
Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming

with FESTIVE
Junchen Jiang† Vyas Sekar∗ Hui Zhang†

June 14, 2012
CMU-CS-12-128

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
∗Intel Labs, Berkeley, CA, USA

This research was funded in part by the National Science Foundation under award number CNS-1040801.

Keywords: Internet video, network measurement

Abstract

Many commercial video players rely on some underlying bitrate adaptation logic to adapt the
bitrate in response to changing network conditions. Past measurement studies have identified is-
sues with today’s commercial players with respect to three key metrics—efficiency, fairness, and
stability—when multiple bitrate-adaptive players share a bottleneck link. Unfortunately, our cur-
rent understanding of why these effects occur and how they can be mitigated is quite limited. In
this paper, we present a principled understanding of bitrate adaptation and analyze several com-
mercial players through the lens of an abstract player model. This helps us identify the root cause
of several undesirable interactions that arise as a consequence of overlaying the video bitrate adap-
tation over HTTP and lead to poor efficiency, fairness, and stability. Building on these insights,
we develop a set of techniques that can systematically guide the tradeoffs between stability, fair-
ness and efficiency and thus lead to a general framework for robust video adaptation. We pick
one concrete instance from this design space and demonstrate that it significantly outperforms all
commercial players on all three key metrics across a range of experimental scenarios.

1 Introduction
Video traffic is becoming the dominant share of Internet traffic today [5]. This growth in video
is accompanied, and in large part driven, by a key technology trend: the shift from connection-
oriented video transport protocols (e.g., RTMP [9]) to HTTP-based adaptive streaming protocols
(e.g., [1, 10, 12, 35]). With a HTTP-based adaptive streaming protocol, a video player can dy-
namically (at the granularity of seconds) adjust the video bitrate based on the available network
bandwidth. As video traffic is expected to dominate Internet traffic [5], the design of robust adap-
tive HTTP streaming algorithms is important not only for the performance of video applications,
but also the performance of the Internet as a whole. Drawing an analogy to the early days of the
Internet, a robust TCP was critical to prevent “congestion collapse” [25]; we are potentially at a
similar juncture today with respect to HTTP streaming protocols.

Building on this analogy, the design of a robust adaptive video algorithm must naturally move
beyond a single-player view to account for the interactions across multiple adaptive streaming
players [13, 20, 41] that compete at bottleneck links. In this respect, there are three (potentially
conflicting) goals that a robust video adaptive streaming algorithm must try to achieve:

• Fairness: Multiple competing players sharing a bottleneck link should be able to converge to
an equitable allocation of the network.
• Stability: A player should avoid needless bitrate switches as this can adversely affect the user

experience.
• Efficiency: A group of players must choose the highest feasible set of bitrates to maximize the

user experience.

Recent work shows that two widely used commercial players fail to achieve one or more of
these properties when two players compete at a bottleneck link [13, 24]. We extend these ex-
periments (§2) and confirm that the problems manifest across many state-of-art HTTP adaptive
streaming protocols: SmoothStreaming [11], Netflix [8], Adobe OSMF [2], and Akamai HD [3].
Furthermore, these problems worsen as the number of competing players increases.

While such measurements are valuable in identifying the shortcomings of today’s players, our
understanding of the root causes of these problems is limited. To this end, we provide a systematic
study of these problems through the lens of an abstract video player that needs to implement three
key components: (1) scheduling a specific video “chunk” to be downloaded (see §2), (2) selecting
the bitrate for each chunk, and (3) estimating the bandwidth.

At a high-level, the aforementioned problems arise as a result of overlaying the adaptation logic
on top of several logical layers that may hide the true network state. Consequently, the “feedback”
signal that the player receives from the network is not a true reflection of the network state and
can be biased by the decisions the player makes! Specifically, we observe that periodic chunk
scheduling used in conjunction with stateless bitrate selection used by players today can lead to
undesirable feedback loops with bandwidth estimation and cause unnecessary bitrate switches and
unfairness in the choice of bitrates.

Our goal is to design a fair, efficient, and stable video viewing experience. In doing so, we want
to retain the characteristics that have fundamentally contributed to the rapid growth of Internet
video—using HTTP, no modifications to end-host stacks, and little modification to network, CDN,

1

and server infrastructure. Working within these constraints, we leverage measurement-driven in-
sights to design robust mechanisms for the three player components that help overcome the biases
that arise as a result of implementing the adaptation logic at the application layer.

Our specific recommendations are (we elaborate on these in §3): (1) randomized chunk schedul-
ing to avoid synchronization biases in sampling the network state, (2) a stateful bitrate selection
that compensates for the biased interaction between bitrate and estimated bandwidth, (3) a delayed
update approach to tradeoff stability and efficiency, and (4) a bandwidth estimator that uses the
harmonic mean of download speed over recent chunks to be robust to outliers. Taken together,
these approaches define a family of adaptation algorithms that vary in the tradeoff across fairness,
efficiency, and stability. As a concrete instance, we also show how to pick a sweet spot in this
tradeoff space called the FESTIVE algorithm.1

We evaluate FESTIVE against several (emulated) commercial players across a range of sce-
narios that vary the overall bandwidth and number of users. Compared to the closest alternative,
FESTIVE improves fairness by 40%, stability by 50% and efficiency by at least 10%. Furthermore,
FESTIVE is robust to the number of players sharing a bottleneck, bandwidth variability increases,
and to the available set of bitrates.

In summary, this paper makes the following contributions:

• We systematically explore the design space of adaptive video algorithms with the multiple
goals of being fair, stable, and efficient.
• We identify the main factors in bitrate selection and chunk scheduling employed in state-of-art

players today that lead to undesirable feedback loops and instability.
• We design robust mechanisms for chunk scheduling, bandwidth estimation, and bitrate selec-

tion that inform the design of a suite of adaptation algorithms that vary in the tradeoff between
stability, fairness and efficiency.
• We identify one concrete design from this family of algorithms as a reasonable point in this

tradeoff space and show that it consistently outperforms state-of-art players.

2 Background

2.1 HTTP Adaptive Video Streaming
Early Internet video technologies (e.g., Apple QuickTime [4], Adobe Flash RTMP [9]) were based
on connection-oriented video transport protocols. As shown in Figure 1(a), these protocols have
a session abstraction between the client and the server, that both maintain per-session state and
a (proprietary) stateful control protocol is used to manage the data delivery. The new generation
of Internet video technologies such as Microsoft SmoothStreaming [11], Apple’s HLS [35], and
Adobe’s HDS [1], however, are HTTP-based adaptive streaming protocols.

In HTTP adaptive streaming, a video is encoded with multiple discrete bitrates and each bitrate
stream is broken into multiple 1-5 seconds segments or “chunks”. The ith chunk from one bitrate
stream is aligned in the video time line to the ith chunk from another bitrate stream so that a video

1The name FESTIVE refers to a Fair, Efficient, and Stable adapTIVE algorithm.

2

TCP/UDP

Streaming
Player

Streaming control protocol

Streaming control protocol

Proprietary data transport
TCP/UDP

Streaming
Server

(a) Connection-oriented streaming

HTTP	
 Adap)ve	

Player	

Web browser Web server

HTTP

TCP

…

HTTP

TCP

…
A1	
 A1	
 A2	

B1	
 B2	

B2	

B1	

Cache

Client

Web server

…
…

A1	
 A2	

B1	
 B2	

Load	

balancer	

HTTP	
 GET	
 B2	

The 2nd chunk encoded
in bitrate B

(b) HTTP adaptive streaming

Figure 1: Difference between connection-oriented and HTTP adaptive streaming protocol.
player can smoothly switch to a different bitrate at each chunk boundary. As shown in Figure 1(b),
HTTP-based adaptive streaming protocols differ from the traditional connection-oriented video
transport protocols in several important aspects. First, clients use standard HTTP protocol which
provides more ubiquitous reach and support as this traffic can traverse NATs and firewalls [36].
Second, the servers are Web servers or caches; this use of existing CDN and server technology has
been a key driver for rapid growth and low costs. Third, the use of HTTP implies caches deployed
by enterprise and service providers automatically improve the performance and reduce network
load. Finally, a client fetches each chunk independently and maintains the playback session state
while servers do not. This makes it possible for the client to receive chunks from multiple servers:
enabling load-balancing and fault tolerance on both CDN side (among multiple servers) and client
side (among multiple CDNs) [30, 31].

The client side video player usually runs in a constrained sandbox environment such as Flash
or Silverlight and implements the adaptive logic. The adaptive part arises because the player uses
the throughput observed for each chunk and the chunk size to estimate the available network band-
width. These estimates are used to choose a suitable bitrate for the next chunk to be downloaded.
The player tries to maintain an adequate video playback buffer to minimize rebuffering which can
adversely impact user engagement [19]. Our focus in this paper is on this adaptive logic in the
video player on top of a HTTP-streaming protocol.

At first glance, this logic appears analogous to TCP congestion control. There are, however,
key architectural differences between HTTP video adaptive streaming and TCP. First, the two
control algorithms operate at different levels in the protocol stack. For example, video players

3

can only access coarse information as they run in an application-level sandbox. Second, TCP
is a connection-oriented protocol with control logic implemented at the sender-side while video
adaptation is a connectionless protocol with receiver-side control. Third, the granularity of data
and time are very different. TCP operates at the packet level (∼1KB), has multiple packets in
transit, and the control loop acts on the timescale of milliseconds. Video adaptation operates at the
chunk level (∼ hundreds of kilobytes), has only one chunk in transit, and the control loop runs at
the timescale of seconds (i.e., chunk fetch delay). Last, due to the video-specific requirement that
playout buffer cannot be empty, the control actions are very different; a TCP sender delays packet
transmission under congestion whereas the receiver in a video adaptation algorithm requests a
lower bitrate chunk. Taken together, these factors mean that the rich literature and and experience
in designing TCP is not directly applicable here.

2.2 Desired properties
We are interested in a multi-player setting when multiple video players may be sharing a bottleneck
link [13, 24, 41]. We generalize the metrics defined by Akhshabi et al in the context of two video
players to multiple players [13]. To formally define the metrics, we consider a setting with N
players sharing a bottleneck link with bandwidth W , with each player x playing bitrate bx,t at time
t.

• Inefficiency: The inefficiency at time t is |
∑

x bx,t−W |
W

. A value close to zero implies that the
players in aggregate are using as high an average bitrate as possible which improves user
experience [19].
• Unfairness: Now, some players could see a low bitrate while other players may see high qual-

ity. Akhshabi et al., use the difference between bitrates in a two-player setting to compute the
unfairness [13]. We generalize this to multiple players as

√
1− JainFair , where JainFair is

the Jain fairness index [37] of bx,t over all player x, because we want to quantify unfairness. A
lower value of the metric implies a more fair allocation.
• Instability: Studies suggest users are likely to be sensitive to frequent and significant bitrate

switches [16, 33]. We define the instability metric as
∑k−1

d=0 |bx,t−d−bx,t−d−1|·w(d)∑k
d=1 bx,t−d·w(d)

, which is the
weighted summation of all switch steps observed within the last k = 20 seconds divided by
the weighted summation of bitrate in the last k = 20 seconds. We use the weight function
w(d) = k − d to add linear penalty to more recent bitrate switch.

2.3 Today’s solutions
Next, we analyze how today’s commercial solutions—SmoothStreaming [10], Akamai HD [3],
Netflix [8], Adobe OSMF [2]—perform w.r.t the above metrics. In doing so, we generalize the
measurements from previous work that study 1 or 2 of these players in isolation and demonstrate
that these problems are more widespread.

We consider a setup with three players sharing a bottleneck link with a stable bandwidth of
3 Mbps with default player settings. Each player runs in a separate Windows machine running

4

 0

 0.1

 0.2

 0.3

 0.4

SS Netfl
ix

Akam
ai

Adobe

(a) Unfairness

 0

 0.1

 0.2

 0.3

 0.4

 0.5

SS Netfl
ix

Akam
ai

Adobe

(b) Inefficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

SS Netfl
ix

Akam
ai

Adobe

(c) Instability
Figure 2: Performance of today’s commercial players (SS stands for SmoothStreaming).

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 100 200 300 400 500 600 700

B
it
ra

te
 (

b
p

s
)

time (Second)

Player I
Player II
Player III

Figure 3: Visualizing unfairness and instability in SmoothStreaming

on a 2.8 Ghz desktop and accesses the respective demo website. Figure 2 shows the unfairness,
inefficiency, and instability. We see that the Akamai and Adobe players are very unstable, while all
of them are quite unfair. To give some context for what this unfairness index means, Figure 3 shows
a timeseries of the bitrates of the three SmoothStreaming players which visually confirms that the
allocation is quite unfair even for the best player in the above result. (In this case, the optimal
allocation would be for all players to pick the same bitrate at all times.) Furthermore, Table 1
shows that the problems become worse as the number of players competing for the bottleneck link
increases. Here, with a N player setup, we assume a stable bottleneck of N × 1 Mbps. For brevity,
we only show the result SmoothStreaming because this was the best overall player across all three
metrics in our earlier experiment.

3 Design
As the previous section showed, today’s state-of-art players do not satisfy the goals of fairness,
efficiency, and stability. In this section, we describe how we design a adaptive streaming player

5

players BW (bps) Unfairness Inefficiency Instability
5 5M 0.140 0.184 0.0537
11 11M 0.180 0.230 0.0648
19 19M 0.235 0.343 0.0909

Table 1: The performance of SmoothStreaming worsens as the number of players increases. We
see similar trends with other players too (not shown for brevity).

Player

Throughput

Scheduler
Adaptation

B/W Estimation

time

Video	
 Buffer	
 Chunks

Bitrate1

…..

BitrateN

Requests

Figure 4: General framework of HTTP adaptive video streaming. The server supports multiple
bitrate encodings, each a separate logically chunked file. The player issues GET requests for each
chunk at a specific bitrate and adapts the bitrate based on the observed throughput.

that satisfies these properties. As the high-level model from Figure 4 shows, an adaptive streaming
player involves three components to:
1. Schedule when the next chunk will be downloaded.
2. Select a suitable bitrate for the next chunk.
3. Estimate the network bandwidth.

In designing each component, we make a conscious decision to be compatible with today’s
deployments and end-host stacks and do not require modifications to end-hosts’ operating system
stacks or CDN servers. For each component, we use measurement-driven insights to analyze
problems with today’s players to arrive at a suitable design. We validate each component in §5.2
and their interaction in §5.3.

3.1 Chunk Scheduling
The feedback that a player gets from the network is the observed throughput for each chunk.
However, the discrete nature of the chunk download implies that the throughput a player observes
is coupled to the time when the player “occupies” the link. This is in contrast to a long-running
TCP flow that will observe its true share. Thus, we need a careful chunk scheduling approach to
avoid biases in observing the network state.

We begin by considering two strawman options: (1) download the next chunk immediately
after the previous chunk has been downloaded and (2) download chunks periodically so that the

6

B
w

 (M
bp

s)

Player A
Bitrate: 1.5Mbps
Est. bw: 1.6Mbps
Player B
Bitrate: 0.6Mbps
Est. bw: 1.1Mbps

2
1
0.6

2
1
0.6

2
1
0.6

Player C
Bitrate: 0.6Mbps
Est. bw: 1.1Mbps

time time
(a) Periodic request (b) Discrete download

0

0

0

2
1

2
1

2
1

0

0

0

Chunk 1 Chunk 2 Chunk 1 Chunk 2 Chunk 3

0 1 2 3 4 5

Player A
Bitrate: 1 Mbps
Est. bw: 2 Mbps
Player B
Bitrate: 1 Mbps
Est. bw: 1 Mbps
Player C
Bitrate: 1 Mbps
Est. bw: 1 Mbps

Figure 5: Two sources of bias with today’s players: periodic request intervals and higher bitrates
lead to higher bandwidth estimates

player buffer is sufficiently full. For example, SmoothStreaming uses the periodic strategy [13].
However, there are subtle issues with both approaches that we highlight next.
Immediate download: This greedily builds up the player buffer to avoid future buffering events.
This approach, however, can be suboptimal for the following reasons. First, greedily downloading
at the highest bitrate may needlessly increase the server’s bandwidth costs, especially if users leave
prematurely [21]. Second, greedily downloading low bitrate chunks may preclude the option of
switching to a higher quality in case the network conditions improve which will increase user
engagement [6, 19, 43]. Furthermore, in the case of live content, future chunks may not even be
available and thus this approach is not a viable option. While this greedy download option might
be useful in the initial ramp-up phase for a player, the above reasons make it unsuitable in the
steady state.
Periodic download: The periodic request strategy tries to maintain a constant playback buffer
to minimize rebuffering [13]. This target buffer size is usually a fixed number of chunks; e.g.,
SmoothStreaming uses a 2-second chunk and a target playback buffer of 30 seconds (i.e., 15
chunks). This approach works as follows. Let tstart

i be the time when the ith chunk is requested,
tend
i be the time that it is downloaded, and ∆ denote the length of each chunk (in seconds). Suppose

buffer i is length of the playback buffer (in seconds) at tend
i and targetbuf is the target buffer size

(e.g., 30s). Then, the time to request the next chunk tstart
i+1 can be written as:2

tstart
i+1 =

{
tend
i , if buffer i < targetbuf

tend
i + buffer i − targetbuf , otherwise.

(1)

While this avoids wasting network bandwidth and prematurely committing to low quality, it
suffers a different issue – players may see a biased view of the network state. Specifically, with
the periodic download, the players’ initial conditions may cause it to get stuck in suboptimal al-
locations. Figure 5(a) illustrates this problem. Suppose the players use a fixed request period of
2 seconds and the total bandwidth is 2 Mbps. Players A and B always request the next chunk at

2We can prove that this downloads one chunk every ∆ seconds at steady state; we do not show this for brevity.

7

even seconds (i.e., 0,2,4,, . . .), while player C requests it at odd seconds (i.e., 1,3,5, . . .). The
throughput observed by A and B will be 1 Mbps (half the bandwidth) whereas C estimates it to
be 2 Mbps (whole bandwidth). In other words, the initial conditions can lead to unfairness in
bandwidth allocation.
Randomized scheduling: In order to avoid this bias introduced by the initial conditions, we in-
troduce a randomized scheduler that extends the periodic strategy. As before, we want to maintain
a reasonable playback buffer. Instead of requiring a constant targetbuf , however, we treat it as an
expected value. Specifically, for each chunk i we choose a target buffer size randbuf i uniformly
at random from the range (targetbuf − δ, targetbuf + δ]. In particular, we choose δ = ∆ which is
driven by the analysis from §4. Then, the time to request the next chunk is:

tstart
i+1 =

{
tend
i , if buffer i < randbuf i
tend
i + buffer i − randbuf i, otherwise.

(2)

At steady state, the chunks will be downloaded roughly periodically, but with some jitter as
we randomize the target buffer size. We show via analysis in §4 and measurements in §5, that this
strategy ensures that the time to request each chunk, and consequently the estimated bandwidth, is
independent of a player’s start time.

3.2 Bitrate Selection
Having chosen a chunk scheduling strategy that ensures that each player is not biased by its start
time, we move to bitrate selection. Our high-level goal here is to ensure that the players will
eventually converge to a fair allocation irrespective of their current bitrates.
Bias with stateless selection: A natural strategy is to choose the highest available bitrate lower
than the estimated bandwidth. We refer to this as a class of stateless approaches as it only considers
the estimated bandwidth; e.g., not taking into account current bitrate or whether it is ramping up
or ramping down its bitrate. For example, if the available bitrates are 00, 600, and 800 Kbps and
the estimated bandwidth is 750 Kbps, the player chooses 600 Kbps.

While this stateless approach seems appealing, it can result in an unfair allocation of a bottle-
neck link. To understand why this happens, let us look at an example in Figure 5(b) with three
players A, B and C sharing a bottleneck link with an available bandwidth of 2Mbps, using the
randomized scheduler. There are three bitrates available: 600, 1200, and 1500Kbps. Suppose
Player A is currently using a bitrate of 1500 Kbps and Player B and C are currently using bitrate
600 Kbps. As shown in Figure 5(b), because Player A uses a higher bitrate, its “wire occupancy”
is higher than Player B and C. This implies that there are points in time where Player A is occupy-
ing the bottleneck link alone and thus Player A’s estimated bandwidth will be higher than Player
B and C. In other words, the discrete download process introduces a natural bias: players with a
higher bitrate observe a higher bandwidth. We formally derive the relationship between estimated
bandwidth and bitrates in §4.

Now, because there are only a discrete set of available bitrates (e.g., 4-5 encodings), players
sharing a bottleneck link can often converge to an equilibrium state that is inherently unfair; e.g.,

8

Round Bitrates (Kbps) → Estimated bw. (Kbps)
(network feedbacks)

1 [350,350,1520] → [730,730,1356]
2 [470,470,1130] → [717,717,1146]
3 [470,470,1130] → [717,717,1146]
...

Table 2: Example of unfairness with stateless bitrate selection. The bitrate levels are
{350,470,730,845,1130,1520}Kbps and the total bandwidth is 2Mbps.

in Figure 5(b), Player B and C will never increase their bitrate. This scenario is not merely hy-
pothetical. For example, Table 2 shows an actual run using our setup (described in detail in §5),
where the players converge to an equilibrium state that is inherently unfair.

Current Bitrate

R
at

e
of

 D
ec

re
as

e

Current Bitrate

R
at

e
of

 In
cr

ea
se

Figure 6: Intuition behind stateful selection: we want players with lower bitrate to ramp up aggres-
sively or players with higher bitrate to ramp down aggressively.

Our approach: At a high-level, we need to compensate for the aforementioned bias so that the
players can converge to a fair allocation irrespective of their current bitrates. We can achieve this in
one of two ways as shown in Figure 6: (1) the rate of bitrate increase is a monotonically decreasing
function of the bitrate or (2) the rate of decrease is a monotonically increasing function of the
bitrate. Intuitively, we are making the player stateful by accounting for its current bitrate.3 Our
current design chooses option (1) and we simply keep the rate of decrease a constant function. In
the example in Table 2, this approach causes the players starting at 350 Kbps to more aggressively
ramp up their bitrates so that they will observe the true network state after 2-3 switches.

This stateful strategy can be realized either by allowing multi-level bitrate switches (e.g., from
350 to 1130 and skipping intermediate levels) or by altering the rate of switching the bitrates (e.g.,
once per chunk at 350 but once every 5 chunks at 1130). While we do not conclusively know
if users are more sensitive to multi-level switches or the number of switches [16], recent work
suggests that changing quality levels gradually is preferable [33]. Thus, we choose a gradual
switching strategy where the player only switches to the next highest level and uses a lower rate of
upward switches at higher bitrates. We discuss our specific approach in §3.5. We do, however, note
that the property achieved by a stateful approach is agnostic to how specific players implement the
mechanism from Figure 6.

3We can show that this approach is sufficient; we do not know or claim that this is necessary.

9

3.3 Delayed Update
While the previous discussion provides guidelines for choosing the bitrate to converge to a fair
allocation, it does not consider the issue of stability. Switching too frequently is likely to annoy
users (e.g., [16]) and thus in this section, we focus on balancing these two potentially conflicting
goals: efficiency and fairness on one hand vs. stability on the other.

To this end, we introduce a notion of delayed update. We treat the bitrate from the previous
section only as a reference bitrate and defer the actual switch based on a measured tradeoff between
efficiency/fairness and stability. Specifically, we compute how close to the efficient or stable al-
location the current (bcur) and the reference bitrate computed from the previous discussion (bref)
are.

The efficiency cost for bitrate b is:

scoreefficiency(b) =

∣∣∣∣ b

min(w, bref)
− 1

∣∣∣∣
Here, w is the estimated bandwidth and bref is the reference bitrate from the previous section.
Intuitively, the score is the best and equal to zero when b = bref . (The “min” in the denominator
corrects for the fact that the reference bitrate may be underutilizing or overutilizing the bottleneck
link.)

The stability cost for a given bitrate b is a function of the number of bitrate switches the player
has undergone recently. Let n denote the number of bitrate switches in the last k = 20 seconds.
Then the stability metric is,

scorestability(b) =

{
2n + 1 if b = bref

2n if b = bcur

The reason to use exponential function of n as stability score is that scorestability(bref) −
scorestability(bcur) is monotonically increasing with n, which adds more penalty of adding a new
switch if there have already been many switches in recent history.

The combined score is simply the weighted average:

scorestability(b) + α× scoreefficiency(b)

The player computes this combined score for both the current and reference bitrates, and picks
the bitrate with the lower combined score. The factor α here provides a tunable knob to control the
tradeoff between efficiency/fairness and stability. We provide empirical guidelines on selecting a
suitable value for α in §5.2.

3.4 Bandwidth Estimation
As we saw in the previous discussions, the throughput observed by a player for each chunk is not a
reliable estimate of the available capacity. We suggest two guidelines to build a more robust band-
width estimator. First, instead of using the instantaneous throughput, we use a “smoothed” metric

10

The FESTIVE Player

Throughput

Randomized
Scheduler

Stateful, Delayed
Bitrate Update

Harmonic B/W
Estimation 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

time

Chunks

Use harmonic mean
over last 20 chunks

Choose randomized
target buffer size

1.  Compute reference rate
Increase/decrease rate as
a function of bitrate
2. Cost-tradeoff between
current and reference rate

Requests

Figure 7: Overview of the FESTIVE adaptive video player.

computed over the last several chunks. In our current prototype, we use the last 20 samples. (We
do not claim smoothing is new; commercial players likely already implement some smoothing.)
Second, we want this smoothing to be robust to outliers. For example, using the arithmetic mean
is biased by outliers if one chunk sees a very high or low throughput. To this end, we use the
harmonic mean over the last 20 samples. The reason for using this approach is two-fold. First, the
harmonic mean is more appropriate when we want to compute the average of “rates” as is the case
with such throughput estimation. Second, it is also more robust to larger outliers [7]. This is par-
ticularly relevant in the context of our randomized scheduler. We are especially concerned about
larger outliers; i.e., there are few competitors. (If there are more competitors, then each player is
more likely to observe a bandwidth close to its fair share.) With a randomized scheduler, however,
if there are fewer competitors for a certain chunk, the throughput will be larger. In such cases, the
harmonic mean minimizes the impact of outliers.

3.5 The FESTIVE Algorithm
We now proceed to put the different design components together to describe the FESTIVE (Fair,
Efficient, Stable, adaptIVE) algorithm. Figure 7 shows a high-level overview of FESTIVE. FES-
TIVE retains the same external-facing interface as today’s HTTP video streaming players. That is,
FESTIVE selects the bitrate for each chunk and decides when to schedule the request and the input
to FESTIVE is the throughput observed per-chunk.

In describing FESTIVE, we only focus on the steady-state behavior. The ramp up behavior
of FESTIVE can be identical to today’s players; e.g., aggressively download chunks potentially at
a low rate to start playing the video as soon as possible. As discussed in the previous sections,
FESTIVE has three key components:

11

1. The harmonic bandwidth estimator computes the harmonic mean of the last k = 20 throughput
estimates. This provides reliable bandwidth estimates on which future bitrate update decisions
can be made. In the initial phase before we have sufficient samples, FESTIVE does not employ
any rate switches because its bandwidth estimate will be unreliable.

2. The stateful and delayed bitrate update module receives throughput estimates from the band-
width estimator and computes a reference bitrate. As a specific implementation of Figure 6, we
use a gradual switching strategy; i.e., each switch is only to the next higher/lower level. Here,
we increase the reference bitrate at bitrate level k only after k chunks, but decrease the bitrate
level after every chunk if a decrease is necessary. This ensures that the bitrates eventually
converge to a fair allocation despite the biased bitrate-to-bandwidth relationship. To decide if
we need to decrease, we compare the current bitrate with p = 0.85× the estimated bandwidth.
The parameter p helps tolerate the buffer fluctuation caused by variability in chunk sizes [41].
For the delayed update, we use a value of the tradeoff factor α = 12 (see §5.2).

3. The randomized scheduler works as shown in Eq(2). It schedules the next chunk to be down-
loaded immediately if its playback buffer is less than the target buffer size. Otherwise, the next
chunk is scheduled with a random delay by selecting a randomized target buffer size. This
ensures there are no start time biases.

4 Analysis of FESTIVE
In this section, we analytically show that:

• The randomized scheduler in FESTIVE ensures that the request time of a player is independent
of its start time.
• The stateful bitrate selection in FESTIVE ensures that bitrates will eventually converge to a fair

allocation.

Together these ensure that the network state observed by competing players will not be biased
either by when they arrive or the initial bitrates of other players.
Notation: We use i, k to denote chunk indices, j for a specific epoch, and x, y, z to denote players.
Let n be the number of players and m be the number of chunks and let the bottleneck bandwidth
be W . We use ∆ to denote the length (in time) of each chunk.
Model: Our focus here is on the steady state behavior and not the initial ramp up phase. To make
the analysis tractable, we make four simplifying assumptions. First, we assume the bottleneck
bandwidth is stable. Second, this bandwidth is not saturated by the summation of bitrate, and
each player’s bitrate is less than its allocated bandwidth. As a result, for each chunk, a player
will complete the download before the “deadline”, so the buffer i > randbuf i will hold for most
chunks. Third, if n players are simultaneously downloading over a bottleneck of bandwidth W ,
we assume that each player will get a bandwidth share of W

n
. Last, we consider an epoch-based

model, where players synchronously choose a new bitrate at the start of each epoch and estimate
the bandwidth at the end of each epoch.4

4Each epoch can consist of multiple chunks.

12

δ=∆

δ=∆/4

δ=0

ti-1
start

ti
start

ti+1
start

pdf

pdf

pdf

Figure 8: Intuition for Theorem 1.

4.1 Randomized scheduler
The goal of the randomized scheduler is to ensure the request time is independent of a player’s
start time. Formally, we want to show that:

Theorem 1 If a player uses randbuf i drawn uniformly at random between (targetbuf−∆, targetbuf +
∆] and buffer i > randbuf i for each chunk i (i = 1, . . . ,m), then the probability distribution of
chunk request times does not depend on the start time tstart

0 .

Proof 1 The buffer length at time tend
i−1, when chunk i − 1 has been downloaded is buffer i−1 =

(i−1)∆− (tend
i−1− tstart

0) where (i−1)∆ is the length of content downloaded so far and tend
i−1− tstart

0

is the amount of video played. If buffer i−1 > randbuf i−1, then by Eq (2), the time to request the
next chunk:

tstart
i = tend

i−1 + buffer i−1 − randbuf i−1 =

tend
i−1 + (i− 1)∆− (tend

i−1 − tstart
0)− randbuf i−1

= tstart
0 + (i− 1)∆− randbuf i−1

Because each randbuf i−1 is a uniform random variable in the range (targetbuf−∆, targetbuf +
∆], this means that for a given i, tstart

i is a uniform random variable in the range (tstart
0 +

(i − 1)∆ − targetbuf − ∆, tstart
0 + (i − 1)∆ − targetbuf + ∆]. Let T denote a random vari-

able representing the request time. Then T = t can occur for exactly there are exactly two
intervals i∗ and i∗ + 1 (with i∗ = 1

∆
(t + targetbuf − tstart0)) as shown in Figure 8. Thus,

f(T = t) = f(tstart
i∗ = t or tstart

i∗+1 = t) = 2 ∗ 1
2∆

= 1
∆

which is independent of tstart
0 .

Notice that for other δ 6= ∆, if randbuf i is at random in range (targetbuf − δ, targetbuf + δ],
then the same argument of Theorem 1 does not hold. For example, if δ = 1

r
∆ where r > 2, then

the ranges of tstart
i for different i will not overlap (see Figure 8). Consequently, for any t, there will

be at most one tstart
i whose range covers t. That is, f(T = t) will be 1

2δ
for exactly one k such that

13

tstart
0 + k∆ − targetbuf − δ < t ≤ tstart

0 + k∆ − targetbuf + δ and 0 otherwise. In other words,
the request time distribution depends on the start time tstart

0 . The periodic scheduler is an extreme
case with r →∞.

4.2 Stateful bitrate selection
We begin by deriving the relationship between estimated bandwidth and bitrate in Lemma 1 which
shows that a player with higher bitrate will see relatively higher bandwidth.

Lemma 1 For two players, x and y, let wx and wy be the harmonic mean of the throughput seen
by them and bx, by be their bitrates. Then, wx

wy
= bx+W

by+W
.

Proof 2 Since we are using random scheduler, each player will join the link randomly. Let nix
be the number of competitors when player x downloads chunk i, then the bandwidth allocation of
chunk i is W

nix+1
. Thus, the download time for chunk i is dix = bx∆(nix+1)

W
where bx∆ is the chunk

size. The total download time is
∑m

i=1 dix, and the fraction of time when player x is downloading
is:

qx =
1

m∆

m∑
i=1

dix =
1

m∆

m∑
i=1

bx∆(nix + 1)

W

=
bx
W

m∑
i=1

(1 + nix)

m
=
bx
W
Nx

where Nx = 1 + E(nix) is the expected number of competitors for x. When each chunk length is
small, the probability that player i is competing for the bandwidth is simply the fraction of time
spent downloading, qx. Thus, we have Nx = 1 + E(nix) = 1 +

∑
z 6=x qz.

5 Thus, we have

qxW

bx
+ qx = 1 +

∑
z

qz =
qyW

by
+ qy ⇒

bx +W

by +W
=

bx
qx
by
qy

On the other hand, the harmonic mean of bandwidth:

wx =
m∑m
i=1

1
wix

=
W

1
m

∑m
i=1(1 + nix)

=
W

Nx

=
bx
qx

Thus, we have bx+W
by+W

= wx

wy

Notice that wx is a harmonic mean, rather than expectation, of the bandwidth the player sees,
which is consistent with how bandwidth is estimated in FESTIVE.

Based on this, we have the following theorem which proves bitrate convergence. Recall from
§3.5 that if bitrate bx > pwx where wx is the harmonic mean of bandwidth of the epoch and p is a
real value parameter, then the player x will decrease bitrate in the next epoch. Otherwise, it will
increase in a rate which depends on the bitrate level.

5This is by linearity of expectation

14

Theorem 2 Let ljx and ljy be the bitrate levels of players x and y in j th epoch with ljy − ljx ≥ 2.
Then the gap will eventually converge to be at most one level, i.e., ∃j′ > j, where |lj′x − lj

′
y | ≤ 1

Proof 3 Given ljy − ljx ≥ 2, we show that ljy − ljx monotonically decreases as a function of j
until |ljy − ljx| = 1. Let bjx, b

j
y denote the bitrates and wjx, w

j
y be the bandwidth in epoch j. By

Lemma 1, there is no p for which pwx < bjx and bjy < pwy. (Otherwise, w
j
x

wj
y
< bjx

bjy
< bjx+W

bjy+W
, which

contradicts Lemma 1.) Therefore, there are only three cases for the estimated bandwidths wjx, w
j
y,

(i) pwjx > bjx, pw
j
y < bjy, (ii) pwjx < bjx, pw

j
y < bjy, and (iii) pwjx > bjx, pw

j
y > bjy. For (i), bjy will

decrease, and bjx will not decrease, therefore, lj+1
y − lj+1

x ≤ ljy− ljx−1. For (iii), before switching to
(i) or (ii), x will increase earlier than y according to the stateful bitrate update (Figure 6), so ljy−ljx
will decrease. For (ii), since the two players cannot always decrease bitrate in (ii), so eventually,
they will enter (iii) or (i). As a result, in each epoch, ljx − ljy cannot increase and it will not always
remain constant.

5 Evaluation
We divide our evaluation into four high-level sections:

1. We compare the performance of FESTIVE against (emulated) commercial players (§5.1).
2. We validate each component—randomized chunk scheduling, stateful and delayed bitrate se-

lection, and harmonic bandwidth estimation (§5.2).
3. We evaluate how critical each component is to the overall performance of FESTIVE (§5.3).
4. Finally, we evaluate the robustness of FESTIVE as a function of bandwidth variability, number

of players, and the set of available bitrates (§5.4).
Emulation platform: We implemented an emulation platform that allows us to flexibly evaluate
different algorithms for chunk scheduling, bitrate selection, and bandwidth estimation. Our setup
consists of client players, video servers, and a bottleneck link. Both client and server side mech-
anisms are implemented as Java modules (about 1000 lines each) that run on different machines
within a local network. The client player decides the bitrate for the next chunk and when to is-
sue the request. Once the video server receives the request which explicitly encodes the bitrate,
it generates a file with size dependent on the bitrate. The client downloads this “chunk” over a
regular TCP socket. All traffic between clients and servers goes through the bottleneck which uses
Dummynet [40] to control the total bandwidth and delay. Unless specified otherwise, we emulate
a ten-minute long video with eight bitrate levels from 350Kbps to 2750Kbps and using 2 second
chunks. (This is based on the parameters we observe in the demo website [10]). We use chunk
sizes of an encoded video for each bitrate by analyzing real traces of commercial players.

5.1 Comparison with Commercial Players

Emulating commercial players: Our goal is to evaluate the underlying adaptation logic of dif-
ferent adaptive players. However, the proprietary nature of the client/server code for these players
makes it difficult to do a head-to-head comparison because using the commercial players conflates

15

external effects: network (e.g., wide-area bottlenecks) and server-side (e.g., CDN load) effects,
issues w.r.t video encoding/decoding, and player plugin performance. To do a fair comparison, we
heuristically create emulated clones that closely mimic each commercial player. In each case, we
verified over a range of settings that our emulated clone is a conservative approximation of the
commercial player; i.e., the unfairness, inefficiency, and instability with the emulated clone are
strict lower bounds for the actual player.

Our heuristic approach works as follows. We start with a basic algorithm that uses the periodic
scheduler and the harmonic bandwidth estimation algorithms. Based on trace-driven analysis, we
observed that most commercial players appear to employ a stateless bitrate selection algorithm
that can be modeled as a linear function of the throughput estimated for the previous chunk(s).
We use linear regression to find the best fit for each commercial player separately. For example,
the SmoothStreaming player appears to pick the highest available bitrate below 0.85× the esti-
mated bandwidth. We do not claim that these are the exact algorithms; our goal is to use these as
conservative approximations of the players to do a fair comparison with FESTIVE.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

FESTIVE

emu-SS

local-SS

SS emu-Netflix

Netflix
emu-Akamai

Akamai

emu-Adobe

Adobe

In
s
ta

b
ili

ty
 i
n
d
e
x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

FESTIVE

emu-SS

local-SS

SS emu-Netflix

Netflix
emu-Akamai

Akamai

emu-Adobe

Adobe

In
e
ff
ic

ie
n
c
y
 i
n
d
e
x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

FESTIVE

emu-SS

local-SS

SS emu-Netflix

Netflix
emu-Akamai

Akamai

emu-Adobe

Adobe

U
n
fa

ir
n
e
s
s
 i
n
d
e
x

Figure 9: Comparison between FESTIVE, emulated commercial players, and the actual commercial
players with 3 players sharing a bottleneck link of 3 Mbps. Here, SS stands for SmoothStreaming;
“emu-X” stands for our conservative emulation of the “X” commercial player; and local-SS is
running a local SmoothStreaming server.

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

prediction error (=(predict-real)/real)

Harmonic
Arithmetic

Median
EWMA

Figure 10: Prediction error in bandwidth estimation.

Result: We consider a setup with three players that share a bottleneck link of 3 Mbps. Figure 9
compares the performance of FESTIVE to the emulated commercial players using the median value
over 15 runs. In each case, a lower value of the performance metric is better. For reference, we
also show the performance of the commercial players with an equivalent three player setup (using
respective demo sites). For SmoothStreaming, we also have access to the server implementation.
Thus, we also evaluate a local setup with the real players and server. For each commercial player,
we confirm that the emulated version is a conservative approximation. We see that FESTIVE

outperforms the next best solution (SmoothStreaming) by at least 2× in all three metrics, and
is much better than the other solutions. We also observed that FESTIVE provides higher benefits as
we increase the number of players (not shown).

5.2 Component-wise Validation
Next, we examine whether each component achieves the properties outlined in §3. As a base-
line point of reference, we use the emulated SmoothStreaming player and evaluate the effect of
incrementally adding each component.
Bandwidth estimator: We begin by comparing the accuracy of four bandwidth estimation strate-
gies: arithmetic mean, median, EWMA,6 and harmonic mean. Each method computes the esti-
mated bandwidth using the observed throughput of the k = 20 previous chunks.7 For this analysis,
we extract the observed chunk throughputs from the real SmoothStreaming setup from §2 with 19
competing players and emulate each estimation algorithm. We report the CDF of the prediction
error |PredictedBW−ActualBW |

ActualBW
in Figure 10. The result shows that the harmonic mean outperforms the

other methods. (The large prediction errors in the tail appear because the observed bandwidth for
each chunk depends on the number of competing players that chunk sees which is highly variable.)
We also manually confirmed that the harmonic mean is effective when a new observed throughput
is an outlier. Thus, for the rest of this section, we consider the baseline algorithm with a harmonic
bandwidth estimator.

6Using the update function bwnext = 0.9bwprev + 0.1bwcur
7We observe similar trends for most k > 5

17

 0

 200000

 400000

 600000

 800000

 1e+06

 0 100 200 300 400 500 600m
a
x
-m

in
 b

it
ra

te
 (

b
p
s
)

time(s)

Periodic
Randomized

 800000

 1.6e+06

 2.4e+06

 3.2e+06

 0 100 200 300 400 500 600 700s
m

o
o
th

e
d
 b

/w
 (

b
p
s
)

time(s)

Player I
Player II
Player III

 800000

 1.6e+06

 2.4e+06

 3.2e+06

 0 100 200 300 400 500 600 700s
m

o
o
th

e
d
 b

/w
 (

b
p
s
)

time(s)

Player I
Player II
Player III

Figure 11: Randomized scheduling avoids start-time biases and ensures a fair allocation of band-
width

Chunk scheduling: Here, the baseline player uses stateless bitrate selection, instant update, har-
monic bandwidth estimation, and the periodic chunk scheduling discussed in §3. We consider a
modified baseline that uses the randomized scheduling instead but retains the other components.
Figure 11 shows the perceived bandwidth for the three players over time for one run. (The results
are consistent across runs, we do not show them for brevity.) We can visually confirm that the
periodic scheduler leads to large bias in the estimated bandwidth, while the randomized scheduler
ensures a more equitable bandwidth share. The result also shows the difference between maximum
and minimum bitrate to confirm that this bias in observed bandwidth also translates into unfairness
in bitrate selection.
Stateful bitrate selection: The goal of the stateful bitrate selection approach is to ensure that
different players will eventually converge to a fair allocation. To validate this, we consider ten
players sharing a bottleneck link of 10 Mbps. Each player picks a start time uniformly at random
in the interval of [0, 30] seconds.

Figure 12 compares the efficiency and fairness achieved by three player settings: (1) fixed
scheduler with stateless selection (baseline), (2) randomized scheduler with stateless selection, and
(3) randomized scheduler with stateful selection. (We disable delayed update and use harmonic

18

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Unfairness index

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5
Inefficiency index

Periodic scheduler (baseline)
Randomized scheduler w/o stateful selection
Randomized scheduler w. stateful selection

Figure 12: Stateful bitrate selection improves fairness with minimal impact on efficiency.

mean estimator for all three.) We see that stateful selection works well in conjunction with ran-
domized scheduling and further improves the fairness. One concern with stateful bitrate selection
is that players may increase/decrease bitrate synchronously and lead to over/under utilization (low
efficiency). The result also shows that the efficiency is almost unaffected and may even be better
than the stateless approach. The reason is that once the players converge to a fair allocation, all
subsequent switches are only between two consecutive levels, which keeps the inefficiency small.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.1 0.2 0.3 0.4 0.5 0.6

In
s
ta

b
ili

ty
 i
n

d
e

x

Inefficiency index

α=12

3 players, bw variability=0.3
3 players, bw variability=0.1
6 players, bw variability=0.3
6 players, bw variability=0.1

12 players, bw variability=0.3
12 players, bw variability=0.1

Figure 13: Tradeoff of delayed update between efficiency and stability: ‘knee’ points using α = 12.

Delayed Update: The parameter α provides a way to tune the tradeoff between efficiency and
stability. We examine this tradeoff with different number of players and bandwidth variability in
Figure 13. (We discuss the exact variability model in §5.4). From the bottom-right to top-left, α
increases from 5 to 30; larger α provides higher efficiency at the cost of stability (§3). We suggest
a guideline of picking the α that is close to the “knee” of the curve or the point closest to the origin.

19

Across most scenarios, we find this roughly corresponds to α = 12; we use this value for FESTIVE.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Unfairness index

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Inefficiency index

Base
Base+Randomized

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Instability index

Base+Randomized+Stateful
Base+Randomized+Stateful+Delay

Figure 14: Break-down evaluation of FESTIVE.

5.3 How critical is each component?
To see the effect of each component in FESTIVE, Figure 14 shows the effect of incrementally
adding the randomized scheduler, stateful bitrate selection, delayed update to the baseline. For this
result, we consider the scenario with 10 players competing for a 10 Mbps bottleneck link. First,
we see that the randomized scheduler improves the fairness and efficiency over the baseline (by
avoiding bias of starting time), and stateful bitrate selection further improves these (by avoiding
bias of initial bitrates). However, these components are likely to increase the instability relative to
the baseline. The delayed update then helps control this tradeoff between efficiency and stability;
it reduces the efficiency slightly but improves stability significantly.

5.4 Robustness
Last, we investigate FESTIVE’s performance in the presence of varying number of concurrent
players, bandwidth variability and available bitrate sets.
Number of concurrent players: We fix the total bandwidth at 10Mbps and vary the number of
concurrent players from 2 to 30. In each run, the players arrive randomly within the first 30 seconds
after the first player starts. For each setting, we report the median and error bars over 15 runs for
both baseline and FESTIVE in Figure 15. First, we see that FESTIVE outperforms the baseline
across all settings and that the performance variability of FESTIVE is much smaller. Second, we
see that unfairness and instability issues are lower when there are too few or too many players. In
the former case, all player can sustain the highest bitrate and in the latter case the only feasible
solution is for all players to choose the lowest bitrate (350 Kbps). Finally, we see an interesting
effect where the metrics are not “monotone” in the number of players. Specifically, the case of
12 and 20 players are much better than their nearby points. This is essentially an effect of the
discreteness of the bitrate levels. For example, when 12 players share a 10Mbps bottleneck, each
player is very likely to stay at 845Kbps and saturate the link. However, at 10 players or 14 players,
the player will try lower or higher bitrate because there is no optimal “saturation” bitrate.

20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30

In
s
ta

b
ili

ty
 i
n
d
e
x

of players

Baseline
FESTIVE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

In
e
ff
ic

ie
n
c
y
 i
n
d
e
x

of players

Baseline
FESTIVE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

U
n
fa

ir
n
e
s
s
 i
n
d
e
x

of players

Baseline
FESTIVE

Figure 15: Performance of FESTIVE and the baseline player as a function of the number of con-
current players. Here, we assume the players are sharing a 10 Mbps bottleneck link.

 0

 0.02

 0.04

 0.06

 0.08

 0 0.05 0.1 0.15 0.2 0.25 0.3

In
s
ta

b
ili

ty
 i
n

d
e

x

Bandwidth variability

Baseline
FESTIVE

Figure 16: Instability vs. bandwidth variability when 10 players compete for a 10Mbps (expected)
link

Bandwidth variability: We focus on the 10 player scenario with an expected bottleneck band-
width of 10 Mbps. All players arrive within the first 30 seconds and we report the results from 15
runs per parameter. This bottleneck bandwidth is an expected value, because we vary the band-
width every 20 second by picking a value uniformly at random [BW × (1 − ε),BW × (1 + ε)].
Figure 16 plots the performance of baseline and FESTIVE as a function of this parameter ε. We see
that FESTIVE is more robust to the bandwidth variability (from ε = 0.05 to ε = 0.3) and in fact the
improvement with FESTIVE increases with higher variability.

Unfairness Instability Inefficiency
g Base. FESTIVE Base. FESTIVE Base. FESTIVE

1.2 0.128 0.071 0.052 0.039 0.111 0.126
1.4 0.154 0.061 0.049 0.005 0.125 0.095
1.6 0.172 0.076 0.002 0.0 0.104 0.117
1.8 0.184 0.051 0.040 0.0 0.133 0.121

Table 3: Performance metrics vs. bitrate gaps when 10 players compete a bottleneck of 10Mbps

Available bitrates: Last, we test robustness to the set of available bitrate levels. We create a
set of 10 available bitrate levels by {bi = gi · 350Kbps}i=0,...9, where g controls the gap between
the bitrates, i.e., how “discrete” the bitrate levels are. A value of g close to 1 means that the gaps
between consecutive levels are small and vice versa for larger g. Table 3 compares the performance
of baseline and FESTIVE under g. FESTIVE consistently outperforms the baseline. The baseline
becomes more unfair as g increases while FESTIVE works robust against higher g.

21

5.5 Summary of main results
In summary, our evaluation shows

• FESTIVE outperforms existing solutions in terms of fairness by≥40%, stability by≥50%, and
efficiency by ≥10%.
• Each component of FESTIVE works as predicted by our analysis and is necessary as they

complement each other.
• FESTIVE is robust against various number of players, bandwidth variability, and different avail-

able bitrate set.

6 Discussion
Heterogeneous algorithms: Studying the interaction between multiple heterogeneous players is
an interesting direction of future work. We believe the space of designs defined by the guidelines
in §3 is broad and can accommodate many player designs that meet our high-level requirements.
Interaction with non-video traffic: Another natural question is how video adaptation logic in-
teracts with non-video traffic (e.g., short Web transfers) [27]. Because FESTIVE retains the single-
connection HTTP-based interface, it retains TCP-level friendliness per chunk. Thus, we expect the
impact of FESTIVE on background traffic to be minimal.
Decoupling bandwidth estimation: One of the main problems we saw is that discrete chunk
downloads may lead to biased bandwidth estimates. This raises the question of whether we should
decouple these altogether. One challenge is that the player running in a browser sandbox may not
have access to packet-level information to get accurate estimates (e.g., packet pair). Second, this
potentially increases the network overhead if we need frequent re-estimation.
Wide-area effects: Another interesting direction of future work is to see if and how the problems
w.r.t efficiency, fairness, and stability manifest in the wide area. For example, there is more traffic
aggregation, less synchronization but many more players, multiple bottlenecks, interaction with
router buffer sizing, among other factors.

7 Related Work

Measurements of commercial players: Early studies focused on the bitrate switching behavior
of a single player in response to bandwidth variation (e.g., [18, 34, 38, 41]). More recent work
analyzes fairness, efficiency, and stability when two players share a bottleneck link [13, 15, 24]).
These have identified the periodic behavior as a potential problem similar to §3. We confirm these
problems on a broader set of commercial players and extend these beyond the two-player setting.
More importantly, we provide a detailed understanding of the causes and present a concrete design
to address these shortcomings.
Quality metrics: A key aspect in video delivery is the need to optimize user-perceived “quality
of experience”. There is evidence that users are sensitive to frequent switches (e.g., [16]), sudden
changes in bitrate (e.g., [33]), and buffering (e.g., [19]). The design of a good QoE metric (e.g.,

22

[42]) is still an active area of research. As our understanding of video QoE matures, we can extend
FESTIVE to be QoE-aware.
Player optimizations: The use of multiple connections or multipath solutions can improve
throughput and reduce the bandwidth variability (e.g., [17, 23, 26, 28]). However, these require
changes to the application stack and/or server-side support. Furthermore, they may not be “friendly”
to background traffic. In contrast, FESTIVE retains the same single TCP connection interface and
requires no modifications to the server infrastructure or the end-host stack. Other approaches use
better bandwidth prediction and stability techniques (e.g., [29, 32, 34]). Our framework can lever-
age such estimation techniques as well and performs well in multiple-player scenarios.
Server and network-level solutions: This includes the use of server-side bitrate switching
(e.g., [27]), TCP changes to avoid bursts (e.g., [22]), and in-network bandwidth management and
caching (e.g., [24, 34, 39]). Our focus is on client-side mechanisms without requiring changes to
the network or servers. While these approaches will further improve the performance, we believe
that a client-side solution is fundamentally necessary for two reasons. First, the client is in the best
position to detect and respond to dynamics. Second, recent work suggest the need for cross-CDN
optimizations that imply the need for keeping minimal state in the network or servers [30, 31].
Video Coding: Layered or multiple description coding offer more graceful degradation of video
quality (e.g., [14]). However, they impose higher overhead on content providers and the delivery
infrastructure and thus we do not consider this class of solutions.

8 Conclusions
The dominance of video streaming traffic running on top of HTTP necessitates the design of ro-
bust video bitrate adaptation algorithms. We provide a principled understanding of problems that
lead to inefficiency, unfairness, and instability when multiple players compete for a bottleneck
link. Building on these insights, we provide guidelines on designing better scheduling and bitrate
selection techniques to overcome these problems. In doing so, we retain the properties that en-
abled the rise of Internet video—using existing HTTP techniques, no modifications to end-host
stacks, and no modification to network, CDN, and server infrastructure. Using these guidelines,
we demonstrate one concrete design that significantly outperforms existing solutions.

References
[1] Adobe http dynamic streaming. www.adobe.com/products/hds-dynamic-streaming.html.

[2] Adobe osmf player. http://www.osmf.org.

[3] Akamai hd adaptive streaming. http://wwwns.akamai.com/hdnetwork/demo/index.html.

[4] Apple quicktime. www.apple.com/quicktime/download/.

[5] Cisco forecast. http://goo.gl/hHzW4.

[6] Driving Engagement for Online Video. http://goo.gl/19EAe.

[7] Harmonic mean. http://en.wikipedia.org/wiki/Harmonic_mean.

23

www.adobe.com/products/hds-dynamic-streaming.html
http://www.osmf.org
http://wwwns.akamai.com/hdnetwork/demo/index.html
www.apple.com/quicktime/download/
http://goo.gl/hHzW4
 http://goo.gl/19EAe
http://en.wikipedia.org/wiki/Harmonic_mean

[8] Mail service costs Netflix 20 times more than streaming. http://goo.gl/msuYK.

[9] Real-time messaging protocol. www.adobe.com/devnet/rtmp.html.

[10] Smoothstreaming experience. http://www.iis.net/media/experiencesmoothstreaming.

[11] Smoothstreaming protocol. http://go.microsoft.com/?linkid=9682896.

[12] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE Multimedia, 2011.

[13] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What Happens when HTTP Adaptive Streaming Players Compete for
Bandwidth? In Proc. NOSSDAV, 2012.

[14] J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to asynchronous reliable multicast. IEEE JSAC, Oct. 2002.

[15] T. Cloonan. Competitive Analysis of Adaptive Video Streaming Implementations. In SCTE Cable-Tec Expo, 2011.

[16] N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality. International Journal of Human-Computer Studies, 2006.

[17] K. A. D. Havey, R. Chertov. Receiver driven rate adaptation for wireless multimedia applications. In Proc. MMSys, 2012.

[18] L. De Cicco and S. Mascolo. An experimental investigation of the akamai adaptive video streaming. HCI in Work and Learning, Life and
Leisure.

[19] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the impact of video quality on user
engagement. In Proc. SIGCOMM, 2011.

[20] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac. Interactions Between HTTP Adaptive Streaming and TCP. In Proc. NOSSDAV,
2012.

[21] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao. Youtube everywhere: Impact of device and infrastructure synergies on user
experience. In Proc. IMC, 2011.

[22] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting YouTube Video Streaming. In Proc. USENIX ATC, 2012.

[23] S. Gouache, G. Bichot, A. Bsila, and C. Howson. Distributed and Adaptive HTTP Streaming. In Proc. ICME, 2011.

[24] R. Houdaille and S. Gouache. Shaping http adaptive streams for a better user experience. In Proc. MMSys, 2012.

[25] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer Communication Review, volume 18, pages 314–329. ACM,
1988.

[26] R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of http-based request-response streams for internet video streaming. Multimedia
Systems, pages 245–256, 2011.

[27] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live Video Streaming. In Proc. of ACM Multimedia Systems
Conference, 2011.

[28] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive HTTP Media Streaming. In Proc. ICCCN, 2011.

[29] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for adaptive http streaming. Proc. ACM MMSys, 2011.

[30] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and Performance for Content Multihoming. In in Proc. SIGCOMM,
2012.

[31] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A Case for a Coordinated Internet Video Control Plane. In Proc.
SIGCOMM, 2012.

[32] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation Algorithm for Adaptive Streaming over HTTP. In Proc. Packet Video
Workshop, 2012.

[33] R. K. P. Mok, E. W. W. Chan, X. Luo, and R. K. C. Chang. Inferring the QoE of HTTP Video Streaming from User-Viewing Activities . In
SIGCOMM W-MUST, 2011.

24

http://goo.gl/msuYK
www.adobe.com/devnet/rtmp.html
http://www.iis.net/media/experiencesmoothstreaming
http://go.microsoft.com/?linkid=9682896

[34] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: A QoE-aware DASH system. In Proc. MMSys, 2012.

[35] R. Pantos. Http live streaming. 2011.

[36] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future internet. In Proc. HotNets, 2010.

[37] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimination for resource allocation in shared computer system.
Technical Report, DEC, 1984.

[38] A. Rao, Y.-S. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dabbous. Network Characteristics of Video Streaming Traffic. In Proc.
CoNext, 2011.

[39] R. Rejaie and J. Kangasharju. Mocha: A quality adaptive multimedia proxy cache for internet streaming. In Proc. NOSSDAV, 2001.

[40] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols. ACM SIGCOMM Computer Communication Review,
27(1):31–41, 1997.

[41] S. Akhshabi, A. Begen, C. Dovrolis. An Experimental Evaluation of Rate Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc.
MMSys, 2011.

[42] H. H. Song, Z. Ge, A. Mahimkar, J. Wang, J. Yates, Y. Zhang, A. Basso, and M. Chen. Q-score: Proactive Service Quality Assessment in a
Large IPTV System. In Proc. IMC, 2011.

[43] M. Watson. Http adaptive streaming in practice. http://web.cs.wpi.edu/˜claypool/mmsys-2011/Keynote02.pdf.

25

http://web.cs.wpi.edu/~claypool/mmsys-2011/Keynote02.pdf

	1 Introduction
	2 Background
	2.1 HTTP Adaptive Video Streaming
	2.2 Desired properties
	2.3 Today's solutions

	3 Design
	3.1 Chunk Scheduling
	3.2 Bitrate Selection
	3.3 Delayed Update
	3.4 Bandwidth Estimation
	3.5 The Festive Algorithm

	4 Analysis of FESTIVE
	4.1 Randomized scheduler
	4.2 Stateful bitrate selection

	5 Evaluation
	5.1 Comparison with Commercial Players
	5.2 Component-wise Validation
	5.3 How critical is each component?
	5.4 Robustness
	5.5 Summary of main results

	6 Discussion
	7 Related Work
	8 Conclusions

