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Abstract

Data centers play an important role in today’s IT infrastructure. How-
ever, their enormous power consumption makes them very expensive to
operate. Sadly, much of the power used by data centers is wasted because
of poor capacity management, leading to low server utilization.

In order to reduce data center power consumption, researchers have
proposed several dynamic server provisioning approaches. However, there
are many challenges that hinder the successful deployment of dynamic
server provisioning, including: (i) unpredictability in workload demand,
(ii) switching costs when setting up new servers, and (iii) unavailability of
data when provisioning stateful servers. Most of the existing research in
dynamic server provisioning has ignored, or carefully sidestepped, these
important challenges at the expense of reduced benefits. In order to re-
alize the full potential of dynamic server provisioning, we must overcome
these associated challenges.

This thesis provides new research contributions that explicitly address
the open challenges in dynamic server provisioning. We first develop
novel performance modeling tools to estimate the effect of these chal-
lenges on response time and power. In doing so, we also address several
long-standing open questions in queueing theory, such as the analysis of
multi-server systems with switching costs. We then present practical dy-
namic provisioning solutions for multi-tier data centers, including novel
solutions that allow scaling the stateful caching tier and solutions that are
robust to load spikes. Our implementation results using realistic work-
loads and request traces on a 38-server multi-tier testbed demonstrate
that dynamic server provisioning can successfully meet typical response
time guarantees while significantly lowering power consumption.

While this thesis focuses on server provisioning for reducing power in
data centers, the ideas presented herein can also be applied to: (i) private
clouds, where unneeded servers can be repurposed for “valley-filling” via
batch jobs, to increase server utilization, (ii) community clouds, where
unneeded servers can be given away to other groups, to increase the total
throughput, and (iii) public clouds, where unneeded virtual machines can
be released back to the cloud, to reduce rental costs.



vi



Acknowledgments

This thesis has been made possible by the help of the many people who helped
me throughout my PhD. First and foremost, I would like to thank my advisor, Mor
Harchol-Balter, for her constant support and encouragement, and for all the time and
effort she has devoted towards my research. I have learnt a lot from Mor during my
PhD, including how to approach research problems, how to write technical papers,
and how to give good talks. I am also grateful to my thesis committee members,
Dave Andersen, Jeff Kephart, Alan Scheller-Wolf, and Karsten Schwan, for helping
me shape this thesis. Alan has additionally been a second “theory” advisor for me
these past six years, and I have always enjoyed working with him on the numerous
theory problems that we tried to tackle. Mike Kozuch has been my second “systems”
advisor, and probably the most fun person I have ever worked with. I would also like
to thank my past and present colleagues, Varun Gupta, Timothy Zhu, and Sherwin
Doroudi, for the many interesting and insightful discussions. A big thank you to
Deb Cavlovich, Nicole Stenger, Carly Shane, Nancy Conway, and Charlotte Yano for
their invaluable administrative support during my stay at CMU.

I have been fortunate to have had great friends during my PhD. Amith Darbal,
Danish Faruqui, Dhishan Kande, Debasis Kar, Satyajeet Ojha, Neerav Verma, you
have seen first-hand how much effort actually went into making this thesis possible.
Thanks for all your help, and for making my PhD so much fun!

I have also been very fortunate to have had the support of my best friend and
wife, Sneha, throughout my PhD. Sneha’s unconditional love gave me the strength
to successfully complete this thesis. I must also mention that Sneha’s perseverance
in her medical career made it very difficult for me to get lazy. Thanks for keeping
me going!

Finally, I would like to thank my parents and my sister for their endless love and
support, and for trusting my decision to pursue a PhD. You guys will always be my
greatest advisors!

vii



viii



Contents

1 Introduction 1

1.1 Data Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Need for Power Management in Data Centers . . . . . . . . . . . . . 4

1.2.1 Where does the power come from? . . . . . . . . . . . . . . . 4

1.2.2 Where does the power go in a data center? . . . . . . . . . . . 4

1.2.3 Power metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Data Center Power Management Approaches . . . . . . . . . . . . . . 5

1.3.1 Power-proportionality . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Energy-efficient Server Design . . . . . . . . . . . . . . . . . . 7

1.3.3 Dynamic Server Provisioning . . . . . . . . . . . . . . . . . . . 8

1.3.4 Consolidation and Virtualization . . . . . . . . . . . . . . . . 11

2 Thesis Overview 13

2.1 Dynamic Server Provisioning . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Motivation behind dynamic server provisioning . . . . . . . . 14

2.1.2 Why is dynamic server provisioning difficult? . . . . . . . . . . 15

2.1.3 The need for this thesis . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Prior Work in Dynamic Server Provisioning . . . . . . . . . . . . . . 17

2.2.1 Predictive approaches . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Reactive approaches . . . . . . . . . . . . . . . . . . . . . . . 18

ix



2.2.3 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Dynamic provisioning for stateful servers . . . . . . . . . . . . 19

2.2.5 Decentralized dynamic server provisioning approaches . . . . . 20

2.2.6 Dynamic provisioning approaches in operations research . . . 21

2.3 Scope of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Implementation testbed . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Research questions addressed by this thesis . . . . . . . . . . . 26

2.4 Novelty and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Challenges in Dynamic Server Provisioning 31

3.1 Setup Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Analysis of setup costs . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Effect of scale on setup costs . . . . . . . . . . . . . . . . . . . 38

3.2 Uncertainty in Workload Demand . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Analysis of workload traces . . . . . . . . . . . . . . . . . . . 40

3.2.2 Load spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Stateful Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Consequences of dynamically changing the cache size . . . . . 46

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 AutoScale: Robust Dynamic Server Provisioning 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Our experimental testbed . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Trace-based arrivals . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Evaluation I: Fluctuations in Request Rate . . . . . . . . . . . . . . . 54

4.3.1 AlwaysOn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Reactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



4.3.3 Reactive with extra capacity . . . . . . . . . . . . . . . . . . . 57

4.3.4 Predictive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.5 AutoScale−− . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.6 Opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Wear-and-tear costs of server provisioning . . . . . . . . . . . . . . . 62

4.5 Impact of Sleep States . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Lower setup times . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 Lower sleep power . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.3 Sensitivity analysis of sleep states . . . . . . . . . . . . . . . . 67

4.6 Impact of Lower Idle Power . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Evaluation II: Robustness . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7.1 Why request rate is not a good feedback signal . . . . . . . . 71

4.7.2 A better feedback signal that is still not quite right . . . . . . 72

4.7.3 AutoScale: Incorporating the right feedback signal . . . . . . . 74

4.7.4 Alternative feedback signal choices . . . . . . . . . . . . . . . 80

4.8 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 SoftScale: A Novel Approach to Handling Load Spikes 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Our Experimental Testbed . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 SoftScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 When to invoke SoftScale? . . . . . . . . . . . . . . . . . . . . 93

5.3.2 How much application work can memcached handle? . . . . . 94

5.3.3 Need for isolation . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.4 The SoftScale algorithm . . . . . . . . . . . . . . . . . . . . . 96

5.3.5 Analytical model for estimating SoftScale’s performance . . . . 97

xi



5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Characterizing the range of load jumps that SoftScale can handle 98

5.4.2 Spikes in real-world traces . . . . . . . . . . . . . . . . . . . . 101

5.4.3 Spikes created by server faults . . . . . . . . . . . . . . . . . . 102

5.5 Lower Setup Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Future Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 CacheScale: Dynamic Provisioning of the Caching Tier 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Assessment of Cache Savings . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Popularity distribution . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.3 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 CacheScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Scaling down . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.2 Scaling up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.3 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Recursive Renewal Reward 123

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 Matrix-analytic based approaches . . . . . . . . . . . . . . . . 125

7.2.2 Generating function based approaches . . . . . . . . . . . . . 126

7.2.3 M/M/k with vacations . . . . . . . . . . . . . . . . . . . . . . 126

xii



7.2.4 Restricted models of M/M/k with setup . . . . . . . . . . . . 126

7.2.5 How our work differs from all of the above . . . . . . . . . . . 127

7.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 The Recursive Renewal Reward technique . . . . . . . . . . . . . . . 128

7.5 M/M/1/setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.1 Deriving T via TL
0,1 and TL

1,1 . . . . . . . . . . . . . . . . . . 130

7.5.2 Deriving R via RL
0,1 and RL

1,1 . . . . . . . . . . . . . . . . . . 132

7.5.3 Deriving E[N] . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.4 Deriving N̂(z) and T̃(s) . . . . . . . . . . . . . . . . . . . . . 134

7.5.5 Deriving P̂(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 M/M/k/setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6.1 System of equations for pL
i→d . . . . . . . . . . . . . . . . . . 137

7.6.2 Deriving ṘL
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Chapter 1

Introduction

Data centers are an integral part of today’s internet services. Business organizations
and corporations around the world rely heavily on data centers for their daily opera-
tions. In fact, every time we search for a query on the internet, or use an application
on our smartphones, we make use of data centers.

At a high level, a data center is simply a massive collection of servers that stores
data and provides computational resources. A primary goal for data center oper-
ators is to ensure that users, or customers, receive good performance. This often
translates to having sufficient capacity (number of servers) to provide the required
performance. However, given the size of today’s data centers, a secondary goal is to
minimize the operational costs of running the data center. The power consumed by
the servers is often the biggest contributing factor to the data center’s operational
expenses [26, 153]. Thus, an important question for data center operators is how to
manage capacity so as to optimize the power-performance tradeoff.

In this chapter we give a broad overview of data centers (Section 1.1) and motivate
the need for power management in data centers (Section 1.2). We then discuss the
various approaches to data center power management, and the challenges associated
with each of them (Section 1.3).

In the next chapter, we provide an overview of this thesis. In particular, Chapter 2
focuses on the scope of this thesis: dynamic server provisioning. Chapter 3 examines
the challenges in dynamic server provisioning. We then provide practical solutions for
these challenges in Chapters 4, 5, and 6. Chapter 7 presents our new theoretical work
on analyzing dynamic server provisioning. We discuss related work in Chapter 8, and
conclude with a summary of this thesis in Chapter 9.
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1.1 Data Centers

Figure 1.1: Abstract data center model.

A data center is a facility that physically houses a number of connected computer
servers and provides the necessary infrastructure, such as the power, heating, venti-
lation and air conditioning system, to keep them operational. In this thesis, we will
focus specifically on the servers within a data center.

Figure 1.1 illustrates the server layout in a typical data center architecture. In-
coming requests first arrive at a load balancer, or a front-end proxy server, and are
then distributed among middle-tier web servers or application servers. These servers
are typically stateless, meaning they do not store any data that is required for serving
the requests. The middle-tier servers parse the incoming request and determine the
data needed, such as customer profiles or account information, to satisfy the request.
This data is then fetched from the back-end data storage servers. These data servers
are stateful, meaning they store data that is necessary to serve customer requests.
Traditionally, the back-end servers store persistent data on hard drives/disks, usually
in the form of databases. However, accessing data via the disk significantly increases
the application response time. To improve performance, data centers today typically
make use of a caching tier, which reduces data fetch latency. A popular cache man-
agement software used in caching tiers is memcached [59]. With memcached, most
requests for dynamic content will be served by the caching tier servers, and only a
fraction of the requests will have to incur the huge performance hit associated with
accessing data via the hard disk. Popular multi-tier services include social network-
ing (for example, Facebook), online banking, e-commerce companies (for example,
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Amazon, e-bay), etc. However, not all applications are multi-tiered. For example,
websites for small businesses, personal home pages, compute-intensive applications
such as simulations, etc, are all single-tier applications. Such applications usually
only require the middle-tier web/application servers. Other popular examples of
single-tier architecture include call centers, service centers, manufacturing systems,
etc.

Data centers host a variety of workloads ranging from multi-tier web workloads
(online services such as Amazon [48], Google [33]) to data-intensive (MapReduce [47],
Hadoop [165]) and compute-intensive (scientific computing, super-computing) work-
loads. Data centers are also used to host virtual machines (such as Amazon EC2 [13]),
which can then be leased, or rented, to customers. The specific workload running on
these virtual machines depends on the user.

1.1.1 Performance metrics

Performance is often the most important metric for data center operators. Since
data centers host a range of workloads, performance is a very subjective term. For
data hosting applications, performance is often measured in terms of availability of
data over a period of time. For batch workloads, performance is often measured in
terms of throughput or completion time. For web workloads or database queries, a
popular performance metric is response time. In this thesis, we use response time as
our performance metric. Formally, response time is defined as follows:

Definition 1.1 (Response Time).
Response time for a request is defined as the time (in seconds or milliseconds) from
when the request arrives at the data center to the time when it completes execution.

Data centers that serve customers often provide a guarantee on the response
time experienced by a customer request. An agreement that reflects this guarantee
is called a Service Level Agreement (SLA). Formally, an SLA for response time can
be defined as follows:

Definition 1.2 (Service Level Agreement).
A Service Level Agreement (SLA) is a contract between the service provider and the
customer that states an upper bound on the response time a customer will experience
for a given request, with a certain probability, under certain conditions.

An example of an SLA (from Amazon [48]) is a service guaranteeing its users a
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response time below 300ms for 99.9% of the requests, given a peak load of no more
than 500 requests per second.

1.2 Need for Power Management in Data Centers

Data centers often house thousands of servers [104] to provide good response times
to their huge customer base. With the emergence of cloud computing and the growth
in big data, the number of servers in a data center will rise even higher. At such
scales, the power consumed by the servers becomes a significant operational expense.

Data center power consumption within the US accounts for more than 1.5% of
the total electricity usage. The rising cost of energy and the tremendous growth of
data centers will result in even more spending on power consumption. Based on EPA
estimates, the energy consumption in US data centers exceeded 100 billion kWh in
2011, at a cost of $7.4 billion [11]. Rising energy costs, regulatory requirements and
social concerns over greenhouse gas emissions have made it critical to reduce power
consumption in data centers.

1.2.1 Where does the power come from?

Data centers typically satisfy their electricity needs by using grid power from a
utility company. Of course, most data centers also have uninterrupted power supply
(UPS) on site to deal with power outages. Some data centers also harness power
from renewable energy sources to offset their grid power consumption [35, 137, 83].
Nevertheless, grid power remains the primary source for almost all data centers today.

1.2.2 Where does the power go in a data center?

Of the power supplied to a data center, roughly 50% is consumed by site infrastruc-
ture such as power delivery systems and cooling systems [11]. An additional 10%
goes into powering the network equipment and the storage systems. The remaining
40% is consumed by the servers themselves. Thus, for every $1 spent on powering a
server, an additional $1.5 is spent on the supporting infrastructure.
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1.2.3 Power metrics

The two important power metrics that data center operators care about are (i)
average power consumption, and (ii) peak power consumption.

The price that a data center operator pays, say monthly, for power consumption
depends on the total energy used in that month, typically in units of kilowatt-hours
(kWh). Thus, reducing the average power consumption directly results in cost sav-
ings. Note that reducing the power consumption of the servers also helps reduce the
associated power required for cooling these servers.

Peak power consumption is important because data center infrastructure is often
provisioned for a specific peak power budget [57]. For example, when provisioning the
air conditioning system, the power delivery infrastructure, or the circuit breakers, a
specific peak power consumption is assumed [106, 133]. If the peak power consump-
tion of the data center exceeds this finite power budget, companies will have to invest
in building additional data centers. Thus, there is a huge cost-savings incentive to
limit peak power consumption in data centers.

The specific power metrics considered in this thesis will be discussed in Sec-
tion 2.3.

1.3 Data Center Power Management Approaches

Traditionally, data center research has focussed on trying to maximize performance.
However, given the significance of power usage in today’s data centers, researchers
are now focussing on the joint problem of maximizing performance while minimizing
power consumption. In this section we list the popular approaches that have been
employed for data center power management, and the important challenges encoun-
tered by each of the approaches. A detailed study of the prior work employing these
approaches will be discussed later in Chapter 8.

There are four different high-level approaches for reducing power consumption in
data centers:

1. Power-proportionality:
Finding ways to ensure that servers that are on consume power in proportion
to their utilization.

2. Energy-efficient Server Design:
Building the right server architecture for a given workload.
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3. Dynamic Server Provisioning:
Turning servers on and off at the right times.

4. Consolidation and Virtualization:
Amortizing power consumption by resource sharing.

While this thesis focuses on dynamic server provisioning, it is instructive to briefly
discuss all the above approaches.

1.3.1 Power-proportionality

A popular approach to power management is to ensure that servers that are turned
on consume only the bare minimum amount of power needed to service customer
requests [26]. This requires the servers to be “power-proportional,” meaning that
servers consume power in proportion to the load they experience. The basic idea
here is that servers should consume very little power when they are idle. When
the servers do experience load, leading to a utilization of say x%, then they should
only consume x% of their peak power, and no more. Power-proportionality has
motivated a lot of research and development in recent years. Most of the focus,
however, has been on reducing system idle power consumption. Low idle power has
motivated the novel workload scheduling idea of “Race to Idle,” which advocates
executing existing workload continuously at maximum speed, and then transitioning
to the idle mode until a certain amount of new workload has accumulated. There
has been some progress on power-proportionality for cases when there is load in the
system. Dynamic Voltage and Frequency Scaling (DVFS) allows the processor to
consume less power (when compared to peak power) by running at a lower voltage
and frequency setting. DVFS is a very practical solution because it takes less than a
millisecond [43] to transition between different Voltage and Frequency settings [87].
We now list the research challenges associated with power-proportionality:

• How to reduce a server’s idle power consumption?
Processor designers have been very successful at reducing the CPU idle power [89,
109]. However, other server components still consume significant power when
idle. The memory contents of DRAM are volatile, and thus require power even
when idle to ensure data availability. Hence, it is not easy to reduce DRAM
idle power. Flash memory is non-volatile, and does not require power when
idle. However, flash memory is typically slow and has low data transfer speeds.
Disks often continue to spin, even when idle, to provide quick access times for
new data requests. Spinning down the disk can save power, but comes at the
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cost of transition latency when spinning the disks back up for servicing new
data requests.

• Is Race to Idle useful?
The Race to Idle approach advocates working on customer requests continu-
ously until all existing requests are served, and then transitioning to the idle
state, until sufficient requests have accumulated. Race to Idle relies on having
low idle power consumption, and having a workload that either has sufficiently
long idle periods, or is delay insensitive. Web applications often have very short
idle periods, and thus, are not well suited for Race to Idle. Batch workloads,
on the other hand, are very well suited for Race to Idle because of their delay
insensitivity. While Race to Idle is potentially beneficial for certain classes of
workloads, it has been overshadowed by superior approaches such as DVFS [15].

• What are the right Voltage and Frequency settings for a given workload?
DVFS is an approach that reduces server power consumption at the expense
of reduced server speed by lowering the operating voltage and frequency. Thus
far, DVFS has only been implemented for processors. However, there has
been a lot of interest from the research community for DVFS in the memory
subsystem [46, 50]. DVFS is well suited for applications that do not require the
CPU or memory subsystem to be running at full speed. For example, an I/O-
intensive application might only use the CPU for a very small fraction of time,
and thus, would not be significantly impacted by lowering CPU voltage and
frequency. Servers often have multiple voltage and frequency settings [69, 70].
The main challenge with DVFS is choosing the right voltage and frequency
settings for a given application. Further, given the right settings, is DVFS
superior to Race to Idle? These questions become even more challenging in
a multi-server setting, where the number of choices for voltage and frequency
settings (across all servers) grows exponentially [70].

1.3.2 Energy-efficient Server Design

Most servers are designed so as to provide great performance for a range of work-
loads. This flexibility often comes at the expense of not being energy-efficient. If an
application has specific resource traits, such as being CPU-intensive or I/O-intensive,
we can choose or build specific server designs that are a good fit for the application
needs. Servers that are well suited to a given application can result in a system
which has higher utilization, and consequently, is more energy-efficient. Further,
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such servers can be architected to be power-aware, for example, by providing low-
power inactive states, designing smarter processors, etc. We can realize the specific
server design by either choosing from the range of available commodity machines
(multi-core processor based servers to single-core mobile processor based devices) or
designing a custom server (for example, a server with heterogeneous cores or a server
with lots of Flash memory). The important challenges that come up when designing
and deploying energy-efficient servers are as follows:

• Which is the best server architecture for a given workload?
It is not always easy to determine the right server configuration for a given
workload. Workloads often go through various execution phases where they
exercise different components of the server. Further, the behavior of a workload
can be dynamic and unpredictable, making it difficult to identify the workload’s
resource traits.

• Can we custom build power-aware servers?
Modifying the server design, or building a new server design, involves a lot of
challenges. When customizing the server design, we need to ensure that the
functionality of the server is not compromised. For example, trying to add
a new low-power inactive state (“sleep” state) might involve turning off the
DRAM memory. This will lead to loss of DRAM contents. Is this acceptable
to the application, or should the contents first be copied to a disk before putting
the server to sleep? Alternatively, if the DRAM is to be kept turned on while
the server sleeps, how can we provide access to the DRAM contents? These
are difficult challenges, and often involve a tradeoff between lower power and
reduced server functionality.

• Is the best server architecture cost-effective?
Assuming that we identify the best server architecture for a given workload,
it is not obvious that switching to this architecture will be cost-effective. For
example, if the best architecture requires custom modifications to a commodity
server, the cost overhead in making these modifications might render this switch
infeasible.

1.3.3 Dynamic Server Provisioning

Dynamic server provisioning proposes to save power by only powering on the min-
imum amount of resources (servers) needed to satisfy the workload requirements.
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The basic idea is to scale the number of servers in response to the workload demand.
If the demand increases, additional servers are brought online. If demand decreases,
unneeded servers are turned off, or put into low-power inactive “sleep” states, rather
than being left idle. The advantage of sleep and off states is that a server consumes
very little power in these states when compared to the idle state. However, a big dis-
advantage with the sleep and off states is that turning a server on from these states
requires a significant amount of time (typically on the order of minutes [93, 129]).
We refer to this transition time as the setup time:

Definition 1.3 (Setup Time).
The setup time for a server is the time from when the server is turned on to the time
when it is ready to execute customer requests.

Note that power (often peak power) is consumed during the entire setup time,
even though no useful work is being done. Thus, there is also an energy penalty
associated with setting up. Given these setup “costs,” it is not obvious whether
servers should ever be turned off.

In the context of data center power management, dynamic server provisioning
advocates turning unneeded servers off to save power. However, in general, unneeded
servers could also be repurposed for other applications (such as batch processing or
data analytics), or loaned out to other customers in order to get more work done. Of
course, if these servers were needed again in case workload demand increased, then
they could be reclaimed after some setup time (to allow the server to free up). In the
case of virtualized environments, the unneeded virtual machines (VMs) can simply
be released back to the cloud to save on rental costs. Similar to server provisioning,
there is a setup cost needed to create VMs or obtain them from the cloud. This setup
cost can range anywhere from 30s – 1 minute if the VMs are locally created (based on
our measurements using kvm [102]) or 2 – 10 minutes if the VMs are obtained from a
cloud computing platform (see, for example, [13, 108]). Interestingly, the setup time
for a VM can vary significantly depending on external factors such as time of day,
location of host data center, etc [127].

In order to minimize the negative effects of setup time on performance, it is
important to have a good estimate of workload demand. However, given the volatile
nature of customer demands, workload prediction is often a difficult task.

We now describe the important challenges in dynamic server provisioning. We
revisit these challenges in more detail in Chapter 3 and discuss the important prior
work in dynamic server provisioning in Section 2.2.
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• How to predict workload demand?
Demand prediction is important for capacity planning. Most data center work-
load demands are very bursty in nature and often vary significantly during the
course of a single day. This makes it challenging to predict future demand.
Fortunately, most customer facing workloads do exhibit some (daily or weekly)
periodic patterns [77, 20]. This allows us to estimate workload demand based
on historic trends, provided that there is some correlation between historic
data and current data. Unfortunately, sudden changes in demand are com-
mon in today’s data centers. Important events, such as the September 11 at-
tacks [113, 88], earthquakes or other natural disasters [186], slashdot effects [7],
Black Friday shopping [44], or sporting events, such as the Super Bowl [145] or
the Soccer World Cup [20], are common causes of load spikes. While some of
the above events are predictable, most of them cannot be predicted in advance.
This makes it even more challenging to predict workload demand.

• How many servers?
Assuming we have some prediction for the future workload demand, how many
servers do we need to handle this demand? Converting workload demand to ca-
pacity requires information on the performance SLA (see Definition 1.2). Given
the SLA and predicted workload demand, we can use either performance mod-
eling or experimental studies to determine the required number of servers to
successfully handle the estimated demand. However, since actual demand can
vary from the predicted demand, we need to allocate some spare capacity in
the system. The spare capacity can either be in the form of additional servers,
or servers that are in sleep modes. The amount of spare capacity needed will
depend on the expected deviation between actual demand and predicted de-
mand, and the SLA. In general, determining the right amount of spare capacity
is a very difficult question. This is further complicated by setup times, which
can severely impact response times. The problem is further exacerbated in
the presence of stateful servers, due to the temporary unavailability of data
following the addition or removal of a stateful server.

• How useful are sleep states?
Since the idle power consumption of DRAM and disk cannot be easily reduced,
an orthogonal approach is to transition the entire server to a low-power inactive
“sleep” state when there is no work to do. Desktops, laptops, and mobile
devices are all equipped with sleep states that allow the power consumption to
be near-zero when there is no work to do. While sleep states result in a much
lower power consumption than idle power, they require a significant transition
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latency to go back to the active state [131, 68]. Thus, it is not obvious whether
sleep states are useful or not. Further, there are often multiple sleep states
that one can transition to when idle. For example, in the S3 state (Suspend
to RAM), the CPU is turned off but the memory and disk subsystems remain
on, whereas in the S4 state (Suspend to Disk), the CPU and the memory
subsystem are turned off, but the disk remains on [135]. The “off” state can
also be considered as a sleep state with zero power. The different sleep states
differ in their sleep power consumption and their setup time (see Definition 1.3).
Given their different characteristics, it is not obvious which (if any) sleep states
are useful for a given application. Also, when should the server transition into
and out of the sleep states?

1.3.4 Consolidation and Virtualization

Consolidation takes dynamic server provisioning one step further and allows different
application instances to be colocated on the same physical server. The basic idea
is to consolidate the workload from several, possibly under-utilized, servers onto
fewer servers. This allows the unneeded servers to be turned off, resulting in lower
power consumption, and higher system utilization. We now describe the important
challenges encountered when consolidating workloads:

• How should virtual machines be consolidated on physical machines?
Different applications have different resource usage traits. This makes it chal-
lenging to colocate different application instances together on a physical server.
For example, it might be more beneficial to colocate a CPU-intensive appli-
cation with a memory-intensive application rather than colocating two CPU-
intensive applications. Identifying the resource usage patterns of applications
is often very difficult because of the dynamic nature of data center workloads.
There is also the concern that colocation might expose critical applications to
security risks because of other malicious applications.

• How to allocate resources fairly in a cloud environment?
When consolidating multiple applications with different resource needs, fairness
becomes an important metric. The data center operator has to ensure that
applications do not starve because of other, more demanding, applications.
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Chapter 2

Thesis Overview

Power management in data centers is a very broad topic, as we have seen in Sec-
tion 1.3. In this thesis, we focus on dynamic server provisioning and the challenges
associated with it. This chapter provides an overview of the contents of this thesis.

We start in Section 2.1 with a brief discussion of dynamic server provisioning.
In particular, we provide the motivation for choosing dynamic server provisioning as
our approach for data center power management in Section 2.1.1. We then discuss
the challenges involved in dynamic server provisioning in Section 2.1.2, and briefly
discuss the new research needed for addressing these challenges in Section 2.1.3. We
discuss prior work related to dynamic server provisioning in Section 2.2 and highlight
the challenges that have been overlooked by these works. We then talk about the
scope of this thesis in Section 2.3, specifically, the metrics that we consider in this
thesis in Section 2.3.1, and our implementation testbed in Section 2.3.2. Given the
metrics and our testbed, we then list the research questions that this thesis will
address in Section 2.3.3. Finally, in Section 2.4, we differentiate our work from prior
work and list the contributions of this thesis.

2.1 Dynamic Server Provisioning

The approaches used for dynamic power management in this thesis can best be
classified as dynamic server provisioning approaches. In general, we are interested in
minimizing the total number of servers needed at any point of time for meeting the
response time SLAs (see Definitions 1.1 and 1.2) of an application. In this thesis, we
use the term “servers” to refer not only to physical servers, but also to other resources
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in general such as virtual machines, or even processor cores on a given physical server.
Since dynamic server provisioning involves adding and removing servers, we deal with
the associated challenges such as setup times (see Definition 1.3), unpredictability in
workload demand, and availability of data. We discuss these challenges in Chapter 3.

In this section we briefly provide the motivation for choosing dynamic server
provisioning as our approach for data center power management. We then discuss
the factors that make dynamic server provisioning difficult, and how prior work has
handled (or sidestepped) these difficulties. We end this section by outlining the new
research required to fully realize the potential of dynamic server provisioning, thus
making a case for this thesis.

Note that while this thesis focuses on dynamic server provisioning in data centers,
the techniques discussed herein can easily be extended to dynamic capacity provi-
sioning problems in the cloud. For example, consider private clouds, where unneeded
servers can be repurposed for valley-filling, that is, doing other useful work instead of
being turned off or put to sleep. This “other” useful work can be either maintenance
or background work, or batch workload such as data analytics. Another extension of
dynamic provisioning is capacity management in community clouds, where unneeded
servers can be given away to other trusted groups to increase the total throughput.
In both of the above examples, if these “donated” servers were needed again in case
workload demand increased, then they could be reclaimed after some setup time.
This setup time allows the other applications running on these servers to be migrated
or terminated in a graceful manner. Yet another extension of dynamic provisioning
is for cost management in public clouds, where virtual machines (VMs) are leased to
users who typically pay an hourly rent for using the VMs. In such settings, users are
interested in meeting their performance needs while minimizing their rental expense.
Dynamic server provisioning helps the users minimize their required VMs, and the
unneeded VMs can be released back to the cloud provider to reduce rental costs. If
additional VMs are required at a later time, they can be obtained from the cloud by
incurring a setup cost, which is typically on the order of minutes [13, 108].

2.1.1 Motivation behind dynamic server provisioning

As we stated in Section 1.2, power is an expensive resource in data centers. Unfor-
tunately, a lot of power in data centers is actually wasted. One of the big reasons
for this waste is low server utilization. Servers in a data centers are often left “al-
ways on,” leading to only 10–30% server utilization [21, 26]. In fact, [167] reports
that the average data center server utilization is only 18% despite years of deploying
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virtualization aimed at improving server utilization. From a power perspective, low
utilization is problematic because servers that are on, while idle, still utilize 60%
or more of peak power. Further, servers that are on necessitate support from other
IT infrastructure including the cooling, networking, and storage systems. Thus, idle
servers also lead to indirect power consumption. Given the importance of reducing
power consumption in data centers and the fact that data centers have low server
utilization, we conclude that dynamic server provisioning is an attractive solution
for data center power management.

2.1.2 Why is dynamic server provisioning difficult?

Dynamic server provisioning has a lot of potential for reducing power consumption in
data centers. However, there are many challenges that hinder the successful deploy-
ment of dynamic server provisioning. While dynamic server provisioning has received
a lot of attention recently (see Section 2.2 below), most of the existing research has
ignored, or carefully sidestepped, these important challenges.

For example, prior work often assumes that dynamic server provisioning decisions
only need to be taken once every epoch [41, 191, 40] (on the order of tens of minutes).
At this coarse granularity, authors ignore fine-grained variations in load, which are
all too common in data center workloads [73, 60, 61], and which have a significant
negative impact on the potential for power savings [188].

Another important problem that is very often ignored is the setup time required
to provision new servers. The setup time for servers is typically on the order of
minutes [93, 129]. As we show in Chapter 3, setup times significantly impact response
times, and thus cannot be ignored when dynamically provisioning servers. We are
only aware of a handful of recent publications ([188, 107]), apart from our own, that
take setup times into account. There are some publications ([121, 60, 120, 41, 129])
that partially take setup time into account by assigning a penalty (usually to the
operating cost) every time a server is switched on. Such penalties ignore the adverse
effects of setup time on performance.

A common assumption in server provisioning is that workload demand can be
predicted [189, 86, 114, 141, 57, 3, 190, 196, 53]. Unfortunately, this is not always the
case. As we show in Chapter 3, even for workloads with periodic trends, there is often
a portion of the demand that is unpredictable. Ignoring this unpredictable portion
can lead to a steep increase in response times. Further, demand can sometimes spike
unpredictably, causing response times to shoot up. Most prior work in dynamic
server provisioning ignores load spikes by designating them as rare events.

15



Finally, dynamic server provisioning in the presence of stateful servers is another
problem that has often been overlooked. This is a difficult problem because of the
temporary data unavailability that follows the addition or removal of a stateful server,
such as a caching tier server. The only prior work in this area that we are aware of
focuses on scaling the number of replicas in distributed storage systems [14, 170].

2.1.3 The need for this thesis

The above mentioned challenges limit the applicability and benefits of dynamic server
provisioning in data centers. As we show in Section 2.2 below, prior work has often
carefully evaded these challenges at the cost of reduced benefits. For example, by
only making provisioning decisions at very coarse time scales, prior work avoids setup
times. However, this coarse-grained provisioning makes the system vulnerable to load
spikes and short-term fluctuations. To deal with these issues, prior work often resorts
to defensive tactics, such as over-provisioning, load-shifting, or admission control.
Such corrective measures, though useful, limit the potential for power savings, and
can hurt response time. In order to realize the full potential of dynamic server
provisioning, we must overcome the associated challenges.

Addressing the challenges associated with dynamic server provisioning requires
new research, both in theory and systems. For example, the fact that setup costs
(a.k.a. switching costs or wake-up penalties) negatively impact response times is
common knowledge [26, 173, 86] among researchers in dynamic provisioning. How-
ever, no closed-form analysis exists for multi-server systems with setup times, even
though a single-server with setup times was completely analyzed back in 1964 [194].
Thus, there is a need for new theoretical research to understand the effects of setup
times. Another example is dynamic provisioning of the caching tier. Scaling the
caching tier can provide significant savings in power and cost, since caching tier
server are typically [128] equipped with massive amounts of expensive and power-
hungry DRAM. However, to the best of our knowledge, there has been no prior work
on dynamic scaling of the caching tier. Thus, there is a need for new systems research
to implement and evaluate novel dynamic provisioning approaches for the caching
tier. This thesis provides new theoretical and systems research contributions that
address the open challenges in dynamic server provisioning, such as those discussed
above.
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2.2 Prior Work in Dynamic Server Provisioning

In this section we discuss prior work in data center power management that specifi-
cally employs dynamic server provisioning. When applicable, we highlight the ideas
from prior work that this thesis builds upon. We also highlight the challenges ad-
dressed, or overlooked, by the prior work. We revisit some of this prior work in later
chapters when we focus on specific research problems. For a discussion of related
work employing other techniques for data center power management, see Chapter 8.

Most dynamic server provisioning approaches can be categorized into two types:
predictive and reactive (or control-theoretic). Predictive approaches, e.g., [107, 40,
152, 36, 120, 121], aim to predict what the request rate will be in the future, so that
they can start turning on servers now if needed. Reactive approaches, e.g., [189, 86,
114, 141, 57, 3, 190, 196, 53], all involve reacting immediately to the current request
rate (or the current response time, or current CPU utilization, or current power, etc)
by turning servers on or off. There are also hybrid approaches, e.g., [41, 28, 191, 174,
76, 173, 60, 61], that combine ideas from predictive and reactive approaches. There
are also approaches that are neither predictive nor reactive, and instead, rely on
the application to express its resource requirements [58, 39, 187, 91]. We categorize
these approaches as decentralized approaches. Finally, there are also approaches
for dynamic provisioning in the operations research literature, e.g., [120, 121, 90].
While the system model in these operations research works is different from our data
center setting, there are certain conceptual similarities. We now discuss in detail the
relevant prior work in dynamic server provisioning. We omit discussion of some of
the prior work (such as [119, 196, 191]) where setup times are negligible, since one of
the challenges we wish to address explicitly in this thesis is dealing with setup times.

2.2.1 Predictive approaches

Krioukov et al. [107] use various predictive policies, such as Last Arrival, Moving
Window Average, Exponentially Weighted Average, and Linear Regression, to pre-
dict the future request rate (to account for setup time), and then accordingly add or
remove servers from a heterogenous pool. The authors evaluate their dynamic server
provisioning policies by simulating a multi-tier web application. The authors find
that Moving Window Average and Linear Regression work best for the traces they
consider (Wikipedia.org traffic), providing significant power savings over conserva-
tive, static approaches. We make use of this result in Chapter 4 to narrow the set of
predictive policies that we implement for comparison against our proposed policies.
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Chen et al. [40] use auto-regression techniques to predict the request rate for a
seasonal arrival pattern, and then accordingly turn servers on and off using a simple
threshold policy. The authors evaluate their dynamic server provisioning policies
via simulation for a single-tier application. They find that their dynamic server
provisioning policy performs well for periodic request rate patterns that repeat, say,
on a daily basis. Some of the ideas behind our dynamic server provisioning policy
presented in Chapter 4 are similar to those used by Chen et al. Specifically, the idea
of index-based routing, which helps to concentrate load on fewer servers, is common
to both works.

In general, predictive approaches are very successful when dealing with periodic
or seasonal workloads. However, as we show in Chapter 4, these approaches fail when
the workload is bursty and unpredictable, or when the workload demand suddenly
increases: It is clearly hard to predict what will happen in the future when demand
is bursty and future arrivals are unknown.

2.2.2 Reactive approaches

Horvath et al. [86] employ a reactive feedback mechanism to provision capacity for a
multi-tier web application. In particular, the authors monitor server CPU utilization
and response times, and react by adding or removing servers based on the difference
between observed response time and target response time. The authors evaluate
their reactive approach via implementation in a multi-tier setting. The authors also
study the effect of using multiple sleep states in servers, and conclude that using sleep
states in conjunction with the traditional off state can significantly improve energy
efficiency. In our work in Chapter 4, we also consider monitoring CPU utilization
and/or response times to provision servers. However, we discard these metrics in
favor of a more robust metric – number of active requests in the system. Also, in
Chapter 4, we evaluate the use of sleep states for dynamic server provisioning, and
come to the same positive conclusion as Horvath et al.

Wang et al. [189] also employ a reactive feedback mechanism to manage the
power-performance tradeoff in multi-tier systems. The authors use DVFS along with
capacity provisioning to react to degradation in observed response times. Similar to
our work in Chapters 3 and 4, Wang et al. leverage queueing theoretic results to
help guide their system. However, the models used in Wang et al. are much simpler
than ours, and do not take setup time into account.

Abdelzaher et al. [3] use a control-theoretic approach to provision resources to
applications in a multi-tier architecture. The authors use a queueing-theoretic model
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to predict response times. Their closed-loop approach then manages the tradeoff
between the number of applications hosted on a machine and the amount of resources
(CPU or memory) allocated to each application based on the estimates of response
time and power consumption. The authors’ use of queueing theory to guide dynamic
provisioning is similar to our efforts in Chapters 3 and 4. However, just as in Wang
et al. [189] above, the queueing models employed by Abdelzaher et al. do not take
setup time into account.

While reactive approaches often lead to robust dynamic server provisioning so-
lutions, they can be inadequate for meeting response SLAs when the setup time is
high. As we show in Chapter 4, this is because the benefits of the increased capacity
only take effect after the setup time.

2.2.3 Hybrid approaches

Hybrid approaches typically work by relying on predictions to capture the long-term
trends in workload demand, and then employing reactive techniques to handle the
unpredictable short-term fluctuations in demand.

In Urgaonkar et al. [173] and Gandhi et al. [60], the authors consider work-
loads where the demand is divided into two components, a long-term trend which
is predictable, and short-term variations which are unpredictable. The authors use
predictive approaches to provision servers for long-term trends (over a few hours) in
request rates, and then use a reactive controller to react to short-term variations in
request rate. In our work, we assume unpredictable demand. However, as in the hy-
brid approaches above, we start with a reactive controller to handle the unpredictable
short-term variations in load.

Hybrid approaches combine the strengths of predictive and reactive approaches,
and are superior to purely reactive or purely predictive approaches [60, 61]. How-
ever, hybrid approaches continue to suffer from the shortcomings of predictive and
reactive approaches, albeit to a lesser extent. Specifically, the reactive controller is
still vulnerable to setup times. However, because of the predictive component, the
reactive controller now only needs to handle the short-term fluctuations in workload
demand, which is often only a small fraction of the total demand [60, 61].

2.2.4 Dynamic provisioning for stateful servers

All of the above prior work assumes stateless servers. We now discuss important
prior work in dynamic provisioning of stateful servers.
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Amur et al. [14] and Thereska et al. [170] consider the problem of organizing and
scaling data replicas such that at least one copy of the data is always on. This allows
the remaining data nodes to be scaled down without affecting availability. Writes
directed at off servers are instead written to other servers (write offloading), and later
reorganized to conform to the desired data layout. In general, write offloading [139]
has been used to redirect requests to otherwise idle disks to increase periods of idle-
ness, allowing these disks to be spun down to save power. In our work in Chapter 6,
we also use the concept of offloading requests to allow otherwise idle servers to be
turned off. However, we use this idea for read requests in a novel way that allows
hot data items to be moved from otherwise idle servers to other servers, before the
idle servers are turned off.

Prior work in dynamic provisioning for stateful servers has only focussed on dis-
tributed storage systems [14, 115, 170, 179, 161]. The main contribution in this area
has been the development of different mechanisms and data layouts for replicated
storage systems that allow storage servers to be turned off while maintaining avail-
ability. To the best of our knowledge, there has been no prior work on dynamic
provisioning of caching tier servers.

2.2.5 Decentralized dynamic server provisioning approaches

One of the major problems with centralized approaches, such as the ones discussed
above, is that they do not scale well. Thus, recent literature has explored fully or
partially decentralized approaches based on applying concepts from economic theory
(see [58] for a broad discussion of such approaches). Chase et al. [39] develop a
bidding approach whereby resource units can be bought with virtual currency, and
customers bid for these resource units. The objective for the central agent is to
maximize its profit at each time interval by “selling” the available resource units to
the highest bidders. A similar bidding framework was also used in [187] to “sell”
idle CPU cycles to customers in a distributed computing environment and in [91] to
lease network resources to customers.

In general, decentralized approaches suffer from certain shortcomings. Decentral-
ized controllers typically have less information than centralized controllers, and are
thus limited in their potential for power savings. Further, they require the application
to express its resource requirements, which is often non-trivial to compute.
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2.2.6 Dynamic provisioning approaches in operations research

The problem of dynamic server provisioning also comes up in operations research in
the context of staffing employees in call centers and also in inventory management. In
call center staffing, the servers are employees, who require a salary (power) when they
are working. The call center manager can bring in additional employees when the
demand increases, at the expense of a setup cost (time to reach work and extra pay).
Unfortunately, most of the analytical work in call center staffing has either ignored
setup costs or assumed stationary demand. One exception to this is [97]. In [97], the
authors consider the problem of dynamic staffing based on knowing the distribution
of demand so as to upper bound the probability of a customer finding all servers
busy on arrival. The authors show that the optimal policy suggests provisioning for
the sum of the mean load and the square-root of the mean load; that is, provision
spare servers in proportion to the square-root of the mean load. This is known as the
“square-root staffing” rule. Unfortunately, this rule requires knowledge of the future
load. Our work in Chapter 4 presents a new dynamic server provisioning policy,
AutoScale, that converges to “square-root staffing” without knowing the future load.

Within inventory management, the problem of dynamic provisioning takes the
form: how much inventory should one maintain so as to minimize the total cost of
unused inventory (holding cost, in our case, idle power) and queueing time. A popular
dynamic policy that is employed in such cases is known as Make to Order, which
is similar in nature to reactive approaches. In inventory management, a common
assumption is that inventory is produced sequentially. In the context of dynamic
server provisioning, this assumption translates to allowing at most one server to be
in setup at any time. We refer to this model as staggered setup. The inventory
management analysis [6, 22] on staggered setup has not resulted in any closed-form
solutions for the response time or power. We provided the first closed-form analysis of
staggered setup in [66, 67, 68], and showed that the distribution of response time for
multi-server systems with staggered setup has a nice decomposition property. Later,
in [62], we relaxed the staggered setup requirement, and provided the first closed-
form analysis of multi-server systems with setup costs. We discuss this analysis in
Chapters 3 and 7.

All of the prior work in operations research discussed above looks at the average
behavior of the system. There is also a lot of prior work in power management under
operations research that looks at the worst-case behavior of the system [121, 120, 90].
Since our focus in this thesis is not on worst-case analysis, we omit the discussion of
these works.
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2.3 Scope of this Thesis

The scope of this thesis is limited to dynamic server provisioning approaches for data
center power management. In particular, this thesis aims to address the important
challenges discussed in Section 2.1.2. As we have seen in Section 2.2, prior work
in dynamic server provisioning has often dodged these challenges. The specific re-
search questions that we address in this thesis are listed in Section 2.3.3, below. The
dynamic server provisioning solutions presented in this thesis combine theoretical
research and systems research. Our theoretical research uses performance modeling
and novel queueing-theoretic analysis to understand the factors affecting dynamic
server provisioning, such as setup times and unpredictable workload demand. Our
analysis allows us to estimate the effect of these factors on the specific response
time and power metrics that we care about. These metrics are discussed below
in Section 2.3.1. Based on our theoretical insights, we design our dynamic server
provisioning solutions. All of our proposed solutions in this thesis are experimen-
tally evaluated using realistic workloads and application traces. The details of our
implementation testbed are discussed in Section 2.3.2 below.

2.3.1 Metrics

We consider two different sets of metrics in this thesis. The first set of metrics we
are interested in are those that quantify performance. As mentioned in Chapter 1,
we use response time (see Definition 1.1) as our performance measure. Given a trace
of customer requests, we are often concerned about the mean response time, Tavg, of
the requests over the duration of that trace. Formally, Tavg is defined as:

Definition 2.1 (Tavg).
For a give trace, we define Tavg as the mean response time (in seconds or milliseconds)
for requests that complete during the course of the trace.

Nowadays, it is more common to look at higher percentiles of response time rather
than just the mean. The motivation behind looking at higher percentiles is to ensure
that most of the customers experience low response times and only a small fraction,
if any, of the customers experience high response times. Thus, in addition to Tavg,
we are also concerned about the 95th percentile of response times, T95. It would
be equally easy to look at the 90th or the 99th percentile of response times. Our
choice of 95 is motivated by recent studies [173, 107, 132, 48] which indicate that
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95th percentile response times are typical for quantifying performance. Formally, T95
is defined as:

Definition 2.2 (T95).
For a give trace, we define T95 as the 95th percentile of response times (in seconds
or milliseconds) for requests that complete during the course of the trace.

We sometimes also care about the instantaneous T95 values, which we define as:

Definition 2.3 (Instantaneous T95).
Instantaneous T95 is defined as the T95 for requests that completed during the past
one second.

The second set of metrics we are interested in are those that quantify power
consumption, or more generally, resource consumption:

Definition 2.4 (Pavg).
For a give trace, we define Pavg as the mean power consumption (in watts) of the
servers during the course of the trace.

Definition 2.5 (Navg).
For a give trace, we define Navg as the mean number of active servers employed
during the course of the trace. This includes servers that are busy, idle, or in setup,
but does not include servers that are off.

The goal in this thesis is to optimize some function of the response time metric
and the resource consumption metric. Unless stated otherwise, the goal will be to
minimize Pavg while ensuring that T95 remains below a certain threshold.

Sometimes, for optimization, we are interested in a joint function of response
time and power consumption. We use the popular Performance-per-Watt (PPW)
metric [72, 64] for these purposes. We formally define PPW as:

Definition 2.6 (PPW).
For a give trace, PPW is defined as the inverse of the product of T95 and Pavg, and
is given mathematically by:

PPW =
1

T95 · Pavg
(2.1)
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Figure 2.1: Our implementation testbed.

2.3.2 Implementation testbed

Figure 2.1 illustrates our multi-tier testbed, consisting of 38 Intel Xeon processor-
based servers, each equipped with two quad-core processors. Our testbed consists
of a load generator, a load balancer (and capacity manager), a stateless application
tier, and stateful caching and database tiers. Recall from Section 1.1 that stateless
servers do not contain any data, and stateful servers contain data required to serve
customer requests.

We employ one of the servers as the front-end load generator running httperf [138].
Httperf allows us to generate trace-driven arrivals for our experiments. Another
server is employed as the front-end load balancer running Apache, which distributes
requests from the load generator to the application tier servers. We modify Apache
on the load balancer to also act as the capacity manager, which is responsible for
adding and removing servers (by turning servers on and off). Another server is used
to store the entire data set, a billion key-value pairs, on a 500GB BerkeleyDB [146]
database. Seven servers are used as memcached servers, each with 4GB of memory
for caching, for a total cache size of 28GB. The remaining 28 servers are employed
as PHP servers that parse the incoming requests and collect the required data from
the back-end memcached and database servers. Our ratio of application servers to
memcached servers is close to the typically reported ratio of 5:1 [55].

We employ server provisioning for the application tier and caching tier servers.
In our testbed, the load balancer acts as the capacity manager, and scales capacity
by turning servers on and off. We can easily extend the functionality of the capacity
manager to add and remove virtual machines in a cloud environment. We remotely
turn servers on and off by communicating with the power distribution unit (PDU) via
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the SNMP [130] protocol. We monitor the power consumption of individual servers
by reading the power values off of the PDU. The idle power consumption for our
servers is about 140W (with C-states enabled) and the average power consumption
for our servers when they are busy or in setup is about 200W.

In our experiments, we observe the setup time for the servers to be about 260
seconds. Most of this time is spent in copying the OS image over the network
and booting the OS, initializing the RAID controller, and in establishing network
connectivity. We also examine the effects of lower setup times that could either be a
result of using sleep states (which are prevalent in laptops and desktop computers,
but are not well supported for server architectures yet), or using virtualization to
quickly bring up virtual machines. We replicate this effect by not routing requests to
a server if it is marked for sleep, and by replacing its power consumption values with
the sleep state power values. When the server is marked for setup, we wait for the
setup time before sending requests to the server, and replace its power consumption
values during the setup time with 200W.

We design a key-value workload to model realistic multi-tier applications such as
the social networking service, Facebook, or e-commerce services like Amazon [48].
Each generated request is a PHP script that runs on the application server. A request
begins when the application server requests a value for a key from the memcached
servers. The memcached servers provide the value, which itself is a collection of
new keys. The application server then again requests values for these new keys
from the memcached servers. This process can continue iteratively. We set the
number of iterations to correspond to an average of roughly 3,000 key-value pairs per
request, which translates to a mean request size of approximately 120 ms, assuming
no resource contention. Each key-value request in our workload is a read operation (or
GET operation). The request size (or service time) distribution is highly variable:
the service time of the largest request is roughly 20 times the service time of the
smallest request. We can also vary the distribution of key-value requests by the
application server. In this chapter we use the Zipf [143] distribution, whereby the
probability of requesting a particular key-value pair varies inversely as a power of
that key.

We use the above specified configuration for our implementation testbed in most
of our experiments. However, we sometimes modify the testbed to explore specific
settings. In such cases, we will describe the modifications made to the above testbed.
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2.3.3 Research questions addressed by this thesis

The research in this thesis can be categorized into two parts. The first part, pre-
sented in Chapter 3, aims to understand the challenges involved in dynamic server
provisioning, and the effects they have on response time and power. In particular,
we address important research questions pertaining to setup times, unpredictability
in workload demand, and data availability:

1. What is the effect of setup time on response time and power?

2. How to analyze multi-server systems with setup times?

3. Can we completely predict workload demand?

4. How do load spikes affect response time?

5. How much can we save by scaling the caching tier?

6. What happens to response time when we add or remove a caching server?

The above questions are fundamental in nature and are not specific to a given ap-
plication. We thus use theoretical analysis to answer the above questions.

The second part of our research, presented in Chapters 4, 5, and 6, provides prac-
tical dynamic server provisioning solutions that overcome the above problems. The
important questions concerning the implementation of dynamic server provisioning
that this thesis addresses are:

1. How many servers are needed to handle the incoming workload?

2. When should servers be turned on/turned off/left idle/put to sleep?

3. Which sleep states are “useful” for a given application?

4. What policy should be used to route incoming requests to servers?

5. How do we handle dynamic changes not just in request rate but also dynamic
changes in request size and server speed?

6. How do we handle load spikes?

7. How can we dynamically provision the caching tier?

We address the above questions in the context of our implementation testbed de-
scribed in Section 2.3.2.
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2.4 Novelty and Contributions

In order to answer the questions listed above in Section 2.3.3, we first analyze the
problems that hinder dynamic server provisioning. We use theoretical performance
modeling and queueing theory to estimate the effect of these problems on response
time and power. Armed with an understanding of their effects, we then present
practical dynamic server provisioning solutions that overcome these problems and
lower power consumption in data centers. We now give a brief summary of the
contributions of this thesis.

• We start in Chapter 3 with a detailed study of the problems that hinder dy-
namic server provisioning in data centers. Specifically, we examine setup costs
(Section 3.1), uncertainty in workload demand (Section 3.2), and provisioning
in the presence of stateful servers (Section 3.3). In order to analyze the above
problems, we use a mix of theoretical analysis and experimentation. Our anal-
ysis reveals several interesting results. For example, we find that the adverse
effects of setup time on response time decrease in severity with an increase in
the size of the system. Based on our findings, we provide practical solutions
for dynamic server provisioning in data centers.

• In Chapter 4 we consider the problem of dynamic provisioning for stateless
servers in a multi-tier data center with setup costs and completely unpredictable
demand. We first show that existing dynamic server provisioning policies fail
in the presence of setup times and unpredictable demand. We then present Au-
toScale, our robust dynamic server provisioning policy that provably handles
unpredictable changes in request rate, request size, and server speeds. Au-
toScale is very different from existing dynamic server provisioning approaches,
in that it does not try to predict the future request rate. Instead, AutoScale
makes the case that it often suffices to simply be conservative when scaling
down capacity. We demonstrate, via implementation on our 38-server testbed
(see Section 2.3.2), that AutoScale successfully meets response time SLAs while
significantly reducing power consumption even for bursty, unpredictable work-
loads. AutoScale also helps to reduce expenses when renting VMs from the
cloud by minimizing the number of VMs needed to meet response time SLAs.

• In Chapter 4 we also consider the problem of which sleep states are useful for
a given application. A sleep state can be defined by its setup time and the
power consumed when in sleep. We tune our testbed so as to replicate the
effects of a sleep state, and evaluate the behavior of different dynamic server
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provisioning policies, including AutoScale, using more than a hundred different
sleep states. Our results show that sleep states with lower sleep power are
preferable for workloads whose demand varies slowly over time, whereas sleep
states with lower setup time are preferable for bursty workloads. However, for
particularly bursty traces, such as traces with load spikes, we find that even a
20s setup time does not suffice. We also present an orthogonal evaluation of
server provisioning policies under lower idle power consumption.

• In Chapter 5 we consider the problem of provisioning multi-tier data centers
in the presence of load spikes. We first show, via implementation, that even a
small setup time (5 seconds) can lead to a steep increase in response time when
faced with load spikes. We then present SoftScale, an approach to handling load
spikes in multi-tier data centers. SoftScale works by opportunistically stealing
resources from other tiers to alleviate the bottleneck tier, even when the tiers
are carefully provisioned. We demonstrate, using a range of workload traces,
that SoftScale allows the system to meet stringent response time SLAs even if
workload demand doubles instantaneously. SoftScale is especially useful during
the transient overload periods when additional capacity is being brought online.
Importantly, SoftScale can be used in conjunction with existing dynamic server
provisioning policies.

• In Chapter 6 we consider the problem of provisioning for the stateful caching
tier. Caching tier servers are often provisioned with massive amounts of ex-
pensive and power-hungry DRAM. Thus, dynamic provisioning of the caching
tier can lead to huge savings in cost and power. However, dynamic provision-
ing of the stateful caching tier is complicated because, apart from response
time and power, we also have to worry about data availability. We present
CacheScale, a novel dynamic provisioning approach for the caching tier that
meets response time SLAs while scaling caching tier capacity based on changes
in load. CacheScale ensures that scaling the caching tier does not significantly
impact hit rate by proactively redistributing “hot” data items. CacheScale does
this without requiring access to the elusive least-recently-used list of cached
items. This makes it very easy to deploy CacheScale on any caching tier.

• In Chapter 7 we present our novel analytical technique, Recursive Renewal
Reward (RRR). The RRR technique allows us to predict the effects of setup
time on response time and power in a multi-server system. In doing so, we
provide the first analysis of multi-server systems with setup times. The RRR
technique is highly intuitive and very easy to apply. Mathematically, RRR
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allows us to analyze Markov chains with a repeating structure. This class
of Markov chains is widely used to model a range of multi-server computer
systems. We thus anticipate that RRR will prove useful to other researchers
in analyzing many new problems.
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Chapter 3

Challenges in Dynamic Server
Provisioning

In this chapter we discuss the challenges in dynamic server provisioning, and analyze
their effects on response time and power consumption. The three most important
challenges that, we believe, hinder the deployment of dynamic server provisioning
policies in data centers are:

1. Setup costs;

2. Uncertainty in workload demand; and

3. Presence of stateful servers.

We analyze each of these challenges in detail. In particular, we start in Section 3.1
by addressing setup costs. The analysis of multi-server systems with setup costs has
been a long-standing open problem in queueing theory. In Section 3.1.1, we provide
the first closed-form analysis of setup costs. We use our analysis to study the effect of
scale (data center size) on setup times in Section 3.1.2. Next, in Section 3.2, we ad-
dress uncertainty in workload demand. We analyze workload demand traces obtained
from a few data center workloads and from publicly available sources in Section 3.2.1.
We then consider load spikes (abrupt changes in load) in workload demand in Sec-
tion 3.2.2. We use our implementation testbed to investigate the detrimental effects
of load spikes. Finally, in Section 3.3, we consider dynamic provisioning of stateful
(caching tier) servers. Using our multi-tier testbed, we experimentally analyze the
effects of adding and removing a caching server in Section 3.3.1. We summarize the
findings of this chapter in Section 3.4.
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3.1 Setup Costs

Servers in a data center consume peak power when they are servicing customer
requests, but still consume about 60% [26] of that peak power when they are idle.
To save power, idle servers can be turned off. However, there is a setup cost involved
in turning a server back on. This setup cost is in the form of a time delay (typically
on the order of minutes [93, 129]), and a power penalty, since the server typically
consumes peak power during the entire setup time.

Surprisingly, for all the importance of setup times, very little is known about
their analysis. A single-server system with setup times was analyzed in 1964 by
Welch [194]. The analysis of a multi-server system with setup times, however, has
remained elusive. Using queueing theory, we now provide the first analysis of multi-
server systems with setup costs.

3.1.1 Analysis of setup costs

In order to model a multi-server system, we use concepts from queueing theory [160,
Chapter 8]. Specifically, we assume that the incoming requests arrive to the system
according to a Poisson process with mean request rate, λ. Although we assume a
constant mean request rate, the Poisson process allows us to study the effect of short-
term variations in request rate. We consider a k server homogeneous system with
each server running at a speed of µ requests/sec, where request sizes are assumed
to be exponentially distributed with mean 1

µ
. The servers serve requests on a first-

Figure 3.1: Our M/M/k queueing model for a multi-server system.
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come-first-serve basis. This k server system is called an M/M/k queueing model,
and is shown in Figure 3.1. Given the mean request rate, λ, and total mean service
rate, kµ, we define load, or utilization, to be λ

kµ
. Load gives us an indication of the

utilization of the system, and is thus a helpful quantity to consider.

Definition 3.1 (Load).
For an M/M/k system with mean request rate λ and mean service rate (for each
server) µ, the load of the system is defined as the mean utilization of the system, and
is given mathematically by:

Load =
λ

kµ
(3.1)

For stability, we assume that λ
kµ
< 1, that is, the system is not overloaded.

Model for setup times

In order to analyze setup times, we develop a new multi-server queueing model –
the M/M/k/setup. In this model, each of the k servers is in one of three states: off,
on (being used to serve a request), or setup. When a server is on or in setup, it
consumes peak power of Ppeak watts. When a server is off, it consumes zero power.
We assume that when servers are not in use, they are immediately turned off to save
power. However, turning on an off servers requires some setup time. We assume that
setup times are exponentially distributed with mean rate α, which is the inverse of
the mean setup time, tsetup. The full M/M/k/setup model is described in detail in
Chapter 7.

Our goal is to derive the mean response time, Tavg, and the mean power consump-
tion, Pavg, for the M/M/k/setup model. In order to do this, we track the number of
active requests in the system and the number of on servers. Given our M/M/k/setup
model, we can easily track these quantities using a Markov chain [160, Chapter 6].
The Markov chain for our M/M/k/setup system is shown in Figure 3.2. Each state
is denoted by the pair (i, j), where i is the number of on servers, and j is the number
of requests in the system. Thus, the number of servers in setup is min{j − i, k − i}.
Note that the Markov chain is infinite in one dimension. The complexity of this
2-dimensional, infinite Markov chain makes it very difficult to analyze.
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Figure 3.2: M/M/k/setup Markov chain. Each state is denoted by the pair (i, j),
where i is the number of on servers, and j is the number of requests in the system.
The number of servers in setup is min{j − i, k − i}.

Our new analysis technique

Our analysis of the M/M/k/setup is made possible by our development of a new
technique, Recursive Renewal Reward (RRR), for solving Markov chains with a re-
peating structure. RRR uses ideas from renewal reward theory [160, Chapter 7] and
leverages the repeating structure of the Markov chain to obtain closed-form expres-
sions for metrics of interest such as Tavg and Pavg, or associated higher moments.
Importantly, our novel technique, RRR, provides the first closed-form analysis of
multi-server systems with setup costs. We now present the results of our RRR anal-
ysis of the M/M/k/setup. We defer the details of the RRR technique to Chapter 7.

Results of our analysis

We use RRR to analyze setup times under various system parameters. In particular,
we consider Tavg and Pavg for an M/M/k/setup. For comparison, we also consider
these metrics for an M/M/k, where idle servers are not turned off. For all our results,
we assume k = 28, an idle power consumption of 140W, and peak power consumption
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(when the server is on or in setup) of 200W. These values are consistent with our
implementation testbed in Section 2.3.2. In our results, we fix the mean request size
( 1
µ
) and analyze Tavg and Pavg as a function of load (see Definition 3.1). We vary

load by varying the mean request rate as λ = 28µ · load (see Equation (3.1)).

Figures 3.3, 3.4, and 3.5, show our results under mean setup times of tsetup = 1s,
tsetup = 10s, and tsetup = 100s, respectively. We assume a mean request size of 1
second in all cases. Note that the M/M/k results (blue dashed lines) are the same
for all cases since M/M/k is not affected by the setup time. For the M/M/k (blue
dashed lines), we see that Tavg increases with load. This is to be expected. Likewise,
Pavg increases with load. Note that Pavg increases linearly with load, as expected.

For the M/M/k/setup (red solid lines), we see an interesting trend. Tavg for
the M/M/k/setup first decreases, and then increases. This can be explained as
follows. When the system load is low, the mean time between incoming requests is
high. Thus, when a new arrival comes into the system, there is some probability
that it will find an empty system. In this case, the request will have to queue for
the entire setup time to start execution. However, as the system load increases, the
probability that an incoming request sees an empty system goes down. Thus, as load
increases, the requests will not have to wait for the full setup time, because other
servers will free up. Once the load gets really high, queueing time goes up again
because of congestion. This explains the “bathtub” shaped Tavg curves. Pavg for
the M/M/k/setup increases with load, as expected. However, when the setup time
is really high (Figure 3.5(b)), Pavg plateaus quickly (to 5600W) as load increases
because almost all 28 servers are either busy or in setup, thereby consuming 200W
each.

In comparing M/M/k and M/M/k/setup, we see that M/M/k/setup is superior
when tsetup is low, since Pavg is much lower under M/M/k/setup, and Tavg is simi-
lar for both policies. However, when tsetup is high, M/M/k has a much lower Tavg.
This is because the short-term fluctuations in request rate (modeled by the Poisson
process) are easily handled by the “always on” spare capacity of an M/M/k. How-
ever, these short-term fluctuations lead to servers being turned on and off under the
M/M/k/setup, thereby incurring high setup costs. Surprisingly, when tsetup is high,
M/M/k has a lower Pavg as well. The reason for this lower consumption is that un-
der high setup times, the servers in M/M/k/setup are almost always either busy or
in setup (owing to fluctuations in demand), thereby consuming peak power. Thus,
M/M/k/setup is inferior when tsetup is high. This leads us to our first observation:
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(a) Tavg (b) Pavg

Figure 3.3: Results for tsetup = 1s and mean request size of 1s.

(a) Tavg (b) Pavg

Figure 3.4: Results for tsetup = 10s and mean request size of 1s.

(a) Tavg (b) Pavg

Figure 3.5: Results for tsetup = 100s and mean request size of 1s.
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(a) Tavg (b) Pavg

Figure 3.6: Results for tsetup = 100s and mean request size of 100s.

Observation 3.1 (The challenge presented by setup costs).
Setup costs incurred due to short-term fluctuations in demand negatively impact re-
sponse time and power consumption, and thus should be avoided if possible, especially
when the setup time is high.

This observation suggests that reactive approaches (see Section 2.2.2) will be
hindered by short-term fluctuations.

Figure 3.6 shows our results under a mean setup time of tsetup = 100s, but
for a request size of 100s. We see that these results are qualitatively similar to
Figure 3.3, where M/M/k/setup was superior. The reason why larger request sizes
favor M/M/k/setup is because the queueing delay caused by setup times is not
as severe when compared to the request size. Further, an increase in request size
for a fixed load results in an increase in the inter-arrival time of requests. This
leads to larger idle periods for servers, which in turn leads to greater power savings.
Consequently, M/M/k/setup is superior to M/M/k when mean request size is high.
Thus, when comparing M/M/k/setup and M/M/k, what really matters is the ratio
of setup time to request size. When this ratio is big, M/M/k is superior. When this
ratio is small, M/M/k/setup is superior. This leads us to our second observation:

Observation 3.2 (Factors affecting setup costs).
The adverse effects of setup costs increase in severity with the ratio of setup time to
request size.
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(a) Tavg (b) Pavg

Figure 3.7: Scaling results for tsetup = 100s and mean request size of 1s.

(a) Tavg (b) Pavg

Figure 3.8: Scaling results for tsetup = 100s and mean request size of 100s.

3.1.2 Effect of scale on setup costs

Thus far we have only considered a 28-server system in our analysis. We now
study the effect of scale (number of servers, k) on setup costs. We fix the load at
30%, representing typical data center utilization [26]. We also fix tsetup at 100s.

Figures 3.7 and 3.8 show our results under mean request sizes of 1s and 100s
respectively. In both cases, we see that the Tavg and Pavg for M/M/k/setup decrease
as k increases. This is because as k increases, the probability that (any) one of the
busy servers frees up soon, say in the next second, increases. Thus, an incoming
request does not have to wait too long to begin execution, and consequently, fewer
servers are in setup at any point of time. This result was also observed empirically
by other researchers [198]. This leads us to our third observation on setup costs:
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(a) Tavg (b) Pavg

Figure 3.9: Scaling results for tsetup = 100s and mean request size of 1s under deter-
ministic setup times.

(a) Tavg (b) Pavg

Figure 3.10: Scaling results for tsetup = 100s and mean request size of 100s under
deterministic setup times.

Observation 3.3 (Effect of scale on setup costs).
The adverse effects of setup costs decrease in severity as the size of the data center
(number of servers) scales up.

The analysis results above assumed exponential setup times. However, in real-
world scenarios, setup times are typically deterministic. In order to analyze deter-
ministic setup times, we resort to simulations. Figures 3.9 and 3.10 show our results
under mean request sizes of 1s and 100s respectively, under deterministic setup times.
We see that the relative ordering of the M/M/k and the M/M/k/setup policies and
the trends in Tavg and Pavg do not change significantly when compared to the case
of exponential setup times in Figures 3.7 and 3.8.
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3.2 Uncertainty in Workload Demand

Section 3.1 above highlights the dangers posed by setup costs to data center power
management. In particular, Observation 3.1 tells us that short-term fluctuations in
demand can result in the incurrence of setup costs. When the setup time is high, the
effects of setup costs can be even more severe. However, if fluctuations in demand
can be predicted, we can avoid incurring setup costs by provisioning servers ahead
of time. In this section we analyze the unpredictability in workload traces obtained
from data center applications and from publicly available traces.

3.2.1 Analysis of workload traces

We analyze three application traces used in commercial data centers [60] and a
publicly available web trace [95]. While some of the traces contain request rate data
explicitly, others only contain aggregate server utilization data. For the purpose
of analysis, we treat request rate data and utilization data as the same quantity –
demand. We provide a brief description of these traces below before moving on to
their analysis.

Description of traces

1. SAP is a five-week-long workload demand trace of an SAP enterprise applica-
tion that was hosted in a commercial data center. The trace captures average
CPU and memory usage as recorded every 5 minutes.

2. VDR is a ten-day-long trace containing request rate and system utilization
data recorded every 5 minutes from a high-availability, multi-tier business-
critical application serving customers from six continents.

3. Web is an eight-day-long trace of system utilization data from a popular Web
service application with more than 85 million registered users in 22 countries,
located in multiple data centers.

4. WC98 is a three-month-long trace obtained from the Internet Traffic Archives
that describes web requests received by the 1998 Soccer World Cup website.

Short-term fluctuations

Figure 3.11 shows a typical 24-hour workload demand for the SAP, VDR, Web,
and WC98 traces. The demand has been normalized by the maximum demand in

40



(a) SAP (b) VDR (c) Web (d) WC98

Figure 3.11: Demand for a single day for (a) the SAP trace, (b) the VDR trace, (c)
the Web trace, and (d) the WC98 trace.

each trace. We see that the demand varies a lot within a 24-hour interval. For
example, the SAP trace demand varies from a minimum of almost 0 to a maximum
of approximately 0.8, which corresponds to roughly 80% CPU utilization based on
the actual trace. From Figure 3.11, we also see that there are a lot of short-term
fluctuations in demand. This leads us to the following observation:

Observation 3.4 (Variance in workload demand).
Workload demand is often bursty in nature due to short-term fluctuations.

Long-term patterns

Figure 3.12 shows a 5-day time-series of the SAP, VDR, Web, and WC98 traces.
We see that the demand for each trace roughly repeats on a daily basis. To further
investigate this periodicity, we use Fast Fourier Transform to find the periodogram
of the time-series data [32]. The periodogram reveals a peak at 24 hours, indicating
that the traces have a strong daily pattern (period of 24 hours). The periodogram
does not reveal any other significant peaks. Based on this analysis, we conclude that:

Observation 3.5 (Predictability of workload demand).
While there is large variability in workload demands, most workloads exhibit pre-
dictable long-term (daily) patterns. However, short-term fluctuations cannot be pre-
dicted based on periodicity.

This observation suggests that purely predictive approaches (see Section 2.2.1)
might be insufficient for handling data center workloads. For a complete analysis of
the above four traces, we refer the reader to our papers [60, 61].
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(a) SAP (b) VDR

(c) Web (d) WC98

Figure 3.12: 5-day time-series demand plots for (a) the SAP trace, (b) the VDR
trace, (c) the Web trace, and (d) the WC98 trace.

Consequences of short-term fluctuations

Based on Observation 3.5, we deduce that data center workload demands often con-
sist of a predictable long-term daily pattern and unpredictable short-term fluctua-
tions. The long-term patterns in demand can be handled by proactively provisioning
servers for the predicted demand. In order to verify this hypothesis, we implement
a simple single-tier CPU-bound application on a 10-server system, and replay the
above four traces using a predictive controller (see [60, 61] for more details). We find
that the purely predictive controller results in about 6% – 19% SLA violations across
all four traces. This suggests that the predictable daily pattern accounts for around
80% of the total demand, meaning that short-term fluctuations make up less than
20% of the total demand. However, the 6% – 19% range of SLA violations suggest
that purely predictive policies will not be able to meet T95 SLAs which require less
than 5% SLA violations. To account for short-term fluctuations, we also experiment
with a hybrid approach by adding a reactive controller to the above predictive con-
troller. Our hybrid approach results in 5% – 11% SLA violations. While this is an
improvement over predictive, the percentage of SLA violations is still quite high.

42



This is to be expected given Observation 3.1 and the fact that short-term fluctua-
tions account for a non-trivial portion of the total demand. We also experiment with
a purely reactive approach, but this results in significant SLA violations, as should
be expected. Based on these results, we make the following observation:

Observation 3.6 (The challenge presented by short-term fluctuations).
While short-term fluctuations often account for only a fraction of the total workload
demand, they can lead to significant SLA violations, even when using hybrid (reactive-
predictive) provisioning approaches.

Given this observation, it seems that the only solution to handling unpredictable
short-term fluctuations is to over-provision capacity. In Chapter 4, we present a new
approach, AutoScale, to handling short-term fluctuations in demand in the presence
of setup times.

3.2.2 Load spikes

Another challenge in dealing with unpredictable workload demand is the possibility of
load spikes. While load spikes, or abrupt changes in load, are not necessarily a daily
occurrence in data centers, several instances of load spikes have been documented
for web workloads. Important events, such as the September 11 attacks [113, 88],
earthquakes or other natural disasters [186], slashdot effects [7], Black Friday shop-
ping [44], or sporting events, such as the Super Bowl [145] or the Soccer World
Cup [20], are common causes of load spikes for website traffic. Service outages [147]
or server failures [162] can also result in abrupt changes in load caused by a sharp
drop in capacity. While some of the above events are predictable, most of them
cannot be predicted in advance.

Load spikes are especially problematic since adding capacity requires some setup
time. Even if we instantaneously detect a spike in load, it will still take the system
at least the setup time to add the required capacity. In our lab, the setup time for
turning on an additional server is approximately 4-5 minutes. Similar setup times
have also been reported in recent literature [93, 129]. Likewise, the setup time needed
to create virtual machines (VMs) can range anywhere from 30 seconds – 1 minute if
the VMs are locally created (based on our measurements using kvm [102]) or 2 – 10
minutes if the VMs are obtained from a cloud computing platform (see, for example,
[13, 108]). All these numbers are extremely high, and can result in significant SLA
violations.
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Analysis of load spikes

In order to analyze load spikes, we use our implementation testbed described in
Section 2.3.2. We use synthetic demand traces to experimentally study the effects of
load spikes on instantaneous T95 (see Definition 2.3). We choose instantaneous T95
over T95 to highlight the dynamic effect of load spikes on response time. We normalize
all traces and report the request rate as a percentage of the peak request rate our
testbed can handle. In our experiments, we initially load the system with some x%
request rate. Then, at some time t, we instantaneously increase the request rate to
y%, where x < y ≤ 100. We optimistically assume that the system immediately
detects this load spike and provisions the required number of servers to handle the
new y% request rate. However, this additional capacity only comes online after the
setup time, at t+ tsetup. During t to t+ tsetup, the system is in overload.

Figure 3.13 shows our experimental results under load spikes of (a) 10%→ 30%,
(b) 15% → 30%, and (c) 25% → 50%. Here, the setup time is tsetup = 5 mins. In
these experiments, the load spike occurs at the beginning of the experiment, and
lasts for the duration of the experiment. In all cases, we see that the instantaneous
T95 rises very steeply. The rise is steeper in Figure 3.13(a) than in Figure 3.13(b),
though in both cases the load spikes to 30%. Also, the rise in instantaneous T95 is
very similar in Figures 3.13(b) and 3.13(c), where load doubles. These results suggest
that the rise in instantaneous T95 depends on the size of the load jump relative to
the initial load.

Figure 3.14 shows our experimental results under a 15% → 30% load spike for
(a) tsetup = 50s, (b) tsetup = 20s, and (c) tsetup = 5s. Note the difference in the
axes for each figure. In these experiments, the load spike occurs at the 10s mark
and lasts for the duration of the experiment. Once the setup time is complete, at
10 + tsetup, the required capacity is bought online. Interestingly, the instantaneous
T95 does not immediately drop at 10 + tsetup when the required capacity is online.
This is because of the backlog in requests created during the overload period. We
see that the length of the setup time impacts the duration over which instantaneous
T95 rises, as expected. Even for a setup time of 5s, we see that instantaneous T95
rises very quickly from 500ms to 1800ms.

A more complete evaluation, including results for load spikes seen in real traces, is
presented in Chapter 5. We conclude this section by summarizing our above analysis:

Observation 3.7 (The challenge presented by load spikes).
Load spikes, though rare in occurrence, can lead to a steep rise in response time, even
if the setup time is only 5 seconds.
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(a) 10%→ 30% (b) 15%→ 30% (c) 25%→ 50%

Figure 3.13: Experimental results for instantaneous T95 under a load spike of (a)
10% → 30%, (b) 15% → 30%, and (c) 25% → 50%. Here, the setup time is
tsetup = 5 mins. The load spike occurs at the beginning of the experiment and lasts
for the duration of the experiment.

(a) tsetup = 50s (b) tsetup = 20s (c) tsetup = 5s

Figure 3.14: Experimental results for instantaneous T95 under a 15% → 30% load
spike for (a) tsetup = 50s, (b) tsetup = 20s, and (c) tsetup = 5s. The load spike occurs
at the 10s mark and lasts for the duration of the experiment.

Given this observation, it seems that the only solution to handling load spikes is
to over-provision capacity or resort to corrective measures such as admission control.
In Chapter 5, we present a new approach, SoftScale, to handling load spikes in multi-
tier data centers.
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3.3 Stateful Servers

Stateful servers, such as caching tier servers, are typically [128] provisioned with
massive amounts of expensive and power-hungry DRAM. Thus, dynamic provisioning
for the caching tier can lead to huge savings in cost and power. The big challenge in
dynamically provisioning stateful servers is the possibility of data unavailability when
changing the total cache capacity of the system. For example, if one cache server
is taken offline to reduce power consumption, the data stored on this server now
becomes unavailable to the system, leading to a lower cache hit rate. This results
in a rise in response time as requests now go to the slower disk for data fetches.
However, over time, the hit rate of the system improves as the hot data items that
were originally stored on the now-offline server get cached on the remaining (online)
cache servers. Thus, response time suffers, but only for a finite period of time.

3.3.1 Consequences of dynamically changing the cache size

In order to study the consequences of dynamically changing the caching tier size,
we use our implementation testbed described in Section 2.3.2, with a few modifica-
tions. The caching tier comprises 20 nodes running memcached [59], each with up
to 10GB of memory for caching, hosted on 5 physical servers (Xeon X5650). The
data tier comprises a server (Xeon E5520) with 5 disks running a BerkeleyDB [146]
database with a billion key-value pairs (250GB). Our workload request is a PHP
script that runs on the application server, and consists of 20 independent key-value
GET requests. The requested keys follow a Zipf [143] distribution. Each of the 20
GET requests either hits in the memcached, or, if it misses, goes to the database.
We pessimistically force cache misses to result in database disk accesses by avoiding
the database page cache. If a GET request hits in the memcached, its response time
is Tmem = 0.3ms, which is the time to retrieve a key-value pair from memcached.
If a GET request goes to the database, its response time is on the order of 8ms.
The actual response time depends on the contention at the database. In this set of
experiments, we require that the Tavg for the entire request (collection of 20 GET
requests) should be no more than 100ms. That is, Tavg ≤ 100ms.

Figure 3.15(a) shows our experimental results where we scale down from 4 to 3
cache nodes at the 1 minute mark because the request rate is low enough to require
only 3 nodes worth of cached data. We see that removing a cache node at the 1
minute mark leads to a steep increase in Tavg. As requests continue to arrive at
the 3-node cache tier, the hot data items that were originally stored on the node
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(a) Removing a cache node (b) Adding a cache node

Figure 3.15: Experimental results for the case of (a) removing and (b) adding a
caching tier node. The change in capacity is made at the 1 minute mark. The black
dashed line represents our 100ms SLA.

that was removed get cached on the remaining three online nodes. This results in
improving the hit rate of the caching tier. At around the 4 minute mark, Tavg goes
below the SLA. Thus, removing the cache node resulted in a 3 minute interval of
SLA violations.

SLA violations can also occur when we add a cache node to the caching tier.
This is because the newly added node is initially “cold” and all requests to that node
result in misses. Figure 3.15(b) shows our experimental results where we scale up
from 3 to 4 cache nodes at the 1 minute mark. Again, we see that adding a cache
node at the 1 minute mark leads to a steep increase in Tavg. Over time, Tavg goes
back to normal (below the SLA) as the newly added cache node gets warmed up. In
this case, adding the cache node resulted in a 4 minute interval of SLA violations. A
more complete evaluation of dynamically changing the cache size, along with details
of our experiments, is presented in Chapter 6. We now conclude this section by
summarizing our above experimental results:

Observation 3.8 (The challenge presented by stateful servers).
Adding or removing a caching tier server can lead to (temporary) unavailability of
certain data items, resulting in a steep rise in response times.

The above observation is probably the reason why there has been no prior work on
dynamic provisioning of the caching tier. In Chapter 6, we present a new approach,
CacheScale, to dynamically provision the caching tier.

47



3.4 Chapter Summary

In this chapter we analyzed the challenges faced by dynamic server provisioning.
First, we examined setup costs, which are incurred due to dynamic addition and re-
moval of servers in response to fluctuations in demand. We presented the first analysis
of setup costs, and found that they can lead to a significant increase in response time
and power consumption (see Observation 3.1). Then, we analyzed workload demand
traces from real-world commercial and web applications, and found that there is of-
ten some degree of unpredictability in demand (see Observation 3.6). Most of this
unpredictability can be attributed to short-term fluctuations in demand, which result
in the incurrence of setup costs. In some cases, the unpredictability is due to load
spikes, which lead to an abrupt rise in response times (see Observation 3.7). Finally,
we experimentally analyzed dynamic provisioning of the caching tier, and found that
this can lead to temporary unavailability of cached data, resulting in a steep rise
in response times (see Observation 3.8). The next three chapters provide practical
dynamic provisioning solutions that overcome the above-mentioned challenges.
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Chapter 4

AutoScale: Robust Dynamic
Server Provisioning

In this chapter we address the challenges presented by unpredictable fluctuations in
demand and setup costs. Fluctuations in demand necessitate dynamic addition and
removal of servers, leading to the incurrence of setup costs (see Observation 3.6).
Setup costs, in turn, severely impact response time and power consumption (see
Observation 3.1), as illustrated by our analytical results in Figures 3.3, 3.4 and 3.5.

We present AutoScale, a practical dynamic server provisioning solution that over-
comes these challenges. AutoScale greatly reduces the number of servers needed in
data centers driven by unpredictable load, while meeting response time SLAs. Au-
toScale has two key features:
(i) it automatically maintains just the right amount of spare capacity to handle
short-term fluctuations in request rate; and
(ii) it is robust not just to unpredictable changes in request rate, but also unpre-
dictable changes in request size and server efficiency.

We introduce the problem and discuss the scope of this chapter in Section 4.1.
We then briefly describe our experimental setup for this chapter in Section 4.2. In
Section 4.3, we first experimentally evaluate existing server provisioning policies,
and then introduce our robust dynamic server provisioning policy, AutoScale. We
investigate the applicability of AutoScale under sleep states in Section 4.5, and under
low-power idle states in Section 4.6. We then evaluate the robustness properties of
AutoScale in Section 4.7 by considering unpredictable changes in request size and
server speeds. We discuss prior work in Section 4.8 and conclude with a summary of
this chapter in Section 4.9.
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4.1 Introduction

Many networked services, such as Facebook and Amazon, are provided by multi-tier
data center infrastructures. A primary goal for these applications is to provide good
response time to users; these response time targets typically translate to some re-
sponse time SLAs (see Definition 1.2). In an effort to meet these SLAs, data center
operators typically over-provision the number of servers to meet their estimate of
peak load. These servers are left “always on,” leading to only 10–30% server uti-
lization [21, 26]. In fact, [167] reports that the average data center server utilization
is only 18% despite years of deploying virtualization. Low utilization is problematic
because servers that are on, while idle, still utilize 60% or more of peak power.

To reduce wasted power, we consider intelligent dynamic server provisioning,
which aims to match the number of active servers with the current load, in situations
where future load is unpredictable. Servers which become idle when load is low could
be either turned off, saving power, or loaned out to some other application, or simply
released to a cloud computing platform, thus saving money. Fortunately, the bulk of
the servers in a multi-tier data center are application servers, which are stateless, and
are thus easy to turn off or give away – for example, one reported ratio of application
servers to data servers is 5:1 [55]. We therefore focus our attention in this chapter
on dynamic server provisioning of these front-end application servers. We consider
dynamic server provisioning of stateful caching servers in Chapter 6.

Part of what makes dynamic server provisioning difficult is the setup cost of
getting servers back on/ready. For example, in our lab the setup time for turning
on an application server is 260 seconds, during which time power is consumed at the
peak rate of 200W. Likewise, recent literature reported the setup time of server-class
machines to be on the order of minutes [93, 129]. Sadly, little has been done to
reduce the setup overhead for servers. In particular, sleep states, which are prevalent
in mobile devices, have been very slow to enter the server market. Even if future
hardware reduces the setup time, there may still be software imposed setup times such
as installing software updates which occurred when the server was unavailable [55]
or performing membership updates in distributed systems [129]. Likewise, the setup
cost needed to create virtual machines (VMs) can range anywhere from 30s – 1
minute if the VMs are locally created (based on our measurements using kvm [102])
or 2 – 10 minutes if the VMs are obtained from a cloud computing platform (see,
for example, [13, 108]). All these numbers are extremely high when compared to
the typical response time SLA of half a second [48]. For an in-depth analysis of the
consequences of setup costs, we refer the reader to Section 3.1.
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The goal of dynamic server provisioning is to scale capacity with unpredictably
changing load in the face of high setup costs. While there has been much prior work
on this problem, all of it has only focussed on one aspect of changes in load, namely,
fluctuations in request rate. This is already a difficult problem, given high setup
costs, and has resulted in many policies, including reactive approaches [114, 141, 57,
190, 196, 53] that aim to react to the current request rate, predictive approaches [107,
152, 36, 86] that aim to predict the future request rate, and mixed reactive-predictive
approaches [40, 41, 28, 174, 76, 173, 60, 61]. However, in reality there are many other
ways in which load can change. For example, request size (work associated with each
request) can change, if new features or security checks are added to the application.
As a second example, server efficiency can change, if any abnormalities occur in the
system, such as internal service disruptions, slow networks, or maintenance cycles.
These other types of load fluctuations are all too common in data centers, and have
not been addressed by prior work in dynamic server provisioning.

We propose a new approach to dynamic server provisioning, which we call Au-
toScale. To describe AutoScale, we decompose it into two parts: AutoScale-- (see
Section 4.3.5), which is a precursor to AutoScale and handles only the narrower
case of unpredictable changes in request rate, and the full AutoScale policy (see
Section 4.7.3), which builds upon AutoScale-- to handle all forms of changes in load.

While AutoScale-- addresses a problem that many others have looked at, it does
so in a very different way. While prior approaches aim at predicting the future re-
quest rate and scaling up the number of servers to meet this predicted rate, which is
clearly difficult to do when request rate is, by definition, unpredictable, AutoScale--
does not attempt to predict future request rate. Instead, AutoScale-- demonstrates
that it is possible to achieve SLAs for real-world workloads by simply being con-
servative in scaling down the number of servers: not turning servers off recklessly.
One might think that this same effect could be achieved by leaving a fixed buffer
of, say, 20% extra servers on at all times. However, the extra capacity (20% in the
above example) should change depending on the current load. AutoScale-- does just
this – it automatically maintains just the right number of servers in the on state at
every point in time. This results in much lower power/resource consumption. In
Section 4.3.5, we evaluate AutoScale-- on a suite of six different real-world traces,
comparing it against five different server provisioning policies commonly used in the
literature. We demonstrate that in all cases, AutoScale-- significantly outperforms
other policies, meeting response time SLAs while greatly reducing the number of
servers needed, as shown in Table 4.2.
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To fully investigate the applicability of AutoScale--, we experiment with multi-
ple sleep states that have setup times ranging from 260 seconds all the way down to
20 seconds and sleep power ranging from 140 Watts to 0 Watts in Section 4.5. We
also experiment with multiple server idle power consumption values ranging from
140 Watts all the way down to 0 Watts in Section 4.6. Our results indicate that Au-
toScale-- can provide significant benefits across the entire spectrum of sleep states
and idle power, as shown in Figures 4.9, 4.10 and 4.13. Our investigation of sleep
states also helps us determine which sleep states are useful for dynamic server pro-
vision. We present this analysis in Section 4.5.3.

To handle a broader spectrum of possible changes in load, including unpredictable
changes in the request size and server efficiency, we introduce the AutoScale policy
in Section 4.7.3. While prior approaches to dynamic server provisioning for multi-
tier applications react only to changes in the request rate, AutoScale uses a novel
capacity inference algorithm, which allows it to determine the appropriate capacity
regardless of the source of the change in load. Importantly, AutoScale achieves this
without requiring any knowledge of the request rate or the request size or the server
efficiency, as shown in Tables 4.4, 4.5 and 4.6.

To evaluate the effectiveness of AutoScale, we build a three-tier testbed. While
our implementation involves physically turning servers on and off, one could instead
imagine that idle servers are “given away,” and there is a setup time to get the
server back. We evaluate all policies on three metrics: T95, the 95th percentile of
response time (see Definition 2.2), which represents our SLA; Pavg, the average power
usage (see Definition 2.4); and Navg, the average capacity, or number of servers in
use (including those idle and in setup, see Definition 2.5). Our goal is to meet the
response time SLA, while keeping Pavg and Navg as low as possible. The drop in Pavg
represents the possible savings in power obtained by turning servers off, while the
drop in Navg represents the potential capacity/servers available to be given away to
other applications or to be released back to the cloud so as to save on rental costs.

This chapter makes the following contributions:

• We overturn the common wisdom that dynamic server provisioning requires
“knowing the future load and planning for it,” which is at the heart of existing
predictive provisioning policies. Such predictions are simply not possible when
workloads are unpredictable, and, we furthermore show they are unnecessary,
at least for the range of variability in our workloads. We demonstrate that
simply provisioning carefully and not turning servers off recklessly achieves
better performance than existing policies that are based on predicting current
load or over-provisioning to account for possible future load.
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• We introduce our capacity inference algorithm which allows us to determine the
appropriate capacity at any point of time in response to changes in request rate,
request size and/or server efficiency, without any knowledge of these quantities
(see Section 4.7.3). We demonstrate that AutoScale, via the capacity inference
algorithm, is robust to all forms of changes in load, including unpredictable
changes in request size and unpredictable degradations in server speeds, within
the range of our traces. In fact, for our traces, AutoScale is robust to even a
4-fold increase in request size. To the best of our knowledge, AutoScale is the
first policy to exhibit these forms of robustness for multi-tier applications. As
shown in Tables 4.4, 4.5 and 4.6, other policies are simply not comparable on
this front.

• We provide a sensitivity analysis of sleep states for different server provision-
ing policies, including AutoScale, and determine the regime of sleep states that
would be advantageous for power management (see Section 4.5). We also pro-
vide a sensitivity analysis of lower idle power for different server provisioning
policies (see Section 4.6).

4.2 Experimental Setup

4.2.1 Our experimental testbed

We use our implementation testbed described in Section 2.3.2 and illustrated in
Figure 2.1 for all the experiments in this chapter. The key-value based workload
that we use for our experiments is also described in Section 2.3.2. Each workload
request in our experiments corresponds to an average of roughly 3,000 key-value
fetches, which translates to a mean request size of approximately 120 ms, assuming
no resource contention. The request size distribution is highly variable, with the
largest request being roughly 20 times the size of the smallest request. We use the
Zipf [143] distribution to model the popularity of requests. To minimize the effects of
cache misses in the memcached layer (which could result in an unpredictable fraction
of the requests violating the T95 SLA), we tune the parameters of the Zipf distribution
so that only a negligible fraction of requests miss in the memcached layer.

In this chapter we employ server provisioning on the stateless application servers
only, as they maintain no volatile state. Stateless servers are common in today’s ap-
plication platforms, such as those used by Facebook [55], Amazon [48] and Windows
Live Messenger [40]. We consider provisioning of stateful tier servers in Chapter 6.
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(a) Slowly
varying

(ITA [95])

(b) Quickly
varying

(synthetic)

(c) Big spike
(NLANR [144])

(d) Dual phase
(NLANR [144])

(e) Large
variations

(NLANR [144])

(f) Steep
tri phase
(HP [61])

Figure 4.1: Description of the traces we use for our experiments.

4.2.2 Trace-based arrivals

We use a variety of arrival traces to generate the request rate in our experiments,
most of which are drawn from real-world traces. Figure 4.1 describes these traces.
In our implementation testbed, the seven memcached servers can together handle
at most 800 requests per second, which corresponds to roughly 300,000 key-value
fetches per second at each memcached server. Thus, we scale the arrival traces such
that the maximum request rate into the system is 800 req/s. Further, we scale the
duration of the traces to 2 hours. We evaluate our policies against the full set of
traces (see Table 4.2 for results).

4.3 Evaluation I: Fluctuations in Request Rate

This section and the next both involve implementation and performance evaluation
of a range of server provisioning policies. Each policy will be evaluated against the
six traces described in Figure 4.1. We will present detailed results for the Dual phase
trace and show summary results for all traces in Table 4.2. The Dual phase trace
is chosen because it is quite bursty and also represents the diurnal nature of typical
data center traffic, whereby the request rate is low for a part of the day (usually
the night time) and is high for the rest (day time). The goal throughout will be to
meet 95%ile guarantees of T95 = 400− 500 ms, while minimizing the average power
consumed by the application servers, Pavg, or the average number of application
servers used, Navg. Note that Pavg largely scales with Navg.

It would be equally easy to use 90%ile or 99%ile response time guarantees. Like-
wise, we could easily have aimed for 300ms or 1 second response times rather than
500ms. Our choice of SLA is motivated by recent studies [173, 107, 132, 48] which
indicate that 95%ile guarantees of hundreds of milliseconds are typical.
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95%ile response time vs. request rate

Figure 4.2: A single server can optimally
handle 60 req/s.

T95=291ms, Pavg=2,323W, Navg=14

Figure 4.3: AlwaysOn.

For server provisioning, we want to choose the number of servers at time t, k(t),
such that we meet a 95%ile response time goal of 400 − 500 ms. Figure 4.2 shows
measured 95%ile response time at a single server versus request rate. According to
this figure, for example, to meet a 95%ile goal of 400 ms, we require the request rate
to a single server to be no more than r = 60 req/s. Hence, if the total request rate
into the data center at some time t is say, R(t) = 300 req/s, we know that we need
at least k = d300/re = 5 servers to ensure our 95%ile SLA.

4.3.1 AlwaysOn

The AlwaysOn policy [183, 40, 86] is important because this is what is currently
deployed by most of the industry. The policy selects a fixed number of servers, k, to
handle the peak request rate and always leaves those servers on. In our case, to meet
the 95%ile SLA of 400ms, we set k = dRpeak/60e, where Rpeak = 800 req/s denotes
the peak request rate into the system. Thus, k is fixed at d800/60e = 14.

Realistically, one does not know Rpeak, and it is common to overestimate Rpeak

by a factor of 2 (see, for example, [107]). In this chapter we empower AlwaysOn, by
assuming that Rpeak is known in advance.

Figure 4.3 shows the performance of AlwaysOn. The solid line shows kideal, the
ideal number of servers/capacity which should be on at any given time, as given by
k(t) = dR(t)/60e. Circles are used to show kbusy+idle, the number of servers which
are actually on, and crosses show kbusy+idle+setup, the actual number of servers that
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(a) T95=11,003ms, Pavg=1,281W, Navg=6.2 (b) T95=487ms, Pavg=2,218W, Navg=12.1

Figure 4.4: (a) Reactive and (b) Reactive with extra capacity.

are on or in setup. For AlwaysOn, the circles and crosses lie on top of each other
since servers are never in setup. Since most of the time AlwaysOn is clearly over-
provisioning, T95 is well below the desired SLA. However, Navg and Pavg are quite
high, with Navg = d800

60
e = 14 and Pavg = 2323W , and similar values for the other

traces (see Table 4.2).

4.3.2 Reactive

The Reactive policy (see, for example, [173]) reacts to the current request rate,
attempting to keep exactly dR(t)/60e servers on at time t, in accordance with the
solid line. However, because of the setup time of 260s, Reactive lags in turning servers
on. In our implementation of Reactive, we sample the request rate every 20 seconds,
adjusting the number of servers as needed.

Figure 4.4(a) shows the performance of Reactive. By reacting to the current
request rate and adjusting the capacity accordingly, Reactive is able to bring down
Pavg and Navg by as much as a factor of two or more, when compared with AlwaysOn.
This is a huge win. Unfortunately, the response time SLA is almost never met and
is typically exceeded by a factor of at least 10-20 (as in Figure 4.4(a)), or even by
a factor of 100 (see Table 4.2). Reactive suffers due to the setup lag, resulting in
servers not being on when needed, providing insufficient capacity for the incoming
requests. Also, because of the bursty nature of the trace, a drop in request rate is
often closely followed by a rise in request rate. But because Reactive scales down
capacity in response to a drop in request rate, there is insufficient capacity when the
request rate increases again, and this hurts response times.
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4.3.3 Reactive with extra capacity

One might think that the response times under Reactive would improve a lot by just
adding some x% extra capacity at all times. This x% extra capacity can be achieved
by running Reactive with a different r setting. Unfortunately, for this trace, it turns
out that to bring T95 down to our desired SLA, we need 100% extra capacity at all
times, which corresponds to setting r = 30. This brings T95 down to 487 ms, but
causes power to jump up to the levels of AlwaysOn, as illustrated in Figure 4.4(b). It
is even more problematic that each of our six traces in Figure 4.1 requires a different
x% extra capacity to achieve the desired SLA (with x% typically ranging from 50%
to 200%), rendering such a policy impractical.

4.3.4 Predictive

Predictive policies attempt to predict the request rate 260 seconds from now. This
section describes two policies that were used in many papers [30, 81, 150, 183] and
were found to be the most powerful by [107].

Predictive - Moving Window Average (MWA)

In the MWA policy, we consider a “window” of some duration (say, 10 seconds). We
average the request rates during that window to deduce the predicted rate during the
11th second. Then we slide the window to include seconds 2 through 11, and average
those values to deduce the predicted rate during the 12th second. We continue this
process of sliding the window rightward until we have predicted the request rate at
time 270 seconds, based on the initial 10 seconds window.

If the estimated request rate at second 270 exceeds the current request rate,
we determine the number of additional servers needed to meet the SLA (via the
k = dR/re formula) and turn these on at time 11, so that they will be ready to run
at time 270. If the estimated request rate at second 270 is lower than the current
request rate, we look at the maximum request rate, M , during the interval from time
11 to time 270. If M is lower than the current request rate, then we turn off as many
servers as we can while meeting the SLA for request rate M . Of course, the window
size affects the performance of MWA. We empower MWA by using the best window
size for each trace.

Figure 4.5(a) shows that the performance of Predictive MWA is very similar to
what we saw for Reactive: low Pavg and Navg values, beating AlwaysOn by a factor
of 2, but high T95 values, typically exceeding the SLA by a factor of 10 to 20.

57



(a) T95=7,740ms, Pavg=1,276W, Navg=6.3 (b) T95=2,544ms, Pavg=2,161W, Navg=11.8

Figure 4.5: (a) Predictive: MWA and (b) Predictive: LR.

Predictive - Linear Regression (LR)

The LR policy is identical to MWA except that, to estimate the request rate at time
270 seconds, we use linear regression to match the best linear fit to the values in
the window. Then we extend our line out by 260 seconds to get a prediction of the
request rate at time 270 seconds. We now follow the same procedure as in MWA
to determine whether we need to turn servers on or off based on these request rate
estimates.

The performance of Predictive LR is worse than that of Predictive MWA. Re-
sponse times are still bad, but now capacity and power consumption can be bad as
well. The problem, as illustrated in Figure 4.5(b), is that the linear slope fit used in
LR can end up overshooting the required capacity greatly.

4.3.5 AutoScale−−

One might think that the poor performance of the dynamic server provisioning poli-
cies we have seen so far stems from the fact that they are too slow to turn servers
on when needed. However, an equally big concern is the fact that these policies
are quick to turn servers off when not needed, and hence do not have those servers
available when load subsequently rises. This rashness is particularly problematic in
the case of bursty workloads, such as those in Figure 4.1.

AutoScale-- addresses the problem of scaling down capacity by being very conser-
vative in turning servers off while doing nothing new with respect to turning servers
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PPPPPPPPPTrace
twait 60s 120s 260s

Dual phase
[144]

T95 503ms 491ms 445ms
Pavg 1,253W 1,297W 1,490W
Navg 7.0 7.2 8.8

Table 4.1: The (in)sensitivity of AutoScale--’s performance to twait.

on (the turning on algorithm is the same as in Reactive). We will show that by
simply taking more care in turning servers off, AutoScale-- is able to outperform all
the prior dynamic server provisioning policies we have seen with respect to meeting
SLAs, while simultaneously keeping Pavg and Navg low.

When to turn a server off?

Under AutoScale--, each server decides autonomously when to turn off. When a
server goes idle, rather than turning off immediately, it sets a timer of duration twait
and sits in the idle state for twait seconds. If a request arrives at the server during
these twait seconds, then the server goes back to the busy state (with zero setup cost);
otherwise the server is turned off. In our experiments for AutoScale--, we use a twait
value of 120s. Table 4.1 shows that AutoScale-- is largely insensitive to twait in the
range twait = 60s to twait = 260s. There is a slight increase in Pavg (and Navg) and a
slight decrease in T95 when twait increases, due to idle servers staying on longer.

The idea of setting a timer before turning off an idle server has been proposed
before (see, for example, [100, 125, 96]), however, only for a single server. For a
multi-server system, independently setting timers for each server can be inefficient,
since we can end up with too many idle servers. Thus, we need a more coordinated
approach for using timers in our multi-server system which takes routing into account,
as explained below.

How to route requests to servers?

Timers prevent the mistake of turning off a server just before a new arrival comes
in. However, they can also waste power and capacity by leaving too many servers in
the idle state. We would basically like to keep only a small number of servers (just
the right number) in the idle state.
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95%ile response time vs. packing factor

Figure 4.6: For a single server, packing fac-
tor, p = 10.

T95=491ms, Pavg=1,297W, Navg=7.2

Figure 4.7: AutoScale--.

To do this, we introduce a routing scheme that tends to concentrate requests onto
a small number of servers, so that the remaining (unneeded) servers will naturally
“time out.” Our routing scheme uses an index-packing idea, whereby all on servers
are indexed from 1 to n. Then we send each request to the lowest-numbered on
server that currently has fewer than p requests, where p stands for packing factor
and denotes the maximum number of requests that a server can serve concurrently
and meet its response time SLA. For example, in Figure 4.6, we see that to meet a
95%ile guarantee of 400 ms, the packing factor is p = 10 (in general, the value of
p depends on the system in consideration). When all on servers are already packed
with p requests each, additional request arrivals are routed to servers via the join-
the-shortest-queue routing.

The idea of combining timers with index-packing routing stems from theoret-
ical work, where we prove [64] that, under more restrictive M/M/k models, this
combination achieves the well-known “square-root staffing” [97] optimal capacity
provisioning. This is far more effective than adding some x% extra capacity, as in
Section 4.3.3.

In comparison with all the other policies, AutoScale-- hits the “sweet spot” of low
T95 as well as low Pavg and Navg. As seen from Table 4.2, AutoScale-- is close to the
response time SLA in all traces except for the Big spike trace. Simultaneously, the
mean power usage and capacity under AutoScale-- is typically significantly better
than AlwaysOn, saving as much as a factor of two in power and capacity.

Figure 4.7 illustrates how AutoScale-- is able to achieve these performance re-
sults. Observe that the crosses and circles in AutoScale-- form flat constant lines,
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T95=320ms, Pavg=1,132W, Navg=5.9

Figure 4.8: Opt.

instead of bouncing up and down, erratically, as in the earlier policies. This comes
from a combination of the twait timer and the index-based routing, which together
keep the number of servers just slightly above what is needed, while also avoiding
toggling the servers between on and off states when the load goes up and down.
Comparing Figures 4.7 and 4.4(b), we see that the combination of timers and index-
based routing is far more effective than using Reactive with extra capacity, as in
Section 4.3.3.

4.3.6 Opt

As a yardstick for measuring the effectiveness of AutoScale--, we define an optimal
policy, Opt, which behaves identically to Reactive, but with a setup time of zero.
Thus, as soon as the request rate changes, Opt reacts by immediately adding or
removing the required capacity, without having to wait for setup.

Figure 4.8 shows that under Opt, the number of servers on scales exactly with the
incoming request load. Opt easily meets the T95 SLA, and consumes very little power
and resources (servers). Note that while Opt usually has a T95 of about 320-350ms,
and thus it might seem like Opt is over-provisioning, it just about meets the T95
SLA for the Steep tri phase trace (see Table 4.2) and hence cannot be made more
aggressive.

In support of AutoScale--, we find in Table 4.2 that Opt’s power consumption
and server usage is only 30% less than that of AutoScale--, averaged across all traces,
despite AutoScale-- having to cope with the 260s setup time.
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PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale--
MWA LR

Slowly
varying

[95]

T95 271ms 673ms 3,464ms 618ms 366ms 435ms
Pavg 2,205W 842W 825W 964W 788W 1,393W
Navg 14.0 4.1 4.1 4.9 4.0 5.8

Quickly
varying

T95 303ms 20,005ms 3,335ms 12,553ms 325ms 362ms
Pavg 2,476W 1,922W 2,065W 3,622W 1,531W 2,205W
Navg 14.0 10.1 10.6 22.1 8.2 15.1

Big spike
[144]

T95 229ms 3,426ms 9,337ms 1,753ms 352ms 854ms
Pavg 2,260W 985W 998W 1,503W 845W 1,129W
Navg 14.0 4.9 4.9 8.1 4.5 6.6

Dual
phase [144]

T95 291ms 11,003ms 7,740ms 2,544ms 320ms 491ms
Pavg 2,323W 1,281W 1,276W 2,161W 1,132W 1,297W
Navg 14.0 6.2 6.3 11.8 5.9 7.2

Large
variations

[144]

T95 289ms 4,227ms 13,399ms 20,631ms 321ms 474ms
Pavg 2,363W 1,391W 1,461W 2,576W 1,222W 1,642W
Navg 14.0 7.8 8.1 16.4 7.1 10.5

Steep tri
phase [61]

T95 377ms > 1 min > 1 min 661ms 446ms 463ms
Pavg 2,263W 849W 1,287W 3,374W 1,004W 1,601W
Navg 14.0 5.2 7.2 20.5 5.1 8.0

Table 4.2: Comparison of all policies. Setup time = 260s throughout.

4.4 Wear-and-tear costs of server provisioning

Thus far we have evaluated server provisioning policies based on the metrics of T95,
Pavg, and Navg. However, another metric that data center operators often care about
is the wear-and-tear cost of servers. Dynamically provisioning servers increases their
wear-and-tear [121, 120, 60, 129], and might also increase the risk of hardware fail-
ure [29]. Recent work [29, 121] suggests that a server should not be power cycled
more than once per hour. We now evaluate our server provisioning policies based
on the average frequency of power cycling a server per hour. We obtain the average
frequency by dividing the total number of server power-on instances by the number
of servers (28 in our case), and then dividing by the length of the trace (2 hours,
except for the Quickly varying trace, which has a length of 0.5 hours).

The Reactive policy has an average power cycling frequency of 1.04 across all six
traces, with a maximum of 3.21 for the Quickly varying trace and a minimum of 0.34
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for the Slowly varying trace. The MWA and LR policies have an average frequency
of 1.04 and 3.68 respectively, with a maximum of 3.14 and 9 respectively, for the
Quickly varying trace, and a minimum of 0.23 and 0.43 respectively, for the Slowly
varying trace. The Quickly varying trace results in higher power cycling frequency
because of the numerous oscillations in request rate. The Slowly varying trace results
in lower frequency because it exhibits only one significant oscillation in request rate.

The AutoScale-- policy has an average power cycling frequency of only 0.28,
with a maximum of 0.36 for the Quickly varying trace and a minimum of 0.2 for
the Slowly varying trace. This is to be expected because of the twait idea employed
by AutoScale--, which significantly reduces unneeded power cycling. Based on the
above results, we conclude that AutoScale-- is superior to the existing dynamic
provisioning policies considered in this paper based on the power cycling frequency.
Further, AutoScale-- necessitates, on average, only 0.28 power cycles for a server
per hour, which is much lower than the suggested limit of one power cycle per hour.
Note that the static provisioning policy, AlwaysOn, is superior, by definition, to any
dynamic provisioning policy since it does not power cycle servers.

The above discussion considers the average power cycling frequency across all
servers. However, it is also important to take into account the distribution of power
cycling across the servers. In practice, the distribution can be made more uniform
across all servers by taking account which server is being turned on. For example,
when an additional server is to be provisioned, we can pick the off server that has
the lowest power cycling frequency. This decision will not affect the values of T95,
Pavg, Navg, or the mean power cycling frequency.

4.5 Impact of Sleep States

Sleep states are essentially low-power inactive states, and can be considered as “ef-
ficient” off states. A sleep state can be defined by its setup time and the power
consumed when in sleep. The setup time for exiting a sleep state is typically less
that the setup time for exiting the off state. However, the power consumed when
the server is sleeping is non-zero, though the sleep power is typically much less than
the idle power consumption. While sleep states have existed for mobile devices and
desktop computers for some time, they have largely not been incorporated into the
servers in today’s data centers. High setup times make data center administrators
fearful of any form of dynamic server provisioning, whereby servers are suspended or
shut down when load drops. This general reluctance has stalled research into whether
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there might be some feasible sleep state (with sufficiently low setup overhead and/or
sufficiently low power) that would actually be beneficial in data centers.

Prior work [86, 107, 168, 51, 192, 125] evaluated dynamic power management
using only existing sleep states in desktop computers, mobile class computers (such
as laptops and notebooks), custom built servers, and sub-systems such as processors
and microdrives. Given the limited range of existing sleep states, and because sleep
states on different systems may look very different, it is difficult to assess the full
potential of sleep states. While there has been some work [131, 132] considering the
effectiveness of hypothetical sleep states, the hypothetical states considered in [131,
132] are limited to transition times (setup times) on the order of 1 millisecond, and
thus do not span the space of what is realistically possible today in servers.

In this section we contrast the performance of AutoScale-- with other dynamic
server provisioning policies, in the presence of sleep states. We look at lower setup
times in Section 4.5.1 and lower sleep power in Section 4.5.2. We then provide a
sensitivity analysis of sleep states in Section 4.5.3. This analysis helps identify sleep
states that are useful for dynamic server provisioning. In our experiments, we achieve
lower setup times and lower sleep power by tweaking our implementation testbed as
discussed in Section 2.3.2. Also, for AutoScale--, we reduce the value of twait in
proportion to the reduction in setup time.

The results presented here are also applicable to virtual machines, which typically
require a smaller setup time for provisioning than physical servers. These results will
also be useful for future server architectures which may support sleep states.

4.5.1 Lower setup times

When the setup time is very low, approaching zero, then by definition, all policies
approach Opt. For moderate setup times, one might expect that AutoScale-- does
not provide significant benefits over other policies such as Reactive, since T95 should
not rise too much during the setup time. This turns out to be false since the T95
under Reactive continues to be high even for moderate setup times.

Figure 4.9(a) shows our experimental results for T95 for the Big spike trace [144],
under Reactive and AutoScale--. We see that as the setup time drops, the T95 drops
almost linearly for both Reactive and AutoScale--. However, AutoScale-- continues
to be superior to Reactive with respect to T95 for any given setup time. In fact,
even when the setup time is only 20s, the T95 under Reactive is almost twice that
under AutoScale--. This is because of the huge spike in load in the Big spike trace
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(a) Big spike (b) Dual phase

Figure 4.9: Effect of lower setup times for (a) Big spike trace [144] and (b) Dual
phase trace [144].

that cannot be handled by Reactive even at low setup times. We find similar results
for the Steep tri phase trace [61], with T95 under Reactive being more than three
times as high as that under AutoScale--. The Pavg and Navg values for Reactive and
AutoScale-- also drop with setup time, but these changes are not as significant as
the changes for T95.

Figure 4.9(b) shows our experimental results for T95 for the Dual phase trace [144],
under Reactive and AutoScale--. This time, we see that as the setup time drops below
100s, the T95 under Reactive approaches that under AutoScale--. This is because of
the relatively small fluctuations in load in the Dual phase trace, which can be handled
by Reactive once the setup time is small enough. However, for setup times larger
than 100s, AutoScale-- continues to be significantly better than Reactive. We find
similar results for the Quickly varying trace and the Large variations trace [144]. Note
that the T95 under AutoScale-- is only slightly affected by the setup time because
AutoScale-- fundamentally works by avoiding setup times.

Thus, depending on the trace, Reactive can perform poorly even for low setup
times (see Figure 4.9(a)). We expect similar behavior under the Predictive policies as
well. Note that AlwaysOn and Opt are not affected by setup times. We summarize
the results of this section by making the following observation:

Observation 4.1 (Dynamic server provisioning under lower setup times).
Our dynamic server provisioning policy, AutoScale--, is beneficial not only for high
setup times but also for more moderate setup times. When the setup time is very
low, all dynamic server provisioning policies approach optimality.
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(a) Big spike (b) Dual phase

Figure 4.10: Effect of lower sleep power for (a) Big spike trace [144] and (b) Dual
phase trace [144]. Here, the setup time is 200s.

4.5.2 Lower sleep power

Figures 4.10(a) and 4.10(b) show our experimental results for Pavg for the Big spike
trace [144] and the Dual phase trace [144] respectively, under Reactive and Au-
toScale--. These results are for a setup time of 200s. We see that the Pavg value
for Reactive and AutoScale-- drops almost linearly with the sleep power. This is
to be expected since the percentage of time that the servers are sleeping is constant
for a given setup time and a given trace. Thus, a drop in sleep power lowers the
power consumption of the servers proportionately. We see that Reactive has a lower
Pavg than AutoScale-- for lower sleep powers. This is consistent with our results in
Table 4.2 using the off state which has zero “sleep” power. However, over the entire
range of the sleep power, the difference in Pavg for Reactive and AutoScale-- is fairly
small. We find similar results for lower setup times as well. Note that the T95 value
is not affected by the sleep power and is thus not shown. We summarize our results
with the following observation:

Observation 4.2 (Dynamic server provisioning under lower sleep power).
The system power consumption under dynamic server provisioning policies drops
almost linearly with sleep power.
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4.5.3 Sensitivity analysis of sleep states

In this section we provide a sensitivity analysis of sleep states. Recall that a sleep
state can be defined by its setup time and the power consumed when in sleep. We
examine sleep states with setup times ranging from 20s to 200s, and sleep power
ranging from 0W to 140W (idle power). Our goal is to identify regimes of sleep
states which are useful for dynamic server provisioning policies, specifically, Reactive
and AutoScale--. We use Performance-per-Watt, or PPW, to evaluate sleep states.
Recall from Definition 2.6 that:

PPW =
1

T95 · Pavg

Using this metric, we define a sleep state to be “useful” for a dynamic server pro-
visioning policy if the PPW for that policy when using the sleep state is greater
than the PPW of AlwaysOn. Note that AlwaysOn does not make use of sleep states.
To compare the policies, we look at the Normalized Performance-per-Watt, NPPW,
defined as the PPW for the dynamic policy, say Reactive, normalized by the PPW
for AlwaysOn:

NPPW =
PPWReactive

PPWAlwaysOn

When NPPW exceeds 1, we say that Reactive is superior to AlwaysOn.

Figures 4.11 and 4.12 show our experimental results for NPPW for the Big spike
trace [144] and the Dual phase trace [144], respectively, under (a) Reactive and (b)
AutoScale--. For additional experimental results on other traces, we refer the reader
to our papers [71, 72]. In these figures, the light shaded regions indicate regimes of
sleep states where the dynamic policy is superior to AlwaysOn (NPPW > 1), and
the dark shaded regions indicate regimes of sleep states where the dynamic policy is
inferior to AlwaysOn (NPPW < 1). The solid red line indicates the cross-over points
where NPPW=1. In general, NPPW increases as the setup time decreases or as the
sleep power decreases.

From the results, we see that the usefulness of sleep states significantly depends on
the trace. For example, sleep states with a setup time ≤ 120s and sleep power ≤ 42W
are useful for Reactive under the Dual phase trace in Figure 4.12(a). However, for the
Big spike trace in Figure 4.11(a), even our best sleep state with a setup time of 20s
and sleep power of 0W results in an NPPW of only 0.7 for Reactive. Interestingly,
the effect of setup time and sleep power on NPPW depends on the variability of
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(a) Reactive (b) AutoScale--

Figure 4.11: NPPW for the Big spike trace [144] under (a) Reactive and (b) Au-
toScale--. The solid red line indicates the cross-over points where NPPW=1.

(a) Reactive (b) AutoScale--

Figure 4.12: NPPW for the Dual phase trace [144] under (a) Reactive and (b) Au-
toScale--. The solid red line indicates the cross-over points where NPPW=1.

request rate in the trace. For example, for AutoScale-- under the Big spike trace
in Figure 4.11(b), the NPPW depends on both the setup time and the sleep power.
However, under the Dual phase trace in Figure 4.12(b), the NPPW for AutoScale--
is largely insensitive to the setup time.

We also see that AutoScale-- is superior to Reactive in terms of NPPW for all
sleep states that we consider. AutoScale-- is also superior to AlwaysOn for most
of the sleep states under the Dual phase trace. However, for the Big spike trace,
AutoScale-- is superior to AlwaysOn for only a few sleep states. This result highlights
the fact that dynamic server provisioning is hindered by load spikes, even when using
sleep states.
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Effect of scale on sleep states

Thus far, we have only looked at the usefulness of sleep states on our implementa-
tion testbed. In order to investigate the effect of scale (size of the testbed) on the
usefulness of sleep states, we resort to simulations and analytical models. While not
shown here, our results indicate that the usefulness of sleep states (NPPW) increases
with scale. This is because as the size of the data center goes up, the probability
that all servers are simultaneously busy goes down. Thus, an incoming request has
higher chances of finding an idle server, thereby lowering T95 and increasing PPW
for Reactive and AutoScale--. By contrast, for the over-provisioned AlwaysOn, T95
is always good whereas Pavg is always high, regardless of the data center size. The
net effect is an increase in NPPW for Reactive and AutoScale--. Of course, the
improvement in NPPW cannot go on forever. There is a natural lower bound on
T95, namely the T95 provided by AlwaysOn. Once we reach this lower bound on
T95, NPPW cannot improve further. Interestingly, the NPPW for both Reactive and
AutoScale-- converges to roughly the same value as we scale the size of the data
center, meaning that Reactive approaches AutoScale-- for large scale data centers.
We now end this section with a summary of the above findings:

Observation 4.3 (Usefulness of sleep states).
Dynamic server provisioning policies equipped with “useful” sleep states are often
superior to static policies like AlwaysOn. The regime of useful sleep states for the
dynamic policies, however, depends on the variability in the demand traces. Inter-
estingly, the usefulness of sleep states improves with the size of the data center.

4.6 Impact of Lower Idle Power

With advances in processor technology, it is very likely that the server idle power
will drop. This claim is also supported by recent literature [69, 131, 132]. The
drop in server idle power should greatly benefit the static server provisioning policy,
AlwaysOn, by lowering its Pavg, since a lot of servers are idle under AlwaysOn.
However, for the dynamic server provisioning policies, we expect Pavg to only drop
slightly, since servers are rarely idle under such policies. To explore the effects of
lower server idle power, we contrast the performance of AutoScale-- with that of
AlwaysOn. The idle power for the servers in our testbed is about 140W (with C-
states enabled), as mentioned in Section 2.3.2. We replicate the effects of lower idle
power by tweaking our testbed along the same lines as discussed in Section 2.3.2.
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(a) Big spike (b) Dual phase

Figure 4.13: Effect of lower idle power for (a) Big spike trace [144] and (b) Dual
phase trace [144]. Here, the setup time is 260s.

Figures 4.13(a) and 4.13(b) show our experimental results for Pavg for the Big
spike trace [144] and the Dual phase trace [144] respectively, under AlwaysOn and
AutoScale--. Here, the setup time is 260s. We see that the Pavg value for AlwaysOn
drops almost linearly with the server idle power. This is to be expected since the
number of servers idle under AlwaysOn for a given trace is constant, and thus, a drop
in server idle power lowers the power consumption of these idle servers proportion-
ately. The Pavg value for AutoScale-- also drops with the idle power, but this drop
is negligible. It is interesting to note that the Pavg value for AlwaysOn drops below
that of AutoScale-- only when the idle power is extremely low (less than 15W). We
find similar results for the other traces as well. Note that we are being particularly
conservative in assuming that while the server idle power drops, the power consumed
by the servers when they are in setup remains the same. This assumption hurts the
Pavg value for AutoScale--. The T95 value is not affected by the server idle power
and is thus not shown. We conclude this section with the following observation:

Observation 4.4 (Dynamic server provisioning under lower idle power).
While lower idle power consumption favors static provisioning policies like AlwaysOn,
the power savings under our dynamic server provisioning policy, AutoScale--, con-
tinue to be greater than those under AlwaysOn, except when the idle power is ex-
tremely low.
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4.7 Evaluation II: Robustness

Thus far in our traces we have only varied the request rate over time. However,
in reality there are many other ways in which load can change. For example, if
new features or security checks are added to the application, the request size might
increase. We mimic such effects by increasing the number of key-value lookups
associated with each request. As a second example, if any abnormalities occur in the
system, such as internal service disruptions, slow networks, or maintenance cycles,
servers may respond more slowly, and requests may accumulate at the servers. We
mimic such effects by slowing down the frequency of the application servers. All the
dynamic server provisioning policies described thus far, with the exception of Opt,
use the request rate to scale capacity. However, using the request rate to determine
the required capacity is somewhat fragile. If the request size increases, or if servers
become slower, due to any of the reasons mentioned above, then the number of
servers needed to maintain acceptable response times ought to be increased. In both
cases, however, no additional capacity will be provisioned if the policies only look at
request rate to scale up capacity.

4.7.1 Why request rate is not a good feedback signal

In order to assess the limitations of using request rate as a feedback signal for scaling
capacity, we ran AutoScale-- on the Dual phase trace with a 2x request size (meaning
that our request size is now 240ms as opposed to the 120ms size we have used thus
far). Since AutoScale-- does not detect an increase in request size, and thus does
not provision for this, its T95 shoots up (T95 = 51, 601ms). This is also true for the
Reactive and Predictive policies, as can be seen in Tables 4.4 and 4.5 for the case of
increased request size and in Table 4.6 for the case of slower servers.

Figure 4.14 shows measured 95%ile response time at a single server versus request
rate for different request sizes. It is clear that while each server can handle 60 req/s
without violating the T95 SLA for a 1x request size, the T95 shoots up for the 2x and
4x request sizes. An obvious way to solve this problem is to determine the request
size. However, it is not easy to determine the request size since the size is usually not
known ahead of time. Trying to derive the request size by monitoring the response
times does not help either, since response times are usually affected by queueing
delays. Thus, we need to come up with a better feedback signal than request rate or
request size.
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95%ile response time vs. request rate

Figure 4.14: A single server can no
longer handle 60 req/s when the request
size increases.

95%ile response time vs. nsrv

Figure 4.15: For a single server, setting
nsrv = p = 10 works well for all request
sizes.

4.7.2 A better feedback signal that is still not quite right

We propose using the number of requests in the system, nsys, as the feedback signal
for scaling up capacity rather than the request rate. We assert that nsys more
faithfully captures the dynamic state of the system than the request rate: If the
system is under-provisioned either because the request rate is too high or because
the request size is too big or because the servers have slowed down, nsys will tend
to increase. If the system is over-provisioned, nsys will tend to decrease below some
expected level. Further, calculating nsys is fairly straightforward; many modern
systems (including our Apache load balancer) already track this value, and it is
instantaneously available.

Figure 4.15 shows the measured 95%ile response time at a single server versus
the number of requests at a single server, nsrv, for different request sizes. Note that
nsrv = nsys in the case of a single-server system. Surprisingly, the 95%ile response
time values do not shoot up for the 2x and 4x request sizes for a given nsrv value.
In fact, setting nsrv = 10, as in Section 4.3.5, provides acceptable T95 values for
all request sizes (note that T95 values for the 2x and 4x request sizes are higher
than 500ms, which is to be expected as the work associated with each request is
naturally higher). This is because an increase in the request size (or a decrease in
the server speed) increases the rate at which “work” comes into each server. This
increase in work is reflected in the consequent increase in nsrv. By limiting nsrv
using p, the packing factor (the maximum number of requests that a server can serve
concurrently and meet its SLA), we can limit the rate at which work comes in to
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T95=441ms, Pavg=2,083W, Navg=12.5

Figure 4.16: Our proposed policy over-
shoots while scaling up capacity, result-
ing in high Pavg and Navg.

Request rate vs. number of requests

Figure 4.17: A doubling of request rate
can lead to a tripling of number of re-
quests at a single server.

each server, thereby adjusting the required capacity to ensure that we meet the T95
SLA. Based on these observations, we set p = 10 for the 2x and 4x request sizes.
Thus, p is agnostic to request sizes for our system, and only needs to be computed
once. The insensitivity of p to request sizes is to be expected since p represents the
degree of parallelism for a server, and thus depends on the specifications of a server
(number of cores, hyper-threading, etc), and not on the request size.

Based on our observations from Figure 4.15, we propose a plausible solution for
dynamic server provisioning based on looking at the total number of requests in
the system, nsys, as opposed to looking at the request rate. The idea is to provision
capacity to ensure that the number of requests at a server is nsrv = 10. In particular,
the proposed policy is exactly the same as AutoScale--, except that it estimates the
required capacity as kreqd = dnsys/10e, where nsys is the total number of requests in
the system at that time. In our implementation, we sample nsys every 20 seconds, and
thus, the proposed policy re-scales capacity, if needed, every 20 seconds. Note that
the proposed policy uses the same method to scale down capacity as AutoScale--,
viz., using a timeout of 120s along with the index-packing routing.

Figure 4.16 shows how our proposed policy behaves for the 1x request size. We
see that our proposed policy successfully meets the T95 SLA, but it clearly overshoots
in terms of scaling up capacity when the request rate goes up. Thus, the proposed
policy results in high power and resource consumption. One might think that this
overshoot can be avoided by packing more requests at each server, thus allowing nsrv
to be higher than 10. However, note that the T95 in Figure 4.16 is already quite close
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to the 500ms SLA, and increasing the number of requests packed at a server beyond
10 can result in SLA violations.

Figure 4.17 explains the overshoot in terms of scaling up capacity for our proposed
policy. We see that when the request rate into a single server, rsrv, doubles from
60 req/s to 120 req/s, nsrv more than doubles from 10 to 32. This is because an
overloaded server (rsrv = 120 req/s) slows down due to an increase in context switches
and due to other side-effects such as trashing, leading to an increase in the number of
outstanding requests (nsrv). Thus, our proposed policy scales up capacity by a factor
of 3, whereas ideally capacity should only be scaled up by a factor of 2. Clearly our
proposed policy does not work so well, even when the request size is just 1x.

We now introduce our AutoScale policy, which solves our problems of scaling up
capacity.

4.7.3 AutoScale: Incorporating the right feedback signal

We now describe the AutoScale policy and show that it not only handles the case
where request rate changes, but also handles cases where the request size changes
(see Tables 4.4 and 4.5) or where the server efficiency changes (see Table 4.6).

AutoScale differs from the server provisioning policies described thus far in that
it uses the number of requests in the system, nsys, as the feedback signal rather than
request rate. However, AutoScale does not simply scale up the capacity linearly with
an increase in nsys, as was the case with our proposed policy above. This is because
nsys grows super-linearly during the time that the system is under-provisioned, as
is well known in queueing theory [160, Chapter 8]. Instead, AutoScale tries to infer
the amount of work in the system by monitoring nsys. The amount of work in the
system is proportional to both the request rate and the request size (the request size
in turn depends also on the server efficiency), and thus, we try to infer the product
of request rate and request size, which we call system load, ρsys. Formally,

ρsys =
request rate into × average

the data center (R) request size,

where the average 1x request size is 120ms. Fortunately, there is an easy relationship
(which we describe soon) between the number of requests in the system, nsys, and
the system load, ρsys, obviating the need to ever measure load or request rate or the
request size. Once we have ρsys, it is easy to get to the required capacity, kreqd, since
ρsys represents the amount of work in the system and is hence proportional to kreqd.

74



(a) ρsrv vs. nsrv for the 1x request size (b) ρsrv vs. nsrv for all request sizes

Figure 4.18: Load at a server as a function of the number of requests at a server for
various request sizes. Surprisingly, the graph is invariant to changes in request size.

We now explain the translation process from nsys to ρsys, and then from ρsys to kreqd.
We refer to this entire translation algorithm as the capacity inference algorithm.
The full translation from nsys to kreqd will be given in Equation (4.4) below. A full
listing of all the variables used in this section is provided in Table 7.1 for convenience.

The capacity inference algorithm

In order to understand the relationship between nsys and ρsys, we first derive the
relationship between the number of requests at a single server, nsrv, and the load at
a single server, ρsrv. Formally, the load at a server is defined as

ρsrv =
request rate into × average

a single server (rsrv) request size,
(4.1)

where the average 1x request size is 120ms and rsrv is the request rate into a single
server. If the request rate to a server, rsrv, is made as high as possible without
violating the SLA, then the resulting ρsrv from Equation (4.1) is referred to as the
reference load, ρref . For our system, recall that the maximum request rate into a
single server without violating the SLA is rsrv = 60 req/s (see Figure 4.2). Thus,

ρref = 60× 0.12 ≈ 7, (4.2)

meaning that a single server can handle a load of at most 7 without violating the
SLA, assuming a 1x request size of 120ms.
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Variable Description

rsrv Request rate into a single server
R Request rate into the data center
nsys Number of requests in the system
nsrv Number of requests at a server
p Packing factor (maximum nsrv without violating SLA)
ρsys System load
ρsrv Load at a server
ρref Reference load (for a single server)
kreqd Required capacity (number of servers)
kcurr Current capacity

Table 4.3: Description of variables.

Returning to the discussion of how ρsrv and nsrv are related, we expect that ρsrv
should increase with nsrv. Figure 4.18(a) shows our experimental results for ρsrv as
a function of nsrv. Note that ρsrv = ρref = 7 corresponds to nsrv = p = 10, where p
is the packing factor. We obtain Figure 4.18(a) by converting rsrv in Figure 4.17 to
ρsrv using Equation (4.1) above. Observe that when ρsrv doubles from 7 to 14, we
see that nsrv more than triples from 10 to 32, as was the case in Figure 4.17.

We will now estimate ρsys, the system load, using the relationship between nsrv
and ρsrv. To estimate ρsys, we first approximate nsrv as nsys

kcurr
, where kcurr is the

current number of on servers. We then use nsrv in Figure 4.18(a) to estimate the
corresponding ρsrv. Finally, we have ρsys = kcurr × ρsrv. In summary, given the
number of requests in the system, nsys, we can derive the system load, ρsys, as
follows:

nsys
÷kcurr−−−−→ nsrv

F ig. 4.18(a)−−−−−−−→ ρsrv
×kcurr−−−−→ ρsys (4.3)

Surprisingly, the relationship between the number of requests at a server, nsrv, and
the load at a server, ρsrv, does not change when request size changes. Figure 4.18(b)
shows our experimental results for the relationship between nsrv and ρsrv for different
request sizes. We see that the plot is invariant to changes in request size. Thus, while
calculating ρsys = kcurr × ρsrv, we do not have to worry about the request size and
we can simply use Figure 4.18(a) to estimate ρsys from nsys irrespective of the request
size. Likewise, we find that the relationship between nsrv and ρsrv does not change
when the server speed changes. This is because a decrease in server speed is the
same as an increase in request size for our system.
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The reason why the relationship between nsrv and ρsrv is agnostic to request size
is because ρsrv, by definition (see Equation (4.1)), takes the request size into account.
If the request size doubles, then the request rate into a server needs to drop by a
factor of 2 in order to maintain the same ρsrv. These changes result in exactly the
same amount of work entering the system per unit time, and thus, nsrv does not
change. The insensitivity of the relationship between nsrv and ρsrv to changes in
request size is consistent with queueing-theoretic analysis [103]. Interestingly, this
insensitivity, coupled with the fact that the packing factor, p, is a constant for our
system (p = 10, see Section 4.7.2), results in the reference load, ρref , being a constant
for our system, since ρref = ρsrv for the case when nsrv = p = 10 (see Figure 4.18(a)).
Thus, we only need to compute ρref once for our system.

Now that we have ρsys from Equation (4.3), we can translate this to the required
capacity, kreqd, using ρref . Since ρsys corresponds to the total system load, while ρref
corresponds to the load that a single server can handle, we deduce that the required
capacity is:

kreqd =

⌈
ρsys
ρref

⌉
In summary, we can get from nsys to kreqd by first translating nsys to ρsys, which

leads us to kreqd, as outlined below:

nsys
÷kcurr−−−−→ nsrv

F ig. 4.18(a)−−−−−−−→ ρsrv
×kcurr−−−−→ ρsys

÷ρref−−−→ kreqd (4.4)

For example, if nsys = 320 and kcurr = 10, then we get nsrv = 32, and from
Figure 4.18(a), ρsrv = 14, irrespective of request size. The load for the system, ρsys,
is then given by kcurr × ρsrv = 140, and since ρref = 7, the required capacity is
kreqd = dkcurr × ρsrv

ρref
e = 20. Consequently, AutoScale turns on 10 additional servers.

In our implementation, we reevaluate kreqd every 20s to avoid excessive changes in
the number of servers.

The insensitivity to request size of the relationship between nsrv and ρsrv from
Figure 4.18(b) allows us to use Equation (4.4) to compute the desired capacity, kreqd,
in response to any form of load change. Further, as noted above, p and ρref are
constants for our system, and only need to be computed once.

The design of AutoScale includes a few key parameters: twait (see Table 4.1), p
(derived in Figure 4.6), ρref (derived in Equation (4.2)), and the ρsrv vs. nsrv rela-
tionship (derived in Figure 4.18(a)). In order to deploy AutoScale on a given cluster,
these parameters need to be determined. Fortunately, all of the above parameters
only need to be determined once for a given cluster. This is because these parameters
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PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly
varying

[95]

T95 478ms > 1 min > 1 min > 1 min 531ms 701ms
Pavg 2,127W 541W 597W 728W 667W 923W
Navg 14.0 3.2 2.7 3.8 4.0 5.4

Dual
phase [144]

T95 424ms > 1 min > 1 min > 1 min 532ms 726ms
Pavg 2,190W 603W 678W 1,306W 996W 1,324W
Navg 14.0 3.0 2.6 6.6 5.8 7.3

Table 4.4: Comparison of all policies for 2x request size1.

PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly
varying

[95]

T95 759ms > 1 min > 1 min > 1 min 915ms 1,155ms
Pavg 2,095W 280W 315W 391W 630W 977W
Navg 14.0 1.9 1.7 2.1 4.0 5.7

Dual
phase [144]

T95 733ms > 1 min > 1 min > 1 min 920ms 1,217ms
Pavg 2,165W 340W 389W 656W 985W 1,304W
Navg 14.0 1.7 1.8 3.2 5.9 7.2

Table 4.5: Comparison of all policies for 4x request size1.

depend on the specifications of the system, such as the server type, the setup time,
and the application, which do not change at runtime. Request rate, request size,
and server speed, can all change at runtime, but these do not affect the value of the
above key parameters. This makes AutoScale a very robust provisioning policy.

Performance of AutoScale

Tables 4.4 and 4.5 summarize our experimental results for the case where the number
of key-value lookups per request (or the request size) increases by a factor of 2 and 4
respectively. Because request sizes are dramatically larger, and because the number

1For a given arrival trace, when request size is scaled up, the size of the application tier should
ideally be scaled up as well so as to accommodate the increased load. However, since our application
tier is limited to 28 servers, we follow up an increase in request size with a proportionate decrease
in request rate for the arrival trace. Thus, the peak load (request rate times request size) is the
same before and after the request size increase, and our 28 server application tier suffices for the
experiment. In particular, AlwaysOn, which knows the peak load ahead of time, is able to handle
peak load by keeping 14 servers on even as the request size increases.
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(a) 1x: T95=474ms
Pavg=1,387W
Navg=7.6

(b) 2x: T95=726ms
Pavg=1,324W
Navg=7.3

(c) 4x: T95=1,217ms
Pavg=1,304W
Navg=7.2

Figure 4.19: Robustness of AutoScale to changes in request size. The request size is
1x (or 120ms) in (a), 2x (or 240ms) in (b), and 4x (or 480ms) in (c).

of servers in our testbed is limited, we compensate for the increase in request size
by scaling down the request rate by the same factor. Thus, in Table 4.4, request
sizes are a factor of two larger than in Table 4.2, but the request rate is half that
of Table 4.2. The T95 values are expected to increase as compared with Table 4.2
because each request now takes longer to complete (since it does more key-value
lookups).

Looking at AutoScale in Table 4.4, we see that T95 increases to around 700ms,
while in Table 4.5, it increases to around 1200ms. This is to be expected. By contrast,
for all other dynamic server provisioning policies, the T95 values exceed one minute,
both in Tables 4.4 and 4.5. Again, this is because these policies react only to changes
in the request rate, and thus end up typically under-provisioning. We do not show
the results for AutoScale-- in Tables 4.4 and 4.5, but its performance is just as bad
as the other dynamic server provisioning policies that react only to changes in the
request rate. AlwaysOn knows the peak load ahead of time, and thus, always keeps
Navg = 14 servers on. As expected, the T95 values for AlwaysOn are quite good, but
Pavg and Navg are very high. Comparing AutoScale and Opt, we see that Opt’s power
consumption and server usage is again only about 30% less than that of AutoScale.

Figure 4.19 shows the server behavior under AutoScale for the Dual phase trace
for request sizes of 1x, 2x and 4x. Clearly, AutoScale is successful at handling the
changes in load due to both changes in request rate and changes in request size.

Table 4.6 illustrates another way in which load can change. Here, we return to
the 1x request size, but this time all servers have been slowed down to a frequency of
1.6 GHz as compared with the default frequency of 2.26 GHz. By slowing down the
frequency of the servers, T95 naturally increases. We find that for all the dynamic
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PPPPPPPPPTrace
Policy

AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly
varying

[95]

T95 572ms > 1 min > 1 min 3,339ms 524ms 760ms
Pavg 2,132W 903W 945W 863W 638W 1,123W
Navg 14.0 5.7 5.9 4.8 4.0 7.2

Dual
phase [144]

T95 362ms 24,401ms 23,412ms 2,527ms 485ms 564ms
Pavg 2,147W 1,210W 1,240W 2,058W 1,027W 1,756W
Navg 14.0 6.3 7.4 12.2 5.9 10.8

Table 4.6: Comparison of all policies for lower CPU frequency.

server provisioning policies, except for AutoScale, the T95 shoots up. The reason is
that these other dynamic server provisioning policies provision capacity based on
the request rate. Since the request rate has not changed as compared to Table 4.2,
they typically end up under-provisioning, now that servers are slower. The T95 for
AlwaysOn does not shoot up because even in Table 4.2, it is greatly over-provisioning
by provisioning for the peak load at all times. Since the AutoScale policy is robust
to all changes in load, it provisions correctly, resulting in acceptable T95 values. Pavg
and Navg values for AutoScale continue to be much lower than that of AlwaysOn,
similar to Table 4.2.

Tables 4.4, 4.5 and 4.6 clearly indicate the superior robustness of AutoScale which
uses nsys to respond to changes in load, allowing AutoScale to respond to all forms
of changes in load.

4.7.4 Alternative feedback signal choices

AutoScale employs the number of requests in the system, nsys, as opposed to request
rate, as the feedback signal for provisioning capacity. An alternative feedback signal
that we could have employed in AutoScale is T95, the performance metric. Using
the performance metric as a feedback signal is a popular choice in control-theoretic
approaches [117, 124, 114, 141]. While using T95 as the feedback signal might allow
AutoScale to achieve the same robustness properties as provided by nsys, we would
first have to come up with an analogous capacity inference algorithm for the T95
feedback signal. As discussed in Section 4.7.2, using an inaccurate capacity inference
algorithm can result in poor server provisioning. For single-tier systems, one can use
simple empirical models or analytical approximations to derive the capacity inference
algorithm, as was the case in [117, 124, 41]. However, for multi-tier systems, coming
up with a capacity inference algorithm can be quite difficult, as noted in [141].
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Further, performance metrics such as T95 depend not only on the system load, ρsys,
but also on the request size, as is well known in queueing theory [103]. Thus, the
capacity inference algorithm for the T95 feedback signal will not be invariant to
request size.

Other choices for the feedback signal that have been used in prior work include
system-level metrics such as CPU utilization [74, 86, 117], memory utilization [74],
network bandwidth [117], etc. A major drawback of employing these feedback signals,
as mentioned in [86], is that utilization and bandwidth values saturate at 100%, and
thus, the degree of under-provisioning cannot be determined via these signals alone.
This makes it difficult to derive a capacity inference algorithm for these feedback
signals.

4.8 Prior Work

We discussed the prior work in the broad area of dynamic server provisioning in
Section 2.2. In this section we discuss prior work that is directly related to the scope
of AutoScale, and the specific prior work that AutoScale builds upon.

Krioukov et al. [107] use various predictive policies, such as Last Arrival, MWA,
Exponentially Weighted Average, and LR, to predict the future request rate (to
account for setup time), and then accordingly add or remove servers from a het-
erogenous pool. The authors find that MWA and LR work best for the traces they
consider (Wikipedia.org traffic), providing significant power savings over AlwaysOn.
Motivated by this observation, we chose MWA and LR as the representative predic-
tive policies for comparison with AutoScale. The AlwaysOn version used by Krioukov
et al. does not know the peak request rate ahead of time (in fact, in many experi-
ments they set AlwaysOn to provision for twice the historically observed peak), and
is thus not as powerful an adversary as the version we employ.

Chen et al. [40] use auto-regression techniques to predict the request rate for a
seasonal arrival pattern, and then accordingly turn servers on and off using a simple
threshold policy. While the setup in [40] is very different (seasonal arrival patterns)
from our own, there is one similarity to AutoScale in their approach: like AutoScale,
the authors in [40] use the index-based routing (see Section 4.3.5). However, the
policy in [40] does not have any of the robustness properties of AutoScale, nor the
twait timeout idea.

Hoffman et al. [85] consider a single-tier system with unpredictable load fluctu-
ations. The authors employ a reactive approach using the quality of service (for
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example, the bitrate or image quality) as the feedback signal to create a robust sys-
tem. However, the workload considered by the authors allows for a loss in quality
of service, thus obviating the need to scale capacity during load fluctuations. In our
system, we do not have any leeway on the quality of service since we have a strict
T95 SLA. Thus, during load fluctuations, AutoScale must dynamically scale capacity
to maintain the required SLA.

While there have been a lot of approaches to dynamic server provisioning (see
Section 2.2), most of these approaches focus only on changes in request rate. We
are not aware of any dynamic server provisioning approaches that have considered
changes in request size or server efficiency for multi-tier applications.

4.9 Chapter Summary

This chapter considers dynamic server provisioning policies in the presence of un-
predictable load and setup costs. We find that existing reactive approaches that
simply scale capacity based on the current request rate are too rash to turn servers
off, especially when request rate is bursty. Given the huge setup time needed to turn
servers back on (typically on the order of minutes [93, 129]), response times suffer
greatly when request rate suddenly rises. Predictive approaches that work well when
request rate is periodic or seasonal perform very poorly in our case where traffic is
unpredictable. Furthermore, as we show in Section 4.3.3, leaving a fixed buffer of
extra capacity is also not the right solution.

Our solution, AutoScale, takes a fundamentally different approach to dynamic
server provisioning. First, AutoScale does not try to predict the future request rate.
Instead, AutoScale introduces a smart policy to automatically provision spare servers,
which can absorb unpredictable changes in request rate. We make the case that to
successfully meet response time SLAs, it suffices to simply manage existing capac-
ity carefully and not give away spare capacity recklessly (see Table 4.2). Existing
reactive approaches can be easily modified to be more conservative in giving away
spare capacity so as to inherit AutoScale’s ability to absorb unpredictable changes
in request rate. Second, AutoScale is able to handle unpredictable changes not just
in the request rate but also unpredictable changes in the request size (see Tables 4.4
and 4.5) and the server efficiency (see Table 4.6). AutoScale does this by provision-
ing capacity using not the request rate, but rather the number of requests in the
system, which it is able to translate into the correct capacity via a novel, non-trivial
algorithm. As illustrated via our experimental results in Tables 4.2 to 4.6, AutoScale
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outclasses existing optimized predictive and reactive policies in terms of consistently
meeting response time SLAs. While AutoScale’s 95%ile response time numbers are
usually less than one second, the 95%ile response times of existing predictive and
reactive policies often exceed one full minute!

Not only does AutoScale allow us to save power while meeting response time SLAs,
but it also allows us to save on rental costs when leasing virtual resources from cloud
service providers by reducing the amount of resources needed to successfully meet
response time SLAs.

While one might think that AutoScale will become less valuable as setup times
decrease (due to, for example, sleep states or virtual machines), or as server idle
power decreases (due to, for example, advances in processor technology), we find
that this is not the case. AutoScale can significantly lower response times and power
consumption when compared to existing policies even for low setup times (see Fig-
ure 4.9) and reasonably low idle power (see Figure 4.13). In fact, even when the
setup time is only 20s, AutoScale can lower 95%ile response times by a factor of 3.

AutoScale was designed to overcome the challenges presented by unpredictable
demand. Most of the unpredictability in workload demand can be attributed to
short-term fluctuations in demand (see Chapter 3), which are successfully handled
by AutoScale. However, unpredictability in demand can also be caused by load
spikes, which hinder AutoScale. We see the detrimental effects of load spikes in
Table 4.2 under the Big spike trace. In the next chapter, we provide a solution,
SoftScale, for handling load spikes. SoftScale is easily integrated into AutoScale, thus
making AutoScale robust to load spikes. The combination of AutoScale and SoftScale
represents a dynamic provisioning policy that successfully overcomes unpredictability
in demand.
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Chapter 5

SoftScale: A Novel Approach to
Handling Load Spikes

In this chapter we address the challenges presented by load spikes. Abrupt changes
in load, or load spikes, are very problematic since they result in a very steep rise in
response time (see Observation 3.7). While dynamic policies like AutoScale are good
at handling fluctuations in demand, they are still plagued by load spikes. In fact,
even if load spikes are instantaneously detected and the required additional capacity
is provisioned within 5 seconds, response time can still be severely affected. This is
illustrated by our experimental results in Figures 3.13 and 3.14.

We present SoftScale, a practical approach to handling load spikes in multi-tier
data centers without having to over-provision resources. SoftScale works by oppor-
tunistically stealing resources from other tiers to alleviate the bottleneck tier, even
when the tiers are carefully provisioned at capacity. SoftScale is especially useful
during the transient overload periods when additional capacity is being brought on-
line. Importantly, SoftScale can be used in conjunction with existing dynamic server
provisioning policies, such as AutoScale.

We introduce the problem and discuss the scope of this chapter in Section 5.1. We
then describe our experimental setup for this chapter in Section 5.2. We present the
design and implementation of SoftScale in Section 5.3, and evaluate SoftScale under
a range of load spikes, including artificial instantaneous load spikes, load spikes in
real traces, and load spikes created by system failures, in Section 5.4. We investigate
the applicability of SoftScale under lower setup times in Section 5.5, and under
future many-core processors in Section 5.6. We discuss prior work in Section 5.7 and
conclude with a summary of this chapter in Section 5.8.
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5.1 Introduction

Data centers play an important role in today’s IT infrastructure. Government orga-
nizations, hospitals, financial trading firms, and major IT companies, such as Google,
Facebook and Amazon, all rely on data centers for their daily business activities. A
primary goal for data center operators is to provide good response times to users;
these response time targets typically translate to some response time Service Level
Agreements (SLAs). A secondary goal is to reduce operational costs by exploiting
the variability in user demand. By scaling capacity to match current demand, oper-
ators can either:
(i) reduce power consumption by turning off unneeded servers, or
(ii) save on rental costs by releasing unneeded virtual machines, or
(iii) get additional work done by repurposing unneeded servers for other tasks.

Data center services today are often organized as multiple tiers. Typically, one
of these tiers is an application tier that processes requests, and another tier is the
data tier that is responsible for efficiently delivering data back to the application
tier. While it is possible to physically colocate the application tier and the data
tier on the same servers, dividing the architecture into physically different tiers is
preferable because it makes it easier to scale and manage the individual tiers [52,
163, 173]. The data tier is stateful, and is almost never turned off [172, 34], even if
there is a significant drop in load [24]. The application tier, on the other hand, is
usually stateless and can be dynamically scaled using existing reactive [114, 141, 148],
predictive [107, 86] or mixed [173, 76, 60] approaches, provided that the load does not
change too abruptly.

Unfortunately, abrupt changes in load, or load spikes, are all too common in
today’s data centers. Important events, such as the September 11 attacks [113,
88], earthquakes or other natural disasters [186], slashdot effects [7], Black Friday
shopping [44], or sporting events, such as the Super Bowl [145] or the Soccer World
Cup [20], are common causes of load spikes for website traffic. Service outages [147]
or server failures [162] can also result in abrupt changes in load caused by a sharp
drop in capacity. While some of the above events are predictable, most of them
cannot be predicted in advance.

Abrupt changes in load are especially problematic since adding capacity requires
some time, which we call setup time (see Definition 1.3), denoted by tsetup. Even if
we instantaneously detect a spike in load, it will still take the system at least the
setup time to add the required capacity. In our lab, the setup time for turning on
an additional server is approximately 4-5 minutes. Similar setup times have also
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Figure 5.1: Using SoftScale, we can meet response time SLAs even under a 15% to
30% load jump. Note that the y-axis ranges from 0s to 50s.

been reported in recent literature [93, 129]. Likewise, the setup time for virtual
machines (VMs) can range anywhere from 30 seconds – 1 minute if the VMs are
locally created (based on our measurements using kvm [102]) or 2 – 10 minutes if
the VMs are obtained from a cloud platform (see, for example, [13, 108]). All these
numbers are extremely high, and can result in long periods where the SLA is violated.

Throughout this chapter, we focus on the performance of the system during the
setup time following a load spike. Since no additional capacity can be added during
the setup time, the system has a fixed number of servers online, and we refer to
such a system as the baseline. A typical SLA requires that the 95th percentile of
response time, denoted by T95, stay below 500ms. In this chapter we consider the
more difficult goal of meeting the T95 requirements during the setup time (i.e., after
the onset of the spike, and before additional servers can be brought online). This is
equivalent to saying that no more than 5% of all requests that arrive during the setup
time are allowed to exceed the 500ms response time. In addition to the T95 (which
measures over the entire setup time), in some plots, we also show the “instantaneous
T95” (see Definition 2.3), which is the 95th percentile of response times collected
every second.

Consider a system which has the appropriate number of application servers turned
on to ensure that the 95th percentile of response times stays below 500ms at the
current load of 15% of peak load. Here, peak load refers to the maximum load
that our system can handle (see Section 5.2 for details of our experimental testbed).
Now, imagine that the load suddenly increases to 30%. The time needed to turn
on the necessary additional servers is the setup time, say 5 minutes. We say that
our system can “handle” a load jump if T95 ≤ 500ms during the setup time. As
shown in Figure 5.1, our baseline system is not able to handle the 15% to 30%
load jump. The black dots in Figure 5.1 show the increase in instantaneous T95
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during the first two minutes of the setup time under the baseline, where the system
is clearly under-provisioned during this time. The data for Figure 5.1 is generated
from experiments running on our implementation testbed using a key-value based
workload (see Section 5.2 for full details of our experimental testbed). As shown in
the figure, instantaneous T95 increases rapidly over time, reaching 50 seconds after
only two minutes. Even if future hardware reduces this setup time to 10 seconds, we
see that instantaneous T95 can be well over 3 seconds.

In order to avoid setup times, data center operators typically over-provision ca-
pacity at all times (since load spikes are often unpredictable). For example, to
handle a 15% to 30% load jump, one needs to over-provision resources by a factor of
2. Clearly, such an approach is quite expensive.

We propose SoftScale, an approach that allows data centers to handle load spikes
without having to over-provision resources and incur costs. SoftScale leverages the
fact that the data tier in a multi-tier data center is always left on [172, 34, 24].
Thus, during the setup time following a load spike, we can use these “always on”
data tier servers to do some of our application work. SoftScale involves running
the application tier software on the data tier servers, where this software is only
used during the setup time. We refer to this notion as “stealing” of the data tier
capacity. SoftScale requires no additional resources and can even handle a doubling
of load, so long as the final load is not too high. Returning to our example where
the load instantaneously doubles from 15% to 30%, we see that SoftScale, denoted
by the flat gray line in Figure 5.1, allows the instantaneous T95 to stay within the
500ms SLA at all times. While stealing from the data tier can increase the latency
of data operations, the overall benefit of being able to meet SLAs during setup times
makes a compelling case for using SoftScale. Note that one could theoretically use
SoftScale even after the setup time, however, the (non-zero) increase in latency of
data operations as a result of using SoftScale suggests otherwise. The SoftScale
architecture is depicted in Figure 5.2, and is described in detail in Section 5.3.4.

Almost all papers on dynamic server provisioning (see, for example, [114, 141,
148, 107, 86, 173, 76, 60]) deal with new approaches to scale capacity in response
to changes in load. However, such approaches can be ineffective during the setup
time, as shown in Figure 5.1. SoftScale is a complementary solution that aims to
improve performance specifically during the setup time, and is meant to be used in
conjunction with any existing dynamic server provisioning approach.

While the concept behind SoftScale seems obvious, there are some practical dif-
ficulties that may have led researchers to dismiss this idea as “unworkable,” hence
the lack of publications on this idea. First, there is the question of when is SoftScale
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useful. Since the data tier is provisioned to handle peak load, invoking SoftScale
when the data tier is already bottlenecked will lead to SLA violations. Second, there
is the question of how much can we steal from the data tier. If we end up stealing too
much from the data tier, overall system performance might degrade. Third, there
is the fear that running application work on the data tier servers will interfere with
data delivery work, and can possibly lead to SLA violations. Finally, there is the
fear that implementing SoftScale is too complicated.

In this chapter we demonstrate via implementation that SoftScale is a practical
solution that allows us to meet response time SLAs even when load increases suddenly
by a factor of 2, provided that the load is not too high. In particular, we make the
following contributions:

• We determine load regimes for which SoftScale can be successfully applied to
handle load spikes (see Section 5.3.1). This addresses the question of when
to invoke SoftScale. Further, identifying load regimes where SoftScale is not
beneficial avoids accidental overload of the data tier.

• We determine how much data tier capacity can be leveraged by SoftScale for
a given load (see Section 5.3.2). This enables us to steal the right amount of
capacity from the data tier without hurting overall response time.

• We show that it is possible to avoid interference between the application work
and the data delivery work on the data servers by simply isolating these pro-
cesses to different CPU cores (see Section 5.3.3).

• We outline the steps needed to implement the SoftScale middleware (see Sec-
tion 5.3.4). In our testbed, we implemented SoftScale by adding less than a
thousand lines of code in the Apache load balancer.

• We present an analytical model that estimates the system performance under
SoftScale (see Section 5.3.5), allowing us to predict the performance of SoftScale
for a range of multi-tier systems.

We evaluate SoftScale via implementation on a 28-server multi-tier testbed host-
ing a key-value based application built along the lines of Facebook or Amazon. Our
implementation results show that SoftScale can be used to handle instantaneous load
spikes (see Section 5.4.1), load spikes seen in real-world traces (see Section 5.4.2), as
well as load spikes caused by server failures (see Section 5.4.3). To fully investigate
the applicability of SoftScale, we experiment with multiple setup times ranging from
5 minutes (see Section 5.4) all the way down to 5 seconds (see Section 5.5). Our
results indicate that SoftScale can provide huge benefits across the entire spectrum
of setup times. We also investigate the applicability of SoftScale in future server
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Figure 5.2: Our experimental testbed.

architectures which may have a larger number of CPU cores per server. Our results
(see Section 5.6) indicate that SoftScale will be even more beneficial in such cases.

5.2 Our Experimental Testbed

Figure 5.2 illustrates our experimental testbed, which was described in Section 2.3.2.
The gray components make up SoftScale, and will be described in detail in Sec-
tion 5.3.4. While the data storage in our testbed includes the caching tier and the
database, we only focus on leveraging the caching tier in this chapter. We refer to
the caching tier as the “data tier” throughout this chapter.

We measure power consumption and use that as a proxy for all operational (re-
source) costs. We monitor the power consumption of individual servers by reading
the power values from the power distribution unit. The idle power for our servers is
about 140W (with C-states enabled) and the average power for our servers when they
are busy or in setup is about 200W. The setup time for our servers is approximately
tsetup = 5 minutes. However, we also examine the effects of lower tsetup.

5.2.1 Workload

For the experiments in this chapter, we modify our workload described in Sec-
tion 2.3.2. Specifically, each workload request corresponds to an average of roughly
2,200 key-value fetches, which translates to a mean service time of approximately 200
ms, assuming no resource contention. We use the Zipf [143] distribution to model
the popularity of requests. To minimize the effects of misses in the memcached layer
(which could result in an unpredictable fraction of the requests violating the response
time SLA), we tune the parameters of the Zipf distribution so that only a negligible
fraction of requests miss in the memcached layer.

90



(a) Single application server (b) Application tier scaling

Figure 5.3: Figure (a) shows that a single application server can handle 37.5 req/s
per server. Figure (b) shows that once we have more than 20 application servers,
they can no longer handle 37.5 req/s per server because the memcached tier becomes
the bottleneck.

5.2.2 Provisioning

In order to demonstrate the effectiveness of SoftScale, we tune our implementation
testbed to have no spare capacity at the memcached tier at peak load. Our mem-
cached tier comprises 5 servers, each with a 6-core Intel Xeon X5650 processor and
48GB of memory. However, we offline two cores1 per server to be consistent with the
specifications that were published by Facebook [128], leaving us with 4-core mem-
cached servers. We now determine how many application servers we need to fully
saturate the memcached tier.

Each of our application servers is a powerful 8-core (dual-socket) Intel Xeon
E5520 processor-based server. We run an experiment where we have one application
server and all five memcached servers, and we flood the system. We find that the
application server can handle at most 37.5 req/s without violating the SLA, as shown
in Figure 5.3(a).

We now examine how well the system scales as we add more application servers.
Ideally, if we have x application servers, the system should be able to handle a
maximum request rate of at least 37.5 × x req/s without violating the 500ms SLA.
Figure 5.3(b) shows our scaling results, where we vary the number application servers

1Observe that weakening the memcached servers greatly hurts SoftScale in that there is less
capacity to steal, but we do this purposely to create a fully saturated memcached tier.
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from 1 to 28, and use a request rate of 37.5 req/s times the number of application
servers. We see that the system scales perfectly up to 20 application servers. Once
we have more than 20 application servers, we see that they can no longer han-
dle 37.5 req/s per server. This is because at this peak load, which corresponds to
37.5 × 20 = 750 req/s, the memcached tier starts becoming a bottleneck. We val-
idate our claim by ensuring that the other components in the system, namely the
load generator, the load balancer, and the application servers, are not a bottleneck.
Further, by monitoring the network bandwidth, we ensure that it is not a bottleneck.
With this ratio of 20 application servers to 5 memcached servers, we ensure that the
memcached tier is saturated. Thus, at least 5 memcached servers are needed to han-
dle peak load (using more than 5 memcached servers only improves the performance
of SoftScale). This 4:1 ratio of application servers to memcached servers is consistent
with Facebook [128].

Based on the above experiments, we conclude that the 5 memcached servers can
handle at most 750 req/s. Thus, in our experiments, we limit our total request rate
to 750 req/s, which we also refer to as peak load or 100% load. At peak load, there
is no spare capacity in the memcached tier. Thus, we cannot “steal” any resources
from memcached servers at high load without violating the 500ms SLA.

When running the system, the 5 memcached servers are always kept on. By
contrast, the number of application servers needed at any time is d r

37.5
e, where r is

the current request rate into the system. For example, if the current request rate is
15% of the peak (or 112 req/s), we provision d 112

37.5
e = 3 application servers. Now,

if the load suddenly doubles from 15% (112 req/s) to 30% (225 req/s), we need 6
application servers in total. Thus, the 3 application servers that are currently on
become the bottleneck (until the additional application servers complete setting up).

Note that the ratio of application servers to memcached servers is no longer 4:1
if the application tier is scaled down. For example, if the current request rate is 25%
of the peak (or 187 req/s), then we provision d 187

37.5
e = 5 application servers. This

gives us a 1:1 ratio of application servers to memcached servers.

5.3 SoftScale

The key idea behind SoftScale is to leverage the computational power at the always
on data tier servers to do some of our application work during the setup time while
additional application tier capacity is being brought online. The motivation behind
this idea is that, while our memcached servers are provisioned to have exactly the
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right amount of resources at high load (for our system, peak load is 750 req/s), there
are extra resources available at low load. Thus, when the system load is low, we
should be able to “steal” resources from the always on memcached servers to offset
some of the workload at the bottlenecked application servers.

SoftScale works by enhancing the Apache load balancer to route some of the
application requests to the memcached servers during load spikes. Note that the
software needed to process the application work will first have to be installed on
the data tier servers. For our experimental testbed, this only involved installing
the Apache web server with PHP support on the memcached servers. Further, our
application software does not consume a lot of memory.

While SoftScale sounds like a promising idea, exploiting the full potential of
SoftScale is challenging. We now describe SoftScale by discussing the design decisions
behind the algorithm.

5.3.1 When to invoke SoftScale?

SoftScale must be invoked as soon as there is a spike in load. A spike in load could be
caused either by an increase in request rate or by a loss in application tier capacity
(server failures or service outages).

If the spike in load is caused by a sudden increase in request rate, then the
obvious approach to detect this spike would be to monitor request rate periodically.
Unfortunately, request rate is a time-average value, and is thus not instantaneous
enough to detect load spikes. We propose monitoring the number of active requests at
each application server, napp, to detect load spikes. If the system is under-provisioned
because the request rate is too high, then napp will immediately increase. Monitoring
napp is fairly straightforward, and many modern systems, including the Apache load
balancer, already track this value.

Spikes in load can also be caused by a sudden loss in application tier capacity
(server failures or service outages). In this case, request rate cannot be used to
detect the spike. Fortunately, napp is immediately responsive to server failures, since
it increases instantaneously when the application tier capacity drops.

We must invoke SoftScale when napp becomes so high that the T95 SLA is in danger
of being violated. In particular, if n∗app is the maximum number of simultaneous
requests that a single application server can handle without violating the SLA, then
we invoke SoftScale as soon as napp exceeds n∗app for all application servers. Of course,
one can also be conservative and invoke SoftScale even when napp is below n∗app.
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(a) Application server (b) Memcached server

Figure 5.4: Figure (a) shows that we should invoke SoftScale whenever the number
of requests at the application server exceeds 13. Figure (b) shows n∗mem, the optimal
number of application requests that can be simultaneously handled by a memcached
server without violating the 500ms SLA, as a function of the total system load.

An easy way to determine n∗app is by profiling the application servers. We run a
closed-loop experiment with a single application server where we fix the number of
simultaneous requests in the system (napp), and monitor T95. Figure 5.4(a) shows our
results. We see that, for our system, n∗app = 13. This same technique (profiling the
application servers) can be used for determining n∗app for different systems as well.
Note that n∗app corresponds to the 37.5 req/s that each application server can handle.
Since we provision the application tier so as not to exceed 37.5 req/s at each server,
a reading of napp > 13 indicates overload. Thus, we invoke SoftScale as soon as the
load balancer detects that napp has exceeded 13 for all the application servers (see
Section 5.3.4 below for details of the load balancer).

5.3.2 How much application work can memcached handle?

Now that we know when to invoke SoftScale (and thus, when to attempt to steal
resources from the data tier), the next design question is: how much can we steal?
The memcached servers are primarily responsible for providing data to the applica-
tion work. Thus, we cannot overload memcached servers with too much application
work. Figure 5.4(b) shows n∗mem, the maximum number of application requests that
a memcached server can handle simultaneously without violating the SLA. We see
that n∗mem depends on the overall system load, as should be expected. When the
system load is low (< 20%), each memcached server can handle almost half the work
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capacity of an application server, whereas when the load is high (≥ 80%), memcached
servers cannot handle any application work.

In order to determine n∗mem, we use the following methodology. For each initial
load, we determine the number of application servers needed to handle this load,
say k servers, using the arguments in Section 5.2.2. We then run a closed-loop
experiment with k application servers and all 5 memcached servers, and we fix the
number of simultaneous application requests in the system to k · n∗app. At this point,
the application servers cannot handle any more simultaneous requests. We now
increase the number of simultaneous requests in the system beyond k · n∗app, sending
the additional requests to the memcached servers, and monitor T95. Based on the
initial load, each of the memcached servers will be able to handle some number of
simultaneous application requests, n∗mem, before T95 for the system rises above the
SLA. Thus, we determine n∗mem using a simple profiling approach (monitoring T95).

5.3.3 Need for isolation

While we have successfully overloaded the functionality of the memcached servers, we
have not eliminated interference between the memcached work and the application
work at the memcached servers. One way of reducing interference is to “isolate”
these two processes at the memcached servers, by partitioning the four cores of the
memcached server between the memcached work and the application work. We
achieve this core isolation by using the taskset command in Linux. A logical way
of partitioning the cores is in a 2:2 ratio, with 2 cores dedicated to memcached work
and 2 cores dedicated to application work. However, we find that the performance
of SoftScale improves greatly if we dynamically adjust the partitioning based on
total system load. For example, when the system load is extremely low, we can
get away with restricting memcached to only one core at each memcached server
and reserving the remaining three cores for application work in case of a load spike
(1:3 partitioning). On the other hand, when the system load is very high, we need
all four cores for memcached work (4:0 partitioning). Figure 5.5 shows n∗mem for
the memcached servers with dynamic isolation and without any isolation (same as
Figure 5.4(b)). Note the four discrete horizontal levels for dynamic isolation. These
refer to a 4-core partitioning between the memcached work and application work in
the ratio of 1:3, 2:2, 3:1 and 4:0 respectively. We see that dynamic isolation greatly
enhances the capacity of memcached servers to handle application work. Henceforth,
when we use SoftScale, it will be implied that we are referring to SoftScale with
dynamic isolation.
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Figure 5.5: The figure illustrates enhance-
ment in SoftScale using dynamic isolation.

Figure 5.6: The figure illustrates
the load jumps we use in our ex-
periments. Note that we only
evaluate the system during the
setup time.

We obtain Figure 5.5 by repeating the same closed-loop experiments described
at the end of Section 5.3.2 for each possible partitioning of the 4 cores among the
memcached work and the application work. We then select the partitioning that
gives us the highest n∗mem value.

5.3.4 The SoftScale algorithm

We are now ready to describe our SoftScale algorithm, which is implemented in the
load balancer, and is depicted in gray in Figure 5.2. We send application requests to
the application servers, via Join-the-Shortest-Queue routing, as long as any server
has less than n∗app simultaneous requests. If all of the application servers have at least
n∗app requests, SoftScale is invoked. SoftScale sends any additional requests above the
n∗app requests to the memcached servers. The resource manager (see Figure 5.2) at
each memcached server is responsible for invoking the software that will serve the
incoming application requests. In our case, this software is the Apache web server
with PHP support, which is invoked upon boot. The resource manager also isolates
the application work from the memcached work. We limit the number of requests
that we send to each memcached server to n∗mem. Recall that n∗mem, which is the
optimal number of simultaneous application requests that a memcached server can
handle, is not a constant, and in fact varies with load as specified in Section 5.3.3
and Figure 5.5. Note that n∗mem = 0 if load is greater than or equal to 80% of peak
load. Thus, SoftScale will not send application requests to the memcached servers if
load is high. Once we have n∗mem requests at all memcached servers, then we load
balance additional requests among the application servers.
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5.3.5 Analytical model for estimating SoftScale’s performance

We now present a simple analytical model that allows us to estimate the range
of load jumps that SoftScale can handle for a given multi-tier system. Let kapp
and kmem denote the total number of application servers and memcached servers in
the system, respectively. If the current system load is x% of the peak load, where
0 ≤ x ≤ 100, then the number of application servers on is roughly kapp · x100 , assuming
the application tier is dynamically scaled. Suppose that each memcached server can
handle n∗mem simultaneous application requests at load x%. Then, the total number
of application requests that the memcached tier can handle is kmem ·n∗mem. Note that
the number of simultaneous requests that the system can handle without SoftScale
at load x% is kapp · x

100
·n∗app, where n∗app is the number of simultaneous requests than

an application server can handle. Thus, at x% load, the fraction of additional load
that the system can handle with SoftScale is:

Fraction of additional load that SoftScale can handle ≈ kmem · n∗mem
kapp · x

100
· n∗app

(5.1)

Equation (5.1) suggests that the additional load that SoftScale can handle goes down
as the system load (x%) increases, as expected (note that n∗mem also drops with
system load, as shown in Figure 5.5). As we will show in Sections 5.4.1 and 5.6,
Equation (5.1) matches our experimental results for SoftScale’s performance. Thus,
we can use Equation (5.1) to predict SoftScale’s performance for systems whose kapp,
kmem, n∗app, or n∗mem values are different from ours.

5.4 Results

We now evaluate the performance of SoftScale for a variety of load spikes. We
start in Section 5.4.1, where we consider a range of instantaneous load jumps and
characterize the space of jumps that SoftScale can handle. Then, in Section 5.4.2,
we examine the performance of SoftScale under real-world load spikes. Finally, in
Section 5.4.3, we examine the performance of SoftScale under load spikes that are
caused by service outages or server failures. For all the experiments in this section
we consider tsetup = 5 minutes, which is approximately the setup time for our servers.
Later, in Section 5.5, we examine SoftScale under lower setup times.
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(a) T95 (b) Pavg

Figure 5.7: SoftScale meets T95 ≤ 500ms SLA without consuming any extra resources
for a range of load jumps.

5.4.1 Characterizing the range of load jumps that SoftScale
can handle

In this section we consider instantaneous jumps in load, as shown in Figure 5.6, and
examine the system only during the setup time. We assume the system is properly
provisioned for the initial load, and thus, is under-provisioned after the instantaneous
load jump to the final load, during the setup time. Under SoftScale, although the ap-
plication tier is under-provisioned during the setup time, we can use the memcached
tier to compensate. By contrast, under the “baseline” architecture, we are limited to
the capacity of the under-provisioned application tier. We compare SoftScale with
the “baseline” architecture by examining the following metrics: T95, the 95th per-
centile of response times during the 5 minute setup time, and Pavg, the average power
consumed by the application servers and the memcached servers during the setup
time. Note that Pavg is proportional to the amount of resources being used, and can
thus be thought of as a proxy for operational costs. For a given load jump, if the
system has T95 ≤ 500ms, we say that it can “handle” the load jump.

Figure 5.7(a) shows the effect of SoftScale on T95 for specific load jumps. We
choose these specific load jumps since they correspond to the maximum jump that
SoftScale can handle at each of the initial loads. For example, if the initial load
is 10% of the peak, then SoftScale can handle a maximum jump of 10% → 29%,
where the load changes instantaneously from an initial load of 10% to a final load of
29%. We see that SoftScale provides huge benefits in T95, as long as the final load
is less than 50%. In particular, the T95 under SoftScale is less than 500ms for the
10% → 29% jump, as compared with 96s under the baseline. Likewise, SoftScale
lowers T95 from 64s to less than 500ms for the 20% → 35%, and from 38s to less
than 500ms for the 30% → 45% load jump. SoftScale provides these performance
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(a) Solution space for tsetup = 5 minutes (b) Improvement for tsetup = 5 minutes

Figure 5.8: Full range of results for SoftScale. The crosses in the figures refer to the
specific load jump cases shown in Figure 5.7.

improvements by opportunistically stealing resources from the memcached servers to
handle the critical application work. When the load jumps from 40% → 55% and
50% → 61%, SoftScale still provides improvement in T95, but these improvements
are not as dramatic. This is because the memcached tier is optimally provisioned
(see Section 5.2.2), and thus has very little spare capacity at high loads.

By contrast, the baseline (no SoftScale) would have to resort to significant over-
provisioning to handle the load jumps. For example, for the 10%→ 29% jump, the
baseline would have to over-provision the application tier by about 190% to meet
the SLA during the setup time. Clearly, this is a huge waste of resources.

Figure 5.7(b) plots Pavg, the average power consumed by the application servers
and the memcached servers, for SoftScale and the baseline. We see that SoftScale
does not consume any additional power as compared to baseline. This is because the
total amount of work done by all servers under SoftScale and under baseline is about
the same, for a given load level. Thus, Pavg, which is a proxy for operational costs,
does not change significantly when using SoftScale.

Figure 5.8 shows the full set of results for SoftScale. In Figure 5.8(a), the gray
region shows the solution space, or regimes, of load jumps that SoftScale can handle
without violating the 500ms SLA, while the black region shows the load jumps that
the baseline can handle without violating the SLA. Note that SoftScale’s solution
space is a superset of the baseline’s solution space. The crosses in the figure refer
to the specific load jump cases we showed in Figure 5.7, namely the maximum load
jumps that SoftScale can handle for each of the initial loads.
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Since the system is optimally provisioned (see Section 5.2), the baseline cannot
handle any significant load jumps. In particular, when the initial load is either too
low or too high, the baseline cannot handle any load jumps. However, because of
the inherent elasticity in the system, the baseline can handle some small load jumps
when the initial load is moderate. For example, when the initial load is 20%, the
black region indicates that baseline can handle a maximum jump of 20%→ 24%.

By contrast, SoftScale can handle a much larger range of load jumps as compared
to the baseline. For example, when the initial load is 20%, the gray region indicates
that SoftScale can handle a maximum jump of 20%→ 35%.

In Figure 5.8(b), we plot the maximum load jump (in %) that SoftScale can
handle for each initial load using the solid gray line. Again, the crosses in the figure
refer to the specific load jump cases we showed in Figure 5.7. For example, the first
cross from the left corresponds to the 10% → 29% load jump, which amounts to
a 190% jump in load. The dashed line shows our estimates for the maximum load
jump that SoftScale can handle, given by Equation (5.1) (with a few extra % due to
the elasticity in the system). We see that our estimates match our implementation
results. As expected, Figure 5.8(b) shows that SoftScale can handle huge jumps when
the initial load is low, but can only handle moderate load jumps when the initial load
is high.

In our experimental evaluation above, we only invoke SoftScale during a load
spike. However, in theory, one could use SoftScale all the time, that is, even when
there is no load spike. For example, in our testbed shown in Figure 5.2, we could
leverage the spare capacity in the caching tier during low loads to reduce the number
of required application tier servers. We can also leverage the spare capacity in the
caching tier servers by physically colocating the application tier and the caching tier
on the same servers (see, for example, [47, 126]). The advantage of using SoftScale
perpetually is that it reduces system power consumption. For example, for a 35%
load, we provision d 262

37.5
e = 7 application servers. However, from Figure 5.7(a), we

know that SoftScale can handle a 20% → 35% load jump. Thus, by using SoftScale
perpetually, we only need to provision enough application servers for a 20% load,
which is 4 application servers. We thus save 3 application servers’ worth of power,
which is roughly 140 × 3 = 420 watts, since the idle power of an application server
is 140 watts. Given that the baseline system consumes about 1,790 watts of power
when the load is 35% (see Figure 5.7(b)), using SoftScale perpetually reduces power
consumption by about 420

1790
× 100 = 23%. Similarly, for loads of 45% and 55%, using

SoftScale perpetually reduces power consumption by about 18% and 15% respec-
tively. The power savings decrease as the load increases because of the reduction
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(a) Baseline:
T95 = 115, 730ms.
SoftScale:
T95 = 418ms

(b) Baseline:
T95 = 1, 050ms.
SoftScale:
T95 = 470ms

(c) Baseline:
T95 = 3, 477ms.
SoftScale:
T95 = 439ms

(d) Baseline:
T95 = 620ms.
SoftScale:
T95 = 474ms

Figure 5.9: Real-world trace snippets used for our experiments.

in spare capacity in the caching tier. The obvious disadvantage of using SoftScale
perpetually is that the system can no longer handle abrupt changes in load, and
is thus vulnerable to load spikes. In summary, there is a tradeoff between power
savings and robustness to load spikes when deciding on how to use SoftScale. Since
our focus in this chapter is on making the system robust to load spikes, we only use
SoftScale when there is an abrupt increase in load.

5.4.2 Spikes in real-world traces

In addition to evaluating SoftScale under instantaneous load jumps (as in Sec-
tion 5.4.1), we also evaluate SoftScale under the real-world traces, Pi Day [18],
NLANR [144], and WC98 [20], shown in Figure 5.9. We re-scale each trace so
that the peak load corresponds to 750 req/s, and then consider five minute (tsetup)
snippets that highlight load spikes. The load numbers in Figure 5.9 correspond to
the post-scaled traces. We assume the system is well provisioned at time t = 0,
and then examine the system performance for the next five minutes, during which
additional capacity is being brought online.

Although the initial load ranges from 5% to 30% across the different traces,
SoftScale achieves a T95 of less than 500ms for all cases (see Figures 5.9(a) to 5.9(d)).
By contrast, the baseline results in a T95 of over 115s in Figure 5.9(a), where the
load quadruples from 5% to 20%. In Figure 5.9(b), where the load roughly doubles
from 25% to 46%, the T95 under the baseline is just over a second, in contrast to
SoftScale’s 470ms. The superiority of SoftScale over the baseline for the trace in
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Figure 5.10: The plot illustrates the superiority of SoftScale over the baseline for the
Pi Day [18] trace in Figure 5.9(b).

Figure 5.9(b) is further illustrated in Figure 5.10, which depicts the instantaneous
T95 (collected every second) over the trace.

5.4.3 Spikes created by server faults

Thus far, we considered the case where load spikes are caused by a sudden increase
in request rate. However, load spikes can also result because of a sudden drop in
capacity. Service outages [147] and server failures [162] are common causes for a sud-
den (and unpredictable) drop in capacity. SoftScale is useful regardless of the cause
of load spikes since it is invoked when the number of requests at a server increases
(see Section 5.3.1). We now illustrate the fault-tolerance benefits of SoftScale.

Consider a system that is well provisioned to handle 30% initial load. Suppose
a failure takes down half of the provisioned capacity, resulting in a system that
can now only handle 15% load. We refer to this as a 30% → 15% capacity drop.
Figure 5.11(a) shows our experimental results for instantaneous T95 (collected every
second) under a 30% → 15% capacity drop, which is triggered at the 10s mark.
Apache’s load balancer is very quick to recognize that some of the application servers
are offline, and thus stops sending additional requests to them. In Figure 5.11(a),
while SoftScale successfully handles the capacity drop, the baseline completely falls
apart. The power consumption for SoftScale and the baseline are about the same,
and are thus omitted due to lack of space.

Figure 5.11(b) shows our experimental results for instantaneous T95 under a very
severe 50% → 20% capacity drop, which is produced by taking down 6 of the 10
application servers at the 10s mark. This time, we see that instantaneous T95 rises
sharply for both SoftScale and the baseline. However, the rate at which instantaneous
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(a) 30% → 15% capacity drop (b) 50% → 20% capacity drop

Figure 5.11: SoftScale provides significant benefits even when load spikes are caused
by a sudden drop in capacity. In the figures above, we drop capacity at the 10s mark.

T95 increases under SoftScale is significantly lower than that under the baseline. Thus,
we conclude that SoftScale is useful even when load spikes are caused by a sudden
drop in capacity.

5.5 Lower Setup Times

While production servers today are only equipped with “off” states that neces-
sitate a huge setup time, future servers may support sleep states, which can lower
setup times considerably. Further, with virtualization, the setup time required to
bring up additional capacity (in the form of virtual machines) might also go down.
In this section we analyze SoftScale for the case of lower setup times by tweaking our
experimental testbed as discussed in Section 2.3.2. Intuitively, for low setup times,
one might expect that SoftScale is not needed since instantaneous T95 should not rise
too much during the setup time. This turns out to be false.

Figure 5.12 shows our experimental results for instantaneous T95 under the 15%→
30% load jump, for a range of tsetup values. We change the scale for Figure 5.12(a)
to fully capture the effect of the 50s setup time. Recall from Figure 5.8(a) that
SoftScale can handle the 15% → 30% load jump, even if tsetup = 5 minutes. Thus,
it is not surprising that SoftScale can handle the 15%→ 30% load jump for tsetup =
50s, 20s and 5s in Figure 5.12.

By contrast, the instantaneous T95 for the baseline quickly grows and exceeds
the 500ms SLA during the entire setup time duration, even for the tsetup = 5s case.
However, the instantaneous T95 values for the baseline are not too high under lower
setup times. This is because when the setup time is low, the overload period is very
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(a) tsetup = 50s (b) tsetup = 20s (c) tsetup = 5s

Figure 5.12: Effect of tsetup on instantaneous T95 for a 15% → 30% jump in load.

(a) tsetup = 50s (b) tsetup = 20s (c) tsetup = 5s

Figure 5.13: Effect of tsetup on instantaneous T95 for a 20% → 50% jump in load.

(a) Solution space for tsetup = 20s (b) Improvement for tsetup = 20s

Figure 5.14: Full range of results for SoftScale under tsetup = 20s. The crosses in the
figures refer to the specific load jump cases shown in Figures 5.12 (15%→ 30% load
jump) and 5.13 (20%→ 50% load jump).

short. Observe that instantaneous T95 does not drop immediately after the setup
time because of the backlog in requests created during the setup time.
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Figure 5.13 shows our experimental results for instantaneous T95 under the 20%→
50% load jump. Recall from Figure 5.8(a) that SoftScale cannot handle the 20%→
50% load jump when tsetup = 5 minutes. In Figure 5.13, we see that instantaneous
T95 rises sharply during the setup time for both SoftScale and the baseline. However,
the rate at which instantaneous T95 increases under SoftScale is at most half that
under the baseline.

Figure 5.14 shows the full set of results for SoftScale for the case of tsetup = 20s.
In Figure 5.14(a), we show the solution space of load jumps that SoftScale and
the baseline can handle without violating the 500ms T95 SLA (over the 20s setup
time). The crosses in the figure refer to the specific load jump cases we showed in
Figures 5.12 and 5.13. We see that SoftScale can handle a much larger range of load
jumps (gray region) as compared to the baseline (black region), just as we observed
in Figure 5.8(a) for tsetup = 5 minutes. In Figure 5.14(b), we plot the maximum
load jump (in %) that SoftScale can handle for each initial load. Again, as expected,
SoftScale can handle huge jumps when the initial load is low, but can only handle
moderate load jumps when the initial load is high.

It is very interesting to note that the performance degradation caused by load
spikes for the baseline case does not go away even when the setup time is really
low. Thus, there is a need for SoftScale even under low setup times. Comparing
Figures 5.8 and 5.14, we see that the range of load jumps that the baseline (and
SoftScale) can handle increases only slightly under the much lower setup time of 20s.
The reason that this increase is so small is that most of the “damage” to T95 has
already occurred after only a few seconds.

5.6 Future Architectures

In our implementation testbed (see Section 5.2), we use 4-core servers for the mem-
cached tier. In the near future, it is likely that 4-core processors will be replaced by 8
(or more) core processors, even though their memory capacity is unlikely to increase
significantly [101]. Thus, we would still need just as many memcached servers. On
the other hand, data replication needs may require additional memcached servers.
In either case, the memcached tier will now have more spare compute capacity that
can be exploited by the application tier via SoftScale. In this section we investigate
the performance of SoftScale for the case where we have 8-core memcached servers.

Figure 5.15 shows n∗mem, the optimal number of application requests that a mem-
cached server can handle simultaneously without violating the 500ms SLA, for 8-core
and 4-core memcached servers. We see that using 8-cores allows us to put a lot more
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Figure 5.15: Using 8-core memcached servers significantly enhances SoftScale’s ability
to handle load jumps.

application work on the memcached servers. Thus, SoftScale should be able to handle
much higher load jumps with 8-core memcached servers.

Figure 5.16(a) shows the full set of results for SoftScale and the baseline, both
with 8-core memcached servers, for the case of tsetup = 5 minutes. We see that
SoftScale with 8-core memcached servers can handle a significantly larger range of
load jumps. For example, SoftScale can handle a 10%→ 50% load jump as compared
to the maximum jump of 10%→ 29% using 4-core memcached servers, as was shown
in Figure 5.8(a). Further, SoftScale can now handle load jumps even when the load
is as high as 80%, since the memcached work requires at most 4 cores at peak load
(see Section 5.2.2), still leaving 4 cores at each memcached server for application
work. We also estimated the maximum load jump that SoftScale can handle via
Equation (5.1), and found that our estimates match our implementation results.
Figure 5.16(b) shows the full set of results for SoftScale for the case of tsetup = 20s.
These results are very similar to those in Figure 5.16(a). Thus, even though there
is a cost (monetary cost and increased power consumption) involved in switching
to 8-core memcached servers, it might make sense to deploy these servers for the
memcached tier to handle severe load spikes using SoftScale.

5.7 Prior Work

There is a lot of prior work that deals with dynamic server provisioning (see Sec-
tion 2.2). However, most of the approaches to dynamic server provisioning, including
our approach, AutoScale (see Chapter 4), cannot handle load spikes. This claim was
also verified by other authors [38].

106



(a) Solution space for tsetup = 5 minutes (b) Solution space for tsetup = 20s

Figure 5.16: Full range of results for SoftScale with 8-core memcached servers under
(a) tsetup = 5 minutes and (b) tsetup = 20s. We see that 8-core memcached servers
provide huge benefits for SoftScale regardless of the setup time.

There has been some prior work specifically dealing with load spikes [38, 110].
Chandra et al. [38] show that existing dynamic server provisioning policies are not
good at handling flash crowds in an internet data center. In order to handle flash
crowds, the authors advocate either having spare servers that are always available
(over-provisioning), or finding a way to lower setup times. However, as our work
shows (see Figures 5.12(c) and 5.13(c)), even a 5s setup time can result in severe
SLA violations. Further, by using SoftScale, we do not have to pay for any additional
resources, which is not the case when over-provisioning via spare servers. Lassettre
et al. [110] propose a short-term forecasting approach to handle load spikes for a
multi-tier system with a setup time of 30s. While [110] is very effective at handling
load spikes that gradually build over time, it is not well suited for the instantaneous
load spikes we consider in this chapter since the forecasting in [110] itself requires
at least 10s, and we have shown that even a 5s setup time is detrimental. Observe
that SoftScale is actually complementary to the above approaches, and can be used
in conjunction with them.

There has also been recent work looking at data spikes, where a particular web
object becomes extremely popular. Data spikes can be handled by caching or repli-
cation techniques (see, for example [172]), and are not the focus of our work.

To handle load spikes for small websites with only static content, a possible solu-
tion is to host their content on a cloud computing platform. These platforms are able
to handle load spikes by over-provisioning more economically since they host multiple
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websites, and load spikes on individual websites are often not correlated (statistical
multiplexing) [54]. For multi-tiered cloud computing environments, SoftScale can be
used in conjunction with statistical multiplexing.

Finally, there is also a lot of prior work [175, 8, 185, 42] that deals with managing
overload conditions by allowing for performance degradation. Some of the popular
techniques that have been used to regulate performance degradation include admis-
sion control and request prioritization. By contrast, SoftScale handles load spikes
without any performance degradation, provided the load is not high. If the load
is high, SoftScale can be coupled with techniques like those in [175, 8, 185, 42] to
minimize the damage caused by load spikes.

5.8 Chapter Summary

In this chapter we address the challenges presented by load spikes, which are all
too common in today’s data centers [44, 145, 113, 88, 20, 147, 162]. Our results
in Figures 5.12 and 5.13 show that ignoring load spikes can result in severe SLA
violations, even if it takes only 5 seconds of setup time to bring capacity online. The
obvious solution of over-provisioning resources is quite expensive since load spikes
are often unpredictable.

We propose SoftScale, an approach to handling load spikes in multi-tier data
centers without consuming any extra resources. In multi-tier data centers, the ap-
plication tier is typically stateless, and can be dynamically provisioned, whereas the
data tier is stateful, and is always left on. SoftScale works by opportunistically steal-
ing resources from the data tier to alleviate the overload at the application tier during
the setup time needed to bring additional application tier capacity online. Since tiers
in a data center are typically carefully provisioned for peak load, SoftScale must steal
from the data tier without hurting overall performance. SoftScale does this by first
determining how much spare capacity can be stolen from the data tier without vio-
lating SLAs at different load levels, and then dynamically isolating the application
work and the data delivery work at the data tier to avoid interference.

Our implementation results on a 28-server testbed demonstrate that SoftScale
can handle various load spikes for setup times ranging from 5 seconds to 5 minutes
(see Figures 5.8 and 5.14). Specifically, SoftScale can handle instantaneous load
jumps ranging from 5% → 25% to 50% → 61%, even when the setup time is 5
minutes. SoftScale works extremely well for real-world load spikes (see Figure 5.9),
and significantly improves performance (typically a 2X – 100X factor improvement)
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when compared to the baseline. Even greater benefits are likely possible for future
many-core servers (see Figure 5.16).

While our implementation testbed mimics a web site of the type seen in Facebook
or Amazon with an application tier and a memcached tier, we believe SoftScale will
also be applicable when the memcached tier is replaced by any other data tier. Since
the data tier is stateful, there will always be a subset of servers that will not be
turned off. Thus, SoftScale can leverage these servers to alleviate the bottleneck at
the application tier during load spikes.

In this work we consider a data center architecture where the stateless and stateful
tiers are physically separate. This division is preferable because it makes it easier to
scale and manage the individual tiers [52, 163, 173]. One might argue that colocating
the stateless and stateful tiers leads to better resource sharing. Unfortunately, colo-
cating different services on the same physical servers is not an easy task [105, 141],
and is a research question in itself [28, 80]. For SoftScale, we only have to deal with
colocation (addressed via core isolation) during the setup time. However, if we have
a data center with colocated tiers, we will have to deal with the consequences of colo-
cation at all times. Importantly, colocated tiers significantly reduce the potential for
dynamic provisioning, because all servers in a colocated data center are stateful.

SoftScale relies on the fact that the data tier is always on. This holds true for
most existing systems [172, 34], even if there is a significant drop in load [24]. In fact,
prior work on scaling the data tier has been limited to adjusting the replication factor
of the storage system [14, 170]. Nevertheless, we view SoftScale as an alternative to
scaling the data tier. In the next chapter, we explore dynamic provisioning of the
data tier.
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Chapter 6

CacheScale: Dynamic Provisioning
of the Caching Tier

In this chapter we consider dynamic provisioning of the caching tier. The servers
in a caching tier are typically [128] provisioned with massive amounts of expensive
and power-hungry DRAM. Thus, careful dynamic provisioning of the caching tier
can lead to huge savings in cost and power. In fact, our results in this chapter show
that a 2x drop in load can result in up to 90% savings in the caching tier capacity.
Unfortunately, scaling the caching tier is very challenging because of the (temporary)
data unavailability that follows the addition or removal of a caching server, which
in turn leads to high response times (see Observation 3.8). This is illustrated in our
experimental results in Figure 3.15. To the best of our knowledge, there has been no
prior work on dynamic provisioning of the caching tier.

We present CacheScale, a novel dynamic provisioning approach that meets re-
sponse time SLAs while scaling the caching tier capacity. CacheScale ensures that
scaling the caching tier does not significantly impact hit rate by proactively moving
hot data items. Importantly, CacheScale does not require access to the elusive least-
recently-used list of cached items for moving hot data. This makes it very easy to
deploy CacheScale on any caching tier.

We introduce the problem and discuss the scope of this chapter in Section 6.1.
We describe our experimental setup in Section 6.2. We then analyze the potential
savings in the caching tier size that can be achieved by dynamic provisioning in
Section 6.3. In order to realize these savings, we propose CacheScale. We discuss the
design and implementation of CacheScale, and experimentally evaluate its benefits
in Section 6.4. We conclude with a summary of this chapter in Section 6.5.
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Figure 6.1: Multi-tier cloud service.

6.1 Introduction

We consider a multi-tier web service hosted in a cloud computing environment, as
shown in Figure 6.1. Each “server” in this case is a virtual machine, such as those
provided by Amazon EC2 [13]. The front-end application tier consists of a set of
stateless application servers that process requests using data from the back-end.
The back-end data tier consists of a persistent storage system, such as a database.
To alleviate load at the back-end, a stateful, but non-persistent, distributed caching
tier is often used [59, 128] to cache data or partial results.

With cloud computing, web service providers have the ability to dynamically scale
their computing infrastructures to match demand. Further, because cloud resources
are often priced per-use, web service providers have a monetary incentive to minimize
the number of resources consumed while still meeting the SLAs of the service. Each
tier must be treated differently when scaling. The application tier is the easiest tier
to scale because it is stateless [107, 40]. In contrast, because web services often
impose stringent data availability requirements, options for scaling the data tier are
typically limited to adjusting the replication factor of the storage system [14, 170].

Note that the tiers are typically of different sizes, with the servers in the applica-
tion tier often outnumbering servers in the caching tier at a ratio somewhere around
4:1 [55]. While this fact might initially suggest that scaling the caching tier may
not lead to significant savings, note that DRAM is an expensive resource. Further,
caching tier servers are often equipped with huge amounts of DRAM [128]. As an ex-
ample, if we were to instantiate a testbed of 20 application servers and 5 cache servers
on EC2 [13], our caching tier would represent 41%1 of the operational cost, despite
the fact that our caching tier only comprises 5 servers, and thus represents 20% of

1Assuming application servers cost $0.165/hr/high-cpu instance [13] and cache servers cost
$0.45/hr/high-memory instance [13].
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the total capacity. Further, at times of lower utilization, after the application tier
has been scaled down, an unscaled caching tier becomes a more significant fraction of
the service’s operational cost. In the above example, if load were to drop by a factor
of 4, and we were to scale down our application tier from 20 servers to 5 servers, our
caching tier would then represent 73%1 of the operational cost. Thus, scaling down
the number of cache instances as the load decreases could provide significant cost
benefits. In a non-cloud environment (physical infrastructure), these cost benefits
would translate to power savings obtained by turning off unneeded cache servers.

In order to study dynamic provisioning of the caching tier, we limit our scope
to (predictable) long-term variations in load. In particular, we ignore short-term
fluctuations in demand, and thus avoid setup costs. Given this scope, there are at
least a couple of technical challenges that we must address. First, as the caching
tier scales down, the amount of cached data decreases. Will the resulting cache
misses overwhelm the database? Second, how should the caching tier be managed
so that “hot” data is preserved when cache instances are removed and distributed
when cache instances are added?

The key insight in answering the first question is that when the overall load
drops, we can afford a higher fraction of requests going to the database; hence, we
can tolerate a lower cache hit rate, and this lower cache hit rate translates to a vast
reduction in the amount of data cached. To correctly size the caching tier, we work
backwards – when the load drops, we determine the minimum cache hit rate needed
to ensure that the response time SLA is met (thereby limiting how many requests
go to the database). We then calculate the cache size that would provide that hit
rate. A key parameter that determines the degree to which the cache capacity may
be reduced without overwhelming the database is the distribution of requests. If the
requested data items are uniformly distributed, the degree to which cache capacity
may be reduced is small. However, many studies have shown that web requests follow
a very skewed distribution (often modeled as a Zipf distribution [31, 12]). In such
cases, we show that significant savings are possible. In Figure 6.2, we see that a
relatively small change in the required hit rate – from 0.95 to 0.8 – may result in
a substantial reduction in the cache size needed under a Zipf distribution (79% to
34% of the data), but only a modest reduction (95% to 80%) if the distribution is
Uniform.

In answering the second question regarding cache management, we first rely on
consistent hashing techniques to ensure that excessive data migration is not needed
as instances are added and removed from the caching tier. However, even with
consistent hashing, näıvely adding or removing a cache instance can cause significant
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Figure 6.2: A small decrease in cache hit rate can lead to a large decrease in the
amount of cached data.

performance problems, because the hot data is distributed over all instances. In
Section 6.4, we present CacheScale, a simple approach that reduces the number of
cache misses during periods of scaling by redistributing cached items.

Our contributions in this chapter are:

• We demonstrate that the caching tier can be effectively scaled with load without
violating response time SLAs.

• We develop a model to calculate (i) the required hit rate as a function of load,
and (ii) the resulting savings in the size of the caching tier obtained by scaling
down during low load (see Section 6.3).

• We validate our theoretical results via implementation on a 28-server testbed
(see Section 6.3.4).

• We propose a simple cache management technique, CacheScale, to redistribute
cached items as the caching tier scales up and down, significantly reducing
transient cache misses.

6.2 Experimental Setup

We experiment with a testbed of 28 servers which are divided into multiple tiers
as in Figure 6.1. We employ one of these servers as the load generator running
httperf [138]. Another server is used as the load balancer running Apache HTTP
Server, which distributes PHP requests from the load generator to 20 application
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servers. The application servers (Intel Xeon E5520 processor-based) parse the in-
coming PHP requests and collect the required data from the caching tier and the
database. In our experimental setup, we use a distributed cache, memcached [59].
The caching tier comprises 20 memcached instances, each with up to 10GB of memory
for caching, hosted on 5 servers (Intel Xeon X5650 processor-based). The database
comprises a server (Intel Xeon E5520 processor-based) with 5 disks running an Oracle
BerkeleyDB [146] database with a billion key-value pairs (250GB).

We design a key-value workload to model realistic multi-tier applications such as
the social networking site, Facebook, or e-commerce sites like Amazon [48]. Each
workload (HTTP) request is a PHP script that runs on the application server, and
consists of 20 independent key-value fetches. The fetched keys follow a Zipf [143]
distribution. Each of the 20 key-value fetches either hits in the memcached, or, if it
misses, goes to the database. If a key-value fetch hits in the memcached, its response
time is Tmem = 0.3ms, which is the time to retrieve a key-value pair from memcached.
If a key-value fetch goes to the database, its response time is on the order of 8ms,
depending on the contention at the database. In this chapter our SLA requirement
is that the average response time for the entire request (collection of 20 key-value
fetches), which we refer to as Tavg, should be no more than TSLA = 100ms. Thus,
we require:

Tavg ≤ TSLA = 100ms. (6.1)

6.3 Assessment of Cache Savings

In this section we investigate the potential savings that can be achieved by scaling
down the caching tier, without violating the response time SLA. We first describe
our theoretical framework that allows us to estimate these savings, and then report
our experimental results, which validate our estimates.

6.3.1 Popularity distribution

Many websites report that their data popularity distribution is far from being Uni-
form or Random, and is often very skewed. That is, a small subset of the entire data
set is responsible for most of the traffic [164, 31, 12, 56]. Thus, the obvious caching
solution is to cache this small subset of data in the caching tier. In fact, given the
popularity distribution, we can estimate the amount of data to be cached to achieve
a given hit rate.
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Figure 6.3: The Zipf popularity distribution.

Researchers often use a Zipf distribution to represent the website popularity dis-
tribution [164, 31, 12]. Mathematically, if the data items are sorted in decreasing
order of popularity, the Zipf distribution states that the probability of seeing a re-
quest for data item i, Pr{i}, is:

Pr{i} =
C

iα
, (6.2)

where α is a parameter of the distribution, and C is a normalization constant. For
real-world website traffic, α is typically between 0.6 − 1.0 [164, 31]. A higher value
of α corresponds to a more skewed distribution. We can now use Equation (6.2) to
estimate the amount of data to be cached to achieve a given hit rate, p. Figure 6.3
shows these results for a Zipf popularity distribution with a range of α values. When
α is high, say α = 1.0, we can achieve a hit rate of p = 0.8 by caching only 2% of
the data. However, when α is low, say α = 0.6, we need to cache almost 60% of the
data to achieve the same p = 0.8 hit rate. For a Uniform distribution (α = 0), we
would have to cache 80% of the data to achieve p = 0.8 hit rate.

6.3.2 Theoretical model

In Figure 6.3, we saw the relationship between the hit rate, p, and the amount of
data cached. We now investigate the relationship between a given response time
SLA, TSLA, and the minimum required hit rate, p. This allows us to calculate the
amount of cache required to meet TSLA. The relationship between TSLA and p is
given by:

Tavg = 20 (p · Tmem + (1− p) · TDB) ≤ TSLA = 100ms, (6.3)
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(a) ppeak = 0.80 (b) ppeak = 0.95 (c) ppeak = 0.99

Figure 6.4: Theoretical savings in cache for a given peak-to-min ratio. Crosses
indicate experimental results.

where Tmem = 0.3ms is the latency for fetching a key-value pair from memcached,
and TDB is the latency for fetching a value from the database. Here, we use the fact
that each request in our system is composed of 20 individual key-value fetches.

Note that TDB in Equation (6.3) is not a constant, and depends on the request rate
into the database, λDB. As λDB increases, so does TDB. We model this relationship
using an M/M/1 queueing model with load-dependent service rates [103]. This gives
us TDB as a function of λDB.

If λ denotes the total request rate into the system, then λDB is:

λDB = 20 · λ · (1− p). (6.4)

If the request rate into the database, λDB, is too high, then TDB grows to infinity.
Thus, it is important to limit the request rate to the database by keeping (1−p) small
(the hit rate, p, should therefore be high). Also, since Tmem is orders of magnitude
smaller than TDB, it is desirable to keep p high so as to make Tavg less than TSLA.
While both these goals point towards making p as high as possible, our objective
in this chapter is to find the lowest possible p which still meets the desired TSLA
constraint (this is because low p implies low cache size from Figure 6.3).

Given the request rate into the system, we can solve Equation (6.3) for p, which
in turn is used to calculate the desired cache size from Figure 6.3.

6.3.3 Theoretical results

Web services often exhibit huge variations in their request rates, mostly due to the
diurnal/periodic nature of traffic. Assuming that the system is well provisioned to
meet TSLA for peak request rate, we are interested in the potential for decreasing
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the cache size when the request rate decreases. We refer to the ratio between the
peak request rate and the lower request rate as the peak-to-min ratio. We pick a
range of peak-to-min ratios (1 − 10) and use our theoretical model to calculate the
possible reduction in cache size. We also show results across different values of α:
1.0 (heavily skewed), 0.8, and 0.6 (less skewed). Lastly, we vary the hit rate at the
peak request rate: ppeak = 0.80 (Figure 6.4(a)), ppeak = 0.95 (Figure 6.4(b)), and
ppeak = 0.99 (Figure 6.4(c)). We choose these parameter values based on recent
studies [164, 27, 31, 12].

Figure 6.4 indicates that significant cache reductions (up to 90%) are possible
even for a 2:1 peak-to-min ratio. In general, the potential savings in cache size are
higher when α is high. This is because a higher value of α indicates a more skewed
popularity distribution, which allows for more aggressive reduction in cache size (see
Figures 6.2 and 6.3). Also, the observed potential savings in cache size are higher
when ppeak is low. This can be explained as follows. If the request rate into the
system, λ, drops by a factor of (say) 2, then Equation (6.4) tells us that the miss-
rate, (1 − p), can increase by a factor of 2 while maintaining the same request rate
into the database, λDB. For example, when the peak hit rate is low, say, ppeak = 0.8,
the miss-rate (1 − ppeak) = 0.2. If the request rate now drops by a factor of 2, our
final hit rate can be as low as p = 0.6, since the miss-rate, (1 − p), can now be as
high as 2 · (1− ppeak) = 0.4. However, when the peak hit rate is ppeak = 0.99 and the
request rate drops by a factor of 2, our final hit rate can only be as low as p = 0.98.
This implies that when the peak hit rate is low, we can afford a larger drop in hit
rate, which in turn implies larger cache savings via Figure 6.3.

These large cache savings translate to huge cash savings. Consider an applica-
tion hosted on EC2 [13] requiring a 4:1 ratio between application instances (cost-
ing $0.165/hr/high-cpu instance [13]) and cache instances (costing $0.45/hr/high-
memory instance [13]). Suppose load drops by a factor of 4. If we only scale the
application tier (by a factor of 4), then we can save 45% of the peak operational
cost. But if we also scale the caching tier (assuming a modest 50% cache reduction
based on Figure 6.4), then we can save 65% of the peak operational cost. This is an
additional 44% savings relative to only scaling the application tier.

6.3.4 Experimental results

In order to validate our theoretical results, we experimentally determine the lowest
memcached size that we can afford without violating our SLA. We do this by moni-
toring the mean response time, Tavg, for different memcached sizes, and then picking
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the smallest memcached size which keeps Tavg below TSLA. The crosses in Figure 6.4
show our experimental results, which agree with the theoretical results. We also in-
vestigated 99th percentile response times and preliminary results show similar cache
savings as in Figure 6.4.

6.4 CacheScale

Thus far, we have investigated how small the cache can be, assuming it contains the
most popular data items. However, it is not obvious how to retain the most popular
data items when scaling the caching tier, because the cached objects are distributed
over the cache instances for load balancing. When the number of cache instances is
reduced, popular items may be lost. We use consistent hashing in the libMemcached
library [1] to ensure that only the data in the newly added/removed cache instance
needs to change.

6.4.1 Scaling down

If we näıvely remove a cache instance, we immediately lose all the cached data that
was stored on the instance. This causes a drop in hit rate, which increases the request
rate to the database as well as the average response times. For example, consider
the case in Figure 6.5(a) where we scale down from 4 to 3 cache instances at the 1
minute mark. In this experiment, we choose α = 1.2 to limit the amount of cached
data that is lost. We also pessimistically force cache misses to result in database
disk accesses by avoiding the database page cache. As observed in Figure 6.5(a), the
Näıve solution (the circles) creates a spike in average response time.

To avoid this spike in response times, we propose gradually migrating the popular
data off of the instance to be removed. We refer to this approach as CacheScale.
Conceptually, CacheScale treats the instance to be removed as a second level cache
for some period of time. If we miss in the rest of the cache, then CacheScale queries
this instance before going to the database. This will naturally migrate the popular
items from this “retiring” instance to the rest of the caching tier.

This leads to the question of how long to keep an instance in this retiring state.
Intuitively, we want to stay in this retiring state until the probability of querying
this instance is low enough that we can achieve our target hit rate, as calculated
from Equation (6.3), even after this instance is removed. For each item i residing
on this instance, let pi denote the probability of requesting that item. Suppose we
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(a) Remove memcached instance (b) Add memcached instance

Figure 6.5: CacheScale is significantly better than Näıve for (a) scaling down and
(b) scaling up the caching tier. Here, the dashed line indicates TSLA = 100ms.

have received N requests since entering this retiring state. Then the probability that
item i has not yet migrated to the rest of the caching tier is (1 − pi)N . Thus, the
probability that the (N + 1)th request queries this instance is:∑

item i ∈ instance

pi(1− pi)N . (6.5)

Assuming that all data items are equally distributed among the cache instances, we
can reasonably predict how large N needs to be so that the probability of querying
this instance is low enough to achieve our target hit rate.

In Figure 6.5(a), we see that CacheScale (solid line) eliminates the spike in re-
sponse times. Here, the retiring instance acts as a “second-level cache” between the
1 minute and 5 minute marks, approximated by Equation (6.5), at which point it is
entirely removed.

6.4.2 Scaling up

If we näıvely add a cache instance, it has a “cold” cache and all requests to that
instance result in misses. For example, consider the case in Figure 6.5(b) where we
scale up from 3 to 4 cache instances at the 1 minute mark. We see that the Näıve
solution (the circles) creates a spike in average response time.

To avoid this spike in response times, CacheScale gradually migrates the most
popular data from the rest of the caching tier to this new instance. That is, when
we miss in this new instance, CacheScale queries the rest of the caching tier. This
will naturally warm up the “hot” data without needing to go to the database. In
Figure 6.5(b), we see that CacheScale (solid line) eliminates the spike in response
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times. Here, the new instance warms up between the 1 minute and 5 minute marks,
approximated by Equation (6.5), using the rest of the caching tier.

Importantly, using CacheScale for both adding and removing a cache instance
keeps our response times below the 100ms SLA. We also find the same behavior
when looking at 99th percentile response times. The 99th percentile under the Näıve
solution increases to about 16 seconds, but stays below 700ms under CacheScale. The
above findings warrant a more comprehensive evaluation of CacheScale; we defer this
to future work.

6.4.3 Alternative approaches

While CacheScale is a very simple policy, additional benefits may be realized through
more dramatic re-architecting of the caching tier. For example, by exposing the least-
recently-used list of cached keys at each memcached instance, more intelligent scaling
of cache instances may be possible. Further, integration of non-volatile storage, such
as flash, may allow removing a cache instance without requiring the migration of hot
data from other instances on reactivation. However, this approach will require addi-
tional functionality to determine the consistency of cached data upon reactivation.

6.5 Chapter Summary

In this chapter we consider dynamic provisioning of the caching tier. While dynamic
provisioning of the stateless application tier has been proposed in many research
papers, there has been almost no discussion of scaling the stateful caching tier. The
“seemingly small” benefits associated with scaling the caching tier coupled with the
fear of severe performance degradation due to cache misses has deterred this research.

We demonstrate that, given the skewed popularity distribution for data accesses,
significant savings can be obtained by scaling the caching tier under long-term load
variations (see Section 6.3). In fact, a 50% drop in load can lead to 90% savings
in the cache size. In order to realize these savings, we present CacheScale (see Sec-
tion 6.4), a simple cache management policy that avoids the performance problems
associated with scaling the stateful caching tier. CacheScale works by proactively
moving the “hot” cached data items before scaling the caching tier. Our preliminary
experiments with CacheScale demonstrate that we can successfully scale the caching
tier without violating response time SLAs. By combining CacheScale with stateless
scaling solutions, such as AutoScale, we can realize fully load-proportional systems.
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Chapter 7

Recursive Renewal Reward

In this chapter we consider the M/M/k/setup system, which is very useful for model-
ing and analyzing multi-server systems with setup times. The M/M/k/setup system,
where there is a penalty for turning servers on, is common in data centers, call cen-
ters and manufacturing systems. While the M/M/1/setup was exactly analyzed in
1964, no exact analysis exists to date for the M/M/k/setup with k > 1.

We present the first exact, closed-form analysis for the M/M/k/setup. Our anal-
ysis is made possible by our development of a new technique, Recursive Renewal Re-
ward (RRR), for solving Markov chains with a repeating structure. RRR uses ideas
from renewal reward theory and busy period analysis to obtain closed-form expres-
sions for metrics of interest such as the transform of time in system and the transform
of power consumed by the system. The simplicity, intuitiveness, and versatility of
RRR makes it useful for analyzing Markov chains far beyond the M/M/k/setup. In
general, RRR should be able to reduce the analysis of any 2-dimensional Markov
chain which is infinite in at most one dimension and repeating to the problem of
solving a system of polynomial equations.

We introduce the M/M/k/setup system in Section 7.1, and discuss prior work on
the analysis of M/M/k/setup in Section 7.2. We formalize the M/M/k/setup model
in Section 7.3. We then present the RRR technique in Section 7.4. We illustrate the
use of RRR by analyzing the M/M/1/setup in Section 7.5. We then discuss how RRR
can be used to analyze the M/M/k/setup in Section 7.6. Finally, we discuss how
RRR can be used to analyze Markov chains beyond the M/M/k/setup in Section 7.7.
We conclude with a summary of this chapter in Section 7.8.
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7.1 Introduction

Setup times (a.k.a. exceptional first service) are a fundamental component of com-
puter systems and manufacturing systems, and therefore they have always played an
important role in queueing theoretic analysis. In manufacturing systems it is very
common for a job that finds a server idle to wait for the server to “warm up” before
service is initiated. In retail and hospitals, the arrival of customers may necessitate
bringing in an additional human server, which requires a setup time for the server to
arrive. In computer systems, setup times are once again at the forefront of research,
as they are the key issue in dynamic capacity provisioning for data centers.

In data centers, it is desirable to turn idle servers off, or reallocate the servers,
to save power. This is because idle servers burn power at 60–70% of the peak rate,
so leaving servers on and idle is wasteful [26]. Unfortunately, most companies are
hesitant to turn off idle servers because the setup time needed to restart these servers
is very costly; the typical setup time for servers is 200 seconds, while a job’s service
requirement is typically less than 1 second [107, 48]. Not only is the setup time
prohibitive, but power is also burned at peak rate during the entire setup period,
although the server is still not functional. Thus it is not at all obvious that turning
off idle servers is advantageous.

Surprisingly, for all the importance of setup times, very little is known about their
analysis. The M/G/1 with setup times was analyzed in 1964 by Welch [194]. The
analysis of an M/M/k system with setup times, which we refer to as M/M/k/setup,
however, has remained elusive, owing largely to the complexity of the underlying
Markov chain (Figure 7.1 shows an M/M/k/setup with exponentially distributed
setup times). In 2010, various analytical approximations for the M/M/k/setup were
proposed in [68]. These approximations work well provided that either load is low
or the setup time is low. The M/M/∞/setup was also analyzed in [68] and found
to exhibit product form. Other than the above, no progress has been made on the
M/M/k/setup. Section 7.2 describes related prior work, including existing methods
for solving general Markov chains with a repeating structure.

This work is the first to derive an exact, closed-form solution for the M/M/k/setup.
We obtain the Laplace transform of response time, the z-transform of power consump-
tion, and other important metrics for the M/M/k/setup.

Our solution is made possible by our development of a new technique for solving
Markov chains with a repeating structure – Recursive Renewal Reward (RRR). RRR
is based on using renewal reward theory [160, Chapter 7] to obtain the metrics of
interest, while utilizing certain recursion theorems about the chain. Unlike matrix-
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analytic methods [111], RRR does not require finding the “rate” matrix. Another
feature of RRR is that it is simple enough to be taught in an elementary stochastic
processes course.

In general, RRR should be able to reduce the analysis of any 2-dimensional
Markov chain which is finite in one dimension, say the vertical dimension, and infinite
(with repeating structure) in the other (horizontal dimension) to the problem of
solving a system of polynomial equations. Further, if in the repeating portion all
horizontal transitions are skip-free and all vertical transitions are unidirectional,
the resulting system of equations will be at most quadratic, yielding a closed-form
solution (see Section 7.7 and Figure 7.3 for more details). We thus anticipate that
RRR will prove useful to other researchers in analyzing many new problems.

7.2 Prior Work

The few papers that have looked at the M/M/k/setup are discussed in Section 7.1.
We now discuss papers that have considered repeating Markov chains and have pro-
posed techniques for solving these. We then comment on how these techniques might
or might not apply to the M/M/k/setup.

7.2.1 Matrix-analytic based approaches

Matrix-analytic methods are a common approach for analyzing Markov chains with
repeating structure. Such approaches are typically numerical, generally involving
iteration to find the rate matrix, R. These approaches do not, in general, lead to
closed forms or to any intuition, but are very useful for evaluating chains under
different parameters.

There are cases where it is known that the R matrix can be stated explicitly [111].
This typically involves using a combinatorial interpretation for the R matrix. As
described in [111], the class of chains for which the combinatorial view is tractable
is narrow. However, in [178], the authors show that the combinatorial interpretation
extends to a broader class of chains. Their class does not include the M/M/k/setup,
however, which is more complicated because the transition (setup) rates are not
independent of the number of jobs in system. In [177], the authors derive the explicit
rate matrix for a broader class of chains than that in [178], in terms of infinite sums.
The authors also provide an algorithm for deriving the rate matrix in closed form
for a specific subclass of the chains that they consider. Though not shown in their
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paper, we believe that the algorithm proposed by the authors provides a closed-form
rate matrix for the M/M/k/setup.

7.2.2 Generating function based approaches

Generating functions have also been applied to solve chains with a repeating struc-
ture. Like matrix-analytic methods these are not intuitive: Generating function
approaches involve guessing the form of the solution and then solving for the co-
efficients of the guess, often leading to long computations. In theory, they can be
used to solve very general chains (see, for example, [4]). We initially tried applying
a generating function approach to the M/M/2/setup and found it to be incredibly
complex and without intuition. This led us to seek a simpler and more intuitive
approach.

7.2.3 M/M/k with vacations

Many papers have been written about the M/M/k system with vacations (see, for
example, [199, 197, 171, 116]). While the Markov chain for the M/M/k with vacations
looks similar to the M/M/k/setup, the dynamics of the two systems are very different.
A server takes a vacation as soon as it is idle and there are no jobs in the queue.
By contrast, a setup time is initiated by jobs arriving to the queue. In almost all
of the papers involving vacations, the vacation model is severely restricted, allowing
only a fixed group of servers to go on vacation at once. This is very different from
our system in which any number of servers may be in setup at any time. The model
in [116] comes closest to our model, although the authors use generating functions
and assume that all idle servers are on vacation, rather than one server being in
setup for each job in queue, which makes the transitions in their chain independent
of the number of jobs.

7.2.4 Restricted models of M/M/k with setup

There have been a few papers [5, 23, 68] that consider a very restricted version of
the M/M/k/setup, wherein at most one server can be in setup at a time. There has
also been prior work [136] that considers an M/M/k system wherein a fixed subset
of servers can be turned on and off based on load. The underlying Markov chains
for all of these restricted systems are analytically tractable and lead to very simple
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closed-form expressions, since the rate at which servers turn on is always fixed. Our
M/M/k/setup system is more general, allowing any number of servers to be in setup.
This makes our problem much more challenging.

7.2.5 How our work differs from all of the above

To the best of our knowledge, we are the first to derive exact closed-form results for
the M/M/k/setup problem, with k > 1. Our solution was made possible by our new
RRR technique. RRR results in exact solutions, does not require any iteration, and
does not involve infinite sums. Importantly, RRR is highly intuitive and very easy
to apply.

7.3 Model

In our model jobs arrive according to a Poisson process with rate λ and are served
at rate µ = 1

E[S]
, where S denotes the job size and is exponentially distributed. For

stability, we assume that k · µ > λ, where k is the number of servers in the system.

In the M/M/k/setup system, each of the k servers is in one of three states: off,
on (being used to serve a job), or setup. When a server is on or in setup, it consumes
peak power of Ppeak watts. When a server is off, it consumes zero power. Thus, when
servers are not in use, they are immediately turned off to save power. Every arriving
job that comes into the system picks an off server, if one exists, and puts it into
setup mode; the job then joins the queue. We use I to denote the setup times, with
E[I] = 1

α
. Unless stated otherwise, we assume that setup times are exponentially

distributed. When a job completes service at a server, say server s1, and there are no
remaining jobs left in the queue, then server s1 is immediately turned off. However,
if the queue is not empty, then server s1 is not turned off, and the job at the head of
the queue is directed to server s1. Note that if the job at the head of the queue was
already waiting on another server, say server s2, in setup mode, the job at the head
of the queue is still directed to server s1. At this point, if there is a job in the queue
that did not setup an off server on arrival (because there were no off servers), then
server s2 continues to be in setup for this job. If no such job exists in the queue,
then server s2 is turned off.

The Markov chain for the M/M/k/setup system is shown in Figure 7.1. Each
state is denoted by the pair (i, j), where i is the number of on servers, and j is the
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Figure 7.1: M/M/k/setup Markov chain. Each state is denoted by the pair (i, j),
where i is the number of on servers, and j is the number of jobs in the system. The
number of servers in setup is min{j − i, k − i}.

number of jobs in the system. Thus, the number of servers in setup is min{j−i, k−i}.
Note that the Markov chain is infinite in one dimension.

7.4 The Recursive Renewal Reward technique

In this section we provide a high-level description of our new Recursive Renewal
Reward (RRR) technique, which yields exact, closed-form solutions for a range of
Markov chains, including the M/M/k/setup. In the next section, we illustrate the
use of RRR by analyzing the M/M/1/setup. We also analyze the M/M/2/setup and
the M/M/3/setup via RRR, but we will not discuss them here; we refer the reader
to our papers [62, 63] for the full analysis.

The RRR technique works by deriving the expected “reward” earned per unit
time in a Markov chain, where the reward could be any quantity of interest. In the
context of our M/M/k/setup problem, the reward earned at time t, R(t), could be
the number of jobs in system at time t, the square of the number of jobs in system,
the current power usage, the number of servers that are on, or any other reward that
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can be expressed as a function of the state of the Markov chain.

To analyze the average rate of earning reward, we designate a renewal state, say
(0, 0),1 which we call the home state, and then consider a renewal cycle to be the
process of moving from the home state back to the home state. By renewal reward
theory [160, Chapter 7], the average rate of earning reward is the same as the mean
reward earned over a renewal cycle, which we denote by R, divided by the mean
length of the renewal cycle, denoted by T .

Average rate of earning =
R
T

=
E
[∫

cycle
R(t)dt

]
E
[∫

cycle
1dt
]

For example, if the goal is to find the mean number of jobs, E[N ], for our chain, we
simply define R(t) to be the number of jobs at time t, which can be obtained from
the state of the Markov chain at time t.

It turns out that the quantities T and R are very easy to compute! Consider
a Markov chain, such as that in Figure 7.2. The repeating portion of the chain is
shown in gray. There are a finite number of border states which sit at the edge of
the repeating chain and are colored black. We will see that computing T and R
basically reduces to writing one equation for each border state2. For the case of T ,
we will need the mean time to move one step left from each border state. For the
case of R, we will need the mean reward earned when moving one step left from
each border state. Computing these border state quantities is made very easy via
some neat recursion theorems. We demonstrate this process in the M/M/1/setup
example below. There are a few details which we will defer until after the example.
For instance, in general, it is necessary to also add equations for the non-repeating
portion of the Markov chain. See Sections 7.6 and 7.7 for more details on the RRR
technique.

7.5 M/M/1/setup

In this section we illustrate the RRR technique by applying it to the M/M/1/setup
system, whose Markov chain is shown in Figure 7.2. Here, the state of the system is

1In principle any state can be chosen as the renewal state, but some states allow for an easier
(or shorter) analysis.

2Several techniques in the literature such as matrix-analytic methods [111] and stochastic com-
plementation [159] also deal with border states, although none of them involve renewal-reward
theory.
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Figure 7.2: M/M/1/setup Markov chain with the repeating portion highlighted in
gray and the border states shaded black.

represented as (i, j), where i ∈ {0, 1} is the number of servers on and 0 ≤ j <∞ is
the number of jobs in the system. In general, i represents the depth (or row number)
of the state, and j represents the level (or column number) of the state. We start by
deriving E[N ], the mean number of jobs, and then move to more complex metrics.
We choose the renewal state to be (0, 0) and we define the reward earned at time
t, R(t), to be N(t), the number of jobs in the system at time t. As explained in
Section 7.4, all we need is T and R.

7.5.1 Deriving T via TL
0,1 and TL

1,1

T is the mean time to get from our home state (0, 0) back to (0, 0). This can be
viewed as 1

λ
, the mean time until we leave (0, 0) (which takes us to (0, 1)) plus the

mean time to get home from (0, 1). We make the further observation that the mean
time to get home from (0, 1) is equal to TL0,1 (using notation from Table 7.1), the
mean time to move left one level from (0, 1) (since moving left can only put us in
(0, 0)). We thus have:

T =
1

l
+ TL0,1 (7.1)

We now need an equation for TL0,1 for the border state (0, 1), which will require
looking at the other border state, (1, 1), as well. Starting with border state (1, 1), it
is clear that TL1,1 is simply the mean length of an M/M/1 busy period, B1. Thus:

TL1,1 = B1 =
1

µ− l
(7.2)
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TL0,1 involves waiting in state (0, 1) for expected time 1
α+λ

, before conditioning

on where we transition to next. If we go to state (1, 1) we need an additional TL1,1.
However if we go to state (0, 2) we need to add on the time to move one step left
from (0, 2) (which by Figure 7.2 takes us to (1, 1)) and then an additional TL1,1:

TL0,1 =
1

l + α
+

α

l + α
· TL1,1 +

l

l + α

(
TL0,2 + TL1,1

)
(7.3)

It is now time to invoke one of our recursion theorems:

Theorem 7.1 (Recursion theorem for mean time).
For the M/M/k/setup, the mean time to move one step left from state (i, j), TLi,j, is
the same for all j ≥ k.

Proof. For any j ≥ k, observe that when moving one step left from any state (i, j), we
only visit states with level j or greater, until the final transition to level j−1. Hence,
TLi,j depends only on the structure of the “subchain” of the M/M/k/setup consisting
of levels {j, j + 1, . . .}, including transition rates to level j − 1. Now consider the
subchain for each j ≥ k; these subchains are isomorphic, by the fact that the chain
is repeating from level k onward. Hence, the time to move one step left is the same
regardless of the initial level j ≥ k.

Using Theorem 7.1, we replace TL0,2 in Equation (7.3) with TL0,1 to get:

TL0,1 =
1

l + α
+

α

l + α
· TL1,1 +

l

l + α

(
TL0,1 + TL1,1

)
(7.4)

Finally, noting that TL1,1 = B1 from Equation (7.2), we have that:

TL0,1 =
1

l + α
+

α

l + α
·B1 +

l

l + α

(
TL0,1 +B1

)

=⇒ TL0j = TL0,1 =
1 + (l + α)B1

α
(7.5)

Substituting TL0,1 from above into Equation (7.1) gives us T :

T =
µ(l + α)

lα(µ− l)
(7.6)
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Variable Description

T Mean length of the renewal cycle
R Mean reward earned during a renewal cycle
TLi,j Mean time until we first move one level left of (i, j), starting from (i, j)

RL
i,j

Mean reward earned until we first move one level left of (i, j), starting
from (i, j)

pLi→d
Probability that after we first move one level left from state (i, j), we
are at depth d

Bk Mean length of an M/M/k busy period

Table 7.1: Variables used in our analysis of E[N ].

7.5.2 Deriving R via RL
0,1 and RL

1,1

R denotes the reward earned in moving from (0, 0) back to (0, 0). Observing that
we earn 0 reward in state (0, 0) (because there are no jobs in the system in that
state), and observing that from state (0, 0) we can only next move to (0, 1), we have
(using notation from Table 7.1):

R = RL
0,1 (7.7)

It now remains to compute the reward earned in moving one step left from (0, 1),
which will require looking at the other border state, (1, 1), as well.

To do this, we invoke another recursion theorem, which again holds for any
M/M/k/setup system:

Theorem 7.2 (Recursion theorem for mean reward).
For the M/M/k/setup, the mean reward earned in moving one step left from state
(i, j + 1), RL

i,j+1, satisfies RL
i,j+1 = RL

i,j + TLi,j for all j ≥ k, where the reward tracks
the number of jobs in the system.

Proof. Consider the process of moving one step left from a given state (i, j) where
j ≥ k. At the same time, consider the same process where everything is shifted over
one level to the right, so that the initial state is (i, j + 1) At any point in time, the
number of jobs seen by the second process is exactly one greater than that seen by the
first process. Therefore, the total number of jobs accumulated (total reward) during
the second process is TLi,j greater than that of the first process, since the duration of
both processes is TLi,j by Theorem 7.1.
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Applying Theorem 7.2 to the Markov chain shown in Figure 7.2, we have:

RL
1,1 =

1

l + µ
· 1 +

µ

l + µ
· 0 +

l

l + µ

(
RL

1,2 +RL
1,1

)
(7.8)

=
1

l + µ
+

l

l + µ

(
(RL

1,1 + TL1,1) +RL
1,1

)

=
1

l + µ
+

l

l + µ

(
(RL

1,1 +B1) +RL
1,1

)
(from Equation (7.2))

=⇒ RL
1,1 =

1 + lB1

µ− l
(7.9)

Similarly, for border state (0, 1), we have:

RL
0,1 =

1

l + α
· 1 +

α

l + α
·RL

1,1 +
l

l + α

(
RL

0,2 +RL
1,1

)

=
1

l + α
+

α

l + α
·RL

1,1 +
l

l + α

(
(RL

0,1 + TL0,1) +RL
1,1

)
(from Theorem 7.2)

=⇒ RL
0,1 =

1 + lTL0,1 + (l + α)RL
1,1

α
. (7.10)

Substituting RL
0,1 from above into Equation (7.7) gives us R:

R =
µ(l + α)(µ− l + α)

α2(µ− l)2
(7.11)

7.5.3 Deriving E[N]

Since E[N ] = R
T , combining Equation (7.6) and Equation (7.11), we get:

E[N ] =
R
T

=
l

α
+

l

µ− l
(7.12)
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Variable Description

Ṙ Mean reward earned (for z-transform) during a renewal cycle

Ė Mean reward earned (for transform of power) during a renewal cycle

ṘL
i,j

Mean reward earned (for z-transform) until we first move one level
left of (i, j), starting from (i, j)

ĖL
i,j

Mean reward earned (for z-transform of power) until we first move
one level left of (i, j), starting from (i, j)

Table 7.2: Variables used in our transform analyses.

The second term in the right hand side of Equation (7.12) can be identified [103]
as the mean number of jobs in an M/M/1 system (without setup). Thus, Equa-
tion (7.12) is consistent with the known decomposition property for the M/M/1/setup
system [194].

7.5.4 Deriving N̂(z) and T̃(s)

Deriving the z-transform of the number of jobs, N̂(z) = E[zN ], is just as easy as
deriving E[N ]. The only difference is that our reward function is now R(t) = zN(t),
where N(t) is again the number of jobs in the system at time t. Thus

N̂(z) = E[zN ] =
Ṙ
T
,

where Ṙ = E
[∫

cycle
zN(t)dt

]
and T is the same as before.

We will again invoke a recursion theorem which applies to any M/M/k/setup
(using notation from Table 7.2):

Theorem 7.3 (Recursion theorem for transform of reward). For the M/M/k/setup,
ṘL
i,j+1 = z · ṘL

i,j, for all j ≥ k, where Ṙ tracks the z-transform of the number of jobs
in the system.

Proof. The proof is identical to that of Theorem 7.2, except that in any moment in
time the second process (starting in level (i, j + 1)) earns z times as much reward as
the first process (starting at (i, j)).

Let us now express Ṙ by conditioning on the first step from (0, 0):

Ṙ =
1

l
+ ṘL

0,1 (7.13)
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We again need one equation per border state:

ṘL
1,1 =

1

l + µ
· z +

l

l + µ

(
z · ṘL

1,1 + ṘL
1,1

)

ṘL
0,1 =

1

l + α
· z +

α

l + α
· ṘL

1,1 +
l

l + α

(
z · ṘL

0,1 + ṘL
1,1

)
Solving the above system and substituting ṘL

0,1 into Equation (7.13) allows us to

express Ṙ in closed form. This gives us N̂(z), after some algebra, as follows:

N̂(z) = E[zN ] =
Ṙ
T

=
α(µ− l)

(µ− lz)(α + l − lz)
(7.14)

To get the Laplace transform of response time, T̃ (s), we use the distributional
Little’s Law [98] (since M/M/1/setup is a First-In-First-Out system):

T̃ (s) = N̂
(

1− s

l

)
=

α(µ− l)
(s+ α)(µ+ s− l)

(7.15)

7.5.5 Deriving P̂(z)

We now derive P̂ (z), the z-transform of the power consumed for the M/M/1/setup.
The server consumes zero power when it is off, but consumes peak power, Ppeak
watts, when it is on or in setup. This time, the reward is simply the transform of

the energy consumed over the renewal cycle, Ė = E
[∫

cycle
zP (t)dt

]
, where P (t) is the

power consumed at time t. We begin with the recursive theorem for ĖL
i,j, just like

we had Theorem 7.3 for ṘL
i,j.

Theorem 7.4 (Recursion theorem for transform of power). For the M/M/k/setup,
ĖL
i,j+1 = ĖL

i,j = TLi,j · zk·Ppeak , for all j ≥ k.

Proof. When j ≥ k, all k servers are either on or in setup, putting power consumption
at k · Ppeak. So the transform of power usage is zk·Ppeak , yielding ĖL

i,j = TLi,j · zk·Ppeak .

It then follows immediately from Theorem 7.1 that ĖL
i,j+1 = ĖL

i,j.
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Theorem 7.4 gives us ĖL
i,j in closed form, in terms of TLi,j. Following the usual

renewal-reward approach, we get:

P̂ (z) = E[zP ] =
Ė
T

=
α(µ− l) + l(µ+ α)zPpeak

µ(l + α)
(7.16)

7.6 M/M/k/setup

The M/M/k/setup chain shown in Figure 7.1 is analyzed similarly to M/M/1/setup.
The only complication is that when moving one level left from a given state, the
resulting row is non-deterministic. For example, when moving left from (1, 3) in
Fig. 7.1, we may end up in row 1 at (1, 2) or row 2 at (2, 2). We use pLi→d to denote
the probability that once we move one level left from (i, j), we will be at depth d.2

The following theorem proves that pLi→d is independent of j for all states (i, j) in the
repeating portion.

Theorem 7.5 (Recursion theorem for probability).
For the M/M/k/setup, for each 0 ≤ d ≤ k and for each 0 ≤ i ≤ k, pLi→d is the same
for all j ≥ k.

Proof. Recall that pLi→d is the probability that, given that we start at depth i, we end
at depth d when moving one step to the left, except when j = k and d ∈ {k − 1, k};
in these cases we interpret pLi→k (or pLi→k−1) as the probabilities that we first moved
one step left by transitioning out of a state in depth k (or k − 1).

As with TLi,j, p
L
i→d depends only on the structure of the “subchain” consisting of

levels {j, j + 1, . . .}, including transition rates to level j − 1. Since for all j ≥ k the
resulting subchains are isomorphic, pLi→d must be the same for all j ≥ k.

Thus, it suffices to compute pLi→d for the border states. For M/M/k/setup, the
border states are (i, k), with 0 ≤ i ≤ k.

In the M/M/k/setup, the non-repeating portion consists of O(k2) states. For
k = 1, we did not have to explicitly write reward equations for the non-repeating
states; these were implicitly folded into other equations (see, for example, the term

2The definition given for pLi→d applies in all cases except when j = k and d ∈ {k − 1, k}. When
j = k, we can never end in depth k when moving one step to the left; in this case, we interpret
pLi→k (or pLi→k−1) as the probability that we first moved one step left by transitioning out of a state
in depth k (or k − 1).
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in parentheses in Equation (7.13)). However, for arbitrarily large k, it is necessary
to write reward equations for the states in the non-repeating portion. We use RH

i,j to
denote the reward earned until we reach the home state, starting from state (i, j) in
the non-repeating portion. The RH

i,j equations will be discussed in Section 7.6.3.

We illustrate the RRR technique for M/M/k/setup by deriving N̂Q(z), from which

we can obtain T̃ (s). For a detailed demonstration of this technique for the case of
k = 2 and k = 3, see [62, 63]. One might think that analyzing the M/M/k/setup
will require solving a kth degree equation. This turns out to be false. Analyzing
the M/M/k/setup via RRR only requires solving equations which are, at worst,
quadratic.

We choose (k−1, k−1) to be the renewal state. Using RRR, Ṙ can be expressed
as:

Ṙ =
1 + (k − 1)µṘH

k−2,k−2 + λṘL
k−1,k

l + (k − 1)µ
(7.17)

We now derive the necessary pL
i→d, ṘL

i,k, and ṘH
i,j for computing Ṙ.

7.6.1 System of equations for pL
i→d

The system of equations for pLi→d is as follows:2

pLi→i =
λ(pLi→i)

2 + iµ

λ+ iµ+ (k − i)α
, (i < k) (7.18)

pLi→d =
λ
(∑d

`=i

{
(pLi→`)(p

L
`→d)

})
+ (k − i)α(pLi+1→d)

λ+ iµ+ (k − i)α
, (i < d < k) (7.19)

pLi→k = 1−
k−1∑
`=i

pLi→`, (i ≤ k) (7.20)

The summation in Equations (7.19) above denotes the possible intermediate
depths ` through which we can move from initial depth i to final depth d. The
above system of equations involves linear and quadratic equations (including prod-
ucts of two unlike variables), and can be solved symbolically to find pLi→d in closed
form (see [62] for more details).
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7.6.2 Deriving ṘL
i,k for the repeating portion

The system of equations for ṘL
i,k is as follows:

ṘL
0,k =

zk + λ
(
zṘL

0,k +
∑k

`=1

{
(pL0→`)(Ṙ

L
`,k)
})

+ kαṘL
1,k

λ+ kα
(7.21)

ṘL
i,k =

zk−i + λ
(
zṘL

i,k +
∑k

`=i

{
(pLi→`)(Ṙ

L
`,k)
})

+ (k − i)αṘL
i+1,k

λ+ iµ+ (k − i)α
, (0 < i < k)

(7.22)

ṘL
k,k =

1 + λ(zṘL
k,k + ṘL

k,k)

λ+ kµ
(7.23)

In the above, we have used the fact that ṘL
i,k+1 = zṘL

i,k from Theorem 7.3. The above

system of linear equations can be easily solved to find ṘL
i,k in closed form (see [62]

for more details).

7.6.3 Deriving ṘH
i,j for the non-repeating portion

The system of equations for ṘH
i,j is as follows:

ṘH
0,j =

zj + λṘH
0,j+1 + jαṘH

1,j

λ+ jα
, (j < k − 1) (7.24)

ṘH
i,j =

zj−i + λṘH
i,j+1 + iµṘH

i,j−1 + (j − i)αṘH
i+1,j

λ+ iµ+ (j − i)α
, (0 < i < j < k − 1) (7.25)

ṘH
i,i =

1 + λṘH
i,i+1 + iµṘH

i−1,i−1

λ+ iµ
, (0 < i < k − 1) (7.26)
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ṘH
i,k−1 =

zk−1−i + λ
(
ṘL
i,k +

∑k
`=i

{
(pLi→`)(Ṙ

H
`,k−1)

})
λ+ iµ+ (k − 1− i)α

+
iµṘH

i,k−2 + (k − 1− i)αṘH
i+1,k−1

λ+ iµ+ (k − 1− i)α
, (i < k − 1) (7.27)

ṘH
k−1,k−1 = 0 (7.28)

Equations (7.24), (7.25), and (7.26), are simply based on the rate transitions in the
non-repeating portion of the Markov chain. Equations (7.27) describe the rewards
earned when starting in states in the non-repeating portion of the chain that can
transition to the repeating portion of the chain via the border states. When we have
an arrival in one of these states, we transition to the repeating portion of the chain,
and after earning some reward, return to the non-repeating portion of the chain.
Finally, Equation (7.28) guarantees that any transition to state (k − 1, k − 1) will
end the renewal cycle. The above system of linear equations can again be easily
solved to find ṘH

i,j in closed form (see [62] for more details).

After solving for pLi→d, Ṙ
L
i,k and ṘH

i,j, we can derive Ṙ, and consequently N̂Q(z),

via Equation (7.17). T̃ (s) can then be derived by using the fact T̃ (s) = T̃Q(s) · µ
s+µ

=

N̂Q

(
1− s

l

)
· µ
s+µ

.

We applied the above steps to obtain a closed-form expression for N̂Q(z) for the
M/M/2/setup and the M/M/3/setup. We refer the reader to [62, 63] for full details.

7.7 The Generalized Recursive Renewal Reward

technique

The RRR technique can be applied to a very broad class of Markov chains beyond just
the M/M/k/setup. In general, RRR can reduce the analysis of any 2-dimensional,
irreducible Markov chain which is repeating and infinite in one dimension (as shown
in Figure 7.3(a)) to the problem of solving a system of polynomial equations. Further,
if in the repeating portion all horizontal transitions are skip-free and all vertical
transitions are unidirectional (as shown in Figure 7.3(b)), the resulting system of
equations will be of degree at most two, yielding a closed-form solution. In this
section we explain the application of the RRR technique to general repeating Markov
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(a) (b)

Figure 7.3: Figure 7.3(a) depicts the class of Markov chains that can be analyzed
via RRR. The repeating portion is highlighted in gray and the border states, bi,
are shaded black. Note that yi are the neighbors of x. Figure 7.3(b) depicts the
more restrictive class of Markov chain that can be analyzed in closed-form via RRR.
In this class, the horizontal transitions are skip-free and the vertical transitions are
unidirectional.

chains and also provide justification for the above claims regarding Figures 7.3(a)
and 7.3(b). Throughout we will assume that the reward earned at a state, (i, j), is
an affine function of i and j.

In order to apply RRR, we first partition the Markov chain into a finite non-
repeating portion and an infinite repeating portion as in Figure 7.3(a); in principle,
this partition is not unique. Then, we fix a renewal point, or home state, within the
non-repeating portion. For each state, x, in the non-repeating portion of the chain,
we write an equation for the mean reward, RH

x , earned in traveling from x to the
home state. Each RH

x is a sum of the mean reward during our residence in x and
a weighted linear combination of the rewards RH

y , where y is a neighbor of x, as in
Figure 7.3(a). We refer to this finite set of linear equations for the RH

x s as (Ia). Since
the chain is irreducible, at least one state in the non-repeating portion of the chain
transitions directly to a state in the repeating portion of the chain. We refer to the
states in the repeating portion that are directly accessible from the non-repeating
portion as border states. These are shown as bi in Figure 7.3(a). We next write a set
of equations for the mean reward earned in traveling from each border state to the
home state; call this set (Ib). Equation sets (Ia) and (Ib) together form the linear
system of equations (I).

Within (Ib), the mean reward earned when returning home from each border state
b consists of two parts: (i) the mean reward earned from the time we enter b until we
leave the repeating portion, and (ii) the mean reward earned from when we first exit
the repeating portion until returning home. Note that (ii) is simply a weighted linear
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combination of RH
x s where the weights form the probability distribution over the set

of states in the non-repeating portion that we transition to (same as the pLi→ds). For
(i), the reward equation can be expressed as a weighted linear combination of the
rewards for the neighbors of b in the repeating portion. The fact that the chain
has a repeating structure allows us to express the reward from any state in the
repeating portion as a linear combination of the rewards of the border states by
using “recursion theorems” (similar to Theorems 7.2 and 7.3). We also need the
probability distribution over the set of states we transition to when we move left
(the pLi→ds). At this point, to write the equations in (Ib), we require solving the
pLi→ds. We refer to the system of equations for pLi→ds as (II).

In writing the equations for pLi→ds, we again use recursion theorems (similar to
Theorem 7.5) that exploit the repeating structure of the Markov chain. However,
this time, the equations need not be linear. This is because when moving left to
depth d from depth i, we might transition through various intermediate depths.
Thus, pLi→d will involve several other probability terms. Unlike rewards where we
sum up intermediate terms, for probability we take a product of the intermediate
terms, leading to a system of higher order polynomial equations, (II). Note that (II)
does not depend on (I), and can be solved independently. Once we get the pLi→ds by
solving (II), we substitute these back (as constants) into the set of linear equations
(Ib). The sets of linear equations (Ib) and (Ia) can now be jointly solved using
standard techniques such as symbolic matrix inversion. This yields the mean reward
earned during a renewal cycle from home to home; mean time is found analogously.

In the case of Markov chains as shown in Figure 7.3(b), the probability equations,
(II), will be of degree at most two, as in Section 7.6.1. This is because skip-free
horizontal transitions guarantee that the probability pLi→d can be expressed as a
linear sum of products of only two intermediate terms of the form pLi→` · pL`→d, where
` represents the intermediate depths that we can transition to in going from i to
d (as in Section 7.6.1). Further, the unidirectional vertical transitions guarantee
that i ≤ ` ≤ d, which ensures that the intermediate probability terms do not lead
to higher-order dependencies between each other. Thus, the probabilities can be
derived in closed-form by solving quadratic equations (including products of two
unlike terms) in a particular “bottom-up” order as explained in [62].
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7.8 Chapter Summary

In this chapter we develop a new analysis technique, Recursive Renewal Reward
(RRR), which allows us to solve the M/M/k/setup class of Markov chains. The
M/M/k/setup allows us to model multi-server systems with setup times, and is thus
very useful for understanding the effects of setup time. Our analysis technique,
RRR, is very intuitive, easy to apply, and can be used to analyze many important
Markov chains that have a repeating structure. RRR combines renewal reward theory
with the development of recursion theorems for the Markov chain to yield exact,
closed form results for metrics of interest such as the transform of time in system
and the transform of power consumed by the system. RRR reduces the solution of
the M/M/k/setup chains to solving k quadratic equations and a system of O(k2)
linear equations. On an Intel Core i5-based processor machine we found RRR to
be almost 5-10 times faster than the iterative matrix-analytic based methods, when
using standard MATLAB implementations of both methods.

While we have only considered the M/M/k/setup in this chapter, we have also
been able to use RRR for deriving exact, closed-form solutions for other impor-
tant Markov chains with a repeating structure such as: (i) M/M/k/setup/delayed-
off [65], wherein idle servers delay for a finite amount of time before turning off, (ii)
M/M/k/setup/sleep, wherein idle servers can either be turned off or put to sleep, (iii)
M/M/k/stag [68], wherein at most one server can be in setup, (iv) M/M/k/setup-
threshold, wherein the servers are turned on and off based on some threshold for num-
ber of jobs in queue, (v) M/M/k/disasters, wherein the system can empty abruptly
due to disasters, and (vi) M/E2/k, where the job size distribution is Erlang-2. We
have also been able to apply RRR to analyze other Markov chains such as: (i)
Mt/M/1, where the arrival process is Poisson with a time dependent parameter,
(ii) M/H2/k, where the job size distribution is a 2-phase hyperexponential, and (iii)
Mx/M/k, where there is a Poisson batch arrival process. In the above three cases,
RRR reduces the analysis to solving a system of polynomial equations with degree
> 2. In general, RRR should be able to reduce the analysis of any 2-dimensional
Markov chain (with an affine reward function), which is finite in one dimension and
infinite (with repeating structure) in the other, to solving a system of polynomial
equations.
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Chapter 8

Related Work

In this chapter we discuss related work in data center power management. In
particular, we discuss the data center power management approaches of power-
proportionality, energy-efficient server design, and consolidation and virtualization.
These correspond to the approaches listed in Section 1.3. Prior work in dynamic
server provisioning, which is the focus of this thesis, was discussed in detail in Sec-
tion 2.2, and will not be reviewed here. However, we discuss how dynamic server
provisioning compares with the other approaches.

8.1 Power-proportionality

Power-proportionality aims to reduce unnecessary power consumption in servers. A
server is defined as being power-proportional if it consumes x% of its peak power
when operating at a utilization of x%. Power-proportionality gained popularity in
2007 based on the research [26] by Barroso and Hölzle. The authors found that most
servers spent the majority of their time operating in the 10% – 50% utilization range.
Unfortunately, because of the high idle power of servers, they consumed much more
than 10% – 50% of their peak power in this utilization range.

8.1.1 Lower server idle power

One of the approaches to power-proportionality is lowering the server idle power.
Meisner et al. [131] show that reducing server idle power can lower server power
consumption by up to 74%. However, reducing server idle power is a very challenging
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task. While processor designers have been very successful at reducing the CPU idle
power [109, 89], other server components still consume significant power when idle.

Reducing DRAM idle power is difficult because the volatile contents of the DRAM
need to be refreshed (thereby consuming power) even when idle to ensure data avail-
ability. There have been a few approaches that propose reducing DRAM idle power
by selectively refreshing only the important data [94, 123], or lowering the refresh
rate [181, 122]. Recently, alternatives to DRAM memory, such as Flash memory [99]
and Phase-Change Memory (PCM) [112], have also been proposed (and deployed).
These technologies are non-volatile, and thus do not require much power when idle.

Reducing the idle power of disks is difficult because disks continue spinning,
even when idle, to provide quick access for new data requests. Recent work [184,
200, 193] has proposed using a log data structure in combination with redundant
disk systems, such as RAID, to allow some disks to spin down, thereby lowering idle
power. Similar approaches have also been proposed [170, 14] for managing replicated
data in distributed storage systems. There has also been significant orthogonal work
trying to maximize server idle periods so as to facilitate the use of idle states [166, 15].

While lower idle power mitigates the need for dynamic server provisioning, our
experiments in Section 4.6 show that the server idle power needs to be significantly
low (less than 15W) for dynamic server provisioning to be rendered obsolete.

8.1.2 Voltage and frequency scaling

Dynamic Voltage and Frequency Scaling (DVFS) reduces active server power at the
expense of lower processor speed (lower operating voltage and frequency). DVFS
can be very useful in reducing server power in the typical operating range of 10%
– 50% utilization [26]. DVFS has been successfully deployed in processors to lower
server power consumption [69, 15, 151] in cases where the CPU is not required to
operate at 100% speed. However, similar approaches have not yet been deployed for
other server components, despite interest from the research community for DVFS in
the memory subsystem (see, for example, [46, 50]), and for multi-speed disks for the
storage subsystem (see, for example, [200, 201]).

Our own experience with DVFS [70, 69] has been positive. DVFS is a very
attractive and practical solution since the transition time between DVFS states is
negligible (on the order of microseconds [43]). However, the limited dynamic range
of DVFS states, coupled with the fact that DVFS currently only applies to the CPU,
limits the potential power savings obtained by DVFS.
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8.2 Energy-efficient Server Design

A fundamental approach to power management is to design energy-efficient servers.
There has been a lot of recent work in computer architecture that proposes novel,
energy-efficient server designs.

8.2.1 Low-power inactive states

Anagnostopoulou et al. [17] and Amur et al. [16] propose low-power server states
that provide access to the memory contents while sleeping. Such states are beneficial
for servers that must provide access to their data contents at all times. Agarwal
et al. [9, 10] propose a low-power inactive state that provides network connectivity
even when asleep. This is beneficial for applications such as remote desktop. Reich
et al. [156], Meisner et al. [134], and Nedevschi et al. [142], propose sleep states that
lower setup times by building a sleep proxy, or a co-processor, that selectively wakes
up the server based on incoming network traffic.

8.2.2 Heterogenous designs

There has been significant recent work proposing heterogeneity at the server level [195],
processor level [82], and even the core level [49]. The basic idea here is to of-
fer two modes of execution, one, which provides high performance and consumes
high power, and the other, which provides lower performance and consumes less
power. By switching to the most energy-efficient mode based on the application
needs, overall server power can be reduced. This also helps servers achieve (some)
power-proportionality.

Heterogeneity has also been exploited at the cluster level (see, for example,
[107, 140]) to allocate workload to the most energy-efficient server architecture. Ap-
proaches leveraging heterogeneity are complementary to dynamic server provisioning,
and typically provide moderate improvements over dynamic server provisioning.

8.2.3 Energy-efficient cluster architectures

Andersen et al. [19, 180] propose a low-power cluster design which makes use of em-
bedded CPUs and flash storage to provide significant improvement in Performance-
per-Watt for data-intensive applications. Similar architectures were also proposed
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by Szalay et al. [169] and Caulfield et al. [37]. There have also been architectures
that propose closely coupling processors with subsystems such as memory [118] and
disk [158] to provide improved energy efficiency by reducing data transfers. Finally,
there are also approaches that allocate workloads to the most efficient (existing)
server architectures in a heterogeneous environment (see, for example, [107, 140]).

Interestingly, most of these approaches are complementary to dynamic server
provisioning. Finding the right server design does not necessarily obviate the need
for dynamic server provisioning. In fact, these approaches often require dynamic
server provisioning, and also consolidation, so as to provide benefits in a distributed
system. Most of the approaches discussed in this section propose designing a novel
server architecture, and hence, apply to a single server. Dynamic server provisioning
can build upon these approaches to provide an energy-efficient solution for a multi-
server system. For example, dynamic server provisioning can leverage low-power
inactive states such as those proposed in [142, 9, 17, 156, 16] to improve the energy
efficiency of the system. As observed in our experiments in Section 4.5.1, there is a
need for smart dynamic server provisioning even in the presence of inactive states
with very low setup times. Setup times will have to approach zero before obviating
dynamic server provisioning.

8.3 Consolidation and Virtualization

The basic idea behind consolidation is to colocate applications onto the same phys-
ical servers to amortize server power consumption. This “resource sharing” idea
concentrates workload on fewer servers, thereby allowing unneeded servers to be
turned off or repurposed. Virtualization [102, 25, 2] aids consolidation by making
the application independent of its physical platform, thereby allowing application
instances to easily migrate to other platforms. Most consolidation approaches lever-
age virtualization to consolidate application virtual machines (VMs) onto physical
servers.

Several papers have addressed the allocation of workloads to physical servers via
consolidation. Chase et al. [39] propose a decentralized bidding approach to con-
solidate application instances onto physical servers. Urgaonkar et al. [176] leverage
over-subscription while consolidating VMs to improve resource utilization. Verma et
al. [182] propose a theoretical framework to take migration costs into account when
allocating applications to physical machines. Bobroff et al. [28] analyze workload
demand traces to determine the best candidates for consolidation. Verma et al. [183]
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also analyze workload traces, but they additionally take into account the correlation
between different applications, to improve consolidation. Isci et al. [92] propose a re-
mote direct memory access-based migration technique to reduce VM migration time,
resulting in more aggressive consolidation.

There has also been significant work on minimizing the interference between
colocated applications to avoid SLA violations. Nathuji et al. [141] propose a reac-
tive feedback mechanism to provision additional (under-utilized) resources to VMs,
thereby improving performance. Koh et al. [105] analyze colocated application VMs,
and classify them into clusters based on their performance interference. Their anal-
ysis helps to provide performance isolation between VMs, thereby reducing SLA
violations. Govindan et al. [80] examine cache interference between applications,
and use their analysis to improve placement decisions.

Dynamic server provisioning can benefit from consolidation and virtualization.
As such, these are complementary approaches. In fact, we use the ideas of consolida-
tion in the design of AutoScale (see Chapter 4) when packing requests onto servers.
However, consolidation is used at the process level in AutoScale, as opposed to being
used at the application level. Extending AutoScale to deal with workload demand
for multiple applications will require ideas from consolidation and virtualization, and
is an interesting topic for future research.

8.4 Other Approaches

Apart from the approaches listed above, there are other approaches to indirectly
reduce data center power consumption. These include: (i) cooling and thermal
management (see, for example, [154, 84]), (ii) over-subscribing resources (see, for ex-
ample, [57, 155]), (iii) coordinating power management approaches (see, for example,
[153, 41, 45]), and (iv) using alternate energy sources to reduce grid power consump-
tion (see, for example, [79, 78, 75, 149, 157]). These are important approaches to data
center power management, and are complementary to dynamic server provisioning.
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Chapter 9

Conclusion

Dynamic server provisioning has emerged as a promising approach for data center
power management. The last decade has witnessed a lot of research activity in this
area. Unfortunately, data center operators have not shown as much interest in em-
ploying dynamic server provisioning, since there are significant practical challenges
that hinder its deployment in real data centers. Our goal in this thesis is to ad-
dress some of the important challenges faced by dynamic server provisioning, and to
provide practical solutions that enable it to be a viable deployment option in data
centers. We now summarize the contributions made by this thesis, and list the future
work opportunities that arise based on our work.

9.1 Contributions

9.1.1 Analyzing the challenges in dynamic provisioning

We explored the challenges that hinder the deployment of dynamic server provi-
sioning in data centers. In particular, we examined setup costs, unpredictability in
workload demand, and data availability in stateful servers (Chapter 3).

For setup costs, we provided the first closed-form analysis of multi-server systems
with setup times (see Section 9.1.5 below). Our analysis revealed that setup costs in
today’s servers severely impact response time and power consumption (Section 3.1).
Setup costs are incurred as a result of short-term fluctuations in load, which in turn
necessitate dynamic changes in capacity. Fortunately, the adverse effects of setup
costs decrease in severity as the system size scales up (Section 3.1.2). This suggests
that dynamic server provisioning should be more beneficial for large data centers.
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We then analyzed workload demand from data center application traces and pub-
licly available web traces (Section 3.2). Our analysis revealed that most workloads
are plagued by short-term fluctuations. Specifically, we found that while workload
demands typically exhibit a predictable long-term pattern, they also exhibit unpre-
dictable short-term fluctuations. Despite accounting for only a fraction of the total
demand, these short-term fluctuations can lead to numerous SLA violations (Sec-
tion 3.2.1). We also found that web traces additionally exhibit load spikes, which
lead to a steep rise in response times in only a matter of seconds (Section 3.2.2).

Finally, we analyzed the challenges in dynamic provisioning of stateful servers
(Section 3.3). Our experimental analysis revealed that adding or removing a node
from the caching tier leads to temporary unavailability of cached data, resulting
in a steep rise in response times (Section 3.3.1). This observation is probably the
reason why there has been no prior work on scaling of the caching tier. Despite the
challenges, there is significant potential for savings in the caching tier, since caching
tier servers are typically equipped with lots of expensive and power-hungry DRAM.

9.1.2 AutoScale: Overcoming the challenges presented by
setup costs and unpredictable workload demand

In Chapter 4, we designed and implemented a new dynamic server provisioning policy,
AutoScale, that successfully addresses the challenges presented by setup costs and
unpredictable workload demand. AutoScale demonstrates that in order to reduce
power consumption without violating response time SLAs, it suffices to simply be
conservative when scaling down capacity. Further, by monitoring the number of
requests in the system, as opposed to request rate or server utilization, dynamic
provisioning can be made robust to unpredictable changes in not just request rate,
but also request size and server speeds. We also analyzed [64] the performance
of AutoScale using theoretical modeling, and showed that, under more restrictive
M/M/k models, AutoScale is near-optimal.

9.1.3 SoftScale: A new approach to handling load spikes

In Chapter 5, we proposed a novel approach, SoftScale, to handling load spikes
in multi-tier data centers. SoftScale works by opportunistically stealing spare re-
sources from other tiers to alleviate load in the bottleneck tier. We demonstrate that
SoftScale can successfully meet response time SLAs, without consuming additional
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resources, in the presence of severe load spikes caused by a sudden rise in request
rate, or a sudden loss in system capacity. Importantly, SoftScale can be easily in-
tegrated with existing dynamic server provisioning policies to make them robust to
load spikes.

9.1.4 CacheScale: Dynamically scaling the caching tier

In Chapter 6, we proposed a novel scaling policy, CacheScale, for dynamically pro-
visioning resources in the stateful caching tier. We first made the case that there is
a significant potential for savings in cost and power from dynamically provisioning
the caching tier. We then showed that a small decrease in the required hit rate of
the caching tier can lead to a significant reduction in the size of the caching tier.
We then experimentally demonstrated that CacheScale, a simple data redistribution
policy, allowed the caching tier to dynamically scale up and scale down in response to
changes in load, without violating response time SLAs. CacheScale works by redis-
tributing “hot” data items prior to scaling the caching tier. Interestingly, CacheScale
does not require knowledge of historical data accesses in the cache. This makes it
very easy to deploy CacheScale on existing caching tiers.

9.1.5 Recursive Renewal Reward: A new technique for solv-
ing Markov chains with a repeating structure

In Chapter 7, we presented a new analytical technique, Recursive Renewal Reward
(RRR), for analyzing Markov chains with a repeating structure. Such Markov chains
are widely used to model computer systems, inventory control systems, production
systems, and call center staffing systems. In particular, multi-server computer sys-
tems with setup times are often modeled using an M/M/k/setup Markov chain,
which is a 2-dimensional Markov chain with an infinite repeating portion. Given the
complexity of the M/M/k/setup chain, its analysis has eluded researchers for many
decades: While the M/M/1/setup was exactly analyzed in 1964, no exact analy-
sis exists to date for the M/M/k/setup with k > 1. Using RRR, we provided the
first exact, closed-form analysis for the M/M/k/setup. The resulting analysis pro-
vided interesting insights into the impact of setup time on response time and power
consumption in data centers (see Section 3.1).

RRR uses ideas from renewal reward theory and busy period analysis to ob-
tain closed-form expressions for metrics of interest such as the transform of time in
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system and the transform of power consumed by the system. The simplicity, intu-
itiveness, and versatility of RRR makes it useful for analyzing Markov chains far
beyond the M/M/k/setup. In general, RRR should be able to reduce the analysis
of any 2-dimensional Markov chain which is finite in one dimension, say the vertical
dimension, and infinite (with repeating structure) in the other (horizontal dimen-
sion) to the problem of solving a system of polynomial equations. Further, if in the
repeating portion all horizontal transitions are skip-free and all vertical transitions
are unidirectional, the resulting system of equations will be at most quadratic, yield-
ing a closed-form solution. We thus anticipate that RRR will prove useful to other
researchers in analyzing many new problems.

9.2 Future Work

This thesis proposed several dynamic server provisioning policies for data center
power management. There are two immediate extensions to our work that we did
not address in this thesis. The first is the extension of our dynamic server provisioning
policies to virtual environments. That is, how would our proposed policies change if
our implementation testbed was instantiated on VMs as opposed to physical servers.
In a virtualized environment, the goal is to save on rental costs by dynamically scaling
the number of VMs, as opposed to reducing power consumption by dynamically
provisioning physical servers. The potentially lower setup time for VMs [108, 13]
should allow for more aggressive scaling. However, the setup time for a VM can
vary significantly depending on external factors such as time of day, location of host
data center, etc [127]. This variation in setup time could influence the design of the
dynamic provisioning policy.

The second immediate extension that this thesis does not address is dynamic
provisioning in the presence of heterogeneous resources. There is often heterogene-
ity in physical servers [140] and VMs [127]. Prior studies indicate that leveraging
this heterogeneity can be beneficial for resource management [140, 107]. It will be
interesting to adapt our dynamic server provisioning policies to heterogeneous envi-
ronments, and to examine the subsequent benefits.

Our dynamic server provisioning policies in this thesis have been proposed and
evaluated in the context of our implementation testbed that mimics a multi-tier web
application. We have not considered dynamic provisioning for other applications,
such as data-intensive applications or high-performance computing applications, or
dynamic provisioning for a mix of applications. These are important questions, and
are left as future work.
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Finally, an important question that we partially addressed (see Section 3.1.2) in
this thesis is the effect of scale on dynamic server provisioning. Our preliminary
findings indicate that dynamic provisioning is more beneficial for large-scale data
centers. This is an encouraging result, and warrants further research.
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