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Abstract

It is common practice for mobile devices to offload computationally heavy tasks off to a cloud, which has
greater computational resources. We consider an environment in which computational offloading is made
among mobile devices. We call such an environment a mobile device cloud (MDC). In this work, we first
highlight the gain in computation time and energy consumption that can be achieved by offloading tasks
to nearby devices inside a mobile device cloud. We do this by emulating network conditions that exist for
different communication technologies provided by modern mobile devices. We then present a platform that
allows creation and offloading of tasks by a mobile devices to nearby devices. Such a platform consists of
an API, an accompanying Android application deployable across MDC devices, and a test bed to measure
power being consumed by a mobile device. Finally, we create and utilize a testbed, which consists of four
Android devices and energy measurement equipment, in order to validate our intuitions and qualify the gain
in time and energy which we deduced from the emulation experiments. Using this test bed we show up to
50% gain in time and 26% gain in energy by employing task offload in MDC’s versus executing tasks locally.
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1 INTRODUCTION

1 Introduction

It is common practice for mobile devices to offload computationally heavy tasks off to a cloud, which has
greater computational resources. Solutions have been presented which partition any given task into separate
parts and offload these to a cloud so as to minimize the time taken to carry out the task [CIM+11]. However,
this type of offloading is expensive due to high energy costs and the high latency which exists between the
cloud and the offloading mobile device. As an answer to this problem, ‘Cloudlets’ were proposed: smaller
clouds placed closer to users which would make mobile task offloading less expensive in terms of energy
waste and time consumption [SBCD09]. The idea of reducing communication costs by executing closer to
the offloader device was then extended to introduce mobile device cloud computing - where the idea is to
offload tasks to nearby devices, be they mobile or stationary - so as to reduce communication costs and
latency [SLAZ12].

Mobile devices are now powerful. Recent studies forecast that, by 2014, mobile usage will take over
desktop usage [tag13]. Mobile devices are increasingly becoming resource intensive, and with the advent
of wearable computing devices like the Pebble and Google Glass, the need for task offloading is even more
severe since these devices come with limited processing capabilities [goo13]. Thus a solution that would allow
such devices to save time and energy by offloading to nearby devices rather than offloading to the cloud has
lots of practical implications.

In this document we propose task offloading in a network of connected mobile devices, which we call a
mobile device cloud (MDC). We define the device which is offloading computation as the offloader, and a
device which is carrying out computation on behalf of another device as the offloadee. We define a task as
a combination of the data that it takes in as input, and the computation that the task needs to perform
on this data in order to yield a result. An application is comprised of a lot of such tasks, and the more
data and computation intensive these tasks are, the more energy is required to perform them, and the more
time it takes to complete these tasks. Figure 1 shows three options for computational offloading. Namely, a
device can offload to a cloud which is far away, to a cloudlet which is a smaller set of servers located inside
a building, nearby coffeshops, etc., or to an MDC. Each of these different choices offers different trade offs
that need to be kept in mind when making the decision of which platform to offload to.

Attempts have already been made to minimize the time or energy loss by offloading these heavy tasks
off to the cloud [CIM+11], or a nearby cloudlet [SBCD09]. Mobile device cloud computing attempts to not
only overcome unavailability of such infrastructures, but also to save time and energy by offloading tasks to
a nearby set of mobile devices that can carry out the tasks on behalf of the offloader.

This work highlights the potential gain in energy and time which can be achieved by offloading com-
putation among devices in a MDC. We investigate if it is possible to gain energy and time by offloading
computation by employing offloading in MDC. Answering this question involves surveying what different
communication technologies are available to computational devices, and finding out what their trade offs are
in terms of bandwidth, RTT, etc. We perform a set of experiments that emulate environments with the same
network characteristics as those provided by these communication techniques so as to be able to determine
whether it makes sense to (1) offload computation at all and (2) if so, for what combinations of data and
computation should these tasks be offloaded so as to conserve time and energy. Using the emulation test
bed, we show potential gain in both time and energy, up to 50% and 23% respectively, which can be achieved
by offloading to other mobile devices in an MDC.

We propose an experimental platform that allows carrying out testing in the context of MDC’s. With
this platform, we create a test bed which allows us to measure the energy being consumed while a device is
performing different tasks using different communication technologies, as well as the time taken to offload
tasks to other devices and receive the result. We use this test bed to carry out experimentation which allows
us to obtain insights into what kinds of tasks should be offloaded and in what scenarios is it better to offload
tasks to a mobile device cloud versus executing it on the offloader device itself. Using the MDC platform,
we have shown that it is possible to gain in time and energy, up to 50% and 26% respectively, by offloading
within MDC’s, as opposed to executing tasks on the offloader itself.
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2 RELATED WORK
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Figure 1: Scenarios for offloading computation

The rest of the document is organized as follows. Section II outlines related work regarding mobile cloud
computing and offloading in mobile device clouds. We make the case for mobile cloud computing in Section
III by use of the emulation test bed we have created. We outline the design of the MDC platform that we
have built in Section IV, and present results and findings of experimentation carried out using this platform
in Section V. We discuss our conclusions and on going work in Section VI.

2 Related Work

With the rise in demand of computational resources by mobile applications, various solutions for compu-
tation offloading to more powerful surrogate machines, known as cyber foraging, have been proposed by
Satyanarayanan et. al. [Fli12]. Recent solutions include CloneCloud [CIM+11] and MAUI [CBkC+10].
CloneCloud decides, for any given task, whether to execute this task locally or to offload it to a remote
cloud. It does not rely on developer effort, and by carrying out static and dynamic analysis, it partitions
any given application into tasks that can be offloaded to other devices. It aims to minimizes the execution
time of an application by offloading some of its constituent tasks off to a cloud, while executing the rest
locally. MAUI relies on developer effort to convert mobile applications in a managed code environment to
better support fine-grained real-time offload decision making; it also considers the possibility of offloading to
different types of high-end infrastructures depending on their RTT in order to conserve energy. The impact
of large RTT’s on power consumption when offloading computation is further examined and utilized as an
incentive for bringing resource-rich computational infrastructure, known as Cloudlets [SBCD09] closer to
mobile devices.

Serendipity [SLAZ12] and Cirrus [SAZN12] devise solutions and architectures for making mobile device
clouds possible. Cirrus looks into the spectrum of devices that can be used as part of a mobile device cloud,
and proposes a holistic solution to cyber foraging which involves offloading not only to other mobile devices,
but also to computers installed on moving vehicles or placed in different areas of a building. Serendipity is
the first work that aims to develop and test a system that handles task allocation in mobile device clouds, and
use emulation to explore the possible speedups gained and energy conserved using offloading in mobile device
clouds. However, Serendipity does not consider all the technologies available to mobile devices in the present
day, and it does not consider different cases of data and computation to see which ones are energy efficient
and time saving as compared to others. Also, Serendipity focuses on mobile-mobile offloading only and does
not consider the other two scenarios of offloading to a cloudlet or a cloud. As opposed to this approach,
our work considers the full spectrum of communication technologies available to mobile devices today, and
also considers all the different infrastructures a mobile device can offload tasks to (Figure 1). For these
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Figure 2: A high level architecture of our Emulation Testbed

combinations of communication technologies and infrastructures, our work identifies what combinations of
data and combination are most efficient in terms of time and energy conservation, and confirms these insights
by evidence from real world experimentation.

3 Making the case for Offloading in MDC

In this section, we investigate what combinations of data and computation would make a task suitable
for offloading versus executing locally, considering the different communication technologies available. A
variety of methods exist to carry out our investigation. We list four methods: (i) analytical modeling, (ii)
network simulation, (iii) network emulation, and (iv) real world experiments. The potentials and limitations
for each method have been widely discussed [Jai91]. Simulation, while offering a high degrees of freedom
and reproducibility, is mainly criticized for inaccuracies in capturing realistic mobility and wireless medium
characteristics. Real world testbeds, however, are very much limited in scope and induce high management
overhead.

Because the emulation approach provides a balance between simulation and real world experiments, we
implement an emulation testbed as a first step towards evaluating the potential gain of data and computation
offloading in mobile environments. The test bed evaluates the gain achieved using any of the available
communication technologies for different combinations of data and computation. We identify five types of
communication technologies that could be used to offload tasks, namely, Bluetooth 3.0, Bluetooth 4.0, WiFi
Direct, WiFi and 3G. We consider offloading to all three scenarios as shown in Figure 1, namely, to an MDC,
to a cloudlet or to a cloud.

3.1 Emulation Testbed

We implement an emulation test bed in order to test task offloading in the context of MDC’s. This test
bed allows us to measure the energy consumed and time taken to complete tasks being offloaded from one
mobile device to another. It consists of (1) a client, (2) a server and (3) a traffic shaper. These components
are outlined below.

3.1.1 Client

The Client application represents an offloader device in an MDC. It is a Java Sockets based application which
allows a user to define tasks as combinations of Data and Computation (in MB and MFLOP respectively).
Once such tasks are created, they are sent to a server to be computed. Computation which is carried out
on the server is abstracted as a number of additions of different predefined matrices composed of floating
points. Data being sent to the server is represented as String objects of fixed lengths the size of which is
equal to the specified data size in MB.

This application sends a user-specified percentage of the defined task to a Server application(described
below) at a predefined IP address and port number, i.e., it sends the calculated MFLOP value representing

3



3 MAKING THE CASE FOR OFFLOADING IN MDC

the computation to be offloaded, and a String object the size of which equals the data to be offloaded. The
client application keeps track of the total time it takes to complete the offload operation, and receives the
server computation time (how much time it took to execute the task by the Server application). The Client
application carries out each offload operation three times and calculates the average total offload time and
average server computation time. It then writes these times to a file.

The client application logs the time taken to (1 ) offload and (2) compute the task, as well as the calculated
energy consumed by the offload operation. We only take the energy consumed due to communication into
consideration. We define completion time as the total time to send data, carry out computations on each
of the connected devices in parallel, and receive the result from each. We define energy consumed as the
communication energy that is spent while offloading the task to the offloadee device, and it includes both
the energy spent by the offloader to send the task as well as the energy spent by the offloadee to receive the
task. We calculate energy consumed by multiplying the communication time with the corresponding power
value in Table 1. These values have been taken from work carried out by Friedman et. al. [FKK11], and
information present in the specification documents provided by the manufacturers of the chip set being used
by the respective communication technology [bt413]. Friedman et. al have devised an experimental platform
to measure the energy consumed by a mobile device while the device performs different tasks. We assume
that the energy required to send and receive data using the communication technology is the same, and thus
use the power measurements for sending operations only when calculating energy.

Table 1: Power Consumption of Sending Data using Wireless Technologies [FKK11]

Technology Power (mW)

Bluetooth 4.0 50
Bluetooth 3.0 520
WiFi Ad Hoc 1548

WiFi 1568
3G 2500

3.1.2 Server

The Server application represents an offloadee device in an MDC. The Server application is also a Java
Sockets based application. It listens to any tasks that the client application might offload to it. Once it
receives a task sent by the client application, it executes the task and measures how much time it took
to carry out the computation. It then sends this time value back to the Client application and continues
listening for other tasks. In our work, we do not emulate is the computation capability of the offloadee
device, and this is something we are considering as future work.

3.1.3 Traffic Shaper

The main goal of the traffic shaper is to emulate the network conditions that are provided by the different
communication technologies that we consider in our experimentation. All the packets going from the Client
application to the Server application first go through a traffic shaper. Once the packets go through the
traffic shaper, a certain level of RTT and bandwidth constraint are introduced to the connection which exists
between the Client and the Server to emulate the network conditions provided by the type of technology
being emulated. We use bandwidth values from the work carried out by Friedman et. al [FKK11] as well
as specification documents provided by technology developers [bt413]. In case of RTT, we actually measure
the RTT that exists for each of the communication technologies, as well as the RTT that exists when
communicating with a Cloud. These measurements are carried out by pinging a server listening on each of
the technologies and infrastructures that we are considering five times, and taking a average of the time it

4



3 MAKING THE CASE FOR OFFLOADING IN MDC

takes to ping the server and receive the result. Since Cloudlets are not widely available, we pick two cases of
RTT’s, of 15ms and 30ms. We assume that no packet loss exists in the connections that we are emulating.

We consider two choices for building a setup that allowed us to emulate the environment - namely - NIST
Net [CS03] and Dummynet [Riz97].

NIST Net is implemented as a kernel module extension to the Linux operating system, and is a general
purpose tool for emulating network performance. It allows any computer to be converted into a router and
this box can then be used to vary network conditions between different connected devices. We installed
NIST Net on a VMWare virtual machine running on an Ubuntu machine. It was very challenging to work
with NIST Net since it is a kernel module and thus was implemented on top of specific Ubuntu kernels,
which aren’t supported anymore. Since 2005, NIST decided to stop maintaining this software [nis13], and
thus researchers have been relying on a combination of patches for different versions of Ubuntu kernel - and
even these patches are outdated. In light of all these problems, we then decided to look into other emulation
methods.

Dummynet is also implemented as a kernel module, on top of Free BSD, and is still supported by the
FreeBSD Foundation. It is built on top of the IP Firewall framework, and using it, any connection coming in
or going out of the system can be altered to introduce packet loss, latency and bandwidth in the connection.
Since these functionalities fit our requirements, we decided to move forward with this piece of software as
our emulation tool.

3.1.4 Testbed Implementation

The client application runs on an Intel Core 2 Duo machine running on Ubuntu 12.04 LTS. We call this
machine the host machine. The server application runs on a virtual machine which is hosted on top of the
host machine which runs the client application. This virtual machine runs FreeBSD. We install dummynet
(the trafficshaper) as a kernel module in the virual machine that runs the server application. The high level
architecture of our testbed, with the client, server and traffic shaper, can be seen in Figure 2.

3.2 Experimental Methodology

In our experiments, we vary the computational size (denoted by MFLOP) and data being sent (denoted
by MB). We measure the completion time and the energy consumed for these different combinations of
computational size and data being offloaded to another device. In each of the experiments we offload half of
the computation and carry out the rest of the computation on the offloader device itself.

We note that 10, 30 and 60 MFLOP correspond to computational complexities of low, medium and
highly complex applications. A detailed method to estimate the MFLOP of a given application is given in
Appendix A. For each of these three cases we vary the data being offloaded along with the task (0 - 30 MB
at intervals of 2 MB). For each of these cases we measure the time taken to carry out the task offload, and
use this time to calculate how much energy was consumed by the task offload operation.

3.3 Results

The results of the emulated experiments are outlined in Figures 3 and 4. We present results for three cases
of computation - low, medium and high. Each of these cases corresponds to a certain value of computation
in MFLOP, as described in the previous section on Experimental Methodology. These results provide us
with insights into the potential gains in time and energy that can be achieved by offloading in MDC’s.

3.3.1 Case of Low Computation (10 MFLOP)

The first set of experiments deal with offloading tasks of low computational intensity - the same as that of a
10 move chess game. The results for this experiment are given in Figures 3(a) and 4(a). Figure 3(a) shows
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Figure 3: Completion time for (a) Low, (b) Medium and (c) High computationally intensive tasks.
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Figure 4: Energy consumed by (a) Low, (b) Medium and (c) High computationally intensive tasks.

that in terms of time, gains can be made by offloading versus executing locally. We can see that the ”Local
Execution” line crosses with the offload time at a certain point. We can thus infer that, for tasks made up of
data greater than this point, it is a better idea to execute such tasks locally since these tasks would consume
lesser time being executed locally versus being executed in parallel using task offload. Specifically, we find
it efficient in terms of time to offload tasks of less than 8 MB using Bluetooth, WiFi, or Cloudlets, and in
this way it is possible to achieve up to 50% gain in time by offloading to one device.

In terms of energy, Figure 4(a) shows less of a gain to be made in terms of energy. As we can see, the
horizontal line only intersects with one of the communication technologies (Bluetooth), and the potential
gain that can be made in terms of energy by offloading a task of such low computation is very low, and
applicable only to a small data size. Specifically, for tasks less than 15 MB, energy can be conserved by
offloading using Bluetooth, by up to 25%; above that value, it is more energy efficient to execute the task
locally. Also, we see that up to 80% gain in energy can be achieved by using Bluetooth 4.

3.3.2 Case of Moderate Computation (30 MFLOP)

The second set of experiments deals with moderate computational intensity, the same as popular video
games, as shown in Appendix A, Table 2. In the case of moderate sized computation, as shown in Figure
3(b), we see that because we have now increased computation, we can now save more time by offloading.
In terms of time, we now see that for tasks with data sizes up to 5 MB, we see gain of up to 40% gain in
time by offloading to another device for any of the different technologies and infrastructures that we have
considered. In addition, for all the data sizes we have considered (up to 30 MB), except for offloading to the
Cloud, time gain is seen by offloading using any of the communication technologies and infrastructures that
we have considered.

In terms of energy, as seen in Figure 4(b), up to 44% gain in energy was registered by offloading using
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4 MDC EXPERIMENTAL PLATFORM

Bluetooth. We also see that the line denoting local execution doesn’t cross the line denoting Bluetooth
execution, thus showing that now for all the data sizes that we have considered, in terms or energy, gain was
registered by offloading the task rather than executing it locally.

3.3.3 Case of High Computation (60 MFLOP)

The third case deals with high computation - the same complexity as that of an application recognizing
objects from a live video feed (See Appendix A, Table 2). In the case of a high sized computation (as shown
in Figure 3(c)), we observe that with the larger amount of computation, there is a greater potential for
saving time by offloading than executing locally. For data sizes of of less than 5 MB, it makes sense to
offload, as up to 50% time can be conserved as is the case in WiFi Ad-hoc, Bluetooth 4 and offloading to
a nearby cloudlet. For data sizes greater than 5 MB, it time can still be gained by offloading, but not to
the cloud, since offloading to the cloud has very high latency costs associated with it. It also needs to be
noted that for all the technologies, the time it takes to complete the offload operation steadily increases as
data size increases so for potentially very data-intensive tasks greater than the upper limit we considered
(30 MB),time can be conserved if we execute them locally versus offloading them to the cloud.

In terms of energy (Figure 4(c)), for data sizes less than 2 MB, it makes sense to offload the computation
to any communication technology or infrastructure available, and a maximum gain of 23% in energy can be
observed. Above 5 MB, it still makes sense to offload but not to the cloud, because the latency associated
with offloading to the cloud shrouds the potential gain that can be achieved by offloading to a MDC.

3.3.4 Summary of Results

Among all of the graphs in Figure 3, we can see that there is a lot of time gain in offloading to a MDC
rather than offloading to a cloud. We have registered up to 80% savings in time by offloading to an MDC as
opposed to offloading to the cloud. We have also registered up to 20% savings in time by offloading to a MDC
as opposed to a cloudlet located nearby. Gains for offloading to a cloud are significantly lesser and apply
to fewer cases of data. Similar insights can be seen about energy gains. As it can be seen across Figure 4,
for computationally less intensive tasks, energy can be gained by executing them locally versus offloading,
and the gains are up to 80%. However we have only registered a maximum of 50% gain in energy that can
be achieved by offloading to a cloudlet, and no gain at all by offloading to a cloud. With these results we
can decide, given the computational complexity of the task, and the availability of different communication
technologies and infrastructures, whether to offload the task or execute locally.

4 MDC Experimental Platform

Researchers in mobile cloud computing resort to implementing or migrating representative resource heavy
applications on mobile devices over which they evaluate new architectures, task scheduling algorithms, or
different offloading techniques. Since appropriate, flexible, and open source mobile applications are not easily
accessible, this approach is time consuming and takes the focus away from the main research contributions.
Even with the effort exerted in integrating research contributions with representative applications, results are
coarse grained, potentially application dependent, and take away the ability of evaluating future applications
that might not exist yet.

Based on this observation, we believe there is a need for a generic flexible platform that can be utilized
by researchers to freely test mobile cloud computing resource sharing and offloading solutions. This tool
should decouple two main components that characterize any mobile application: the amount of data as well
as the computational load that any task or job will require. These two components of the application should
also be easily broken down into distributable sub-tasks that researchers can control in real-time. Similar to
simulations, this flexibility in the generic platform allows researchers to test their solutions over a fine-grained
range of parameters that can represent a wider spectrum of current and future applications.
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Figure 5: Snapshot of Energy Test Bed

We introduce our mobile device cloud (MDC) experimental platform for mobile cloud computing research.
Our platform consists of (1) an energy test bed, (2) an API for mobile-to-mobile task offloading, and (3) an
Android application built using the API to carry out experimentation on real world MDC’s.

The platform makes way for further research in the context of MDC’s. It can be used, for instance, to
test various offloading strategies, and identifying the best solutions for saving on time and energy in the
context of real world MDC’s. One particular work uses the platform to maximize the lifetime of an MDC
by sharing of tasks among the network connected devices [MFHA13], where lifetime is defined as the time
it takes for at least one of the devices of an MDC to deplete its battery.

4.1 Energy Test Bed

In order to calculate the energy consumed by different operations carried out by a device in a mobile device
cloud, we need to know the power taken for each of the different operations that the device performs. We
create an energy test bed to be able to make these measurements. We create this by taking out the battery
of the device being tested and soldering wires coming from a power supply into the battery contacts of the
device. The power supply that we use comes with a built in ammeter and voltmeter. We then provide a
constant voltage according to the manufacturer specifications and power the device on. Using the current
and voltage readings from the ammeter and voltmeter respectively, we are able to determine the power being
consumed by the phone at any instance. Figure 5 shows a Samsung Galaxy SII device connected to the
power supply. In the particular scenario shown in this figure, the device is consuming current of 3.6 A and
Voltage of 0.14 V, and this means that the instantaneous power being consumed by the device is 0.504 W.

We carry out different tasks on the device and measure the power being consumed for each of these tasks.
All of these tasks are carried out for a minute each to account for system load fluctuations, and for each of
the tasks, a base reading is taken before performing the task itself. Thus the power being consumed by the
specific task can be calculated by subtracting the base value from the total power being consumed while the
task is being performed. We carry out such experiments for all of the communication technologies we have
identified above, apart from Bluetooth 4.0 since support for it is not currently available on Android phones.
The testing is carried out on Samsung Galaxy SII and SIII phones.

Figure 6 compares different energy measurements while performing wireless transfers using Bluetooth
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Figure 6: Results from Energy Testbed Experimentation

(BT) and WiFi Direct (WiFi D.) between two Samsung SII devices and two Samsung SIII devices. We send
the same data size using both Bluetooth and WiFi Direct, and show that Bluetooth is 80% to 120% more
energy efficient than WiFi Direct. Moreover, we notice that sending data costs 10% to 25% more energy
than receiving data independently of the wireless communication used. This plot confirms the fact that WiFi
Direct is an energy expensive technology; in fact, SIII with WiFi Direct radio on and connected to another
SIII, consumes almost the same energy than SIII sending via Bluetooth to another SIII device. We note
that the Samsung SII does not implement WiFi Direct, so we plot only the SIII measurements in Figure 6.

4.2 API

For researchers to carry out experimentation on MDC’s, a set of functionalities needs to be provided so that
they can test different offloading strategies. We develop an API that allows task definition and sending and
receiving of tasks using different communication technologies. We implement the API using Java and the
Android framework. Below we have defined the different features of this API.

• PreOffloader - Allows a user to specify a task as a composition of data (in MB) and computation
(in MFLOP). It supports user data entry using the phone’s interface, or creation of multiple tasks
dynamically.

• LocalExecutor - Runs as a service in a background process. It takes in a task and executes it on the
offloader device itself, before returning the task to the TaskOffloader class.

• BluetoothOffloader - Takes as input a task and a percentage of how much of that task needs to
be offloaded. It divides the percentage of the task to be offloaded amongst devices paired with the
offloader devic. Following this, it sends the offloadee portions of the task via bluetooth, and then
executes the tasks on the offloadee devices and itself in parallel.

• WiFiDirectOffloader - Works in a similar fashion as the BluetoothOffloader , except that it uses
WiFi Direct to offload the tasks. Execution is also carried out in parallel.

• RemoteOffloader - The RemoteOffloader sends a task to a given IP address. We used this function-
ality to offload tasks to a Cloudlet or a Cloud based device.

Implementation Details - The API executes the fraction of the task that needs to be executed locally
in a separate thread in the background using Android’s IntentService facility, and once the local execution
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Figure 7: Screenshot of MDCloud Application

of the computation is completed, the time taken to run this computation is written to a file. Parallel to this
execution, another thread divides the computation and data into as many parts as offloadee devices in the
mobile cloud, creates as many threads as these devices, and uses each of these threads to offload to each
offloadee device its share of the task. The sending and receiving of tasks for each communication technology
is carried out by using ServerSocket and Socket on top the relevant API for each of the technologies
provided by Android.

Since the devices being used in our mobile device cloud run on multi core processors, we want to leverage
that in order to make sure phones with more parallel processing capabilities executed the code in more
efficient ways so that offloadee computation time can be reduced. This would help us test the scenario where
a device with less computational capability offloads to a set of more powerful devices. In order to achieve
maximum performance gain when executing computation in parallel, we uses AsychTasks, a functionality
provided by Android through which we set high priority to the threads carrying out the computations. This
optimization, however, does not show much reduction in computational time, but this is the maximum gain
we obtain given the options that Android’s 4.1 version provides developers with.

Usage - So far we have implemented this API on the Android framework. This application can be in-
stalled on any number of devices in a mobile device cloud. It can be used to set up a mobile device cloud
where one device is an offloader and the rest of the devices are offloadees. The application’s interface can
then be used to specify how much data and computation needs to processed, and what percentage of these
should be offloaded and what percentage should be executed locally. The interface also allows choosing the
communication technology that should be used in order to offload the task and receive the result.

4.3 MDCloud Application

We implement an application called MDCloud that uses the API described above, and runs on Android 4.1.
The interface of the application allows a user to create a task by specifying the amount of computation and
data (in MFLOP and MB, respectively). It also allows the user to select the communication technology to
be used to offload the task from among a list of choices given in a drop down menu. This list also contains
‘Cloud’ and ‘Cloudlet’ options using which the user can offload to one of those infrastructures hosted at
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specified IP addresses. In addition, the interface also provides two seek-bars that allow the user to specify
what percentage of computation and data should be offloaded, and the remaining percentage is executed
locally. Once the task has been offloaded, the application keeps track of the time it takes to get the result
from all the offloadees, as well as the time it takes for each offloadee to complete it’s assigned computation.

This platform allows users to generate tasks with different computational loads (measured in total floating
point operations and denoted in MFLOP) and relevant data input (measured and denoted in MB). It also
provides APIs that enable building more specialized applications that can offload sub-tasks, set by the user,
using various wireless technologies, such as WiFi, Bluetooth, or WiFi Direct. The MDC platform enables
the application to log the total response time for each task (i.e., the time when the task was initiated to
the time when the results are sent back to the initiating user). It also logs the computational time for every
device as well as the data transfer time separately.

The application allows the user to select the number of connected devices from a pool of devices within
its proximity, as well as the amount of data and computational load to be offloaded to each connected device.
When the user executes a task generation and offloading scenario by pressing the send button, the original
task is, therefore, fragmented and the selected percentages are offloaded to remote devices as specified by the
user. The remaining sub-tasks are executed locally. We install the application on multiple phones and use
the application of offload tasks from one phone to multiple offloadees. More details on the scenarios under
which we test the MDCloud application can be seen in the next section.

A screen shot of one of the uses of the application can be seen in Figure 7. In the particular scenario
pictured in this figure, the application is set up to offload 10 MFLOP of computation and 20 MB of data
using Bluetooth, where 40% of the computation and 50% of the data would be offloaded to the remote paired
devices while the rest would be executed locally.

5 The MDC Testbed

We create an experimentation testbed which uses the MDC platform to gain insights into the energy and
time tradeoffs when offloading in real world MDC’s. Our experimental testbed consists of two Samsung
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Galaxy SII and two Samsung Galaxy SIII phones, all running the MDCloud application we have described
in the previous section. A snapshot describing the testbed can be seen in Figure 8. In the particular scenario
pictured in the figure, a MDC consisting of two devices has been set up, where one of the devices (the SIII)
is offloading a task to another device (the SII), and the power being consumed by SII is being measured.

Using the MDCloud Application, we attempt to get practical insights useful for making offloading de-
cisions in mobile device clouds. We thus define four scenarios, and using their results, make conclusions
about what strategy would be good for developing an offloading algorithm. In all of these scenarios we chose
Bluetooth as the standard communication technology, because of its widespread availability in almost all
modern smart devices.

5.1 Corroborating Emulation

In this scenario, we consider the case of two devices in a mobile device cloud, where one device is the
offloader and the other is an offloadee. We consider moderate and high computation (30 and 60 MFLOP,
respectively), and we vary data between 0 and 20 MB. In all cases, we divide the task into two equal parts:
one for offloading and the other for executing locally. These experiments are of similar nature to the ones
carried out using the emulation testbed as outlined in Section III. The idea is to corroborate the findings of
the emulated testbed to see if similar results are achieved, to be able to justify that our emulated testbed
mimicked real world MDC’s testbed correctly.

5.1.1 Case of Moderate Computation (30 MFLOP)

The results for this experiment can be seen in Figures 9(c) and 9(a), where we have plotted data on the
horizontal axis and time and energy on the vertical axes. As can be seen, for tasks lesser than 3 MB, up to
40% gain in time and up to 20% gain in energy can be achieved by offloading half of the task to another device
in the MDC. However, since the computation is negligible, we see that in Figure 9(a), the lines denoting
time consumed by offloading crosses the line denoting time taken by local computation earlier in the graph,
showing that only for a small subset of the experiment does it make sense in terms of time conservation to
offload versus executing locally. Similarly in the case of energy (Figure 9(a)), the data component of a task
that can actually show a conservation in energy has a very small upper limit.

5.1.2 Case of High Computation (60 MFLOP)

The results for this experiment can be seen in Figures 9(d) and 9(b) where we have plotted data on the
horizontal axis and time and energy on the vertical axes. For a higher MFLOP value, we see a larger gain
in both energy and time conservation that we can achieve by offloading the task to another device. We see
that we can gain up to 50% gain in time and 26% gain in energy by offloading half of the task to another
device.

As can be observed, the crossing that is seen in the graphs 9(d) and 9(b) has shifted horizontally. This
means that since we are now considering higher computation, a larger set of tasks can show a gain in both
time and energy in case we offload them to another device in an MDC, and these tasks can now have a
higher upper limit for the amount of data that they are composed of.

What we have seen in these two experiments corroborates what we saw in the emulation experiments we
ran in Section III. We can thus confirm that in the case of real world MDC’s it is definitely possible to gain
time and energy by offloading to other devices.

5.2 Offloading to Multiple Devices

In this scenario, we consider the case of three devices in a mobile device cloud, where one device is the
offloader and the remaining two are offloadees. We consider a task of fixed computation size (60 MFLOP),
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Figure 9: Results from MDC Testbed Experiments
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and we very the data from 5 MB, 10 MB and 20 MB. We carry out two experiments. In the first experiment,
we offload half the task to another device and execute the rest of the task locally. This first experiment
has already been carried out in section 5.1.2. In the second experiment we divide the offloaded task equally
among the offloader and two offloadee devices such that each device carries out 33% of the task. We measure
the time consumed in each of these different experiments. The goal of this experiment is to determine if gain
in time can be maid by offloading a task to multiple devices instead of just one.

The results can be seen in Figure 9(b). From our experiment, we can see up to 40% gain in time by
offloading to two devices as compared to one. We can also see that for higher data values, the distance
between the time taken to execute on one device and the time taken to execute on two devices is narrowing.
This is because for higher data values, the overhead that comes from having a lot of data being sent mitigates
the potential gain that can be made by distributing the computation among multiple devices.

5.3 Offload Distribution

We now consider the case of a mobile device cloud consisting two devices, where one is the offloader and the
other is the offloadee. We offload different tasks composed of a fixed amount of computation (60 MFLOP),
and we vary the data from 0 to 5 MB.We carry out five experiments, one for each data size. In each
experiment, we vary the percentage of computation that is being offloaded to the offloadee device, between
0% and 100%. The goal of this experiment is to determine the optimal percentage to offload so as to
maximize gain in time and energy. Determining such optimal distribution in runtime will be investigated in
future work. We also calculate the energy being consumed in each of these experiments to see what is the
optimum offload percentage which ensures maximum gain in time and energy.

The results for time measurements can be seen in Figure 9(e). As we can see, for lower data values (1-4
MB), there line that represents the time taken is in the shape of a curve. In all these cases, the lowest
time it took to complete the offload operation is when 20% of the task was offloaded to the offloadee device
and the rest was executed locally. We can also see that by varying the percentage of the task that is being
offloaded versus being executed locally, we can see up to 51% gain in the time it takes to complete the offload
operation.

The results for energy calculations for the above set of experiments can be seen in Figure 9(f). We can
see that for all the data values that we have considered, the most gain in energy is made by offloading 100%
of the task to another device. We can also see that up to 16% conservation in energy can be achieved by
offloading the whole task to the offloadee device versus executing the whole task locally.

5.4 Computation vs. Communication

We consider the case of a mobile device cloud consisting two devices, where one is the offloader and the
other is the offloadee. We offload different tasks composed of different amounts of data and computation.
We define low, medium and high data as 1 MB, 10 MB and 20 MB respectively, and we define low and high
computation as 1 MFLOP and 20 MFLOP. The goal of this experiment is to determine which factor (data
or computation) consumes more energy during the offload operation.

The results of this experiment can be seen in Figure 9(g). For these common tasks that we have considered,
what we observe is that communication can take up to 100 times more time than computation does. We also
see that an increase in 20 MB of data inside a task can cost 4 times more time than increasing 20 MFLOP
of computation in the task being considered.

This analysis shows that the bottleneck when it comes to offloading is the data that the task is composed
of, and not the computation. Having more computation provides avenues for more gain to be achieved in
terms of time of time and energy conservation, while having more data means a reduction in the energy and
time that can be achieved by offloading tasks into an MDC.
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6 Summary & Ongoing Work

In this work we have shown that mobile devices can be used to save both time and energy when it comes to
executing computationally heavy tasks. We have shown a potential gain in both time and energy, up to 50%
and 23% respectively, which can be achieved by offloading to other mobile devices in an MDC, and we have
corroborated these results by carrying out experimentation on our MDC test bed. We also present different
insights into the factors that affect the offloading decision by carrying out further testing on our MDC test
bed.

We also provide an API that allows algorithms for offloading decisions to be tested on an actual mobile
device cloud consisting on multiple devices. We have also used the MDC platform to carry out experiments
that have given us insights into how to decide whether to offload a particular task or not, and what potential
strategies could be used to make this decision. We have shown up to 50% gain in time and 26% gain in
energy by offloading, and these results corroborate what we learned from our emulation testbed results.

In the future we would like to publish the MDC API that we have built so that other researchers in the
field of mobile cloud computing can create testbeds and experiment different offloading strategies. We would
also like to enahnce the MDC Application interface so that it allows us to specify different percentages of
task to be sent to different devices, according to the characteristics of the devices. We would also like to
carry out real world mobile cloud computing experiments by giving devices running the MDC Application
to different students on campus to keep with them throughout the day and evaluating gains in time and
energy by employing task offloading.

While we have looked into making offloading decisions based on the contents of the task at hand, we
would also like to explore which device a task should be offloaded to given information about the devices
existing inside the MDC. We plan on leveraging social context and contact history of the device holder and
the device itself respectively to determine which devices are most likely to respond the fastest and thus result
in the most energy efficient offloading choice. For each of the different strategies used to determine which
device a task should be offloaded to, we would then run simulations against actual contact history data sets
to discover which of the strategies are most energy/time efficient in real world situations.
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Appendices

A Mapping Everyday Applications to MFLOPs

In order to figure out what MFLOP values can be considered as “low”, “medium” and “high”, we need a
method to be able to measure the MFLOP values that are used by common applications that we use in our
every day lives. We have outlined this method below.

A.1 Method to calculate MFLOPs of an application

Our mobile testbed is implemented on the Android platform. We use a benchmarking application called
Linpack [DLP03] which stress tests the CPU and provides the number of MFLOP that the CPU is able
to handle. While this benchmarking operation is running, we note down the CPU load - a functionality
provided by Android Developer Tools. We calculate the “MFLOP per unit load” by dividing the total
MFLOP consumed in the benchmarking process by the load. Using this value, we are then able to run any
arbitrary application and measure how many MFLOPs are being consumed by an application by multiplying
the CPU load with the MFLOP per load unit.

A.2 Mappings of Applications to MFLOPs

We used the above method to measure MFLOP values of most common every applications on the Android
platform. For each of the three categories we are considering, we identify one application that corresponds to
that category. We have identified a chess game called Chess for Android low compute intensive application.
For this game, we measure MFLOP when the application is making a move in high difficulty mode. For
a moderate sized computation application, we identify a common video game called Angry Birds Space.
For the category of high computation we identify an object recognition application called Google Goggles
(running in continuous mode, where the application identifies objects in real time from a live video input).
We install these applications on a Samsung Galaxy SIII device. We use the above method to measure the
MFLOP values being consumed be each of these applications. We carry out each experiment three times and
take an average of the computed MFLOP value. The results for these experiments can be seen in Table 2.

Table 2: Mapping Tasks to MFLOP

Application MFLOP

Chess Game 10
Video Game 30

Object Recognition in Video Feed 60
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