` let x = o in e2 : ∃ w.T2;R3

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, let x = o in e2 → µ, ρ[l o], [l/x]e2

(d) l /∈ dom(ρ)

2. By inversion on 1a

(a) Γ; Π ` o : ∃x.T1;R1 ⊗ Π2

(b) (Γ, x : T1); (Π2 ⊗R1) ` e2 : ∃w.T2;R3

3. Γ = (Γ1, o : T1), F (Π) = (F (Π2), o R1) -by inversion on 2a

4. Also, Σ = (Σ1, o Q1), where R1 = x@k Q1

5. Let Γ′ = (Γ, l : T1), F (Π′) = (F (Π2), l  R1), Σ′ = (Σ2, l  Q1) , where Σ2 corresponds
to Π2

6. (Γ, l : T1); (F (Π2), l R1) ` [l/x]e2 : ∃w.T2; [l/x]R3 -by 1d, 2b, Substitution Lemma

7. Γ′,Π′ ` e2 : ∃ w.T2;R3 -by 6

8. µ, (Σ2, o Q1), (F (Π2), o R1), ρ ok -by 2a

9. µ, (Σ2, l Q1), (F (Π2), l R1), ρ[l o] ok -by memory consistency lemma

10. µ,Σ′, F (Π′), ρ[l o] ok

11. q.e.d. -by 10, 7

Case (LET-E)

1. By assumption

(a) Γ,Π ` let x = e1 in e2 : ∃w.T2;R3

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, let x = e1 in e2 → µ′, ρ′, let x = e′1 in e2
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(d) µ, ρ, e1 → µ′, ρ′, e′

2. By inversion on 1a

(a) Γ,Π ` e1 : ∃x.T1;R1 ⊗ Π2

(b) Γ; (R1 ⊗ Π2) ` e2 : ∃w.T2;R3

3. By induction on 1b, 1d, 2a

(a) ∃Γ0; Π′ such that Γ0,Π
′ ` e′ : ∃x.T1;R1

(b) ∃ Σ′ such that µ′,Σ′, F (Π′), ρ′ ok

4. Let Γ′ = Γ ∪ Γ0

5. Γ′; Π′ ` let x = e′1 in e2 : ∃w.T2;R3 -by 3a,2b, (LET)

6. q.e.d. -by 3b,5

Case (LET-V) is very similar to Case (LET-O) and we have not included it here.
Case (PACK)
Subcase: the static semantics rule corresponding to (PACK) is (PACK2).

1. By assumption

(a) Γ,Π ` pack r@k Q(t1) in e1 : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, pack r@k Q(t1) in e1 → µ, ρ, e1

2. By inversion on (PACK2)

(a) Γ; Π ` r : C.[t1/x]R1⊗
unpacked(r@k Q(t1))⊗ Π1

(b) Γ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

(c) predicate Q(x) ≡ R1

(d) 0 < k < 1

3. Let F (Π′) = (F (Π1), r  r@k Q(t1)), Σ′ = (Σ1, r  Q(t1), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  Q(t1)), (F (Π1), r  r@k Q(t1)), ρ ok -by memory consistency lemma

6. q.e.d. -by 4, 5

Subcase: the static semantics rule corresponding to (PACK) is (PACK1).
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1. By assumption

(a) Γ,Π ` pack r@1 Q2(t2) in e : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, pack r@1 Q2(t2) in e→ µ, ρ, e

2. By inversion on (PACK1)

(a) Γ; Π ` r : C; [t2/x]R2 ⊗ Π1

(b) Γ; (Π1 ⊗ r@1 Q2(t2)) ` e : ∃x.T ;R

3. Let F (Π′) = (F (Π1), r  r@1 Q2(t2)), Σ′ = (Σ1, r  Q2(t2), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  Q2(t2)), (F (Π1), r  r@1 Q2(t2), ρ ok -by memory consistency lemma

6. q.e.d. -by 4, 5

Case (UNPACK)
Subcase: the static semantics rule corresponding to (UNPACK) is (UNPACK2).

1. By assumption

(a) Γ,Π ` unpack r@k Q(t1) in e : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, unpack r@k Q(t1) in e→ µ, ρ, e

2. By inversion on (UNPACK2)

(a) Γ; Π ` r : C; r@k Q(t1)⊗ Π1

(b) Γ; (Π1 ⊗ [t1/x]R1⊗
unpacked(r@k Q(t1))) ` e : ∃x.T ;R

(c) ∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ Π⇒ Π ` r 6= r′)

(d) predicate Q(x) ≡ R1 ∈ C
(e) 0 < k < 1

3. Let F (Π′) = (F (Π2 ⊗ [t1/x]R1),

r  unpacked(r@k Q(t1))),

Σ′ = (Σ2, r  unpacked), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3
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5. µ, (Σ2, r  unpacked), (F (Π2 ⊗ [t1/x]R1),

r  unpacked(r@k Q(t1))), ρ ok -by memory consistency lemma

6. q.e.d. -by 4, 5

Subcase: the static semantics rule corresponding to (UNPACK) is (UNPACK1).

1. By assumption

(a) Γ,Π ` unpack r@1 Q(t1) in e : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, unpack r@1 Q(t1) in e→ µ, ρ, e

2. By inversion on (UNPACK1)

(a) Γ; Π ` r : T1; r@1 Q(t1)⊗ Π1

(b) Γ; (Π1, [t1/x]R1) ` e : ∃x.T ;R

(c) predicate Q(x) ≡ R1 ∈ C

3. Let F (Π′) = F (Π1 ⊗ [t1/x]R1),

Σ′ = (Σ1, r  unpacked), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  unpacked), F (Π1 ⊗ [t1/x]R1), ρ ok -by memory consistency lemma

6. q.e.d. -by 4, 5

Case (IF-TRUE)

1. By assumption

(a) Γ,Π ` if(true){e1}else{e2} : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, if(true){e1}{e2} → µ, ρ, e1

(d) ∃x.T ;R = ∃x.T ;R1 ⊕R2

2. By inversion on the static semantics rule (IF): Γ,Π ` e1 : ∃x.T ;R1

3. Let Γ′ = Γ,Π′ = Π,Σ′ = Σ

4. R1 ⊕R2 is true if R1 is true or if R2 is true

5. Γ′,Π′ ` e1 : ∃x.T ;R1 ⊕R2 -by 2,3,4

6. µ,Σ′, F (Π′), ρ ok -by 3,1b
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7. q.e.d. -by 5,6

Case (IF-FALSE)

1. By assumption

(a) Γ,Π ` if(false){e1}else{e2} : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, if(false){e1}else{e2} → µ, ρ, e2

(d) ∃x.T ;R = ∃x.T ;R1 ⊕R2

2. By inversion on the static semantics rule (IF): Γ,Π ` e2 : ∃x.T ;R2

3. Let Γ′ = Γ,Π′ = Π,Σ′ = Σ

4. R1 ⊕R2 is true if R1 is true or if R2 is true

5. Γ′,Π′ ` e2 : ∃x.T ;R1 ⊕R2 -by 2,3,4

6. µ,Σ′, F (Π′), ρ ok -by 3,1b

7. q.e.d. -by 5,6

Case (FIELD)

1. By assumption

(a) Γ,Π ` l.fi : ∃x.Tr;R
(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, l.fi → µ′, ρ, oi

(d) µ(ρ(l)) = C(o)

(e) fields(C) = Tf

(f) Tr = Ti

2. By inversion on the static semantics rule (FIELD)

(a) l.fi : Tr is a field of C

(b) Γ; Π ` [l.fi/x]R

3. Let Γ′ = (Γ, oi : Ti), F (Π′) = (F (Π), oi  R)

4. Let Σ′ = (Σ, oi  Q), where R = x@k Q

5. Γ′,Π′ ` oi : ∃x.Ti;R -by (TERM)

6. µ,Σ′ = (Σ, oi  Q), F (Π′) = (F (Π), oi  R)), ρ ok -by memory consistency lemma
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7. q.e.d. -by 5,6

Case (ASSIGN)

1. By assumption

(a) Γ,Π ` (l1.f = l2) : ∃x.T ;R

(b) µ,Σ,Π, ρ ok

(c) µ, ρ, (l1.f = l2) →
µ[ρ(l1) [ρ(l2)/oi]C(o)], ρ, ρ(l2)

(d) µ(ρ(l1)) = C(o)

(e) fields(C) = Tf

2. By inversion on the static semantics rule (ASSIGN)

(a) Γ; Π ` l2 : Ti; l2@k0 Q0(t0)⊗ Π1, thus T = Ti

(b) Γ; Π1 ` l1.f : Ti; ri@k
′ Q′(t′)⊗ Π2

(c) Π2 ` l1.f → ri ⊗ Π3

(d) ∃x.T ;R = ∃x.Ti;x@k′ Q′(t′)⊗ l2@k0 Q0(t0)⊗ l1.f → l2 ⊗ Π3

3. ∃ o2 such that ρ(l2) = o2.

4. Let Γ′ = (G, o2 : Ti), F (Π′) = (F (Π ⊗ l2@k0 Q0(t0) ⊗ t1.fi → l2), o2  x@k′ Q′(t′)),
Σ′ = (Σ, o2  Q′(t′)).

5. Γ′,Π′ ` o2 : ∃x.Ti;R -by (TERM)

6. µ′ = µ[ρ(l1) [ρ(l2)/oi]C(o)],Σ′, F (Π′), ρ ok -by memory consistency lemma

7. q.e.d. -by 5, 6

Case (INVOKE)

(a) By assumption

i. Γ,Π ` l1.m(l2) : ∃x.T ;R′

ii. µ,Σ, F (Π), ρ ok

iii. µ, ρ, l1.m(l2) → µ, ρ, [l1/this, l2/x]e

iv. ` PR
v. µ(ρ(l1)) = C(o)

vi. method(m,C) = Tr m(x){return e}
(b) By inversion on the static semantics rule (CALL)

i. Γ ` l1 : C and Γ ` l2 : T

ii. Γ; Π ` [l1/this][l2/x]R1 ⊗ Π1
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bindF ields(R,R, µ) =
∧
v binop v

` v binop v
primitivesok(R,µ)

primitivesok

bindF ields(Ri, R, µ) = vi i = 1, 2
` v1 binop v2

bindF ields(R1 binop R2, R, µ) = R′1 binop R
′
2

binopok

bindF ields(Ri, R, µ) = vi i = 1, 2
` v1 ∧ v2

bindF ields(R1 ⊕ R2, R, µ) = R′1 ⊕R′2
andok

µ[o, f ] = v

bindF ields(o.f → x,R, µ) = v
fieldok

µ[o, f ] = v f → x ∈ R
bindFields(x,R, µ) = v

varok

Figure 17: Rules for primitivesok

iii. mtype(m,C) = ∀x : T .∃result.Tr;R′1( R

iv. R1 ` R′1
v. ∃x.T ;R′ = ∃ result.Tr; [l1/this][l2/x]R

(c) From 7(a)iv we know that the body {return e} of the method m implements its spec-
ification, so the result will be of the type ∃x.Tr;R′, given the arguments of the right
type.

(d) By the substitution Lemma, we know that [l1/this, l2/x]e will be of the type ∃x.Tr;R′.
Since µ,Σ, F (Π), ρ do not change, µ,Σ, F (Π), ρ ok.

(e) q.e.d., by 7d, 7(a)iv.

The cases LET-V, BINOP, AND, OR, NOT are trivial and they preserve soundness. After having
proved the Preservation Theorem, we should prove the Progress Theorem for our soundness proof
to be complete. Since our system is similar to Featherweight Java and we did not add new features
to the language, the Progress Theorem automatically holds. This concludes out soundness proof.

Our system inherits a Progress property from related object calculi such as Featherweith Java.
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10 Implementation

10.1 Verification of Range example in Boogie
The Boogie encoding of the queues of integers example from section 4 is given below. The code
below is the implementation of our methodology for the queues of integers example and it is
verified by Boogie.

/ / t y p e Ref i s i n t e n d e d t o r e p r e s e n t o b j e c t r e f e r e n c e s
t y p e Ref ;
t y p e P r e d i c a t e T y p e s ;
t y p e F r a c t i o n T y p e = [ Ref , P r e d i c a t e T y p e s ] i n t ;
t y p e UnpackedType = [ Ref , P r e d i c a t e T y p e s ] boo l ;

c o n s t n u l l : Ref ;
c o n s t u n i qu e RangeP : P r e d i c a t e T y p e s ;

v a r v a l : [ Ref ] i n t ;
v a r n e x t : [ Ref ] Ref ;
v a r f r a c : F r a c t i o n T y p e ;
v a r unpacked : UnpackedType ;

f u n c t i o n Range ( t h i s : Ref , v a l : [ Ref ] i n t , n e x t : [ Ref ] Ref ,
f r a c : F r a c t i o n T y p e , x : i n t , y : i n t ) r e t u r n s ( boo l ) ;

/ / f rame theorem
axiom ( f o r a l l t h i s : Ref , x : i n t , y : i n t , v a l : [ Ref ] i n t ,

v a l 1 : [ Ref ] i n t , n e x t : [ Ref ] Ref , f r a c : F r a c t i o n T y p e : :
( Range ( n e x t [ t h i s ] , va l , nex t , f r a c , x , y ) &&
( ( v a l 1 [ t h i s ] ! = v a l [ t h i s ] ) | | ( v a l 1 [ t h i s ]== v a l [ t h i s ] ) ) &&
( f o r a l l r : Ref : : r != t h i s ==> v a l 1 [ r ]== v a l [ r ] ) )

==> Range ( n e x t [ t h i s ] , va l1 , nex t , f r a c , x , y )
) ;

/ / t h e s e axioms a r e f o r p a c k i n g t h e Range p r e d i c a t e
axiom ( f o r a l l t h i s : Ref , x : i n t , y : i n t , v a l : [ Ref ] i n t ,

n e x t : [ Ref ] Ref , f r a c : F r a c t i o n T y p e : :
{ Range ( t h i s , va l , nex t , f r a c , x , y ) }

( ( t h i s != n u l l ) && ( n e x t [ t h i s ] == n u l l ) &&
( v a l [ t h i s ] >= x ) && ( v a l [ t h i s ] <= y ) ==>

Range ( t h i s , va l , nex t , f r a c , x , y )
) ) ;

axiom ( f o r a l l t h i s : Ref , x : i n t , y : i n t , v a l : [ Ref ] i n t ,
n e x t : [ Ref ] Ref , f r a c : F r a c t i o n T y p e : :

{ Range ( t h i s , va l , nex t , f r a c , x , y ) }
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( ( t h i s != n u l l ) && ( n e x t [ t h i s ] != n u l l ) && ( v a l [ t h i s ] >= x ) &&
( v a l [ t h i s ] <= y ) && Range ( n e x t [ t h i s ] , va l , nex t , f r a c , x , y )

==> Range ( t h i s , va l , nex t , f r a c , x , y ) )
) ;

axiom ( f o r a l l t h i s : Ref , x : i n t , y : i n t , v a l : [ Ref ] i n t ,
n e x t : [ Ref ] Ref , f r a c : F r a c t i o n T y p e : :

{ Range ( t h i s , va l , nex t , f r a c , x , y ) }
( t h i s == n u l l ) ==> Range ( t h i s , va l , nex t , f r a c , x , y )

) ;

/ / t h i s axiom i s used f o r unpack ing
axiom ( f o r a l l t h i s : Ref , x : i n t , y : i n t , v a l : [ Ref ] i n t ,

n e x t : [ Ref ] Ref , f r a c : F r a c t i o n T y p e : :
{ Range ( t h i s , va l , nex t , f r a c , x , y ) }

( Range ( t h i s , va l , nex t , f r a c , x , y ) ==>
( t h i s != n u l l ) && ( v a l [ t h i s ] >= x ) && ( v a l [ t h i s ] <= y ) &&

Range ( n e x t [ t h i s ] , va l , nex t , f r a c , x , y ) && ( f r a c [ t h i s , RangeP ] >=50)
)

) ;

/ / modulo i s n o t implemented i n Boogie
/ / so i t s p r o p e r t i e s have t o be d e s c r i b e d
f u n c t i o n modulo ( x : i n t , y : i n t ) r e t u r n s ( i n t ) ;

axiom ( f o r a l l x : i n t , y : i n t : : { modulo ( x , y ) }
((0 <= x ) &&(0<y ) ==> (0 <= modulo ( x , y ) ) && ( modulo ( x , y ) <y ) )
&&
((0 <= x ) &&(y <0) ==> (0 <= modulo ( x , y ) ) && ( modulo ( x , y)<−y ) )
&&
( ( x <=0) &&(0<y ) ==> (−y<= modulo ( x , y ) ) && ( modulo ( x , y ) <=0) )

&&
( ( x <=0) &&(y <0) ==> ( y<= modulo ( x , y ) ) && ( modulo ( x , y ) <=0) )

) ;

p r o c e d u r e addModulo11 ( t h i s : Ref , x : i n t )
m o d i f i e s va l , unpacked ;
/ / need t o p u t t h i s i n f o r modulo
r e q u i r e s t h i s != n u l l ;
r e q u i r e s v a l [ t h i s ] >=0 && x >=0;
/ / t h i s c o u l d be 100 h e r e
r e q u i r e s f r a c [ t h i s , RangeP ] >=50;
r e q u i r e s ( f o r a l l r : Ref : : unpacked [ r , RangeP ]== f a l s e ) ;
e n s u r e s Range ( t h i s , va l , nex t , f r a c , 0 , 1 0 ) ;
e n s u r e s f r a c [ t h i s , RangeP ] >=50;
{
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a s s e r t unpacked [ t h i s , RangeP ]== f a l s e ;
assume Range ( t h i s , va l , nex t , f r a c , 0 , 1 0 ) ;
a s s e r t ( t h i s != n u l l ) && ( v a l [ t h i s ] >= 0) && ( v a l [ t h i s ] <= 10)

&& Range ( n e x t [ t h i s ] , va l , nex t , f r a c , 0 , 1 0 ) ;
unpacked [ t h i s , RangeP ] : = t r u e ;

v a l [ t h i s ] := modulo ( ( v a l [ t h i s ]+ x ) , 1 1 ) ;
a s s e r t ( t h i s != n u l l ) ;
a s s e r t ( v a l [ t h i s ] >= 0) && ( v a l [ t h i s ] <= 1 0 ) ;
a s s e r t Range ( n e x t [ t h i s ] , va l , nex t , f r a c , 0 , 1 0 ) ;
unpacked [ t h i s , RangeP ] : = f a l s e ;

i f ( n e x t [ t h i s ] != n u l l )
{

c a l l addModulo11 ( n e x t [ t h i s ] , x ) ;
}
a s s e r t Range ( n e x t [ t h i s ] , va l , nex t , f r a c , 0 , 1 0 ) ;
/ / v a l [ t h i s ] was n o t m o d i f i e d
assume o l d ( v a l [ t h i s ] )== v a l [ t h i s ] ;

}

10.2 Verification of Composite pattern in Boogie
The Boogie encoding of our instance of the composite pattern from section 8 is given below. The
code below is the implementation of our methodology for the composite example and it is verified
by Boogie.

/ / t y p e Ref r e p r e s e n t s o b j e c t r e f e r e n c e s
t y p e Ref ;
t y p e P r e d i c a t e T y p e s ;
t y p e F r a c t i o n T y p e = [ Ref , P r e d i c a t e T y p e s ] i n t ;
t y p e UnpackedType = [ Ref , P r e d i c a t e T y p e s ] boo l ;

c o n s t n u l l : Ref ;
c o n s t u n i que l e f t P : P r e d i c a t e T y p e s ;
c o n s t u n i que r i g h t P : P r e d i c a t e T y p e s ;
c o n s t u n i que p a r e n t P : P r e d i c a t e T y p e s ;
c o n s t u n i que coun tP : P r e d i c a t e T y p e s ;

v a r l e f t : [ Ref ] Ref ;
v a r r i g h t : [ Ref ] Ref ;
v a r p a r e n t : [ Ref ] Ref ;
v a r c o u n t : [ Ref ] i n t ;
v a r unpacked : UnpackedType ;
v a r f r a c : F r a c t i o n T y p e ;
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/ / axiom t h a t shows t h e r e a r e no c y c l e s i n t h e t r e e , l o c a l l y
/ / t h i s axiom d e s c r i b e s t h e d a t a s t r u c t u r e , does n o t depend on whe the r
/ / a p r e d i c a t e h o l d s o r n o t
axiom ( f o r a l l t h i s : Ref , l : Ref , l e f t : [ Ref ] Ref ,

r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref : :
( t h i s != r i g h t [ t h i s ] ) && ( t h i s != l e f t [ t h i s ] ) && ( t h i s != p a r e n t [ t h i s ] ) ) ;

/ / axiom s t a t i n g t h a t t h i s i s a b i n a r y t r e e
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref : :

( t h i s != n u l l ) && ( p a r e n t [ t h i s ] ! = n u l l ) ==>
( ( t h i s == r i g h t [ p a r e n t [ t h i s ] ] ) | | ( t h i s == l e f t [ p a r e n t [ t h i s ] ] ) )

) ;

f u n c t i o n l e f t P r e d ( t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , l c : i n t ) r e t u r n s ( boo l ) ;

axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , l c : i n t : :

( ( ( l e f t [ t h i s ] != n u l l ) &&
c o u n t P r e d ( l e f t [ t h i s ] , l e f t , r i g h t , count , f r a c , l c ) &&
( f r a c [ l e f t [ t h i s ] , coun tP ] >= 50) )
==> ( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c ) ) )

&&
( ( ( l e f t [ t h i s ] == n u l l ) &&

( l c ==0) )
==> ( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ) )

) ;

/ / t h i s axiom i s f o r unpack ing of l e f t p r e d i c a t e when l e f t [ t h i s ] ! = n u l l
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , l c : i n t : :
( ( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c ) &&

( l e f t [ t h i s ] != n u l l ) )==>
( c o u n t P r e d ( l e f t [ t h i s ] , l e f t , r i g h t , count , f r a c , l c ) &&

( f r a c [ l e f t [ t h i s ] , coun tP ] >= 50) ) ) ) ;

/ / t h i s axiom i s f o r unpack ing of l e f t p r e d i c a t e when l e f t [ t h i s ]== n u l l
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :
{ l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 )}

( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 )
==> ( l e f t [ t h i s ] == n u l l ) ) ) ;

f u n c t i o n r i g h t P r e d ( t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
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c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , r c : i n t ) r e t u r n s ( boo l ) ;
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , r c : i n t : :
( ( ( r i g h t [ t h i s ] != n u l l ) &&

c o u n t P r e d ( r i g h t [ t h i s ] , l e f t , r i g h t , count , f r a c , r c ) &&
( f r a c [ r i g h t [ t h i s ] , coun tP ] >= 50) )
==> r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , r c ) )

&&
( ( ( r i g h t [ t h i s ] == n u l l ) &&
( r c ==0) )
==> r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) )

) ;

/ / t h i s axiom i s f o r unpack ing of r i g h t p r e d i c a t e when r i g h t [ t h i s ] ! = n u l l
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , r c : i n t : :
( r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , r c ) &&
( r i g h t [ t h i s ] != n u l l ) ==>
( c o u n t P r e d ( r i g h t [ t h i s ] , l e f t , r i g h t , count , f r a c , r c ) &&
( f r a c [ r i g h t [ t h i s ] , coun tP ] >= 50) ) ) ) ;

/ / t h i s axiom i s f o r unpack ing of r i g h t p r e d i c a t e when r i g h t [ t h i s ]== n u l l
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :
( r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 )
==> ( r i g h t [ t h i s ] == n u l l ) ) ) ;

f u n c t i o n c o u n t P r e d ( t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , c : i n t ) r e t u r n s ( boo l ) ;

axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , c : i n t : :

( ( ( t h i s != n u l l ) && (
e x i s t s l c : i n t , r c : i n t : :

( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c ) &&
( f r a c [ t h i s , l e f t P ] >= 50) &&
r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , r c ) &&
( f r a c [ t h i s , r i g h t P ] >= 50) &&
( c o u n t [ t h i s ] == l c + r c +1) &&
( c o u n t [ t h i s ]== c ) )

) ) ==> c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c ) )
) ;

/ / t h i s axiom i s used f o r unpack ing of c o u n t p r e d i c a t e
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , c : i n t : :
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( c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c ) ==>
( ( t h i s != n u l l ) &&

( e x i s t s l c : i n t , r c : i n t : :
( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c ) &&
( f r a c [ t h i s , l e f t P ] >= 50) &&
r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , r c ) &&
( f r a c [ t h i s , r i g h t P ] >= 50) &&
( c o u n t [ t h i s ] == l c + r c +1) &&
( c o u n t [ t h i s ]== c ) )

) ) )
) ;

axiom ( f o r a l l t h i s : Ref , c o u n t : [ Ref ] i n t : :
( t h i s == n u l l ) ==> ( c o u n t [ t h i s ]==0) ) ;

f u n c t i o n p a r e n t P r e d ( t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e ) r e t u r n s ( boo l ) ;

axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :

(
( p a r e n t [ t h i s ] != t h i s )
&&
c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] )

&&
( f r a c [ t h i s , coun tP ] >=50)

&&
( p a r e n t [ t h i s ] != n u l l )

&&
p a r e n t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , p a r e n t , count , f r a c )

&&
(
( l e f t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] ) &&

( f r a c [ p a r e n t [ t h i s ] , l e f t P ] >= 5 0 ) )
| |
( r i g h t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] ) &&
( f r a c [ p a r e n t [ t h i s ] , r i g h t P ] >= 5 0 ) )

)
)
==>
p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c )

) ;

axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :

(
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( p a r e n t [ t h i s ] != t h i s )
&&
c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] )

&&
( f r a c [ t h i s , coun tP ] >=100)

&&
( p a r e n t [ t h i s ]== n u l l )

)
==>
p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c )

) ;

/ / t h i s axiom i s used f o r unpack ing of p a r e n t P r e d
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :
{ p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) }
( p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ==>
( ( p a r e n t [ t h i s ] != t h i s )

&&
( e x i s t s c : i n t : :

( ( c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c )
&&
( f r a c [ t h i s , coun tP ] >=50)

&&
( ( p a r e n t [ t h i s ] != n u l l ) ==>

( p a r e n t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , p a r e n t , count , f r a c )
&&
( ( l e f t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c ) &&
( f r a c [ p a r e n t [ t h i s ] , l e f t P ] >= 5 0 ) )
| |
( r i g h t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c ) &&
( f r a c [ p a r e n t [ t h i s ] , r i g h t P ] >= 5 0 ) )
) ) )

&&
( ( p a r e n t [ t h i s ]== n u l l ) ==>

c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c ) &&
( f r a c [ t h i s , coun tP ] >=50) ) ) ) )

) ) ) ;

/ / axioms a b o u t t h e e x i s t a n c e o f a v a r i a b l e and i n s t a n t i a t i o n
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :
( e x i s t s l c : i n t : : l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c )
==> l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ l e f t [ t h i s ] ] ) )

) ;
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axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :

( e x i s t s r c : i n t : : r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , r c )
==> r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ r i g h t [ t h i s ] ] ) )

) ;

axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,
c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e : :

( e x i s t s c : i n t : : c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c )
==> ( c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] ) ) )

) ;

/ / f rame axiom f o r c o u n t and l e f t P r e d
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , co un t1 : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , l c : i n t : :
( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c ) &&
( f o r a l l r : Ref : : r != t h i s ==> c o u n t [ r ]== c oun t1 [ r ] )
==> l e f t P r e d ( t h i s , l e f t , r i g h t , count1 , f r a c , l c ) )

) ;

/ / f rame axiom f o r when f r a c i s modi f i ed , f o r l e f t P r e d
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , f r a c : F r a c t i o n T y p e , f r a c 1 : F r a c t i o n T y p e , l c : i n t : :
( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , l c ) &&
( f o r a l l r : Ref : : r != t h i s ==> ( f r a c 1 [ r , coun tP ]== f r a c [ r , coun tP ] ) )
==> ( l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c 1 , l c ) ) )

) ;

/ / f rame axiom f o r c o u n t P r e d
axiom ( f o r a l l t h i s : Ref , l e f t : [ Ref ] Ref , r i g h t : [ Ref ] Ref , p a r e n t : [ Ref ] Ref ,

c o u n t : [ Ref ] i n t , l e f t 1 : [ Ref ] Ref , f r a c : F r a c t i o n T y p e , c : i n t : :
( c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c ) &&
( l e f t 1 [ p a r e n t [ t h i s ] ]== t h i s )
==> c o u n t P r e d ( t h i s , l e f t 1 , r i g h t , count , f r a c , c ) )
) ;

p r o c e d u r e Composi te ( t h i s : Ref )
m o d i f i e s l e f t , r i g h t , p a r e n t , count , f r a c , unpacked ;
r e q u i r e s t h i s != n u l l ;
e n s u r e s p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
e n s u r e s l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
e n s u r e s r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
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e n s u r e s ( f r a c [ t h i s , p a r e n t P ] >= 50) &&
( f r a c [ t h i s , l e f t P ] >= 50) &&
( f r a c [ t h i s , r i g h t P ] >= 50) ;

e n s u r e s unpacked [ t h i s , p a r e n t P ]== f a l s e ;
{

c o u n t [ t h i s ] := 1 ;
l e f t [ t h i s ] := n u l l ;
r i g h t [ t h i s ] := n u l l ;
p a r e n t [ t h i s ] := n u l l ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
f r a c [ t h i s , l e f t P ] := 100 ;
a s s e r t r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
f r a c [ t h i s , r i g h t P ] : = 1 0 0 ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) &&

r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
a s s e r t c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 1 ) ;
f r a c [ t h i s , coun tP ] := 100 ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) &&

r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
a s s e r t c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 1 ) ;
a s s e r t p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
f r a c [ t h i s , p a r e n t P ] := 100 ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) &&

r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 0 ) ;
a s s e r t c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , 1 ) ;
a s s e r t p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
unpacked [ t h i s , p a r e n t P ] : = f a l s e ;

}

p r o c e d u r e upda teCountRec ( t h i s : Ref )
m o d i f i e s count , f r a c , unpacked ;
r e q u i r e s t h i s != n u l l ;
r e q u i r e s unpacked [ t h i s , p a r e n t P ] ;
r e q u i r e s p a r e n t [ t h i s ] ! = n u l l

==> ( f r a c [ p a r e n t [ t h i s ] , p a r e n t P ] > 0 ) ;
r e q u i r e s ( p a r e n t [ t h i s ] ! = n u l l ) &&

( t h i s == r i g h t [ p a r e n t [ t h i s ] ] )
==> ( f r a c [ p a r e n t [ t h i s ] , r i g h t P ] >=5 0) ;

r e q u i r e s ( p a r e n t [ t h i s ] ! = n u l l ) &&
( t h i s == l e f t [ p a r e n t [ t h i s ] ] )
==> ( f r a c [ p a r e n t [ t h i s ] , l e f t P ] >=5 0) ;

r e q u i r e s p a r e n t [ t h i s ]== n u l l
==> ( f r a c [ t h i s , coun tP ] >= 5 0 ) ;

r e q u i r e s ( f o r a l l r : Ref : : ( r != t h i s )
==> ( unpacked [ r , coun tP ]== f a l s e ) ) ;
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r e q u i r e s unpacked [ t h i s , l e f t P ]== f a l s e ;
r e q u i r e s unpacked [ t h i s , r i g h t P ]== f a l s e ;
r e q u i r e s ( f r a c [ t h i s , l e f t P ] >=50) &&

( f r a c [ t h i s , r i g h t P ] >=50) ;
r e q u i r e s ( f r a c [ t h i s , coun tP ] >= 5 0 ) ;

e n s u r e s ( p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ) ;
e n s u r e s unpacked [ t h i s , p a r e n t P ]== f a l s e ;

{
v a r f r a c L o c a l : F r a c t i o n T y p e ;

assume ( e x i s t s c1 : i n t : :
l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c1 ) ) ;

assume ( e x i s t s c2 : i n t : :
r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c2 ) ) ;

i f ( p a r e n t [ t h i s ] != n u l l )
{

/ / we a s s e r t what i s t r u e when unpacked [ t h i s , p a r e n t P ]
a s s e r t f r a c [ t h i s , coun tP ] >=50;
f r a c L o c a l [ t h i s , coun tP ] : = f r a c [ t h i s , coun tP ] ;

/ / t h i s a s s e r t s t h a t we have a f r a c t i o n t o p a r e n t P
a s s e r t ( f r a c [ p a r e n t [ t h i s ] , p a r e n t P ] > 0 ) ;
/ / we unpack p a r e n t [ t h i s ] from p a r e n t P
unpacked [ p a r e n t [ t h i s ] , p a r e n t P ] : = t r u e ;
a s s e r t ( f o r a l l r : Ref : : ( r != t h i s ) ==>

( unpacked [ r , coun tP ]== f a l s e ) ) ;

/ / we can assume t h i s b e c a u s e we j u s t unpacked
/ / p a r e n t [ t h i s ] from p a r e n t P
assume f r a c [ p a r e n t [ t h i s ] , coun tP ] >=50;
f r a c L o c a l [ p a r e n t [ t h i s ] , coun tP ] : = f r a c [ p a r e n t [ t h i s ] , coun tP ] ;

/ / we unpack p a r e n t [ t h i s ] from coun tP
unpacked [ p a r e n t [ t h i s ] , coun tP ] : = t r u e ;

/ / we can assume t h i s b e c a u s e we j u s t unpacked p a r e n t [ t h i s ] from coun tP
assume ( f r a c [ t h i s , l e f t P ] >=50) && ( f r a c [ t h i s , r i g h t P ] >=5 0) ;
f r a c L o c a l [ p a r e n t [ t h i s ] , r i g h t P ] : = f r a c [ p a r e n t [ t h i s ] , r i g h t P ] ;

/ / we assume t h i s i s t h e r i g h t c h i l d o f p a r e n t [ t h i s ]
/ / t h e o t h e r c a s e i s a n a l o g o u s
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assume t h i s == r i g h t [ p a r e n t [ t h i s ] ] ;
a s s e r t ( p a r e n t [ t h i s ] ! = n u l l ) &&

( t h i s == r i g h t [ p a r e n t [ t h i s ] ] )
==> f r a c [ p a r e n t [ t h i s ] , r i g h t P ] >=50;

f r a c L o c a l [ p a r e n t [ t h i s ] , r i g h t P ] : = f r a c L o c a l [ p a r e n t [ t h i s ] , r i g h t P ]
+ f r a c [ p a r e n t [ t h i s ] , r i g h t P ] ;

a s s e r t ( f r a c L o c a l [ p a r e n t [ t h i s ] , r i g h t P ] >=100) ;
/ / unpack p a r e n t [ t h i s ] from r i g h t P
unpacked [ p a r e n t [ t h i s ] , r i g h t P ] : = t r u e ;
a s s e r t unpacked [ p a r e n t [ t h i s ] , r i g h t P ]

==> f r a c [ r i g h t [ p a r e n t [ t h i s ] ] , coun tP ] >=50;
f r a c L o c a l [ t h i s , coun tP ] : = f r a c L o c a l [ t h i s , coun tP ]+ f r a c [ t h i s , coun tP ] ;

a s s e r t ( f r a c [ t h i s , l e f t P ] >=50) && ( f r a c [ t h i s , r i g h t P ] >=50) ;
a s s e r t unpacked [ t h i s , p a r e n t P ] ;
f r a c [ t h i s , coun tP ] : = f r a c L o c a l [ t h i s , coun tP ] ;
a s s e r t ( f r a c [ t h i s , coun tP ] >= 1 0 0 ) ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ l e f t [ t h i s ] ] ) ;
a s s e r t ( e x i s t s c1 : i n t : : l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c1 ) ) ;
unpacked [ t h i s , l e f t P ] : = f a l s e ;
a s s e r t r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ r i g h t [ t h i s ] ] ) ;
a s s e r t ( e x i s t s c2 : i n t : : r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c2 ) ) ;
unpacked [ t h i s , r i g h t P ] : = f a l s e ;

c a l l upda t eCoun t ( t h i s ) ;
a s s e r t ( e x i s t s c : i n t : :

c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c )
) ;

a s s e r t c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] ) ;
a s s e r t unpacked [ t h i s , coun tP ]== f a l s e ;
a s s e r t ( f r a c [ t h i s , coun tP ] >=100) ;

/ / a s s e r t t h e p r e c o n d i t i o n s o f upda teCountRec
a s s e r t p a r e n t [ t h i s ] ! = n u l l ;
unpacked [ p a r e n t [ t h i s ] , p a r e n t P ] : = t r u e ;

/ / we can assume t h e s e b e c a u s e we have j u s t
/ / unpacked p a r e n t [ t h i s ] from p a r e n t P
assume p a r e n t [ p a r e n t [ t h i s ] ] ! = n u l l

==> ( f r a c [ p a r e n t [ p a r e n t [ t h i s ] ] , p a r e n t P ] > 0 ) ;
assume p a r e n t [ p a r e n t [ t h i s ] ]== n u l l

==> ( f r a c [ p a r e n t [ t h i s ] , coun tP ] >= 5 0 ) ;
assume ( p a r e n t [ p a r e n t [ t h i s ] ] ! = n u l l ) &&

( t h i s == r i g h t [ p a r e n t [ p a r e n t [ t h i s ] ] ] )
==> ( f r a c [ p a r e n t [ p a r e n t [ t h i s ] ] , r i g h t P ] >=5 0) ;
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assume ( p a r e n t [ p a r e n t [ t h i s ] ] ! = n u l l ) &&
( t h i s == l e f t [ p a r e n t [ p a r e n t [ t h i s ] ] ] )
==> ( f r a c [ p a r e n t [ p a r e n t [ t h i s ] ] , l e f t P ] >=5 0) ;

a s s e r t r i g h t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c o u n t [ t h i s ] ) ;
a s s e r t ( e x i s t s c2 : i n t : : r i g h t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c2 ) ) ;
unpacked [ p a r e n t [ t h i s ] , r i g h t P ] : = f a l s e ;
a s s e r t ( f o r a l l r : Ref : : ( r != p a r e n t [ t h i s ] )

==> ( unpacked [ r , coun tP ]== f a l s e ) ) ;

/ / a s s e r t i o n s f o r p r o v i n g l e f t P r e d ( p a r e n t [ t h i s ] . . .
/ / we assume t h i s , t h e o t h e r c a s e i s t r i v i a l
assume l e f t [ p a r e n t [ t h i s ] ] != n u l l ;
a s s e r t unpacked [ l e f t [ p a r e n t [ t h i s ] ] , coun tP ]== f a l s e ;
/ / we can assume t h i s b e c a u s e
/ / c o u n t P r e d i s packed f o r l e f t [ p a r e n t [ t h i s ] ]
assume c o u n t P r e d ( l e f t [ p a r e n t [ t h i s ] ] , l e f t ,

r i g h t , count , f r a c , c o u n t [ t h i s ] ) ;

a s s e r t l e f t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count ,
f r a c , c o u n t [ l e f t [ p a r e n t [ t h i s ] ] ] ) ;

a s s e r t ( e x i s t s c1 : i n t : :
l e f t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , count , f r a c , c1 ) ) ;

unpacked [ p a r e n t [ t h i s ] , l e f t P ] : = f a l s e ;
c a l l upda teCountRec ( p a r e n t [ t h i s ] ) ;

a s s e r t p a r e n t P r e d ( p a r e n t [ t h i s ] , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
a s s e r t unpacked [ p a r e n t [ t h i s ] , p a r e n t P ]== f a l s e ;
/ / t h i s i s t h e f i n a l a s s e r t i o n needed
a s s e r t p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
unpacked [ t h i s , p a r e n t P ] : = f a l s e ;

}
e l s e

{
a s s e r t ( f r a c [ t h i s , coun tP ] >= 5 0 ) ;
f r a c L o c a l [ t h i s , coun tP ] : = f r a c [ t h i s , coun tP ] ;
a s s e r t p a r e n t [ t h i s ]== n u l l ==> ( f r a c [ t h i s , coun tP ] >= 5 0 ) ;
f r a c L o c a l [ t h i s , coun tP ] : = f r a c L o c a l [ t h i s , coun tP ] + f r a c [ t h i s , coun tP ] ;
f r a c [ t h i s , coun tP ] : = f r a c L o c a l [ t h i s , coun tP ] ;
a s s e r t ( f r a c [ t h i s , coun tP ] >= 1 0 0 ) ;

c a l l upda t eCoun t ( t h i s ) ;
a s s e r t p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
unpacked [ t h i s , p a r e n t P ] : = f a l s e ;

}
}
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p r o c e d u r e upda t eCoun t ( t h i s : Ref )
m o d i f i e s count , f r a c , unpacked ;
r e q u i r e s t h i s != n u l l ;
r e q u i r e s unpacked [ t h i s , l e f t P ]== f a l s e ;
r e q u i r e s unpacked [ t h i s , r i g h t P ]== f a l s e ;
r e q u i r e s ( f r a c [ t h i s , l e f t P ] >=50) &&

( f r a c [ t h i s , r i g h t P ] >=50) &&
( f r a c [ t h i s , coun tP ] >= 1 0 0 ) ;

e n s u r e s ( e x i s t s c : i n t : :
c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c )

) ;
e n s u r e s unpacked [ t h i s , coun tP ]== f a l s e ;
e n s u r e s ( f r a c [ t h i s , coun tP ] >=100) ;
e n s u r e s ( f o r a l l r : Ref : : ( r != t h i s )

==> ( unpacked [ r , coun tP ]== o l d ( unpacked [ r , coun tP ] ) ) ) ;
{
v a r newc : i n t ;
newc := 1 ;

/ / we can assume t h i s b e c a u s e l e f t P and r i g h t P a r e packed
assume ( e x i s t s c1 : i n t : : l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c1 ) ) ;
assume ( e x i s t s c2 : i n t : : r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c2 ) ) ;

a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ l e f t [ t h i s ] ] ) ;
a s s e r t r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c o u n t [ r i g h t [ t h i s ] ] ) ;

i f ( l e f t [ t h i s ] != n u l l )
{
newc := newc + c o u n t [ l e f t [ t h i s ] ] ;
}

i f ( r i g h t [ t h i s ] != n u l l )
{
newc := newc + c o u n t [ r i g h t [ t h i s ] ] ;
}

c o u n t [ t h i s ] := newc ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count ,

f r a c , c o u n t [ l e f t [ t h i s ] ] ) ;
a s s e r t r i g h t P r e d ( t h i s , l e f t , r i g h t , count ,

f r a c , c o u n t [ r i g h t [ t h i s ] ] ) ;
a s s e r t ( newc==1+ c o u n t [ l e f t [ t h i s ] ] + c o u n t [ r i g h t [ t h i s ] ] ) ;
a s s e r t ( c o u n t [ t h i s ]==1+ c o u n t [ l e f t [ t h i s ] ] + c o u n t [ r i g h t [ t h i s ] ] ) ;
a s s e r t ( f r a c [ t h i s , l e f t P ] >= 50) ;
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a s s e r t ( f r a c [ t h i s , r i g h t P ] >= 5 0 ) ;
a s s e r t c o u n t [ t h i s ]== newc ;
a s s e r t t h i s != n u l l ;
a s s e r t c o u n t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , newc ) ;
unpacked [ t h i s , coun tP ] : = f a l s e ;
}

p r o c e d u r e s e t L e f t ( t h i s : Ref , l : Ref )
m o d i f i e s p a r e n t , l e f t , count , f r a c , unpacked ;
r e q u i r e s t h i s != n u l l ;
r e q u i r e s t h i s != l ;
r e q u i r e s l != n u l l ;
r e q u i r e s unpacked [ t h i s , p a r e n t P ]== f a l s e ;
r e q u i r e s unpacked [ l , p a r e n t P ]== f a l s e ;
r e q u i r e s ( f o r a l l r : Ref : : ( unpacked [ r , coun tP ]== f a l s e ) ) ;
e n s u r e s p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;

{
/ / we can assume t h e s e b e c a s e p a r e n t P r e d i s t r u e f o r t h i s and l
assume p a r e n t P r e d ( t h i s , l e f t , r i g h t , p a r e n t , count , f r a c ) ;
assume p a r e n t P r e d ( l , l e f t , r i g h t , p a r e n t , count , f r a c ) ;

unpacked [ t h i s , p a r e n t P ] : = t r u e ;
/ / we can assume t h e f o l l o w i n g b e c a u s e we have
/ / j u s t unpacked t h i s from p a r e n t P
assume p a r e n t [ t h i s ] ! = n u l l

==> ( f r a c [ p a r e n t [ t h i s ] , p a r e n t P ] > 0 ) ;
assume ( p a r e n t [ t h i s ] ! = n u l l ) &&

( t h i s == r i g h t [ p a r e n t [ t h i s ] ] )
==> ( f r a c [ p a r e n t [ t h i s ] , r i g h t P ] >=5 0) ;

assume ( p a r e n t [ t h i s ] ! = n u l l ) &&
( t h i s == l e f t [ p a r e n t [ t h i s ] ] )
==> ( f r a c [ p a r e n t [ t h i s ] , l e f t P ] >=5 0) ;

assume p a r e n t [ t h i s ]== n u l l
==> ( f r a c [ t h i s , coun tP ] >= 5 0 ) ;

a s s e r t ( e x i s t s c : i n t : :
r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c ) ) ;

a s s e r t r i g h t P r e d ( t h i s , l e f t , r i g h t , count ,
f r a c , c o u n t [ r i g h t [ t h i s ] ] ) ;

a s s e r t ( e x i s t s c : i n t : :
c o u n t P r e d ( l , l e f t , r i g h t , count , f r a c , c ) ) ;

a s s e r t c o u n t P r e d ( l , l e f t , r i g h t , count , f r a c , c o u n t [ l ] ) ;

p a r e n t [ l ] : = t h i s ;
l e f t [ t h i s ] : = l ;
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a s s e r t t h i s == p a r e n t [ l ] ;
/ / p r o v i n g t h e a s s e r t i o n s f o r upda teCountRec
a s s e r t t h i s != n u l l ;
a s s e r t unpacked [ t h i s , p a r e n t P ] ;

a s s e r t l e f t [ t h i s ] != n u l l ;
a s s e r t c o u n t P r e d ( l e f t [ t h i s ] , l e f t , r i g h t ,

count , f r a c , c o u n t [ l e f t [ t h i s ] ] ) ;
a s s e r t f r a c [ l e f t [ t h i s ] , coun tP ] >= 5 0 ;
a s s e r t l e f t P r e d ( t h i s , l e f t , r i g h t , count ,

f r a c , c o u n t [ l e f t [ t h i s ] ] ) ;
unpacked [ t h i s , l e f t P ] : = f a l s e ;

a s s e r t r i g h t P r e d ( t h i s , l e f t , r i g h t , count ,
f r a c , c o u n t [ r i g h t [ t h i s ] ] ) ;

a s s e r t ( e x i s t s c2 : i n t : :
r i g h t P r e d ( t h i s , l e f t , r i g h t , count , f r a c , c2 ) ) ;

unpacked [ t h i s , r i g h t P ] : = f a l s e ;

a s s e r t ( f r a c [ t h i s , l e f t P ] >=50) &&
( f r a c [ t h i s , r i g h t P ] >=50) ;

a s s e r t ( f r a c [ t h i s , coun tP ] >= 5 0 ) ;
unpacked [ t h i s , coun tP ] : = t r u e ;
a s s e r t ( f o r a l l r : Ref : : ( r != t h i s )

==> ( unpacked [ r , coun tP ]== f a l s e ) ) ;

a s s e r t t h i s != n u l l ;
a s s e r t unpacked [ t h i s , p a r e n t P ] ;

c a l l upda teCountRec ( t h i s ) ;

}

}

10.3 Manual verification of Composite pattern
Below we display the manual verification of our instance of the composite pattern, using the object
propositions methodology.

c l a s s Composi te {
p r i v a t e Composi te l e f t , r i g h t , p a r e n t ;
p r i v a t e i n t c o u n t ;

p u b l i c Composi te
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( this@1
2

parent() ⊗ this@1
2

left(null, 0) ⊗ this@1
2

right(null, 0)
{

t h i s . c o u n t = 1 ;
{ this.count→ 1 }
t h i s . l e f t = n u l l ;
{ this.left→ null ⊗ this.count→ 1 }
t h i s . r i g h t = n u l l ;
{ this.right→ null ⊗ this.left→ null ⊗ this.count→ 1 }
t h i s . p a r e n t = n u l l ;
{ this.parent→ null ⊗ this.right→ null ⊗ this.left→ null ⊗

this.count→ 1 }
pack this@1 right(null, 0)
{ this.parent→ null ⊗ this.left→ null ⊗ this.count→ 1 ⊗

this@1 right(null, 0) }
pack this@1 left(null, 0)
{ this.parent→ null ⊗ this.count→ 1 ⊗

this@1 right(null, 0) ⊗ this@1 left(null, 0) }
split 1 into two halfs for left, right
pack this@1 count(0)
{ this.parent→ null ⊗

this@1
2

right(null, 0) ⊗ this@1
2

left(null, 0) ⊗ this@1 count(0) }
split 1 into two halfs for count
pack this@1 parent()
{ this@1

2
right(null, 0) ⊗ this@1

2
left(null, 0) ⊗ this@1 parent() }

split 1 into halfs
{ this@1

2
right(null, 0) ⊗ this@1

2
left(null, 0) ⊗

this@1
2

parent() ⊗ this@1
2

parent() }
we only need one half of parent in the post-condition
{ this@1

2
right(null, 0) ⊗ this@1

2
left(null, 0) ⊗ this@1

2
parent() }

{ QED }
}

p r i v a t e vo id upda teCountRec ( )
∃ k1, opp, lcc, k, ol, lc, or, rc.

(unpacked(this@ k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗((

opp 6= null( opp@k parent() ⊗
(opp@1

2
left(this, lcc) ⊕ opp@1

2
right(this, lcc))

)
⊕

(opp = null( this@1
2

count(lcc))
)
⊗

unpacked(this@1
2

count(lcc)) ⊗
this@1

2
left(ol, lc) ⊗ this@1

2
right(or, rc)
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( ∃ k1.this@k1 parent())
{

i f ( t h i s . p a r e n t != n u l l )
{ ∃ k1,lcc,opp, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
opp@k parent() ⊗
(opp@1

2
left(this, lcc) ⊕ opp@1

2
right(this, lcc)) ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or, rc. ⊗
this@1

2
left(ol, lc) ⊗ this@1

2
right(or, rc) }

split the fraction k of opp in parent and unpack opp from parent()
{ ∃ k1,lcc,opp, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗ opp@1

2

count(lccc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

(opp@1
2

left(this, lcc) ⊕ opp@1
2

right(this, lcc)) ⊗
⊗ opp@k

2
parent() ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or rc. ⊗
this@1

2
left(ol, lc) ⊗ this@1

2
right(or, rc)

unpack opp from 1
2

count(lccc)
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ oll, orr, llc, rrc. ⊗ opp@1
2

left(oll, llc) ⊗ opp@1
2

right(orr,
rrc) ⊗
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((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

(opp@1
2

left(this, lcc) ⊕ opp@1
2

right(this, lcc)) ⊗
⊗ opp@k

2
parent() ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or, rc.
this.count→ lcc ⊗
lcc = lc + rc + 1 ⊗
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

this is either the right or left child of opp. We analyze both cases.
1.In the first case we assume it’s the right child.
instantiate orr = this, rrc = lcc; merge both 1

2
to opp in right

{∃ k1, opp, lcc, k.
unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ oll, llc. opp@1
2

left(oll, llc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

opp@1 right(this, lcc) ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or, rc.
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

unpack opp from right(this, lcc)
{∃ k1, opp, lcc, k.
unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗
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unpacked(opp@1
2

count(lccc)) ⊗ ∃ oll, llc. opp@1
2

left(oll, llc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

unpacked(opp@1 right(this, lcc)) ⊗
opp.right→ this ⊗ this@1

2
count(lcc) ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or, rc.
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

pack this @ 1
2

count(lcc), add it to the other half
then unpack the count predicate
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ oll, llc. opp.count → lccc ⊗ lccc = llc + lcc + 1 ⊗ opp@1
2

left(oll, llc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

unpacked(opp@1 right(this, lcc)) ⊗
opp.right→ this ⊗

unpacked(this@1 count(lcc)) ⊗
∃ ol, lc, or, rc.
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

t h i s . upda t eCoun t ( ) ;
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{∃ k1, opp, lcc, k.
unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ oll, llc. opp.count → lccc ⊗ lccc = llc + lcc + 1 ⊗ opp@1
2

left(oll, llc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

unpacked(opp@1 right(this, lcc)) ⊗
opp.right→ this ⊗

this@1 count(lcc) }

pack opp in right(this, lcc)
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ oll, llc. opp.count → lccc ⊗ lccc = llc + lcc + 1 ⊗ opp@1
2

left(oll, llc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

opp@1 right(this, lcc) ⊗

this@1
2

count(lcc) }

t h i s . p a r e n t . upda teCountRec ( ) ;
{∃ k1, opp, lcc, k, k3.
unpacked(this@k1 parent()) ⊗
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this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗((

oppp 6= null( oppp@kk parent() ⊗ (oppp@1
2

left(opp, lccc) ⊕ oppp@1
2

right(opp, lccc))
)

⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

opp@1
2

right(this, lcc) ⊗

this@1
2

count(lcc) ⊗
opp@k3 parent() }

pack opp in parent()
{∃ k1, opp, lcc, k, k3.
unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗((

oppp 6= null( oppp@kk parent() ⊗ (oppp@1
2

left(opp, lccc) ⊕ oppp@1
2

right(opp, lccc))
)

⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

opp@1
2

right(this, lcc) ⊗

this@1
2

count(lcc) ⊗
opp@k3 parent() }

pack this in parent(), assuming opp is not null.
It’s not since we just called updateCountRec on it, we are on that branch.

{∃ k1. this@k1 parent()}
QED

2.In the second case we assume it’s the left child.
instantiate oll = this, llc = lcc; merge both 1

2
to opp in right

{∃ k1, opp, lcc, k.
unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ orr, rrc. opp.count→ lccc ⊗ lccc = lcc + rrc + 1 ⊗ opp@1
2
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right(orr, rrc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

opp@1 left(this, lcc) ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or, rc.
this.count→ lcc ⊗
lcc = lc + rc + 1 ⊗
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

unpack opp from left(this, lcc)
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ orr, rrc. opp.count→ lccc ⊗ lccc = rrc + lcc + 1 ⊗ opp@1
2

right(orr, rrc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

unpacked(opp@1 left(this, lcc)) ⊗
opp.left→ this ⊗ this@1

2
count(lcc) ⊗

unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc, or, rc.
this.count→ lcc ⊗
lcc = lc + rc + 1 ⊗
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

pack this @ 1
2

count(lcc), add it to the other half
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then unpack the count predicate
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ orr, rrc. opp.count→ lccc ⊗ lccc = rrc + lcc + 1 ⊗ opp@1
2

right(orr, rrc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

unpacked(opp@1 left(this, lcc)) ⊗
opp.left→ this ⊗

unpacked(this@1 count(lcc)) ⊗
∃ ol, lc, or, rc.
this.count→ lcc ⊗
lcc = lc + rc + 1 ⊗
this@1

2
right(or, rc) ⊗this@1

2
left(ol, lc) }

t h i s . upda t eCoun t ( ) ;
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ orr, rrc. opp.count→ lccc ⊗ lccc = rrc + lcc + 1 ⊗ opp@1
2

right(orr, rrc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

unpacked(opp@1 left(this, lcc)) ⊗
opp.left→ this ⊗
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this@1 count(lcc) }

pack opp in left(this, lcc)
{∃ k1, opp, lcc, k.

unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗

unpacked(opp@1
2

count(lccc)) ⊗ ∃ orr, rrc. opp.count→ lccc ⊗ lccc = rrc + lcc + 1 ⊗ opp@1
2

right(orr, rrc) ⊗((
oppp 6= null( oppp@kk parent() ⊗ (oppp@1

2
left(opp, lccc) ⊕ oppp@1

2
right(opp, lccc))

)
⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

⊗ opp@k
2

parent() ⊗

opp@1 left(this, lcc) ⊗

this@1
2

count(lcc) }

t h i s . p a r e n t . upda teCountRec ( ) ;

{∃ k1, opp, lcc, k, k3.
unpacked(this@k1 parent()) ⊗
this.parent→ opp ⊗ opp 6= this ⊗
unpacked(opp@k

2
parent()) ⊗ ∃ oppp, lccc, kk. opp.parent→ oppp ⊗ opp 6= oppp ⊗((

oppp 6= null( oppp@kk parent() ⊗ (oppp@1
2

left(opp, lccc) ⊕ oppp@1
2

right(opp, lccc))
)

⊕
(oppp = null( opp@1

2
count(lccc))

)
⊗

opp@1
2

left(this, lcc) ⊗

this@1
2

count(lcc) ⊗
opp@k3 parent()}
pack this in parent(), assuming opp is not null.
It’s not since we just called updateCountRec on it, we are on that branch.

{∃ k1. this@k1 parent()}
QED
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e l s e

{ unpacked(this@k1 parent()) ⊗ ∃ opp, lcc. unpacked(this@1
2

count(lcc)) ⊗
∃ ol, lc. this@1

2
left(l, lc) ⊗

∃ or, rc, lc1. this.count→ lcc ⊗
lcc = lc1 + rc + 1 ⊗
this@1

2
right(or, rc) ⊗

this.parent→ opp ⊗
opp 6= this ⊗ opp = null ⊗ this@1

2
count(lcc) }

merge this, 1
2

in count(lcc) from packed and unpacked
{ unpacked(this@k1 parent()) ⊗ ∃ opp, lcc. unpacked(this@1 count(lcc)) ⊗

∃ ol, lc. this@1
2

left(l, lc) ⊗
∃ or, rc, lc1. this.count→ lcc ⊗
lcc = lc1 + rc + 1 ⊗
this@1

2
right(or, rc) ⊗

this.parent→ opp ⊗
opp 6= this ⊗ opp = null }

t h i s . upda t eCoun t ( ) ;

{ unpacked(this@k1 parent()) ⊗ ∃ opp, lcc. this@1 count(lcc) ⊗
this.parent→ opp ⊗
opp 6= this ⊗ opp = null }

split count in half and pack this in parent
{∃ k1. this@k1 parent() }
QED

}

p r i v a t e vo id upda t eCoun t ( )
∃ c, c1, c2, ol, or. unpacked(this@1 count(c)) ⊗

this@1
2

left(ol, c1) ⊗this@1
2

right(or, c2)
( ∃ c. this@1 count(c)

{
i n t newc = 1 ;
unpack this @1

2
left(ol,c1)

{ newc = 1 ⊗
unpacked(this@1 count(c)) ⊗
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unpacked(this@1
2

left(ol, c1)) ⊗
this.left→ ol ⊗ (ol = null( c1 = 0) ⊗
(ol 6= null( ol@1

2
count(c1)) ⊗

this@1
2

right(or, c2) }
i f ( t h i s . l e f t != n u l l )

{ newc = 1 ⊗
unpacked(this@1 count(c)) ⊗
unpacked(this@1

2
left(ol, c1)) ⊗

this.left→ ol ⊗
ol@1

2
count(c1) ⊗

this@1
2

right(or, c2) }
unpack ol in 1

2
count(c1)

{ newc = 1 ⊗
unpacked(this@1 count(c)) ⊗
unpacked(this@1

2
left(ol, c1)) ⊗

this.left→ ol ⊗
unpacked(ol@1

2
count(c1)) ⊗

∃ lol,lor,llc,lrc. ol.count→ c1 ⊗
c1 = llc + lrc + 1 ⊗
ol@1

2
left(lol, llc) ⊗

ol@1
2

right(lor, lrc) ⊗
this@1

2
right(or, c2) ⊗}
newc = newc + l e f t . c o u n t ;
{ newc = 1 + c1 ⊗

unpacked(this@1 count(c)) ⊗
unpacked(this@1

2
left(ol, c1)) ⊗

this.left→ ol ⊗
unpacked(ol@1

2
count(c1)) ⊗

∃ lol,lor,llc,lrc. ol.count→ c1 ⊗
c1 = llc + lrc + 1 ⊗
ol@1

2
left(lol, llc) ⊗ ol@1

2
right(lor, lrc) ⊗

this@1
2

right(or, c2) }
pack ol in count(c1)
{ newc = 1 + lc ⊗

unpacked(this@1 count(c)) ⊗
unpacked(this@1

2
left(ol, c1)) ⊗

this.left→ ol ⊗
ol@1

2
count(c1) ⊗

this@1
2

right(or, c2)}
pack this in left(ol, c1)
{ newc = 1 + c1 ⊗

unpacked(this@1 count(c)) ⊗
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this@1
2

left(ol, c1) ⊗
this@1

2
right(or, c2) }

unpack this in 1
2

right(or, c2)
{ newc = 1 + c1 ⊗

unpacked(this@1 count(c)) ⊗
this@1

2
left(ol, c1) ⊗

unpacked(this@1
2

right(or, c2)) ⊗
this.right→ or ⊗(
(or 6= null( or@1

2
count(c2)) ⊕

(or = null( c2 = 0)
)

}
i f ( t h i s . r i g h t != n u l l )

{ newc = 1 + c1 ⊗
unpacked(this@1 count(c)) ⊗
this@1

2
left(ol, c1) ⊗

unpacked(this@1
2

right(or, c2)) ⊗
this.right→ or ⊗
or@1

2
count(c2) }

unpack or in 1
2

count(c2)
{ newc = 1 + c1 ⊗

unpacked(this@1 count(c)) ⊗
this@1

2
left(ol, c1) ⊗

unpacked(this@1
2

right(or, c2)) ⊗
this.right→ or ⊗
unpacked(or@1

2
count(c2)) ⊗

∃ rol,ror,rlc,rrc. or.count→ c2 ⊗
c2 = rlc + rrc + 1 ⊗
or@1

2
left(rol, rlc) ⊗

or@1
2

right(ror, rrc) }
newc = newc + r i g h t . c o u n t ;
{ newc = 1 + c1 + c2 ⊗

unpacked(this@1 count(c)) ⊗
this@1

2
left(ol, c1) ⊗

unpacked(this@1
2

right(or, c2)) ⊗
this.right→ or ⊗
unpacked(or@1

2
count(c2)) ⊗

∃ rol,ror,rlc,rrc. or.count→ c2 ⊗
c2 = rlc + rrc + 1 ⊗
or@1

2
left(rol, rlc) ⊗

or@1
2

right(ror, rrc) }
pack or in count
{ newc = 1 + c1 + c2 ⊗

unpacked(this@ 1 count(c)) ⊗
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this@1
2

left(ol, c1) ⊗
unpacked(this@1

2
right(or, c2)) ⊗

this.right→ or ⊗
or@1

2
count(c2) }

pack this in right
{ newc = 1 + c1 + c2 ⊗

unpacked(this@1 count(c)) ⊗
this@1

2
left(ol, c1) ⊗

this@1
2

right(or, c2) }
t h i s . c o u n t = newc ;
{ newc = 1 + c1 + c2 ⊗

unpacked(this@1 count(c)) ⊗
this.count→ c ⊗ c = newc ⊗
this@1

2
left(ol, c1) ⊗

this@1
2

right(or, c2) }
pack this in count(newc)
{ this@1 count(newc) }
QED

}

p u b l i c vo id s e t L e f t ( Composi te l )
this 6= l ⊗

∃k1, k2.(this@k1 parent() ⊗ l@k2 parent()(
∃ k.this@k parent()

{
unpack l from parent
{ unpacked(l@k2 parent()) ⊗ ∃ op, lc, k,k1,k3. l.parent→ op ⊗

op 6= l ⊗ l@1
2

count(lc) ⊗((
op 6= null(

op@k3 parent() ⊗
(op@1

2
left(l, lc) ⊕

op@1
2

right(l, lc))
)
⊕

(op = null( l@1
2

count(lc))
)
⊗ this 6= l ⊗

this@k1 parent() }
{ unpacked(l@k2 parent()) ⊗ ∃ lc, k1. l.parent→ null ⊗

null 6= l ⊗ l@1
2

count(lc) ⊗
l@1

2
count(lc) ⊗ this 6= l ⊗

this@k1 parent() }
l . p a r e n t = t h i s ;
assignment rule
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{ unpacked(l@k2 parent()) ⊗ ∃ lc. l.parent→ this ⊗
null 6= l ⊗ l@1

2
count(lc) ⊗

l@1
2

count(lc) ⊗ this 6= l ⊗
this@k1 parent() }

unpack this from parent
{ unpacked(l@k2 parent()) ⊗ unpacked(this@k1 parent()) ⊗ ∃ opp, lcc, k,k4. this.parent

→ opp ⊗
opp 6= this ⊗ this@1

2
count(lcc) ⊗((

opp 6= null(
opp@k4 parent() ⊗
(opp@1

2
left(this, lcc) ⊕

opp@1
2

right(this, lcc))
)
⊕

(opp = null( this@1
2

count(lcc))
)
⊗

∃ lc. l.parent→ this ⊗
null 6= l ⊗ l@1

2
count(lc) ⊗

l@1
2

count(lc) ⊗ this 6= l }
unpack this from 1

2
count(lcc)

{ unpacked(l@k2 parent())⊗ unpacked(this@k1 parent())⊗∃ opp, lcc, k. unpacked(this@1
2

count(lcc)) ⊗ ∃ ol, llc, or, rc. this.count→ lcc ⊗
lcc = llc + rc + 1 ⊗
this@1

2
left(ol, llc) ⊗

this@1
2

right(or, rc) ⊗

this.parent→ opp ⊗
opp 6= this ⊗((

opp 6= null(

opp@k
2

parent() ⊗
(opp@1

2
left(this, lcc) ⊕

opp@1
2

right(this, lcc))
)
⊕

(opp = null( this@1
2

count(lcc))
)
⊗

∃ lc. l.parent→ this ⊗
null 6= l ⊗ l@1

2
count(lc) ⊗

l@1
2

count(lc) ⊗ this 6= l ⊗
this@1

2
left(null, 0) }

existentialize ol with null and llc with 0 (to unify left permissions)
{ unpacked(l@k2 parent())⊗ unpacked(this@k1 parent())⊗∃ opp, lcc, k. unpacked(this@1

2

count(lcc)) ⊗ ∃ or, rc. this.count→ lcc ⊗
lcc = 0 + rc + 1 ⊗
this@1

2
right(or, rc) ⊗

this.parent→ opp ⊗
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opp 6= this ⊗((
opp 6= null(

opp@k4 parent() ⊗
(opp@1

2
left(this, lcc) ⊕

opp@1
2

right(this, lcc))
)
⊕

(opp = null( this@1
2

count(lcc))
)
⊗

∃ lc. l.parent→ this ⊗
null 6= l ⊗ l@1

2
count(lc) ⊗

l@1
2

count(lc) ⊗ this 6= l }
merge the half fractions to left

{ unpacked(l@k2 parent())⊗ unpacked(this@k1 parent())⊗∃ opp, lcc, k. unpacked(this@1
2

count(lcc)) ⊗
this.left→ null ⊗ ∃ or, rc. this.count→ lcc ⊗
lcc = 0 + rc + 1 ⊗
this@1

2
right(or, rc) ⊗

this.parent→ opp ⊗
opp 6= this ⊗((

opp 6= null(
opp@k4 parent() ⊗
(opp@1

2
left(this, lcc) ⊕

opp@1
2

right(this, lcc))
)
⊕

(opp = null( this@1
2

count(lcc))
)
⊗

∃ lc. l.parent→ this ⊗
null 6= l ⊗ l@1

2
count(lc) ⊗

l@1
2

count(lc) ⊗ this 6= l }
t h i s . l e f t = l ;
assignment
{ unpacked(l@k2 parent())⊗ unpacked(this@k1 parent())⊗∃ opp, lcc, k. unpacked(this@1

2

count(lcc)) ⊗
this.left→ l ⊗ ∃ or, rc. this.count→ lcc ⊗
lcc = lc + rc + 1 ⊗
this@1

2
right(or, rc) ⊗

this.parent→ opp ⊗
opp 6= this ⊗((

opp 6= null(
opp@k4 parent() ⊗
(opp@1

2
left(this, lcc) ⊕

opp@1
2

right(this, lcc))
)
⊕
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(opp = null( this@1
2

count(lcc))
)
⊗

∃ lc. l.parent→ this ⊗
null 6= l ⊗ l@1

2
count(lc) ⊗

l@1
2

count(lc) ⊗ this 6= l }
pack this in left(l, lc)
{ unpacked(l@k2 parent())⊗ unpacked(this@k1 parent())⊗∃ opp, lcc, k. unpacked(this@1

2

count(lcc)) ⊗
∃ lc. this@1 left(l, lc) ⊗
∃ or, rc. this.count→ lcc ⊗
lcc = lc + rc + 1 ⊗
this@1

2
right(or, rc) ⊗

this.parent→ opp ⊗
opp 6= this ⊗((

opp 6= null(
opp@k4 parent() ⊗
(opp@1

2
left(this, lcc) ⊕

opp@1
2

right(this, lcc))
)
⊕

(opp = null( this@1
2

count(lcc))
)
⊗

l.parent→ this ⊗
null 6= l ⊗
l@1

2
count(lc) ⊗ this 6= l }

t h i s . upda teCountRec ( ) ;
{ ∃ k1, k2, lc. unpacked(l@k2 parent()) ⊗
this@1

2
left(l, lc) ⊗

l.parent→ this ⊗
null 6= l ⊗
this@k1 parent()
l@1

2
count(lc) ⊗ this 6= l }
pack l in parent()

{∃ k1, k2. l@k2 parent() ⊗ this@k1 parent()}
QED

}
}

11 Related Work
There are two main lines of research that give partial solutions for the verification of object-oriented
code in the presence of aliasing: the permission-based work and the separation logic approaches.

Bierhoff and Aldrich [3] developed access permissions, an abstraction that combines typestate
and object aliasing information. Developers use access permissions to express the design intent of
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their protocols in annotations on methods and classes. Our work is a generalization of their work,
as we use object propositions to modularly check that implementations follow their design intent.
The typestate [7] formulation has certain limits of expressiveness: it is only suited to finite state
abstractions. This makes it unsuitable for describing fields that contain integers and can take an
infinite number of values and can satisfy various arithmetical properties. Our object propositions
have the advantage that they can express predicates over an infinite domain, such as the integers.

Access permissions allow predicate changes even if objects are aliased in unknown ways.
States and fractions [5] capture alias types, borrowing, adoption, and focus with a single mech-
anism. In Boyland’s work, a fractional permission means immutability (instead of sharing) to
ensure non-interference of permissions. We use fractions to keep object propositions consistent
but track, split, and join fractions in the same way as Boyland.

Boogie [1] is a modular reusable verifier for Spec# programs. It provides design-time feedback
and generates verification conditions to be passed to an automatic theorem prover. While Boogie
allows a client to depend on properties of objects that it owns, we allow a client to depend on
properties of objects that it doesn’t own, too.

Krishnaswami et al. [17] show how to modularly verify programs written using dynamically-
generated bidirectional dependency information. They introduce a ramification operator in higher-
order separation logic that explains how local changes alter the knowledge of the rest of the heap.
Their solution is application specific, as they need to find a version of the frame rule specifically
for their library. Our methodology is a general one that can potentially be used for verifying any
object-oriented program.

Nanevski et al. [20] developed Hoare Type Theory (HTT), which combines a dependently
typed, higher-order language with stateful computations. While HTT offers a semantic framework
for elaborating more practical external languages, our work targets Java-like languages and does
not have the complexity overhead of higher-order logic.

Summers and Drossopoulou [24] introduce Considerate Reasoning, an invariant-based verifi-
cation technique adopting a relaxed visible-state semantics. Considerate Reasoning allows distin-
guished invariants to be broken in the initial states of method executions, provided that the methods
re-establish the invariant in the final state. The authors demonstrate Considerate Reasoning based
on the Composite pattern and provide the encoding of their technique in the Boogie intermediate
verification language [1], facilitating the automatic verification of the Composite pattern specifi-
cation. Despite the fundamental differences in underlying methodology (visble-state invariants vs.
abstract predicates) and logic between Considerate Reasoning and our approach, there are interest-
ing analogies in the specification of the Composite pattern. For instance, the method that triggers
the bottom-up traversal of the Composite to update a composite’s count field in the Considerate
Reasoning specification does not expect the composite invariant in the method’s initial state. This
is similar to our method updateCountRec() which requires the predicates parent and count to be
unpacked.

Cohen et al. [6] use locally checked invariants to verify concurrent C programs. In their
approach, each object has an invariant, a unique owner and they use handles (read permissions) to
accommodate shared objects. The disadvantage is their high annotation overhead and the need to
introduce ghost fields. We do not have to change the code in order to verify our specifications.
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Our work uses abstract predicates, similar to the work of Parkinson and Bierman [21] and
Dinsdale-Young et al. [8]. The abstraction makes it easy to change the internal representation
of a predicate without modifying the client’s external view of it. The main mechanism is still
separation logic, with its shortcomings. Unlike separation logic, we permit sharing of predicates
with an invariant-based methodology. This avoids non-local characterizations of the heap structure,
as required (for example) in Bart Jacob’s Composition pattern solution [15].

There exist a set of verification methodologies for object-oriented programs in a concurrent
setting: [8, 14, 19, 16]. These approaches can express externally imposed invariants on shared
objects, but only for invariants that are associated with the lock protecting that object. In many
cases, it may be inappropriate to associate such an invariant with the lock: for example, in a
singlethreaded setting, there is no such lock. Even in multithreaded settings, a high level lock may
protect a data structure with internal sharing, in which case specifying that sharing in the lock
would break the modularity of the data structure. Thus, these systems do not provide an adequate
solution to the modular verification problem we consider.

12 Conclusion
We have introduced the novel abstraction object proposition, which uses abstract predicates to
describe properties of objects, and fractions to describe the aliasing between objects. We used
object propositions to write the specification and formally prove the correctness of an instance of
the Composite pattern. We proved our system to be sound and highlighted the ways in which it
improves the state of the art in the verification of object-oriented code.
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