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1 Introduction

Safety-critical systems such as aircraft controllers must be designed with a high assurance of cor-
rectness. When the costs of failure are extremely high, system designers must strive to provide
extremely reliable guarantees that their systems work as intended. Formal verification is an impor-
tant tool at their disposal. The goal of mechanized theorem proving, our favored style of formal
verification, is not merely to exhibit a proof of system correctness, but also to check by computer
the validity of every step in that proof. Doing so drastically reduces the latent possibility of hu-
man errors. To trust the statement of a formally proved theorem, it suffices merely to trust the
implementation of the proof checker, rather than the typically intricate details of the proof itself.

Chief among the many difficult tasks inherent in a mechanized theorem proving effort is find-
ing the right formalisms to work within. The challenge is to reduce into concise notation and
simple automatable steps the sophisticated reasoning principles that mathematicians usually take
for granted. Simplifying too much can lead to incomplete formalisms that lack the power to prove
interesting theorems. Simplifying too little or choosing the wrong primitives can lead to an in-
tractable mess. The appropriate choice of formalisms depends, of course, on the problem domain
of interest. In this paper, we focus on collision-avoidance policies for aircraft systems, a problem
domain that poses quite a few difficult challenges. The systems that we analyze are composed of
multiple independent computational agents that interact with the physical world—making them
so-called distributed hybrid systems. The continuous flight dynamics, the discrete computation for
flight control decisions, and the distributed communication aspects all contribute to the difficulty
of verification in this domain. Our formalism has three components. First we have a language for
specifying distributed hybrid systems and their behavior, called Quantified Hybrid Programs. Sec-
ond, we have a logic for describing properties of systems, called Quantified Differential Dynamic
Logic or QdZ [1,2]. Third, we have a proof calculus, i.e. a system of syntactic manipulations that
allows us to reduce QdZ formulas into simpler subcomponents in order to prove their validity.

Once a formalism is in place, the challenge is using it to build proofs of interesting theorems.
Here is where software tool support becomes crucial. In practice, we often do not just want com-
puterized help in checking our proofs, but we also want help in constructing proofs. In some cases
it is possible to achieve full automation, but in advanced problem domains theorem proving is
undecidable, so tools must be interactive. KeYmaeraD is an interactive theorem prover that both
mechanizes the QdZ formalism and facilitates proof search.

The devil is in the details. Getting all of this machinery to work together and produce interest-
ing results is a nontrivial task. The purpose of this paper is exhibit two case studies that show a
practical application of mechanized theorem proving in the domain of aircraft control and avoid-
ance maneuvers. We specify and verify two interesting policies. These policies are designed with
a simple separation principle in mind: associated with each aircraft is a disc, within which the air-
craft is required always to remain. Then the problem reduces to i) maintaining sufficient separation
between pairs of discs, and ii) proving that the actual controller for the flight dynamics will always
stay inside its disc.

The primary contribution of this paper is this pair of formally verified policies for aircraft. The
systems are distributed, allowing participation of arbitrarily many aircraft, and rippling effects are
taken care of. The trajectories of the aircraft are flyable with no sharp corners or instantaneous



changes of speed. Additionally, they have some nice space efficiency properties. We argue that
QdZ is a useful formalism and that KeYmaeraD is an effective verification tool. To the best of
our knowledge, we provide the first formal verification results of safe separation of controllers
for flyable aircraft dynamics with arbitrarily many aircraft. It also appears to be the case that
KeYmaeraD is the only verification tool with which this can be proved.

2 Related Work

Verification of air traffic control is particularly challenging because it lies in the intersection of
many fields which are already tough verification problems when examined independently. It is
a distributed system, with an arbitrarily large number of aircraft interacting over an unbounded
time horizon. Each aircraft has nonlinear continuous dynamics combined with complex discrete
controllers. And finally, every protocol must by flyable (i.e. not cause the aircraft to enter a stall,
bank too sharply, or require it to turn on sharp corners). However, because flight is so safety critical,
it is important that we get it right.

Many methods for ensuring correctness have been researched, each having different strengths
in dealing with the various challenges posed by air traffic control. Pallottino et al. [3] proposed a
distributed collision avoidance policy that is closely related to the systems we examine here. They
provide a thorough empirical description of the system’s behavior, emphasizing simulation and
physical experiment. They formulate a liveness property and probabilistically verify it with Monte
Carlo methods. They give an informal proof of safety that broadly follows similar high-level ideas
as our proofs here. Our proofs, however, are formal, and our methods directly operate on the code
describing the systems. We therefore provide a much higher degree of assurance and a clearer
avenue to extending the systems while retaining that assurance. Also, unlike [3], our proofs take
the flight dynamics into account.

Similarly, the work by Umeno and Lynch [4, 5] is complementary to ours. They consider real-
time properties of airport protocols using Timed I/O Automata. We are interested in proving local
properties of the actual hybrid system flight dynamics.

Verification methods for systems with an arbitrary number of agents behaving under distributed
control fall primarily into one of two categories: semi-automated theorem proving and parameter-
ized verification.

Johnson and Mitra [6] use parameterized verification to guarantee that a distributed air traffic
landing protocol (SATS) is collision free. Using backward reachability, they prove that six aircraft
is the maximum number that can be engaged in a SATS maneuver simultaneously. The SATS
landing protocol divides the airspace into 11 regions and approximates aircraft movement by clocks
within each region. We consider the complementary problem of free flight instead of airport landing
traffic.

Other provably safe systems with a specific (usually small) number of agents are presented in
[7,8,4,5]. Duperret et al. [7] verify a roundabout with three vehicles. Each vehicle is constrained
to a pre-defined path, so dynamics are flattened to one dimension.

Tomlin et al. [8] analyze competitive aircraft maneuvers game-theoretically using numerical
approximations of partial differential equations. As a solution, they propose roundabout maneuvers
and give bounded-time verification results for straight-line approximations.
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Flyability has been identified as one of the major challenges in KoSecka et al. [9], where plan-
ning based on superposition of potential fields has been used to resolve air traffic conflicts. This
planning does not guarantee flyability but, rather, defaults to classical vertical altitude changes
whenever a nonflyable path is detected. The resulting maneuver has not yet been verified. The
planning approach has been pursued by Bicchi and Pallottino [10] with numerical simulations.

Numerical simulation algorithms approximating discrete-time Markov Chain approximations
of aircraft behavior have been proposed by Hu et al. [11]. They approximate bounded-time proba-
bilistic reachable sets for one initial state. We consider hybrid systems combining discrete control
choices and continuous dynamics instead of uncontrolled, probabilistic continuous dynamics.

Hwang et al. [12] have presented a straight-line aircraft conflict avoidance maneuver that in-
volves optimization over complicated trigonometric computations, and validate it using random
numerical simulation and informal arguments.

The work of Dowek et al. [13] and Galdino et al. [14] shares many goals with ours. They
consider straight-line maneuvers and formalize geometrical proofs in PVS.

Our approach has a very different focus than other complementary work:

— Our maneuver directly involves curved flight unlike [8,11,13,14,12,4,5]. This makes our
maneuver more realistic but much more difficult to analyze.

— Unlike [9, 11, 12], we do not give results for a finite (sometimes small) number of initial flight
positions (simulation). Instead, we verify uncountably many initial states and give unbounded-
time horizon verification results.

— Unlike [8-11, 15, 12], we use symbolic instead of numerical computation so that numerical and
floating point errors cannot cause soundness problems.

— Unlike [10, 16,11, 13, 14, 12,4, 5], we analyze hybrid system dynamics directly.

— Unlike [9, 8, 10-12, 16, 3] we produce formal, deductive proofs.

- In[13,14,12,4,5], itremains to be proven that the hybrid dynamics and flight equations follow
the geometrical thoughts. In contrast, our approach directly works for the hybrid flight dynam-
ics. We illustrate verification results graphically to help understand them, but the figures do not
prove anything.

— Unlike [10, 15], we do not guarantee optimality of the resulting maneuver.

— Unlike [7-14, 17], we verify the case of arbitrarily many aircraft.

3 Preliminaries: Quantified Differential Dynamic Logic

Quantified Hybrid Programs. QHPs [1, 2] are defined by the following grammar («, 8 are QHPs,
0 terms, i a variable of sort C, f is a function symbol, s is a term with sort compatible to f, and H
is a formula of first-order logic):

a,B = Vi:CA|Vi:C{D&H}|?H|aUB|a;B|a”

where A is a list of assignments of the form f(s):=6 and nondeterministic assignments of the
form f(s) := ¢, and D is a list of differential equations of the form f(s)" = 6. When an assignment
list does not depend on the quantified variable i, we may elide the quantification for clarity.
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The effect of assignment f(s):=6 is a discrete jump assigning 6 to f(s). The effect of nonde-
terministic assignment f(s):= ¢ is a discrete jump assigning any value in C to f(s). The effect
of quantified assignment ¥i: C A is the simultaneous effect of all assignments in A for all objects
i of sort C. The QHP Vi:C a(i) :=a(i) + 1, for example, expresses that all cars i of sort C simul-
taneously increase their acceleration. The effect of quantified differential equation Vi : C{D&H}
is a continuous evolution where, for all objects i of sort C, all differential equations in O hold
and formula H holds throughout the evolution (i.e. the state remains in the region described by
evolution domain constraint H). The dynamics of QHPs changes the interpretation of terms over
time: for an R-valued function symbol f, f(s)" denotes the derivative of the interpretation of the
term f(s) over time during continuous evolution, not the derivative of f(s) by its argument s. We
assume that f does not occur in s. In most quantified assignments/differential equations s is just i.
For instance, the following QHP expresses that all cars i of sort C drive by Vi: C x(i)” = a(i) such
that their position x(i) changes continuously according to their respective acceleration a(i).

The effect of test 7H is a skip (i.e., no change) if formula H is true in the current state and
abort (blocking the system run by a failed assertion), otherwise. Nondeterministic choice a U 3 is
for alternatives in the behavior of the distributed hybrid system. In the sequential composition a; 3,
QHP g starts after « finishes (5 never starts if @ continues indefinitely). Nondeterministic repetition
o” repeats a an arbitrary number of times, possibly zero times.

Quantified Differential Dynamic Logic The formulas of Qd/ [1,2] are defined as in first-order
dynamic logic plus many-sorted first-order logic by the following grammar (¢, ¢ are formulas,
01, 0, are terms of the same sort, i is a variable of sort C, and « is a QHP):

o 2= 601=0:10260,|d|oAY|oVY|Vi:Co[di:C¢|[alg| ()¢

We use standard abbreviations to define <, >, <, —. The real numbers R form a distinguished sort,
upon which are defined the rigid functions + and X. Sorts C # R have no ordering and hence 6, = 6,
is the only relation allowed on them. For sort IR, we abbreviate Vx: IR ¢ by Vx ¢. In the following,
all formulas and terms have to be well-typed. QdL formula [a]¢ expresses that all states reachable
by QHP « satisfy formula ¢. Likewise, (@)¢ expresses that there is at least one state reachable
by a for which ¢ holds.

Proof Calculus and Prover The QdZ proof calculus [1,2] consists of proof rules that operate
on sequents, which are syntactic objects of the form I" = 4 where I" and 4 are finite sets of QdL
formulas. Loos et al [18] use the proof calculus to verify lane-following behavior for arbitrarily
many autonomous cars on a highway. KeYmearaD is a theorem prover that facilitates use of the
Qd/L proof calculus and has been used successfully to verify many systems [19][20]. KeYmaeraD
further implements quantified differential invariants [21]. To construct a proof in KeYmaeraD is
to write a tactic script that, when run, applies proof rules to a sequent, reducing it to problems in
first-order real arithmetic, which are then sent to a backend decision procedure (Mathematica).

4 Case Study Systems

We model airspace as R? and aircraft as particles moving in this space. Each aircraft i has a constant
scalar speed v(i) and may steer itself by adjusting its angular velocity w(i). There is an upper
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bound £(i) on the magnitude of the angular velocity, implying a minimum turning radius minr(i) =
v(i)/Q(i). This model is known as the Dubins vehicle [22]. We make no assumptions about the
number of aircraft present in airspace. Our goal is to design control policies that prevent aircraft
from ever getting closer to each other than a (symbolic) distance p, representing the protected zone.
We consider a policy to be safe if it guarantees this property. Below, we present two policies and
prove that they are safe in this sense. The main idea in both policies is to maintain around each
aircraft a disc-shaped buffer zone that is large enough so that when two aircraft approach each other
their buffer zones contain sufficient maneuvering room to avoid a collision. The policies operate
on two levels of abstraction—though each policy is a single self-contained formal artifact. At the
higher abstraction level the policies deal with buffer-zone discs that float around and freeze when
they get too close to each other. When an aircraft’s disc is frozen, we say that the aircraft is engaged
in a collision avoidance maneuver. At the lower level the policies specify how aircraft move within
these discs, ensuring that they may always continue to stay within them in the future and that they
can follow flyable trajectories without physically impossible instant turns. Even if the discs cannot
move, because they come too close, the aircraft can still fly on flyable trajectories inside the disc
without colliding or stalling. The sizes and relative positions of the discs differ between the two
policies, representing a set of trade-offs in which both policies have strengths and weaknesses.

4.1 Big Disc

The first policy is Big Disc, which we now describe. During normal free flight of an aircraft i, the
buffer zone for i is a disc of radius 2minr(i) centered at x(i). Such a disc allows just enough room for
i to begin to circle at radius minr(i) when i enters a collision avoidance maneuver. However, the disc
is big in the sense that it allows a considerable amount of freedom once i has gone halfway around
this initial circle. The beginning of one possible trajectory of a collision avoidance maneuver is
illustrated in Figure 1. The indexed state variable d(i) is a unit vector in the direction of i’s motion.
The indexed state variable disc(i) stores the position of the center of i’s buffer disc. The aircraft
need not always turn at the maximum angular velocity €(i); all that we require is that the aircraft
has chosen a circling direction, and that it is able to remain within the disc by circling in that
direction. We will see a more formal version of this property below.

Formal Model The Big Disc policy is presented formally in Quantified Hybrid Program 1. Note
that we encode boolean data in real state variables. The indexed state variable ca(i) indicates
whether aircraft i is in a collision avoidance maneuver. If ca(i) = 0O then i is in free flight. If
ca(i) = 1 then i is in an avoidance maneuver. The indexed state variable side(i) indicates the di-
rection that ¢ will circle when i enters an avoidance maneuver. If side(i) = 1 then i will circle
counter-clockwise. If side(i) = —1 then i will circle clockwise. The program also uses some new
notation. If y is a vector in R?, then y* is defined as the vector obtained by rotating y ninety degrees
counter-clockwise (i.e. (y1,y2)" = (=y2,y1)), and ||y|| is the standard Euclidean norm.

The quantified hybrid program BigDisc is a loop, given by the * construct, where each iteration
is either a control action as represented by Control or an evolution of physics as represented by
Plant. The program makes use of nondeterminism in order to allow individual aircraft to make
independent choices. Thus, in the Control branch, the program nondeterministically selects an

5



P L LLE T

. NO)

~
-~ -
L LTy e

Fig. 1. A possible trajectory during collision avoidance in the Big Disc policy

aircraft k (by k := %,) and then allows k to perform some action. The allowed actions depend on
whether & is in a collision avoidance maneuver. If it is (case CA), then k may either adjust its
angular velocity with its Steer branch, or exit the maneuver with its Exit branch. Note that the
only allowed new angular velocities in the Steer branch are those between —Q(k) and (k). Note
also that Exit is only allowed when x(k) = disc(k); the aircraft must return to the center of the
disc before exiting the maneuver. If k is not in a collision avoidance maneuver (case NotCA), then
it may once again Steer, or it may switch its circling direction with the F1ip branch, or it may
enter an avoidance maneuver with the Enter branch. Note that & is a state variable, meaning that
its value can change over the evolution of the program. In contrast, i and j are logical variables,
bound by quantifiers and given meaning by substitution.

The other branch in BigDisc’s main loop is Plant. The derivative x(i)’ of position is of magni-
tude v(7) in the direction d(i). The derivative of d(i) is of magnitude w(i) in a direction perpendicular
to d(i) (line 9). The derivative of the position of the center of the buffer disc is equal to the deriva-
tive of x(7) if i is in an avoidance maneuver, and zero otherwise. This case distinction is achieved
by multiplication with 1 — ca(i) (line 10). Thus, the center of the disc is stationary in an avoidance
maneuver, and it precisely tracks the aircraft otherwise. In accordance with the semantics, all other
state variables are given derivative zero during the evolution. So the speed v(i), for example, re-
mains constant. The evolution constraint, i.e. the formula that appears to the right of the ampersand
&, has two purposes. It ensures that aircraft that are in avoidance maneuvers may always remain
within their buffer discs (line 11, and cf. the discussion of InvD below), and it forces aircraft to
enter collision avoidance maneuvers if they get too close to one another (line 12).

Theorem Statement The safety condition that we would like to guarantee is as follows: for all
pairs of distinct aircraft i, j, the distance between i and j is greater than or equal to p. We can
express this condition formally as

Safe =Vi,j: A. i# j— |x(@) - x(j)l| = p.
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Quantified Hybrid Program 1 Big Disc Policy

BigDisc = (Control U Plant)” )
Control =k := x,; (CAUNotCA) 2)
CA = 2(ca(k) =1); (Steer UExit) 3)
NotCA = ?(ca(k) = 0); (Steer UFlip U Enter) )
Steer = w(k) = *gr; 2(—Qk) < w(k) < Q(k)) 5)
Exit = 2disc(k) = x(k)); ca(k) =0 6)
Enter = om(k) := side(k) - Q(k); ca(k) =1 (@)
Flip = side(k) := —side(k) ®)
Plant = ¥i: A.{x(i) = v(i)-d(@), d(i)’ = w(i) - d(i)", )
disc(i) = (1 —ca(i)) - v(i) - d(@i) & (10)

[|disc(i) = (x(i) + minr(i) - side(i) - d@)D)|| < minr(i) (11)

AV A(j#iA(ca(i) =0V ca(j) = 0)) — Separated(, j)} (12)

Separated(i, j) = ||disc(i) — disc(J)|| = 2minr(i) + 2minr(j) + p (13)

We want to show that Safe holds after every execution of BigDisc. The Qd/ formula expressing
this property is [BigDisc]Safe. As usual, however, we need to make some assumptions about
initial conditions. Thus, the safety theorem that we will prove is of the form

Init —» [BigDisc]Safe,

where we have yet to define appropriate initial conditions Init. Since BigDisc is a loop, we will
need to define a loop invariant Looplnv to prove the safety theorem; we might as well define Init
to be exactly that loop invariant. We certainly need to put into Looplnv the assumptions we are
making about the parameters of our system. We collect these assumptions as

InvA =
p>0AVYi:A v@)>0AQ>3) >0Aminr(i) > 0 A Q@) - minr(i) = v(@) A|ld@)| = 1.

Because ca and side are meant to encode boolean values, we also need to assume
InvB = Vi: A. (ca(i) = 0V ca(i) = 1) A (side(i) = —1 V side(i) = 1).

For aircraft i that are not in an avoidance maneuver, i’s disc is at the same point as i. Since ca(i) = 0
for aircraft not in a maneuver and ca(i) = 1 for aircraft in a maneuver, we may write this property
as

InvC = Vi: A. (1 - ca(i))-disc(i) = (1 — ca(i)) - x(i).

We also need to ensure that aircraft in collision avoidance maneuvers remain within their discs.
We do this with the following formula, which implies that if i immediately begins to tightly circle
in its circling direction, then the center of its circle will be within distance minr(i) of disc(i).

InvD = Vi : A. ||disc(i) — (x(i) + minr(i) - side(i) - d(i)")|| < minr(i)
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Note that this condition holds trivially for aircraft not in a collision avoidance maneuver, because
for them disc(i) = x(i). Finally, we need some sort of separation condition between the discs.

Maininv = Vi, j: A.i # j — Separated(i, j)

The full initial condition is the conjunction of these conditions.

Theorem 1 (Safety of BigDisc). The following QAL formula is valid:
(InvA A InvB A InvC A InvD A Maininv) — [BigDisc]Safe

We discuss our formal, mechanized proof of Theorem 1 in Section 5.

4.2 Small Discs

One downside of the Big Disc policy is that it may trigger collision avoidance maneuvers that are
not strictly necessary; the buffer zones are significantly larger than the required circling space of the
aircraft. Our second policy, Small Discs, aims to make the buffer zone as small as possible. It does
so by abandoning the (natural) assumption that the disc must be centered on the aircraft during free
flight. Instead, the buffer zone, a disc of radius minr(i), is centered at a point with distance minr(i)
away from x(i), in a direction perpendicular to i’s motion. Thus the aircraft is always on the very
edge of the disc. During a collision avoidance maneuver, the aircraft just follows the circumference
of the disc. As in the Big Disc Policy, during free flight an aircraft may switch its circling direction.
The difference is that now this makes the disc jump to an entirely new location; each aircraft in
Small Discs has two possible discs, one for each circling direction, and before an aircraft switches
its circling direction, it must first check to see whether doing so is safe.

Figure 2 illustrates a situation where making a switch prevents the need for entering a collision
avoidance maneuver. Each aircraft has an active disc (solid discs in Fig.2) that it will use for
collision avoidance if needed. We also illustrate the alternative choice (open circles) for the disc if
the aircraft decided to switch. The active discs of aircraft i and aircraft j are on a collision course. If
nothing is done, both aircraft will need to enter a collision avoidance maneuver. Aircraft i, however,
has free space to its left. If i flips its circling direction, its disc shifts to this free space on the left,
and no collision avoidance maneuvers are necessary. Aircraft j may not make such a flip, because
aircraft k’s disc occupies the necessary space. Aircraft j could only flip if aircraft k flips first.
Note that only collisions of active discs are a problem. The fact that the inactive alternative circles
of k and m overlap is immaterial, because every aircraft promises to follow collision avoidance
procedures that make it stay inside its active disc, if necessary. This also illustrates that aircraft
have to synchronize on switching discs. If, to enable j to switch its disc, k switches its disc, but,
at the same time, and unaware of this, m switches its disc, then k and m would have incompatible
collision avoidance discs. Since purely discrete standard solutions exist for ensuring consistency
in such discrete mode changes, our model simply uses sequentialized flipping decisions.

Formal Model The Small Discs policy is presented formally as SmallDiscs in Quantified Hybrid
Program 2. The overall structure is similar to that of BigDisc. One notable difference is that
SmallDiscs no longer uses the state variable disc(i). Indeed, during free flight, the center of an
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Fig. 2. One possible scenario in the Small Discs policy

aircraft’s disc moves with dynamics that are not easy to express in terms of other state variables;
it is certainly not as easy as setting disc(i)’ = x(i)’, which is essentially what we did for BigDisc.
The point disc(i) moves faster or slower than x(7), depending on whether the disc is on whether the
aircraft is flying a left curve when the disc is on the right or on the left, and vice versa. This leads
to disc(i) having more involved continuous dynamics. Fortunately, however, the position, if not the
velocity, of aircraft i’s disc can be simply expressed in terms of other state variables. Thus, if we
were to use differential-algebraic equations as in [23], we could equate

disc(i) = x(i) + minr(i) - side(i) - d(i)*. (14)

In order to simplify the mathematics required to understand the system, we directly reduce the
system to ordinary differential equations, which also makes the connection to BigDisc more ap-
parent. Thus, instead of using (14) as part of a differential-algebraic equation, we consider (14)
as a definition and statically replace all occurrences of disc(i) by the right-hand side of (14). The
subsequent model should be read with this in mind.

Now, we can write down the separation conditions of SmallDiscs.

Separated(i, ) = ||(x(i) + minr(i) - side(i) - d(i)*") — (x(j) + minr(i) - side(j) - d(j)")||
> minr(i) + minr(j) + p

FlipSeparated(i, j) = ||(x(i) + minr(i) - side(i) - d(i)*") — (x(j) — minr(i) - side(j) - d(j))||
> minr(i) + minr(j) + p

Theorem Statement Here again we want to prove a formula of the form

Init — [SmallDiscs]Safe,
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Quantified Hybrid Program 2 Small Discs Policy

SmallDiscs = (Control U Plant)” (15)
Control =k := *,; (CAUNotCA) (16)
CA = 2ca(k) = 1); (Exit U Skip) (17)
NotCA = ?(ca(k) = 0); (Steer UFlip U Enter) (18)
Skip = true (19)
Steer = w(k) := #r; 2(—Q(k) < w(k) < Q(k)) (20)
Exit = ca(k) =0 21
Enter = (w(k) := side(k) - Q(k)); ca(k) =1 (22)
Flip= 2(¥j: A.j # k — FlipSeparated(j, k)); side(k) := —side(k) (23)
Plant = Yi: A.{x(i) = v(i) - d(i), d(i) = w(Dd(i)*" & (24)
Vj:A.(j#iA (ca@i) =0V ca(j) =0)) — Separated(i, j)} (25)

where Safe is exactly as we defined it for BigDisc. We need to redefine Init for SmallDiscs. We
reuse InvA and InvB from BigDisc. The invariant InvC from BigDisc is not appropriate, because
it has the aircraft at the center of the disc in free flight, instead of on the boundary. The invariant
InvD is not useful, because it collapses to a triviality.

If i is in a collision avoidance maneuver, then i is turning at maximal angular velocity. This
implication is expressed by multiplying both sides with the indicator ca(i):

InvE = Vi : A. w(i) - ca(i) = Qi) - side(i) - ca(i)

The main invariant for SmallDiscs has the same form as that from BigDisc, but it uses a
different definition of Separated.

Mainlnv = Vi, j : A. i # j — Separated(i, j).
Theorem 2 (Safety of SmallDiscs). The following QAL formula is valid:

(InvA A InvB A InvE A Maininv) — [SmallDiscs]Safe

5 Case Study Proofs

We have proved Theorems 1 and 2 in KeYmaeraD . The Big Disc and Small Discs tactic scripts
comprise 350 and 410 lines of Scala code, respectively. Each of them takes less than 30 seconds
to run on a medium-end desktop machine. In the mechanized proofs, we do not explicitly use
the abbreviations defined above. We expand everything out. In particular, all state variables be-
come scalars, so the vectors x(i), d(i) and disc(i) are each split into two components. All files and
proofs are available online at the KeYmaeraD repository www.github.com/keymaerad in the
examples/aircraft directory.
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5.1 Big Disc

Loop Invariant At its outer level, BigDisc is a loop, so the first proof rule that we apply in order
to prove Theorem 1 is the loop induction rule, which requires a loop invariant. Our loop invariant
Looplnv is Init. This leaves us with two branches to prove: the induction branch, where we need to
show that Looplnv — [Control U Plant]Looplnv, and the postcondition branch, where we need
to show that Looplnv — Safe.

Differential Invariants The Qd/ proof calculus provides two ways to deal with continuous dy-
namics. Symbolic solutions may allow us to convert the evolution into an equivalent closed form
assignment operation [1], and differential invariants may allow us to strengthen the evolution con-
straint [21]. The dynamics of BigDisc do not have closed-form solutions in a decidable class of
arithmetic. Therefore we use differential invariants. Our goal in the Plant branch of the proof is
to strengthen the evolution constraint, until it implies the loop invariant Looplnv, because then we
will able to apply the following proof rule and be done:

Vi:C.H = ¢
I'=[Vi:C{D&H}]¢p, 4

(Vclose)-

The rule that allows us to strengthen the evolution constraint is (V):

=04 ViCH=Vpl TI'=[Vi:C{D&HA I}]¢,A(V)
I'=[Yi:C{D&H\, 4

We say that a formula 7/ is a differential invariant of the differential evolution Vi:C{D&H} if the
second premise of the (V) rule is valid, i.e. if (Vi:C.H) = Vypl is valid. Thus, whether or not / is
a differential invariant depends crucially on the evolution constraint H. This means that if we have
some differential invariant candidates, the order in which we attempt to use them to strengthen the
evolutions constraint can be important. For instance InvC is not immediately a differential invariant
for Plant, but it is a differential invariant once the constraint has been strengthened with InvA and
InvB. Therefore we use InvA, then InvB, and then InvC as differential invariants. Such differential
cuts have been proven to be necessary in general [24]. In fact, rule V is sound, because it derives
from the differential invariance rule and a differential cut [21]. We do not need to try to use InvD
as a differential invariant because it is already effectively included in the evolution constraint (line
11). Finally, we would like to use Mainlnv as a differential invariant, but it does not work. For it to
be a differential invariant, all pairs of discs would have to never be allowed to move towards each
other. Therefore, we use the following variant of MainInv, which, by inserting multiplications by
ca(i) and ca(j) on both sides of the relation, only looks at pairs of aircraft in which both aircraft
are in a collision avoidance maneuver:

Vi, j i A. ca(i) - ca(j) - ||disc(i) — disc(DI* = ca(i) - ca(j) - Qminr(i) + 2minr(j) + p)>.

Because discs of aircraft in collision avoidance maneuvers are stationary, this is easily shown to
be a differential invariant. It is a weaker formula than MainInv, but the evolution constraint already
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includes a formula (line 12) that covers the rest of the cases, i.e. when either ca(i) or ca(j) is 0.
These cases in the evolution constraint amount to required sensor capabilities: do not miss the
presence of other aircraft and the need for collision avoidance. The above formula, instead, is what
we need to prove in order to ensure that the aircraft stay safe once collision avoidance happens.

Instantiation A challenge that has been previously identified [19] in this kind of proof is figuring
out how to instantiate variables. In order to use a universally quantified formula that appears as
an assumption, i.e. on the left in a sequent, we need to give a term with which to instantiate its
bound variable. For example, all antecedents in the inductive branch contain Mainlnv, and to use
it we need to choose concrete terms to plug in for i and j. The situation is complicated by the fact
that other rules often generate fresh names. The assignment k := %, generates a new state variable
which in our implementation might be k$42, i.e., the original name k with an appended number
to ensure unique names and avoid variable capture. We can always read off the base variable from
such a name, but we do not know that number until the tactic script runs.

We have designed a tactic called instantiatebyT and show it to be extremely versatile for
instantiation. It provides the ability to use the names of quantified variables as hints indicating base
names of the state variables with which they are to be instantiated. More concretely, it takes as an
argument a map from base variable names to lists of base variable names. When the tactic is run,
it looks for universally quantified formulas on the left of the sequent. If it finds one, say Vi.P(i),
binding a variable with base name i, it looks up i in its map to get a list of base variable names.
All state variables in the signature whose base name is in that list then get used in instantiation of
P. This tactic makes it easy to leverage the structural information encoded in variable names. To
give a simple example, when we use Mainlnv, it often makes sense to instantiate i with all state
variables of base name i, and j with all state variables of base name j; in certain cases it makes
sense to instantiate one or the other with the k-based state variables.

Triangle Inequalities In the postcondition branch of the proof, we need to prove that the loop
invariant Looplnv implies the postcondition Safe. The first steps are straightforward enough. We
instantiate appropriately to eliminate indexed variables, and we are left with a formula that can be
passed to the arithmetic decision procedure. But the arithmetic is too hard. To make progress, we
need to help the decision procedure along. Intuitively, the reason we expect the formula to be true
has to do with the triangle inequality, which says that for all vectors u, v, w we have

llu =il = [lw = vI| = [l = wll.

The discs of aircraft i and j are at least a distance 2minr(i) + 2minr(j) + p apart. By InvD, aircraft
i is at most distance 2minr(i) from disc(i), and aircraft j is at most distance 2minr(j) from disc(}).
Thus we may repeatedly use the triangle inequality to prove

lx(@) — x(DIl = llx(@) — disc(HIl = 2minr(j)
> ||disc(i) — disc(j)|| — 2minr(j) — 2minr(i)
= p.
We get the mechanized proof to succeed by using the Cut rule to break down the complicated

formula into this sequence of triangle inequalities. The decision procedure is then able to then able
to verify these simpler goals.
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5.2 Small Discs

The proof of Theorem 2 is very similar. In fact, once we had a working tactic script for Theorem
1, finding one for Theorem 2 was mostly a matter of fitting together the pieces we already had
in a slightly different way. This bodes well for the practicality of QdL and KeYmaeraD and the
generality of the proof approach. One difference is that we need to use the Unsubstitute proof rule
(called null in [19]) to get the triangle inequalities to go through at the end. The expressions end
up being more complicated because disc is now just written in terms of x and d and side.
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