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Abstract
When information is abundant, it becomes increasingly difficult to fit nuggets of

knowledge into a single coherent picture. Complex stories spaghetti into branches,
side stories, and intertwining narratives; search engines, our most popular naviga-
tional tools, are limited in their capacity to explore such complex stories.

We propose a methodology for creating structured summaries of information,
which we call metro maps. Our proposed algorithm generates a concise structured
set of documents that maximizes coverage of salient pieces of information. Most
importantly, metro maps explicitly show the relations among retrieved pieces in a
way that captures story development.

The overarching theme of this work is formalizing characteristics of good maps,
and providing efficient algorithms (with theoretical guarantees) to optimize them.
Moreover, as information needs vary from person to person, we integrate user in-
teraction into our framework, allowing users to alter the maps to better reflect their
interests. Pilot user studies with real-world datasets demonstrate that the method is
able to produce maps which help users acquire knowledge efficiently. We believe
that metro maps could be powerful tools for any Web user, scientist, or intelligence
analyst trying to process large amounts of data.
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Chapter 1

Introduction
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“Distringit librorum multitudo" (the abundance of books is a distraction), said Lucius An-
naeus Seneca; he lived in the first century.

A lot has changed since the first century, but Seneca’s problem has only become worse.
The surge of the Web brought down the barriers of distribution, and users find themselves over-
whelmed by the increasing amounts of data; relevant information is often buried in an avalanche
of data, and locating it is difficult. The problem spans entire sectors, from intelligence analysts
trying to discover pertinent and actionable information, to scientists and web users.

Extracting useful knowledge from large data sets requires appropriate means. In recent years,
search engines have been relied upon for accessing information, and investments have even been
made to create specialized search and retrieval tools (e.g., academic search and news search).
However, the search and browsing experience might be best characterized as providing keyhole
views onto the data: while search engines are highly effective in retrieving nuggets of knowledge,
the task of fitting those nuggets into a coherent picture remains difficult.
We identify three main issues with current, keyword-based search engines:

N Expressing information needs Often, users know precisely what they want to find, but it is
not easy for them to distill their ideas down into a few keywords. For this reason, building
models of users’ information needs from keywords alone is difficult.

N Structured output The output of most search engines today consists of a list of relevant
documents. Yet, richer forms of output can be conceived. Often, visually exploring search
engine results can reveal new and interesting phenomena, which are harder to see in a
textual list.

N Interaction Interaction with most search engines today is fairly restricted. Users who are
not satisfied with the search results are often limited to submitting a new, refined query.
Refining queries is a non-trivial task, and users often make several attempts at it before
finding the desired result (or giving up). Richer models of interaction can help users better
express their information needs. Furthermore, adding an interactive component to our
system can allow users to take a full advantage of the structured output (for example, by
refining parts of the output, or zooming into components).

Several tools exist today for summarizing complex topics. Text Summarization methods
can be classified into extractive and abstractive summarization [Radev et al., 2002]: Extractive
summarization methods select important sentences from the original document, while abstractive
summarization methods attempt to rephrase the information in the text. Other summarization
systems [Gabrilovich et al., 2004; Swan and Jensen, 2000; Yan et al., 2011; Allan et al., 2001]
have focused on timeline generation.

However, these styles of summarization only work for simple stories, which are linear in
nature. In contrast, complex stories exhibit a very non-linear structure: stories spaghetti into
branches, side stories, dead ends, and intertwining narratives. To explore these stories, users
needs a map to guide them through unfamiliar territory.
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1.1 Why Maps?
Our interest in map representations stems from a desire to understand the associations and inter-
relations within a topic. A map can be an ideal tool for this task. In the real world, cartographic
maps have been relied upon for centuries to help us understand our surroundings and the rela-
tionships between neighbouring objects.

Most importantly, maps take advantage of the human mind’s ability to scan an entire page in
a non-linear manner and quickly extract information and patterns. This ability goes unexploited
when sifting through paragraphs of text or a linear timeline. Consider, for example, the following
block of text:

“Aliquam fringilla tortor sapien sociosqu mauris per pulvinar ante habitasse
euismod elit interdum primis elementum auctor aptent malesuada. ”

This text is meaningless, since we cannot understand the words. However, when we see the
same text organized in a map form, we immediately form a mental model of the information:

Figure 1.1: Incomprehensible text in a map form.

While still unable to interpret the text, we can see that there is one main idea and three smaller
ones. These smaller ideas seem to have similar relationship to their parent, so we may guess that
they have some characteristics in common with each other: They could be three properties of
the main idea, or perhaps demonstrative examples. Our mental model of this data is primed with
expectations for patterns for us to evaluate and expand.

The important point is that there is information in the lines of a map – in this case, more
than in the words. In a way, the map acts as the body language of its words1.

Recently, several map-like representations have been gaining popularity: A concept map
[Novak, 1990] is a graphical representation where nodes represent concepts, and edges represent
the relationships between concepts (Figure 1.2, left). Knowledge maps [O’Donnell et al., 2002]
are similar to concept maps, but restrict the set of edge labels. Mind maps [Buzan and Buzan,
1995] are usually radial, with emphasized color and pictures (Figure 1.2, right).

Finally, Issue maps (or argument maps) display the structure of an argument, showing in-
ferential connections between propositions and contentions. Figure 1.3 shows an example of an

1Presentation inspired by Nick Duffill.
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Figure 1.2: Left: A concept map explaining why we have seasons (adapted from Novak and Cañas
[2006]). Right: a mind map about personal health (adapted from Jane Genovese).

issue map dealing with perhaps the oldest AI question: “can computers think?” Figure 1.3 (right)
focuses on a detail of the map discussing free will.

Importantly, there is strong empirical support for map representations in enhancing, retaining
and improving knowledge [Nesbit and Adesope, 2006]. Mind maps were shown to increase
memory recall for undergraduate students when compared to traditional note taking [Farrand
et al., 2002], and also to reduce cognitive load [Sarker et al., 2008]. Rewey et al. [1991] showed
that students recall more central ideas when they learn from a knowledge map than when they
learn from (informationally isomorphic) text. The benefits of maps are often higher for students
with low prior knowledge.

In addition to recall, the use of knowledge maps enhances students’ subjective reactions to
studying and testing. In [Hall and O’Donnell, 1996], map users reported significantly greater mo-
tivation and concentration than text users. Similarly, Reynolds et al. [1991] found that students
using a hypermap expressed less frustration than those using hypertext.

For all these reasons, we believe that maps can be a new, exciting way to cope with infor-
mation overload. Out of all the map representations discussed above, we consider issue maps to
be the most suitable for our needs: issue maps provide a structured, easy way to navigate within
a new topic and to grasp the big picture quickly. For example, they can be of extreme usefulness
to news readers trying to understand a complex topic, or to researchers who want to understand
how their work fits in with previous work and what can be done to advance their field.

Unfortunately, generating good maps is a manual, time-consuming process. The map in
Figure 1.3 took several man-years to finalize. Furthermore, the maps cannot be easily updated
when new data becomes available. In order to overcome these issues, we would like to be able
to automate the creation of issue maps.
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Figure 1.3: Issue map: “Can Computers Think?”. Right: a detail from the map. The argument “Comput-
ers can’t have free will” is disputed by “Humans also lack free will” (which is in turn supported by two
more arguments). Adapted from http://www.macrovu.com/CCTGeneralInfo.html.

1.2 Thesis Statement and Our Approach
This thesis research revolves around the following statement:

“We can effectively manage information overload by producing personalized
issue maps in response to the user’s expressed needs. ”

In the next sections, we propose two systems which serve as stepping stones on the way to
automated issue maps. The systems incrementally expand on the set of possibilities determined
by expressing information needs, structured output and interaction. The work is performed
in two main tasks:

Task 1: Connecting the Dots
Given two articles, our system automatically finds a coherent chain of articles
linking them together.

Task 2: Metro Maps
Given a set of documents D, our system automatically creates a structured sum-
mary of D, which we call a metro map. Metro maps consist of a concise struc-
tured set of documents which maximizes coverage of salient pieces of informa-
tion. Most importantly, metro maps explicitly show the relations among different
pieces in a way that captures story development.

The systems are built to handle large amounts of daily-changing data, such as the blogo-
sphere, ACM Digital Library of research papers, and Reuters world news corpus. We believe
that the outcome of this work could be a set of powerful tools for any Web user, scientist, or
intelligence analyst trying to process large amounts of data.
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1.2.1 Approach Overview
We now provide an overview of our approach for automatically generating issue maps. Note
that we are only interested in ways to compute the content of the map. Visualization techniques,
despite their important role, are outside the scope of this work.

Task 1: Connecting the Dots

Maps are complex, and creating one can be daunting. Before tackling an entire map, we focus
on a simpler task: a map containing only a single line. To further simplify the task, we start by
assuming that the endpoints of the line are known. In other words, we are interested in inves-
tigating methods for automatically connecting the dots. Given two articles, s and t, our system
automatically finds the most coherent chain of articles linking them together. For example, in the
news domain, the system can recover the chain of events starting with the decline of home prices
(January 2007), and ending with the ongoing health-care debate.

Problem 1.2.1. Given a set of documents D, two special documents s, t ∈ D and an integer K,
find a chain of documents of length K − 2 that maximizes Coherence(s, d1, ...dK−2, t).

The main challenge of connecting the dots is formalizing a notion of coherence. In this
work, we argue that coherence is a global property of the chain, and cannot be captured by local
interactions between neighbouring articles in the chain.

To demonstrate our point, consider Figure 1.4. The figure shows word occurrence along
two chains of articles. Both chains share the same endpoints: Clinton’s alleged affair and the
2000 election Florida recount. The chain on the left is an associative, stream-of-consciousness
chain. It touches upon the Microsoft trial, Palestinians, and European markets before returning
to Clinton and American politics. Note that each transition, when examined out of context, is
reasonable: for example, the first and the second articles are court-related.

In contrast, the chain on the right is more coherent. It tells the story of Clinton’s impeachment
and acquittal, the effect on Al Gore’s campaign, and finally the elections and recount.

In order to understand what makes one chain more coherent than the other, we look at word
appearances (Figure 1.4, bottom). Bars correspond to the appearance of a word in the articles
depicted above them; for example, the word ‘Clinton’ appeared throughout the entire right chain,
but only at the beginning and the last two articles on the left.

It is easy to spot the associative flow of the left chain in Figure 1.4. Words appear for very
short stretches, often only in two neighbouring articles. Some words appear, disappear and re-
appear. Contrast this with the chain on the right, where stretches are longer and transitions
between documents are smoother. This observation motivates our definition of coherence:

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w)1(w active in di, di+1) (∗)

We formulate coherence as an optimization problem. We look for a small set of words w that
capture the essence of the story (active words). Possible activations are constrained to imitate
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Figure 1.4: Two examples of stories connecting the same endpoints. Left: chain created by considering
local interactions. Right: a more coherent chain. Activation patterns for each chain are shown at the
bottom; the bars indicate appearance of words in the article above them.

the behaviour of words in the coherent chain of Figure 1.4 (right). The choice of active words
determines the score of each transition di → di+1. The score of the chain is then determined by
the score of its weakest link. Refer to Chapter 2 for further details.

We use a Linear Programming solver to find the optimal set of words and evaluate coherence
of a chain. We apply a generalized best-first search strategy to find the best chain and solve
problem 1.2.1. The general philosophy of generalized best-first search is to use heuristic infor-
mation to assess the merit latent in every candidate search avenue found during the search. The
algorithm continues the exploration along the direction of highest merit.

Task 2: Metro Maps

Now that we know how to construct single lines, we can tackle complete maps. As before, the
main challenge lies in formalizing the characteristics of a good map. First, we need to formally
define metro maps.

Definition 1.2.2 (Metro Map). A metro mapM is a pair (G,Π), where G = (V,E) is a directed
graph and Π is a set of paths inG. We refer to paths as metro lines. Each (u, v) ∈ E must belong
to at least one metro line.
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Vertices of the map V correspond to news articles, and are denoted by docs(M). The lines
of Π correspond to aspects of the story. A key requirement is that each line tells a coherent story:
Following the articles along a line should give the user a clear understanding of evolution of a
story. We re-use our notion of coherence from connecting the dots.

Coherence is crucial for good maps, but it is not sufficient. Coherent lines are not necessarily
interesting; in addition to being coherent, lines should also cover topics which are important to
the user.

To model coverage, we first define a set of elements E we wish to cover (for example, E can
be words, or topics from a topic model) . We first model the amount a map covers an element
e, coverM(e). We require that coverM(e) has a diminishing-returns property. In other words, if
the map already includes documents that cover e well, coverM(e) should be nearly maximized,
and adding another document that covers e well should provide very little extra coverage of e.
Therefore, we prefer to pick articles that cover other features, promoting diversity.

Next, we model the amount a mapM covers the corpus as the weighted sum of the amount
it covers each element:

Cover(M) =
∑
e

λecoverM(e)

The weights λe bias the objective towards maps which cover important features of the corpus.
In Chapter 3 we discuss learning a personalized notion of coverage.

After formulating the first two desired properties of a map, we note that a map is more than
just a set of lines; there is information in its structure as well. Therefore, our last property is
connectivity. The map’s connectivity should convey the underlying structure of the story, and
how different aspects of the story interact with each other.

We conducted preliminary experiments exploring different notions of connectivity. These
results suggest that the most glaring usability issue arises when maps do not show connections
that the user knows about. We came to the conclusion that the connectivity objective needs to be
a pairwise function of the metro lines:

Conn(M) =
∑
i<j

Conn(πi, πj)

In the simplest case, we could score a point for every two metro lines that intersect.

We now have our three properties. Next, we need to combine them into an objective function.
We must consider tradeoffs among these properties: for example, maximizing coherence often
results in repetitive, low-coverage chains.

First, we noticed that maximizing coherence does not necessarily lead to good maps. Rather,
we treat coherence as a constraint: a chain is either coherent enough to be included in the map,
or it is not.

We are left with coverage and connectivity. We believe that coverage is the more crucial
property out of these two. A map that covers interesting topics but does not show the connec-
tions among them can still be useful to the user; a well-connected map about topics that are
not important for the user has little value. Therefore, coverage is our primary objective, and
connectivity is our secondary.
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We can now formulate our problem. Since coverage is our primary objective, we first find κ,
the maximal coverage across maps with coherence ≥ τ . Then, we look for a map maximizing
connectivity among all coherent maps that achieve the maximal coverage κ. One may think of
the formulation as coordinate ascent, or lexicographic optimization.

Problem 1.2.3. Given a set of candidate documents D, find a mapM = (G,Π) over D which
maximizes Conn(M) s.t. Coherence(M) ≥ τ and Cover(M) = κ.

We also restrict the size of the map to K lines of length at most l.
In order to find a map optimizing this objective, we first list all candidate chains. We com-

pactly represent all coherent chains as a graph, which we call a coherence graph. Each vertex
of the graph corresponds to a short coherent chain. Edges indicate chains which can be con-
catenated and still maintain coherence. This property is transitive, so every path in the graph
corresponds to a coherent chain.

For example, Figure 1.5 shows a fragment of a coherence graph form = 3. The figure depicts
multiple ways to extend the story about the trapped Chilean miners: one can either focus on the
rescue, or skip directly to the post-rescue celebrations.

33 Trapped Miners in Chile 
Say They’re Alive / 8.23.10

Chileans Work to Ensure
Miners Survive / 8.23.10

Chileans Work to Ensure
Miners Survive / 8.23.10

Carnival Air Fills Chilean Camp
as Miners Rescue Nears / 10.11.10

Facing Long Mine Rescue,

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

Facing Long Mine Rescue,

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

…

Chile Mine Rescue to Begin
Within Hours / 10.12.10

Chile Miners Honored by 
President in Capital / 10.26.10

Carnival Air Fills Chilean Camp
as Miners Rescue Nears / 10.11.10

Carnival Air Fills Chilean Camp
as Miners Rescue Nears / 10.11.10

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

…

Figure 1.5: A fragment of the coherence graph G for m = 3. Note overlap between vertices.

After constructing the coherence graph, we use it to extract a set of K chains. Since the
chains came from the coherence graph, they are guaranteed to be coherent.

The problem of finding a set of chains that maximize coverage is hard. Fortunately, we
can exploit the submodularity of our coverage notion. A set function f is submodular if for all
X ⊆ Y, x /∈ Y we have

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

Intuitively, submodular functions have diminishing returns.
Taking advantage of submodularity enables us to apply well-studied algorithms to the prob-

lem. We use submodular orienteering algorithms with approximation guarantees to extract high-
coverage chains from the graph. In the last step of the algorithm, we increase connectivity
without sacrificing coverage by applying local search in the neighbourhood of the map.

Figure 1.6 displays a sample map generated by the methodology. This map was computed
for the query ‘Gree* debt’. The main storylines discuss the austerity plans, the riots, and the role
of Germany and the IMF in the crisis.
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Figure 1.6: An example of our results (condensed to fit space). This map was computed for the query
‘Gree* debt’. The main storylines discuss the austerity plans, the riots, and the role of Germany and the
IMF in the crisis.

After devising an algorithm for computing an initial map, we integrated models of interaction
with metro maps, letting the users indicate their preferences. We rely on feedback to adjust the
coverage function and bias the map towards features that are important to the user.

We apply our map algorithm to two domains: news articles and scientific papers, adapting
the map objective to different domain characteristics. For example, in the news domain we have
only the article’s content to rely upon; in the scientific domain we can take advantage of the side
information provided by the citation graph.

Contributions

Our main contributions are as follows:

• Formalizing characteristics of a good story and the notion of coherence (Chapter 2).

• Providing an efficient algorithm for connecting two fixed endpoints while maximizing
chain coherence.

• Proposing the notion of a metro map and formalizing metrics characterizing good metro
maps: coherence, coverage and connectivity (Chapter 3).

• Adapting metro maps to the news domain, and formalizing influence with no link structure
(Chapter 4).

• Adapting metro maps to the scientific domain, taking advantage of the additional structure
encoded in the citation graph (Chapter 5):
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• Characterizing the probability that ideas in two papers stem from a common source,
then using this notion to define coherence of research lines.

• Quantifying the impact of one paper on the corpus.
• Proposing a notion of connectivity that captures how different lines of research can

still interact with each other, despite not intersecting.

• Providing efficient methods with theoretical guarantees to compute these metrics and find
a diverse set of high-impact, coherent storylines and their interactions (Chapter 3).

• Integrating user preferences into our framework by providing appropriate user-interaction
models (Chapters 2,3).

• Performing validation studies with users that highlight the promise of the methodology, as
our method outperforms popular competitors. In Chapter 4 we show how our algorithms
effectively help users understand the news, especially for stories without a single dominant
storyline. In Chapter 5 we show that map users find better papers and cover more important
areas than users of competitor systems.
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Chapter 2

Connecting the Dots: Constructing a Single
Line

This chapter is based on [Shahaf and Guestrin, 2010] and [Shahaf and Guestrin, 2012].
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Maps are complex structures. Before tackling them, we focus on a simpler task: a map
containing only a single line. To further simplify the task, we assume the endpoints of the
line are known. In other words, we are interested in investigating methods for automatically
connecting the dots. Given two articles, our system automatically finds a coherent chain linking
them together. For example, in the news domain, the system can recover the chain of events
starting with the decline of home prices (January 2007), and ending with the ongoing health-care
debate.

In this chapter, we formalize the characteristics of a good chain and provide an algorithm to
connect two fixed endpoints. In Chapter 4 we evaluate our algorithm over real news data. Our
user studies demonstrate the algorithm’s effectiveness in helping users understanding the news.
In Sections 2.3 and 3.3 we incorporate user feedback into our framework, allowing the stories to
be refined and personalized.

In terms of our three characteristics,

N Expressing information need The input is a pair of articles, s and t.

N Structured output The output is a chain of articles connecting s to t.

N Interaction Users interact with the chain in various ways, including refining it, and tailoring
it to their interests by increasing/decreasing the importance of specific words.

2.1 What makes a story good?

Our goal is to find a good path between two articles, s and t. A natural thing to do would be
to construct a graph over the articles and find the shortest s-t path. In case there are no edges
between articles, we will have to add them ourselves, e.g., by linking similar articles together.

However, this simple method does not necessarily yield a good chain. Suppose we try to find
a coherent chain of events between Clinton’s alleged affair and the 2000 election Florida recount.
We pick two representative documents,

s: Talks Over Ex-Intern’s Testimony On Clinton Appear to Bog Down (Jan 1998)
t: Contesting the Vote: The Overview; Gore asks Public For Patience (Nov 2000)

and find a shortest path between them. The result is shown on Figure 2.1 (left). This chain of
stories is rather erratic, passing through the Microsoft trial, Palestinians, and European markets
before returning to Clinton and American politics. Note that each transition, when examined out
of context, is reasonable: for example, the first and the second articles are court-related. Those
correlations are marked by dashed lines in Figure 2.1.

The problem seems to lie with the locality of shortest-path. Every two consecutive articles
are related, but there is no global, coherent theme to the chain as a whole. Rather, shortest-path
may exhibit stream-of-consciousness behaviour, linking s and t by a chain of free associations.
A better chain is in Figure 2.1 (right). This chain tells the story of Clinton’s impeachment and ac-
quittal, the effect on Al Gore’s campaign, and finally the elections and recount. In the following,
we identify the properties which make this chain better.
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Figure 2.1: Two examples of stories connecting the same endpoints. Left: chain created by shortest-path
(dashed lines indicate similarities between consecutive articles). Right: a more coherent chain. Activation
patterns for each chain are shown at the bottom; the bars indicate appearance of words in the article above
them.

Let us take a closer look at these two chains. Figure 2.1 (bottom) shows word activation
patterns along both chains. Bars correspond to the appearance of a word in the articles depicted
above them. For example, the word ‘Clinton’ appeared throughout the entire right chain, but only
at the beginning and the last two articles on the left. It is easy to spot the associative flow of the
left chain in Figure 2.1. Words appear for very short stretches, often only in two neighbouring
articles. Some words appear, then disappear for a long period and re-appear. Contrast this with
the chain on the right, where the stretches are longer (some words, like Clinton and Lewinsky,
appear almost everywhere), and transitions between documents are smoother. This observation
motivates our definition of coherence in the next section.

2.1.1 Formalizing story coherence
Let D be a set of articles, andW a set of features. For the sake of presentation, assume elements
ofW are words or phrases. Each article is a multiset of elements ofW . Given a chain (d1, ..., dn)
of articles from D, we can estimate its coherence from its word activation patterns. One natural
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definition of coherence is

Coherence(d1, ..., dn) =
n−1∑
i=1

∑
w

1(w ∈ di ∩ di+1).

Every time a word appears in two consecutive articles, we score a point. This objective has
several attractive properties; it encourages positioning similar documents next to each other and
rewards long stretches of words. It is also very simple to compute. However, this objective
suffers from serious drawbacks:

Weak links They say that a chain is only as strong as its weakest link; this applies to our chains
as well. Summing over the transitions can lead to ‘broken’ chains (having weak links),
since a chain with many strong links and few weak ones may still score very high. For
example, a chain in which all articles but the last one are about the Lewinsky scandal will
receive a good score, while not connecting the endpoints in any way.

A more reasonable objective would consider the minimal transition score instead of the sum.

Coherence(d1, ..., dn) = min
i=1...n−1

∑
w

1(w ∈ di ∩ di+1)

However, other drawbacks still exist.
Missing words Due to our noisy features, some words do not appear in an article, although they

should have. For example, if a document contains ‘lawyer’ and ‘court’ but not ‘prosecu-
tion’, chances are ‘prosecution’ is still a highly-relevant word. Considering only words
from the article can be misleading in such cases.

Moreover, even if our features were not noisy, an indicator function is not informative enough
for our needs.
Importance Some words are more important than others, both on a corpus level and on a doc-

ument level. For example, in the shortest-path chain, the first two articles shared several
words, among them ‘judge’ and ‘page’. Clearly, ‘judge’ is more significant, and should
affect the objective function more.

Combining Importance and Missing words, it becomes clear that we need more than a
simple feature indicator. Rather, we need to take into consideration the influence of di on di+1

through the word w. We defer the formal definition of influence to later (See Sections 4.2.1,
5.2.1 for domain-specific formulations). Intuitively, Influence(di, dj | w) is high if (1) the two
documents are highly connected, and (2)w is important for the connectivity. Note thatw does not
have to appear in either of the documents. See Figure 2.2 for an example: the source document
d0 is

d0 :Judge Lance Ito lifted his ban on live television coverage of the O.J. Simpson trial

We calculated word-influence from d0 to two other documents, using methods explained in Sec-
tion 4.2.1. The blue bars (in the back) represent word influence for document
d1 :O.J. Simpson’s defense lawyers told the judge they would not object to the introduction of

DNA evidence
and the red bars (front) represent word influence for
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Super Bowl 49ers

DNA evidence

Word Influence
0.07

Figure 2.2: Word influence from an article about the OJ Simpson trial to two other documents, one about
football and another about DNA evidence.

d2 :Winning three consecutive Super Bowls would be a historic accomplishment for San
Francisco 49ers

First, note that the blue bars are generally higher. This means that d1 is more relevant to
the source article d0. The influential words for d1 are mostly court-related, while d2’s are sport-
related (interestingly, the word ‘Defense’ is strong in both documents, for completely different
reasons). Note that many of the influential words do not appear in either of the three articles,
thereby solving the Missing words problem. With the new Influence notion, our objective can
be re-defined as

Coherence(d1, ..., dn) = min
i=1...n−1

∑
w

Influence(di, di+1 | w)

This new objective, while better, still suffers from the problem of Jitteriness.

Jitteriness: the objective does not prevent jittery activation patterns, i.e., topics that appear and
disappear throughout the chain.

One way to cope with jitteriness is to only consider the longest continuous stretch of each
word. This way, going back-and-forth between two topics provides no utility after the first topic
switch. Remember, this stretch is not determined by the actual appearance of the word along
the chain; words may have a high influence in some transition even if they are missing from one
(or both) of the articles. Rather, we define an activation pattern arbitrarily for each word, and
compute our objective based on it. The coherence is then defined as the score under the best
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w1

w2

w3

D1                D2              D3               D4                D5              D6

word-init(w2,d3)=0 
word-act(w2,d3)=.25

word-init(w3,d4)=.1 
word-act(w3,d4)=.1

word-init(w3,d5)=.8
word-act(w3,d5)=.9

D1                D2

D3

w1

w2

w1

w2

w1

w2

w1

w2

node-act
(d3)=1

next-node
(d2,d3)=0

word-act
(w1,d1)=.9

trans-act
(w1,d1,d3)=.9

Figure 2.3: An illustration of the results of the linear program, showing initialization and activation levels
along a chain for three words. Activation level is the height of the bars. Initialization level is the difference
in activation levels between two consecutive transactions, if the activation level has increased.

activation pattern:

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w)1(w active in di, di+1) (∗)

Since influence is non-negative, the best solution is to activate all words everywhere. In
order to emulate the behaviour of the activation patterns in Figure 2.1, we constrain the possible
activation patterns we consider: we limit the total number of active words and the number of
words that are active per transition. In order to avoid multiple stretches, we allow each word to
be activated at most once.

Instead of using binary activations (words are either active or inactive), we propose a softer
notion of continuous activations. A word’s activation is in the range [0, 1], signifying the degree
to which it is active. This leads, quite naturally, to a formalization of the problem as a linear
program.

Linear Program Formulation

The objective function (*) we defined in the previous section can be readily formalized as a linear
program (LP). The LP is specified in Figure 2.4 and illustrated in Figure 2.3.

We are given a chain of n chronologically-ordered documents, d1, ..., dn. First, we define
variables describing word activation levels. We define a variable word-activew,i for each docu-
ment i = {1, ..., n − 1} and word w. Variable word-activew,i measures the activation level of
w during the transition from di to di+1. In Figure 2.3, those variables are represented by the
height of the bars. When a word’s activation level increases between two consecutive transac-
tions (di−1 − di − di+1), we say it was initialized in di. We define another variable word-initw,i
indicating the initialization level of w in di. In the 0-1 case of Figure 2.1, word-initw,i = 1 means
that w is first activated in di. In the continuous case of Figure 2.3, word-initw,i corresponds to the
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max minedge

Smoothness

//word w initialized at most once

∀w
∑
i

word-initw,i ≤ 1 (2.1.1)

//if w is active in the ith transition,

//either it was active before or just initialized

∀w,i word-activew,i ≤ word-activew,i−1 + word-initw,i (2.1.2)

//no words are active before the chain begins

∀w word-activew,0 = 0 (2.1.3)

Activation Restrictions

//no more than kTotal words activated∑
w,i

word-initw,i ≤ kTotal (2.1.4)

//no more than kTrans words active per transition

∀i
∑
w

word-activew,i ≤ kTrans (2.1.5)

Objective

//minedge holds the minimum score over edges

∀i minedge ≤∑
w

word-activew,i · influence(di, di+1 | w) (2.1.6)

∀w,i word-activew,i,word-initw,i ∈ [0, 1] (2.1.7)

Figure 2.4: Scoring a chain.

increase of height between two consecutive transitions. Note that in the continuous case, a word
can be initialized several times.

The LP has three main parts. In Smoothness, we require that the activation patterns are
smooth: First, constraint (1) requires that each word is activated at most once. Constraint (2) links
the initialization and activation variables together. It ensures that an active word w implies that
eitherw was active in the previous transition, or it just got activated. We also set word-activew,0 =
0 (3). Intuitively, it means that no words were active before the beginning of the chain.

In Activation Restrictions, we limit the total number of active words (4) and the number of
words that can be active during a single transition (5). We use parameters kTotal and kTrans
to control the number of active words. The interplay between those two parameters controls the
length of activation segments. For example, if kTotal ∼ kTrans · (K − 1), the LP might pick
different words for every transition, and segments will be short. See Section 2.2.2 for further
discussion.

Finally, we get to the Objective Function. For every edge i, we calculate its influence. Based
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on Equation (*), edge influence is the weighted influence of the active words:∑
w

word-activew,i · influence(di, di+1 | w)

Our goal is to maximize the influence of the weakest link: to do this, we define a variable
minedge, which takes the minimum influence across all edges (6). Our objective is to maximize
this variable.

As a sanity check, we tried the LP on real chains. Figure 2.5 (left) shows the best activation
pattern found for a chain connecting 9/11 and Daniel Pearl’s murder (top five words). This
pattern demonstrates some of the desired properties from Section 2.1: the word ‘Terror’ is present
throughout the whole chain, and there is a noticeable change of focus from Bin Laden to Pakistan
and the kidnapped journalist. Figure 2.5 (right) shows activation × influence (rescaled). Notice
that words with the same activation levels can have different levels of influence, and thus different
effect on the score.

(a) (b)

Figure 2.5: Activation patterns found by our algorithm for a chain connecting 9/11 to Daniel Pearl’s
murder. (a): Activation levels. (b): Activation levels weighted by the influence (rescaled). For illustrative
purposes, we show the result of the integer program (IP) we get replacing constraint (7) of the LP by its
binary equivalent.

2.2 Finding a Good Chain
In the previous sections we discussed a method to score a fixed chain. However, we are still left
with the problem of finding a chain:

Problem 2.2.1. Given a set of documents D, two special documents s, t ∈ D and an integer K,
find a chain of documents of length K − 2 that maximizes Coherence(s, d1, ...dK−2, t).

One natural way is to use local search. In local search, we start from a candidate chain and
iteratively move to a neighbour chain, chosen to maximize our scoring function. Local search
is easy to understand and to implement; however, it suffers from some known drawbacks, in
particular a tendency get stuck in a local optimum. Our weakest-link objective creates a plethora
of local optima, thus aggravating the problem.

Another common technique to tackle hard problems is approximation algorithms. Approx-
imation algorithms are heuristics that have provably good guarantees on the quality of their
solutions. However, in our case, the LP objective poses difficulties along this path.
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Consider two coherent chains, (d1, ..., dk) and (dk, ..., d2k−1). Intuitively, concatenating the
chains can result in a much-weaker chain; despite the fact that both chains share an article, they
may focus on completely different aspects. However, the LP objective implies that

Coherence(d1, .., d2k−1) ≥
1

2
min{Coherence(d1, ..., dk),Coherence(dk, .., d2k−1)}.

since we can scale down the LP variables of both chains by a factor of two, and the result is a
valid solution for the concatenated chain. In other words, concatenating two chains will cause us
to lose at most a factor of two. A similar principle holds for concatenating more than two chains.
In fact, a greedy algorithm which considers single edges, completely out of context, will result
in a 1

K
approximation ratio.

For this reason, we abandon high approximation ratios. Instead, we will now explore practical
ways to speed up the process of finding an optimal chain.

2.2.1 The Algorithm
Of all search strategies used in problem solving, one of the most popular methods for exploiting
heuristic information to cut down search time is the informed best-first strategy. The general
philosophy of this strategy is to use the heuristic information to assess the merit latent in every
candidate direction exposed during the search and explore the direction of highest merit first.

Refer to Algorithm 1 for our main algorithm, findOptimalChain. The input to the
algorithm is a directed graph G = (V,E) over articles, two designated vertices s and t, and an
integer K. The output is the most coherent chain between s and t of length K that uses only
edges from E. In other words, the graph G encodes the transitions that are valid to use in a
chain; for example, we could use it to encode chronological constraints.

The outline of the algorithm is based on the generalized best-first strategy [Dechter and Pearl,
1985]. We keep a priority queue of selected chains (line 6). We initialize the queue with the chain
consisting only of vertex s (line 7). At each iteration, we expand the chain which features the
highest merit (line 9), generating all of its valid extensions (lines 17-18). If the current chain if
of length l and ends with vertex u, validExtensions(u, l) returns the set of neighbours of u in
G which can reach t in exactly K − l − 1 steps.

We would like to terminate the search as soon as the first s-t chain of length K is selected
for expansion (line 16), but without compromising optimality. In order to do this, it is sufficient
to require that the evaluation function used to sort the queue is admissible – always provides
optimistic estimates of the final costs. We will use the following lemma:

Lemma 2.2.2. Let πk = (d1, d2, ..., dk) a chain, and πk+1 = (d1, d2, ..., dk, dk+1) a chain extend-
ing πk by a single article dk+1. Then Coherence(πk) ≥ Coherence(πk+1).

Proof. Consider the LPs for πk, πk+1, denoted LPk and LPk+1. We now show that each feasible
solution to LPk+1 maps to a feasible solution of the same value for LPk.

The variables of LPk are a subset of the variables of LPk+1. We use the simplest mapping:
given a solution to LPk+1, we assign the same value to all shared variables of LPk. This is
a feasible solution: Constraints (2),(3),(5),(6) and the relaxed version of (7) are all satisfied
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Algorithm 1: findOptimalChain(G, s, t,K)
input : G = (V,E) graph, s, t ∈ V , K integer.
output: A most coherent s-t chain of length K using only edges from E.

1 foreach v ∈ V compute possible distances from s to v and from v to t ;
2 if no s-t chain of length K exists then
3 return ∅ ;

// Calculate an upper limit for edge coherence
4 foreach (u, v) ∈ E do
5 val(u,v) = evalEdge(u, v) ;

6 Q = New priority queue ;
7 Insert 〈(s), 0〉exact into Q ;
8 while Q 6= ∅ do
9 Extract p = 〈π, valπ〉 from the top of Q ;

10 if p is marked ‘approx’ then // Replace with a tighter estimate: evaulate with LP
of Section 2.1

11 newvalπ= evalLP(π) ;
12 Insert 〈π, newvalπ〉exact into Q ;

13 else // p is marked as ‘exact’
// Is it a solution? If not, find valid chain extensions

14 Let u be the last node of π;
15 if u = t then // Found the best s-t chain of length K
16 return π ;

// Find all neighbours of u which can reach t in K − |π| − 1 steps, and insert
extended chain into the queue

17 foreach v ∈ validExtensions(u, |π|) do
18 Insert 〈(π, v),min{valπ, val(u,v)}〉approx into Q ;
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directly by LPk+1. Constraints (1) and (4) provide upper-bounds on summations of non-negative
numbers. Since the bound holds for LPk+1, it must hold when we sum over a subset of the
numbers. Therefore, constraints (1) and (4) are satisfied in in LPk as well.

Finally, minedge, the objective variable, is also a shared variable. Thus, there exists a feasible
solution to LPk of the same value. Since this holds for every feasible solution to LPk+1, we have
shown that Coherence(LPk) ≥ Coherence(LPk+1).

As a direct consequence, any chain extending π is always at most as coherent as π. Therefore,
Coherence(π) is an optimistic evaluation for each of its extensions, and we can use it without
compromising optimality. In lines 11-12 we call evalLP to evaluate chains using the LP from
Section 2.1.1.

Using the LP to evaluate chains has many benefits; in particular, solving the LP is very quick,
usually taking a fraction of a second. In fact, it is so quick that we can use an Integer Program (IP)
solver and solve the problem with binary activations. Still, the lemma hints at another shortcut
we may take: when we extend chain π with edge e, the value of the extended chain cannot exceed

min{Coherence(π),Coherence(e)}. (2.2.1)

If e happens to be a weak edge, we do not need to solve the LP for the extended chain in order
to know it is also weak.

We avoid unnecessary LP computations by caching the coherence of all single edges in ad-
vance (line 5). Note that we do not have to solve the LP for single edges. Instead, evalLP(u, v)
computes the sum of influences of the top kTrans influential words for edge (u, v). The result
is precisely the coherence of the edge, and is very efficient to compute. When we come across
a chain for the first time, we evaluate it using equation 2.2.1 (line 18). Only when the chain is
chosen for expansion, we replace this approximation with the tighter bound derived from the LP
(lines 10-12).

Theorem 2.2.3. Algorithm findOptimalChain always terminates with an optimal solution,
or returns ∅ if no solution exists.

Proof. In line 1, the algorithm computes all possible distances from s and to t. The algorithm
exits on line 3 and returns ∅ iff s cannot reach t in K − 1 steps. By definition, this is exactly the
case when no solution exists.

The optimality part of the proof follows from the admissibility of the evaluation function.
When the algorithm terminates its search, it has found a chain whose actual coherence is higher
than the estimated coherence of any chain which extends any chain in the queue. But since those
estimates are admissible (and thus optimistic), we can safely ignore the chains in the queue.

In the worst case, the number of nodes expanded is exponential in K. In practice, however,
the search is very quick (See Chapter 6).

� Example 2.2.4. Figure 4.2 shows a chain connecting Clinton’s first testimony to his acquittal.
The chain focuses on the legal process, including subpoenas and witness choices. We reproduce
it here for the reader:
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• Clinton, in First for a President, Testifies in Sex Harassment
Suit

• SUBPOENAS SENT AS CLINTON DENIES REPORTS OF
AN AFFAIR WITH AIDE AT WHITE HOUSE

• An Alternative to Impeachment

• Obstruction Charge Drove Managers’ Witness Choices

• A Dispirited Hyde Opposes Indicting Clinton

• Road to Reconciliation Appears Long and Hard After Ac-
quittal

2.2.2 The effect of kTotal,kTrans

The LP of Section 2.1 has introduced two parameters, kTotal and kTrans. kTotal restricts
the total number of active words, and kTrans restricts the number of active words per transition.
The choice of parameters determines valid activation patterns, and thus has a significant effect on
the value of chains. To demonstrate the effect of these parameters, we have chosen two articles
about OJ Simpson’s trial. We have then computed the best chain between the articles for different
values of kTotal and kTrans.

Without loss of generality, we only consider cases where kTotal ≥ kTrans. If kTotal �
kTrans (and in particular, when kTotal approaches kTrans · (K − 1)), the LP (or IP) can
afford to pick kTrans different words for each transition. This results in a behaviour similar
to the shortest-path chains of Section 2.1. Figure 2.6(b) shows activation levels of the optimal
chain. Note the short segments; as in Section 2.1, they indicate the lack of a global theme.

Setting kTotal = kTrans is equivalent to picking kTotal words to be active throughout the
chain. In other words, we are looking for kTotal segments of length K. Similar to the way short
segments encourage rare words, long segments push towards common words. See Figure 2.6(a):
active words include names of key figures in the trial, and generic words such as ’editorial’.
Note that the last segment is not of full length; this implies that activating the word in the final
transition would have no effect on our weakest-link objective.

Medium-length segments (Figure 2.6(c)) seem to combine the best of both worlds. Transi-
tions are forced to share words between them, but these words do not have to be common across
the entire chain. In our experiments, we have found that kTotal

4
≤ kTrans ≤ kTotal

2
often pro-

duces good results for K = 7. When kTotal is small, the words tend to capture the essence of
the story nicely, but the stories themselves tend to be rather simple. As we increase kTotal, the
stories become more and more complicated. As before, increasing kTotal too much can result
in behaviour similar to the shortest-path chains.
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Ronald Goldman Neil Lewis Judge Lance Ito  

1 1 1 1 1 0 0 0 1 1 1 1 1 1 1

jury system  jury system  Ronald Goldman

1 1 1 1 1 0 0 0 1 1 1 1 1 1 1

David Margolick  Hank Goldberg trial  

1 1 1 1 1 0 0 0 1 0 1 1 1 1 1

Judge Lance Ito  Barry Scheck black 

1 1 1 1 1 0 0 1 1 0 0 1 1 1 1

trial  Nicole Brown Simpson  jury system  

1 1 1 1 1 0 0 1 0 0 0 0 1 1 1

editorial disclosure information verdict 

1 1 1 1 0 0 0 1 0 0 0 0 0 1 1

Dennis Fung (criminologist) law legislation

0 0 1 0 0 0 0 1 1 0

Kenneth Noble Johnny Cochran Jr  

0 1 0 0 0 1 1 1 0 0

Jeanette Harris  Marcia  Clark  

0 1 0 0 0 1 1 1 0 0

David Margolick   Mark Fuhrman (detective)

1 1 0 0 0 1 1 0 0

trial   

1 0 0 0 0

Christopher Darden  

1 0 0 0 0

(a) kTotal = kTrans (b) kTotal� kTrans (c) kTotal > kTrans

Figure 2.6: Activation levels for the best s-t chain for different values of kTotal and kTrans.

2.3 Interaction
Thus far, we have defined a way to find chains connecting two endpoints. However, the user may
not find the resulting chain satisfactory. In information retrieval systems, the solution is often to
let the users revise their queries; for a complex information need, users may need to modify their
query many times. In this section, we propose to take advantage of the structured nature of the
chains, and explore more expressive forms of interaction. We explore two different types of user
feedback: refinement of a chain, and tailoring to user interests.

Refinement: When presenting a chain to a user, some of the links in the chain may not be
obvious. Moreover, the user might be especially interested in a specific part of the chain.
For example, a user not familiar with the details of the Lewinsky story might want to
further expand the first link of Figure 2.1 (right). We provide the user with a mechanism
to indicate areas in the chain which should be further refined; a refinement may consist of
adding a new article, or replacing an article which seems out of place.
Since evaluating a single chain is quick, the refinement process is very efficient. Starting
from the original chain, we try all possible replacement/insertion actions. We evaluate
each chain (see Section 2.1), and return the best one.
In Figure 2.7, the starred article is the result of an insertion request. Adding the article
strengthened the end of the chain, while maintaining the global theme.

Incorporate user interests: There can be many coherent ways to connect s and t, especially
when they are about similar topics. For example, consider the OJ Simpson trial story.
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• Simpson Defense Drops DNA Challenge

• Issue of Racism Erupts in Simpson Trial

• Ex-Detective’s Tapes Fan Racial Tensions in Los Angeles

• Many Black Officers Say Bias Is Rampant in LA Police
Force

• With Tale of Racism and Error, Lawyers Seek Acquittal

• ? In the Joy Of Victory, Defense Team Is in Discord ?
? (Defense lawyers argue about playing the race card) ?

• The Simpson Verdict

Figure 2.7: Chain refinement. The starred article was added in order to strengthen the last link.

Suppose the user is interested in the racial aspects of the case, but our algorithm finds a
chain focusing on the verdict. We propose a mechanism for the user to focus the chains
around concepts they find important. In our case, the user may increase the importance of
‘racial’ or ‘black’, and perhaps decrease the importance of ‘verdict’. We defer the details
of this mechanism to Section 3.3.
The idea of personal word preferences might also be useful for the refinement task. Sup-
pose the user asked to replace an article di; if there are many articles similar to di, local
search is likely to return one of them. We can implement a mechanism similar to our work
in [El-Arini et al., 2009] to find words which might be attributed for the user’s dislike of
di, and decrease their importance. This way, the replacement article will not be similar.

2.4 Summary
In this chapter we proposed a mechanism for connecting two input articles by a coherent chain.
Importantly, we claim that coherence is a global property of a chain: coherent chains have a
theme running through them. We formalized this intuition as an optimization problem, and used
a linear programming solver to score a chain. Next, we discussed mechanisms that allow users
to refine and refocus chains according to their interests. In later chapters, we apply these ideas to
real-world datasets.
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Chapter 3

Constructing a Map

This chapter is based on [Shahaf et al., 2012b].
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Now that we know how to construct single lines, we can tackle complete maps. In this
chapter, we formalize the characteristics of a good map and provide an algorithm to construct
one. Our description of the characteristics and the algorithm is intentionally abstract; in chapters
4 and 5 we demonstrate how to adapt these abstract notions to different domains.

In terms of our three characteristics,

N Expressing information need The input is a set of articles, D.

N Structured output The output is a map of articles summarizing and visualizing D.

N Interaction Users tailor the map to their interests by increasing/decreasing the importance
of specific words.

3.1 Properties of a Good Map
What are desired properties of a metro map? In the following, we motivate and formalize several
(sometimes conflicting) criteria. In Section 3.2, we present a principled approach to constructing
maps that optimize tradeoffs among these criteria. First, we need to formally define metro maps.

Definition 3.1.1 (Metro Map). A metro mapM is a pair (G,Π), where G = (V,E) is a directed
graph and Π is a set of paths inG. We refer to paths as metro lines. Each (u, v) ∈ E must belong
to at least one metro line.

austerity

bailout

junk 

status

Germany

protests

strike

labor unions
Merkel

Figure 3.1: Greek debt crisis: a simplified metro map. Metro lines are coherent storylines (stops corre-
spond to articles).

As an example, the map in Figure 3.1 includes three metro lines. Vertices V correspond to
news articles, and are denoted by docs(M). The lines of Π correspond to aspects of the story. A
key requirement is that each line tells a coherent story: Following the articles along a line should
give the user a clear understanding of evolution of a story.

Coherence is crucial for good maps, but is it sufficient as well? In order to put this matter to
a test, we found maximally-coherent lines for the query ‘Bill Clinton’ (using methods of Chapter
2). The results were discouraging. While the lines we found were indeed coherent, they were not
important. Many of the lines revolved around narrow topics, such as Clinton’s visit to Belfast,
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or his relationship with his religious leader. Furthermore, as there was no notion of diversity, the
lines were very repetitive.

This example suggests that selecting the most coherent lines does not guarantee a good map.
Instead, the key challenge is balancing coherence and coverage: in addition to being coherent,
lines should also cover topics which are important to the user.

Finally, a map is more than just a set of lines; there is information in its structure as well.
Therefore, our last property is connectivity. The map’s connectivity should convey the under-
lying structure of the story, and how different aspects of the story interact with each other.

In Sections 3.1.1-3.1.3, we formalize coherence, coverage and connectivity. In Section
3.1.4, we explore their trade-offs and combine them into one objective function.

3.1.1 Coherence

Coherence was defined in Chapter 2. The coherence of a line is defined as:

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w)1(w active in di, di+1) (∗)

In other words, coherence is an optimization problem, where the goal is to choose a small set
of features (called ‘active’), and score the chain based only on these features. The score of the
chain is based on the strength of its weakest link. Constraints on possible activations enforce a
small number of words and smooth transitions, imitating the behaviour of Figure 2.1.

Note that in order to compute coherence, we assume we can compute the influence function
Influence(di, di+1 | w), measuring how important w is in the transition from di to di+1. In
Chapters 4 and 5 we give concrete examples of such functions.

Finally, we want all the lines of the map to be coherent. Therefore, the coherence of a map is
defined as the minimal coherence across its lines Π.

3.1.2 Coverage

In addition to coherence, we need to ensure that the map covers topics which are important to
the user. The goal of coverage is twofold: we want to both cover important aspects of the story,
but also encourage diversity.

Before we talk about coverage, we need to define the elements we wish to cover. Let E be
a set of elements. The elements could be low level, such as words (“Obama", “China"), or high
level, such as topics from a topic model. In Section 5.2.2 we propose elements which are not
based on article content at all.

In addition to elements E , we assume we are given a function coverdi(e) : E → [0, 1],
quantifying the amount that document di covers element e. In the simplest case, cover·(·) is
a binary indicator function, effectively turning documents into subsets of features. As another
example, if E is a set of words, we can define cover·(·) as tf-idf values.
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Our goal is extend the given function cover·(·) to maps. Since in our model coverage does not
depend on map structure, it is enough to extend cover·(·) to a function over sets of documents.

A natural candidate for coverM(e) is to view set-coverage as an additive process:

coverM(e) =
∑

di∈docs(M)

coverdi(e)

Additive coverage is natural and easily computable. However, it suffers from one major
drawback: since the coverage each document provides is independent of the rest of the map,
additive coverage does not encourage diversity, and redundant maps can achieve high coverage.

In order to encourage diversity, we require that set coverage be a diminishing-returns pro-
cedure. In other words, if the map already includes documents which cover e well, coverM(e)
should be nearly maximized, and adding another document which covers e well should provide
very little extra coverage of e. This encourages us to pick articles which cover other features,
promoting diversity.
Formally, coverM(e) should satisfy two requirements:

1. Relation to Single-Document Coverage: coverM(e) should be a function of single-
document coverage:

coverM(e) ≡ g({coverdi(e) | di ∈ docs(M)})

2. Submodularity: A set function f is submodular if for all X ⊆ Y, x /∈ Y we have

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y )

By requiring that
coverM(e) ≡ f(docs(M))

for some submodular function f , we achieve the diminishing-returns behaviour.

� Example 3.1.2 (Coverage for the News Domain). In Section 4.2.2 we
define coverage as a sampling procedure:

coverM(e) = 1−
∏

di∈docs(M)

(1− coverdi(e))

Each document in the map tries to cover feature e with probability coverdi(e).
The coverage of e is the probability at least one of the documents succeeded;
refer to Section 4.2.2 for further discussion and proof of submodularity.

We now have a way to measure how much a map covers a single feature. Finally, we want
to measure how much a map covers the entire corpus. The submodularity of coverM(e) already
encourages diversity, but we still need to ensure that the map touches upon aspects of the corpus
that are important.

In order to know which aspects of the corpus are important to the user, we assume we are
given non-negative weights λe for each element e, signifying the importance of the element. For
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example, if elements are words (and stopwords have been removed), the weights can correspond
to word frequency in the dataset.

Finally, we model the amount M covers the corpus as the weighted sum of the amount it
covers each element:

Cover(M) =
∑
e

λecoverM(e)

The weights bias Cover towards maps which cover important features of the corpus. In
Section 3.3 we discuss learning a personalized notion of coverage.

3.1.3 Connectivity
Our final property is connectivity. There are many ways to measure connectivity of a map: one
can count the number of connected components, or perhaps the number of vertices that belong
to more than one line.

We conducted preliminary experiments exploring different notions of connectivity. These
results suggest that the most glaring usability issue arises when maps do not show connections
that the user knows about. For example, in a map about Israel, a line about legislative elections
was not connected to a line about the chosen government’s actions. We came to the conclusion
that the connectivity objective needs to be a pairwise function of the metro lines:

Conn(M) =
∑
i<j

Conn(πi, πj)

� Example 3.1.3 (Connectivity for the News Domain). In the news domain
(Chapter 4), our user studies indicated that the type of connection (one arti-
cle, multiple articles, position along the line) was not as important as its mere
existence. Therefore, we simply defined connectivity as the number of lines of
Π that intersect:

Conn(M) =
∑
i<j

1(πi ∩ πj 6= ∅)

3.1.4 Objective function: Tying it all together
Now that we have formally defined our three properties, we can combine them into one objec-
tive function. We need to consider tradeoffs among these properties: for example, maximizing
coherence often results in repetitive, low-coverage chains. Maximizing connectivity encourages
choosing similar chains, resulting in low coverage as well. Maximizing coverage leads to low
connectivity, as there is no reason to re-use an article for more than one line.

Let us start with coherence. As mentioned in Section 3.1, we are not interested in maximizing
coherence. Instead, we treat coherence as a constraint: only consider lines above a certain co-
herence threshold τ , whether absolute or relative. In order to pick τ , one can try different values
for multiple queries, taking care not to re-use these queries in user studies. In our experiments,
we often used the top 10% of the chains. In the following, we assume that τ is fixed, and denote
a chain coherent if its coherence is above τ .
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We are left with coverage and connectivity for our objective. Suppose we pick connectivity
as our primary objective. Our biggest obstacle is that coherent lines tend to come in groups:
a coherent line is often accompanied by multiple similar lines. Those lines all intersect with
each other, so choosing them maximizes connectivity. However, the resulting map will be highly
redundant. For this reason, we choose coverage as our primary objective.

Let κ be the maximal coverage across maps with coherence ≥ τ . We can now formulate our
problem:

Problem 3.1.4. Given a set of candidate documents D, find a mapM = (G,Π) over D which
maximizes Conn(M) s.t. Coherence(M) ≥ τ and Cover(M) = κ.

In other words, we first maximize coverage; then we maximize connectivity over maps that
exhibit maximal coverage.

There is one problem left with our objective: consider two metro lines that intersect at article
d. Our coverage function is a set function, therefore d is accounted for only once. In other words,
replacing d in one of the lines can only increase coverage. Since there usually exists a similar
article d′ which can replace d, the max-coverage map is often disconnected. Worse yet, it is often
unique. In order to mitigate this problem, we introduce slack into our objective:

Problem 3.1.5. Given a set of candidate documents D, find a mapM = (G,Π) over D which
maximizes Conn(M) s.t. Coherence(M) ≥ τ and Cover(M) ≥ (1− ε)κ.

for a given ε. Tuning ε on a separate set of queries, we found that values between 0.05-0.15 often
give reasonable results.

Finally, we need to restrict the size ofM; we chose to restrictM toK lines of length at most
l. Alternatively, since some stories are more complex than others, one may prefer to add lines
until coverage gains fall below a threshold.

Summary: The map objective can be thought of as:

“Find a diverge set of important storylines, and show how
they interact. ”

Note that maps can be applied to a variety of domains: in essence, maps are
useful whenever one can come up with a useful notion of a storyline. Story-
lines do not have to be chronological. Rather, there has to be a dependency
structure: reading an article is more beneficial after reading the previous arti-
cles in the storyline.
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3.2 Finding a Good Map

In this section, we outline our approach for solving Problem 3.1.5. In Section 3.2.1 we represent
all coherent chains as a graph. In Section 3.2.2 we use this graph to find a set of K chains that
maximize coverage; in Section 3.2.3, we increase connectivity without sacrificing coverage.

3.2.1 Representing all coherent chains

In order to pick good chains, we first wish to list all possible candidates. However, representing
all chains whose coherence is at least τ is a non-trivial task. The number of possible chains may
be exponential, and therefore it is infeasible to enumerate them all, let alone evaluate them.

Instead we propose a divide-and-conquer approach, constructing long chains from shorter
ones. This approach allows us to compactly encode many candidate chains as a graph. See
Figure 3.2 for an illustration: each vertex of the graph corresponds to a short chain. Edges
indicate chains which can be concatenated and still maintain coherence. A path in the graph
corresponds to the concatenated chain.

It is tempting to concatenate any two chains that share an endpoint. That is, concatenate
(d1, ..., dk) and (dk, ..., d2k−1) to form (d1, ..., d2k−1). However, caution is needed, as combining
two strong chains may result in a much weaker chain. For example, Chain B ended with an article
about protests in Greece. If we concatenate it with a (coherent) chain about protests across the
globe, the concatenated chain will change its focus mid-way, weakening coherence.

The problem appears to lie with the point of discontinuity: when we concatenate (d1, ..., dk)
with (dk, ..., d2k−1), there is no evidence that both chains belong to the same storyline, despite
having a shared article dk. From the user’s point of view, the first k articles are coherent, but
(d2, ..., dk+1) may not be. This observation motivates our next definition:

Definition 3.2.1 (m-Coherence). A chain (d1, ..., dk) has m-coherence τ if each sub-chain of
length m (di, ..., di+m−1) , i = 1, ..., k −m+ 1 has coherence at least τ .

The idea behindm-coherence is to control the discontinuity points. Choosingm is a tradeoff:
Increasing m results in more-coherent chains, as the user’s ‘history window’ is wider. However,
it is also more computationally expensive. In particular, if m = l the user remembers the entire
chain, thus l-coherence is equivalent to the regular notion of coherence. If m = 2, the user only

1 2 3

4 5 6 5 8 9

1 2 3 5 8 9

Figure 3.2: Encoding chains as a graph: each vertex of the graph corresponds to a short chain. A path in
the graph corresponds to the concatenated chain.
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33 Trapped Miners in Chile 
Say They’re Alive / 8.23.10

Chileans Work to Ensure
Miners Survive / 8.23.10

Chileans Work to Ensure
Miners Survive / 8.23.10

Carnival Air Fills Chilean Camp
as Miners Rescue Nears / 10.11.10

Facing Long Mine Rescue,

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

Facing Long Mine Rescue,

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

…

Chile Mine Rescue to Begin
Within Hours / 10.12.10

Chile Miners Honored by 
President in Capital / 10.26.10

Carnival Air Fills Chilean Camp
as Miners Rescue Nears / 10.11.10

Carnival Air Fills Chilean Camp
as Miners Rescue Nears / 10.11.10

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

Facing Long Mine Rescue,
Chile Spares No Expense/ 8.27.10

…

Figure 3.3: A fragment of the coherence graph G for m = 3. Note overlap between vertices.

remembers the last edge; therefore, 2-coherent chains optimize transitions without context, and
can result in associative chains like Chain A.

In practice, we chose the highest m we could afford computationally (our website should
handle queries in real time). After choosing an appropriate m, we rephrase Problem 3.1.5:

Problem 3.2.2. Given a set of candidate documents D, find a mapM = (G,Π) over D which
maximizes Conn(M) s.t. m-Coherence(M) ≥ τ and Cover(M) ≥ (1− ε)κ.

Representing all chains whose m-coherence is at least τ is a less daunting task. Observe that
m-coherent chains can be combined to form other m-coherent chains if their overlap is large
enough. Specifically, we require overlap of at least (m− 1) articles:

Observation 3.2.3. If chains c = (d1, ..., dk) and c′ = (dk−(m−2), ..., dk, ..., dr) are both m-
coherent for k ≥ m > 1, then the conjoined chain (d1, ..., dk, ..., dr) is also m-coherent.

The proof follows directly from Definition 3.2.1.
We can now construct a graph G encoding all m-coherent chains. We call G a coherence

graph. Vertices of G correspond to coherent chains of lengthm. There is a directed edge between
each pair of vertices which can be conjoined (m− 1 overlap). It follows from observation 3.2.3
that all paths of G correspond to m-coherent chains.

We are still left with the task of finding short coherent chains to serve as vertices of G.
These chains can be generated by a generalized best-first search strategy, similar to Section
2.2.1. In a nutshell, we keep a priority queue of sub-chains. We initialize the queue with all
chains consisting of a single transition. At each iteration, we expand the chain which features the
highest coherence, generating all of its extensions. When we reach a chain of length m, we make
it into a new vertex and remove it from the queue. We continue until we reach our threshold.
Since the evaluation function used to sort the queue is admissible (as a subchain is always at least
as coherent a chain which extends it), optimality is guaranteed. In Chapter 6, we present faster
methods to find good short chains.
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� Example 3.2.4 (Coherence Graphs). Figure 3.3 shows a fragment of a coherence graph for
m = 3. The figure depicts multiple ways to extend the story about the trapped Chilean miners:
one can either focus on the rescue, or skip directly to the post-rescue celebrations.

3.2.2 Finding a high-coverage map
In the previous section, we constructed a coherence graph G representing all coherent chains.
Next, we seek to use this graph to find a set of chains which maximize coverage, subject to map
size constraints.

Problem 3.2.5. Given G coherence graph, find paths p1...pK s.t. Cover(docs(
⋃
i pi)) is maxi-

mized, and |docs(pi)| ≤ l.

This problem is NP-hard, which necessitates resorting to approximation methods. First, let us
pretend that we can enumerate all paths of G that contain up to l documents. Then, we can take
advantage of the properties of Cover(·), as defined in Section 3.1.2. In particular, since Cover(·)
is a linear combination of submodular functions with non-negative coefficients, Cover(·) itself is
a submodular function.

Although maximizing submodular functions is still NP-hard, we can exploit the classic result
of Nemhauser et al. [1978], which shows that the greedy algorithm achieves a (1− 1

e
) approxima-

tion. In other words, we run K iterations of the greedy algorithm. In each iteration, we evaluate
the incremental coverage of each candidate path p, given the paths which have been chosen in
previous iterations:

IncCover(p|M) = Cover(p ∪M)− Cover(M)

That is, the additional cover gained from p if we already have articles ofM. We pick the best
path and add it toM.

Let us revisit our assumption: unfortunately, enumerating all candidate paths is generally
infeasible. Instead, we propose a different approach: suppose we knew the max-coverage path for
each pair of fixed endpoints, documents di and dj . Then, we could modify the greedy algorithm
to greedily pick a path amongst these paths only. Since there are only O(|D|2) such pairs, greedy
is feasible.

Computing the max-coverage path between two endpoints is still a hard problem. In order to
solve it, we formulate our problem in terms of orienteering. Orienteering problems are motivated
by maximizing some function of the nodes visited during a tour, subject to a budget on the tour
length.

Problem 3.2.6 (Orienteering). Given an edge-weighted directed graph G = (V,E, len) and a
pair of nodes s, t, find an s-t walk of length at most B that maximizes a given function f : 2V →
R+ of the set of nodes visited by the walk.

We set all edge lengths to 1. We want a path containing at most l articles; since each vertex
of G corresponds to m articles, and the overlap is m − 1, we set the budget B to be l −m. In
addition, we want f to reflect the incremental coverage of path p given the current map, so we
define

f(p) = IncCover(p|M)
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We adapt the submodular orienteering algorithms of Chekuri and Pal [2005] to our problem.
This is a recursive greedy algorithm (See Algorithm 2). Since we look for paths of a constant
size, its running time is polynomial (O(2nk)log k for paths of length k). Most importantly, it
yields an α = O(logOPT ) approximation. We combine the greedy algorithm with submodular
orienteering. At each round, we compute approximate best-paths between every two documents
(given the chains which have been selected in previous iterations) using submodular orienteering.
We then greedily pick the best one amongst them for the map. The algorithm achieves a 1 − 1

eα

approximation.

Algorithm 2: RecursiveGreedy(s, t, B,X, i) Chekuri and Pal [2005]
input : s, t vertices, B indicates that we seek an s-t walk of length at most B. X is

the set we wish to augment, and i indicates allowed depth of the recursion.

1 if there is no s-t walk of length at most B then
2 return infeasible;

3 if there is an edge between s and t then
4 P = s, t ;
5 else
6 P = ∅ ;

7 Base case: i = 0. return P;
8 m = IncCover(P | X);
9 foreach v ∈ V do

10 for b = 1...B do
11 P1 = RecursiveGreedy(s, v, b,X, i− 1);
12 P2 = RecursiveGreedy(v, t, B − b,X ∪ P1, i− 1);
13 if IncCover(P1 · P2 | X) > m then
14 P = P1 · P2;
15 m = IncCover(P1 · P2 | X);

16 return P ;

The main bottleneck in our algorithm is the need to re-evaluate a large number of candidates.
However, many of those re-evaluations are unnecessary, since the incremental coverage of a
chain can only decrease as our map grows larger. Therefore, we use CELF Leskovec et al. [2007],
which provides the same approximation guarantees, but uses lazy evaluations, often leading to
dramatic speedups.

3.2.3 Increasing connectivity
We now know how to find a high-coverage, coherent map M0. Our final step is to increase
connectivity without sacrificing (more than an ε-fraction of) coverage.

In order to increase connectivity, we apply a local-search technique. At iteration i, we con-
sider each path p ∈ Πi−1. We hold the rest of the map fixed, and try to replace p by p′ that
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Figure 3.4: An example of our results (condensed to fit space). This map was computed for the query
‘Gree* debt’. The main storylines discuss the austerity plans, the riots, and the role of Germany and the
IMF in the crisis.

increases connectivity and does not decrease coverage. At the end of the iteration, we pick the
best move and apply it, resulting inMi.

In order to find good candidates to replace a path p, we consider the map without p,Mi−1\p.
We re-use the technique of submodular orienteering and compute approximate max-coverage
paths between every two documents. In order to guide the process, we can bias the orienteering
algorithm into preferring vertices that already appear inMi−1 \ p. We consider all chains which
do not decrease map coverage, and pick the one which maximizes connectivity. We stop when
the solution value has not changed for T iterations. We can apply a variety of local-search
heuristics to improve the results, such as random restarts, plateau search, constraint weighting,
taboo search, and randomized tie breaking.

� Example 3.2.7 (Map). Figure 3.4 displays a sample map generated by the methodology. This
map was computed for the query ‘Gree* debt’. The main storylines discuss the austerity plans,
the riots, and the role of Germany and the IMF in the crisis. In order to facilitate navigation in
the map, we have added a legend feature. We assign a few characteristic words to each line. The
words chosen to describe each line carry the highest incremental coverage for that line.
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3.3 Interaction

3.3.1 Interaction with a Map

Models of interaction can be naturally integrated with metro maps. In order to be useful, the
model must be capable of representing users’ interests. We rely on user feedback in order to
learn preferences and adjust the maps accordingly. In the following, we illustrate the potential of
learning a personalized coverage function with an example.

Since our coverage objective is a set function, the most natural notion of feedback from a
machine learning perspective would be for users to provide a single label for the map, indicating
whether they like or dislike it. However, this approach is not practical. Since there are exponen-
tially many such maps, we are likely to need an extensive amount of user feedback before we
could learn the function.

Even more importantly, this approach makes it hard for users to form expressive queries.
Ideally, we would like to support queries of the form ‘I want to know more about the involvement
of Germany in the debt crisis’, or ‘I do not want to know about Wyclef Jean’s Haitian Presidential
bid’. However, labeling entire maps – or even single documents – is just not rich enough to
support this query model. Indeed, the user could indicate that they dislike Wyclef Jean articles
shown to them, but there is no way for them to specify that they would like to see something
which is not on the map.

We propose to let the user provide feature-based feedback instead. Feature-based feedback
provides a very natural way for supporting the queries mentioned above. For example, the user
could increase the importance of the word ‘Germany’ and decrease the importance of ‘Wyclef
Jean’ to achieve the desired effect.

There has been growing recent interest in feature-based feedback. Druck et al. [2008] pro-
posed a discriminative semi-supervised learning method that incorporates into training affinities
between features and classes. For example, in a baseball vs. hockey text classification problem,
the presence of the word “puck" can be considered as a strong indicator of hockey. We refer to
this type of input as a labeled feature.

Unlike previous approaches that use labeled features to create labeled pseudo-instances,
Druck et al. [2008] uses labeled features directly to constrain the model’s predictions on unla-
beled instances. They express these soft constraints using generalized expectation (GE) criteria –
terms in a parameter estimation objective function that express preferences on values of a model
expectation.

We apply the idea of labeled features to metro maps. We aim at creating two classes of
documents, roughly meant to represent ‘interesting’ and ‘non-interesting’. Initially, we have no
labels; we compute a metro map (as discussed in previous sections) and display it to the user. In
addition, we show the user a tag cloud. A tag cloud is a visual depiction of words, where size
represents frequency. The cloud describes the documents of the map. We let users adjust word
importance. For example, importance of 0.9 implies that 90% of the documents in which the
word appears are interesting to the user. The relative transparency of the model allows users to
make sense of feature weights.

When the user is done adjusting word importance, we train a MaxEnt classifier on D using
those constraints. The classifier then assigns a score µi to each document di ∈ D. µi represents
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the probability that di is interesting to the user. Given µi, we define a personalized notion of
coverage:

per-coveri(j) = µi · coveri(j)

Weighting the coverage by µi causes non-interesting articles to contribute very little coverage.
Note that non-interesting articles may still be picked for the map, e.g. if they are a coherent
bridge between two areas of high interest. See examples in Section 4.3.3.

3.3.2 Interaction with a Single Chain
We note that the notions developed in this chapter can help us enhance interactions with a single
chain as well. In the following, we describe two new ways to connect the dots.

Feature-based Feedback

In Section 2.3 we were interested in ways to let users indicate the concepts they find important.
The feature-based feedback of the previous section can work for a single chain as well. As is
the case with maps, we are now looking for a maximum-coverage coherent chain (instead of
a maximally-coherent chain). In order to find such a chain, we restrict the coherence graph to
represent only s-t chains of length at most K, and restrict the number of lines to one.

Connecting One (or Less) Dots

In the previous chapter, we presented a system that could connect two fixed endpoints. However,
this form of input is often unrealistic, as the user may not know both the starting and ending
points of the story. In this section, we consider the problem of forming a coherent chain when
the endpoints are only partially specified.

Is this problem harder than our original problem? On one hand, the number of chains to
consider is much larger. On the other hand, our algorithms seem easy to extend for the case of
partially specified endpoints: if the start (end) point is unknown, we can add a virtual source
(sink) node, connect it to all other nodes, and proceed as if the new node was a part of the input.

Let us demonstrate what happens when we extend our algorithm using virtual sources and
sinks. Consider again the example from Figure 2.1. Instead of specifying both endpoints (Clin-
ton’s alleged affair and the 2000 election Florida recount), our input consists of the Clinton-
Lewinsky article alone. The most coherent chain starting with this article is'

&

$

%

• Talks over Ex-Intern’s Testimony on Clinton Appear to Bog Down
• Is the Ex-Intern Getting Hostility or Sympathy?
• Lewisnky Would Take Lie Test in Exchange for Immunity Deal
• Calls to Intern from Clinton are the Envy of the Capital
• In America: The Clinton M.O.
• Lewinsky Ordered before Grand Jury on Ties to Clinton

As can be seen, the entire chain revolves around the Clinton-Lewinsky story. Furthermore,
it is restricted to the very beginning of the story: in fact, the articles barely span more than a
month’s time.
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Note that having two fixed endpoints served a purpose: it indicated possible directions
which the user cares about. For example, specifying the Florida recount article forced the story to
advance along the contemporaneous political events. Furthermore, when only a single endpoint
is given, there is no incentive to ever change the topic, and the best chains would likely revolve
around their starting point. Worse yet, when no endpoints are specified, this starting point might
be uninteresting to the user.

In order to ensure that the chain is interesting to the user, we let the user guide us as we
build the chain. In the following we define an interactive variant of Connect-the-Dots, called
Connect-A-Dot. In Connect-A-Dot, the user fixes a single article d, and incrementally
builds a chain around it.

We focus on the case where d is either the first or the last article in the chain (Where Do We
Go From Here? and How Did We Get Here?, respectively). However, our techniques apply to
the case d is located at other positions as well.

Algorithm Overview Intuitively, the algorithm is an interactive version of our search algorithm
from Section 2.2, where the user guides the search. Our system starts from an input article and
incrementally adds articles to the chain. At each step, the system computes the set of valid
extensions to the current chain which reach a certain coherence threshold.

The valid extensions represent the many ways in which the chain can progress; we rely on
user feedback to choose the next article. Unfortunately, the set of candidate articles is often too
big to display. Therefore, our main challenge is to pick a small set of diverse candidate articles
which covers all major aspects of the story.

For example, consider a user who is interested in the story leading to Guantanamo Bay clos-
ing. The user picks an input article and feeds it to the system. Figure 3.5 shows a tag cloud
representing valid extensions of the input article; the size of a word is proportional to its fre-
quency. Some major aspects of the story (which we should cover) are Obama’s promise, legal
aspects, NGO reports, and suicide attempts.

Our algorithm’s outline is described in Algorithm 3. At each iteration, our goal is to pick
k candidate articles and show them to the user. The articles should cover the different ways in
which the chain may progress. As a first step, we calculate the set of documents Cands which can
serve as valid extensions to the chain we have built so far (Line 3). findExtensionsAboveThreshold
evaluates all O(|D|) possible documents, and keeps the ones which are above a given threshold
(either absolute or relative). Evaluating a single chain is done via the LP of Section 2.1.1, and
takes very little time.

Next, we wish to pick a subset A ⊆ Cands of size b which maximizes coverage of Cands
(Line 4), display them to the user, use their choice to extend the chain (Lines 5-6) and re-iterate.
Line 4 lies at the heart of the algorithm: in it, we pick a small set of documents that represents the
important stories of Cands. Luckily, these were our exact requirements from the coverage notion
of Section 3.1.2. Furthermore, the submodularity of our coverage notion allows us to exploit the
classic result of Nemhauser again [Nemhauser et al., 1978] to obtain a (1− 1

e
) approximation.

Now that we know how to pick a small set of documents which (approximately) maximizes
coverage, we note that we can use the exact same method when no endpoints are specified
(Connect-No-Dots). In this case, the user first selects a set of candidate documents (e.g.,
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Figure 3.5: Tag cloud of documents about Guantanamo Bay detention camp. Word size is proportional
to its frequency.

by performing keyword search), and we use the greedy algorithm to propose a diverse set of
candidate starting points. We demonstrate this technique in Section 4.3.3.

3.4 Summary
In this chapter we proposed intentionally-abstract characteristics of a good map: (1) each story-
line should be coherent, (2) the map should cover topics important to the user, and (3) the map
should expose the underlying structure and interactions between different storylines.

We then combined the three properties into one objective, and proposed an algorithm to find
a good map. The algorithm encodes all coherent chains as a graph, exploits submodularity to ex-
tract a set of high-coverage from the graph, and then applies local search to improve connectivity.
Next, we discussed mechanisms that allow users personalize maps according to their interests.
In later chapters, we apply these ideas to real-world datasets.
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Algorithm 3: interactiveConnectDot(G, d, isForward, b)
input : G = (V,E) graph, d ∈ V , isForward boolean indicating direction of time, b

number of alternatives to show the user.

// Initialize the chain
1 curChain = (d);
2 while true do

// Find candidate articles
3 Cands= findExtensionsAboveThreshold(G, curChain, isForward) ;

// Find a small subset which covers Cands well
4 A = maximizeCoverage(Cands , b) ;

// Display subset to user, extend the chain by user’s choice
5 v = getUserChoice(A) ;
6 curChain = extendChain(curChain, v, isForward) ;
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Chapter 4

Case Study 1: News

This chapter is based on [Shahaf et al., 2012b].
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In the previous chapter, we defined abstract characteristics of a good map. In this chapter, we
demonstrate how to apply these characteristics to the news domain.

4.1 The Need for Maps of News
“Can’t Grasp Credit Crisis? Join the Club", stated David Leonhardt’s article in the New York
Times. Credit crisis had been going on for seven months by that time, and had been extensively
covered by every major media outlet throughout the world. Yet many people felt as if they did
not understand what it was about.

Paradoxically, the extensive media coverage might have been a part of the problem. This is
another instance of the information overload problem, long recognized in the computing indus-
try. Users are constantly struggling to keep up with the larger and larger amounts of content that
is being published every day; with this much data, it is often easy to miss the big picture.

The consequences of missing the big picture are numerous and substantial. News has funda-
mental impact on cultural and political life. Understanding news enables the public to make key
life decisions, e.g., choosing a place to live or a political orientation. For this reason, there is an
increasing need for techniques to present news data in a meaningful and effective manner.

4.2 Objective for the News Domain
In this chapter, we adapt the abstract map objective of Chapter 3 to the news domain. First, we
need to understand our data: news articles have a title, a body, and a time stamp. To simplify the
problem, we assume that all articles come from reputable sources.

Formally, our universe consists of a set of news articlesD, and a set of featuresW . Elements
of W are named entities and noun phrases, that we got by processing the articles with off-the-
shelf NLP tools.

4.2.1 Coherence: Measuring influence without links
Let us start with coherence. Recall the coherence objective of Section 2.1:

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w)1(w active in di, di+1) (∗)

In order to apply coherence to the news domain, we need a notion of influence(di, dj | w) –
the influence of document di on dj w.r.t. word w. Intuitively, Influence(di, dj | w) is high if (1)
the two documents are highly connected, and (2) w is important for the connectivity. Note that
w does not have to appear in either of the documents (refer again to Figure 2.2 for intuition).

Several methods for measuring influence have been proposed. The vast majority of them
focus on directed weighted graphs (e.g., the web, social networks, citations), where influence
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Figure 4.1: A bipartite graph used to calculate influence.

is assumed to propagate through the edges. Methods such as authority computation [Kleinberg,
1999], random graph simulations [Kempe et al., 2003] and random walks [Brin and Page, 1998]
all take advantage of the edge structure.

However, in the news setting no edges are present. Adding artificial edges (formally known
as “link prediction" [Liben-Nowell and Kleinberg, 2007]) is a complicated and challenging task.
In this section, we explore a different notion of influence; despite the fact that this notion is based
on random walks, it requires no edges.

First, we construct a bipartite directed graph, G = (V,E). The vertices V = VD ∪ VW
correspond to documents and words. For every word w in document d, we add both edges (w, d)
and (d, w). Refer to Figure 4.1 for a simple graph: there are four (square) documents, and four
(circle) words. The leftmost article, about Clinton admitting Lewinsky liaison, is connected to
the words ‘Clinton’ and ‘Judge’.

Edge weights represent the strength of the connection between a document and a word. The
tool we used for word extraction [Copernic] assigns importance to each word; we use these
weights for document-to-word edges. Alternatively, we can use TF-IDF weights. Since we inter-
pret weights as random walk probabilities, we normalize them over all words in the document.
For example, the rightmost article is mostly (.7) about Al Gore, and somewhat about ‘Judge’ (.2)
and ‘Clinton’ (.1). The word-to-document weights are computed using the same numbers, but
normalized over the documents. The word ‘Gore’ can only be reached by a single document,
so the edge weight is .7

.7
= 1. We now use this weighted graph to define influence between

documents.
As mentioned before, Influence(di, dj | w) should be high if the two documents are strongly

connected, and w plays an important role in this connection. Intuitively, if the two documents are
connected, a short random walk starting from di should reach dj frequently. We first compute the
stationary distribution for random walks starting from di. We control the expected length with
a random restart probability, ε. The stationary distribution is the fraction of the time the walker
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spends on each node:
Πi(v) = ε · 1(v = di) + (1− ε)Σ(u,v)∈EΠi(u)P (v | u)

where P (v | u) is the probability of reaching v from u.
Intuitively, if di and v are very related, Πi(v) is high, as many walks reach v. We now need

to factor in the effect of word w on these walks. In particular, we are interested in knowing how
many of the walks went through word w before reaching v. To do this, we turn w into a sink
node: let Pw(v | u) be the same probability distribution as P (v | u), except there is no way
out of node w. Let Πw

i (v) be the stationary distribution for this new graph. If w was influential,
the stationary distribution measured at dj would decrease a lot: in Figure 4.1, without the word
‘Judge’ article 1 (leftmost) is no longer reachable from article 2.

The influence on dj w.r.t. w is defined as the difference between these two distributions,
Πi(dj) − Πw

i (dj). Figure 2.2 shows an example of word-influence results calculated by this
method. Refer to Section 2.1.1 for a detailed explanation.

The effect of ε

The random walk results depend a lot on the choice of ε. ε controls the expected length of a walk:
in expectation, we experience a random restart every 1

ε
steps.

Prescribing the optimal random-walk length is hard. Each walk should be long enough to
explore the “natural cluster" of its starting point di, but not long enough to forget where it came
from. In particular, lists of influential word created by very long walks tend to include words
which are unrelated to di. On the other hand, very short walks tend to only produce words from
the immediate neighbourhood of di, losing higher-order word co-occurrences in the process.

Table 4.1 further demonstrates the effect of ε. We have computed the influence between two
articles about OJ Simpson’s trial. The articles discussed the bloody gloves recovered at the scene
of the murder. Table 4.1 shows the top ten influential words for different values of ε: for the sake
of demonstration, we show the value used in our experiments (0.25), and two extreme values
(0.01 and 0.99).

First, we note that the top two words (’glove’ and ’apparel’) are the same across the table.
This is because these words appear in both di and dj . In addition, they are amongst the most
important words in di (as reflected by their importance scores). Thus, many of the random walks
from di to dj have gone through these words.

When ε = 0.01 (long walks), the list contains many words which are ubiquitous throughout
the Simpson story, but not necessarily related to the glove episode (e.g. ’Judge Ito’, ’Ronald
Goldman’, ’jury’ and ’police’). As expected, prevalent aspects of the story are heavily repre-
sented. For example, the words ’black’ and ’detective Mark Fuhrman’ are related to the racial
tension of the Simpson case.

On the other hand, when ε = 0.99 (short walks), the list contains mostly words which appear
directly in di (but not necessarily in dj). When we examine the influence scores, we first notice
that they are all very low. This is to be expected, since the probability of reaching dj is lower
to begin with. However, even after normalizing the influences, we still observe a very large gap
between the first two words and the rest of the list. As noted before, these words (’glove’ and
’apparel’) appear in both di and dj , and thus participate in a path of length two. Longer paths are
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0.01 0.25 0.99
glove glove glove
apparel apparel apparel
David Margolick Richard Rubin David Margolick
Judge Lance Ito Aris Isotoner murder
Ronald Goldman Michael Conners Ronald Lyle Goldman
Mark Fuhrman (detective) video recording Simpson murder
black David Margolick Los Angeles
jury system Marcia Clark (deputy dist. atty.) Nicole Brown Simpson
Kenneth Noble Richard Rubin Simpson
police Bloomingdales Johnny Cochran Jr.

Table 4.1: Top 10 influential words for different values of ε

much less likely when ε is high, and thus words which lie on those longer paths did not get to
play an important role in the walks.

Finally, ε = 0.25 seems to achieve a healthy balance: the list of words includes mostly words
which are directly related to the glove story, but do not necessarily appear in either di or dj . For
example, Richard Rubin is a glove designer who testified that leather gloves shrink when exposed
to liquid, Aris Isotoner is the company that manufactured the gloves, and Michael Conners is a
photographer who took a picture showing OJ Simpson, several years before the trial, wearing a
pair of gloves resembling those found at the crime scene.

4.2.2 Coverage
After adapting coherence to the news domain, we focus our attention on coverage. In Section
3.1.2 we required coverage to satisfy two properties:

1. Relation to Single-Document Coverage: coverM(e) should be a function of single-
document coverage:

coverM(e) ≡ g({coverdi(e) | di ∈ docs(M)})

2. coverM(e) ≡ f(docs(M)) is submodular.

In order to instantiate the coverage definition of Section 3.1.2, we first need a set of objects
to cover, E . Since we only have the articles’ content, we chose the words ofW . coverdi(w), the
amount that document di covers feature w, is defined as the corresponding tf-idf value.

Next, we extend cover·(·) to maps. We view map coverage as a Bernoulli process (a series of
biased coin flips): each document in the map tries to cover feature w with probability coverdi(w).
The coverage of w is the probability at least one of the documents succeeded1:

coverM(w) = 1−
∏

di∈docs(M)

(1− coverdi(w))

1If coverdi(w) are very small, we may want to sample more than once from each document.
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Thus, if the map already includes documents which cover w well, coverM(w) is close to 1, and
adding another document which covers w well provides very little extra coverage of w. This
encourages us to pick articles which cover other features, promoting diversity.

Claim 4.2.1. The Bernoulli-process view of coverage fulfills the requirements of Section 3.1.2:
it is a submodular function of single-document coverages.

Proof. By construction, coverM(e) is a function of single-document coverage. In order to prove
submodularity, fix e ∈ E . Define a set function f that corresponds to coverM(e).

f(X) = 1−
∏
d∈X

(1− coverd(e))

Then, we get

∀Y ⊇ X f(X ∪ {x})− f(x) =coverx(e) ·
∏
d∈X

(1− coverd(e)) ≥ (4.2.1)

coverx(e) ·
∏
d∈Y

(1− coverd(e)) = (4.2.2)

f(Y ∪ {x})− f(x) (4.2.3)

since coverd(e) ∈ [0, 1]. Therefore, coverM(e) is submodular.

The last thing we are missing from the description of the coverage objective is the definition
of the weights λe. In the absent of prior knowledge about the user preferences, we set the weight
of a feature to be its frequency in the dataset (after the removal of stopwords). This causes the
map to prefer highly-mentioned topics. We can use ideas of Section 3.3 to learn personalized
weights.

As before, we model the amountM covers the corpus as the weighted sum of the amount it
covers each feature:

Cover(M) =
∑
e

λecoverM(e)

4.2.3 Connectivity
In Section 3.1.3, we defined the connectivity objective as a pairwise function of the metro lines:

Conn(M) =
∑
i<j

Conn(πi, πj)

Our user studies indicated that the type of connection between two lines (one article, multiple
articles, position along the line) was not as important to the users as its mere existence. Therefore,
we simply define connectivity as the number of lines of Π that intersect:

Conn(M) =
∑
i<j

1(πi ∩ πj 6= ∅)
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4.2.4 Examples of Maps and Chains

After devising an objective function for the news domain, we apply the algorithms of the previous
chapters to find good chains and maps. In the following, we show several examples.

Figure 4.2: A map about the legal process leading to Clinton’s acquittal.

Figure 4.3: A map about the racial aspects of OJ Simpson’s trial.
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Figure 4.2 shows a chain connecting Clinton’s first testimony to his acquittal. The chain
focuses on the legal process, including subpoenas and witness choices. Figure 4.3 shows a chain
about the racial aspect of OJ Simpson’s trial, including the LA detective’s racial comments and
the racial divide in opinion polls.
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Figure 4.4: Map about the earthquake in Haiti, before interaction.

Figure 3.4 displays a map for the query ‘Gree* debt’. The main storylines discuss the auster-
ity plans, the riots, and the role of Germany and the IMF in the crisis.

Figure 4.4 shows a map for the query ‘Haiti earthquake’. It includes lines about the aid
efforts, US presidents’ help, damages to the Haitian capital, and kid abduction charges against a
group of American missionaries.

4.3 User study: News
Performance evaluations of information retrieval tasks often focuses on canonical labeled datasets
(e.g., TREC competitions) amenable to the standard metrics of precision, recall and variants
thereof. The standard methods do not seem to apply here, as they require labeled data, and we
are not aware of any labeled dataset suitable for our task. As a result, we evaluated our methods
by running them on real data and conducting user studies to capture the utility of our algorithms
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as they would be used in practice. In Section 4.3.1 we conduct user studies for the Connect the
Dots task (Chapter 2); in Section 4.3.2 we test Metro Maps (Chapter 3).

4.3.1 Connect the Dots: User Study

We evaluate our algorithm on real news data from the New York Times and Reuters datasets
(1995-2003). We preprocessed more than half a million articles. These articles cover a diverse
set of topics, including world news and politics, economy, sports and entertainment.

'

&

$

%

Google News Timeline:

• Osama bin Laden is denounced by his family

• Osama Family’s Suspicious Site
(Web designer from LA buys a bizarre piece of Internet history)

• Are you ready to dance on Osama’s grave?
(How should one react to the death of an enemy?)

• Al-Qaeda behind Karachi blast

• LIVE FROM AFGHANISTAN: Deadline of Death Delayed for American Journalist

• Killed on Job But Spared ‘Hero’ Label
(About Daniel Pearl)'

&

$

%

Connect the Dots:

• Dispatches From a Day of Terror and Shock

• Two Networks Get No Reply To Questions For bin Laden
(Coverage of September 11th)

• Opponents of the War Are Scarce on Television
(Coverage of the war in Iraq and Afghanistan)

• ‘Afghan Arabs’ Said to Lead Taliban’s Fight

• Pakistan Ended Aid to Taliban Only Hesitantly

• Pakistan Officials Arrest a Key Suspect in Pearl Kidnapping
(Pearl abducted in Paksitan while investigating links to terror)

• The Tragic Story of Daniel Pearl

Figure 4.5: Example output chains for Connect-Dots and Google News Timeline. Users were given
access to the full articles. The GNT chain is a lot less coherent, and includes several insignificant articles,
e.g., an article about a domain name that once belonged to bin Laden’s family.
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We considered some of the major news stories of recent years: the OJ Simpson trial, the
impeachment of Clinton, the Enron scandal, September 11th and the Afghanistan war. For each
story, we selected an initial subset of 500− 10, 000 candidate articles, based on keyword-search.
The size of the candidate subset depended on the search results. For example, the number of
articles mentioning ‘Clinton’ was much higher than those mentioning Enron.

For each article, we extract named entities and noun phrases using Copernic Summarizer
[Copernic]. In addition, the NYT dataset includes important meta-data such as taxonomy and
section. We remove infrequent named entities and very common nouns and noun phrases (e.g.,
“year").

Our main goal was to construct chains representing the stories, and have users evaluate them.
For each story, we chose several pairs of articles. We then tried finding chains linking each pair
using the following techniques:

• Connecting-Dots As described in [Shahaf and Guestrin, 2010], but using the rounding
technique we had at the time of the user studies, based on iteratively removing articles.2

The typical value of K was 6 or 7. kTotal was set to 15, and kTrans was set to 4. We
used the speed-up methods of Chapter 6, and allowed ten minutes for the creation of a
chain.

• Shortest-path We constructed a graph by connecting each document with its nearest
neighbours, based on Cosine similarity. If there was no such path, we increased the con-
nectivity of the graph until a path was found. If the path was too long, we picked a subset
of K evenly-spaced documents.

• Google News Timeline [Google] GNT is a web application that organizes news search
results on a browsable, graphical timeline. The dataset is different, making comparison
hard. Also, the input is a query string. We constructed such a string for each story, based
on s and t, and picked K equally-spaced documents between the dates of our original
query articles. The strings we have used were ‘Clinton Lewinsky’, ‘OJ Simpson’, ‘Enron’,
‘Daniel Pearl’+‘World Trade Center’, and ‘Lewinsky’+‘Elections’.

• Event threading (TDT)[Nallapati et al., 2004] is a method to discover sub-clusters in a
news event and structure them by their dependency, generating a graph. We found a path in
this graph from the cluster including s to the cluster including t, and picked a representative
document from each cluster along the path. Again, if the chain was too long, we chose K
equally-spaced articles.

First, we presented 18 users with a pair of source and target articles. We gauged their famil-
iarity with those articles, asking whether they believe they knew a coherent story linking them
together (on a scale of 1 to 5). We showed the users pairs of chains connecting the two articles,
generated by the above methods in a double-blind fashion. We asked the users to indicate

• Relevance: which chain captures the events connecting the two articles better?

• Coherence: which chain is more coherent?
2During each iteration, we solve the LP from [Shahaf and Guestrin, 2010]. We exclude the article with the lowest

activation score from the next iterations (setting node-activei = 0). We stop when exactly K of the node-activei
variables are set to 1. Since at every iteration we remove one article, the process his is guaranteed to stop after
|D| −K + 1 iterations. In practice, it reaches a solution within a few iterations.
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• Redundancy: which has more redundant articles?

Helping users gain better understanding of a story is the main goal of this paper. In order to
quantify this, we also measured the effectiveness of the chains. We asked users to estimate how
their answer to the familiarity question changed after reading each chain. Effectiveness is the
fraction of the familiarity gap closed. For example, if the new familiarity is 5, this fraction is 1
(gap completely closed). If the familiarity did not change, the fraction is 0.

Example output chains are shown in Figure 4.5. Figure 4.6 shows the results of our user-
study. After analyzing the results, we identify two types of stories: simple and complex. Simple
stories tend to focus around the same event, person or institution (e.g., the OJ Simpson trial/
the Enron story). Those stories can usually be summarized by a single query string. In complex
stories, however, the source and target article are indirectly connected through one or more events
(e.g., Lewinsky-impeachment-elections, September 11th-Afghanistan war-Daniel Pearl).

The top plot shows the effectiveness (closing the familiarity gap) for each of the methods.
The bottom of the plot shows familiarity scores for each story before reading any chain. For
example, we can see that the Enron story is the least-known story out of the five.

Our algorithm outperforms the competitors on all stories but Enron. The difference is es-
pecially pronounced for complex stories. In simple stories, such as Enron, it seems that the
simple method of picking K evenly-spaced documents from GNT was sufficient for most peo-
ple. However, when the story could not be represented by a single query, the effectiveness of
GNT decreased.

Surprisingly, the performance of GNT for the OJ story was much worse than its performance
for the Enron story. A closer examination revealed that the number of articles about OJ far
exceeded the number of Enron articles. Many of the OJ articles were esoteric at best, so picking
equally-spaced K documents tended to produce poor results (a book of a former juror made
it to the best-seller list, etc.). Furthermore, more of our users were familiar with the OJ story
beforehand, so there was less room for improvement.

As expected, shortest path did not perform well. Event threading achieved better results;
however, for simple stories, sometimes the clusters were too big. In the Enron story, both s
and t belonged to the same cluster, rendering the chain useless. Also, the fact that we pick a
representative for each cluster at random might have hurt its performance.

The plot on the bottom of Figure 4.6 shows the percentage of times each method was pre-
ferred to another in terms of relevance, coherence and non-redundancy. Users could prefer one
chain, or state that both are equally good/bad. Therefore, the numbers do not sum to 100%. The
results are grouped based on the type of story (simple vs. complex). Our algorithm is amongst
the best in all measures at a statistically significant level. Most importantly, it achieves the best
coherence scores, especially for complex stories. We discuss some of the interesting findings
below.

Relevance and Redundancy: As expected, for all methods, relevance is good for simple
stories but achieving low redundancy is harder. There is a tradeoff – redundancy is easy to avoid
by picking random, possibly irrelevant articles. Relevance is easy to achieve by picking articles
similar to s or t, but then redundancy would be high.

Google News Timeline is doing well in terms of relevance for simple stories. However, the
chains it generates tend to include somewhat insignificant articles, especially for complex stories.

53



0.75

1

Effectiveness (improvement in familiarity)

ConnectDots

Google 

Shortest

TDT

0.8

1

Relevance, Coherence, Non-Redundancy
ConnectDots

Google 

Shortest

TDT

F
ra

ct
io

n
 o

f 
ti

m
e

s 
p

re
fe

rr
e

d

A
v

e
ra

g
e

 f
ra

ct
io

n
 o

f 
g

a
p

 c
lo

se
d

0.25

0.5

0.75

1

Effectiveness (improvement in familiarity)

ConnectDots

Google 

Shortest

TDT

0.2

0.4

0.6

0.8

1

Relevance, Coherence, Non-Redundancy
ConnectDots

Google 

Shortest

TDT

F
ra

ct
io

n
 o

f 
ti

m
e

s 
p

re
fe

rr
e

d

B
e

tt
e

r

A
v

e
ra

g
e

 f
ra

ct
io

n
 o

f 
g

a
p

 c
lo

se
d

B
e

tt
e

r

0

0.25

0.5

0.75

1

Elections Pearl Lewinsky OJ Enron

Effectiveness (improvement in familiarity)

ConnectDots

Google 

Shortest

TDT

0

0.2

0.4

0.6

0.8

1

Rel. Coh. Non-Red Rel. Coh. Non-Red

Relevance, Coherence, Non-Redundancy
ConnectDots

Google 

Shortest

TDT

F
ra

ct
io

n
 o

f 
ti

m
e

s 
p

re
fe

rr
e

d

Simple Complex

B
e

tt
e

r

A
v

e
ra

g
e

 f
ra

ct
io

n
 o

f 
g

a
p

 c
lo

se
d

Base familiarity:         2.1 3.1 3.2 3.4    1.9

B
e

tt
e

r

0.75

1

Effectiveness (improvement in familiarity)

ConnectDots

Google 

Shortest

TDT

0.8

1

Relevance, Coherence, Non-Redundancy
ConnectDots

Google 

Shortest

TDT

F
ra

ct
io

n
 o

f 
ti

m
e

s 
p

re
fe

rr
e

d

A
v

e
ra

g
e

 f
ra

ct
io

n
 o

f 
g

a
p

 c
lo

se
d

0.25

0.5

0.75

1

Effectiveness (improvement in familiarity)

ConnectDots

Google 

Shortest

TDT

0.2

0.4

0.6

0.8

1

Relevance, Coherence, Non-Redundancy
ConnectDots

Google 

Shortest

TDT

F
ra

ct
io

n
 o

f 
ti

m
e

s 
p

re
fe

rr
e

d

B
e

tt
e

r

A
v

e
ra

g
e

 f
ra

ct
io

n
 o

f 
g

a
p

 c
lo

se
d

B
e

tt
e

r

0

0.25

0.5

0.75

1

Elections Pearl Lewinsky OJ Enron

Effectiveness (improvement in familiarity)

ConnectDots

Google 

Shortest

TDT

0

0.2

0.4

0.6

0.8

1

Rel. Coh. Non-Red Rel. Coh. Non-Red

Relevance, Coherence, Non-Redundancy
ConnectDots

Google 

Shortest

TDT

F
ra

ct
io

n
 o

f 
ti

m
e

s 
p

re
fe

rr
e

d

Simple Complex

B
e

tt
e

r

A
v

e
ra

g
e

 f
ra

ct
io

n
 o

f 
g

a
p

 c
lo

se
d

Base familiarity:         2.1 3.1 3.2 3.4    1.9

B
e

tt
e

r

Figure 4.6: Top: Evaluating effectiveness. The average (over users) of the fraction of familiarity gap
which was closed after reading a chain. Numbers at the bottom indicate the average familiarity with
each story (on a scale of 1 to 5) before reading any chain. Bottom: Relevance, coherence, and non-
redundancy (broken down by simple vs. complex stories). The y axis is the fraction of times each method
was preferred, compared to another chain. Users could mark chains as ‘equally good’, and therefore the
numbers do not sum to 1. Our algorithm outperformed the competitors almost everywhere, especially for
complex stories.

54



The clusters of Event Threading seem to reduce its redundancy, compared to shortest-path.
Coherence: Together with effectiveness, this is perhaps our most important metric for

evaluating this work. Our algorithm outperforms the other methods, especially in the complex
case. This indicates that the notion of coherence devised in this paper matches what the actual
users perceive. Interestingly, event threading outperformed GNT for complex stories. This is
because the GNT keywords were based on s and t, and did not capture the intermediate events.

4.3.2 Metro Maps: User Study

In our user study, we evaluate the effectiveness of metro maps in aiding users navigate, consume,
and integrate difference aspects of a multi-faceted information need. Our experiments were
designed to answer the following questions:
Accuracy: How well do the documents selected for the map summarize the topic of the task?

Micro-Knowledge: Can the maps help users retrieve information faster than other methods?

Macro-Knowledge: Can the maps help users understand the big picture better than other meth-
ods?

Structure: What is the effect of the map structure?
We assembled a corpus of 18,641 articles from the International section of the New York

Times, ranging from 2008 to 2010. This corpus was selected because of the material’s relative
accessibility, as news articles are written with a broad reader population in mind. Stopword
removal and stemming have been performed as a preprocessing step.

We created three news exploration tasks, representing use cases where the reader is interested
in learning about the trapped Chilean miners, the earthquake in Haiti, and the debt crisis in
Greece. We refer to these tasks as Chile, Haiti, and Greece. Our tasks were chosen in order to
cover different scenarios: The Chile task is very focused, concentrating on a single geographic
location and a short time period. The Haiti task is broader, and the Greece task was the most
complicated, as it spans multiple countries for a long period of time. In the following, we outline
our evaluations.

Accuracy

In this study, we evaluate the map’s content. Before we let users interact with our system and
look for information, we want to know whether the information is there at all.

For each task, three domain experts composed a list of the top ten events related to the task.
The experts composed their lists separately, and the top ten events mentioned most often were
chosen. For example, Chile events included the accident, miners’ discovery, miners’ video, drill
beginning and completion, first and last miner outside, release from the hospital, media coverage
of the saga, and the presidential ceremony held in the miners’ honor.

We then asked the experts to identify those events in metro maps of different sizes (3-6 lines
of length at most 6). Below we measure subtopic recall (fraction of the important events that are
successfully retrieved) of our method. In general, results are high: many of the important events
are captured.
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Lines 3 4 5 6
Chile 80% 100% 100% 100%
Haiti 50% 70% 80% 80%
Greece 30% 60% 60% 70%

Table 4.2: subtopic recall (fraction of the important events that are successfully retrieved) per
map size.

Note that high subtopic precision (fraction of retrieved documents which are relevant to the
top ten events) is not a desired property of metro maps: high precision means that the maps is
very focused on a small set of events, implying repetitiveness. If the top ten events are already
covered, submodular coverage will try to cover side stories as well.

Micro-Knowledge and Structure

In this study, our goal is to examine maps as retrieval tools; we wish to see how maps help users
answer specific questions. We compare the level of knowledge (per time step) attained by people
using our prototype vs. two other systems: Google News and TDT. Google News is a computer-
generated site that aggregates headlines from news sources worldwide. News-viewing tools are
dominated by portal and search approaches, and Google News is a typical representative of those
tools. TDT [Nallapati et al., 2004] is a successful system which captures the rich structure of
events and their dependencies in a news topic.

We computed maps by methods of Chapter 3. We set m=3 for quick computation. After
experimenting with several other queries, we set the coherence threshold to top 15%. Instead of
fixing the number of chains, we continued to add chains until additional coverage was less than
20% of the total coverage (since we use greedy coverage, there will be at most 5 chains).

We implemented TDT based on [Nallapati et al., 2004] (cos+TD+Simple-Thresholding). We
used the same articles D for maps and for TDT. We picked D using broad queries: ‘chile min-
ers’, ‘haiti earthquake’ and ‘gree* debt’. We queried Google News for ‘chile miners’, ‘haiti
earthquake’ and ‘greece debt’ (plus appropriate date ranges). We did not restrict Google News
to NYTimes articles, as not all of them are included. We ensured that all systems display the
same number of articles: for Google News, we picked the top articles. For TDT, we picked a
representative article from each cluster. The purpose of the study was to test a single query. We
defer the evaluation of the interactive component to Section 4.3.3.

We note that comparing the different systems is problematic, as the output of Google News
and TDT is different both in content and in presentation (and in particular, cannot be double-
blind), so it is hard to know what to attribute observed differences to. In order to isolate the
effects of document selection vs. map organization, we introduce a hybrid system into the study:
the system, Structureless metro maps displays the same articles as metro maps but with none
of the structure. Instead, articles are sorted chronologically and displayed in a fashion similar to
Google News.

We recruited participants in the study via Amazon Mechanical Turk. Each user chose the
number of tasks they were interested in doing out of the three tasks available. For each selected
task, one of the four methods was assigned randomly. To make the users more comfortable with
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Figure 4.7: User study results: average number of correct answers amongst users vs. time. As the task
gets more complex, metro maps become more useful.

the system (and unfamiliar map interface), we asked them to do a warm-up task: copy the first
sentence of the tenth article. After the warm-up, users were asked to answer a short questionnaire
(ten questions), composed by domain experts. Users were asked to answer as many questions as
possible in 10 minutes. In order to counter bias introduced by prior knowledge, the users had
to specify the article where the answer was found. A honey pot question (an especially easy
question, that we expect all workers to be able to answer) was used to identify spammers. After
removing users who got this question wrong, we were left with 338 unique users performing 451
tasks.

A snapshot of the users’ progress (number of correct answers) was taken every minute. Our
interest is twofold: we wish to measure the user’s total knowledge after ten minutes, and also the
rate of capturing new knowledge. Figure 4.7 shows the results. x axis corresponds to time, and
y axis corresponds to the average number of correct answers.

The results indicate that metro maps are especially useful for complex tasks, such as Greece.
In this case, maps achieve higher scores than Google and TDT at the end of the test, as the
advantage of structure outweighs the cost of ingesting the additional structure and grappling
with an unfamiliar interface. Perhaps more importantly, the rate of capturing new knowledge is
higher for maps.

The structureless methods do better for the simple task of Chile. Upon closer examination of
the users’ browsing patterns, it seems that many of the answers could be found in the (chrono-
logically) first and last articles; the first article provided the basic facts, and the last summarized
the story. We believe that this is the reason for the map’s performance.

Let us examine Structurelss Maps. As discussed earlier, the fact that Structurelss Maps out-
performs Google News is due to article selection. Metro maps and structureless maps seem
comparable, but Metro Map users acquire knowledge more quickly, especially for complex sto-
ries; e.g., consider the first few minutes of the Greece task in Figure 4.7.

As a side note, the small number of correct answers is worrisome. We found that the main
cause of mistakes was date-related questions; many of the participants entered the article’s date,
rather than the event’s. Since about 30% of our questions involved dates, this affected the re-
sults severely. In addition, the majority of Turk users are non U.S-based (and non-native English
speakers)3. When we conducted a preliminary survey across CMU undergrads, the average num-
ber of correct answers was significantly higher.

Finally, we compare the ease of navigation. If a user has a question in mind, we estimate the

3http://www.behind-the-enemy-lines.com/2010/03/new-demographics-of-mechanical-turk.html
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difficulty of finding an article containing the answer by computing the number of articles that
users clicked per correct answer:

Maps SL Maps Google TDT
2.1 3.74 5.28 4.91

Table 4.3: Ease of navigation: number of articles that users visited per correct answer.

Metro maps require the least amounts of clicks to reach an answer. Most importantly, maps
did better than structureless maps, demonstrating the utility of the structure.

Macro-Knowledge

The retrieval study in the previous section evaluated users’ ability to answer specific questions.
We are also interested in the use of metro maps as high-level overviews, allowing users to under-
stand the big picture.

We believe that the true test of one’s own understanding of a topic is their ability to explain
it to others. Therefore, we recruited 15 undergraduate students and asked them to write two
paragraphs: one summarizing the Haiti earthquake, and one summarizing the Greek debt crisis.
For each of the stories, the students were randomly assigned either a metro map or the Google
News result page (stripped of logo and typical formatting, to avoid bias).

We then used Mechanical Turk to evaluate the paragraphs. At each round, workers were
presented a two paragraphs (map user vs. Google News user). The workers were asked which
paragraph provided a more complete and coherent picture of the story; in addition, they justified
their choice in a few words (‘Paragraph A is more...’).

After removing spam, we had 294 evaluations for Greece, and 290 for Haiti. 72% of the
Greece comparisons preferred map paragraphs, but only 59% of Haiti. After examining the Haiti
paragraphs, we found that the all paragraphs were very similar; most followed the same pattern
(earthquake, damages, distributing aid). None of the paragraphs mentioned the Haitian child
smugglers, and only one mentioned the temporary laws for dislocated Haitians, despite the fact
that both stories appeared in the map. A possible explanation was given by one of the partici-
pants: "I chose to not use the American politics. If this is a summary about the event I wanted
to remain as objective as possible". In other words, map users avoided some storylines inten-
tionally. As in the previous section, maps are more useful for stories without a single dominant
storyline (‘the event’), like Greece.

Finally, Figure 4.8 shows tag clouds of the words workers chose to describe the Greece
paragraphs. Sample map paragraphs descriptions include ‘gives a clear picture’ and ‘gives a
better understanding of the debt crisis’. Google News paragraph descriptions included ‘good but
just explained about the facts’ and ‘more like a list of what happened’.

4.3.3 Interaction

In this section we apply the interaction framework of Sections 2.3 and 3.3 to the news domain.
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Figure 4.8: Tag clouds representing descriptions of Google News (left) and Map (right) pararaphs. Note
maps receive more positive adjectives.

Interaction Usage Example: Connect the Dots

In Section 2.3 we discussed two refinement mechanisms, refinement and feature-based feedback.
The refinement mechanism allows a user to indicate areas in the chain which should be further

refined; a refinement may consist of adding a new article, or replacing an article which seems out
of place. Figure 2.7 shows an example of refinement.

In a pilot user study, we showed users a chain and asked them to perform a refinement opera-
tion (asking for insertion/replacement). We then returned two chains, obtained from the original
chain by (1) our local search, (2) adding an article chosen randomly from a subset of candidate
articles, obeying chronological order. We asked the user to indicate which chain better fit their
request. Users preferred the local-search chains 72% of the time.

In a feature-based feedback study4 we showed users two chains – one obtained from the other
by increasing the importance of 2-3 words. We then showed them a list of ten words containing
the words whose importance we increased and other, randomly chosen words. We asked which
words they would pick in order to obtain the second chain from the first. Our goal was to see
if users can identify at least some of the words. Users identified at least one word 63.3% of the
times.

Interaction Usage Example: Connect a Dot

In Section 3.3.2 we explored an interactive variant of connecting the dots, called Connect-A-Dot.
In Connect-A-Dot, the user fixes a single article d, and incrementally builds a chain around
it.

We demonstrate our system on the New-York Times dataset. We define our set of features as
topics from a latent Dirichlet allocation (LDA) [Blei et al., 2003] topic model learned on the noun
phrases and named entities described above. We can directly define coverj(i) = P (ui | docj),
which in the setting of topic models is the probability that docj is about topic i. We use the Mallet
[McCallum, 2002] implementation of LDA with 20 topics and the default parameter settings.
When we start from the general keyword ‘OJ Simpson‘, our top five suggestions for a starting
point are:

(1a) A Bit Reluctantly, a Nation Succumbs to a Trial’s Spell

(1b) Few Can Avoid Harsh Glare Of Murder Trial’s Spotlight

(1c) Evidence Is Powerful, but He’s Still O.J.

4Using an older feedback mechanism. See Shahaf and Guestrin [2010] for details.
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(1d) The Simpson Factor in Race Relations

(1e) Jurors and Judge Ito: Their Private Lives

Those articles cover various aspects, from the media coverage, through evidence, race rela-
tions, and even judge and jury. When we pick 1c (evidence), the system proposes the following
options:

(2a) Tempers Flare Over Simpson DNA Expert’s Drug Use

(2b) Blood Drops Analyzed for Simpson Jury

(2c) Coroner Says Time of Death Is Imprecise

(2d) Simpson Defense Changes Glove Tactics

(2e) Former Simpson Juror Sees Weak State Case

Most of the articles are related to evidence, but they cover different types of evidence, e.g.,
blood and time of death. When we pick 2d (glove), the system starts to converge. The articles
are still mainly about evidence, and almost all of them mention the gloves.

(3a) Blood on a Simpson Glove Matches Victim’s, Expert Says

(3b) Near-Unanimous Verdict: Blunder at Simpson Trial

(3c) Key Fibers Linked to Simpson Vehicle

(3d) Simpson Defense Changes Glove Tactics

(3e) North Carolina Judge Rules Against Simpson Legal Team

Suppose that, in the previous step, we would have picked article 2a (DNA) instead of 2d
(glove). In this case, the algorithm’s choice of articles is very different, and much more focused
around DNA evidence:

(3a’) Simpson Prosecutors Decide Pathologist Won’t Testify

(3b’) Blood on a Simpson Glove Matches Victim’s, Expert Says

(3c’) Simpson DNA Papers Go to Smithsonian

(3d’) Again Suggesting Botched Inquiry, Simpson Defense Cross-Examines State DNA Expert

(3e’) At the Bar; The jury is still out on the effects of long, televised trials.

Interaction Usage Example: Map

Figure 4.4 shows a map for the query ‘Haiti earthquake’. The blue line revolves around the
aid efforts, the red line – about US presidents help, and the green line around the damages to
the Haitian capital. The orange line is the one picked last by the greedy coverage algorithm; it
discusses kid abduction charges against a group of American missionaries.

We then decreased the importance of the word ‘abduct’ and recalculated the map. See Figure
4.9 for the result: the abduction line has been replaced by a line about Haitians and the US (in
particular, immigration services). Note that the other lines have changed very little, because the
first choices of the greedy algorithm were barely affected. The changes may be attributed to the
local search stage as well.
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In Figure 4.10, we increase the importance of ‘aid’ and ‘rescue’. A new line replaces the
(low-coverage) orange line again, this time focusing on the health crisis in Haiti. Note that
because this topic is related to the other three lines, our connectivity improves as well.
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Figure 4.9: Map about the earthquake in Haiti, after decreasing the importance of the word ‘abduct’.
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Figure 4.10: Map about the earthquake in Haiti, after increasing the importance of ‘aid’ and ‘rescue’.

4.4 Summary
In this chapter, we applied the ideas of Chapter 3 to the news domain. We defined coherence,
coverage and connectivity relying solely on the content of the articles. Pilot user studies demon-
strate that the objective we propose captures the users’ intuitive notion of coherence, and that
our algorithms effectively help users understand the news; analyzing the results, we learn that
maps are especially useful for stories without a single dominant storyline. Finally, we show the
potential of interaction mechanisms to personalize maps and chains.
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Chapter 5

Case Study 2: Science

This chapter is based on [Shahaf et al., 2012a].
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In the previous chapter we applied metro maps to the news domain. We now explore another
domain: scientific publications.

5.1 The Need for Maps of Science
The scientific community today finds itself overwhelmed by the increasing numbers of publica-
tions; relevant data is often buried in an avalanche of publications, and locating it is difficult.

We consider as a sample motivation the creation of valuable literature exploration tools that
could help people entering a new field, such as new graduate students or experts reaching beyond
their traditional disciplinary borders.

5.2 Objective for Scientific Papers
In this chapter, we adapt the abstract map objective of Chapter 3 to the scientific domain. Let
us take a close look at our data. As before, scientific publications have a title, a body and/or an
abstract, and a time stamp. They often come with meta data, such as authors and venue.

While in the news domain we were limited to articles’ content alone, the scientific domain
provides additional structure in the form of the citation graph. In this section, we take advantage
of this additional structure and define an objective more suited for scientific papers.

Formally, our universe consists of a set of scientific papers D, and a set of features W .
Elements ofW are named entities and noun phrases, that we got by processing the papers with
off-the-shelf NLP tools. We also have access to a citation graph over D.

5.2.1 Coherence for Scientific Papers

Let us start with coherence. Recall the coherence objective of Section 2.1.1:

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w)1(w active in di, di+1) (∗)

In order to apply coherence to the scientific domain, we need a notion of influence(di, dj | w)
– the influence of document di on dj w.r.t. word w. The influence notion of the previous chapter
relied exclusively on article content. However, the simplicity of the representation can sometimes
result in incoherent chains. To illustrate the problem, consider the following three papers:

p1: Multiagent planning with factored MDPs / Guestrin et al / NIPS ’01

p2: Timing and power issues in wireless sensor networks / Aakvaag et al / ICPP ’05

p3: Social network analysis for routing in disconnected delay-tolerant manets / Daly et al /
MobiHoc ’07
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These papers share many words, such as ‘network’, ‘probability’ and ‘cost’, and thus can
achieve a good coherence score. However, they clearly do not follow a coherent research line.
The problem may be alleviated by higher-level features (e.g., distinguishing between different
uses of ‘network’); in this section, we choose instead to take advantage of the side information
provided by the citation graph, and define a coherence notion more suited for scientific papers.
In particular, computing influence may benefit from the citation graph.

The citation graph explicitly captures the way papers influence each other: the content of
a publication is often affected by cited work, the authors’ prior work and novel insights. The
influence notion proposed in BKS [El-Arini and Guestrin, 2011] captures exactly this behaviour.
In BKS, the authors define a directed, acyclic graph Gw for every feature w in the corpus. Nodes
represent papers that contain w and the edges represent citations and common authorship.

To capture the degree of influence, BKS defines a weight ωu,v for each edge u → v in Gw,
representing the probability of direct influence from paper u to paper v with respect to feature w.
Some probability is assigned to ‘novelty’, the case that feature w in paper v was novel.

Given a feature-specific weight for each edge in Gw, BKS defines a probabilistic, feature-
specific notion of influence between any two papers in the document collection:

Definition 5.2.1 (Direct Influence [El-Arini and Guestrin, 2011]). LetGr
w be a random subgraph

of Gw, where every edge u → v is included in Gr
w with probability ωu,v. The influence between

papers pi and pj w.r.t. w is the probability there exists a directed path in Gr
w between pi and pj .

The BKS notion of influence has many attractive properties: it is simple, and appears to
capture the way ideas travel along the citation graph. However, using it for coherence severely
limits the chains we can hope to identify. According to definition 5.2.1, the only pairs of papers
that can have influence between them are ancestor-descendant pairs in Gw for some feature w.
Therefore, chains with high influence are likely to contain only papers that directly build on top
of one another, especially papers by the same authors.

Consider papers p2 and p3 from above. Their notion of ‘network’ is similar, but there is no
direct path from p2 to p3 in the corresponding graph. To mitigate this problem, we introduce a
different notion of influence. Rather than requiring that pi influence pj , we are only interested in
whether feature w in pi and feature w in pj refer to the same idea. To capture this property, we
modify the notion of influence:

Definition 5.2.2 (Ancestral Influence). The influence between papers pi and pj with respect to
feature w is the probability pi and pj have a common ancestor in Gr

w.

p1

p1 p2
p2

Figure 5.1: Direct (left) vs. ancestral influence (right).

See Figure 5.1 for an illustration of the difference between direct influence (left) and ancestral
influence (right). In order for pi to have direct influence on pj , there has to be a path from pi to pj .
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(a) (b)

(c) (d)

Figure 5.2: Tag clouds for p1 and p2. The size of a word is proportional to its frequency. (a-b) p1 and
p2’s content, respectively. (c-d) Venues and authors of papers affected by p1 and p2, respectively. Note
that (a) and (b) are very similar, but (c) and (d) are not.

In order for pi to have ancestral influence on pj , it is sufficient that they have a common ancestor
in the graph. The ancestor can also be pi itself.

As for p2 and p3: with no direct path among them, their direct influence is zero. However, as
both cite Perkins’ 1999 networks paper, their ancestral influence is non-zero.

5.2.2 Coverage
We now explore coverage notions for the scientific domain. Let us start by choosing the set of
elements to cover, E .

What to cover?

In [Shahaf et al., 2012b], we only had the articles’ content to rely upon, and thus the covered
elements were features. We denoted the amount an article p covered a feature e by coverp(e),
and looked for a set of articles that, when combined, achieved high coverage for many important
features.

However, when we applied the same technique to scientific papers, we encountered a prob-
lem: papers with similar content may appear exchangeable w.r.t. their coverage, but they will not
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necessarily be equivalent in the user’s eyes. For example, the user may notice that the papers
aim at different communities, or that one paper is more seminal than the other. Consider the
following two papers:

p1: SVM in Oracle database 10g: Removing the barriers to widespread adoption of
support vector machines / Milenova et al

VLDB ’05 Proceedings of the 31st International Conference on Very Large Data Bases

p2: Support Vector Machines in Relational Databases / Rüping
SVM ’02 Proceedings of the First International Workshop on Pattern Recognition with Support

Vector Machines

The content of p1 and p2 is similar. Figures 5.2(a)-(b) display the papers as tag clouds:
both papers share many of their important words (‘data’,‘database’, ‘svm’, ‘implementation’).
Numerous other words have a closely related match (‘performance’/ ‘efficiency’, ‘Oracle’/ ‘re-
lational database’).

One way to distinguish between the aforementioned papers is to examine their impact. Fig-
ures 5.2(c)-(d) show tag clouds of authors and venues for papers citing p1 and p2. Figure 5.2(c)
has more words than 5.2(d), implying that p1 has affected more unique authors and venues than
p2. Interestingly, despite the similar content of the papers, there is almost no intersection between
the papers citing them; only a single paper cites both (Mona Habib from Microsoft Cairo).

Based on this intuition, we propose to use the papers themselves as elements of coverage,
E . A paper p should cover itself and the papers it has had impact on. By this definition, a high-
coverage set of papers consists of papers that, when combined, had impact on a large portion of
the corpus.

The idea that a paper covers its descendants (and not its ancestors) may seem counterintuitive
at first. After all, how can a paper cover future contributions? Nevertheless, we believe that
examining a paper’s ancestors merely helps understanding the context in which the paper was
written, while its descendants truly reveal the gist of its contribution.

Coverage of a single paper: Desiderata

We would like papers to cover their descendants. Instead of a hard, binary notion of coverage,
we prefer a softer notion, allowing us to express that descendants are covered to various degrees
(depicted as a gradient in Figure 5.3a).

Let us concentrate on the degree to which paper p covers its descendant q, coverp(q). In order
to evaluate the impact that p had on q, we examine the way q is connected to p in the citation
graph. Intuitively, if q can be reached from p by many paths, p had a high impact on q. Since
impact is diluted with each step, shorter paths are more important than longer ones.

Before we devise a coverage formulation based on paths between p and q, we consider an-
other point: impact is not necessarily transitive. Consider, for example, Figure 5.4. The figure
outlines a (small) fraction of the descendants of Nicolo Cesa-Bianchi’s paper, ‘How to Use Ex-
pert Advice’. As before, edges indicate citation. A snippet from the citation text appears by each
edge.

The left branch of Figure 5.4 revolves around Online Learning Theory. The papers in this
branch (#2 and #3) build on top of each other. Intuitively, the root paper had impact on both
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(a) (b) (c)
Figure 5.3: A simple citation graph. Edges traverse in the direction of impact, from cited to citing paper.
(a) Coverage of document A. Gradient indicates different degrees of coverage. (b-c) The effect of adding
papers B and C (respectively) to paper A. Since B’s descendants are already covered to some extent by A,
we prefer C.

of them. In contrast, the right branch is more difficult to follow. Both descendants deal with
extending the battery life of devices, but while paper #4 is a direct application of the root paper,
paper #5 is not. In fact, when #5 cites #4, the citation reads ‘Note that our protocol is different
from previous work’. In other words, paper #5 is no longer relevant to the root node, and should
not be covered by it.

The difference between the two branches can be captured by the coherence notion of Section
3.1.1: The left branch is much more coherent than the right one. Based on that intuition, we only
want a paper to cover the descendants that can be reached by a coherent path. Unlike Section
3.1.1, we are only interested in direct-influence coherent chains (Definition 5.2.1), as they model
the true impact of a paper.

Coverage of a Single Paper: Formulation

In the previous section, we provided desiderata for coverp(q): coverage is high if there are many
short and coherent paths between p and q. In order to formalize this idea, we employ the tech-
nique of random walks.

Let q be a paper. Consider a walk from q to its ancestors, taking only coherent paths into
account. At each step, the walker either terminates (with probability α), or chooses an ancestor
uniformly at random among the coherent paths that extend the current walk. If there are many
short, coherent paths between p and q, there is a high probability that the walk reaches p before
termination. We denote this probability by coverp(q).

Let us formalize this intuition now. Since we only consider coherent paths, it is more con-
venient to formulate coverage in terms of walks performed directly on a coherence graph G. A
coherence graph is a graph representing all coherent chains in the domain (See Figure 5.5 for an
example. In Section 3.2.1 we explain how to encode the graph compactly). Each vertex v of G
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Figure 5.5: Coherence graph. Nodes represent papers (names appear inside). Paths represent coherent
chains. Each paper may have multiple corresponding vertices: the highlighted vertices are all copies of
paper p.

corresponds to a single paper, which we denote paper(v); each paper p may have multiple cor-
responding vertices in G, which we denote copies(p). In Figure 5.5, copies(p) are highlighted.

Let G be a coherence graph. For each paper q, we construct the graph Gq by reversing the
direction of all edges in G and adding an additional vertex, vq. vq is the starting vertex of our
walk. We connect vq to each vertex of G which corresponds to paper q, copies(q). This way, a
walk from vq will always proceed to a copy of q, and then to its ancestors in the coherence graph
G. Since the graph is a DAG, the probability that a walk reaches vertex v is easy to compute. We
first compute a topological ordering on Gq, and compute the probabilities in this order:

coverv(q) =

{
P (vq → v), v ∈ copies(q)
(1− α) · (

∑
u:u→v P (u→ v) · coveru(q)), o/w

where P (u → v) is the probability the walker chose to go from vertex u to vertex v. We want
the walker to choose uniformly among the coherent paths that extend the current walk; in other
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words, we want to bias the walker towards ancestors that participate in many coherent paths.
Therefore, we compute for each vertex v the number of coherent paths that end in v, #Path(v).
For example, the number of paths that end in the vertex marked ‘n’ in Figure 5.5 is two (o,s,n and
p,n). Since Gq is a DAG, computing the number of paths takes polynomial time. The probability
that the walker chooses to go from vertex v to vertex u is proportional to #Path:

P (u→ v) =
#Path(v)∑

w:u→w #Path(w)

We now have a coverage notion for vertices of G. However, we are interested in a coverage
notion for papers. In order to compute the coverage of paper p, we need to sum up the scores of
all vertices in copies(p):

coverp(q) =
∑

v∈copies(p)

coverv(q)

This score corresponds to the probability of reaching p before termination. In particular, since p
can never appear more than once along a path in G, this score always less than 1.

Map Coverage

Now that we have defined coverage of a single document, let us define coverage of a map. In
Section 3.1.2 we required that coverage satisfies two properties:

1. Relation to Single-Document Coverage: coverM(e) should be a function of single-
document coverage:

coverM(e) ≡ g({coverdi(e) | di ∈ docs(M)})

2. coverM(e) ≡ f(docs(M)) is submodular.

Similar to Section 4.2.2, we view set coverage as a sampling procedure: each paper pi in the
map tries to cover document q with probability coverpi(q). The coverage of q is the probability
at least one of the documents succeeded.

coverM(q) = 1−
∏

pi∈docs(M)

(1− coverpi(q))

As before, if the map already includes papers which cover q well, coverM(q) is close to 1,
and adding another paper which covers q well provides very little extra coverage of q. This
encourages us to pick papers which cover new areas of the graph, promoting diversity.

Figures 5.3b and 5.3c illustrate this idea. Suppose we already have paper A in our map, and
we need to choose between papers B and C, whose content is similar. Figures 5.3b and 5.3c show
the effect of choosing B and C, respectively. Since B’s descendants have already been covered
by A, we would prefer to choose C. (Note that since our coverage is soft, choosing B will still
provide gains in coverage.)

Claim 5.2.3. The notion of coverage fulfills the requirements of Section 3.1.2.
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The proof is identical to Proof 4.2.2.
Finally, we model the amount M covers the corpus as the weighted sum of the amount it

covers each paper:
Cover(M) =

∑
q

λqcoverM(q)

With no prior knowledge about the user’s preferences, we set all of the weights to 1. This is
equivalent to asking for a map which covers as much of the corpus as possible. We can apply the
techniques of Section 3.3 to personalize the weights according to user feedback. In addition to
providing feedback for words, we can take advantage of the meta-data and allow users to increase
and decrease certain venues or authors. Similar to El-Arini and Guestrin [2011], we can analyze
users’ bibliography files to infer their preferences.

5.2.3 Connectivity
In Section 3.1.3, we defined the connectivity objective as a pairwise function of the metro lines:

Conn(M) =
∑
i<j

Conn(πi, πj)

In the news domain (Section 4.2.3) we simply defined connectivity as the number of lines of
Π that intersect:

Conn(M) =
∑
i<j

1(πi ∩ πj 6= ∅)

Unfortunately, this simple objective does not suffice in the scientific domain. Consider the
two chains in Figure 5.6: the top chain describes the progress of margin classifiers – from per-
ceptrons, through linear SVMs, to kernel machines. The bottom chain describes the progress of
face-recognition challenge problems in vision: from facial feature location, through face detec-
tion, to face recognition. Both chains are clearly related; the vision papers use techniques from
the theory chain. However, there is no way to find an article that would belong to both chains,
unless we sacrifice coherence considerably. As a result, maps that optimize the aforementioned
connectivity notion are often disconnected.

Finding papers that would belong to both chains may be difficult, but we can easily find
theory papers that have had a big impact on vision papers. For example, some of the vision
papers in Figure 5.6 directly cite papers from the theory chain. These citations are depicted as
dashed lines.

Figure 5.6 motivates us to prefer a softer notion of intersection. Rather than requesting that
the lines intersect, we also accept lines which are related to each other:

Conn(M) =
∑
i<j

1(πi ∩ πj 6= ∅) + γ · cover(πi, πj)

where cover(πi, πj) is the maximal coverp(q) for p ∈ πi, q ∈ πj , or vice versa. We choose to
use the maximum (instead of sum) in order to encourage connections between as many pairs of
lines as possible. Scoring all the connections between πi and πj may lead to maps where only
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Figure 5.6: Two coherent chains (theory of SVMs, application of SVM to vision). The chains do not
intersect, yet are related: the application chain uses tools from the theory chain. Dashed gray lines indicate
impact.

a few lines are very well-connected, and the rest are disconnected. The parameter γ is chosen
empirically.

This softer notion of intersection is especially suited to scientific literature. Publications offer
a rich palette of interaction possibilities, such as affirmation, criticism, contrast, methodology,
and related work. Exposing the relationships between two lines of research can prove extremely
valuable to researchers.

5.2.4 Example Maps

After devising an objective function for the news domain, we apply the algorithms of the previous
chapters to find good maps.

Figure 5.7 shows a part of a map computed for the query ‘Reinforcement Learning’. As can
be seen, the map depicts multiple lines of research: MDPs, robotics and control, multi-agent
cooperation, bounds and analysis, and exploration-exploitation tradeoffs. The map shows how
the MDP line affects the multi-agent and robotics lines, and how the exploration-exploitation
line interacts with the analysis line. Those relations are depicted as gray dashed paths. Note that
the map does not capture all the interactions; for example, connections between MDPs and the
analysis line are not captured.

As mentioned in Section 5.2.3, intersection is rare for broad queries. Figure 5.8 shows one
such intersection between two lines in the SVM map. One line is about large-scale SVMs, the
other is about multi-class SVMs. The lines intersect at Keerthi’s paper about large scale multi-
class linear SVMs.

5.3 User study: Science

In our user study, we evaluated the effectiveness of metro maps in aiding users navigate, con-
sume, and integrate different aspects of a specific, multi-faceted information need.
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Evaluating metro maps in the scientific domain poses some significant challenges. Since the
metro-map output is unique, we cannot conduct a double-blind comparison study, as subjects in-
evitably differentiate between the different systems. Therefore, we cannot have a within-subject
study, but are instead forced to choose a between-subject design. This design, in itself, causes a
new problem: since we need a different group of participants for each condition tested (metro-
map or competitor), we cannot tailor the query to users. Rather, we have to find a single domain
such that all of our participants will (1) be able to read scientific publications in that domain and
(2) not know the domain well in advance.

We recruited 30 participants from our university. All participants were graduate students
with background in Machine Learning or related fields. The domain we chose was Reinforce-
ment Learning. The machine learning background of the participants was enough to make them
comfortable with the subject, but none of them had conducted research in the field or studied it
extensively.

We asked participants to imagine themselves as first-year graduate students embarking on
a research project in Reinforcement Learning. The participants were asked to conduct a quick
literature survey. In particular, they were asked to update a survey paper from 1996: identify up
to five research directions that should be included in the updated survey, and list a few relevant
papers for each direction. We recorded participants’ browsing histories, and took a snapshot of
their progress every minute. We limited their time to 40 minutes to simulate a quick first pass on
papers.

We used the ACM dataset to compute a map for the query ‘Reinforcement learning’. The
dataset contains more than 35,000 papers from ACM conferences and journals. As the number
of papers is relatively small, scalability was not an issue. We extracted features as described in
[El-Arini and Guestrin, 2011]. We had two conditions, GS and MP+GS: In GS, participants were
allowed to use Google Scholar 1, a search engine that indexes scholarly literature. In the second
condition (MP+GS), participants were given the pre-computed metro map, and asked to pretend
that they stumbled upon it; they were not instructed how to use the map. In addition to the map,
the participants could access Google Scholar.

We also included two simulated conditions in the study, MP and WK: In MP, we pretended
our map was the user’s output, and listed all of its papers. In WK, we used references from the
Wikipedia article about reinforcement learning.

We decided to compare against Wikipedia and Google Scholar since they represent two of the
most popular starting points for research queries today. Other systems we considered including
in the comparative analysis were either unavailable for download, or very restricted in the span
of the scientific domain represented.

Before grading, we discarded data from four participants. One did not understand the task,
and wrote a (nice) essay about reinforcement learning. The others, despite visiting many web
pages, listed less than 5 papers when time ran out.

We had an expert judge evaluate the results of the rest of the participants. We combined all
of the papers that users had entered into one list. Each entry includes the paper’s information and
URL. In addition, we listed the labels that the users supplied for each paper. The judge did not
know the method used to find the papers.

1http://scholar.google.com
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Our expert judge scored the papers on a 3-point scale:
0 – Irrelevant, 1 – 1: Relevant, 2 – Seminal. Each label was given a 0-1 score, based on whether
it was a good match to the paper. The results are summarized below.

5.3.1 Results and Discussion
Information collection patterns

Avg: Pages visited Papers listed Visited/Listed
GS 46 12.2 4.51
MP+GS 36.3 9.75 3.79

Table 5.1: Information collection patterns.

The table shows the average number of web pages visited throughout the session, the average
number of papers listed by the user, and the average ratio of pages visited to papers listed. GS
users visited more pages and listed more papers on average. However, when looking at the
average ratio, only one out of 4.5 pages visited by GS users was added to their list, while MP+GS
added one out of 3.8. In other words, the map users were more focused: they may have visited
less pages, but they found these pages satisfactory.

Precision

Users’ satisfaction level is important, but the real test is the expert’s opinion. The next table
shows the average normalized scores given by the judge: For each user, we calculate the average
paper score and average label score. Then, we average over the users in each condition:

Avg: Normalized Score Normalized Label Score
GS 74.2% 71.6%
MP+GS 84.5% 80.2%

Table 5.2: Precision scores: paper score and label score.

Both the paper and label scores of MP+GS users are higher than the scores of GS users (the
median scores exhibit similar behaviour). In addition, the average number of seminal papers
discovered by GS users was 1.2 , while MP+GS users have discovered on average 1.62 seminal
papers.

The simulated Wikipedia user WK did not do well: out of 15 references, only four qualified
for the study (papers published after 1996), and only two were deemed relevant. In Wikipedia’s
defense, the other references included seminal books, which could have been useful for our
hypothetical first-year student.

Finally, let us examine the map (MP) user performance. Comparing the map directly to user
output is challenging as the map contained 45 papers, many more than the average user. Out of
these papers, seven were deemed seminal, and 21 were deemed relevant. Interestingly, many of
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the papers that were deemed irrelevant were used as bridges between relevant (or seminal) papers
in the map.

The finding that many of the map users did not identify the seminal papers in the map is
somewhat concerning. A possible explanation may be that the users were instructed to focus on
at most five lines of research, while the seminal papers were spread among more lines. Note that
despite this fact, the average normalized score of MP+GS users is still higher than the score for
the map. In any case, this phenomenon highlights the need for more targeted research on locating
and visualizing important nodes in the map.

Recall

In addition to measuring precision (the fraction of retrieved papers that are relevant), we also
tested user’s recall (the fraction of relevant papers retrieved). It is not enough for the users to
find good papers; rather, it is also important that they do not overlook important research areas.

In order to measure recall, we have composed a list of the top-10 subareas of reinforcement
learning by going over conference and workshop tracks and picking the most frequent topics.
Each user had to list up to five research directions; for each user, we computed the fraction of
these directions that appeared in our top-10 list. GS users received an average score of 46.4%,
while MP+GS users outperformed them with an average score of 73.1%.

Finally, further analysis of the snapshots taken throughout the study provides anecdotal evi-
dence of the utility of the map. Several MP+GS users started by composing a short list of research
directions; throughout the session, these users have progressively added papers to each direction.
GS users, in contrast, did not exhibit this ‘big picture’ behaviour.

5.3.2 User Comments

After the study, we asked the map users to tell us about their experience. Below are some of their
comments:

Most importantly, many participants found the map useful in making sense of the field. Some
of the participants had trouble interpreting elements of the map, or felt like the map was more
suited for researchers with deeper background knowledge. We found that many of the negative
comments could be addressed by improvements in the design of the user interface.

5.4 Summary

In this chapter, we applied the ideas of Chapter 3 to the scientific domain. We exploited the addi-
tional structure available to us in the form of the citation graph to re-define coherence, coverage
and connectivity.

In particular, we (1) characterized the probability that ideas in two papers stem from a com-
mon source, (2) quantified the impact of one paper on the corpus, and (3) proposed a notion of
connectivity that captures how different lines of research can still interact with each other, despite
not intersecting.
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We conducted validation studies with users that highlight the promise of the methodology.
Map users found better papers and covered more important areas than users of popular competi-
tors.
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Figure 5.7: Part of the map computed for the query ‘Reinforcement Learning’. The map depicts multiple
lines of research (see legend at the bottom). Interactions between the lines are depicted as dashed gray
lines, and relevant citation text appears near them.
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Reducing multiclass to binary: a unifying 

approach for margin classifiers

Allwein, Schapire, Singer | JMLR

On the algorithmic implementation of 

multiclass kernel-based vector machines

Crammer, Singer | JMLR

Generalized Bradley-Terry Models and Multi-

Class Probability Estimates

Huang, Weng, Lin | JMLR

Solving multiclass support vector machines 

with LaRank

Bordes, Bottou, Gallinari, Weston | ICML

A sequential dual method for large scale 

multi-class linear svms

Keerthi, Sundararajan, Chang, Hsieh, Lin | KDD

SVMTorch: support vector 

machines for large-scale 

regression problems

Collobert, Bengio | JMLR

Classifying large data sets 

using SVMs with hierarchical clusters

Yu, Yang, Han | KDD 

Pegasos: Primal Estimated 

sub-GrAdient SOlver for SVM"

Shalev-Shwartz, Singer, Srebro | ICML

Figure 5.8: A segment of a map computed for the query SVM/ Support vector machine, showing the
intersection of two lines: multi-class SVMs and large-scale SVM. In the interest of space, we condensed
the time line.

Positive: “Helpful... gave me keywords to
search for" / “I noticed directions I didn’t know
about... Haven’t heard of predictive state rep-
resentations before" / “Useful way to get a ba-
sic idea of what science is up to" / “That was a
great starting point" / “Easy to identify research
groups... in this context, this guy is good" /
“Timeline is very useful"

Negative: “Takes a while to grasp” / “For a be-
ginner, some papers are too specific... may be
more useful after I read some more" / “Legend
is confusing if you do not know the topic in ad-
vance" / “Didn’t necessarily understand the logic
behind edges... why don’t you draw words on
edges?" / “It is hard to get an idea from paper ti-
tle alone"
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Chapter 6

Implementation and Analysis
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In this chapter we discuss practical implementation issues. We provide a high-level view of
our algorithm, analyze its complexity and propose ways to speed up the computation. The main
goal of this chapter is to assist those interested in building similar systems; others may well skip
to the next chapter.

6.1 Algorithm Overview

We start by discussing our algorithm (Algorithm 4). The algorithm has three main phases: (1)
preparations, where it gathers all the input needed for map computation, (2) the map computation
itself, and (3) displaying the map to the user. In the following, we briefly discuss each of them.

Algorithm 4: MetroMaps

// Preparations
1 Obtain the input set D
2 Obtain external information about D (e.g., citation graph)

3 Obtain coverage elements E
4 Obtain weights λe for each element e ∈ E
5 Obtain coverd(e) for each d ∈ D, e ∈ E
6 Prune D, if necessary

7 Obtain featuresW from D
8 Obtain a transition restriction graph Gtr

9 Obtain influence(di, dj | w)
10 Prune Gtr, if necessary

// Compute the Map
11 Compute coherence graph G
12 Extract a set of top-coverage chains from G
13 Local search to improve connectivity

// Present Map to User
14 Compute line labels
15 Compute (x, y) coordinates for every article
16 Draw!

Preparations In the preparations stage, the algorithm gathers all the input needed for map
computation.

The algorithm starts by obtaining a set of documents D to summarize (Line 1). D could
be specified explicitly or computed from a query (applying standard IR methods, such as query
expansion). In addition to D, we obtain all the external information needed to compute the map
later (for example, the citation graph).
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In Lines 3-5 we gather the pieces needed to compute coverage: element weights and single-
document coverage functions. In Lines 7-9 we prepare the elements needed for the computation
of coherence, namely influence functions and the valid transition graph Gtr.

Constructing the Map The map construction stage (Lines 11-13) is the heart of the algorithm.
In Line 11, the algorithm builds a coherence graph. The graph encodes all coherent chains

over the documents D. In Line 12 we extract a set of high-coverage chains from the graph. The
number of chains K may be specified in advance, or (as some stories are more complex than
others) one may prefer to add lines until coverage gains fall below a threshold. Finally, in Line
13 we perform local search to increase the map connectivity.

Presenting the Map to the User In the last phase of Algorithm 4, we display the map to the
user. In order to facilitate navigation in the map, we have added a legend feature. We assign a
few characteristic words to each line (see Figure 3.4). The words chosen to describe each line
are words carrying the highest incremental coverage for that line, assuming the other lines have
been read. In other words, for each line πi we found the words maximizing

cover⋃
j πj

(w)− cover⋃
j 6=i πj

(w)

Since the other lines may contain a large number of documents, coverage of some important
elements may saturate. Therefore, we adjust the sampling procedure of Section 4.2.2 to sample
from only l of the documents of the other lines.

Next, we assign (x, y) coordinates to each paper. We have identified several design principles
common to metro maps; based on those principles, we designed the map layout algorithm.

In order to minimize the number of kinks and turns in a line, we break each line into segments.
A segment is a maximal sub-line that does not intersect with other lines. For each segment, we
represent each segment by its two endpoints, and run the layout algorithm on the segment graph.
Once we find a layout, we add the rest of the nodes along the segment. This way, the only kinks
in the graph are around intersections.

We decided to use one of the axes as a temporal axis, and set the other coordinate according
to a force-directed layout algorithm. The algorithm assigns forces among edges as if they were
springs, and simulates the graph like a physical system. We have modified the algorithm so that
the graph respects chronological order among vertices. The output of force-directed algorithms
is often aesthetically pleasing, and there are few unnecessary crossing edges.

6.2 Speeding Up the Computation
We have reviewed the three main phases of Algorithm 4. As our goal is to build interactive
systems, we need to ensure that the algorithm can answer a query within reasonable time. In this
section we analyze the computational cost of the algorithm, and propose methods to speed up
our bottlenecks.

Let us take a closer look at the three phases of the algorithm. The preparations phase can be
performed offline, during preprocessing of the data. The visualization phase normally operates
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on tiny graphs, and thus is very fast. Therefore, we will focus our attention on speeding up the
map construction phase.

6.2.1 Complexity of Map Construction
Before proposing methods for speeding up the map construction phase, let us analyze its com-
plexity. The map construction phase is composed of the following steps:

1. In the first step, we apply generalized best-first search to compute the vertices of the coher-
ence graph (Section 3.2.1). In the worst case, the search procedure might solve O(|D|m)
linear programs (all possible chains of length m). For such a graph, the number of edges
may be as high as O(|D|2m).

2. The coverage step (Section 3.2.2) requires K iterations of the greedy algorithm – one per
each metro line. Each iteration requires solving O(|D|2) orienteering problems using the
polynomial algorithm of Chekuri and Pal [2005].

3. The connectivity step (Section 3.2.3) performs local search. Each iteration requires in the
worst case solving another O(K|D|2) orienteering problems.

The three steps are computationally intensive. In the following, we propose practical methods
to overcome the computational hurdles.

6.2.2 Scaling Up the Coherence Graph
In Line 11 the algorithm constructs a coherence graph using a generalized best-first (GBF) search
strategy: at each iteration, we expand the node corresponding to the highest-coherence chain,
generate all of its extensions and evaluate their coherence as well (see Chapter 3 for more details).

The GBF strategy may not be practical when examining all O(|D|m) chains of length m.
From the description above, we can think of two ways to speed the search up: restricting the
search space, or reducing the amount of work per expanded node.

We start by outlining two ways to restrict the search space of GBF.

Restricting the Document Set: In Line 11, the algorithm finds all coherent chains over the
documents of D. However, many of these chains are not likely to ever participate in a map. The
choice of chains for the map is based on their coverage; chains with low coverage are rarely
selected.

Therefore, it may be possible to prune low-coverage documents in advance, as they are not
likely to be chosen for the map (Line 6). In the scientific domain, for example, this heuristic
translates to pruning low-impact papers. Note that the submodularity of our coverage function
guarantees that if a document has low coverage, its coverage can only decrease as new papers
are added to the map. Therefore, low-coverage papers are guaranteed to remain low-coverage.
However, we must keep in mind that low-coverage papers may still be useful: in particular, low-
coverage papers sometimes act as the “missing link” between two high-coverage papers when
forming coherent chains.

Another type of papers that can be pruned is near-duplicate papers. For example, in the news
domain, multiple sources may report the same event. These reports all provide low incremental
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coverage w.r.t. each other, and can be used interchangeably in chains. Therefore, we do not need
all of them when constructing the coherence graph.

Importantly, the pruned documents may not be used for the coherence graph, but they are still
taken into consideration when evaluating coverage in later steps. In addition, note that if we use
personalized coverage we may have to re-adjust our document selection when the user provides
feedback.

Restricting Possible Transitions: In Line 8 of Algorithm 4 we obtain Gtr, a graph restricting
the transitions that can participate in chains. Restricting the transitions can significantly speed
up GBF; in addition, this approach leads to a natural anytime algorithm, as one can start from a
sparse Gtr and incrementally add edges.

In the simplest case, Gtr is a directed clique; all transitions obeying chronological order are
possible. However, Gtr can impose further constraints, such as minimal/maximal time differ-
ence between the articles. As another example, we may remove all edges whose best possible
coherence is below some threshold. In our experiments, we chose to restrict the degree of Gtr:
clustering algorithms can be used to determine the closest d neighbours of each vertex, and in-
clude only these edges in Gtr.

As a side note, notice that the choice of restrictions may depend on the query (Line 10). For
example, setting minimal/maximal time difference between consecutive articles may depend on
the timespan of the documents of D.

We proposed two ways to restrict the search space of our generalized best-first search proce-
dure. However, the amount of work per node may still be high, as evaluating each chain requires
an external LP solver. We now propose an alternative method for scoring chains.

Scoring Simple Chains: Note that the CTD coherence notion was created with long chains
in mind. However, for the coherence graph we only need to concentrate on chains of length
m. We can take advantage of the fact that shorter chains are simpler: articles are often more
related to each other, and there is less topic drift. In terms of Section 3.1.1, selected words are
active throughout the entire chain (kTotal=kTrans). This makes it easier to identify the active
words; for example, given a chain to score, we can pick the words with the highest median (or
average) value and activate them throughout the entire chain. This way, no LP solver is needed,
and scoring a chain is fast. While this method is not guaranteed to find the same words as the
optimum, it achieves good results in practice.

The idea that shorter chains are simple gives rise to new possibilities. If short coherent chains
consist of highly-related articles, perhaps we can do better than blindly traverse the search space:

Bottleneck Paths Suppose we knew a set of words that are guaranteed to be the active words
in some unknown short, coherent chain; our goal is to recover the corresponding chain. In this
case, we can take all possible transitions and score them based on the given set of words. The
result is a weighted directed graph G, whose vertices correspond to documents D.
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Figure 6.1: Behaviour of the top-9 features for Chain A (left), and A’ (see in text, right). x axis represents
document position in the chain, y axis represents PCA feature value. Circles correspond to the actual
feature values in the chain, and dashed lines are the lowest-degree polynomial which fits these points
within a specified error. The degree of each polynomial appears above it.

A path p in G corresponds to a chain. Importantly, the coherence of the chain (with respect
to the chosen words) is the minimum edge weight across p, also known as its bottleneck. The
problem of finding the top coherent chain of length m directly translates to a variant of the
bottleneck path problem: find the top bottleneck path of lengthm. This problem is easily solvable
(polynomial time) via dynamic programming techniques; we can also generalize the solution to
find the top-k bottleneck paths.

We are still left with the problem of identifying good sets of active words. The number of
candidate sets is exponential inW , and thus enumeration is infeasible. We can take advantage of
topic models (e.g., [Blei et al., 2003]) to identify salient words of different topics; alternatively,
we could choose pairs of documents (especially similar ones) and identify their top common
words.

Word Trends As mentioned above, short coherent chains do not suffer from a lot of topic drift.
Given a chain, the optimal active words are often easy to identify. We now propose another way
to take advantage of this fact and identify potentially good chains without using GBF.

We examined the behaviour of active words throughout various chains. We observe that in
many good chains, active words exhibit a smooth behaviour: words become progressively more
(or less) important as the chain advances, or stay relatively stable. In poor chains, active words
tend to fluctuate more.

In order to formalize this, we look at the series of coefficients of each word throughout the
chain, and try to express it as a low-degree polynomial. Figure 6.1 demonstrates this approach.
We tested two chains: chain A is a coherent chain about the debt crisis, and Chain A’, which was
obtained from Chain A by replacing an intermediate article by an article about Hungary and the
Greek debt. Intuitively, this change made Chain A’ less coherent.

Figure 6.1 shows the behaviour of the top 9 features for Chain A (left), and A’ (right). As
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words were too noisy, we used PCA components instead. x axis represents document position
in the chain, y axis represents (PCA) feature value. Circles correspond to the actual values,
and dashed lines are the lowest-degree polynomial which fits them within a specified error. The
degree of each polynomial appears above it (note that one can always can fit a polynomial of
degree 4 through 5 points). As expected, Chain A needs lower-degree polynomials than Chain
A’.

We have experimented with low-degree polynomials as a measure of chain quality. Chains
displaying low-degree behaviour were usually coherent, but some of our hand-picked coherent
chains required a high degree. That is, the process seems biased towards false negatives. How-
ever, according to our observations, this bias does not pose a problem when D is large enough.
If a coherent chain did not score well, there was usually a similar chain which scored better.

Algorithm 5: FindShortChains(D,m)
input : D a set of documents, m desired length
output: A set of chains of length m.

1 for K iterations do
2 Randomly select (d, d′) ∈ D2 ;

// Create a model of a chain between d and d′

3 foreach (w) ∈ importantFeatures({d, d′}) do
4 Modeld,d′(w) = polyfit((1, d(w)), (m, d′(w))) ;

// Evaluate other documents
5 Initialize array FitDocs to ∅;
6 foreach d′′ ∈ D \ {d, d′} do

// Find best position for d′′ (null if far)
7 i′′ = bestPos(d′′,Modeld,d′) ;
8 if i′′ 6= null then
9 FitDocs[i′′] = FitDocs[i′′] ∪ {d′′} ;

10 score = getScore(FitDocs) ;
11 Record best model as Model∗, and its FitDocs array as FitDocs∗;

12 if Model∗ has a low score then return ;
// Good model found. Reestimate from fitting docs

13 foreach (w) ∈ importantFeatures(FitDocs∗) do
14 Model∗new(w) = polyfit(FitDocs∗(w), degree) ;

15 return extractChains(FitDocs,Model∗new) ;

The observations above motivated us to seek an algorithm for finding short chains with
smooth word behaviour. We are inspired by RANSAC [Fischler and Bolles, 1981], a method
originating from the statistics literature (and made popular by the vision community). RANSAC
is a general parameter estimation approach designed to cope with a large proportion of outliers
in the input data. In a nutshell, it is a resampling technique, generating candidate solutions by
using few datapoints to estimate the underlying model parameters.

Our algorithm is described in Algorithm 5. In each iteration, we randomly select a set of
candidate pairs of articles, {(d, d′)}, to be used as endpoints of the chain (Line 2). We then
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hypothesize a model for a coherent chain linking d and d′ (Line 4). A model is a sequence of
predicted values for each feature. For example, if d and d′ both display high levels of feature
w, we expect the rest of the documents in any coherent chain to display similar high levels. If
d displays higher levels of w, we expect to observe this trend in the rest of the chain. Since we
only have two points to estimate the model from, we simply fit a linear function between them.

Next, we want to evaluate our model. Intuitively, a model is good if we can find many
coherent chains that behave similarly to the model’s prediction. In order to find such chains, we
first try to locate articles that closely fit the model’s prediction. For each article d′′, we find the
best position in the chain: i.e., the position that minimizes d′′’s distance from the model (Line 7,
function bestPos). If d′′ is close enough to the model, this position is recorded in the FitDocs
array.

After finding a set of documents that closely fit the model’s prediction FitDocs, we want to
compute the number of chains that can be generated from them. It is important to note that the
number of documents in FitDocs is not enough: for example, if many documents fit the model’s
prediction for position 2 but no documents could be found for position 3, no chains match the
model.

If there are no chronological constraints, the number of chains is simply
∏

i |FitDocs[i]|:
there are |FitDocs[i]| options for the ith position. Otherwise, we construct a directed acyclic
graph corresponding to chronological constraints: we create a layer of vertices for each position
i, and add edges between a vertex at layer i and a vertex at layer i + 1 only if the document
at layer i + 1 is newer. We add d as a source and d′ as a sink. Thus, each path from d to d′′

corresponds to a valid chain, and we are left with the task of counting the paths. Since the graph
is a DAG, we can apply a linear-time algorithm to count the number of possible paths.

The score of the model is the number of coherent paths it captures. We repeat the process
for multiple candidate pairs d, d′, and then pick the best model; i.e., the model that predicted a
large number of chains. Since the model was estimated only from the initial two articles, we
re-estimate it from all of the fitting articles FitDocs (Line 14). Finally, we extract short chains
that are a close fit to the re-estimated model.

Our algorithm is not guaranteed to succeed, since it may not draw documents that capture a
good model. However, since many document pairs do encode a good model, the algorithm works
well in practice. It is also fast and easy to parallelize. In addition, the algorithm provides an in-
teresting interpretation ofm-coherence: One can think of a chain as a ride through feature-space.
Each sub-chain has a smooth trajectory, when projected on important-feature axis. Because of
the large overlap between sub-chains, we are only allowed gentle adjustments to the steering
wheel as we progress throughout the chain.

As expected, the algorithm tends to recover topics that are heavily represented in the dataset;
topics that are poorly represented are less likely to be sampled. Nevertheless, the chains recov-
ered are of comparable quality to the chains recovered by methods of Section 3.2.1.

A Note on Data Structures

In the previous sections we have proposed ways to speed up the computation of the coherence
graph. Let us now consider the representation of the computed graph.
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Note that in the worst case, the number of vertices of the coherence graph could be O(|D|m).
For such a graph, the number of edges may be as high as O(|D|2m).

However, because of the way edges are defined, we can store the graph in time and space
much smaller than O(|D|2m). We can create bins for each possible prefix and suffix of length
m− 1, and hash each vertex to the two bins corresponding to its prefix and suffix. Since there is
an edge between two vertices iff one’s suffix is identical to the other’s prefix, we do not need to
explicitly represent the edges. Thus, we can represent the graph using the prefix and suffix hash
tables alone, taking only O(|D|m) in expectation.

6.2.3 Scaling Up Coverage and Connectivity
After discussing scaling up Line 11, we turn our attention to Lines 12 and 13. Both lines are
very similar in nature; the computational bottleneck in both lines is the need to solve many
orienteering problems. However, two factors ameliorate this concern.

First, evaluating chains is easy to parallelize, since there is no dependency between different
chains (a.k.a. “embarrassingly parallel"). Therefore, we can speed the algorithm up simply by
adding more processors.

Second, we note that we do not have to re-evaluate all candidate chains at every stage of
the greedy algorithm. Rather, we can evaluate the candidate chains lazily. The correctness of
this lazy procedure follows directly from submodularity [Leskovec et al., 2007], and leads to far
fewer (expensive) evaluations of chains. We can also take advantage of independence again and
evaluate several of the top chains in parallel. Lazy evaluations lead to dramatic speedups in both
Lines 12 and 13, without losing approximation bounds.

6.3 Running Times
Below we measure the running time of our algorithm for a few sample queries. The algorithm is
implemented in matlab on a single core machine; we believe that parallelizing the algorithm (as
discussed above) and re-implementing it in a more efficient language will result in reasonable
running time.

Number of Papers Running Time (s)
MDP 155 94
Reinforcement Learning 438 325
SVM 1348 1907
Information Retrieval 1705 2071

Table 6.1: Running times for MetroMaps.

Note that while the size of the query set D is important, it is not the only factor determining
the running time; the structural properties of D (and in particular, the number of coherent paths)
play an important role as well.

User queries can range from broad (‘Science’) to narrow (‘Correlated Q-Learning’). Our
current implementation can handle queries of several thousands of documents at most; broader
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queries (for example, all computer science papers) are not feasible. However, note that we restrict
the size of the maps in order to avoid clutter in the visualization. Maps usually include 5-6 lines,
and 20-30 papers; in other words, the result of a “computer science” query, even if we could
compute it efficiently, is unlikely to cover a large fraction of the corpus. The Chilean miners
story, on the other hand, was almost linear, and thus could be effectively covered by a map (note
that this property would not change even if we had ten times more articles about the miners).
Until we have hierarchical maps with cluster-nodes and zooming capabilities, it is best to keep
the map size constraints in mind when formulating queries.
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Chapter 7

Related Work
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Figure 7.1: Related Work. The light-blue line details the evolution of this work. The red line revolves
around visual representations for science, while the pink line focuses on map representations. The green
and orange lines concentrate on methods for summarizing collections of documents, especially in the news
domain. Variations of “Connecting the Dots” problem appear along the yellow line. Finally, notions of
coverage are covered by the purple line.
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To the best of our knowledge, the problem of automatically constructing metro maps is novel.
Nevertheless, there has been extensive work done on a myriad of related directions. Figure 7.1
shows a metro map outlining some of these directions.

The light-blue line details the evolution of this work: from manual issue maps, through
connecting the dots, to metro maps and our two test cases. In the following, we discuss the
rest of the map.

7.1 Visual Metaphors
Consider Figure 7.1 again. The pink line concentrates on visual representations of data, in par-
ticular ones employing a map metaphor; many of these representations have been presented in
Section 1.1.

Concept maps [Novak, 1990] are a graphical representation where nodes represent concepts,
and edges represent the relationships between concepts. The central concept is at the top of the
map and the various subcomponents appear further down the map. Figure 1.2(left) shows an
example of concept map answering the question “Why do we have seasons?".

Knowledge maps [O’Donnell et al., 2002] are similar to concept maps, but their edges are
labeled by a fixed vocabulary of symbols. The fixed vocabulary may be domain specific, and is
often presented in an abbreviated format (“P” for “part”, “C” for “characteristic”). Information
in nodes can be larger than a concept (e.g., a paragraph), and the maps themselves are often less
hierarchical than concept maps.

Issue maps (or argument maps) display the structure of an argument. They includes com-
ponents such as a main contention, premises, co-premises, objections, rebuttals and lemmas.
Typically an issue map is a directed graph, with nodes corresponding to propositions and edges
corresponding to relationships (e.g., dispute or support). Figure 1.3 shows an example of an issue
map dealing with perhaps the oldest AI question: can computers think?

Mind maps [Buzan and Buzan, 1995] are another popular representation. Mind maps are
usually radial, with branches flowing from the center of the map. Color and pictures are very
emphasized. See, for example, a map about personal health in Figure 1.2 (right).

The final representation on the pink line is Nesbitt’s metro map drawing. The drawing por-
trays the interconnecting ideas running through Nesbitt’s doctoral dissertation [Nesbitt, 2004].
Note Nesbitt’s map is connected to the red line, as the map appears in the Atlas of Science
[Borner, 2010].

While the objectives of mapping tools are usually similar, they are used for different pur-
poses. Mind maps focus on imagination and exploring associations between concepts. Concept
maps aim at explaining the relationships between concepts, and hence understanding the con-
cepts themselves. Issue maps are meant to expose the structure of an argument, and allow users
to evaluate them the soundness of argument premises and the inferential connections. For a
comparison between concept maps, mind maps and other visual representations, see [Eppler,
2006].

Our decision to focus on maps is there also motivated by the strong empirical support for map
representations in enhancing, retaining and improving knowledge. The meta-analysis of [Nesbit
and Adesope, 2006] found that mapping activities are more effective for attaining knowledge
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retention and transfer, in comparison with activities such as reading text, attending lectures, and
participating in class discussions. The benefits held across a broad range of educational levels,
subject areas, and settings. Much of this benefit may be due to greater learner engagement
occasioned by maps.

Other studies found that Mind maps were shown to increase memory recall for undergradu-
ate students when compared to traditional note taking [Farrand et al., 2002], and also to reduce
cognitive load [Sarker et al., 2008]. Rewey et al. [1991] showed that students recall more cen-
tral ideas when they learn from a knowledge map than when they learn from (informationally
isomorphic) text. The benefits of maps are often higher for students with low prior knowledge.�
�

�


Most importantly, all of the representations mentioned above are manually
constructed, whereas our metro maps are constructed automatically.

7.2 Connecting the Dots
The Connecting the Dots problem appeared in the literature in a variety of forms and domains.

Kumar et al. [2006] formulate a new data mining problem called storytelling as a general-
ization of redescription mining. Storytelling aims to explicitly relate object sets that are disjoint
by finding a chain of approximate redescriptions between the sets. For example, if some Lon-
don travel books (Y ) overlap with books about places where popes are interred (G), and some
of which are books about ancient codes (R), then the sequence of approximate redescriptions
Y ⇔ G⇔ R is a story.

The strength of a story is determined by the weakest transition. The strength of a transition
measured by its Jaccard coefficient (the ratio of the size of common elements to elements on
either side of the redescription). Since this is a local measure, any global notion of coherence is
lost.

In [Hossain et al., 2010], the goal is to find hammock paths, which are a generalization of
traditional paths: A hammock is a pair of objects which share common features. A hammock
path is a sequence of objects, such that each two consecutive ones form a hammock.

Figure 7.2: Helping intelligence analysts make connections via chains of cliques [Hossain et al., 2011].

In [Hossain et al., 2011], Hossain proposes a system for helping intelligence analysts make
connections. The system constructs a chain of documents; it takes into consideration two pa-
rameters: (1) A distance threshold, capturing the maximum acceptable distance between two
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neighboring articles, and (2) a minimum clique size threshold, capturing the minimum size of
a clique between two neighboring articles (Figure 7.2). Given a document, the system uses the
distance threshold and clique size requirements to identify a set of possible successors to be used
in the chain. Note that the process of finding a successor does not take the end document into
consideration.

Connecting the Dots has also been explored in non-textual domains. The authors of [Heath
et al., 2010] propose building graphs, called Image Webs, to represent the connections between
images in a collection, and discover meaningful paths in them. Images may depict the same
static scene, or they may be related in a more subtle way (for example, two different buildings
at a university are connected by a campus bus that frequently stops near each building). The
authors’ main tool for path discovery was shortest-path, and their chains may exhibit stream-
of-consciousness behaviour, similar to the shortest-path chains of Section 2.1; in contrast, our
notion of coherence is global.

In [Wang et al., 2012] the authors generate pictorial storylines for given topics from text and
image data. The system constructs a multi-view object graph, and selects a set of nodes using an
approximation algorithm for the Minimum-Weight Dominating Set Problem. Finally, it creates
a storyline using a directed Steiner tree algorithm. Steiner trees, similar to shortest-path, do not
guarantee a global theme of the storyline.

Several methods have concentrated on connecting two points of interest via multiple paths. In
[Faloutsos et al., 2004], the goal is to extract a small (amenable to visual inspection) subgraph that
best captures the connections between two nodes of the graph. The authors interpret the graph
as an electrical network, and choose the subgraph that can deliver as much electrical current as
possible. See Figure 7.3 for a connection graph between Alan Turing and Sharon Stone. One
connection is through the actress Kate Winslet, because she starred in a movie about the Enigma
cipher machine. Note that edges in the graph are computed locally, and paths in them are not
necessarily coherent.

Figure 7.3: A connection graph between Alan Turing and Sharon Stone [Faloutsos et al., 2004].

Das-Neves et al. [2005]; Fox et al. [2006] propose a system that takes an input two related
but separable topics. The goal is to retrieve one or more sequences of documents that support a
valid set of relationships between the two topics. The output is a connected network of chains of
evidence. Each chain is made of a sequence of additional topics (stepping stones); each topic in
the sequence is logically connected to the next and previous one. Together, the chains provide a
rationale (a pathway) for the connection between the two original topics.
For example, if the query is “distributed systems” and “file system”, middle nodes connecting
these endpoints could be “distributed applications” and “high performance”.

Both electrical networks and stepping stones offer some insight regarding the connection
between their endpoints. However, compared to metro map chains, both representations lack
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structure. In addition, we believe that the choice of a single concept (or entity) as a unit of
analysis is too fine to be used for explaining complex topics.#

"
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In all of the methods mentioned above, there is no global notion of coher-
ence. The neighbouring items are chosen because their similarity passed
some threshold, or they belong to a spanning tree. We believe that the no-
tion of coherent paths facilitates the process of knowledge acquisition for
the users.

On a related note, the narrative generation community [Turner, 1994; Niehaus and Young,
2009] has sought to explore the notion of narratives and the ways to model them. In particular,
what makes narrative different from a list of events? However, their task seems to be fundamen-
tally different from ours. Much of the work involves producing natural-language experiences for
a user (e.g., a computer game), and focus on planning-like operators and inferences. In contrast,
we do not try to generate any natural-language content, neither do we make up new plots. Nev-
ertheless, some of the work done on evaluating narratives [Rowe et al., 2009] may be useful for
our purposes.

7.3 Summarization and News
An active area of research focuses on summarizing collections of documents, especially in the
news domain. Consider the green and orange lines in Figure 7.1.

The green line starts with Topic Detection and Tracking (TDT) [Allan et al., 1998]. TDT is
an initiative aiming at finding and following new events in unsegmented streams of news report-
ing. TDT traditionally considered topics as flat clusters, but has since moved on to hierarchical
structures [Allan et al., 2003] that can explicitly model dependencies between events [Nallapati
et al., 2004].

TDT has led to investigations of a variety of problems related to novelty detection, in partic-
ular First Story Detection (FSD) [Allan et al., 2000]. In FSD, the task is to mark each story as
“first” if it is the first to discuss an event. An event is something that happens at some specific
time and place, e.g., an earthquake.

Similarly, Kleinberg [Kleinberg, 2002] used randomized infinite-state automata to model
burstiness and hierarchical structure in text streams. Unlike most of the TDT work, Kleinberg’s
work did not focus on news. Rather, it explored email archives and other time-stamped document
collections.

Assessing the novelty of a text is closely related to finding its most informative sentences.
The latter task is called extractive text summarization (as opposed to abstractive summarization
methods, which attempt to rephrase the information in the text). Recently, there has been a lot
of research dealing with multi-document extractive summarization, where the goal is to extract
summarized information from multiple texts about the same topic [Radev et al., 2002].

Several news summarization systems that build upon the ideas above have been proposed.
The Columbia Newsblaster project [Evans et al., 2004] applies multiple summarization systems
to the texts. Newsjunkie [Gabrilovich et al., 2004] identifies the novelty of stories and custom-
tailors newsfeeds to a user, based on the information that they have already reviewed (Figure
7.4). Other timeline systems include [Swan and Jensen, 2000; Yan et al., 2011].
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Figure 7.4: Newsjunkie story interface [Gabrilovich et al., 2004].

Several methods have gone beyond timelines and attempted to produce graphs. In email
threading [Lewis and Knowles, 1997], the task is to discover connections between email mes-
sages. Electronic mail is considered easier than news, since it usually incorporates a strong
structure of referenced messages. In [Mei and Zhai, 2005], the authors studied how to discover
sub-clusters in a news event and structure them by their dependency, generating a graph struc-
ture. However, the authors do not address the notion of coherence at all, and constructing a chain
of coherent articles from the output graph is hard. In addition, it seems like the method is best-
suited for simple news stories, i.e., stories that can be summarized in one or two keywords (e.g.,
“tsunami”).#
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Our system goes beyond the list-of-sentences or list-or-articles models, or
even graphs with locally-computed edges. Metro maps offer a more struc-
tured form of output. Not only does our system pick nuggets of information
to display to the user, it explicitly shows connections among different story-
lines.

7.4 Notions of Coverage
The purple line in Figure 7.1 explores notions of coverage. Note that the purple line is connected
to the novelty detection and summarization stops on the news lines. In fact, coverage and novelty
are very similar; both concepts aim to reduce redundancy, while extracting fresh nuggets of
interesting data.

Finding novel pieces of information is a strong theme of subtopic retrieval [Zhai et al., 2003b;
Chen and Karger, 2006; Carbonell and Goldstein, 1998]. In subtopic retrieval, the task is to
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retrieve documents that cover many subtopics of the given query. In the traditional informa-
tion retrieval setting, it is assumed that the relevance of each document is independent of the
other documents. However, in subtopic retrieval the utility of a document is contingent on the
other retrieved documents. In particular, a newly retrieved document is relevant only if it covers
subtopics other than the ones covered by previous documents. Thus, the concept of relevance in
subtopic retrieval is similar to our notion of coverage.

We have chosen to use the coverage notion from [El-Arini et al., 2009] in this work because
of its submodularity. Other notions, such as MMR [Zhai et al., 2003a] (in the context of ranking
and summarization) do not provide approximation guarantees, and could not be combined with
our orienteering algorithm.

7.5 Mapping Science

Many attempts at mapping science have been made over the years, and several systems exist
for summarizing and visualizing scientific literature (see [Borner, 2010] for a compendium).
However, the output of these systems is often not suitable for a starting researcher.

Figure 7.5: Mapping Chemistry [Boyack et al., 2009]. Map of the 14 disciplines, fractions of papers by
field for each discipline, and knowledge flows between disciplines for 1974.

Some systems’ level of granularity is too coarse: Boyack et al. [2009] provide a graph-
summary of chemistry research, where each node corresponds to a cluster of disciplines (‘Biology-
Zoology-Ecology’) or clusters of journals (see Figures 7.5,7.6). Bassecoulard and Zitt [1999]
produce a hierarchical graph, where nodes correspond to clusters of journals. [Campanario,
1995] used self-organizing maps study interrelationships among journals.
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Figure 7.6: Mapping Chemistry [Boyack et al., 2009]. Each node is a cluster of journals, and is sized to
show numbers of papers in the journal cluster.

Figure 7.7: Mapping Geography abstracts to visualize the domain [Skupin, 2004].

Other systems’ level of granularity is too fine. [Skupin, 2004] uses words from abstracts
of geography papers to visualize the domain (Figure 7.7). TextArc uses words as their unit of
analysis as well (see “Visualization of The History of Science" in [Borner, 2010]).

We believe that in order to allow researchers to understand how a field is organized, a finer
level of granularity is needed. For this reason, we chose papers as our unit of analysis. Most
current tools that work at this level of granularity provide visualizations of citation or co-citation
networks, where papers are nodes [Chen, 2004; Dunne et al., 2010] (see Figure 7.8). Early
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Figure 7.8: iOpener Workbench (Action Science Explorer) tool for summarizing research domains
[Chen, 2004; Dunne et al., 2010].

examples include the citation network on DNA [Garfield et al., 1964] and nucleic acids [Allen,
1960]. See [Moya-Anegon et al., 2004] for more examples. Importantly, edges between papers
are based on local computation, and there is no notion of coherent lines of research.

Interestingly, there have been several attempts at mapping the impact of science, in particular
as a tool for guiding science investments [Lane and Bertuzzi, 2011; Lane, 2009]. It could be
interesting to incorporate external data (e.g., funding agencies) into our maps, and quantify how
the investments are linked to innovation.

7.6 Summary
In conclusion, our work differs from most previous work in several important aspects – express-
ing information needs and structured output and interaction. Our system’s input (a set of
articles) might give rise to beyond-keyword input methods, allowing users to express more com-
plex information needs. Our system’s output is interesting, too – instead of the common list
of relevant documents, or a graph of strong (but local) connections, our output is more struc-
tured: several coherent chains of articles maximizing coverage of salient features of the corpus,
and the interactions between the chains. We believe that visually exploring the map output and
interacting with it can reveal new and interesting phenomena.
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Chapter 8

Open Questions and Criticism
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The work discussed in previous chapters opens numerous avenues for further investigations.
In this chapter, we outline several promising directions.

In order to demonstrate these directions, let us first take a look at an overview of our current
system. Figure 8.1 shows a simplified diagram of our system: our algorithm takes in a dataset
and a query, and outputs a map. In the following, we use this diagram to highlight one major,
high-level challenge for each component of the system. We then conclude with a number of more
tangible challenges.

Data

Query

Algorithm

Figure 8.1: An overview of the metro map system. The algorithm (middle) receives data (top left) and a
query (top right) and computes a map.

8.1 Scaling Up

Big Data + 

Real-time

The ever-growing amount of data is one of our system’s biggest challenges.
We wish our system to collect information from continuously updated web
sites, blogs and social networks, at a rate of millions of documents per day.
In order to do this, our methods must scale.

In addition, the real-time nature of domains such as news suggests that
we focus on designing streaming and incremental algorithms. While static
algorithms build the model from scratch every time the data is updated,

incremental algorithms process each observed value only once, and thus scale well with data
sizes.

For example, the first phase of the algorithm can be made incremental: we can cache the
coherent chains found in earlier runs, as the addition of new articles does not make the old chains
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less coherent. When new articles arrive, we can limit ourselves to finding chains involving the
fresh data (similar to a methods for solving big hidden Markov models incrementally).

It may be more difficult to make the coverage phase of the algorithm incremental, as the
addition of new articles can change the coverage of old chains (similar to the concept drift phe-
nomenon). However, as the drift is usually slow, perhaps recalculating coverage weights once in
a while can still be a satisfactory solution.

8.2 Query Mechanisms

Automatic 

Queries

The current implementation of metro maps relies on users specifying
queries, but alternative query mechanisms can be conceived. For example,

Automatic Queries: Temporal analysis tools can allow us to identify tex-
tual phrases that are gaining in popularity, and formulate queries
based on these phrases.
For example, MemeTracker [Leskovec et al., 2009] is a tool that
tracks the quotes and phrases that appear most frequently over time

across one million online sources, ranging from mass media to personal blogs. Meme-
Tracker makes it possible to see how different stories compete for news and blog coverage
each day, and how certain stories persist while others fade quickly (see Figure 8.2).

Figure 8.2: MemeTracker Leskovec et al. [2009]: Top 50 threads in the news with highest volume for the
period Aug. 1 Oct. 31, 2008. Each thread consists of all news articles and blog posts containing a textual
variant of a particular quoted phrase. (Phrase variants for the two largest threads in each week are shown
as labels pointing to the corresponding thread.) The data is drawn as a stacked plot in which the thickness
of the strand corresponding to each thread indicates its volume over time.

Note that MemeTracker is currently limited to analyzing quoted phrases. In order to gain
full advantage of the data, we need to extend MemeTracker to cluster all textual different vari-
ants of the same phrase. Clustering textual fragments is interesting because we have very little
information and thus traditional bag-of-words representations do not seem appropriate.

Similar to Section 8.1, our phrase clustering algorithm needs to be incremental, as the data
is continuously flowing in and re-clustering the phrases every hour is infeasible. We propose
to tackle the phrase clustering problem by considering phrases as short shingles and then use
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locality-sensitive hashing to identify sets of phrases with long subsequences of words. This
approach will allow us to develop scalable and incremental algorithms for identifying mutational
variants of the same phrase.

Multiple Queries: Instead of a single query, users could specify multiple entities (e.g., “Angela
Merkel" and “Goldman Sachs"). Similar to Connecting the Dots, The algorithm would
then compute a map showing connections between those entities.
The problem of connecting two entities has several interesting characteristics. Even choos-
ing the set of candidate documents D is non-trivial, as some documents linking the two
input entities might not mention either entity.
For example, consider two articles: One article accuses Goldman Sachs of helping Greece
mask the true scale of its debt, and another article details Merkel’s plan to solve the Greek
debt. In order to link these two articles we need articles about the Greek debt, but none of
them necessarily mentions Goldman Sachs or Merkel. We may need to apply some form
of query expansion to capture related entities, which in turn will help us find a good set of
candidate documents D.
In addition, we need to come up with a connectivity metric to score how well the map con-
nects the two entities. Is a direct chain connecting the two entities better than a connection
through an intersection of two lines?
We can push the metro-map metaphor further, and adapt metrics from the transit route
network design problem (TRND) Fan et al. [2004]. In TRND, we are given a transit route
network (e.g., a train network) and a demand matrix, representing the load between every
two nodes in the network. In our case, the demand could be from articles mentioning
one entity to articles mentioning the other. TRND scores the network, e.g., based on the
percentages of the total demand trips that are able to reach their destination, and the number
of transfers needed.

Beyond Keyword Search: As we noted earlier, users often know precisely what they want to
find, but it is not easy for them to distill their ideas down into a few keywords. Note that
the input to maps is not necessarily textual: all the algorithm needs is a set of documents
D to operate on. One may wish to find other ways for the users to specify D, for example
by specifying a few seed documents, or adapting ideas from El-Arini and Guestrin [2011].

8.3 Navigation and Personalization

Navigate + 

Personalize

Metro maps allow many interesting interaction forms. We have touched
upon a few in the previous sections, but one may wish to explore different
feedback mechanisms and visualization techniques. For example,

Different Resolutions: The user may zoom in to learn more about a topic,
or zoom out to get a high-level overview.
In order to reveal patterns at multiple levels, we must generalize the
notion of metro maps and explore hierarchical metro maps: instead of

representing a single document, we would like stops along our metro lines to correspond
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to regions of the next level. In other words, each vertex the map could correspond to a
cluster of documents.

As is the case with flat maps, one of the major challenges of hierarchical maps is formu-
lating their desired properties. In addition to coherence, coverage and connectivity, we
propose three additional properties. First, a good hierarchy should help the user navigate
quickly and with minimum effort. For this reason, the hierarchy has to be compact; it can-
not be too wide or too deep. Second, the clusters should be consistent: documents in each
cluster should have a common theme. Finally, all these properties should hold recursively:
each cluster should contains a good (smaller) hierarchical map within it.
In order to build a good hierarchy, one might wish to build each level in a bottom-up
fashion. We could start with a flat metro-map including all the documents, and at each
iteration summarize the previous level using larger and larger clusters. Of course, the
notions of coherence, coverage and connectivity need to be adapted to clusters.

Points of View: The user may ask to see two maps describing the same topic from two different
points of view. In the news scenario, one easy way to achieve this is to compute two maps
for the same query over two different datasets. Consider, for example, the New York Times
vs. the Wall Street Journal.
Alternatively, the user may specify the point of view he is interested in, perhaps by giving
a few examples. This is similar to the El-Arini and Guestrin [2011] notion of trust, where
users can indicate that they trust a certain author with respect to a concept. A particularly
interesting avenue to explore is the mechanism’s ability of letting the user see a topic
through the eyes of another person.

Line-based Feedback: The word-based feedback mechanism we explored in Sections 2.3, 3.3
may be too aggressive: increasing or decreasing the importance of a single word may result
in an entirely new map. Allowing the user to focus on one line at a time (keeping the rest
of the map fixed) may improve the user experience.

8.4 Quantifying Surprise

Discovering 

Surprises

Currently, metro maps rely on popularity as a measure of importance, and
thus produced maps that were mostly suited for users unfamiliar with the
topic. We wish to explore other measures of importance; in particular, we
are interested in identifying surprising and insightful connections in the
data for the more advanced user.

For example, one may rely on techniques developed for Literature
Based Discovery (LBD) Bruza and Weeber [2008]. LBD strives to find

connections in scientific literature that are novel, and have not been previously explicitly pub-
lished. In a nutshell, the idea is to extract multiple arguments from the literature, and then seek
separate arguments which, when combined, yield an argument which cannot be found anywhere.
This direction may also turn out to be useful for investigative journalism.
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8.5 Learning an Objective

Learning

Objective

A large portion of this work has been devoted to crafting an objective func-
tion: formalizing the desired properties and their trade-offs. In the future,
one may wish to learn an objective function directly.

The most natural notion from a machine learning perspective would be
learning from curated datesets. For example, we can have users provide a
single label for a map. However, this approach suffers from two limitations.
First, from the point of view of the user, it is not very natural to provide

feedback on an entire map. Second, since there are exponentially many such maps, we are likely
to need an extensive amount of user feedback before we could learn this function.

For these reasons, we propose to learn an objective from user interaction logs instead. Search
and interaction logs can provide a wealth of information that machine-learning algorithms can
harness. We can extract training data from the logs and automatically tailor objective functions
to a particular user or a group of users.

A particularly relevant research area for this direction is web search ranking. In ranking, col-
lecting relevance judgments on retrieved documents is expensive and time consuming, whereas
search logs allow for virtually unlimited data to be collected at very low cost. Furthermore,
observations obtained in laboratory settings do not reflect real world usage, and do not allow
systems to adapt to changing user behavior patterns. For these reasons, several approaches for
automatically learning preferences for ranking have been developed [Radlinski and Joachims,
2005; Agichtein et al., 2006a,b]; we hope to extend some of their insights to metro maps.

8.6 Further Directions
In the previous section we have identified five key challenges. In the following we list several
other questions we have encountered in our research.

Higher-level Features: In this work we have focused on low-level features, such as named en-
tities and noun phrases. These features, while useful, are quite limited. It would be inter-
esting to explore incorporating richer features into our framework. For example, we could
exploit semantic relations between entities in the text. As another example, we could take
advantage of the structure of a document.
In particular, in the scientific domain we could try to classify citations based on their po-
sition in the paper and on various stylistic and rhetorical cues (similar to [Garzone and
Mercer, 2000]). Once we can identify the function of the citation (Assumption, Affirma-
tion, Contrast, Methodology, Related Work, etc.) we may have a better understanding of
the cited paper’s influence.

Non-textual Data: It is worthwhile to explore metro maps for non-textual data. Two of the most
interesting applications are

1. Numerical Data: Many of today’s datasets are non text-based. Rather, they are
often relational: The dataset consists of one or more tables, tables contain one or
more records, and records contain one or more values (numerical, textual, categorical,
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etc.). For example, one could imagine a metro map summarizing a dataset of medical
records.

2. Images: In [Heath et al., 2010], Heath et al build graphs called Image Webs to rep-
resent massive image collections and understand their global structure; no coherence
or coverage notions are discussed. Formulating desired properties for image-based
datasets poses a unique set of challenges. For example, what constitutes a coherent
chain of images?

Non-Chronological Maps: The documents we have dealt with all had time stamps, and our
maps obeyed chronological order. However, one can envision maps without this constraint.
For example, what could be the semantics of a circular metro line?
Removing the chronological constraints can also open up many interesting domains. For
example, given the right coherence metric, we can apply our method to biology, using
DNA strands as documents.

Storylines: There are many ways to extract storylines from a corpus. For example, we could use
a generative model to explain the evolution of a story: if we assume that the observed data
(D) are sampled from a generative model, we can fit the model parameters to maximize the
data likelihood (see, for example, [Ahmed and Xing, 2010]). Alternatively, we could treat
it as a data-compression based, change detection problem (see [van Leeuwen and Siebes,
2008]).

Structure: In this work, we used a simple connectivity measure: if two lines are connected, the
map should reflect it. This simple measure does not disclose other structural properties of
the topic.
For example, consider the three stories from the user study of Section 4.3. Intuitively,
the Chilean miners story is the simplest of the three, with a single dominant storyline.
The earthquake in Haiti starts linearly, and then branches into many side-stories. The
Greek debt story is the most complex of the three, with many storylines interleaving and
intersecting. Ideally, our connectivity measure should convey this underlying structure.

Stability: How much are our maps robust to perturbations in the data? For example, imagine
that the map computed for your query included a document d. If we remove d from the
dataset and recompute the map, would the map change a lot, or can it substitute d for a
similar document?
The greedy nature of our coverage algorithm can cause small perturbations in the data to
have a big effect on the map. In the future, we can explore stabilizing mechanisms to
increase the algorithm’s robustness.

Cognitive User Modeling: Cognitive psychology and educational psychology have explored
the ways people comprehend ideas and connections. For example, [Doignon and Fal-
magne, 1985; Albert and Lukas, 1999] provides a formal model for assessing a learner’s
knowledge of a topic. The assessment can be used to identify what the learner knows and
what he is ready to learn.
Cognitive models have proven to be especially useful for tutoring systems [Weber and
Specht, 1997; Corbett, 2001; Beaumont, 1994]. The cognitive model enables the tutor to
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interpret students’ problem-solving actions, while tracing their growing problem-solving
knowledge. It would be interesting to incorporate insights from cognitive models into the
map algorithm, and compute maps that can help people better comprehend the topic.

Annotation: We propose three annotation mechanisms that can improve the user’s understand-
ing of the map. First, annotating the edges can expose the relationships between two
documents, and can prove extremely valuable to users. This is especially true for the sci-
entific domain, as publications offer a rich palette of interaction possibilities (affirmation,
criticism, contrast, methodology, related work, etc.).
Similarly, annotating a line with important keywords will create a map legend that can help
the user find his way around the map more efficiently. In this work we labeled the lines
using words with the highest incremental coverage given the other lines, but this solution
leaves a lot to be desired. For example, many of the words were not useful unless the users
knew the story in advance (the name of the Greek minister of finance), or were too general
(“billion").
Finally, even node annotation can make a big difference in the user experience. Currently,
we annotate the map nodes with the title of the corresponding document. While news
articles often have informative titles, research paper titles are often understandable only to
those who know the paper in advance. Furthermore, in both domains the titles are often
very long, and can be shortened considerably. Perhaps it is worth exploring alternative
node-annotation mechanisms, such as key words or even images.

User Interface: User interface has not been the focus of this work. Nevertheless, user interface
is critical to the success of metro maps, as even minor usability problems can demotivate
users. There are many usability studies and design decisions to be had, including layout of
the map, ease of navigation, and semantic zooming.
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Chapter 9

Conclusion and Discussion

107



Living in an “information society", people today are constantly bombarded with information.
While easy access to information has its benefits, many people are struggling to gain control over
the abundance of information that threatens to engulf them.

Treatment and analysis of such excessive amounts of information require appropriate means.
Search engines have made tremendous progress in recent years, and regularly help millions of
users find information quickly and reliably. However, search engines are limited in their capac-
ity to solve the information overload problem. Most importantly, search engines do not expose
the underlying structure of a topic: by looking at search results, one cannot identify the relations
and interconnections between the retrieved pieces.

We believe that a map can be an ideal tool for exposing the underlying structure of a topic.
In the real world, cartographic maps have been relied upon for centuries to help us understand
our surroundings and the relationships between neighbouring objects. Furthermore, map repre-
sentations have been shown to be effective instruments to describe, explore and summarize large
amounts of data. Well-designed maps can help users enhance, retain and improve knowledge.

We chose to focus on a particular form of map representation, called issue maps. Issue maps
are meant to expose the structure of an argument, and allow users to evaluate the soundness of
argument premises and the inferential connections. Unfortunately, generating good issue maps is
a manual, time-consuming process. Furthermore, the maps cannot be easily updated when new
data becomes available. In order to overcome these issues, we need to automate the creation of
issue maps.

This thesis research revolves around the following statement:

“We can effectively manage information overload by producing personalized
issue maps in response to the user’s expressed needs. ”

In this work, we proposed two systems which serve as stepping stones on the way to auto-
mated issue maps. The systems incrementally expand on the set of possibilities determined by
expressing information needs, structured output and interaction.

Our work has drawn from diverse areas such as data mining, information retrieval, algo-
rithms, optimization theory, human computation, and even vision. Our approach is inspired by
summarization and sensemaking approaches; we also leverage lessons learned from various data
representation tools, especially visualizations of science. In the following sections, we summa-
rize the main contributions of this thesis.

9.1 Connecting the Dots

Maps are complex, and creating one can be daunting. Before tackling an entire map, we focus
on a simpler task: a map containing only a single line. To further simplify the task, we start
by assuming that the endpoints of the line are known. In other words, we are interested in
investigating methods for automatically connecting the dots. Given two articles, s and t, our
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system automatically finds the most coherent chain of articles linking them together. Our main
contributions are as follows:
• Proposing the problem of finding a coherent chain. Formalizing characteristics of a

good chain and the notion of coherence.
The main challenge of connecting the dots is formalizing a notion of coherence. We argue
that coherence is a global property of the chain, and cannot be captured by local interac-
tions between neighbouring articles in the chain. Rather, a coherent chain can often be
characterized by a small set of words.
We formulate coherence as an optimization problem, and look for a small set of words w
that capture the essence of the story (active words). The choice of active words determines
the score of each transition between neighbouring articles. The score of the chain is then
determined by the score of its weakest link.

• Adapting the notion of coherence to the news domain. We formalized a notion of in-
fluence of a word w in a transition between two documents di and dj . Since in the news
domain we do not have links between articles, we had to rely on content alone. We con-
struct a bipartite graph between words and documents, and computed the importance of
word w for random walks between documents di and dj .

• Adapting the notion of coherence to the science domain. When formalizing a notion
of influence, we took advantage of the citation graph; the citation graph captures the way
ideas are transferred between papers, and helps us disambiguate between similar concepts.

• Providing an algorithm for connecting two fixed endpoints while maximizing chain
coherence. We apply a generalized best-first search strategy to find the most coherent
chain. Given a chain, we use a Linear Programming solver to find the optimal set of words
and evaluate its coherence.

• Incorporating feedback and interaction mechanisms into our system, tailoring stories
to user preferences. We provide mechanisms to refine a chain, to chain the importance of
certain words, or to incrementally build a chain.
In the latest case, our main challenge is to pick a small set of diverse candidate articles
which cover possible ways to continue the chain. We rely on a submodular notion of
coverage to pick the set of articles.

• Evaluating our algorithm over real news data and demonstrating its utility to news read-
ers via a user study. Our user studies demonstrate that the objective we propose captures
the users’ intuitive notion of coherence, and that our algorithm effectively helps users un-
derstand the news.

9.2 Metro Maps
After we found a way to evaluate single chains, we proposed a a methodology for creating struc-
tured summaries of information called metro maps. Metro maps consist of a concise structured
set of documents which maximizes coverage of salient pieces of information. The documents are
organized as a set of coherent storylines (metro lines). Most importantly, metro maps explicitly
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show the relations among different pieces in a way that captures story development. Our main
contributions are as follows:

• Proposing the notion of a metro map and formalizing metrics characterizing good
metro maps: coherence, coverage and connectivity. The goal of coverage is twofold: we
want to both cover important aspects of the story, but also encourage diversity. The goal
of connectivity is to expose the ways storylines interact with each other.

• Adapting metro maps to the news domain:
We propose a notion of coverage that relies on the article content alone. We view
map coverage as a Bernoulli process (a series of biased coin flips): each document in
the map tries to cover feature w with probability coverdi(w). The coverage of w is
the probability at least one of the documents succeeded.

We propose a simple notion of connectivity relying on intersections between pairs of
lines.

• Adapting metro maps to the scientific domain, taking advantage of the additional struc-
ture encoded in the citation graph:

Quantifying the impact of one paper on the corpus, using random coherent walks on
the citation graph.

Proposing a notion of connectivity that captures how different lines of research can
still interact with each other, despite not intersecting. We propose a soft notion of
connectivity, rewarding lines which had impact on each other.

• Providing efficient methods with theoretical guarantees to compute these metrics and
find a diverse set of high-impact, coherent storylines and their interactions. Our algorithm
encodes all coherent chains as a graph, exploits submodularity to extract a set of high-
coverage from the graph, and then applies local search to improve connectivity.

• Integrating user preferences into our framework by providing appropriate user-interaction
models.

• Performing validation studies with users that highlight the promise of the methodology,
as our method outperforms popular competitors. We show how our algorithms effectively
help users understand the news, especially for stories without a single dominant story-
line. In the scientific domain, we show that map users find better papers and cover more
important areas than users of competitor systems.

9.3 Future Directions
In this work, we have taken several steps towards the goal of automated issue maps. This disser-
tation opens up many opportunities of future research, both theoretical and applicative. Below,
we outline several promising directions:

• The ever-growing amount of data is one of our system’s biggest challenges. We wish
our system to collect information from continuously updated web sites, blogs and social
networks, at a rate of millions of documents per day. In order to do this, our methods must
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scale.
• The current implementation of metro maps relies on users specifying queries, but alterna-

tive query mechanisms can be conceived. Temporal analysis tools can allow us to identify
textual phrases that are gaining in popularity, and formulate queries based on these phrases.

• Metro maps allow many interesting interaction forms that we have not explored. For ex-
ample, the user can zoom in to learn more about a topic, or zoom out to get a high-level
overview. Alternatively, the user may ask to see two maps describing the same topic from
two different points of view.

• Currently, metro maps rely on popularity as a measure of importance, and thus produced
maps that were mostly suited for users unfamiliar with the topic. One may explore other
measures of importance, for example a map exposing surprising and insightful connections
in the data, aiming at a more advanced user.

• A large portion of this work has been devoted to crafting an objective function: formalizing
the desired properties and their trade-offs. In the future, one may wish to learn an objective
function directly from user interactions.

9.4 Usage of Maps
In this section, we wish to explore possible usages of maps. We rely on the traditional information
retrieval framework, and characterize a user by an information need. The user formulates his
information need in some query language and submits the query to a system. The user then
examines the retrieved results; if he is not satisfied with the results, he may interact with the
system until satisfied.

Several frameworks have been proposed to characterize information needs. For example,
Belkin’s Anomalous States of Knowledge (ASK) framework [Belkin et al., 1982] tried to model
the cognitive state of the user, identifying different categories of information needs (“Information
needed to produce directions for research"). In most of the early frameworks, information needs
were adapted from the author’s experience and thinking, or from interviews with expert human
searchers (e.g., reference librarians).

The popularity of search engines has given rise to search-behaviour studies relying on query-
log analysis. In his seminal work, Broder [Broder, 2002] went beyond the question of what
users are searching for, and looked at why users are searching. The result is a 3-class taxonomy,
classifying web queries according to their intent:

Navigational: reach a particular web site.

Informational: acquire information available in static form.

Transactional: reach a site through which the user can transact (e.g., a shopping site).

Others have extended this classification, proposing classes such as Informational:Advice
(get advice or instructions), Informational:Directed:Closed (a question that has a single, un-
ambiguous answer) [Rose and Levinson, 2004].

We would like to propose a similar taxonomy for information needs of map users. We do not
have query logs to justify the taxonomy; rather, it can be thought of as an informed guess.
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Before we discuss the taxonomy, it is important to note that maps are not intended to re-
place search engines; many of the queries submitted to search engines today are very focused,
and can be satisfied by a single piece of information. In contrast, maps are designed to display
connections between multiple pieces of information. In terms of Broder’s taxonomy, maps are
mostly useful for Informational queries; they are of little use for Navigational and Transac-
tional queries. Thus, our taxonomy will focus on the Informational branch.

Informational queries are driven by a user’s need to learn something. The need can range
from simple (for example, fact lookup and question answering) to complex (understanding a
topic). In order to formalize the different types of learning, we rely on Bloom’s Taxonomy
[Bloom et al., 1956] and on Marchionini’s interpretation of it [Marchionini, 2006].

Bloom, together with a group of educators, undertook the ambitious task of classifying ed-
ucational goals and objectives. In particular, they have identifies six cognitive categories char-
acterizing the processes of learning (see Figure 9.1). At the Knowledge Level, a student can
recall terms, facts, and basic concepts. At the Comprehension level, a student can demonstrate
understanding, for example by organizing or comparing important ideas. At the Application
level, a student is able to use the knowledge he acquires for solving problems. At the Analysis
level, a student can examine information, make inferences and find plausible generalizations. At
the Synthesis level, a student can combine elements in new and useful patterns. Finally, at the
Evaluation level a student make judgments about information and defend them.

Figure 9.1: Bloom’s cognitive categories [Bloom et al., 1956], lowest order processes to the highest:
Knowledge (Remember), Comprehension, Application, Analysis, Synthesis (Create), Evaluation.

In our taxonomy (Figure 9.2) we distinguish between two main categories. The Learn cat-
egory corresponds to the lower three levels of Bloom’s taxonomy: The goal of the user is to
acquire knowledge, to comprehend the state of some topic. The second category in our tax-
onomy, Investigate, corresponds to the higher levels of Bloom’s taxonomy. The user aims to
produce outcomes, and not merely to collect information.

For example, a user in the Learn category might be interested in Surveying a concrete topic
(Reinforcement Learning, Debt Crisis). The topic may be new to the users, or could be a familiar
one they wish to monitor. In a different scenario, the users may not have a concrete topic in mind,
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1. Learn: Get a high-level view of a topic, acquire knowledge.

1.1. Survey: Learn about a concrete topic.

1.1.1. First-timer: Learn about a topic new to you.

1.1.2. Monitor: Maintain awareness of the status of a topic.

1.2. Navigate: Find what is around a specific point.

2. Investigate: Produce outcomes.

2.1. Analyze/ Synthesize: Identify patterns and relationships. Find
evidence to support generalizations. Generate insight by connect-
ing several pieces of knowledge.

2.2. Negative Search: Discover gaps in knowledge.

2.2.1. Whodunit: Find if a hypothesis is new. Similarly, find
how several concepts have been connected in the past.

2.2.2 Replacement: What are the implications of replacing a
building block with another one?

2.4. Curriculum: Learn what you do not know that you need to know
(what should I have asked?).

Figure 9.2: Our proposed information-needs taxonomy of map users.

but rather a starting point whose surroundings they wish to explore and Navigate.
Navigation is a promising application for maps. Many news sites today already present a

“Related Articles” feature, indicating articles which the user may find interesting. We propose to
augment this feature by a map mechanism, allowing the user to see the article in broader context.
Alternatively, adding a Connect-the-Dots sidebar to a news site allows the user to connect the
article they are currently reading to other articles (see Figure 9.3).

Note that our Learn category does not include a Lookup case, corresponding to fact lookup
and question answering. As described in Chapter 4, maps are less useful for this type of queries.

We now consider the second category in our taxonomy, Investigate. As mentioned earlier,
this category corresponds to the higher levels of Bloom’s taxonomy, where the user is trying to
produce his own outcomes.

In Analyze/ Synthesize, the user tries to transform existing data into new data. They may
look for patterns in the data, and try to generate new insights. For example, a journalist may read
about racism in LAPD during OJ Simpson’s trial, and look for similar cases; an economist may
try to understand whether Spain is following the path of Greece into bankruptcy; a researcher
may try to characterize application domains for which SVM is useful. Connecting the dots can
also be thought about as a synthesis task.

Another interesting application is Negative Search [Garfield, 1970]. In negative search, the
user looks for gaps in knowledge. Unlike most search systems today, negative search is recall-
oriented: the user needs to explore as much of the information space as possible in order to be
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sure that the information is not there.
Two interesting cases of Negative Search are Whodunit and Replacement: In Whodunit,

the user’s goal is to ensure that a particular hypothesis is new (for example, so that new research
can begin, avoiding dead-end alleys). This is also very related to connecting the dots: the user
may be interesting in connecting two areas, and thus has to learn about all the previous efforts to
connect them. In Replacement, the task is slightly different: in this case, the user has a specific
tool in mind, and he is looking for new places to apply it. For example, the user may have an
algorithm that outperforms all previous algorithms in some task. Then, he may go on and see
how the previous algorithms have been used, with the intention of starting parallel research lines
using their tool of choice.

Finally, in Curriculum, the user has some task in mind (for example, buy a new camera), but
he is unsure of what he needs to know in order to make the decision. Therefore, he in interested
in coming up with a curriculum: a set of pieces of information that he needs to read, and their
dependencies. The camera buyer may first read about different styles of cameras, from point-
and-shoot to DSLR. Depending on the style chosen, he will be faced with many other pieces of
information to digest, analyze and synthesize. The process continues until the user has enough
information to execute the task.

9.5 Epilogue
In a way, the problem of constructing metro map does not have a single right solution. In this
work we have merely dipped our toes in the water, proposing a direction. Nevertheless, we hope
that this work opens a field of opportunities for future research; we believe that automated maps
could become a set of powerful tools for any user who needs to make sense of large amounts of
data, including web users, intelligence analysts, or scientists.
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Figure 9.3: Use Case (Illustration). Top: Adding a map sidebar to a news site allows a user to understand
the broader context of the article, or navigate to related articles. Bottom: Adding a Connect-the-Dots
sidebar to a news site allows the user to connect the article they are reading (top right) and other articles.
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