
Beyond Worst-Case Analysis in Privacy and Clustering:
Exploiting Explicit and Implicit Assumptions

Or Sheffet

CMU-CS-13-120

August 2013

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum, Chair

Anupam Gupta
Venkatesan Guruswami

Kunal Talwar, Microsoft Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2013 Or Sheffet

This research was sponsored by the National Science Foundation under grant numbers CCF0830540,
CCF1101215, and CCF1116892; the U.S. Army Research Office under grant number W91NF0910273;
and the Microsoft Research-Carnegie Mellon Center for Computational Thinking.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Non Worst-Case Analysis, Differential Privacy, Clustering, Algorithms.

iv

Abstract

This thesis can be viewed as a collection of work in differential privacy
and in clustering. In its first part we discuss work aimed at preserving differ-
ential privacy in a social network, with respect to either the presence/absence
of a single edge [41], or with respect to changing all edges adjacent to one
node [42]. In its second part we discuss multiple clustering problems, focus-
ing on the k-means and k-median problems. We show how to correctly cluster
an instance whose optimal k-means solution either satisfies a certain stability
condition [20], or is resilient to small constant metric perturbations [21], or
with cluster centers that satisfy a particular separation condition [22].

Alternatively, this thesis can be viewed as an investigation of specific non-
worst case analysis paradigms. The common theme among of all results com-
posing this thesis is that they all introduce algorithms whose guarantees are
meaningful only for a subset of inputs – for inputs that satisfy certain nice
properties, or assumptions. These assumptions can be roughly divided into
two types, which we refer to as explicit or implicit. Explicit assumptions give
a very specific and quantifiable characterization of the input (e.g. clustering
instances with the distance between any pair of cluster centers larger than a
specific bound). On the other hand, implicit assumptions are harder to char-
acterize. Implicit assumptions pose a certain property that the input should
satisfy, due to some compelling “real-life” reasoning (e.g. justifying a par-
ticular value of k for a k-means clustering instance), and often give much
leeway as to the particular structure of the input. In this thesis, we exhibit
multiple examples of assumptions of both kinds, in differential privacy and
clustering, and give algorithms that take advantage of these assumptions. In
particular, we show how tasks that are provably hard become feasible under
suitable assumptions; tasks like providing accurate answers for queries over
graph while preserving privacy on the node level, or giving a c-approximation
for the k-median objective for c < 1 + e−1.

vi

Acknowledgments

First and far most, I would like to thank my advisor, Avrim Blum. Avrim embodies ev-
erything one can ask for in an advisor: brilliant (as an understatement), quiet and calm,
methodical and thorough, and extremely kind. Avrim gives his students the freedom to
choose their own problems, and at the same time he serves as a prolific source of knowl-
edge, concrete ideas and spot-on intuition. He is truly an inspiration.

I would like to thank all of my committee members for their advise as well: Anupam
Gupta, Venkat Guruswami and Kunal Talwar. Many thanks also go to my co-authors: Nina
Balcan, Jeremy Blocki (it took him a long while, but eventually he got my inappropriate
sense of humor), Peter Bro-Miltersen (whose cynical humor was a refreshing European
change), Anupam Datta (though he is soft spoken, his words of advice resonated with me
for a long while), Samuel Ieong, Saranga Komanduri, Nina Mishra (who is the second
kindest person I met, next to Avrim), Jamie Morgenstern (so cheerful it’s eerie), Ariel
Procaccia (another great source for lots of reassuring advice), and Santosh Vempala (it’s a
rare treat just to sit and listen to Santosh and Avrim talk).

CMU is a wonderful and friendly place, and I am extremely grateful to all the profes-
sors and my fellow students with whom I repeatedly had many helpful discussions. There
are truly too many of you to mention... I would also like to thank CMU’s always-helpful
administrative staff, especially Deborah Cavlovich, Marilyn Walgora and Nicole Stenger.

Special thanks go to Pranjal Awasthi. As young researchers Avrim teamed us up, and
much like the rest of Avrim’s advice, this too was worth its weight in gold. Pranjal proved
to be a superb collaborator and no less of a good friend, and our collaboration turned out
to be extremely fruitful. So fruitful in fact, that Avrim himself started to worry we might
write the same thesis twice...

Many thanks to all of my friends who constantly provide much needed emotional sup-
port. I love you and I am, as ever, indebted to you. Last but not least, to my family and
especially to my parents – my two main role-models for pretty much everything in life.

And of course, to anyone who reads this thesis.

vii

viii

Contents

I Overview 1

1 Introduction 3

1.1 Problem Overview: Privacy and Clustering 3

1.1.1 Differential Privacy . 3

1.1.2 Clustering . 4

1.2 Results Overview: Privacy and Clustering 5

1.2.1 Differential Privacy in Social Networks 5

1.2.2 Clustering . 6

1.3 Explicit vs Implicit Assumptions . 7

1.4 Acknowledgments . 8

2 Notation and Technical Background 9

2.1 Graphs . 9

2.2 Linear Algebra . 10

2.2.1 SVD . 10

2.2.2 Positive Semidefinite Matrices 10

2.2.3 Weyl and Lindskii’s Inequality 11

2.3 Probability . 13

2.3.1 Types of Random Variables . 13

2.3.2 Concentration Bounds . 15

ix

3 Background: Differential Privacy 17

3.1 The Basic Mechanism . 17

3.2 Alternative Mechanisms . 19

3.2.1 The Exponential Mechanism . 19

3.2.2 Randomized Response . 21

3.2.3 The Multiplicative Weights Mechanism 22

3.2.4 Our Contribution: The Johnson Lindenstrauss Mechanism 25

3.3 Smooth Sensitivity: Answering Queries of Large Global Sensitivity . . . 25

3.3.1 Our Contribution: Restricted Sensitivity 27

4 Background: Center-Based Clustering 29

4.1 Center-Based Clustering Objectives . 29

4.1.1 Other Clustering Techniques . 31

4.2 Implicit Stability Assumptions for Clustering 32

4.2.1 Clustering objectives as a proxy for datapoints labeling 32

4.2.2 k-clustering whose cost is much smaller than the cost of (k − 1)-
clustering . 34

4.2.3 Clustering perturbation resilient instances 35

4.2.4 Our Contribution: Weak-Deletion Stability and Perturbation-Resilience
for k-Median and k-Means . 36

4.3 Clustering under Explicit Distributional Assumptions 37

4.3.1 Gaussian Mixture Model . 38

4.3.2 The Planted Partition Model . 39

4.3.3 Our Contribution: Improving on Kumar-Kannan Separability . . . 40

II Differential Privacy 41

5 The Johnson-Lindenstrauss Transform Itself Preserves Differential Privacy 43

5.1 Introduction . 43

x

5.1.1 Related Work . 46

5.2 Basic Definitions, Preliminaries and Notations 47

5.3 Publishing a Perturbed Laplacian . 49

5.3.1 The Johnson-Lindenstrauss Algorithm 49

5.3.2 Discussion and Comparison with Other Algorithms 54

5.4 Publishing a Covariance Matrix . 58

5.4.1 The Algorithm . 58

5.4.2 Comparison with Other Algorithms 65

5.5 Discussion and Open Problems . 67

6 Differentially Private Data Analysis of Social Networks via Restricted Sensi-
tivity 71

6.1 Introduction . 71

6.1.1 Related Work . 74

6.2 Preliminaries – Graphs and Social Networks 75

6.3 Restricted Sensitivity . 76

6.4 Using Restricted Sensitivity to Reduce Noise 77

6.4.1 A General Construction . 78

6.4.2 Efficient Procedures forHk via Projection Schemes 79

6.5 Restricted Sensitivity andHk . 87

6.5.1 Local Profile Queries . 87

6.5.2 Subgraph Counting Queries . 89

6.6 Future Questions/Directions . 90

III Clustering 91

7 Stability yields a PTAS for k-Median and k-Means Clustering 93

7.1 Introduction . 93

7.2 Stability Properties . 95

xi

7.2.1 ORSS-Separability . 96

7.2.2 BBG-Stability . 96

7.2.3 Weak Deletion-Stability implies β-distributed 97

7.2.4 NP-hardness under weak deletion-stability 98

7.3 A PTAS for any β-distributed k-Median Instance 99

7.3.1 Clustering β-distributed Instances 100

7.3.2 Runtime analysis . 106

7.4 A PTAS for any β-distributed Euclidean k-Means Instance 106

7.4.1 Intuition . 106

7.4.2 A Deterministic Algorithm for β-distributed k-Means Instances . 108

7.4.3 A Randomized Algorithm for β-distributed k-Means Instances . . 112

7.5 Discussion and Open Problems . 115

8 Center-based Clustering under Perturbation Stability 117

8.1 Introduction . 117

8.1.1 Main Result . 118

8.2 Proof of Main Theorem . 120

8.2.1 Properties of Perturbation Resilient Instances 120

8.2.2 The Algorithm . 122

8.2.3 Some Natural Barriers . 123

8.3 Future Directions . 125

9 Improved Spectral-Norm Bounds for Clustering 127

9.1 Introduction . 127

9.1.1 Our Contribution . 129

9.2 Notations and Preliminaries . 131

9.2.1 Notation . 131

9.2.2 Basic Facts. 131

9.2.3 Formal Description of the Algorithm and Our Theorems 133

xii

9.2.4 Proofs Overview . 134

9.3 Part I of the Algorithm . 136

9.3.1 Application: The ORSS-Separation 138

9.4 Part II of the Algorithm . 138

9.4.1 The Proximity Condition – Part III of the Algorithm 141

9.5 Applications . 143

9.6 An Open Problem . 145

Bibliography 147

xiii

xiv

List of Figures

1.1 The works composing this thesis. 8

7.1 A PTAS for β-distributed instances of k-median. 101

7.2 A deterministic PTAS for β-distributed instances of Euclidean k-means. . 109

7.3 A randomized PTAS for β-distributed instances of Euclidean k-means. . . 113

8.1 Instances satisfying one notion of stability but no the other. 118

8.2 An algorithm to find the optimal k-clustering of instances satisfying α-
center proximity. 123

8.3 An example of a finite metric k-median instance with 2 < α < 3 where
our algorithm fails. 124

8.4 An example showing that the usual version of Single-Linkage fails. 125

9.1 Algorithm ∼Cluster . 134

xv

xvi

List of Tables

5.1 Comparison between mechanisms for answering cut-queries. 58

5.2 Comparison between mechanisms for answering directional variance queries. 67

6.1 Summary of results obtained via restricted sensitivity. 74

6.2 Worst case smooth sensitivity vs. restricted sensitivity forHk. 74

xvii

xviii

Part I

Overview

1

Chapter 1

Introduction

This thesis details new results in differential privacy and in clustering that are obtained
using non-worst case analysis. Whereas traditional approach requires us to devise algo-
rithms that are suppose to work for any instance (algorithms which are tractable even in
the worst-case), this thesis takes a complementary approach. In each of the works detailed
in this thesis we assume the given instance has a certain property that makes it “nice”, and
leveraging on this assumption we devise tractable algorithms even for problems which are
provably hard in general.

Indeed, one may view this thesis simply as an amalgamate of work in differential
privacy and in clustering, and so it is partitioned into a part that deals with differential
privacy (Chapters 5 and 6) and a part that deals with clustering (Chapters 7, 8 and 9).
We prefer however to view this thesis as a study of non-worst case analysis, where the
main theme of this thesis is to investigate assumptions: what explicit assumptions make
certain algorithms useful, and what characterizes instances that adhere to certain implicit
assumptions, often made in “real-life”.

1.1 Problem Overview: Privacy and Clustering

1.1.1 Differential Privacy

It is no secret that privacy is a rising concern in today’s world. Databases of enormous
magnitude are kept essentially everywhere, from hospitals who keep the sensitive data of
patients, to network providers who keep track of web-surfers, and to government held cen-
suses. Naturally, participants in such datasets wish to keep their sensitive data private. In

3

other words, data curators, with access to participants’ sensitive data, need to guarantee
each participant that the data will be accessed only in a way that will not reveal (much
about) her identity. In a series of works [61, 51, 44, 63, 62], the rigorous notion of differ-
ential privacy was established.

Definition 1.1. A dataset D is a (multi-)set of elements from some predefined domain X .
Two datasets D and D′ are called neighbors if they differ only on the details of a single
individual. An algorithm ALG is said to preserve (ε, δ)-differential privacy if for any two
neighboring datasets and any subset S of potential outputs it holds w.p. ≥ 1− δ that

Pr[ALG(D) ∈ S] ≤ eεPr[ALG(D′) ∈ S]

By now, there are hundreds of works in differential privacy, detailing an abundance of
privacy preserving algorithms aimed at a multitude of tasks. Yet the core technique that
the majority of these algorithms apply is the same technique originally proposed by Dwork
et al [63]. Given a query function f , the curator first estimates the global sensitivity of f ,
denoted GS(f) = maxD,D′ f(D)− f(D′), then outputs f(D) + X where X is a random
noise sampled from a suitable distribution, typically a Laplace or Gaussian, with 0 mean
and variance proportional to (GS(f)/ε)2.

1.1.2 Clustering

Clustering is a “brand name” for a variety of tasks in computer science, which roughly
translates to finding a good partition of a given collection of n datapoints. In this thesis we
take the machine learning view of clustering – unbeknownst to us, there exists some true
target partition, and the partition our algorithm retrieves should be as close as possible to
this target clustering. In general, we assume the target partition has k clusters, but no dat-
apoint is labeled. Instead, we are given access to a metric – the distances between any two
datapoints, and we aim to retrieve a good partition of the dataset using the given metric.
As such, we must assume a connection between the metric and the target clustering.

Indeed, multiple such connections were proposed. A common paradigm in clustering
is to impose a quantitative objective, such as k-median or k-means, with the assumption
that the target clustering identifies with (or is close to) the k-partition that minimizes this
objective. Unfortunately, both the k-median and the k-means objective are NP-hard, and
so much effort has been put into approximating these objectives [90, 98]. A separate
paradigm investigates the notion that the distances reflect (dis)similarities between dat-
apoints. So roughly speaking, based on the notion that points in different clusters have
“large” distances and points from the same cluster have “small” distance, one should

4

be able to retrieve a good partition of the data [27]. The last paradigm this thesis dis-
cusses deals with points in Euclidean space, where one assumes a separation condition
between the centers of respective clusters. This often reflects the case of a mixture model,
where each cluster is characterized by a certain distribution, and the cluster points are
iid samples from this distribution. In this model, the expected distance between two dat-
apoints depends on the variance of the distribution. In contrast, the distance between
two datapoints from different clusters is a function of the variances of the two distribu-
tions and also the distance between their respective centers. Therefore, numerous results
(e.g. [56, 13, 138, 4]) are based on the assumption that the distance between the centers is
sufficiently large – a fact which, combined with the iid assumption and the specific nature
of the distribution, allows us to cluster correctly all (or most) points. Further details can
be found in Chapter 4.

1.2 Results Overview: Privacy and Clustering

1.2.1 Differential Privacy in Social Networks

We study the notion of differential privacy in social networks. In the simplest of models,
a social network is no more than a graph, and one of the most common types of queries
regarding a graph is cut-queries: given a set of vertices S, how many edges have one
endpoint in S and another in S̄? In Chapter 5 we give an algorithm that answers cut-
queries while preserving differential privacy w.r.t edge changes. Indeed, for a specific cut
(S, S̄), the presence or absence of a single edge changes the value of the cut by no more
than 1, so the classical technique of adding a small random noise allows us to answer
a single cut-query fairly accurately (while preserving differential privacy). The problem
lies in answering multiple, and perhaps even all, cut-queries. Our technique essentially
publishes a perturbed Laplacian of the graph, which w.h.p gives fairly accurate answers to
many cut-queries simultaneously. This result is based on the work in [41].

In addition, we also study the notion of differential privacy w.r.t vertex-changes, i.e. a
vertex can change its own attributes or the set of edges adjacent to it. Here, the problem
lies in answering even a single query, as most queries have very high global sensitivity
(as large as n). In Chapter 6 we propose the notion of restricted sensitivity, where we act
as though the set of all possible inputs is restricted to a certain set, specified by the user.
Our technique answers the query in a way that always preserves differential privacy, and
should the network belong to a user-specified subset of potential networks then our answer
is also fairly accurate – its noise is only proportional to the query’s restricted sensitivity

5

rather than its global sensitivity. This result is based on the work in [42].

1.2.2 Clustering

In Chapter 7 we consider finite metric k-median instances and Euclidean k-means in-
stances, and we improve on the notion of stability of Ostrovsky et al [121]. Ostrovsky et
al study instances in which the ratio between the cost of the optimal (k − 1)-means solu-
tion and the cost of the optimal k-means solution is at least max{100, 1/ε2}, and give a
(1 + O(ε))-approximation to the k-means optimum for such instances. Our work decou-
ples the strength of the assumption from the quality of the result: we show that under the
assumption that the above mentioned ratio is only 1+α, one can get a 1+ ε approximation
to the k-means optimum, in time poly(n, k) exp(1/α, 1/ε). This also holds for instances
satisfying the same property w.r.t the k-median objective. We also build on the work of
Balcan et al [25] that investigate the connection between point-wise approximations of the
target clustering and a c-approximation for the k-median or k-means problem. In fact, our
work unifies the Ostrovsky et al assumption and the Balcan et al assumption provided all
clusters have sufficiently many datapoints. This result is based on the work in [20].

In Chapter 8 we consider clustering instances for which the optimal solution is optimal
under the given metric, and also under any bounded multiplicative perturbation of the given
distances. This model, proposed initially by Bilu and Linial [40], is motivated by the fact
that in practice, distances between data points are typically the result of some heuristic
measure (e.g., edit-distance between strings or Euclidean distance in some feature space)
rather than true semantic distance between objects. Thus, the optimal solution should be
correct or nearly so on small perturbations of the given distances as well. Bilu and Linial
discuss Max-Cut instances satisfying this property up to a fairly large multiplicative error
of O(

√
n). In [21] we show to correctly cluster k-median and k-means instances that are

O(1)-perturbation resilient (specifically, 3-perturbation resilient). This result is based on
the work in [21].

In Chapter 9 we improve on the work of Kumar and Kannan [104], that aims to unify
many works in the mixture model. Kumar and Kannan pose a specific deterministic con-
dition on a dataset, and show how to correctly cluster instances that satisfy this condition.
Then they show that many of the previously studied mixture models, including the Planted
Partition model [110] and the work of Ostrovsky et al [121] satisfy w.h.p. this condition.
Our work improves on their condition and simplifies their analysis. We pose a condition
only on the distances between any two clusters’ centers, and using the simple triangle- and
Markov-inequalities, we show how to cluster correctly most of the datapoints. This result
is based on the work in [22].

6

1.3 Explicit vs Implicit Assumptions

As mentioned above, an alternative view of this thesis is the study of explicit and implicit
assumptions as a specific case of non-worst case analysis. The works which compose
this thesis do not give an algorithm that works for any graph or any clustering instance.
Instead, in each chapter of this thesis we assume that the input satisfies some property
which allows us to propose an algorithm that returns a meaningful output.

In this thesis we differentiate between two such assumptions: explicit and implicit as-
sumptions. Of course, the distinction between the two types isn’t formal or rigorous, but
rather a helpful way of thinking about the different nature of assumptions. Explicit as-
sumptions give an exact and quantifiable description of the input. They are best illustrated
by examples: datapoints reside in a Euclidean space, points are sampled iid from a Gaus-
sian, or matrices that have singular values greater than a specific threshold. In addition,
explicit assumptions are often checkable – one can check the singular values of the given
matrix, or find (approximate) cluster centers and see whether they are sufficiently far apart.

Implicit assumptions are different. They do not discuss the exact nature of the input,
but rather propose a property that the input should satisfy. Such property is often related
to some “real-life” or outside meaning, typically how the data was collected or how the
solution will be used. Such properties are best illustrated in relation to clustering. The
work of Ostrovsky et al [121] assumes a lower bound on the ratio between the optimal
k-means solution and the optimal (k − 1)-means solution, using the justification that “if
a near-optimal k-clustering can be achieved by a partition into fewer than k clusters, then
that smaller value of k should be used to cluster the data”. The work of Balcan et al [25]
assumes that applying a c-approximation for the k-means objective (for example) yields a
clustering whose labeling errs on no more than a δ-fraction of the datapoints, where the er-
ror is measured w.r.t to some (unknown and predefined) target clustering, a property which
they call (c, δ)-stability. Verifying whether such properties hold might not be tractable.

In this thesis, the works [41, 22] deal with explicit assumptions: in [41] we assume
a lower bound on the singular values of the input, and in [22] we assume an exact sep-
aration bound between cluster centers. In contrast, the works [20, 21] deal with implicit
assumptions: in [20] we unify both the assumption of Ostrovsky et al [121] and of Balcan
et al [25], by a property we call weak-deletion stability, and in [20] we examine clustering
instances that are perturbation resilient, like in Bilu and Linial [40]. The work of [42] lies
somewhere in the middle, between explicit and implicit: we allow the querier to specify
any property she believe the input satisfies, thus converting the querier’s implicit assump-
tion to an explicit one for our algorithm. A schematic view of the devision of works in this
thesis into subject as well as whether they are based on implicit and explicit assumptions

7

is given in Figure 1.1.

Figure 1.1: Which works in this thesis deal with privacy and which with clustering; which are
based on explicit assumptions and which are based on implicit assumptions.

1.4 Acknowledgments

The results of Chapters 5 and 6, published in FOCS 2012 and ITCS 2013 respectively, are
joint work with Jeremiah Blocki, Avrim Blum and Anupam Datta. We thank Moritz Hardt
for bringing Weilandt’s observation (detailed in Chapter 2.2.3) to our attention, and Sofya
Raskhodnikova and Adam Smith for helping us to compare our work to theirs.

The results of Chapters 7 and 8, published in FOCS 2010 and in the Journal of Informa-
tion Processing Letters (Vol.112, 2012) respectively, are joint work with Pranjal Awasthi
and Avrim Blum.

The results in Chapter 9, published in APPROX 2012, are joint work with Pranjal
Awasthi. We thank Avrim Blum for multiple helpful discussions; Amit Kumar for clari-
fying a certain point in the original Kumar and Kannan paper; and the anonymous referee
for a clarifying discussion about the result of Achlioptas and McSherry.

8

Chapter 2

Notation and Technical Background

Disclaimer. This chapter details important notations and classic results in linear al-
gebra and probability we use throughout this entire thesis. This chapter however, does
not contain any specific background regarding any of the themes of this thesis: privacy,
clustering and various cases detailing non-worst-case analyses. We therefore advise the
reader to skip this chapter and return to it upon stumbling onto a non-familiar notation
or theorem. However, for clarity, and in order to avoid the use of ill-defined notation,
we start with the technical background before moving into the more specific background
detailed in Chapters 3 and 4.

2.1 Graphs

A graph is a pair of sets G = (V,E) where V is a set of nodes, and E ⊂
(
V
2

)
is a set

of edges. We denote n = |V | and say that the size of G is n. On occasion we discuss
weighted graphs for which there exists a weight function w : E → R≥0. In the integral
case, we identify a non edge with an edge of weight zero, and an edge with weight 1.

The adjacency matrix of a graph is a symmetric matrix in Rn×n with its (i, j)-entry
equal w(i, j) (and diagonal entries of 0). Given an ordering of the graph’s nodes, we
define the edge matrix of a graph G as a matrix EG ∈ R(n2)×n where for every pair of
distinct vertices, a < b there exists a row in which the only non-zero coordinates are the
coordinates of a and b, and we have

(EG)(a,b),a =
√
w(a, b), (EG)(a,b),b = −

√
w(a, b)

We define the (unnormalized) Laplacian of a graph G as LG = ET
GEG. Simple calcu-

9

lation give that for every node a we have the corresponding diagonal entry (LG)a,a =∑
b6=aw(a, b), and for every distinct nodes a, b we have (LG)a,b = −w(a, b). Given a

nonempty strict subset of the nodes S (V ,1 we call the partition (S, S̄) of V as a S-cut,
and we say its size is ΦG(S) =

∑
a∈S,b/∈S w(a, b). Given S ⊂ V we denote its indicator

vector as 1S ∈ {0, 1}n where for every i the coordinate (1S)i = 1 iff i ∈ S. Simple
calculation shows that for every non-empty S (V it holds that

ΦG(S) = ‖EG1S‖2 = 1T

SLG1
T

S

2.2 Linear Algebra

2.2.1 SVD

Given a m× n matrix M its Singular Value Decomposition (SVD) is M = UΣV T where
U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Σ has non-zero values only on
its main diagonal. Furthermore, there are exactly rank(M) positive values on the main
diagonal, denoted σ1(M) ≥ . . . ≥ σrank(M)(M), called the singular values. This allows
us to write M as the sum of rank(M) rank-1 matrices: M =

∑rank(M)
i=1 σiuiv

T
i . Because

Σ has non-zero values only on its main diagonal, the notation Σi denotes a matrix whose
non-zero values lie only on the main diagonal and are σi1(M), σi2(M), . . . , σirank(M)(M).
Using the SVD, it is clear that if M is of full-rank, then M−1 = V Σ−1UT, and that if
n = m = rank(M) then det(M) =

∏n
i=1 σi(M). Furthermore, even when M is not

full-rank, the SVD allows us to use similar notation to denote the generalizations of the
inverse and of the determinant: The Moore-Penrose inverse of M is M † = V Σ−1UT; and
the pseudo-determinant of M is d̃et(M) =

∏rank(M)
i=1 σi(M).

2.2.2 Positive Semidefinite Matrices

A n× n symmetric matrix is called positive semidefinite (PSD) if it holds that xTMx ≥ 0
for every x ∈ Rn. Given two PSDs M and N we denote the fact that (N −M) is PSD by
M � N . For further details regarding the many properties of PSD matrices, see [86].

Fact 2.1. Let A and B be two PSD matrices s.t. ker(A) = ker(B). If for every x we
have that xTAx ≤ xTBx, then for every x it holds that xTA†x ≥ xTB†x. Symbolically,
A � B ⇒ B† � A†.

1Throughout this thesis, we use A ⊂ B to denote “B contains A”, and A (B to denote “B strictly
contains A”.

10

Proof. The proof starts with the following claim. LetM be a positive-semidefinite matrix.
If xTMx ≥ xTx for every x ∈ (Ker(M))⊥ then it also holds that xTM †x ≤ xTx for every
x ∈ (Ker(M))⊥.

Denote the SVD of M = V Σ2V T =
∑r

i=1 σ
2
i viv

T
i , where vi is the i-th column of V .

Fix x ∈ (Ker(M))⊥ and observe that x is span by the same r vectors {v1, v2, . . . , vr}, so
we can write x =

∑r
i=1 αivi. Denote y = V Σ−1V Tx =

∑r
i=1 σ

−1
i viv

T
i x. We have that

y =
∑r

i=1 αiσ
−1
i vi so y ∈ (Ker(M))⊥. Therefore yTMy ≥ yTy, but yTy = xTM †x and

yTMy = xTx.

Have established the claim, we can proceed with the proof. We denote the SVD of A
as A = V Σ2V T and also B = WΠ2W T. Because we can split any vector x into the direct
sum x = x0 + x⊥ where x0 ∈ Ker(A) = Ker(B) and x⊥ ∈ (Ker(A))⊥, and since we
have that the required inequality holds trivially for x0, then we need to show it holds for
x⊥. Given any z ∈ (Ker(A))⊥, set y = V Σ−1V Tz. We know that yTAy ≤ yTBy, and
therefore

zTz = yTAy ≤ yTBy = zT
(
V Σ−1V TWΠ2W TV Σ−1V T

)
z

def
= zTCz

The above proves thatC is a positive semidefinite matrix whose kernel is exactlyKer(A) =
Ker(B), and so it follows from the previous claim that zTz ≥ zTC†z. Let I|Ker(C)⊥
be the matrix which nullifies every element in Ker(C), yet operates like the identity on
(Ker(C))⊥. One can easily check that C† = V ΣV TWΠ−2W TV ΣV T by verifying that
indeed C†C = CC† = I|Ker(C)⊥. So now, given x we denote z = V Σ−1V Tx and apply
the above to deduce xTB†x = zTC†z ≤ zTz = xTA†x.

2.2.3 Weyl and Lindskii’s Inequality

We describe below two useful inequalities regarding the eigenvalues and singular values
of a perturbation of a matrix. That is, we related the eigenvalues of a given matrix A with
the eigenvalues of a matrix B = A+ E.

Lemma 2.2 (Weyl’s Inequality). Let A and B be positive semidefinite matrices s.t. the
matrix E = B −A satisfies xTEx ≥ 0 for every x. Then for every 1 ≤ i ≤ n it holds that
the ith singular-values satisfy:

svi(A) ≤ svi(B)

Weyl’s inequality is a corollary of the max-min characterization of the singular values
of a matrix.

11

Theorem 2.3 (Courant-Fischer Min-Max Principle). For every matrix A and every 1 ≤
i ≤ n, the i-th singular value of A satisfies:

svi(A) = max
S:dim(S)=i

min
x∈S: ‖x‖=1

〈Ax, x〉

Proof of Lemma 2.2. Weyl’s inequality is a direct application of the theorem. Let SA be
the i-dimensional subspace s.t. svi(A) = minx∈SA: ‖x‖=1〈Ax, x〉. For every x ∈ SA we
have that

〈Ax, x〉 = 〈Ax, x〉+ 0 ≤ 〈Ax, x〉+ 〈Ex, x〉 = 〈Bx, x〉
so svi(A) ≤ minx∈SA: ‖x‖=1〈Bx, x〉. Thus svi(B) = maxS minx∈S: ‖x‖=1〈Bx, x〉 ≥
svi(A).

Lemma 2.4 (Lindskii’s inequality.). Let A and B be a n × n symmetric matrix. Denote
E = B − A. Then for every k and every k indices 1 ≤ i1 < i2 < . . . < ik ≤ n we have
that

k∑
j=1

evij(B) ≤
k∑
j=1

evij(A) +
k∑
i=1

evi(E)

Much like Weyl’s inequality (Lemma 2.2) follows from the Courant-Fischer Min-Max
principle, Lindskii’s inequality follows from a generalization of the Courant-Fischer prin-
ciple.

Theorem 2.5 (Wielandt’s Min-Max Principle.). Let A be a n× n symmetric matrix. Then
for every k and every k indices 1 ≤ i1 < i2 < . . . < ik ≤ n we have that

k∑
j=1

evij(A) = max
S1⊂S2⊂...⊂Sk

dim(Sj)=ij

min
xj∈Sj :

xj orthonormal

k∑
j=1

〈Axj, xj〉

Proof of Lemma 2.4. To prove Lindskii’s inequality, fix i1 < i2 < . . . < ik and let
T1, T2, . . . , Tk the subspaces for which

k∑
j=1

evij(B) = min
xj∈Tj :

xj orthonormal

k∑
j=1

〈Bxj, xj〉

For every v1, v2, . . . , vk orthonormal we have that
∑k

j=1〈Bvj, vj〉 =
∑k

j=1〈Avj, vj〉 +∑k
j=1〈Evj, vj〉 ≤

∑k
j=1〈Avj, vj〉+

∑k
i=1 evi(E), so

k∑
j=1

evij(B) ≤ min
xj∈Tj :

xj orthonormal

k∑
j=1

〈Axj, xj〉+
k∑
i=1

evi(E)

12

and clearly

k∑
j=1

evij(A) = max
S1⊂S2⊂...⊂Sk

dim(Sj)=ij

min
xj∈Sj :

xj orthonormal

k∑
j=1

〈Axj, xj〉 ≥ min
xj∈Tj :

xj orthonormal

k∑
j=1

〈Axj, xj〉

In fact, Lindskii’s inequality holds also for singular values, and not just eigenvalues.
This follows from the Lemma 2.4, and from the following observation of Weilandt. Given

a m× n matrix M , the matrix N =

(
0 M
MT 0

)
is symmetric and has eigenvalues which

are (in descending order):{
sv1(A), sv2(A), . . . , svm(A), 0, 0, . . . , 0,−svm(A),−svm−1(A), . . . ,−sv1(A)

}

2.3 Probability

Throughout this thesis, we make multiple uses of randomness, analysis of random vari-
ables, and multiple concentration bounds. We detail here their definition and standard
inequalities regarding the sum of multiple independent random variables.

2.3.1 Types of Random Variables

2.3.1.1 Bernoulli Random Variables

Definition 2.6. A random variable X is said to be a Bernoulli random variable if it takes
the value 1 w.p. p and the value 0 w.p. 1− p.

The mean of Bernoulli random variable is p and its variance is p(1 − p). Naturally,
the mean of the sum of n independent Bernoulli random variables with mean p is np, and
the variance of the sum is np(1− p). This means that we expect that sum to belong to the
range np±

√
np(1− p).

13

2.3.1.2 Laplace Random Variables

Definition 2.7. A random variable X Lap(µ, σ) is said to be a Laplace random variable
if its PDF is

PDFX(x) = 1
2σ
e−
|x−µ|
σ

The mean of X is µ and its variance is 2σ2. We therefore expect that X ∈ µ ±
√

2σ.
In fact, standard tail bounds give that for any 1 > δ > 0 w.p. ≥ 1− δ we have |x− µ| ≤
σ log(1/δ). Indeed,

Pr[|x− µ| > σ log(1/δ)] = 2

∫ ∞
y>σ log(1/δ)

1
2σ
e−y/σdy = 1

σ

(
−σe−y/σ

)
|∞y=σ log(1/δ) = δ

In this thesis, we denote X ∼ Lap(σ) in case X ∼ Lap(0, σ).

2.3.1.3 Gaussian Random Variables

Definition 2.8. A univariate random variable X ∼ N (µ, σ2) is said to be a Gaussian
random variable if its PDF is

PDFX(x) = 1√
2πσ2

e−
(x−µ)2

2σ2

The mean of X is µ and its variance is σ2. X is said to be a normal Gaussian if
X ∼ N (0, 1). Classic concentration bounds on Gaussians give that Pr[(x − µ)2 >
log(2/δ)σ2] ≤ δ.

Gaussian random variables abide the linear combination rule: for any two i.i.d normal
random variables s.t. X ∼ N (µX , σ

2
X) and Y ∼ N (µY , σ

2
Y), we have that their linear

combination Z = aX + bY is distributed according to Z ∼ N (aµX + bµY , a
2σ2

X +
b2σ2

Y). This in turn allows us to identify a random variable R ∼ N (0, σ2) with the random
variable σR′, where R′ ∼ N (0, 1).

The multivariate normal distribution is the multi-dimension extension of the univariate
normal distribution. X ∼ N (µ,Σ) denotes a m-dimensional multivariate r.v. whose mean
is µ ∈ Rm, and variance is the PSD matrix Σ = E [(X − µ)(X − µ)T]. If Σ has full rank
(Σ is positive definite) then PDFX(x) = 1√

(2π)m det(Σ)
exp(−1

2
xTΣ−1x), a well defined

function. If Σ has non-trivial kernel space then PDFX is technically undefined (since X
is defined only on a subspace of volume 0, yet

∫
Rm PDFX(x)dx = 1). However, if we

14

restrict ourselves only to the subspace V = (Ker(Σ))⊥, then PDFVX is defined over V and
PDFVX(x) = 1√

(2π)rank(Σ)d̃et(Σ)
exp(−1

2
xTΣ†x). From now on, we omit the superscript from

the PDF and refer to the above function as the PDF of X . Observe that using the SVD,
we can denote Σ = U diag(σ2

1, σ
2
2, . . . , σ

2
r , 0, . . . , 0) UT, and so V is the subspace spanned

by the first r rows of U . The multivariate extension of the linear combination rule is as
follows. If A is a n×m matrix, then the multivariate r.v. Y = AX is distributed as though
Y ∼ N (Aµ,AΣAT). For further details regarding multivariate Gaussians see [115].

2.3.2 Concentration Bounds

We conclude this chapter by stating 4 famous inequalities. Their proofs can be found
in [12].

Theorem 2.9 (Markov’s inequality). Let X be a non-negative random variable. Then for
every t > 0 we have that

Pr[X > t] ≤ E[X]

t

Theorem 2.10 (Chebyshev’s inequality). Let X be a random variable with mean µ and
variance σ2. Then for every t > 0 we have that

Pr[|X − µ| > t] ≤ σ2

t2

Theorem 2.11 (Chernoff-Hoeffding bounds). LetX1, X2, . . . , Xn be iid random variables
taking values in the range [a, b] and with mean µ. Then for every t ≥ 0 we have

Pr

[∣∣∣∣∣ 1
n

∑
i

Xi − µ

∣∣∣∣∣ > t

]
≤ 2 exp(−2n t2

(b−a)2)

and for every δ > 0 we have

Pr

[∣∣∣∣∣ 1
n

∑
i

Xi − µ

∣∣∣∣∣ > δµ

]
≤ 2 exp(−1

3
nδ2µ)

Theorem 2.12 (Azuma’s inequality). Let X0, X1, X2, . . . , Xn be a sequence of random
variables satisfying that for every i ≥ 1 we have E[Xi|X1, . . . , Xi−1] = Xi−1 and that
there exists a c > 0 s.t. Pr[|Xi −Xi−1| ≤ c] = 1. Then,

Pr
[

1
n
|Xn −X0| ≥ t

]
≤ 2 exp

(
−n t2

c2

)

15

16

Chapter 3

Background: Differential Privacy

Consider a scenario in which a trusted curator gathers personal information from n indi-
viduals, and wishes to release statistics about these individuals to the public without com-
promising any individual’s privacy. Differential privacy [63] provides a robust guarantee
of privacy for such data releases. It guarantees that for any two neighboring databases
(databases that differ on the details of any single individual), the curator’s distributions
over potential outputs are statistically close.

Definition 3.1 ([62]). An algorithm ALG which maps databases into some range ALG :
D → R is said to preserve (ε, δ)-differential privacy if for all pairs D and D′ of databases
that differ on the details of a single individual, and for all subsets S ⊂ R it holds that

Pr[ALG(D) ∈ S] ≤ eεPr[ALG(D) ∈ S] + δ

We say ALG preserves ε-differential privacy if it preserves (ε, 0)-differential privacy.

By itself, preserving differential privacy isn’t hard, since the curator’s answers to users’
queries can be so noisy that they obliterate any useful data stored in the database. There-
fore, the key research question in this field is to provide tight utility and privacy tradeoffs.

3.1 The Basic Mechanism

The most basic technique that preserves differential privacy and gives good utility guar-
antees is to add relatively small Laplace or Gaussian noise to a query’s true answer. We
use D to denote the set of all possible datasets, where we view a dataset as a multiset of

17

elements taken from some domain X . We say two datasets D,D′ ∈ D are neighbors if
they differ on the details of a single individual. We denote the fact that D′ is a neighbor of
D using D′ ∼ D. We define the distance d(D,D′) between two databases D,D′ ∈ D as
the minimal non-negative integer k s.t. there exists a path D0, D1, . . . , Dk where D0 = D,
Dk = D′ and for every 1 ≤ i ≤ k we have that Di−1 ∼ Di. Alternatively, we can say
that d(D,D′) = k if |D \ D′| = k. Given a subset D′ ⊂ D we denote the distance of a
database D to D′ as d(D,D′) = min

D′∈D′
d(D,D′).

Definition 3.2 ([63]). The global sensitivity of a query function f : D → R is GSf =
maxD∼D′ |f(D)− f(D′)|.

For any given statistic or query, its global sensitivity measures the maximum difference
in the answer to that query over all pairs of neighboring data sets. More importantly, as
the next theorem illustrates, global sensitivity provides an upper bound on the amount of
noise that has to be added to the actual statistic in order to preserve differential privacy.

Theorem 3.3 ([63, 62]). Given a query function f : D → R, the mechanism that outputs
f(D) +X is

• ε-differentially private, when X ∼ Lap(GS(f)/ε)

• (ε, δ)-differentially privacy, when X ∼ N (0, GS(f) · 2 log(2/δ)/ε2).

The basic mechanism provides good utility and privacy tradeoffs for answering a single
query of small global sensitivity. However, this leaves two questions for future research:
(i) can we give any reasonable utility guarantees for queries of large global sensitivity, and
(ii) how well can we answer multiple queries. We start by address the latter issue, and only
after surveying multiple mechanisms with better dependence on the number of queries we
will return to the first issue.

It is straight forward to see that applying a (ε, δ)-differentially private mechanism in
order to answer t queries preserves (tε, tδ)-differential privacy. However, the follow-
ing theorem gives better bounds (roughly stated as answering t queries while preserving(
ε ·O(

√
t), δ ·O(t)

)
-differential privacy).

Theorem 3.4 ([65]). Fix ε, δ, δ′ > 0. Let M1, . . . ,Mt be t mechanisms that preserve
(ε, δ)-differential privacy. Then the concatenation of all mechanisms preserves (ε∗, δ∗)-
differential privacy, for

ε∗ = ε ·
√

2t ln(1/δ′) + tε(eε − 1), δ∗ = tδ + δ′

18

The proof of Theorem 3.4 uses the KL-divergence. First, Dwork et al show that given
two random variablesX,X ′ s.t. for every x ∈ Supp(X) it holds Pr[X = x] ≤ eεPr[X ′ =
x], it holds that

Ex

[
ln

Pr[X = x]

Pr[X ′ = x]

]
≤ ε(eε − 1) ≤ 2ε2

Secondly, Dwork et al use Azuma’s inequality to show that forX1, X2, . . . , Xt andX ′1, X
′
2, . . . , X

′
t

s.t. for every i the same holds for Xi and X ′i, we have w.h.p that∣∣∣∣∣
t∑
i=1

ln
Pr[Xi = x]

Pr[X ′i = x]
− E

[
t∑
i=1

ln
Pr[Xi = x]

Pr[X ′i = x]

]∣∣∣∣∣ ≤√2t ln(1/δ′)

And finally they show that for every Y, Y ′ satisfying Pr[Y = x] ≤ eεPr[Y ′ = x]+δ there
exists X,X ′ such that max {|Pr[Y = x]−Pr[X = x]| , |Pr[Y ′ = x]−Pr[X ′ = x]|} ≤
δ and that Pr[X = x] ≤ eεPr[X ′ = x]

3.2 Alternative Mechanisms

As Theorem 3.4 suggests, when answering t queries (all with small global sensitivity)
by naı̈vely applying the basic mechanism to answer each, in order to preserve (ε, δ)-
differential privacy, we need to add random noise of roughly O(

√
t/ε) to each query. It

turns out that there exist other scenarios where one can improve the error’s dependency on
t to a logarithmic dependency. Below, we detail mechanisms that achieve such logarithmic
dependency. As we show, this improvement often comes at the expense of computational
efficiency.

3.2.1 The Exponential Mechanism

McSherry and Talwar [112] introduced the exponential mechanism, that preserves ε-differential
privacy. In fact, it is somewhat of a general scheme, which can be tweaked based on its
application.

Theorem 3.5 ([112]). Let R be a discrete range of desired outputs, and let s be any
scoring-function s : D×R → R. Given a database D, let the weight of an element r ∈ R
be defined as

w(r) = exp
(
− ε

2 GS(s)
s(D, r)

)
Then the mechanism that outputs r w.p. ∝ w(r) preserves ε-differential privacy.

19

Proof. Given any neighboringD andD′, for every r we have that e−ε/2 ≤ wD(r)/wD′(r) ≤
eε/2. Therefore, we have that for every r

Pr[r| D]

Pr[r| D′]
=
wD(r)

wD′(r)
/

∑
r∈RwD(r)∑
r∈RwD′(r)

≤ eε/2+ε/2

McSherry and Talwar applied the exponential mechanism to problems in mechanism
design (after pointing out to the fact that applying an ε-differential privacy mechanism to a
mechanism-design problem guarantees ε-truthfulness). Their work was the first to explore
the connection between privacy and mechanism design, a rapidly growing field nowadays
(see survey by Pai and Roth [122]). But the exponential mechanism allows for much
more – using the exponential mechanism, Blum et al [43] have shown that there exists an
algorithm (non necessarily efficient) to privately release a sanitized dataset that answers a
very large set of queries Q simultaneously.

Theorem 3.6 ([43]). Let D be a dataset whose elements come from a domain X . Let Q
be a predefined set of functions q : X → {0, 1}. For every q ∈ Q, let fq : D → [0, 1]
be the corresponding fractional counting query fq(D) = 1

|D| |{x ∈ D; q(x) = 1}|. Fix

1/2 > α, β > 0, and define m = 20 log(1/α)
α2 dimV C(Q).

Then for any ε > 0, applying the exponential mechanism over the range R = Xm

of databases of size m, using the scoring function s(D, D̂) = maxq∈Q

∣∣∣fq(D)− fq(D̂)
∣∣∣

outputs a database of size m s.t. with probability ≥ 1− β it holds that for every q ∈ Q we
have that

∣∣∣fq(D)− fq(D̂)
∣∣∣ < α, provided that

|D| ≥ 4
αε

(
log(1/α)
α2 dimV C(Q) ln(|X |) + ln(1/β)

)
Proof. Preserving ε-differential privacy is a consequence of the exponential mechanism.
To prove utility, observe first that GS(s) = 1. Observe also that standard techniques
regarding the VC-dimension guarantee the existence of a dataset D∗ for which the score
is ≤ α/2. Hence, the ratio of the weight of this one good dataset to the total weight of all
bad datasets (for which the score > α) can be bounded using the size of D by

Pr[D∗]

Pr[Bad dataset]
≥ exp(−εα|D|/4)

|X |m exp(−εα|D|/2)
= exp

(
εα
4
|D| −m log(|X |)

)
≥ 1

β
≥ 1− β

β

20

The result of [43] was the first theoretical work to show the existence of non-interactive
privacy preserving mechanisms (though the data-mining community have used the tech-
nique of Randomize-Response for privacy, as we discuss below). Such mechanism have
the benefit that they do not need to interact with a querier and can simply release infor-
mation that will answer any of the querier’s potential questions. However, the obvious
problem with the exponential mechanism is its intractability – in most reasonable applica-
tions Xm is not poly-time tractable. In fact, there have been several works [64, 136, 135]
proving that for the case of X = {0, 1}d, a sanitized dataset cannot be output in poly-time
under certain cryptographic assumptions.

3.2.2 Randomized Response

The simple technique of decentralized input perturbation, or Randomized-Response [141],
gives a straight-forward way of preserving ε-differential privacy.

Theorem 3.7. Let D be a database whose elements are taken from a finite-size domain
X of size T . Given 0 < ε < 1, the algorithm that for every entry x ∈ D (recall, D is a
multiset) picks y(x) independently where

y(x) =

{
x, w.p. 1+ε

T+ε

x′, w.p. 1
T+ε

, for any x′ 6= x

and publishes D̂ = {y(x) : x ∈ D}, is a ε-differential privacy preserving mechanism.1

Furthermore, fix S ⊂ {1, 2, . . . , n} and define the multiset D|S = {Di : i ∈ S}. Then
w.p. ≥ 1 − β we can use D̂ to estimate the fraction of elements in D|S that are of type x

up to an additive error of O
(
T
ε

√
log(T/β)
|S|

)
.

Proof. The fact that the above-mentioned algorithm preserves ε-differential privacy is
straight-forward. Given two neighboring datasets D and D′ that differ on the i-th entry, it
is easy to see that for any y ∈ X we have

Pr[D̂i = y| D]

Pr[D̂i = y| D′]
≤ 1 + ε ≤ eε

Now, fix S. For every x ∈ X , we denote ρx as the fraction of entries inD|S that are of type
x. A straight-forward calculation gives that in D̂ we expect to see a fraction of µx = 1+ερx

T+ε

1A slightly less elegant version picks y(x) = x w.p. eε

T−1+eε and y(x) = x′ for any other x′ 6= x w.p.
1

T−1+eε .

21

entries of type x. Due to standard Hoeffding and union bounds it holds that w.p. ≥ 1−β the

number of elements in D̂|S of type x, denoted nx, satisfies | 1
|S|nx − µx| ≤ O(

√
log(2T/β)

2|S|)

for all x ∈ X . Therefore, using the estimation

ρ̂x =
1

ε

(
(T + ε)

nx
|S|
− 1

)

we have that |ρx − ρ̂x| ≤ T+ε
ε

√
log(2T/β)

2|S| .

Observe that Randomized-Response allows us to estimate queries that are based on the
histogram induced byD on multiple predefined subsets of entries S1, S2, . . . , St (which we
could think of as t predefined queries), with the error bound on each estimation scaling

like O(
√

log(t/β)
mini |Si|). I.e., the error bound grows by only a factor of log(t) compared to the

bound we have for answering a single query. However, this technique provides vacuous
error bounds when T = |X | is large. Furthermore, given a fixed S, the error bounds pro-
vided by the Randomize-Response mechanism are inferior to the bounds provided by the
mechanism that perturbs the histogram of D|S by adding Lap(1/εn) noise to the count
of each type independently. However, the main benefit of the Randomized-Response al-
gorithm is that it is a decentralized algorithm – each individual randomizes her own data
and provide the data-curator with the perturbed data (as opposed to previous mechanisms,
in which the data-curator gets to observe the actual data but releases it with some noise).
Therefore, the Randomized-Response mechanism is applicable in the case that the agents
don’t trust even the data-curator.

The Randomized-Response mechanism was first used for data-mining, actually applied
for voting for one of two options w.p. {2/3, 1/3}. It was first analyzed theoretically by
Kasiviswanathan et al [101], and was also used for privately estimating the size of cuts in
a graph by Gupta et al [77].

3.2.3 The Multiplicative Weights Mechanism

Lastly, we conclude the survey of existing mechanisms with the Multiplicative Weights
mechanism of Hardt and Roth [80]. This mechanism builds on the previous work of Roth
and Roughgarden [128], who were the first to consider the case of queries as linear opera-
tors. In the Multiplicative Weights mechanism, the database is viewed as a histogram over
X (normalized to 1, for convenience), soD = {v ∈ R|X |≥0 :

∑
i vi = 1}. Queries are linear

22

queries in [0, 1]|X |, and so the answer to a query q is 〈q,D〉. Clearly, for any q, the global
sensitivity of q is upper bounded by 1/n.

Algorithm 1: Multiplicative Weights Mechanism
Input: A n-size database D, privacy parameters: ε, δ > 0, failure probability β > 0,

number of overall queries to answer: t.

1 Set parameters: U = O

(
εn

√
log(|X |)

log(1/δ) log(t/β)

)
, σ = O

(√√
log(|X |)
εn

· log(1/δ)
log(t/β)

)
,

α = O (σ log(t/β)) = O

(√√
log(|X |)
εn

log(1/δ) log(t/β)

)
.

2 Initialize vector v = 1
n
1, and i← 0.

3 foreach user query q do
4 Sample Z ∼ Lap(σ).
5 if |〈q,D〉+ Z − 〈q, v〉| < α/2 then
6 Answer q with 〈q, v〉. // Easy case
7 else
8 i← i+ 1. Abort if i > U · log(1/δ).
9 Answer q with 〈q,D〉+ Z. // Hard case

10 if 〈q,D〉+ Z < 〈q, v〉 then
11 Let v′ be a normalized histogram satisfying that ∀i we have

v′i ∝ vi exp
(
− α

2n
qi
)
.

12 else
13 Let v′ be a normalized histogram satisfying that ∀i we have

v′i ∝ vi exp
(
− α

2n
(1− qi)

)
.

14 Update v ← v′.

Theorem 3.8 ([80, 77]). Algorithm 1 preserves (ε, δ)-differential privacy, and w.p. ≥ 1−β
answers all user queries up to an additive error of α.

The analysis of the Multiplicative Weight mechanism is quite intricate (and it was later
improved and generalized by Gupta et al [77]). It’s main outline is as follows.

1. W.p. 1− β we have that in no query |Z| > α/4.

2. Fix two neighboring datasets, D and D′. Given a query q, we partition [−α/4, α/4]
into 2 regions: “safe” in which we update neither D nor D′; and its complimen-
tary “non-safe”. We further partition the “non-safe” region into “must-update” – in
which we update both D and D′, and its complimentary “unknown”.

23

3. Conditioned on Z being “safe”, there is no privacy loss. This is the crux of the
analysis.

4. Conditioned on Z being “non-safe”, then there’s a constant probability Z is a “must-
update”. Conversely, w.p. > 1 − δ/2 we have that the number of times in which Z
is “non-safe” is at most #Updates ·O(log(1/δ)).

5. Since v is update using the standard Multiplicative Weights algorithm [108], then
after U updates we have that |〈q, v〉− 〈q,D〉| < α/2 for every q. So at that point, no
more updates are made. Therefore, we answer all t queries with an error of at most
α.

6. Finally, we appeal to the standard composition arguments (Theorem 3.4) and Azuma’s
inequality to show that in the O(U log(1/δ)) times in which Z is “non-safe” and we
applied the Laplace mechanism with std σ incurred an overall privacy loss of at most
ε w.p. ≥ 1− δ/2.

It is obvious that the counting queries setting considered by Blum et al [43] is a private
case of the Multiplicative Weights mechanism: Given a query q ∈ Q we can identify it
with the vector vq ∈ {0, 1}|X | where vq(x) = q(x) for every x ∈ X , and now the counting
query is precisely 〈vq, D〉. And so, Blum et al [43] give a ε-differentially private mecha-
nism that can answer each query up to an additive error of 1/(εn)1/3 (neglecting other pa-
rameters). In contrast, the Multiplicative Weights mechanism gives a (ε, δ)-differentially
privacy mechanism (a weaker guarantee) with an additive error of 1/

√
εn (a tighter util-

ity bound). The alternative analysis of the Multiplicative Weights mechanism given by
Hardt et al [81] shows that as an ε-differentially private algorithm, it gives error bounds
of O(1/(εn)1/3). It is an open question to see whether a ε-differentially private algorithm
exists whose utility guarantee is proportional to 1/

√
n.

Observe also that the Multiplicative Weights mechanism is often intractable – since an-
swering each query takes poly(|X |) time. But even in applications where X has poly-size,
if we wish to answer a large set of queries Q then the mechanism requires us to traverse
all queries in Q and so it runs in time proportional to |Q|. And yet – the analysis of the
Multiplicative Weights mechanism guarantees the existence of a small (poly-size) num-
ber of queries for which you update the vector v and afterward it is never again updated.
Therefore, one potential venue for improving its running time is to find this small set of
queries, apply the mechanism solely on them, and release the resulting v. This is precisely
what Hardt et al [81] do, by picking queries according to the exponential mechanism (since
the set of queries you select for the update might leak privacy as well). Needless to say,
applying the exponential mechanism over the queries in Q takes poly(|Q|) time. It is an

24

open question of finding a scenario (say, cut-queries) where we can find this small-size set
of update-queries efficiently.

3.2.4 Our Contribution: The Johnson Lindenstrauss Mechanism

In Chapter 5 we detail a different mechanism that allows one to answer multiple queries,
with error bound growing only logarithmically with the number of queries. This mecha-
nism is actually a well-known one: the Johnson-Lindenstrauss transform. We show that
given a database represented as a n×dmatrixA, the mechanism that picks a random matrix
R of size r× n in which every entry is chosen independently from a normal Gaussian and
publishes the multiplication RA, preserves (ε, δ)-differential privacy, if all singular values
of A are sufficiently large. Furthermore, the Johnson-Lindenstrauss transform guarantees
that for any query vector x we have that w.h.p ‖Ax‖2 ≈ 1

r
‖RAx‖2. Therefore, this mech-

anism allows us to answer variance queries – where the user poses a direction (unit vector)
x and queries about the variance of the data along direction x. In the special case where
A is the edge-matrix of a graph, this mechanism allows the user to estimate the values of
cuts – the user specifies a set of vertices S and gets an estimation of the value of the cut
|E(S, S̄)|.

3.3 Smooth Sensitivity: Answering Queries of Large Global
Sensitivity

Recall that the basic mechanism (Theorem 3.3) gives good utility guarantees only for
queries of small global sensitivity. In contrast, when the global sensitivity is large (for ex-
ample, in the extreme case where there exists D1 ∼ D2 such that f(D1) = minD∈D f(D)
and f(D2) = maxD∈D f(D)), this mechanism may have vacuous utility guarantees. Still,
there could be instances D ∈ D for which the local sensitivity is small.

Definition 3.9. The local sensitivity of a query f at a datasetD isLSf (D) = max
D′∼D

|f(D)− f(D′)|.

The local sensitivity LSf (D) may be significantly lower than the global sensitivity
GSf . However, adding noise proportional to LSf (D) does not preserve differential pri-
vacy because the noise level itself may leak information. A clever way to circumvent this
problem is to smooth out the noise level [119].

25

Definition 3.10 ([119]). A β-smooth upper bound on the local sensitivity of a query f is
a function Sf,β which satisfies (i) ∀D ∈ D, Sf,β(D) ≥ LSf (D), and (ii) ∀D,D′ ∈ D it
holds that Sf,β(D) ≤ exp(β · d(D,D′))Sf,β(D′).

Indeed, it is possible to preserve privacy while adding noise proportional to a β-smooth
upper bound on the sensitivity of a query.

Theorem 3.11 ([119]). Given a query function f : D → R, the mechanism that for a
given D outputs f(D) + Z with Z ∼ Lap(

2Sf,β(D)

ε
) and with β = ε

2 ln(2/δ)
preserves

(ε, δ)-differential privacy.

Proof. Fix any two neighboring datasets D and D′. Let Z1 be random noise sampled from
Lap(

2Sf,β(D)

ε
) and Z2 be random noise sampled from Lap(

2Sf,β(D′)

ε
). Calculating the ratio

between the two PDFs, we have

PDFZ1(x)

PDFZ2(x)
=
Sf,β(D′)

Sf,β(D)
exp

(
−ε|x|

2

(
1

Sf,β(D)
− 1

Sf,β(D′)

))
=
Sf,β(D′)

Sf,β(D)
exp

(
ε|x|

2Sf,β(D′)

(
1− Sf,β(D′)

Sf,β(D)

))
Now, if it is the case that 1 ≤ Sf,β(D′)

Sf,β(D)
≤ eβ then it is simple to see that

PDFZ1(x)

PDFZ2(x)
≤ eβe0 ≤ eε/2

So we can assume that it is that case that e−β ≤ Sf,β(D′)

Sf,β(D)
≤ 1 in which case we have

PDFZ1(x)

PDFZ2(x)
≤ 1 · exp

(
ε(1− e−β)

2Sf,β(D′)
|x|
)
≤ exp

(
εβ

2Sf,β(D′)
|x|
)

Because of the definition of β we have that w.p. 1− δ/2 it holds that |Z2| ≤ Sf,β(D′)/β,
so w.p. ≥ 1− δ/2 we have that the ratio of the two PDFs is bounded by

PDFZ1(x)

PDFZ2(x)
≤ eε/2

So now fix any S ⊂ R and we have

Pr[f(D) + Z1 ∈ S] = Pr[Z1 ∈ S − f(D)] ≤ e
ε(f(D)−f(D′))

2Sf,β(D) Pr[Z1 ∈ S − f(D′)]

26

≤ eε/2Pr[Z1 ∈ S − f(D′)]
≤ eε/2

(
eε/2Pr[Z2 ∈ S − f(D′)] + δ

2

)
≤ eεPr[f(D′) + Z2 ∈ S] + δ

Clearly, to compute the output of this mechanism efficiently one must present a tractable
algorithm to compute the β-smooth upper bound Sf,β(G), a task which is by itself often
non-trivial.

3.3.1 Our Contribution: Restricted Sensitivity

In Chapter 6 we introduce the notion of restricted sensitivity, which is complementary to
the notion of smooth-sensitivity. Smooth sensitivity depends on the input database – given
D, the answer to a user’s query f depends on the values f takes onD and the neighborhood
of D. In contrast, restricted sensitivity depends on a user-defined set of “good” instances
H ⊂ D, so that given a query f its answer depends on the values f takes onH. We design
a (ε, δ)-differentially private mechanism that given f answers it with fairly small noise if
it is indeed the case that D ∈ H, however, this mechanism has no guarantees if it is the
case that D /∈ H.

We illustrate the mechanism in a particular setting which is of growing importance
nowadays – answering queries regarding social networks. Many natural questions one
might ask given a social network have large global sensitivity or even large local sensi-
tivity. (E.g. the answer to the question “how many people are friends with a person from
CMU” may change significantly if Justin Beiber relocates to Pittsburgh.) We illustrate
the use of applying the restricted sensitivity mechanism to such queries focusing on the
set Hk of social networks in which each person has at most k friends. Indeed, whereas
the global sensitivity of profile queries is Ω(n), their restricted sensitivity over Hk is only
O(k). (Continuing with our example – focusing only on the subnetwork of computer sci-
entists, which are naturally inclined to have a limited number of friends, using restricted
sensitivity we can find out in a differentially private manner whether people from CMU
are friendlier than the average person.)

27

28

Chapter 4

Background: Center-Based Clustering

Problems of clustering data arise in a wide range of different areas – clustering proteins
by function, clustering documents by topic, and clustering images by who or what is in
them, just to name a few. Generally speaking, the goal of clustering is to partition n
given data objects into k groups that share some commonality. From a machine learning
perspective, the goal of clustering is to label each datapoint with one of k distinct labels.
Yet, as opposed to the classical machine-learning labeling tasks which are often done using
access to a few labeled examples, clustering is often done in a non-supervised setting – i.e.,
without viewing the labels of any of the datapoints. Instead, we are given access to a metric
over the given dataset S.

Definition 4.1. A non-negative function d : S × S → R≥0 is called a metric if it satisfies
the following 3 properties.

• (Reflexivity) For any x, y ∈ S it holds that d(x, y) = 0 iff x = y.

• (Symmetry) For any x, y ∈ S it holds that d(x, y) = d(y, x).

• (Triangle inequality) For any x, y, z ∈ S it holds that d(x, z) ≤ d(x, y) + d(y, z).

4.1 Center-Based Clustering Objectives

Operationally, clustering is often performed by optimizing some natural objective over the
given metric. The focus of this thesis is on center-based objectives, such as the popular k-
median, k-means and k-centers, in which we measure a k-partition by choosing a special

29

point for each cluster, called the center, and define the cost of a clustering as a function of
the distances between the data points and their respective centers.

Definition 4.2. The problem of finding a k-partition C = {C1, C2, . . . , Ck} of the given
dataset and finding k centers c1, c2, . . . , ck such that

• we minimize
∑

i

∑
x∈Ci d(x, ci) is called k-median.

• we minimize
∑

i

∑
x∈Ci d

2(x, ci) is called k-means.

• we minimize maxi maxx∈Ci d(x, ci) is called k-center.

From here on out we denote the optimal clustering as C∗ = {C∗1 , C∗2 , . . . , C∗k}, its
respective centers as c∗1, c

∗
2, . . . , c

∗
k, and its cost as OPT.

It is simple to see that given a list of k centers, the k-partition that minimizes the
abovementioned costs is to assign each point to its nearest center. This partition, in which
Ci is the set of points that prefer ci to any other cj is known as the Voronoi partition of
the metric space, and Ci is called the Voronoi region of ci. Conversely, given a k-partition
{C1, C2, . . . , Ck}, it is simple to find the best center point ci for the points in Ci in a finite
metric space (by brute forcing trying all points in Ci). In the special case of k-means in
Euclidean space, it is a known fact that the best center point is the centroid of Ci, denoted
µ(Ci) = 1

|Ci|
∑

x∈Ci x. In fact, given a set X of points in Rd, we treat µ as an operator
where µ(X) = 1

|X|
∑

x∈X x.

In this thesis, we view k as part of the input and not a constant, though even the
2-means problem in Euclidean space was recently shown to be NP-hard [57]. Indeed,
center-based clustering in finite metrics, like many other k-partition problems (e.g. Max
k-coverage, Knapsack for k items, maximizing social welfare in k-items auction), can be
easily solved in nk time. (And Kumar et al [105] give a PTAS for the k-means problem in
Euclidean space.) We also comment that there is a variety of applications where k is quite
large. This includes problems such as clustering images by who is in them, clustering
protein sequences by families of organisms, and problems such as deduplication where
multiple databases are combined and entries corresponding to the same true entity are to
be clustered together [52, 117].

All objectives are known to be NP-hard. For k-median in a finite metric, there is a
known (1 + 1/e)-hardness of approximation result [90] and substantial work on approx-
imation algorithms [76, 48, 18, 90, 60, 106], with the best guarantee of a (1 +

√
3 + ε)-

approximation.1 For k-means in a Euclidean space, there is also a vast literature of approx-
1There is also a PTAS known for low-dimensional Euclidean spaces (dimension at most log log n) [14,

79].

30

imation algorithms [120, 24, 60, 67, 79, 98] with the best guarantee a (9+ε)-approximation
if polynomial dependence on k and the dimension d is desired. For the k-center problem
there’s a known greedy algorithm that yields a 2-approximation [74, 85], as well as a
2− ε hardness of approximation result [87]. In the Euclidean plane with L2 or L∞ metric,
there’s a PTAS whose running time is O(n log(k) + (k/ε)O(k1−1/d)) [5].

4.1.1 Other Clustering Techniques

In this introduction, we do not aim to survey all non-center-based clustering techniques.
We mention just a few: min-sum clustering – in which the goal is to find a k-clustering that
minimizes

∑
i

∑
x,y∈Ci d(x, y); max k-cut – in which the goal is to find a k-clustering that

maximizes
∑

i<j

∑
x ∈ Ci, y ∈ Cjd(x, y); and normalized cuts – in which one aims to

minimize
∑

i
1
|Ci|
∑

x∈Ci,y /∈Ci d(x, y) or one of the other many variations of this objective
(e.g, conductance).2 However, in this thesis we will make use of the Single-Linkage algo-
rithm, and therefore it is worth-while to mention the agglomerative clustering algorithms,
that use the bottom-up approach.

Definition 4.3. The clustering algorithm that starts with n singleton clusters and repeat-
edly merges the two clusters X, Y that minimize f(X, Y) where

• f(X, Y) = minx∈X,y∈Y d(x, y) is called the Single-Linkage algorithm.

• f(X, Y) = 1
|X| |Y |

∑
x∈X,y∈Y d(x, y) is called the Average-Linkage algorithm.

• f(X, Y) = maxx∈X,y∈Y d(x, y) is called the Complete-Linkage algorithm.

We comment that the classic variants of these algorithm halt when there are k clusters
left. In this thesis, however, we make use of a slightly less standard variant, in which the
algorithm halts whenever a single cluster is reached. This in fact produces a hierarchical
clustering or a clustering tree, and we say the algorithm is laminar with a given clustering
C if there a pruning of the clustering tree that produces C.

The literature regarding agglomerative clustering is rich and vast and we do not survey
it here. The interested reader is referred to [83].

2For normalized cuts, we think of the distance as a measure of similarity rather than difference. There are
numerous way of coverting distances into similary measure, the simplest of which is to put an edge between
any two x, y for which d(x, y) is smaller than some threshold.

31

4.2 Implicit Stability Assumptions for Clustering

The approximation results surveyed thus far are worst-case results. Each of the works
mentioned poses some c and constructs an algorithm which is guaranteed to produce a c-
approximation for any clustering instance. However, while they guarantee to output some
C whose cost is at most cOPT, they do not guarantee that the output C satisfies any other
proximity notion to C∗ – they do not guarantee that C and C∗ agree on the label of most
datapoints, they do not guarantee that the centers of C are close to the centers of C∗, and
they don’t even guarantee that C and C∗ have the same number of cluster. In this section
we discuss several works that indeed give such stronger guarantees. The caveat is that
the works we survey in this section do not fall into the framework of worst-case analysis.
These works give stronger guarantees than mere c-approximation of the cost by focusing
solely on a specific subset of all possible clustering instances – instances that adhere to
certain “nice” properties. As always, the exact definition of the properties changes from
one work to another.

4.2.1 Clustering objectives as a proxy for datapoints labeling

The work of Balcan, Blum and Gupta [25] takes a machine-learning viewpoint of clus-
tering. Balcan et al consider a notion of stability to approximations motivated by settings
in which there exists some (unknown) target clustering Ctarget we would like to produce.
Balcan et al define a clustering instance to be (1 +α, δ) approximation-stable with respect
to some objective Φ (such as k-median or k-means), if any k-partition whose cost under Φ
is at most (1 + α)OPT agrees with the target clustering on all but at most δn data points.

Definition 4.4. Given a clustering instance w.r.t to objective Φ, we call the instance (1 +
α, δ)-approximation stable if for any (1 + α) approximation C to objective Φ, we have
minσ∈Sk

∑
i |C

target
i − Cσ(i)| ≤ δn (here, σ is simply a matching of the indices in the

target clustering to those in C).

For instances satisfying the (1 + α, δ) approximation-stability assumption, Balcan et
al have shown the following results.

Theorem 4.5 ([25]). • Assuming that the instance satisfies (1 + α, δ)-approximation
stability w.r.t to either the k-median objective or the k-means objective, then there
exists a clustering algorithm whose output disagrees with Ctarget on no more than a
fraction of O(δ(1 + 1/α)) of the datapoints.

32

• Assuming that (i) the instance satisfies (1 +α, δ)-approximation stability w.r.t to the
k-median objective and (ii) all clusters have size at least n · O(δ(1 + 1/α)), then
there exists a clustering algorithm whose output disagrees with Ctarget on no more
than a fraction of δ of the datapoints.

• Assuming that (i) the instance satisfies (1 +α, δ)-approximation stability w.r.t to the
k-means objective and (ii) all clusters have size at least n · O(δ(1 + 1/α)), then
there exists an algorithm that outputs a (k + 1)-partition {C1, C2, . . . , Ck, U}, s.t.
|U |
n

= O(δ(1 + 1/α)) and minσ∈Sk |Ci \ C
target
σ(i) | < δn.

• The problem of finding a (1 + α)-approximation in general can be reduce to the
problem of finding a (1 + α)-approximation on instances satisfying (1 + α, δ)-
approximation stability, for any δ > 1/poly(n).

We do not give here full details as to the algorithms that Balcan et al [25] devise.
However, they are all extensions of the following basic idea, best illustrated using the
k-median objective. Given the optimal clustering C∗, denote for every datapoint x its
contribution to OPT by φ(x) = mini d(x, ci) and its distance to the 2nd closest center
as ψ(x). Take the O(δ)n points whose difference ψ(x) − φ(x) is the largest, and let C ′
be the clustering in which of these points is assigned to its 2nd closest center. Since C∗
and C ′ do not agree on δn points, then the cost of C ′ is greater than (1 + α)OPT. We
deduce that at most a fraction of O(δ) points have ψ(x) − φ(x) < α

δ
OPT
n

. On the other
hand, using Markov’s inequality we have that at most a O(δ/α) fraction of the points have
φ(x) ≥ α

5α
OPT
n

. So, for a fraction of at least 1−O(δ(1+1/α)) of the points neither property
holds. For any two points x, y in this set, we have that if they belong to the same cluster
then d(x, y) < 2αOPT

δn
, whereas if they belong to two different clusters d(x, y) > 3αOPT

δn
.

The algorithms of Balcan et al [25] build on this strict-separation property, taking into
account the O(δ(1 + 1/α))n outliers and fact with don’t know OPT in advance.

Following the work of [25] similar notions were considered in other works. Balcan et
al [25] themselves also discuss approximation-stability w.r.t to the min-sum objective, and
their results were extended by Balcan and Braverman [28]. Balcan, Röglin, and Teng [30]
studied instances that satisfy (1+α, δ)-approximation stability only after a fraction of data
is removed. The work of Schalekamp et al [130] analyzes the algorithm of [25] in practice
and show it gives a good approximation to the k-median objective when all clusters are
large.

33

4.2.2 k-clustering whose cost is much smaller than the cost of (k−1)-
clustering

Ostrovsky et al [121] proposed an interesting condition under which one can achieve better
k-means approximations in time polynomial in n and k. They consider k-means instances
where the optimal k-clustering has cost noticeably smaller than the cost of any (k − 1)-
clustering, motivated by the idea that “if a near-optimal k-clustering can be achieved by a
partition into fewer than k clusters, then that smaller value of k should be used to cluster
the data” [121]. Formally,

Definition 4.6. Given a clustering instance w.r.t some objective Φ, let OPTk−1 denote the
cost of the optimal (k−1)-clustering, and OPT denote the cost of the optimal k-clustering.
We say the instance is γ-separable if OPT

OPTk−1
≤ γ2.

Under the assumption that γ < 1/10, Ostrovsky et al show that one can obtain a
(1 + O(γ2))-approximation for k-means in time polynomial in n and k, by using Lloyd
steps: using centers {c1, c2, . . . , ck} set Ci as the set of points whose closest center point
is ci and then set ci ← µ(Ci), and repeat until convergence. In fact, Ostrovsky et al pay
careful attention to the seeding of the Lloyd iterations – the initial set of k centers. More
formally, Ostrovsky et al proved the following.

Theorem 4.7 ([121]). Given a k-means instance which is γ-separable for some γ < 1/10,
there exists a O(nkd + k3d)-time algorithm that gives a (1 + 72γ2)-approximation of the
k-means cost w.p. 1 − O(

√
γ). Given ε > 0, there exists a 2O(k/ε)nd-time algorithm that

gives a (1 + ε)-approximation of the k-means cost with constant probability.

A rough outline of the (1 + O(γ2))-approximation algorithm of Ostrovsky et al is as fol-
lows.

Randomly initial centers. Pick first two datapoints w.p. proportional to their distance
squared. Pick additional O(k) points iteratively: given {p1, p2, . . . , pl} choose the
next point pl+1 = x w.p. minli=1 ‖x− pi‖2.

Picking k centers. Given the O(k) points chosen, find their Voronoi regions and their
respective centroids. Starting from this set of O(k) centroids, apply some deletion
procedure until k points are left.

One “Lloyd step”. Given {p1, . . . , pk}, let Bi = {x : ‖x − pi‖ ≤ 1
3

minj 6=i ‖pi − pj‖}.
Return {µ(B1), µ(B2), . . . , µ(Bk)}.

34

In fact, much of the analysis of Ostrovsky et al is devoted to the initial center-procedure. In
particular, they show that by picking just k centers using this sampling technique we have
at least a (1− O(γ2/3))k probability of finding one point from each cluster. Alternatively,
sampling O(k) points with this sampling procedure, we have that our sample contains at
least one point from each cluster with constant probability.

Following the work of Ostrovsky et al, this sampling procedure was refined slightly
to what is now known as D2 sampling. (Where instead of picking the first 2 points pro-
portional to their distance, we pick the first u.a.r and the 2nd is picked the same way
the rest are chosen.) Arthur and Vassilvitskii [15] showed that D2 sampling yields a
O(log(k))-approximation to the k-means optimum. Ailon et al [8] have shown that pick-
ing O(k log(k)) centers using D2 sampling yields a O(1)-approximation to the k-means
objective, and Aggarwal et al [6] showed the same for picking O(k) centers. Jaiswal
and Garg [91] showed that using D2 sampling for sampling k centers gives a O(1)-
approximation of the k-means objective w.p. ≥ 1/k if the input is γ-separable for some
constant γ, and in general gives a O(1)-approximation w.p. Ω(2−2k).

4.2.3 Clustering perturbation resilient instances

Bilu and Linial [40], focusing on the max-cut problem [71], proposed considering in-
stances where the optimal clustering is optimal not only under the given metric, but also
under any bounded multiplicative perturbation of the given metric. This is motivated
by the fact that in practice, distances between data points are typically just the result of
some heuristic measure (e.g., edit-distance between strings or Euclidean distance in some
feature space) rather than true “semantic distance” between objects. Thus, unless the op-
timal solution on the given distances is correct by pure luck, it likely is correct on small
perturbations of the given distances as well. We formally define metric perturbation and
perturbation resilience.

Definition 4.8. Given a metric (S, d), and α > 1, we say a function d′ : S × S → R≥0 is
an α-perturbation of d, if for any x, y ∈ S it holds that d(x, y) ≤ d′(x, y) ≤ αd(x, y). Note
that d′ may be any non-negative function and might not satisfy the triangle inequality.

Definition 4.9. Given a clustering instance composed of n points residing in a metric
(S, d), we say the instance is α-perturbation resilient for a clustering objective Φ if for
any d′ which is an α-perturbation of d, the (only) optimal clustering of (S, d′) under Φ is
identical, as a partition of points into subsets, to the optimal clustering of (S, d) under Φ.

Bilu and Linial [40] analyze max-cut instances satisfying perturbation-resilience, and

35

show that for instances that are stable to perturbations of multiplicative factor roughly
O(n1/2), one can retrieve the optimal Max-Cut in polynomial time.

Theorem 4.10 ([40]). There exists a poly-time algorithm that correctly clusters O(
√
n)-

perturbation resilient max-cut instances.

While the original version of the algorithm is to round the SDP relaxation of Goemans-
Williamson [72] for the max-cut problem, an approach that relies on heavy machinery from
linear algebra, there is a simpler combinatorial and deterministic algorithm due to Bilu et
al [39]. This algorithm iteratively identifies two vertices that belong to the same cluster
and contracts them (while summing the weights of contracted edges). It is straight-forward
to see that the contracted instance is also perturbation-resilience.

Bilu and Linial conjectured that stability up to only constant magnitude perturbations
should be enough to solve the problem in polynomial time. A recent work of Makarychev
et al [109] improves on the result of Bilu and Linial and improves the perturbation-
resilience factor to O(

√
log(n) log log(n)). Multiple works (including the one in this the-

sis) discuss perturbation stability for other problems, such as k-median and min-sum [29,
127], TSP [114], and finding Nash-equilibrium [19].

Additional notions of stability in clustering. We conclude by mentioning other works
that tie together the notion of clustering and stability. Ben-David et al. [36, 37] consider
a notion of stability of a clustering algorithm, which is called stable if it outputs similar
clusters for different sets of n input points drawn from the same distribution. For k-means,
the work of Meila [113] discusses the opposite direction – classifying instances where an
approximated solution for k-means is close to the target clustering. And relating to the
effectiveness of Lloyd-type iterations, it was shown that this iterative algorithm might take
exponential time to converge even for planar (d = 2) instances [137], yet other works
have shown that adding random Gaussian noise to each point independently causes the
algorithm to converge in time O(nk) ([17]) or in time poly(n, k) ([16]).

4.2.4 Our Contribution: Weak-Deletion Stability and Perturbation-
Resilience for k-Median and k-Means

In Chapter 7 we improve on the works of Ostrovsky et al [121] and Balcan et al [25], and
in fact unify them. Ostrovsky et al call a dataset separable if the ratio of the optimal clus-
tering with k − 1 clusters to the optimal clustering with k clusters is at least 1/γ2 ≥ 100
and give a (1 + O(γ2))-approximation for the k-means objective for such an instance.

36

We call a dataset stable if the above ratio is greater than γ for some constant γ > 1, and
give a PTAS for such instance. In other words, we decouple the strength of the assump-
tion from the quality of the approximation – given time nO(1/ε) we show how to get a
(1 + ε)-approximation for either the k-median of the k-means objectives for any separable
dataset. Balcan et al give an algorithm that correctly clusters a 1− δ fraction of the points
give k-median instances that (i) satisfy the [25] notion of stability and (ii) all clusters in the
optimal clustering are very large clusters. Using the same notion of stability and defining
cluster as “large” if their size is only Ω(δn), we give an algorithm that approximates the
k-median or the k-means cost and therefore clusters all but a fraction of δ of the points cor-
rectly. The result is obtained by defining a new notion of stability, weak-deletion stability,
that unifies both previously considered notions of stability.

In Chapter 8 we extend the Bilu-Linial [40] notion of perturbation resilience to any
center-based clustering objective, like k-median or k-means. We show that there exists
an efficient algorithm that correctly clusters any 3-perturbation resilient instance. This
algorithm is no other than the Single-Linkage algorithm (or rather, a simple variant on the
Single-Linkage algorithm).

4.3 Clustering under Explicit Distributional Assumptions

All of the results mentioned in Section 4.2 discuss clustering instances which have certain
nice properties due to some compelling story. In contrast, a different line work in clustering
pin-points the nature of the clustering instance so that it comes from a specific model.
More importantly, in this line of work the datapoints are not arbitrary points of some
instance, but rather they are the outcome of multiple iid drawns from some distribution.
For these types of problems, the algorithm is often aware of the nature of the distribution
(i.e. Gaussians, log-concave, heavy-tail etc.) yet the specifics of the distribution (namely,
mean and variance) are unknown.

Specifically, we discuss a mixture model. In this type of instance we get to view n
points in a d-dimensional Euclidean space, and each point was drawn iid from some dis-
tribution. We assume that overall there exist k different distributions which leads to the
existence of k clusters in our instance – where all points in cluster i are drawn from the
same distribution. In fact, we can think of the points themselves as points that were sam-
pled independently from the ith distribution w.p. wi = |Ci|/n. We will use the standard
notation µi = µ(Ci) ∈ Rd and Σi ∈ Rd×d to denote the mean and variance of the ith dis-
tribution, and the maximal directional-variance of the ith distribution (the leading singular
value of Σi) is denoted as σi. We also denote wmin = mini{wi} and σmax = maxi{σi}.

37

Observe – the standard approach is to design algorithms that give good estimation of the
problem’s parameters, namely {〈wi, µi,Σi〉}ki=1. In this thesis however, we focus on works
that retrieve the actual clustering of the data, after which it is easy to estimate these pa-
rameters using the empirical weights, means and variances.

Of the immensely rich literature regarding learning mixture models, we focus in this
overview on one particular venue – learning under center-separation assumptions. We
discuss works that cluster instances that arise from mixture models under the additional
assumption of center separation: That for every pair of cluster centers µi, µj with i 6= j
we have that ‖µi − µj‖ is lower bounded by some function f(n, k, d, wi, wj, σi, σj).

4.3.1 Gaussian Mixture Model

Probably the most well-studied case of this mixture model is the Gaussian mixture model,
in which all k distributions are multivariate Gaussians. Dasgupta [56] was the first to give
an algorithm with a guaranteed utility bound for the case of Gaussian mixture model with
center separation of ∀i 6= j, ‖µi − µj‖ ≥

√
d(σi + σj), focusing on the case where

Gaussians are spherical (where ∀i, Σi = σiId×d) and wmin = Ω(1/k). This bound was
later improved to Dasgupta and Schulman [59] for the case of spherical Gaussian with
center separation of Ω(d1/4(σi + σj) log(n)).

While the algorithms of Dasgupta [56] and Dasgupta and Schulman [59] are non-
trivial (the first involves random projections and the latter involves a variant of the EM
algorithm), there are simple observations that provide intuition as to why such clustering
tasks should be poly-time solvable. Focusing on spherical Gaussians, it is a known fact that
is x ∼ N (µi, σiId×d) then E[‖x− µ‖] = σ

√
d and the variance of the distance is roughly

σd1/4. Moreover, up to constant factors, these bounds also apply for two independent
samples from the same spherical Gaussian. In fact, the following lemma from [59] gives
tight concentration bounds on the distances between any two datapoints.

Lemma 4.11 ([59]). Let x ∼ N (µi, σiId×d) and y ∼ N (µj, σjId×d) for any i, j (not
necessarily different). Then for any α > 0 we have that w.p. ≥ 1− eΩ(−d2α) it holds that

‖x− y‖2 ∈ ‖µi − µj‖2 + (σ2
i + σ2

j)(d± d1/2+α)± 2‖µi − µj‖dα
√
σ2
i + σ2

j

So roughly speaking, when ‖µi − µj‖2 > d
1
2

+α(σ2
i + σ2

j) we have that w.h.p. each
point is closer to the points of its own cluster than any of the points of any of the other
clusters.

38

The next step in the line of works learning Gaussian mixture models under center
separation was the work of Vempala and Wang [138]. They observed the for spherical
Gaussians, projecting the data onto the subspace spanned by the top k singular vectors
keeps all Gaussian centers in place. In other words, the subspace spanned by the top k
singular vectors is precisely the subspace spanned by the k centers {µ1, µ2, . . . , µk}. As
a result, for spherical Gaussians the center-separation bound they introduced no longer
depends on d, and rather it is ‖µi − µj‖ = Ω̃(k1/4(σi + σj)). Achlioptas and McSh-
erry [4] gave an algorithm for general Gaussians under the center-separation bound of
Ω̃((
√
k +

√
1/wi +

√
1/wj)(σi + σj)). Achlioptas and McSherry’s main observation is

that projecting the data on its top k singular values shifts the cluster centers by no more
than σmax/

√
wi, while leaving the distance between a datapoint and its corresponding

cluster-center at
√
kσi. Therefore, suppose cluster 1 has the largest directional variance

σ1 = σmax, then the center separation bound along with triangle inequality give that w.h.p.
we have for any two projected points x, y from the same cluster and two projected points
x′, y′ from cluster C1 we have ‖x − y‖ ≤ ‖x′ − y′‖, and for any two projected points
x′′ ∈ C1 and y′′ /∈ C1 it holds that ‖x′ − y′‖ < ‖x′′ − y′′‖. As a result, by running Single-
Linkage on the projected instance and stopping with two cluster, we have a partition of the
dataset that is laminar with the original clustering (we can then recurse of each side of the
partition).

Other Mixture Models. Following Dasgupta [56], mixture models of other distributions
were studied as well. Arora and Kannan [13] study arbitrary Gaussians and log-concave
distributions and also Achlioptas and McSherry [4] results also apply to log-concave dis-
tributions. Kannan et al [96] and Chaudhuri and Rao [49] apply SVD projections to other
mixture models. Chaudhuri and Rao [50] also study mixture model for product distribu-
tions, and Dasgupta et al [54] study general mixture model (under center separation that is
polynomially dependent on n). Finally Brubaker and Vempala [47] tweak with the separa-
tion condition, just for the case of k = 2 Gaussians, requiring that ‖µ1−µ2‖ is greater than
the projected variance of the Gaussian along the direction of µ1 − µ2. Kalai, Moitra and
Valiant [95] give an algorithm for learning 2 Gaussians with no separation assumptions,
and Moitra and Valiant [116] extend this result to any constant k. Belkin and Sinha [35]
give an algorithm for various other mixture models (with no separation assumptions).

4.3.2 The Planted Partition Model

A very different distributional model was considered in the work of McSherry [110]. In
his Planted Partition Model the input is a graph over n nodes of k types (corresponding

39

to the k clusters). The edges of this graphs were sampled independently from a Bernoulli
random variable, where for every u 6= v, the edge uv is placed in the graph w.p. pc(u),c(v)

where c(u) and c(v) are the clusters of u and v respectively. As always, our goal is to
find the k-clustering that yielded this graph (and to estimate pi,j , which is easy given the
correct k-clustering).

It is clear that clustering would be easy if we had access to the matrix P ∈ Rn×n

where Pu,v = pc(u),c(v). But it is less clear whether the Planted Partition model fits into the
framework of clustering via center proximity. In fact – what are the cluster means in this
case? Observe, if we take the data and view a node u as a vector xu ∈ {0, 1}n, indicating
the set of nodes that are u’s neighbors, then by averaging the vectors {xu : u ∈ Ci} we
have that their mean, µi, should get very close to the row vector corresponding to the nodes
in Ci of P . Furthermore, since each row xu is a random rounding of µi to integral values,
then xu should be fairly close to its expectation, and in fact closer to µi than any other µj .
This gives rise to the hope that with a suitable center separation bound, we should be able
to cluster the nodes correctly. McSherry also observed that P is a rank k matrix, and so
the separation bound in [110] has polynomial dependence on k rather than on n.

Formally, denoting σmax = maxi,j
√
Pij , McSherry proved that under center separa-

tion of
‖µi − µj‖ = Ω

(
σmax

√
k(1

wmin
+ log(n

δ
))
)

it is possible to correctly cluster all nodes w.p. 1− δ.

4.3.3 Our Contribution: Improving on Kumar-Kannan Separability

Aiming to unify many of the previous works regarding mixture models, Kumar and Kan-
nan [104] defined a deterministic condition, which is independent of any specific distribu-
tion, and show how to correctly cluster datasets satisfying this condition. Having estab-
lished an algorithm that correctly clusters datasets satisfying this condition, they show that
indeed many of the previously studied mixture models do satisfy this separation condition
(w.h.p). However, their approach has two drawbacks: first, its guarantees are wasteful
with respect to k, the number of clusters, and don’t match the best known bounds’ depen-
dencies on k; secondly, their condition is somewhat complicated in comparison to the idea
of center-separation. In Chapter 9 we give further details regarding the work of Kumar
and Kannan, and discuss our improvements. In particular, we show how the basic tools of
the triangle inequality and Markov inequality allow us to give a simple analysis of their
algorithm and its various applications.

40

Part II

Differential Privacy

41

Chapter 5

The Johnson-Lindenstrauss Transform
Itself Preserves Differential Privacy

5.1 Introduction

The celebrated Johnson Lindenstrauss transform [93] is widely used across many areas
of Computer Science. A very non-exhaustive list of related applications include met-
ric and graph embeddings [45, 107], computational speedups [129, 139], machine learn-
ing [26, 131], information retrieval [123], nearest-neighbor search [103, 89, 7], and com-
pressed sensing [31]. Here we unveil a new application of the Johnson Lindenstrauss
transform – it also preserves differential privacy. It allows us to release statistics about our
given database, while guaranteeing that for any two neighboring databases (databases that
differ on the details of any single individual), the distributions over potential outputs are
statistically close.

The simplest technique of preserving differential privacy by adding small random noise
(Theorem 3.3) lies at the core of an overwhelming majority of algorithms that preserve dif-
ferential privacy. In fact, many differentially private algorithms follow a common outline.
They take an existing algorithm and revise it by adding such random noise each time the
algorithm operates on the sensitive data. Proving that the revised algorithm preserves dif-
ferential privacy is almost immediate, because differential privacy is composable. On the
other hand, providing good bounds on the revised algorithm’s utility follows from bound-
ing the overall noise added to the algorithm, which is often difficult. Here we take the com-
plementary approach. We show that an existing algorithm preserves differential privacy
provided we slightly alter the input in a reversible way. Our analysis of the algorithm’s

43

utility is immediate, whereas privacy guarantees require a non-trivial proof.

We prove that by multiplying a given database with a vector of iid normal Gaussians,
we can output the result while preserving differential privacy (assuming the database has
certain properties, see “our technique”). This technique is no other than the Johnson-
Lindenstrauss transform, and it’s guaranteed to preserve w.h.p the L2 norm of the given
database up to a small multiplicative factor. Therefore, whenever answers to users’ queries
can be formalized as the length of the product between the given database and a query-
vector, utility bounds are straight-forward.

For example, consider the case where our input is composed of n points in Rd given
as a n × d matrix. We define two matrices as neighbors if they differ on a single row and
the norm of the difference is at most 1.1 Under this notion of neighbors, a simple privacy
preserving mechanism allows us to output the mean of the rows in A, but what about the
covariance matrixATA? We prove that the JL transform gives a (ε, δ)-differentially private
algorithm that outputs a sanitized covariance matrix. Furthermore, for directional variance
queries, where users give a unit-length vector x and wish to know the variance of A along
x (see definition in Section 5.2), we give utility bounds that are independent of d and n. In
contrast, all other differentially private algorithms that answer directional variance queries
have utility guarantees that depend on d or n. Observe that our utility guarantees are
somewhat weaker than usual. Recall that the JL lemma guarantees that w.h.p lengths are
preserved up to a small multiplicative error, so for each query our algorithm’s estimation
has w.h.p small multiplicative error and additional additive error.

A special case of directional variance queries is cut-queries of a graph. Suppose our
database is a graph G and define two graphs as neighbors if they differ on a single edge.
Indeed, this edge-adjacency notion between graphs is weaker than the notion of a vertex-
adjacency, where two neighboring graphs may differ on any number of edges incident
to same vertex. However, this notion of adjacency corresponds to the same notion of
adjacency between matrices considered above – in Chapter 2.1 we defined the edge matrix
EG of a graph G, and indeed for any two G and G′ that differ on a single edge, EG and
EG′ differ on a single row (with the norm of the difference equals O(1)). For cut-queries,
users pose a nonempty strict subset of vertices S, and wish to know how many edges in
G cross the (S, S̄)-cut. Such a query can be formalized as the L2-norm squared of the
product EG1S , where 1S is the indicator vector of S (see Chapter 2.1). Here, we prove
that the JL transform allows us to publish a perturbed Laplacian of G while preserving
(ε, δ)-differential privacy. Comparing our JL-based algorithm to existing algorithms, we
show that we add (w.h.p) O(|S|) random noise to the true answer (alternatively: w.h.p we

1This notion of neighboring inputs, also considered in [111, 82], is somewhat different than the typical
notion of privacy, allowing any individual to change her attributes arbitrarily.

44

add only constant noise to the query 1T
SE

T
GEG1S

1T
S1S

). In contrast, all other algorithms add noise
proportional to the number of vertices (or edges) in the graph.

Our technique. It is best to demonstrate our technique on a toy example. Assume D
is a database represented as a {0, 1}n-vector, and suppose we sample a vector Y of n
iid normal Gaussians and publish X = Y TD. Our output is therefore distributed like
a Gaussian random variable of 0 mean and variance σ2 = ‖D‖2. Assume a single en-
try in D changes from 0 to 1 and denote the new database as D′. Then X ′ = Y TD′

is distributed like a Gaussian of 0-mean and variance λ2 = ‖D‖2 + 1. Comparing
PDFX(x) = (2πσ2)−1/2 exp(−x2/(2σ2)) to PDFX′(x) = (2πλ2)−1/2 exp(−x2/(2λ2))
we have that ∀x,

√
λ2/σ2PDFX′(x) ≥ PDFX(x) ≥ exp(− x2

2σ2 · 1
λ2)PDFX′(x). Using

concentration bounds on Gaussians we deduce that if λ2 > σ2 = Ω(log(1/δ)/ε), then w.p
≥ 1 − δ both PDFs are within multiplicative factor of e±ε. We now repeat this process
r times (setting ε, δ accordingly) s.t. the JL lemma assures that (after scaling) w.h.p we
output a vector of norm (1±η)‖D‖2 for a given η. We get utility guarantees for publishing
the number of ones in D while preserving (ε, δ)-differential privacy.

Keeping with our toy example, one step remains – to convert the above analysis so
that it will hold for any database, and not only databases with w

def
= log(1/δ)/ε many

ones. One way is to append the data with w one entries, but observe: this ends up in
outputting X +N where N is random Gaussian noise! In other word, appending the data
with ones makes the above technique worse (noisier) than the classical technique of adding
random Gaussian noise. Instead, what we do is to “translate the database”. We apply a
simple deterministic affine transformation s.t. D turns into a {

√
w
n
, 1}n-vector. Applying

the JL algorithm to the translated database, we output a vector whose norm squared is
≈ (1 ± η)(‖D‖2 + w). Clearly, users can subtract w from the result, and we end up with
ηw additive random noise (in addition to the multiplicative noise).2

It is tempting to think the above analysis suffices to show that privacy is also preserved
in the multidimensional case. Consider the cases of two adjacent graphs, G and G′ with
an edge (a, b) present in G′ and absent in G. The corresponding edge matrices EG and
EG′ differ only on a single row (see Chapter 2.1) – which is the all 0 row in EG and
a row with only two non-zero coordinates in EG′ . So when we compare the result of
multiplying ET

G with a vector of iid normal Gaussians to the result of multiplying ET
G′ with

such vector, only two coordinates in the outcome behave differently. Presumably, applying
2Observe that in this toy example, our O(log(1/δ)/ε) noise bound is still worse than the noise bound of

O(
√

log(1/δ)/ε) one gets from adding Gaussian noise. However, in the applications detailed in Sections 5.3
and 5.4, the idea of changing the input will be the key ingredient in getting noise bounds that are independent
of n and d.

45

the abovementioned univariate analysis to each of the two coordinates that change suffices
to prove we preserve differential privacy. Yet this intuition is false. Multiplying EG with
a random vector does not result in n independent Gaussians, but rather in one multivariate
Gaussian. This is best illustrated with an example. Suppose G is a graph and S is a subset
of nodes s.t. no edge crosses the (S, S̄)-cut. Therefore ‖EG1S‖2 = |E(S, S̄)| = 0 so
EG1S is the zero-vector, and no matter what random projection R we pick, RTEG1S = 0.
In contrast, by adding a single edge that crosses the (S, S̄)-cut, we get a graph G′ s.t.
Pr[RTEG′1S 6= 0] = 1.

Organization. Next we detail related work. Section 5.2 details important notations and
formal definitions. In Sections 5.3 and 5.4 we convert the above univariate intuition to the
multivariate Gaussian case. Section 5.3 describes our results for graphs and cut-queries,
and in Section 5.3.2 we compare our method to other algorithms. Section 5.4 details the
result for directional queries (the general case), then a comparison with other algorithms.
Even though there are clear similarities between the analyses in Sections 5.3 and 5.4, we
provide both because the graph case is simpler and analogous to the univariate Gaussian
case. Suppose G and G′ are two graphs without and with a certain edge resp., then G
induces the multivariate Gaussian with the “smaller” variance, and G′ induces the mul-
tivariate Gaussian with the “larger” variance. In contrast, in the general case there’s no
notion of “smaller” and “larger” variances. Also, the noise bound in the general case is
larger than the one for the graph case, and the theorems our analysis relies on are more
esoteric. Section 5.5 concludes with a discussion and open problems.

5.1.1 Related Work

The task of preserving differential privacy when the given database is a graph or a social
network was studied by Hay et al [84] who presented a privacy preserving algorithm for
publishing the degree distribution in a graph. They also introduced and compared between
multiple notions of neighboring graphs, one of which is for the change of a single edge.
Nissim et al [119] (see full version) studied the case of estimating the number of triangles
in a graph, and Karwa et al [100] extended this result to other graph structures. Gupta et
al [77] studied the case of answering (S, T)-cut queries, for two disjoint subsets of nodes
S and T . All latter works use the same notion of neighboring graphs as we do. In differ-
ential privacy it is common to think of a database as a matrix, but seldom one gives utility
guarantees for queries regarding global properties of the input matrix. Blum et al [44]
approximate the input matrix with the PCA construction by adding O(d2) noise to the
input. The work of McSherry and Mironov [111] (inspired by the Netflix prize compe-

46

tition) defines neighboring databases as a change in a single entry, and introduces O(k2)
noise while outputting a rank-k approximation of the input. Kapralov and Talwar [99] also
give an algorithm for releasing the PCA of a given matrix while preserving ε-differential
privacy (the case δ = 0).

The body of work on the JL transform is by now so extensive that only a book may
survey it properly [139]. Its proof have been revised numerous times and it is known
to work under various projections – using Gaussians [58], using random unit-length vec-
tors [69], using random {−1, 0, 1} entries [3], or sparse matrices [55]. Our analysis derives
its privacy guarantees from applying the variant of the JL in which all entries are picked
independently from a normal Gaussian.

In the context of differential privacy, the JL lemma has been used to reduce dimen-
sionality of an input prior to adding noise or other forms of privacy preservation. Blum et
al [43] gave an algorithm that outputs a sanitized dataset for learning large-margin clas-
sifiers by appealing to JL related results of [26]. Hardt and Roth [82] gave a privacy
preserving version of an algorithm of [78] that uses randomize projections onto the im-
age space of a given matrix. The way the JL lemma was applied in these works is very
different than the way we use it.

5.2 Basic Definitions, Preliminaries and Notations

Privacy and utility. In this work, we deal with two types of inputs: [0, 1]-weighted
graphs over n nodes and n× d real matrices. (We treat wa,b = 0 as no edge between a and
b). Trivially extending the definition in [119, 100], two weighted n-nodes graphs G and
G′ are called neighbors if they differ on the weight of a single edge (a, b). Like in [82],
two n× d-matrices are called neighbors if all the coordinates on which A and A′ differ lie
on a single row i, s.t. ‖A(i) − A′(i)‖2 ≤ 1, where A(i) denotes the i-th row of A.

For each type of input we are interested in answering a different type of query. For
graphs, we are interesting in cut-queries: given a nonempty strict subset S of the vertices
of the graph, we wish to know what is the total weight of edges crossing the (S, S̄)-cut.
We denote this as ΦG(S) =

∑
u∈S,v /∈S wu,v.

Definition 5.1. We say an algorithm ALG gives a (η, τ, ν)-approximation for cut queries,
if for every nonempty S it holds that

Pr [(1− η)ΦG(S)− τ ≤ ALG(S) ≤ (1 + η)ΦG(S) + τ] ≥ 1− ν

For n × d matrices, we are interested in directional variance queries: given a unit-

47

length direction x, we wish to know what’s the variance of A along the x direction:
ΦA(x) = xTATAx. (Our algorithm normalizes A s.t. the mean of its n rows is 0.)

Definition 5.2. We say an algorithm ALG gives a (η, τ, ν)-approximation for directional
variance queries, if for every unit-length vector x it holds that

Pr [(1− η)ΦA(x)− τ ≤ ALG(x) ≤ (1 + η)ΦA(x) + τ] ≥ 1− ν

Finally, we conclude these Gaussian preliminaries with the famous Johnson-Lindenstrauss
Lemma, our main tool in this paper.

Theorem 5.3 (The Johnson Lindenstrauss transform [93]). Fix any 0 < η < 1/2. Let M
be a r ×m matrix whose entries are iid samples from N (0, 1). Then ∀x ∈ Rm.

PrM

[
(1− η)‖x‖2 ≤ 1

r
‖Mx‖2 ≤ (1 + η)‖x‖2

]
≥ 1− 2 exp(−η2r/8)

Additional notations. We denote by ea the indicator vector of a. We denote by ea,b =
ea − eb. It follows that the n × n matrix La,b = ea,be

T
a,b is the matrix whose projection

over coordinates a, b is
(

1 −1
−1 1

)
, while every other entry is 0. We also denote Ea,b as

the
(
n
2

)
× n matrix, whose rows are all zeros except for the row indexed by the (a, b) pair,

which is eTa,b. Observe: La,b = ea,be
T
a,b = ET

a,bEa,b.

48

5.3 Publishing a Perturbed Laplacian

5.3.1 The Johnson-Lindenstrauss Algorithm

We now show that the Johnson Lindenstrauss transform preserves differential privacy. We
first detail our algorithm, then analyze it.

Algorithm 2: Outputting the Laplacian of a Graph while Preserving Differential
Privacy

Input: A n-node graph G, parameters: ε, δ, η, ν > 0
Output: A Laplacian of a graph L̃

1 Set r = 8 ln(2/ν)
η2 , and w =

√
32r ln(2/δ)

ε
ln(4r/δ)

2 For every u 6= v, set wu,v ← w
n

+
(
1− w

n

)
wu,v.

3 Pick a matrix M of size r ×
(
n
2

)
, whose entries are iid samples of N (0, 1).

4 return L̃ = 1
r
ET
GM

TMEG

Algorithm 3: Approximating ΦG(S)

Input: A non empty S (V (G), parameters n, w and Laplacian L̃ from
Algorithm 2.

return R(S) = 1
1−w

n

(
1T
SL̃1S − w

s(n−s)
n

)
Theorem 5.4. Algorithm 2 preserves (ε, δ)-differential privacy w.r.t to edge changes in G.

Theorem 5.5. For every η, ν > 0, given a nonempty S of size s < n, Algorithm 3 gives a

(η, τ, ν)-approximation for the cut ΦG(S), for τ = O
(
s ·
√

ln(1/δ) ln(1/ν)

ε
ln(ln(1/ν)/η2δ)

)
.

Corollary 5.6. For every ε, δ, η, ν > 0 and any predefined set of k cut-queries, there
exists a (ε, δ)-differentially private mechanism that w.p. ≥ 1 − ν approximates each
cut query up to a multiplicative factor of 1 ± η and an additive error of τ = O

(
s ·√

ln(1/δ) ln(k/ν)

ε
ln(ln(k/ν)/η2δ)

)
.

Clearly, once Algorithm 2 publishes L̃, any user interested in estimating ΦG(S) for
some nonempty S (V (G) can run Algorithm 3 on her own. Also, observe that w is
independent of n, which we think of as large number, so we assume thoughout the proofs
of both theorems that both w

n
, 1
w

are < 1/2. Now, the proof of Theorem 5.5 is immediate
from the JL Lemma.

49

Proof of Theorem 5.5. Let us denote G as the input graph for Algorithm 2, and H as the
graph resulting from the changes in edge-weights Algorithm 2 makes. Therefore,

LH = Lw
n
Kn + L(1−w

n
)G =

w

n
LKn +

(
1− w

n

)
LG

Fix S. The JL Lemma (Theorem 5.3) assures us that w.p. ≥ 1− ν we have

(1− η)1T

SLH1S ≤ 1T

SL̃1S ≤ (1 + η)1T

SLH1S

The proof now follows from basic arithmetic and the value of w.

R(S) ≤ 1

1− w
n

(
(1 + η)1T

SLH1S − w
s(n− s)

n

)
=

1

1− w
n

(
(1 + η)

w

n
s(n− s) + (1 + η)(1− w

n
)1T

SLG1S − w
s(n− s)

n

)
≤ (1 + η)ΦG(S) +

1

1− w
n

ηw · s = (1 + η)ΦG(S) + τ

where τ ≤ 2ηw · s. The lower bound is obtained exactly the same way.

Comment. The guarantee of Theorem 5.5 is not to be mistaken with a weaker guarantee
of providing a good approximation to most cut-queries. Theorem 5.5 guarantees that any
set of k predetermined cuts is well-approximated by Algorithm 3, assuming Algorithm 2
sets ν < 1/2k. In contrast, giving a good approximation to most cuts can be done by a
very simple (and privacy preserving) algorithm: by outputting the number of edges in the
graph (with small Laplacian noise). Afterall, we expect a cut to have m

(n2)
s(n − s) edges

crossing it. In other words, the high probability of success is over internal randomness in
the algorithm and not randomness in the choice of cuts.

We turn our attention to the proof of Theorem 5.4. We fix any two graphs G and
G′, which differ only on a single edge, (a, b). We think of (a, b) as an edge in G′ which
isn’t present in G, and in the proof of Theorem 5.4, we identify G with the manipulation
Algorithm 2 performs over G, and assume that the edge (a, b) is present in both graphs,
only it has weight w

n
inG, and weight 1 inG′. Clearly, this analysis carries on for a smaller

change, when the edge (a, b) is present in both graphs but with different weights. (Recall,
we assume all edge weights are bounded by 1.)

Now, the proof follows from assuming that Algorithm 2 outputs the matrixO = MEG,
instead of L̃ = 1

r
OTO. (Clearly, outputting O allows one to reconstruct L̃.) Observe that

50

O is composed of r identically distributed rows: each row is created by sampling a
(
n
2

)
-

dimensional vector Y whose entries ∼ N (0, 1), then outputting Y TEG. Therefore, we
prove Theorem 5.4 by showing that each row maintain (ε0, δ0)-differential privacy, for the
right parameters ε0, δ0. To match standard notion, we transpose row vectors to column
vectors, and compare the distributions ET

GY and ET
G′Y .

Claim 5.7. Set ε0 = ε√
4r ln(2/δ)

, δ0 = δ
2r

. Then,

∀x, PDFET
GY

(x) ≤ eε0PDFET
G′Y

(x) (5.1)

Denote S = {x : PDFET
GY

(x) ≥ e−ε0PDFET
G′Y

(x)}. Then

Pr[S] ≥ 1− δ0 (5.2)

Proof of Theorem 5.4 based on Claim 5.7. Apply the composition theorem of [65] for r
iid samples each preserving (ε0, δ0)-differential privacy.

To prove Claim 5.7, we denote X = ET
GY and X ′ = ET

G′Y . From the preliminaries it
follows that X is a multivariate Gaussian distributed according toN (0, ET

GI(n2)×(n2)EG) =

N (0, LG), and similarly, X ′ ∼ N (0, LG′). In order to analyze the two distributions,
N (0, LG) and N (0, LG′), we now discuss several of the properties of LG and LG′ , then
turn to the proof of Claim 5.7.

First, it is clear from definition that the all ones vector, 1, belongs to the kernel space
of EG and EG′ , and therefore to the kernel space of LG and LG′ . Next, we establish a
simple fact.

Fact 5.8. If G is a graph s.t. for every u 6= v we have that wu,v > 0, then 1 is the only
vector in the kernel space of EG and LG.

Proof. Any non-zero x ⊥ 1 has at least one positive coordinate and one negative coor-
dinate, thus the non-negative sum ‖EGx‖2 = xTLGx =

∑
u6=v wu,v(xu − xv)2 is strictly

positive.

Therefore, the kernel space of both LG and of LG′ is exactly the 1-dimensional span
of the 1 vector (for every possible outcome y of Y we have that ET

Gy · 1 = ET
G′y · 1 = 0).

Alternatively, both X and X ′ have support which is exactly V = 1⊥. Hence, we only
need to prove the inequalities of Claim 5.7 for x ∈ V . Secondly, observe that LG′ =
LG + (1− w

n
)La,b. Therefore, it holds that for every x ∈ Rn we have xTLG′x = xTLGx+

51

(1− w
n

)(xa−xb)2 ≥ xTLGx. In other words, LG � LG′ , a fact that yields several important
corollaries.

We now introduce notation for the Singular Value Decomposition of both LG and
LG′ . We denote ET

G = UΣV T and EG′T = U ′ΛV ′T, resulting in LG = UΣ2UT, LG′ =
U ′Λ2U ′T, L†G = UΣ−2UT and L†G′ = U ′Λ−2U ′T. We denote the singular values of LG as
σ2

1 ≥ . . . ≥ σ2
n−1 > σ2

n = 0, and the singular values of LG′ as λ2
1 ≥ . . . ≥ λ2

n−1 > λ2
n = 0.

Weyl’s inequality 2.2 allows us to deduce the following fact.

Fact 5.9. Since LG � LG′ then for every i we have that λ2
i ≥ σ2

i .

In addition, since Algorithm 2 alters the input graphs s.t. the complete graph w
n
LKn is

contained in G, then it also holds that w
n
LKn � LG, and so Fact 5.9 gives that for every

1 ≤ i ≤ n− 1 we have that σ2
i ≥ w = w

n
·n. (It is simple to see that the eigenvalues of Kn

are {n, n, . . . , n, 0}.) Furthermore, as LG′ = LG + (1− w
n

)La,b and the singular values of
La,b are {2, 0, 0, . . . , 0}, then we have that∑

i

λ2
i = tr(LG′) ≤ tr(LG) + tr

(
(1− w

n
)La,b

)
≤
∑
i

σ2
i + 2

Another fact we can deduce from LG � LG′ , is the following. It is immediate applica-
tion of Fact 2.1.

Fact 5.10. Since the kernels of LG and of LG′ are identical, then for every x it holds that
xTL†G′x ≤ xTL†Gx.

Having established the above facts, we can turn to the proof of privacy.

Proof of Claim 5.7. We first prove the upper bound in (5.1). As mentioned, we focus only
on x ∈ V = 1⊥, where

PDFET
GY

(x) =
(

(2π)n−1d̃et(LG)
)−1/2

exp(−1

2
xTL†Gx)

PDFET
G′Y

(x) =
(

(2π)n−1d̃et(LG′)
)−1/2

exp(−1

2
xTL†G′x)

As noted above, we have that for every x it holds that xTL†G′x ≤ xTL†Gx, so exp(−1
2
xTL†Gx) ≤

exp(−1
2
xTL†G′x). It follows that for every x we have that

PDF
ET
G
Y

(x)

PDF
ET
G′
Y

(x)
≤
(

d̃et(LG′)

d̃et(LG)

)1/2

=

52

(∏n−1
i=1

λ2
i

σ2
i

)1/2

. Denoting ∆i = λ2
i − σ2

i ≥ 0, and recalling that
∑

i ∆i ≤ 2 and that

∀i, σ2
i ≥ w it holds that

PDFET
GY

(x)

PDFET
G′Y

(x)
≤

√√√√n−1∏
i=1

(
1 +

∆i

σ2
i

)
≤ exp

(
1

2w

∑
i

∆i

)
≤ e

1
w ≤ e

ε√
4r ln(2/δ) = eε0

We now turn to the lower bound of (5.2). We start with analyzing the term xTL†Gx that
appears in PDFETY (x). Again, we emphasize that x ∈ V , justifying the very first equality
below.

xTL†Gx = xTL†GLG′L
†
G′x = xTL†G

(
LG + (1− w

n
)Lab

)
L†G′x

= xTL†G′x + (1− w

n
)xTL†GLa,bL

†
G′x

= xTL†G′x + (1− w

n
)xTL†Gea,b · e

T

a,bL
†
G′x

Therefore, if we show that

Prx∼ET
GY

[
xTL†Gea,b · e

T

a,bL
†
G′x >

2

1− w
n

ε0

]
< δ0 (5.3)

then it holds that w.p. > 1− δ0 we have

PDFET
GY

(x)

PDFET
G′Y

(x)
≥ 1·exp

(
−1

2
xT(L†G − L

†
G′)x

)
≥ exp

(
−

1− w
n

2
xTL†Gea,b · e

T

a,bL
†
G′x

)
≥ e−ε0

which proves the lower bound of (5.2). We turn to proving (5.3).

Denote term1 = eTa,bL
†
Gx and term2 = eTa,bL

†
G′x. Since x = ET

Gy where y ∼ Y then
termi is distributed like vecTiY where vec1 = EGL

†
Gea,b and vec2 = EGL

†
G′ea,b. The naı̈ve

bound, ‖vec1‖ ≤ ‖EG‖ ‖L†G‖‖ea,b‖ gives a bound on the size of vec1 which is dependent
on the ratio σ1

σ2
n−1

. We can improve the bound, on both ‖vec1‖ and ‖vec2‖, using the SVD
of EG and EG′ .

‖vec1‖ = ‖EGL†Gea,b‖ = ‖V ΣUTUΣ−2UTea,b‖ = ‖V Σ−1UTea,b‖

≤ ‖V ‖ ‖Σ−1‖ ‖U‖ ‖ea,b‖ = 1 · σ−1
n−1 · 1 ·

√
2 =

√
2√
w

‖vec2‖ = ‖EGL†G′ea,b‖ = ‖(EG′ − (1− w

n
)Ea,b)L

†
G′ea,b‖ < ‖EG′L

†
G′ea,b‖+ ‖Ea,bL†G′ea,b‖

53

(∗)
≤ λ−1

n−1 ·
√

2 + ‖Ea,bL†G′ea,b‖
(∗∗)
=

√
2√
w

+ eTa,bL
†
G′ea,b

≤
√

2√
w

+
2

w
=

√
2√
w

(
1 +

√
2√
w

)

where the bound in (∗) is derived just like in vec1 (usingEG′L
†
G′ea,b = V ′ΛU ′TU ′Λ−2U ′Tea,b)

, and the equality in (∗∗) follows from the fact that all coordinates in the vectorEa,bL
†
G′ea,b

are zero, except for the coordinate indexed by the (a, b) pair.

We now use the fact that term1 and term2 are both linear combinations of i.i.dN (0, 1)
random variables. Therefore for i = 1, 2 we have that termi ∼ N (0, ‖veci‖2) so Pr[|termi| >√

log(2/δ0)‖veci‖] ≤ e
− ‖veci‖

2 log(2/δ0)

‖veci‖2 < δ0
2

. It follows that w.p > 1 − δ0 both |term1| <√
log(2/δ0)

√
2
w

and |term2| ≤
√

log(2/δ0)
√

4
w

, so term1 · term2 ≤
√

8 log(2/δ0)/w.
Plugging in the value of w, we have that Pr[term1 · term2 ≤ 2ε0] ≥ 1 − δ0 which
concludes the proof of (5.3) and of Claim 5.7.

5.3.2 Discussion and Comparison with Other Algorithms

Recently, Gupta et al [77] have also considered the problem of answering cut-queries
while preserving differential privacy, examining both an iterative database construction
approach (e.g., based on the multiplicative-weights method) and a randomized-response
approach. Here, we compare this and other methods to our algorithm. We compare them
along several axes: the dependence on n and s (number of vertices in G and in S resp.),
the dependence on ε, and the dependence on k – the number of queries answered by
the mechanism. Other parameters are omitted. The bottom line is that for a long non-
adaptive query sequence, our approach dominates in the case that s = o(n). The results
are summarized in Table 5.1.

Note, comparing the dependence on k for interactive and non-interactive mechanisms
is not straight-forward. In general, non-interactive mechanisms are more desirable than
interactive mechanisms, because interactive mechanisms require a central authority that
serves as the only way users can interact with the database. However, interactive mecha-
nisms can answer k adaptively chosen queries. In order for non-interactive mechanisms
to do so, they have to answer correctly on min{exp(O(k)), 2n} queries. This is why out-
putting a sanitized database is often considered a harder task than interactively answering
user queries. We therefore compare answering k adaptively chosen queries for interactive
mechanisms, and k predetermined queries for non-interactive mechanism.

54

5.3.2.1 Naı̈vely Adding Laplace Noise

The most basic of all differentially private mechanisms is the classical Laplace mechanism
which is interactive. For a given ε̃, A user poses a cut-query S and the mechanism replies
with ΦG(S) + Lap(0, ε̃−1) (since the global sensitivity of cut-queries is 1). The composi-
tion theorem of [65] assures us that for k queries we preserve (O(

√
kε̃), δ)-privacy. As a

result, if we wish to preserve (ε, δ)-differential privacy for a given set of k cut queries, we
must set ε̃ ≥ ε/

√
k and answer each query with additive error of roughly

√
k/ε. So the

mechanism completely obfuscates the true answer if k ≥ n4.

5.3.2.2 The Randomized Response Mechanism

The “Randomized Response” algorithm perturbs the edges of a graph in a way that allows
us to publish the result and still preserve privacy. Given G, the Randomized Response
algorithm constructs a weighted graph H where for every u, v ∈ V (G), the weight of the
edge (u, v) in H , denoted w′u,v, is chosen independently to be either 1 or −1. Each edge
picks its weight independently, s.t. Pr[w′u,v = 1] = 1+εwu,v

2
and Pr[w′u,v = −1] = 1−εwu,v

2
.

Clearly, this algorithm maintains ε-differential edge privacy: two neighboring graphs differ
on a single edge, (a, b), and obviously

Pr[w′a,b = 1 | wa,b = 1] ≤ (1 + ε)Pr[w′a,b = 1 | wa,b = 0]

In addition, it is also evident that for every nonempty S (V (G), we have that E[
∑

u∈S,v∈S̄ w
′
u,v] =

ε
∑

u∈S,v /∈S wu,v = εΦG(S), yet the variance of this r.v. is Ω(s(n− s)). Therefore, a clas-
sical Hoeffding-type bound gives that for any nonempty S (V (G) we have that for every
0 < ν < 1/2,

Pr

 ∣∣∣∣∣∣1ε
∑

u∈S,v∈S̄

w′u,v − ΦG(S)

∣∣∣∣∣∣ >
√

2 log(1/ν)s(n− s)
ε

 ≤ 2ν

Observe that while
√
s(n− s) is a comparable with s when s = Ω(n), there are cuts

(namely, cuts with s = O(1)) where
√

n−s
s

= Ω(
√
n). More generally, the additive

noise of Randomized Response is a factor
√
n/s worse than our algorithm. We comment

that the Randomized Response algorithm can also be performed in a distributed fashion,
and in contrast to our algorithm, it has no multiplicative error. In addition, the above
analysis holds for any linear combination of edge, not just the s(n − s) potential edges
that cross the (S, S̄) cut. So given E ′ ⊂ E(G) it is possible to approximate

∑
e∈E′ we up

55

to ±
√
|E′| log(1/ν)

ε
w.p. ≥ 1− 2ν. In particular, for queries regarding an (S, T)-cut (where

S, T are two disjoint subsets of vertices) we can estimate the error up to ±
√
|S||T | log(1/ν)

ε
.

We also comment that the version of Randomized Response presented here differs slightly
from the version of [77]. In particular, it is possible to address their concern regarding
outputting a sanitized graph with non-negative weights by an affine transformation taking
{−1, 1} → {0, 1}.

5.3.2.3 Exponential Mechanism / BLR

The exponential mechanism [112, 43] is a non-interactive privacy preserving mechanism,
which is typically intractable. To implement it for cut-queries one needs to (a) specify a
range of potential outputs and (b) give a scoring function over potential outputs s.t. a good
output’s score is much higher than all bad outputs’ scores.

One such set of potential outputs is derived from edge-sparsifiers. Given a graph G
we say that H is an edge-sparsifier for G if for any nonempty S (V (G) it holds that
ΦH(S) ∈ (1 ± η)ΦG(S). There’s a rich literature on sparsifiers (see [38, 133, 132]), and
the current best known construction [33] gives a (weighted) sparsifier with O(n/η2) edges
with all edge-weights ≤ poly(n). By describing every edge’s two endpoints and weight,
we have that such edge-sprasifiers can be described using O(n log(n)) bits (omitting de-
pendence on η). Thus, the set of all sparsifiers is bounded above by exp(O(n log(n))).
Given an input graph G and a weighted graph H , we can score H using q(G,H) =
maxS

{
minα: |α−1|≤η |ΦH(S)/α− ΦG(S)|

}
. Observe that if we change G to a neighbor-

ing graph G′, then the score changes by at most 1.

Putting it all together, we have that given input G the exponential mechanism gives
a score of e−εq(G,H)/2 to each possible output. The edge-sparsifier of G gets score of 1,
whereas every graph with q(G,H) > τ gets a score of e−ετ/2. So if we wish to claim we
output a graph whose error is > τ w.p. at most ν, then we need to set exp(n log(n) −
ετ/2) ≤ ν. It follows that τ is proportional to n log(n)/ε. Note however that the additive
error of this mechanism is independent of the number of queries it answers correctly.

We comment that even though we managed to find a range of size 2O(n log(n)), it is
possible to show that the range of the mechanism has to be 2Ω(n). (Fix α < 1/2 and
think of a set of inputs G where each G ∈ G has n/2 vertices with degree nα and n/2
vertices with degree n2α. Preserving all cuts of size 1 up to (1 ± η) requires our output
to have vertices of degree > (1 − η)n2α and vertices of degree < (1 + η)nα. Therefore,
by representing vertices of high- and low-degree using a binary vector, there exists an
injective mapping of balanced {0, 1}n-vectors onto the set of potential outputs.) Thus,

56

unless one can devise a scoring function of lower sensitivity, the exponential mechanism
must have additive error proportional to n/ε.

5.3.2.4 The Multiplicative Weights Mechanism

The very elegant Multiplicative Weights mechanism of Hardt and Rothblum [80] can be
adapted as well for answering cut queries. In the Multiplicative Weights mechanism, a
database is represented by a histogram over all N “types” of individuals that exist in a
certain universe. In our case, each pair of vertices is a type, and each entry in the database
is an edge detailing its weight. Thus, N =

(
n
2

)
and the database length = |E|,3 and each

query S corresponds to taking a dot-product between this histogram the
(
n
2

)
-length binary

vector indicating the edges that cross the cut. Plugging these parameters into the main
theorem of [80], we get an adaptive mechanism that answers k queries with additive noise
of Õ(

√
|E| log(k)/ε).

We should mention that the Multiplicative Weights mechanism, in contrast to ours, al-
ways answers correctly with no multiplicative error and can deal with k adaptively chosen
queries. Furthermore, it allows one to answer any linear query on the edges, not just cut-
queries and in particular answer (S, T)-cut queries. However, its additive error is bigger
than ours, and should we choose to set k = 2n (meaning, answering all cut-queries) then
its additive error becomes Õ(n

√
|E|/ε) (in contrast to our O(s

√
n/ε)).

Gupta et al [77] have improved on the bounds on the Multiplicative Weights mecha-
nism by generalizing it as a “Iterative Database Construction” mechanism, and providing
a tighter analysis of it. In particular, they have reduced the dependency on ε to 1/

√
ε.

Overall, their additive error is Õ(
√
|E| log(k)/

√
ε), which for the case of all cut-queries

is Õ(
√
n|E|/ε).

5.3.2.5 Our Algorithm

Clearly, our algorithm is non-interactive. As such, if we wish to answer correctly w.h.p.
a set of k predetermined queries, we set ν ′ = ν/k, and deduce that the amount of noise
added to each query is O(s

√
log(k)/ε). So, if we wish to answer all 2n cut queries cor-

rectly, our noise is set to Õ(s
√
n/ε). An interesting observation is that in such a case

we aim to answer all 2n queries, we generate a iid normal matrix of size r × n where

3Observe that it is not possible to assume |E| = O(n) using sparsifiers, because sparsifiers output a
weighted graph with edge-weights O(n). Since the Multiplicative Weights mechanism views the database
as a histogram the overall resolution of the problem remains roughly n2 in the worst case.

57

Method
Additive Error

for any k
Additive Error

for all Cuts
Multi-
plicative
Error?

Inter-
active?

Tract-
able?

Comments

Laplace Noise O(
√
k/ε) O(2n/2/ε) # ! !

Randomized
Response

O(
√
sn log(k)/ε) O(n

√
s/ε) # # ! Can be dis-

tributed; answers
(S, T)-cut
queries

Exponential
Mechanism

O(n log(n)/ε) O(n log(n)/ε) ! # # Error ind. of k

MW
IDC

Õ(
√
|E| log(k)/ε)

Õ(
√
|E| log(k)/ε)

Õ(n
√
|E|/ε)

Õ(
√
n|E|/ε)

! ! Answers (S, T)-
cut queries

JL O(s
√

log(k)/ε) Õ(s
√
n)/ε) ! # ! Can be dis-

tributed

Table 5.1: Comparison between mechanisms for answering cut-queries. ε – privacy pa-
rameter; n and |E| – number of vertices and edges resp.; s – number of vertices in a query;
k – number of queries.

r > n. Therefore, we now apply the JL transform to increase the dimensionality of the
problem rather than decreasing it. This clearly sets privacy preserving apart from all other
applications of the JL transform.

In addition, we comment that our algorithm can be implemented in a distributed fash-
ion, where node i repeats the following procedure r times (where r is the number of rows
in the matrix picked by Algorithm 2): First, i picks n − i − 1 iid samples from N (0, 1)
and sends the j-th sample, xj , to node i+ j. Once node i receives i− 1 values from nodes
1, 2, . . . , i−1, it outputs the weighted sum

∑
j 6=i(−1){j<i}xj

(√
w
n

+ wi,j(1−
√

w
n

)
)

(where
(−1){j<i} denotes −1 if j < i, or 1 otherwise).

5.4 Publishing a Covariance Matrix

5.4.1 The Algorithm

In this section, we are concerned with the question of allowing users to estimate the co-
variance of a given sample data along an arbitrary direction x. We think of our input as a
n× d matrix A, and we maintain privacy w.r.t to changing the coordinates of a single row
s.t. a vector v of size 1 is added to A(i). We now detail our algorithm for publishing the

58

covariance matrix ofA. Observe that in addition to the variance, we can output µ = 1
n
AT1,

the mean of all samples in A, in a differentially private manner by adding random Gaus-
sian noise. (We merely output µ̃ = µ+N (0, 4 log(1/δ)

n2ε2
Id×d).) We denote by In×d the n× d

matrix whose main diagonal has 1 in each coordinate and all other coordinates are 0.

Algorithm 4: Outputting a Covariance Matrix while Preserving Differential Privacy
Input: A n× d matrix A. Parameters ε, δ, η, ν > 0.

1 Set r = 8 ln(2/ν)
η2 and w =

16
√
r ln(2/δ)

ε
ln(16r/δ).

2 Subtract the mean from A by computing A← A− 1
n
11TA.

3 Compute the SVD of A = UΣV T.
4 Set A← U(

√
Σ2 + w2In×d)V

T.
5 Pick a matrix M of size r × n whose entries are iid samples of N (0, 1).
6 return C̃ = 1

r
ATMTMA.

Algorithm 5: Approximating ΦA(x)

Input: A unit-length vector x, parameter w and a Covariance matrix C̃ from
Algorithm 4.

return R(x) = xTC̃x− w2.

Theorem 5.11. Algorithm 4 preserves (ε, δ)-differential privacy.

Theorem 5.12. Algorithm 5 is a (η, τ, ν)-approximation for directional variance queries,
where τ = O

(
ln(1/δ) ln(1/ν)

ε2η
ln2
(

ln(1/ν)
δη2

))
.

Proof of Theorem 5.12. Again, the proof is immediate from the JL Lemma, and straight-
forward arithmetics give that for every x w.p. ≥ 1− ν we have that

(1− η)ΦA(x)− ηw2 ≤ R(x) ≤ (1 + η)ΦA(x) + ηw2

so τ = ηw2.

Comment. We wish to clarify that Theorem 5.12 does not mean that we publish a matrix
C̃ which is a low-rank approximation to ATA. It is also not a matrix on which one can
compute an approximated PCA of A, even if we set ν = 1/poly(d). The matrix C̃ should
be thought of as a “test-matrix” – if you believeA has high directional variance along some
direction x then you can test your hypothesis on C̃ and (w.h.p) get the good approximated
answer. However, we do not guarantee that the singular values of ATA and of C̃ are close
or that the eigenvectors of ATA and C̃ are comparable. (See discussion in Section 5.5.)

59

Proof of Theorem 5.11. Fix two neighboring A and A′. We often refer to the gap matrix
A′−A asE. Observe,E is a rank-1 matrix, which we denote as the outer-productE = eiv

T

(ei is the indicator vector of row i and v is a vector of norm 1). As such, the singular values
of E are exactly {1, 0, . . . , 0}.4

The proof of the theorem is composed of two stages. The first stage is the simpler one.
We ignore step 4 of Algorithm 4 (shifting the singular values), and work under the premise
that both A and A′ have singular values no less than w. In the second stage we denote B
and B′ as the results of applying step 4 to A and A′ resp., and show what adaptations are
needed to make the proof follow through.

Stage 1. We assume step 4 was not applied, and all singular values of A and A′ are at
least w.

As in the proof of Theorem 5.4, the proof follows from the assumption that Algorithm 4
outputs OT = ATM (which clearly allows us to reconstruct C̃ = 1

r
OTO). Again OT is

composed of r columns each is an iid sample from ATY where Y ∼ N (0, In×n). We now
give the analogous claim to Claim 5.7.

Claim 5.13. Fix ε0 = ε√
4r ln(2/δ)

and δ0 = δ
2r

. Denote S = {x : e−ε0PDFA′TY (x) ≤
PDFATY (x) ≤ eε0PDFA′TY (x)}. Then Pr[S] ≥ 1− δ0.

Again, the composition theorem of [65] along with the choice of r gives that overall
we preserve (ε, δ)-differential privacy.

Proof of Claim 5.13. The proof mimics the proof of Claim 5.7, but there are two subtle
differences. First, the problem is simpler notation-wise, because A and A′ both have full
rank due to Algorithm 4. Secondly, the problem becomes more complicated and requires
we use some heavier machinery, because the singular values ofA′ aren’t necessarily bigger
than the singular values of A. Details follow.

First, let us formally define the PDF of the two distributions. Again, we apply the fact
that ATY and A′TY are linear transformations of N (0, In×n).

PDFATY (x) =
1√

(2π)d det(ATA)
exp(−1

2
xT(ATA)−1x)

4For convenience, we ignore the part of the algorithm that subtracts the mean of the rows of A. Observe
that if E = A− A′ then after subtracting the mean from each row, the difference between the two matrices
is ẽiTv where ẽi is simply subtracting 1/n from each coordinate of ei. Since ‖ẽi‖ < ‖ei‖, this has no effect
on the analysis.

60

PDFA′TY (x) =
1√

(2π)d det(A′TA′)
exp(−1

2
xT(A′

T
A′)−1x)

Our proof proceeds as follows. First, we show

e−ε0/2 ≤

√
det(A′TA′)

det(ATA)
≤ eε0/2 (5.4)

Then we show that no matter whether we sample x from ATY or from A′TY , we have that

Prx

[
1

2

∣∣xT
(
(ATA)−1 − (A′

T
A′)−1

)
x
∣∣ ≥ ε0/2

]
≤ δ0 (5.5)

Clearly, combining both (5.4) and (5.5) proves the claim.

Let us prove (5.4). Denote the SVD of A = UΣV T and A′ = U ′ΛV ′T, where the
singular values of A are σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and the singular values of A′ are
λ1 ≥ λ2 ≥ . . . ≥ λd > 0. Therefore we have ATA = V Σ2V T, A′TA′ = V ′Λ2V ′T

and also (ATA)−1 = V Σ−2V T, (A′TA′)−1 = V ′Λ−2V ′T. Thus det(ATA) =
∏d

i=1 σ
2
i and

det(A′TA′) =
∏d

i=1 λ
2
i .

This time, in order to bound the gap
∑

i(λ
2
i − σ2

i)/σ
2
i it isn’t sufficient to use the trace

of the matrices. Instead, we invoke an application of Lindskii’s theorem 2.4.

Fact 5.14 (Lindskii). For every k and every 1 ≤ i1 < i2 < . . . < ik ≤ n we have that

k∑
j=1

λij ≤
k∑
j=1

σij +
k∑
i=1

svi(E)

where {svi(E)}ni=1 are the singular values of E sorted in a descending order.

As a corollary, because E has only 1 non-zero singular value, we denote Big = {i :
λi > σi} and deduce that

∑
i∈Big λi − σi ≤ 1. Similarly, since the singular values of E

and of (−E) are the same, we have that
∑

i/∈Big σi − λi ≤ 1. Using this, proving (5.4) is
straight-forward:√∏

i
λ2
i

σ2
i
≤
∏
i∈Big

(
1 +

λi − σi
σi

)
≤ exp

(
1

w

∑
i∈Big

λi − σi

)
≤ ew

−1 ≤ eε0/2

and similarly,
√∏

i
σ2
i

λ2
i
≤ eε0/2.

61

We turn to proving (5.5). We start with the following derivation.

xT(ATA)−1x− xT(A′TA′)−1x = xT(ATA)−1(A′
T
A′)(A′

T
A′)−1x− xT(A′

T
A′)−1x =

= xT(ATA)−1((A+ E)T(A+ E))(A′
T
A′)−1x− xT(A′

T
A′)−1x

= xT(ATA)−1(ATE + ETA′)(A′
T
A′)−1x

and using the SVD and denoting E = eiv
T, we get

xT(ATA)−1x− xT(A′TA′)−1x = xT
(
V Σ−1UT

)
ei · vT

(
V ′Λ−2V ′

T
)
x

+xT
(
V Σ−2V T

)
v · eTi

(
U ′Λ−1V ′

T
)
x

So now, assume x is sampled from ATY . (The case of A′TY is symmetric. In fact,
the names A and A′ are interchangeable.) That is, assume we’ve sampled y from Y ∼
N (0, In×n) and we have x = ATy = V ΣUTy and equivalently x = (A′T − ET)y =
V ′ΛU ′Ty − veTi y. The above calculation shows that∣∣xT(ATA)−1x− xT(A′

T
A′)−1x

∣∣ ≤ term1 · term2 + term3 · term4

where for i = 1, 2, 3, 4 we have termi = |veci · y| and

vec1 = UΣV TV Σ−1Uei = ei, so ‖vec1‖ = 1

vec2 = U ′Λ−1V ′
T
v − eivTV ′Λ−2V ′

T
v, so ‖vec2‖ ≤

1

λd
+

1

λ2
d

vec3 = UΣ−1V Tv, so ‖vec3‖ ≤
1

σd

vec4 = ei − eivTV ′Λ−1U ′
T
ei, so ‖vec4‖ ≤ 1 +

1

λd

Recall that all singular values, both of A and A′, are greater than w and that veci ·
y ∼ N (0, ‖veci‖2), so w.p. ≥ 1 − δ0 we have that for every i it holds that termi ≤√

ln(4/δ0)‖veci‖ so

∣∣xT(ATA)−1x− xT(A′
T
A′)−1x

∣∣ ≤ 2(
1

w
+

1

w2
) ln(4/δ0) ≤ 4 ln(4/δ0)

w
≤ ε0

this concludes the proof in our first stage.

62

Stage 2. We assume step 4 was applied, and denote B = U(
√

Σ2 + w2I)V T and B′ =
U ′(
√

Λ2 + w2I)V ′T. We denote the singular values of B and B′ as σB1 ≥ σB2 ≥ . . . ≥ σBd
and λB1 ≥ λB2 ≥ . . . ≥ λBd resp. Observe that by definition, for every i we have (σBi)2 =
σ2
i + w2 and (λBi)2 = λ2

i + w2.

Again, we assume we output OT = BTY , and compare X = BTY to X ′ = B′TY . The
theorem merely requires Claim 5.13 to hold, and they, in turn, depend on the following
two conditions.

e−ε0/2 ≤

√
det(B′TB′)

det(BTB)
≤ eε0/2 (5.6)

Prx

[
1

2

∣∣xT
(
(BTB)−1 − (B′

T
B′)−1

)
x
∣∣ ≥ ε0/2

]
≤ δ0 (5.7)

The second stage deals with the problem that now, the gap ∆ = B′ −B is not necessarily
a rank-1 matrix. However, what we show is that all stages in the proof of Claim 5.13
either rely on the singular values or can be written as the sum of a few rank-1 matrix
multiplications.

The easier part is to claim that Eq. (5.6) holds. The analysis is a simple variation on
the proof of Eq. (5.4). Fact 5.14 still holds for the singular values of A and A′. Observe
that λBi > σBi iff λi > σi. And so we have√∏

i

(λBi)2

(σBi)2
≤

√√√√∏
i∈Big

λ2
i + w2

σ2
i + w2

≤

√√√√∏
i∈Big

λ2
i

σ2
i

and the remainder of the proof follows.

We now turn to proving Eq. (5.7). We start with an observation regarding A′TA and
B′TB′.

A′
T
A′ = (A+ E)T(A+ E) = ATA+ A′

T
E + ETA

BTB = V (Σ2 + w2I)V T = V Σ2V T + w2I = ATA+ w2I

B′
T
B′ = V ′(Λ2 + w2I)V ′

T
= A′

T
A′ + w2I

⇒ B′
T
B′ −BTB = A′

T
E + ETA

Now we can follow the same outline as in the proof of (5.5). Fix x, then:

xT(BTB)−1x− xT(B′TB′)−1x = xT(BTB)−1(B′
T
B′)(B′

T
B′)−1x− xT(B′

T
B′)−1x =

63

= xT(BTB)−1
[
BTB + A′

T
E + ETA

]
(B′

T
B′)−1x

− xT(B′
T
B′)−1x

= xT(BTB)−1
[
A′

T
E + ETA

]
(B′

T
B′)−1x

= xT(BTB)−1(AT + ET)ei · vT(B′
T
B′)−1x

+ xT(BTB)−1v · eTi (A′ − E) (B′
T
B′)−1x

It is straight-forward to see that the i-th spectral values of (BTB)−1A is σi
σ2
i+w2 ≤ 1√

σ2
i+w2

≤

1/w, and similarly for the spectral values of (B′TB′)−1A′. We now proceed as before and
partition the above sum into multiplications of pairs of terms where termi ≤ |veci ·y|, and
y is sampled from N (0, In×n) and x = BTy:

xT(BTB)−1x− xT(B′TB′)−1x = yT
[
B(BTB)−1(AT + ET)ei

]
·
[
vT(B′

T
B′)−1BT

]
y

+yT
[
B(BTB)−1v

]
·
[
eTi (A′ − E) (B′

T
B′)−1BT

]
y

Lastly, we need to bound all terms that contain the multiplication (B′TB′)−1BTy in
comparison to (B′TB′)−1B′Ty = B′†y. For instance, take the term = |vecTy| for vecT =
eTi (A′ − E) (B′TB′)−1BT, and define it as vecT = zTBT. We can only bound ‖Bz‖ using
σB1 /(λ

B
d)2, whereas we can bound ‖B′z‖ with 1/λBd < 1/w. In contrast to before, we do

not use the fact that BTy = (B′ −∆)Ty. Instead, we make the following derivations.

First, we observe that for every vector z we have that ‖B′z‖ ≥ ‖A′z‖ and ‖B′z‖ ≥
w‖z‖. Using the fact that BTB − B′TB′ = −A′TE −ETA, a simple derivation gives that
‖Bz‖2 ≤ (‖B′z‖+ ‖z‖)2 ≤

(
1 + 1

w

)2 ‖B′z‖2, and vice-versa. So if y is s.t. |zTBTy|
(1+ 1

w)‖B′z‖
>

Threshold then |z
TBTy|
‖Bz‖ > Threshold. Observe that zTBTy is distributed likeN (0, ‖Bz‖2) =

‖Bz‖N (0, 1), and so we have that for every δ′ > 0

Pr

[
|zTBTy| ≥

√
log(1/δ′)

(
1 +

1

w

)
‖B′z‖

]
= Pr

[((
1 +

1

w

)
‖B′z‖

)−1

|zTBTy| ≥
√

log(1/δ′)

]
≤ Pr

[
(‖Bz‖)−1 |zTBTy| ≥

√
log(1/δ′)

]
≤ δ′

Corollary. Using the definitions of r and w as in Algorithm 4 – the proof of Theo-
rem 5.11 actually shows that in the case that A is a matrix with all singular values ≥ w,

64

then the following simple algorithm preserves (ε, δ)-differential privacy: pick a random
r × n matrix M whose entries are iid normal Gaussians, and output O = MA. Further-
more, observe that if σd, the least singular value of A, is bigger than, say, 10w, then one
can release σd + Lap(1/ε) then release O = MA. In such a case, users know that for any
unit vector x w.p. ≥ 1− ν it holds that 1

r
‖Ox‖2 ≤ (1± η)‖Ax‖2.

Comment. Comparing Algorithms 2 and 4, we have that in LG = ET
GEG we “translate”

the spectral values by w, and in ATA we “translated” the spectral values by w2. This is
an artifact of the ability to directly compare the spectal values of LG and LG′ in the first
analysis, whereas in the second analysis we compare the spectral values of A and A′ (vs.
ATA and A′TA′). This is why the noise bounds in the general case are Õ(1/εη) times
worse than for graphs.

5.4.2 Comparison with Other Algorithms

To the best of our knowledge, no previous work has studied the problem of preserving
the variance of A in the same formulation as us. We deal with a scenario where users
pose the directions on which they wish to find the variance of A. Other algorithms, that
publish the PCA or a low-rank approximation of A without compromising privacy (see
Section 6.1.1), provide users with specific directions and variances. These works are not
comparable with our algorithm, as they give a different utility guarantee. For example,
low-rank approximations aim at nullifying the projection of A in certain directions.

Here, we compare our method to the Laplace mechanism, the Multiplicative Weights
mechanism and Randomized Response. The bottom line is clear: our method allows one to
answer directional variance queries with additive noise which is independent of the given
input. Other methods require we add random noise that depends on the size of the matrix,
assuming we answer polynomially many queries.

Our notation is as follows. n denotes the number of rows in the matrix (number of in-
dividuals in the data), d denotes the number of columns in the matrix, and we assume each
entry is at most 1. As before, ε denotes the privacy parameter and k denotes the number
of queries. Observe that we (again) compare k predetermined queries for non-interactive
mechanisms with k adaptively chosen queries for interactive ones. The remaining param-
eters are omitted from this comparison. Results are summarized in Table 5.2.

65

5.4.2.1 Naı̈vely Adding Laplace Noise

Again, the simplest alternative is to answer each directional-variance query with Φx(A) +
Lap(0, ε̃−1) for a suitable value of ε̃. The composition theorem of [65] assures us that
to answer k queries while overall preserving (ε, δ)-differential privacy, we must set ε̃ <
ε/
√
k, and so the additive error per query is O(

√
k/ε).

5.4.2.2 Randomized Response

We now consider a Randomized Response mechanism, similar to the Randomized Re-
sponse mechanism of [77]. We wish to output a noisy version of ATA, by adding some iid
random noise to each entry of ATA. Since we call two matrices neighbors if they differ
only on a single row, denote v as the difference vector on that row. It is simple to see that
by adding v to some row in A, each entry in ATA can change by at most ‖v‖1. Recall that
we require ‖v‖2 = 1 and so ‖v‖1 ≤

√
d. Therefore, we have that in order to preserve

(ε, δ)-differential privacy, it is enough to add a random Gaussian noise of N (0, d log(d)
ε2

) to
each of the d2 entries of ATA.

Next we give the utility guarantee of the Randomized Response scheme. Fix any unit
length vector x. We think of the matrix we output as ATA+N , where N is a matrix of iid
samples fromN (0, d log(d)

ε2
). Therefore, in direction x, we add to the true answer a random

noise distributed like xTNx ∼ N (0,
(∑

i,j x
2
ix

2
j

)
d log(d)
ε2

) = N (0, d log(d)
ε2

). So w.h.p the

noise we add is within factor of Õ(
√
d/ε) for each query, and for k queries it is within

factor of Õ(
√
d log(k)/ε).

5.4.2.3 The Multiplicative Weights Mechanism

It is not straight-forward to adapt the Multiplicative Weights mechanism to answer direc-
tional variance queries. We represent ATA as a histogram over its d2 entries (so the size of
the “universe” is N = d2), but it is not simple to estimate what is the equivalent of num-
ber of individuals in this representation. We chose to take the pessimistic bound of nd2,
since this is the L1 bound on the sum of entries in ATA, but we comment this is a highly
pessimistic bound. It is fairly likely that the number of individuals in this representation
can be set to only O(d2).

Plugging these parameters into the utility bounds of the Multiplicative Weights mech-
anism, we get a utility bound of Õ(d

√
n log(k)/ε). Plugging them into the improved

bounds of the IDC mechanism, we get Õ(d
√
n log(k)/ε). Observe that even if replace the

66

Method Additive Error Multi-
plicative
Error?

Inter-
active?

Tract-
able?

Laplace Noise O(
√
k/ε) # ! !

Randomized Re-
sponse

Õ(
√
d log(k)/ε) # # !

MW
IDC

Õ(d
√
n log(k)/ε)

Õ(d
√
n log(k)/ε)

! !

JL O(log(k)/ε2) ! # !

Table 5.2: Comparison between mechanisms for answering directional variance queries.

pessimistic bound of nd2 with just d2, these bounds depend on d.

5.4.2.4 Our Algorithm

Our algorithm’s utility is computed simply by plugging in ν = O(1/k) to Theorem 5.12,
which gives a utility bound of O(log(k)/ε2).

5.5 Discussion and Open Problems

The fact that the JL transform preserves differential privacy is likely to have more theoret-
ical and practical applications than the ones detailed in this chapter. Below we detail a few
of the open questions we find most compelling.

Error depedency on r. Our algorithm projects the edge-matrix of a given graph on r
random directions, then publishes these projections. The value of r determines the prob-
ability we give a good approximation to a given cut-query, and provided that we wish to
give a good approximation to all cut-queries, our analysis requires us to set r = Ω(n). But
is it just an artifact of the analysis? Could it be that a better analysis gives a better bound
on r? It turns out that the answer is “no”. In fact, the direction on which we project the
data now have high correlation with the published Laplacian. We demonstrate this with an
example.

Assume our graph is composed of a single perfect matching between 2n nodes, where
node i is matched with node n + i. Focus on a single random projection – it is chosen by
picking

(
2n
2

)
iid random values xi,j ∼ N (0, 1), and for the ease of exposition imagine that

67

the values of the edges in the matching are picked first, then the values of all other pairs
of vertices. Now, if we pick the value xi,n+i for the 〈i, n+ i〉 edge, then node i is assigned
xi,n+i while node n + i is assigned −xi,n+i. So regardless of the sign of xi,n+i, exactly
one of the two nodes {i, n + i} is assigned the positive value |xi,n+i| and exactly one is
assigned the negative value −|xi,n+i|. Define S as the set of n nodes that are assigned the
positive values and S̄ as the set of n nodes that are assigned the negative values. The sum
of weight crossing the (S, S̄)-cut is distributed like (X+ w

n
Y)2 whereX =

∑
i |xi,n+i| and

Y =
∑

i

∑
j 6=n+i xi,j . Indeed, Y is the sum of n(n− 1) random normal iid Gaussians, but

X is the sum of n absolute values of Gaussians. So w.h.p. both X and Y are proportional
to n. Therefore, in the direction of this particular random projection we estimate the
(S, S̄)-cut as Ω((n ± w)2) = Ω(n2) rather than O(n). (If X was distributed like the sum
of n iid normal Gaussians, then the estimation would be proportional to (

√
n)2 = n.)

Assuming that the remaining r − 1 projections estimate the cut as O(n), then by av-
eraging over all r random projections our estimation of the (S, S̄)-cut is ω(n), as long as
r = o(n).

Error amplification or error detection. Having established that we do err on some
cuts, we pose the question of error amplification. Can we introduce some error-correction
scheme to the problem without increasing r significantly? Error amplification without
increasing r will allow us to keep the additive error fairly small. One can view L̃ as a
coding of answers to all 2n cut-queries which is guaranteed to have at least 1− ν fraction
of the code correct, in the sense that we get a (η, τ)-approximation to the true cut-query
answer. As such, it is tempting to try some self-correcting scheme – like adding a random
vector x to the vector 1S , then finding the estimation to xTLGx and (1s + x)TLGx and
inferring 1T

SLG1S . We were unable to prove such scheme works due to the dot-product
problem (see next paragraph) and to query dependencies.

A related question is of error detection: can we tell whether L̃ gives a good estimation
to a cut query or not? One potential avenue is to utilize the trivial guess for ΦG(S) – the
expected value m

(n2)
s(n− s) (we can release m via the Laplace mechanism). We believe

this question is related to the problem of estimating the variance of {ΦG(S) : |S| = s}.

Edges between S and T . Our work assures utility only for cut-queries. It gives no utility
guarantees for queries regarding E(S, T), the set of edges connecting two disjoint vertex-
subsets S and T . The reason is that it is possible to devise a graph where both E(S, S̄) and
E(T, T̄) are large whereasE(S, T) is fairly small. WhenE(S, S̄) andE(T, T̄) are big, the
multiplicative error η given to both quantities might add too much noise to an estimation

68

of E(S, T).

The problem relates to the dot-product estimation of the JL transform. It is a clas-
sical result that if M is a distance-preserving matrix and u and v are two vectors s.t.
‖M(u + v)‖2 ≈ ‖u + v‖2 and ‖M(u − v)‖2 ≈ ‖u − v‖2 then it is possible to bound
the difference |Mu ·Mv − u · v|. But this bound is a function of ‖u‖ and ‖v‖, which
in our case translates to a bound that depends on ‖EG1S‖ and ‖EG1T‖, both vectors of
potentially large norms.

Other Versions of JL. The analysis in this works deals with the most basic JL trans-
form, using normal Gaussians. We conjecture that qualitatively the same results should
apply for most of the other versions of the JL transform that utilize a dense transform
(e.g., using unit-length projections or uniformly chosen entries in [−1, 1]). Notice how-
ever that some versions of the JL clearly do not preserve privacy. For example, the version
of Achlioptas [3] where each entry is chosen uniformly to be 1 or −1, clearly does not
preserve privacy – it is easy to differentiate between the complete graph Kn and its neigh-
bor based on observing whether a specific coordinate is even or odd. It is an interesting
open problem to see whether sparse JL transforms (see [55]) preserve differential privacy
or not.

69

70

Chapter 6

Differentially Private Data Analysis of
Social Networks via Restricted
Sensitivity

6.1 Introduction

The social networks we inhabit have grown significantly in recent decades with digital
technology enabling the rise of networks like Facebook that now connect over 900 million
people and house vast repositories of personal information. At the same time, the study of
various characteristics of social networks has emerged as an active research area [66]. Yet
the fact that the data in a social network might be used to infer sensitive details about an
individual, like sexual orientation [92], is a growing concern among social networks’ par-
ticipants. Even in an ‘anonymized’ unlabeled graph it is possible to identify people based
on graph structures [23]. Here we study the feasibility of and design efficient algorithms
to release statistics about social networks (modeled as graphs with vertices labeled with
attributes) while satisfying the semantic definition of differential privacy [63, 62].

A differentially private mechanism guarantees that any two neighboring data sets (i.e.,
data sets that differ only on the information about a single individual) induce similar dis-
tributions over the statistics released. For social networks, which are graphs with node
coloring, we consider two notions of neighboring or adjacent networks: (1) edge adja-
cency stipulating that adjacent graphs differ in just one edge or in the attributes of just
one vertex; and (2) vertex adjacency stipulating that adjacent networks differ on just one
vertex—its attributes or any number of edges incident to it. We comment that the edge

71

adjacency model considered here is slightly different than the edge-adjacency model con-
sidered in Chapter 5 as we also allow a node to change its attributes.

For any given statistic or query, its global sensitivity measures the maximum difference
in the answer to that query over all pairs of neighboring data sets [63]; global sensitivity
provides an upper bound on the amount of noise that has to be added to the actual statistic
in order to preserve differential privacy. Since the global sensitivity of certain types of
queries can be quite high, the notion of smooth sensitivity was introduced to reduce the
amount of noise that needs to be added while still preserving differential privacy [119].

However, a key challenge in the differentially private analysis of social networks is
that for many natural queries, both global and smooth sensitivity can be very large. In
the vertex adjacency model, consider the query “How many people in G1 are a doctor
or are friends with a doctor?” Even if the answer is 0 (e.g., there are no doctors in the
social network) there is a neighboring social network G2 in which the answer is n (e.g.,
pick an arbitrary person from G1, relabel him as a doctor, and connect him to everyone).
Even in the edge adjacency model, the sensitivity of queries may be high. Consider the
query “How many people in G1 are friends with two doctors who are also friends with
each other?” In G1 the answer may be 0 even if there are two doctors that everyone else
is friends with (e.g, the doctors are not friends with each other), but the answer jumps to
n− 2 in a neighboring graph G2 (e.g, if we simply connect the doctors to each other).

In fact, such queries have high global sensitivity in the edge-adjacency model we con-
sider here, because this model allows for a node to change its attributes arbitrarily. For
example, the global sensitivity of the query “how many people are friends with a doctor”
is Ω(n) – as illustrated by the two adjacent star graphs (one node with degree n − 1 and
all other nodes with degree 1) where in one no node is a doctor and in the other the central
node has a M.D. Therein lies the difference between the problem considered in Chapter 5
and this chapter. In Chapter 5 we consider only the graph structure, or alternatively a social
networks where the labeling of each node is public knowledge – and so cut-queries have
global sensitivity of 1. Here we consider possible changes both to the graph structure and
to the labeling of the nodes, so cut-queries may have a sensitivity of Ω(n). For example,
consider the query “do Chinese people have many non-Chinese friends on average?” If the
labeling of each node is public we may use any of the techniques detailed in Chapter 5 to
answer such query. However, if the labeling of each node is private (we want each person
to be able to pretend she is Chinese), the only existing differentially privacy technique that
might answer this query with o(n) error is the framework of smooth-sensitivity [119].

Yet, while the examples obtaining global sensitivity of n respect the mathematical
definitions of neighboring graphs and networks, we note that in a real social network
no single individual is likely to be directly connected with everyone else. Suppose that

72

in fact a querier has some such belief H about the given network (H is a subset of all
possible networks) such that its query f has low sensitivity restricted only to inputs and
deviations withinH. For example, the querier may believe the following hypothesis (Hk):
the maximum degree of any node in the network is at most k = 5000� n ≈ 9× 108 (e.g,
after reading a study on the anatomy of Facebook [134]). Can one in that case provide
accurate answers in the event that indeed G ∈ H and yet preserve privacy no matter what
(even ifH is not satisfied)?

Here we provide a positive answer to this question. We do so by introducing the notion
of restricted sensitivity, which represents the sensitivity of the query f over only the given
subset H, and providing procedures that map a query f to an alternative query fH s.t. f
and fH identify over the inputs in H, yet the global sensitivity of fH is comparable to just
the restricted sensitivity of f . Therefore, the mechanism that answers according to fH and
adds Laplace random noise preserves privacy for all inputs, while giving good estimations
of f for inputs inH.

While our general scheme for devising such fH is inefficient and requires that we con-
struct a separate fH for each query f , we also design a complementary projection-based
approach. A projection of H is a function mapping all possible inputs (e.g., all possible
n-node social networks) to inputs in H with the property that any input in H is mapped
to itself. Therefore, a projection µ allows us to define fH for any f , simply by composing
fH = f ◦ µ. Moreover, if this projection µ satisfies certain smoothness properties, which
we define in Section 6.4, then this function fH will have its global sensitivity—or at least
its smooth sensitivity over inputs inH—comparable to only the restricted sensitivity of f .
In particular, for the case H = Hk (the assumption that the network has degree at most
k � n), we show we can efficiently construct projections µ satisfying these conditions,
therefore allowing us to efficiently take advantage of low restricted sensitivity. These re-
sults are given in Section 6.4 and summarized in Table 6.1.

The next natural question is: how much advantage does restricted sensitivity provide,
compared to global or smooth sensitivity, for natural query classes and natural sets H?
In Section 6.5 we consider two natural classes of queries: local profile queries and sub-
graph counting queries. A local profile query asks how many nodes v in a graph satisfy a
property which depends only on the immediate neighborhood of v (e.g, queries relating to
clustering coefficients and bridges [66], or queries such as “how many people know two
spies who don’t know each other?”). A subgraph counting query asks how many copies of
a particular subgraph P are contained in the network (e.g., number of triangles involving
at least one spy). For the case H = Hk for k � n we show that the restricted sensitivity
of these classes of queries can indeed be much lower than the smooth sensitivity. These
results, presented in Section 6.5, are summarized in Table 6.2.

73

Adjacency Hypothesis Query Sensitivity Efficient
Theorem 6.5 Any Any Any GSfH = RSf (H) No
Theorem 6.10 Edge Hk Any GSfH = 3RSf (H) Yes
Theorem 6.16 Vertex Hk Any SfH = O (1)×RSf (H2k) Yes

Table 6.1: Summary of Results. GS = global sensitivity, RS = restricted sensitivity, and
S = smooth bound of local sensitivity.

Subgraph Counting Query P Local Profile Query
Adjacency Smooth Restricted Smooth Restricted
Edge |P | k|P |−1 |P | k|P |−1 k + 1 k + 1

Vertex O
(
n|P |−1

)
|P | k|P |−1 n− 1 2k + 1

Table 6.2: Worst Case Smooth Sensitivity overHk vs. Restricted Sensitivity RSf (Hk).

6.1.1 Related Work

Easley and Kleinberg provide an excellent summary of the rich literature on social net-
works [66]. Previous literature on differentially-private analysis of social networks has
primarily focused on the edge adjacency model in unlabeled graphs where sensitivity is
manageable. Triangle counting queries can be answered in the edge adjacency model by
efficiently computing the smooth sensitivity [119], and this result can be extended to an-
swer other counting queries [100]. Hay et al [84] show how to privately approximate the
degree distribution in the edge adjacency model. The Johnson-Lindenstrauss transform
can be used to answer all cut queries in the edge adjacency model [41]. Kasiviswanathan,
Nissim, Raskhodnikova and Smith [102] have independently been exploring and devel-
oped an analysis for node level privacy using an approach similar to ours.

The approach taken in the work of Rastogi et al. [125] on answering subgraph count-
ing queries is the most similar to ours. They consider a bayesian adversary whose prior
(background knowledge) is drawn from a distribution. Leveraging an assumption about
the adversary’s prior they compute a high probability upper bound on the local sensitivity
of the data and then answer by adding noise proportional to that bound. Loosely, they
assume that the presence of an edge does not presence of other edges more likely. In the
specific context of a social network this assumption is widely believed to be false (e.g.,
two people are more likely to become friends if they already have common friends [66]).
The privacy guarantees of [125] only hold if these assumptions about the adversaries prior
are true. By contrast, we always guarantee privacy even if the assumptions are incorrect.

A relevant approach that deals with preserving differential privacy while providing
better utility guarantees for nice instances is detailed in the work of Nissim et al [119]

74

who define the notion of smooth sensitivity. In their framework, the amount of random
noise that the mechanism adds to a query’s true ansewr is dependent on the extent for
which the input database is “nice” – having small local sensitivity. As we discuss later, in
social networks many natural queries (e.g., local profile queries) even have high local and
smooth sensitivity.

6.2 Preliminaries – Graphs and Social Networks

Our work is motivated by the challenges posed by differentially private analysis of social
networks. As always, a graph is a pair of a set of vertices and a set of edges G = 〈V,E〉.
We often just denote a graph as G, referring to its vertex-set or edge-set as V (G) or E(G)
resp. A key aspect of our work is modeling a social network as a labeled graph.

Definition 6.1. A social network (G, `) is a graph with labeling function ` : V (G)→ Rm.
The set of all social networks is denoted G.

The labeling function ` allows us to encode information about the nodes (e.g., age,
gender, occupation). For convenience, we assume all social networks are over the same
set of vertices, which is denotes as V and has size n, and so we assume |V | = n is public
knowledge.1 Therefore, the graph structures of two social networks are equal if their edge-
sets are identical. Similarly, we also fix the dimension m of our labeling.

Defining differential privacy over the labeled graphs G requires care. What does it
mean for two labeled graphs G1, G2 ∈ G to be neighbors? There are two natural notions:
edge-adjacency and vertex adjacency.

Definition 6.2 (Edge-adjacency). We say that two social networks (G1, `1) and (G2, `2)
are neighbors if either (i) E(G1) = E(G2) and there exists a vertex u such that `1(u) 6=
`2(u) whereas for every other v 6= u we have `1 (v) = `2 (v) or (ii) ∀v, `1(v) = `2 (v) and
the symmetric difference E(G1) M E(G2) contains a single edge.

In the context of a social network, differential-privacy w.r.t edge-adjacency can, for
instance, guarantee that an adversary will not be able to distinguish whether a particular
individual has friended some specific pop-singer on Facebook. However, such guarantees
do not allow a person to pretend to listen only to high-end indie rock bands, should that
person have friended numerous pop-singers on Facebook. This motivates the stronger
vertex-adjacency neighborhood model.

1Adding or removing vertices could be done by adding one more dimension to the labeling, indicating
whether a node is active or inactive.

75

Definition 6.3 (Vertex-adjacency). We say that two social networks (G1, `1) and (G2, `2)
are neighbors if there exists a vertex vi such that G1 − vi = G2 − vi and `1(vj) = `2(vj)
for every vj 6= vi.

where for a graph G and a vertex v we denote G− v as the result of removing every edge
in E(G) that touches v.

It is evident that any two social networks that are edge-adjacent are also vertex-adjacent.
Preserving differential privacy while guaranteeing good utility bounds w.r.t vertex-adjacency
is a much harder task than w.r.t edge-adjacency.

Distance Given two social networks (G1, `1) and (G2, `2), recall that their distance is
the minimal k s.t. one can form a path of length k, starting with (G1, `1) and ending
at (G2, `2), with the property that every two consecutive social-networks on this path are
adjacent. Given the above two definitions of adjacency, we would like to give an alternative
characterization of this distance.

First of all, the set U = {v : `1(v) 6= `2(v)} dictates |U | steps that we must take
in order to transition from (G1, `1) to (G2, `2). It is left to determine how many adjacent
social-networks we need to transition through until we have E(G1) = E(G2). To that end,
we construct the difference-graph whose edges are the symmetric difference of E(G1) and
E(G2). Clearly, to transition from (G1, `1) to (G2, `2), we need to alter every edge in the
difference graph. In the edge-adjacency model, a pair of adjacent social networks covers
precisely a single edge, and so it is clear that the distance d

(
(G1, `1), (G2, `2)

)
= |U | +

|E(G1) M E(G2)|. In the vertex-adjacency model, a single vertex can cover all the edges
that touch it, and so the distance between the graphs G1 − U and G2 − U is precisely the
vertex cover of the difference graph. Denoting this vertex cover as V C(G1−U M G2−U)
we have that d

(
(G1, `1), (G2, `2)

)
= |U | + |V C(G1 − U M G2 − U)|. It is evident that

computing the distance of between any two social-networks in the vertex-adjacency model
is a NP-hard problem.

To avoid cumbersome notation, throughout this entire chapter we omit the differentia-
tion between graphs and social networks, and denote networks as graphs G ∈ G.

6.3 Restricted Sensitivity

We now introduce the notion of restricted sensitivity, using a hypothesis about the dataset
D to restrict the sensitivity of a query. A hypothesis H is a subset of the set D of all

76

possible datasets (so in the context of social networks, H is a set of labeled graphs). We
say thatH is true if the true datasetD ∈ H. Because the hypothesisHmay not be a convex
set we must consider all pairs of datasets in H instead of all pairs of adjacent datasets as
in the definition of global sensitivity.

Definition 6.4. For a given notion of adjacency among datasets, the restricted sensitivity
of f over a hypothesisH ⊂ D is

RSf (H) = max
D1,D2∈H

(|f (D1)− f (D2)|
d (D1, D2)

)
.

To be clear, d(D1, D2) denotes the length of the shortest-path in D between D1 and
D2 (not restricting the path to only use D ∈ H) using the given notion of adjacency (e.g.,
edge-adjacency or vertex-adjacency). That is, we restrict the set of databases for which we
compute the sensitivity, but we do not re-define the distances.

Observe that RSf (H) may be smaller than LSf (D) for some D ∈ H if D has a
neighbor D′ /∈ H. In fact we often have LSf (D) ≥ |f (D)− f (D′)| � RSf (H).
In such cases RSf (H) will be significantly lower than any β-smooth upper bound on
LSf (D). For example, consider the query f defined as “how many people are friends
with a doctor” under the vertex adjacency model. For any social network with at least one
doctor there exists a neighboring network where f takes the value n – the one where the
doctor node connects to all other nodes. Therefore, even if the given network is such that
everyone has no more than k friends, it still holds that the local sensitivity of f is high.
In contrast, by hypothesizing that the given network is such that no one has more than k
friends, the restricted sensitivity of f is O(k). Further discussion is given in Section 6.5.

6.4 Using Restricted Sensitivity to Reduce Noise

To achieve differential privacy while adding noise proportional to RSf (H) we must be
willing to sacrifice accuracy guarantees for datasets D /∈ H. Our goal is to create a new
query fH such that fH(D) = f(D) for everyD ∈ H (fH is accurate when the hypothesis is
correct) and fH either has low global sensitivity or low β-smooth sensitivity over datasets
D ∈ H. (Again we emphasize – the global sensitivity of fH is defined w.r.t to any pair
of neighboring datasets and not only neighboring datasets in H. Similarly, the smooth
sensitivity of fH(D) is w.r.t any of the neighbors of D regardless of whether they belong
toH or not.)

In this section, we first give a non-efficient generic construction of such fH, showing
that it is always possible to devise fH whose global sensitivity equals exactly the restricted

77

sensitivity of f overH. We then show how for the case of social networks and for the hy-
pothesis Hk that the network has bounded degree, we can construct functions fHk having
approximately this property, efficiently.

6.4.1 A General Construction

We now show how given H to generically (but not efficiently) construct fH whose global
sensitivity exactly equals the restricted sensitivity of f over H. (The theorem we give can
be viewed as a special case of constructing a Lipschitz extension of f |H over D – i.e.,
mimicking either the Whitney or McShane extensions, see [94] for details.)

Theorem 6.5. Given any query f and any hypothesis H ⊂ D we can construct a query
fH such that

1. ∀D ∈ H it holds that fH (D) = f (D), and

2. GSfH = RSf (H)

Proof. For each D ∈ H set fH (D) = f (D). Now fix an arbitrary ordering of the set
{D : D /∈ H}, and denote its elements as D1, D2, . . . , Dm, where m is the size of
the set. For every D /∈ H we define the value of fH(D) inductively. Denote Ti =
H
⋃
{D1, ..., Di}. Initially, we are given the values of every D ∈ T0. Given i > 0,

we denote ∆i = RSfH (Ti). We now prove one can pick the value fH(Di) in a way that
preserves the invariant that ∆i+1 = ∆i. By applying the induction m times we conclude
that

RSf (H) = ∆0 = ∆m = RSfH (D) = GSfH .

Fix i > 0. Observe that

∆i+1 = max

(
∆i,

(
max
D∈Ti

|fH (D)− fH (Di+1)|
d (D,Di+1)

))
so to preserve the invariant it suffices to find any value of fH (Di+1) that satisfies that for
everyD ∈ Ti we have |fH (D)− fH (Di+1)| ≤ ∆i·d (D,Di+1). Suppose for contradiction
that no value exists. Then there must be two intervals

[fH (D∗1)−∆i · d (D∗1, Di+1) , fH (D∗1) + ∆i · d (D∗1, Di+1)]

[fH (D∗2)−∆i · d (D∗2, Di+1) , fH (D∗2) + ∆i · d (D∗2, Di+1)]

78

which don’t intersect. This would imply that

|fH (D∗1)− fH (D∗2)|
d (D∗1, D

∗
2)

≥ |fH (D∗1)− fH (D∗2)|
d (Di+1, D∗1) + d (Di+1, D∗2)

> ∆i

which contradicts the fact that ∆i is the restricted sensitivity of Ti.

6.4.2 Efficient Procedures forHk via Projection Schemes

Unfortunately, the construction of Theorem 6.5 is highly inefficient. Furthermore, this
construction deals with one query at a time. We would like to a-priori have a way to
efficiently devise fH for any f . In this section, the way we devise fH is by constructing a
projection – a function µ : D → H with the property that µ(D) = D for every D ∈ H.
Such µ allows us to canonically convert any f into fH using the naı̈ve definition fH = f◦µ.
Below we discuss various properties of projections that allow us to derive “good” fH-s.
Following each property, we exhibit the existence of such projections µ for the specific
case of social networks andH = Hk, the class of graphs of degree at most k.

Definition 6.6. The classHk is defined as the set {G ∈ G : ∀v, deg(v) ≤ k}.

In many labeled graphs, it is reasonable to believe thatHk holds for k � n because the
degree distributions follow a power law. For example, the number of telephone numbers
receiving t calls in a day is proportional to 1/t2, and the number of web pages with t
incoming links is proportional to 1/t2 [118, 46, 66]. For these networks it would suffice
to set k = O (

√
n). The number of papers that receive t citations is proportional to 1/t3

so we could set k = O (3
√
n) [66]. While the degrees on Facebook don’t seem to follow

a power law, the upper bound k = 5, 000 seems reasonable [134]. By contrast, Facebook
had approximately n = 901, 000, 000 users in June, 2012 [1].

6.4.2.1 Smooth Projection

The first property we discuss is perhaps the simplest and most coveted property such pro-
jection can have – smoothness. Smoothness dictates that there exists a global bound on
the distance between any two mappings of two neighboring databases.

Definition 6.7. A projection µ : D → H is called c-smooth if for any two neighboring
databases D ∼ D′ we have that d

(
µ(D), µ(D′)

)
≤ c.

79

Lemma 6.8. Let µ : D → H be a c-smooth projection (i.e., for every D ∈ H we have
µ(D) = D). Then for every query f , the function fH = f ◦ µ satisfies that GSfH ≤
c ·RSf (H) .

Proof.

GSfH = max
D1∼D2

|fH (D1)− fH (D2)|
= max

D1∼D2

|f (µ (D1))− f (µ (D2))| · 1

≤ max
D1∼D2

|f (µ (D1))− f (µ (D2))| c

d (µ (D1) , µ (D2))

≤ c · max
D1,D2∈H

|f (D1)− f (D2)|
d (D1, D2)

= c ·RSf (H)

As we now show, forH = Hk and for distances defined via the edge-adjacency model,
we can devise an efficient smooth projection.

Claim 6.9. In the edge-adjacency model, there exists an efficiently computable 3-smooth
projection toHk.

Proof. We construct our smooth-projection µ by first fixing a canonical ordering over all
possible edges. Let ev1, ..., e

v
t denote the edges incident to v in canonical order. For each

edge e = {u, v} we delete e if and only if (i) e = evj for j > k or (ii) e = euj for j > k
(Intuitively for each v with deg (v) ≥ k we keep this first k edges incident to v and flag
the other edges for deletion). If G ∈ Hk then no edges are deleted, so µ(G) = G. Suppose
that G1, G2 are neighbors differing on one edge e = {x, y} (wlog, say that e is in G1).
Observe that for every v 6= x, y, the same set of edges incident to v will be deleted from
both G1 and G2. In fact, if µ(G1) does not contain e then µ(G1) = µ(G2). Otherwise,
if e is not deleted we may assume then there may be at most one edge ex (incident to x)
and at most one edge ey (incident to y) that were deleted from µ (G1) but not from µ(G2).
Hence, d (µ (G1) , µ (G2)) ≤ 3.

An immediate corollary of Lemma 6.8 and Claim 6.9 is the following theorem.

Theorem 6.10. (Privacy wrt Edge Changes) Given any query for social networks f ,
the mechanism that uses the projection µ from Claim 6.9, and answers the query using
A(f,G) = f(µ(G)) + Lap(3 ·RSf (Hk)/ε) preserves (ε, 0) privacy for any graph G.

80

Now, it is evident that this mechanism has the guarantee that for every G ∈ Hk it holds
that Pr[|A(f,G)− f(G)| ≤ O(RSf (Hk)/ε)] ≥ 2/3. Furthermore, if the querier “lucked
out” to ask a query f for which f(G) and f(µ(G)) are close (say, identical), then the same
guarantee holds for such G as well. Note however that we cannot reveal to the querier
whether f(G) and f(µ(G)) are indeed close, as such information might leak privacy.

6.4.2.2 Projections and Smooth Distances Estimators

Unfortunately, the smooth projections do not always exist, as the following toy-example
demonstrates. Fix n graphs, where d (Gi, Gj) = |i− j| for 1 ≤ i, j ≤ n, and let H =
{G1, Gn}. Because µ (G1) = G1 and µ (Gn) = Gn, then there must exist some value i
such that µ (Gi) 6= µ (Gi+1), thus every µ cannot be c-smooth for c < n− 1.

Note that c-smooth projections have the property that they also provide a (c + 1)-
approximation of the distance of D to H. Meaning, for every D we have that d(D,H) ≤
d(D,µ(D)) ≤ (c+ 1) · d(D,H). In the vertex adjacency model however, it is evident that
we cannot have a O(1)-smooth projection since it is NP-hard to approximate d(G,Hk).

Claim 6.11. (Privacy wrt Vertex Adjacency) Unless P = NP there is no efficiently com-
putable mapping µ : G → Hk such that

1. ∀G ∈ Hk, µ (G) = G.

2. ∀G ∈ G, d (G, µ (G)) ≤ O (ln (k) d (G,Hk)).

Proof. (Sketch) Our reduction is from the minimum set cover problem. It is NP-hard to
approximate the minimum set cover problem to a factor better than O(log n) [126, 9].
Given a set cover instance with sets S1, ..., Sm and universe U = {x1, ..., xn} we set
mi = |{j : xi ∈ Sj}| and k = n+ 1. We construct our labeled graph G as follows:

1. Add a node for each Si.

2. Add a node for each xj .

3. Add the edge {xj, Si} if and only if xj ∈ Si.

4. For each xi, create k + 1−mi fresh nodes y1, ..., yk−mi and add each edge {yj, xi}.

Intuitively each node xj has k + 1 incident edges. By deleting all of the edges incident to
the node Si we can fix all of the nodes x ∈ Si. Hence, d (G,Hk) corresponds exactly to
the size of the minimum set cover.

81

Though computing d(G,Hk) is hard, we can approximate it.

Claim 6.12. (Privacy wrt Vertex Adjacency) There is an efficiently computable projection
µ : G → Hk such that for everyG ∈ G it holds that d (G, µ (G)) ≤ (ln (2d2 + kd)) d (G,Hk),

Proof. First, we define the potential of a graph G as follows

φ (G) =
∑

v∈G:deg(v)≥k

(deg (v)− k) .

We give an algorithm to construct µ. The algorithm traverses all options for d (G,Hk).
For every d ∈ {1, 2, . . . , n−k} we do the following: (1) as long as there exists nodes with
degree ≥ k + d+ 1 we arbitrarily pick one such node v and remove all edges touching v;
(2) as long as there are nodes with degree≥ k+ 1 we greedily pick a vertex v maximizing
φ(G) − φ(G − v) and remove all edges incident to v (we use G − v to denote the graph
where we remove all edges incident to v). We define µ(G) as the result of the iteration
touching the minimum number of vertices.

To analyze this algorithm, we consider the output of the algorithm for the correct guess
d = d (G,Hk). Pick a path of neighboring graphs from G to Hk of length d, and label
each pair of neighboring graphs by the vertex that changes between the two. It is evident
that the path labels must contain any node of degree ≥ k + d + 1, since any other path of
length d may reduce the degree of such nodes only to k + 1.

So now, denote φ0 as the potential of G after step (1), and denote the set of t nodes
we pick in step (2) as v1, v2, . . . , vt and let φi denote the potential after removing all edges
touching vi. Observe that φ0 ≤ 2d2 + kd, because there exists a set of ≤ d nodes that
by removing any edge incident to them we convert the graph to a graph in Hk, and each
of these nodes decrease the potential by no more than deg(v) + deg(v) − k ≤ (d +
k) + d = 2d + k. By standard greedy analysis, in every time we pick a vertex, there
always exists some vertex that reduces the potential by a factor of 1− 1

d
. Therefore, after

t = d ln(2d2 + kd) iterations we have that φt ≤ (1− 1
d
)tφ0 < 1.

The reduction in Claim 6.12 might be used to produce a function fH (G) = µ (f (G))
with low smooth-sensitivity over the nice graphsHk. Unfortunately, we don’t know of any
efficient algorithm to compute the smooth upper bound for such fH. Yet, we show that it
is possible to devise a somewhat relaxed projection s.t. the distance between a database
and its mapped image is a smooth function. To that end, we relax a little the definition of
projection, allowing it to map instances to some predefined H̄ ⊃ H.

82

Definition 6.13. Fix H̄ ⊃ H. Let µ be a projection of H, so µ is a mapping µ : D → H̄
that maps every element of H to itself (∀D ∈ H we have that µ(D) = D). A c-smooth
distance estimator is a function d̂µ : D → R that satisfies all of the following. (1) For
every D ∈ H it is defined as d̂µ(D) = 0. (2) It is lower bounded by the distance of D to
its projection: ∀D ∈ D, d̂µ(D) ≥ d(D,µ(D)). (3) Its value over neighboring databases

changes by at most c: ∀D ∼ D′,
∣∣∣d̂µ(D)− d̂µ(D′)

∣∣∣ ≤ c.

It is simple to verify that for every D ∈ D we have that d̂µ(D) ≤ c · d(D,H) (using
induction on d(D,H)). We omit the subscript when µ is specified.

The following lemma suggests that a smooth distance estimator allows us to devise a
good smooth-upper bound on the local-sensitivity, thus allowing us to apply the smooth-
sensitivity scheme of [119].

Lemma 6.14. Fix H̄ ⊃ H and let µ : D → H̄ be a projection ofH. Let d̂ : D → R be an
efficiently computable c-smooth distance estimator. Then for every query f , we can define
the composition fH = f ◦ µ and define the function

SfH,β (D) = max
d∈Z,d≥d̂(D)

e

(
−β
c (d−d̂(D))

)
(2d+ c+ 1) ·RSf

(
H̄
)

Then SfH,β is an efficiently computable β-smooth upper bound on the local sensitivity of

fH. Furthermore, define g as the function g(x) =

{
2 1
x
e−1+

c+1
2
x, 0 ≤ x ≤ 2

c+1

c+ 1, x > 2
c+1

. Then

for every D it holds that

Sf,β (D) ≤ exp(β
c
d̂(D)) · g(β/c)RSf (H̄)

Proof. First, we show that indeed SfH,β is an upper bound on the local sensitivity of fH.

83

Fix any D ∈ D and indeed

LSfH (D) = max
D′∼D

|fH (D)− fH (D′)|

= max
D′∼D

|f(µ(D))− f(µ(D′))|

≤ max
D′∼D

RSf (H̄) · d(µ(D), µ(D′))

≤ max
D′∼D

RSf (H̄) ·(
d(D,µ(D)) + d(D,D′) + d(D′, µ(D′))

)
≤ RSf (H̄) ·

(
d̂(D) + 1 + max

D′∼D
d̂(D′)

)
≤ RSf (H̄) ·

(
2d̂(D) + c+ 1

)
≤ max

d≥d̂(D)
e−βc(d−d̂(D)) (2d+ c+ 1)RSf

(
H̄
)

= SfH,β (D) .

Next we prove that SfH,β is β-smooth. Let D1 and D2 be two neighboring databases,
and wlog assume d̂(D2) ≤ d̂(D1). Then

SfH,β(D1)

SfH,β(D2)

=
maxd≥d̂(D1) e

(
−β
c (d−d̂(D1))

)
(2d+ c+ 1)RSf

(
H̄
)

maxd≥d̂(D2) e

(
−β
c (d−d̂(D2))

)
(2d+ c+ 1)RSf

(
H̄
)

Let d0 be the value of d on which the maximum of numerator is obtained. Then

SfH,β(D1)

SfH,β(D2)

=
exp

(
−β

c

(
d0 − d̂ (D1)

))
(2d0 + c+ 1)RSf

(
H̄
)

maxd≥d̂(D2) exp
(
−β

c

(
d− d̂ (D2)

))
(2d+ c+ 1)RSf

(
H̄
)

≤
exp

(
−β

c

(
d0 − d̂ (D1)

))
(2d0 + c+ 1)RSf

(
H̄
)

exp
(
−β

c

(
d0 − d̂ (D2)

))
(2d0 + c+ 1)RSf

(
H̄
)

= exp
(
−β

c
(d̂(D2)− d̂(D1))

)
≤ exp(β)

84

where the last inequality uses the smoothness property, i.e. that d̂(D2)− d̂(D1) ≥ −c.
Finally, we wish to prove the global upper bound on SfH,β , i.e., that for every D ∈ D

SfH,β (D) ≤ exp(β
c
d̂(D)) · g (c/β)RSf

(
H̄
)
.

Fix D and define h(x) = exp
(
− β

c
x
)
(2x+ c+ 1), so that SfH,β = exp

(
β
c
d̂(D)

)
RSf (H̄) ·

max
d≥d0

h(d). Taking the derivative of h we have

h′(x) = e−
β
c
x
(
−2xβ

c
− β − β

c
+ 2
)

which means that h(x) is maximized at x0 = c
β
− c+1

2
. In the case that x0 < 0 (i.e.

for β/c > 2
c+1

) we can upper bound the function h(x) with h(0) = c + 1 for every
x ≥ 0. Otherwise, we have that h(x) ≤ h(x0) for every x ≥ 0, and indeed h(x0) =

2 c
β
e−1+

β
c
· c+1

2 = g(β/c).

To conclude the proof, observe that computing SfH,β (D) is just a simple optimiza-
tion once d̂ (D) is known, much like the derivation done above. So since d̂ is efficiently
computable, we have that SfH,β is efficiently computable.

Like in the edge-adjacency model, we now exhibit a projection and a smooth distance
estimator for the vertex-adjacency model.

Claim 6.15. In the vertex-adjacency model, there exists a projection µ : G → H2k and a
4-smooth distance estimator d̂, both of which are efficiently computable.

Proof. To construct µ and d̂ we start with the linear program that determines a “fractional
distance” from a graph to Hk. This LP has n +

(
n
2

)
variables: xu which intuitively repre-

sents whether xu ought to be removed from the graph or not, and wu,v which represents
whether the edge between u and v remains in the projected graph or not. We also use the
notation au,v, where auv = 1 if the edge {u, v} is in G; otherwise auv = 0.

min
∑

v∈V xv s.t.

(1) ∀v, xv ≥ 0

(2) ∀u, v, wu,v ≥ 0

(3) ∀u, v, auv ≥ wuv ≥ auv − xu − xv
(4) ∀u,

∑
v 6=u

wu,v ≤ k

85

To convert our fractional solution (x̄∗, w̄∗) to a graph µ (G) ∈ H2k we define µ (G) to be
the graph we get by removing every edge (u, v) ∈ E(G) whose either endpoint has weight
x∗u > 1/4 or x∗v ≥ 1/4. We define our distance estimator as d̂ (G) = 4

∑
u x
∗
u.

We need to show that µ and d̂ satisfy the conditions of claim 6.15. We first prove that
µ is a projection mapping every graph to a graph in H2k. Suppose that some v ∈ G has
degree ≥ 2k, then clearly x∗v ≤ 1/4, for otherwise we would have removed all of the
edges touching v. Observe that every edge we keep has w∗u,v ≥ 1 − 1/4 − 1/4 = 1/2.
Consequently, we can have at most 2k edges with wu,v ≥ 1

2
because of the constraint∑

uwu,v ≤ k. So there are at most 2k edges incident to v in µ (G).

Now, let us prove that d̂ satisfies all of the requirements of a 4-smooth distance estima-
tor. First, if G ∈ Hk then the optimal solution of the LP is the all zero vector, so d̂(G) = 0
for all graphs of max-degree ≤ k. Secondly, observe that in the process of computing
µ(G), every edge that is removed from G can be “charged” to a vertex v with x∗v ≥ 1/4.
If follows that

d(G, µ(G)) ≤
∑

v:x∗v≥1/4

1 ≤
∑

v:x∗v≥1/4

4x∗v ≤ 4
∑
v

x∗v = d̂(G) .

Lastly, fix any neighboring G1, G2 ∈ G, and let v be the vertex whose edges differ in G1

and G2. Clearly, if x̄∗ is a solution for LP (G1), then we set yv = 1 for i = 1...d and
yv = x∗v otherwise. Now ~y is a feasible (not necessarily optimal) solution to LP (G2). It
is simple to infer that

d̂ (G2)− d̂ (G1) = d̂ (G2)− 4
∑
u

x∗u

≤ 4
∑
u

yu − 4
∑
u

x∗u ≤ 4
∑
u

|(yu − x∗u)|

= 4 |yv − x∗v| ≤ 4

As before, combining Lemma 6.14 with Claim 6.15 gives the following theorem as an
immediate corollary.

Theorem 6.16. (Privacy wrt Vertex Adjacency) Given any query for social networks f , the
mechanism that uses the projection µ from Claim 6.15 and the β-smooth upper bound of
Lemma 6.14, and answers the query usingA(f,G) = f(µ(G))+Lap(2·SfH,−ε/2 ln δ(G)/ε)
preserves (ε, δ) privacy for any graph G.

Again, it is evident from the definition that the algorithm has the guarantee that for
every G ∈ Hk it holds that Pr[|A(f,G)− f(G)| ≤ O(g(ε

8 ln(1/δ)
)RSf (H2k)/ε)] ≥ 2/3.

86

6.5 Restricted Sensitivity andHk

Now that we have constructed the machinery of restricted sensitivity, we compare the
restricted sensitivity overHk with smooth sensitivity for specific types of queries, in order
to demonstrate the benefits of our approach. In a nutshell, restricted sensitivity offers a
significant advantage over smooth sensitivity whenever k � n. I.e., we show that there
are queries f s.t. for some G ∈ Hk it holds that RSf (Hk) � Sf,β (G). We define two
types of queries: local profile queries and subgraph counting queries.

6.5.1 Local Profile Queries

First, let us introduce some notation. A profile is a function that maps a vertex v in a
social network (G, `) to [0, 1]. Given a set of vertices {v1, v2, . . . , vt}, we denote by
G[v1, v2, . . . , vt] the social network derived by restricting G and ` to these t vertices.
We use Gv = G[{v} ∪ {w (v, w) ∈ E (G)}] to denote the social network derived
by restricting G and ` to v and its neighbors. A local profile satisfies the constraint
p (v, (G, `)) = p (v,Gv).

Definition 6.17. A (local) profile query

fp (G, `) =
∑

v∈V (G)
p
(
v, (G, `)

)
sums the (local) profile p across all nodes.

Indeed, local profile queries are our motivating example. They capture a class of ques-
tion often asked in social networks, such as: “how many people are doctors?”, “how many
people are friends with t doctors?”, “how many people are friends with at least 7 doctors
who are all friends with each other?”, etc.

Claim 6.18 bounds the restricted sensitivity of a local profile query over Hk (e.g., in
the vertex adjacency model a node v can at worst affect the local profiles of itself, its k old
neighbors and its k new neighbors).

Claim 6.18. For any local profile query f , we have that RSf (Hk) ≤ 2k + 1 in the vertex
adjacency model, and RSf (Hk) ≤ k + 1 in the edge adjacency model.

Proof. Consider a local profile query fp.
(Label change) Let G1, G2 ∈ H be two graphs with the same exact edge set, but with
labeling functions `1, `2 that are different on a single vertex. Let v be the vertex whose label

87

differs on G1 and G1, and let Nv denote the set of its (at most k) neighbors. Then for every
u /∈ {v}∪Nv we have that p (u, (G1, `1)) = p (u, (G2, `2)). Hence, |fp (G1)− fp (G2)| ≤
|{v} ∪Nv| ≤ k + 1.
(Vertex Adjacency) Let G1, G2 ∈ H be any two neighboring labeled graphs such that
G1 − v = G2 − v. Let N1

v (resp. N2
v) denote the neighborhood of v then for any y /∈

N1
v ∪ N2

v we have that p (y, (G1, `1)) = p (y, (G2, `2)). Hence, |fp (G1)− fp (G2)| ≤
|N1

v ∪N2
v ∪ {v}| ≤ 2k + 1.

(Edge Adjacency) Let G1, G2 ∈ H be any two neighboring labeled graphs. Wlog, there
is an edge e = {u, v} such that E(G1) = E(G2) ∪ {e}. In order to have a vertex y
s.t. p (y, (G1, `1)) 6= p (y, (G2, `2)) we need that the edge e appears in graph we get
by restricting the social network to set of y and its neighbors. It follows that the only
vertices whose local profile can change are in the union {u, v} ∪

(
Nu ∩ Nv

)
. Hence,

|f (G1)− f (G2)| ≤ |{u} ∪ {v}|+ |Nu \ {v}| ≤ 2 + k − 1 = k + 1.

By contrast the smooth sensitivity of a local profile query may be as large asO(n) even
for graphs in Hk. Consider the local profile query “how many people are friends with a
spy?” In the vertex-adjacency model, the n − 1-star graph G1 in which a spy v is friends
with everyone is adjacent to the empty graph G0 ∈ Hk. Therefore, any smooth upper
bound Sf,β must have Sf,β(G) ≥ n − 1. It is also worth observing that the assumption
G ∈ Hk does not necessarily shrink the range of possible answers to a local profile query
f (e.g., there are graphs G ∈ Hk in which everyone is friends with a spy).

We comment that local profile queries are a natural extension of predicates to social
networks, which can be used to study many interesting properties of a social network
like clustering coefficients, local bridges and 2-betweeness). The clustering coefficient
c(v) [142, 118] of a node v (e.g., the probability that two randomly selected friends of v
are friends with each other) has been used to identify teenage girls who are more likely
to consider suicide [34]. One explanation, is that it becomes an inherent source of stress
if a person has many friends who are not friends with each other [66]. Observe that c(v)
is a local profile query. An edge {v, w} is a local bridge if its endpoints have no friends
in common. A local profile could score a vertex v based on the number local bridges
incident to v. A marketing agency may be interested in identifying nodes that are incident
to many local bridges because local bridges “provide their endpoints with access to parts
of the network - and hence sources of information - that they would otherwise be far
away from [66].” For example, a 1995 study showed that the best job leads often come
from aquaintances rather than close friends [75]. 2-betweeness (a variant of betweeness
[70]) measures the centrality of a node. We say that the 2-betweeness of a vertex v is the
probability that the a randomly chosen shortest path between x, y ∈ Gv, two randomly
chosen neighbors of v, goes through v.

88

6.5.2 Subgraph Counting Queries

Subgraph queries allows us to ask questions such as “how many triplets of people are all
friends when two of them are doctors and the other is a pop-singer?” or “how many paths
of length 2 are there connecting a spy and a pop-singer over 40?” The average clustering
coefficient of a graph can be computed from the number of triangles and 2-stars in a graph.

Definition 6.19. A subgraph counting query f = 〈H, p̄〉 is given by a connected graph H
over t vertices and t predicates p1, p2, . . . , pt. Given a social network (G, `), the answer
to f (G, `) is the size of the set{

v1, v2, . . . , vt : G[v1, v2, . . . , vt] = H and ∀i, ` (vi) ∈ pi
}

The smooth sensitivity of a subgraph counting query may be as high as O (nt−1) in the
vertex adjacency model. Let f = 〈H, p̄〉 be a subgraph counting query where H is a t-star
and each predicate pi is identically true. Let G1 be a n-star (f (G1) =

(
n
c−1

)
). Then in

the vertex adjacency model there is a neighboring graph G2 with no edges (f (G2) = 0).
We have that LSf (G2) ≥

(
n
t−1

)
. Observe that G2 ∈ Hk. We now show that the smooth

sensitivity of f = 〈K3, p̄〉 is always greater than n when each predicate pi is identically
true.

Claim 6.20. Let f = 〈K3, p̄〉 be a subgraph counting query with predicates pi that are
identically true. In the vertex adjacency model for any β smooth upper bound on the local
sensitivity of f and any graph G we have S∗fP ,β (G) ≥ exp (−2β) (n− 2).

Proof. Let G be given. Pick v1, v2 ∈ V (G) and let G1 be obtained from G by adding all
possible edges incident to v1 and let G2 be obtained from G1 by deleting all edges incident
to v2. Finally, let G3 be obtained fromG2 by adding all possible edges incident to v2. Now
the local sensitivity of f at G2 is at least n− 2,

LSf (G2) = max
G′:d(G2,G′)=1

|f (G2)− f (G′)|

≥ f (G3)− f (G2) ≥ n− 2

Plugging this lower bound into the definition of β smooth sensitivity we obtain the required
result: S∗fP ,β (G) ≥ e−βd(G,G2)LSfP (G2) ≥ e−2β (n− 2).

By contrast Claim 6.21 bounds the restricted sensitivity of subgraph counting queries.

Claim 6.21. Let f = 〈H, p̄〉 be subgraph counting query and let t = |H| thenRSf (Hk) ≤
tkt−1 in the edge adjacency model and in the vertex adjacency model.

89

Proof sketch. Let G1, G2 ∈ Hk be neighbors and let v be a vertex such that G1 − v =
G2 − v, and let Ni denote the neighbors of v in Gi. Any copy of H which occurs in G1

but not in G2 must contain v. Because H is connected we can bound the number of G1

copies of H . We can start with v, and we pick one of the t vertices of H to be mapped
to v. Denote this vertex as v0. Now, we proceed inductively. We pick a vertex v ∈ H ,
connected to the set {v0, v1, . . . , vi−1}. The vertex vi must be assigned to a vertex in G
which is incident to some specific vertex of the i vertices that we already mapped. Because
we have bounded degree, then there are at most k options from which to choose vi. We
obtain the bound: f (G1)− f (G2) ≤ t

∏t−1
i=1 k = tkt−1.

While the assumption G ∈ Hk may shrink the range of a subgraph counting query f ,
the restricted sensitivity of f will typically be much smaller than this reduced range. For
example, if f(G) counts the number of triangles in G then f(G) ≤ nk2 for any G ∈ Hk,
while RSf (Hk) ≤ 3k2 � nk2.

6.6 Future Questions/Directions

Efficient Mappings: While we can show that there doesn’t exist an efficiently com-
putable O(1)-smooth projection µ : G → Hk, we don’t know whether the construction of
Claim 6.15 can be improved. Meaning, there could be a mapping µ : G → H̄ for some
H̄ ⊃ Hk, whether the solution itself, the set of vertices that dominate the removed edges,
is smooth. In other words, Is there an efficiently computable mapping µ : G → H̄ ⊂ Hk

which satisfies |d (µ (G1) , G1)− d (µ (G2) , G2)| ≤ c for some constant c?

Multiple Queries: We primarily focus on improving the accuracy of a single query f .
Could the notion of restricted sensitivity be used in conjunction with other mechanisms
(e.g., exponential mechanism [43], Private Multiplicative Weights mechanism [80], etc.)
to accurately answer an entire class of queries? Chapter 5 gives a mechanism that answers
multiple cut-queries in the edge-adjacency model, but those are queries whose global sen-
sitivity is 1. It would be interesting to consider answering multiple cut-queries for the
vertex-adjacency model, where the query has local sensitivity of n.

Alternate Hypotheses: We focused on the specific hypothesis Hk. What other natural
hypothesis could be used to restrict sensitivity in private data analysis? Given such a
hypothesis H can we efficiently construct a query fH with low global sensitivity or with
low smooth sensitivity over datasets D ∈ H?

90

Part III

Clustering

91

Chapter 7

Stability yields a PTAS for k-Median
and k-Means Clustering

7.1 Introduction

In this chapter we study the two popular clustering objectives of k-median and k-means.
Both problems were surveyed in the introduction (see Chapter 4). For the problem of k-
means, the work of Ostrovsky et al [121] gives a new approximation based on separability
of the clustering instance (See 4.2.2). Ostrovsky et al showed that for a k-means instance
for which the optimal k-clustering has cost significantly smaller than the cost of any (k −
1)-clustering, then one can get a very good poly-time (in both n and k) approximation of
the k-means objective. Specifically, if the ratio of the optimal (k − 1)-clustering to the
optimal k-clustering is at least max{100, 1/α}, then one can find a k-clustering whose
cost is (1 +O(α))OPT. Here, we substantially improve on this approximation guarantee.
We show that under the much weaker assumption that the ratio of these costs is just at least
(1+α) for some constant α > 0, we can achieve a PTAS: namely, (1+ ε)-approximate the
k-means optimum, for any constant ε > 0. Our approximation scheme runs in time which
is poly(n, k) and exponential only in 1/ε and 1/α. Thus, we decouple the strength of the
assumption from the quality of the conclusion, and in the process allow the assumption
to be substantially weaker. For k-means clustering we in addition give a randomized
algorithm with improved running time nO(1)(k log n)poly(1/ε,1/α).

We also reiterate the results of Balcan, Blum and Gupta [25] from Chapter 4.2.1. Bal-
can et al, motivated by the fact that objective functions are often just a proxy for the
underlying goal of getting the data clustered correctly, propose clustering instances that

93

satisfy the condition that all (1 +α) approximations to the given objective (e.g., k-median
or k-means) are δ-close, in terms of how points are partitioned, to a target clustering (such
as a correct clustering of proteins by function or a correct clustering of images by who is
in them). Balcan et al prove that for any α and δ, given an instance satisfying this property
for k-median or k-means objectives, one can in fact efficiently produce a clustering that is
O(δ/α)-close to the target clustering (so, O(δ)-close for any constant α > 0), even though
obtaining a 1 + α approximation to the objective is NP-hard for α < 1

e
. Thus they show

that one can approximate the target even though it is hard to approximate the objective.
One interesting question that has remained is the approximability of the objectives when
all target clusters are large compared to δn, since the hardness of approximation requires
allowing small clusters.

Here, we show that for both k-median and k-means objectives, if all clusters contain
more than δn points, then for any constant α > 0 we can in fact get a PTAS. Thus, we
(nearly) resolve the approximability of these objectives under this condition. Note that
under this condition, this further implies finding a δ-close clustering (setting ε = α).
Thus, we also extend the results of Balcan et al [25] in the case of large clusters and
constant α by getting exactly δ-close for both k-median and k-means objectives. (In [25]
this exact closeness was achieved for the k-median objective but needed a somewhat larger
O(δn(1 + 1/α)) minimum cluster size requirement).

Our algorithmic results are achieved by examining implications of a property we call
weak deletion-stability that is implied by both the separation condition of Ostrovsky et
al [121] as well as (when target clusters are large) the stability condition of Balcan et
al [25]. In particular, an instance of k-median/k-means clustering satisfies weak deletion-
stability if in the optimal solution, deleting any of the centers c∗i and assigning all points
in cluster i instead to one of the remaining k − 1 centers c∗j , results in an increase in the
k-median/k-means cost by an (arbitrarily small) constant factor. We also show that weak
deletion-stability still allows for NP-hard instances and that no FPTAS is possible as well
(unless P = NP). Thus, our algorithm, whose running time is (nk)poly(1/ε,1/β), is optimal
in the sense that the super-polynomial dependence on 1/ε and 1/β is unavoidable.

Organization. After presenting notation and preliminaries, we introduce weak deletion-
stability and relate it to the stability notions of [121] and [25] in Section 7.2. We then
define another property of a clustering being β-distributed which, while not so intuitive,
we show is implied by weak deletion-stability and will be the actual condition that our
algorithms will use. We then go on to prove that being β-distributed suffices to give a
PTAS for k-median in Section 7.3. We extend the algorithm to k-means clustering in
Section 7.4, where we also introduce a randomized version whose run-time is bounded

94

by n3 ((log(n) · k))poly(1/ε,1/β). We conclude with discussion and open problems in Sec-
tion 7.5.

Notation. Throughout the chapter, we assume that we are given a set S of n points,
which we partition into k disjoint subsets. When discussing k-median, we assume the
n points reside in a finite metric space, and when discussing k-means, we assume they
all reside in a finite dimensional Euclidean space. We also use the abbreviation µCi =

1
|Ci|
∑

x∈Ci x, for the center of mass of the points in cluster Ci. We use OPT to denote the
cost of the optimal clustering C∗. We use OPTi to denote the contribution of the cluster i
to OPT, that is OPTi =

∑
x∈C∗i

d(x, c∗i) in the k-median case, or OPTi =
∑

x∈C∗i
d2(x, c∗i)

in the k-means case.

7.2 Stability Properties

As mentioned above, our results are achieved by exploiting implications of a stability
condition we call weak deletion-stability, and in particular an implication we call being
β-distributed. In this section we define weak deletion-stability and of being β-distributed,
relate weak deletion-stability to conditions of Ostrovsky et al [121] and Balcan et al [25],
and show that weak deletion-stability implies the clustering is β-distributed. In Sections
7.3 and 7.4 we use the property of being β-distributed to obtain a PTAS.1

Definition 7.1. For α > 0, a k-median/k-means instance satisfies (1 + α) weak deletion-
stability, if it has the following property. Let {c∗1, c∗2, . . . , c∗k} denote the centers in the
optimal k-median/k-means solution. Let OPT denote the optimal k-median/k-means cost
and let OPT(i→j) denote the cost of the clustering obtained by removing c∗i as a center and
assigning all its points instead to c∗j . Then for any i 6= j, it holds that

OPT(i→j) > (1 + α)OPT

We use weak deletion-stability via the following implication we call being β-distributed.

Definition 7.2. For β > 0, a k-median instance is β-distributed if for any center c∗i of the
optimal clustering and any data point x /∈ C∗i , it holds that

d(x, c∗i) ≥ β · OPT
|C∗i |

.

1Technically, we could skip the “middleman” of weak deletion-stability and just define the property of
being β-distributed as our main stability notion, but weak deletion-stability is a more intuitive condition.

95

A k-means instance is β-distributed if for any such c∗i and x /∈ C∗i , it holds that

d2(x, c∗i) ≥ β · OPT
|C∗i |

We prove that (1 + α) weak deletion-stability implies the clustering is α/2-distributed
for k-median (α/4-distributed for k-means) in Theorem 7.5 below. First, however, we
relate weak deletion-stability to the conditions considered in [121] and [25].

7.2.1 ORSS-Separability

Ostrovsky, Rabani, Schulman and Swamy [121] define a clustering instance to be ε-
separated if the optimal k-means solution is cheaper than the optimal (k − 1)-means
solution by at least a factor ε2. For a given objective (k-means or k-median) let us use
OPT(k−1) to denote the cost of the optimal (k − 1)-clustering. Introducing a parameter
α > 0, say a clustering instance is (1 + α)-ORSS separable if

OPT(k−1)

OPT
> 1 + α

If an instance satisfies (1+α)-ORSS separability then all (k−1) clusterings must have
cost more than (1 +α)OPT and hence it is immediately evident that the instance will also
satisfy (1 + α)-weak deletion-stability. Hence we have the following claim:

Claim 7.3. Any (1+α)-ORSS separable k-median/k-means instance is also (1+α)-weakly
deletion stable.

7.2.2 BBG-Stability

Balcan, Blum, and Gupta [25] (see also Balcan and Braverman [28] and Balcan, Röglin,
and Teng [30]) consider a notion of stability to approximations motivated by settings
in which there exists some (unknown) target clustering Ctarget we would like to pro-
duce. Balcan et al [25] define a clustering instance to be (1 + α, δ) approximation-
stable with respect to some objective Φ (such as k-median or k-means), if any k-partition
whose cost under Φ is at most (1 + α)OPT agrees with the target clustering on all but at
most δn data points. That is, for any (1 + α) approximation C to objective Φ, we have
minσ∈Sk

∑
i |C

target
i − Cσ(i)| ≤ δn (here, σ is simply a matching of the indices in the tar-

get clustering to those in C). In general, δn may be larger than the smallest target cluster

96

size, and in that case approximation-stability need not imply weak deletion-stability (not
surprisingly since [25] show that k-median and k-means remain hard to approximate).
However, when all target clusters have size greater than δn (note that δ need not be a con-
stant) then approximation-stability indeed also implies weak deletion-stability, allowing
us to get a PTAS (and thereby δ-close to the target) when α > 0 is a constant.

Claim 7.4. A k-median/k-means clustering instance that satisfies (1+α, δ) approximation-
stability, and in which all clusters in the target clustering have size greater than δn, also
satisfies (1 + α) weak deletion-stability.

Proof. Consider an instance of k-median/k-means clustering which satisfies (1 + α, δ)
approximation-stability. As before, let {c∗1, c∗2, . . . , c∗k} be the centers in the optimal so-
lution and consider the clustering C(i→j) obtained by no longer using c∗i as a center and
instead assigning each point from cluster i to c∗j , making the ith cluster empty. The dis-
tance of this clustering from the target is defined as 1

n
minσ∈Sk

∑
i′ |C

target
i′ −C(i→j)

σ(i′) |. Since
C(i→j) has only (k−1) nonempty clusters, one of the target clusters must map to an empty
cluster under any permutation σ. Since by assumption, this target cluster has more than
δn points, the distance between Ctarget and C(i→j) will be greater than δ and hence by
the BBG stability condition, the k-median/k-means cost of C(i→j) must be greater than
(1 + α)OPT.

7.2.3 Weak Deletion-Stability implies β-distributed

We show now that weak deletion-stability implies the instance is β-distributed.

Theorem 7.5. Any (1+α)-weakly deletion-stable k-median instance is α
2

-distributed. Any
(1 + α)-weakly deletion-stable k-means instance is α

4
-distributed.

Proof. Fix any center in the optimal k-clustering, c∗i , and fix any point p that does not
belong to the C∗i cluster. Denote by C∗j the cluster that p is assigned to in the optimal
k-clustering. Therefore it must hold that d(p, c∗j) ≤ d(p, c∗i). Consider the clustering
obtained by deleting c∗i from the list of centers, and assigning each point in C∗i to C∗j .
Since the instance is (1 + α)-weakly deletion-stable, this should increase the cost by at
least αOPT.

Suppose we are dealing with a k-median instance. Each point x ∈ C∗i originally pays
d(x, c∗i), and now, assigned to c∗j , it pays d(x, c∗j) ≤ d(x, c∗i) + d(c∗i , c

∗
j). Thus, the new

cost of the points in C∗i is upper bounded by
∑

x∈C∗i
d(x, c∗j) ≤ OPTi + |C∗i |d(c∗i , c

∗
j).

As the increase in cost is lower bounded by αOPT and upper bounded by |C∗i |d(c∗i , c
∗
j),

97

we deduce that d(c∗i , c
∗
j) > αOPT

|C∗i |
. Observe that triangle inequality gives that d(c∗i , c

∗
j) ≤

d(c∗i , p) + d(p, c∗j) ≤ 2d(c∗i , p), so we have that d(c∗i , p) > (α/2)OPT
|C∗i |

.

Suppose we are dealing with a Euclidean k-means instance. Again, we have created a
new clustering by assigning all points in C∗i to the center c∗j . Thus, the cost of transitioning
from the optimal k-clustering to this new (k − 1)-clustering, which is at least αOPT, is
upper bounded by

∑
x∈C∗i
‖x − c∗j‖2 − ‖x − c∗i ‖2. As c∗i = µC∗i , it follows that this

bound is exactly
∑

x∈C∗i
‖c∗j − c∗i ‖2 = |C∗i |d2(c∗i , c

∗
j), see [88] (§2, Theorem 2). It follows

that d2(c∗i , c
∗
j) > αOPT

|C∗i |
. As before, d2(c∗i , c

∗
j) ≤

(
d(c∗i , p) + d(p, c∗j)

)2 ≤ 4d2(c∗i , p), so

d2(c∗i , p) >
α
4
OPT
|C∗i |

.

7.2.4 NP-hardness under weak deletion-stability

Finally, we would like to point out that NP-hardness of the k-median problem in main-
tained even if we restrict ourselves only to weakly deletion-stable instances. Also the
reduction sketched below uses only integer poly-size distances, and hence rules out the
existence of a FPTAS for the problem, unless P = NP. In addition, the reduction can be
modified to show that NP-hardness is maintained under the conditions studied in [121]
and [25].

Theorem 7.6. For any constant α > 0, finding the optimal k-median clustering of (1+α)-
weakly deletion-stable instances is NP-hard.

Proof Sketch. Fix any constant α > 0. We give a 1-1 poly-time reduction from Set-
Cover to (1+α)-weakly deletion-stable k-median instances. Under standard notation, we
assume our input consists of n subsets of a given universe of size m, for which we seek a
k-cover. We reduce such an instance to a k-median instance overm+k(n+4βkm) points.
We start with the usual reduction of Set-Cover to an instance with m points representing
the items of the universe and n points representing all possible sets. Fix integer D � 1
to be chosen later. If j belongs to the ith set, fix the distance d(i, j) = D, otherwise we
fix the distance d(i, j) = D + 1, and between any two set-points we fix the distance to
be 1. (The distance between any two item points is shortest-path distance.) However, we
augment the n set-points with additional 2mD points, setting the distance between all of
the (n+2mD) points as 1. Furthermore, we replicate k copies of the augmented set-point,
all connected only via the m-item points.

Observe that each of the k copies of our augmented set-points components contains
many points, and all points outside this copy are of distance ≥ D from it. Therefore, in

98

the optimal k-median solution, each center resides in one unique copy of the augmented
set-points. Now, if our Set-Cover instance has a k-cover, then we can pick the respective
centers and have an optimal solution with cost exactly k(n+2mD−1)+mD. Otherwise,
no k sets cover all m items, so for any k centers, some item-point must have distance
D+ 1 from its center, and so the cost of any k-partition is ≥ k(n+ 2mD− 1) +mD+ 1.
Furthermore, the resulting instance is (1 + α) weakly deletion-stable as using one center
from each augmented set-point results in a k-median solution of cost≤ m(D+1)+k(n+
2mD − 1). Hence, OPT is atmost this quantity. However, in any k − 1 clustering, one
of the set-points must pay a high cost and hence OPT(k−1) ≥ (m − 1)D + (k − 1)(n +
2mD − 1) + (n + 2mD)D. One can choose D large enough so that this cost is at least
(1 + α)OPT.

7.3 A PTAS for any β-distributed k-Median Instance

We now present the algorithm for finding a (1+ε)-approximation of the k-median optimum
for β-distributed instances. First, we comment that using a standard doubling technique,
we can assume we approximately know the value of OPT.2 Our algorithm works if instead
of OPT we use a value v s.t. OPT ≤ v ≤ (1 + ε/2)OPT, but for ease of exposition, we
assume that the exact value of OPT is known.

Below, we informally describe the algorithm for a special case of β-distributed in-
stances in which no cluster dominates the overall cost of the optimal clustering. Specif-
ically, we say a cluster C∗i in the optimal k-median clustering C∗ (hereafter also referred
to as the target clustering) is cheap if OPTi ≤ βεOPT

32
, otherwise, we say C∗i is expensive.

Note that in any event, there can be at most a constant (32
βε

) number of expensive clusters.

Algorithm Intuition: The intuition for our algorithm and for introducing the notion of
cheap clusters is the following. Pick some cluster C∗i in the optimal k-median clustering.
Since the instance is β-distributed, any x /∈ C∗i is far from c∗i , namely, d(x, c∗i) > βOPT

|C∗i |
.

In contrast, the average distance of x ∈ C∗i from c∗i is OPTi
|C∗i |

. Thus, if we focus on a cluster

whose contribution, OPTi, is no more than, say, β
100

OPT, we have that c∗i is 100 times
closer, on average, to the points of C∗i than to the points outside C∗i . Furthermore, using
the triangle inequality we have that any two “average” points of C∗i are of distance at most
2β
100

OPT
|C∗i |

, while the distance between any such “average” point and any point outside of C∗i
is at least 99β

100
OPT
|C∗i |

. So, if we manage to correctly guess the size s of a cheap cluster, we can

2Instead of doubling from 1, we can alternatively run an off-the-shelf 5-approximation of OPT, which
will return a value v ≤ 5OPT.

99

set a radius r = Θ
(
βOPT

s

)
and collect data-points according to the size and intersection

of the r-balls around them. We note that this use of balls with an inverse relation between
size and radius is similar to that in the min-sum clustering algorithm of [28].

Note that in the general case we might have up to 32
βε

expensive clusters. We handle
them by brute force guessing their centers. In Subsection 7.3.1, we present the algorithm
for clustering β-distributed instances of k-median under the assumption that for all the
expensive clusters we have made the correct guess for their cluster centers. The algorithm
populates a listQ, where each element in this list is a subset of points. Ideally, each subset
is contained in some target cluster, yet we might have a few subsets with points from two
or more target clusters. The first stage of the algorithm is to add components into Q, and
the second stage is to find k good components inQ, and use these k components to retrieve
a clustering with low cost.

Since we do not have many expensive clusters, we can run the algorithm for all possible
guesses for the centers of the expensive clusters and choose the solution which has the
minimum cost. The analysis below shows that one such guess will lead to a solution of
cost at most (1 + ε)OPT. Later, in Section 7.4, when we deal with k-means in Euclidean
space, we use sampling techniques, similar to those of Kumar et al [105] and Ostrovsky
et al [121], to get good substitutes for the centers of the expensive clusters. Note however
an important difference between the approach of [105, 121] and ours. While they sample
points from all k clusters, we sample points only for the O(1) expensive clusters. As a
result, the runtime of the PTAS of [105, 121] has exponential dependence in k, while ours
has only a polynomial dependence in k.

7.3.1 Clustering β-distributed Instances

The algorithm is presented in Figure 7.1. In this section we assume that at the beginning,
the list Q is initialized with Qinit which contains the centers of all the expensive clusters.
In general, the algorithm will be run several times with Qinit containing different guesses
for the centers of the expensive clusters. Before going into the proof of correctness of
the algorithm, we introduce another definition. We define the inner ring of C∗i as the set{
x; d(x, c∗i) ≤

βOPT
8|C∗i |

}
. Note the following fact:

Fact 7.7. If C∗i is a cheap cluster, then no more than an ε/4 fraction of its points reside
outside the inner ring. In particular, at least half of a cheap cluster is contained within the
inner ring.

Proof. This follows from Markov’s inequality. If more than (ε/4)|C∗i | points are outside

100

1. Initialization Stage: Set Q ← Qinit.

2. Population Stage: For s = n, n− 1, n− 2, . . . , 1 do:

(a) Set r = βOPT
4s

.

(b) Remove any point x such that d(x,Q) < 2r.
(Here, d(x,Q) = minT∈Q;y∈T d(x, y).)

(c) For any remaining data point x, denote the set of data points whose distance
from x is at most r, by B(x, r). Connect any two remaining points a and b if:
(i) d(a, b) ≤ r, (ii) |B(a, r)| > s

2
and (iii) |B(b, r)| > s

2
.

(d) Let T be a connected component of size > s
2
. Then:

i. Add T to Q. (That is, Q ← Q∪ {T}.)
ii. Define the set B(T) = {x : d(x, y) ≤ 2r for some y ∈ T}. Remove the

points of B(T) from the instance.

3. Centers-Retrieving Stage: For any choice of k components T1, T2, . . . , Tk out of
Q (we later show that |Q| < k +O(1/β))

(a) Find the best center ci for Ti ∪ B(Ti). That is ci =
arg minp∈Ti∪B(Ti)

∑
x∈Ti∪B(Ti)

d(x, p).a

(b) Partition all n points according to the nearest point among the k centers of the
current k components.

(c) If a clustering of cost at most (1 + ε)OPT is found – output these k centers and
halt.

aThis can be done before fixing the choice of k components out of Q.

Figure 7.1: A PTAS for β-distributed instances of k-median.

101

of the inner ring, then OPTi >
ε|C∗i |

4
· βOPT

8|C∗i |
= βεOPT/32. This contradicts the fact that

C∗i is cheap.

Our high level goal is to show that for any cheap cluster C∗i in the target clustering, we
insert a component Ti that is contained within C∗i , and furthermore, contains only points
that are close to c∗i . It will follow from the next claims that the component Ti is the one
that contains points from the inner ring of C∗i . We start with the following Lemma which
we will utilize a few times.

Lemma 7.8. Let T be any component added to Q. Let s be the stage in which we add T
to Q. Let C∗i be any cheap cluster s.t. s ≥ |C∗i |. Then (a) T does not contain any point z
s.t. the distance d(c∗i , z) lies within the range

[
β
2
OPT
|C∗i |

, 3β
4

OPT
|C∗i |

]
, and (b) T cannot contain

both a point p1 s.t. d(c∗i , p1) < β
2
OPT
|C∗i |

and a point p2 s.t. d(c∗i , p2) > 3β
4

OPT
|C∗i |

.

Proof. We prove (a) by contradiction. Assume T contains a point z s.t. β
2
OPT
|C∗i |
≤ d(c∗i , z) ≤

3β
4

OPT
|C∗i |

. Set r = βOPT
4s
≤ βOPT

4|C∗i |
, just as in the stage when T was added to Q, and let p be

any point in the ball B(z, r). Then by the triangle inequality we have that d(c∗i , p) ≥
d(c∗i , z)− d(z, p) ≥ β

4
OPT
|C∗i |

, and similarly d(c∗i , p) ≤ d(c∗i , z) + d(z, p) ≤ βOPT
|C∗i |

. Since our
instance is β-distributed it holds that p belongs to C∗i , and from the definition of the inner
ring of C∗i , it holds that p falls outside the inner ring. However, z is added to T because
the ball B(z, r) contains more than s/2 ≥ |C∗i |/2 many points. So more than half of the
points in C∗i fall outside the inner ring of C∗i , which contradicts Fact 7.7.

Assume now (b) does not hold. Recall that T is a connected component, so exists some
path p1 → p2. Each two consecutive points along this path were connected because their
distance is at most βOPT

4s
≤ βOPT

4|C∗i |
. As d(c∗i , p1) < β

2
OPT
|C∗i |

and d(c∗i , p2) > 3β
4

OPT
|C∗i |

, there must

exist a point z along the path whose distance from c∗i falls in the range
[
β
2
OPT
|C∗i |

, 3β
4

OPT
|C∗i |

]
,

contradicting (a).

Claim 7.9. Let C∗i be any cheap cluster in the target clustering. By stage s = |C∗i |, the
algorithm adds to Q a component T that contains a point from the inner ring of C∗i .

Proof. Suppose that up to the stage s = |C∗i | the algorithm has not inserted such a com-
ponent into Q. Now, it is possible that by stage s, the algorithm has inserted some com-
ponent T ′ to Q, s.t. some x in the inner ring of C∗i is too close to some y ∈ T ′ (namely,
d(x, y) ≤ 2r), thus causing x to be removed from the instance. Assume for now this is
not the case. This means that the inner ring of cluster C∗i still contains more than |C∗i |/2
points. Also observe that all inner ring points are of distance at most βOPT

8|C∗i |
from the center,

102

so every pair of inner ring points has a distance of at most βOPT
4|C∗i |

. Hence, when we reach

stage s = |C∗i |, any ball of radius r = βOPT
4s

= βOPT
4|C∗i |

centered at any inner-ring point,
must contain all other inner-ring points. This means that at stage s = |C∗i | all inner ring
points are connected among themselves, so they form a component (in fact, a clique) of
size > s/2. Therefore, the algorithm inserts a new component, containing all inner ring
points.

So, by stage s = |C∗i |, one of two things can happen. Either the algorithm inserts a
component that contains some inner ring point to Q, or the algorithm removes an inner
ring point due to some component T ′ ∈ Q. If the former happens, we are done. So let us
prove by contradiction that we cannot have only the latter.

Let s ≥ |C∗i | be the stage in which we throw away the first inner ring point of the
cluster C∗i . At stage s the algorithm removes this inner ring point x because there exists
a point y in some component T ′ ∈ Q, s.t. d(x, y) ≤ 2r = βOPT

2s
, and so d(c∗i , y) ≤

d(c∗i , x) + d(x, y) ≤ βOPT
8|C∗i |

+ βOPT
2s
≤ 5

8
βOPT
|C∗i |

. This immediately implies that T ′ cannot be

the center of an expensive cluster since any such point will be at a distance at least βOPT
|C∗|

from c∗i . Let s′ ≥ s ≥ |C∗i | be the previous stage in which we added the component T ′ to
Q. As Lemma 7.8 applies to T ′, we deduce that d(c∗i , y) < β

2
OPT
|C∗i |

. Recall that T ′ contains
> s′/2 ≥ |C∗i |/2 many points, yet, by assumption, contains none of the |C∗i |/2 points that
reside in the inner ring of C∗i . It follows from Fact 7.7 that some point w ∈ T ′ must belong
to a different cluster C∗j . Since the instance is β-distributed, we have that d(c∗i , w) > βOPT

|C∗i |
.

The existence of both y and w in T ′ contradicts part (b) of Lemma 7.8.

We call a component T ∈ Q good if it contains an inner ring point of some cheap
cluster C∗i . A component is called bad if it is not good and is not one of the initial centers
present in Qinit. We now discuss the properties of good components.

Claim 7.10. Let T be a good component added to Q, containing an inner ring point from
a cheap cluster C∗i . (By Claim 7.9 we know at least one such T exists.) Then: (a) all points
in T are of distance at most βOPT

2|C∗i |
from c∗i , (b) T ∪ B(T) is fully contained in C∗i , and (c)

the entire inner ring of C∗i is contained in T ∪B(T), and (d) no other component T ′ ∈ Q,
T ′ 6= T , contains an inner ring point from C∗i .

Proof. As we do not know (d) in advance, it might be the case thatQ contains many good
components, all containing an inner-ring point from the same cluster, C∗i . Out of these
(potentially many) components, let T denote the first one inserted to Q. Denote the stage
in which T was inserted to Q as s. Due to the previous claim, we know s ≥ |C∗i |, and so

103

Lemma 7.8 applies to T . We show (a), (b), (c) and (d) hold for T , and deduce that T is the
only good component to contain an inner ring point from C∗i .

Part (a) follows immediately from Lemma 7.8. We know T contains some inner ring
point x from C∗i , so d(c∗i , x) ≤ β

8
OPT
|C∗i |

< β
2
OPT
|C∗i |

, so we know that any y ∈ T must satisfy

that d(c∗i , y) < β
2
OPT
|C∗i |

. Since we now know (a) holds and the instance is β-distributed, we
have that T ⊂ C∗i , so we only need to show B(T) ⊂ C∗i . Fix any y ∈ B(T). The point
y is assigned to B(T) (thus removed from the instance) because there exists some point
x ∈ T s.t. d(x, y) ≤ 2r. So again, we have that d(c∗i , y) ≤ d(c∗i , x) + d(x, y) ≤ βOPT

|C∗i |
,

which gives us that y ∈ C∗i (since the instance is β-distributed).

We now prove (c). Because of (b), we deduce that the number of points in T is at most
|C∗i |. However, in order for T to be added toQ, it must also hold that |T | > s/2. It follows
that s < 2|C∗i |. Let x be an inner ring point of C∗i that belongs to T . Then the distance of
any other inner ring point of C∗i and x is at most βOPT

4|C∗i |
< βOPT

2s
= 2r. It follows that any

inner ring point of C∗i which isn’t added to T is assigned toB(T). Thus T ∪B(T) contains
all inner-ring points. Finally, observe that (d) follows immediately from the definition of
a good component and from (c).

We now show that in addition to having all k good components, we cannot have too
many bad components.

Claim 7.11. We have less than 16/(3β) bad components.

Proof. Let T be a bad component, and let s be the stage in which T was inserted toQ. Let
y be any point in T , and let C∗ be the cluster to which y belongs in the optimal clustering
with center c∗. We show d(c∗, y) > 3β

8
OPT
s

. We divide into cases.

Case 1: C∗ is an expensive cluster. Note that we are working under the assumption that
Qinit contains the correct centers of the expensive clusters. In particular, Qinit contains
c∗. Also, the fact that point y was not thrown out in stage s implies that d(c∗, y) > 2r =
βOPT

2s
> 3βOPT

8s
.

Case 2: C∗ is a cheap cluster and s ≥ |C∗|. We apply Lemma 7.8, and deduce that
either d(c∗, y) < β

2
OPT
|C∗| or that d(c∗, y) > 3β

4
OPT
|C∗| ≥

3β
4

OPT
s

. As the inner ring of C∗

contains > |C∗|/2 and T contains > s/2 ≥ |C∗|/2 many points, none of which is an inner
ring point, some point w ∈ T does not belong to C∗ and hence d(c∗, w) > βOPT

|C∗| >
3β
4

OPT
|C∗| .

Part (b) of Lemma 7.8 assures us that all points in T are also far from c∗.

Case 3: C∗ is a cheap cluster and s < |C∗|. Using Claim 7.9 we have that some good
component containing a point x from the inner ring of C∗ was already added to Q. So it

104

must hold that d(x, y) > 2r, for otherwise we removed y from the instance and it cannot
be added to any T . We deduce that d(c∗, y) ≥ d(x, y)−d(c∗, x) ≥ βOPT

2s
− βOPT

8|C∗| >
3β
8

OPT
s

.

All points in T have distance > 3βOPT
8s

from their respective centers in the optimal
clustering, and recall that T is added to Q because T contains at least s/2 many points.
Therefore, the contribution of all elements in T to OPT is at least 3βOPT

16
. It follows that

we can have no more than 16/3β such bad components.

We can now prove the correctness of our algorithm.

Theorem 7.12. The algorithm outputs a k-clustering whose cost is no more than (1 +
ε)OPT.

Proof. Using Claim 7.10, it follows that there exists some choice of k components, T1, . . . , Tk,
such that we have the center of every expensive cluster and the good component corre-
sponding to every cheap cluster C∗. Fix that choice. We show that for the optimal clus-
tering, replacing the true centers {c∗1, c∗2, ..., c∗k} with the centers {c1, c2, ..., ck} that the
algorithm outputs, increases the cost by at most a (1 + ε) factor. This implies that using
the {c1, c2, ..., ck} as centers must result in a clustering with cost at most (1 + ε)OPT.

Fix any C∗i in the optimal clustering. Let OPTi be the cost of this cluster. If C∗i is an
expensive cluster then we know that its center c∗i is present in the list of centers chosen.
Hence, the cost paid by points in C∗i will be at most OPTi. If C∗i is a cheap cluster then
denote by T the good component corresponding to it. We break the cost of C∗i into two
parts: OPTi =

∑
x∈C∗i

d(x, c∗i) =
∑

x∈T∪B(T) d(x, c∗i) +
∑

x∈C∗i , yet x/∈T∪B(T) d(x, c∗i) and
compare it to the cost C∗i using ci, the point picked by the algorithm to serve as center:∑

x∈C∗i
d(x, ci) =

∑
x∈T∪B(T) d(x, ci) +

∑
x∈C∗i , yet x/∈T∪B(T) d(x, ci). Now, the first term is

exactly the function that is minimized by ci, as ci = arg minp
∑

x∈T∪B(T) d(x, p). We also
know c∗i , the actual center of C∗i , resides in the inner ring, and therefore, by Claim 7.10
must belong to T ∪ B(T). It follows that

∑
x∈T∪B(T) d(x, ci) ≤

∑
x∈T∪B(T) d(x, c∗i).

We now upper bound the 2nd term, and show that
∑

x∈C∗i , yet x/∈T∪B(T) d(x, ci) ≤ (1 +

ε)
∑

x∈C∗i , yet x/∈T∪B(T) d(x, c∗i)

Any point x ∈ C∗i , s.t. x /∈ T ∪ B(T), must reside outside the inner ring of C∗i .
Therefore, d(x, c∗i) > βOPT

8|C∗i |
. We show that d(ci, c

∗
i) ≤ εβOPT

8|C∗i |
, and thus we have that

d(x, ci) ≤ d(x, c∗i) + d(c∗i , ci) ≤ (1 + ε)d(x, c∗i), which gives the required result.

Note that thus far, we have only used the fact that the cost of any cheap cluster is
proportional to βOPT/|C∗i |. Here is the first (and the only) time we use the fact that the
cost is actually at most (ε/32) · βOPT/|C∗i |. Using the Markov inequality, we have that
the set of points satisfying {x; d(x, c∗i) ≤ ε · βOPT/(16|C∗i |)} contains at least half of

105

the points in C∗i , and they all reside in the inner ring, thus belong to T ∪ B(T). Assume
for the sake of contradiction that d(ci, c

∗
i) ≥ εβOPT

8|C∗i |
. Then at least half of the points in C∗i

contribute more than ε βOPT
16|C∗i |

to the sum
∑

x∈T∪B(T) d(x, ci). It follows that this sum is more

than ε βOPT
32|C∗i |

≥ OPTi. However, ci is the point that minimizes the sum
∑

x∈T∪B(T) d(x, p),
and by using p = c∗i we have

∑
x∈T∪B(T) d(x, p) ≤ OPTi. Contradiction.

7.3.2 Runtime analysis

A naive implementation of the 2nd step of algorithm in Section 7.3.1 takes O(n3) time
(for every s and every point x, find how many of the remaining points fall within the ball
of radius r around it). Finding ci for all components takes O(n2) time, and measuring the
cost of the solution using a particular set of k data points as centers takes O(nk) time.
Guessing the right k components takes kO(1/β) time. Overall, the running time of the
algorithm in Figure 7.1 is O(n3kO(1/β)). The general algorithm that brute-force guesses
the centers of all expensive clusters, makes nO(1/βε) iterations of the given algorithm, so
its overall running time is nO(1/βε)kO(1/β).

7.4 A PTAS for any β-distributed Euclidean k-Means In-
stance

7.4.1 Intuition

Analogous to the k-median algorithm, we present an essentially identical algorithm for
k-means in Euclidean space. Indeed, the fact that k-means considers distances squared,
makes upper (or lower) bounding distances a bit more complicated, and requires that we
fiddle with the parameters of the algorithm. In addition, the centers c∗i may not be data
points. However, the overall approach remains the same. Roughly speaking, converting
the k-median algorithm to the k-means case, we use the same constants, only squared.
As before we handle expensive clusters by guessing good substitutes for their centers and
obtain good components for cheap clusters.

Often, when considering the Euclidean space k-means problem, the dimension of the
space plays an important factor. In contrast, here we make no assumptions about the
dimension, and our results hold for any poly(n) dimension. In fact, for ease of exposition,

106

we assume all distances between any two points were computed in advance and are given
to our algorithm. Clearly, this only adds O(n2 · dim) to our runtime. In addition to the
change in parameters, we utilize the following facts that hold for the center of mass in
Euclidean space.

Fact 7.13. Let U be a (finite) set of points in an Euclidean space, and let µU denote their
center of mass (µ = 1

|U |
∑

x∈U x). Let A be a random subset of U , and denote by µA the
center of mass of A. Then for any δ < 1/2, we have both

Pr

[
‖µU − µA‖2 >

1

δ|A|
· 1

|U |
∑
x∈U

‖x− µU‖2

]
< δ (7.1)

Pr

[∑
x∈U

‖x− µA‖2 > (1 +
1

δ|A|
) ·
∑
x∈U

‖x− µU‖2

]
< δ (7.2)

Fact 7.14. Let U be a (finite) set of points in an Euclidean space, and let A 6= ∅ and B
be a partition of U . Denote by µU and µA the center of mass of U and A resp. Then
‖µU − µA‖2 ≤ 1

|U |
∑

x∈U ‖x− µU‖2 · |B||A| .

Fact 7.14, proven in [121] (Lemma 2.2), allows us to upper bound the distance between
the real center of a cluster and the empirical center we get by averaging all points in
T ∪ B(T) for a good component T . Fact 7.13 allows us to handle expensive clusters.
Since we cannot brute force guess a center (as the center of the clusters aren’t necessarily
data points), we guess a sample of O(β−1 + ε−1) points from every expensive cluster, and
use their average as a center. Both properties of Fact 7.13, proven in [88] (§3, Lemma
1 and 2), assure us that the center is an adequate substitute for the real center and is also
close to it. This motivates the approach behind our first algorithm, in which we brute-force
traverse all choices of O(ε−1 + β−1) points for any of the expensive clusters.

The second algorithm, whose runtime is (k log n)poly(1/ε,1/β)O(n3), replaces brute-
force guessing with random sampling. Indeed, if a cluster contains poly(1/k) fraction
of the points, then by randomly sampling O(ε−1 + β−1) points, the probability that all
points belong to the same expensive cluster, and furthermore, their average can serve as a
good empirical center, is at least 1/kpoly(1/ε,1/β). In contrast, if we have expensive clusters
that contain few points (e.g. an expensive cluster of size

√
n, while k = poly(log(n))),

then random sampling is unlikely to find good empirical centers for them. However, recall
that our algorithm collects points and deletes them from our instance. So, it is possible that
in the middle of the run, we are left with so few points, so that expensive clusters whose
size is small in comparison to the original number of points, contain a poly(1/k) fraction
of the remaining points.

107

Indeed, this is the motivation behind our second algorithm. We run the algorithm
while interleaving the Population Stage of the algorithm with random sampling. Instead
of running s from n to 1, we use

{
n, n

k2 ,
n
k4 ,

n
k6 , . . . , 1

}
as break points. Correspond-

ingly, we define li to be the number of expensive clusters whose size is in the range
[n · k−2i−2, n · k−2i). Whenever s reaches such a n ·k−2i break point, we randomly sample
points in order to guess the li+3 centers of the clusters that lie 3 intervals “ahead” (and so,
initially, we guess all centers in the first 3 intervals). We prove that in every interval we
are likely to sample good empirical centers. This is a simple corollary of Fact 7.14 along
with the following two claims. First, we claim that at the end of each interval, the number
of points remaining is at most n · k−2i+1. Secondly, we also claim that in each interval we
do not remove even a single point from a cluster whose size is smaller than n · k−2i−6.

7.4.2 A Deterministic Algorithm for β-distributed k-Means Instances

Our algorithm is presented in Figure 7.2. The correctness is proved in a similar fashion
to the proof of correctness presented in Section 7.3. Much like in Section 7.3, we call
a cluster in the optimal k-means solution cheap if OPTi =

∑
x∈C∗i

d2(x, c∗i) ≤
βεOPT

46 .
First, observe that by the Markov inequality, for any cheap cluster C∗i , we have that the
set
{
x; d2(x, c∗i) > tβOPT

|C∗i |

}
cannot contain more than ε/(46t) fraction of the points in

|C∗i |. It follows that the inner ring of C∗i , the set
{
x; d2(x, c∗i) ≤

βOPT
256|C∗i |

}
, contains at

least half of the points of C∗i . The algorithm populates the list Q with good components
corresponding to cheap clusters. Also from Fact 7.13, we know that for every expensive
cluster, there exists a sample of O(1

β
+ 1

ε
) data points whose center is a good substitute

for the center of the cluster. In the analysis below, we assume that Q has been initialized
correctly with Qinit containing these good substitutes. In general, the algorithm will be
run multiple times for all possible guesses of samples from expensive clusters. We start
with the following lemma which is similar to Lemma 7.8.

Lemma 7.15. Let T ∈ Q be any component and let s be the stage in which we insert T to
Q. Let C∗i be any cheap cluster s.t. s ≥ |C∗i |. Then (a) T does not contain any point z s.t.
the distance d2(c∗i , z) lies within the range

[
β
16

OPT
|C∗i |

, β
4
OPT
|C∗i |

]
, and (b) T cannot contain both

a point p1 s.t. d2(c∗i , p1) ≤ β
16

OPT
|C∗i |

and a point p2 s.t. d2(c∗i , p2) > β
4
OPT
|C∗i |

.

Proof. Assume (a) does not hold. Let z be such point, and let B(z, r) be the set of all
points p s.t. d2(z, p) ≤ r = βOPT

64s
≤ βOPT

64|C∗i |
. As d2(z, c∗i) ≥

βOPT
16|C∗i |

, we have that d(z, p) ≤
1
2
d(z, c∗i). It follows that d2(c∗i , p) ≥ (d(c∗i , z)− d(z, p))2 ≥ (d(c∗i , z)/2)2 = βOPT

64|C∗i |
. Sim-

108

1. Initialization Stage: Set Q ← Qinit.

2. Population Stage: For s = n, n− 1, n− 2, . . . , 1 do:

(a) Set r = βOPT
64s

.

(b) Remove any point x such that d2(x,Q) < 4r.
(Here, d(x,Q) = minT∈Q;y∈T d(x, y).)

(c) For any remaining data point x, denote the set of data points whose distance
squared from x is at most r, by B(x, r). Connect any two remaining points a
and b if:
(i) d2(a, b) ≤ r, (ii) |B(a, r)| > s

2
and (iii) |B(b, r)| > s

2
.

(d) Let T be a connected component of size > s
2
. Then:

i. Add T to Q. (That is, Q ← Q∪ {T}.)
ii. Define the set B(T) = {x : d2(x, y) ≤ 4r for some y ∈ T}. Remove the

points of B(T) from the instance.

3. Centers-Retrieving Stage: For any choice of k components T1, T2, . . . , Tk out of
Q

(a) Find the best center ci for Ti ∪B(Ti).
That is ci = µ(Ti ∪B(Ti)) = 1

|Ti∪B(Ti)|
∑

x∈Ti∪B(Ti)
x.

(b) Partition all n points according to the nearest point among the k centers of the
current k components.

(c) If a clustering of cost at most (1 + ε)OPT is found – output these k centers and
halt.

Figure 7.2: A deterministic PTAS for β-distributed instances of Euclidean k-means.

109

ilarly, d2(c∗i , p) ≤ (d(c∗i , z) + d(z, p))2 ≤ (3d(c∗i , z)/2)2 ≤ 9β
16

OPT
|C∗i |

. Thus B(z, r) is con-
tained inC∗i , but falls outside the inner-ring ofC∗i , yet contains s/2 ≥ |C∗i |/2 many points.
Contradiction.

Assume (b) does not hold. Let p1 and p2 the above mentioned points. As T is a con-
nected components, it follows that along the path p1 → p2, exists a pairs of neighboring
nodes, x, y, s.t. d2(x, y) ≤ r ≤ βOPT

64|C∗i |
yet d2(c∗i , x) ≤ β

16
OPT
|C∗i |

while d2(c∗i , y) ≥ β
4
OPT
|C∗i |

.

However, a simple computation gives that d2(c∗i , y) ≤ (3d(c∗i , x)/2)2 ≤ 9β
64

OPT
|C∗i |

. Contra-
diction.

Lemma 7.15 allows us to give the analogous claims to Claims 7.9 and 7.10. As before,
call a component T good if it is contained within some target cluster C∗i and T ∪ B(T)
contains all of the inner ring points ofC∗i . Otherwise, the component is called bad provided
it is not one of the initial centers present in Qinit. We now show that each cheap target
cluster will have a single, unique, good component.

Claim 7.16. Let C∗i be any cheap cluster in the target clustering. By stage s = |C∗i |, the
algorithm adds to Q a component T that contains a point from the inner ring of C∗i .

Claim 7.17. Let T be a good connected component added to Q, containing an inner ring
point from cluster C∗i . Then: (a) all points in T are of distance squared at most βOPT

16|C∗i |
from

c∗i , (b) T ∪ B(T) is fully contained in C∗i , and (c) the entire inner ring of C∗i is contained
in T ∪ B(T), and (d) no other component T ′ 6= T in Q contains an inner ring point from
C∗i .

As the proofs of Claims 7.16 and 7.17 are identical to the Claims 7.9 and 7.10, we omit
them.

Lemma 7.18. We do not add to Q more than 1000/β bad components.

Proof. Consider any bad component T that we add to Q and denote that stage in which
we insert T to Q as s. So the size of this component is > s

2
. Let y be an arbitrary point

from T which belongs to cluster C∗ in the optimal clustering. Let c∗ be the center of C∗.
We show that d2(c∗, y) > βOPT

500s
.

We divide into cases.

Case 1: C∗ is a cheap cluster and s ≥ |C∗|. Recall that T must contain s/2 ≥ |C∗|/2
points, so it follows that T contains some point x that does not belong to C∗. β-stability
gives that this point has distance d2(c∗, x) > βOPT

|C∗| , and we apply Lemma 7.15 to deduce
that all points in T are of distance squared of at least β

4
OPT
|C∗| .

110

Case 2: C∗ is a cheap cluster and s < |C∗|. In this case we have that the entire inner
ring of C∗ already belongs to some T ′ ∈ Q. Let x ∈ T ′ be any inner ring point from
C∗, and we have that d(c∗, x)2 ≤ βOPT

256|C∗| ≤
βOPT
256s

, while d2(x, y) > βOPT
16s

. It follows that
d2(c∗, y) ≥ (3d(x, y)/4)2 > βOPT

500s
.

Case 3: C∗ is an expensive cluster and s > 2|C∗|. We claim that d2(c∗, y) > βOPT
32|C∗| .

If, by contradiction, we have that d2(c∗, y) ≤ βOPT
32|C∗| , then we show that the ball B(y, r)

contains only points from C∗i , yet it must contains s/2 > |C∗i | points. This is because each

p ∈ B(y, r) satisfies that d2(c∗, p) ≤ (d(c∗, y) + d(y, p))2 ≤
(√

βOPT
32|C∗| +

√
βOPT

16s

)2

<

βOPT
|C∗| .

Case 4: C∗ is an expensive cluster and s ≤ 2|C∗|. In this case, from Fact 7.13 we
know that Qinit contains a a good empirical center c for the expensive cluster C∗, in the
sense that ‖c− c∗‖2 ≤ βOPT

512|C∗| ≤
βOPT
256s

. Then, similarly case 2 above we have d2(y, c∗) ≥
(d(y, c)− d(c, c∗))2 > βOPT

500s
. It follows that every point in T has a large distance from its

center. Therefore, the s/2 points in this component contribute at least βOPT/1000 to the
k-means cost. Hence, we can have no more than 1000/β such bad components.

We now prove the main theorem.

Theorem 7.19. The algorithm outputs a k-clustering whose cost is at most (1 + ε)OPT.

Proof. Using Claim 7.17, it follows that there exists some choice of k components which
has good components for all the cheap clusters and good substitutes for the centers of the
expensive clusters. Fix that choice and consider a cluster C∗i with center c∗i . If C∗i is an
expensive cluster then from Section 7.4 we know that Qinit contains a point ci such that
d2(ci, c

∗
i) ≤

βε
β+ε

OPTi
|C∗i |

. Hence, the cost paid by the points in C∗i will be atmost (1+ε)OPTi.
If C∗i is a cheap cluster then denote by T the good component that resides within C∗i .
Denote T ∪B(T) byA, andC∗i \A byB. Let ci be the center ofA. We know that the entire
inner-ring of C∗i is contained in A, therefore, B cannot contain more than ε/16 fraction of
the points of C∗i . Fact 7.14 dictates that in this case, ‖c∗i − ci‖2 ≤ ε2 βOPT

46|C∗i |
. We know every

x ∈ B contributes at least βOPT
256|C∗i |

to the cost of C∗i , so ‖c∗i − ci‖2 ≤ ε
16
‖x− c∗i ‖2. Thus, for

every x ∈ B, we have that ‖x−ci‖2 ≤ (1+ ε)‖x−c∗i ‖2. It follows that
∑

x∈B ‖x−ci‖2 ≤
(1 + ε)

∑
x∈B ‖x − c∗i ‖2, and obviously

∑
x∈A ‖x − ci‖2 ≤

∑
x∈A ‖x − c∗i ‖2 as ci is the

center of mass of A. Therefore, when choosing the good k components out of Q, we can
assign them to the centers in such a way that costs no more than (1+ε)OPT. Obviously the
assignment of each point to the nearest of the k-centers only yields a less costly clustering,
and thus its cost is also at most (1 + ε)OPT.

111

7.4.3 A Randomized Algorithm for β-distributed k-Means Instances

We now present a randomized algorithm which achieves a (1 + ε) approximation to the
k-means optimum of a β-distributed instance and runs in time (k logk n)poly(1/ε,1/β)O(n3).
The algorithm is similar in nature to the one presented in the previous section, except that
for expensive clusters we replace brute force guessing of samples with random sampling.
Note that the straightforward approach of sampling the points right at the start of the algo-
rithm might fail, if there exist expensive clusters which contain very few points. A better
approach is to interleave the sampling step with the rest of the algorithm. In this way we
sample points from an expensive cluster only when it contains a reasonable fraction of the
total points remaining, hence our probability of success is noticeable (namely, poly(1/k)).
The alterations required in making the previous algorithm into a randomized one that also
samples cluster centers are detailed in Figure 7.3.

The high-level approach of the algorithm is to partition the main loop of the Population
Stage, in which we try all possible values of s (starting from n and ending at 1), into
intervals. In interval i we run s on all values starting with n

k2i and ending with n
k2i+2 . So

overall, we have no more than t = 1
2

logk(n) intervals. Our algorithm begins by guessing
l, the number of expensive clusters, then guessing g1, g2, . . . , gt s.t.

∑
i gi = l. Each gi

is a guess for the number of expensive clusters whose size lies in the range
[
n
k2i ,

n
k2(i−1)

)
.

Note that
∑

i gi = # expensive clusters ≤ 46

βε
. Hence, there are at most (logk n)

46

βε number
of possible assignments to gi’s and we run the algorithm for every such possible guess.

Fixing g1, g2, . . . , gt, we run the Population Stage of the previous algorithm. However,
whenever s reaches a new interval, we apply random sampling to obtain good empirical
centers for the expensive clusters whose size lies three intervals “ahead”. That is, in the
beginning of interval i, the algorithm tries to collect centers for the clusters whose size
≥ n

k6+2i = s
k6 , yet ≤ n

k4+2i = s
k4 . We assume for this algorithm that k is significantly

greater than 1
β

. Obviously, if k is a constant, then we can use the existing algorithm of
Kumar et al [105].

In order to prove the correctness of the new algorithm, we need to show that the sam-
pling step in the initialization stage succeeds with noticeable probability. Let li be the
actual number of expensive clusters whose size belongs to the range

[
n
k2i ,

n
k2(i−1)

)
. In the

proof which follows, we assume that the correct guess for li’s has been made, i.e. gi = li,
for every i. We say that the algorithm succeeds at the end of interval i if the following
conditions hold:

1. In the beginning of the interval, our guess for all clusters that belong to interval
(i + 3) produces good empirical centers. That is, for every expensive cluster C∗ of

112

1. Guess l ≤ 46

βε
, the number of expensive clusters. Set t = 1

2
(logk n). Guess non-

negative integers g1, g2, . . . gt, such that
∑

i gi = l.

2. Sample g1 + g2 + g3 sets, by sampling independently and u.a.r O(1
β

+ 1
ε
) points for

each set. For each such set T̃j , add the singleton {µ(T̃j)} to Q.

3. Modify the Population Stage from the previous algorithm, so that whenever s = n
k2i

for some i ≥ 1 (We call this the interval i)

• Sample gi+3 sets, by sampling independently and u.a.r O(1
β

+ 1
ε
) points for

each set. For each such set T̃j , add the singleton {µ(T̃j)} to Q.

4. Proceed with the Centers-Retrieving Stage as before.

Figure 7.3: A Randomized PTAS for β-distributed instances of Euclidean k-means, that

succeeds w.p. k−O(
1
β

+
1
ε

).

size in the range
[

n
k6+2i ,

n
k4+2i

)
, the algorithm picks a sample T̃ such that the mean

µ(T̃) satisfies:

(a) d2(µ(T̃), c∗) ≤ βOPT
256|C∗| .

(b)
∑

x∈C∗ d
2(x, µ(T̃)) ≤ (1 + ε)

∑
x∈C∗ d

2(x, c∗).

2. During the interval, we do not delete any point p that belongs to some target cluster
C∗ of size ≤ n

k4+2(i+1) points.

3. At the end of the interval, the total number of remaining points (points that were not
added to some T ∈ Q or deleted from the instance because they are too close to
some T ′ ∈ Q) is at most n

k2i−1 .

Lemma 7.20. For every i ≥ 1, let Si denote the event that the algorithm succeeds at the
end of interval i. Then Pr[Si|S1, S2, . . . , Si−1] ≥ k−l(i+3)·O(1

β
+ 1
ε
)

Before going into the proof we show that Lemma 7.20 implies that with noticeable
probability, our algorithm returns a (1 + ε)-approximation of the k-means optimal clus-
tering. First, observe the technical fact that for the first three intervals l1, l2, l3, we need

113

to guess the centers of clusters of size ≥ n
k6 before we start our Population Stage. How-

ever, as these clusters contain k−6 fraction of the points, then using Fact 7.13, our sam-
pling finds good empirical centers for all of these l1 + l2 + l3 expensive clusters w.p.
≥ k−(l1+l2+l3)O(1

β
+ 1
ε
). Applying Lemma 7.20 we get that the probability our algorithm

succeeds after all intervals is ≥ 1/k
O(β+ε

β2ε2
). Now, a similar analysis as in the previous sec-

tion gives us that for the correct guess of the good components in Q, we find a clustering
of cost at most (1 + ε)OPT.

Proof of Lemma 7.20. Recall that β is a constant, whereas k is not. Specifically, we as-
sume throughout the proof that k2 > 500

β
, and so we allow ourselves to use asymptotic

notation.

We first prove that condition 2 holds during interval i. Assume for the sake of con-
tradiction that for some cluster C∗ whose size is less than n

k6+2i , there exists some point
y ∈ C∗, which was added to some component T during interval i, at some stage s ∈[

n
k2i+2 ,

n
k2i

)
. This means that by setting the radius r = βOPT

64s
, the ball B(y, r) contains

> s/2 ≥ n
2k2i+2 points. Since C∗ contains at most n

k6+2i many point, we have |C∗| � s/2,
so at least s/4 points in B(y, r) belong to other clusters. Our goal is to show that these
s/4 points contribute more than OPT to the target clustering, thereby achieving a contra-
diction.

Let x be such point, and denote the cluster that x is assigned to in the target cluster-
ing by C∗j 6= C∗. Since the instance is β-distributed we have that d2(c∗, x) > βOPT

|C∗| ≥
βOPTk6+2i

n
. On the other hand, d2(x, y) ≤ r = βOPT 1

64s
≤ βOPTk2+2i

64n
. Therefore,

d2(c∗, x) = Ω(k4) · r, so d2(y, c∗) = (d(c∗, x)− d(x, y))2 = Ω(k4) · r. Recall that in
the target clustering each point is assigned to its nearest center, so d2(c∗j , y) ≥ d2(c∗, y) =

Ω(k4) ·r. So we have that d2(c∗j , x) ≥
(
d(c∗j , y)− d(x, y)

)2
= Ω(k4) ·r = Ω(k4) · βOPT

64
k2i

n
.

So, at least s/4 = Ω(n
k2i+2) points contribute Ω(k4)βOPT

64
k2i

n
to the cost of the optimal

clustering. Their total contribution is therefore Ω(k2) · β
64
OPT > OPT. Contradiction.

A similar proof gives that no point y ∈ C∗ is deleted from the instance because for
some x ∈ T , where T is some component in Q, we have that d2(y, x) < 4r. Again,
assume for the sake of contradiction that such y,x and T exist. Denote by s ∈

[
n

k2i+2 ,
n
k2i

)
the stage in which we remove y, and denote by s′ ≥ s the stage in which we insert T into
Q. By setting the radius r′ = βOPT

64s′
≤ r, we have that the ball B(x, r′) contains at least

s′/2 ≥ s/2 points, and therefore, the ball B(y, 5r) contains at least s/2 points. We now
continue as in the previous case.

We now prove condition 1. We assume the algorithm succeeded in all previous inter-

114

vals. Therefore, at the beginning of interval i, all points that belong to clusters of size
≤ n

k2i+4 remain in the instance, and in particular, the clusters we wish to sample from
at interval i remain intact. Furthermore, by the assumption that the algorithm succeeded
up to interval (i − 1), we have that each expensive cluster that should be sampled at the
beginning of interval i, contains a 1/k7 fraction of the remaining points. We deduce that
the probability that we pick a random sample of O(1

β
+ 1

ε
) points from such expensive

cluster is at least k−O(1
β

+ 1
ε
). Using Fact 7.13 we have that with probability ≥ k−O(1

β
+ 1
ε
)

this sample yields a good empirical center.

We now prove condition 3, under the assumption that 1 is satisfied. We need to bound
the number of points left in the instance at the end of interval i. There are two types of
remaining points: points that in the target clustering belong to clusters of size > n

2k2i , and
points that belong to clusters of size ≤ n

2k2i . To bound the number of points of the second
type is simple – we have k clusters, so the overall number of points of the second type is
at most n

2k2i−1 . We now bound the number of remaining points of the first type.

At the end of the interval s = n
k2i+2 , so we remove from the instance any point p whose

distance (squared) from some point in Q is at most 4r = OPT
16

k2i+2

n
. We already know that

by the end of interval i, either by successfully sampling an empirical center or by adding
an inner-ring point to a component in Q, for every cluster C∗ of size > n

2k2i , exists some
T ∈ Q with a point c′ ∈ T , s.t. d2(c∗, c′) ≤ βOPT

256|C∗| ≤
βOPT

128
k2i

n
. Thus, if x ∈ C∗ is

a point that wasn’t removed from the instance by the end of interval i, it must hold that
d2(c∗, x) ≥ (d(c′, x)− d(c∗, c′))2 = Ω(k2i+2)OPT

n
. Clearly, at most n · O(k−2i−2) points

can contribute that much to the cost of the optimal k-means clustering, and so the number
of points of the first type is at most n

2k2i−1 as well.

As we need to traverse all guesses gis, the runtime of this algorithm takesO(n3(logk n)O(1
βε

)).
Repeating this algorithm kO(l(1

β
+ 1
ε
)) many times, we increase the probability of success to

be ≥ 1/2, and incur runtime of O(n3(logk n)O(1
βε

)k
O(β+ε

β2ε2
)
).

7.5 Discussion and Open Problems

The algorithm we present here for k-median has runtime of poly(n1/β, n1/ε, k), and the
algorithm for k-means has runtime poly(n, (k log n)1/ε, (k log n)1/β).3 We comment that it
is unlikely that we can obtain an algorithm of runtime poly(n1/ε, 1/β, k). Observe that for

3When dealing with k-means in a Euclidean space of dimension dim, we need to explicitly compute the
distances, so we add n2dim to the runtime.

115

any clustering instance and any k > 1 we have that OPT(k−1)

OPT
> 1+ 1

n
, simply by considering

the k-clustering that results from taking the optimal (k−1)-clustering, and setting the point
which is the furthest from its center in a cluster of its own (as a new center). Hence, any
k-median/k-means instance is β-distributed for β = Ω(1

n
). Recall from Section 7.2.4

the k-median problem restricted only to weakly-stable instances has no FPTAS. So the
fact that our algorithm’s runtime has super-polynomial dependence in both 1/β and 1/ε
is unavoidable. Nonetheless, one might still hope to do better. In particular, one major
runtime expense of our algorithm comes from handling expensive clusters by brute-force
guessing or sampling. Can one improve the runtime by doing something more clever for
expensive clusters? It is worth noting that for the stability conditions of [25], Voevodski et
al [140] develop an especially efficient implementation with good performance (in terms
of both accuracy and speed) on real-world protein sequence datasets.

A different open problem lies in the relation to results of Ostrovsky et al [121]. Their
motivating question was to analyze the performance of Lloyd-type methods over stable
instances. Is it possible that weak deletion-stability is sufficient for some version of the
k-means heuristic to converge to the optimal clustering?

116

Chapter 8

Center-based Clustering under
Perturbation Stability

8.1 Introduction

In the vast field of clustering, the recent work of Bilu and Linial [40] takes a refreshing
approach to clustering. Bilu and Linial [40], focusing on the Max-Cut problem [71], pro-
posed considering instances where the optimal clustering is optimal not only under the
given metric, but also under any bounded multiplicative perturbation of the given metric.
Bilu and Linial [40] analyze Max-Cut instances of this type and show that for instances
that are stable to perturbations of multiplicative factor roughly O(n1/2), one can retrieve
the optimal Max-Cut in polynomial time. They conjecture that stability up to only con-
stant magnitude perturbations should be enough to solve the problem in polynomial time.
(Center-based clustering and the recent approach proposed by Bilu and Linial [40] were
discussed in detail in Chapter 4.2.3.)

In this chapter we show that this conjecture is indeed true for k-median and k-means
objectives and in fact for any well-behaved center-based objective function (see Defini-
tion 4.2). We comment that in the previous chapter, Chapter 7, we studied instances satis-
fying “weak deletion stability” – where merging any two clusters in the optimal k-solution
increases the cost by a noticeable factor. This notion is motivated both as a relaxation of
the separation condition of Ostrovsky et al [121], and also as a relaxation of the notion
considered by Balcan et al [25]. However, there exists “clear-cut” instances, where the
optimal k-clustering is obvious, which weak-deletion stability fails to capture. The notion
of stability studied in this chapter, perturbation resilience, indeed capture such instances

117

(but fails to capture instances satisfying the weak-deletion stability notion of Chapter 7).
Example is given in Figure 8.1.

(a) Instance satisfying perturbation resilience
but isn’t weak-deletion stable. The distance of
any point to its cluster center is 1 and distances
between two different centers is 5 and remain-
ing distances are short-path distances. With k
clusters, each with n

k points, merging two clus-
ters increases the cost by a sub-constant factor
of O(1/k).

(b) Instance satisfying weak-deletion stability but isn’t
perturbation resilient. The cluster centers are within dis-
tance k apart, but there are many “middle” points whose
distance to both centers is roughly k/2. Perturbing the
distances can cause the middle points to change clusters.

Figure 8.1: Instances satisfying one notion of stability but no the other.

8.1.1 Main Result

For clarity, let us formally redefine the notions of stability under multiplicative perturba-
tions.

Definition 8.1. Given a metric (S, d), and α > 1, we say a function d′ : S × S → R≥0 is
an α-perturbation of d, if for any x, y ∈ S it holds that

d(x, y) ≤ d′(x, y) ≤ αd(x, y)

Note that in this definition, much like in the definition of [40], d is a metric (satisfying
reflexivity, symmetry and triangle inequality), yet d′ may be any non-negative function.
In particular, we allow d′ to not satisfy the triangle inequality. We now give our main
definitions and main theorem.

118

Definition 8.2. Suppose we have a clustering instance composed of n points residing in a
metric (S, d) and an objective function Φ we wish to optimize. We call the clustering in-
stance α-perturbation resilient for Φ if for any d′ which is an α-perturbation of d, the (only)
optimal clustering of (S, d′) under Φ is identical, as a partition of points into subsets, to
the optimal clustering of (S, d) under Φ.

We will in particular be concerned with separable, center-based clustering objectives
Φ (which include k-median, k-means, and k-center among others).

Definition 8.3. A clustering objective is center-based if the optimal solution can be defined
by k points c∗1, . . . , c

∗
k in the metric space called centers such that every data point is

assigned to its nearest center. Such a clustering objective is separable if it furthermore
satisfies the following two conditions:

• The objective function value of a given clustering is either a (weighted) sum or the
maximum of the individual cluster scores.

• Given a proposed single cluster, its score can be computed in polynomial time.

Our main result is that we can efficiently find the optimal clustering for perturbation-
resilient instances of separable center-based clustering objectives. In particular, we get an
efficient algorithm for 3-perturbation-resilient instances when the metric S is defined only
over data points, and for (2 +

√
3)-perturbation-resiliant instances for general metrics.

Theorem 8.4. For α ≥ 3 (in the case of finite metrics defined only over the data) or
α ≥ 2 +

√
3 (for general metrics), there is a polynomial-time algorithm that finds the

optimal clustering of α-perturbation resilient instances for any given separable center-
based clustering objective.

The algorithm, described in Section 8.2.2, turns out to be quite simple. As a first step, it
runs the classic single-linkage algorithm, but unlike the standard approach of halting when
k clusters remain, it runs the algorithm until all points have been merged into a single
cluster and keeps track of the entire tree-on-clusters produced.1 Then, the algorithm’s
second step is to apply dynamic programming to this hierarchical clustering to identify
the best k-clustering that is present within the tree. Using a result of Balcan et al [27] we
show that the resulting clustering obtained is indeed the optimal one. Albeit being very
different, our approach resembles, in spirit, the work of Bartal [32], Abraham et al [2] and

1The example depicted in Figure 8.4 proves that indeed, halting the Single-Linkage algorithm once k
clusters are formed may fail on certain α-perturbation resilient instances.

119

Räcke [124] in the sense that we reduce the problem of retrieving an optimal solution from
a general instance to a tree-like instance (where it is poly-time solvable).

Our algorithms use only a weaker property, which we call center-proximity (see Sec-
tion 8.2.1), that is implied by perturbation-resilience. We then complement these results
with a lower bound showing that for the problem of k-median on general metrics, for any
ε > 0, there exist NP-hard instances that satisfy (3 − ε)-center proximity. We note that
while our belief was that allowing Steiner points in the lower bound was primarily a tech-
nicality, Balcan and Liang [29] have recently shown this is not the case, giving a clever
algorithm that finds the optimal clustering for k-median instances in finite metrics when
α = 1+

√
2, and Reyzin [127] gave a NP-hardness result for clustering instances satisfying

(2− ε)-center proximity.

8.2 Proof of Main Theorem

8.2.1 Properties of Perturbation Resilient Instances

We begin by deriving other properties which every 3-perturbation resilient clustering in-
stance must satisfy.

Definition 8.5. Let p ∈ S be an arbitrary point, let c∗i be the center p is assigned to in the
optimal clustering, and let c∗j 6= c∗i be any other center in the optimal clustering. We say a
clustering instance satisfies the α-center proximity property if for any p it holds that

d(p, c∗j) > αd(p, c∗i)

Fact 8.6. If a clustering instance satisfies the α-perturbation resilience property, then it
also satisfies the α-center proximity property.

Proof. Let C∗i and C∗j be any two clusters in the optimal clustering and pick any p ∈ C∗i .
Assume we blow up all the pairwise distances within cluster C∗i by a factor of α. As
this is a legitimate perturbation of the metric, it still holds that the optimal clustering
under this perturbation is the same as the original optimum. Hence, p is still assigned
to the same cluster. Furthermore, since the distances within C∗i were all changed by the
same constant factor, c∗i will still remain an optimal center of cluster i. The same holds
for cluster C∗j . It follows that even in this perturbed metric, p prefers c∗i to c∗j . Hence
αd(p, c∗i) = d′(p, c∗i) < d′(p, c∗j) = d(p, c∗j).

120

Corollary 8.7. For every point p and its center c∗i , and for every point p′ from a different
cluster, it follows that d(p, p′) > (α− 1)d(p, c∗i).

Proof. Denote by c∗j the center of the cluster that p′ belongs to. Now, consider two
cases. Case (a): d(p′, c∗j) ≥ d(p, c∗i). In this case, by traingle inequality we get that
d(p, p′) ≥ d(p′, c∗i)−d(p, c∗i). Since the data instance is stable to α-perturbations, Fact 8.6
gives us that d(p′, c∗i) > αd(p′, c∗j). Hence we get that d(p, p′) > αd(p′, c∗j) − d(p, c∗i)
≥ (α− 1)d(p, c∗i). Case (b): d(p′, c∗j) < d(p, c∗i). Again by traingle inequality we get that
d(p, p′) ≥ d(p, c∗j)− d(p′, c∗j) > αd(p, c∗i)− d(p′, c∗j) > (α− 1)d(p, c∗i).

A key ingredient in the proof of Theorem 8.4 is the tree-clustering formulation of
Balcan et. al [27]. In particular, we prove that if an instance satisfies α-center proximity
for α ≥ 3 then it also satisfies the “min stability property” (defined below). This property,
as shown in [27], is a (necessary and) sufficient condition for the Single-Linkage algorithm
to produce a tree such that the optimal clustering is some pruning of this tree. In order to
define the “min-stability” property, we first introduce the following notation. For any two
subsets A,B ⊂ S, we denote the minimum distance between A and B as dmin(A,B) =
min{d(a, b) | a ∈ A, b ∈ B}.

Definition 8.8. A clustering instance satisfies the min-stability property if for any two
clusters C and C ′ in the optimal clustering, and any two subsets A (C, A′ ⊆ C ′, it holds
that dmin(A,C \ A) ≤ dmin(A,A′).

In words, the min-stability property means that for any set A that is a strict subset of
some cluster C in the optimal clustering, the closest point to A is a point from C \ A, and
not from some other cluster. The next two lemmas lie at the heart of our algorithm.

Lemma 8.9. A clustering instance (for a center-based clustering objective) in which cen-
ters are data points, that satisfies α-center proximity for α ≥ 3, also satisfies the min-
stability property.

Proof. Let C∗i , C
∗
j be any two clusters in the target clustering. Let A and A′ be any two

subsets s.t. A (C∗i and A′ ⊆ C∗j . Let p ∈ A and p′ ∈ A′ be the two points which obtain
the minimum distance dmin(A,A′). Let q ∈ C∗i \A be the nearest point to p. Also, denote
by c∗i and c∗j the centers of clusters C∗i and C∗j respectively.

For the sake of contradiction, assume that dmin(A,C∗i \ A) ≥ dmin(A,A′). Suppose
c∗i /∈ A. This means that d(p, p′) = dmin(A,A′) ≤ dmin(A,C∗i \ A) ≤ d(p, c∗i). As α ≥ 3,
this contradicts Corollary 8.7.

121

Thus we may assume c∗i ∈ A. It follows that d(q, c∗i) ≥ d(p, p′) > (3 − 1)d(p, c∗i) =
2d(p, c∗i), so d(p, c∗i) < d(q, c∗i)/2. We therefore have that d(p′, c∗i) ≤ d(p, p′) + d(p, c∗i) ≤
3d(q, c∗i)/2. This implies that d(p′, c∗j) < d(p′, c∗i)/α < d(q, c∗i)/2, and thus d(q, c∗j) ≤
d(q, c∗i) + d(c∗i , p) + d(p, p′) + d(p′, c∗j) < 3d(q, c∗i) ≤ αd(q, c∗i). This contradicts Fact 8.6.

Lemma 8.10. A clustering instance (for a center-based clustering objective) in which
centers need not be data points, that satisfies α-center proximity for α ≥ 2 +

√
3, also

satisfies the min-stability property.

Proof. As in the proof of Lemma 8.9, letC∗i , C
∗
j be any two clusters in the target clustering

and let A and A′ be any two subsets s.t. A (C∗i and A′ ⊆ C∗j . Let p ∈ A and p′ ∈ A′ be
the two points which obtain the minimum distance dmin(A,A′) and let q ∈ C∗i \ A be the
nearest point to p. Also, as in the proof of Lemma 8.9, let c∗i and c∗j denote the centers of
clusters C∗i and C∗j respectively (though these need not be datapoints).

By definition of center-proximity, we have the following inequalities:

d(p, p′) + d(p′, c∗j) > αd(p, c∗i) [c.p. applied to p]
d(p, p′) + d(p, c∗i) > αd(p′, c∗j) [c.p. applied to p′]
d(p, p′) + d(p′, c∗j) + d(p, q) > α(d(q, p)− d(p, c∗i))

[center proximity applied to q and triangle ineq.]

Multiplying the first inequality by 1 − 1
α+1
− 1

α−1
, the second by 1

α+1
, the third by 1

α−1
,

and summing them together we get

d(p, p′) > α2−4α+1
α−1

d(p, c∗i) + d(q, p),

which for α = 2 +
√

3 implies d(p, p′) > d(q, p) as desired.

8.2.2 The Algorithm

As mentioned, Balcan et al [27] proved (Theorem 2) that if an instance satisfies min-
stability, then the tree on clusters produced by the single-linkage algorithm contains the
optimal clustering as some k-pruning of it. I.e., the tree produced by starting with n clus-
ters of size 1 (viewed as leaves), and at each step merging the two clusters C,C ′ minimiz-
ing dmin(C,C ′) (viewing the merged cluster as their parent) until only one cluster remains.
Given the structural results proven above, our algorithm (see Figure 8.2) simply uses this
clustering tree and finds the best k-pruning using dynamic programming.

122

1. Run Single-Linkage until only one cluster remains, producing the entire tree on
clusters.

2. Find the best k-pruning of the tree by dynamic programming using the equality

best-k-pruning(T) = min0<k′<k

{
best-k′-pruning(T ’s left child)
+ best-(k − k′)-pruning(T ’s right child)

}
Figure 8.2: Algorithm to find the optimal k-clustering of instances satisfying α-center proximity.
The algorithm is described for the case (as in k-median or k-means) that Φ defines the overall score
to be a sum over individual cluster scores. If it is a maximum (as in k-center) then replace “+”
with “max” above.

Proof of Theorem 8.4. By Lemmas 8.9 and 8.10, the data satisfies the min-stability prop-
erty, which as shown in [27] is sufficient to guarantee that some pruning of the single-
linkage hierarchy is the target clustering. We then find the optimal clustering using dy-
namic programming by examining k-partitions laminar with the single-linkage clustering
tree. The optimal k-clustering of a tree-node is either the entire subtree as one cluster (if
k = 1), or the minimum over all choices of k1-clusters over its left subtree and k2-clusters
over its right subtree (if k > 1). Here k1, k2 are positive integers, such that k1 + k2 = k.
Therefore, we just traverse the tree bottom-up, recursively solving the clustering problem
for each tree-node. By assumption that the clustering objective is separable, so each step
including the base-case can be performed in polynomial time. For the case of k-median
in a finite metric, for example, one can maintain a n × O(n) table for all possible centers
and all possible clusters in the tree, yielding a running time of O(n2 + nk2). For the case
of k-means in Euclidean space, one can compute the cost of a single cluster by comput-
ing the center as just the average of all its points. In general, the overall running time is
O(n(k2 + T (n))), where T (n) denotes the time it takes to compute the cost of a single
cluster.

8.2.3 Some Natural Barriers

We complete this section with a discussion of barriers of our approach. First, our algorithm
indeed fails on some finite metrics that are (3 − ε)-perturbation resilient. For example,
consider the instance shown in Figure 8.3. In this instance, the clustering tree produced by
single-linkage is not laminar with the optimal k-median clustering. It is easy to check that
this instance is resilient to α-perturbations for any α < 3.

123

’ ’

Figure 8.3: An example of a finite metric k-median instance with 2 < α < 3 where our algorithm
fails. The optimal 2-median clustering is {c, p, q}, {c′, p′}. In contrast, when we run our algorithm
over on this instance, single linkage first connects {c, p} with {c′, p′}, and only then merges these
4 points with q.

Second, observe that our analysis, though emanating from perturbation resilience, only
uses center proximity. We next show that for general metrics, one cannot hope to solve (in
poly-time) k-median instances satisfying α-center proximity for α < 3. This is close to
our upper bound of 2 +

√
3 for general metrics.

Theorem 8.11. For any α < 3, the problem of solving k-median instances over general
metrics that satisfy α-center proximity is NP-hard.

Proof. The proof of Theorem 8.11 follows from the classical reduction of Max-k-Coverage
to k-median. In this reduction, we create a bipartite graph where the right-hand side ver-
tices represent the elements in the ground set; the left-hand side vertices represent the
given subsets; and the distance between the set-vertex and each element-vertex is 1, if the
set contains that element. Using shortest-path distances, it follows that the distance from
any element-vertex to a set-vertex to which it does not belong to is at least 3. Using the fact
that the NP-hardness results for Max-k-Coverage holds for disjoint sets (i.e. the optimal
solution of Yes-instances is composed of k disjoint sets, see [68]), the α-center proximity
property follows.

Lastly, we comment that using Single-Linkage in the usual way (namely, stopping
when there are k clusters remaining) is not sufficient to produce a good clustering. We
demonstrate this using the example shown in Figure 8.4. Observe, in this instance, since
C contains significantly less points than A,B, or D, this instance is stable – even if we
perturb distances by a factor of 3, the cost of any alternative clustering is higher than the
cost of the optimal solution. However, because d(A,C) > d(B,D), it follows that the
usual version of Single-Linkage will unite B and D, and only then A and C. Hence, if we
stop the Single-Linkage algorithm at k = 3 clusters, we will not get the desired clustering.

124

A

C

D

B

10

20

100

Figure 8.4: An example showing that the usual version of Single-Linkage fails. The instance
is composed of 4 components, each with inner-distance ε and outer-distance as described in the
figure. However, components A,B and D each contain 100 points, whereas component C has
only 10 points. The optimal 3-median clustering consists of 3 clusters: {A,C}, {B}, {D} and has
cost OPT = 200 + 300ε.

8.3 Future Directions

There are several natural open questions left by this work. First, can one reduce the pertur-
bation factor α needed for efficient clustering? As mentioned earlier, recently Balcan and
Liang [29] have given a very interesting algorithm that reduces the α = 3 factor needed
by our algorithm for finite metrics to 1 +

√
2. Additionally, they also extend our work in

a different direction, giving algorithms for clustering instances that are “mostly resilient”
to α-perturbations: having the property that under any α-perturbation of the underlying
metric, no more than a δ-fraction of the points get mislabeled under the optimal solution.
Reyzin [127] gives a NP-hardness for clustering 2-center proximity instances (with no
Steiner points) as well as a single-pass algorithm that cluster instances which are ≈ 5.7
perturbation resilient.

Alternatively, one can consider a weaker notion of resilience to perturbations on aver-
age: a clustering instance whose optimal clustering is likely not to change, assuming the
perturbation is random from some suitable distribution. Can this weaker notion be used to
still achieve positive guarantees?

125

126

Chapter 9

Improved Spectral-Norm Bounds for
Clustering

9.1 Introduction

In the long-studied field of clustering, there has been substantial work [56, 59, 13, 138, 4,
50, 96, 54, 47] studying the problem of clustering data from mixture of distributions under
the assumption that the means of the distributions are sufficiently far apart. Each of these
works focuses on one particular type (or family) of distribution, and devise an algorithm
that successfully clusters datasets that come from that particular type. Typically, they
show that w.h.p. such datasets have certain nice properties, then use these properties in the
construction of the clustering algorithm.

The recent work of Kumar and Kannan [104] takes the opposite approach. First, they
define a separation condition, deterministic and thus not tied to any distribution, and show
that any set of data points satisfying this condition can be successfully clustered. Having
established that, they show that many previously studied clustering problems indeed satisfy
(w.h.p) this separation condition. These clustering problems include Gaussian mixture-
models, the Planted Partition model of McSherry [110] and the work of Ostrovsky et
al [121]. In this aspect they aim to unify the existing body of work on clustering under
separation assumptions, proving that one algorithm applies in multiple scenarios.1

1We comment that, implicitly, Achlioptas and McSherry [4] follow a similar approach, yet they focus
only on mixtures of Gaussians and log-concave distributions. In addition, the work of [53] studies a deter-
ministic separation condition required for efficient clustering, extending the separation condition of [110].
The precise condition presented in [53] is technical but essentially assumes that the underlying graph over

127

However, the attempt to unify multiple clustering works is only successful in part.
First, Kumar and Kannan’s analysis is “wasteful” w.r.t the number of clusters k. Clearly,
motivated by an underlying assumption that k is constant, their separation bound has linear
dependence in k and their classification guarantee has quadratic dependence on k. As a
result, Kumar and Kannan overshoot best known bounds for the Planted Partition Model
and for mixture of Gaussians by a factor of

√
k. Similarly, the application to datasets

considered by Ostrovsky et al only holds for constant k. Secondly, the analysis in Kumar-
Kannan is far from simple – it relies on most points being “good”, and requires multiple
iterations of Lloyd steps before converging to good centers. Our work addresses these
issues.

To formally define the separation condition of [104], we require some notation. Our
input consists of n points in Rd. We view our dataset as a n × d matrix, A, where each
datapoint corresponds to a row Ai in this matrix. We assume the existence of a target
partition, C∗ = {C∗1 , C∗2 , . . . , C∗k}, where each cluster’s center is µ(C∗r) = 1

nr

∑
i∈C∗r

Ai,
where nr = |C∗r |. Thus, the target clustering is represented by a n × d matrix of cluster
centers, C, where the ith row of C equals µ(C∗r) iff i ∈ C∗r . Therefore, the k-means cost of
this partition is the squared Frobenius norm ‖A−C‖2

F , but the focus of this paper is on the
spectral (L2) norm of the matrixA−C. Indeed, the deterministic equivalent of the maximal
variance in any direction is, by definition, 1

n
‖A− C‖2 = max{v: ‖v‖=1}

1
n
‖(A− C)v‖2.

Definition. Fix i ∈ C∗r . We say a datapoint Ai satisfies the Kumar-Kannan proximity con-
dition if for any s 6= r, when projecting Ai onto the line connecting µr and µs, the projec-
tion ofAi is closer to µ(C∗r) than to µ(C∗s) by an additive factor of Ω

(
k(1√

nr
+ 1√

ns
)‖A− C‖

)
.

Kumar and Kannan proved that if all but at most ε-fraction of the data points satisfy
the proximity condition, they can find a clustering which is correct on all but an O(k2ε)-
fraction of the points. In particular, when ε = 0, their algorithm clusters all points cor-
rectly. Observe, the Kumar-Kannan proximity condition gives that the distance ‖µr − µs‖
is also bigger than the above mentioned bound. The opposite also holds – one can show
that if ‖µr − µs‖ is greater than this bound then only few of the points do not satisfy the
proximity condition.

the set of points has a “low rank structure” and presents an algorithm to recover this structure which is then
enough to cluster well.

128

9.1.1 Our Contribution

Our Separation Condition. In this work, the bulk of our analysis is based on the fol-
lowing quantitatively weaker version of the proximity condition, which we call center
separation. Formally, we define ∆r = 1√

nr
min{

√
k‖A−C‖, ‖A−C‖F} and we assume

throughout the paper that for a large constant2 cwe have that the means of any two clusters
C∗r and C∗s satisfy

‖µ(C∗r)− µ(C∗s)‖ ≥ c(∆r + ∆s) (9.1)

Observe that this is a simpler version of the Kumar-Kannan proximity condition, scaled
down by a factor of

√
k. Even though we show that (9.1) gives that only a few points

do not satisfy the proximity condition, our analysis (for the most part) does not partition
the dataset into good and bad points, based on satisfying or non-satisfying the proximity
condition. Instead, our analysis relies on basic tools, such as the Markov inequality and the
triangle inequality. In that sense one can view our work as “aligning” Kumar and Kannan’s
work with the rest of clustering-under-center-separation literature – we show that the bulk
of Kannan and Kumar’s analysis can be simplified to rely merely on center-separation.

Our results. We improve upon the results of [104] along several axes. In addition to
the weaker condition of Equation (9.1), we also weaken the Kumar-Kannan proximity
condition by a factor of k, and still retrieve the target clustering, if all points satisfy the
(k-weaker) proximity condition. Secondly, if at most εn points do not satisfy the k-weaker
proximity condition, we show that we can correctly classify all but a (ε+O(1/c4))-fraction
of the points, improving over the bound of [104] of O(k2ε). Note that our bound is mean-
ingful even if ε is a constant whereas k = ω(1). Furthermore, we prove that the k-means
cost of the clustering we output is a (1 + O(1/c))-approximation of the k-means cost of
the target clustering.

Once we have improved on the main theorem of Kumar and Kannan, we derive imme-
diate improvements on its applications. In Section 9.3.1 we show our analysis subsumes
the work of Ostrovsky et al [121], and applies also to non-constant k. Using the fact that
Equation (9.1) “shaves off” a

√
k factor from the separation condition of Kumar and Kan-

nan, we obtain a separation condition of Ω(σmax

√
k) for learning a mixture of Gaussians,

2We comment that throughout the paper, and much like Kumar and Kannan, we think of c as a large
constant (c = 100 will do). However, our results also hold when c = ω(1), allowing for a (1 + o(1))-
approximation. We also comment that we think of d� k, so one should expect ‖A−C‖2F ≥ k‖A−C‖2 to
hold, thus the reader should think of ∆r as dependent on

√
k‖A− C‖. Still, including the degenerate case,

where ‖A−C‖2F < k‖A−C‖, simplifies our analysis in Section 9.3. One final comment is that (much like
all the work in this field) we assume k is given, as part of the input, and not unknown.

129

and we also match the separation results of the Planted Partition model of McSherry [110].
These results are described in Section 9.5.

Comparison with previous stability notions. In Chapter 7 we studied clustering in-
stances satisfying weak-deletion stability – where merging two clusters in the optimal
k-means clustering increases the cost significantly. In Chapter 8 we studied the notion
of instances which are perturbation resilient – where any 3-multiplicative change to the
distances doesn’t change the optimal k-means clustering. Both of these notions are very
different from the center-separation notion studied here. Think of the motivating example
of learning a mixture of k-Gaussians in a high-dimensional space Rd (with d > k), and
with ∆r =

√
k√
nr
‖A − C‖. In this example, merging clusters r and s by assigning the nr

points in cluster r to µs increases the cost by a factor of nr∆2
r = k‖A − C‖2. Assuming

k‖A−C‖2 � ‖A−C‖2
F , we have that the increase in cost is negligible and so the instance

doesn’t satisfy weak-deletion stability. Similarly, such mixture of Gaussians doesn’t sat-
isfy perturbation resilient, as the distance between cluster centers (under the right choice
of parameters) is even smaller than the average distance of a point to its own cluster center.
As we show, it is only after we project the instance onto the subspace spanned by its top
k singular vectors that we get an instance where distances between centers are large in
comparison to distances inside a cluster.

We comment that indeed, in the case where ∆r = 1√
nr
‖A− C‖F , then (as we discuss

in Section 9.3.1) we do have an instance which is of the type considered by Ostrovsky et
al [121] – and therefore the instance is also weak-deletion stable. Still, the algorithm we
propose here is deterministic (as opposed to the randomized algorithm of [121]) and its
running time is much smaller than the running time of the algorithm detailed in Chapter 7
(no exponential dependency on a parameter β). Finally, we comment that one can design
instances in small dimension (even d = 2) satisfying perturbation resilience and yet they
do not satisfy center separation. An example of such instance was given in Figure 8.1.

Organization. To formally detail our results, we first define some notations and discuss
a few preliminary facts. The next section (Section 9.2) contains the details of the prelimi-
naries, as well as a formal statement of our algorithm and its guarantees, and an overview
of the proof. The first part of the analysis of our algorithms is in Section 9.3, and it is
enough for us to give a “one-line” proof in Section 9.3.1 showing how the work of Ostro-
vsky et al falls into our framework. The second part of the analysis of our algorithm is in
Section 9.4. The improved guarantees we get by applying the algorithm to the Planted Par-
tition model and to the Gaussian mixture model are discussed in Section 9.5. We conclude

130

with an open problem in Section 9.6.

9.2 Notations and Preliminaries

9.2.1 Notation

The Frobenius norm of a n × m matrix M , denoted as ‖M‖F is defined as ‖M‖F =√∑
i,jM

2
i,j . The spectral norm of M is defined as ‖M‖ = maxx:‖x‖=1 ‖Mx‖. It is a well

known fact that if the rank of M is t, then ‖M‖2
F ≤ t‖M‖2. Recall the Singular Value

Decomposition (SVD) of M , denoted M = UΣV T , where U is a n× n unitary matrix, V
is a m ×m unitary matrix, Σ is a n ×m diagonal matrix whose entries are nonnegative
real numbers, and its diagonal entries satisfy σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n}. The columns
of U and V , denoted ui and vi resp., are called the left- and right-singular vectors. As a
convention, when referring to singular vectors, we mean the right-singular vectors. Pro-
jecting M onto its top t singular vectors means taking M̂ =

∑t
i=1 σiuiv

T
i . It is a known

fact that for any t, the t-dimensional subspace which best fits the rows of M , is obtained
by projecting M onto the subspace spanned by the top t singular vectors (corresponding
to the top t singular values). Another way to phrase this result is by saying that M̂ =
arg minN :rank(N)=t{‖M −N‖F}. (For a proof, see [97].) The same matrix, M̂ , also mini-
mizes the spectral norm of this difference, meaning M̂ = arg minN :rank(N)=t{‖M − N‖}
(see [73] for a proof).

As previously defined, ‖A − C‖ denotes the spectral norm of A − C. We abbreviate,
and denote µr = µ(C∗r). From this point on, we denote the projection of A onto the
subspace spanned by its top k-singular vectors as Â, and for any vector v, we denote v̂
as the projection of v onto this subspace. Throughout the paper, we abuse notation and
use i to iterate over the rows of A, whereas r and s are used to iterate over clusters (or
submatrices). So Ai represents the ith row of A whereas Ar represents the submatrix
[Ai]{i∈C∗r }.

9.2.2 Basic Facts.

The analysis of our main theorem makes use of the following facts, from [110, 97, 104].
We advise the reader to go over the proofs, which are short and elegant.

The first fact bounds the cost of assigning the points of Â to their original centers.

131

Fact 9.1 (Lemma 9 from [110]). ‖Â − C‖2
F ≤ 8 min{k‖A − C‖2, ‖A − C‖2

F}
(

=

8nr∆
2
r for every r

)
.

Proof.

‖Â− C‖2
F ≤ 2k‖Â− C‖2 ≤ 2k

(
‖Â− A‖+ ‖A− C‖

)2

≤ 2k (2‖A− C‖)2

where the first inequality holds because rank(Â−C) ≤ 2k, and the last inequality follows
from the fact that Â = arg minN :rank(N)=k{‖A−N‖}. For the same reason, ‖Â− C‖F ≤
‖A− Â‖F + ‖A− C‖F ≤ 2‖A− C‖F .

Next, we show that we can match each target center µr to a unique, relatively close,
center νr that we get in Part I of the algorithm (see Figure 9.1).

Fact 9.2 (Claim 1 in Section 3.2 of [97]). For every µr there exists a center νs s.t. ‖µr −
νs‖ ≤ 6∆r, so we can match each µr to a unique νr.

Proof. Observe that by taking Â− Ĉ, we project A− C to a k-dimensional subspace, so
we have that ‖Â− Ĉ‖2

F ≤ k‖Â− Ĉ‖2 ≤ k‖A−C‖2. Similarly, ‖Â− Ĉ‖2
F ≤ ‖A−C‖2

F .

Assume for the sake of contradiction that ∃r s.t. ‖µr − νs‖ > 6∆r for all s. Since
‖Â − Ĉ‖2

F ≤ nr∆
2
r , then our 10-approximation algorithm yields a clustering of cost ≤

10nr∆
2
r . In contrast, as each Âi is assigned to some νc(i), the contribution of only the

points in C∗r to the k-means cost of the clustering is more than∑
i∈C∗r

∥∥∥(µr − νc(i))− (Âi − µr)
∥∥∥2

>
nr
2

(6∆r)
2−
∑
i∈C∗r

‖Âi−µr‖2 ≥ 18nr∆
2
r−‖Â−C‖2

F ≥ 10nr∆
2
r

where the first inequality follows from the fact that (a− b)2 ≥ 1
2
a2 − b2.

Finally, we exhibit the following fact, which is detailed in the analysis of [104].

Fact 9.3. Fix a target cluster C∗r and let Sr be a set of points created by removing ρoutnr
points from C∗r and adding ρin(s)nr points from each cluster s 6= r, s.t. every added point
x satisfies ‖x− µs‖ ≥ 2

3
‖x− µr‖. Assume ρout < 1

4
and ρin

def
=
∑

s 6=r ρin(s) < 1
4
. Then

‖µ(Sr)−µr‖ ≤
1
√
nr

(
√
ρout + 3

2

∑
s 6=r

√
ρin(s)

)
‖A−C‖ ≤

(√
ρout
nr

+ 3
2

√
k

√
ρin
nr

)
‖A−C‖

132

In order to prove Fact 9.3 we use the following Fact.

Fact 9.4 (Lemma 5.2 and Corollary 5.3 from [104]). Fix any cluster C∗r and a subset
X ⊂ C∗r . Then

|X| ‖µ(X)− µr‖ = (|C∗r | − |X|) ‖µ(C∗r \X)− µr‖ ≤
√
|X| ‖Ar − Cr‖

Proof. Let uX be the indicator vector of X . Then

‖ |X| (µ(X)− µr) ‖ = ‖(Ar − Cr)T uX‖ ≤ ‖(Ar − Cr)T‖ ‖uX‖ = ‖Ar − Cr‖
√
|X|

and the fact that |X| ‖µ(X) − µr‖ = |C∗r \ X| ‖µ(C∗r \ X) − µr‖ is simply because
µr = |X|

|C∗r |
µ(X) + |C∗r \X|

|C∗r |
µ(C∗r \X).

Proof of Fact 9.3. We break ‖µ(Sr)− µr‖ into its components and deduce

‖µ(Sr)− µr‖ ≤
(1− ρout)nr

nr
‖µ(Sr ∩ C∗r)− µr‖+

∑
s 6=r

ρin(s)nr
nr

‖µ(Sr ∩ C∗s)− µr‖

≤ (1− ρout)nr
nr

‖µ(Sr ∩ C∗r)− µr‖+ 3
2

∑
s 6=r

ρin(s)nr
nr

‖µ(Sr ∩ C∗s)− µs‖

Plugging in Fact 9.4 we have ‖µ(Sr) − µr‖ ≤ 1
nr

(√
ρoutnr + 3

2

∑
s6=r

√
ρin(s)nr

)
‖A −

C‖. The last inequality comes from maximizing the sum of square-roots by taking each
ρin(s) = ρin/k.

9.2.3 Formal Description of the Algorithm and Our Theorems

Having established notation, we now present our algorithm, in Figure 9.1. Our algorithm’s
goal is three fold: (a) to find a partition that identifies with the target clustering on the
majority of the points, (b) to have the k-means cost of this partition comparable with the
target, and (c) output k centers which are close to the true centers. It is partitioned into 3
parts. Each part requires stronger assumptions, allowing us to prove stronger guarantees.

• Assuming only the center separation of (9.1), then Part I gives a clustering which
(a) is correct on at least 1 − O(c−2) fraction of the points from each target clus-
ter (Theorem 9.5), and (b) has k-means cost smaller than (1 + O(1/c))‖A − C‖2

F

(Theorem 9.6).

133

Part I: Find initial centers:

• Project A onto the subspace spanned by the top k singular vectors.

• Run a 10-approximation algorithma for the k-means problem on the projected
matrix Â, and obtain k centers ν1, ν2, . . . , νk.

Part II: Set Sr ← {i : ‖Âi − νr‖ ≤ 1
3
‖Âi − νs‖, for every s} and θr ← µ(Sr).

Part III: Repeatedly run Lloyd steps until convergence.

• Set Θr ← {i : ‖Ai − θr‖ ≤ ‖Ai − θs‖, for every s}.

• Set θr = µ(Θr).

aThroughout the paper, we assume the use of a 10-approximation algorithm. Clearly, it is
possible to use any t-approximation algorithm, assuming c/t is a large enough constant.

Figure 9.1: Algorithm ∼Cluster

• Assuming also that ∆r =
√
k√
nr
‖A−C‖, i.e. assuming the non-degenerate case where

‖A− C‖2
F ≥ k‖A− C‖2, then Part II finds centers that are O(1/c)‖A−C‖√

nr
close to

the true centers (Theorem 9.7). As a result (see Section 9.4.1), if (1 − ε)n points
satisfy the proximity condition (weakened by a k factor,), then we misclassify no
more than (ε+O(c−4))n points.

• Assuming all points satisfy the proximity condition (weakened by a k-factor), Part
III finds exactly the target partition (Theorem 9.14).

9.2.4 Proofs Overview

Proof outline for Section 9.3. The first part of our analysis is an immediate application
of Facts 9.1 and 9.2. Our assumption dictates that the distance between any two centers
is big (≥ c(∆r + ∆s)). Part I of the algorithm assigns each projected point Âi to the
nearest νr instead of the true center µr and Fact 9.2 assures that the distance ‖µr − νr‖
is small (< 6∆r). Consider a misclassified point Ai, where ‖Ai − µr‖ < ‖Ai − µs‖ yet
‖Âi−νs‖ < ‖Âi−νr‖. The triangle inequality assures that Âi has a fairly big distance to its
true center (> (c

2
− 12)∆r). We deduce that each misclassified point contributes Ω(c2∆2

r)
to the k-means cost of assigning all projected points to their true centers. Fact 9.1 bounds

134

this cost by ‖Â − C‖2
F ≤ 8nr∆

2
r , so the Markov inequality proves only a few points

are misclassified. Additional application of the triangle inequality for misclassified points
gives that the distance between the original point Ai and a true center µr is comparable to
the distance ‖Ai − µs‖, and so assigning Ai to the cluster s only increases the k-means
cost by a small factor.

Proof outline for Section 9.4. In the second part of our analysis we compare between
the true clustering C∗ and some proposed clustering S , looking both at the number of
misclassified points and at the distances between the matching centers ‖µr − θr‖. As
Kumar and Kannan show, the two measurements are related: Fact 9.3 shows how the
distances between the means depend on the number of misclassified points, and the main
lemma (Lemma 9.11) essentially shows the opposite direction. These two relations are
how Kumar and Kannan show that Lloyd steps converge to good centers, yielding clusters
with few misclassified points. They repeatedly apply (their version of) the main lemma,
showing that with each step the distances to the true means decrease and so fewer of the
good points are misclassified.

To improve on Kumar and Kannan analysis, we improve on the two above-mentioned
relations. Lemma 9.11 is a simplification of a lemma from Kumar and Kannan, where
instead of projecting into a k-dimensional space, we project only into a 4-dimensional
space, thus reducing dependency on k. However, the dependency of Fact 9.3 on k is tight3.
So in Part II of the algorithm we devise sub-clusters Sr s.t. ρin(s) = ρout/k

2. The crux
in devising Sr lies in Proposition 9.10 – we show that any misclassified projected point
i ∈ C∗s ∩ Sr is essentially misclassified by µ̂r. And since (see [4]) ‖µr − µ̂r‖ ≤ 1√

k
∆r

(compared to the bound ‖µr − νr‖ ≤ 6∆r), we are able to give a good bound on ρin(s).

Recall that we rely only on center separation rather than a large batch of points satisfy-
ing the Kumar-Kannan separation, and so we do not apply iterative Lloyd steps (unless all
points are good). Instead, we apply the main lemma only once, w.r.t to the misclassified
points in C∗s ∩ Sr, and deduce that the distances ‖µr − θr‖ are small. In other words, Part
II is a single step that retrieve centers whose distances to the original centers are

√
k-times

better than the centers retrieved by Kumar and Kannan in numerous Lloyd iterations.

3In fact, Fact 9.3 is exactly why the case of k = ω(1) is hard – because the L1 and L2 norms of the
vector (1√

k
, 1√

k
, . . . , 1√

k
) are not comparable for non-constant k.

135

9.3 Part I of the Algorithm

In this section, we look only at Part I of our algorithm. Our approximation algorithm
defines a clustering T , where Tr = {i : ‖Âi − νr‖ ≤ ‖Âi − νs‖ for every s}. Our goal in
this section is to show that T is correct on all but a small constant fraction of the points,
and furthermore, the k-means cost of T is no more than (1 + O(1/c)) times the k-means
cost of the target clustering.

Theorem 9.5. There exists a matching (given by Fact 9.2) between the target clustering
C∗ and the clustering T = {Tr}r where Tr = {i : ‖Âi − νr‖ ≤ ‖Âi − νs‖ for every s}
that satisfies the following properties:

• For every cluster C∗s0 in the target clustering, no more than O(1/c2)|C∗s0| points are
misclassified.

• For every cluster Tr0 in the clustering that the algorithm outputs, we add no more
than O(1/c2)|C∗r0 | points from other clusters.

• At mostO(1/c2)|C∗r2 | points are misclassified overall, whereC∗r2 is the second largest
cluster.

Proof. Let us denote Ts→r as the set of points Âi that are assigned to C∗s in the target
clustering, yet are closer to νr than to any other ν ′r. From triangle inequality we have that
‖Âi−µs‖ ≥ ‖Âi− νs‖−‖µs− νs‖. We know from Fact 9.2 that ‖µs− νs‖ ≤ 6∆s. Also,
since Âi is closer to νr than to νs, the triangle inequality gives that 2‖Âi−νs‖ ≥ ‖νr−νs|.
So,

‖Âi − µs‖ ≥
1

2
‖νr − νs‖ − 6∆s ≥

1

2
‖µr − µs‖ − 12(∆r + ∆s) ≥

c

4
(∆r + ∆s)

Thus, we can look at ‖Â − C‖2
F , and using Fact 9.1 we immediately have that for every

fixed r′∑
r

∑
s 6=r

|Ts→r|
c2

16
(∆r + ∆s)

2 ≤
∑
r

∑
i∈C∗r

‖Âi − µr‖2 = ‖Â− C‖2
F ≤ 8nr′∆

2
r′

The proof of the theorem follows from fixing some r0 or some s0 and deducing:

∆2
s0

∑
r 6=s0

|Ts0→r| ≤
∑
r 6=s0

|Ts0→r|(∆r + ∆s0)2 ≤
∑
r

∑
s 6=r

|Ts→r|(∆r + ∆s)
2 ≤ 128

c2
ns0∆2

s0

136

∆2
r0

∑
s 6=r0

|Ts→r0| ≤
∑
s 6=r0

|Ts→r0|(∆r0 + ∆s)
2 ≤

∑
r

∑
s 6=r

|Ts→r|(∆r + ∆s)
2 ≤ 128

c2
nr0∆2

r0

Observe that for every r 6= s we have that ∆r + ∆s ≥ ∆r2 (where r2 is the cluster with
the second largest number of points), so we have that

∆2
r2

∑
r

∑
s 6=r

|Ts→r| ≤
∑
r

∑
s 6=r

|Ts→r|(∆r + ∆s)
2 ≤ 128

c2
nr2∆2

r2

We now show that the k-means cost of T is close to the k-means cost of C∗. Observe
that the k-means cost of T is computed w.r.t the best center of each cluster (i.e., µ(Tr)),
and not w.r.t the centers νr.

Theorem 9.6. The k-means cost of T is at most (1 +O(1/c))‖A− C‖2
F .

Proof. Given T , it is clear that the centers that minimize its k-means cost are µ(Tr) =
1
|Tr|
∑

i∈Tr Ai. Recall that the majority of points in each Tr belong to a unique C∗r , and so,
throughout this section, we assume that all points in Tr were assigned to µr, and not to
µ(Tr). (Clearly, this can only increase the cost.) We show that by assigning the points of
Tr to µr, our cost is at most (1 +O(1/c))‖A−C‖2

F , and so Theorem 9.6 follows. In fact,
we show something stronger. We show that by assigning all the points in Tr to µr, each
point Ai pays no more than (1 +O(1/c))‖Ai −Ci‖2. This is clearly true for all the points
in Tr ∩ C∗r . We show this also holds for the misclassified points.

Because i ∈ Ts→r, it holds that ‖Âi − νr‖ ≤ ‖Âi − νs‖. Observe that for every s we
have that ‖Ai − νs‖2 = ‖Ai − Âi‖2 + ‖Âi − νs‖2, because Âi − νs is the projection of
Ai− νs onto the subspace spanned by the top k-singular vectors of A. Therefore, it is also
true that ‖Ai − νr‖ ≤ ‖Ai − νs‖. Because of Fact 9.2, we have that ‖µr − νr‖ ≤ 6∆r and
‖µs − νs‖ ≤ 6∆s, so we apply the triangle inequality and get

‖Ai − µr‖ ≤ ‖Ai − µs‖+ ‖µr − νr‖+ ‖µs − νs‖ ≤ ‖Ai − µs‖
(

1 +
6(∆r + ∆s)

‖Ai − µs‖

)
So all we need to do is to lower bound ‖Ai−µs‖. As noted, ‖Ai− νs‖ ≥ ‖Âi− νs‖. Thus

‖Ai− µs‖ ≥ ‖Ai− νs‖− 6∆r ≥ ‖Âi− νs‖− 6∆r ≥
1

2
‖νs− νr‖− 6∆r ≥

1

4
c(∆r + ∆s)

and we have the bound ‖Ai−µr‖ ≤
(
1 + 24

c

)
‖Ai−µs‖, so ‖Ai−µr‖2 ≤

(
1 + 49

c

)
‖Ai−

µs‖2.

137

9.3.1 Application: The ORSS-Separation

One straight-forward application of Theorem 9.6 is for the datasets considered by Ostro-
vsky et al [121], where the optimal k-means cost is an ε-fraction of the optimal (k − 1)-
means cost. Ostrovsky et al proved that for such datasets a variant of the Lloyd method
converges to a good solution in polynomial time. Kumar and Kannan have shown that
datasets satisfying the ORSS-separation, also have the property that most points satisfy
their proximity-condition. Their analysis is not immediate, and gives a (1 + O(

√
kε))-

approximation. Here, we provide a “one-line” proof that Part I of Algorithm ∼Cluster
yields a (1 +O(

√
ε))-approximation, for any k.

Suppose we have a dataset satisfying the ORSS-separation condition, so any (k − 1)-
partition of the dataset have cost ≥ 1

ε
‖A − C‖2

F . For any r and any s 6= r, by assigning
all the points in C∗r to the center µs, we get some (k − 1)-partition whose cost is exactly

‖A − C‖2
F + nr‖µr − µs‖2, so ‖µr − µs‖ ≥

√
1
ε
−1

√
nr
‖A − C‖F . Setting c = O(1/

√
ε),

Theorem 9.6 is immediate.

9.4 Part II of the Algorithm

In this section, our goal is to show that Part II of our algorithm gives centers that are very
close to the target clusters. We should note that from this point on, we assume we are in
the non-degenerate case, where ‖A−C‖2

F ≥ k‖A−C‖2. Therefore, ∆r =
√
k√
nr
‖A−C‖.

Recall, in Part II we define the sets Sr = {i : ‖Âi − νr‖ ≤ 1
3
‖Âi − νs‖, ∀s 6= r}.

Observe, these set do not define a partition of the dataset! There are some points that are
not assigned to any Sr. However, we only use the centers of Sr. We prove the following
theorem.

Theorem 9.7. Denote Sr = {i : ‖Âi − νr‖ ≤ 1
3
‖Âi − νs‖, ∀s 6= r}. Then for every r it

holds that ‖µ(Sr)− µr‖ = O(1/c) 1√
nr
‖A− C‖ = O(1

c
√
k
∆r).

The proof of Theorem 9.7 is an immediate application of Fact 9.3 combined with the
following two lemmas, that bound the number of misclassified points. Observe that for
every point that belongs to C∗s yet is assigned to Sr (for s 6= r) is also assigned to Tr
in the clustering T discussed in the previous section. Therefore, any misclassified point
i ∈ C∗s ∩Sr satisfies that ‖Ai−µr‖ ≤ (1+O(c−1))‖Ai−µs‖ as the proof of Theorem 9.6
shows. So all conditions of Fact 9.3 hold.

138

Lemma 9.8. Assume that for every r we have that ‖µr − νr‖ ≤ 6∆r. Then at most 512
c2
nr

points of C∗r do not belong to Sr.

Lemma 9.9. Redefine Ts→r as the set C∗s ∩ Sr. Assume that for every r we have that
‖µr − νr‖ ≤ 6∆r. Then for every r and every s 6= r we have that |Ts→r| =

(
482

c4k2

)
nr.

Proof of Lemma 9.8. First, we claim that if i is such that ‖Âi − µr‖ ≤ c
8
∆r, then it must

be the case that i ∈ Sr.
This is a simple consequence of the triangle inequality, bounding ‖Âi − νr‖ ≤ ‖Âi −

µr‖+ ‖µr − νr‖ ≤ ((c/8) + 6)∆r. Yet, for every s 6= r, the triangle inequality gives that
‖Âi − νs‖ ≥ ‖µr − µs‖ − ‖Âi − µr‖ − ‖µs − νs‖ ≥ (c − c

8
− 6)(∆r + ∆s). Assuming

c > 48, we have that ‖Âi − νs‖ ≥ 3‖Âi − νr‖.
All that’s left is to show that the number of i ∈ C∗r s.t. ‖Âi − µr‖ > c

8
∆r is small.

This again follows from the Markov inequality: Since ‖Â−C‖2
F ≤ 8k‖A−C‖2, then the

number of such points is at most 8k‖A−C‖2
(c2/64)k‖A−C‖2nr.

We now turn to proving Lemma 9.9. The general outline of the proof of Lemma 9.9
resembles to the outline of the proof of Lemma 9.8. Proposition 9.10 exhibit some property
that every point in Ts→r must satisfy, and then we show that only few of the points in
C∗s satisfy this property. Recall that µ̂r indicates the projection of µr onto the subspace
spanned by the top k-singular vectors of A.

Proposition 9.10. Fix i ∈ C∗s s.t. ‖Âi− µ̂s‖ ≤ 2‖Âi− µ̂r‖. Then ‖Âi−νs‖ < 3‖Âi−νr‖,
so i /∈ Sr.

Proof. First, for every r we have that ‖µ̂r − νr‖ ≤ ‖µr − νr‖ ≤ 6∆r, as µ̂r − νr is a
projection of µr − νr.

Let us fiddle with the triangle inequality, in order to obtain a lower bound on ‖Âi−νr‖.
We have that 3‖Âi− µ̂r‖ ≥ ‖µ̂r − µ̂s‖ ≥ ‖µr −µs‖−

(
‖µr − νr‖+ ‖νr − µ̂r‖

)
−
(
‖µs−

νs‖+ ‖νs − µ̂s‖
)
≥ (c− 12)(∆r + ∆s), thus ‖Âi − νr‖ ≥

(
c−12

3
− 6
)

(∆r + ∆s).

Assume for the sake of contradiction that ‖Âi − νs‖ ≥ 3‖Âi − νr‖, and let us show
this yields an upper bound on ‖Âi−νr‖, which contradicts our lower bound. We have that

6∆s ≥ ‖Âi − νs‖ − ‖Âi − µ̂s‖ ≥ 3‖Âi − νr‖ − 2‖Âi − µ̂r‖ ≥ ‖Âi − νr‖ − 2 · 6∆r

It follows that 12(∆r + ∆s) ≥ ‖Âi − νr‖ ≥
(
c−12

3
− 6
)

(∆r + ∆s). Contradiction (c >
60).

139

Proposition 9.10, shows that in order to bound |Ts→r| it suffices to bound the number
of points in C∗s satisfying ‖Âi − µ̂s‖ ≥ 2‖Âi − µ̂r‖. The major tool in providing this
bound is the following technical lemma. This lemma is a variation on the work of [104],
on which we improve on the dependency on k and simplify the proof.

Lemma 9.11 (Main Lemma). Fix α, β > 0. Fix r 6= s and let ζr and ζs be two points s.t.
‖µr−ζr‖ ≤ α∆r and ‖µs−ζs‖ ≤ α∆s. We denote Ãi as the projection ofAi onto the line
connecting ζr and ζs. Define X =

{
i ∈ C∗s : ‖Ãi − ζs‖ − ‖Ãi − ζr‖ ≥ β‖ζs − ζr‖

}
.

Then |X| ≤ 256α
2

β2
1
c4k

(
min {nr, ns}

)
.

Proof. Let V be the subspace spanned by the following 4 vectors: {µr, µs, ζr, ζs}. Denote
PV as the projection onto V . We denote vi = PV(Ai), and observe that PV(µr) = µr, and
the same goes for µs, ζr and ζs. Observe also that, as a projection, ‖PV(A−C)‖ ≤ ‖A−C‖
(alternatively, ‖PV‖ = 1).

We now make a simple observation. Let Āi denote the projection of Ai onto the line
connecting µr and µs. Now, the inequality ‖Ai−µs‖ < ‖Ai−µr‖ holds iff the inequality
‖Āi − µs‖ ≤ ‖Āi − µr‖ holds (because ‖Ai − µr‖2 = ‖Ai − Āi‖2 + ‖Āi − µr‖2).
Furthermore, such relation holds for any point whose projection on the line connecting µr
and µs is identical to Āi. In particular, ifW is any subspace containing µr and µs, then the
projection of Ai ontoW is closer to µr than to µs iff Ai is closer to µr than to µs. Thus,
since ‖Ai − µs‖ ≤ ‖Ai − µr‖ then ‖vi − µs‖ ≤ ‖vi − µr‖. Furthermore, as ζr and ζs also
belong to V , then the projection of Ai onto the line connecting ζs and ζr is identical to the
projection of vi onto the same line (meaning, Ãi = ṽi). So vi also satisfies the inequality:
‖ṽi− ζs‖− ‖ṽi− ζr‖ ≥ β‖ζs− ζr‖, and, of course, ‖vi− ζr‖2 = ‖vi− ṽi‖2 + ‖ṽi− ζr‖2.

The proof follows from upper- and lower-bounding the term ‖vi − ζs‖2 − ‖vi − ζr‖2.
We’ve just shown a lower bound, as we have that

‖vi− ζs‖2−‖vi− ζr‖2 = (‖ṽi − ζs‖ − ‖ṽi − ζr‖) (‖ṽi − ζs‖+ ‖ṽi − ζr‖) ≥ β‖ζs− ζr‖2

The triangle inequality gives that ‖vi−ζs‖ ≤ ‖vi−µs‖+α(∆r+∆s), and that ‖vi−ζr‖ ≥
‖vi − µr‖ − α(∆r + ∆s), so we have the upper bound of

‖vi − ζs‖2 − ‖vi − ζr‖2 ≤ (‖vi − µs‖+ α(∆r + ∆s))
2 − (‖vi − µr‖ − α(∆r + ∆s))

2

≤ (‖vi − µr‖+ α(∆r + ∆s))
2 − (‖vi − µr‖ − α(∆r + ∆s))

2

≤ 4α(∆r + ∆s)‖vi − µr‖

Comparing the upper and the lower bound, we have that for any i ∈ X the distance

140

‖vi − µr‖ ≥ β
4α

(c−α)2(∆r+∆s)2

∆r+∆s
. As X ⊂ C∗s , the Markov inequality concludes the proof

|X|
(
c2

8

β

α

√
k‖A− C‖

)2
1

min{nr, ns}
≤
∑
i∈C∗s

‖vi−µs‖2 ≤ ‖PV(A−C)‖2
F ≤ 4‖A−C‖2

Proof of Lemma 9.9. Every i ∈ Ts→r must satisfy that ‖Âi − µ̂s‖ ≥ 2‖Âi − µ̂r‖ (Propo-
sition 9.10). Therefore, we must have that ‖Ãi − µ̂s‖ ≥ 2‖Ãi − µ̂r‖, where we denote Ãi
as the projection of A onto the line connecting µ̂r with µ̂s (simply because ‖Âi − µ̂s‖2 =
‖Âi−Ãi‖2+‖Ãi−µ̂s‖2.) Therefore, ‖µ̂r−µ̂s‖ ≤ 3

2
‖Ãi−µ̂s‖, so ‖Ãi−µ̂s‖−‖Ãi−µ̂r‖ >

1
3
‖µ̂r − µ̂s‖.

Thus, every i ∈ Ts→r satisfies the conditions of Lemma 9.11 with ζr = µ̂r, ζs = µ̂s,
and β = 1/3. We deduce the |Ts→r| ≤ α2 256·9

c4k
min{nr, ns}, where α is the bound s.t. for

every r, ‖µr − µ̂r‖ ≤ α
√
k√
nr
‖A− C‖. Since α ≤ 1√

k
, we conclude the proof.

The fact that α is small was proven by Achlioptas and McSherry (Theorem 1 of [4]).
Denote ur as the indicator vector of C∗r . Since rank(C) ≤ k, we get

‖µr − µ̂r‖ =
1

nr
‖(A− Â)Tur‖ ≤

1

nr
‖ur‖ ‖A− Â‖ ≤

1
√
nr
‖A− C‖

As an interesting corollary, Theorem 9.7 dictates that for every r we have that ‖µr −
θr‖ = O(1/c)‖µr − µ̂r‖.

9.4.1 The Proximity Condition – Part III of the Algorithm

Part II of our algorithm returns centers θ1, . . . , θk which are O(1
c
√
nr

)‖A−C‖ close to the
true centers. Suppose we use these centers to cluster the points: Θs = {i : ∀s′, ‖Ai −
θs‖ ≤ ‖Ai − θs′‖}. It is evident that this clustering correctly classifies the majority of the
points. It correctly classifies any point i ∈ C∗s with ‖Ai−µr‖−‖Ai−µs‖ = Ω(1

c
√
nr

)‖A−
C‖ for every r 6= s, and the analysis of Theorem 9.5 shows that at most O(c−2)-fraction
of the points do not satisfy this condition. In order to have a direct comparison with
the Kumar-Kannan analysis, we now bound the number of misclassified points w.r.t the
fraction of points satisfying the Kumar-Kannan proximity condition.

Definition 9.12. Denote gapr,s = (1√
nr

+ 1√
ns

)‖A−C‖. Call a point i ∈ C∗s γ-good, if for
every r 6= s we have that the projection of Ai onto the line connecting µr and µs, denoted
Āi, satisfies that ‖Āi − µr‖ − ‖Āi − µs‖ ≥ γ gapr,s; otherwise we say the point is γ-bad.

141

Corollary 9.13. If the number of γ-bad points is εn, then (a) the clustering {Θ1, . . . ,Θk}
misclassifies no more than

(
ε+ O(1)

γ2c4

)
n points, and (b) ε < O

(
(c− γ√

k
)−2
)

, assuming

γ < c
√
k.

Proof. Clearly, all εn bad points may be misclassified. In addition, for every r and s 6= r,
Lemma 9.11 (setting ζr = θr, ζs = θs, α = 1/c

√
k and β = Ω(γ/(c

√
k))) proves that no

more than O(γ−2c−2k−1)ns good points can be misclassified. Summing
∑

s 6=r
1
k
ns ≤ n,

we conclude (a).

The proof of (b) is similar to the proof of Theorem 9.5. We look at the k-means cost
of ‖Â− C‖2

F . We show that all γ-bad points contribute a large amount to this cost.

Take Ai to be a γ-bad point from C∗s . Projecting it down to the line connecting µr and
µs, we denote the projection as Āi. Clearly, ‖µr − µs‖ = ‖µr − Āi‖ + ‖Āi − µs‖ ≥
c
√
kgapr,s whereas ‖µr − Āi‖ − ‖Āi − µs‖ ≤ γgapr,s. It follows that ‖Âi − µs‖ ≥

‖Āi − µs‖ ≥ 1
2
(c
√
k − γ)gapr,s ≥ c

√
k−γ

2
√
ns
‖A − C‖. Again, the Markov inequality gives

that

#{bad points from C∗s}
(c
√
k − γ)2

4ns
‖A− C‖2 ≤ ‖Â− C‖2

F ≤ 8k‖A− C‖2

so from each cluster, only a fraction of 32
(√

k
c
√
k−γ

)2

of the points can be bad.

Observe that Corollary 9.13 allows for multiple scaled versions of the proximity con-
dition, based on the magnitude of γ. In particular, setting γ = 1 we get a proximity
condition whose bound is independent of k, and still our clustering misclassifies only a
small fraction of the points – at most O(c−2) fraction of all points might be misclassified
because they are 1-bad, and no more than a O(c−4)-fraction of 1-good points may be mis-
classified. In addition, if there are no 1-bad points we show the following theorem. The
proof (omitted) merely follows the Kumar-Kannan proof, plugging in the better bounds,
provided by Lemma 9.11.

Theorem 9.14. Assume all data points are 1-good. That is, for every pointAi that belongs
to the target cluster Tc(i) and every s 6= c(i), by projecting Ai onto the line connecting
µc(i) with µs we have that the projected point Āi satisfies ‖Āi − µc(i)‖ − ‖Āi − µs‖ =

Ω
(

(1√
nc(i)

+ 1√
ns

)
)
‖A − C‖, whereas ‖µc(i) − µs‖ = Ω

(√
k(1√

nc(i)
+ 1√

ns
)
)
‖A − C‖.

Then the Lloyd method, starting with θ1, . . . , θk, converges to the true centers.

142

9.5 Applications

Clustering a mixture of Gaussians For a mixture of k Gaussians, we quote the suitable
results without proof, as the proof is identical to the proof in [104]. We are given a mixture
of k Gaussians, F1, . . . , Fk, where the standard deviation of each distribution in any direc-
tion is at most σr, and the weight of each distribution is wr. We denote σmax = maxr{σr}
and wmin = minr{wr}.

Theorem 9.15. Suppose we are given a set of n� d
wmin

samples from a mixture of k Gaus-

sians, such that for every r 6= s it holds that ‖µr − µs‖ ≥ cσmax

√
k

wmin
poly log

(
d

wmin

)
.

Then w.h.p. these points satisfy the proximity condition.

For Gaussians, the best known separation bound is Achlioptas and McSherry’s bound [4]
of Ω(σmax(w

−1/2
min +

√
k log(k ·min{n, 2k}))). As we assume k is large, this separation

condition is Ω̃(σmax(w
−1/2
min +

√
k)) = Ω̃(σmax/

√
wmin). Therefore, the separation bound

of Theorem 9.15 is
√
k times worse than the best known bound. However, applying Ku-

mar and Kannan’s boosting technique (Section 7 in [104]), that replaces the polynomial
dependency in wmin with a logarithmic one, we get:

Theorem 9.16. Suppose we are given a set of n � d
wmin

samples from a mixture of k
Gaussians, such that for every r 6= s it holds that

‖µr − µs‖ ≥ cσmax

√
k poly log

(
d

wmin

)
Then there exists an algorithm that w.h.p. correctly classifies all points.

Therefore, if for any r and r′, both σr ≈ σr′ and wr ≈ wr′ , then both [4] and The-
orem 9.16 give roughly the same bound. If for any r and r′ we have that σr ≈ σr′ , yet
wmin � 1

k
, then Theorem 9.16 provides a better bound. If for any r and r′ we have that

wr ≈ wr′ , yet the directional standard deviations of the distributions vary, then the bound
of [4], in which the distance between any two cluster centers depends only the parame-
ters of these two distributions, is the better bound. If both the standard deviations and the
weights vary significantly between the different distributions, then better bound is deter-
mined on a case by case basis.

McSherry’s Planted Partition Model. In the Planted Partition Model [110, 10, 11]
our instance is a random n-vertex graph generated by using an implicit partition of the n

143

points into k clusters. There exists an unknown k × k matrix of probabilities P , and for
every pair of vertices u, v there exists an edge connecting u and v w.p. Prs (assuming u
belongs to cluster r and v to cluster s). The goal here is to recover the partition of the
points (thus – recover P). Viewing this graph as a n× n matrix, each row is taken from a
special distribution Fr over {0, 1}n – where each coordinate j is an independent Bernoulli
r.v. with mean Pr,C(j), denoting C(j) as the cluster j belongs to. Thus, the mean of this
distribution, µr, is a vector with its j-coordinate set to Pr,C(j). Denote wmin = minr{nrn }
and σmax = maxr,s

√
Prs. The result of [110] is that if for every r 6= s

‖µr − µs‖ = Ω

(
σmax

√
k

(
1

wmin

+ log(n/δ)

))
(9.2)

then it is possible to retrieve the partition of the vertices w.p. at least 1− δ.
Kumar and Kannan were not able to match the distance bounds of McSherry, and

required centers to be
√
k factor greater then the bound of (9.2). Here we match the bound

of McSherry exactly. Following the proof in Kumar-Kannan (with few changes), we prove:

Theorem 9.17. Assuming that σmax ≥ 3 log(n)
n

and that the planted partition model satisfies
equation 9.2 for every r 6= s, then w.p. at least 1 − δ, every point satisfies the proximity
condition.

Proof. We follow the proof of Kumar-Kannan, making the suitable changes. McSherry
(Theorem 10 of [110]) showed that w.h.p. ‖A − C‖ ≤ 4σmax

√
n. So our goal is to show

that, w.h.p., all points are
√
k-good. I.e., denoting u as a unit-length vector connecting µr

and µs, we show that w.h.p. that for every i ∈ C∗r we have

|(Ai − µr) · u| = O(
√
kσmax

(
1

wmin

+ log(n/δ)

)
)

Observe u = µs−µr
‖µs−µr‖ , and due to the special structure of the means in this model, we

have that (µr − µs)j = Prt − Pst where j ∈ Tt. It follows that

‖µr − µs‖2 =
k∑
t=1

nt(Prt − Pst)2

We therefore have

|(Ai − µr) · u| ≤
1

‖µr − µs‖

(
k∑
t=1

|Prt − Pst|

∣∣∣∣∣∑
j∈Tt

Aij − Prt

∣∣∣∣∣
)

144

Observe, Aij are i.i.d 0-1 random variables with mean Prt, so we expect their sum to
deviate from its expectation by no more than a few standard deviations. Indeed, Kumar
and Kannan prove that w.h.p. it holds that for every t we have∣∣∣∣∣∑

j∈Tt

Aij − Prt

∣∣∣∣∣ ≤ B
√
ntσmax

(
1

wmin

+ log(n/δ)

)
where B is some sufficiently large constant. This allows us to deduce that

|(Ai − µr) · u| ≤ Bσmax

(
1

wmin

+ log(n/δ)

) ∑k
t=1

√
nt|Prt − Pst|√∑k

t=1 nt(Prt − Pst)2

≤ B
√
kσmax

(
1

wmin

+ log(n/δ)

)
where the last inequality is simply the power-mean inequality.

9.6 An Open Problem

Our work presents an algorithm which successfully clusters a dataset, provided that the
distance between any two cluster centers meets a certain lower bound. We would like to
point out one particular direction to improve this bound. Note that our center separation
bound depends on ‖A − C‖, a property of the entire dataset. It would be nice to handle
the case where the separation condition between µr and µs depends solely on C∗r and C∗s .
That is, if we define ∆̃r =

√
k√
nr
‖Ar − Cr‖, is it possible to successfully separate clusters

s.t ‖µr − µs‖ ≥ c(∆̃r + ∆̃s)? We comment that most of our analysis (and particularly
Lemma 9.11) builds only on the ratio between ‖µr − νr‖ and ‖µr − µs‖ – we assume
the first is no greater than α∆r and that the latter is no less than c(∆r + ∆s). In fact,
one can revise the proofs of Theorems 9.5 and 9.6 so that they will hold based on this
assumption alone (without using the properties of the SVD). The problem therefore boils
down to finding initial centers {νr} that are sufficiently close to the true centers {µr},
under the assumption that ∀r 6= s, ‖µr − µs‖ ≥ c(∆̃r + ∆̃s). But this is an intricate
task, mainly because such separation condition does not imply that {µ1, µ2, . . . , µk} are
the centers minimizing the k-means cost! (Nor do {µ̂1, µ̂2, . . . , µ̂k, } minimize the k-
means cost of Â.) Consider the case, for example, where cluster r has very few points
(say nr =

√
n) and very small variance, and cluster s is very big (say ns = n/5), and is

essentially composed of two sub-components with distance 1
2
√
ns
‖As − Cs‖ between the

145

centers of the two sub-components. The k-means cost of placing two centers within Cs is
smaller than placing one center at µs and one center at µr. This relates to the question of
designing a t-approximation algorithm for k-means, guaranteeing that each cluster’s cost
cannot increase by more than a factor of t.

146

Bibliography

147

[1] Facebook newsroom: Statistics. http://newsroom.fb.com/Key-Facts,
2012. Retrieved 6/29/2012. 6.4.2

[2] Ittai Abraham, Yair Bartal, T-H. Hubert Chan, Kedar Dhamdhere Dhamdhere, Anu-
pam Gupta, Jon Kleinberg, Ofer Neiman, and Aleksandrs Slivkins. Metric embed-
dings with relaxed guarantees. In Proc. 46th Annual IEEE Symp. Foundations of
Computer Science (FOCS), 2005. 8.1.1

[3] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss
with binary coins. J. Comput. Syst. Sci., 66(4), June 2003. 5.1.1, 5.5

[4] Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of dis-
tributions. In COLT, 2005. 1.1.2, 4.3.1, 4.3.1, 9.1, 1, 9.2.4, 9.4, 9.5, 9.5

[5] Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation
algorithms for clustering (extended abstract). In SODA, 1998. 4.1

[6] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-
means clustering. In APPROX-RANDOM, 2009. 4.2.2

[7] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
johnson-lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, STOC ’06, New York, NY, USA, 2006. ACM.
5.1

[8] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approxima-
tion. In NIPS, 2009. 4.2.2

[9] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms (TALG), 2(2):153–177, 2006. 6.4.2.2

[10] Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable
graphs. In SIAM Journal on Computing, pages 346–355, 1994. 9.5

[11] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique
in a random graph. pages 457–466, 1998. 9.5

[12] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992. 2.3.2

[13] Sanjeev Arora and Ravi Kannan. Learning mixtures of arbitrary gaussians. In
STOC, 2001. 1.1.2, 4.3.1, 9.1

149

http://newsroom.fb.com/Key-Facts

[14] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for
Euclidean k-medians and related problems. In STOC, 1998. 1

[15] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In
SODA, 2007. 4.2.2

[16] David Arthur, Bodo Manthey, and Heiko Roglin. k-means has polynomial
smoothed complexity. Foundations of Computer Science, Annual IEEE Symposium
on, 0, 2009. 4.2.3

[17] David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the icp
algorithm, with an application to the k-means method. In FOCS, 2006. 4.2.3

[18] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala,
and Vinayaka Pandit. Local search heuristic for k-median and facility location
problems. In STOC, 2001. 4.1

[19] Pranjal Awasthi, Maria-Florina Balcan, Avrim Blum, Or Sheffet, and Santosh Vem-
pala. On nash-equilibria of approximation-stable games. In SAGT, 2010. 4.2.3

[20] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Stability yields a ptas for k-median
and k-means clustering. In Proc. 51st Annual IEEE Symp. Foundations of Computer
Science (FOCS), 2010. (document), 1.2.2, 1.3

[21] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under per-
turbation stability. Inf. Process. Lett., 112(1-2), 2012. (document), 1.2.2, 1.3

[22] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In
APPROX-RANDOM, pages 37–49, 2012. (document), 1.2.2, 1.3

[23] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography. In Pro-
ceedings of the 16th international conference on World Wide Web, pages 181–190.
ACM, 2007. 6.1

[24] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-
sets. In STOC, 2002. 4.1

[25] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering
without the approximation. In SODA, pages 1068–1077, 2009. 1.2.2, 1.3, 4.2.1,
4.5, 4.2.1, 4.2.4, 7.1, 7.1, 7.2, 7.2, 7.2.2, 7.2.4, 7.5, 8.1

150

[26] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Kernels as features: On
kernels, margins, and low-dimensional mappings. Machine Learning, 65(1), 2006.
5.1, 5.1.1

[27] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative frame-
work for clustering via similarity functions. In STOC, 2008. 1.1.2, 8.1.1, 8.2.1,
8.2.2, 8.2.2

[28] Maria-Florina Balcan and Mark Braverman. Finding low error clusterings. In
COLT, 2009. 4.2.1, 7.2.2, 7.3

[29] Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience.
In ICALP. Springer-Verlag, 2012. 4.2.3, 8.1.1, 8.3

[30] Maria-Florina Balcan, Heiko Röglin, and Shang-Hua Teng. Agnostic clustering. In
ALT, 2009. 4.2.1, 7.2.2

[31] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A sim-
ple proof of the restricted isometry property for random matrices. Constructive
Approximation, 28(3):253–263, 2008. 5.1

[32] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proc. 30th
Annual ACM Symp. Theory of Computing (STOC), 1998. 8.1.1

[33] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan
sparsifiers. In STOC, 2009. 5.3.2.3

[34] P.S. Bearman and J. Moody. Suicide and friendships among american adolescents.
Journal Information, 94(1), 2004. 6.5.1

[35] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families.
Computing Research Repository, abs/1004.4:103–112, 2010. 4.3.1

[36] Shai Ben-David, Dávid Pál, and Hans-Ulrich Simon. Stability of k-means cluster-
ing. In COLT, 2007. 4.2.3

[37] Shai Ben-David, Ulrike von Luxburg, and Dvid Pl. A sober look at clustering
stability. In COLT, Lecture Notes in Computer Science, 2006. 4.2.3

[38] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in õ(n2)
time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, STOC ’96, pages 47–55, New York, NY, USA, 1996. ACM. 5.3.2.3

151

[39] Yonatan Bilu, Amit Daniely, Nati Linial, and Michael Saks. On the practically
interesting instances of maxcut. In STACS, 2013. 4.2.3

[40] Yonatan Bilu and Nati Linial. Are stable instances easy? In 1st Symp. Innovations
in Computer Science (ICS), 2010. 1.2.2, 1.3, 4.2.3, 4.2.3, 4.10, 4.2.4, 8.1, 8.1.1

[41] J. Blocki, A. Blum, A. Datta, and O. Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In 53rd Annual IEEE Symposium on Founda-
tions of Computer Science. IEEE, 2012. (document), 1.2.1, 1.3, 6.1.1

[42] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially private
analysis of social networks via restricted sensitivity. In ITCS, 2013. (document),
1.2.1, 1.3

[43] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive
database privacy. In Proceedings of the 40th annual ACM symposium on Theory of
computing, pages 609–618. ACM, 2008. 3.2.1, 3.6, 3.2.1, 14, 5.1.1, 5.3.2.3, 6.6

[44] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical pri-
vacy: the sulq framework. In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, PODS ’05, pages
128–138, New York, NY, USA, 2005. ACM. 1.1.1, 5.1.1

[45] J Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel
Journal of Mathematics, 52(1-2):46–52, 1985. 5.1

[46] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer networks,
33(1):309–320, 2000. 6.4.2

[47] S. Charles Brubaker and Santosh Vempala. Isotropic pca and affine-invariant clus-
tering. In FOCS, 2008. 4.3.1, 9.1

[48] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k-median problem. In STOC, 1999. 4.1

[49] Kamalika Chaudhuri and Satish Rao. Beyond gaussians: Spectral methods for
learning mixtures of heavy-tailed distributions. In COLT, 2008. 4.3.1

[50] Kamalika Chaudhuri and Satish Rao. Learning mixtures of product distributions
using correlations and independence. In COLT, 2008. 4.3.1, 9.1

152

[51] Shuchi Chawla, Cynthia Dwork, Frank Mcsherry, Adam Smith, and Larry Joseph
Stockmeyer. Toward privacy in public databases. In In TCC, pages 363–385, 2005.
1.1.1

[52] William W. Cohen and Jacob Richman. Learning to match and cluster large high-
dimensional data sets for data integration. In KDD, pages 475–480, 2002. 4.1

[53] Amin Coja-Oghlan. Graph partitioning via adaptive spectral techniques. Comb.
Probab. Comput., 19:227–284, 2010. 1

[54] Anirban Dasgupta, John Hopcroft, Ravi Kannan, and Pradipta Mitra. Spectral clus-
tering with limited independence. In SODA, 2007. 4.3.1, 9.1

[55] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A sparse johnson: Linden-
strauss transform. In Proceedings of the 42nd ACM symposium on Theory of com-
puting, STOC ’10, pages 341–350, New York, NY, USA, 2010. ACM. 5.1.1, 5.5

[56] Sanjoy Dasgupta. Learning mixtures of gaussians. In FOCS, 1999. 1.1.2, 4.3.1,
4.3.1, 9.1

[57] Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, University
of California at San Diego, 2008. 4.1

[58] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Struct. Algorithms, 22(1), January 2003. 5.1.1

[59] Sanjoy Dasgupta and Leonard Schulman. A probabilistic analysis of em for mix-
tures of separated, spherical gaussians. J. Mach. Learn. Res., 2007. 4.3.1, 4.11,
9.1

[60] W. Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Ap-
proximation schemes for clustering problems. In STOC, 2003. 4.1

[61] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
PODS, 2003. 1.1.1

[62] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In EURO-
CRYPT, 2006. 1.1.1, 3.1, 3.3, 6.1

153

[63] Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In In Proceedings of the 3rd Theory of
Cryptography Conference, pages 265–284. Springer, 2006. 1.1.1, 1.1.1, 3, 3.2, 3.3,
6.1

[64] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan.
On the complexity of differentially private data release: efficient algorithms and
hardness results. In Proceedings of the 41st annual ACM symposium on Theory of
computing, STOC ’09, 2009. 3.2.1

[65] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In FOCS, 2010. 3.4, 0, 5.3.2.1, 0, 5.4.2.1

[66] D. Easley and J. Kleinberg. Networks, crowds, and markets. Cambridge Univ Press,
2010. 6.1, 6.1.1, 6.4.2, 6.5.1

[67] Michelle Effros and Leonard J. Schulman. Deterministic clustering with data nets.
ECCC, 50, 2004. 4.1

[68] Uriel Feige. A threshold of lnn for approximating set cover. JACM, 45:314–318,
1998. 8.2.3

[69] P. Frankl and H. Maehara. The johnson-lindenstrauss lemma and the sphericity of
some graphs. J. Comb. Theory Ser. A, 44(3), June 1987. 5.1.1

[70] L.C. Freeman. Centrality in social networks conceptual clarification. Social net-
works, 1(3):215–239, 1979. 6.5.1

[71] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990. 4.2.3, 8.1

[72] Michel X. Goemans and David P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. J.
ACM, 42(6), 1995. 4.2.3

[73] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996. 9.2.1

[74] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theor. Comput. Sci., 38, 1985. 4.1

154

[75] M.S. Granovetter. Getting a job: A study of contacts and careers. University of
Chicago Press, 1995. 6.5.1

[76] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location
algorithms. In Journal of Algorithms, 1998. 4.1

[77] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and
private data release. In TCC, 2012. 3.2.2, 3.8, 14, 5.1.1, 5.3.2, 5.3.2.2, 5.3.2.4,
5.4.2.2

[78] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decom-
positions. SIAM Review, 53(2):217–288, 2011. 5.1.1

[79] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In STOC, 2004. 1, 4.1

[80] M. Hardt and G.N. Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 61–70. IEEE, 2010. 3.2.3, 3.8, 5.3.2.4, 6.6

[81] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm
for differentially private data release. CoRR, abs/1012.4763, 2010. 14

[82] Moritz Hardt and Aaron Roth. Beating randomized response on incoherent matri-
ces. In STOC, 2012. 1, 5.1.1, 5.2

[83] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., New York, NY,
USA, 99th edition, 1975. 4.1.1

[84] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of
the degree distribution of private networks. In ICDM, pages 169–178, 2009. 5.1.1,
6.1.1

[85] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. J. ACM, 33(3), 1986. 4.1

[86] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 1990. 2.2.2

[87] W. L. Hsu and G. L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1, 1979. 4.1

155

[88] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi
diagrams and randomization to variance-based k-clustering: (extended abstract). In
Proc. 10th Symp. Comp. Geom., 1994. 7.2.3, 7.4.1

[89] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In STOC. ACM, 1998. 5.1

[90] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for
facility location problems (extended abstract). In STOC, 2002. 1.1.2, 4.1

[91] Ragesh Jaiswal and Nitin Garg. Analysis of k-means++ for separable data. In
APPROX-RANDOM, 2012. 4.2.2

[92] C. Jernigan and B.F.T. Mistree. Gaydar: Facebook friendships expose sexual orien-
tation. First Monday, 14(10), 2009. 6.1

[93] W. Johnson and J. Lindenstauss. Extensions of Lipschitz maps into a Hilbert space.
Contemporary Mathematics, 1984. 5.1, 5.3

[94] Petri Juutinen. Absolutely minimizing lipschitz extensions on a metric space. An-
nales Academiae Scientiarum Fennicae. Mathematica, 27:57–67, 2002. 6.4.1

[95] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mix-
tures of two gaussians. In STOC’10, pages 553–562, 2010. 4.3.1

[96] Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spectral method
for general mixture models. SIAM J. Comput., 2008. 4.3.1, 9.1

[97] Ravindran Kannan and Santosh Vempala. Spectral algorithms. Found. Trends
Theor. Comput. Sci., March 2009. 9.2.1, 9.2.2, 9.2

[98] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. In Proc. 18th Symp. Comp. Geom., 2002. 1.1.2, 4.1

[99] Michael Kapralov and Kunal Talwar. On differentially private low rank approxima-
tion. In SODA, 2013. 5.1.1

[100] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Pri-
vate analysis of graph structure. PVLDB, 4(11), 2011. 5.1.1, 5.2, 6.1.1

156

[101] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam Smith. What can we learn privately? In Proceedings of the
2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS,
2008. 3.2.2

[102] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. Analyzing graphs with node differential privacy. In TCC, 2013. 6.1.1

[103] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
In STOC, 1997. 5.1

[104] A. Kumar and R. Kannan. Clustering with spectral norm and the k-means algorithm.
In FOCS, 2010. 1.2.2, 4.3.3, 9.1, 9.1.1, 9.2.2, 9.2.2, 9.4, 9.4, 9.5, 9.5

[105] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+ ε)-
approximation algorithm for k-means clustering in any dimensions. In FOCS, 2004.
4.1, 7.3, 7.4.3

[106] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In
STOC. ACM, 2013. 4.1

[107] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. In Proceedings of the 35th Annual Symposium on Foun-
dations of Computer Science, SFCS ’94, pages 577–591, Washington, DC, USA,
1994. IEEE Computer Society. 5.1

[108] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf.
Comput., 108(2), 1994. 5

[109] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-
linial stable instances of max cut. CoRR, abs/1305.1681, 2013. 4.2.3

[110] F. McSherry. Spectral partitioning of random graphs. In FOCS, 2001. 1.2.2, 4.3.2,
9.1, 1, 9.1.1, 9.2.2, 9.1, 9.5, 9.5

[111] Frank McSherry and Ilya Mironov. Differentially private recommender systems:
Building privacy into the netflix prize contenders. In KDD, pages 627–636, 2009.
1, 5.1.1

[112] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
FOCS, pages 94–103, 2007. 3.2.1, 3.5, 5.3.2.3

157

[113] Marina Meilă. The uniqueness of a good optimum for k-means. In ICML, 2006.
4.2.3

[114] Matús Mihalák, Marcel Schöngens, Rastislav Srámek, and Peter Widmayer. On
the complexity of the metric tsp under stability considerations. In SOFSEM, 2011.
4.2.3

[115] K.S. Miller. Multidimensional Gaussian distributions. SIAM series in applied
mathematics. Wiley, 1964. 2.3.1.3

[116] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures
of gaussians. In FOCS’10, 2010. 4.3.1

[117] A G Murzin, S E Brenner, T Hubbard, and C Chothia. Scop: a structural classifica-
tion of proteins database for the investigation of sequences and structures. Journal
of Molecular Biology, 247(4):536–540, 1995. 4.1

[118] M.E.J. Newman. The structure and function of complex networks. SIAM review,
pages 167–256, 2003. 6.4.2, 6.5.1

[119] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in
private data analysis. In Proceedings of the thirty-ninth annual ACM Symposium on
Theory of Computing, pages 75–84. ACM, 2007. Full version in: http://www.
cse.psu.edu/˜asmith/pubs/NRS07. 3.3, 3.10, 3.11, 5.1.1, 5.2, 6.1, 6.1.1,
6.4.2.2

[120] R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric
k-clustering. In FOCS, 2000. 4.1

[121] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The
effectiveness of Lloyd-type methods for the k-means problem. In FOCS, 2006.
1.2.2, 1.3, 4.2.2, 4.7, 4.2.4, 7.1, 7.1, 7.2, 7.2, 7.2.1, 7.2.4, 7.3, 7.4.1, 7.5, 8.1, 9.1,
9.1.1, 9.1.1, 9.3.1

[122] Mallesh Pai and Aaron Roth. Privacy and mechanism design. SIGecom Exchanges,
12(1), 2013. 3.2.1

[123] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, S. Vempala, and
Santosh Vempala. Latent semantic indexing: A probabilistic analysis. In PODS.
ACM press, 1998. 5.1

158

http://www.cse.psu.edu/~asmith/pubs/NRS07
http://www.cse.psu.edu/~asmith/pubs/NRS07

[124] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in
networks. In Proc. 40th Annual ACM Symp. Theory of Computing (STOC), 2008.
8.1.1

[125] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy: output pertur-
bation for queries with joins. In Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 107–116.
ACM, 2009. 6.1.1

[126] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 475–484. ACM,
1997. 6.4.2.2

[127] Lev Reyzin. Data stability in clustering: A closer look. CoRR, 2011. 4.2.3, 8.1.1,
8.3

[128] A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In
Proceedings of the 42nd ACM symposium on Theory of computing, pages 765–774.
ACM, 2010. 3.2.3

[129] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In FOCS, 2006. 5.1

[130] F. Schalekamp, M. Yu, and A. van Zuylen. Clustering with or without the Approx-
imation. In COCOON, 2010. 4.2.1

[131] Leonard J. Schulman. Clustering for edge-cost minimization (extended abstract).
In STOC, 2000. 5.1

[132] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. In STOC, 2008. 5.3.2.3

[133] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In STOC, 2004.
5.3.2.3

[134] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook
social graph. Arxiv preprint arXiv:1111.4503, 2011. 6.1, 6.4.2

[135] Jonathan Ullman. Answering n{2+o(1)} counting queries with differential privacy
is hard. In STOC, 2013. 3.2.1

159

[136] Jonathan Ullman and Salil P. Vadhan. Pcps and the hardness of generating private
synthetic data. In TCC, 2011. 3.2.1

[137] Andrea Vattani. k-means requires exponentially many iterations even in the plane.
In Symposium on Computational Geometry, 2009. 4.2.3

[138] Santosh Vempala and Grant Wang. A spectral algorithm for learning mixtures of
distributions. In Journal of Computer and System Sciences, 2002. 1.1.2, 4.3.1, 9.1

[139] S.S. Vempala. The Random Projection Method. DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science. American Mathematical Society, 2005.
5.1, 5.1.1

[140] Konstantin Voevodski, Maria Florina Balcan, Heiko Roglin, ShangHua Teng, and
Yu Xia. Efficient clustering with limited distance information. In Proc. 26th UAI,
2010. 7.5

[141] Stanley L. Warner. Randomized Response: A Survey Technique for Eliminating
Evasive Answer Bias. Journal of the American Statistical Association, 60(309):63+,
March 1965. 3.2.2

[142] D.J. Watts and S.H. Strogatz. Collective dynamics of small-worldnetworks. nature,
393(6684):440–442, 1998. 6.5.1

160

	I Overview
	1 Introduction
	1.1 Problem Overview: Privacy and Clustering
	1.1.1 Differential Privacy
	1.1.2 Clustering

	1.2 Results Overview: Privacy and Clustering
	1.2.1 Differential Privacy in Social Networks
	1.2.2 Clustering

	1.3 Explicit vs Implicit Assumptions
	1.4 Acknowledgments

	2 Notation and Technical Background
	2.1 Graphs
	2.2 Linear Algebra
	2.2.1 SVD
	2.2.2 Positive Semidefinite Matrices
	2.2.3 Weyl and Lindskii's Inequality

	2.3 Probability
	2.3.1 Types of Random Variables
	2.3.2 Concentration Bounds

	3 Background: Differential Privacy
	3.1 The Basic Mechanism
	3.2 Alternative Mechanisms
	3.2.1 The Exponential Mechanism
	3.2.2 Randomized Response
	3.2.3 The Multiplicative Weights Mechanism
	3.2.4 Our Contribution: The Johnson Lindenstrauss Mechanism

	3.3 Smooth Sensitivity: Answering Queries of Large Global Sensitivity
	3.3.1 Our Contribution: Restricted Sensitivity

	4 Background: Center-Based Clustering
	4.1 Center-Based Clustering Objectives
	4.1.1 Other Clustering Techniques

	4.2 Implicit Stability Assumptions for Clustering
	4.2.1 Clustering objectives as a proxy for datapoints labeling
	4.2.2 k-clustering whose cost is much smaller than the cost of (k-1)-clustering
	4.2.3 Clustering perturbation resilient instances
	4.2.4 Our Contribution: Weak-Deletion Stability and Perturbation-Resilience for k-Median and k-Means

	4.3 Clustering under Explicit Distributional Assumptions
	4.3.1 Gaussian Mixture Model
	4.3.2 The Planted Partition Model
	4.3.3 Our Contribution: Improving on Kumar-Kannan Separability

	II Differential Privacy
	5 The Johnson-Lindenstrauss Transform Itself Preserves Differential Privacy
	5.1 Introduction
	5.1.1 Related Work

	5.2 Basic Definitions, Preliminaries and Notations
	5.3 Publishing a Perturbed Laplacian
	5.3.1 The Johnson-Lindenstrauss Algorithm
	5.3.2 Discussion and Comparison with Other Algorithms

	5.4 Publishing a Covariance Matrix
	5.4.1 The Algorithm
	5.4.2 Comparison with Other Algorithms

	5.5 Discussion and Open Problems

	6 Differentially Private Data Analysis of Social Networks via Restricted Sensitivity
	6.1 Introduction
	6.1.1 Related Work

	6.2 Preliminaries – Graphs and Social Networks
	6.3 Restricted Sensitivity
	6.4 Using Restricted Sensitivity to Reduce Noise
	6.4.1 A General Construction
	6.4.2 Efficient Procedures for H_k via Projection Schemes

	6.5 Restricted Sensitivity and H_k
	6.5.1 Local Profile Queries
	6.5.2 Subgraph Counting Queries

	6.6 Future Questions/Directions

	III Clustering
	7 Stability yields a PTAS for k-Median and k-Means Clustering
	7.1 Introduction
	7.2 Stability Properties
	7.2.1 ORSS-Separability
	7.2.2 BBG-Stability
	7.2.3 Weak Deletion-Stability implies beta-distributed
	7.2.4 NP-hardness under weak deletion-stability

	7.3 A PTAS for any beta-distributed k-Median Instance
	7.3.1 Clustering beta-distributed Instances
	7.3.2 Runtime analysis

	7.4 A PTAS for any beta-distributed Euclidean k-Means Instance
	7.4.1 Intuition
	7.4.2 A Deterministic Algorithm for beta-distributed k-Means Instances
	7.4.3 A Randomized Algorithm for beta-distributed k-Means Instances

	7.5 Discussion and Open Problems

	8 Center-based Clustering under Perturbation Stability
	8.1 Introduction
	8.1.1 Main Result

	8.2 Proof of Main Theorem
	8.2.1 Properties of Perturbation Resilient Instances
	8.2.2 The Algorithm
	8.2.3 Some Natural Barriers

	8.3 Future Directions

	9 Improved Spectral-Norm Bounds for Clustering
	9.1 Introduction
	9.1.1 Our Contribution

	9.2 Notations and Preliminaries
	9.2.1 Notation
	9.2.2 Basic Facts.
	9.2.3 Formal Description of the Algorithm and Our Theorems
	9.2.4 Proofs Overview

	9.3 Part I of the Algorithm
	9.3.1 Application: The ORSS-Separation

	9.4 Part II of the Algorithm
	9.4.1 The Proximity Condition – Part III of the Algorithm

	9.5 Applications
	9.6 An Open Problem

	Bibliography

