
Verifying Higher-Order Imperative Programs
with Higher-Order Separation Logic

Neelakantan R. Krishnaswami

CMU-CS-12-127

1 June 2012

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich, Co-chair
John C. Reynolds, Co-chair

Robert Harper
Lars Birkedal, IT University of Copenhagen

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Neelakantan R. Krishnaswami

This research was partially supported by National Science Foundation Grant CCF-0916808.

The views and conclusions presented in this document are those of the author and do not reflect the official opinions
of the NSF or the U.S. government.

Keywords: Separation Logic, Design Patterns, Verification, Specification, Type Theory, De-
notational Semantics, Program Logic, Program Correctness

I would like to thank my wife, Rachel, for her love, patience, and logistical support.

My parents encouraged me to study computers.
I am not at all sure this was what they had in mind.

iv

Abstract
In this thesis I show is that it is possible to give modular correctness proofs of

interesting higher-order imperative programs using higher-order separation logic.
To do this, I develop a model higher-order imperative programming language,

and develop a program logic for it. I demonstrate the power of my program logic by
verifying a series of examples. This includes both realistic patterns of higher-order
imperative programming such as the subject-observer pattern, as well as examples
demonstrating the use of higher-order logic to reason modularly about highly aliased
data structures such as the union-find disjoint set algorithm.

vi

Acknowledgments
I would like to begin by thanking my advisors for giving me perhaps more rope

than was advisable. John and Jonathan were both very tolerant of my sudden enthu-
siasms, my half-baked ideas, and general tendency to wander off in peculiar direc-
tions.

Lars was an invaluable source of support and advice, and after every trip to Den-
mark I returned significantly more knowledgeable than before I left. I would like to
thank Bob for an act he may not even recall any more: as a new graduate student, he
informed me that I would be coming to ConCert group meetings, despite technically
not even being part of the ConCert project.

As a consequence, I have the need and the pleasure to thank the whiteboard gang
for their willingness to talk. Noam Zeilberger and Jason Reed were particularly in-
spiring examples of people following their mathematical muse, and William Lovas,
Daniel Licata, Kevin Watkins, Joshua Dunfield, Carsten Varming, and Rob Simmons
were reliable sources of type-theoretic and semantic inspiration. Whenever I needed
a different perpsective, the Plaid group was there. I’d like to thank Donna Malayeri,
Kevin Bierhof, and Nels Beckman in particular.

Hongseok Yang, Peter O’Hearn, Philippa Gardner, and Matthew Parkinson were
all encouraging above and beyond the call of duty to a random student from thou-
sands of miles away.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Programming Language . 2
1.3 Higher Order Separation Logic . 2
1.4 Verifying Programs . 4

1.4.1 Design Patterns . 4
1.4.2 The Union-Find Algorithm . 5

1.5 Related Work . 5
1.5.1 Immediate Predecessors . 5
1.5.2 Program Logics and Type Theories . 6
1.5.3 Program Proofs for Design Patterns . 9

2 Type Structure 13
2.1 Syntax of Types and Kinds . 13

2.1.1 The Syntactic Theory of Kinds . 15
2.1.2 Semantics of Kinds . 16

2.2 Semantics of Types . 18
2.2.1 The Overall Plan . 18
2.2.2 Interpreting Monotypes . 19
2.2.3 Interpreting Polytypes . 20
2.2.4 Interpreting Heaps and Basic Continuations 21

2.3 Solving Domain Equations . 22
2.3.1 Local Continuity . 22
2.3.2 The Inverse Limit Construction . 25

2.4 Solving Our Recursive Domain Equation . 31
2.4.1 Computations form a Monad . 31

2.5 The Programming Language . 33
2.6 Denotational Semantics . 35

2.6.1 Proofs . 36

3 The Semantics of Separation Logic 61
3.1 BI Algebras . 61

3.1.1 Partial Commutative Monoids . 62
3.1.2 BI-Algebras over Partial Commutative Monoids 62

x CONTENTS
3.1.3 Sets of Heaps Form the BI Algebra of Heap Assertions 68

3.2 Challenges in Interpreting Specifications . 69
3.2.1 Admissibility and Fixed Point Induction 70
3.2.2 The Frame Rule . 70

3.3 Basic Hoare Triples . 71
3.3.1 Approximating Postconditions . 71
3.3.2 Defining the Basic Hoare Triples . 73

3.4 Kripke Hoare Triples . 74
3.4.1 World Preorders . 74
3.4.2 Heyting Algebras over Preorders . 74
3.4.3 Defining Kripke Hoare Triples . 78
3.4.4 The Framing Operator . 81

3.5 Syntax of Assertions and Specifications . 85
3.5.1 Substitution Properties . 90

3.6 Semantics . 91
3.6.1 Interpretation of Sorts . 91
3.6.2 Interpretation of Terms and Specifications 92
3.6.3 Substitution Properties . 92

3.7 The Program Logic . 96
3.8 Correctness Proofs . 101

3.8.1 Substitution Theorems . 101
3.8.2 Soundness of Assertion Logic Axioms 131
3.8.3 Soundness of Program Logic Axioms 132
3.8.4 The Syntactic Frame Property . 146

4 Proving the Correctness of Design Patterns 151
4.1 Introduction . 151
4.2 Iterators and Composites . 152

4.2.1 The Iterator Specification . 153
4.2.2 Example Implementation . 160

4.3 The Flyweight and Factory Patterns . 173
4.3.1 Verification of the Implementation . 176

4.4 Subject-Observer . 178
4.4.1 Correctness Proofs for Subject-Observer 181

5 Proving the Union-Find Disjoint Set Algorithm 185
5.1 Introduction . 185
5.2 The Specification . 186
5.3 Correctness Proofs . 191

5.3.1 Proof of find . 191
5.3.2 Proof of newset . 195
5.3.3 Proof of union . 197

List of Figures

2.1 Syntax of the Types and Kinds of the Programming Language 13
2.2 Kinding Rules for Monotypes . 14
2.3 Kinding Rules for Polytypes . 15
2.4 Equality Rules for Monotypes . 16
2.5 Equality Rules for Polytypes . 17
2.6 Locally Continuous Functor Interpreting Monotypes 19
2.7 Locally Continuous Functor Interpreting Polytypes 21
2.8 Syntax of the Programming Language . 33
2.9 Typing of the Pure Expressions . 34
2.10 Typing of Monadic Expressions . 35
2.11 Interpretation of Program Contexts . 36
2.12 Interpretation of Pure Terms . 37
2.13 Interpretation of Computations . 38
2.14 Equality Rules for Sums, Products, Exponentials, and Suspended Computations . 39
2.15 Equality Rules for Numbers, Universals, and Existentials 40
2.16 Equality Rules for Computations . 40
2.17 Congruence Rules for Equality . 41

3.1 Syntax of Assertions and Specifications . 87
3.2 Well-sorting of Sorts and Contexts . 88
3.3 Well-sorting of Assertions . 89
3.4 Well-sorting of Specifications . 90
3.5 Interpretation of Sorts and Contexts . 92
3.6 Interpretation of Terms . 93
3.7 Interpretation of Specifications . 94
3.8 Basic Axioms of Specification Logic . 96
3.9 Structural Axioms of the Program Logic . 97
3.10 Axioms of Assertion Logic . 98
3.11 Equality Judgment for Assertions . 98

4.1 Interface to the Iterator Library . 155
4.2 Auxilliary Functions Used in the Iterator Specification 156
4.3 Type and Predicate Definitions of the Iterator Implementation 161
4.4 Implementation of Collections and Iterators . 162

xii LIST OF FIGURES
4.5 Flyweight Specification . 174
4.6 Flyweight Factory Specification . 174
4.7 Flyweight Implementation . 175
4.8 Hash Table Specification . 176

5.1 Specification of Union Find Algorithm . 187
5.2 Concrete Definition of Union Find Invariants 189
5.3 Implementation of Union-Find Algorithm . 190

Chapter 1

Introduction

My thesis is that it is possible to give modular correctness proofs of interesting higher-order
imperative programs using higher-order separation logic.

1.1 Motivation

It is more difficult to reason about programs that use aliasing than ones that do not use mutable
shared data. It is more difficult to reason about programs that use higher order features than
first order programs. Put both together, and matters become both challenging and interesting for
formal verification, since the combination yields languages more complex than the sum of their
parts.

Techniques to reason about purely functional programs, which extensively use higher-order
methods but eschew mutable state, are a well-developed branch of programming language theory,
with a long and successful history.

Historically, techniques to reason about mutable state have lagged behind, but some years
ago O’Hearn and Reynolds introduced separation logic [42], which has proven successful at
enabling correctness proofs of even such intricate imperative programs as garbage collectors [8].
Separation logic has historically focused on low-level programming languages that lack a strong
type discipline and allow the use of techniques such as casting pointers to integers.

Even high level languages that allow the use of state are prone to aliasing errors, since (with
a few exceptions) type systems do not track interference properties. Some languages, such as
Haskell [17], isolate all side-effects within a particular family of monadic types. While this
preserves reasoning principles for functional code, we still face the problem that reasoning about
monadic code remains as difficult as ever. Haskell’s type discipline imprisons mutation and state,
but does not rehabilitate them.

Of course, we can combine language features combinatorially, and if this particular combina-
tion had no applications, then it would be only of technical interest. In fact, though, higher-order
state pervades the design of common programs. For example, graphical user interfaces (GUIs)
are typically structured as families of callbacks that operate over the shared data structures rep-
resenting the interface and program. These callbacks are structured using the subject-observer
pattern [12], which uses collections of callbacks to implicitly synchronize mutable data struc-

2 Introduction
tures across a program. So higher-order state not only poses a technical challenge, but also offers
a set of tantalizingly practical examples to motivate the technical development.

In this dissertation, I develop a model higher-order imperative programming language, and
develop a program logic for it. I demonstrate the power of my program logic by verifying a
series of interesting examples, culminating in the correctness proof of a library for the union-find
algorithm. Despite the fact that this is a program making heavy and essential use of aliasing,
clients may nevertheless reason using the simple style of separation logic.

1.2 Programming Language
The first contribution of my dissertation is to give a denotational semantics for a predicative
version of System F ω [13], extended with a monadic type constructor for state in Pfenning-
Davies [37] style. This language is an instance of Moggi’s [27] monadic metalanguage, as all
heap effects and nontermination live within the monadic type constructor.

Higher-order imperative programs usually contain a substantial functional part in addition to
whatever imperative operations they perform. As a result, it is convenient to be able to reason
equationally about programs when possible (including induction principles for inductive types),
and by giving a denotational semantics, I can easily show the soundness of these equational
properties.

Ths semantics of this language is the focus of Chapter 2. In particular, I show that a program-
ming language including references to polymorphic values, nevertheless gives rise to a domain
equation which can be solved using the classical techniques of Smyth and Plotkin [45].

1.3 Higher Order Separation Logic
The main tool I develop to prove programs correct is a higher order separation logic for a higher-
order imperative programming language. The details of the logic are given in Chapter 3, but I
will say a few words to set the stage now.

As I mentioned earlier, we can reason about the functional part of programs using the standard
βη-theory of the lambda calculus, but to reason about imperative computations, I introduce a
specification logic, in the style of Reynolds’ specification logic for Algol [41].

In this logic, the basic form of specification is the Hoare triple over an imperative computation
{P}c{a : A. Q}. Here, P is the precondition, c is the computation that we are specifying, and
Q is the post- condition. The binder a : A names the return value of the computation, so that we
can mention it in the post-condition.

The assertion logic for the pre- and post-conditions is higher order separation logic [6]. This
is a substructural logic that extends ordinary logic with three spatial connectives to enable rea-
soning about the aliasing behavior of data. The Hoare triples themselves form the atomic propo-
sitions of a first-order intuitionistic logic of specifications. The quantifiers range over the sorts
of the assertion logic, so that we can universally and existentially quantify over assertions and
expressions.

As a teaser example, consider the specification of a counter module.

3 Introduction
∃α : ?
∃create : 1→©α
∃next : α→©N
∃counter : α× N⇒ prop
〈emp〉create()〈a : α. counter(a, 0)〉
&
∀c : α, n : N. 〈counter(c, n)〉next(c)〈a : N. a = n ∧ counter(c, n+ 1)〉

The idea is that in our program logic, we can assert the existence of an abstract type of
counters α, operations create and next (which create and advance counters, respectively), and
a state predicate counter(c, n) (which asserts that the counter c has value n).

The specifications are Hoare triples — the triple for create asserts that from an empty heap,
calling create creates a counter initialized to 0, and the triple for next(c) asserts that if next
is called on c, in a state where it has value n, then the return value will be n and the state of the
counter will be advanced to n+ 1.

Now, here are two possible implementations for the existential witnesses:

α ≡ ref N

counter ≡ λ(r, n). (r 7→ n)

create ≡ λ(). [newN(0)]

next ≡ λr. [letv n = [!r] in letv () = [r := n+ 1] in n]

and also

α ≡ ref N

counter ≡ λ(r, n). (r 7→ n+ 7)

create ≡ λ(). [newN(7)]

next ≡ λr. [letv n = [!r] in letv () = [r := n+ 1] in n− 7]

So in our program logic, the implementations of modules consist of the witnesses to the
existential formulas. This is morally an application of Mitchell and Plotkin’s identification of
data abstraction and existential types [26] — in this view, linking a module with a client is
nothing but an application of the existential elimination rule of ordinary logic. Note that instead
of abstracting only over types, we also abstract over the heap.

In order for a verification methodology to scale up to even modestly-sized programs, it must
be modular. There are three informal senses in which I use the word “modular”, each of which
is supported by different features of this logic, and are (mostly) illustrated in this example.

1. First, we should be able to verify programs library by library. That is, we should be able
to give the specification of a library, and prove both that implementations satisfy the spec-
ification without knowing anything about the clients that use it, and likewise prove the
correctness of a client program without knowing anything about the details of the imple-
mentation (beyond what is promised by the specification).

4 Introduction
In the example above, I tackle this problem by making use of the fact that the presence of
existential specifications in our specification logic lets use the Mitchell-Plotkin encoding
of modules as existentials. So once I prove a client against this specification, I can swap
between implementations without having to re-verify the client.

2. Related to this is a modular treatment of aliasing. Ordinary Hoare logic becomes non-
modular when asked to treat mutable, shared state, because we must explicitly specify the
aliasing or non-aliasing of every variable and mutable data structure in our pre- and post-
conditions. Besides the quadratic dependence on the size of programs, the relevant set
of variables grows whenever a subprogram is embedded in a larger one. Separation logic
resolves this problem via the frame rule, a feature which we carry forward in our logic.
In our example, counters have state, and so the predicates for distinct counters need to be
disjoint. So even in the simplest possible example, it is useful to be able to have the power
of separation logic available.

3. Finally, it is important to ensure that the abstractions we introduce compose. Benton [5]
described a situation where he was able to prove that a memory allocator and the rest of the
program interacted only through a particular interface, but when he tried to divide the rest
of the program into further modules, he encountered difficulties, because it was unclear
how to share the resources and responsibility for upholding the contract with the allocator.
While the previous example was too simple to illustrate these kinds of problems, I do
exploit the expressiveness of my program logic to introduce several new specification pat-
terns for verifying these kinds of programs. In the following section, I will describe some
of the patterns I discovered.

1.4 Verifying Programs
The final test of a program logic is what we can prove with it, and so accordingly I have devoted
a great deal of effort to not only prove metatheorems about the logic, but also theorems in my
logic.

1.4.1 Design Patterns
One prominent source of examples of higher-order state arises in object-oriented programs. One
way of translating objects into functional language is by viewing objects as records of functions
(methods) accessing common hidden state (fields). As a result, common programming idioms in
object-oriented languages can be viewed as patterns of higher-order imperative programs.

Over the years, object-oriented programmers have documented many of idioms which re-
peatedly arise in practice, calling them design patterns [12]. While originally intended to help
practitioners communicate with each other, design patterns also offer a nice collection of small,
but realistic and widely-occurring, programs to study for verification purposes.

In Chapter 4, I translate many common design patterns into my programming language1 and
then give specifications and correctness proofs for these programs. I want to emphasize that I

1Unsurprisingly, they turn into idioms that many ML programmers will find familiar.

5 Introduction
view the specifications as even more important a contribution as the correctness proofs them-
selves: programmers have informal reasons for believing in the correctness of their programs,
which are often surprisingly subtle to formalize.

1.4.2 The Union-Find Algorithm

One of the reasons for the success of separation logic (and related substructural logics like linear
logic) in program verification is the fact that aliasing turns out to be only used lightly in many
programs.

In Chapter 5 of my dissertation, I study the union-find [10] algorithm. This algorithm is very
challenging to verify, because its correctness and efficiency relies intimately upon the ability to
use shared mutable data to broadcast updates to the whole program.

To deal with this problem, I make use of the expressive power of higher-order separation
logic, and introduce a domain-specific logic to describe the interface between a union-find library
and its clients. This allows the implementation to keep a global view of the union-find data
structure, while still permitting clients to be proved via local reasoning.

Furthermore, those operations which have genuinely global effects (such as taking the union
of two disjoint sets) can be specified using custom modal operators I call ramifications. These
operators commute with the custom separating conjunction, and so allow local reasoning even
when global effects are in play.

1.5 Related Work

1.5.1 Immediate Predecessors

There are two immediate predecessors to the proof system in this dissertation.
First, there is the work of Reynolds on specification logic for Algol [41]. Idealized Algol [40]

combines a call-by-name functional language, together with a type of imperative computations
whose operations correspond to the while-language (i.e., it does not have higher-order store).
This stratification ensures that Algol features a powerful equational theory which validates both
the β- and η-rules of the lambda-calculus.

Specification logic extends Hoare logic [14] to deal with these new features, by viewing
Hoare triples as the atomic propositions of a first-order logic of specifications. Then, the user of
the logic can specify the behavior of a higher-order function using an implications over triples,
using the hypothesis of an implication to specify the behavior of arguments of command type. In
short, specification logic can be viewed as a synthesis of LCF [25] with Hoare logic.

One of the motivations for the language design in my dissertation was to see if the analogy
between the computation type in Algol and the monadic type discipline could be extended to a
full higher-order programming language, with features like higher-order store. This has worked
fantastically well. The semantics of the logic of this dissertation is (suprisingly) simpler than
original specification logic, even though the programming language itself is a much more com-
plex one than Idealized Algol.

6 Introduction
In particular, one of the main sources of complexity in usages of specification logic has

simply vanished from this logic. Algol has assignable variables (like C or Java, though of course
this reverses the chronology), and so specification logic had to account for their update with
assertions about so-called “good variable” conditions. Since ML-like languages do not have
assignable variables, this means that all aliasing is confined to the heap. As a result, the entire
machinery of good variables is simply absent from my system. So all aliasing and interference
is confined to the heap, and separation logic works quite well for specifying and reasoning about
this interference.

The other line of work I make use is on algebraic models of separation logic. I give a very
concrete model of separation logic in Chapter 3, and am able to interpret higher-order quantifica-
tion due to the fact that the lattice of propositions is complete. This is probably best understood
as an instantiation of Biering et al.’s hyperdoctrine model of higher-order separation logic. Like-
wise, my semantic domain for specifications makes use of the techniques introduced by Birkedal
and Yang [7] to model higher-order frame rules.

Happily, though, most of this machinery stays “under the hood” to ensure that the logic looks
simple to the user. As an example of this phenomenon, we use TT-closure [48] to force the
admissibility of Hoare triples. This lets us give a simple rule for fixed-point induction, with-
out having to specify conditions on admissible predicates (which is especially problematic in a
setting with predicate variables).

Finally, nested triples are very useful for specifying the properties of higher-order programs.
It is very useful to be able put the specification of the contents of a reference into an assertion.
In my dissertation, I have given a “cheap and cheerful” embedding of assertions in specifications
and vice-versa, where the embedding (in either direction) sends the topmost element of the source
lattice to the topmost element of the target lattice, and maps all other lattice elements to the
bottom element. This approach has the virtues of first, being very technically easy to implement,
and second, sufficient for all of the examples I have considered.

However, more sophisticated approaches are certainly possible. Schwinghammer et al. [43]
describe how to unify the assertion and specification languages into a single logic. This offers
the technical benefit that it extends the power of the higher-order frame rule by letting it operate
in a hereditary way, to act on nested triples contained within assertions. In contrast, the frame
rule I give stops at the boundary of an assertion.

Despite looking, though, I have not yet found any programs that seem to need this extra gen-
erality to verify. Most of the programs I have considered which might benefit from these features
seem to also need further generalizations, such as Liskov and Wing’s monotonic predicates. In-
deed, this is the case even for the higher-order frame rule: most of the results in this dissertation
could have been proven without it. However, the Kripke view made it no harder to support than
the first-order frame rule.

1.5.2 Program Logics and Type Theories

While there is a vast literature on verification of imperative programs, three lines of research in
particular stand out as most closely related to my own work.

7 Introduction
Separation Logic for Java

In his dissertation, Parkinson [34] gives a program logic for Java, which, on the surface, closely
follows the standard methodology of separation logic — that is, it is a pure Hoare logic with
triples as the fundamental device for structuring program proofs (and no logic of triples, as
in specification logic). However, a deeper look reveals a number of innovations which permit
an elegant treatment of many aspects of object-oriented programming. Since object-oriented
programming is fundamentally higher-order imperative programming, there are many ideas in
Parkinson’s dissertation which are either related to or simply reminiscent of the ideas in my
work.

As in this work, Parkinson builds a high-level separation logic. That is, his model of the heap
consists of a collection of structured objects, rather than as a simple giant byte array. As in my
work, pointer arithmetic is impossible, and pointer point to arbitrary values.

Unlike in my work, all specifications are Hoare triples (there is no specification logic which
treats Hoare triples as atoms), and furthermore his program logic supports the semantic subtyping
rule (aka the Liskov substitution principle). Now, it is well-known that the straightforward treat-
ment of semantic subtyping essentially reduces object-oriented programs to first-order programs
and prevents writing essentially higher-order functions (such as iter or map).

To avoid this trap, Parkinson made two key innovations. First, he makes use of abstract pred-
icates (i.e., second-order quantification over predicates), which permits writing method specifi-
cations which relate the footprint of a method to the footprint of the methods of the objects it
receives as an argument.

Second, he gives his second-order predicates a very unusual semantic interpretation. The
idea, described in Parkinson and Bierman [35], is to index each predicate symbol by an object,
and to permit the concrete definition of a predicate to dynamically dispatch based on the class of
the receiver object. That is, each class in an object hierarchy may define the implementation of
an abstract predicate differently, and the definition used actually depends on the concrete class of
the object. As a result, semantic subtyping can be formally respected, without blocking the use
of objects as higher-order parameters: a family of objects used as higher-order parameters can
simply define different concrete definitions of a common predicate symbol.

This design is both clever and elegant, since it puts the natural style of specifications in
alignment with the style of object-oriented programming. Unfortunately, the use of dynamic
dispatch means that it is difficult to figure out what higher-kinded predicate symbols ought to
mean. This turns out not to be a fundamental problem for Parkinson, since the natural style of
Java programming is rather like writing the defunctionalized version of a higher-order program.
As a result, he rarely needs fully higher-order specifications — he can attach specifications to
each class implementing an interface for a higher-order method.

However, I work with a genuinely higher-order programming language, and this solution
does not work for me. Instead, I make use of a standard semantics of predicates in separation
logic, which makes interpreting predicates of arbitrary order straightforward. As a result, I have
no problems with higher-order specifications. A good example of this difference can be seen by
contrasting our respective proofs of the subject-observer pattern, which we simultaneously and
independently gave correctness proofs for.

From a distance, the specifications look very similar, with the differences appearing on close

8 Introduction
inspection. Namely, in Parkinson’s version of the subject-observer pattern [33], for each subject
class, there is a common observer interface that all concrete observer classes must implement,
and the subject predicate is indexed by a list of observers of this interface. He then uses his
predicate dynamic dispatch to allow each observer to have a different real invariant. In my
version of the subject-observer pattern (in Chapter 4), the subject predicate is directly indexed
by a list of observer actions plus their invariants and specifications, directly as a higher-order
predicate.

The ability to make use of full higher-order logic turns out to be very important for more
complex examples. The ability to freely add new definitions to the logic permits the use of
embedded separation logics for verifying programs making use of heavily aliased mutable state
(as in the union-find example of Chapter 5). There, I make free use of the full machinery of
higher-order logic to define custom logics as index domains.

Hoare Type Theory

Nanevski, Morisett and Birkedal have developed Hoare Type Theory [30, 31], a sophisticated
dependently-typed functional language that, like our system, uses a monadic discipline to control
effects. Unlike my work, HTT takes advantage of type dependency to directly integrate specifi-
cations into the types of computation terms, by using an indexed family of monads to represent
computations. A single term of computation type has a type e : {P}−{a : A. Q(a)}, where P
and Q are predicates on the heap. Similarly to my own use of existentials, Nanevski, Ahmed,
Morisett and Birkedal [28] have also proposed using the existential quantification of their type
theory to hide data representations, giving examples such as a malloc/free style memory alloca-
tor. Nanevski et al. [29] also give a proof of a modern congruence closure algorithm, illustrating
that this system can be used to verify some of the most complex imperative algorithms known.

The key difference between the two approaches can be summarized by saying that my work
in this thesis is to construct a higher-order predicate logic about programs in a non-dependently
programming language, whereas HTT embeds imperative programs into a dependently typed
language. That is, the distinction lies in whether or not specifications are considered part of
the language or not. (Note that the other two combinations are also reasonable: embedding
computations into a non-dependent language basically amounts to a monadic type discipline.
Specification languages without rich support for quantifiers or higher-order features takes us into
the domain of program analysis, in which automated tools prove weak theorems about programs.
However, neither of these allow rich specifications of program behavior.)

In principle, embedding computations into a dependently-typed language should offer greater
flexibility than separating specifications from programs. However, the specific choices made in
the design of HTT mean that this promise goes unrealized: there are natural classes of higher-
order imperative program which are impossible to write in HTT. Furthermore, I give correctness
proofs of such programs, with not especially difficult proofs, which illustrates that the difficulty
is not fundamental.

To understand the issue, recall that computations in HTT have types e : {P}−{a : A. Q(a)},
where P and Q are predicates on the heap. Furthermore, heaps map locations to values, and
heap predicates map heaps to propositions. Now, any higher-order imperative program — i.e.,
any program which manipulates pointers to code — needs to refer to terms of computation type

9 Introduction
in its pre- and post-conditions. In the original formulation of HTT, which is predicative, this
causes size issues to arise, since a heap at universe level n can only contain commands which
manipulate heaps at universe level n − 1 or lower. As a result, examples such as the subject-
observer example in Chapter 4 cannot be written in predicative HTT.

This difficulty has been overcome by Petersen et al., who give an impredicative model of
Hoare Type Theory. However, Svendsen [personal communication] says that in an impredicative
setting, the weaker elimination rules for impredicative existentials made porting the proofs in my
system to HTT much more difficult. I do not presently know whether the problem is fundamental,
or whether there is a more intricate encoding which can avoid the obstacles.

These issues simply do not arise in my system, since specifications are strictly separated
from the types. As a result, there are never any size issues arising from the problem of storing
computations in the heap.

(This also suggests that an interesting future direction would be to study a version of Hoare
Type Theory in which there is an ordinary monadic type of computations, together with a predi-
cate on terms of monadic type which indexes them with pre- and post-conditions.)

Regional Logic and Ownership

In addition to systems based on separation, there is also a line of research based on the concept
of object invariants and ownership. The Java modeling language (JML) [21] and the Boogie
methodology [4] are two of the most prominent systems based on this research stream. In Boo-
gie, each object tracks its owner object with a ghost field, and the ownership discipline enforces
that the heap have a tree structure. This allows the calculation of frame properties without explo-
sions due to aliasing, even though the specification language remains ordinary first-order logic.
Banerjee et al. [2] give a logic, which they name “regional logic”, which formalizes these ideas
in a small core logic more tractable than industrial-strength systems like JML or Boogie.

For “by-hand” proofs, approaches based on ownership tend to be more onerous than proofs
using separation logic, since footprints have to be tracked explicitly in pre- and post-conditions.
However, the flip side of this is that there are no substructural quantifiers, and this can enable an
easier use of existing theorem provers for automation.

From the semantic point of view, one of the most interesting features of this line of work is
that Banerjee and Naumann [1] were able to use an ownership discipline to prove a representation
independence (i.e., relational parametricity) result for Java-like programs. This is something that
neither my system, nor any of the other ones described earlier is capable of. The equality relation
I use is simply the equality inherited from the (highly non-abstract) denotational semantics I give.

1.5.3 Program Proofs for Design Patterns

Iterators

In his dissertation [34], Parkinson gave as an example a simple iterator protocol, lacking the
integration with composites we have exhibited. Subsequently, we formalized a similar account
of iterators [20], again lacking the integration with composites.

10 Introduction
Jacobs, Meijer, Piessens and Schulte [16] extend Boogie with new rules for the coroutine

constructs C# uses to define iterators. Their solution typifies the difficulties ownership-based
approaches face with iterators, which arise from the fact that iterators must have access to the
private state of a collection but may have differing lifetimes. This work builds on Barnett and
Naumann’s generalization of ownership to friendship [3], which allows object invariants to have
some dependency on non-owned objects.

Unlike the work in my thesis, this required an extension to the core logic, rather than being a
formula provable within the logic.

Flyweights

Pierik, Clarke and de Boer [39] formalize another extension to the Boogie framework which they
name creation guards, specifically to handle flyweights. They consider flyweights an instance of
a case where object invariants can be invalidated by the allocation of new objects, and add guards
to their specifications to control allocation to the permitted cases.

Again, this required an extension to the core logic, though in this case the extension was quite
modest, since footprints are already explicitly tracked.

The Subject-Observer Pattern

The subject-observer pattern has been the focus of a great deal of effort, given its prominence
in important applications. Simultaneously with our own initial formulation, Parkinson gave an
example of verifying the subject-observer protocol [33]. Recently, Parkinson and Distefano [36]
have implemented a tool to verify these programs, and have demonstrated several examples in-
cluding a verification of a subject-observer pattern specified along these lines. The tool includes
automatic generation of loop invariants.

The style of invariant in our work and Parkinson’s is very similar, and subject to similar
limitations. Since each subject needs to know what its observers are, verifying programs with
chains of subject-observers is extremely cumbersome. This is especially problematic given that
GUI programs — which are one of the primary uses of the subject-observer pattern — rely upon
chains of subjects and observers.

The work of Barnett and Naumann is also capable of reasoning about the subject-observer
pattern, but only if all of the possible observers are known at verification. Leino and Schulte [22]
extended Boogie with Liskov and Wing’s concept of history invariants or monotonic predi-
cates [23] to give a more modular solution. The idea in this work is to require the changes
that a subject makes to “increase the truth” of the observer’s predicate along some partial order.
This is less flexible than the approach we took, though perhaps a little easier to use when it is
applicable. Unfortunately, this work is not merely heavyweight, but entirely inapplicable for
event-driven programs such as GUIs, since there is no natural partial order on user actions.

More recently, Shaner, Naumann and Leavens [44] gave a “gray-box” treatment of the
subject-observer pattern. Instead of tracking the specifications of the observers in the predi-
cate, they give a model program that should approximates the behavior of any actual notification
method. This works as long as the runtime dependencies are known statically enough to include
them in the model programs — again, a limitation which is problematic in the case of GUIs.

11 Introduction
In a paper not part of this thesis [19], I use the logic developed here to give a better specifi-

cation of callbacks which is modular and handles chains of notifications gracefully.

12 Introduction

Chapter 2

Type Structure

2.1 Syntax of Types and Kinds
In this section, I will describe the type structure of the programming language I will use in this
dissertation. The language is a pure, total, predicatively polymorphic programming language
(with quantification over higher kinds), augmented with a monadic type constructor that permits
nontermination and higher-order state. The syntax of types is given in figure 2.1.

Kinds κ ::= ? | κ→ κ

Monotypes τ ::= 1 | τ × τ | τ → τ | τ + τ | N |
ref A | © τ |
α | τ τ | λα : κ. τ

Polytypes A,B ::= 1 | A×B | A→ B | A+B | N |
ref A | © A | τ |
∀α : κ. A | ∃α : κ. A

Type Contexts Θ ::= · | Θ, α : κ

Figure 2.1: Syntax of the Types and Kinds of the Programming Language

The basic kind structure of the language is given with the kinds κ, which range over the kind
?, the kind of ground monotypes, and higher kinds κ → κ built from it. We write all of these
constructors with the letters τ and σ. The monotype constructors are the unit type 1, pair types
τ ×σ, sums τ +σ, function space τ → σ, natural numbers N, computation types©τ , and finally
(ML-style) references ref A. Also, within open types we may also use type variables α to refer to
monotype constructors, and we can also define lambda-abstractions and applications to inhabit
the higher kinds of this language.

The type ref A is not merely a pointer to a value of monomorphic type; it also permits storing
a pointer to a value of polymorphic types A. This seemingly violates the usual stratification be-
tween monotypes and polytypes, since quantifiers can occur within A. The intuition for viewing

14 Type Structure
ref A as a monotype is that a reference to a value of polymorphic type is itself merely a location
with no additional structure, and so it is safe to treat a reference to a value of polymorphic type
as a monomorphic value. Our denotational semantics of references will formalize this intuition
and make it precise.

The polytypes A themselves extend the monotypes with universal quantification ∀α : κ. A
as well as existential types ∃α : κ. A. Each of the simple type constructors — sums, prod-
ucts, functions, computations — also may contain polymorphic types as subexpressions within
it. However, this is actually only a modest generalization of classical ML-style type schemes.
Because the universal and existential quantifiers range over the kinds κ, it is impossible to in-
stantiate them with a polytype, thereby limiting us to predicative polymorphism. Nevertheless,
being able to quantifier over higher kinds and instantiate quantifiers with them is sufficient to
model many useful idioms (for example, quantifying not just over the element type of a list,
but also quantifying over the collection type constructor). For the occasional cases we need to
write impredicatively polymorphic programs, we will simulate true impredicativity by passing
references.

The kinding judgments Θ ` τ : κ and Θ ` A : F determine well-formedness of monotypes
and polytypes, respectively. The judgment Θ ` τ : κ asserts that the monotype constructor τ has
the kind κ, and as can be seen in Figure 2.2, the type constructors all have the expected structure.
The rule for references calls out to the judgment Θ ` A : F, defined in Figure 2.3, which gives
well-formedness conditions for polytypes. The reason we need a second judgment is that there
is no kind of polytypes, and so we simply directly judge whether a polytype is well-formed.

These judgments, and all others in this thesis, follow the usual Barendregt variable con-
vention, in that variable names do not occur repeated in contexts, and that bound variables are
renamed (according to the usual rules of alpha-equivalence) so that they are different from the
free variables.

Θ ` 1 : ?
KUNIT

Θ ` τ : ? Θ ` σ : ?

Θ ` τ × σ : ?
KPROD

Θ ` τ : ? Θ ` σ : ?

Θ ` τ → σ : ?
KARROW

Θ ` τ : ? Θ ` σ : ?

Θ ` τ + σ : ?
KSUM

Θ ` N : ?
KNAT

Θ ` A :F

Θ ` ref A : ?
KREF

Θ ` τ : ?

Θ ` ©τ : ?
KCOMP

α : κ ∈ Θ

Θ ` α : κ
KHYP

Θ ` τ : κ′ → κ Θ ` τ ′ : κ′

Θ ` τ τ ′ : κ
KAPP

Θ, α : κ′ ` τ : κ

Θ ` λα : κ′. τ : κ′ → κ
KLAM

Figure 2.2: Kinding Rules for Monotypes

15 Type Structure

Θ ` 1 :F
KUNIT

Θ ` A :F Θ ` B :F

Θ ` A×B :F
KPROD

Θ ` A :F Θ ` B :F

Θ ` A→ B :F
KARROW

Θ ` A :F Θ ` B :F

Θ ` A+B :F
KSUM

Θ ` N :F
KNAT

Θ ` A :F

Θ ` ©A :F
KCOMP

Θ ` τ : ?

Θ ` τ :F
KMONO

Θ, α : κ ` A :F

Θ ` ∀α : κ. A :F
KFORALL

Θ, α : κ ` A :F

Θ ` ∃α : κ. A :F
KEXISTS

Figure 2.3: Kinding Rules for Polytypes

2.1.1 The Syntactic Theory of Kinds
Types also support a pair of equality judgments Θ ` τ ≡ τ ′ : κ and Θ ` A ≡ B : F, shown
in Figures 2.4 and 2.5. The equality judgment for monotypes implements the β- and η-equality
principles of the lambda calculus, along with congruence rules for all of the type constructors
of our language. The only rules we have for the equality judgment for polytypes are simple
congruence rules, plus a recursive call back to the other equality judgment whenever we need to
compare monotyped terms.
Proposition 1. (Weakening) If Θ ` τ : κ then Θ, α : κ′ ` τ : κ.
Proof. This follows from structural induction on the derivation of Θ ` τ : κ. �

Proposition 2. (Substitution) Suppose Θ ` τ ′ : κ′. Then
• If Θ, α : κ′ ` τ : κ, then Θ ` [τ ′/α]τ : κ.
• If Θ, α : κ′ ` A :F, then Θ ` [τ ′/α]A :F.

Proof. This follows from mutual structural induction on the derivation of Θ, α : κ′ ` τ : κ and
Θ, α : κ′ ` A :F. �

Proposition 3. (Well-Kindedness of Equality) If we have that Θ ` τ ≡ σ : κ, then we know that
Θ ` τ : κ and Θ ` σ : κ. Likewise, Θ ` A ≡ B : F, then we know that Θ ` a : F and
Θ ` b :F.
Proof. This follows from mutual structural inductions on the derivation of Θ ` τ ≡ σ : κ and
Θ ` A ≡ B :F. �

Proposition 4. (Substitution into Equality) If we have that Θ ` σ ≡ σ′ : κ1, then

16 Type Structure

Θ ` 1 ≡ 1 : ?

Θ ` τ ≡ τ ′ : ? Θ ` σ ≡ σ′ : ?

Θ ` τ × σ ≡ τ ′ × σ′ : ?
Θ ` τ ≡ τ ′ : ? Θ ` σ ≡ σ′ : ?

Θ ` τ → σ ≡ τ ′ → σ′ : ?

Θ ` τ ≡ τ ′ : ? Θ ` σ ≡ σ′ : ?

Θ ` τ + σ ≡ τ ′ + σ′ : ? Θ ` N ≡ N : ?

Θ ` A ≡ A′ :F

Θ ` ref A ≡ ref A′ : ?

Θ ` τ ≡ τ ′ : ?

Θ ` ©τ ≡ ©τ ′ : ?
α : κ ∈ Θ

Θ ` α ≡ α : κ

Θ ` τ ≡ σ : κ′ → κ Θ ` τ ′ ≡ σ′ : κ′

Θ ` τ τ ′ ≡ σ σ′ : κ

Θ, α : κ′ ` τ ≡ σ : κ

Θ ` λα : κ′. τ ≡ λα : κ′. σ : κ′ → κ

Θ ` (λα : κ′. τ) τ ′ : κ

Θ ` (λα : κ′. τ) τ ′ ≡ [τ ′/α]τ : κ

Θ, α : κ′ ` τ α ≡ σ α : κ α 6∈ FV(τ, σ)

Θ ` τ ≡ σ : κ′ → κ

Θ ` τ : κ

Θ ` τ ≡ τ : κ

Θ ` τ ≡ σ : κ

Θ ` σ ≡ τ : κ

Θ ` τ ≡ τ ′ : κ Θ ` τ ′ ≡ σ : κ

Θ ` τ ≡ σ : κ

Figure 2.4: Equality Rules for Monotypes

• If Θ, α : κ1 ` τ ≡ τ ′ : κ2, then Θ ` [σ/α]τ ≡ [σ′/α]τ ′ : κ2.
• If Θ, α : κ1 ` A ≡ B :F, then Θ ` [σ/α]A ≡ [σ′/α]B :F.

Proof. This follows by mutual structural induction on the two derivations of the equality judg-
ment. �

2.1.2 Semantics of Kinds
Because types and kinds form an instance of the simply typed lambda calculus, we would like
to argue that there is a unique β-normal, η-long form for each well-kinded type expression. If
we consider only the monotype constructors excluding the reference types, this is immediate.
However, the presence of quantifiers in reference types slightly complicates this story. Luckily,
redices can only occur in subterms of polytypes which are monotype constructors, and hence by
an induction on the structure of a polytype we can deduce that it has unique normal forms as
well.

As a result, when we quotient the set of well-kinded terms by the equality judgment, we
know that each equivalence class contains a single long normal term, which we can take as the
canonical representative of that class. We can formalize this by giving the set-theoretic semantics
of the kinds as follows.

[[κ]]s = {τ | τ is β-normal, η-long and · ` τ : κ}
[[F]]s = {A | A is β-normal, η-long and · ` A :F}

17 Type Structure

Θ ` 1 ≡ 1 :F

Θ ` A ≡ A′ :F Θ ` B ≡ B′ :F

Θ ` A×B ≡ A′ ×B′ :F

Θ ` A ≡ A′ :F Θ ` B ≡ B′ :F

Θ ` A→ B ≡ A′ → B′ :F

Θ ` A ≡ A′ :F Θ ` B ≡ B′ :F

Θ ` A+B ≡ A′ +B′ :F

Θ ` N ≡ N :F

Θ ` A ≡ A′ :F

Θ ` ref A ≡ ref A′ :F

Θ ` A ≡ A′ :F

Θ ` ©A ≡ ©A′ :F
Θ ` τ ≡ τ ′ : ?

Θ ` τ ≡ τ ′ :F

Θ, α : κ ` A ≡ B :F

Θ ` ∀α : κ. A ≡ ∀α : κ. B :F

Θ, α : κ ` A ≡ B :F

Θ ` ∃α : κ. A ≡ ∃α : κ. B :F

Θ ` A :F

Θ ` A ≡ A :F

Θ ` A ≡ B :F Θ ` B ≡ C :F

Θ ` A ≡ C :F

Θ ` A ≡ B :F

Θ ` B ≡ A :F

Figure 2.5: Equality Rules for Polytypes

So we take the meaning of a kind κ to be exactly the closed, β-normal, η-long terms of
that kind. Then, we can give a semantics of typing derivations as follows. First, we define the
interpretation of kinding contexts to be a tuple of kinds, in the usual way:

[[·]]s = 1
[[Θ, α : κ]]s = [[Θ]]s × [[κ]]s

Then, the meaning of a derivation Θ ` τ : κ is a set-theoretic function taking the environment
into the interpretation of kinds:

[[Θ ` τ : κ]]s ∈ [[Θ]]s → [[κ]]s

[[Θ ` τ : κ]]s = λθ ∈ [[Θ]]s. nf(θΘ(τ))

[[Θ ` A :F]]s ∈ [[Θ]]s → [[F]]s

[[Θ ` A :F]]s = λθ ∈ [[Θ]]s. nf(θΘ(A))

Here, θ(τ) is a tuple in [[Θ]], and the notation θΘ denotes a function which turns it back into a
substitution:

()· = []
(θ, τ)Θ,α:κ = [θΘ, τ/α]

The substitution θΘ can be used to substitute for each of the free variables in τ (or A), and
nf(τ) computes the normal form of the type constructor τ .

This means that the following theorems about the equality theory on type constructors are
true:
Proposition 5. (Equality Judgment is Sound) We have that

1. If Θ ` τ ≡ τ ′ : κ, then τ =βη τ
′

18 Type Structure
2. If Θ ` A ≡ A′ :F, then A =βη A

′

Proof. This proof is an easy structural induction on the equality judgment. �

2.2 Semantics of Types
Now, we want to give a semantics for these types, which we will then use to interpret terms of
our programming language. Repeating the design criteria mentioned earlier, we need to obey the
two principles below:
• Our interpretation of types should make all non-monadic types pure.
• In particular, I want to treat even nontermination as a side effect, in addition to the more-

obvious effects of control and state.

The purpose of this choice is twofold. First, it will give us a rich subset of the language which
is total and pure, which will be convenient when writing assertions about programs — we will
be able to use any pure function directly in assertions, without having to worry about side effects
in predicates. Second, purity means that we will get a very rich equality theory for the language
— both the β and η laws will hold for all of the types of the programming language, which will
facilitate equational reasoning about the pure part of the programming language.

Because we count nontermination as an effect, our denotational semantics is in CPO, the
category of complete partial orders and continuous functions between them. In particular, we
do not demand that all domains have least elements — that is, we only require that the objects
of this category be predomains, rather than domains. This permits us to model pure types as
predomains lacking a bottom element.

2.2.1 The Overall Plan
The central problem in giving the semantics of types is the interpretation of the monadic type
constructor. Since the monadic type is the type of imperative computations, it must be a kind
of heap or predicate transformer. However, heaps contain values of arbitrary polymorphic type,
which defeats simple attempts to give semantics by induction on types.

Our strategy to resolve this circularity is to give successive domain equations for monotypes,
polytypes, and heaps, suitably parametrized so as to let us avoid reference to the semantics of a
later stage in an earlier one. Then, we will solve the domain equation, and tie the knot.

1. For each ground monotype τ , we give a functor in CPO⊥ × CPOop
⊥ → CPO. The

parameters to this functor will eventually be the basic continuations.

2. Using this interpretation of monotypes, for each polymorphic kinding judgment, we will
give another functor in CPO⊥ × CPOop

⊥ → CPO. Again, the parameters to this functor
will eventually be the basic continuations.

3. For heaps, a functor CPO⊥×CPOop
⊥ → CPO. Again, the parameters to this functor will

eventually be the basic continuations.

4. A domain equation in CPO⊥ × CPOop
⊥ → CPO⊥, whose least fixed point we will take

as our domain of basic continuations.

19 Type Structure

[[−]]m : Monotype→ CPO⊥ × CPOop
⊥ → CPO

Monotype = [[?]]s

Loc = N× [[F]]s

Loc(A) = {(n,B) ∈ Loc | A = B}

[[· ` 1 : ?]]m(K+, K−) = {∗}
[[· ` N : ?]]m(K+, K−) = N
[[· ` τ × σ : ?]]m(K+, K−) = [[· ` τ : ?]]m(K+, K−)× [[· ` σ : ?]]m(K+, K−)
[[· ` τ + σ : ?]]m(K+, K−) = [[· ` τ : ?]]m(K+, K−) + [[· ` σ : ?]]m(K+, K−)
[[· ` τ → σ : ?]]m(K+, K−) = [[· ` τ : ?]]m(K−, K+)→ [[· ` σ : ?]]m(K+, K−)
[[· ` ref A : ?]]m(K+, K−) = Loc(nf(A))
[[· ` ©τ : ?]]m(K+, K−) = ([[· ` τ : ?]]m(K+, K−)→ K−)→ K+

Figure 2.6: Locally Continuous Functor Interpreting Monotypes

Roughly speaking, the basic continuations will be the (continuous) maps from heaps to prim-
itive observations (the 2-point Sierpinski space), and by interpreting the monadic type as a CPS
type with answer type equal to the basic continuations, we can view monadic terms as heap
transformers.

2.2.2 Interpreting Monotypes
In Figure 2.6, we give an interpretation of the closed, canonical monotypes (i.e., monotypes of
kind ?, with no free occurrences of type variables within them, and no β-redexes within them)
as a functor in CPO⊥ × CPOop

⊥ → CPO. This semantics is parametrized with two arguments
K+ and K−, which separate the positive and negative occurrences of the basic continuations.

Before explaining the clauses in detail, I will explain why it is well-defined at all. First,
because we are considering closed terms of kind ?, the normalization theorem tells us that any
such term will normalize to one of the cases listed above. In particular, we will never bottom out
at a variable, because the context is closed. We will never bottom out at a lambda, because we
are considering only the kind ?, and we will never bottom out an application, because there will
be room for further beta-reduction in this case, and by hypothesis we are only considering the
normal forms.

This means we cover all of the possibilities in this definition, and furthermore we know it is
well-founded, because all of the recursive calls to [[−]]m are always on immediate subterms of the
type.

Most of the clauses of this definition should be relatively straightforward — the main mystery
is that we have parametrized this interpretation by two arguments K+ and K−, whose meaning
I will explain when we reach the monadic type constructor. We interpret the unit type as the
one-element, discretely ordered predomain, the natural number type as the natural numbers with
a discrete order, pairs as the categorical products of CPO, sums as coproducts, and functions via
the exponentials of CPO.

20 Type Structure
Reference types ref A are interpreted as pairs consisting of natural numbers and the represen-

tative syntactic object A. The intuition is that a reference is just a number, together with a type
tag saying what type of value the reference will point to. It is important that we do not interpret
the type tagA in this definition — a ref cell is a number plus the purely syntactic objectA, acting
as a label. This is because we have no interpretation function that can interpret the quantifiers
yet: the current definition interprets only the monotypes.

The first time we use K is when we interpret the type©τ . The monadic type©τ is inter-
preted in continuation-passing style, as ([[τ]]m(K+, K−)→ K−)→ K+, and the the K+ and K−
arguments are revealed as the positive and negative occurrences of the “answer type” of the con-
tinuation. One minor fact worth pointing out is that the positive and negative occurrences do not
trade places on the recursive call to [[τ]], since it occurs on the left-hand-side of the left-hand-side
of a function space (which is hence a positive occurrence).

Note how this works: ©τ is to be the type of stateful computations, but there is (apparently)
no state in this definition; it seems like an ordinary continuation semantics. The way that we will
re-introduce state is in the definition of K. We will ultimately interpret the answer type K as
maps from heaps H to the two-point Sierpinski lattice O = {>,⊥}, so that K = H → O. Then,
the monadic type will mean ([[τ]]→ (H → O))→ (H → O), which can be understood as a sort
of predicate transformer.

2.2.3 Interpreting Polytypes

At this stage of the definition, we cannot yet define what heaps mean, since heaps can contain
references to values of polymorphic type, and we have not yet defined the semantics of polymor-
phic types. This is why we have carefully parametrized our functorial semantics of monotypes
so that we do not needed to mention them explicitly.

To continue closing this gap, we will give an interpretation of polymorphic types as an in-
dexed function from a context of closed mono-kinded type constructors to a CPO. As before, we
parametrize by the continuation arguments, and again define a functor. This definition is given
in Figure 2.7.

As explained earlier, the interpretation of the type constructor context [[Θ]] are the tuples of
the interpretations of each kind in the environment Θ, which are in turn interpreted as merely
the closed canonical forms of that kind. (So ? are just the closed monotypes, ? → ? the closed
lambda-terms of that kind, and so on.)

This definition is also well-founded, since it is defined by a structural recursion over the
derivation of the kinding derivation of Θ ` A :F.

Whenever we reach a variable or application case, we can apply the substitution and invoke
the interpretation function for the monotypes. Universal types ∀α : κ. A are interpreted as set-
indexed predomains or dependent functions from the set of closed canonical objects of the kind
κ into predomains. Existential types ∃τ : κ. A are interpreted as pairs or dependent sums: we
pair a syntactic monotype with the predomain interpreting the second component.

The remaining cases essentially repeat the clauses of the definitions for monotypes, to allow
for the possibility that there may be sub-components of pairs/sums/functions/etc that contain
universal or existential types.

21 Type Structure

[[Θ ` A :F]] ∈ [[Θ]]s → (CPO⊥ × CPOop
⊥)→ CPO

[[Θ ` τ :F]] θ (K+, K−) = [[· ` θ(τ) : ?]]m(K+, K−)
[[Θ ` ∀α : κ. A :F]] θ (K+, K−) = Πτ : κ. [[Θ, α : κ ` A :F]] (θ, τ) (K+, K−)
[[Θ ` ∃α : κ. A :F]] θ (K+, K−) = Στ : κ. [[Θ, α : κ ` A :F]] (θ, τ) (K+, K−)
[[Θ ` A×B :F]] θ (K+, K−) = [[Θ ` A :F]] θ (K+, K−)× [[Θ ` B :F]] θ (K+, K−)
[[Θ ` A+B :F]] θ (K+, K−) = [[Θ ` A :F]] θ (K+, K−) + [[Θ ` B :F]] θ (K+, K−)
[[Θ ` A→ B :F]] θ (K+, K−) = [[Θ ` A :F]] θ (K−, K+)→ [[Θ ` B :F]] θ (K+, K−)
[[Θ ` 1 :F]] θ (K+, K−) = {∗}
[[Θ ` N :F]] θ (K+, K−) = N
[[Θ ` ©A :F]] θ (K+, K−) = ([[Θ ` A :F]] θ (K+, K−)→ K−)→ K+

[[Θ ` ref A : ?]] θ (K+, K−) = Loc([[Θ ` A :F]]s θ)

Figure 2.7: Locally Continuous Functor Interpreting Polytypes

As a result, we need to verify that this definition is coherent, For example, a type like N+N :
F can be derived two ways, depending on whether the “+” is viewed as constructor combining
polytypes or monotypes. Fortunately, the lack of interesting structure on polytypes makes this
easy.
Proposition 6. (Coherence of Polymorphic Type Interpretation) For any two derivations of
D,D′ :: Θ ` A :F, we have that [[D]] = [[D′]].
Proof. This follows via induction on A. For each A, there are at most two rules from which it
can be derived. �

2.2.4 Interpreting Heaps and Basic Continuations
We are finally in a position to define heaps and the recursive domain equation we would like to
solve:

H(K+, K−) = ΣL ⊆fin Loc. (Π(l, A) ∈ L. [[· ` A :F]](·) (K+, K−))
K(K+, K−) = H(K−, K+)→ O

We use H to define what heaps mean. A heap is a dependent sum whose first component
is a finite set of allocated locations, together with a map that takes each location in the set of
allocated locations, and returns a value of the appropriate type.

The continuation type is defined by the solution to the equation K, which of type (CPOop
⊥ ×

CPO⊥)→ CPO⊥. We know that this goes into CPO⊥, since it defines a map into the two point
domain, and a function space into a domain is itself a domain. So if we can solve the equation
K ' K(K,K), then we can plug K into all our other definitions to interpret all of the types in
our language.

Filling this in, we can understand how basic continuations work: they receive a heap, and then
either loop or terminate. The monadic type ©τ now can be seen as the state-and-continuation
monad, which combines the effects of the continuation monad and the state monad via a domain

22 Type Structure
which looks like (τ → H → O) → H → O. (Though our model supports it, we will never
actually use the possibly of adding control operators to the language in this thesis.)

To show that this equation actually has a solution, it suffices to show that F is a locally-
continuous functor. We will prove this by induction over [[−]] and [[−]]m, and then at each case
appeal to a series of lemmas showing that each construction we use preserves local continuity.

2.3 Solving Domain Equations

2.3.1 Local Continuity

A functor F : CPO⊥ ×CPOop
⊥ → CPO is locally continuous if it preserves the order structure

on its arguments. That is, it must be monotone — if f v f ′ and g v g′, then F (f, g) v F (f ′, g′)
— and it must also preserve limits — given a pair of chains fi, gi,

⊔
i F (fi, gi) = F (

⊔
i fi,

⊔
i gi).

Now, we will show that the functors we used earlier are all locally continuous. All of this is
standard, but I give the proofs to make the presentation self-contained.
Lemma 1. Local Continuity

1. If F,G : CPO⊥ × CPOop
⊥ → CPO are locally continuous, then λA,B. F (A,B) ×

G(A,B) is locally continuous.
2. If F,G : CPO⊥ × CPOop

⊥ → CPO are locally continuous, then λA,B. F (A,B) +
G(A,B) is locally continuous.

3. If F,G : CPO⊥ × CPOop
⊥ → CPO are locally continuous, then λA,B. F (A,B) →

G(A,B) is locally continuous.
4. The constant functor KC is locally continuous.
5. If X is a set, and F (x) : CPO⊥ × CPOop

⊥ → CPO is an X-indexed family of locally
continuous functors, then λ(A,B). Πx : X. F (x)(A,B) is a locally continuous functor.

6. If X is a set, and F (x) : CPO⊥ × CPOop
⊥ → CPO is an X-indexed family of locally

continuous functors, then λ(A,B). Σx : X. F (x)(A,B) is a locally continuous functor.
Proof.

We elide proofs of monotonicity, and give only the proofs of preservation of limits. The
notations 〈f ; g〉 and notation [f ; g] are the unique mediating maps for products and sums, and
mean:

[f ; g] = λx : A+B.

{
f a when x = inl a
g b when x = inl b

〈f ; g〉 = λx : A×B. (f x, g x)

We also lift these to n-ary versions.

1. Suppose F and G are locally continuous. Now, for A and B, we have the functor which
takes (A,B) to F (A,B)×G(A,B) on the object part, and which takes (f, g) to F (f, g)×
G(f, g) on the arrow part.
Next, suppose that we have a chain of functions 〈fi〉 : A → B and 〈gi〉 : X → Y . Now,
we calculate:

23 Type Structure

ti(F ×G(fi, gi)) = ti(F (fi, gi)×G(fi, gi))
= ti 〈F (fi, gi) ◦ π1;G(fi, gi) ◦ π2〉
= 〈ti(F (fi, gi) ◦ π1);ti(G(fi, gi) ◦ π2)〉 (∗)
= 〈tiF (fi, gi) ◦ tiπ1;tiG(fi, gi) ◦ tiπ2〉
= 〈tiF (fi, gi) ◦ π1);tiG(fi, gi) ◦ π2)〉
= (tiF (fi, gi))× (tiG(fi, gi))

The interesting step is marked with (*); it is justified by the fact that we know that πj ◦
(ti 〈h1

i ;h
2
i 〉) = ti(πj ◦ 〈h1

i ;h
2
i 〉) = tihji , and that πj ◦ 〈tih1

i ;tih2
i 〉 = tihji , and that the

mediating morphism is unique.

2. Suppose F and G are locally continuous. Now, for A and B we have the functor which
takes (A,B) to F (A,B) +G(A,B) on the object part, and which takes (f, g) to F (f, g) +
G(f, g) on the arrow part.
Next, suppose that we have a chain of functions 〈fi〉 : C → A and 〈gi〉 : B → D. Now,
we calculate:

ti(F +G(fi, gi)) = ti(F (fi, gi) +G(fi, gi))
= ti [inl ◦ F (fi, gi); inr ◦G(fi, gi)]
= [inl ◦ ti(F (fi, gi)); inr ◦ ti(G(fi, gi))] (∗)
= [tiinl ◦ F (fi, gi);tiinr ◦G(fi, gi)]
= [inl ◦ tiF (fi, gi)); inr ◦ tiG(fi, gi))]
= (tiF (fi, gi)) + (tiG(fi, gi))

The interesting step is marked with (*); it is justified by the fact that we know that
(ti [h1

i ;h
2
i]) ◦ inj = ti([h1

i ;h
2
i] ◦ inj) = tihji , and that 〈tih1

i ;tih2
i 〉 ◦ inj = tihji , and

that the mediating morphism is unique.

3. Suppose F and G are locally continuous. Now, for A and B we have the functor which
takes (A,B) to F (B,A) → G(A,B) on the object part, and which takes (f, g) to
F (g, f)→ G(f, g) on the arrow part.
Next, suppose that we have a chain of functions 〈fi〉 : A → C and 〈gi〉 : D → B. Now,
we calculate:

ti[F → G](fi, gi) = F (gi, fi)→ G(fi, gi)
= tiλh. [G(fi, gi) ◦ h ◦ F (gi, fi)]
= λh. ti [G(fi, gi) ◦ h ◦ F (gi, fi)]
= λh. [(tiG(fi, gi)) ◦ h ◦ (tiF (gi, fi))]
= λh. [G(tifi,tigi) ◦ h ◦ F (tigi,tifi)]

4. The constant functor is locally continuous because it maps all morphisms to the identity
morphism, and hence trivially preserves limits.

5. Suppose X is a set, and F (x) is an X-indexed family of locally continuous functors.
First, given objects (A,B), we have the object part of this as the dependent function space
Πx : X. F (x)(A,B), with elements u v v if and only if for all x ∈ X , u(x) vF (x)(A,B)

24 Type Structure
v(x).
This object is a true product over X . Given Πx : X. F (x)(A,B), we can define the
x-th projection as πx = λf. f(x). Then, it’s clear that given a family of morphisms
fx∈X : Y → F (x)(A,B), we can define a function 〈fx∈X〉 : Y → Πx : X. F (x)(A,B) =
λy. λx. fx(y), which means that for all x, and that πx ◦ 〈fx∈X〉 = fx.
We show uniqueness by supposing that that there is some g such that πx ◦ g = fx. Then,
we know that g = λx. πx ◦ g, which means that g = λx. fx, which is exactly 〈fx∈X〉.
Next, given morphisms f ∈ A → C and g ∈ D → B, we have [Πx : X. F (x)](f, g) ∈
[Πx : X. F (x)](A,B)→ [Πx : X. F (x)](C,D) as:

[Πx : X. F (x)](f, g) = λx. F (x)(f, g)

Clearly, this preserves identities and composition, and is hence a functor.
Now, suppose that (f, g) v (f ′, g′), and that x is an arbitrary element of X . Then [Πx :
X. F (x)](f, g) = F (x)(f, g) and [Πx : X. F (x)](f ′, g′) = F (x)(f ′, g′). Since F (x)
is a locally continuous functor, we know that F (x)(f, g) v F (x)(f ′, g′), and so [Πx :
X. F (x)] preserves ordering.
Now, suppose that (fi, gi) form a chain. So, we know that

ti([Πx : X. F (x)](fi, gi)) = ti(λx : X. (F (x)(fi, gi)))
= λx : X. (ti(F (x)(fi, gi))) (∗)
= λx : X. (F (x)(ti(fi, gi)))
= [Πx : X. F (x)](ti(fi, gi))

The interesting step is (*); it is justified by the fact that we know that πx ◦ ti 〈hxi 〉 =
ti(πx ◦i 〈hxi 〉) = tihxi , and that πx ◦ 〈tihxi 〉 = tihxi , and that the mediating morphism is
unique.
As a result, we can conclude that this functor is locally continuous.

6. Suppose X is a set, and F (x) is an X-indexed family of locally continuous functors.
First, given objects (A,B), we have the object part of the functor yielding the dependent
sum Σx : X. F (x)(A,B). Ordering is given pairwise, equipping the set X with the trivial
ordering. That is (x, o) v (x′, o′) if and only if x = x′ and o vF (x)(A,B) o

′.
This is a true coproduct over X . Given Σx : X. F (x)(A,B), we can define the injec-
tions ιx ∈ F (x)(A,B) → Σx : X. F (x)(A,B) as λv.(x, v). Next, suppose we have a
family of functions fx : F (x)(A,B) → Y . We can define a function [fx∈X] ∈ (Σx :
X. F (x)(A,B))→ Y as λ(x, v). (fx v). It’s clear that [fx∈X] ◦ ιi = fi.
Finally, we can establish uniqueness as follows. Suppose that there is a g such that g ◦ ιi =
fi. Next, we know that g = λ(x, v). g(x, v) = λ(x, v). (g ◦ ιx)(v), which is clearly
λ(x, v). (fx v), which is just [fx∈X]

Next, given morphisms f ∈ A → C and g ∈ D → B, we have [Σx : X. F (x)](f, g) ∈
[Πx : X. F (x)](A,B)→ [Σx : X. F (x)](C,D) as:

25 Type Structure

[Σx : X. F (x)](f, g) = λ(x, v). (x, F (x)(f, g)(v))

This clearly preserves identities and composition, and hence defines a functor.
Now, suppose that (f, g) v (f ′, g′) and that (x, v) is an element of Σx : X. F (x)(A,B).
Then we have that [Σx : X. F (x)](f, g)](x, v) = (x, F (x)(f, g)(v)) and that [Σx :
X. F (x)](f ′, g′)](x, v) = (x, F (x)(f ′, g′)(v)). So we know that x = x, and by the lo-
cal continuity of F (x), we know that F (x)(f, g)(v) v F (x)(f ′, g′)(v). So this functor
preserves ordering.
Finally, suppose (fi, gi) form a chain.

ti[Σx : X. F (x)](fi, gi) = tiλ(x, v). (F (x)(fi, gi)(v))
= λ(x, v). ti (F (x)(fi, gi)(v)) (∗)
= λ(x, v). F (x)(tifi,tigi))(v)
= [Σx : X. F (x)](tifi,tigi)

The interesting step is (*); it is justified by the fact that we know that (ti[hxi]) ◦ ιx =
ti([hxi] ◦ ιx) = tihxi , and that [tihxi] ◦ ιx = tihxi , and that the mediating morphism is
unique.

�

2.3.2 The Inverse Limit Construction
Once we have a locally continuous functor, we would like to find a solution to the fixed point
equation it defines.
Proposition 7. (Smyth and Plotkin) Any locally-continuous functor F : CPO⊥ × CPOop

⊥ →
CPO⊥ has a solution to the equation X ∼= F (X,X). Moreover, there is also a minimal isomor-
phism solving this equation.

The existence of a solution follows from Scott’s inverse limit construction, together with
Smyth and Plotkin’s characterization of such solution [45]. We give an explicit construction
of their solution in the following subsection, in which we will always take F to be a locally-
continuous functor of the type mentioned above.

Embeddings and Projections

First, recall that an embedding e : C → D between pointed CPOs is a continuous function such
that there exists a function p : D → C (called a projection) with the properties that p ◦ e = idC
and e ◦ p v idD.

Now, we’ll introduce the category CPOO
⊥ , which is the category whose objects are the

pointed domains, and whose morphisms from D to E are the embedding-projection pairs. The
identity morphism from domain D to D is the pair 〈id, id〉, and the composition operation on
〈e, p〉 and 〈e′, p′〉 is 〈e′ ◦ e, p ◦ p′〉. To verify that this is indeed a category, we check that:
• The identity 〈id, id〉 : D → D is an embedding-projection pair because id ◦ id = id and
id v id.

26 Type Structure
• The composition 〈e, p〉 ◦ 〈e′, p′〉 is an embedding-projection pair because it is defined to be

equal to 〈e ◦ e′, p′ ◦ p〉, and we have that embedding followed by projection is:

(p′ ◦ p) ◦ (e ◦ e′) = p′ ◦ (p ◦ e) ◦ e′
= p′ ◦ id ◦ e′
= p′ ◦ e′
= id

and likewise we have for a projection followed by an embedding:

(e ◦ e′) ◦ (p′ ◦ p) = e ◦ (e′ ◦ p′) ◦ p
v e ◦ id ◦ p
v e ◦ p
v id

• Finally, it’s clear that composition is associative and has identities as units because it in-
herits these properties from the underlying composition operations.

Now, consider the one-point domain ∅⊥ = {⊥}, and the sequence of domains Xi, defined in-
ductively by X0 = ∅⊥ and Xi+1 = F (Xi, Xi). Next, we will define embeddings and projections
ei : Xi → Xi+1 and pi : Xi+1 → Xi as follows:

e0 : X0 → X1 = λx. ⊥
ei+1 : Xi+1 → Xi+2 = F (ei, pi)

p0 : X1 → X0 = λx. ⊥
pi+1 : Xi+2 → Xi+1 = F (pi, ei)

Lemma 2. (Embeddings and Projections) Each 〈ei, pi〉 forms an arrow from Xi to Xi+1 in
CPOO

⊥ .
Proof. This proof proceeds by induction on i.
• Case i = 0: Obviously e0 ◦ p0 = id, since X0 = {⊥}. Likewise, since p0(e0(x)) = ⊥, and
⊥ v x, it follows that p0 ◦ e0 v id.

• Case i = n+ 1:
First, we’ll show that ei ◦ pi is the identity:

ei ◦ pi = en+1 ◦ pn+1 Def.
= F (en, pn) ◦ F (pn, en) Def.
= F (en ◦ pn, en ◦ pn) Functor property
= F (id, id) Ind. hyp.
= id Functor property

Now, we’ll show that pi ◦ ei v id:

pi ◦ ei = pn+1 ◦ en+1 Def.
= F (pn, en) ◦ F (en, pn) Def.
= F (pn ◦ en, pn ◦ en) Functor property

27 Type Structure
By induction, we know that pn ◦ en v id, and because locally continuous functors are also
monotone, we know that F (pn ◦ en, pn ◦ en) v F (id, id) ≡ id.

�

Construction of the Domain

Now, we’ll define the domain X to be the domain with the underlying set:

X ≡ {x ∈ (Πn : N. Xn) | ∀m : N. xm = pm(xm+1)}

with the ordering being the usual component-wise ordering. (As a notational convenience, we
will write xn to indicate the n-th component of x, or x(n).) To be in CPO⊥, it needs a least
element, which is just λn : N. ⊥.

We claim that this pointed CPO X is the colimit of the chain of domains Xi in CPOO
⊥ . To

prove it, we must proceed in two stages.
Lemma 3. (X is a cocone) X is a cocone of the diagram X0 −→ X1 −→
Proof. To show this, we must give morphisms 〈êi, p̂i〉 : Xi → X . To do so, we’ll define:

ên : Xn → X ≡ λx : Xn. λm : N.

pm,n(x) if m < n
x if m = n
en,m(x) if m > n

We define ei,j to be the composition ej−1 ◦ ej−2 ◦ . . . ◦ ei, which will have the type Xi → Xj .
Likewise, we define pi,j to be the composition pi ◦ . . . ◦ pj−1, which will have the type Xj → Xi.
The projection p̂n : X → Xn is much simpler. It’s just

p̂n : X → Xn ≡ λx : X. xn

Now, we’ll verify that these do form an embedding-projection pair.
• First, we’ll show that p̂n ◦ ên = id.

p̂n ◦ ên = λx : Xn. (p̂n ◦ ên) x
= λx : Xn. p̂n(ên x)
= λx : Xn. (ên x) n
= λx : Xn. x
= id

• Now, we’ll show that ên ◦ p̂n v id.

ên ◦ p̂n = λx : X. (ên ◦ p̂n) x
= λx : X. ên(p̂n x)
= λx : X. ên(xn)

Now, when applied to an argument x ∈ X , it’s clear that the result element is component-
wise equal to x for the components less than or equal to n, and less than that for compo-
nents bigger than n, which makes the result smaller than x.

28 Type Structure
This establishes that there are morphisms 〈êi, p̂i〉 : Xi → X . Now, we need 1) to show that the
equation 〈êi, p̂i〉 : Xi → X = 〈êi+1, p̂i+1〉 ◦ 〈ei, pi〉 holds, and 2) that

⊔
i êi ◦ p̂i = id, which will

establish that the diagram commutes appropriately.
Expanding the definition of composition, we want to show that 〈êi, p̂i〉 =

〈êi+1 ◦ ei, pi ◦ p̂i+1〉. So, we have that

êi+1 ◦ ei = λx : Xi. λm : N.

pm,i+1(ei x) if m < i+ 1
ei x if m = i+ 1
ei+1,m(ei x) if m > i+ 1

= λx : Xi. λm : N.

pm,i(pi(ei x)) if m < i+ 1
ei,i+1 x if m = i+ 1
ei+1,m(ei x) if m > i+ 1

= λx : Xi. λm : N.
{
pm,i(x) if m < i+ 1
ei,m(x) if m > i

= λx : Xi. λm : N.

pm,i(x) if m < i
x if m = i
ei,m(x) if m > i

= êi

In the other direction, we show that

pi ◦ p̂i+1 = λx : X. pi(xi+1)
= λx : X. xi
= p̂i

The second step follows from the definition of X .
Now, we need to show that

⊔
i êi ◦ p̂i = id.⊔

i êi ◦ p̂i =
⊔
i λx : X. êi(p̂i x)

=
⊔
i λx : X. êi(xi)

=
⊔
i λx : X. λm : N.

pm,i(xi) if m < i
xi if m = i
ei,m(xi) if m > i

=
⊔
i λx : X. λm : N.

{
xm if m ≤ i
ei,m(xi) if m > i

=
⊔
i λx : X. λm : N.

{
xm if m ≤ i
ei,m(pi,m xm) if m > i (∗)

= λx : X. λm : N. xm
= id

In (∗), we use the definition of X to see that the components greater than i are smaller than
x’s component at that index. So for each given i, the first i components of êi ◦ p̂i are the identity
function, and below the identity for anything bigger than that. Thus, the limit as i goes to infinity
is the identity function for all components.
�

To show that X is the colimit of this diagram, we need to show there is a unique map from it
to any other cocone.

29 Type Structure
Lemma 4. (Universality of X) Suppose that there is a Y with morphisms 〈fn, qn〉 : Xn → Y
and qn : Y → Xn, forming a cocone over X0 −→ X1 −→ Then, there is a unique
〈he, hp〉 : X → Y such that for all n, 〈fn, qn〉 = 〈he, hp〉 ◦ 〈ên, p̂n〉.
Proof. To show this, we need to explicitly construct he and hp, and show that they form an
embedding-projection pair. We’ll define he : X → Y =

⊔
i fi ◦ p̂i, and define hp : Y → X =

λy : Y. λi : N. qi y.
Before we can proceed any further, we need to establish that he actually defines a morphism

— that is, we have to establish that fi ◦ p̂i is a chain in i. So, assume we have some arbitrary i,
and some arbitrary x : X .

1. Now, by the properties of embedding-projection pairs, we know ei(pi xi+1) v xi+1,

2. By the continuity of fi+1, this means fi+1(ei(pi xi+1)) v fi+1(xi+1).

3. By the fact that Y is a cocone, this means fi(pi xi+1) v fi+1(xi+1).

4. By the definition of X , this is the same as showing fi(xi) v fi+1(xi+1).

5. By the definition of p̂, this is the same as fi(p̂i x) v fi+1(p̂i+1 x).

6. Since this holds for all x, we have shown fi ◦ p̂i v fi+1 ◦ p̂i+1.

Next, let’s establish that he and hp form an embedding-projection pair. To show that he◦hp v
id, we use equational reasoning:

he ◦ hp = (
⊔
i fi ◦ p̂i) ◦ (λy : Y. λi : N. (qi y))

=
⊔
i(fi ◦ p̂i ◦ (λy : Y. λi : N. (qi y))

=
⊔
i(λy : Y. fi(p̂i (λi : N. (qi y))))

=
⊔
i(λy : Y. fi(qi y))

v
⊔
i λy : Y. y

v λy : Y. y

In other direction, we need to show hp ◦ he = id.

hp ◦ he = (λy : Y. λj : N. (qj y)) ◦ (
⊔
i fi ◦ p̂i)

=
⊔
i((λy : Y. λj : N. (qj y)) ◦ fi ◦ p̂i)

= λx : X.
⊔
i((λy : Y. λj : N. (qj y)) ◦ fi ◦ p̂i)) x

= λx : X.
⊔
i((λy : Y. λj : N. (qj y)) (fi (p̂i x)))

= λx : X.
⊔
i(λj : N. (qj (fi (p̂i x))))

= λx : X. λj : N.
⊔
i((qj (fi (p̂i x))))

To finish this calculation, consider an arbitrary x : X and j : N. Now, consider the tail of the
chain, where i > j. Now, since we know that qk = pk ◦ qk+1, it follows that:

qj (fi (p̂i x)) = pj,i(qi (fi (p̂i x)))
= pj,i(p̂i x)
= p̂j x
= xj

Which means that the least upper bound of the chain has to be λx : X. λj : N. xj – which
means that it is the identity.

30 Type Structure
So we have established that 〈he, hp〉 is a morphism betweenX and Y . Next, let’s see whether

it commutes: 〈fn, qn〉 = 〈he, hp〉 ◦ 〈ên, p̂n〉. Unfolding the definition of composition, we get two
proof obligations. First,

he ◦ ên = (
⊔
i fi ◦ p̂i) ◦ ên

=
⊔
i(fi ◦ p̂i ◦ ên)

= λx : Xn.
⊔
i(fi(p̂i (ên x)))

= λx : Xn.
⊔
i(fi(ên x i))

= λx : Xn.
⊔
i fi

pi,n(x) if i < n
x if i = n
en,i(x) if i > n

To find the limit of this chain, consider any i > n. Because fk+1 ◦ ek = fk, we can see that

fi(en,i x) = fn x, which means that the limit is fn x, and hence he ◦ ên = fn.
Next, consider p̂n ◦ hp:

p̂n ◦ hp = p̂n ◦ (λy : Y. λi : N. (qi y))
= λy : Y. p̂n(λi : N. (qi y))
= λy : Y. (qn y)
= qn

At this point, we have established that X is a weak colimit – there’s a morphism from it to
any other cone, but we still have yet to show that it is a unique morphism. So, suppose that we
have some other mediating morphism

〈
h′e, h

′
p

〉
: X → Y .

For the embedding h′e, we proceed as follows:

1. Now, it must be the case that
〈
h′e, h

′
p

〉
◦ 〈ên, p̂n〉 = 〈fn, qn〉.

2. So h′e ◦ ên = fn.

3. Composing both sides with p̂n, we get h′e ◦ ên ◦ p̂n = fn ◦ p̂n.

4. Taking limits of chains on both sides, we get h′e ◦
⊔
n ên ◦ pn =

⊔
n fn ◦ p̂n

5. Simplifying, we get h′e = he.

For the projection h′p, we have

1. We have p̂n ◦ h′p = qn.

2. Composing on both sides with ên, we have ên ◦ p̂n ◦ h′p = ên ◦ qn.

3. Taking limits on both sides, we have h′p =
⊔
n ên ◦ qn.

4. Simplifying the limit expression, we get h′p = λy : Y. λn : N. qn(y).

5. So h′p = hp.

�

Showing X is a Solution to F (X,X) ∼= X

Lemma 5. (X is a fixed point) The isomorphism F (X,X) ∼= X is valid.

31 Type Structure
Proof. First, note that applying F to each of the Xi and 〈ei, pi〉 yields Xi+1 and 〈ei+1, pi+1〉. In
other words, applying F to our old diagram gives us the same thing as before, only with the first
element chopped off.

Therefore, X is still a colimit for this diagram, because if we replicate the colimit construc-
tion for this diagram, we can establish an isomorphism between the “new” construction and
X , since the leading elements of the infinite product are determined by the requirement that
xi = pi(xi+1).

Since F is a locally continuous functor, it preserves colimits of chains ⊥ −→ F (⊥) −→ . . .,
so F (X,X) is itself a colimiting object.

Since colimits are unique up to isomorphism, it follows that F (X,X) ∼= X . �

2.4 Solving Our Recursive Domain Equation

Given that we know that the basic operations we use in our interpretation are locally continuous,
we can show that our interpretation function gives rise to a locally continuous functor.
Lemma 6. Functoriality of [[−]]m and [[−]]

1. For all canonical derivations · ` τ : ?, [[· ` τ : ?]]m is locally continuous.
2. For all canonical derivations · ` A :F, [[· ` A :F]] is locally continuous.
3. H is a locally continuous functor
4. K is a locally continuous functor.

Proof. The proof of the first case follows by structural induction on the canonical derivations of
monotypes. This is then used as a lemma in the proof of the second case, which is done via a
structural induction on the canonical derivations of polytypes. This then lets us prove the third
case, that H is a locally-continuous functor, because we can work from the inside out, using
the fact that set-indexed sums and products of locally-continuous functors are themselves locally
continuous. Finally, since K is just H → O, we know it is locally continuous also. �

Observe that K, applied to any arguments, yields a pointed domain, since the Sierpinski domain
is pointed, and a continuous function space into a pointed domain is itself pointed. Hence our
functor K is also a functor into CPO⊥, the category of complete pointed partial orders and
continuous functions. Now, we can appeal to the existence of solutions to our recursive domain
equation to solve for the solution to the equation

K ∼= K(K,K)

2.4.1 Computations form a Monad

Most of the base type constructors are obviously interpreted in terms of the underlying categor-
ical constructions: pair types are categorical products, sums are categorical sums, functions are
exponentials, and natural numbers are interpreted as a natural numbers object. However, we will
need to check that the type of computations actually forms a monad.

32 Type Structure
Lemma 7. (Computations form a Monad) The functor T (A) = (A→ K)→ K forms a monad
in CPO.
Proof. We need to give a unit (a family of arrows ηA : A → T (A)) and a lift operations (given
f : A→ T (B), we need to give f ∗ : T (A)→ T (B), such that the following equations hold:

1. η∗A = idT (A)

2. f ∗ ◦ ηA = f

3. f ∗ ◦ g∗ = (f ∗ ◦ g)∗

(Technically, these conditions are the conditions for a Kleisli triple, which is equivalent to a
monad.) We can now define ηA and f ∗ in terms of the internal language of CPO as follows:

ηA(a) = λk. k a
f ∗ = λa′ : (A→ K)→ K.λkb : (B → K). a′(λa. f a kb)

1. The proof of the first equation is as follows:

η∗A = λa′. λkA. a
′(λa. ηA a kA)

= λa′. λkA. a
′(λa. kA a)

= λa′. λkA. a
′ kA

= λa′. a′

= idT (A)

2. The proof of the second equation is as follows:

f ∗ ◦ ηA = λa. f ∗(ηA(a))
= λa. f ∗(λk. k a)
= λa. λka. (λk. k a) (λa. f a ka)
= λa. λka. (λa. f a ka) a
= λa. λka. f a ka
= λa. f a
= f

3. The proof of the third equation is as follows:

f ∗ ◦ g∗ = λa′′. f ∗(g∗(a′′))
= λa′′. f ∗(λk. a′′(λa. g a k))
= λa′′. λk. (λk. a′′(λa. g a k)) (λa1. f a k)
= λa′′. λk. a′′(λa. g a (λa1. f a1 k))
= λa′′. λk. a′′(λa. f ∗ (ga) k)
= λa′′. λk. a′′(λa. (f ∗ ◦ g) a k)
= (f ∗ ◦ g)∗

�

33 Type Structure
Pure expressions e ::= 〈〉 | 〈e, e′〉 | fst e | snd e |

inl e | inr e | case(e0, x1. e1, x2. e2) |
z | s(e) | iter(e, e0, x. e1)
x | λx : A. e | e e′ |
Λα : κ. e | e τ |
pack(τ, e) | unpack(α, x) = e in e′ |
[c] | fix x : D. e

Computations c ::= e | letv x = e in c | newA(e) | !e | e := e′

Contexts Γ ::= · | Γ, x : A

Pointed Types D ::= ©A | A→ D | ∀α : κ. D | 1 | D ×D

Figure 2.8: Syntax of the Programming Language

2.5 The Programming Language

We have given the semantics of types in domain-theoretic terms. Now, we’ll give the syntax
and typing of the programming language. Then, we’ll use the domain-theoretic semantics just
given to first give a denotational semantics for the programming language, and second, to give
an interesting equality theory for it. The syntax of terms is given in figure 2.8.

The pure terms of the language include the unit value 〈〉; pairs 〈e, e′〉 and projections fst e
and snd e; injections into sum types inl e and inr e, and a case form case(e, x. e′, y. e′′); lambda
abstractions λx : A. e and applications e e′; type abstraction Λα : κ. e and type application e τ ;
and existential packing pack(τ, e) and unpacking unpack(α, x) = e in e′. Suspended monadic
computations [c] are terms of the type ©A. Natural numbers are given by zero z and succes-
sor s(e) constructors, and are eliminated by primitive iteration iter(e, e0, x. e1). The restriction
to primitive iteration ensures that infinitely looping programs cannot be defined by eliminating
natural numbers, while still permitting us to define total functions such as addition and multi-
plication. (We will make free use of other inductive datatypes in following chapters, using the
naturals as a prototypical example of how to handle them.)

For general recursion, we have a term-level fixed point operator, fix x : D. e. It is not defined
over all types; it is only permitted to range over well-pointed types. That is, fixed points are only
defined over types whose interpretations are domains with least elements. The pointed types
include the monadic types, functions into pointed types, products of pointed types, and polymor-
phic quantification over pointed types. Functions into pointed types corresponds to ML’s usual
fixed point, and taking fixed points of products corresponds to mutual recursion. Taking fixed
points of polymorphic types corresponds to polymorphic recursion. The absence of nontermina-
tion (or any other effect) at other types ensures that the full beta and eta rules will be available
for reasoning with them.

The typing rules for all of these forms are given in figure 2.9, and the computation forms of
the language are given in figure 2.10.

34 Type Structure

Θ; Γ ` 〈〉 : 1
EUNIT

Θ; Γ ` e1 : A Θ; Γ ` e2 : B

Θ; Γ ` 〈e1, e2〉 : A×B
EPAIR

Θ; Γ ` e : A×B
Θ; Γ ` fst e : A

EFST
Θ; Γ ` e : A×B
Θ; Γ ` snd e : B

ESND

Θ; Γ ` e : A

Θ; Γ ` inl e : A+B
EINL

Θ; Γ ` e : B

Θ; Γ ` inr e : A+B
EINR

Θ; Γ ` e : A+B Θ; Γ, x : A ` e1 : C Θ; Γ, y : B ` e2 : C

Θ; Γ ` case(e, x. e1, y. e2) : C
ECASE

Θ; Γ ` z : N
EZERO

Θ; Γ ` e : N
Θ; Γ ` s(e) : N

ESUCC

Θ; Γ ` e : N Θ; Γ ` e0 : A Θ; Γ, x : A ` e1 : A

Θ; Γ ` iter(e, e0, x. e1) : A
EITER

x : A ∈ Γ

Θ; Γ ` x : A
EVAR

Θ; Γ, x : A ` e : B

Θ; Γ ` λx : A. e : A→ B
ELAM

Θ; Γ ` e : A→ B Θ; Γ ` e′ : A
Θ; Γ ` e e′ : B

EAPP

Θ, α : κ; Γ ` e : A Θ ` Γ

Θ; Γ ` (Λα : κ. e) : (∀α : κ. A)
ETLAM

Θ; Γ ` e : ∀α : κ. A Θ ` τ : κ

Θ; Γ ` e τ : [τ/α]A
ETAPP

Θ; Γ ` τ : κ Θ, α : κ ` A :F Θ; Γ ` e : [τ/α]A

Θ; Γ ` pack(τ, e) : ∃α : κ. A
EPACK

Θ; Γ ` e : ∃α : κ. A Θ, α : κ; Γ, x : A ` e′ : B Θ ` B :F

Θ; Γ ` unpack(α, x) = e in e′ : B
EUNPACK

Θ; Γ ` c÷ A
Θ; Γ ` [c] :©A

EMONAD
Θ; Γ, x : D ` e : D

Θ; Γ ` fix x : D. e : D
EFIX

Θ; Γ ` e : A Θ ` A ≡ B :F

Θ; Γ ` e : B
EKEQ

Figure 2.9: Typing of the Pure Expressions

35 Type Structure

Θ; Γ ` e : A

Θ; Γ ` e÷ A
CRETURN

Θ; Γ ` e :©A Θ; Γ, x : A ` c÷B
Θ; Γ ` letv x = e in c÷B

CLET

Θ; Γ ` e : ref A

Θ; Γ ` !e÷ A
CGET

Θ; Γ ` e : ref A Θ; Γ ` e′ : A
Θ; Γ ` e := e′ ÷ 1

CSET

Θ; Γ ` e : A

Θ; Γ ` newA(e)÷ ref A
CNEW

Figure 2.10: Typing of Monadic Expressions

One abbreviation we will make use of is to write run(e) for letv [x] = e in x. Just as [c]
embeds a computation of type A into an expression term of type ©A, the abbreviation run(e)
does the reverse, giving a computation of type A from an expression of type©A.

2.6 Denotational Semantics
We give the semantics of the expression and command languages with functions [[Θ; Γ ` e : A]]e

and [[Θ; Γ ` c÷ A]]c. Since we have two contexts, we will need two environments, one a type
environment (as before, a tuple of closed type expressions), and the other, a value environment
(consisting of a tuple of values of the appropriate type). In other words, the interpretation of a
term is a type-indexed family of morphisms in CPO.

We give the interpretation of contexts in Figure 2.11. In this definition, we take the usual lib-
erties in not explicitly giving the isomorphisms necessary to implement structural rules like Ex-
change. The definitions of the two mutually recursive interpretation functions, [[Θ; Γ ` e : A]]e

and [[Θ; Γ ` c÷ A]]c, which interpret pure expressions and computations respectively, are given
in figure 2.12 and figure 2.13.

In the types I give for these interpretation, for readability I elide occurences of (K,K), since
they never change and should be obvious from context. Furthemore, I confuse n-ary and iterated
products, and sometimes suppress contexts (e.g., write [[A]] θ instead of [[Θ ` A :F]] θ) when it
would either be cluttered or run off the page.

We also give a set of rules for deriving equalities between program expressions, in the figures
from 2.14 to 2.17. These rules include the β- and η-equalities of the lambda calculus, for sums,
products, and function spaces, the monad laws for computation types, as well as the β- and η-
equalities for numbers, existentials and universals. The η-rule for numbers justifies reasoning
about iterative programs via induction on the natural numbers. The η-rule for universals and
existentials arises from simple extensionality over types: since our model is not parametric, it
does not justify parametric principles of reasoning.

Below, we collect the theorems describing the properties of these two judgments, and give
their proofs in the following subsection.
Lemma 8. (Soundness of Weakening) Suppose Θ; Γ ` e : A.

36 Type Structure

Θ ` ·
CTXNIL

Θ ` Γ Θ ` A :F

Θ ` Γ, x : A
CTXCONS

[[Θ ` ·]] θ = 1
[[Θ ` Γ, x : A]] θ = [[Θ ` Γ]] θ × [[Θ ` A :F]]θ

Figure 2.11: Interpretation of Program Contexts

1. It is the case that [[Θ, α : κ; Γ ` e : A]]e (θ, τ) γ is equal to [[Θ; Γ ` e : A]]e θ γ.
2. It is the case that [[Θ; Γ, x : B ` e : A]]e θ (γ, v) is equal to [[Θ; Γ ` e : A]]e θ γ.

Lemma 9. (Soundness of Type Substitution) If we know that Θ ` τ : κ, then
1. If Θ, α : κ; Γ ` e : A, then [[Θ, α : κ; Γ ` e : A]]e (θ, [[τ]]s θ) γ is equal to

[[Θ; [τ/α]Γ ` [τ/α]e : [τ/α]A]]e θ γ

2. If Θ, α : κ; Γ ` c÷ A, then [[Θ, α : κ; Γ ` c÷ A]]c (θ, [[τ]]s θ) γ is equal to
[[Θ; [τ/α]Γ ` [τ/α]c÷ [τ/α]A]]c θ γ

Lemma 10. (Soundness of Substitution)
1. If we know that Θ; Γ, y : A,Γ′ ` e : B and Θ; Γ ` e′ : A and Θ ` θ, then

[[Θ; Γ ` [e′/y]e : B]]e θ (γ, γ′) = [[Θ; Γ, y : A,Γ′ ` e : B]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′)

2. If we know that Θ; Γ, y : A,Γ′ ` c÷B and Θ; Γ ` e′ : A and Θ ` θ, then
[[Θ; Γ ` [e′/y]c : B]]c θ (γ, γ′) = [[Θ; Γ, y : A,Γ′ ` c÷B]]c θ (γ, [[Θ; Γ ` e′ : A]]c θ γ, γ′)

Lemma 11. (Soundness of Equality Rules) We have that:
1. If Θ; Γ ` e ≡ e′ : A, then Θ; Γ ` e : A and Θ; Γ ` e′ : A and [[Θ; Γ ` e : A]]e =

[[Θ; Γ ` e′ : A]]e.
2. If Θ; Γ ` c ≡ c′ ÷ A, then Θ; Γ ` c ÷ A and Θ; Γ ` c′ ÷ A and [[Θ; Γ ` c÷ A]]c =

[[Θ; Γ ` c′ ÷ A]]c.

2.6.1 Proofs
Lemma. (8, page 35: Soundness of Weakening) Suppose Θ; Γ ` e : A.

1. It is the case that [[Θ, α : κ; Γ ` e : A]]e (θ, τ) γ is equal to
[[Θ; Γ ` e : A]]e θ γ.

2. It is the case that [[Θ; Γ, x : B ` e : A]]e θ (γ, v) is equal to
[[Θ; Γ ` e : A]]e θ γ.

Proof. The proof is by induction on the typing derivation of Θ; Γ ` e : A. �

37 Type Structure

[[Θ; Γ ` e : A]]e ∈ Π θ : [[Θ]]s. [[Θ ` Γ]] θ → [[Θ ` A :F]] θ

[[Θ; x1 : A1, . . . , xn : An ` xi : Ai]]
e θ γ = πx1:A1,...,xn:An`xi:Ai

(γ)
[[Θ; Γ ` λx : A. e : A→ B]]e θ γ = λv. [[Θ; Γ, x : A ` e : B]]e θ (γ, v)
[[Θ; Γ ` e e′ : B]]e θ γ = ([[Θ; Γ ` e : A→ B]]e θ γ) ([[Θ; Γ ` e′ : A]]eθ γ)
[[Θ; Γ ` 〈〉 : 1]]e θ γ = ∗
[[Θ; Γ ` 〈e1, e2〉 : A1 × A2]]e θ γ = ([[Θ; Γ ` e1 : A1]]e θ γ, [[Θ; Γ ` e2 : A2]]e θ γ)
[[Θ; Γ ` fst e : A1]]e θ γ = π1([[Θ; Γ ` e : A1 × A2]]e θ γ)
[[Θ; Γ ` snd e : A2]]e θ γ = π2([[Θ; Γ ` e : A1 × A2]]e θ γ)
[[Θ; Γ ` inl e : A1 + A2]]e θ γ = ι1([[Θ; Γ ` e : A1]]e θ γ)
[[Θ; Γ ` inr e : A1 + A2]]e θ γ = ι2([[Θ; Γ ` e : A2]]e θ γ)
[[Θ; Γ ` case(e, x. e1, y. e2) : C]]e θ γ = let a = [[Θ; Γ ` e : A1 + A2]]eθ γ in

let f1 = λv1. [[Θ; x : A1,Γ ` e1 : C]]eθ (γ, v1) in
let f2 = λv2. [[Θ; y : A2,Γ ` e2 : C]]eθ (γ, v2) in

[f1, f2](a)
[[Θ; Γ ` z : N]]e θ γ = 0
[[Θ; Γ ` s(e) : N]]e θ γ = 1 + ([[Θ; Γ ` e : N]]e θ γ)
[[Θ; Γ ` iter(e, e0, x. e1) : A]]e θ γ = let a = [[Θ; Γ ` e : N]]e θ γ in

let i = [[Θ; Γ ` e0 : A]]e θ γ in
let s = λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v) in
iterA[i, s](a)

[[Θ; Γ ` [c] :©A]]e θ γ = [[Θ; Γ ` c÷ A]]c θ γ
[[Θ; Γ ` fix x : D. e : D]]e θ γ = fix(λv. ([[Θ; Γ, x : D ` e : D]]e θ (γ, v)))
[[Θ; Γ ` Λα : κ. e : ∀α : κ. A]]e θ γ = λτ : [[κ]]. ([[Θ, α : κ; Γ ` e : A]]e (θ, τ) γ
[[Θ; Γ ` e τ : A[τ/α]]]e θ γ = [[Θ; Γ ` e : ∀α : κ. A]] θ γ [θ(τ)]
[[Θ; Γ ` pack(τ, e) : ∃α : κ. A]]e θ γ = ([θ(τ)], [[Θ; Γ ` e : A[τ/α]]]e θ γ)
[[Θ; Γ ` unpack(α, x) = e in e′ : B]]e θ γ = (λ 〈τ, v〉 . [[Θ, α : κ; Γ, x : A ` e′ : B]]e (θ, τ) (γ, v))

([[Θ; Γ ` e : ∃α : κ. A]]e θ γ)
[[Θ; Γ ` e : B]]e θ γ = [[Θ; Γ ` e : A]]e θ γ when Θ ` A ≡ B :F by EKeq

iterA[i, f](0) = i
iterA[i, f](n+ 1) = f(iterA[i, f](n))

πxi = project the component corresponding to xi in a context x1 : A1, . . . , x :n: An

Figure 2.12: Interpretation of Pure Terms

38 Type Structure

[[Θ; Γ ` c÷ A]]c ∈ Π θ : [[Θ]]s. [[Θ ` Γ]] θ → T ([[Θ ` A :F]] θ)

[[Θ; Γ ` e÷ A]]c θ = η[[A]] θ ◦ ([[Θ; Γ ` e : A]]e θ)
[[Θ; Γ ` letv x = e in c÷B]]c θ γ = let m : [[©A]]θ = [[Θ; Γ ` e :©A]]e θ γ in

let f : [[A]]θ → [[©B]]θ = λv. [[Θ; Γ, x : A ` c : B]]e θ (γ, v) in
f ∗(m)

[[Θ; Γ ` !e÷ A]]c θ γ = let l = [[Θ; Γ ` e : ref A]]e θ γ in

λk. λ(L, h).

{
k (h l) (L, h) when l ∈ L
> otherwise

[[Θ; Γ ` e := e′ ÷ 1]]c θ γ = let l = [[Θ; Γ ` e : ref A]]e θ γ in
let v = [[Θ; Γ ` e′ : A]]e θ γ in

λk. λ(L, h).

{
k 〈〉 (L, [h|l : v]) when l ∈ L
> otherwise

[[Θ; Γ ` newA(e)÷ ref A]]c θ γ = let v = [[Θ; Γ ` e : A]]e θ γ in
λk. λ(L, h).

let l = newloc(L,A) in
k l (L ∪ {l}, [h|l : v])

newloc(L,A) = (1 + sup{n ∈ N | ∃B. (n,B) ∈ L}, A)

Figure 2.13: Interpretation of Computations

Lemma. (9, page 36: Soundness of Type Substitution) If we know that Θ ` τ : κ, then
• If Θ, α : κ; Γ ` e : A, then [[Θ, α : κ,Θ′; Γ ` e : A]]e (θ, [[τ]]s θ, θ′) γ is equal to

[[Θ; [τ/α]Γ ` [τ/α]e : [τ/α]A]]e θ γ
• If Θ, α : κ; Γ ` c÷ A, then [[Θ, α : κ; Γ ` c÷ A]]c (θ, [[τ]]s θ, θ′) γ is equal to

[[Θ; [τ/α]Γ ` [τ/α]c÷ [τ/α]A]]c θ γ

Proof. The proof is by induction on the structure of the typing derivation. The interesting case
is:
• case EHyp:

[[Θ, α : κ,Θ′; Γ ` xi : Ai]]
e (θ, [[τ]]s(θ), θ′) γ

= πxi(γ) Semantics

Now, observe that the tuple γ is an element of [[Θ, α : κ,Θ′ ` Γ]] (θ, [[τ]]s θ, θ′).
[[Θ, α : κ ` Γ]] (θ, [[τ]]s θ) =

= [[[[Θ, α : κ,Θ′ ` A1 :F]] (θ, [[τ]]s θ, θ′)× . . .× [[Θ, α : κ ` An :F]] (θ, [[τ]]s θ, θ′)]]
= [[Θ ` [τ/α]A1 :F]] (θ, θ′)× . . .× [[Θ ` [τ/α]An :F]] (θ, θ′)
= [[Θ ` [τ/α]Γ]] (θ, θ′)

39 Type Structure

Θ; Γ ` e : 1 Θ; Γ ` e′ : 1
Θ; Γ ` e ≡ e′ : 1

EQUNIT

Θ; Γ ` 〈e1, e2〉 : A1 × A2

Θ; Γ ` fst 〈e1, e2〉 ≡ e1 : A1

EQPAIRFST
Θ; Γ ` 〈e1, e2〉 : A1 × A2

Θ; Γ ` snd 〈e1, e2〉 ≡ e2 : A2

EQPAIRSND

Θ; Γ ` e : A1 × A2

Θ; Γ ` e ≡ 〈fst e, snd e〉 : A1 × A2

EQPAIRETA

Θ; Γ, x : A ` e x ≡ e′ x : B x 6∈ FV(e, e′)

Θ; Γ ` e ≡ e′ : A→ B
EQFUNETA

Θ; Γ ` (λx : A. e) e′ : B x 6∈ Γ

Θ; Γ ` (λx : A. e) e′ ≡ [e′/x]e : B
EQFUNBETA

Θ; Γ ` case(inl e, x. e1, y. e2) : C

Θ; Γ ` case(inl e, x. e1, y. e2) ≡ [e/x]e1 : C
EQSUMINLBETA

Θ; Γ ` case(inr e, x. e1, y. e2) : C

Θ; Γ ` case(inr e, x. e1, y. e2) ≡ [e/y]e2 : C
EQSUMINRBETA

Θ; Γ ` e : A+B Θ; Γ, z : A+B ` e′ : C
Θ; Γ ` [e/z]e′ ≡ case(e, x. [inl x/z]e′, y. [inr y/z]e′) : C

EQSUMETA

Θ; Γ ` c ≡ c′ ÷ A
Θ; Γ ` [c] ≡ [c′] :©A

EQMONAD
Θ; Γ ` fix x : D. e : D

Θ; Γ ` fix x : D. e ≡ [fix x : D. e/x]e : D
EQFIX

Figure 2.14: Equality Rules for Sums, Products, Exponentials, and Suspended Computations

40 Type Structure

Θ; Γ ` iter(z, e0, x. e1) : A

Θ; Γ ` iter(z, e0, x. e1) ≡ e0 : A
EQNATZBETA

Θ; Γ ` iter(s(e), e0, x. e1) : A

Θ; Γ ` iter(s(e), e0, x. e1) ≡ [iter(e, e0, x. e1)/x]e1 : A
EQNATSBETA

Θ; Γ ` e0 : A Θ; Γ, x : A ` e1 : A Θ; Γ ` e : A
Θ; Γ ` [z/n]e ≡ e0 : A Θ; Γ,m : N ` [s(m)/n]e ≡ [[m/n]e/x]e1 : A

Θ; Γ, n : N ` e ≡ iter(n, e0, x. e1) : A
EQNATETA

Θ; Γ ` Λα : κ. e : ∀α : κ. A Θ ` τ : κ

Θ; Γ ` (Λα : κ. e) τ ≡ [τ/α]e : [τ/α]A
EQALLBETA

Θ, α : κ; Γ ` e α ≡ e′ α : A
Θ; Γ ` e : ∀α : κ. A Θ; Γ ` e′ : ∀α : κ. A Θ ` Γ

Θ; Γ ` e ≡ e′ : ∀α : κ. A
EQALLETA

Θ; Γ ` pack(τ, e) : ∃α : κ. A Θ, α : κ; Γ, x : A ` e′ : B
Θ; Γ ` unpack(α, x) = pack(τ, e) in e′ ≡ [τ/α][e/x]e′ : B

EQEXISTSBETA

Θ; Γ, z : ∃α : κ. A ` e′ : B Θ; Γ ` e : ∃α : κ. A

Θ; Γ ` unpack(α, x) = e in [pack(α, x)/z]e′ ≡ [e/z]e′ : B
EQEXISTSETA

Figure 2.15: Equality Rules for Numbers, Universals, and Existentials

Θ; Γ ` c÷ A
Θ; Γ ` c ≡ letv x = [c] in x÷ A

EQCOMMANDETA

Θ; Γ ` letv x = [e] in c÷ A
Θ; Γ ` letv x = [e] in c ≡ [e/x]c÷ A

EQCOMMANDBETA

Θ; Γ ` letv x = [letv y = e in c1] in c2 ÷ A
Θ; Γ ` letv x = [letv y = e in c1] in c2 ≡ letv y = e in letv x = [c1] in c2 ÷ A

EQCOMMANDASSOC

Figure 2.16: Equality Rules for Computations

41 Type Structure

Θ; Γ ` e : A

Θ; Γ ` e ≡ e : A
EQREFL

Θ; Γ ` e ≡ e′ : A

Θ; Γ ` e′ ≡ e : A
EQSYMM

Θ; Γ ` e ≡ e′ : A Θ; Γ ` e′ ≡ e′′ : A

Θ; Γ ` e ≡ e′′ : A
EQTRANS

Θ; Γ, x : A ` e1 ≡ e2 : B Θ; Γ ` e′1 ≡ e′2 : A

Θ; Γ ` [e′1/x]e1 ≡ [e′2/x]e2 : B
EQSUBST

Θ; Γ ` c÷ A
Θ; Γ ` c ≡ c÷ A

EQCOMMANDREFL
Θ; Γ ` c ≡ c′ ÷ A
Θ; Γ ` c′ ≡ c÷ A

EQCOMMANDSYMM

Θ; Γ ` c ≡ c′ ÷ A Θ; Γ ` c′ ≡ c′′ ÷ A
Θ; Γ ` c ≡ c′′ ÷ A

EQCOMMANDTRANS

Θ; Γ, x : A ` c1 ≡ c2 ÷B Θ; Γ ` e1 ≡ e2 : A

Θ; Γ ` [e1/x]c1 ≡ [e2/x]c2 ÷B
EQCOMMANDSUBST

Figure 2.17: Congruence Rules for Equality

So γ is also an element of [[Θ,Θ′ ` [τ/α]Γ]] (θ, θ′) as well, and so
[[Θ; [τ/α]Γ ` xi : [τ/α]Ai]]

e θ γ =

= πxi(γ) Semantics
= [[Θ, α : κ,Θ′; Γ ` xi : Ai]]

e (θ, [[θ]]s τ, θ′) γ

• other cases: These all follow the structure of the derivation.

�

Lemma. (10, page 36: Soundness of Substitution)
1. If we know that Θ; Γ, y : A,Γ′ ` e : B and Θ; Γ ` e′ : A and Θ ` θ, then

[[Θ; Γ ` [e′/y]e : B]]e θ (γ, γ′) = [[Θ; Γ, y : A ` e : B]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′)

2. If we know that Θ; Γ, y : A,Γ′ ` c÷B and Θ; Γ ` e′ : A and Θ ` θ, then
[[Θ; Γ ` [e′/y]c : B]]c θ (γ, γ′) = [[Θ; Γ, y : A ` c÷B]]c θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′)

Proof. This property follows by a mutual structural induction on the derivations Θ; Γ, y : A `
e : B and Θ; Γ, y : A ` c÷ C.

First, we’ll do the cases for pure terms. (When there’s no confusion, we’ll write [[e]]e for
[[Θ; Γ ` e : A]]e θ.)

• case EVar: There are two cases, depending on whether the e = xi, or e = y

42 Type Structure
1. If e = xi for some i, then [e′/y]xi = xi, and so we have

[[Θ; Γ,Γ′ ` [e′/y]xi : B]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` xi : B]]e θ (γ, γ′) Subst.
= πxi(γ, γ

′) Semantics
= πxi(γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′) Adjusting i
= [[Θ; Γ, y : A,Γ′ ` xi : B]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ, γ′) Semantics

2. If e = y, then we have [[Θ; Γ,Γ′ ` [e′/y]y : A θ (γ, γ′)]]e

= [[Θ; Γ,Γ′ ` e′ : A]]e θ (γ, γ′) Subst.
= [[Θ; Γ ` e′ : A]]e θ γ Since FV (e′) ∩ Γ = ∅
= [[Θ; Γ, y : A,Γ′ ` y : A]]e θ (γ, [[Θ; Γ ` y : A]]e θ γ, γ′) Semantics

• case ELam: We have [[Θ; Γ,Γ′ ` [e′/y](λx : B. e) : B → B′ θ (γ, γ′)]]e

= [[Θ; Γ,Γ′ ` λx : B. [e′/y]e : B → B′]]e θ (γ, γ′) Subst.
= λv. [[Θ; Γ,Γ′, x : B ` [e′/y]e : B′]]e θ (γ, γ′, v) Semantics
= λv. [[Θ; Γ, y : A,Γ′, x : B ` e : B′]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′, v) IH
= [[Θ; Γ, y : A,Γ′ ` λx : B. e : B → B′]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′) Semantics

Note that we need to use the Barendregt convention, implicitly renaming x to ensure the
avoidance of captures. We will not mention this point further in remaining proofs.

• Case EApp: We have [[Θ; Γ,Γ′ ` [e′/y](e1 e2) : B]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` [e′/y]e1 [e′/y]e2 : B]]e θ (γ, γ′) Subst.
= [[Θ; Γ,Γ′ ` [e′/y]e1 : B2 → B]]e θ (γ, γ′) [[Θ; Γ,Γ′ ` [e′/y]e2 : B2]]e θ (γ, γ′) Semantics
= [[Θ; Γ, y : A,Γ′ ` e1 : B2 → B]]e θ γ′′ [[Θ; Γ, y : A,Γ′ ` e2 : B2]]e θ γ′′ IH, IH
= [[Θ; Γ, y : A,Γ′ ` e1 e2 : B]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))
• case EUnit: We have [[Θ; Γ,Γ′ ` [e′/y] 〈〉 : 1]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` 〈〉 : 1]]e θ (γ, γ′) Substitution
= ∗ Semantics
= [[Θ; Γ, y : A,Γ′ ` 〈〉 : 1]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′) Semantics

• case EPair: We have [[Θ; Γ,Γ′ ` [e′/y] 〈e1, e2〉 : B]]e θ (γ, γ′)

43 Type Structure

= [[Θ; Γ,Γ′ ` 〈[e′/y]e1, [e
′/y]e2〉 : B1 ×B2]]e θ (γ, γ′) Subst.

= ([[Θ; Γ,Γ′ ` [e′/y]e1 : B1]]e θ (γ, γ′), [[Θ; Γ,Γ′ ` [e′/y]e2 : B2]]e θ (γ, γ′)) Semantics
= ([[Θ; Γ, y : A,Γ′ ` e1 : B1]]e θ γ′′, [[Θ; Γ, y : A,Γ′ ` e2 : B2]]e θ γ′′) IH, IH
= [[Θ; Γ, y : A,Γ′ ` 〈e1, e2〉 : B]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))
• Case EFst: We have [[Θ; Γ,Γ′ ` [e′/y]fst e : B1]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` fst [e′/y]e : B1]]e θ (γ, γ′) Substitution
= π1([[Θ; Γ,Γ′ ` [e′/y]e : B1 ×B2]]e θ (γ, γ′)) Semantics
= π1([[Θ; Γ, y : A,Γ′ ` e : B1 ×B2]]e θ γ′′) IH
= [[Θ; Γ, y : A,Γ′ ` fst e : B1 ×B2]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))
• Case ESnd: We have [[Θ; Γ,Γ′ ` [e′/y]snd e : B1]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` snd [e′/y]e : B2]]e θ (γ, γ′) Substitution
= π2([[Θ; Γ,Γ′ ` [e′/y]e : B1 ×B2]]e θ (γ, γ′)) Semantics
= π2([[Θ; Γ, y : A,Γ′ ` e : B1 ×B2]]e θ γ′′) IH
= [[Θ; Γ, y : A,Γ′ ` snd e : B1 ×B2]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))
• Case EInl: We have [[Θ; Γ,Γ′ ` [e′/y]inle : B1 +B2]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` inl([e′/y]e) : B1 +B2]]e θ (γ, γ′) Substitution
= ι1([[Θ; Γ,Γ′ ` [e′/y]e : B1]]e θ (γ, γ′)) Semantics
= ι1([[Θ; Γ, y : A,Γ′ ` e : B1]]e θ γ′′) IH
= [[Θ; Γ, y : A,Γ′ ` inle : B1 +B2]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))
• Case EInr: We have [[Θ; Γ,Γ′ ` [e′/y]inle : B1 +B2]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` inr([e′/y]e) : B1 +B2]]e θ (γ, γ′) Substitution
= ι2([[Θ; Γ,Γ′ ` [e′/y]e : B2]]e θ (γ, γ′)) Semantics
= ι2([[Θ; Γ, y : A,Γ′ ` e : B2]]e θ γ′′) IH
= [[Θ; Γ, y : A,Γ′ ` inre : B1 +B2]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))
• Case ECase: We have Θ; Γ,Γ′ ` [e′/y]case(e, x1. e1, x2. e2) : C

44 Type Structure

= Θ; Γ,Γ′ ` case([e′/y]e, x1. [e′/y]e1, x2. [e′/y]e2) : C Substitution

(1) Θ; Γ,Γ′ ` [e′/y]e : B1 +B2 Inversion
(2) Θ; Γ,Γ′, x1 : B1 ` [e′/y]e1 : B1 Inversion
(3) Θ; Γ,Γ′, x2 : B2 ` [e′/y]e2 : B2 Inversion
[[(1)]]e = λθ (γ, γ′). [[Θ; Γ, y : A,Γ′ ` e : B1 +B2]]e θ (γ, [[e′]]eθγ, γ′) IH
[[(2)]]e = λθ (γ, γ′, v). [[Θ; Γ, y : A,Γ′, x1 : B1 ` e1 : C]]e θ (γ, [[e′]]eθγ, γ′, v) IH
[[(3)]]e = λθ (γ, γ′, v). [[Θ; Γ, y : A,Γ′, x2 : B2 ` e2 : C]]e θ (γ, [[e′]]eθγ, γ′, v) IH

Now, the interpretation [[Θ; Γ,Γ′ ` case([e′/y]e, x1. [e′/y]e1, x2. [e′/y]e2) : C]]e θ (γ, γ′)
will be equal to [f1, f2] a, where

a = [[Θ; Γ,Γ′ ` [e′/y]e : B1 +B2]]e θ (γ, γ′)
= [[Θ; Γ, y : A,Γ′ ` e : B1 +B2]]e θ (γ, [[e′]]e θ γ, γ′)

f1 = λv. [[Θ; Γ,Γ′, x1 : B1 ` e1 : C]]e θ (γ, γ′, v)
= λv. [[Θ; Γ, y : A,Γ′, x1 : B1 ` e1 : C]]e θ (γ, [[e′]]e θ γ, γ′, v)

f2 = λv. [[Θ; Γ,Γ′, x2 : B2 ` e2 : C]]e θ (γ, γ′, v)
= λv. [[Θ; Γ, y : A,Γ′, x2 : B2 ` e1 : C]]e θ (γ, [[e′]]e θ γ, γ′, v)

Which means that [f1, f2] a = [[Θ; Γ, y : A,Γ′ ` case(e, x1. e1, x2. y2) : C]]e θ (γ, [[e′]]e θ γ, γ′)

• case EZero: We have [[Θ; Γ,Γ′ ` [e′/y]z : N]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` z : N]]e θ (γ, γ′) Substitution
= 0 Semantics
= [[Θ; Γ, y : A,Γ′ ` z : N]]e θ (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′) Semantics

• case ESucc: We have [[Θ; Γ,Γ′ ` [e′/y]s(e) : N]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` s([e′/y]e) : N]]e θ (γ, γ′) Substitution
= s([[Θ; Γ,Γ′ ` [e′/y]e : N]]e θ (γ, γ′)) Semantics
= s([[Θ; Γ, y : A,Γ′ ` e : N]]e θ γ′′) IH
= [[Θ; Γ, y : A,Γ′ ` s(e) : N]]e θ γ′′ Semantics

(Where γ′′ = (γ, [[Θ; Γ ` e′ : A]]e θ γ, γ′))

45 Type Structure
• case EIter: We have Θ; Γ,Γ′ ` [e′/y]iter(e, e0, x. e1) : C

= Θ; Γ,Γ′ ` iter([e′/y]e, [e′/y]e0, x. [e′/y]e1) : C Substitution

(1) Θ; Γ,Γ′ ` [e′/y]e : N Inversion
(2) Θ; Γ,Γ′ ` [e′/y]e0 : C Inversion
(3) Θ; Γ,Γ′, x : C ` [e′/y]e1 : C Inversion

[[(1)]]e = λθ (γ, γ′). [[Θ; Γ, y : A,Γ′ ` e : N]]e θ (γ, [[e′]]e θ γ, γ′) IH
[[(2)]]e = λθ (γ, γ′). [[Θ; Γ, y : A,Γ′ ` e0 : C]]e θ (γ, [[e′]]e θ γ, γ′) IH
[[(3)]]e = λθ (γ, γ′′). [[Θ; Γ, y : A,Γ′, x : C ` e0 : C]]e θ (γ, [[e′]]e θ γ, γ′′) IH

Now, we assume suitable θ, γ, γ′, and consider the interpretation of

[[Θ; Γ,Γ′ ` iter([e′/y]e, [e′/y]e0, x. [e′/y]e1) : C]]e θ (γ, γ′)

This is equal to iterC [i, s] a, where:

a = [[(1)]]e θ (γ, γ′)
= [[Θ; Γ, y : A,Γ′ ` e : N]]e θ (γ, [[e′]]e θ γ, γ′)

i = [[(2)]]e θ (γ, γ′)
= [[Θ; Γ, y : A,Γ′ ` e0 : C]]e θ (γ, [[e′]]e θ γ, γ′)

s = λv. [[(3)]]e θ (γ, γ′, v)
= λv. [[Θ; Γ, y : A,Γ′, x : C ` e1 : C]]e θ (γ, [[e′]]e θ γ, γ′, v)

Which means that

iterC [i, s] a = [[Θ; Γ, y : A,Γ′ ` iter(e, [e′/y]e0, x. [e′/y]e1) : C]]e θ (γ, [[e′]]e θ γ, γ′)

• case EMonad: We have Θ; Γ,Γ′ ` [e′/y][c] :©B.

= Θ; Γ,Γ′ ` [[e′/y]c] :©B Substitution

We have Θ; Γ,Γ′ ` [e′/y]c÷B Inversion

By mutual induction, we know that for all suitable θ, γ, γ′,

[[Θ; Γ,Γ′ ` [e′/y]c÷B]]c θ (γ, γ′) = [[Θ; Γ, y : A,Γ′ ` c : B]]c θ (γ, [[e′]]e θ γ, γ′)

Therefore we know that [[Θ; Γ,Γ′ ` [e′/y][c] :©B]]e θ (γ, γ′) is

= [[Θ; Γ,Γ′ ` [e′/y]c÷B]]c θ (γ, γ) Semantics
= [[Θ; Γ, y : A,Γ′ ` c : B]]c θ (γ, [[e′]]e θ γ, γ′) See above
= [[Θ; Γ, y : A,Γ′ ` [c] :©B]]e θ (γ, [[e′]]e θ γ, γ′) Semantics

46 Type Structure
• case EFix: We have that [[Θ; Γ,Γ′ ` [e′/y](fix x : D. e) : D]]e θ (γ, γ′) is

= [[Θ; Γ,Γ′ ` fix x : D. ([e′/y]e) : D]]e θ (γ, γ′) Substitution
= fix(λv. ([[Θ; Γ,Γ′, x : D ` [e′/y]e : D]]e θ (γ, γ′, v))) Semantics
= fix(λv. ([[Θ; Γ, y : A,Γ′, x : D ` e : D]]e θ (γ, [[e′]]e θ γ, γ′, v))) IH
= [[Θ; Γ, y : A,Γ′ ` fix x : D. e : D]]e θ (γ, [[e′]]e θ γ, γ′, v) Semantics

• case ETLam: We have that [[Θ; Γ,Γ′ ` [e′/y](Λα : κ. e) : ∀α : κ. B]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` Λα : κ. [e′/y]e : ∀α : κ. B]]e θ (γ, γ′) Substitution
= λτ. [[Θ, α : κ; Γ,Γ′ ` [e′/y]e : B]]e (θ, τ) (γ, γ′) Semantics
= λτ. [[Θ, α : κ; Γ,Γ′ ` e : B]]e (θ, τ) (γ, [[e′]]e (θ, τ) γ, γ′) IH
= λτ. [[Θ, α : κ; Γ,Γ′ ` e : B]]e (θ, τ) (γ, [[e′]]e θ γ, γ′) Since α 6∈ FTV (e′)
= [[Θ; Γ, y : A,Γ′ ` Λα : κ. e : ∀α : κ. B]]e θ (γ, [[e′]]e θ γ, γ′) Semantics

• case ETApp: We have that [[Θ; Γ,Γ′ ` [e′/y](e τ) : [τ/α]B]]e θ (γ, γ′) is

= [[Θ; Γ,Γ′ ` ([e′/y]e) τ : [τ/α]B]]e θ (γ, γ′) Substitution
= ([[Θ; Γ,Γ′ ` [e′/y]e : ∀α : κ. B]]e θ (γ, γ′)) τ(θ) Semantics
= ([[Θ; Γ, y : A,Γ′ ` e : ∀α : κ. B]]e θ (γ, [[e′]]e θ γ, γ′)) τ(θ) IH
= [[Θ; Γ, y : A,Γ′ ` e τ : [τ/α]B]]e θ (γ, [[e′]]e θ γ, γ′) Substitution

• case EPack: We have that [[Θ; Γ,Γ′ ` [e′/y]pack(τ, e) : ∃α : κ. B]]e θ (γ, γ′) is

= [[Θ; Γ,Γ′ ` [e′/y]pack(τ, e) : ∃α : κ. B]]e θ (γ, γ′) Substitution
= (τ(θ), [[Θ; Γ,Γ′ ` [e′/y]e : [τ/α]B]]e θ (γ, γ′)) Semantics
= (τ(θ), [[Θ; Γ, y : A,Γ′ ` e : [τ/α]B]]e θ (γ, [[e′]]e θ γ, γ′)) IH
= [[Θ; Γ, y : A,Γ′ ` pack(τ, e) : ∃α : κ. B]]e θ (γ, [[e′]]e θ γ, γ′) Semantics

• case EUnpack: We have [[Θ; Γ,Γ′ ` [e′/y](unpack(α, x) = e1 in e2) : B]]e θ (γ, γ′) as

= [[Θ; Γ,Γ′ ` unpack(α, x) = [e′/y]e1 in [e′/y]e2 : B]]e θ (γ, γ′) Substitution
= (λ 〈τ, v〉 . ([[Θ, α : κ; Γ,Γ′, x : C ` [e′/y]e2 : B]]e (θ, τ) (γ, γ′, v)))

([[Θ; Γ,Γ′ ` [e′/y]e1 : ∃α : κ. C]]e θ (γ, γ′)) Semantics
= (λ 〈τ, v〉 . ([[Θ, α : κ; Γ, y : A,Γ′, x : C ` e2 : B]]e (θ, τ) (γ, [[e′]]e (θ, τ) γ, γ′, v)))

([[Θ; Γ, y : A,Γ′ ` e1 : ∃α : κ. C]]e θ (γ, [[e′]]e θ γ, γ′)) IH
= (λ 〈τ, v〉 . ([[Θ, α : κ; Γ, y : A,Γ′, x : C ` e2 : B]]e (θ, τ) (γ, [[e′]]e θ γ, γ′, v)))

([[Θ; Γ, y : A,Γ′ ` e1 : ∃α : κ. C]]e θ (γ, [[e′]]e θ γ, γ′)) α 6∈ FTV (e′)
= [[Θ; Γ, y : A,Γ′ ` unpack(α, x) = e1 in e2 : B]]e θ (γ, [[e′]]e θ γ, γ′) Semantics

47 Type Structure
• case EKeq: We have [[Θ; Γ,Γ′ ` [e′/y]e : B]]e θ (γ, γ′)

= [[Θ; Γ,Γ′ ` [e′/y]e : C]]e θ (γ, γ′) Semantics, B = C
= [[Θ; Γ, y : A,Γ′ ` e : C]]e θ (γ, [[e′]]e θ γ, γ′) IH
= [[Θ; Γ, y : A,Γ′ ` e : B]]e θ (γ, [[e′]]e θ γ, γ′) Semantics

Now, the cases for the computation terms follow.
• case CReturn: We have that [[Θ; Γ,Γ′ ` [e′/y]e÷B]]c θ (γ, γ′)

= η[[B]]θ([[Θ; Γ,Γ′ ` [e′/y]e : B]]e θ (γ, γ′)) Semantics
= η[[B]]θ([[Θ; Γ, y : A,Γ′ ` e : B]]e θ (γ, [[e′]]e θ γ, γ′)) Mutual IH
= η[[B]]θ([[Θ; Γ, y : A,Γ′ ` e : B]]e θ (γ, [[e′]]e θ γ, γ′)) Semantics

• case CLet: We have that [[Θ; Γ,Γ′ ` [e′/y](letv x = e in c)÷ C]]c θ (γ, γ′)

= [[Θ; Γ,Γ′ ` letv x = [e′/y]e in [e′/y]c÷ C]]c θ (γ, γ′) Substitution
= (λv. [[Θ; Γ,Γ′, x : B ` [e′/y]c÷ C]]c θ (γ, γ′, v))∗

([[Θ; Γ,Γ′ ` [e′/y]e :©B]]e θ (γ, γ′)) Semantics
= (λv. [[Θ; Γ, y : A,Γ′, x : B ` c÷ C]]c θ (γ, [[e′]]e θ γ, γ′, v))∗

([[Θ; Γ, y : A,Γ′ ` e :©B]]e θ (γ, [[e′]]e θ γ, γ′)) IH,IH
= [[Θ; Γ, y : A,Γ′ ` letv x = e in c÷ C]]c θ (γ, [[e′]]e θ γ, γ′) Semantics

• case CGet: We have that [[Θ; Γ,Γ′ ` [e′/y](!e)÷B]]c θ (γ, γ′)

= [[Θ; Γ,Γ′ ` !([e′/y]e)÷B]]c θ (γ, γ′) Substitution

= λk. λ(L, h).

{
k (h l) (L, h) when l ∈ L
> otherwise Semantics

where l = [[Θ; Γ,Γ′ ` [e′/y]e : ref B]]e θ (γ, γ′)

= [[Θ; Γ, y : A,Γ′ ` !e÷B]]c θ (γ, [[e′]]e θ γ, γ′)
because l = [[Θ; Γ, y : A,Γ′ ` e : ref B]]e θ (γ, [[e′]]e θ γ, γ′) IH

• case CSet: We have [[Θ; Γ,Γ′ ` [e′/y](e1 := e2)÷ 1]]c θ (γ, γ′)

= [[Θ; Γ,Γ′ ` [e′/y]e1 := [e′/y]e2 ÷ 1]]c θ (γ, γ′) Substitution

= λk. λ(L, h).

{
k 〈〉 (L, [h|l : v]) when l ∈ L
> otherwise Semantics

where l = [[Θ; Γ,Γ; ` [e′/y]e1 : ref B]]e θ (γ, γ′)
where v = [[Θ; Γ,Γ; ` [e′/y]e2 : B]]e θ (γ, γ′)

= [[Θ; Γ, y : A,Γ′ ` e1 := e2 ÷ 1]]c θ (γ, [[e′]]e θ γ, γ′)
because l = [[Θ; Γ, y : A,Γ ` e1 : ref B]]e θ (γ, [[e′]]e θ γ, γ′) IH
because v = [[Θ; Γ, y : A,Γ ` e2 : B]]e θ (γ, [[e′]]e θ γ, γ′) IH

48 Type Structure
• case CNew: We have that [[Θ; Γ,Γ′ ` [e′/y]newB(e)÷ ref B]]c θ (γ, γ′).

= [[Θ; Γ,Γ′ ` newB(([e′/y]e))÷ ref B]]c θ (γ, γ′) Substitution

= λk. λ(L, h).

(
let l = newloc(L,A) in
k l (L ∪ {l}, [h|l : v])

)
where v = [[Θ; Γ,Γ′ ` [e′/y]e : A]]e θ (γ, γ′) Semantics

= [[Θ; Γ, y : A,Γ′ ` newB(e)÷ ref B]]c θ (γ, [[e′]]e θ γ, γ′)
because v = [[Θ; Γ,Γ′ ` e : A]]e θ (γ, [[e′]]e θ γ, γ′) IH

�
Lemma. (11, page 36: Soundness of Equality Rules) We have that:

1. If Θ; Γ ` e ≡ e′ : A, then Θ; Γ ` e : A and Θ; Γ ` e′ : A and [[Θ; Γ ` e : A]]e =
[[Θ; Γ ` e′ : A]]e.

2. If Θ; Γ ` c ≡ c′ ÷ A, then Θ; Γ ` c ÷ A and Θ; Γ ` c′ ÷ A and [[Θ; Γ ` c : A]]c =
[[Θ; Γ ` c′ ÷ A]]c.

Proof. The proof of this theorem is by induction on the derivations of Θ; Γ ` e ≡ e′ : A and
Θ; Γ ` c ≡ c′ ÷ A. So, assuming we have suitable θ and γ, we proceed as follows:
• case EqUnit: From Θ; Γ ` e ≡ e′ : 1, we have

Θ; Γ ` e : 1 By inversion
Θ; Γ ` e′ : 1 By inversion

[[Θ; Γ ` e : 1]]e θ γ = (∗) Semantics
= [[Θ; Γ ` e′ : 1]]e θ γ Semantics

• case EqPairFst: From Θ; Γ ` fst 〈e1, e2〉 ≡ e1 : A1, we have:

1 Θ; Γ ` fst 〈e1, e2〉 ≡ e2 : A1 Hypothesis
2 Θ; Γ ` 〈e1, e2〉 : A1 × A2 By inversion on 1
3 Θ; Γ ` e1 : A1 By inversion on 2
4 Θ; Γ ` fst 〈e1, e2〉 : A1 By rule ESnd on 2

[[Θ; Γ ` fst 〈e1, e2〉 : A1]]e θ γ =

= π1([[Θ; Γ ` 〈e1, e2〉 : A1 × A2]]e θ γ) Semantics
= π1(([[Θ; Γ ` e1 : A1]]e θ γ, [[Θ; Γ ` e1 : A2]]e θ γ)) Semantics
= [[Θ; Γ ` e1 : A1]]e θ γ Products

• case EqPairSnd: From Θ; Γ ` snd 〈e1, e2〉 ≡ e1 : A2, we have:

1 Θ; Γ ` snd 〈e1, e2〉 ≡ e1 : A2 Hypothesis
2 Θ; Γ ` 〈e1, e2〉 : A1 × A2 By inversion on 1
3 Θ; Γ ` e2 : A2 By inversion on 2
4 Θ; Γ ` snd 〈e1, e2〉 : A2 By rule EFst on 2

49 Type Structure

[[Θ; Γ ` snd 〈e1, e2〉 : A2]]e θ γ =

= π2([[Θ; Γ ` 〈e1, e2〉 : A1 × A2]]e θ γ) Semantics
= π2(([[Θ; Γ ` e1 : A1]]e θ γ, [[Θ; Γ ` e1 : A2]]e θ γ)) Semantics
= [[Θ; Γ ` e2 : A2]]e θ γ Products

• case EqPairEta:

1 Θ; Γ ` e ≡ 〈fst e, snd e〉 : A1 × A2 Hypothesis
2 Θ; Γ ` e : A1 × A2 Inversion
3 Θ; Γ ` fst e : A1 Rule EFst on 2
4 Θ; Γ ` snd e : A2 Rule ESnd on 2
5 Θ; Γ ` 〈fst e, snd e〉 : A1 × A2 Rule EPair on 3, 4

[[Θ; Γ ` e : A1 × A2]]e θ γ =

= (π1([[Θ; Γ ` e : A1 × A2]]e θ γ), π2([[Θ; Γ ` e : A1 × A2]]e θ γ)) Products
= ([[Θ; Γ ` fst e : A1]]e θ γ, [[Θ; Γ ` snd e : A2]]e θ γ) Semantics × 2
= [[Θ; Γ ` 〈fst e, snd e〉 : A1 × A2]]e θ γ Semantics

• case EqFunBeta:

1 Θ; Γ ` (λx : A. e) e′ ≡ [e′/x]e : B Hypothesis
2 Θ; Γ ` (λx : A. e) e′ : B Inversion on 1
3 Θ; Γ ` e′ : A Inversion on 2
4 Θ; Γ ` λx : A. e : A→ B Inversion on 2
5 Θ; Γ, x : A ` e : B Inversion on 4
6 Θ; Γ ` [e′/x]e : B Substitution 3 into 5

[[Θ; Γ ` (λx : A. e) e′ : B]]e θ γ =

= ([[Θ; Γ ` λx : A. e : A→ B]]e θ γ) ([[Θ; Γ ` e′ : B]]e θ γ) Semantics
= (λv. ([[Θ; Γ, x : A ` e : B]]e θ (γ, v)) [[Θ; Γ ` e′ : B θ γ]]e Semantics
= [[Θ; Γ, x : A ` e : B]]e θ (γ, [[Θ; Γ ` e′ : B]]e θ γ) Functions
= [[Θ; Γ ` [e′/x]e : B]]e θ γ Substitution

• case EqFunEta:

1 Θ; Γ ` e ≡ e′ : A→ B Hypothesis
2 Θ; Γ, x : A ` e x ≡ e′ x : B Inversion
3 Θ; Γ, x : A ` e x : B Induction
4 Θ; Γ, x : A ` e′ : B Induction
5 Θ; Γ ` e : A→ B Inversion and x 6∈ FV (e)
6 Θ; Γ ` e′ : A→ B Inversion and x 6∈ FV (e′)

50 Type Structure
For arbitrary v,

[[Θ; Γ, x : A ` e′ x : B]]e θ (γ, v) = [[Θ; Γ, x : A ` e x : B]]e θ (γ, v) Induction
[[Θ; Γ, x : A ` e : A→ B]]e θ (γ, v) v = [[Θ; Γ ` e : A→ B]]e θ γ Semantics, x 6∈ FV (e)
[[Θ; Γ, x : A ` e′ : A→ B]]e θ (γ, v) v = [[Θ; Γ ` e′ : A→ B]]e θ γ Semantics, x 6∈ FV (e′)
[[Θ; Γ ` e′ : A→ B]]e θ γ = [[Θ; Γ ` e : A→ B]]e θ γ Transitivity

• case EqSumInlBeta

1 Θ; Γ ` case(inl e, x. e1, y. e2) ≡ [e/x]e1 : C Hypothesis
2 Θ; Γ ` case(inl e, x. e1, y. e2) : C Inversion on 1
3 Θ; Γ ` inl e : A+B Inversion on 2
4 Θ; Γ, x : A ` e1 : C Inversion on 2
5 Θ; Γ, y : B ` e2 : C Inversion on 2
6 Θ; Γ ` e : A Inversion on 3
7 Θ; Γ ` [e/x]e1 : C Substitute 6 into 4

[[Θ; Γ ` case(inl e, x. e1, y. e2) : C]]e θ γ =

= [f1, f2](a) Semantics

where

a = [[Θ; Γ ` inl e : A+B]]e θ γ
= ι1([[Θ; Γ ` e : A]]e θ γ)

f1 = λv. [[Θ; Γ, x : A ` e1 : C]]e θ (γ, v)
f2 = λv. [[Θ; Γ, y : B ` e2 : C]]e θ (γ, v)

[f1, f2](a) = [f1, f2](ι1([[Θ; Γ ` e : A]]e θ γ)) Sums
= f1([[Θ; Γ ` e : A]]e θ γ)
= [[Θ; Γ, x : A ` e1 : C]]e θ (γ, [[Θ; Γ ` e : A]]e) Def of f1

= [[Θ; Γ ` [e/x]e1 : C]]e θ γ Substitutition

• case EqSumInrBeta:

1 Θ; Γ ` case(inr e, x. e1, y. e2) ≡ [e/y]e2 : C Hypothesis
2 Θ; Γ ` case(inr e, x. e1, y. e2) : C Inversion on 1
3 Θ; Γ ` inr e : A+B Inversion on 2
4 Θ; Γ, x : A ` e1 : C Inversion on 2
5 Θ; Γ, y : B ` e2 : C Inversion on 2
6 Θ; Γ ` e : B Inversion on 3
7 Θ; Γ ` [e/y]e2 : C Substitute 6 into 5

51 Type Structure
[[Θ; Γ ` case(inr e, x. e1, y. e2) : C]]e θ γ =

= [f1, f2](a) Semantics

where

a = [[Θ; Γ ` inr e : A+B]]e θ γ
= ι2([[Θ; Γ ` e : B]]e θ γ)

f1 = λv. [[Θ; Γ, x : A ` e1 : C]]e θ (γ, v)
f2 = λv. [[Θ; Γ, y : B ` e2 : C]]e θ (γ, v)

[f1, f2](a) = [f1, f2](ι2([[Θ; Γ ` e : B]]e θ γ)) Sums
= f2([[Θ; Γ ` e : B]]e θ γ)
= [[Θ; Γ, y : B ` e2 : C]]e θ (γ, [[Θ; Γ ` e : B]]e) Def of f1

= [[Θ; Γ ` [e/y]e2 : C]]e θ γ Substitution

• case EqSumEta:

1 Θ; Γ ` case(e, x. [inl x/z]e′, y. [inr y/z]e′) ≡ [e/z]e′ : C Hypothesis
2 Θ; Γ ` e : A+B Inversion on 1
3 Θ; Γ, z : A+B ` e′ : C Inversion on 1
4 Θ; Γ, x : A, z : A+B ` e′ : C Weakening on 3
5 Θ; Γ, x : A ` inl x : A+B By rules
6 Θ; Γ, x : A ` [inl x/z]e′ : C Substitution of 5 into 4
7 Θ; Γ, y : B, z : A+B ` e′ : C Weakening on 3
8 Θ; Γ, y : B ` inr y : A+B By rules
9 Θ; Γ, y : B ` [inr y/z]e′ : C Substitution of 8 into 7
10 Θ; Γ ` case(e, x. [inl x/z]e′, y. [inr y/z]e′) : C By ECase on 2, 6, 9
11 Θ; Γ ` [e/z]e′ : C Substitution of 2 into 3

Now from the semantics, we know that [[Θ; Γ ` e : A+B]]e θ γ is either equal to some
ιi(vA) or some ι2(vB).
Suppose it is equal ι1(vA). Then, [[Θ; Γ ` case(e, x. [inl x/z]e′, y. [inr y/z]e′) : C]]e θ γ
is equal to

=

[
λv. [[Θ; Γ, x : A ` [inl x/z]e′ : C]]e θ (γ, v),
λv. [[Θ; Γ, y : B ` [inr y/z]e′ : C]]e θ (γ, v)

]
(ι1(vA)) Semantics

= [[Θ; Γ, x : A ` [inl x/z]e′ : C]]e θ (γ, vA) Sums

=
[[Θ; Γ, x : A, z : A+B ` e′ : C]]e θ

(γ, vA, [[Θ; Γ, x : A ` inl x : A+B]]e θ (γ, vA))
Substitution

= [[Θ; Γ, x : A, z : A+B ` e′ : C]]e θ (γ, vA, ι1(vA)) Semantics
= [[Θ; Γ, z : A+B ` e′ : C]]e θ (γ, ι1(vA)) Since x 6∈ FV (e′)
= [[Θ; Γ, z : A+B ` e′ : C]]e θ (γ, [[Θ; Γ ` e : A+B]]e θ γ) Meaning of ι1(vA)
= [[Θ; Γ ` [e/z]e′ : C]]e θ γ Substitution

Suppose it is ι2(vB). Then, [[Θ; Γ ` case(e, x. [inl x/z]e′, y. [inr y/z]e′) : C]]e θ γ is

52 Type Structure
equal to

=

[
λv. [[Θ; Γ, x : A ` [inl x/z]e′ : C]]e θ (γ, v),
λv. [[Θ; Γ, y : B ` [inr y/z]e′ : C]]e θ (γ, v)

]
(ι2(vB)) Semantics

= [[Θ; Γ, y : B ` [inr y/z]e′ : C]]e θ (γ, vB) Sums

=
[[Θ; Γ, y : B, z : A+B ` e′ : C]]e θ

(γ, vB, [[Θ; Γ, y : B ` inr y : A+B]]e θ (γ, vB))
Substitution

= [[Θ; Γ, y : B, z : A+B ` e′ : C]]e θ (γ, vB, ι2(vB)) Semantics
= [[Θ; Γ, z : A+B ` e′ : C]]e θ (γ, ι2(vB)) Since x 6∈ FV (e′)
= [[Θ; Γ, z : A+B ` e′ : C]]e θ (γ, [[Θ; Γ ` e : A+B]]e θ γ) Meaning of ι2(vB)
= [[Θ; Γ ` [e/z]e′ : C]]e θ γ Substitution

• case EqMonad:

1 Θ; Γ ` [c] ≡ [c′] :©A Hypothesis
2 Θ; Γ ` c ≡ c′ ÷ A Inversion on 1
3 Θ; Γ ` c÷ A Mutual Induction on 2
4 Θ; Γ ` c′ ÷ A Induction on 2
5 Θ; Γ ` [c] :©A By rule EMonad on 3
6 Θ; Γ ` [c′] :©A By rule EMonad on 4

[[Θ; Γ ` [c] :©A]]e θ γ = [[Θ; Γ ` c÷ A]]c θ γ Semantics
= [[Θ; Γ ` c′ ÷ A]]c θ γ Mutual Induction
= [[Θ; Γ ` [c′] :©A]]e θ γ Semantics

• case EqFix

1 Θ; Γ ` fix x : D. e ≡ [(fix x : D. e)/x]e : D Hypothesis
2 Θ; Γ ` fix x : D. e : D Inversion on 1
3 Θ; Γ, x : D ` e : D Inversion on 2
4 Θ; Γ ` [(fix x : D. e)/x]e : D Substitution of 2 into 3

[[Θ; Γ ` fix x : D. e : D]]e θ γ

= fix(λv. ([[Θ; Γ, x : D ` e : D]]e θ (γ, v))) Semantics
= [[Θ; Γ, x : D ` e : D]]e θ (γ, fix(λv. ([[Θ; Γ, x : D ` e : D]]e θ (γ, v)))) Unroll fix
= [[Θ; Γ, x : D ` e : D]]e θ (γ, [[Θ; Γ ` fix x : D. e : D]]e θ γ) Definition
= [[Θ; Γ ` [(fix x : D. e)/x]e : D]]e θ γ Substitution

• case EqNatZBeta:

1 Θ; Γ ` iter(z, e0, x. e1) ≡ e0 : A Hypothesis
2 Θ; Γ ` iter(z, e0, x. e1) : A Inversion on 1
3 Θ; Γ ` z : N Inversion on 2
4 Θ; Γ, x : A ` e1 : A Inversion on 2
5 Θ; Γ ` e0 : A Inversion on 2

53 Type Structure
[[Θ; Γ ` iter(z, e0, x. e1) : A]]e θ γ =

=
iter[[[Θ; Γ ` e0 : A]]e θ γ, λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v)]
([[Θ; Γ ` z : N]]e θ γ)

Semantics

= iter[[[Θ; Γ ` e0 : A]]e θ γ, λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v)](z) Semantics
= [[Θ; Γ ` e0 : A]]e θ γ Iter properties

• EqNatSBeta

1 Θ; Γ ` iter(s(e), e0, x. e1) ≡ [iter(e, e0, x. e1)/x]e1 : A Hypothesis
2 Θ; Γ ` iter(s(e), e0, x. e1) : A Inversion on 1
3 Θ; Γ ` s(e) : N Inversion on 2
4 Θ; Γ ` e0 : A Inversion on 2
5 Θ; Γ, x : A ` e1 : A Inversion on 2
6 Θ; Γ ` e : N Inversion on 3
7 Θ; Γ ` iter(e, e0, x. e1) : A Rule EIter on 6, 4, 5

[[Θ; Γ ` iter(s(e), e0, x. e1) : A]]e θ γ =

=
iter[[[Θ; Γ ` e0 : A]]e θ γ, λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v)]

([[Θ; Γ ` s(e) : N]]e θ γ)
Semantics

=
iter[[[Θ; Γ ` e0 : A]]e θ γ, λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v)]

(s([[Θ; Γ ` e : N]]e θ γ))
Semantics

=
[[Θ; Γ, x : A ` e1 : A]]e θ(
γ,

iter[[[Θ; Γ ` e0 : A]]e θ γ, λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v)]
([[Θ; Γ ` e : N]]e θ γ)

)
Iter

= [[Θ; Γ, x : A ` e1 : A]]e θ(γ, [[Θ; Γ ` iter(e, e0, x. e1) : A]]e θ γ) Semantics
= [[Θ; Γ ` [iter(e, e0, x. e1)/x]e1 : A]]e θ γ Substitution

• case EqNatEta:

1 Θ; Γ, n : N ` iter(n, e0, x. e1) ≡ e : A Hypothesis
2 Θ; Γ ` e : A Inversion on 1
3 Θ; Γ ` e0 : A Inversion on 1
4 Θ; Γ, n : N ` e0 : A Weakening on 3
5 Θ; Γ, x : A ` e1 : A Inversion on 1
6 Θ; Γ, n : N, x : A ` e1 : A Weakening on 5
7 Θ; Γ, n : N ` n : N Rule Hyp
8 Θ; Γ, n : N ` iter(n, e0, x. e1) : A Rule EIter on 7, 4, 6

Now, assume we have some suitable environment (γ, v). So v is a natural number, and we
shall proceed by induction on it.

case v = 0.

54 Type Structure
[[Θ; Γ, n : N ` e : A]]e θ (γ, 0) =

= [[Θ; Γ, n : N ` e : A]]e θ (γ, [[Θ; Γ ` z : N]]e θ γ) Semantics
= [[Θ; Γ ` [z/n]e : A]]e θ γ Substitution
= [[Θ; Γ ` e : A]]e θ γ Induction Hypothesis
= [[Θ; Γ, n : N ` e : A]]e θ (γ, 0) Weakening

case v = s(k) By induction, we know
[[Θ; Γ, n : N ` e : A]]e θ (γ, k) = [[Θ; Γ, n : N ` iter(n, e0, x. e1) : A]]e θ (γ, k)

[[Θ; Γ, n : N ` iter(n, e0, x. e1) : A]]e θ (γ, s(k)) =

= iter

[
[[Θ; Γ, n : N ` e0 : A]]e θ (γ, s(k)),
λv. [[Θ; Γ, n : N, x : A ` e1 : A]]e θ (γ, s(k), v)

]
(s(k)) Semantics

= iter

[
[[Θ; Γ ` e0 : A]]e θ (γ),
λv. [[Θ; Γ, x : A ` e1 : A]]e θ (γ, v)

]
(s(k)) since x 6∈ FV (e0), FV (e1)

= iter

[
[[Θ; Γ,m : N ` e0 : A]]e θ (γ, k),
λv. [[Θ; Γ,m : N, x : A ` e1 : A]]e θ (γ, k, v)

]
(s(k)) By weakening

= [[Θ; Γ, n : N, x : A ` e1 : A]]e θ (γ, iter[. . .](k)) By iter

=
[[Θ; Γ, n : N, x : A ` e1 : A]]e θ

(γ, k, [[Θ; Γ, n : N ` iter(n, e0, x. e1) : A]]e θ (γ, k))
Semantics

=
[[Θ; Γ, n : N, x : A ` e1 : A]]e θ

(γ, k, [[Θ; Γ, n : N ` e : A]]e θ (γ, k))
Inner Induction

= [[Θ; Γ, n : N ` [e/x]e1 : A]]e θ (γ, k) Substitution

[[Θ; Γ, n : N ` e : A]]e θ (γ, s(k)) =

= [[Θ; Γ,m : N, n : N ` e : A]]e θ (γ, k, s(k)) Weakening
= [[Θ; Γ,m : N, n : N ` e : A]]e θ (γ, k, [[Θ; Γ,m : N ` s(m) : N]]e θ (γ, k)) Semantics
= [[Θ; Γ,m : N ` [s(m)/n]e : A]]e θ (γ, k) Substitution

These two are equal by appeal to the outer induction hypothesis, which we get via inversion
on the original judgement.

• case EqAllBeta:

1 Θ; Γ ` (Λα : κ. e) τ ≡ [τ/α]e : [τ/α]A Hypothesis
2 Θ; Γ ` Λα : κ. e : ∀α : κ. A Inversion on 1
3 Θ ` τ : κ Inversion on 1
4 Θ, α : κ; Γ ` e : A Inversion on 2
5 Θ; Γ ` [τ/α]e : [τ/α]A Substitute 3 into 4
6 Θ; Γ ` (Λα : κ. e) τ : [τ/α]A Rule ETApp on 2, 3

55 Type Structure
[[Θ; Γ ` (Λα : κ. e) τ : [τ/α]A]]e θ γ =

= [[Θ; Γ ` Λα : κ. e : ∀α : κ. A]]e θ γ τ(θ) Semantics
= (λσ. [[Θ, α : κ; Γ ` e : A]]e (θ, σ) γ)τ(θ) Semantics
= [[Θ, α : κ; Γ ` e : A]]e (θ, τ(θ)) γ
= [[Θ; Γ ` [τ/α]e : [τ/α]A]]e θ γ Type Substitution

• case EqAllEta:

1 Θ; Γ ` e ≡ e′ : ∀α : κ. A Hypothesis
2 Θ; Γ ` e : ∀α : κ. A Inversion on 1
3 Θ; Γ ` e′ : ∀α : κ. A Inversion on 1

[[Θ, α : κ; Γ ` e α : A]]e (θ, σ) γ = [[Θ, α : κ; Γ ` e′ α : A]]e (θ, σ) γ Induction

[[Θ, α : κ; Γ ` e α : A]]e (θ, σ) γ = ([[Θ, α : κ; Γ ` e : ∀α : κ. A]]e (θ, σ) γ) σ Semantics
= ([[Θ; Γ ` e : ∀α : κ. A]]e θ γ) σ Strengthening

[[Θ, α : κ; Γ ` e′ α : A]]e (θ, σ) γ = ([[Θ, α : κ; Γ ` e′ : ∀α : κ. A]]e (θ, σ) γ) σ Semantics
= ([[Θ; Γ ` e′ : ∀α : κ. A]]e θ γ) σ Strengthening

([[Θ; Γ ` e : ∀α : κ. A]]e θ γ) σ = ([[Θ; Γ ` e′ : ∀α : κ. A]]e θ γ) σ Transitivity

[[Θ; Γ ` e : ∀α : κ. A]]e θ γ = [[Θ; Γ ` e′ : ∀α : κ. A]]e θ γ Extensionality

• case EqExistsBeta:

1 Θ; Γ ` unpack(α, x) = pack(τ, e) in e′ ≡ [τ/α, e/x]e′ : C Hypothesis
2 Θ; Γ ` pack(τ, e) : ∃α : κ. A Inversion on 1
3 Θ, α : κ; Γ, x : A ` e′ : C Inversion on 1
4 Θ ` τ : κ Inversion on 2
5 Θ; Γ ` e : [τ/α]A Inversion on 2
6 Θ; Γ ` [τ/α, e/x]e′ : C Substitution of 4,5 into 3
7 Θ; Γ ` unpack(α, x) = pack(τ, e) in e′ : C By rule EUnpack on 2, 3

[[Θ; Γ ` unpack(α, x) = pack(τ, e) in e′ : C]]e θ γ =

=
(λ(σ, v). [[Θ, α : κ; Γ, x : A ` e′ : C]]e (θ, σ) (γ, v))

[[Θ; Γ ` pack(τ, e) : ∃α : κ. A]]e θ γ
Semantics

=
(λ(σ, v). [[Θ, α : κ; Γ, x : A ` e′ : C]]e (θ, σ) (γ, v))

(τ(θ), [[Θ; Γ ` e : [τ/α]A]]e θ γ)
Semantics

=
[[Θ, α : κ; Γ, x : A ` e′ : C]]e

(θ, τ(θ)) (γ, [[Θ; Γ ` e : [τ/α]A]]e θ γ)
Simplify

= [[Θ; Γ, x : A ` [τ/α, e/x]e′ : C]]eθ γ Substitution

56 Type Structure

• case EqExistsEta:

1 Θ; Γ ` unpack(α, x) = e in [pack(α, x)/z]e′ ≡ [e/z]e′ : B Hypothesis
2 Θ; Γ ` e : ∃α : κ. A Inversion on 1
3 Θ; Γ, z : ∃α : κ. A ` e′ : B Inversion on 1
4 Θ; Γ ` [e/z]e′ : B Substitution of 2 into 3
5 Θ, α : κ; Γ, x : A, z : ∃α : κ. A ` e′ : B Weakening on 3
6 Θ, α : κ; Γ, x : A ` pack(α, x) : ∃α : κ. A Rule EPack
7 Θ, α : κ; Γ, x : A ` [pack(α, x)/z]e′ : B Substitution of 6 into 5
8 Θ; Γ ` unpack(α, x) = e in [pack(α, x)/z]e′ : B Rule EUnpack on 2, 7

[[Θ; Γ ` unpack(α, x) = e in [pack(α, x)/z]e′ : B]]e θ γ =

=
(λ(σ, v). [[Θ, α : κ; Γ, x : A ` [pack(α, x)/z]e′ : B]]e (θ, σ) (γ, v))
[[Θ; Γ ` e : ∃α : κ. A]]e θ γ

Semantics

=

(λ(σ, v). [[Θ, α : κ; Γ, x : A, z : ∃α : κ. A ` e′ : B]]e

(θ, σ)
(γ, v, [[Θ, α : κ; Γ, x : A ` pack(α, x) : ∃α : κ. A]]e (θ, σ) (γ, v))

[[Θ; Γ ` e : ∃α : κ. A]]e θ γ

Substitution

=
(λ(σ, v). [[Θ, α : κ; Γ, x : A, z : ∃α : κ. A ` e′ : B]]e (θ, σ) (γ, v, (σ, v)))
[[Θ; Γ ` e : ∃α : κ. A]]e θ γ

Semantics

=
(λ(σ, v). [[Θ; Γ, z : ∃α : κ. A ` e′ : B]]e θ (γ, (σ, v)))
[[Θ; Γ ` e : ∃α : κ. A]]e θ γ

Strengthening

= [[Θ; Γ, z : ∃α : κ. A ` e′ : B]]e θ (γ, [[Θ; Γ ` e : ∃α : κ. A]]e θ γ) Semantics
= [[Θ; Γ ` [e/z]e′ : B]]e θ γ Semantics

• case EqCommandEta:

1 Θ; Γ ` c ≡ letv x = [c] in x÷ A Hypothesis
2 Θ; Γ ` c÷ A Inversion on 1
3 Θ; Γ ` [c] :©A Rule EMonad on 2
4 Θ; Γ, x : A ` x : A Rule EHyp
5 Θ; Γ, x : A ` x÷ A Rule CReturn on 4
6 Θ; Γ ` letv x = [c] in x÷ A By Rule CLet on 3,5

[[Θ; Γ ` letv x = [c] in x÷ A]]c θ γ =

=
(λv. [[Θ; Γ, x : A ` x÷ A]]c θ (γ, v))∗

[[Θ; Γ ` [c] :©A]]e θ γ
Semantics

=
(λv. η([[Θ; Γ, x : A ` x : A]]e θ (γ, v)))∗

[[Θ; Γ ` c÷ A]]c θ γ
Semantics

= (λv. (η(v)))∗ ([[Θ; Γ ` c÷ A]]c θ γ) Simplify
= id([[Θ; Γ ` c÷ A]]c θ γ) Monad law
= [[Θ; Γ ` c÷ A]]c θ γ Simplify

57 Type Structure
• EqCommandBeta:

1 Θ; Γ ` letv x = [e] in c ≡ [e/x]c÷B Hypothesis
2 Θ; Γ ` letv x = [e] in c÷B Inversion on 1
3 Θ; Γ ` [e] :©A Inversion on 2
4 Θ; Γ, x : A ` c÷B Inversion on 2
5 Θ; Γ ` e÷ A Inversion on 3
6 Θ; Γ ` e : A Inversion on 5
7 Θ; Γ ` [e/x]c÷B Substitution of 6 into 4

[[Θ; Γ ` letv x = [e] in c÷B]]c θ γ =

=
(λv. [[Θ; Γ, x : A ` c÷B]]c θ (γ, v))∗

([[Θ; Γ ` [e] :©A]]e θ γ)
Semantics

=
(λv. [[Θ; Γ, x : A ` c÷B]]c θ (γ, v))∗

([[Θ; Γ ` e÷ A]]c θ γ)
Semantics

=
(λv. [[Θ; Γ, x : A ` c÷B]]c θ (γ, v))∗

η([[Θ; Γ ` e : A]]e θ γ)
Semantics

=
(λv. [[Θ; Γ, x : A ` c÷B]]c θ (γ, v))

([[Θ; Γ ` e : A]]e θ γ)
Monad laws

= [[Θ; Γ, x : A ` c÷B]]c θ (γ, [[Θ; Γ ` e : A]]e θ γ) Simplify
= [[Θ; Γ ` [e/x]c÷B]]c θ γ Substitution

• EqCommandAssoc:

1 Θ; Γ ` letv x = [letv y = e in c1] in c2 ≡ letv y = e in letv x = [c1] in c2 ÷ C Hypothesis
2 Θ; Γ ` letv x = [letv y = e in c1] in c2 ÷ C Inversion on 1
3 Θ; Γ ` [letv y = e in c1] :©B Inversion on 2
4 Θ; Γ, x : B ` c2 ÷ C Inversion on 2
5 Θ; Γ ` letv y = e in c1 ÷B Inversion on 3
6 Θ; Γ ` e :©A Inversion on 5
7 Θ; Γ, y : A ` c1 ÷B Inversion on 5
8 Θ; Γ, y : A, x : B ` c2 ÷ C Weakening on 4
9 Θ; Γ, y : A ` [c1] :©B Rule EMonad on 7
10 Θ; Γ, y : A ` letv x = [c1] in c2 ÷ C Rule CLet on 9, 8
11 Θ; Γ ` letv y = e in letv x = [c1] in c2 ÷ C Rule CLet on 6, 10

58 Type Structure
[[Θ; Γ ` letv x = [letv y = e in c1] in c2 ÷ C]]c θ γ =

=
(λv2. [[Θ; Γ, x : B ` c2 ÷ C]]c θ (γ, v2))∗

[[Θ; Γ ` [letv y = e in c1] :©B]]e θ γ
Semantics

=
(λv2. [[Θ; Γ, x : B ` c2 ÷ C]]c θ (γ, v2))∗

[[Θ; Γ ` letv y = e in c1 ÷©B]]c θ γ
Semantics

=
(λv2. [[Θ; Γ, x : B ` c2 ÷ C]]c θ (γ, v2))∗

((λv1. [[Θ; Γ, y : A ` c1 ÷B]]c θ (γ, v1))∗

[[Θ; Γ ` e :©A]]e θ γ)
Semantics

=
(λv1. (λv2. [[Θ; Γ, x : B ` c2 ÷ C]]c θ (γ, v2))∗

([[Θ; Γ, y : A ` c1 ÷B]]c θ (γ, v1)))∗

[[Θ; Γ ` e :©A]]e θ γ)
Monad Laws

=
(λv1. (λv2. [[Θ; Γ, y : A, x : B ` c2 ÷ C]]c θ (γ, v1, v2))∗

([[Θ; Γ, y : A ` c1 ÷B]]c θ (γ, v1)))∗

[[Θ; Γ ` e :©A]]e θ γ)
Weakening

=
(λv1. (λv2. [[Θ; Γ, y : A, x : B ` c2 ÷ C]]c θ (γ, v1, v2))∗

([[Θ; Γ, y : A ` [c1] :©B]]e θ (γ, v1)))∗

[[Θ; Γ ` e :©A]]e θ γ)
Semantics

=
(λv1. [[Θ; Γ, y : A ` letv x = [c1] in c2 ÷ C]]c θ (γ, v1))∗

[[Θ; Γ ` e :©A]]e θ γ
Semantics

= [[Θ; Γ ` letv y = e in letv x = c1 in c2 ÷ C]]c θ γ Semantics

• EqRefl

1 Θ; Γ ` e ≡ e : A Hypothesis
2 Θ; Γ ` e : A Inversion on 1

[[Θ; Γ ` e : A]]e θ γ = [[Θ; Γ ` e : A]]e θ γ Reflexivity

• EqSymm

1 Θ; Γ ` e ≡ e′ : A Hypothesis
2 Θ; Γ ` e′ ≡ e : A Inversion on 1
3 Θ; Γ ` e : A Induction on 2
4 Θ; Γ ` e′ : A Induction on 2

[[Θ; Γ ` e′ : A]]e θ γ = [[Θ; Γ ` e : A]]e θ γ Induction on 2, above
[[Θ; Γ ` e : A]]e θ γ = [[Θ; Γ ` e′ : A]]e θ γ Symmetry on prev step

59 Type Structure
• case EqTrans

1 Θ; Γ ` e ≡ e′′ : A Hypothesis
2 Θ; Γ ` e : e′A Inversion on 1
3 Θ; Γ ` e′ : e′′A Inversion on 1
4 Θ; Γ ` e : A Induction on 2
5 Θ; Γ ` e′′ : A Induction on 3

[[Θ; Γ ` e : A]]e θ γ = [[Θ; Γ ` e′ : A]]e θ γ Induction
[[Θ; Γ ` e′ : A]]e θ γ = [[Θ; Γ ` e′′ : A]]e θ γ Induction
[[Θ; Γ ` e : A]]e θ γ = [[Θ; Γ ` e′′ : A]]e θ γ Transitivity

• case EqSubst:

1 Θ; Γ ` [e2/x]e1 ≡ [e′2/x]e′1 : B Hypothesis
2 Θ; Γ, x : A ` e1 ≡ e′1 : B Inversion on 1
3 Θ; Γ ` e2 ≡ e′2 : A Inversion on 1
4 Θ; Γ, x : A ` e1 : B Induction on 2
5 Θ; Γ, x : A ` e′1 : B Induction on 2
6 Θ; Γ ` e2 : A Induction on 3
7 Θ; Γ ` e′2 : A Induction on 3
8 Θ; Γ ` [e2/x]e1 : B Substitution of 6 into 4
9 Θ; Γ ` [e′2/x]e′1 : B Substitution of 7 into 5

[[Θ; Γ ` [e2/x]e1 : B]]e θ γ =

= [[Θ; Γ, x : A ` e1 : B]]e θ (γ, [[Θ; Γ ` e2 : A]]e θ γ) Substitution
= [[Θ; Γ, x : A ` e1 : B]]e θ (γ, [[Θ; Γ ` e′2 : A]]e θ γ) Induction
= [[Θ; Γ, x : A ` e′1 : B]]e θ (γ, [[Θ; Γ ` e′2 : A]]e θ γ) Induction
= [[Θ; Γ ` [e′2/x]e′1 : B]]e θ γ Substitution

• EqCommandRefl
1 Θ; Γ ` c ≡ c÷ A Hypothesis
2 Θ; Γ ` c÷ A Inversion on 1

[[Θ; Γ ` c÷ A]]c θ γ = [[Θ; Γ ` c÷ A]]c θ γ Reflexivity

• EqCommandSymm

1 Θ; Γ ` c ≡ c′ ÷ A Hypothesis
2 Θ; Γ ` c′ ≡ c÷ A Inversion on 1
3 Θ; Γ ` c÷ A Induction on 2
4 Θ; Γ ` c′ ÷ A Induction on 2

60 Type Structure

[[Θ; Γ ` c′ ÷ A]]c θ γ = [[Θ; Γ ` c÷ A]]c θ γ Induction on 2, above
[[Θ; Γ ` c÷ A]]c θ γ = [[Θ; Γ ` c′ ÷ A]]c θ γ Symmetry on prev step

• case EqCommandTrans

1 Θ; Γ ` c ≡ c′′ ÷ A Hypothesis
2 Θ; Γ ` c÷ c′A Inversion on 1
3 Θ; Γ ` c′ ÷ c′′A Inversion on 1
4 Θ; Γ ` c÷ A Induction on 2
5 Θ; Γ ` c′′ ÷ A Induction on 3

[[Θ; Γ ` c÷ A]]c θ γ = [[Θ; Γ ` c′ ÷ A]]c θ γ Induction
[[Θ; Γ ` c′ ÷ A]]c θ γ = [[Θ; Γ ` c′′ ÷ A]]c θ γ Induction
[[Θ; Γ ` c÷ A]]c θ γ = [[Θ; Γ ` c′′ ÷ A]]c θ γ Transitivity

• case EqCommandSubst:

1 Θ; Γ ` [e2/x]c1 ≡ [e′2/x]c′1 ÷B Hypothesis
2 Θ; Γ, x : A ` c1 ≡ c′1 ÷B Inversion on 1
3 Θ; Γ ` e2 ≡ e′2 : A Inversion on 1
4 Θ; Γ, x : A ` c1 ÷B Induction on 2
5 Θ; Γ, x : A ` c′1 ÷B Induction on 2
6 Θ; Γ ` e2 : A Induction on 3
7 Θ; Γ ` e′2 : A Induction on 3
8 Θ; Γ ` [e2/x]c1 ÷B Substitution of 6 into 4
9 Θ; Γ ` [e′2/x]c′1 ÷B Substitution of 7 into 5

[[Θ; Γ ` [e2/x]c1 ÷B]]c θ γ =

= [[Θ; Γ, x : A ` c1 ÷B]]c θ (γ, [[Θ; Γ ` e2 : A]]e θ γ) Substitution
= [[Θ; Γ, x : A ` c1 ÷B]]c θ (γ, [[Θ; Γ ` e′2 : A]]e θ γ) Induction
= [[Θ; Γ, x : A ` c′1 ÷B]]c θ (γ, [[Θ; Γ ` e′2 : A]]e θ γ) Induction
= [[Θ; Γ ` [e′2/x]c′1 ÷B]]c θ γ Substitution

�

Chapter 3

The Semantics of Separation Logic

In this chapter, I will describe the semantics of our separation logic. Rather than working directly
with the heap model of separation logic, we will approach the semantics in a somewhat more
modular style.

First, we will define what we mean by “semantics of separation logic” in terms of BI algebras,
which give an algebraic semantics of separation logic in the same way that the Heyting algebras
give semantics to intuitionistic logics. Then, we will look at how we can construct a BI-algebra
from sets of elements of an arbitrary partial commutative monoid, proving that we can satisfy
each of the axioms of a BI algebra.

Then, we will show that our predomain of heaps actually forms a partial commutative
monoid, which means that we can now apply the theorems and definitions of the previous sec-
tions to immediately get the heap model we want.

With a semantic definition of assertions in hand, we will then move on to the semantics of
specifications. We will again play the algebraic game, and give a Kripke semantics for specifica-
tions. We will also give a semantic interpretation of Hoare triples which validates the frame rule
and fixed point induction.

After defining the semantics of assertions and specifications, I will give their syntax.

3.1 BI Algebras

A BI algebra is a Heyting algebra with additional residuated monoidal structure to model the
separating conjunction and wand. This means that a BI algebra is a partial order (B,≤) with
operations (>,∧,⊃,⊥,∨, I, ∗,−∗) satisfying:

1. ∀p ∈ B. p ≤ >
2. ∀p ∈ B. ⊥ ≤ p

3. ∀p, q, r ∈ B. if r ≤ p and r ≤ q, then r ≤ p ∧ q and p ∧ q ≤ p and p ∧ q ≤ q

4. ∀p, q, r ∈ B. if p ≤ r and q ≤ r, then p ∨ q ≤ r and p ≤ p ∨ q and q ≤ p ∨ q.
5. ∀p, q, r. p ∧ q ≤ r ⇐⇒ p ≤ q ⊃ r

6. ∀p. p ∗ I = p

62 The Semantics of Separation Logic
7. ∀p, q. p ∗ q = q ∗ p
8. ∀p, q, r. (p ∗ q) ∗ r = p ∗ (q ∗ r)
9. ∀p, q, r. p ∗ q ≤ r ⇐⇒ p ≤ q −∗ r
The first five conditions are just the usual conditions for a Heyting algebra (that it have great-

est and least elements, greatest lower bounds and least upper bounds, and that it have an im-
plication). The next three are the monoid structure axioms, that say I is the unit, and that ∗ is
commutative and associative. The last axiom asserts the existence of a wand that is adjoint to the
separating conjunction the same way that the implication is adjoint to the ordinary conjunction.

In addition, we will also ask that this algebra be complete, which means that meets and joins
of arbitrary sets of elements be well-defined.

10. ∀r ∈ B,P ⊆ B. if (∀p ∈ P. r ≤ p), then r ≤
∧
P and ∀p ∈ P.

∧
P ≤ p

11. ∀r ∈ B,P ⊆ B. if (∀p ∈ P. p ≤ r), then
∨
P ≤ r and ∀p ∈ P. p ≤

∨
P

We will eventually use completeness in order to interpret quantifiers as possibly-infinitary
conjunctions or disjunctions.

3.1.1 Partial Commutative Monoids
A partial commutative monoid is a triple (M, e, ·), where e ∈ M , and (·) is a partial operation
from M ×M to M . We will write m#m′ to mean that m ·m′ is defined.

Furthermore, the following properties must hold:
• e is a unit, so that e#m and e ·m = m.
• (·) is commutative. If m1#m2, then m2#m1 and m1 ·m2 = m2 ·m1.
• (·) is associative.

Ifm1#m2 and (m1 ·m2)#m3, thenm2#m3 andm1#(m2 ·m3) and (m1 ·m2) ·m3 =
m1 · (m2 ·m3).

Ifm2#m3 andm1#(m2 ·m3), thenm1#m2 and (m1 ·m2)#m3 and (m1 ·m2) ·m3 =
m1 · (m2 ·m3).

3.1.2 BI-Algebras over Partial Commutative Monoids
Given a partial commutative monoid, we can show that the powerset P(M) forms a BI-algebra.
Lemma 12. (Powersets of Partial Commutative Monoids) Given a partial commutative monoid
(M, e, ·), its powerset (P(M),⊆) forms a BI-algebra with the following operations:
• > = M
• p ∧ q = p ∩ q
• p ⊃ q = {m ∈M | if m ∈ p then m ∈ q}
• ⊥ = ∅
• p ∨ q = p ∪ q
• I = {e}
• p ∗ q = {m ∈M | ∃m1,m2. m1#m2 and m1 ∈ p and m2 ∈ q and m1 ·m2 = m}

63 The Semantics of Separation Logic
• p−∗ q = {m ∈M | ∀m′ ∈ p. if m#m′ then m ·m′ ∈ q}
•
∧
P =

⋂
P

•
∨
P =

⋃
P

Proof.
1. We want to show ∀p ∈ P(M). p ≤ >

Assume p ∈ P(M)
1 By definition of powerset, we have p ⊆M
2 By definition of >, we have p ⊆ >
3 By definition of ≤, we have p ≤ >

2. We want to show ∀p ∈ B. ⊥ ≤ p

Assume p ∈ P(M)
1 By definition of ∅, we have ∅ ⊆ p
2 By definition of ⊥, ≤, we have ⊥ ≤ p

3. We want to show ∀p, q, r ∈ P(M). if r ≤ p and r ≤ q, then r ≤ p ∧ q and p ∧ q ≤ p and
p ∧ q ≤ q

Assume p, q, r ∈ P(M)
Assume r ≤ p, r ≤ q

1 Expanding definition of ≤, we have r ⊆ p and r ⊆ q
2 By properties of ∩, we have r ∩ r ⊆ p ∩ q
3 Hence r ⊆ p ∩ q
4 By definition of ≤ and ∧, we have r ≤ p ∧ q

5 By properties of ∩, we have p ∩ q ⊆ p
6 By definition of ≤ and ∧, we have p ∧ q ≤ p

7 By properties of ∩, we have p ∩ q ⊆ q
8 By definition of ≤ and ∧, we have p ∧ q ≤ q

4. We want to show ∀p, q, r ∈ P(M). if p ≤ r and q ≤ r, then p ∨ q ≤ r and p ≤ p ∨ q and
q ≤ p ∨ q.

Assume p, q, r ∈ P(M), p ≤ r, q ≤

1 By definition of ≤, we have p ⊆ r, q ⊆ r
2 By set properties, we have p ∪ q ⊆ r
3 By definition of ≤, we have p ∨ q ≤ r

64 The Semantics of Separation Logic
4 By set properties we have p ⊆ p ∪ q
5 By definitions of ≤ and ∨, we have p ≤ p ∨ q

6 By set properties, we have q ⊆ p ∪ q
7 By definitions of ≤ and ∨, we have q ≤ p ∨ q

5. We want to show ∀p, q, r ∈ P(M). p ∧ q ≤ r ⇐⇒ p ≤ q ⊃ r

Assume p, q, r ∈ P(M)

⇒ direction:
1 Assume p ∧ q ≤ r
2 By definitions of ≤ and ∧, we have p ∩ q ⊆ r
3 We want to show p ≤ q ⊃ r
4 So we want to show p ⊆ (q ⊃ r)
5 So we want to show ∀m, if m ∈ p then m ∈ (q ⊃ r)
6 Assume m and m ∈ p
7 Want to show m ∈ q ⊃ r
8 Equivalent to showing if m ∈ q, then m ∈ r
9 Assume m ∈ q
10 Since m ∈ p and m ∈ q, we know m ∈ p ∩ q.
11 Since p ∩ q ⊆ r, we know m ∈ r
12 Therefore p ⊆ q ⊃ r
13 By definition of ≤, we see p ≤ q ⊃ r

⇐ direction:
14 Assume p ≤ q ⊃ r
15 By definition of ≤, we know p ⊆ q ⊃ r
16 We want to show p ∧ q ≤ r
17 So we want to show p ∩ q ⊆ r
18 So we want to show ∀m, if m ∈ p ∩ q then m ∈ r
19 Assume m ∈ p ∩ q
20 Hence m ∈ p and m ∈ q
21 Since p ⊆ q ⊃ r, we know for all m, if m ∈ p, then if m ∈ q, then m ∈ r
22 Hence m ∈ r
23 Hence p ∩ q ⊆ r
24 By definition of ≤ and ∧, we conclude p ∧ q ≤ r

6. We want to show ∀p ∈ P(M). p ∗ I = p

1 Assume p ∈ P(M)
2 We want to show p ∗ I = p
3 This is equivalent to showing for all m ∈M , that m ∈ p ∗ I if and only if m ∈ p

65 The Semantics of Separation Logic
4 Assume m ∈M
5 ⇒ direction:
6 Assume m ∈ p ∗ I
7 Therefore ∃m1,m2 ∈M such that

m1#m2 and m1 ∈ p and m2 ∈ I and m = m1 ·m2

8 Let m1,m2 be witnesses, so that
9 m1#m2 and m1 ∈ p and m2 ∈ I and m = m1 ·m2

10 Since I = {e}, we know m2 = e
11 By unit property, m = m1 · e = m1

12 Since m1 ∈ p, we know m ∈ p
13 ⇐ direction:
14 Assume m ∈ p
15 We want to show m ∈ p ∗ I
16 So we want to show there are m1,m2

such that m1#m2 and m1 ∈ p and m2 ∈ I and m = m1 ·m2

17 Choose m1 to be m, and m2 to be e
18 So we want to show m#e and m ∈ p and e ∈ I and m = m · e
19 By properties of unit, m#e and m = m · e
20 By definition of I , we know e ∈ I
21 We know m ∈ p by hypothesis
22 Therefore goal in line 16 met.

7. We want to show ∀p, q ∈ P(M). p ∗ q = q ∗ r
Assume p, q ∈ P(M)

p ∗ q = {m ∈M | ∃m1 ∈ p,m2 ∈ q. m1#m2 ∧m1 ·m2 = m} Definition
= {m ∈M | ∃m2 ∈ q,m1 ∈ p. m1#m2 ∧m1 ·m2 = m} Logical manipulation
= {m ∈M | ∃m2 ∈ q,m1 ∈ p. m2#m1 ∧m2 ·m1 = m} Commutativity
= q ∗ p Definition

8. We want to show ∀p, q, r ∈ P(M). (p ∗ q) ∗ r = p ∗ (q ∗ r)

1 Assume p, q, r ∈ P(M)
2 We want to show (p ∗ q) ∗ r = p ∗ (q ∗ r)
3 This is equivalent to showing for all m ∈M , that

m ∈ (p ∗ q) ∗ r if and only if m ∈ p ∗ (q ∗ r)
4 Assume m ∈M
5 ⇒ direction:
6 Assume m ∈ (p ∗ q) ∗ r
7 Therefore there are mpq,mr such that

mpq#mr and m = mpq ·mr and mpq ∈ p ∗ q and mr ∈ r
8 From mpq ∈ p ∗ q, we know there are mp, mq such that

mp#mq and mpq = mp ·mq and mp ∈ p and mq in r

66 The Semantics of Separation Logic
9 By mpq = mp ·mq, we know m = (mp ·mq) ·mr and (mp ·mq)#mr

10 Since mp#mq and (mp ·mq)#mr, by associativity we know
mq#mr and mp#(mq ·mr) and m = (mp ·mq) ·mr = mp · (mq ·mr)

11 Since mq#mr and mq ·mr = mq ·mr and mq ∈ q and mr ∈ r,
we know mq ·mr ∈ q ∗ r

12 Since mp#(mq ·mr) and mp · (mq ·mr) = mp · (mq ·mr)
and mp ∈ p and mq ·mr ∈ q ∗ r, we know mp · (mq ·mr) ∈ p ∗ (q ∗ r)

13 Therefore m ∈ p ∗ (q ∗ r)
14 ⇐ direction:
15 Assume we have mp,mqr such that

mp#mqr and m = mp ·mqr and mp ∈ p and mqr ∈ q ∗ r
16 Therefore we have mq,mr such that

mq#mr and mqr = mq ·mr and mq ∈ q and mr ∈ r
17 From mqr = mq ·mr we have

m = mp · (mq ·mr) and mp#(mq ·mr)
18 By associativity with mq#mr and mp#(mq ·mr), we have

mp#mq and (mp ·mq)#mr and m = mp · (mq ·mr) = (mp ·mq) ·mr

19 Since mp#mq and mp ∈ p and mq ∈ q, we know
(mp ·mq) ∈ p ∗ q

20 Since (mp ·mq)#mr and (mp ·mq)inp ∗ q and mr ∈ r, we have
(mp ·mq) ·mr ∈ (p ∗ q) ∗ r

21 Therefore m ∈ (p ∗ q) ∗ r

9. We want to show that for all p, q, r ∈ P(M), p ∗ q ≤ r if and only if p ≤ q −∗ r.

Assume p, q, r ∈ P(M).
1 First, we will give the⇒ direction.
2 Assume p ∗ q ≤ r
3 So we know {m | ∃m1,m2. m1#m2 and m1 ∈ p and m2 ∈ q and m1 ·m2 = m} ⊆ r
4 Thus, ∀m. (∃m1,m2. m1#m2 and m1 ∈ p and m2 ∈ q and m1 ·m2 = m) implies m ∈ r.
5 By turning existentials on the left into universals, and instantiating m,
6 ∀m1,m2. (m1#m2 and m1 ∈ p and m2 ∈ q) implies (m1 ·m2) ∈ r [HYP1]
7 Now, to show p ≤ q −∗ r, we must show for all m, if m ∈ p, that m ∈ q −∗ r.
8 Assume m, m ∈ p. [HYP2]
9 Now, we want to show m ∈ {m | ∀m′ ∈ q. m#m′ and m′ implies (m ·m′) ∈ r}
10 This is equivalent to showing ∀m′ ∈ q. m#m′ and m′ implies (m ·m′) ∈ r
11 Assume m′, m′ ∈ q, m#m′. [HYP3]
12 Instantiating [HYP1] with m and m′ and the hypotheses in [HYP2] and [HYP3],
13 we can conclude (m ·m′) ∈ r.

14 Now, we will show the⇐ direction.
15 Assume p ≤ q −∗ r.
16 So we know, p ⊆ {m | ∀m′ ∈ q.m#m′ and m′ ∈ q implies (m ·m′) ∈ r}

67 The Semantics of Separation Logic
17 Therefore ∀m.m ∈ p implies ∀m′ ∈ q. m#m′ and m′ ∈ q implies (m ·m′) ∈ r.
18 Therefore ∀m,m′. m ∈ p and m′ ∈ q and m#m′ implies (m ·m′) ∈ r
19 Therefore ∀mo,m,m

′. m ∈ p and m′ ∈ q and m#m′ and mo = m ·m′ implies mo ∈ r
20 Therefore ∀mo, (∃m,m′. m ∈ p and m′ ∈ q and m#m′ and mo = m ·m′) implies mo ∈ r
21 Therefore ∀mo,mo ∈ (p ∗ q) implies mo ∈ r
22 Therefore p ∗ q ⊆ r
23 Therefore p ∗ q ≤ r

10. We want to show ∀r, P ⊆ B, if (∀p ∈ P. r ≤ p), then r ≤
∧
P and ∀p ∈ P.

∧
P ≤ p.

1 Assume r, P , P ⊆ B, and (∀p ∈ P. r ≤ p)

2 First, we want to show r ≤
∧
P .

3 This is equivalent to showing r ⊆
⋂
P

4 This is equivalent to showing that for all m ∈ r, m ∈
⋂
P .

5 Assume m, m ∈ r.
6 Showing m ∈

⋂
P is equivalent to ∀p ∈ P.m ∈ p

7 Assume p ∈ P .
8 Instantiating hypothesis with p, r ⊆ p.
9 This means ∀m′.m′ ∈ r ⊃ m′ ∈ p.
10 Instantiating m′ with m, we learn m ∈ p.
11 Therefore, r ≤

∧
P .

12 Second, we want to show that ∀p ∈ P.
∧
P ≤ p.

13 Assume p, p ∈ P .
14 Now, we want to show

∧
P ≤ p.

15 This is equivalent to showing
⋂
P ⊆ p.

16 This is equivalent to showing ∀m. m ∈
⋂
P ⊃ m ∈ p

17 Assume m, m ∈
⋂
P .

18 Therefore, ∀p′ ∈ P. m ∈ p′.
19 Instantiating p′ with p, we get m ∈ p.

11. We want to show ∀r, P ⊆ B, if (∀p ∈ P. p ≤ r), then
∨
P ≤ r and ∀p ∈ P. p ≤

∨
P .

1 Assume r, P ⊆ B, and (∀p ∈ P. p ≤ r)

2 First, we want to show
∨
P ≤ r

3 This is equivalent to showing
⋃
P ⊆ r

4 This is equivalent to showing ∀m. m ∈
⋃
P ⊃ m ∈ r

5 Assume m, m ∈
⋃
P .

6 m ∈
⋃
P is equivalent to ∃p ∈ P. m ∈ p

7 Suppose p′ ∈ P is the witness, and that m ∈ p′
8 Instantiating the quantifier p in the hypothesis, we get p′ ≤ r

68 The Semantics of Separation Logic
9 This means ∀m′,m′ ∈ p′ ⊃ m′ ∈ r
10 Instantiating the quantifier m′ with m, we conclude m ∈ r.
11 Therefore, ∀m. m ∈

⋃
P ⊃ m ∈ r

12 Second, we want to show ∀p ∈ P. p ≤
∨
P .

13 Assume p, p ∈ P
14 We want to show p ≤

∨
P

15 This is equivalent to showing p ⊆
⋃
P

16 This is equivalent to showing ∀m. m ∈ p ⊃ m ∈
⋃
P

17 This is equivalent to showing ∀m. m ∈ p ⊃ ∃p′ ∈ P. m ∈ p′
18 Assume m, m ∈ p
19 Take p′ to be p, since p ∈ P .
20 Thus, m ∈ p by hypothesis
21 Therefore, p ≤

∨
P

�

3.1.3 Sets of Heaps Form the BI Algebra of Heap Assertions
Now, we will take our predomain H and form a partial commutative monoid from it, from which
we can build a complete BI algebra. This algebra will serve as the domain of interpretation of
heap assertions. To construct it, we will first apply the forgetful functor U to H , to forget the
partial order structure and leaving us with U(H), the ordinary set of heaps.

U(H) =
∑

L ∈ Pfin(Loc). (
∏

(n,A) ∈ L. [[· ` A :F]] 〈〉 (K,K))

However, in what follows we will suppress the U , in order to reduce clutter. Now, we can define
the operations on it as follows:
• The unit element e , (∅, ∅)
• The operation (L, f) · (L′, g) is defined when L ∩ L′ = ∅, and is equal to(

L ∪ L′, λx.
{
f(x) when x ∈ L
g(x) when x ∈ L′

)
The lambda-expression in the operation definition actually defines a function. Since we know

that since L and L′ are disjoint, this means that any element of x ∈ L ∪ L′ is exclusively either
in L or L′, which means that the definition is unambiguous. Since f and g are well-typed with
respect to the index sets L and L′ respectively, our new function must be as well.

Now, we can check the properties.
• First, we will check that e is a unit. Suppose we have m = (L, f) ∈ H .

(∅, ∅) · (L, f) =

(
∅ ∪ L, λx.

{
∅(x) when x ∈ ∅
f(x) when x ∈ L

)
Definition

=
(
L, λx. f(x) when x ∈ L

)
Simplification

= (L, f) Simplification

69 The Semantics of Separation Logic

• Second, we will check commutativity. Suppose we have (L, f) ∈ H and (L′, g) ∈ H .
First, it’s obviously the case that if L ∩ L′ = ∅, then L′ ∩ L = ∅.

(L, f) · (L′, g) =

(
L ∪ L′, λx.

{
f(x) when x ∈ L
g(x) when x ∈ L′

)
Definition

=

(
L′ ∪ L, λx.

{
f(x) when x ∈ L
g(x) when x ∈ L′

)
Commutativity of ∪

=

(
L′ ∪ L, λx.

{
g(x) when x ∈ L′
f(x) when x ∈ L

)
Reordering Cases

= (L′, g) · (L, f) Definition

• Now, we will check associativity. Suppose (L, f), (L′, g), and (L′′, h) are in H .
First, assume that L ∩ L′ = ∅ and that (L ∪ L′) ∩ L′′ = ∅. Then we know that L ∩ L′′ = ∅
and L′ ∩ L′′ = ∅, so we can conclude that L ∩ (L′ ∪ L′′) = ∅.
Second, assume that L′∩L′′ = ∅ and that L∩(L′∪L′′) = ∅. Then we know that L∩L′ = ∅
and L ∩ L′′ = ∅, so we can conclude that (L ∪ L′) ∩ L′′ = ∅.

(L, f) · ((L′, g) · (L′′, h)) = (L, f) ·
(
L′ ∪ L′′, λx.

{
g(x) when x ∈ L′
h(x) when x ∈ L′′

)
Definition

=

L ∪ (L′ ∪ L′′), λx.

f(x) when x ∈ L
g(x) when x ∈ L′
h(x) when x ∈ L′′

 Definition

=

(L ∪ L′) ∪ L′′, λx.

f(x) when x ∈ L
g(x) when x ∈ L′
h(x) when x ∈ L′′

 Associativity

=

(
L ∪ L′, λx.

{
f(x) when x ∈ L
g(x) when x ∈ L′

)
· (L′′, h) Definition

= ((L, f) · (L′, g)) · (L′′, h) Definition

Therefore, we can use the construction of the previous subsection to equip sets of heaps with the
structure of a complete BI algebra.

3.2 Challenges in Interpreting Specifications

In this section, we will give the semantics of specifications. There are two main technical chal-
lenges to overcome. First, we will need to handle the problem of supporting fixed point induc-
tion, and second, we will need to support the frame rule of separation logic. We will first describe
these two problems, and then give each problem’s solution.

70 The Semantics of Separation Logic
3.2.1 Admissibility and Fixed Point Induction
We are designing a partial correctness program logic, and so to prove the correctness of recursive
definitions, we would like an LCF-style fixed point induction rule. Suppose we wish to state a
property P of the fixed point of a functional f : ©A → ©A. (For example, P may be a Hoare
triple). Ideally, we want to give an inference rule for recursion taking the following form:

P (⊥) ∀x. P (x) ⊃ P (f(x))

P (fix (f))
FIXED POINT INDUCTION (ALMOST)

This rule asserts that we prove a property P by showing it holds of ⊥, and that applying f
preserved the truth of P . However, this rule is not sound for all P — it is only sound for
admissible P . That is, we need the additional condition that if P holds for every element of
a chain, it also holds for the limit of the chain. Not all predicates are admissible; consider for
example the f on the (pointed natural numbers):

f = λg. λx. if x = 0 then 0 else g(x− 1)
P (h) = ∃n : N. h(n) = ⊥

Here, P (fk(⊥)) holds for any k-approximation — fk(⊥) will loop on any input larger than k.
However, the fixed point will never loop on any natural number input.

Often, admissibility is checked by syntactic conditions which pick out a class of predicates
known to be admissible. We cannot take this approach, since we will use a higher-order assertion
logic. As a result, we do not know what the shape of a proposition is, since it may refer to
proposition variables.

To handle this problem, we will use a technique sometimes called continuation closure or
>>-closure, which will force our Hoare triples to be admissible (indeed, continuous) predicates.
This will let us make free use of arbitrary assertions in Hoare triples, with no restrictions on the
forms of pre- or post-conditions.

3.2.2 The Frame Rule
We also face a second sticky issue: our denotational semantics does not validate the frame prop-
erty. The interpretation of the newA(e) command allocates a new reference by finding the largest
numeric id of any reference in the heap’s domain, and then allocating a reference whose numeric
id is one greater than that.

This means that the behavior of the memory allocator is deterministic, which means that our
semantic domain can include awkward programs which crash if the heap is larger than a certain
size. Concretely, consider the following basic continuation:

kbad (L, h) = if |L| < 50 then ⊥ else >

This continuation is safe (i.e., returns ⊥) if the heap contains fewer than 50 elements, and
will crash (i.e., return>) otherwise. Obviously, the safety monotonicity property cannot hold for
such programs, because extending the heap enough can cause programs to switch from running

71 The Semantics of Separation Logic
safely to crashing. On the other hand, we do not actually want to prove the correctness of any
of these pathological programs: all the programs we actually want to write and prove correct are
actually well-behaved, and will not pay attention to state they have no ownership of.

To make use of this fact, we will adapt an idea of Birkedal and Yang [7]. They proposed
changing the interpretation of program specifications from a boolean semantics (in which each
specification is either true or false) into a Kripke interpretation.

The modal frame they proposed was one in which worlds are sets of assertions of separation
logic (i.e., elements of a BI algebra). Intuitively, we can think of each world as “the set of
assertions that can be safely framed onto this specification”. A specification is then true when all
assertions can be framed onto it, which is how we will end up justifying the frame rule. As we
did for assertions, we will proceed in a modular way. We will first define a “world preorder” on
elements of a BI algebra — the extension ordering — and then use this ordering to give the truth
values as upwards-closed sets of assertions.

3.3 Basic Hoare Triples
Since we have a continuation semantics, it is natural to define a continuation style interpretation
of basic Hoare triples, as well. Our initial attempt, however, will not succeed:

[P] C [a : A. Q(a)] , ∀h ∈ P. (C Q h = ⊥)

The idea is that we can view a postcondition Q(v) as a sort of continuation, which returns ⊥ if
h ∈ Q(v), and > otherwise. So we say that for every heap in P , C Q h must be bottom.

Thinking of > as a sort of crash, this definition says that C satisfies the precondition P and
post-condition Q when, if it is applied to a continuation which does not crash on any Q-heap,
yields a result which will not crash when given any P -heap.

While this idea is elegant, it does not quite work.
The problem is that Q is an assertion, an arbitrary set-theoretic function from A to sets of to

heaps, and C requires its continuation argument to be continuous, a property which not met by
arbitrary Q. This idea can be repaired if we define a “best continuous approximation” to each Q.

3.3.1 Approximating Postconditions

Given a predomain A, and a Q ∈ U(A)→ P(H), we define Approx(Q) as the set:

Approx(Q) , {k ∈ A→ H → O | ∀v ∈ A, h ∈ Q(v). k v h = ⊥}

These define a set of continuations which “continuously approximate” the postcondition Q –
they are the set of continuations which run forever when given a value and heap in Q. Using this
set we will define the function Best(Q), which will be the “best continuous approximation” to
Q.

Intuitively, think of this as being like a closure operator from topology, which finds the small-
est open set containing the given set. In our case, we want to find the

72 The Semantics of Separation Logic

Best(Q) , λv ∈ A. λh ∈ H.
{
> when ∃k ∈ Approx(Q). k v h = >
⊥ otherwise

Of course, we have to verify that Best(Q) is actually a continuous function.
• First, we need to check that Best(Q) is a monotone function.

1 Suppose we have v v v′ and h v h′.
2 We know Best(Q) v h ∈ O. Analyzing this by cases, we see
3 Suppose Best(Q) v h = ⊥
4 Since ∀o ∈ O. ⊥ v o, it follows that ⊥ v Best(Q) v′ h′

5 So Best(Q) v h v Best(Q) v′ h′

6 Suppose Best(Q) v h = >
7 By definition of Best(Q), ∃k ∈ Approx(Q). k v h = >
8 Let k ∈ Approx(Q) be the witness such that k v h = >
9 Since k is monotone, k v h v k v′ h′

10 So > v k v′ h′

11 Since > is maximal in O, k v′ h′ = >
12 So we can take k to be the witness such that ∃k. k v′ h′ = >
13 Therefore Best(Q) v′ h′ = >
14 Therefore Best(Q) v h v Best(Q) v′ h′

• Second, we need to show that Best(Q) preserves limits.

1 Suppose we have two chains vi and hi such that i ≤ j implies vi v vj and hi v hj .
2 We want to show that

⊔
iBest(Q) vi hi = Best(Q) (tvi) (thi)

3 By excluded middle, either some k in Approx(Q) such that k (tvi) (thi) = >, or not.
4 Suppose that ∃k ∈ Approx(Q). k (tvi) (thi) = >
5 Therefore Best(Q) (tvi) (thi) = >
6 By continuity of k,

⊔
i k vi hi = >

7 Since O is discrete, there is an n such that k vn hn = >
8 Therefore, for all j ≥ n, Best(Q) vn hn = >
9 This means

⊔
iBest(Q) vi hn = >

10 Therefore
⊔
iBest(Q) vi hn = Best(Q) (tvi) (thi)

11 Suppose that ¬(∃k ∈ Approx(Q). k (tvi) (thi) = >
12 This is equivalent to ∀k ∈ Approx(Q). k (tvi) (thi) = ⊥
13 This means Best(Q) (tvi) (thi) = ⊥
14 Now, assume k ∈ Approx(Q)
15 So k (tvi) (thi) = ⊥
16 By continuity,

⊔
i k vi hi = ⊥

17 Therefore for all i, k vi hi = ⊥
18 So for all k ∈ Approx(Q) and i, we know k vi hi = ⊥
19 This is equivalent to ∀i. ¬(∃k ∈ Approx(Q). k vi hi = >)

73 The Semantics of Separation Logic
20 Therefore, for all i, we know Best(Q) vi hi = ⊥
21 Therefore, we know

⊔
iBest(Q) vi hi = ⊥

22 So we conclude
⊔
iBest(Q) vi hi = Best(Q) (tvi) (thi)

This establishes that Best(Q) is a continuous function.
Now we will prove a minor lemma about this function, which shows that we are interpreting

the two-point Sierpinksi lattice O = {⊥ v >} such that the bottom element is truth, and the top
element is falsehood.
Lemma 13. (Inclusion Order Reverses Approximation Order) Suppose Q and Q′ are assertions
in [[A]]→ P(H), and that for all a ∈ [[A]], Q(a) ⊆ Q′(a). Then Best(Q′) v Best(Q).

1 We want to show Best(Q′) v Best(Q)
2 First, we will observe that Approx (Q′) ⊆ Approx (Q)
3 So, suppose that k ∈ Approx (Q′). We want to show k ∈ Approx (Q).
4 We want to show that for all a ∈ [[A]] and h ∈ Q(a), k a h = ⊥.
5 Assume that a ∈ [[A]] and h ∈ Q(a).
6 We know that since Q(a) ⊆ Q′(a), we have h ∈ Q′(a).
7 Therefore since k ∈ Approx (Q′), we know k a h = ⊥
8 Now, we want to show that Approx (Q′) ⊆ Approx (Q)
9 So we want to show that for all a ∈ [[A]] and h ∈ H , Approx (Q′) a h ⊆ Approx (Q) a h
10 Assume we have a ∈ [[A]] and h ∈ H
11 Suppose Approx (Q′) a h = >:
12 Therefore there is a k ∈ Approx (Q′) such that k a h = >
13 Therefore k ∈ Approx (Q), and so Approx (Q) a h = >
14 Suppose Approx (Q′) a h = ⊥:
15 Therefore for all k ∈ Approx (Q′), we have k a h = >
16 Therefore for all k ∈ Approx (Q), we have Approx (Q) a h = ⊥

3.3.2 Defining the Basic Hoare Triples
Supposing that P is an element of the BI algebra P(H), C is an element of the domain of
commands (A → K) → K, and Q is an A-indexed assertion, of type A → P(H), then we can
define the basic boolean Hoare triple [P] C [a : A. Q(a)]:

[P] C [a : A. Q(a)] , ∀h ∈ P. (C (Best Q) h = ⊥)

If C is given a continuation which will run forever (i.e., yields⊥) whenever it receives a heap
in Q, then given a heap h ∈ P , C applied to that continuation and that heap will also run forever.

The reason that we interpret triples this way is to make the fixed-point induction rule a sound
rule of inference. Intuitively, we are defining our triples only in terms of continuous things, and
so the limit of a chains should agree with the chain.

We will not prove this fact here, deferring that proof for the Kripke Hoare triples we will
actually use. The reason is that these basic triples are too basic — they do not validate the frame

74 The Semantics of Separation Logic
property — and so we will not need to use basic Hoare triples except as a tool used to define our
Kripke Hoare triples.

3.4 Kripke Hoare Triples
As with the development of the assertion logic, we will proceed in a modular style, by first giving
algebraic conditions we want our

3.4.1 World Preorders
We can define a world preorder W (B,�) over a BI algebra B as follows. The elements of
W (B,≤) are the elements of B, and for any two elements p and q, the ordering p � q is defined
as follows:

p � q ⇐⇒ ∃r. p ∗ r = q

To verify the relation � is a preorder, we need to show it is reflexive and transitive.
p � p holds because we can take r to be I .
To show transitivity, we must show that p1 � p3, given that p1 � p2 and p2 � p3.

1 Assume p1 � p2

2 Assume p2 � p3

3 By definition of �, ∃r. p1 ∗ r = p2

4 By definition of �, ∃r′. p2 ∗ r′ = p3

5 Let r and r′ be the witnesses in lines 3 and 4, so we have
6 p1 ∗ r = p2

7 p2 ∗ r′ = p3

8 Substituting for p2, we get p1 ∗ r ∗ r′ = p3

9 Taking as witness r′′ = r ∗ r′, we show ∃r′′. p1 ∗ r′′ = p3

10 By definition of �, p1 � p3

3.4.2 Heyting Algebras over Preorders
Given any preorder (P,�), we can construct a complete Heyting algebra by considering the set
of its upward-closed subsets (P↑(P),⊆):

P↑(P) = {S ∈ P(P) | ∀p ∈ S,∀q ∈ P. if p � q then q ∈ S}

The ordering relation for the Heyting algebra is set inclusion, and the operations are:
• > = P

• ⊥ = ∅
• S ∧ S ′ = S ∩ S ′

75 The Semantics of Separation Logic
• S ∨ S ′ = S ∪ S ′

•
∧
i∈I Si =

⋂
i∈I Si

•
∨
i∈I Si =

⋃
i∈I Si

• S ⊃ S ′ = {r ∈ P | ∀r′ � r. if r′ ∈ S then r′ ∈ S ′}
The idea here is that we will take the world preorder over assertions (ordered by the extension

order �) and use it to define a Heyting algebra, whose elements will become the interpretations
of specifications.

To show that these operations actually form a Heyting algebra, we need to show that they
satisfy the Heyting algebra axioms. First, we need to show that the meet and join are the greatest
lower bounds and least upper bounds respectively. To do this, we will just show that arbitrary
meets and joins exist, and then the nullary and binary meets and joins will fall out as a special
case.
Lemma 14. (Meets in the algebra of specifications) If X ⊆ P↑(P), then

∧
X defines a meet.

Proof. We need to show that if for all i ∈ I , Si ∈ P↑(P), then
∧
i∈I Si ∈ P↑(P). First, we

will verify that the intersection of a family of upwards-closed subsets is itself an upwards-closed
subset.

1 Assume ∀i ∈ I. Si ∈ P↑(P)
2 We want to show

∧
i∈I Si ∈ P↑(P)

3 So we want to show for all x ∈
∧
i∈I Si and for all y ∈ P , if x � y then y ∈

∧
i∈I Si

4 Assume x, x ∈
∧
i∈I Si, y, y ∈ P , x � y

5 Since
∧
i∈I Si =

⋂
i∈I Si, we know ∀i ∈ I. x ∈ Si

6 Assume i ∈ I
7 Since x ∈ Si, x � y, and Si is upwards-closed, y ∈ Si
8 Therefore, ∀i ∈ I , y ∈ Si
9 Therefore for all x ∈

∧
i∈I Si and for all y ∈ P , if x � y then y ∈

∧
i∈I Si

10 Which means
∧
i∈I Si ∈ P↑(P)

Next, we need to show the Heyting algebra axiom for meets. Stated formally, this is
∀S ∈ P↑(P), if X ⊆ P↑(P) and (∀S ′ ∈ X. S ≤ S ′), then S ≤

∧
X and ∀S ′ ∈ X,

∧
X ≤ S ′.

1 Assume S ∈ P↑(P), X ⊆ P↑(P), and (∀S ′ ∈ X. S ≤ S ′)
2 First, we want to show S ≤

∧
X

3 This is equivalent to showing ∀p. p ∈ S ⊃ p ∈
∧
X

4 Assume p ∈ S
5 We want to show p ∈

∧
X , so we want to show ∀S ′ ∈ X. p ∈ S ′.

6 Assume S ′ ∈ X
7 From the hypothesis in 1, we know S ≤ S ′

8 This means ∀p. p ∈ S ⊃ p ∈ S ′
9 Instantiate the quantifier with p and use hypothesis 4 to conclude p ∈ S ′
10 Therefore, ∀p. p ∈ S ⊃ p ∈

∧
X , so S ≤

∧
X

76 The Semantics of Separation Logic
11 Second, we want to show ∀S ′ ∈ X.

∧
X ≤ S ′

12 Assume S ′ ∈ X
13 We want to show

∧
X ≤ S ′, so we must show ∀p. p ∈

∧
X ⊃ p ∈ S ′

14 Assume p ∈
∧
X

15 Therefore, we know ∀S ′ ∈ X. p ∈ S ′
16 Instantiate the quantifier with S ′ to conclude p ∈ S ′
17 Therefore

∧
X ≤ S ′

18 Therefore ∀S ′ ∈ X.
∧
X ≤ S ′

�
Lemma 15. (Joins in the algebra of specifications) IfX ⊆ P↑(P), then

∨
X defines an arbitrary

join.
Proof. First, we need to verify the join we defined actually gives us an upward closed set — that
is, if X ⊆ P↑(P), then

∨
X ∈ P↑(P)

1 Assume X ⊆ P↑(P)
2 We want to show

∨
X ∈ P↑(P)

3 This means for all x ∈
∨
X, y ∈ P, if x � y then y ∈

∨
X

4 Assume x ∈
∨
X , y ∈ P , x � y

5 Since x ∈
∨
X , we know ∃S ∈ X. x ∈ S

6 Let S be the witness of the existential, so S ∈ X and x ∈ S
7 Since S is upward closed, x ∈ S, and x � y, we know y ∈ S
8 Therefore we can conclude ∃S ∈ X. y ∈ S
9 Therefore y ∈

∨
X

Now, we need to show the Heyting axioms for disjunction. Formally stated, it is ∀S ∈
P↑(P), X ⊆ P↑(P), if (∀S ′ ∈ X. S ′ ≤ S), then

∨
X ≤ S and ∀S ′ ∈ X. S ′ ≤

∨
X .

1 Assume S ∈ P↑(P), X ⊆ P↑(P), and ∀S ′ ∈ X. S ′ ≤ S
2 First, we want to show

∨
X ≤ S

3 This is the same as ∀p, p ∈
∨
X ⊃ p ∈ S

4 Assume p ∈
∨
X

5 This means ∃S ′ ∈ X. p ∈ S ′
6 Let S ′ be the witness to the existential, so S ′ ∈ X and p ∈ S ′
7 Instantiating the quantifier in the hypothesis with S ′, we get S ′ ≤ S
8 This means ∀p ∈ S ′, p ∈ S
9 Instantiating the quantifier with p, we get p ∈ S
10 Therefore ∀p, p ∈

∨
X ⊃ p ∈ S

11 This is equivalent to
∨
X ≤ S

12 Second, we want to show ∀S ′ ∈ X. S ′ ≤
∨
X

13 Assume S ′ ∈ X
14 We want to show S ′ ≤

∨
X

77 The Semantics of Separation Logic
15 This means ∀p ∈ S ′, p ∈

∨
X

16 Assume p ∈ S ′
17 We want to show p ∈

∨
X

18 This means we must show ∃S ′ ∈ X. p ∈ S ′
19 Witness the existential with S ′, so we can show p ∈ S ′ by hypothesis
20 Therefore ∀S ′ ∈ X. S ′ ≤

∨
X

�
Lemma 16. (Implication) If S1, S2 ∈ P↑(P), then S1 ⊃ S2 ∈ P↑(P).
Proof. First, we will check that the definition gives us an upward closed set.

1 Assume x ∈ S1 ⊃ S2, and that y � x
2 From this, we know ∀r′ � x, if r′ ∈ S1 then r′ ∈ S2

3 We want to show ∀r′ � y, if r′ ∈ S1 then r′ ∈ S2

4 Assume r′ � y and r′ ∈ S1

5 Since r′ � y and y � x, we know r′ � x
6 From this and r′ ∈ S1, we can use the hypothesis in line 2 to get r′ ∈ S2

7 Therefore ∀r′ � y, if r′ ∈ S1 then r′ ∈ S2

8 Therefore y ∈ S1 ⊃ S2

Now that we know that ⊃ has the correct codomain, we need to verify that it satisfies the adjoint
relationship between conjunction and implication:

S1 ∧ S2 ⊆ R ⇐⇒ S1 ⊆ S2 ⊃ R

This is equivalent to showing that

(∀x. x ∈ S1 ∧ S2 ⇒ x ∈ R) ⇐⇒ (∀x. x ∈ S1 ⇒ x ∈ S2 ⊃ R)

First, let’s show the⇒ direction.

Assume for all x. x ∈ S1 ∧ S2 ⇒ x ∈ R (1)
Assume x ∈ S1 (2)
Assume r′ � x (3)
Assume r′ ∈ S2 (4)
r′ ∈ S1 Since x ∈ S1 and r′ � x
r′ ∈ S1 ∩ S2 Since r′ ∈ S1 and r′ ∈ S2

r′ ∈ R By assumption (1)
r′ ∈ S2 ⇒ r′ ∈ R Implication intro (4)
∀r′ � x. r′ ∈ S2 ⇒ r′ ∈ R Universal intro (3)
x ∈ {r ∈ P | ∀r′ � r. r′ ∈ S2 ⇒ r′ ∈ R Comprehension intro
x ∈ S2 ⊃ R Definition of ⊃
∀x. x ∈ S1.⇒ x ∈ S2 ⊃ R Universal intro (2)
(∀x. x ∈ S1 ∧ S2 ⇒ x ∈ R)⇒ (∀x. x ∈ S1 ⇒ x ∈ S2 ⊃ R) Implication intro (1)

78 The Semantics of Separation Logic
Next, let’s show the⇐ direction.

Assume ∀x. x ∈ S1 ⇒ x ∈ S2 ⊃ R (1) Assumption
Assume x ∈ S1 ∧ S2 (-) Assumption
x ∈ S1 (2) Since x ∈ S1 ∧ S2

x ∈ S2 (3) Since x ∈ S1 ∧ S2

x ∈ S2 ⊃ R (-) By (2) and (1)
x ∈ {r ∈ P | ∀r′ � r. if r′ ∈ S2 then r′ ∈ R} (-) Definition of ⊃
∀r′ � x. if r′ ∈ S2 then r′ ∈ R (4) Comprehension instantiation
x � x (5) Reflexivity
if x ∈ S2 then x ∈ R (-) Instantiation of (4) with (5)
x ∈ R (-) Implication elim via (3)
∀x. x ∈ S1 ∧ S2 ⇒ x ∈ R (-) Universal/Implication intro (2)
(∀x. x ∈ S1 ⇒ x ∈ S2 ⊃ R)⇒ (∀x. x ∈ S1 ∧ S2 ⇒ x ∈ R) (-) Implication intro (1)

�
These lemmas establish that P↑(P) forms a complete Heyting algebra.

3.4.3 Defining Kripke Hoare Triples
In this section, we will define Kripke Hoare triples, which will be the basic elements we will
use to define our specification logic. As always, the definition will come in a piece-wise fashion.
Having already defined “basic Hoare triples”, we can then use these to define our true Kripke
Hoare triples.

First, note that our separation logic assertions form a BI-algebra, and hence form a world
preorder. This then gives rise to a Heyting algebra P↑(P(H)), which we will take to be our
domain of specifications.

Given an assertion p ∈ P(H), an element c of the domain of A-commands (A→ K)→ K,
and an assertion q ∈ U(A)→ P(H), we define the meaning of a Kripke triple as:

{p}c{a : A. q(a)} , {r ∈ P(H) | ∀s � r. [p ∗ s] c [a : A. q(a) ∗ s]}

The intuition behind this definition is that the meaning of a specification is the set of asser-
tions which can be framed onto it, and hence a true specification allows anything to be framed
onto it, since the topmost element of the specification lattice is the set of all assertions. We
confirm that Kripke triples are indeed elements of the specification lattice below.
Lemma 17. (Kripke Triples are Specifications) For suitable p, c, A, and q, we have that

{p}c{a : A. q(a)} ∈ P↑(P(H))

Proof.

1 We want to show {p}c{a : A. q(a)} ∈ P↑(P(H))
2 This is equivalent to ∀r, s if r ∈ {p}c{a : A. q(a)} and s � r, then s ∈ {p}c{a : A. q}
3 Assume r, s, r ∈ {p}c{a : A. q(a)}, and s � r
4 r ∈ {p}c{a : A. q(a)} is equivalent to ∀s � r. [p ∗ s] c [a : A. q(a) ∗ s]

79 The Semantics of Separation Logic
5 We want to show s ∈ {p}c{a : A. q}
6 This is equivalent to showing ∀t � s. [p ∗ t] c [a : A. q(a) ∗ t]
7 Assume t, t � s
8 By transitivity with t � s and s � r, we know t � r
9 Instantiating quantifier in line 4 with t, [p ∗ t] c [a : A. q(a) ∗ t]
10 Therefore ∀t � s. [p ∗ t] c [a : A. q(a) ∗ t]
11 Therefore s ∈ {p}c{a : A. q}
12 Therefore ∀r, s if r ∈ {p}c{a : A. q(a)} and s � r, then s ∈ {p}c{a : A. q}
13 We have shown {p}c{a : A. q(a)} ∈ P↑(P(H))

�

Fixed Point Induction

The reason we have gone to the trouble of using continuous approximations to the postcondition
is to create an admissibility property which will allow us to justify a fixed point induction rule.
We will now cash in that work by giving a proof that the fixed point induction rule is sound.
Lemma 18. (Bottom Satisfies All Specifications) We have that {p}⊥{a : A. q(a)} = P(H).
Proof.

1 We want to show {p}⊥{a : A. q(a)} = P(H)
2 It suffices to show ∀r ∈ P(H), r ∈ {p}⊥{a : A. q(a)}
3 Assume r ∈ P(H)
4 We want to show r ∈ {p}⊥{a : A. q(a)}, which is equivalent to ∀s � r. [p ∗ s] ⊥ [a : A. q(a) ∗ s]
5 Assume s � r
6 We want to show [p ∗ s] ⊥ [a : A. q(a) ∗ s]
7 This is equivalent to ∀h ∈ p.⊥ Best(q) h = ⊥
8 Assume h ∈ p
9 By definition of least element, ⊥ Best(q) h = ⊥
10 Therefore ∀h ∈ p.⊥ Best(q) h = ⊥
11 Therefore [p ∗ s] ⊥ [a : A. q(a) ∗ s]
12 Therefore ∀s � r. [p ∗ s] ⊥ [a : A. q(a) ∗ s]
13 Therefore r ∈ {p}⊥{a : A. q(a)}
14 Therefore ∀r ∈ P(H), r ∈ {p}⊥{a : A. q(a)}
15 Therefore {p}⊥{a : A. q(a)} = P(H)

�
Lemma 19. (Admissibility of Triple Subsets) Define {p}−{a : A. q(a)} to be

{p}−{a : A. q(a)} , {c ∈ (A→ K)→ K | {p}c{a : A. q(a)} = P(H)}

Then, {p}−{a : A. q(a)} forms an admissible subset of (A → K) → K. That is, given a
chain ci ∈ {p}−{a : A. q(a)}, we know that {p}tici{a : A. q(a)}.
Proof.

80 The Semantics of Separation Logic

1 Suppose we have a chain ci ∈ {p}−{a : A. q(a)}.
2 We want to show that tici ∈ {p}−{a : A. q(a)}
3 This is equivalent to {p}tci{a : A. q(a)} = P(H)
4 This is equivalent to ∀r ∈ P(H), s � r. [p ∗ s] tci [a : A. q(a) ∗ s]
5 Assume r ∈ P(H), s � r
6 We want to show [p ∗ s] tci [a : A. q(a) ∗ s]
7 This is equivalent to ∀h ∈ p ∗ s. (tci) Best(λa. q(a) ∗ s) h = ⊥
8 Assume h ∈ p ∗ s
9 By continuity, we know (tci) Best(λa. q(a) ∗ s) h =

⊔
(ci Best(λa. q(a) ∗ s) h)

10 Suppose c is an element of the chain of ci
11 Then we know c ∈ {p}−{a : A. q}
12 This is equivalent to {p}c{a : A. q} = P(H)
13 This is equivalent to ∀r, s � r. [p ∗ s] c [a : A. q(a) ∗ s]
14 This is equivalent to ∀r, s � r, h ∈ p ∗ s, c Best(λa. q(a) ∗ s) h = ⊥
15 Instantiating quantifiers with r, s, and h, we get c Best(λa. q(a) ∗ s) h = ⊥
16 Therefore ∀c ∈ {ci | i ∈ N}, c Best(λa. q(a) ∗ s) h = ⊥
17 Therefore

⊔
(ci Best(λa. q(a) ∗ s) h) = ⊥

18 Therefore (tci) Best(λa. q(a) ∗ s) h = ⊥
19 Therefore ∀h ∈ p ∗ s. (tci) Best(λa. q(a) ∗ s) h = ⊥
20 Therefore [p ∗ s] tci [a : A. q(a) ∗ s]
21 Therefore ∀r ∈ P(H), s � r. [p ∗ s] tci [a : A. q(a) ∗ s]
22 Therefore {p}tci{a : A. q(a)} = P(H)
23 Therefore tici ∈ {p}tici{a : A. q(a)}

�

Lemma 20. (Fixed Point Induction) If we know that for all x, {p}x{a : A. q(a)} = P(H)
implies {p}f(x){a : A. q(a)}) = P(H), then we know that {p}fix (f){a : A. q(a)} = P(H)

Proof. First, observe that fn(⊥) forms a chain – that is, for all i, f i(⊥) v f i+1(⊥).

1 We want to show ∀i, f i(⊥) v f i+1(⊥)
2 We proceed by induction on i
3 Case i = 0:
4 We want to show ⊥ v f(⊥)
5 This follows immediately from the fact that ⊥ is the least element of a domain.
6 Case i = j + 1
7 We want to show f j(⊥) v f j+1(⊥) ⊃ f i(⊥) v f i+1(⊥)
8 Assume f j(⊥) v f j+1(⊥)
9 By monotonicity of f , f(f j(⊥)) v f(f j+1(⊥))
10 Therefore f i(⊥) v f i+1(⊥)
11 Therefore ∀i, f i(⊥) v f i+1(⊥)

Now, observe that for every n, fn(⊥) ∈ {p}−{a : A. q}.

81 The Semantics of Separation Logic

1 Assume for all x, {p}x{a : A. q(a)} = P(H) implies {p}f(x){a : A. q(a)}) = P(H)
2 We want to show ∀n, fn(⊥) ∈ {p}−{a : A. q(a)}
3 We proceed by induction on n:
4 Case n = 0
5 We want to show ⊥ ∈ {p}−{a : A. q(a)}
6 This follows from the fact that bottom satisfies all specifications.
7 Case n = m+ 1
8 We want to show fm(⊥) ∈ {p}−{a : A. q} ⊃ fm+1(⊥) ∈ {p}−{a : A. q}
9 Assume fm(⊥) ∈ {p}−{a : A. q(a)}
10 This means {p}fm(⊥){a : A. q(a)} = P(H)
11 Instantiate line 1 with fm(⊥), to conclude {p}f(fm(⊥)){a : A. q(a)}) = P(H)
12 This means {p}fm+1(⊥){a : A. q(a)} = P(H)
13 This means fm+1(⊥) ∈ {p}−{a : A. q(a)}
14 Therefore ∀n, fn(⊥) ∈ {p}−{a : A. q(a)}

Finally, by the admissibility of {p}−{a : A. q(a)}, we know that tfn(⊥) ∈ {p}−{a : A. q(a)}.
Since tfn(⊥) = fix(f), we know that {p}fix (f){a : A. q(a)} = P(H). �

3.4.4 The Framing Operator
One nice feature of the Kripke-style interpretation of specifications is that it naturally validates
higher-order frame rules. We define the operation S ⊗ p, where S ∈ P↑(W (P(H))) and p ∈
W (P(H)):

S ⊗ p = {r ∈ W (P(H)) | r ∗ p ∈ S}
The way to understand this is that S⊗p restricts S to only those elements which can be extended
by p. That is, if we think of S as the set of propositions that can be framed on to a basic triple,
then we want S ⊗ p to be only the frames in S, such that if we added p to them we continue to
have a frame in S. So this operation gives a semantic interpretation of the frame rule.

So we need to show that first, S ⊗ p actually is an element of our Heyting algebra of specifi-
cation truth values, and second, we want the frame rule to be sound – we want S to always imply
S ⊗ p.
Lemma 21. (Framing is a Lattice Operation on Specifications) For all S and p, we have that
S ⊗ p is in P↑(W (P(H))), and that S ⊆ S ⊗ p.
Proof. To show that S ⊗ p ∈ P↑(W (P(H))), we need to show that for all x, y, if x ∈ S ⊗ p and
y � x, then y ∈ S ⊗ p.

1 We want to show for all x, y, if x ∈ S ⊗ p and y � x, then y ∈ S ⊗ p
2 Assume x, y, x ∈ S ⊗ p, y � x
3 From x ∈ S ⊗ p, we know x ∗ p ∈ S
4 From y � x, we know ∃r. y = x ∗ r
5 Let r be the witness so that y = x ∗ r
6 Since S is upward closed, x ∗ p ∗ r ∈ S

82 The Semantics of Separation Logic
7 Since x ∗ p ∗ r = (x ∗ r) ∗ p, we know y ∗ p ∈ S
8 Therefore y ∈ S ⊗ p

To show S ⊆ S ⊗ p, we need to show that if x ∈ S, then x ∈ S ⊗ p.

1 Assume x ∈ S
2 Since � is the extension ordering, x � x ∗ p
3 Since S is upward closed, x ∗ p ∈ S
4 Therefore x ∈ S ⊗ p
�

Framing Commutes With Logical Operators

Lemma 22. (Framing onto Kripke Triples) We have that

{p}c{a : A. q(a)} ⊗ r = {p ∗ r}c{a : A. q(a) ∗ r}

Proof.

1 We want to show {p}c{a : A. q(a)} ⊗ r = {p ∗ r}c{a : A. q(a) ∗ r}.
2 This means ∀s ∈ W (P(H)). s ∈ ({p}c{a : A. q(a)} ⊗ r) if and only if s ∈ {p ∗ r}c{a : A. q(a) ∗ r}.
3 Assume s ∈ W (P(H))
4 ⇒ direction:
5 Assume s ∈ ({p}c{a : A. q(a)} ⊗ r)
6 This means s ∗ r ∈ {p}c{a : A. q(a)}
7 This means ∀t � s ∗ r. [p ∗ t] c [a : A. q ∗ t]
8 We want to show s ∈ {p ∗ r}c{a : A. q(a) ∗ r}
9 So we want ∀t′ � s. [p ∗ r ∗ t′] c [a : A. q(a) ∗ r ∗ t′]
10 Assume t′ � s
11 Clearly, t′ ∗ r � s ∗ r
12 Instantiate quantifier in 7 with t′ ∗ r to conclude [p ∗ t′ ∗ r] c [a : A. q ∗ t′ ∗ r]
13 Rearranging, we get [p ∗ r ∗ t′] c [a : A. q ∗ r ∗ t′]
14 Therefore ∀t′ � s. [p ∗ r ∗ t′] c [a : A. q(a) ∗ r ∗ t′]
15 Therefore s ∈ {p ∗ r}c{a : A. q(a) ∗ r}

16 ⇐ direction:
17 Assume s ∈ {p ∗ r}c{a : A. q(a) ∗ r}.
18 This means ∀t � s. [p ∗ r ∗ t] c [a : A. q(a) ∗ r ∗ t]
19 We want to show s ∈ ({p}c{a : A. q(a)} ⊗ r)
20 So we want s ∗ r ∈ {p}c{a : A. q(a)}
21 So we want ∀t � s ∗ r. [p ∗ t] c [a : A. q ∗ t]
22 Assume t � s ∗ r
23 Since t � s ∗ r, we know ∃u. t = s ∗ r ∗ u
24 Let u be the witness such that t = s ∗ r ∗ u
25 Now, note that s ∗ u � s

83 The Semantics of Separation Logic
26 Instantiate quantifier in 18 with s ∗ u, so [p ∗ r ∗ s ∗ u] c [a : A. q(a) ∗ r ∗ s ∗ u]
27 Rearranging, [p ∗ s ∗ r ∗ u] c [a : A. q(a) ∗ s ∗ r ∗ u]
28 By equality in 24, [p ∗ t] c [a : A. q ∗ t]
29 Therefore ∀t � s ∗ r. [p ∗ t] c [a : A. q ∗ t]
30 Therefore s ∗ r ∈ {p}c{a : A. q(a)}
31 Therefore s ∈ ({p}c{a : A. q(a)} ⊗ r)
�
Lemma 23. (Framing Commutes with Meets) We have that(∧

i∈I

Si

)
⊗ p =

∧
i∈I

(Si ⊗ p)

Proof. To show
(∧

i∈I Si
)
⊗ p =

∧
i∈I(Si ⊗ p), we need to show ∀r. r ∈

(∧
i∈I Si

)
⊗ p if and

only if r ∈
∧
i∈I(Si ⊗ p).

1 Assume r ∈ W (P(H))

2 ⇒ direction:
3 Assume r ∈

(∧
i∈I Si

)
⊗ p

4 From assumption, we know r ∗ p ∈
∧
i∈I Si

5 This means that ∀i ∈ I. r ∗ p ∈ Si
6 We want to show r ∈

∧
i∈I(Si ⊗ p)

7 So we want ∀i ∈ I. r ∈ (Si ⊗ p)
8 So we want ∀i ∈ I. r ∗ p ∈ Si
9 Assume i ∈ I
10 We want to show r ∗ p ∈ Si
11 Instantiating line 5 with i, we get r ∗ p ∈ Si
12 ⇐ direction:
13 Assume r ∈

∧
i∈I(Si ⊗ p)

14 From this, we know that ∀i ∈ I. r ∈ (Si ⊗ p)
15 We want to show r ∈

(∧
i∈I Si

)
⊗ p

16 So we want to show r ∗ p ∈
∧
i∈I Si

17 So we want to show ∀i ∈ I. r ∗ p ∈ Si
18 Assume i ∈ I
19 Instantiating line 14 with i, we get r ∈ (Si ⊗ p)
20 This means r ∗ p ∈ Si
21 Therefore ∀i ∈ I. r ∗ p ∈ Si
22 Therefore r ∗ p ∈

∧
i∈I Si

23 Therefore r ∈
(∧

i∈I Si
)
⊗ p

�
Lemma 24. (Framing Commutes with Joins) We have that(∨

i∈I

Si

)
⊗ p =

∨
i∈I

(Si ⊗ p)

84 The Semantics of Separation Logic
Proof. Showing this is equivalent to showing ∀r. r ∈

(∨
i∈I Si

)
⊗ p if and only if r ∈

∨
i∈I(Si⊗

p).

1 Assume r

2 ⇒ direction:
3 Assume r ∈

(∨
i∈I Si

)
⊗ p

4 This means r ∗ p ∈
∨
i∈I Si

5 This means ∃i ∈ I. r ∗ p ∈ Si
6 We want to show r ∈

∨
i∈I(Si ⊗ p)

7 So we want to show ∃i ∈ I. r ∈ (Si ⊗ p)
8 Let i be the witness in 5, such that r ∗ p ∈ Si
9 From this, we see r ∈ (Si ⊗ p)
10 From this and i, we conclude ∃i ∈ I. r ∈ (S ⊗ p)
11 Therefore r ∈

∨
i∈I(Si ⊗ p)

12 ⇐ direction:
13 Assume r ∈

∨
i∈I(Si ⊗ p).

14 From this, ∃i ∈ I. r ∈ (Si ⊗ p)
15 We want to show r ∈

(∨
i∈I Si

)
⊗ p

16 So we want r ∗ p ∈
∨
i∈I Si

17 So we want ∃i ∈ I. r ∗ p ∈ Si
18 Let i ∈ I be the witness in 14, so that r ∈ (Si ⊗ p)
19 From this, r ∗ p ∈ Si
20 With this and i ∈ I , we know ∃i ∈ I. r ∗ p ∈ Si
21 Therefore r ∗ p ∈

∨
i∈I Si

22 Therefore r ∈
(∨

i∈I Si
)
⊗ p

�
Lemma 25. (Framing Commutes Through Implication) We have that

(S1 ⊃ S2)⊗ p = (S1 ⊗ p) ⊃ (S2 ⊗ p)

Proof. This is equivalent to showing that ∀r, r ∈ [(S1 ⊃ S2)⊗ p] if and only if r ∈ [(S1 ⊗ p) ⊃
(S2 ⊗ p)].

1 Assume r
2 ⇒ direction:
3 Assume r ∈ [(S1 ⊃ S2)⊗ p]
4 This means r ∗ p ∈ (S1 ⊃ S2)
5 This means ∀s � r ∗ p, if s ∈ S1 then s ∈ S2

6 We want to show r ∈ [(S1 ⊗ p) ⊃ (S2 ⊗ p)]
7 So we want ∀s � r, if s ∈ S1 ⊗ p then s ∈ S2 ⊗ p
8 Assume s � r and s ∈ S1 ⊗ p
9 From this s ∗ p ∈ S1

85 The Semantics of Separation Logic
10 Since s � r, we have s ∗ p � r ∗ p
11 Instantiating line 5 with s ∗ p, we have if s ∗ p ∈ S1 then s ∗ p ∈ S2

12 Using this and line 9, we have s ∗ p ∈ S2

13 From this, we have s ∈ S2 ⊗ p
14 Therefore ∀s � r, if s ∈ S1 ⊗ p then s ∈ S2 ⊗ p
15 Therefore r ∈ [(S1 ⊗ p) ⊃ (S2 ⊗ p)]
16 ⇐ direction:
17 Assume r ∈ [(S1 ⊗ p) ⊃ (S2 ⊗ p)]
18 From this, ∀s � r, if s ∈ (S1 ⊗ p), then s ∈ (S2 ⊗ p)
19 We want to show r ∈ [(S1 ⊃ S2)⊗ p]
20 So we want r ∗ p ∈ (S1 ⊃ S2)
21 So we want ∀s � r ∗ p, if s ∈ S1 then s ∈ S2

22 Assume s � r ∗ p and s ∈ S1

23 From this, ∃t. s = t ∗ r ∗ p
24 Let t be the witness such that s = t ∗ r ∗ p
25 Note t ∗ r � r
26 Instantiating 18 with t ∗ r, we get if t ∗ r ∈ (S1 ⊗ p), then t ∗ r ∈ (S2 ⊗ p)
27 From this, we have if t ∗ r ∗ p ∈ S1 then t ∗ r ∗ p ∈ S2

28 So we have if s ∈ S1, then s ∈ S2

29 From this and 22, we have s ∈ S2

30 Therefore ∀s � r ∗ p, if s ∈ S1 then s ∈ S2

31 Therefore r ∗ p ∈ (S1 ⊃ S2)
32 Therefore r ∈ [(S1 ⊃ S2)⊗ p]
�

3.5 Syntax of Assertions and Specifications
In this section, we will give the syntax of specifications and assertions, and then we will give
their interpretations. The syntactic categories are given in Figure 3.1. The sorts of our logic are
ranged over by ω, and include the kinds κ, the polymorphic types A, and the propositional sorts
υ. The propositional sorts ω include prop, the sort ω ⇒ υ, which are the sort of propositional
functions, and the sort Πα : κ. υ, which are type-constructor-indexed families.

Note that we syntactically identify a family of propositional sorts υ. These sorts all end in
prop, and by distinguishing them from kinds κ and types A, we forbid the formation of sorts
like prop ⇒ A. This will ensure that program terms will never depend on purely logical facts,
though the converse (logical terms depending on program terms) is allowed. This restriction is a
slight variation of the usual convention in higher-order logic, where sorts must bottom out in the
assertion type.

However, general sorts ω include both types and kinds. This lets us define the assertions
we will need for asserting facts about polymorphic programs. For example, the sort of the list
predicate for polymorphic lists can be given as listprop : Πα : ?. list α⇒ seq α⇒ prop.

The terms (for which we will use p q as metavariables) which are categorized by our sorts are
also given in Figure 3.1. They include lambda-abstraction and application for the two function

86 The Semantics of Separation Logic
space sorts ω ⇒ υ and Πα : κ. υ, terms e for the sorts A, type expressions τ for the sorts κ.

Finally, we also have the assertions of separation logic for the sort prop. These include the
usual propositional logical connectives,>, p∧q, p ⊃ q,⊥, p∨q, as well as the spatial connectives
emp, p ∗ q, p−∗ q, and e 7→A e

′. Note that the points-to proposition is typed; it indicates that e is
a reference of type ref A with contents e′ of type A.

The quantifiers ∀u : ω. p and ∃u : ω. p are higher-order quantifiers. They can range over
all sorts, including the sort of assertions prop, and so we have the full power of higher-order
separation logic available. One way in which we will use this expressive power is by taking
advantage of the definability of many mathematical types (such as numbers, sequences, trees,
finite sets, subsets, etc.) in higher-order logic, to augment our sorts with these types on an as-
needed basis.

Finally, we have the specification embedding assertion S spec. This is an assertion that the
specification S is true, and is useful for writing assertions that include facts about the behavior
of code.

The specifications S begin with the basic Hoare triple {p}c{a : A. q}, which says that the
computation c, when run from a pre-state in p, will end in a post-state in q, with its return value
named by a. Similarly, we have the monadic Hoare triple form 〈p〉e〈a : A. q〉 which says that
the suspended monadic computation e (of type©A), will take a pre-state p to a post-state q if it
were to be run. The specification {p} is the assertion-embedding specification, which says that
p is a truth of separation logic.

This does mean that assertions and specifications are mutually recursive, which means that
we will have to give the semantics of these two syntaxes simultaneously. This is one of the
reasons we spent the first half of this chapter developing the semantics with no reference to
the intended syntax at all — I wanted to ensure the semantic domains were well-defined before
giving the mutually-recursive semantics of the program logic.

We also can form conjunctions S & S ′, disjunctions S || S ′ and implications S ⇒> S ′

over specifications, as well as universal ∀u : ω. S and existential ∃u : ω. S quantification over
specifications, with the legitimate domains of quantifications being the same sorts as for the
assertion language.

A propositional context ∆ is a sequence of sorted variables of the form u : υ. However,
due to the fact that the sorts contain variables, we need a judgment to establish whether a sort is
well-formed with respect to a context of type constructor variables.

In Figure 3.2, we give the judgment Θ B ω : sort used to decide whether or not a given sort
is well-formed or not. The judgment Θ B ∆, also given in Figure 3.2, then uses the well-sorting
judgment to establish whether a particular context is well-formed or not.

Finally, we need an equality judgment for sorts, since we have an equality theory for types.
The judgment Θ B ω ≡ ω′ : sort, defined in Figure 3.2, judges whether two sorts are equal,
by means of an almost-congruence. That is, the rules of this judgment are all congruence rules,
except for the single case SORTEQTYPE, which inherits the equality judgment for polytypes
defined in the previous chapter.

Now that we have defined what the sorts are, we define what it means for a term to be well-
sorted in context with the judgment Θ; Γ; ∆ B p : ω, defined in Figure 3.3.

In the rules TTYPE and TEXPR, we simply inherit well-kindedness and well-typedness from
the corresponding judgments for types and terms, defined in the previous chapter. The rule THYP

87 The Semantics of Separation Logic

Propositional Sorts υ ::= prop | ω ⇒ υ | Πα : κ. υ

Sorts ω ::= υ | κ | A

Terms p, q ::= u | λ̂u : ω. p | λ̂α : κ. p | p q | p [τ] | τ | e
| > | p ∧ q | p ⊃ q | ⊥ | p ∨ q
| emp | p ∗ q | p−∗ q | p 7→A q
| ∀u : ω. p | ∃u : ω. p | p =ω q | S spec

Specifications S ::= {p}c{a : A. q} | 〈p〉e〈a : A. q〉 | {p}
| S & S ′ | S ⇒> S ′ | S || S ′
| ∀u : ω. S | ∃u : ω. S

Propositional Contexts ∆ ::= · | ∆, u : υ

Figure 3.1: Syntax of Assertions and Specifications

is the hypothesis rule for propositional variables. (Type and program expression variables can
only be referenced through the TTYPE and TEXPR rules.)

lambda-abstraction and application rules for the function sort ω ⇒ υ – there are no surprises
here. Likewise, the TABSALL and TAPPALL rules allow abstracting applying kind-indexed
products.

Finally, there are all the rules giving the sorting of propositions. The nullary propositions
>,⊥, and emp are typed with the TCONST rule, and the binary propositions ∧,∨,⊃, ∗, and −∗
are typed with the TBINARY rule, requiring their two arguments to both be of sort prop.

The two quantifiers ∀u : ω. p and ∃u : ω. p are sorted with the TQUANTIFY rules. We have
three variants of this rule, putting a new variable into different contexts depending on whether
the variable is a type, term or propositional variable. The points-to e 7→A e

′ and equality p =ω q
each require that their arguments be of the correct sort. Note that e 7→A e

′ is restricted to program
types, as expected, whereas equality is permitted at any sort.

Finally, we have the rule TSPEC for the specification-embedding assertion S spec, which
recursively invokes the well-sorted specification Θ; Γ; ∆ B S : spec. This judgment is defined in
Figure 3.4, and consists of a handful of rules. The SPECTRIPLE rule asserts that {p}c{a : A. q}
is well-kinded when A is a type, p is an assertion, c is a computation yielding an A, and q is an
assertion with a as an extra free variable. Likewise the SPECMTRIPLE rule does the same job
for monadic expressions, saying that 〈p〉e〈a : A. q〉, saying that e must be a term of monadic
type©A, but otherwise as in the SPECTRIPLE rule. Finally, the remaining atomic proposition
SPECASSERT rule recursively calls back into the assertion well-kinding judgment.

The SPECBINARY rules gives well-formedness conditions for the conjunction (S & S ′),
disjunction (S || S ′), and implication (S ⇒> S ′) over specifications, in each case asking the
subterms to be well-formed specifications. The quantifier rules SPECQUANTIFY simply extend
the context with the newly quantified variable. As with assertions, we have three versions of this

88 The Semantics of Separation Logic

Θ B ω : sort

Θ B κ : sort
SORTKIND

Θ ` A :F

Θ B A : sort
SORTA

Θ B prop : sort
SORTPROP

Θ B ω : sort Θ B υ : sort

Θ B ω ⇒ υ : sort
SORTIMP

Θ, α : κ B υ : sort

Θ B Πα : κ. υ : sort
SORTIMP

Θ B ∆

Θ B ·
SORTCTXNIL

Θ B ∆ Θ B υ : sort

Θ B ∆, u : υ
SORTCTXCONS

Θ B ω ≡ ω′ : sort

Θ B prop ≡ prop : sort
SORTEQPROP

Θ B κ ≡ κ : sort
SORTEQKIND

Θ B ω ≡ ω′ : sort Θ B υ ≡ υ′ : sort

Θ B ω ⇒ υ ≡ ω′ ⇒ υ′ : sort
SORTEQIMP

Θ ` A ≡ B :F

Θ B A ≡ B : sort
SORTEQTYPE

Θ, α : κ B υ ≡ υ′ : sort

Θ B Πα : κ. υ ≡ Πα : κ. υ′ : sort
SORTEQALL

Figure 3.2: Well-sorting of Sorts and Contexts

89 The Semantics of Separation Logic

Θ; Γ; ∆ B p : ω

Θ B ∆ Θ ` Γ Θ ` τ : κ

Θ; Γ; ∆ B τ : κ
TTYPE

Θ B ∆ Θ; Γ ` e : A

Θ; Γ; ∆ B e : A
TEXPR

Θ B ∆ Θ ` Γ u : ω ∈ ∆

Θ; Γ; ∆ B u : ω
THYP

Θ; Γ; ∆, u : υ′ B p : υ

Θ; Γ; ∆ B λ̂u : υ′. p : υ′ ⇒ υ
TABS1

Θ; Γ, x : A; ∆ B p : υ

Θ; Γ; ∆ B λ̂x : A. p : A⇒ υ
TABS2

Θ, α : κ; Γ; ∆ B p : υ α 6∈ FV(Γ,∆, υ)

Θ; Γ; ∆ B λ̂α : κ. p : κ⇒ υ
TABS3

Θ; Γ; ∆ B p : ω ⇒ υ Θ; Γ; ∆ B q : ω

Θ; Γ; ∆ B p q : υ
TAPP

Θ, α : κ; Γ; ∆ B p : υ α 6∈ FV(Γ,∆)

Θ; Γ; ∆ B λ̂α : κ. p : Πα : κ. υ
TABSALL

Θ; Γ; ∆ B p : Πα : κ. υ Θ; Γ; ∆ B τ : κ

Θ; Γ; ∆ B p [τ] : [τ/α]υ
TAPPALL

Θ B ∆ Θ ` Γ p ∈ {>,⊥, emp}
Θ; Γ; ∆ B p : prop

TCONST

Θ; Γ; ∆ B p : prop Θ; Γ; ∆ B q : prop ⊕ ∈ {∧,∨,⊃, ∗,−∗}
Θ; Γ; ∆ B p⊕ q : prop

TBINARY

Θ; Γ; ∆, u : ω B p : prop Q ∈ {∀,∃}
Θ; Γ; ∆ B Qu : υ. p : prop

TQUANTIFY1

Θ; Γ, x : A; ∆ B p : prop Q ∈ {∀,∃}
Θ; Γ; ∆ B Qx : A. p : prop

TQUANTIFY2

Θ, α : κ; Γ; ∆, u : ω B p : prop Q ∈ {∀,∃} α 6∈ FV(Γ,∆)

Θ; Γ; ∆ B Qα : κ. p : prop
TQUANTIFY3

Θ; Γ; ∆ B e : ref A Θ; Γ; ∆ B e′ : A

Θ; Γ; ∆ B e 7→A e
′ : prop

TPOINTSTO

Θ; Γ; ∆ B p : ω Θ; Γ; ∆ B q : ω Θ B ω : sort

Θ; Γ; ∆ B p =ω q : prop
TEQUAL

Θ; Γ; ∆ B S : spec

Θ; Γ; ∆ B S spec : prop
TSPEC

Θ B ω ≡ ω′ : sort Θ; Γ; ∆ B p : ω′

Θ; Γ; ∆ B p : ω
TEQSORT

Figure 3.3: Well-sorting of Assertions

90 The Semantics of Separation Logic

Θ; Γ; ∆ B S : spec

Θ; Γ; ∆ B p : prop Θ; Γ; ∆ B [c] :©A Θ; Γ, a : A; ∆ B q : prop

Θ; Γ; ∆ B {p}c{a : A. q} : spec
SPECTRIPLE

Θ; Γ; ∆ B p : prop Θ; Γ; ∆ B e :©A Θ; Γ, a : A; ∆ B q : prop

Θ; Γ; ∆ B 〈p〉e〈a : A. q〉 : spec
SPECMTRIPLE

Θ; Γ; ∆ B p : prop

Θ; Γ; ∆ B {p} : spec
SPECASSERT

Θ; Γ; ∆, u : υ B S : spec u ∈ {∀,∃}
Θ; Γ; ∆ B Qu : υ. S : spec

SPECQUANTIFY1

Θ, α : κ,Γ,∆ B S : spec u ∈ {∀,∃} α 6∈ FV(Γ,∆)

Θ; Γ; ∆ B Qα : κ. S : spec
SPECQUANTIFY2

Θ; Γ, x : A; ∆ B S : spec u ∈ {∀,∃}
Θ; Γ; ∆ B Qx : A. S : spec

SPECQUANTIFY3

Θ; Γ; ∆ B S1 : spec Θ; Γ; ∆ B S2 : spec ⊕ ∈ { & , || ,⇒>}
Θ; Γ; ∆ B S1 ⊕ S2 : spec

SPECBINARY

Figure 3.4: Well-sorting of Specifications

rule, one for each context.
Since spec is not a sort, this means that the language of specifications is a multi-sorted first-

order logic, rather than a higher-order logic. There are no technical obstacles to extending it in
this fashion, but we have not felt any strong need to do so.

3.5.1 Substitution Properties

In the syntax for the program logic, we have systematically made the decision to forbid the ap-
pearance of logical expressions within program expressions. We accomplish this by prohibiting
variables from having sorts like P : prop ⇒ N. As a result, it is not possible to form program
expressions which depend on subexpressions of logical type, such as writing an expression of
monadic type©N like [P (x 7→ y)].

This restriction ensures that program expressions never use variables of logical type, and so
any term expression can be typed using only type and term variables, without any dependence
on variables drawn from the logical sorts. By requiring program expressions to only contain

91 The Semantics of Separation Logic
programs as subexpressions, we prevent the use of “ghost expressions” in our programs. That is,
there are no commands or expressions in the programming language which manipulate purely
logical values.

For first-order programs, it is relatively straightforward to distinguish between ghost variables
and actual variables, but this is a distinction which breaks down in the presence of higher-order
expressions. As a result, prohibiting these programs greatly simplifies the semantics of the pro-
gram logic. I intend the sorts of our logic to be interpreted in Set, but the terms of our program-
ming language are interpreted in CPO. Since there are no logical subexpressions of programs,
then the forgetful functor U supplies sufficient tools to perform this embedding.

However, this does not restrict the expressiveness of our program logic reasoning, since our
program logic is a full specification logic. We have no need of ghost state, since we can place
quantifiers outside of Hoare triples. This lets us relate variables across a pre- and post-condition
without any dubious manipulations of binding structure or extensions of the heap semantics.

The price we must pay for this simplicity is an increase in the complexity of the substitution
theorems of the logic: since we have three contexts, we need six substitution theorems — three
each for assertions and specifications. We will give these theorems after we have given the proofs,
since it will be convenient to state the syntactic and semantic substitution properties together.

3.6 Semantics

Now, we will consider the interpretation of the syntax. To do this, we will proceed in stages.
First, we will show how to interpret sorts and contexts by sets. Then, we will give a mutually-
recursive interpretation of terms and specifications (since they each embed in the other), and
finally we will prove that the semantics satisfies a substitution theorem.

Then, in the next section, we will be in a position to give the actual axioms of the program
logic, and show them sound.

3.6.1 Interpretation of Sorts

We will start by explaining how to interpret the sorts. We interpret sorts as sets, but since sorts can
have free variables, we need to give an interpretation of sorts-in-context, as is usual in categorical
logic. We give the definitions in Figure 3.5.

A well-sortedness derivation is interpreted as a function from a tuple representing the type
constructor environment θ (under the syntactic semantics) into a set. The interpretation of a kind
κ is just its set-theoretic semantics, defined in the previous chapter. The interpretation of a type
A is the domain-theoretic interpretation at the environment θ, then hit with the forgetful functor
U to get its underlying set of points.

Propositions prop are interpreted as the powerset of heaps, and the function space ω ⇒ υ is
just the set-theoretic function space between the two sorts. The type-indexed sort Πα : κ. υ is
interpreted by an indexed family of sets, with the index extending the context.

Finally, we use this interpretation of sorts to give an interpretation of propositional contexts
as a function from the type constructor environment into a nested tuple of sorts.

92 The Semantics of Separation Logic
[[Θ B ω : sort]] ∈ [[Θ]]s → Set

[[Θ B κ : sort]] θ = [[κ]]
[[Θ B A : sort]] θ = U([[Θ ` A :F]] θ)
[[Θ B prop : sort]] θ = P(H)
[[Θ B ω ⇒ υ : sort]] θ = [[Θ B ω : sort]] θ → [[Θ B υ : sort]] θ
[[Θ B Πα : κ. υ : sort]] θ = Πτ ∈ [[κ]]. [[Θ, α : κ B υ : sort]] (θ, τ)

[[Θ B ∆]] ∈ [[Θ]]s → Set

[[Θ B ·]] θ = 1
[[Θ B ∆, u : υ]] θ = [[Θ B ∆]] θ × [[Θ B υ : sort]] θ

Figure 3.5: Interpretation of Sorts and Contexts

3.6.2 Interpretation of Terms and Specifications
The term judgment Θ; Γ; ∆ B p : ω is mutually recursively defined with the specification judg-
ment Θ; Γ; ∆ B S : spec. Therefore, when we give the semantics of these judgments, we need
to define them together. The definition of the interpretation of these two judgments is given in
Figures 3.6 and 3.7.

There are no surprises in the interpretations – everything is interpreted straightforwardly. The
only unusual feature is that lambda-abstractions and quantifiers have three cases, corresponding
to their three typing rules. However, the interpretation is still syntax-directed, since types, kinds,
and propositional sorts are syntactically distinct.

3.6.3 Substitution Properties
We state the main soundness theorems below.

Lemma 26. (Substitution for Sorts) Suppose Θ ` τ : κ.
1. If Θ, α : κ B ω : sort, then Θ B [τ/α]ω : sort and

[[Θ B [τ/α]ω : sort]] θ equals [[Θ, α : κ B ω : sort]] (θ, [[Θ ` τ : κ]] θ)

2. If Θ, α : κ B ∆, then Θ B [τ/α]∆ and
[[Θ B [τ/α]∆]] θ equals [[Θ, α : κ B ∆]](θ, [[Θ ` τ : κ]] θ)

3. If Θ, α : κ B ω ≡ ω′ : sort, then Θ B [τ/α]ω ≡ [τ/α]ω′ : sort.
4. If Θ B ω ≡ ω′ : sort is derivable, then [[Θ B ω : sort]] = [[Θ B ω′ : sort]].
5. If Θ B ω : sort, then Θ, α : κ B ω : sort

6. If Θ B ω : sort and Θ, α : κ B ω : sort, then [[Θ B ω : sort]] θ =
[[Θ, α : κ B ω : sort]] (theta, τ)

Proof. These lemmas follow from routine inductions. �

93 The Semantics of Separation Logic

[[Θ; Γ; ∆ B p : ω]] ∈
∏
θ ∈ [[θ]], γ ∈ [[Θ ` Γ]] θ, δ ∈ [[Θ B ∆]] θ.
→ [[Θ B ω : sort]] θγδ

[[Θ; Γ; ∆ B S : spec]] ∈
∏
θ ∈ [[θ]], γ ∈ [[Θ ` Γ]] θ, δ ∈ [[Θ B ∆]] θ.
→ P↑(W (P(H)))

[[Θ; Γ; ∆ B τ : κ]] θ γ δ = [[Θ ` τ : κ]] θ
[[Θ; Γ; ∆ B e : A]] θ γ δ = U([[Θ; Γ ` e : A]] θ) γ

[[Θ; Γ; ∆ B λ̂u : υ′. p : υ′ ⇒ υ]] θ γ δ = λv ∈ [[Θ B υ′ : sort]] θ. [[Θ; Γ; ∆, u : υ′ B p : υ]] θ γ (δ, v)

[[Θ; Γ; ∆ B λ̂x : A. p : A⇒ υ]] θ γ δ = λv ∈ [[Θ B A : sort]] θ. [[Θ; Γ, x : A; ∆ B p : υ]] θ (γ, v) δ

[[Θ; Γ; ∆ B λ̂α : κ. p : κ⇒ υ]] θ γ δ = λτ ∈ [[Θ B κ : sort]] θ. [[Θ, α : κ; Γ; ∆ B p : υ]] (θ, τ) γ δ
[[Θ; Γ; ∆ B p q : υ]] θ γ δ = ([[Θ; Γ; ∆ B p : ω ⇒ υ]] δ) ([[Θ; Γ; ∆ B q : ω]] δ)

[[Θ; Γ; ∆ B λ̂α : κ. p : Πα : κ. υ]] θ γ δ = λτ ∈ [[Θ B κ : sort]] θ. [[Θ, α : κ; Γ; ∆ B p : υ]] (θ, τ) γ δ
[[Θ; Γ; ∆ B p [τ] : [τ/α]υ]] θ γ δ = ([[Θ; Γ; ∆ B p : Πα : κ. υ]] θ γ δ) ([[Θ ` τ : κ]] θ)
[[Θ; Γ; ∆ B u : ω]] θ γ δ = πu(δ)
[[Θ; Γ; ∆ B c : prop]] θ γ δ = [[c]]0

[[Θ; Γ; ∆ B p⊕ q : prop]] θ γ δ = [[Θ; Γ; ∆ B p : prop]] θ γ δ
[[⊕]]2 [[Θ; Γ; ∆ B q : prop]] θ γ δ

[[Θ; Γ; ∆ B e 7→A e
′ : prop]] θ γ δ = let l = [[Θ; Γ ` e : ref A]] θ γ in

let v = [[Θ; Γ ` e′ : A]] θ γ in
l 7→ v

[[Θ; Γ; ∆ B p =ω q : prop]] θ γ δ = if [[Θ; Γ; ∆ B p : ω]] θ γ δ = [[Θ; Γ; ∆ B q : ω]] θ γ δ
then > else⊥

[[Θ; Γ; ∆ B Qu : υ. p : prop]] θ γ δ = [[Q]]∞v∈[[ΘBυ:sort]] θ[[Θ; Γ; ∆, u : ω B p : prop]] θ γ (δ, v)

[[Θ; Γ; ∆ B Qx : A. p : prop]] θ γ δ = [[Q]]∞v∈[[ΘBA:sort]] θ[[Θ; Γ, x : A; ∆ B p : prop]] θ (γ, v) δ

[[Θ; Γ; ∆ B Qα : κ. p : prop]] θ γ δ = [[Q]]∞τ∈[[ΘBκ:sort]] θ[[Θ, α : κ; Γ; ∆ B p : prop]] (θ, τ) γ δ

[[Θ; Γ; ∆ B S spec : prop]] θ γ δ = if [[Θ; Γ; ∆ B S : spec]] θ γ δ = >P↑(W (P(H))) then > else ⊥
[[Θ; Γ; ∆ B p : ω]] θ γ δ = [[Θ; Γ; ∆ B p : ω′]] δ when Θ B ω ≡ ω′ : sort

[[>]]0 = >
[[⊥]]0 = ⊥
[[emp]]0 = I

[[∧]]2 = ∧
[[⊃]]2 = ⊃
[[∨]]2 = ∨
[[∗]]2 = ∗
[[−∗]]2 = −∗

[[∀]]∞ =
∧

[[∃]]∞ =
∨

l 7→ v = {({l}, λloc ∈ {l}. v)}

Figure 3.6: Interpretation of Terms

94 The Semantics of Separation Logic

[[Θ; Γ; ∆ B {p}c{a : A. q} : spec]] θ γ δ =
{[[Θ; Γ; ∆ B p : prop]] θ γ δ}
[[Θ; Γ ` c÷ A]] θ γ δ
{v. [[∆, a : A B q : prop]] θ (γ, v) δ}

[[Θ; Γ; ∆ B 〈p〉e〈a : A. q〉 : spec]] θ γ δ =
{[[Θ; Γ; ∆ B p : prop]] θ γ δ}
[[Θ; Γ ` e :©A]] θ γ δ
{v. [[∆, a : A B q : prop]] θ (γ, v) δ}

[[Θ; Γ; ∆ B {p} : spec]] θ γ δ = if [[Θ; Γ; ∆ B p : prop]] θ γ δ = >P(H) then > else ⊥
[[Θ; Γ; ∆ B S1 ⊕ S2 : spec]] θ γ δ = [[Θ; Γ; ∆ B S1 : spec]] θ γ δ [[⊕]]

[[Θ; Γ; ∆ B S2 : spec]] θ γ δ
[[Θ; Γ; ∆ B Qu : υ. S : spec]] θ γ δ = [[Q]]v∈[[ΘBυ:sort]] θ[[Θ; Γ; ∆, u : υ B S : spec]] θ γ (δ, v)
[[Θ; Γ; ∆ B Qx : A. S : spec]] θ γ δ = [[Q]]v∈[[ΘBA:sort]] θ[[Θ; Γ, x : A; ∆ B S : spec]] θ (γ, v) δ
[[Θ; Γ; ∆ B Qα : κ. S : spec]] θ γ δ = [[Q]]τ∈[[ΘBκ:sort]] θ[[Θ, α : κ; Γ; ∆ B S : spec]] (θ, τ) γ δ

[[&]] = ∧
[[||]] = ∨
[[⇒>]] = ⊃

[[∀]] =
∧

[[∃]] =
∨

Figure 3.7: Interpretation of Specifications

95 The Semantics of Separation Logic
Lemma 27. (Weakening and Strengthening)

1. If Θ; Γ; ∆ B p : ω, then Θ, α : κ; Γ; ∆ B p : ω.
2. If Θ; Γ; ∆ B p : ω and Θ B A : sort, then Θ; Γ, x : A; ∆ B p : ω.
3. If Θ; Γ; ∆ B p : ω and Θ B υ : sort, then Θ; Γ; ∆, u : υ B p : ω.
4. If Θ; Γ; ∆ B p : ω and Θ, α : κ; Γ; ∆ B p : ω′ and Θ B ω ≡ ω′ : sort, then

[[Θ; Γ; ∆ B p : ω]] θ γ δ = [[Θ, α : κ; Γ; ∆ B p : ω′]] (θ, τ) γ δ.
5. If Θ; Γ; ∆ B p : ω and Θ; Γ, x : A; ∆ B p : ω′ and Θ B ω ≡ ω′ : sort, then

[[Θ; Γ; ∆ B p : ω]] θ γ δ = [[Θ; Γ, x : A; ∆ B p : ω′]] θ (γ, v) δ.
6. If Θ; Γ; ∆ B p : ω and Θ; Γ; ∆, u : υ B p : ω′ and Θ B ω ≡ ω′ : sort, then

[[Θ; Γ; ∆ B p : ω]] θ γ δ = [[Θ; Γ; ∆, u : υ B p : ω′]] (θ, τ) γ (δ, v).
In the last three cases, we assume that the arguments to the semantic functions are suitably typed.
Proof. These proofs all follow from a routine induction. The extra premise in the final three
cases handles the slight non-syntax-directedness induced by the TEQSORT rule. �

Lemma 28. (Substitution for Terms and Specifications)
1. Suppose Θ ` τ : κ.

(a) If Θ, α : κ; Γ; ∆ B p : ω, then
i. Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω

ii. [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω]] θ γ δ equals
[[Θ, α : κ; Γ,∆ B p : ω]] (θ, [[Θ ` τ : κ]] θ) γ δ

(b) If Θ, α : κ; Γ; ∆ B S : spec, then
i. Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec

ii. [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec]] θ equals
[[Θ, α : κ; Γ; ∆ B S : spec]](θ, [[Θ ` τ : κ]] θ)

2. Suppose Θ; Γ ` e : A.
(a) If Θ; Γ, x : A; ∆ B p : ω, then

i. Θ; Γ; ∆ B [e/x]p : ω,
ii. [[Θ; Γ; ∆ B [e/x]p : ω]] θ γ δ equals

[[Θ; Γ, x : A; ∆ B p : ω]] θ (γ, [[Θ; Γ ` e : A]] θ γ) δ

(b) If Θ; Γ, x : A; ∆ B S : spec, then
i. Θ; Γ; ∆ B [e/x]S : spec.

ii. [[Θ; Γ; ∆ B [e/x]S : spec]] θ γ δ equals
[[Θ; Γ, x : A; ∆ B S : spec]] θ (γ, [[Θ; Γ ` e : A]] θ γ) δ

3. Suppose Θ; Γ; ∆ B q : υ.
(a) If Θ; Γ; ∆, u : υ B p : ω, then

i. Θ; Γ; ∆ B [q/u]p : ω

ii. [[Θ; Γ; ∆ B [q/u]p : ω]] θ γ δ equals
[[Θ; Γ; ∆, u : υ B p : ω]] θ γ (δ, [[Θ; Γ; ∆ B q : υ]] θ γ δ)

(b) If Θ; Γ : A; ∆, u : υ B S : spec, then
i. Θ; Γ; ∆ B [q/u]S : spec

96 The Semantics of Separation Logic

Θ; Γ; ∆ B {p}c{a : A. q} ⇒> 〈p〉[c]〈a : A. q〉 : spec

Θ; Γ; ∆ B {p}c{a : A. q} ⇒> 〈p〉[c]〈a : A. q〉 : spec valid
AXEQUIV1

Θ; Γ; ∆ B 〈p〉[c]〈a : A. q〉 ⇒> {p}c{a : A. q} : spec

Θ; Γ; ∆ B 〈p〉[c]〈a : A. q〉 ⇒> {p}c{a : A. q} : spec valid
AXEQUIV2

Θ; Γ; ∆ B {P}e{a : A. P ∧ a = e} : spec

Θ; Γ; ∆ B {P}e{a : A. P ∧ a = e} : spec valid
AXRETURN

Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e
′} : spec

Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e
′} : spec valid

AXASSIGN

Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec

Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec valid
AXALLOC

Θ; Γ; ∆ B {e 7→A e
′}!e{a : A. e 7→A e

′ ∧ a = e′} : spec

Θ; Γ; ∆ B {e 7→A e
′}!e{a : A. e 7→A e

′ ∧ a = e′} : spec valid
AXDEREF

Θ; Γ; ∆ B 〈p〉e〈x : A. q〉 : spec valid
Θ; Γ, x : A; ∆ B {q}c{a : B. r} : spec valid Θ; Γ, a : B; ∆ B r : prop

Θ; Γ; ∆ B {p}letv x = e in c{a : B. r} : spec valid
AXBIND

Θ; Γ; ∆ B (∀x :©A. 〈p〉x〈a : A. q〉)⇒> 〈p〉e〈a : A. q〉) : spec valid

Θ; Γ; ∆ B 〈p〉fix x :©A. e〈a : A. q〉 : spec valid
AXFIX

Figure 3.8: Basic Axioms of Specification Logic

ii. [[Θ; Γ; ∆ B [q/u]S : spec]] θ γ δ equals
[[Θ; Γ : A; ∆, u : υ B S : spec]] θ γ (δ, [[Θ; Γ; ∆ B q : υ]] θ γ δ)

Proof. The proof is at the end of the chapter. �

3.7 The Program Logic

My program logic consists of three judgments:

1. Θ; Γ; ∆ B p : prop valid, which asserts that a proposition p is valid.

2. Θ; Γ; ∆ B S : spec valid, which asserts that a specification S is valid.

3. Θ; Γ; ∆ B p ≡ q : ω, which asserts that p and q are validly equal.

The semantics of these three judgments is given as follows:

97 The Semantics of Separation Logic

Θ; Γ; ∆ B {r} ⇒> {p}c{a : A. q} : spec valid
r is a pure formula Θ; Γ; ∆ B p ⊃ r : prop valid

Θ; Γ; ∆ B {p}c{a : A. q} : spec valid
AXEXTRACT

Θ; Γ; ∆ B {r} ⇒> {p ∧ r}c{a : A. q} : spec valid

Θ; Γ; ∆ B {r} ⇒> {p}c{a : A. q} : spec valid
AXEMBED

Θ; Γ; ∆ B {S spec} ⇒> S : spec valid
AXUSEVALID

Θ; Γ; ∆, u : υ B {p}c{a : A. q} : spec valid u 6∈ FV(q)

Θ; Γ; ∆ B {∃u : υ. p}c{a : A. q} : spec valid
AXFORGETEX1

Θ; Γ, y : B; ∆ B {p}c{a : A. q} : spec valid y 6∈ FV(c) y 6∈ FV(q)

Θ; Γ; ∆ B {∃y : B. p}c{a : A. q} : spec valid
AXFORGETEX2

Θ, α : κ; Γ; ∆ B {p}c{a : A. q} : spec valid α 6∈ FV(c) u 6∈ FV(α)

Θ; Γ; ∆ B {∃α : κ. p}c{a : A. q} : spec valid
AXFORGETEX3

Θ; Γ; ∆ B {r} ⇒> {p}[e/x]c{a : A. q} : spec valid
Θ; Γ; ∆ B r ⊃ e =A e

′ : prop valid

Θ; Γ; ∆ B {r} ⇒> {p}[e′/x]c{a : A. q} : spec
AXEQUALITY

Θ; Γ; ∆ B {p′}c{a : A. q′} : spec valid
Θ; Γ; ∆ B p ⊃ p′ : prop valid Θ; Γ, a : A; ∆ B q′ ⊃ q : prop valid

Θ; Γ; ∆ B {p}c{a : A. q} : spec valid
AXCONSEQUENCE

Θ; Γ; ∆ B {p}c{a : A. q} : spec valid
Θ; Γ; ∆ B {p′}c{a : A. q′} : spec valid

Θ; Γ; ∆ B {p ∨ p′}c{a : A. q ∨ q′} : spec valid
AXDISJUNCTION

Θ; Γ; ∆ B p : prop valid

Θ; Γ; ∆ B {p} : spec valid
AXEMBEDASSERT

Θ; Γ; ∆ B S : spec Θ; Γ; ∆ B r : prop

Θ; Γ; ∆ B S ⇒> S ⊗ r : spec valid
AXFRAME

(+ all of the axioms of intuitionistic logic)

Figure 3.9: Structural Axioms of the Program Logic

98 The Semantics of Separation Logic

Θ; Γ; ∆ B S : spec valid

Θ; Γ; ∆ B S spec : prop valid

Θ; Γ; ∆ B p : prop

Θ; Γ; ∆ B {p} spec ⊃ p : prop valid

Θ; Γ; ∆ B p ≡ q : ω

Θ; Γ; ∆ B p =ω q : prop valid

(plus axioms of higher-order separation logic)

Figure 3.10: Axioms of Assertion Logic

Θ; Γ; ∆ B p : ω

Θ; Γ; ∆ B p ≡ p : ω

Θ; Γ; ∆ B p ≡ q : ω

Θ; Γ; ∆ B q ≡ p : ω

Θ; Γ; ∆ B p ≡ q : ω Θ; Γ; ∆ B q ≡ r : ω

Θ; Γ; ∆ B p ≡ r : ω

Θ; Γ; ∆ B (λx : ω. p) q : ω′

Θ; Γ; ∆ B (λx : ω. p) q ≡ [q/x]p : ω′

∆, x : ω B p x ≡ p′ x : ω′

Θ; Γ; ∆ B λx : ω. p ≡ λx : ω. p′ : ω ⇒ ω′

Θ; Γ; ∆ B p ≡ p′ : ω ⇒ ω′ Θ; Γ; ∆ B q ≡ q′ : ω

Θ; Γ; ∆ B p q ≡ p′ q′ : ω′
Θ ` τ ≡ τ ′ : κ

Θ; Γ; ∆ B τ ≡ τ ′ : κ

Θ; Γ ` e ≡ e′ : A

Θ; Γ; ∆ B e ≡ e′ : A

Θ; Γ; ∆ B p ⇐⇒ q : prop valid

Θ; Γ; ∆ B p ≡ q : prop

Θ; Γ; ∆ B p ≡ q : ω Θ B ω ≡ ω′ : sort

Θ; Γ; ∆ B p ≡ q : ω′

Figure 3.11: Equality Judgment for Assertions

99 The Semantics of Separation Logic
1. An assertion Θ; Γ; ∆ B p : prop is valid, if and only if for all θ ∈ [[θ]], γ ∈ [[Θ ` Γ]]θ, and
δ ∈ [[Θ B ∆]]θ, we have [[Θ; Γ; ∆ B p : prop]] θ γ δ = >P(H).

2. Similarly, a specification Θ; Γ; ∆ B S : spec is valid if and only if, for all θ ∈ [[θ]], γ ∈
[[Θ ` Γ]]θ, and δ ∈ [[Θ B ∆]]θ, we have [[Θ; Γ; ∆ B S : spec]] θ γ δ = >P↑(W (P(H))).

3. Finally, two assertion terms Θ; Γ; ∆ B p : ω and Θ; Γ; ∆ B q : ω are validly equal, if and
only if for all θ ∈ [[θ]], γ ∈ [[Θ ` Γ]]θ, and δ ∈ [[Θ B ∆]]θ, we have that [[∆ ` p : ω]] θ γ δ =
[[∆ ` p : ω]] θ γ δ

So this says that for any assignment of the free variables, a valid assertion p must be true, and
similarly a valid specification S must be true. Likewise, two syntactic terms p and q are validly
equal if their interpretations are equal under all environments.

The program logic consists of a set of three mutually-recursive judgments for deriving valid
assertions, specifications, and equalities. In Figure 3.8, I give the primitive rules for deriving
valid specifications of commands, and Figure 3.9, I give a collection of structural axioms. In
Figure 3.10, I give some of the rules for deriving valid assertions, and in Figure 3.11, I give rules
for deriving equalities between terms.

In Figure 3.8, the AXEQUIV1 and AXEQUIV2 axioms assert the equivalence of Hoare triples
over commands and monadic expressions. The AXRETURN axiom asserts that when we return
a value e, we can strengthen the postcondition with the assertion that the return value is e. The
AXASSIGN axiom asserts that if e points to something in the precondition, the command e := e′

ensures that in the postcondition e 7→ e′. The AXALLOC axiom asserts that allocating a new
reference newA(e) will allocate a new pointer which is the return value a, and that a 7→ e will be
star’d onto the postcondition. The AXDEREF rule asserts that if e 7→ e′ in the precondition, then
in the postcondition e 7→ e′ will continue to hold, and that the return value a = e′.

The AXBIND rule is the sequential composition rule of this logic. Because of the monadic
nature of our programming language, we can name and bind intermediate results, but of course
there is a side-condition to ensure that variables do not escape their scopes.

Finally the AXFIX rule is a fixed point induction rule for this calculus. As in LCF, this
rule looks like an induction without a base case, which makes sense since this program logic
is a partial correctness calculus. This rule generalizes to all the pointed types, but the syntactic
overhead for stating the rules gets higher as the types get larger.

In Figure 3.9, the AXEXTRACT rule takes a pure consequence of a precondition, and lifts it
to hypothetical assertion of the validity of an assertion. The intuition for this rule is that to show
the Hoare triple, we must assume p, and so this means we might as well assume r generally while
proving this triple. Conversely, The AXEMBED rule says that if we have assumed the validity
of an assertion, it does no harm to assume it while proving a Hoare triple. The AXUSEVALID

axiom states that if we know that the assertion S spec is valid, then we may as well assume that S
is valid, and the AXEMBEDASSERT says that valid assertions can be embedded in specifications.

The AXEQUALITY rule lets us rewrite programs using equational reasoning, and the AX-
FORGETEX axiom lets us drop existentials from preconditions. The AXCONSEQUENCE rule is
just the rule of consequence, and the AXDISJUNCTION rule is just the rule of disjunction, both
familiar from Hoare logic. However, it is worth pointing out that my language does not validate
the rule of conjunction, as a consequence of having a language with a continuation semantics.

100 The Semantics of Separation Logic
Finally, the AXFRAME schema gives the frame rule. My logic supports the higher-order

frame rule, and so we need to define a syntactic frame operator S ⊗ r to act on arbitrary specifi-
cations.

{p}c{a : A. q} ⊗ r = {p ∗ r}c{a : A. q ∗ r}
〈p〉c〈a : A. q〉 ⊗ r = 〈p ∗ r〉c〈a : A. q ∗ r〉
{p} ⊗ r = {p}
(S1 & S2)⊗ r = S1 ⊗ r & S2 ⊗ r
(S1 || S2)⊗ r = S1 ⊗ r || S2 ⊗ r
(S1 ⇒> S2)⊗ r = S1 ⊗ r ⇒> S2 ⊗ r
(∀x : ω. S)⊗ r = ∀x : ω. (S ⊗ r)
(∃x : ω. S)⊗ r = ∃x : ω. (S ⊗ r)

This is just the familiar action of the frame rule on Hoare triples. It does nothing to the validity
assertion {p}, and distributes over all the other connectives.

Framing is well-defined, and corresponds precisely to the semantic frame rule we considered
earlier in the chapter.
Proposition 8. (Syntactic Well-Formedness of Frame Operator) If Θ; Γ; ∆ B S : spec and
Θ; Γ; ∆ B p : prop, then we define Θ; Γ; ∆ B S ⊗ p : spec.
Proof. By structural induction on specifications. �

More interesting than the syntactic well-formedness of the frame operator is its semantic
well-formedness.
Lemma 29. (Syntactic Framing is Semantic Framing) If Θ; Γ; ∆ B S : spec and Θ; Γ; ∆ B r :
prop, then for suitably typed θ, γ and δ, [[Θ; Γ; ∆ B S ⊗ r : spec]] θ γ δ equals
[[Θ; Γ; ∆ B S : spec]] θ γ δ ⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ.

Proof. The proof is at the end of the chapter. �

The distinctive axioms of the assertion logic are far fewer. In Figure 3.10, I give only three
rules tailored to this particular program logic. One for embedding specifications in assertions,
another for extracting assertions out of specifications, and the last says that equality derivations
entail equality assertions.

All the other rules are just the axioms of higher-order separation logic [6]. These include
all the axioms of separation logic, and all the axioms of higher-order logic. In addition, many
modal properties such as purity can be expressed internally using higher-order predicates. (For
example, we can define purity as the second-order predicate Pure(P) ≡ ∀Q : prop. P ∗Q ⇐⇒
P ∧ Q.) The only caveat worth mentioning is that when forming sets by comprehension, the
comprehending predicate must be a pure one.

Likewise, the valid equality judgment in Figure 3.11 is fairly minimal: it contains the β and
η rules for functions, as well as inheriting the equality judgments for types and terms.

With all the buildup so far, it is easy to prove the following soundness theorem:
Theorem 1. (Soundness of the Program Logic)

1. If Θ; Γ; ∆ B p : prop valid, then Θ; Γ; ∆ B p : prop is valid.
2. If Θ; Γ; ∆ B S : spec valid, the Θ; Γ; ∆ B S : spec is valid.
3. If Θ; Γ; ∆ B p ≡ q : ω, then p and q are validly equal.

101 The Semantics of Separation Logic
Proof. The proof of these three theorems follows from a mutual structural induction. The sound-
ness of each atomic rule for the two validity judgments is proven in the next section. The sound-
ness of the rules for equality are a consequence of the equality rules we have already proven, and
the cartesian closure of Set. �

3.8 Correctness Proofs

3.8.1 Substitution Theorems
Lemma. (28, page 28: Substitution for Terms and Specifications)

1. Suppose Θ ` τ : κ.
(a) If Θ, α : κ; Γ; ∆ B p : ω, then

i. Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω

ii. [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω]] θ γ δ equals
[[Θ, α : κ; Γ,∆ B p : ω]] (θ, [[Θ ` τ : κ]] θ) γ δ

(b) If Θ, α : κ; Γ; ∆ B S : spec, then
i. Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec

ii. [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec]] θ equals
[[Θ, α : κ; Γ; ∆ B S : spec]](θ, [[Θ ` τ : κ]] θ)

2. Suppose Θ; Γ ` e : A.
(a) If Θ; Γ, x : A; ∆ B p : ω, then

i. Θ; Γ; ∆ B [e/x]p : ω,
ii. [[Θ; Γ; ∆ B [e/x]p : ω]] θ γ δ equals

[[Θ; Γ, x : A; ∆ B p : ω]] θ (γ, [[Θ; Γ ` e : A]] θ γ) δ

(b) If Θ; Γ, x : A; ∆ B S : spec, then
i. Θ; Γ; ∆ B [e/x]S : spec.

ii. [[Θ; Γ; ∆ B [e/x]S : spec]] θ γ δ equals
[[Θ; Γ, x : A; ∆ B S : spec]] θ (γ, [[Θ; Γ ` e : A]] θ γ) δ

3. Suppose Θ; Γ; ∆ B q : υ.
(a) If Θ; Γ; ∆, u : υ B p : ω, then

i. Θ; Γ; ∆ B [q/u]p : ω

ii. [[Θ; Γ; ∆ B [q/u]p : ω]] θ γ δ equals
[[Θ; Γ; ∆, u : υ B p : ω]] θ γ (δ, [[Θ; Γ; ∆ B q : υ]] θ γ δ)

(b) If Θ; Γ : A; ∆, u : υ B S : spec, then
i. Θ; Γ; ∆ B [q/u]S : spec

ii. [[Θ; Γ; ∆ B [q/u]S : spec]] θ γ δ equals
[[Θ; Γ : A; ∆, u : υ B S : spec]] θ γ (δ, [[Θ; Γ; ∆ B q : υ]] θ γ δ)

Proof. First, assume Θ ` τ : κ, and Θ, α : κ; Γ; ∆ B p : ω, and Θ, α : κ; Γ; ∆ B S : spec.
Now, we proceed by mutual induction on the derivation of p and S:

1. Case TTYPE: Θ, α : κ; Γ; ∆ B τ ′ : κ′

First, the syntax:

102 The Semantics of Separation Logic

1 By inversion, we know Θ, α : κ ` ∆
2 By inversion, we know Θ, α : κ ` Γ
3 By inversion, we know Θ, α : κ ` τ ′ : κ′
4 By substitution, Θ ` [τ/α]∆
5 By substitution, Θ ` [τ/α]Γ
6 By substitution, Θ ` [τ/α]τ ′ : κ′

7 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]τ ′ : κ′

For semantics, [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]τ ′ : κ′]] θ γ δ

= [[Θ ` [τ/α]τ ′ : κ′]] θ Semantics
= [[Θ, α : κ ` τ ′ : κ′]] (θ, [[Θ ` τ : κ]] θ) Substitution thm
= [[Θ, α : κ; Γ; Θ B τ ′ : κ′]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

2. Case TEXPR: Θ, α : κ; Γ; ∆ B e : A

First, the syntax:

1 By inversion, we know Θ, α : κ ` ∆
2 By inversion, we know Θ, α : κ; Γ ` e : A
3 By substitution, we know Θ ` [τ/α]∆
4 By substitution, we know Θ; [τ/α]Γ ` [τ/α]e : [τ/α]A
5 By rule, we know Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]e : [τ/α]A

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]e : [τ/α]A]] θ γ δ

= [[Θ; [τ/α]Γ ` [τ/α]e : [τ/α]A]] θ γ Semantics
= [[Θ; Γ ` e : A]] (θ, [[Θ ` τ : κ]] θ) γ Substitution
= [[Θ, α : κ; Γ; ∆ B e : A]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

3. Case THYP: Θ, α : κ; Γ; ∆ B u : υ

First, the syntax:

1 By inversion, we know Θ, α : κ ` Γ
2 By inversion, we know Θ, α : κ ` ∆
3 By substitution, we know Θ ` [τ/α]Γ
4 By substitution, we know Θ ` [τ/α]∆
5 By rule, we know Θ; [τ/α]Γ; [τ/α]∆ B u : [τ/α]A

Next, consider [[Θ; [τ/α]Γ; [τ/α]∆ B u : [τ/α]A]] θ γ δ

103 The Semantics of Separation Logic

= πu(δ) Semantics
= [[Θ, α : κ; Γ; ∆ B u : A]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

4. Case TABS1: Θ, α : κ; Γ; ∆ B λ̂u : υ′. p : υ′ ⇒ υ

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆, u : υ′ B p : υ
2 By induction, Θ; [τ/α]Γ; [τ/α]∆, u : [τ/α]υ′ B [τ/α]p : [τ/α]υ

3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B λ̂u : [τ/α]υ′. [τ/α]p : [τ/α]υ′ ⇒ [τ/α]υ

4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂u : υ′. p) : [τ/α](υ′ ⇒ υ)

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂u : υ′. p) : [τ/α](υ′ ⇒ υ)]] θ γ δ

= λv. [[Θ; [τ/α]Γ; [τ/α]∆, u : [τ/α]υ′ B [τ/α]p : [τ/α]υ]] θ γ (δ, v) Semantics
= λv. [[Θ, α : κ; Γ; ∆, u : υ′ B p : υ]] (θ, [[Θ ` τ : κ]] θ) γ (δ, v) Induction
= [[Θ, α : κ; Γ; ∆ B λ̂u : υ′. p : υ′ ⇒ υ]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

5. Case TABS2: Θ, α : κ; Γ; ∆ B λ̂x : A. p : A⇒ υ

First, the syntax:

1 By inversion, Θ, α : κ; Γ, x : A; ∆ B p : υ
2 By induction, Θ; [τ/α]Γ, x : [τ/α]A; [τ/α]∆ B [τ/α]p : [τ/α]υ

3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B λ̂x : [τ/α]A. [τ/α]p : [τ/α]A⇒ [τ/α]υ

4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂x : A. p) : [τ/α](A⇒ υ)

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂x : A. p) : [τ/α](A⇒ υ)]] θ γ δ

= λv. [[Θ; [τ/α]Γ, x : [τ/α]A; [τ/α]∆ B [τ/α]p : [τ/α]υ]] θ (γ, v) δ Semantics
= λv. [[Θ, α : κ; Γ, x : A; ∆ B p : υ]] (θ, [[Θ ` τ : κ]] θ) (γ, v) δ Induction
= [[Θ, α : κ; Γ; ∆ B λ̂x : A. p : A⇒ υ]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

6. Case TABS3: Θ, α : κ; Γ; ∆ B λ̂β : κ′. p : κ′ ⇒ υ

First, the syntax:

104 The Semantics of Separation Logic

1 By inversion, Θ, α : κ, β : κ′; Γ; ∆ B p : υ
2 By induction, Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]υ

3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B λ̂β : κ′. [τ/α]p : κ′ ⇒ [τ/α]υ

4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂β : κ′. p) : [τ/α](κ′ ⇒ υ)

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂β : κ′. p) : [τ/α](κ′ ⇒ υ)]] θ γ δ

= λτ ′. [[Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]υ]] (θ, τ ′) γ δ Semantics
= λτ ′. [[Θ, α : κ, β : κ′; Γ; ∆ B p : υ]] (θ, [[Θ ` τ : κ]] θ, τ ′) γ δ Induction
= [[Θ, α : κ; Γ; ∆ B λ̂β : κ′. p : κ′ ⇒ υ]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution. We also silently permuted the context at the second step, and made use of the
fact that β is not free in Γ, ∆ or τ .

7. Case TABSALL: Θ, α : κ; Γ; ∆ B λ̂β : κ′. p : Πβ : κ′. υ

First, the syntax:

1 By inversion, Θ, α : κ, β : κ′; Γ; ∆ B p : υ
2 By induction, Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]υ

3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B λ̂β : κ′. [τ/α]p : Πβ : κ′. [τ/α]υ

4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂β : κ′. p) : [τ/α]Πβ : κ′. υ

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](λ̂β : κ′. p) : [τ/α](Πβ : κ′. υ)]] θ γ δ

= λτ ′. [[Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]υ]] (θ, τ ′) γ δ Semantics
= λτ ′. [[Θ, α : κ, β : κ′; Γ; ∆ B p : υ]] (θ, [[Θ ` τ : κ]] θ, τ ′) γ δ Induction
= [[Θ, α : κ; Γ; ∆ B λ̂β : κ′. p : Πβ : κ′. υ]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution. We also silently permuted the context at the second step, and made use of the
fact that β is not free in Γ or ∆.

8. Case TAPP: Θ, α : κ; Γ; ∆ B p q : υ

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B p : ω ⇒ υ
2 By inversion, Θ, α : κ; Γ; ∆ B q : ω
3 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α](ω ⇒ υ)
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]q : [τ/α]ω
5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p [τ/α]q : [τ/α]υ
6 By subst def, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p q) : [τ/α]υ

105 The Semantics of Separation Logic

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p q) : [τ/α]υ]] θ γ δ

=
([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α](ω ⇒ υ)]] θ γ δ)

([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]q : [τ/α]ω]] θ γ δ)
Semantics

=
([[Θ, α : κ; Γ; ∆ B p : ω ⇒ υ]] (θ, [[Θ ` τ : κ]] θ) γ δ)

([[Θ, α : κ; Γ; ∆ B q : ω]] (θ, [[Θ ` τ : κ]] θ) γ δ)
Induction

= [[Θ, α : κ; Γ; ∆ B p q : υ]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

9. Case TAPPALL: Θ, α : κ; Γ; ∆ B p [τ ′] : [τ ′/β]υ

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B p : Πβ : κ′. υ
2 By inversion, Θ, α : κ; Γ; ∆ B τ ′ : κ′

3 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α](Πβ : κ′. υ)
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]τ ′ : κ′

5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p [τ/α][τ ′] : [τ/α, [τ/α]τ ′/β]υ
6 By subst def, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p [τ ′]) : [τ/α, [τ/α]τ ′/β]υ

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p [τ ′]) : [τ/α][τ ′/β]υ]] θ γ δ

=
([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α](Πβ : κ′. υ)]] θ γ δ)

([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]τ ′ : κ′]] θ γ δ)
Semantics

=
([[Θ, α : κ; Γ; ∆ B p : Πβ : κ′. υ]] (θ, [[Θ ` τ : κ]] θ) γ δ)

([[Θ, α : κ; Γ; ∆ B τ ′ : κ′]] (θ, [[Θ ` τ : κ]] θ) γ δ)
Induction

= [[Θ, α : κ; Γ; ∆ B p [τ ′] : [τ ′/β]υ]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

10. Case TCONST:
First, the syntax:

1 By inversion, Θ, α : κ ` Γ
2 By inversion, Θ, α : κ ` ∆
3 By substitution, Θ ` [τ/α]Γ
4 By substitution, Θ ` [τ/α]∆
5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B c : prop

For semantics consider [[Θ; [τ/α]Γ; [τ/α]∆ B c : prop]] θ γ δ

= [[c]]0 Semantics
= [[Θ, α : κ; Γ; ∆ B c : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

106 The Semantics of Separation Logic
11. Case TBINARY: Θ, α : κ; Γ; ∆ B p⊕ q : prop

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B p : prop
2 By inversion, Θ, α : κ; Γ; ∆ B q : prop
3 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]q : prop
5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p⊕ [τ/α]q : [τ/α]prop
6 By subst def, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p⊕ q) : prop

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p⊕ q) : prop]] θ γ δ

=
([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop]] θ γ δ) [[⊕]]2

([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]q : prop]] θ γ δ)
Semantics

=
([[Θ, α : κ; Γ; ∆ B p : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ)[[⊕]]2

([[Θ, α : κ; Γ; ∆ B q : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ)
Induction

= [[Θ, α : κ; Γ; ∆ B p⊕ q : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

12. Case TQUANTIFY1: Θ, α : κ; Γ; ∆ B Qu : υ. p : prop

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆, u : υ B p : prop
2 By induction, Θ; [τ/α]Γ; [τ/α]∆, u : [τ/α]υ B [τ/α]p : prop
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B Qu : [τ/α]υ. [τ/α]p : prop
4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qu : υ. p) : prop

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qu : υ. p) : prop]] θ γ δ

=
[[Q]]v∈[[ΘB[τ/α]υ:sort]] θ

[[Θ; [τ/α]Γ; [τ/α]∆, u : [τ/α]υ B [τ/α]p : prop]] θ γ (δ, v)
Semantics

=
[[Q]]v∈[[Θ,α:κBυ:sort]] (θ,[[Θ`τ :κ]] θ)

[[Θ, α : κ; Γ; ∆, u : υ B p : prop]] (θ, [[Θ ` τ : κ]] θ) γ (δ, v)
Induction

= [[Θ, α : κ; Γ; ∆ B Qu : υ. p : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

13. Case TQUANTIFY2: Θ, α : κ; Γ; ∆ B Qx : A. p : prop

First, the syntax:

1 By inversion, Θ, α : κ; Γ, x : A; ∆ B p : prop
2 By induction, Θ; [τ/α]Γ, x : [τ/α]A; [τ/α]∆ B [τ/α]p : prop
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B Qx : [τ/α]A. [τ/α]p : prop
4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qx : A. p) : prop

107 The Semantics of Separation Logic
For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qx : A. p) : prop]] θ γ δ

=
[[Q]]v∈[[ΘB[τ/α]A:sort]] θ

[[Θ; [τ/α]Γ, x : [τ/α]A; [τ/α]∆ B [τ/α]p : prop]] θ (γ, v) δ
Semantics

=
[[Q]]v∈[[Θ,α:κBA:sort]] (θ,[[Θ`τ :κ]] θ)

[[Θ, α : κ; Γ, x : A; ∆ B p : prop]] (θ, [[Θ ` τ : κ]] θ) (γ, v) δ
Induction

= [[Θ, α : κ; Γ; ∆ B Qx : A. p : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

14. Case TQUANTIFY3: Θ, α : κ; Γ; ∆ B Qβ : κ′. p : prop

First, the syntax:

1 By inversion, Θ, α : κ, β : κ′; Γ; ∆ B p : prop
2 By induction, Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B Qβ : κ′. [τ/α]p : prop
4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qβ : κ′. p) : prop

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qβ : κ′. p) : prop]] θ γ δ

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop]] (θ, τ ′) γ δ
Semantics

=
[[Q]]τ ′∈[[Θ,α:κBκ′:sort]] (θ,[[Θ`τ :κ]] θ)

[[Θ, α : κ, β : κ′; Γ; ∆ B p : prop]] (θ, [[Θ ` τ : κ]] θ, τ ′) γ (δ, v)
Induction

= [[Θ; Γ; ∆ B Qβ : κ′. p : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution. We also silently permute the context in the second line.

15. Case TEQUAL: Θ, α : κ; Γ; ∆ B p =ω q : prop

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B p : ω
2 By inversion, Θ, α : κ; Γ; ∆ B q : ω
3 By inversion, Θ, α : κ B ω : sort
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω
5 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]q : [τ/α]ω
6 By substitution, Θ B [τ/α]ω : sort
7 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p =ω q) : prop

For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](p =ω q) : prop]] θ γ δ

= if [[[τ/α]p]]θ γ δ = [[[τ/α]q]]θ γ δ then > else ⊥ Semantics
= if [[p]](θ, [[Θ ` τ : κ]]θ) γ δ = [[q]](θ, [[Θ ` τ : κ]]θ) γ δ then > else ⊥ Induction
= [[Θ, α : κ; Γ; ∆ B (p =ω q) : prop]] (θ, [[Θ ` τ : κ]]θ) γ δ Semantics

108 The Semantics of Separation Logic
The correctness of the application of γ and δ follows from the equations for contexts under
substitution. We also need to use the equality of sorts under substitution to justify forming
the equality in the third line.

16. Case TPOINTSTO: Θ, α : κ; Γ; ∆ B e 7→A e
′ : prop

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B e : ref A
2 By inversion, Θ, α : κ; Γ; ∆ B e′ : A
3 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]e : [τ/α]ref A
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]e′ : [τ/α]A
5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](e 7→A e

′) : prop

For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](e 7→A e
′) : prop]] θ γ δ

=
[[Θ; [τ/α]Γ ` [τ/α]e : [τ/α]ref A]] θ γ
7→
[[Θ; [τ/α]Γ ` [τ/α]e′ : [τ/α]A]] θ γ

Semantics

=
[[Θ, α : κ; Γ ` e : ref A]] (θ, [[Θ ` τ : κ]] θ) γ
7→
[[Θ, α : κ; Γ ` e′ : A]] (θ, [[Θ ` τ : κ]] θ) γ

Induction

= [[Θ, α : κ; Γ; ∆ B e 7→A e
′ : prop]] (θ, [[Θ ` τ : κ]] θ) γ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

17. Case TEQSORT: Θ, α : κ; Γ; ∆ B p : ω

First, the syntax:

1 By inversion, Θ, α : κ B ω ≡ ω′ : sort
2 By inversion, Θ, α : κ; Γ; ∆ B p : ω′

3 By substitution, Θ B [τ/α]ω ≡ [τ/α]ω′ : sort
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω′

5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω

For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω]] θ γ δ

= [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : [τ/α]ω′]] θ γ δ Semantics
= [[Θ, α : κ; Γ; ∆ B p : ω′]] (θ, [[Θ ` τ : κ]] θ) γ δ Induction
= [[Θ, α : κ; Γ; ∆ B p : ω]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

18. Case TSPEC: Θ, α : κ; Γ; ∆ B S spec : prop:
First, the syntax:

109 The Semantics of Separation Logic
1 By inversion, Θ, α : κ; Γ; ∆ B S : spec
2 By mutual induction Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S spec : prop

For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S spec : prop]] θ γ δ

= if [[[τ/α]S]] θ γ δ = > then > else ⊥ Semantics
= if [[S]] (θ, [[Θ ` τ : κ]] θ) γ δ = > then > else ⊥ Induction
= [[Θ, α : κ; Γ; ∆ B S spec : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

19. Case SPECTRIPLE: Θ, α : κ; Γ; ∆ B {p}c{a : A. q} : spec

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B p : prop
2 By inversion, Θ, α : κ; Γ; ∆ B [c] :©A
3 By inversion, Θ, α : κ; Γ; ∆, a : A B q : prop
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop
5 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α][c] : [τ/α]© A
6 By induction, Θ; [τ/α]Γ; [τ/α]∆, [τ/α]a : A B [τ/α]q : prop
7 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]({p}c{a : A. q}) : spec

For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]({p}c{a : A. q}) : spec]] θ; γ δ

=
{[[Θ; [τ/α]Γ; [τ/α]∆ B p : prop]] θ γ δ}
[[Θ; [τ/α]Γ ` [τ/α]c÷ A]] θ γ δ
{v. [[Θ; [τ/α]Γ, a : A; [τ/α]∆ B q : prop]] θ (γ, v) δ}

Semantics

=
{[[Θ, α : κ; Γ; ∆ B p : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ}
[[Θ, α : κ; Γ ` c÷ A]] (θ, [[Θ ` τ : κ]] θ) γ δ
{v. [[Θ, α : κ; Γ, a : A; ∆ B q : prop]] (θ, [[Θ ` τ : κ]] θ) (γ, v) δ}

Induction

= [[Θ; Γ; ∆ B ({p}c{a : A. q}) : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

20. Case SPECMTRIPLE: Θ, α : κ; Γ; ∆ B 〈p〉e〈a : A. q〉 : spec

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B p : prop
2 By inversion, Θ, α : κ; Γ; ∆ B e :©A
3 By inversion, Θ, α : κ; Γ; ∆, a : A B q : prop
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop
5 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]e : [τ/α]© A
6 By induction, Θ; [τ/α]Γ; [τ/α]∆, [τ/α]a : A B [τ/α]q : prop
7 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](〈p〉e〈a : A. q〉) : spec

110 The Semantics of Separation Logic
For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](〈p〉e〈a : A. q〉) : spec]] θ; γ δ

=
{[[Θ; [τ/α]Γ; [τ/α]∆ B p : prop]] θ γ δ}
[[Θ; [τ/α]Γ ` [τ/α]e :©A]] θ γ δ
{v. [[Θ; [τ/α]Γ, a : A; [τ/α]∆ B q : prop]] θ (γ, v) δ}

Semantics

=
{[[Θ, α : κ; Γ; ∆ B p : prop]] (θ, [[Θ ` τ : κ]] θ) γ δ}
[[Θ, α : κ; Γ ` e :©A]] (θ, [[Θ ` τ : κ]] θ) γ δ
{v. [[Θ, α : κ; Γ, a : A; ∆ B q : prop]] (θ, [[Θ ` τ : κ]] θ) (γ, v) δ}

Induction

= [[Θ; Γ; ∆ B (〈p〉e〈a : A. q〉) : spec]] (θ, [[Θ ` τ : κ]] θ); γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

21. Case SPECQUANTIFY1: Θ, α : κ; Γ; ∆ B Qu : υ. S : spec

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆, u : υ B S : spec
2 By induction, Θ; [τ/α]Γ; [τ/α]∆, u : [τ/α]υ B [τ/α]S : spec
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B Qu : [τ/α]υ. [τ/α]S : spec
4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qu : υ. S) : spec

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qu : υ. S) : spec]] θ γ δ

=
[[Q]]v∈[[ΘB[τ/α]υ:sort]] θ

[[Θ; [τ/α]Γ; [τ/α]∆, u : [τ/α]υ B [τ/α]S : spec]] θ γ (δ, v)
Semantics

=
[[Q]]v∈[[Θ,α:κBυ:sort]] (θ,[[Θ`τ :κ]] θ)

[[Θ, α : κ; Γ; ∆, u : υ B S : spec]] (θ, [[Θ ` τ : κ]] θ) γ (δ, v)
Induction

= [[Θ, α : κ; Γ; ∆ B Qu : υ. S : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

22. Case SPECQUANTIFY2: Θ, α : κ; Γ; ∆ B Qx : A. S : spec

First, the syntax:

1 By inversion, Θ, α : κ; Γ, x : A; ∆ B S : spec
2 By induction, Θ; [τ/α]Γ, x : [τ/α]A; [τ/α]∆ B [τ/α]S : spec
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B Qx : [τ/α]A. [τ/α]S : spec
4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qx : A. S) : spec

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qx : A. S) : spec]] θ γ δ

=
[[Q]]v∈[[ΘB[τ/α]A:sort]] θ

[[Θ; [τ/α]Γ, x : [τ/α]A; [τ/α]∆ B [τ/α]S : spec]] θ (γ, v) δ
Semantics

=
[[Q]]v∈[[Θ,α:κBA:sort]] (θ,[[Θ`τ :κ]] θ)

[[Θ, α : κ; Γ, x : A; ∆ B S : spec]] (θ, [[Θ ` τ : κ]] θ) (γ, v) δ
Induction

= [[Θ, α : κ; Γ; ∆ B Qx : A. S : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

111 The Semantics of Separation Logic

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

23. Case SPECQUANTIFY3: Θ, α : κ; Γ; ∆ B Qβ : κ′. S : spec

First, the syntax:

1 By inversion, Θ, α : κ, β : κ′; Γ; ∆ B S : spec
2 By induction, Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B Qβ : κ′. [τ/α]S : spec
4 By def of subst, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qβ : κ′. S) : spec

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](Qβ : κ′. S) : spec]] θ γ δ

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec]] (θ, τ ′) γ δ
Semantics

=
[[Q]]τ ′∈[[Θ,α:κBκ′:sort]] (θ,[[Θ`τ :κ]] θ)

[[Θ, α : κ, β : κ′; Γ; ∆ B S : spec]] (θ, [[Θ ` τ : κ]] θ, τ ′) γ (δ, v)
Induction

= [[Θ, α : κ; Γ; ∆ B Qβ : κ′. S : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution. We also silently permute the context in the second line.

24. Case SPECBINARY: Θ, α : κ; Γ; ∆ B S ⊕ S ′ : spec

First, the syntax:

1 By inversion, Θ, α : κ; Γ; ∆ B S : spec
2 By inversion, Θ, α : κ; Γ; ∆ B S ′ : spec
3 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec
4 By induction, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S ′ : spec
5 By rule, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S ⊕ [τ/α]S ′ : spec
6 By subst def, Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](S ⊕ S ′) : spec

For semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α](S ⊕ S ′) : spec]] θ γ δ

=
([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S : spec]] θ γ δ) [[⊕]]

([[Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]S ′ : spec]] θ γ δ)
Semantics

=
([[Θ, α : κ; Γ; ∆ B S : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ)[[⊕]]

([[Θ, α : κ; Γ; ∆ B S ′ : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ)
Induction

= [[Θ, α : κ; Γ; ∆ B S ⊕ S ′ : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

25. Case TSPEC: Θ, α : κ; Γ; ∆ B {p} : spec:
First, the syntax:

112 The Semantics of Separation Logic

1 By inversion, Θ, α : κ; Γ; ∆ B p : prop
2 By mutual induction Θ; [τ/α]Γ; [τ/α]∆ B [τ/α]p : prop
3 By rule, Θ; [τ/α]Γ; [τ/α]∆ B {[τ/α]p} : spec

For the semantics, consider [[Θ; [τ/α]Γ; [τ/α]∆ B {[τ/α]p} : spec]] θ γ δ

= if [[[τ/α]p]] θ γ δ = > then > else ⊥ Semantics
= if [[p]] (θ, [[Θ ` τ : κ]] θ) γ δ = > then > else ⊥ Induction
= [[Θ, α : κ; Γ; ∆ B {p} : spec]] (θ, [[Θ ` τ : κ]] θ) γ δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

First, assume Θ; Γ ` e′′ : B, and Θ; Γ, y : B; ∆ B p : ω, and Θ; Γ, y : B; ∆ B S : spec.
Now, we proceed by mutual induction on the derivation of p and S:

1. Case TTYPE: Θ; Γ, y : B; ∆ B τ ′ : κ′

First, the syntax:

1 By inversion, we know Θ ` ∆
2 By inversion, we know Θ ` Γ, y : B
3 By inversion, we know Θ ` τ ′ : κ′
4 By inversion, we know Θ ` Γ
5 By rule, Θ; Γ; ∆ B τ ′ : κ′

For semantics, [[Θ; Γ; ∆ B [e′′/y]τ ′ : κ′]] θ γ δ

= [[Θ ` τ ′ : κ′]] θ Semantics
= [[Θ; Γ, y : B; Θ B τ ′ : κ′]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

2. Case TEXPR: Θ; Γ, y : B; ∆ B e : A

First, the syntax:

1 By inversion, we know Θ ` ∆
2 By inversion, we know Θ; Γ, y : B ` e : A
3 By substitution, we know Θ; Γ ` [e′′/y]e : A
4 By rule, we know Θ; Γ; ∆ B [e′′/y]e : A

For semantics, consider [[Θ; Γ; ∆ B [e′′/y]e : A]] θ γ δ

= [[Θ; Γ ` [e′′/y]e : A]] θ γ Semantics
= [[Θ; Γ ` e : A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) Substitution
= [[Θ; Γ, y : B; ∆ B e : A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

113 The Semantics of Separation Logic
3. Case THYP: Θ; Γ, y : B; ∆ B u : υ

First, the syntax:

1 By inversion, we know Θ ` Γ, y : B
2 By inversion, we know Θ ` ∆
3 By inversion, we know Θ ` Γ
4 By rule, we know Θ; Γ; ∆ B u : A
5 Hence, we know Θ; Γ; ∆ B [e′′/y]u : A

Next, consider [[Θ; ∆; Γ B u : A]] θ γ δ

= πu(δ) Semantics
= [[Θ; Γ, y : B; ∆ B u : A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

4. Case TABS1: Θ; Γ, y : B; ∆ B λ̂u : υ′. p : υ′ ⇒ υ

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆, u : υ′ B p : υ
2 By induction, Θ; Γ; ∆, u : υ′ B [e′′/y]p : υ

3 By rule, Θ; Γ; ∆ B λ̂u : υ′. [e′′/y]p : υ′ ⇒ υ

4 By def of subst, Θ; Γ; ∆ B [e′′/y](λ̂u : υ′. p) : υ′ ⇒ υ

For semantics, consider [[Θ; Γ; ∆ B (λ̂u : υ′. [e′′/y]p) : υ′ ⇒ υ]] θ γ δ

= λv. [[Θ; Γ; ∆, u : υ′ B [e′′/y]p : υ]] θ γ (δ, v) Semantics
= λv. [[Θ; Γ, y : B; ∆, u : υ′ B p : υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) (δ, v) Induction
= [[Θ; Γ, y : B; ∆ B λ̂u : υ′. p : υ′ ⇒ υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

5. Case TABS2: Θ; Γ, y : B; ∆ B λ̂x : A. p : A⇒ υ

First, the syntax:

1 By inversion, Θ; Γ, y : B, x : A; ∆ B p : υ
2 By induction, Θ; Γ, x : A; ∆ B [e′′/y]p : υ

3 By rule, Θ; Γ; ∆ B λ̂x : A. [e′′/y]p : A⇒ υ

4 By def of subst, Θ; Γ; ∆ B [e′′/y](λ̂x : A. p) : (A⇒ υ)

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](λ̂x : A. p) : (A⇒ υ)]] θ γ δ

114 The Semantics of Separation Logic

= λv. [[Θ; Γ, x : A; ∆ B [e′′/y]p : υ]] θ (γ, v) δ Semantics
= λv. [[Θ; Γ, y : B, x : A; ∆ B p : υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ, v) δ Induction
= [[Θ; Γ, y : B; ∆ B λ̂x : A. p : A⇒ υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

We silently permute arguments in the second line.

6. Case TABS3: Θ; Γ, y : B; ∆ B λ̂β : κ′. p : κ′ ⇒ υ

First, the syntax:

1 By inversion, Θ, β : κ′; Γ, y : B; ∆ B p : υ
2 By weakening, Θ, β : κ′; Γ ` e′′ : B
3 By induction, Θ, β : κ′; Γ; ∆ B [e′′/y]p : υ

4 By rule, Θ; Γ; ∆ B λ̂β : κ′. [e′′/y]p : κ′ ⇒ υ

5 By def of subst, Θ; Γ; ∆ B [e′′/y](λ̂β : κ′. p) : κ′ ⇒ υ

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](λ̂β : κ′. p) : κ′ ⇒ υ]] θ γ δ

= λτ. [[Θ, β : κ′; Γ; ∆ B [e′′/y]p : υ]] (θ, τ) γ δ Semantics
= λτ. [[Θ, β : κ′; Γ, y : B; ∆ B p : υ]] (θ, τ) (γ, [[Θ, β : κ′; Γ ` e′′ : B]] (θ, τ) γ) δ Induction
= λτ. [[Θ, β : κ′; Γ, y : B; ∆ B p : υ]] (θ, τ) (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Strengthening
= [[Θ; Γ, y : B; ∆ B λ̂β : κ′. p : κ′ ⇒ υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

This case relies upon the fact that Γ and ∆ do not have β free and the equality of sorts
under substitution.

7. Case TABSALL: Θ; Γ, y : B; ∆ B λ̂β : κ′. p : Πβ : κ′. υ

First, the syntax:

1 By inversion, Θ, β : κ′; Γ, y : B; ∆ B p : υ
2 By weakening, Θ, β : κ′; Γ ` e′′ : B
3 By induction, Θ, β : κ′; Γ; ∆ B [e′′/y]p : υ

4 By rule, Θ; Γ; ∆ B λ̂β : κ′. [e′′/y]p : Πβ : κ′. υ

5 By def of subst, Θ; Γ; ∆ B [e′′/y](λ̂β : κ′. p) : Πβ : κ′. υ

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](λ̂β : κ′. p) : Πβ : κ′. υ]] θ γ δ

= λτ. [[Θ, β : κ′; Γ; ∆ B [e′′/y]p : υ]] (θ, τ) γ δ Semantics
= λτ. [[Θ, β : κ′; Γ, y : B; ∆, β : κ′ B p : υ]] (θ, τ) (γ, [[Θ, β : κ′; Γ ` e′′ : B]] (θ, τ) γ) δ Induction
= λτ. [[Θ, β : κ′; Γ, y : B; ∆, β : κ′ B p : υ]] (θ, τ) (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Strengthening
= [[Θ; Γ, y : B; ∆ B λ̂β : κ′. p : Πβ : κ′. υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

This case relies upon the fact that Γ and ∆ do not have β free and the equality of sorts
under substitution.

115 The Semantics of Separation Logic
8. Case TAPP: Θ; Γ, y : B; ∆ B p q : υ

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : ω ⇒ υ
2 By inversion, Θ; Γ, y : B; ∆ B q : ω
3 By induction, Θ; Γ; ∆ B [e′′/y]p : (ω ⇒ υ)
4 By induction, Θ; Γ; ∆ B [e′′/y]q : ω
5 By rule, Θ; Γ; ∆ B [e′′/y](p q) : ω ⇒ υ

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](p q) : υ]] θ γ δ

=
([[Θ; Γ; ∆ B [e′′/y]p : (ω ⇒ υ)]] θ γ δ)

([[Θ; Γ; ∆ B [e′′/y]q : ω]] θ γ δ)
Semantics

=
([[Θ; Γ, y : B; ∆ B p : ω ⇒ υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)

([[Θ; Γ, y : B; ∆ B q : ω]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)
Induction

= [[Θ; Γ, y : B; ∆ B p q : υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

9. Case TAPPALL: Θ; Γ, y : B; ∆ B p [τ ′] : [τ ′/β]υ

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : Πβ : κ′. υ
2 By inversion, Θ; Γ, y : B; ∆ B τ ′ : κ′

3 By induction, Θ; Γ; ∆ B [e′′/y]p : (Πβ : κ′. υ)
4 By induction, Θ; Γ; ∆ B τ ′ : κ′

5 By rule, Θ; Γ; ∆ B [e′′/y](p [τ ′]) : [τ/α, [τ/α]τ ′/β]υ

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](p [τ ′]) : υ]] θ γ δ

=
([[Θ; Γ; ∆ B [e′′/y]p : (Πβ : κ′. υ)]] θ γ δ)

([[Θ; Γ; ∆ B τ ′ : κ′]] θ γ δ)
Semantics

=
([[Θ; Γ, y : B; ∆ B p : Πβ : κ′. υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)

([[Θ; Γ, y : B; ∆ B τ ′ : κ′]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)
Induction

= [[Θ; Γ, y : B; ∆ B p [τ ′] : υ]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

10. Case TCONST:
First, the syntax:

1 By inversion, Θ ` Γ, y : B
2 By inversion, Θ ` ∆
3 By inversion, Θ ` Γ
4 By rule, Θ; Γ; ∆ B c : prop

116 The Semantics of Separation Logic
For semantics consider [[Θ; Γ; ∆ B [e′′/y]c : prop]] θ; γ δ

= [[c]]0 Semantics
= [[Θ; Γ, y : B; ∆ B c : prop]] θ; (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

11. Case TBINARY: Θ; Γ, y : B; ∆ B p⊕ q : prop

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : prop
2 By inversion, Θ; Γ, y : B; ∆ B q : prop
3 By induction, Θ; Γ; ∆ B [e′′/y]p : prop
4 By induction, Θ; Γ; ∆ B [e′′/y]q : prop
5 By rule, Θ; Γ; ∆ B [e′′/y]p⊕ [e′′/y]q : prop
6 By subst def, Θ; Γ; ∆ B [e′′/y](p⊕ q) : prop

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](p⊕ q) : prop]] θ γ δ

=
([[Θ; Γ; ∆ B [e′′/y]p : prop]] θ γ δ) [[⊕]]2

([[Θ; Γ; ∆ B [e′′/y]q : prop]] θ γ δ)
Semantics

=
([[Θ; Γ, y : B; ∆ B p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)[[⊕]]2

([[Θ; Γ, y : B; ∆ B q : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)
Induction

= [[Θ; Γ, y : B; ∆ B p⊕ q : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

12. Case TQUANTIFY1: Θ; Γ, y : B; ∆ B Qu : υ. p : prop

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆, u : υ B p : prop
2 By induction, Θ; Γ; ∆, u : υ B [e′′/y]p : prop
3 By rule, Θ; Γ; ∆ B Qu : υ. [e′′/y]p : prop
4 By def of subst, Θ; Γ; ∆ B [e′′/y](Qu : υ. p) : prop

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](Qu : υ. p) : prop]] θ γ δ

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ; ∆, u : υ B [e′′/y]p : prop]] θ γ (δ, v)
Semantics

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ, y : B; ∆, u : υ B p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) (δ, v)
Induction

= [[Θ; Γ; ∆ B Qu : υ. p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

13. Case TQUANTIFY2: Θ; Γ, y : B; ∆ B Qx : A. p : prop

First, the syntax:

117 The Semantics of Separation Logic
1 By inversion, Θ; Γ, y : B, x : A; ∆ B p : prop
2 By induction, Θ; Γ, x : A; ∆ B [e′′/y]p : prop
3 By rule, Θ; Γ; ∆ B Qx : A. [e′′/y]p : prop
4 By def of subst, Θ; Γ; ∆ B [e′′/y](Qx : A. p) : prop

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](Qx : A. p) : prop]] θ γ δ

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, x : A; ∆ B [e′′/y]p : prop]] θ (γ, v) δ
Semantics

=
[[Q]]v∈[[Θ,α:κBA:sort]] θ

[[Θ; Γ, y : B, x : A; ∆ B p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ, v) δ
Induction

= [[Θ; Γ, y : B; ∆ B Qx : A. p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

Here, we make use of the fact that x is not free in e′′, and we silently permute the context
as needed.

14. Case TQUANTIFY3: Θ; Γ, y : B; ∆ B Qβ : κ′. p : prop

First, the syntax:

1 By inversion, Θ, β : κ′; Γ, y : B; ∆ B p : prop
2 By weakening, Θ, β : κ′; Γ ` e′′ : B
3 By induction, Θ, β : κ′; Γ; ∆ B [e′′/y]p : prop
4 By rule, Θ; Γ; ∆ B Qβ : κ′. [e′′/y]p : prop
5 By def of subst, Θ; Γ; ∆ B [e′′/y](Qβ : κ′. p) : prop

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](Qβ : κ′. p) : prop]] θ γ δ

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; Γ; ∆ B [e′′/y]p : prop]] (θ, τ ′) γ δ
Semantics

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; Γ, y : B; ∆ B p : prop]] (θ, τ) (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ
Induction

= [[Θ; Γ; ∆ B Qβ : κ′. p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

In this case we silently use the fact that β does not occur free in e′′ or B.

15. Case TEQUAL: Θ; Γ, y : B; ∆ B p =ω q : prop

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : ω
2 By inversion, Θ; Γ, y : B; ∆ B q : ω
3 By inversion, Θ B ω : sort
4 By induction, Θ; Γ; ∆ B [e′′/y]p : ω
5 By induction, Θ; Γ; ∆ B [e′′/y]q : ω
6 By rule, Θ; Γ; ∆ B [e′′/y](p =ω q) : prop

For the semantics, consider [[Θ; Γ; ∆ B [e′′/y](p =ω q) : prop]] θ γ δ

= if [[[e′′/y]p]]θ γ δ = [[[e′′/y]q]]θ γ δ then > else ⊥ Semantics
= if [[p]] θ (γ, [[e′′]]θ γ) δ = [[q]] θ (γ, [[e′′]]θ γ) δ then > else ⊥ Induction
= [[Θ; Γ, y : B; ∆ B (p =ω q) : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

118 The Semantics of Separation Logic

16. Case TPOINTSTO: Θ; Γ, y : B; ∆ B e 7→A e
′ : prop

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B e : ref A
2 By inversion, Θ; Γ, y : B; ∆ B e′ : A
3 By induction, Θ; Γ; ∆ B [e′′/y]e : ref A
4 By induction, Θ; Γ; ∆ B [e′′/y]e′ : A
5 By rule, Θ; Γ; ∆ B [e′′/y](e 7→A e

′) : prop

For the semantics, consider [[Θ; Γ; ∆ B [e′′/y](e 7→A e
′) : prop]] θ γ δ

=
[[Θ; Γ ` [e′′/y]e : ref A]] θ γ
7→
[[Θ; Γ ` [e′′/y]e′ : A]] θ γ

Semantics

=
[[Θ; Γ, y : B ` e : ref A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ)
7→
[[Θ; Γ, y : B ` e′ : A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ)

Induction

= [[Θ; Γ, y : B; ∆ B e 7→A e
′ : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

17. Case TEQSORT: Θ; Γ, y : B; ∆ B p : ω

First, the syntax:

1 By inversion, Θ B ω ≡ ω′ : sort
2 By inversion, Θ; Γ, y : B; ∆ B p : ω′

3 By induction, Θ; Γ; ∆ B [e′′/y]p : ω′

4 By rule, Θ; Γ; ∆ B [e′′/y]p : ω

For the semantics, consider [[Θ; Γ; ∆ B [e′′/y]p : ω]] θ γ δ

= [[Θ; Γ; ∆ B [e′′/y]p : ω′]] θ γ δ Semantics
= [[Θ; Γ, y : B; ∆ B p : ω′]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Induction
= [[Θ; Γ, y : B; ∆ B p : ω]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

18. Case TSPEC: Θ; Γ, y : B; ∆ B S spec : prop:
First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B S : spec
2 By mutual induction Θ; Γ; ∆ B [e′′/y]S : spec
3 By rule, Θ; Γ; ∆ B [e′′/y]S spec : prop

119 The Semantics of Separation Logic
For the semantics, consider [[Θ; Γ; ∆ B [e′′/y]S spec : prop]] θ γ δ

= if [[[e′′/y]S]] θ γ δ = > then > else ⊥ Semantics
= if [[S]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ = > then > else ⊥ Induction
= [[Θ; Γ, y : B; ∆ B S spec : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

19. Case SPECTRIPLE: Θ; Γ, y : B; ∆ B {p}c{a : A. q} : spec

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : prop
2 By inversion, Θ; Γ, y : B; ∆ B [c] :©A
3 By inversion, Θ; Γ, y : B; ∆, a : A B q : prop
4 By induction, Θ; Γ; ∆ B [e′′/y]p : prop
5 By induction, Θ; Γ; ∆ B [[e′′/y]c] :©A
6 By induction, Θ; Γ; ∆, a : A B [e′′/y]q : prop
7 By rule, Θ; Γ; ∆ B [e′′/y]({p}c{a : A. q}) : spec

For the semantics, consider [[Θ; Γ; ∆ B [e′′/y]({p}c{a : A. q}) : spec]] θ; γ δ

=
{[[Θ; Γ; ∆ B [e′′/y]p : prop]] θ γ δ}
[[Θ; Γ ` [e′′/y]c÷ A]] θ γ
{v. [[Θ; Γ, a : A; ∆ B [e′′/y]q : prop]] θ (γ, v) δ}

Semantics

=
{[[Θ,Γ; ∆ B p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ}
[[Θ; Γ, y : B ` c÷ A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ)
{v. [[Θ; Γ, y : B, a : A; ∆ B q : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ, v) δ}

Induction

= [[Θ; Γ, y : B; ∆ B ({p}c{a : A. q}) : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

The correctness of the application of γ and δ follows from the equations for contexts under
substitution.

20. Case SPECMTRIPLE: Θ; Γ, y : B; ∆ B 〈p〉e〈a : A. q〉 : spec

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : prop
2 By inversion, Θ; Γ, y : B; ∆ B e :©A
3 By inversion, Θ; Γ, y : B; ∆, a : A B q : prop
4 By induction, Θ; Γ; ∆ B [e′′/y]p : prop
5 By induction, Θ; Γ; ∆ B [e′′/y]e :©A
6 By induction, Θ; Γ; ∆, a : A B [e′′/y]q : prop
7 By rule, Θ; Γ; ∆ B [e′′/y](〈p〉e〈a : A. q〉) : spec

120 The Semantics of Separation Logic
For the semantics, consider [[Θ; Γ; ∆ B [e′′/y](〈p〉e〈a : A. q〉) : spec]] θ; γ δ

=
{[[Θ; Γ; ∆ B [e′′/y]p : prop]] θ γ δ}
[[Θ; Γ ` [e′′/y]e :©A]] θ γ
{v. [[Θ; Γ, a : A; ∆ B [e′′/y]q : prop]] θ (γ, v) δ}

Semantics

=
{[[Θ; Γ, y : B; ∆ B p : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ}
[[Θ; Γ, y : B ` e :©A]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ)
{v. [[Θ; Γ, y : B, a : A; ∆ B q : prop]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ, v) δ}

Induction

= [[Θ; Γ, y : B; ∆ B (〈p〉e〈a : A. q〉) : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

21. Case SPECQUANTIFY1: Θ; Γ, y : B; ∆ B Qu : υ. S : spec

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆, u : υ B S : spec
2 By induction, Θ; Γ; ∆, u : υ B [e′′/y]S : spec
3 By rule, Θ; Γ; ∆ B Qu : υ. [e′′/y]S : spec
4 By def of subst, Θ; Γ; ∆ B [e′′/y](Qu : υ. S) : spec

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](Qu : υ. S) : spec]] θ γ δ

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ; ∆, u : υ B [e′′/y]S : spec]] θ γ (δ, v)
Semantics

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ, y : B; ∆, u : υ B S : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) (δ, v)
Induction

= [[Θ; Γ, y : B; ∆ B Qu : υ. S : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

22. Case SPECQUANTIFY2: Θ; Γ, y : B; ∆ B Qx : A. S : spec

First, the syntax:

1 By inversion, Θ; Γ, y : B, x : A; ∆ B S : spec
2 By induction, Θ; Γ, x : A; ∆ B [e′′/y]S : spec
3 By rule, Θ; Γ; ∆ B Qx : A. [e′′/y]S : spec
4 By def of subst, Θ; Γ; ∆ B [e′′/y](Qx : A. S) : spec

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](Qx : A. S) : spec]] θ γ δ

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, x : A; ∆ B [e′′/y]S : spec]] θ (γ, v) δ
Semantics

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, y : A, x : A; ∆ B S : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ, v) δ
Induction

= [[Θ; Γ, y : A; ∆ B Qx : A. S : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

23. Case SPECQUANTIFY3: Θ; Γ, y : A; ∆ B Qβ : κ′. S : spec

First, the syntax:

121 The Semantics of Separation Logic

1 By inversion, Θ, β : κ′; Γ, y : A; ∆ B S : spec
2 By induction, Θ, β : κ′; Γ; ∆ B [e′′/y]S : spec
3 By rule, Θ; Γ; ∆ B Qβ : κ′. [e′′/y]S : spec
4 By def of subst, Θ; Γ; ∆ B [e′′/y](Qβ : κ′. S) : spec

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](Qβ : κ′. S) : spec]] θ γ δ

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; Γ; ∆ B [e′′/y]S : spec]] (θ, τ ′) γ δ
Semantics

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, α : κ, β : κ′; Γ; ∆ B S : spec]] (θ, τ ′) (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ
Induction

= [[Θ; Γ; ∆ B Qβ : κ′. S : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

24. Case SPECBINARY: Θ; Γ, y : B; ∆ B S ⊕ S ′ : spec

First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B S : spec
2 By inversion, Θ; Γ, y : B; ∆ B S ′ : spec
3 By induction, Θ; Γ; ∆ B [e′′/y]S : spec
4 By induction, Θ; Γ; ∆ B [e′′/y]S ′ : spec
5 By rule, Θ; Γ; ∆ B [e′′/y]S ⊕ [e′′/y]S ′ : spec
6 By subst def, Θ; Γ; ∆ B [e′′/y](S ⊕ S ′) : spec

For semantics, consider [[Θ; Γ; ∆ B [e′′/y](S ⊕ S ′) : spec]] θ γ δ

=
([[Θ; Γ; ∆ B [e′′/y]S : spec]] θ γ δ) [[⊕]]

([[Θ; Γ; ∆ B [e′′/y]S ′ : spec]] θ γ δ)
Semantics

=
([[Θ; Γ, y : B; ∆ B S : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)[[⊕]]

([[Θ; Γ, y : B; ∆ B S ′ : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ)
Induction

= [[Θ; Γ, y : B; ∆ B S ⊕ S ′ : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

25. Case TSPEC: Θ; Γ, y : B; ∆ B {p} : spec:
First, the syntax:

1 By inversion, Θ; Γ, y : B; ∆ B p : prop
2 By mutual induction Θ; Γ; ∆ B [e′′/y]p : prop
3 By rule, Θ; Γ; ∆ B [e′′/y]{p} : spec

For the semantics, consider [[Θ; Γ; ∆ B [e′′/y]{p} : spec]] θ γ δ

= if [[[e′′/y]p]] θ γ δ = > then > else ⊥ Semantics
= if [[p]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ = > then > else ⊥ Induction
= [[Θ; Γ, y : B; ∆ B {p} : spec]] θ (γ, [[Θ; Γ ` e′′ : B]] θ γ) δ Semantics

122 The Semantics of Separation Logic

Finally, assume Θ; Γ; ∆ B r : υ′′, and Θ; Γ; ∆, b : υ′′ B p : ω, and Θ; Γ, y : B; ∆, b : υ′′ B
S : spec.

Now, we proceed by mutual induction on the derivation of p and S:
1. Case TTYPE: Θ; Γ; ∆, b : υ′′ B τ ′ : κ′

First, the syntax:

1 By inversion, we know Θ ` ∆, b : υ′′

2 By inversion, we know Θ ` Γ
3 By inversion, we know Θ ` ∆
4 By rule, Θ; Γ; ∆ B τ ′ : κ′

For semantics, [[Θ; Γ; ∆ B [r/b]τ ′ : κ′]] θ γ δ

= [[Θ ` τ ′ : κ′]] θ Semantics
= [[Θ; Γ; ∆, b : υ′′ B τ ′ : κ′]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

2. Case TEXPR: Θ; Γ; ∆, b : υ′′ B e : A

First, the syntax:

1 By inversion, we know Θ ` ∆, b : υ′′

2 By inversion, we know Θ ` ∆
3 By inversion, we know Θ; Γ ` e : A
4 By substitution, we know Θ; Γ ` [r/b]e : A
5 By rule, we know Θ; Γ; ∆ B [r/b]e : A

For semantics, consider [[Θ; Γ; ∆ B [r/b]e : A]] θ γ δ

= [[Θ; Γ ` e : A]] θ γ Semantics
= [[Θ; Γ; ∆, b : υ′′ B e : A]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

3. Case THYP: Θ; Γ; ∆, b : υ′′ B u : υ

There are two cases.
• Case u = b: (hence υ′′ = υ)

In this case, the syntax follows since Θ; Γ; ∆ B r : υ′′

For semantics, consider that [[Θ; Γ; ∆ B r : υ]] θ; γ δ

= [[Θ; Γ; ∆, b : υ B b : υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ]] θ γ δ) Definition

• Case u 6= b:
First, the syntax:

123 The Semantics of Separation Logic

1 By strengthening, Θ; Γ; ∆ B [r/b]u : υ

For semantics, consider that [[Θ; Γ; ∆ B [r/b]u : υ]] θ; γ δ

= πu(δ) Semantics
= [[Θ; Γ; ∆, b : υ′′ B u : υ]] θ; γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

4. Case TABS1: Θ; Γ; ∆, b : υ′′ B λ̂u : υ′. p : υ′ ⇒ υ

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′, u : υ′ B p : υ
2 By induction, Θ; Γ; ∆, u : υ′ B [r/b]p : υ

3 By rule, Θ; Γ; ∆ B λ̂u : υ′. [r/b]p : υ′ ⇒ υ

4 By def of subst, Θ; Γ; ∆ B [r/b](λ̂u : υ′. p) : υ′ ⇒ υ

For semantics, consider [[Θ; Γ; ∆ B (λ̂u : υ′. [r/b]p) : υ′ ⇒ υ]] θ γ δ

= λv. [[Θ; Γ; ∆, u : υ′ B [r/b]p : υ]] θ γ (δ, v) Semantics
= λv. [[Θ; Γ; ∆, b : υ′′, u : υ′ B p : υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ, v) Induction
= [[Θ; Γ; ∆, b : υ′′ B λ̂u : υ′. p : υ′ ⇒ υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

5. Case TABS2: Θ; Γ; ∆, b : υ′′ B λ̂x : A. p : A⇒ υ

First, the syntax:

1 By inversion, Θ; Γ, x : A; ∆, b : υ′′ B p : υ
2 By induction, Θ; Γ, x : A; ∆ B [r/b]p : υ

3 By rule, Θ; Γ; ∆ B λ̂x : A. [r/b]p : A⇒ υ

4 By def of subst, Θ; Γ; ∆ B [r/b](λ̂x : A. p) : (A⇒ υ)

For semantics, consider [[Θ; Γ; ∆ B [r/b](λ̂x : A. p) : (A⇒ υ)]] θ γ δ

= λv. [[Θ; Γ, x : A; ∆ B [r/b]p : υ]] θ (γ, v) δ Semantics
= λv. [[Θ; Γ, x : A; ∆, b : υ′′ B p : υ]] θ (γ, v) (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Induction
= [[Θ; Γ; ∆, b : υ′′ B λ̂x : A. p : A⇒ υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

We silently permute arguments in the second line.

6. Case TABS3: Θ; Γ; ∆, b : υ′′ B λ̂β : κ′. p : κ′ ⇒ υ

First, the syntax:

124 The Semantics of Separation Logic

1 By inversion, Θ, β : κ′; Γ; ∆, b : υ′′ B p : υ
2 By weakening, Θ, β : κ′; Γ; ∆ B r : υ′′

3 By induction, Θ, β : κ′; Γ; ∆ B [r/b]p : υ

4 By rule, Θ; Γ; ∆ B λ̂β : κ′. [r/b]p : κ′ ⇒ υ

5 By def of subst, Θ; Γ; ∆ B [r/b](λ̂β : κ′. p) : κ′ ⇒ υ

For semantics, consider [[Θ; Γ; ∆ B [r/b](λ̂β : κ′. p) : κ′ ⇒ υ]] θ γ δ

= λτ. [[Θ, β : κ′; Γ; ∆ B [r/b]p : υ]] (θ, τ) γ δ Semantics
= λτ. [[Θ, β : κ′; Γ; ∆, b : υ′′ B p : υ]] (θ, τ) γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Induction
= [[Θ; Γ; ∆, b : υ′′ B λ̂β : κ′. p : κ′ ⇒ υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

This case relies upon the fact that Γ and ∆ do not have β free and the equality of sorts
under substitution.

7. Case TABSALL: Θ; Γ; ∆, b : υ′′ B λ̂β : κ′. p : Πβ : κ′. υ

First, the syntax:

1 By inversion, Θ, β : κ′; Γ; ∆, b : υ′′ B p : υ
2 By induction, Θ, β : κ′; Γ; ∆ B [r/b]p : υ

3 By rule, Θ; Γ; ∆ B λ̂β : κ′. [r/b]p : Πβ : κ′. υ

4 By def of subst, Θ; Γ; ∆ B [r/b](λ̂β : κ′. p) : Πβ : κ′. υ

For semantics, consider [[Θ; Γ; ∆ B [r/b](λ̂β : κ′. p) : Πβ : κ′. υ]] θ γ δ

= λτ. [[Θ, β : κ′; Γ; ∆ B [r/b]p : υ]] (θ, τ) γ δ Semantics
= λτ. [[Θ, β : κ′; Γ; ∆, b : υ′′, β : κ′ B p : υ]] (θ, τ) γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Induction
= [[Θ; Γ; ∆, b : υ′′ B λ̂β : κ′. p : Πβ : κ′. υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

This case relies upon the fact that Γ and ∆ do not have β free and the equality of sorts
under substitution.

8. Case TAPP: Θ; Γ; ∆, b : υ′′ B p q : υ

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : ω ⇒ υ
2 By inversion, Θ; Γ; ∆, b : υ′′ B q : ω
3 By induction, Θ; Γ; ∆ B [r/b]p : (ω ⇒ υ)
4 By induction, Θ; Γ; ∆ B [r/b]q : ω
5 By rule, Θ; Γ; ∆ B [r/b](p q) : ω ⇒ υ

125 The Semantics of Separation Logic
For semantics, consider [[Θ; Γ; ∆ B [r/b](p q) : υ]] θ γ δ

=
([[Θ; Γ; ∆ B [r/b]p : (ω ⇒ υ)]] θ γ δ)

([[Θ; Γ; ∆ B [r/b]q : ω]] θ γ δ)
Semantics

=
([[Θ; Γ; ∆, b : υ′′ B p : ω ⇒ υ]] θ γ δ)

([[Θ; Γ; ∆, b : υ′′ B q : ω]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))
Induction

= [[Θ; Γ; ∆, b : υ′′ B p q : υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

9. Case TAPPALL: Θ; Γ; ∆, b : υ′′ B p [τ ′] : [τ ′/β]υ

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : Πβ : κ′. υ
2 By inversion, Θ; Γ; ∆, b : υ′′ B τ ′ : κ′

3 By induction, Θ; Γ; ∆ B [r/b]p : (Πβ : κ′. υ)
4 By induction, Θ; Γ; ∆ B τ ′ : κ′

5 By rule, Θ; Γ; ∆ B [r/b](p [τ ′]) : [τ/α, [τ/α]τ ′/β]υ

For semantics, consider [[Θ; Γ; ∆ B [r/b](p [τ ′]) : υ]] θ γ δ

=
([[Θ; Γ; ∆ B [r/b]p : (Πβ : κ′. υ)]] θ γ δ)

([[Θ; Γ; ∆ B τ ′ : κ′]] θ γ δ)
Semantics

=
([[Θ; Γ; ∆, b : υ′′ B p : Πβ : κ′. υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))

([[Θ; Γ; ∆, b : υ′′ B τ ′ : κ′]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))
Induction

= [[Θ; Γ; ∆, b : υ′′ B p [τ ′] : υ]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

10. Case TCONST:
First, the syntax:

1 By inversion, Θ ` Γ
2 By inversion, Θ ` ∆, b : υ′′

3 By inversion, Θ ` ∆
4 By rule, Θ; Γ; ∆ B c : prop

For semantics consider [[Θ; Γ; ∆ B [r/b]c : prop]] θ; γ δ

= [[c]]0 Semantics
= [[Θ; Γ; ∆, b : υ′′ B c : prop]] θ; γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

11. Case TBINARY: Θ; Γ; ∆, b : υ′′ B p⊕ q : prop

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : prop

126 The Semantics of Separation Logic
2 By inversion, Θ; Γ; ∆, b : υ′′ B q : prop
3 By induction, Θ; Γ; ∆ B [r/b]p : prop
4 By induction, Θ; Γ; ∆ B [r/b]q : prop
5 By rule, Θ; Γ; ∆ B [r/b]p⊕ [r/b]q : prop
6 By subst def, Θ; Γ; ∆ B [r/b](p⊕ q) : prop

For semantics, consider [[Θ; Γ; ∆ B [r/b](p⊕ q) : prop]] θ γ δ

=
([[Θ; Γ; ∆ B [r/b]p : prop]] θ γ δ) [[⊕]]2

([[Θ; Γ; ∆ B [r/b]q : prop]] θ γ δ)
Semantics

=
([[Θ; Γ; ∆, b : υ′′ B p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))[[⊕]]2

([[Θ; Γ; ∆, b : υ′′ B q : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))
Induction

= [[Θ; Γ; ∆, b : υ′′ B p⊕ q : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

12. Case TQUANTIFY1: Θ; Γ; ∆, b : υ′′ B Qu : υ. p : prop

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′, u : υ B p : prop
2 By induction, Θ; Γ; ∆, u : υ B [r/b]p : prop
3 By rule, Θ; Γ; ∆ B Qu : υ. [r/b]p : prop
4 By def of subst, Θ; Γ; ∆ B [r/b](Qu : υ. p) : prop

For semantics, consider [[Θ; Γ; ∆ B [r/b](Qu : υ. p) : prop]] θ γ δ

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ; ∆, u : υ B [r/b]p : prop]] θ γ (δ, v)
Semantics

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ; ∆, b : υ′′, u : υ B p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ, v)
Induction

= [[Θ, α : κ; Γ; ∆ B Qu : υ. p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

13. Case TQUANTIFY2: Θ; Γ; ∆, b : υ′′ B Qx : A. p : prop

First, the syntax:

1 By inversion, Θ; Γ, x : A; ∆, b : υ′′ B p : prop
2 By induction, Θ; Γ, x : A; ∆ B [r/b]p : prop
3 By rule, Θ; Γ; ∆ B Qx : A. [r/b]p : prop
4 By def of subst, Θ; Γ; ∆ B [r/b](Qx : A. p) : prop

For semantics, consider [[Θ; Γ; ∆ B [r/b](Qx : A. p) : prop]] θ γ δ

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, x : A; ∆ B [r/b]p : prop]] θ (γ, v) δ
Semantics

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, x : A; ∆, u : υ′′ B p : prop]] θ (γ, v) (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)
Induction

= [[Θ; Γ; ∆, b : υ′′ B Qx : A. p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

127 The Semantics of Separation Logic
Here, we make use of the fact that x is not free in r, and we silently permute the context

as needed.

14. Case TQUANTIFY3: Θ; Γ; ∆, b : υ′′ B Qβ : κ′. p : prop

First, the syntax:

1 By inversion, Θ, β : κ′; Γ; ∆, b : υ′′ B p : prop
2 By induction, Θ, β : κ′; Γ; ∆ B [r/b]p : prop
3 By rule, Θ; Γ; ∆ B Qβ : κ′. [r/b]p : prop
4 By def of subst, Θ; Γ; ∆ B [r/b](Qβ : κ′. p) : prop

For semantics, consider [[Θ; Γ; ∆ B [r/b](Qβ : κ′. p) : prop]] θ γ δ

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; Γ; ∆ B [r/b]p : prop]] (θ, τ ′) γ δ
Semantics

=
[[Q]]τ ′∈[[Θ,α:κBκ′:sort]] θ

[[Θ, β : κ′; Γ; ∆, b : υ′′ B p : prop]] (θ, τ) γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)
Induction

= [[Θ; Γ; ∆, b : υ′′ B Qβ : κ′. p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

In this case we silently use the fact that β does not occur free in e′′ or B.

15. Case TEQUAL: Θ; Γ; ∆, b : υ′′ B p =ω q : prop

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : ω
2 By inversion, Θ; Γ; ∆, b : υ′′ B q : ω
3 By inversion, Θ B ω : sort
4 By induction, Θ; Γ; ∆ B [r/b]p : ω
5 By induction, Θ; Γ; ∆ B [r/b]q : ω
6 By rule, Θ; Γ; ∆ B [r/b](p =ω q) : prop

For the semantics, consider [[Θ; Γ; ∆ B [r/b](p =ω q) : prop]] θ γ δ

= if [[[r/b]p]]θ γ δ = [[[r/b]q]]θ γ δ then > else ⊥ Semantics
= if [[p]] θ (γ, [[e′′]]θ γ) δ = [[q]] θ γ (δ, [[r]]θ γ δ) then > else ⊥ Induction
= [[Θ; Γ; ∆, b : υ′′ B (p =ω q) : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

16. Case TPOINTSTO: Θ; Γ; ∆, b : υ′′ B e 7→A e
′ : prop

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B e : ref A
2 By inversion, Θ; Γ; ∆, b : υ′′ B e′ : A
3 By induction, Θ; Γ; ∆ B [r/b]e : ref A
4 By induction, Θ; Γ; ∆ B [r/b]e′ : A
5 By rule, Θ; Γ; ∆ B [r/b](e 7→A e

′) : prop

128 The Semantics of Separation Logic
For the semantics, consider [[Θ; Γ; ∆ B [r/b](e 7→A e

′) : prop]] θ γ δ

=
[[Θ; Γ ` [r/b]e : ref A]] θ γ
7→
[[Θ; Γ ` [r/b]e′ : A]] θ γ

Semantics

= [[Θ; Γ; ∆, b : υ′′ B e 7→A e
′ : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

17. Case TEQSORT: Θ; Γ; ∆, b : υ′′ B p : ω

First, the syntax:

1 By inversion, Θ B ω ≡ ω′ : sort
2 By inversion, Θ; Γ; ∆, b : υ′′ B p : ω′

3 By induction, Θ; Γ; ∆ B [r/b]p : ω′

4 By rule, Θ; Γ; ∆ B [r/b]p : ω

For the semantics, consider [[Θ; Γ; ∆ B [r/b]p : ω]] θ γ δ

= [[Θ; Γ; ∆ B [r/b]p : ω′]] θ γ δ Semantics
= [[Θ; Γ; ∆, b : υ′′ B p : ω′]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Induction
= [[Θ; Γ; ∆, b : υ′′ B p : ω]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

18. Case TSPEC: Θ; Γ; ∆, b : υ′′ B S spec : prop:
First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B S : spec
2 By mutual induction Θ; Γ; ∆ B [r/b]S : spec
3 By rule, Θ; Γ; ∆ B [r/b]S spec : prop

For the semantics, consider [[Θ; Γ; ∆ B [r/b]S spec : prop]] θ γ δ

= if [[[r/b]S]] θ γ δ = > then > else ⊥ Semantics
= if [[S]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) = > then > else ⊥ Induction
= [[Θ; Γ; ∆, b : υ′′ B S spec : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

19. Case SPECTRIPLE: Θ; Γ; ∆, b : υ′′ B {p}c{a : A. q} : spec

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : prop
2 By inversion, Θ; Γ; ∆, b : υ′′ B [c] :©A
3 By inversion, Θ; Γ; ∆, b : υ′′, a : A B q : prop
4 By induction, Θ; Γ; ∆ B [r/b]p : prop
5 By induction, Θ; Γ; ∆ B [[r/b]c] :©A
6 By induction, Θ; Γ; ∆, a : A B [r/b]q : prop
7 By rule, Θ; Γ; ∆ B [r/b]({p}c{a : A. q}) : spec

129 The Semantics of Separation Logic
For the semantics, consider [[Θ; Γ; ∆ B [r/b]({p}c{a : A. q}) : spec]] θ; γ δ

=
{[[Θ; Γ; ∆ B [r/b]p : prop]] θ γ δ}
[[Θ; Γ ` [r/b]c÷ A]] θ γ
{v. [[Θ; Γ, a : A; ∆ B [r/b]q : prop]] θ (γ, v) δ}

Semantics

=
{[[Θ,Γ; ∆ B p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)}
[[Θ; Γ ` c÷ A]] θ γ
{v. [[Θ; Γ, a : A; ∆, b : υ′′ B q : prop]] θ (γ, v) (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)}

Induction

= [[Θ; Γ; ∆, b : υ′′ B ({p}c{a : A. q}) : spec]] θ; γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

20. Case SPECMTRIPLE: Θ; Γ; ∆, b : υ′′ B 〈p〉e〈a : A. q〉 : spec

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : prop
2 By inversion, Θ; Γ; ∆, b : υ′′ B e :©A
3 By inversion, Θ; Γ; ∆, b : υ′′, a : A B q : prop
4 By induction, Θ; Γ; ∆ B [r/b]p : prop
5 By induction, Θ; Γ; ∆ B [r/b]e :©A
6 By induction, Θ; Γ; ∆, a : A B [r/b]q : prop
7 By rule, Θ; Γ; ∆ B [r/b](〈p〉e〈a : A. q〉) : spec

For the semantics, consider [[Θ; Γ; ∆ B [r/b](〈p〉e〈a : A. q〉) : spec]] θ; γ δ

=
{[[Θ; Γ; ∆ B [r/b]p : prop]] θ γ δ}
[[Θ; Γ ` [r/b]e :©A]] θ γ
{v. [[Θ; Γ, a : A; ∆ B [r/b]q : prop]] θ (γ, v) δ}

Semantics

=
{[[Θ; Γ; ∆, b : υ′′ B p : prop]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)}
[[Θ; Γ ` e :©A]] θ γ
{v. [[Θ; Γ, a : A; ∆, b : υ′′ B q : prop]] θ (γ, v) (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)}

Induction

= [[Θ; Γ; ∆, b : υ′′ B (〈p〉e〈a : A. q〉) : spec]] θ; γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

21. Case SPECQUANTIFY1: Θ; Γ; ∆, b : υ′′ B Qu : υ. S : spec

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′, u : υ B S : spec
2 By induction, Θ; Γ; ∆, u : υ B [r/b]S : spec
3 By rule, Θ; Γ; ∆ B Qu : υ. [r/b]S : spec
4 By def of subst, Θ; Γ; ∆ B [r/b](Qu : υ. S) : spec

For semantics, consider [[Θ; Γ; ∆ B [r/b](Qu : υ. S) : spec]] θ γ δ

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ; ∆, u : υ B [r/b]S : spec]] θ γ (δ, v)
Semantics

=
[[Q]]v∈[[ΘBυ:sort]] θ

[[Θ; Γ; ∆, b : υ′′, u : υ B S : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ, v)
Induction

= [[Θ; Γ; ∆, b : υ′′ B Qu : υ. S : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

130 The Semantics of Separation Logic

22. Case SPECQUANTIFY2: Θ; Γ; ∆, b : υ′′ B Qx : A. S : spec

First, the syntax:

1 By inversion, Θ; Γ, x : A; ∆, b : υ′′ B S : spec
2 By induction, Θ; Γ, x : A; ∆ B [r/b]S : spec
3 By rule, Θ; Γ; ∆ B Qx : A. [r/b]S : spec
4 By def of subst, Θ; Γ; ∆ B [r/b](Qx : A. S) : spec

For semantics, consider [[Θ; Γ; ∆ B [r/b](Qx : A. S) : spec]] θ γ δ

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, x : A; ∆ B [r/b]S : spec]] θ (γ, v) δ
Semantics

=
[[Q]]v∈[[ΘBA:sort]] θ

[[Θ; Γ, x : A; ∆, b : υ′′ B S : spec]] θ (γ, v) (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ)
Induction

= [[Θ; Γ; ∆, b : υ′′ B Qx : A. S : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

23. Case SPECQUANTIFY3: Θ; Γ; ∆, b : υ′′ B Qβ : κ′. S : spec

First, the syntax:

1 By inversion, Θ, β : κ′; Γ; ∆, b : υ′′ B S : spec
2 By induction, Θ, β : κ′; Γ; ∆ B [r/b]S : spec
3 By rule, Θ; Γ; ∆ B Qβ : κ′. [r/b]S : spec
4 By def of subst, Θ; Γ; ∆ B [r/b](Qβ : κ′. S) : spec

For semantics, consider [[Θ; Γ; ∆ B [r/b](Qβ : κ′. S) : spec]] θ γ δ

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; Γ; ∆ B [r/b]S : spec]] (θ, τ ′) γ δ
Semantics

=
[[Q]]τ ′∈[[ΘBκ′:sort]] θ

[[Θ, β : κ′; Γ; ∆, b : υ′′ B S : spec]] (θ, τ ′) γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ, v)
Induction

= [[Θ; Γ; ∆, b : υ′′ B Qβ : κ′. S : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

24. Case SPECBINARY: Θ; Γ; ∆, b : υ′′ B S ⊕ S ′ : spec

First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B S : spec
2 By inversion, Θ; Γ; ∆, b : υ′′ B S ′ : spec
3 By induction, Θ; Γ; ∆ B [r/b]S : spec
4 By induction, Θ; Γ; ∆ B [r/b]S ′ : spec
5 By rule, Θ; Γ; ∆ B [r/b]S ⊕ [r/b]S ′ : spec
6 By subst def, Θ; Γ; ∆ B [r/b](S ⊕ S ′) : spec

131 The Semantics of Separation Logic
For semantics, consider [[Θ; Γ; ∆ B [r/b](S ⊕ S ′) : spec]] θ γ δ

=
([[Θ; Γ; ∆ B [r/b]S : spec]] θ γ δ) [[⊕]]

([[Θ; Γ; ∆ B [r/b]S ′ : spec]] θ γ δ)
Semantics

=
([[Θ; Γ; ∆, b : υ′′ B S : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))[[⊕]]

([[Θ; Γ; ∆, b : υ′′ B S ′ : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ))
Induction

= [[Θ; Γ; ∆, b : υ′′ B S ⊕ S ′ : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

25. Case TSPEC: Θ; Γ; ∆, b : υ′′ B {p} : spec:
First, the syntax:

1 By inversion, Θ; Γ; ∆, b : υ′′ B p : prop
2 By mutual induction Θ; Γ; ∆ B [r/b]p : prop
3 By rule, Θ; Γ; ∆ B [r/b]{p} : spec

For the semantics, consider [[Θ; Γ; ∆ B [r/b]{p} : spec]] θ γ δ

= if [[[r/b]p]] θ γ δ = > then > else ⊥ Semantics
= if [[p]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) = > then > else ⊥ Induction
= [[Θ; Γ; ∆, b : υ′′ B {p} : spec]] θ γ (δ, [[Θ; Γ; ∆ B r : υ′′]] θ γ δ) Semantics

�

3.8.2 Soundness of Assertion Logic Axioms
Lemma 30. (Getting Specs Into Assertions) If Θ; Γ; ∆ B S : spec is valid, then Θ; Γ; ∆ B
S spec : prop is valid.
Proof. Assume we have a suitable θ, γ, and δ. By hypothesis we know
[[Θ; Γ; ∆ B S : spec]] θ γ δ => in the specification lattice. However, we know the interpretation
of [[Θ; Γ; ∆ B S spec : prop]] θ γ δ is equal to if [[Θ; Γ; ∆ B S : spec]] θ γ δ = > then > else ⊥,
so it follows that [[Θ; Γ; ∆ B S spec : prop]] θ γ δ = > in the assertion lattice. Hence it is true
for all substitutions, and is therefore valid. �

Lemma 31. (Getting Assertions out of Specs) If Θ; Γ; ∆ B p : prop, then Θ; Γ; ∆ B
{p} spec ⊃ p : prop is valid.
Proof.

1 Assume we have Θ; Γ; ∆ B p : prop and a suitable θ, γ, and δ.
2 We want to show that [[Θ; Γ; ∆ B {p} spec ⊃ p : prop]] θ γ δ is equal to >.
3 This is equivalent to every h ∈ H being in [[Θ; Γ; ∆ B {p} spec ⊃ p : prop]] θ γ δ
4 From the semantics of implication, we want to show that
5 if h ∈ [[Θ; Γ; ∆ B {p} spec : prop]] θ γ δ, then h ∈ [[Θ; Γ; ∆ B p : prop]] θ γ δ.
6 Assume we have an h ∈ [[Θ; Γ; ∆ B {p} spec : prop]] θ γ δ.
7 We know if [[Θ; Γ; ∆ B {p} : spec]] θ γ δ = > then > else ⊥

132 The Semantics of Separation Logic
8 Since we have an h in this set, [[Θ; Γ; ∆ B {p} : spec]] θ γ δ = >.
9 However, [[Θ; Γ; ∆ B {p} : spec]] θ γ δ = if [[Θ; Γ; ∆ B p : prop]] θ γ δ = > then > else ⊥
10 So [[Θ; Γ; ∆ B p : prop]] θ γ δ = >.
11 Since this is the full set of heaps H , it follows that h ∈ [[Θ; Γ; ∆ B p : prop]] θ γ δ.
�
Lemma 32. (Soundness of Equality) If Θ; Γ; ∆ B p ≡ q : ω is a valid equality, then Θ; Γ; ∆ B
p =ω q : prop is valid.
Proof.

1 Assume Θ; Γ; ∆ B p ≡ q : ω is a valid equality
2 Assume we have a suitable θ, γ, and δ.
3 Then we know that [[Θ; Γ; ∆ B p : prop]] θ γ δ = [[Θ; Γ; ∆ B q : ω]] θ γ δ.
4 By semantics [[Θ; Γ; ∆ B p =ω q : prop]] θ γ δ =if [[Θ; Γ; ∆ B p : ω]] θ γ δ = [[Θ; Γ; ∆ B q : ω]] θ γ δ then > else ⊥
5 Therefore [[Θ; Γ; ∆ B p =ω q : prop]] θ γ δ = >
6 Therefore Θ; Γ; ∆ B p =ω q : prop is valid.
�

3.8.3 Soundness of Program Logic Axioms

Lemma 33. (Validity and Classical and Intuitionistic Implication) The statement that Θ; Γ; ∆ B
S1 ⇒> S2 : spec is valid is logically equivalent to: if for all θ, γ, δ and r, if r ∈
[[Θ; Γ; ∆ B S1 : spec]] θ γ δ then r ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ

Proof.

1 ⇒ direction:
2 Assume Θ; Γ; ∆ B S1 ⇒> S2 : spec is valid
3 We want to show for all θ, γ, δ and r, if r ∈ [[Θ; Γ; ∆ B S1 : spec]] δ, then

r ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
4 Assume appropriate θ γ δ, and r such that r ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ
5 We want to show r ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
6 From the hypothesis we know that [[Θ; Γ; ∆ B S1 ⇒> S2 : spec]] θ γ δ = >
7 So we know for all r and s � r, that

if s ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ then s ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
8 Since r � r, we know

if r ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ then s ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
9 Since r ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ, we know that r ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
10 ⇐ direction:
11 Assume for all θ γ δ and r,

if r ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ, then r ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
12 We want to show for all θ γ δ that [[Θ; Γ; ∆ B S1 ⇒> S2 : spec]] θ γ δ = >
13 Assume θ γ δ are suitable substitutions
14 So we want to show [[Θ; Γ; ∆ B S1 ⇒> S2 : spec]] θ γ δ = >
15 So we want to show for all r and s � r, that

133 The Semantics of Separation Logic
if s ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ then s ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ

16 Assume r and s such that s � r and s ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ
17 Instantiate the quantifier in the hypothesis with θ γ δ and s, so we learn

if s ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ then s ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ
18 Since s ∈ [[Θ; Γ; ∆ B S1 : spec]] θ γ δ we see that s ∈ [[Θ; Γ; ∆ B S2 : spec]] θ γ δ

�
Lemma 34. (Equivalence of the Two Forms of Triples) We have that Θ; Γ; ∆ B {p}c{a : A. q} :
spec is valid if and only if Θ; Γ; ∆ B 〈p〉[c]〈a : A. q〉 : spec is valid.
Proof.

1 We want to show that for all suitable θ, γ, and δ, Θ; Γ; ∆ B {p}c{a : A. q} : spec = >
iff Θ; Γ; ∆ B 〈p〉[c]〈a : A. q〉 : spec = >

2 Now, let
P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
E = [[Θ; Γ ` [c] : A]] θ γ
C = [[Θ; Γ ` c÷ A]] θ γ
Q = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ γ θ (γ, v) δ

3 Observe that E = C, from the semantics of [c]
4 ⇒: Assume Θ; Γ; ∆ B {p}c{a : A. q} : spec is valid
5 Hence the semantic spec {P}C{a. Q(a)} = >
6 Hence {P}E{a. Q(a)} = >
7 ⇐: Assume Θ; Γ; ∆ B 〈p〉[c]〈a : A. q〉 : spec is valid
8 Hence the semantic spec {P}E{a. Q(a)} = >
9 Hence {P}C{a. Q(a)} = >
�
Lemma 35. (Return Value Axiom) The schema Θ; Γ; ∆ B {P}e{a : A. P ∧ a = e} : spec is
valid.
Proof.

1 We want to show that for all suitable θ, γ, and δ, [[{P}e{a : A. P ∧ a = e}]] θ γ δ = >
2 Now let

P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
C = [[Θ; Γ ` e÷ A]] θ γ
E = [[Θ; Γ ` e : A]] θ γ
Q = λv. [[Θ; Γ, a : A; ∆ B P ∧ a = e : prop]] θ (γ, v) δ

3 We want to show that {P}C{a. Q(a)} = >
4 So we want to show that for all R, we have R ∈ {P}C{a. Q(a)}
5 Hence it suffices to show that [P ∗R] C [v. P ∧ [[a = e]] θ (γ, v) δ ∗R]
6 So we want to show that for all h ∈ P ∗R,

we have C Best(λv. P ∧ [[a = e ∗R]] θ (γ, v) δ) h = ⊥
7 Assume we have h ∈ P ∗R
8 Next, observe that C k h = k E h

134 The Semantics of Separation Logic
9 To show that Best(λa. P ∧ a = e ∗R) E h = ⊥,

we need to show that k E h = ⊥, for every k ∈ Approx (λa. P ∧ a = e ∗R)
10 So assume k ∈ Approx (λv. P ∧ [[a = e]] θ (γ, v) δ ∗R)
11 Therefore for all v ∈ [[A]], and h ∈ Q(v) ∗R, we know k v h = ⊥
12 We know E ∈ [[A]]
13 So we need to show that given h ∈ P ∗R, we have h ∈ Q(E) ∗R
14 Assume we have h ∈ P ∗R
15 So we need to show h ∈ (P ∧ [[a = e]] (δ, E)) ∗R
16 Note that [[a = e]] (δ, E) = > if E = E, which is true
17 Hence P = (P ∧ [[a = e]] (δ, E))
18 Hence we need to show h ∈ P ∗R
19 This is a hypothesis, so we are done

�

Lemma 36. (Assignment Axiom) Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e
′} : spec is valid

Proof.

1 Assume suitable θ, γ, and δ
2 We want to show [[Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e

′} : spec]] θ γ δ = >
3 So we want to show ∀r. r ∈ [[Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e

′} : spec]] θ γ δ
4 Assume r
5 We want to show r ∈ [[Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e

′} : spec]] θ γ δ
6 Let P = [[Θ; Γ; ∆ B e 7→A − : prop]] θ γ δ
7 Let C = [[Θ; Γ ` [e := e′] :©A]] θ γ
8 Let E = [[Θ; Γ ` e : ref A]] θ γ
9 Let E ′ = [[Θ; Γ ` e′ : A]] θ γ
10 let Q = λv. [[Θ; Γ; ∆ B e 7→A e

′ : prop]] θ (γ, v) δ
11 We want to show r ∈ {P}C{a : A. Q(a)}
12 We want to show ∀s � r. [P ∗ s] C [a : A. Q(a) ∗ s]
13 Assume s � r
14 We want to show [P ∗ s] C [a : A. Q(a) ∗ s]
15 We want to show ∀h ∈ (P ∗ s). C Best(λa. Q(a) ∗ s) h = ⊥
16 Assume h ∈ P ∗ s
17 By semantics h ∈ P ∗ s means ∃h1, h2. h1 ∈ P , h2 ∈ s, and h1#h2

18 By semantics of assertions, h1 ∈ P means ∃v ∈ [[Θ ` A :F]] θ. h1 = [E : v]
19 Expanding definitions, C = λk. λh. k 〈〉 if E ∈ dom(h) then [h|E : E ′] else >
20 Therefore C Best(λa. Q(a) ∗ s) h =

if E ∈ dom(h1 · h2) then Best(λa. Q(a) ∗ s) 〈〉 [h1 · h2|E : E ′] else >
21 Since E ∈ dom(h1), we know C Best(λa. Q(a) ∗ s) h =

Best(λa. Q(a) ∗ s) 〈〉 [h1 · h2|E : E ′]
22 Therefore we want to show Best(λa. Q(a) ∗ s) 〈〉 [h1 · h2|E : E ′] = ⊥
23 So we must show ¬∃k ∈ Approx(λa. Q(a) ∗ s). k 〈〉 [h1 · h2|E ′] = >
24 So we must show ∀k ∈ Approx(λa. Q(a) ∗ s). k 〈〉 [h1 · h2|E : E ′] = ⊥

135 The Semantics of Separation Logic
25 Assume k ∈ Approx(λa. Q(a) ∗ s)
26 Since [h1 · h2|E : E ′] = [E : E ′] · h2, we want k 〈〉 ([E : E ′] · h2) = ⊥
27 Now, k ∈ Approx(λa. Q(a) ∗ s) means ∀v, h ∈ (Q(v) ∗ s) k v h = ⊥
28 Now, instantiate the quantifier with 〈〉 and [E : E ′] · h2

29 Now we must check [E : E ′] · h2 ∈ Q(〈〉) ∗ s
30 We will check that [E : E ′] ∈ Q(〈〉) and h2 ∈ s
31 By semantics of assertions Q(〈〉) = {[E : E ′]}, so [E : E ′] ∈ Q(〈〉)
32 From line 19, h2 ∈ s
33 Since [E : E ′] has the same domain as h1, we know [E : E ′]#h2

34 Therefore [E : E ′] · h2 ∈ Q(〈〉) ∗ s
35 Therefore k 〈〉 [h1 · h2|E : E ′] = ⊥
36 Therefore ∀k ∈ Approx(λa. Q(a) ∗ s). k 〈〉 [h1 · h2|E : E ′] = ⊥
37 Therefore ¬∃k ∈ Approx(λa. Q(a) ∗ s). k 〈〉 [h1 · h2|E ′] = >
38 Therefore Best(λa. Q(a) ∗ s) 〈〉 [h1 · h2|E : E ′] = ⊥
39 Therefore ∀h ∈ (P ∗ s). C Best(λa. Q(a) ∗ s) h = ⊥
40 Therefore [P ∗ s] C [a : A. Q(a) ∗ s]
41 Therefore ∀s � r. [P ∗ s] C [a : A. Q(a) ∗ s]
42 Therefore r ∈ {P}C{a : A. Q(a)}
43 Therefore ∀r. r ∈ [[Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e

′} : spec]] θ γ δ
44 Therefore [[Θ; Γ; ∆ B {e 7→A −}e := e′{a : 1. e 7→A e

′} : spec]] θ γ δ = >

�

Lemma 37. (Allocation Axiom) If Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec is valid
Proof.

1 Assume suitable θ, γ, and δ
2 We want to show [[Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec]]θ γ δ = >
3 So we want to show ∀r. r ∈ [[Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec]]θ γ δ
4 Assume r,
5 So we want to show r ∈ [[Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec]]θ γ δ
6 Let C = [[Θ; Γ ` [newA(e)] :©ref A θ]] γ
7 Let E = [[Θ; Γ ` e : A θ]] γ
8 Let Q = λv. [[∆, a : ref A B a 7→A e : prop]] θ (γ, v) δ
9 So we want to show r ∈ {I}C{a : A. Q(a)}
10 So we want to show ∀s � r. [s] C [a : A. Q(a) ∗ s]
11 Assume s � r
12 We want to show [s] C [a : A. Q(a) ∗ s]
13 We want to show ∀h ∈ s. C Best(λa. Q(a) ∗ s) h = ⊥
14 Assume h ∈ s
15 Expanding definitions, C Best((λa. Q(a) ∗ s) h =

let l = newloc(h,A), [θ(A)]) in Best(λa. Q(a) ∗ s) l [h|l : E]
16 So let l = newloc(h,A)
17 We want to show Best(λa. Q(a) ∗ s) l [h|l : E] = ⊥

136 The Semantics of Separation Logic
18 To show this, we must show ¬(∃k ∈ Approx(λa. Q(a) ∗ s). k l [h|l : E] = >)
19 So we must show ∀k ∈ Approx(λa. Q(l) ∗ s). k l [h|l : E] = ⊥)
20 Assume k ∈ Approx(λa. Q(a) ∗ s)
21 This means ∀v, h ∈ Q(v) ∗ s. k v h = ⊥
22 Instantiate v with l, and h with [l : E] · h
23 Now we must check [l : E] · h ∈ Q(l) ∗ s
24 So we will check [l : E] ∈ Q(l) and h ∈ s
25 Expanding definitions, Q(l) = {[l : E]}, so [l : E] ∈ Q(l)
26 From line 18, h ∈ s
27 Since l is bigger than anything in dom(h), it follows [l : E]#h
28 Therefore [l : E] · h ∈ Q(l) ∗ s
29 Therefore k l ([l : E] · h) = ⊥
30 Therefore ∀k ∈ Approx(λa. Q(l) ∗ s). k l [h|l : E] = ⊥)
31 Therefore ∀h ∈ s. C Best(λa. Q(a) ∗ s) h = ⊥
32 Therefore [s] C [a : A. Q(a) ∗ s]
33 Therefore ∀s � r. [s] C [a : A. Q(a) ∗ s]
34 Therefore r ∈ {I}C{a : A. Q(a)}
35 Therefore ∀r. r ∈ [[Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec]]θ γ δ
36 Therefore [[Θ; Γ; ∆ B {emp}newA(e){a : ref A. a 7→ e} : spec]]θ γ δ = >

�

Lemma 38. (Read Axiom) We have that Θ; Γ; ∆ B {e 7→A e
′}!e{a : A. e 7→A e

′ ∧ a = e′} :
spec is valid.
Proof.

1 Assume suitable θ, γ, and δ
2 We want to show [[Θ; Γ; ∆ B {e 7→A e

′}!e{a : A. e 7→ e′ ∧ a = e′} : spec]]θ γ δ = >
3 So we want to show ∀r. r ∈ [[Θ; Γ; ∆ B {e 7→A e

′}!e{a : A. e 7→ e′ ∧ a = e′} : spec]]θ γ δ
4 Assume r,
5 So we want to show r ∈ r ∈ [[Θ; Γ; ∆ B {e 7→A e

′}!e{a : A. e 7→ e′ ∧ a = e′} : spec]]θ γ δ
6 Let P = [[Θ; Γ; ∆ B e 7→A e

′ : prop]] θ γ δ
7 Let C = [[Θ; Γ ` [!e] :©A θ]] γ
8 Let E = [[Θ; Γ ` e : ref A θ]] γ
9 Let E ′ = [[Θ; Γ ` e′ : A θ]] γ
10 Let Q = λv. [[Θ; Γ, a : ref A; ∆ B e 7→A e

′ ∧ a = e′ : prop]] θ (γ, v) δ
11 So we want to show r ∈ {P}C{a : A. Q(a)}
12 So we want to show ∀s � r. [P ∗ s] C [a : A. Q(a) ∗ s]
13 Assume s � r
14 We want to show [P ∗ s] C [a : A. Q(a) ∗ s]
15 We want to show ∀h ∈ P ∗ s. C Best(λa. Q(a) ∗ s) h = ⊥
16 Assume h ∈ P ∗ s
17 There are h1 and h2 such that h1 ∈ P , and h2 ∈ s, and h1#h2

18 Expanding definitions, C Best(λa. Q(a) ∗ s) (h1 · h2) =

137 The Semantics of Separation Logic
if E ∈ dom(h) then Best((h E) h else >

19 From definition of P , h1 = [E : E ′]
20 Hence E ∈ dom(h1), so E ∈ dom(h1 · h2)
21 Hence C Best((λa. Q(a) ∗ s) (h1 · h2) = Best(λa. Q(a) ∗ s) (h E) h
22 So we want to show Best(λa. Q(a) ∗ s) (h E) h = ⊥
23 To show this, we must show ¬(∃k ∈ Approx(λa. Q(a) ∗ s). (h E) h = >)
24 So we want ∀k ∈ Approx(λa. Q(a) ∗ s). (h E) h = ⊥)
25 Assume k ∈ Approx(λa. Q(a) ∗ s)
26 So we know ∀v, h ∈ Q(v) ∗ s. k v h = ⊥
27 Instantiate with v with (h E), and h with h
28 So we must show h ∈ Q(h E) ∗ s
29 So we will check h1 ∈ Q(h E) and h2 ∈ s, since h1 · h2 = h
30 So we want to check h1 ∈ [[Θ; Γ; ∆ B e 7→A e

′ : prop]] θ γ δ = P
and also h1 ∈ [[Γ, a : A B a = e′ : prop]](δ, h E)

31 We know h1 ∈ P by assumption
32 Since h E = E ′ = [[Θ; Γ; ∆ B e′ : A]]θ γ δ, we know [[Θ; Γ, a : A; ∆ B a = e′ : prop]] θ (γ, h E) δ = H
33 Therefore h1 ∈ [[Θ; Γ, a : A; ∆ B a = e′ : prop]] θ (γ, h E) δ
34 We know h2 ∈ s by assumption
35 Therefore h ∈ Q(h E) ∗ s
36 Therefore we know k (h E) h = ⊥
37 Therefore ∀k ∈ Approx((λa. Q(a) ∗ s). (h E) h = ⊥
38 Therefore Best(λa. Q(a) ∗ s) (h E) h = ⊥
39 Therefore ∀h ∈ P ∗ s. C Best(λa. Q(a) ∗ s) h = ⊥
40 Therefore [P ∗ s] C [a : A. Q(a) ∗ s]
41 Therefore ∀s � r. [P ∗ s] C [a : A. Q(a) ∗ s]
42 Therefore r ∈ {P}C{a : A. Q(a)}
43 Therefore ∀r. r ∈ [[Θ; Γ; ∆ B {e 7→A e

′}!e{a : A. e 7→ e′ ∧ a = e′} : spec]]θ γ δ
44 Therefore [[Θ; Γ; ∆ B {e 7→A e

′}!e{a : A. e 7→ e′ ∧ a = e′} : spec]]θ γ δ = >

�

Lemma 39. (Sequential Composition Axiom) Suppose Θ; Γ; ∆ B 〈p〉e〈x : A. q〉 : spec is
valid, and ∆, x : A B {q}c{a : B. r} : spec is valid, and x 6∈ FV(r). Then Θ; Γ; ∆ B
{p}letv x = e in c{a : B. r} : spec is valid.
Proof.

1 Assume Θ; Γ; ∆ B 〈p〉e〈x : A. q〉 : spec is valid
2 Assume ∆, x : A B {q}c{a : B. r} : spec is valid
3 Assume suitable θ, γ, and δ
4 We want to show [[Θ; Γ; ∆ B {p}letv x = e in c{a : B. r} : spec]]θ γ δ = >
5 So we want ∀t. t ∈ [[Θ; Γ; ∆ B {p}letv x = e in c{a : B. r} : spec]]θ γ δ
6 Assume t
7 Let E = [[Θ; Γ ` e :©A]] θ γ
8 Let F = λv. [[Θ; Γ, x : A ` [c] :©B]] θ (γ, v)

138 The Semantics of Separation Logic
9 Let P = [[Θ; Γ; ∆ B p : prop]]θ γ δ
10 Let Q = λv. [[Θ; Γ, x : A; ∆ B q : prop]] θ (γ, v) δ
11 Let R = λv. λv′. [[Θ; Γ, x : A, a : B; B q : prop]] θ (γ, v, v′) δ
12 Let R′ = λv′. [[Θ; Γ, a : B; ∆ B q : prop]] θ (γ, v′) δ
13 Note ∀v. R v = R′ since x 6∈ FV(r)
14 Let C = [[Θ; Γ ` [letv x = e in c] :©B]] θ γ
15 By semantics, C = F ∗(E)
16 By definition of monadic lift, C = λk. E (λv. F v k)
17 So we want to show t ∈ {P}C{a : A. R′(a)}
18 So we want ∀u � t. [P ∗ u] C [a : A. (R′(a) ∗ u)]
19 Assume u � t
20 So we want to show ∀h ∈ P ∗ u. C Best(λa. R′(a) ∗ u) h = ⊥
21 Assume h ∈ P ∗ u
22 So we want to show E (λv. F v Best(λa. R′(a) ∗ u)) h = ⊥
23 We know Θ; Γ; ∆ B 〈p〉e〈x : A. q〉 : spec is valid
24 Instantiating with the environment θ γ δ, we get ∀t. t ∈ {P}E{a : A. Q(a)}
25 Thus ∀t, u � t. [P ∗ u] E [a : A. Q(a) ∗ u]
26 Thus ∀t, u � t, h ∈ P ∗ u,E Best(λa. Q(a) ∗ u) h = ⊥
27 Instantiating, we get E Best(λa. Q(a) ∗ u) h = ⊥
28 So it suffices to show (λv. F v Best(λa. R′(a) ∗ u)) v Best(λa. Q(a) ∗ u)
29 To do this, we can show (λv. F v Best(λa. R′(a) ∗ u)) ∈ Approx(λa. Q(a) ∗ u)
30 To do this, we must show ∀v, h ∈ Q(v) ∗ u, F v Best(λa. R′(a) ∗ u) h = ⊥
31 Assume v, h ∈ Q(v) ∗ u
32 We know ∆, x : A B {q}c{a : B. r} : spec is valid
33 Instantiating with the environment θ (γ, v) δ, we get

∀v, t, u � t, h ∈ Q(v) ∗ u, (F v) Best(λa. R v a ∗ u) h = ⊥
34 Instantiating, we get (F v) Best(λa. R v a ∗ u) h = ⊥
35 By equality, we get (F v) Best(λa. R′(a) ∗ u) h = ⊥
36 Therefore ∀v, h ∈ Q(v) ∗ u, F v Best(λa. R′(a) ∗ u) h = ⊥
37 Therefore (λv. F v Best(λa. R′(a) ∗ u)) v Best(λa. Q(a) ∗ u)
38 Therefore (λv. F v Best(λa. R′(a) ∗ u)) ∈ Approx(λa. Q(a) ∗ u)
39 Therefore E (λv. F v Best(λa. R′(a) ∗ u)) h = ⊥
40 Therefore ∀h ∈ P ∗ u. C Best(λa. R′(a) ∗ u) h = ⊥
41 Therefore ∀u � t. [P ∗ u] C [a : A. (R′(a) ∗ u)]
42 Therefore t ∈ {P}C{a : A. R′(a)}
43 Therefore ∀t. t ∈ [[Θ; Γ; ∆ B {p}letv x = e in c{a : B. r} : spec]]θ γ δ
44 Therefore [[Θ; Γ; ∆ B {p}letv x = e in c{a : B. r} : spec]]θ γ δ = >

�
Lemma 40. (Fixed Point Induction) We have that if

S , Θ; Γ; ∆ B (∀x :©A. 〈p〉x〈a : A. q(a)〉 ⇒> 〈p〉e〈a : A. q〉) : spec

is valid, then
S ′ , Θ; Γ; ∆ B 〈p〉fix x :©A. e〈a : A. q〉 : spec

139 The Semantics of Separation Logic
is valid.
Proof.

1 Let S = ∀x :©A. 〈p〉x〈a : A. q(a)〉 ⇒> 〈p〉e〈a : A. q〉
2 Let S ′ = 〈p〉fix x :©A. e〈a : A. q〉
3 Assume suitable θ, γ, and δ
4 So we want to show [[S ′]] θ γ δ = >
5 Let P = [[Θ; Γ; ∆ B P : prop]] θ γ δ
6 Let C = [[Θ; Γ ` fix x :©A. e :©A]] θ γ
7 Let Q = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ
8 Let F (v) = [[Θ; Γ, a : A ` e :©A]] θ (γ, v)
9 So we want to show {P}C{a : A. Q(a)} = >
10 We know [[S]] θ γ δ = >
11 Thus for all v, we know [[〈p〉x〈a : A. q(a)〉 ⇒> 〈p〉e〈a : A. q〉]] θ (γ, v) δ = >
12 Thus we know for all v, r, and s � r,

if s ∈ [[〈p〉x〈a : A. q(a)〉]] θ (γ, v) δ then s ∈ [[〈p〉e〈a : A. q〉]] θ (γ, v) δ
13 Since x 6∈ FV(p), we know for all v, [[Θ; Γ, x :©A; ∆ B p : prop]] θ (γ, v) δ = P
14 Since x 6∈ FV(q), we know for all v, λv′. [[Θ; Γ, x :©A, a : A; ∆ B q : prop]] θ (γ, v, v′) δ = Q
15 Thus we know for all v, r, and s � r,

if s ∈ {P}v{a : A. Q(a)} then s ∈ {P}F (v){a : A. Q(a)}
16 This implies that for all v, if {P}F (v){a : A. Q(a)} = > then {P}F (v){a : A. Q(a)} = >
17 Then by the semantic fixed point theorem, {P}fix(F){a : A. Q(a)} = >
18 So {P}C{a : A. Q(a)} = >
19 Therefore [[S ′]] θ γ δ = >

�

Lemma 41. (Assumptions From Preconditions) If we know that Θ; Γ; ∆ B
{r} ⇒> {p}c{a : A. q} : spec is valid, r is a pure formula of separation logic, and we
know that p ⊃ r is a valid truth of separation logic, then Θ; Γ; ∆ B {p}c{a : A. q} : spec is
valid.
Proof.

1 Assume Θ; Γ; ∆ B {r} ⇒> {p}c{a : A. q} : spec is valid
2 Assume p ⊃ r is a valid truth of separation logic
3 We know that all suitable θ, γ, and θ, [[Θ; Γ; ∆ B {r} ⇒> {p}c{a : A. q} : spec]] θ γ δ is >
4 We want for all suitable θ, γ, and θ, that [[Θ; Γ; ∆ B {p}c{a : A. q} : spec]] θ γ δ = >
5 Assume θ γ δ is a suitable environment
6 We want to show for all r, and all s � r, that [P ∗ s] C [a. Q(a) ∗ s] holds

where
R = [[Θ; Γ; ∆ B r : prop]] θ γ δ
P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
C = [[Θ; Γ ` c÷ A]] θ γ
Q = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

140 The Semantics of Separation Logic
7 To show [P ∗ s] C [a. Q(a) ∗ s], we must show ∀h ∈ P ∗ s. c (Best(λa. Q(a) ∗ s)) h = ⊥
8 Assume h ∈ P ∗ s
9 Since p ⊃ r is a valid truth, we know P ⊃ R and so h ∈ R ∗ s
10 Since R is pure, we know h ∈ R ∧ s
11 So we know h ∈ R
12 Since R is pure it is either ∅ or H , and since we know h ∈ R, R = H
13 Therefore we know that [[Θ; Γ; ∆ B {r} : spec]] θ γ δ = >
14 Therefore we know that [[Θ; Γ; ∆ B {p}c{a : A. q} : spec]] θ γ δ = >

�
Lemma 42. (Assumptions Into Preconditions) If we know that Θ; Γ; ∆ B
{r} ⇒> {p ∧ r}c{a : A. q} : spec is valid, then Θ; Γ; ∆ B {r} ⇒> {p}c{a : A. q} : spec
is valid.
Proof.

1 Assume Θ; Γ; ∆ B {r} ⇒> {p ∧ r}c{a : A. q} : spec is valid.
2 This is equivalent to for all suitable θ, γ, θ and s,

if s ∈ [[{r}]] θ γ δ, then s ∈ [[{p ∧ r}c{a : A. q}]] θ γ δ.
3 We want to show that Θ; Γ; ∆ B {r} ⇒> {p}c{a : A. q} : spec is valid
4 This is equivalent to showing for all suitable θ, γ, and θ and s,

if s ∈ [[{r}]] θ γ δ, then s ∈ [[{p}c{a : A. q}]] θ γ δ.
5 Assume we have θ γ δ and s such that s ∈ [[{r}]] θ γ δ.
6 We want to show s ∈ [[{p}c{a : A. q}]] θ γ δ is valid.
7 So we want to show for all t � s, that [P ∗ t] C [a. Q(a) ∗ t] holds

where
R = [[Θ; Γ; ∆ B r : prop]] θ γ δ
P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
C = [[Θ; Γ ` c÷ A]] θ γ
Q = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

8 Assume t � s, and h ∈ P ∗ t.
9 We want to show that C Best(λa. Q(a) ∗ s) h = ⊥
10 Since s ∈ [[{p ∧ r}c{a : A. q}]] θ γ δ, we know C Best(λa. Q(a) ∗ s) h = ⊥ if h ∈ (P ∧R) ∗ t.
11 Since we assumed that [[{r}]] θ γ δ was non-empty, this means that [[r]] θ γ δ = > = H .
12 Hence h ∈ (P ∧R) ∗ t.
13 Hence C Best(λa. Q(a) ∗ s) h = ⊥

�
Lemma 43. (Getting Specs Out of Assertions) We have that Θ; Γ; ∆ B {S spec} ⇒> S : spec is
valid.
Proof.

1 We want to show Θ; Γ; ∆ B {S spec} ⇒> S : spec is valid
2 Equivalently, we need for all suitable θ, γ, and θ and r, if r ∈ [[Θ; Γ; ∆ B {S spec} : spec]] θ γ δ

141 The Semantics of Separation Logic
then r ∈ [[Θ; Γ; ∆ B S : spec]] θ γ δ

3 Assume we have a suitable θ, γ, and δ and r such that r ∈ [[Θ; Γ; ∆ B {S spec} : spec]] θ γ δ
4 From the semantics, we know [[Θ; Γ; ∆ B {S spec} : spec]] θ γ δ is either > or ⊥
5 Since r ∈ [[Θ; Γ; ∆ B {S spec} : spec]] θ γ δ, we know it is non-empty, hence

[[Θ; Γ; ∆ B {S spec} : spec]] θ γ δ = >
6 Therefore, we know that [[Θ; Γ; ∆ B S spec : prop]] θ γ δ = H
7 Therefore, we know that [[Θ; Γ; ∆ B S : spec]] θ γ δ = >

�
Lemma 44. (Existential Dropping 1) If Θ; Γ; ∆ B {∃u : υ. p}c{a : A. q} : spec is valid, then
Θ; Γ; ∆, u : υ B {p}c{a : A. q} : spec is valid.
Proof.

1 Assume Θ; Γ; ∆ B {∃y : υ. p}c{a : A. q} : spec is valid
2 We want to show Θ; Γ; ∆, u : υ B {p}c{a : A. q} : spec is valid
3 So we want to show for all θ, γ, v, δ,

that [[Θ; Γ; ∆, u : υ B {p}c{a : A. q} : spec]] θ γ (δ, v) = >
4 Assume we have a suitable (θ, γ, δ, v) and δ′ = (δ, v)
5 We want to show for all r, that r ∈ {P}C{a. Q(a)}
6 where

P = [[Θ; Γ; ∆, u : υ B p : prop]] θ γ δ′

C = [[Θ; Γ, y : B ` c÷ A]] θ γ
Q = λv′. [[Θ; Γ, a : A; ∆, u : υ B q : prop]] θ (γ, v′) δ′

7 We also know that C = [[Θ; Γ ` c÷ A]] θ γ
8 and that Q = λv′. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v′) δ′

9 So now we must show for all s � r, that [P ∗ s] C [a. Q(a) ∗ s] holds
10 Now assume s such that s � r
11 We need for all h ∈ [P ∗ s] C [a. Q(a) ∗ s], that C Best(λa. Q(a) ∗ s) h = ⊥
12 We know {∃u : υ. p}c{a : A. q} is valid
13 So we know for all r, that r ∈ {P ′}C{a. Q(a)}

where P ′ =
∨
v∈[[ΘBυ:sort]] θ[[Θ; Γ; ∆, u : υ B p : prop]] θ γ (δ, v)

14 Since P = [[Θ; Γ; ∆, u : υ B p : prop]] θ γ δ′, we know P ⊆ P ′

15 Therefore h ∈ P ′ ∗ s, and so C Best(λa. Q(a) ∗ s) h = ⊥

�
Lemma 45. (Existential Dropping 2) If Θ; Γ; ∆ B {∃y : B. p}c{a : A. q} : spec is valid, then
Θ; Γ, y : B; ∆ B {p}c{a : A. q} : spec is valid.
Proof.

1 Assume Θ; Γ; ∆ B {∃y : B. p}c{a : A. q} : spec is valid
2 We want to show Θ; Γ, y : B; ∆ B {p}c{a : A. q} : spec is valid
3 So we want to show for all θ, γ, v, δ,

that [[Θ; Γ, y : B; ∆ B {p}c{a : A. q} : spec]] θ (γ, v) δ = >

142 The Semantics of Separation Logic
4 Assume we have a suitable (θ, γ, δ, v) and γ′ = (γ, v)
5 We want to show for all r, that r ∈ {P}C{a. Q(a)}
6 where

P = [[Θ; Γ, y : B; ∆ B p : prop]] θ γ′ δ
C = [[Θ; Γ, y : B ` c÷ A]] θ γ′

Q = λv′. [[Θ; Γ, y : B, a : A; ∆ B q : prop]] θ (γ′, v′) δ
7 We also know that C = [[Θ; Γ ` c÷ A]] θ γ
8 and that Q = λv′. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v′) δ
9 So now we must show for all s � r, that [P ∗ s] C [a. Q(a) ∗ s] holds
10 Now assume s such that s � r
11 We need for all h ∈ [P ∗ s] C [a. Q(a) ∗ s], that C Best(λa. Q(a) ∗ s) h = ⊥
12 We know {∃y : B. p}c{a : A. q} is valid
13 So we know for all r, that r ∈ {P ′}C{a. Q(a)}

where P ′ =
∨
v∈[[ΘBB:sort]] θ[[Θ; Γ, y : B; ∆ B p : prop]] θ (γ, v) δ

14 Since P = [[Θ; Γ, y : B; ∆ B p : prop]] θ (γ, v) δ, we know P ⊆ P ′

15 Therefore h ∈ P ′ ∗ s, and so C Best(λa. Q(a) ∗ s) h = ⊥

�

Lemma 46. (Existential Dropping 3) If Θ; Γ; ∆ B {∃α : κ. p}c{a : A. q} : spec is valid, then
Θ, α : κ; Γ; ∆ B {p}c{a : A. q} : spec is valid.
Proof.

1 Assume Θ; Γ; ∆ B {∃α : κ. p}c{a : A. q} : spec is valid
2 We want to show Θ, α : κ; Γ; ∆ B {p}c{a : A. q} : spec is valid
3 So we want to show for all θ, τ, γ, δ

that [[Θ, α : κ; Γ; ∆ B {p}c{a : A. q} : spec]] (θ, τ) γ δ = >
4 Assume we have a suitable (θ, γ, δ, τ) and θ′ = (θ, v)
5 We want to show for all r, that r ∈ {P}C{a. Q(a)}
6 where

P = [[Θ, α : κ; Γ; ∆ B p : prop]] θ′ γ δ
C = [[Θ, α : κ; Γ, y : B ` c÷ A]] θ′ γ
Q = λv′. [[Θ, α : κ; Γ, a : A; ∆ B q : prop]] θ′ (γ, v′) δ

7 We also know that C = [[Θ; Γ ` c÷ A]] θ γ
8 and that Q = λv′. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v′) δ
9 So now we must show for all s � r, that [P ∗ s] C [a. Q(a) ∗ s] holds
10 Now assume s such that s � r
11 We need for all h ∈ [P ∗ s] C [a. Q(a) ∗ s], that C Best(λa. Q(a) ∗ s) h = ⊥
12 We know {∃α : κ. p}c{a : A. q} is valid
13 So we know for all r, that r ∈ {P ′}C{a. Q(a)}

where P ′ =
∨
τ∈[[ΘBκ:sort]] θ[[Θ, α : κ; Γ; ∆ B p : prop]] (θ, τ) γ δ

14 Since P = [[Θ, α : κ; Γ; ∆ B p : prop]] θ′ γ δ, we know P ⊆ P ′

15 Therefore h ∈ P ′ ∗ s, and so C Best(λa. Q(a) ∗ s) h = ⊥

143 The Semantics of Separation Logic
�

Lemma 47. (Disjunction Rule) If Θ; Γ; ∆ B {p}c{a : A. q} : spec is valid and Θ; Γ; ∆ B
{p′}c{a : A. q′} : spec is valid, then Θ; Γ; ∆ B {p ∨ p′}c{a : A. q ∨ q′} : spec is valid.

Proof.

1 Assume Θ; Γ; ∆ B {p}c{a : A. q} : spec is valid
2 Assume Θ; Γ; ∆ B {p′}c{a : A. q′} : spec is valid
3 Assume suitable θ, γ, and δ
4 We want to show [[Θ; Γ; ∆ B {p ∨ p′}c{a : A. q ∨ q′} : spec]]θ γ δ = >
5 So we want to show ∀r. r ∈ [[Θ; Γ; ∆ B {p ∨ p′}c{a : A. q ∨ q′} : spec]]θ γ δ
6 Assume r,
7 So we want to show r ∈ [[Θ; Γ; ∆ B {p ∨ p′}c{a : A. q ∨ q′} : spec]]θ γ δ
8 Let P ′′ = [[Θ; Γ; ∆ B p ∨ p′ : prop]] θ γ δ
9 Let C = [[Θ; Γ ` [c] :©A]] θ γ
10 Let Q′′ = λv. [[Θ; Γ, a : A; ∆ B q ∨ q′ : prop]] θ (γ, v) δ
11 So we want to show r ∈ {P ′′}C{a : A. Q′′(a)}
12 So we want to show ∀s � r. [P ′′ ∗ s] C [a : A. Q′′(a) ∗ s]
13 Assume s � r
14 We want to show [P ′′ ∗ s] C [a : A. Q′′(a) ∗ s]
15 We want to show ∀h ∈ P ′′ ∗ s. C Best(λa. Q′′(a) ∗ s) h = ⊥
16 Assume h ∈ P ′′ ∗ s
17 Therefore there are h1 ∈ P ′′ and h2 ∈ s such that h = h1 · h2

18 We know P ′′ = [[Θ; Γ; ∆ B p ∨ p′ : prop]] θ γ δ =
[[Θ; Γ; ∆ B p : prop]] θ γ δ ∨ [[Θ; Γ; ∆ B p′ : prop]] θ γ δ

19 Call P = [[Θ; Γ; ∆ B p : prop]] θ γ δ and P ′ = [[Θ; Γ; ∆ B p′ : prop]] θ γ δ
20 Call Q(v) = [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

and Q′(v) = [[Θ; Γ, a : A; ∆ B q′ : prop]] θ (γ, v) δ
21 By the definition of ∨, we know that h1 ∈ P or h1 ∈ P ′
22 Suppose h1 ∈ P :
23 We know by assumption that [P ∗ s] C [a : A. Q(a) ∗ s]
24 We know that h = h1 · h2 ∈ P ∗ s
25 Hence C Best(λa. Q(a) ∗ s) h = ⊥
26 For any a, Q(a) ⊆ Q′′(a),
27 Hence Best(λa. Q′′(a) ∗ s) v Best(λa. Q(a) ∗ s)
28 Since C is continuous, C Best(λa. Q′′(a) ∗ s) h = ⊥
29 Suppose h1 ∈ P ′:
30 We know by assumption that [P ′ ∗ s] C [a : A. Q(a) ∗ s]
31 We know that h = h1 · h2 ∈ P ′ ∗ s
32 Hence C Best(λa. Q′(a) ∗ s) h = ⊥
33 For any a, Q′(a) ⊆ Q′′(a)
34 Hence Best(λa. Q′′(a) ∗ s) v Best(λa. Q′(a) ∗ s)
35 Since C is continuous, C Best(λa. Q′′(a) ∗ s) h = ⊥

144 The Semantics of Separation Logic
�
Lemma 48. (Equality Substitution) If Θ; Γ; ∆ B {r} ⇒> {p}c[e/x]{a : A. q} : spec is valid and
Θ; Γ; ∆ B r ⊃ e =A e

′ : prop valid is valid, then Θ; Γ; ∆ B {r} ⇒> {p}c[e′/x]{a : A. q} : spec
is valid.
Proof.

1 Assume Θ; Γ; ∆ B {r} ⇒> {p}c[e/x]{a : A. q} : spec is valid.
2 This is equivalent to assuming for all suitable θ, γ, and θ and s,
3 if s ∈ [[{r}]] θ γ δ, then s ∈ [[{p}c[e/x]{a : A. q}]] θ γ δ.
4 Assume θ γ δ, r, and s ∈ [[{r}]] θ γ δ
5 Let

C = [[c[e/x]]] θ γ
C ′ = [[c[e′/x]]] θ γ
P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
Q = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

6 Since we have r, we know that R = [[r]] θ γ δ = > = H .
7 Therefore it follows that [[Θ; Γ; ∆ B e =A e

′ : prop]] θ γ δ = H
8 Therefore [[Θ; Γ ` e : A]] θ γ = [[Θ; Γ ` e′ : A]] θ γ
9 Since substitution is sound, [[c[e/x]]] θ γ = [[c[e′/x]]] θ γ, or C = C ′

10 By hypothesis, s ∈ [[{p}c[e/x]{a : A. q}]] θ γ δ.
11 So for all t � s, h ∈ P ∗ t, we have C Best(λv. Q(v) ∗ t) h = ⊥
12 Since C = C ′, we know for all t � s, h ∈ P ∗ t, we have C ′ Best(λv. Q(v) ∗ t) h = ⊥
13 Therefore, s ∈ [[{p}c[e′/x]{a : A. q}]] θ γ δ.

�
Lemma 49. (Case Analysis) Suppose Θ; Γ, x : A; ∆ B 〈p ∧ e =A+B inl(x)〉eA〈a : C. q〉 : spec
is valid, and Θ; Γ, y : B; ∆ B 〈p ∧ e =A+B inr(y)〉eB〈a : C. q〉 : spec is valid.

Then Θ; Γ; ∆ B 〈p〉case(e, x. eA, y. eB)〈a : C. q〉 : spec is valid.
Proof.

1 Assume ∆, x : A B 〈p ∧ e =A+B inl(x)〉eA〈a : C. q〉 : spec is valid.
2 Assume ∆, y : B B 〈p ∧ e =A+B inr(y)〉eB〈a : C. q〉 : spec is valid.
3 We want to show Θ; Γ; ∆ B 〈p〉case(e, x. eA, y. eB)〈a : C. q〉 : spec is valid.
4 We want to show that for all θ γ δ, s,

s ∈ [[Θ; Γ; ∆ B 〈p〉case(e, x. eA, y. eB)〈a : C. q〉 : spec]] θ γ δ
5 Assume θ γ δ and s, and h ∈ P ∗ s, letting

P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
Q = λv. [[Θ; Γ, a : C; ∆ B p : prop]] θ (γ, v) δ
CA = λv. [[Θ; Γ, x : A ` eA :©C]] θ (γ, v) δ
CB = λv. [[Θ; Γ, y : B ` eB :©C]] θ (γ, v) δ
E = [[Θ; Γ ` e : A+B]] θ γ

6 We want to show [CA, CB](E) Best(λv. Q(v) ∗ s) h = ⊥
7 Suppose E = inl(u) for some u:

145 The Semantics of Separation Logic
8 Then we want to show that CA u Best(λv. Q(v) ∗ s) h = ⊥
9 We know ∆, x : A B 〈p ∧ e =A+B inl(x)〉eA〈a : C. q〉 : spec is valid.
10 So for all h ∈ (P ∧ [[e =A+B inl(x)]] θ (γ, inl(u)) δ) ∗ s, CA u Best(λv. Q(v) ∗ s) h = ⊥
11 Since E = inl(u), we know that > = [[Θ; Γ, x : A; ∆ B e =A+B inl(x) : prop]] θ (γ, inl(u) δ)
12 Since equality is pure, h ∈ [[p ∧ e =A+B inl(x)]] θ (γ, inl(u)) δ ∗ s
13 Therefore CA u Best(λv. Q(v) ∗ s) h = ⊥
14 Suppose E = inr(u) for some u:
15 Then we want to show that CB u Best(λv. Q(v) ∗ s) h = ⊥
16 We know Θ; Γ, y : B; ∆ B 〈p ∧ e =A+B inr(x)〉eA〈a : C. q〉 : spec is valid.
17 So for all h ∈ (P ∧ [[e =A+B inr(x)]] θ (γ, inr(u)) δ) ∗ s, CB u Best(λv. Q(v) ∗ s) h = ⊥
18 Since E = inr(u), we know that > = [[Θ; Γ, y : B; ∆ B e =A+B inr(x) : prop]] θ (γ, inr(u) δ)
19 Since equality is pure, h ∈ [[p ∧ e =A+B inr(x)]] θ(γ, inr(u)) δ ∗ s
20 Therefore CB u Best(λv. Q(v) ∗ s) h = ⊥

�

Lemma 50. (The Rule of Consequence) If Θ; Γ; ∆ B {p}c{a : A. q} : spec is valid and
Θ; Γ; ∆ B p′ ⊃ p : prop is valid and Θ; Γ, a : A; ∆ B q ⊃ q′ : prop is valid, then Θ; Γ; ∆ B
{p′}c{a : A. q′} : spec is valid.
Proof.

1 Assume Θ; Γ; ∆ B {p}c{a : A. q} : spec is valid
2 Assume Θ; Γ; ∆ B p′ ⊃ p : prop is valid
3 Assume Θ; Γ; ∆ B q ⊃ q′ : prop is valid
4 Assume suitable θ, γ, and δ
5 We want to show ∀r. r ∈ Θ; Γ; ∆ B {p′}c{a : A. q′} : spec
6 Assume r, and let

P = [[Θ; Γ; ∆ B p : prop]]θ γ δ
P ′ = [[Θ; Γ; ∆ B p′ : prop]]θ γ δ
C = [[Θ; Γ ` c÷ A]] θ γ
Q = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ
Q′ = λv. [[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

7 We know [[Θ; Γ; ∆ B p′ ⊃ p : prop]] θ γ δ = P ′ ⊃ P .
8 We know for all v, [[Θ; Γ, a : A; ∆ B q ⊃ q′ : prop]] θ (γ, v) δ = Q(v) ⊃ Q′(v).
9 So we want to show that ∀s � r. [P ′ ∗ s] C [a : A. Q′(a) ∗ s]
10 Assume s � r, and h ∈ P ′ ∗ s
11 Hence ∃ h1 and h2 such that h1#h2 and h = h1 · h2 and h1 ∈ P ′ and h2 ∈ s
12 Since P ′ is a subset of P , h1 ∈ P . So h ∈ P ∗ s
13 Therefore C Best(λa. Q(a) ∗ s) h = ⊥
14 For any a, we know that Q(a) ⊆ Q′(a)
15 Hence we know that Best(λa. Q′(a) ∗ s) w Best(λa. Q(a) ∗ s)
16 Hence by continuity, C Best(λa. Q′(a) ∗ s) h = ⊥
17 Hence ∀s � r. [P ′ ∗ s] C [a : A. Q′(a) ∗ s]
18 Hence ∀r. r ∈ [[Θ; Γ; ∆ B {p′}c{a : A. q′} : spec]] θ γ δ

146 The Semantics of Separation Logic

�

3.8.4 The Syntactic Frame Property

We have defined a syntactic frame operator S ⊗ r on specifications.

{p}c{a : A. q} ⊗ r = {p ∗ r}c{a : A. q ∗ r}
〈p〉c〈a : A. q〉 ⊗ r = 〈p ∗ r〉c〈a : A. q ∗ r〉
{p} ⊗ r = {p}
(S1 & S2)⊗ r = S1 ⊗ r & S2 ⊗ r
(S1 || S2)⊗ r = S1 ⊗ r || S2 ⊗ r
(S1 ⇒> S2)⊗ r = S1 ⊗ r ⇒> S2 ⊗ r
(∀x : ω. S)⊗ r = ∀x : ω. (S ⊗ r)
(∃x : ω. S)⊗ r = ∃x : ω. (S ⊗ r)

Proposition. (Syntactic Well-Formedness of Frame Operator) If Θ; Γ; ∆ B S : spec and
Θ; Γ; ∆ B p : prop, then we define Θ; Γ; ∆ B S ⊗ p : spec.
Proof. By structural induction on specifications. �

More interesting than the syntactic well-formedness of the frame operator is its semantic
well-formedness.
Lemma. (Syntactic Framing is Semantic Framing) If Θ; Γ; ∆ B S : spec and
Θ; Γ; ∆ B r : prop, then for all suitable θ, γ, and δ, [[Θ; Γ; ∆ B S ⊗ r : spec]] θ γ δ =
[[Θ; Γ; ∆ B S : spec]] θ γ δ ⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ

Proof. This proof proceeds by induction on the derivation of S.

• Case SPECTRIPLE:

1 We know Θ; Γ; ∆ B {p}c{a : A. q} : spec
2 By the semantics of triples, we know that
3 [[Θ; Γ; ∆ B {p}c{a : A. q} : spec]] θ γ δ = {P}C{a. Q(a)}

where
P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
C = [[Θ; Γ ` c÷ A]] θ γ
Q = λv. ([[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

4 Now from the definition of syntactic framing, we know that S ⊗ r = {p ∗ r}c{a : A. q(a) ∗ r}
5 By semantics of triples, we know that

[[Θ; Γ; ∆ B {p ∗ r}c{a : A. q ∗ r} : spec]] θ γ δ = {P ∗R}C{a. Q(a) ∗R}
where R = [[Θ; Γ; ∆ B r : prop]] θ γ δ

6 By lemma we know that {P ∗R}C{a. Q(a) ∗R} = {P}C{a. Q(a)} ⊗R semantically
7 Therefore [[Θ; Γ; ∆ B {p}c{a : A. q} ⊗ r : spec]] θ γ δ =

[[Θ; Γ; ∆ B {p}c{a : A. q} : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

• Case SPECMTRIPLE

147 The Semantics of Separation Logic

1 We know Θ; Γ; ∆ B 〈p〉e〈a : A. q〉 : spec
2 By the semantics of triples, we know that

[[Θ; Γ; ∆ B 〈p〉e〈a : A. q〉 : spec]] θ γ δ = 〈P 〉E〈a. Q(a)〉
where
P = [[Θ; Γ; ∆ B p : prop]] θ γ δ
E = [[Θ; Γ ` e :©A]] θ γ
Q = λv. ([[Θ; Γ, a : A; ∆ B q : prop]] θ (γ, v) δ

3 Now from the definition of syntactic framing, we know that S ⊗ r = 〈p ∗ r〉e〈a : A. q(a) ∗ r〉
4 By semantics of triples, we know that

[[Θ; Γ; ∆ B 〈p ∗ r〉e〈a : A. q ∗ r〉 : spec]] θ γ δ = 〈P ∗R〉e〈a. Q(a) ∗R〉
where R = [[Θ; Γ; ∆ B r : prop]] θ γ δ

5 By lemma we know that 〈P ∗R〉E〈a. Q(a) ∗R〉 = 〈P 〉E〈a. Q(a)〉 ⊗R semantically
6 Therefore [[Θ; Γ; ∆ B 〈p〉c〈a : A. q〉 ⊗ r : spec]] θ γ δ =

[[Θ; Γ; ∆ B 〈p〉c〈a : A. q〉 : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

• Case SPECASSERT

1 We know Θ; Γ; ∆ B {p} : spec
2 So we also know that {p} ⊗ r = {p}
3 Therefore, [[Θ; Γ; ∆ B {p} : spec]] θ γ δ is either > or ⊥,

depending on whether [[Θ; Γ; ∆ B p : prop]] θ γ δ is H or ∅
4 Now, we will do a case analysis on the meaning of {p}
5 If [[Θ; Γ; ∆ B {p} : spec]] θ γ δ = >
6 Then, since S ⊆ S ⊗R for all S and R, and > is maximal, we know that

> = >⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)
7 So [[Θ; Γ; ∆ B {p} ⊗ r : spec]] θ γ δ =

[[Θ; Γ; ∆ B {p} : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)
8 If [[Θ; Γ; ∆ B {p} : spec]] θ γ δ = ⊥
9 Then, since ⊥ is the empty set, and since S ⊗ r = {p | p ∗ r ∈ S},
10 we know ⊥ = ⊥⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ
11 So we know [[Θ; Γ; ∆ B {p} ⊗ r : spec]] θ γ δ =

[[Θ; Γ; ∆ B {p} : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

• Case SPECBINARY

1 We know Θ; Γ; ∆ B S1 ⊗ S2 : spec, where ⊕ ∈ { & , || ,⇒>}
2 We also know that (S1 ⊕ S2)⊗ r = (S1 ⊗ r)⊕ (S2 ⊗ r)
3 By the semantics, we know

[[Θ; Γ; ∆ B S1 ⊕ S2 : spec]] θ γ δ
= [[Θ; Γ; ∆ B S1 : spec]] θ γ δ [[⊕]] [[Θ; Γ; ∆ B S2 : spec]] θ γ δ

4 By the semantics, we know that
[[Θ; Γ; ∆ B (S1 ⊕ S2)⊗ r : spec]] θ γ δ =

148 The Semantics of Separation Logic
([[Θ; Γ; ∆ B S1 ⊗ r : spec]] θ γ δ)[[⊕]]([[Θ; Γ; ∆ B S2 ⊗ r : spec]] θ γ δ)

5 By induction, we know
[[Θ; Γ; ∆ B S1 ⊗ r : spec]] θ γ δ = [[Θ; Γ; ∆ B S1 : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

6 By induction, we know
[[Θ; Γ; ∆ B S2 ⊗ r : spec]] θ γ δ = [[Θ; Γ; ∆ B S2 : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

7 Therefore, we know [[Θ; Γ; ∆ B (S1 ⊕ S2)⊗ r : spec]] θ γ δ =
([[Θ; Γ; ∆ B S1 : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ))
[[⊕]]
([[Θ; Γ; ∆ B S2 : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ))

8 Therefore we know [[Θ; Γ; ∆ B (S1 ⊕ S2)⊗ r : spec]] θ γ δ =
([[Θ; Γ; ∆ B S1 : spec]] θ γ δ [[⊕]] [[Θ; Γ; ∆ B S2 : spec]] θ γ δ)⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

9 Therefore we know [[Θ; Γ; ∆ B (S1 ⊕ S2)⊗ r : spec]] θ γ δ =
[[Θ; Γ; ∆ B S1 ⊕ S2 : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

• Case SPECQUANTIFY1:

1 We know Θ; Γ; ∆ B Qu : υ. S : spec, where Q ∈ {∀,∃}
2 We also know that (Qu : υ. S)⊗ r = Qu : υ. (S ⊗ r)
3 By the semantics, we know that [[Θ; Γ; ∆ B Qu : υ. (S ⊗ r) : spec]] θ γ δ =

[[Q]]v∈[[ΘBυ:sort]] θ[[Θ; Γ; ∆, u : υ B S ⊗ r : spec]] θ γ (δ, v)
4 By induction, we know that for all appropriate θ γ δ′, [[Θ; Γ; ∆, u : υ B S ⊗ r : spec]] θ γ δ′ =

[[Θ; Γ; ∆, u : υ B S : spec]] θ γ δ′ ⊗ [[∆, u : υ B r : prop]] θ γ δ′

5 Now, choosing θ, γ, and δ′ = (δ, v),
then [[Θ; Γ; ∆, u : υ B r : prop]] θ γ δ′ = [[Θ; Γ; ∆ B r : prop]] θ γ δ since u 6∈ FV(r)

6 So we know [[Θ; Γ; ∆ B Qu : υ. (S ⊗ r) : spec]] θ γ δ =
[[Q]]v∈[[ΘBυ:sort]] θ([[Θ; Γ; ∆, u : υ B S : spec]] θ γ (δ, v)⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ)

7 Since framing distributes through meets, we know [[Θ; Γ; ∆ B Qu : υ. (S ⊗ r) : spec]] θ γ δ =
([[Q]]v∈[[ΘBυ:sort]] δ[[Θ; Γ; ∆, u : υ B S : spec]] θ γ (δ, v))⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

8 So we know [[Θ; Γ; ∆ B Qu : υ. (S ⊗ r) : spec]] θ γ δ =
[[Θ; Γ; ∆ B Qu : υ. S : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

9 So we know [[Θ; Γ; ∆ B (Qu : υ. S)⊗ r : spec]] θ γ δ =
[[Θ; Γ; ∆ B Qu : υ. S : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

• Case SPECQUANTIFY3:

1 We know Θ; Γ; ∆ B Qy : B. S : spec, where Q ∈ {∀,∃}
2 We also know that (Qy : B. S)⊗ r = Qy : B. (S ⊗ r)
3 By the semantics, we know that [[Θ; Γ; ∆ B Qy : B. (S ⊗ r) : spec]] θ γ δ =

[[Q]]v∈[[ΘBB:sort]] θ[[Θ; Γ, y : B; ∆ B S ⊗ r : spec]] θ (γ, v) δ
4 By induction, we know that for all appropriate θ γ′ δ, [[Θ; Γ, y : B; ∆ B S ⊗ r : spec]] θ γ′ δ =

[[Θ; Γ, y : B; ∆ B S : spec]] θ γ′ δ ⊗ [[∆, y : B B r : prop]] θ γ′ δ
5 Now, choosing θ, δ and γ′ = (γ, v),

149 The Semantics of Separation Logic
then [[Θ; Γ; ∆, y : B B r : prop]] θ γ′ δ = [[Θ; Γ; ∆ B r : prop]] θ γ δ since u 6∈ FV(r)

6 So we know [[Θ; Γ; ∆ B Qy : B. (S ⊗ r) : spec]] θ γ δ =
[[Q]]v∈[[ΘBB:sort]] θ([[Θ; Γ; ∆, y : B B S : spec]] θ (γ, v) θ γ δ ⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ)

7 Since framing distributes through meets, we know [[Θ; Γ; ∆ B Qy : B. (S ⊗ r) : spec]] θ γ δ =
([[Q]]v∈[[ΘBB:sort]] δ[[Θ; Γ, y : B; ∆ B S : spec]] θ (γ, v) θ γ δ)⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

8 So we know [[Θ; Γ; ∆ B Qy : B. (S ⊗ r) : spec]] θ γ δ =
[[Θ; Γ; ∆ B Qy : B. S : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

9 So we know [[Θ; Γ; ∆ B (Qy : B. S)⊗ r : spec]] θ γ δ =
[[Θ; Γ; ∆ B Qy : B. S : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

• Case SPECQUANTIFY2:

1 We know Θ; Γ; ∆ B Qα : κ. S : spec, where Q ∈ {∀,∃}
2 We also know that (Qα : κ. S)⊗ r = Qα : κ. (S ⊗ r)
3 By the semantics, we know that [[Θ; Γ; ∆ B Qα : κ. (S ⊗ r) : spec]] θ γ δ =

[[Q]]τ∈[[ΘBκ:sort]] θ[[Θ, α : κ; Γ; ∆ B S ⊗ r : spec]] (θ, τ) γ δ
4 By induction, we know that for all appropriate θ′ γ δ, [[Θ, α : κ; Γ; ∆ B S ⊗ r : spec]] θ γ δ =

[[Θ, α : κ; Γ; ∆ B S : spec]] θ γ δ ⊗ [[∆, α : κ B r : prop]] θ γ δ
5 Now, choosing θ′ = (θ, τ) and γ, δ

then [[Θ, α : κ; Γ; ∆ B r : prop]] θ′ γ δ = [[Θ; Γ; ∆ B r : prop]] θ γ δ since α 6∈ FV(r,Γ,∆)
6 So we know [[Θ; Γ; ∆ B Qα : κ. (S ⊗ r) : spec]] θ γ δ =

[[Q]]τ∈[[ΘBκ:sort]] θ([[Θ; Γ; ∆, α : κ B S : spec]] (θ, τ) γ δ ⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ)
7 Since framing distributes through meets, we know [[Θ; Γ; ∆ B Qα : κ. (S ⊗ r) : spec]] θ γ δ =

([[Q]]τ∈[[ΘBκ:sort]] θ[[Θ;α : κ; Γ; ∆ B S : spec]] (θ, τ) γ δ)⊗ [[Θ; Γ; ∆ B r : prop]] θ γ δ)
8 So we know [[Θ; Γ; ∆ B Qα : κ. (S ⊗ r) : spec]] θ γ δ =

[[Θ; Γ; ∆ B Qα : κ. S : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)
9 So we know [[Θ; Γ; ∆ B (Qα : κ. S)⊗ r : spec]] θ γ δ =

[[Θ; Γ; ∆ B Qα : κ. S : spec]] θ γ δ ⊗ ([[Θ; Γ; ∆ B r : prop]] θ γ δ)

�

150 The Semantics of Separation Logic

Chapter 4

Proving the Correctness of Design Patterns

4.1 Introduction

The widespread use of object-oriented languages creates an opportunity for designers of formal
verification systems, above and beyond a potential “target market”. Object-oriented languages
have been used for almost forty years, and in that time practitioners have developed a large
body of informal techniques for structuring object-oriented programs called design patterns[12].
Design patterns were developed to both take best advantage of the flexibility object-oriented
languages permit, and to control the potential complexities arising from the unstructured use of
these features.

This pair of characteristics make design patterns an excellent set of benchmarks for a program
logic. First, design patterns use higher order programs to manipulate aliased, mutable state.
This is a difficult combination for program verification systems to handle, and attempting to
verify these programs will readily reveal weaknesses or lacunae in the program logic. Second,
the fact that patterns are intended to structure and modularize programs means that we can use
them to evaluate whether the proofs in a program logic respect the conceptual structure of the
program – we can check to see if we need to propagate conceptually irrelevant information out
of program modules in order to meet our proof obligations. Third, we have the confidence that
these programs, though small, actually reflect realistic patterns of usage.

In this chapter, we give good specifications for and verify the following programs:

• We prove a collection and iterator implementation, which builds the Java aliasing rules for
iterators into its specification, and which allows the construction of new iterators from old
ones via the composite and decorator patterns.

• We prove a general version of the flyweight pattern (also known as hash-consing in the
functional programming community), which is a strategy for aggressively creating aliased
objects to save memory and permit fast equality tests. This also illustrates the use of the
factory pattern.

• We prove a general version of the subject-observer pattern in a way that supports a strong
form of information hiding between the subject and the observers.

152 Proving the Correctness of Design Patterns
4.2 Iterators and Composites

The iterator pattern is a design pattern for uniformly enumerating the elements of a collection.
The idea is that in addition to a collection, we have an auxiliary data structure called the iterator,
which has an operation next. Each time next is called, it produces one more element of the
collection, with some signal when all of the elements have been produced. The iterators are
mutable data structures whose invariants depend on the collection, itself another mutable data
structure. Therefore, most object oriented libraries state that while an iterator is active, a client
is only permitted to call methods on a collection that do not change the collection state (for
example, querying the size of a collection). If destructive methods are invoked (for example,
adding or removing an element), it is no longer valid to query the iterator again.

We also support operations to create new iterators from old ones, and to aggregate them
into composite iterators. For example, given an iterator and a predicate, we can construct a
new iterator that only returns those elements for which the predicate returns true. This sort of
decorator takes an iterator object, and decorates it to yield an iterator with different behavior.
Likewise, we can take two iterators and a function, and combine them into a new, composite
iterator that returns the result of a parallel iteration over them both. These sorts of synthesized
iterators are found in the itertools library in the Python programming language, the Google
Java collections library, or the C5 library [18] for C#.

Aliasing enters into the picture, above and beyond the restrictions on the underlying collec-
tions, because iterators are stateful objects. For example, if we create a filtering iterator, and
advance the underlying iterator, then what the filtering iterator will return may change. Even
more strikingly, we cannot pass the same iterator twice to a parallel iteration constructor – the
iterators must be disjoint in order to correctly generate the two sequences of elements to combine.

Below, we give a specification of an iterator pattern. We’ll begin by describing the interface
informally, in English, and then move on to giving formal specifications and explaining them.

The interface consists of two types, one for collections, and one for iterators. The operations
the collection type supports are 1) creating new mutable collections, 2) adding new elements
to an existing collection, and 3) querying a collection for its size. Adding new elements to a
collection is a destructive operation which modifies the existing collection, whereas getting a
collection’s size does not modify the collection.

The interface that the iterator type supports includes:
1. creating a new iterator on a collection,

2. destructively getting the next element from an iterator (returning an error value if the iter-
ator is exhausted), and

3. operations producing new iterators from old. The operations we support are:

(a) a filter operation, which takes an iterator along with a boolean predicate, and returns
an iterator which enumerates the elements satisfying the predicate, and

(b) a parallel map operation, which takes two iterators and a two-argument function, and
returns an iterator which returns the result of enumerating the elements of the two
iterators in parallel, and applying the function to each pair of elements.

The aliasing protocol that our iterator protocol will satisfy is essentially the same as the one

153 Proving the Correctness of Design Patterns
the Java standard libraries specify in their documentation.

• Any number of iterators can be created from a given collection. Each of these iterators
depends on the state of the collection when the iterator is created, and is only valid as long
as the collection state does not change.
Each iterator also has its own traversal state, which tracks how many of the collection’s
elements it has yet to yield.

• Iterators can be constructed from other iterators, and these composite iterators depend on
the traversal states of all of the iterators they are constructed from. As a result, they also
depend on the state of each collection each constituent iterator depends upon.

• An iterator is valid only as long as none of the collections it depends on have been modified,
and it is the only thing that has the right to modify the traversal state of the iterators it
depends on.
It is legal to call functions on an iterator only when it is in a valid state. Performing a de-
structive operation on any collection an iterator depends upon invalidates it. For example,
adding an element to any collection an iterator depends on will invalidate the iterator, as
will enumerating the elements from any of the iterators that it depends on.
Likewise, only the iterator itself may modify the traversal state of any iterator it depends
upon. Any other modification may invalidate it.

4.2.1 The Iterator Specification

Now, we will describe the specification, given in Figure 4.1, in detail. This whole specification
follows the usual pattern of introducing abstract types, predicates, and operations with existential
quantification, and then specifying the behavior of the operations with a conjunction of Hoare
triples.

In lines 1 and 2, we introduce two abstract type constructors, colltype and itertype. These
are both type constructors of kind ? → ?, which take an argument that describes their element
type. So colltype(N) represents a collection of natural numbers, and itertype(bool) represents an
iterator which will produce a sequence of boolean values.

In lines 3 and 4, we give two abstract predicates coll and iter , to represent the state as-
sociated with a collection and iterator, respectively. The sort of the collection predicate is
Πα : ?. colltype(α) ⇒ seq α ⇒ prop ⇒ prop, which we will write using an expression
like collα(c, xs, P).

The first argument is a type argument (e.g., α), indexing the whole predicate by the element
type of the collection. (We will often suppress this type argument when it is obvious from
context.) The second argument is an argument of collection type (in our example, c, of type
colltype(α)) which indicates the value with which our state is associated. The third argument
(here, xs) is the purely mathematical sequence (i.e., an element of the free monoid over α) the
collection c represents. The fourth, and final, argument is a proposition-valued abstract state of
the collection, which we use to track whether or not the collection has been modified or not.

The appearance of this argument might be a little bit surprising: naively, we might suppose
the mathematical sequence that collection represents constitutes a sufficient description of the

154 Proving the Correctness of Design Patterns
collection, and so we might expect our predicates to take on the form collα(c, xs), with no state
argument. However, this is not sufficient. The iterator contract forbids modifying the collection
at all, while iterators are active upon it, and the mathematical sequence a collection represents is
not enough information to decide whether a collection has been modified or not.

For example, suppose we have a collection c representing the mathematical sequence
〈2, 3, 4, 5〉, which might have the predicate collN(c, 〈2, 3, 4, 5〉 , P). Now, suppose we first add
the element 1 to the front of the sequence (so that the collection c now represents 〈1, 2, 3, 4, 5〉),
and then immediately remove the first element. Then, the collection c will still represent the
sequence 〈2, 3, 4, 5〉, but it will have suffered an intervening modification.

This kind of change can be catastrophic for iterator implementations. As a concrete example,
suppose that we had represented our collection with a balanced binary tree, and represent the
iterator as a pointer into the middle of that tree. Adding and removing elements from the collec-
tion can cause a tree rebalancing, which can potentially leave the iterator pointer with a stale or
dangling pointer.

As a result, our specification must track whether a collection has been modified or not, and
this is what the abstract state field on the predicate does. Operations on a collection which do not
change its underlying state will leave the abstract state unchanged from pre- to post-condition,
whereas destructive operations (such as adding or removing elements) do change the abstract
state.

On line 4, we assert the existence of the iterator predicate iter . It is also a four-place predi-
cate, and has sort Πα : ?. itertype(α) ⇒ seq α ⇒ P(Σβ : ?. colltype(β) × seq β × prop) ⇒
prop, which we will write using an expression like iterα(i, xs, S).

The first argument (in our example, α) is a type argument describing the type of elements
the iterator will produce. The second argument (here, i) is the concrete iterator value to which
the predicate is associated. Then, we have a sequence argument (here, xs) which describes the
elements yet to be produced from this iterator – if xs = 〈5, 7, 9〉, then the next three elements
the iterator will yield are 5, 7, and 9, in that order. Subsequently the iterator will be empty and
unable to produce any more elements.

Finally, we have a state argument for iterators, as well. In contrast to the case for collections,
this argument is a set of propositions, representing an entire set of collection states. Since our
interface supports operations which allow building new iterators from old, an iterator may access
many different collections to produce a single new element. As a result, we have to track the
state of each collection the iterator depends on, so that we can verify that we do not ever need to
read a modified collection.

The operation newcoll is declared on line 5, and specified on line 13. The specification asserts
that the call newcollα may happen from any precondition state, and that it creates and adds a new,
empty collection to the program state. The postcondition assertion ∃P. collα(a, ε, P) says that
the return value a is a collection representing the empty sequence ε, and that the collection begins
its life in some arbitrary abstract state P .

The sizeα(c) function, which is declared on line 6 and specified on line 14, takes a type
argument α and a collection c, and returns the number of elements in c. To call this function,
we must have access to the collection collα(c, xs, P) in our precondition, and it is returned to us
unchanged in the postcondition, with the return value a equal to the length of xs, the sequence
c represents. In particular, note that the abstract state P of the coll(c, xs, P) predicate remains

155 Proving the Correctness of Design Patterns

1 ∃colltype : ?→ ?
2 ∃itertype : ?→ ?

3 ∃coll : Πα : ?. colltype(α)⇒ seq α⇒ prop⇒ prop.
4 ∃iter : Πα : ?. itertype(α)⇒ seq α⇒ P(Σβ : ?. colltype(β)× seq β × prop)⇒ prop.

5 ∃newcoll : ∀α : ?. © (colltype(α)).
6 ∃size : ∀α : ?. colltype(α)→©N.
7 ∃add : ∀α : ?. colltype(α)× α→©1.
8 ∃remove : ∀α : ?. colltype(α)→©(option(α)).

9 ∃newiter : ∀α : ?. colltype(α)→©(itertype(α)).
10 ∃filter : ∀α : ?. (α→ bool)× itertype(α)→©(itertype(α)).
11 ∃merge : ∀α, β, γ : ?. (α→ β → γ)× itertype(α)× itertype(β)→©(itertype(γ)).
12 ∃next : ∀α : ?. itertype(α)→©(option(α)).

13 ∀α. 〈emp〉newcollα〈a : colltype(α). ∃P. collα(a, ε, P)〉 &

14 ∀α, c, P, xs. 〈collα(c, xs, P)〉
15 sizeα(c)
16 〈a : N. collα(c, xs, P) ∧ a = |xs|〉 &

17 ∀α, c, P, x, xs. 〈collα(c, xs, P)〉
18 addα(c, x)
19 〈a : 1. ∃Q. collα(c, x · xs,Q)〉 &

20 ∀α, c, P. 〈collα(c, ε, P)〉removeα(c)〈a : option(α). collα(c, ε, P) ∧ a = None〉 &
21 ∀α, c, x, xs, P.〈collα(c, x · xs, P)〉
22 removeα(c)
23 〈a : option(α). ∃Q. collα(c, xs,Q) ∧ a = Some(x)〉

24 & ∀α, c, P, xs. 〈collα(c, xs, P)〉
25 newiterα(c)
26 〈a : itertype(α). coll(c, xs, P) ∗ iter(a, xs, {(α, c, xs, P)})〉 &

27 ∀α, p, i, S, xs. 〈iterα(i, xs, S)〉
28 filterα(p, i)
29 〈a : itertype(α). iterα(a, filter p xs, S)〉 &

30 ∀α, β, γ, f, i, S,xs, i′, S ′, xs′.
31 〈iterα(i, xs, S) ∗ iterβ(i′, xs′, S ′)〉
32 mergeα β γ(f, i, i

′)
33 〈a : itertype(γ). iterγ(a,map2 f xs xs′, S ∪ S ′)〉 &

34 ∀α, i, S. 〈colls(S) ∗ iterα(i, ε, S)〉
35 nextα(i)
36 〈a : option(α). colls(S) ∗ iterα(i, ε, S) ∧ a = None〉 &

37 ∀α, i,S, x, xs. 〈iterα(i, x · xs, S) ∗ colls(S)〉
38 next(i)
39 〈a : option(α). iterα(i, xs, S) ∧ a = (Some x) ∗ colls(S)〉

Figure 4.1: Interface to the Iterator Library

156 Proving the Correctness of Design Patterns

1 colls(∅) ≡ emp
2 colls({(α, c, xs, P)}] S) ≡ collα(c, xs, P) ∗ colls(S)

3 filter p ε ≡ ε
4 filter p (x · xs) ≡ if p x = true then x · (filter p xs) else filter p xs

5 map2 f ε ys = ε
6 map2 f xs ε = ε
7 map2 f (x · xs) (y · ys) = (f x y) · (map2 f xs ys)

Figure 4.2: Auxilliary Functions Used in the Iterator Specification

unchanged in the pre- and post-conditions, indicating that this function does not change the
abstract state.

The function call addα(c, x), which adds an element x to a collection c, is declared on line 7
and is specified on line 17. We start with a precondition collα(c, xs, P) and move to a postcondi-
tion state ∃Q. collα(c, x · xs,Q). Because we destructively modify the collection c when we add
x to it, we also specify that the abstract state in the postcondition is existentially quantified. This
ensures that clients cannot assume that the abstract state remains the same after a call to add has
been made. In this way, the abstract state behaves a bit like a time stamp, changing to some new
state whenever a modification is made to the collection.

Similarly, the function call removeα(c) (declared on line 8) removes an element from the
collection c. We give this procedure two specifications, on lines 20 and 21, corresponding to
when the collection is empty, or not. In the first specification (on line 20), we begin with the
precondition collα(c, ε, P), and end in the postcondition collα(c, ε, P)∧ a = None. The fact that
the abstract state remains P means the collection is unchanged, and the return value a equals
None, an element of option type, indicating that there was no element to remove. In the second
specification (on line 21), we begin with the precondition collα(c, x · xs, P), from which we
can see that the collection is nonempty. Then, the postcondition is ∃Q. collα(c, xs,Q) ∧ a =
Some(x). The value Some(x) is returned as the return value of the function, and the state of the
collection changes to reflect that the element x has been removed — including a change to the
abstract state of the collection.

As an aside, in practice it is usually more convenient to specify a procedure with a single
Hoare triple, rather than multiple Hoare triples. However, in this example, I choose to give
multiple specifications of the same procedure in order to illustrate that it is indeed possible within
specification logic.

The newiterα(c) function is declared on line 9. Its type is ∀α : ?. colltype(α) →
©(itertype(α)). This means that it is given a type and a collection of that type, and then it
returns an iterator over that type, possibly creating auxilliary data structures.

A call newiterα(c) is specified on line 24, and beginning from a precondition state
collα(c, xs, P), it goes to a postcondition state collα(c, xs, P) ∗ iterα(a, xs, {(c, xs, P)}). This
means that given access to a collection c, our function will return an iterator object (bound to a),
which will enumerate the elements of c (that is, it will produce the elements xs). Furthermore,
the abstract state that it depends on is just the singleton set {P}, since this iterator will read only

157 Proving the Correctness of Design Patterns
c. Finally, the fact that collα(c, xs, P) occurs in both the pre- and the post-condition means that
this function needs access to c’s state, but does not modify its abstract state.

The filterα(p, i) (declared on line 10) takes a boolean function p and an iterator i, and returns
a new iterator which will enumerate only those elements which for which p returns true. This
function is specified on line 27, and it takes a precondition iterα(i, xs, S) to a postcondition
iterα(a, filter p xs, S).

First, note that we use a mathematical function filter to explain the filtering behavior in
terms of sequences. Second, note that the original iterator state iterα(i, xs, S) vanishes from
the postcondition – it is consumed by the call the filter. This reflects the fact the filtered iterator
takes ownership of the underlying iterator, in order to prevent third parties from making calls to
next(i) and possibly changing the state of the filtered iterator.

This is also why the support set S for an iterator only needs to track the abstract states
of the collections, rather than tracking the state of both collections and iterators. When we
take ownership of the argument’s iterator state, we prevent third parties from being able to call
functions on the argument after creating the new iterator. This takes advantage of the resource-
conscious nature of separation logic: a specification must have access to its footprint, and so we
can hide state inside a predicate to control which operations are allowed.

The merge function is declared on line 11, and has type ∀α, β, γ : ?. (α → β → γ) ×
itertype(α)× itertype(β)→©(itertype(γ)). Thus, a call mergeα β γ(f, i, i

′) takes a function and
two iterators, and constructs a new iterator which steps over the two inputs in parallel, returning
the result of f applied to each pair of elements of i and i′.

We specify calls mergeα β γ(f, i1, i2) on line 30, and it takes a precondition iterα(i1, xs, S1)∗
iterβ(i2, ys, S2). This means that we have state associated with two separate iterators, which
we take to the postcondition iterγ(a,map2 f xs ys, S1 ∪ S2). As with the filter function, we
consume the two input iterators to produce the return value iterator. And also as with filter, we
use a mathematical function map2 to specify the action on mathematical sequences.

One point worth noting is that it is important that the two argument iterators have sepa-
rate state from one another. In a functional program, there is no difficulty with a program
map2 f xs xs, because we are free to re-traverse a list multiple times. However, since traversing
an iterator is a destructive operation, a call like mergeα,α,β f i i could (if it were allowed) give
the wrong answer, for example by pairing consecutive elements of the iterator.

The final operation in our interface is the next function, declared on line 12. The type of
this function is ∀α : ?. itertype(α) → ©(option(α)). When invoked, it will return an option,
with the None value if the iterator is exhausted, and Some of an element if the iterator still has
elements to produce.

As with remove, we specify this procedure with two specifications, one for the case when the
iterator is empty and another for when it is non-empty. On line 34, we give the specification for
when the iterator is exhausted, and on line 37, we give the specification for when the iterator is
not exhausted.

In either case, the precondition for the function contains as one part the predicate colls(S).
The assertion-level function colls(S) is a function that iterates over a set of abstract states, and
re-associates them with collection predicates (coming from the argument S) in the precondition,
to form a predicate coll τ1(c1, xs1, S1) ∗ . . . ∗ coll τn(cn, xsn, Sn). This expresses the requirement
that we need access to all of the collections i depends on, all in the correct abstract state, in order

158 Proving the Correctness of Design Patterns
to use it. This function is defined in Figure 4.2.1

In line 34, colls(C, S) is joined with the specification of the iterator, iterα(i, ε, S). Note that
the same S is used, so that we are referring only to the collections the iterator may need to read.
As expected, nextα(i) returns None. On the other hand, if the iterator still has elements (i.e., is in
a state iterα(i, x · xs, S)), we use the specification on line 37, and see it returns the first element
as Some x, and sets the state to iter(i, xs, S) in the postcondition (line 15).

Example Client

Below, we give an example use of this module in annotated program style. (Here, and in what
follows, we suppress explicit type applications when they are obvious in context.)

1 {emp}
2 letv c1 = newcoll() in
3 {∃P ′1. coll(c1, ε, P

′
1)}

4 {coll(c1, ε, P1)}
5 letv () = add(c1, 4) in
6 {∃P2. coll(c1, 4 · ε, P2)}
7 {coll(c1, 4 · ε, P2)}
8 letv () = add(c1, 3) in
9 letv () = add(c1, 2) in
10 {coll(c1, 2 · 3 · 4 · ε, P4)}
11 letv c2 = newcoll() in
12 letv () = add(c2, 3) in
13 letv () = add(c2, 5) in
14 {coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
15 letv i1 = newiter(c1) in
16 {iter(i1, 2 · 3 · 4 · ε, {(c1, 2 · 3 · 4 · ε, P4)})
17 ∗ coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
18 letv i′1 = filter(even?, i1) in
19 {iter(i′1, 2 · 4 · ε, {(c1, 2 · 3 · 4 · ε, P4)})
20 ∗ coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
21 letv i2 = newiter(c2) in
22 {iter(i′1, 2 · 4 · ε, {(c1, 2 · 3 · 4 · ε, P4)})
23 ∗ iter(i2, 5 · 3 · ε, {(c2, 5 · 3 · ε, Q2)})
24 ∗ coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
25 letv i = merge(plus, i′1, i2) in
26 {iter(i, 7 · 7 · ε, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε, Q2)})
27 ∗ coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
28 letv n = size(c2) in

1Technically, this is an abuse of notation, since primitive recursion is not well defined on sets. The proper way
to do this would be to introduce a binary relation colls(S ,R) between state sets and predicates, and to put R in the
precondition state. However, since the separating conjunction is commutative, no confusion is possible and I will
retain the functional form.

159 Proving the Correctness of Design Patterns
29 {n = 2 ∧ iter(i, 7 · 7 · ε, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε, Q2)})
30 ∗ coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
31 letv x = next(i) in
32 {n = 2 ∧ x = Some 7 ∧
33 iter(i, 7 · ε, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε, Q2)})
34 ∗ coll(c2, 5 · 3 · ε, Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
35 add(c2, 17)
36 {n = 2 ∧ x = Some 7 ∧
37 iter(i, 7 · ε, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε, Q2)})
38 ∗ (∃Q3. coll(c2, 17 · 5 · 3 · ε, Q3)) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
39 {∃Q2, Q3, P4.n = 2 ∧ x = Some 7 ∧
40 iter(i, 7 · ε, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε, Q2)})
41 ∗ coll(c2, 17 · 5 · 3 · ε, Q3) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}

In line 1 of this example, we begin in an empty heap. In line 2, we create a new collection c1,
which yields us the state ∃P ′1. coll(c1, ε, P

′
1), with an existentially quantified abstract state.

Because P ′1 is existentially quantified, we do not know what value it actually takes on. How-
ever, we can drop the existential using the AXFORGET axiom, which says that if we prove the
rest of the program using a freshly-introduced variable P1, then we know that the rest of the pro-
gram will work for any value of P1, because free variables are implicitly universally quantified.
So it will work with whatever value P ′1 had. So we drop the quantifier on line 4, and try to prove
this program with the universally-quantified P1.2

This permits us to add the element 4 to c1 on line 5. Its specification puts the predicate coll()
on line 6 again into an existentially quantified state P2. So we again replace P2 with a fresh
variable P2 on line 7, and will elide these existential introductions and unpackings henceforth.

Starting on line 8, we add two more elements to c1, and on lines 11-13, we create another
collection c2, and add 3 and 5 to it, as can be seen in the state predicate on line 14. On line 15,
we create the iterator i1 on the collection c1. The iter predicate on line 16 names i1 as its value,
and lists c1 in state P4 as its support, and promises to enumerate the elements 2, 3, and 4.

On line 18, filter(even?, i1) creates the new iterator i′1. This iterator yields only the even
elements of i1, and so will only yield 2 and 4. On line 19, i1’s iterator state has been consumed
to make i′1’s state. We can no longer call next(i1), since we do not have the resource invariant
needed to prove anything about that call. Thus, we cannot write a program that would break i′1’s
representation invariant.

On line 21, we create a second iterator i2 enumerating the elements of c2. The state on line 22
now has predicates for i′1, i2, c1 and c2. On line 25, merge(plus, i′1, i2) creates a new iterator i,
which produces the pairwise sum of the elements of i′1 and i2, and consumes the iterator states
for i′1 and i2 to yield the state for the new iterator i. Note that the invariant for i does not make
any mention of what it was constructed from, naming only the collections it needs as support.

On line 28, the size call on c2 illustrates that we can call non-destructive methods while
iterators are active. The call to next(i) on line 31 binds Some 7 to x, and the the iterator’s
sequence argument (line 33) shrinks by one element. On line 35, we call add(c2, 17) the state

2A useful analogy is the existential elimination rule in the polymorphic lambda calculus: we prove that we can
use an existential by showing that our program is well-typed no matter what the contents of the existential are.

160 Proving the Correctness of Design Patterns
of c2 changes to ∃Q3. coll(c, 17 · 5 · 3 · ε, Q3) (line 38). So we can no longer call next(i), since
it needs c2 to be in the state Q2. (On the following line, we repack all of the existentials, in
accordance with the AXFORGETEX rule of the program logic.)

Discussion. This example shows a pleasant synergy between higher-order quantification and
separation logic. We can give a relatively simple specification to the clients of the collection
library, even though the internal invariant is quite subtle (as we will see in the next section, it
will use the magic wand). Higher-order logic also lets us freely define new data types, and so
our specifications can take advantage of the pure, non-imperative nature of the mathematical
world, as can be seen in the specifications of the filter and merge functions – we can use equa-
tional reasoning on purely functional lists in our specifications, even though our algorithms are
imperative.

4.2.2 Example Implementation

In this subsection, we describe one particular implementation of iterators, based on a simple
linked list implementation. The type and predicate definitions are given in Figure 4.3, and the
implementation of the procedures is given in Figure 4.4.

Definitions of the Types and Predicates

We’ll begin by giving an intuitive explanation of the predicates, before giving correctness proofs
for the operations.

Starting on line 1 of Figure 4.3, we define the type of collections. Technically, these are
recursive type definitions, which we did not define in our semantics in Chapter 1. Fortunately,
there is no great difficulty in these definitions — we are giving polynomial data types, and we
can justify these definition via the fact that for every polynomial functor F , the category of F -
algebras over CPO has an initial object (which means that the data type and primitive iteration
over it are well-defined).

The type of collections colltype(τ) is a mutable linked list, consisting of a reference to a
value of type listcell(τ). A list content is either a Nil value, or a cons cell Cons(x, tl) consisting
of a value of type τ and a tail list of type colltype(τ). Unlike the typical definition of purely
functional linked lists in ML, the tails of a list are mutable references, rather than list values.

The type of iterators, given in line 3, is an inductive datatype, with one clause for each of the
possible ways to construct a new iterator from an old one. This type arises as follows. When
we filter an iterator (or merge two iterators), we simply store a function together with the iterator
(or two iterators) that are given as inputs. For an iterator into a single collection, we store an
interior pointer into the argument list, giving us the type of a pointer to a list as the type of the
One constructor.

Then, on line 6, we define the auxilliary predicate list(τ, c, xs), which asserts that c is a
list value representing the mathematical sequence xs, with element type τ . This is defined by
recursion over the sequence xs, with the empty sequence represented by a pointer to Nil, and
a sequence y · ys represented by a pointer to a cons cell whose head is x and whose tail is a
collection representing ys.

161 Proving the Correctness of Design Patterns

1 listcell(α) = Nil | Cons α× ref (listcell(α))
list (α) = ref (listcell(α))

2 colltype(α) = list α

3 itertype(α)= One ref (colltype(α))
4 | Filter (α→ bool)× itertype(α)
5 | Merge ∃β, γ : ?. (β → γ → α)× itertype(β)× itertype(γ)

6 list(τ, c, xs) ≡ ∃v. c 7→τ v ∗ listcell(τ, v, xs)
7 listcell(τ,Nil, xs) ≡ xs = ε
8 listcell(τ,Cons(y, c), xs) ≡ ∃ys. xs = y · ys ∧ list(τ, c, ys)

9 coll τ (c, xs, P) ≡ list(τ, c, xs) ∧ P ∧ exact(P)

10 iter τ (One i, xs, {(τ, c, ys, P)}) ≡ ∃c′. i 7→ c′ ∗
11 (coll(c, ys, P)−∗ (coll(c, ys, P) ∧
12 (> ∗ list(c′, xs))))
13 iter τ (One i, xs, S) ≡ ⊥ when |S| 6= 1
14 iter τ (Filter(p, i), xs, S) ≡ ∃ys. iter τ (i, ys, S) ∧ xs = filter p ys
15 iter τ (Merge(τ1, τ2, f, i1, i2), xs, S) ≡ ∃S1, ys, S2, zs.
16 iter τ1(i1, ys, S1) ∗ iter τ2(i2, zs, S2) ∧
17 S = S1 ∪ S2 ∧ xs = map2 f ys zs

Figure 4.3: Type and Predicate Definitions of the Iterator Implementation

162 Proving the Correctness of Design Patterns

1 newcollα ≡ [newα(Nil)]

2 sizeα(c) ≡[letv p = [!c] in
3 run listcase(p,
4 Nil→ [0],
5 Cons(, tl)→ [letv n = sizeα(tl) in n+ 1])]

6 addα(c, x) ≡ [letv p = [!c] in
7 letv c′ = newlistcell(α)(p) in
8 c := Cons(x, c′)]

9 removeα(c) ≡ [letv p = [!c] in
10 run listcase(p,
11 Nil→ [None],
12 Cons(x, c′)→ [letv p′ = [!c′] in
13 letv = [c := p′] in
14 Some(x)])]

15 newiterα(c) ≡ [letv i = [newcolltype(α)(c)] in One(i)]

16 filterα(p, i) ≡ [Filter(p, i)]

17 mergeα(f, i, i′) ≡ [Merge(f, i, i′)]

18 nextα(One i) ≡ [letv c = [!i] in
19 letv p = [!c] in
20 run listcase(p,
21 Nil→ [None],
22 Cons(x, c′)→ [letv = [i := c′] in Some(x)])]
23 nextα(Filter(p, i)) ≡ [letv v = nextα(i) in
24 run listcase(v,
25 None→ [None],
26 Some x→ if(p x, [v], nextα(Filter(p, i))))]
27 nextα(Merge(β, γ, f, i1, i2)) ≡ [letv x1 = nextβ(i1) in
28 letv x2 = nextγ(i2) in
29 case(x1,
30 None→ None,
31 Some v1 → case(x2,
32 None→ None,
33 Some v2 → Some(f v1 v2)))]

Figure 4.4: Implementation of Collections and Iterators

163 Proving the Correctness of Design Patterns
The collection predicate coll τ (c, xs, P), defined on line 9, makes use of the list predicate.

In addition to asserting that the value c represents the sequence xs, it asserts two further things.
First, it says that this program state is also described by the abstract predicate P , and that this
predicate is an exact predicate.

Exact predicates are predicates that hold of exactly one heap: that is, they are the atomic
elements of the lattice of assertions. This means that they uniquely identify a heap data structure.
This property lets us track modifications to the collection: any change to the actual heap structure
will result in the falsification of P .

As a modal operator on separation logic assertions, exactness can be defined in higher-order
separation logic with the following definition:

Exact(P) , ∀Q : prop. (P ∧Q)→ (P ∗ (emp ∧ (P −∗P ∧Q))

This definition has the benefit of concisely demonstrating why we are interested in exactness:
when P is exact, we can “subtract” it from any proposition P and Q, leaving a magic wand
P −∗P ∧ Q behind, which is ordinarily not legitimate. (There is possibly a connection to
Parkinson’s “septraction” operator [47].)

The iterator predicate, defined on line 10 is given as a recursive definition. The base case is
when we have an iterator over a single collection, in the One(i) case. Here, we have the following
assertion:

iter τ (One(i), xs, {(τ, c, ys, P)}) ≡ ∃c′. i 7→ c′∗(coll(c, ys, P)−∗ (coll(c, ys, P)∧(>∗list(c′, xs))))

The i 7→ c′ clause says that i is a pointer to a linked list. The second clause of this invariant
is more complex, and its purpose is to say that c is an interior pointer into a collection.

It says if ownership of the collection state coll(c, ys, P) is transferred to us, then we will get it
back, along with the additional information that list(c′, xs) is within the same state. In this way,
we express the fact that the iterator’s invariant depends on having controlled access to the state
of the collection. However, we are also able to avoid giving the iterator state direct ownership of
the collection; the magic wand lets us say that we don’t own the collection currently, but rather
that if we get it, then we can follow the pointer c when we are given the collection state of the
collection.

The reason we go to this effort is to simplify the specification and proof of client programs
— we could eliminate the use of the magic wand in the base case if iterators owned their col-
lections, but this would complicate verifying programs that use multiple iterators over the same
collection, or which want to call pure methods on the underlying collection. In those cases, the
alternative would require us to explicitly transfer ownership of the collection in the proofs of
client programs, which is quite cumbersome, and forces clients to reason using the magic wand.
The current approach isolates that reasoning within the proof of the implementation.

Also, I should note that exactness plays a role in making this use of the magic wand work
correctly. The semantics of the magic wand p−∗ q quantify over all heaps in p, but if p is exact,
then there is at most one satisfying heap.

On the next line, we have a catch-all case saying that the predicate is false whenever a One
iterator has other than a single collection it depends upon.

164 Proving the Correctness of Design Patterns
One the next line, we give the case for iter τ (Filter(p, i), xs, S). This is a very simple formula;

we simply assert that i is an iterator yielding some other sequence ys, which when filtered with
the predicate p is xs. There are no changes to the set of abstract states.

On the line after that, we give the case for iter τ (Merge(τ1, τ2, f, i1, i2), xs, S). This case says
we can divide the abstract state into two parts (which may overlap), one of which is used by i1,
and the other of which is used by i2, which yield sequences ys and zs respectively, and which
can be merged using f to yield xs.

In both of these cases, we define the behavior of the imperative linked list in terms of purely
functional sequences. This is a very common strategy in many verification efforts, but here we
see that we can use it in a local way – in the base case, we are forced to consider issues of aliasing
and ownership, but in the inductive cases we can largely avoid that effort.

Correctness Proofs of the Iterator Implementation

Now that we know the definitions of the types and predicates, we can give the correctness proofs
for the operations defined in Figure 4.4.3

Lemma 51. (Correctness of newcoll) We have that

∀α. 〈emp〉newcollα〈a : colltype(α). ∃P. collα(a, ε, P)〉

is valid.
Proof. All newcollα does is allocate a list. To prove the specification, we will assume that α : ?,
and then prove the program in annotated program style.

1 {emp}
2 newα(Nil)
3 {a 7→α Nil}
4 {list(α, a, ε)}
5 {list(α, a, ε) ∧ ∃Q. Q ∧ exact(Q)}
6 {∃Q. list(α, a, ε) ∧Q ∧ exact(Q)}
7 {∃Q. collα(a, ε,Q)}

Line 4 follows from 3, because of the definition of the list predicate. Line 5 follows from 4,
because this is an axiomatic property of all predicates – if a predicate holds in a heap, there is an
exact predicate describing that heap. Line 6 is a quantifier manipulation, and line 7 follows from
the definition of the predicate. �
Lemma 52. (Correctness of size) We have that

∀α, c, P, xs. 〈collα(c, xs, P)〉sizeα(c)〈a : N. collα(c, xs, P) ∧ a = |xs|〉

is valid.
Proof. This function, defined on line 2 of Figure 4.4, is a recursively defined function. So we
will prove it using the fixed point rule, but with the altered specification:

∀α, c, P,Q, xs. 〈(P ∗ list(α, c, xs)) ∧Q〉sizeα(c)〈a : N. (P ∗ list(α, c, xs)) ∧Q ∧ a = |xs|〉
3These definitions make use of the run abbreviation defined in Section 2.5.

165 Proving the Correctness of Design Patterns
The reason this specification works is that size never modifies its argument, and so will preserve
any conjoined invariant. To show this, assume we have α, c, xs, and P , and proceed:

1 {(P ∗ list(α, c, xs)) ∧Q}
2 {(P ∗ ∃p. c 7→ p ∧ listcell(α, p, xs)) ∧Q}
3 letv p = [!c] in
4 {(P ∗ c 7→ p ∧ listcell(α, p, xs)) ∧Q}
5 run listcase(p,
6 Nil→
7 {(P ∗ c 7→ p ∧ p = Nil) ∧ xs = ε ∧Q}
8 [0]
9 {(P ∗ c 7→ Nil ∧ p = Nil) ∧ xs = ε ∧ a = 0 ∧Q}
10 {(P ∗ list(α, c, xs)) ∧Q ∧ a = |xs|}
11 Cons(y, c′)→
12 {(P ∗ c 7→ Cons(y, c′) ∗ list(α, c′, ys)) ∧ xs = y · ys ∧Q}
13 [letv n = sizeα(c′) in
14 {(P ∗ c 7→ Cons(y, c′) ∗ list(α, c′, ys)) ∧ xs = y · ys ∧Q ∧ n = |ys|}
15 {(P ∗ list(α, c, xs)) ∧ xs = y · ys ∧ n = |ys| ∧Q}
16 n+ 1]
17 {(P ∗ list(α, c, xs)) ∧ xs = y · ys ∧ a = |ys|+ 1 ∧Q}
18 {(P ∗ list(α, c, xs)) ∧ xs = y · ys ∧ a = |y · ys| ∧Q}
19 {(P ∗ list(α, c, xs)) ∧Q ∧ a = |xs|}
20 {(P ∗ list(α, c, xs)) ∧Q ∧ a = |xs|}

Now, we can specialize this proof to get the specification we originally sought:

1 {collα(c, xs, P)}
2 {list(α, c, xs) ∧ P ∧ exact(P)}
3 {(emp ∗ list(α, c, xs)) ∧ P ∧ exact(P)}
4 sizeα(c)
5 {a : N. (emp ∗ list(α, c, xs)) ∧ P ∧ exact(P) ∧ a = |xs|}
6 {a : N. collα(c, xs, P) ∧ a = |xs|}
�
Lemma 53. (Specification of add) We have that for

∀α, c, P, x, xs. 〈collα(c, xs, P)〉addα(c, x)〈a : 1. ∃Q. collα(c, x · xs,Q)〉

Proof. This function, defined on line 6, just conses on an element. Assume we have α, x, c, xs, P ,
and then proceed with the following proof, in annotated specification style.

1 {collα(c, xs, P)}
2 {list(α, c, xs) ∧ P ∧ exact(P)}
3 {list(α, c, xs)}
4 {∃p. c 7→ p ∗ listcell(α, p, xs)}
5 letv p = [!c] in
6 {c 7→ p ∗ listcell(α, p, xs)}

166 Proving the Correctness of Design Patterns
7 letv c′ = [newlistcell(α)(p)] in
8 {c 7→ p ∗ c′ 7→ p ∗ listcell(α, p, xs)}
9 {c 7→ p ∗ list(α, c′, xs)}
10 c := Cons(x, c′)
11 {c 7→ Cons(x, c′) ∗ list(α, c′, xs)}
12 {list(α, c, x · xs)}
13 {∃Q. list(α, c, x · xs) ∧Q ∧ exact(Q)}
14 {∃Q. collα(c, x · xs,Q)}
�
Lemma 54. (Correctness of remove, part 1) We have that

∀α, c, P. 〈collα(c, ε, P)〉removeα(c)〈a : option(α). collα(c, ε, P) ∧ a = None〉

Proof. This is one of the two specifications about remove, for the case when the list is empty.
Assume we have α, c, P and give an annotated specification as follows:

1 {collα(c, ε, P)}
2 {∃p. c 7→ p ∧ p = Nil ∧ P ∧ exact(P)}
3 letv p = [!c] in
4 {c 7→ p ∧ p = Nil ∧ P ∧ exact(P)}
5 run listcase(p,
6 Nil→[None]
7 {c 7→ p ∧ p = Nil ∧ P ∧ exact(P) ∧ a = None}
8 {collα(c, ε, P) ∧ a = None}
9 Cons(y, c′)→
10 {c 7→ p ∧ p = Nil ∧ p = Cons(y, c′) ∧ P ∧ exact(P)}
11 {⊥}
12 [letv p′ = [!c′] in
13 letv = [c := p′] in
14 Some(y)])
15 {collα(c, ε, P) ∧ a = None}
16 {collα(c, ε, P) ∧ a = None}
�
Lemma 55. (Correctness of remove, part 2) We have that

∀α, c, x, xs, P. 〈collα(c, x · xs, P)〉removeα(c)〈a : option(α). ∃Q. collα(c, xs,Q) ∧ a = Some(x)〉

Proof. This is the other case of remove, for when the iterator is not yet exhausted. Assume that
we have α, c, x, xs, and P of the appropriate type. We can give an annotated-specification style
proof as follows:

1 {collα(c, x · xs, P)}
2 {∃p. c 7→ p ∧ ∃c′. p = Cons(x, c′) ∗ list(α, c′, xs) ∧ P ∧ exact(P)}
3 letv p = [!c] in
4 {c 7→ p ∧ ∃c′. p = Cons(x, c′) ∗ list(α, c′, xs) ∧ P ∧ exact(P)}

167 Proving the Correctness of Design Patterns
5 run listcase(p,
6 Nil→{p = Nil ∧ c 7→ p ∧ ∃c′. p = Cons(x, c′) ∗ list(α, c′, xs) ∧ P ∧ exact(P)}
7 {⊥}
8 [None]
9 {∃Q. collα(c, xs,Q) ∧ a = Some(x)}
10 Cons(y, c′)→
11 {p = Cons(y, c′) ∧ c 7→ p ∧ ∃c′. p = Cons(x, c′) ∗ list(α, c′, xs) ∧ P ∧ exact(P)}
12 {x = y ∧ c 7→ p ∧ p = Cons(x, c′) ∗ list(α, c′, xs) ∧ P ∧ exact(P)}
13 {x = y ∧ c 7→ p ∧ p = Cons(x, c′) ∗ list(α, c′, xs)}
14 {x = y ∧ c 7→ p ∧ p = Cons(x, c′) ∗ ∃p′. c′ 7→ p′ ∗ listcell(α, p′, xs)}
15 [letv p′ = [!c′] in
16 {x = y ∧ c 7→ p ∧ p = Cons(x, c′) ∗ c′ 7→ p′ ∗ listcell(α, p′, xs)}
17 letv = [c := p′] in
18 {x = y ∧ c 7→ p′ ∗ c′ 7→ p′ ∗ listcell(α, p′, xs)}
19 {x = y ∧ c′ 7→ p′ ∗ list(α, c, xs)}
20 {x = y ∧ list(α, c, xs)}
21 Some(y)])
22 {list(α, c, xs) ∧ a = Some(y) ∧ x = y}
23 {list(α, c, xs) ∧ a = Some(x)}
24 {(∃Q. list(α, c, xs) ∧Q ∧ exact(Q)) ∧ a = Some(x)}
25 {∃Q. collα(c, xs,Q) ∧ a = Some(x)}
26 {∃Q. collα(c, xs,Q) ∧ a = Some(x)}
�
Lemma 56. (Correctness of newiter) We have that

∀α, c, P, xs. 〈collα(c, xs, P)〉newiterα(c)〈a : itertype(α). collα(c, xs, P) ∗ iterα(a, xs, {α, c, xs, P})〉

is valid.
Proof. The definition of newiter is given on line 15 of Figure 4.4. To prove the correctness of
this implementation, we assume we have α, c, xs, and P , and then give the following proof:

1 {collα(c, xs, P)}
2 {list(c, xs, P) ∧ P ∧ exact(P)}
3 {list(c, xs, P) ∧ P ∧ exact(P) ∧ exact(list(c, xs, P) ∧ P ∧ exact(P))}
4 {coll(c, xs, P) ∧ exact(coll(c, xs, P))}
5 letv i = [newcolltype(α)(c)] in
6 {i 7→ c ∗ coll(c, xs, P) ∧ exact(coll(c, xs, P))}
7 {i 7→ c ∗ ((> ∗ coll(c, xs, P)) ∧ coll(c, xs, P)) ∧ exact(coll(c, xs, P))}
8 {i 7→ c ∗ (coll(c, xs, P)−∗ (> ∗ coll(c, xs, P)) ∧ coll(c, xs, P)) ∗ coll(c, xs, P)}
9 One(i)
10 {a. ∃i. a = One(i) ∧ iter(One(i), xs, {(α, c, xs, P)})}
11 {a. iter(a, xs, {(α, c, xs, P)})}

The key idea in this proof is that if P is exact, then P ∧Q is also exact, no matter what Q is.
This lets us use the exactness of the abstract state to “subtract” the predicate coll(c, xs, P) and
keep the iterator and collection state separate.

168 Proving the Correctness of Design Patterns
�
Lemma 57. (Correctness of filter) We have that

∀α, p, i, S, xs. 〈iterα(i, xs, S)〉filterα(p, i)〈a : itertype(α). iterα(a, filter p xs, S)〉

Proof. The definition of this procedure is given on line 16. Assume α, p, i, xs, and S.

1 {iterα(i, xs, S)}
2 Filter(p, i)
3 {iterα(i, xs, S) ∧ a = Filter(p, i)}
4 {iterα(i, xs, S) ∧ filter p xs = filter p xs ∧ a = Filter(p, i)}
5 {∃i, ys. iterα(i, ys, S) ∧ filter p xs = filter p ys ∧ a = Filter(p, i)}
6 {iterα(a, filter p xs, S)}
�
Lemma 58. (Correctness of merge) We have that

∀α, β, γ, f, i, S, xs, i′, S ′, xs′.
{iterα(i, xs, S) ∗ iterβ(i′, xs′, S ′)}
mergeα β γ(f, i, i

′)
{a : itertype(γ). iterγ(a,map2 f xs xs′, S ∪ S ′)}

Proof. The definition of merge is given on line 17 of Figure 4.4. Assume f, i, xs, S, i′, xs′, S ′ as
hypotheses, and proceed with the proof as follows:

1 {iterα(i, xs, S) ∗ iterβ(i′, xs′, S ′)}
2 Merge(α, β, f, i, i′)
3 {iterα(i, xs, S) ∗ iterβ(i′, xs′, S ′) ∧ a = Merge(α, β, f, i, i′)}
4 {iterα(i, xs, S) ∗ iterβ(i′, xs′, S ′) ∧map2 f xs xs′ = map2 f xs xs′

5 ∧ a = Merge(f, i, i′)}
6 {∃i, i′, S1, S2, xs1, xs2. iterα(i, xs1, S1) ∗ iterβ(i′, xs2, S2) ∧ S ∪ S ′ = S1 ∪ S2 ∧
7 map2 f xs xs′ = map2 f xs1 xs2 ∧ a = Merge(f, i, i′)}
8 {∃i, i′. iterγ(Merge(f, i, i′),map2 f xs xs′, S ∪ S ′) ∧ a = Merge(f, i, i′)}
9 {iterα(a,map2 f xs xs′, S ∪ S ′)}
�
Lemma 59. (Correctness of next) We have that

∀α, i, S, xs.

{iterα(i, xs, S) ∗ colls(S)}
nextα(i)
{a : option(α).

[(a = None ∧ xs = ε ∧ iterα(i, xs, S))∨
(∃y, ys. a = Some(y) ∧ xs = y · ys ∧ iterα(i, ys, S))]
∗colls(S)}

Proof. This function is defined on lines 18 to 33 of Figure 4.4. To prove this, we will use fixed
point induction, and assume that the specification above holds for an identifier named next, and
use it to prove the correctness for the body of the function.

169 Proving the Correctness of Design Patterns
Assuming α, i, S, xs, this proof will proceed by cases, on the structure of i. Then we can

exploit the fact that we can unroll fixed points and beta-reduce expression to avoid proving the
impossible branches (which in typical Hoare logic proofs are ruled out by getting false as a
precondition).

• Suppose i = One(i′). Then, we proceed with an annotated proof as follows.

1 {iterα(One(i′), xs, S) ∗ colls(S)}
2 When S has other than one element, the precondition is false, so we only need to
3 consider the one-element case:
4 {∃c, ys, P. S = {(c, ys, P)} ∧ iterα(One(i′), xs, {(α, c, ys, P)}) ∗ collsα({(α, c, ys, P)})}
5 We will use the existential rule and then frame off the definition of S:
6 {iter(One(i′), xs, {(c, ys, P)}) ∗ coll(c, ys, P)}
7 {∃c′. i′ 7→ c′ ∗ (> ∗ list(c′, xs)) ∧ coll(c, ys, P)}
8 letv c′ = [!i′] in
9 {i′ 7→ c′ ∗ (> ∗ list(c′, xs)) ∧ coll(c, ys, P)}
10 {∃p. i′ 7→ c′ ∗ (> ∗ c′ 7→ p ∗ listcell(p, xs)) ∧ coll(c, ys, P)}
11 letv p = [!c′] in
12 {i′ 7→ c′ ∗ (> ∗ c′ 7→ p ∗ listcell(p, xs)) ∧ coll(c, ys, P)}
13 run listcase(p,
14 Nil→
15 {p = Nil ∧ i′ 7→ c′ ∗ (> ∗ c′ 7→ p ∗ listcell(p, xs)) ∧ coll(c, ys, P)}
16 {xs = ε ∧ i′ 7→ c′ ∗ (> ∗ c′ 7→ p ∗ listcell(p, xs)) ∧ coll(c, ys, P)}
17 {xs = ε ∧ iter(i, xs, {(c, ys, P)}) ∗ coll(c, ys, P)}
18 Restoring the definition of S:
19 {xs = ε ∧ iter(i, xs, S) ∗ colls(S)}
20 [None]
21 {a. a = None ∧ xs = ε ∧ iter(i, xs, S) ∗ colls(S)}
22 Cons(z, c′′)→
23 {p = Cons(z, c′′) ∧ i′ 7→ c′ ∗ (> ∗ c′ 7→ p ∗ listcell(p, xs)) ∧ coll(c, ys, P)}
24 {∃zs. xs = z · zs ∧ p = Cons(z, c′′) ∧ i′ 7→ c′ ∗
25 (> ∗ c′ 7→ Cons(z, c′′) ∗ list(c′′, zs)) ∧ coll(c, ys, P)}
26 {∃zs. xs = z · zs ∧ i′ 7→ c′ ∗ (> ∗ list(c′′, zs)) ∧ coll(c, ys, P)}
27 [letv = i′ := c′′ in
28 {∃zs. xs = z · zs ∧ i′ 7→ c′′ ∗ (> ∗ list(c′′, zs)) ∧ coll(c, ys, P)}
29 {∃zs. xs = z · zs ∧ iter(One(i′), zs, {(c, ys, P)}) ∗ coll(c, ys, P)}
30 Restoring the definition of S:
31 {∃zs. xs = z · zs ∧ iter(One(i′), zs, S) ∗ colls(S)}
32 Some(z)])
33 {∃z, zs. a = Some(z) ∧ xs = z · zs ∧ iter(i, zs, S) ∗ colls(S)}
34 {a. ((a = None ∧ xs = ε ∧ iter(i, xs, S)) ∨
35 (∃z, zs. a = Some(z) ∧ xs = z · zs ∧ iter(i, zs, S))) ∗
36 colls(S)}

• Suppose i = Filter(p, i′). Then, we proceed with an annotated proof as follows:

170 Proving the Correctness of Design Patterns

1 {iterα(Filter(p, i′), xs, S) ∗ colls(S)}
2 {∃ys.(iterα(i′, ys, S) ∧ xs = filter p ys) ∗ colls(S)}
3 {xs = filter p ys ∧ iterα(i′, ys, S) ∗ colls(S)}
4 Since it is pure, we can pull xs = filter p ys out of the precondition.
5 That is, using the axiom AXEXTRACT we can pull pure consequences
6 of a precondition into the ambient specification context, and then
7 restore them whenever we need using the AXEMBED axiom.
8 {iterα(i′, ys, S) ∗ colls(S)}
9 [letv v = nextα(i′) in
10 {[(ys = ε ∧ v = None ∧ iterα(i′, ys, S)) ∨ (∃z, zs. ys = z · zs ∧ v = Some(z) ∧ iterα(i′, zs, S))]
11 ∗colls(S)}
12 run listcase(v,
13 None→
14 {[(ys = ε ∧ v = None ∧ iterα(i′, ys, S))∨
15 (∃z, zs. ys = z · zs ∧ v = Some(z) ∧ iterα(i′, zs, S))] ∗ colls(S) ∧ v = None}
16 {ys = ε ∧ iterα(i′, ys, S) ∗ colls(S)}
17 Since xs = filter p ys = ε, we know
18 {xs = ε ∧ iterα(i, xs, S) ∗ colls(S)}
19 [None]
20 {a. a = None ∧ xs = ε ∧ iterα(i, xs, S) ∗ colls(S)}
21 Some(z)→
22 {[(ys = ε ∧ v = None ∧ iterα(i′, ys, S))∨
23 (∃z, zs. ys = z · zs ∧ v = Some(z) ∧ iterα(i′, zs, S))] ∗ colls(S) ∧ v = Some(z)}
24 {∃zs. ys = z · zs ∧ v = Some(z) ∧ iterα(i′, zs, S) ∗ colls(S)}
25 {ys = z · zs ∧ v = Some(z) ∧ iterα(i′, zs, S) ∗ colls(S)}
26 run if(p z,
27 {p z = true ∧ ys = z · zs ∧ iterα(i′, zs, S) ∗ colls(S) ∧ v = Some(z)}
28 Hence xs = filter p ys = z · (filter p zs). So
29 {xs = z · (filter p zs) ∧ iterα(i′, zs, S) ∗ colls(S) ∧ v = Some(z)}
30 {∃xs′. xs = z · xs′ ∧ iterα(Filter(p, i′), xs′, S) ∗ colls(S) ∧ v = Some(z)}
31 {∃xs′. xs = z · xs′ ∧ iterα(i, xs′, S) ∗ colls(S) ∧ v = Some(z)}
32 [v],
33 {a. ∃z, zs. xs = z · zs ∧ a = Some(z) ∧ iterα(i, zs, S) ∗ colls(S)}
34 {a. ((a = None ∧ xs = ε ∧ iter(i, xs, S)) ∨
35 (∃z, zs. a = Some(z) ∧ xs = z · zs ∧ iter(i, zs, S))) ∗
36 colls(S)}
37 Now, the else-branch:
38 {p z = false ∧ ys = z · zs ∧ iterα(i′, zs, S) ∗ colls(S)}
39 Hence xs = filter p ys = filter p zs. So
40 {xs = filter p zs ∧ iterα(i′, zs, S) ∗ colls(S)}
41 {iterα(Filter(p, i′), xs, S) ∗ colls(S)}
42 {iterα(i, xs, S) ∗ colls(S)}
43 nextα(i))))]

171 Proving the Correctness of Design Patterns
44 {a. ((a = None ∧ xs = ε ∧ iter(i, xs, S)) ∨
45 (∃z, zs. a = Some(z) ∧ xs = z · zs ∧ iter(i, zs, S))) ∗
46 colls(S)}
47 {a. ((a = None ∧ xs = ε ∧ iter(i, xs, S)) ∨
48 (∃z, zs. a = Some(z) ∧ xs = z · zs ∧ iter(i, zs, S))) ∗
49 colls(S)}
Note that this is not a structural induction on i; we make a non-structural recursive call
when the test of p fails. Here, we make use of fixed-point induction in our proof of next.

• Suppose i = Merge(f, i1, i2). Then, we proceed with an annotated proof as follows:

1 {iterα(Merge(f, i1, i2), xs, S) ∗ colls(S)}
2 {∃β, γ, S1, ys, S2, zs. xs = map2 f ys zs ∧ S = S1 ∪ S2∧

iterβ(i1, ys, S1) ∗ iterγ(i2, zs, S2) ∗ colls(S)}
3 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

iterβ(i1, ys, S1) ∗ iterγ(i2, zs, S2) ∗ colls(S)}
4 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

iterβ(i1, ys, S1) ∗ iterγ(i2, zs, S2) ∗ colls(S1) ∗ colls(S − S1)}
5 letv v1 = nextβ(i1) in
6 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

[(ys = ε ∧ v1 = None ∧ iterβ(i1, ys, S1))
∨ (∃b, bs. ys = b · bs ∧ v1 = Some(b) ∧ iterα(i1, bs, S1))] ∗

iterγ(i2, zs, S2) ∗ colls(S1) ∗ colls(S − S1)}
7 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

[(ys = ε ∧ v1 = None ∧ iterβ(i1, ys, S1))
∨ (∃b, bs. ys = b · bs ∧ v1 = Some(b) ∧ iterα(i1, bs, S1))] ∗

iterγ(i2, zs, S2) ∗ colls(S2) ∗ colls(S − S2)}
8 letv v2 = nextγ(i2) in
9 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

[(ys = ε ∧ v1 = None ∧ iterβ(i1, ys, S1))
∨ (∃b, bs. ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1))] ∗

[(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))
∨ (∃c, cs. zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2))] ∗

colls(S2) ∗ colls(S − S2)}
10 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

[(ys = ε ∧ v1 = None ∧ iterβ(i1, ys, S1))
∨ (∃b, bs. ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1))] ∗

[(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))
∨ (∃c, cs. zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2))] ∗

colls(S)}
11 case(v1

12 None→
13 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

(ys = ε ∧ v1 = None ∧ iterβ(i1, ys, S1))∗

172 Proving the Correctness of Design Patterns
[(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))
∨ (∃c, cs. zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2))] ∗

colls(S)}
14 {xs = ε ∧ xs = map2 f ys zs ∧ S = S1 ∪ S2∧

(ys = ε ∧ v1 = None ∧ iterβ(i1, ys, S1))∗
[(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))
∨ (∃c, cs. zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2))] ∗

colls(S)}
The next line follows because it holds in either branch of the disjunction

15 {xs = ε ∧ iterα(Merge(f, i1, i2), xs, S) ∗ colls(S)}
16 None
17 {a = None ∧ xs = ε ∧ iterα(Merge(f, i1, i2), xs, S) ∗ colls(S)}
18 Some(b)→
19 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

(∃bs. ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1)) ∗
[(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))
∨ (∃c, cs. zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2))] ∗

colls(S)}
20 case(v2,
21 None→
22 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

(∃bs. ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1)) ∗
(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))∗
colls(S)}

23 {xs = ε ∧ xs = map2 f ys zs ∧ S = S1 ∪ S2 ∧ zs = ε ∧
(∃bs. ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1)) ∗

(zs = ε ∧ v2 = None ∧ iterγ(i2, zs, S2))
colls(S)}

24 {xs = ε ∧ iterα(Merge(f, i1, i2), xs, S) ∗ colls(S)}
25 None,
26 {a = None ∧ xs = ε ∧ iterα(Merge(f, i1, i2), xs, S) ∗ colls(S)}
27 Some(c)→
28 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

(∃bs. ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1)) ∗
(∃cs. zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2)) ∗

colls(S)}
29 {xs = map2 f ys zs ∧ S = S1 ∪ S2∧

(ys = b · bs ∧ v1 = Some(b) ∧ iterβ(i1, bs, S1)) ∗
(zs = c · cs ∧ v2 = Some(c) ∧ iterγ(i2, cs, S2)) ∗
colls(S)}

30 {xs = (f b c) ·map2 f bs cs ∧ S = S1 ∪ S2∧
iterβ(i1, bs, S1)) ∗ iterγ(i2, cs, S2)) ∗
colls(S)}

31 {xs = (f b c) ·map2 f bs cs ∧

173 Proving the Correctness of Design Patterns
iterα(Merge(f, i1, i2),map2 f bs cs, S) ∗
colls(S)}

32 Some(f b c)))
33 {a = Some(f b c) ∧ xs = (f b c) ·map2 f bs cs ∧

iterα(Merge(f, i1, i2),map2 f bs cs, S) ∗
colls(S)}

34 {∃v, vs. a = Some(v) ∧ xs = v · vs ∧
iterα(Merge(f, i1, i2), vs, S) ∗
colls(S)}

�
next (lines 18-33 of Figure 4.4) recursively walks down the structure of the iterator tree, and

combines the results from the leaves upwards. The base case is the One(i) case (lines 18-22).
The iterator pointer is doubly-dereferenced, and then the contents examined. If the end of the
list has been reached and the contents are Nil, then None is returned to indicate there are no more
elements. Otherwise, the pointer r is advanced, and the head returned as the observed value.
The Filter(p, i) case (lines 23-26) will return None if i is exhausted, and if it is not, it will pull
elements from i until it finds one that satisfies p, calling itself recursively until it succeeds or i is
exhausted. Finally, in the Map2(f, i1, i2) case (lines 27-33), next will draw a value from both i1
and i2, and will return None if either is exhausted, and otherwise it will return f applied to the
pair of values.

4.3 The Flyweight and Factory Patterns
The flyweight pattern is a style of cached object creation. Whenever a constructor method is
called, it first consults a table to see if an object corresponding to those arguments has been
created. If it has, then the preexisting object is returned. Otherwise, it allocates a new object,
and updates the table to ensure that future calls with the same arguments will return this object.
Because objects are re-used, they become pervasively aliased, and must be used in an immutable
style to avoid surprising updates. (Functional programmers call this style of value creation “hash-
consing”.)

This is an interesting design pattern to verify, for two reasons. First, the constructor has
a memo table to cache the result of constructor calls, which needs to be hidden from clients.
Second, this pattern makes pervasive use of aliasing, in a programmer-visible way. In particular,
programmers can test two references for identity in order to establish whether two values are
equal or not. This allows constant-time equality testing, and is a common reason for using this
pattern. Therefore, our specification has to be able to justify this reasoning.

In Figure 4.5, we give a specification which uses the flyweight pattern to create and access
glyphs (i.e., refs of pairs of characters and fonts) of a particular font f . We have a function
newglyph to create new glyphs, which does the caching described above, using a predicate vari-
able I to refer to the table invariant; and a function getdata to get the character and font infor-
mation from a glyph.

Furthermore, these functions will be created by a call to another function, make flyweight,
which receives a font as an argument and will return appropriate newglyph and getdata functions.

174 Proving the Correctness of Design Patterns

Flyweight(I : (char ⇀ glyph)→ prop,
newglyph : char→©glyph,
getdata : glyph→©(char × font),
f : font) ≡

1 ∀c, h. 〈I(h)〉
newglyph(c)
〈a : glyph. I([h|c : a]) ∧ (c ∈ dom(h) ⊃ a = h(c))〉

&
2 ∀l, h, c. 〈I(h) ∧ l = h(c)〉

getdata(l)
〈a : char × font. I(h) ∧ a = (c, f)〉

where glyph , ref (char × font)

Figure 4.5: Flyweight Specification

1 ∃make flyweight : font→©((char→©glyph)×
(glyph→©(char × font))).

2 ∀f. {emp}
run make flyweight(f)
{a. ∃I. I([]) ∧ Flyweight(I, fst a, snd a, f) spec}

Figure 4.6: Flyweight Factory Specification

In the opening, we informally parametrize our specification over the predicate variable I , the
function variable newglyph, the function variable getdata, and the variable f of font type. The
reason we do this instead of existentially quantifying over them will become clear shortly, once
we see the factory function that creates flyweight constructors.

On line 1, we specify the effect of a call newglyph(c) procedure. Its precondition is the
predicate I(h), which asserts that the abstract state contains glyphs for all of the characters in
the domain of the partial function h. Its postcondition changes to a state I([h|c : a]), which is
a partial function extended to include the character c, with the additional condition that if c was
already in h’s domain, the same glyph value is returned.

The intuition for this specification is that I(h) abstractly represents a memo table (i.e., the
function h), which characterizes all the glyphs allocated so far.

On line 2, we specify the getdata function. This just says that if we call getdata(l) on a glyph
l, then we are returned the data (the alphabetic character and font) for this glyph.

The specification of the flyweight factory is given in Figure 4.6. Here, we assert the exis-
tence of a function make flyweight, which takes a font f as an input argument, and returns two
functions to serve as the getchar and getdata functions of the flyweight. In the postcondition,
we assert the existence of some private state I , which contains the table used to cache glyph
creations.

This pattern commonly arises when encoding aggressively object-oriented designs in a

175 Proving the Correctness of Design Patterns

1 make flyweight ≡
2 λf :font.
3 [letv t = newtable() in
4 letv newglyph =
5 [λc.[letv x = lookup(t, c) in
6 run case(x,None→ [letv r = [newchar×font(c, f)] in
7 letv = update(t, c, r) in r],
8 Some(r)→ [r])]] in
9 letv getdata = [λr. [!r]] in
10 (newglyph, getdata)]]

11 J : font× table× (char ⇀ glyph)→ prop
12 J(f, t, h) ≡ table(t, h) ∗ refs(f, h)

13 refs(f, h) = ∀∗c ∈ dom(h). h(c) 7→ (c, f)

14 ∀∗x ∈ ∅. P (x) , emp

15 ∀∗x ∈ {y}] Y. P (x) , P (y) ∗ ∀∗x ∈ Y. P (x)

Figure 4.7: Flyweight Implementation

higher-order style — we call a function, which creates a hidden state, and returns other pro-
cedures which are the only way to access that state. This style of specification resembles the
existential encodings of objects into type theory. The difference is that instead of making the
fields of an object an existentially quantified value [38], we make use of existentially-quantified
state.

In Figure 4.7, we define make flyweight and its predicates. In this implementation we have
assumed the existence of a hash table implementation with operations newtable, lookup, and
update, whose specifications we give in Figure 4.8. The make flyweight function definition takes
a font argument f , and then in its body it creates a new table t. It then constructs two functions as
closures which capture this state (and the argument f) and operate on it. In lines 4-8, we define
newglyph, which takes a character and checks to see (line 6) if it is already in the table. If it is
not (lines 6-7), it allocates a new glyph reference, stores it in the table, and returns the reference.
Otherwise (line 8), it returns the existing reference from the table. On line 9, we define getdata,
which dereferences its pointer argument and returns the result. This implementation does no
writes, fulfilling the promise made in the specification. The definition of the invariant state I
describes the state of the table t (as the partial function h), which are hidden from clients.

Observe how the post-condition to make flyweight nests the existential state I within the
validity assertion to specialize the flyweight spec to the dynamically created table. Each created
flyweight factory receives its own private state, and we can reuse specifications and proofs with
no possibility that the wrong getdata will be called on the wrong reference, even though they
have compatible types.

176 Proving the Correctness of Design Patterns

1 〈emp〉newtable〈a : table. table(a, [])〉

2 {table(t, h)}
3 lookup(t, c)
4 {a : option(glyph). table(t, h)
5 ∧((c 6∈ dom(h) ∧ a = None)) ∨ (c ∈ dom(h) ∧ a = Some(h(c)))}

6 {table(t, h)}
7 update(t, c, g)
8 {a : 1. table(t, [h|c : g])}

Figure 4.8: Hash Table Specification

4.3.1 Verification of the Implementation
To prove the correctness of the implementation, we will work inside-out, first giving specifica-
tions and correctness proofs for the “methods” of the factory, and then using these to prove the
correctness of the make flyweight function.
Lemma 60. (Correctness of newglyph) Define the function newglyph as follows:
newglyph ≡ λc. [letv x = lookup(t, c) in

run case(x,None→ [letv r = [newglyph(c, f)] in
letv = update(t, c, r) in
r]

Some(r)→ [r])]

This function satisfies the following specification:

{J(f, t, h)}newglyph(c){a : glyph. ∃h′ ⊇ h.J(f, t, h′) ∧ h′(c) = a}

Proof. Note that in this definition, the t and f variables occur free. We are going to prove our
specification valid with respect to these variables, so that we can substitute them with whatever
actual terms in context that we need to use.

1 Assume we are in the precondition state J(f, t, h)
2 Hence we are in the precondition state table(t, h) ∗ ∀∗c ∈ dom(h). h(c) 7→ (c, f)
3 letv x = lookup(t, c) in
4 We now have table(t, h) ∗ ∀∗c′ ∈ dom(h). h(c) 7→ (c′, f)
∧ ((c 6∈ dom(h) ∧ x = None) ∨ (c ∈ dom(h) ∧ x = Some(h(c))))

5 case(x,
6 None→
7 Now it follows that x = None,
8 Hence table(t, h) ∗ ∀∗c′ ∈ dom(h). h(c′) 7→ (c′, f) ∧ c 6∈ dom(h) ∧ x = None
9 [letv r = [newglyph((c, f))] in
10 So r 7→ (c, f) ∗ ∀∗c′ ∈ dom(h). h(c′) 7→ (c′, f) ∗ table(t, h) ∧ c 6∈ dom(h)
11 letv = update(t, c, r) in

177 Proving the Correctness of Design Patterns
12 So r 7→ (c, f) ∗ ∀∗c′ ∈ dom(h). h(c′) 7→ (c′, f) ∗ table(t, [h|c : r]) ∧ c 6∈ dom(h)
13 So ∃h′. ∀∗c′ ∈ dom(h′). h(c′) 7→ (c′, f) ∗ table(t, h′) ∧ h′ = [h|c : r]
14 r]
15 We can choose the witness to the existential to be h′, yielding

∃h′ ⊇ h. table(t, h′) ∧ h′(c) = a ∗ ∀∗c′ ∈ dom(h). h(c′) 7→ (c′, f)
16 Hence ∃h′ ⊇ h. J(f, t, h′) ∧ h′(c) = a
17 Some(r)→
18 We know x = Some(r),
19 Hence table(t, h) ∗ ∀∗c′ ∈ dom(h). h(c′) 7→ (c′, f) ∧ x = Some(h(c))
20 So J(f, t, h) ∧ h(c) = r
21 [r])
22 Hence a. J(f, t, h) ∧ h(c) = a
23 Choose the witness to the existential to be h, yielding

∃h′ ⊇ h.J(f, t, h′) ∧ h′(c) = a
24 Hence ∃h′ ⊇ h.J(f, t, h′) ∧ h′(c) = a

�
Lemma 61. (Correctness of getdata) Define the getdata function as follows:

getdata ≡ λr. [!r]

This function satisfies the following specification:

〈J(f, t, h) ∧ r = h(c)〉getdata(r)〈a : char × font. J(f, t, h) ∧ a = (c, f)〉

Proof. The correctness proof for this function is very simple, amounting to a single application
of the frame rule, together with the dereference rule.

1 Assume our state is table(t, h) ∗ refs(f, h) ∧ r = h(c)
2 Hence c ∈ dom(h)
3 This is table(t, h) ∗ refs(f, h− [c : r]) ∗ r 7→ (c, f)
4 [!r]
5 So a. table(t, h) ∗ (refs(f, h− [c : r]) ∗ r 7→ (c, f) ∧ a = (c, f)
6 So a. J(f, t, h) ∧ a = (c, f)

�
Lemma 62. (Correctness of make flyweight) The make flyweight function meets the specification
in Figure 4.6.

Now, we can prove the correctness of the make flyweight function. To do this, we will assume
a font argument f , and then prove the correctness of the body of the function.
Proof.

1 We begin with an assumed emp precondition.
2 [letv t = newtable() in
3 Now our state is table(t, [])
4 letv newglyph = [N] in (where N is the definition of newglyph in Lemma 60)

178 Proving the Correctness of Design Patterns
5 letv getdata = [G] in (where G is the definition of getdata in Lemma 61)
6 Now our state is table(t, []) ∧ newglyph = N ∧ getdata = G
7 Since the two equalities are pure, we may assume them ambiently.
8 Then we can instantiate the specs of newglyph and getdata to know that
9 {J(f, t, σ)}run N(c){a : glyph. ∃σ′ ⊇ σ.J(f, t, σ′) ∧ σ′(c) = a}
10 and
11 {J(f, t, σ) ∧ r = σ(c)}run G(r){a : char × font. J(f, t, σ) ∧ a = (c, f)}
12 Then since valid specs allow us to introduce validity assertions, we know

J(f, t, []) ∧ Flyweight(λσ. J(f, t, σ), newglyph, getdata, f) spec
13 We can existentially quantify, choosing a witness I ′ = λσ. J(f, t, σ) to get
∃I ′. I ′([]) ∧ Flyweight(I ′, newglyph, getdata, f) spec

14 (newglyph, getdata)]
15 Now we know ∃I. I([]) ∧ Flyweight(I, fst a, snd a, f) spec

�

4.4 Subject-Observer
The subject-observer pattern is one of the most characteristic patterns of object-oriented pro-
gramming, and is extensively used in GUI toolkits. This pattern features a mutable data structure
called the subject, and a collection of data structures called observers whose invariants depend on
the state of the subject. Each observer registers a callback function with the subject to ensure it
remains in sync with the subject. Then, whenever the subject changes state, it iterates over its list
of callback functions, notifying each observer of its changed state. While conceptually simple,
this is a lovely problem for verification, since every observer can have a different invariant from
all of the others, and the implementation relies on maintaining lists of callback functions in the
heap.

In our example, we will model this pattern with one type of subjects, and three functions.
A subject is simply a pair, consisting of a pointer to a number, the subject state; and a list of
observer actions, which are imperative procedures to be called with the new value of the subject
whenever it changes. There is a function newsub to create new subjects; a function register,
which attaches observer actions to the subject; and finally a function broadcast, which updates a
subject and notifies all of its observers of the change.

We give a specification for the subject-observer pattern below:

1 ∃sub : As × N× seq ((N⇒ prop)× (N→©1)).
2 ∃newsub : N→©As,
3 ∃register : As × (N→©1)→©1,
4 ∃broadcast : As × N→©1.

5 ∀n. 〈emp〉newsub(n)〈a : As. sub(a, n, ε)〉
&

6 ∀f,O, s, n, os.(∀i, k.〈O(i)〉f(k)〈a : 1. O(k)〉)

179 Proving the Correctness of Design Patterns
7 ⇒>〈sub(s, n, os)〉
8 register(s, f)
9 〈a : 1. sub(s, n, (O, f) · os)〉

&
10 ∀s, i, os, k. 〈sub(s, i, os) ∗ obs(os)〉

broadcast(s, k)
〈a : 1. sub(s, k, os) ∗ obs at(os, k)〉

obs(ε) ≡ emp
obs((O, f) · os) ≡ (∃i. O(i)) ∗ obs(os)

obs at(ε, k) ≡ emp
obs at((O, f) · os, k) ≡ O(k) ∗ obs at(os, k)

On line 1 we assert the existence of a three-place predicate sub(s, n, os). The first argument
is the subject s, whose state this predicate represents. The second argument n is the data the
observers depend on, and the field os is a sequence of callbacks paired with their invariants.
That is, os is a sequence of pairs, each consisting of the observer functions which act on a state,
preceeded by the predicate describing what that state should be.

On lines 2-4, we assert the existence of newsub, register and broadcast, which create a new
subject, register a callback, and broadcast a change, respectively.

register is a higher order function, which takes a subject and an observer action as its two
arguments. The observer action is a function of type N → ©1, which can be read as saying it
takes the new value of the subject and performs a side-effect. Because register take a procedure
as an argument, its specification must say how this observer action should behave. register’s
specification on lines 6-9 accomplishes this via an implication over Hoare triples. It says that if
the function f is a good observer callback, then it can be safely registered with the subject. Here,
a “good callback” f is one that takes an argument k and sends an observer state to O(k). If this
condition is satisfied, then register(s, f) will add the pair (O, f) to the sequence of observers in
the sub predicate.

One point worth focusing on is that a given subject can have many different observers oi,
each with a different invariant Oi and callback fi. This means that the sub(s, n, os) predicate
is a genuinely higher-order one, since it contains a list of arbitrary predicate values. This is
natural, given that the core of the subject-observer pattern is to call a list of unknown higher-
order imperative procedures, but it is still worth pointing out explicitly.

broadcast updates a subject and all its interested observers. The precondition state of
broadcast(s, k) requires the subject state sub(s, n, os), and all of the observer states obs(os).
The definition obs(os) takes the list of observers and yields the separated conjunction of the ob-
server states. So when broadcast is invoked, it can modify the subject and any of its observers.
Then, after the call, the postcondition puts the sub predicate and all of the observers in the same
state k. The obs at(os, k) function generates the separated conjunction of all the O predicates,
all in the same state k.

The implementation follows:

1 As ≡ ref N× list (N→©1)

180 Proving the Correctness of Design Patterns
2 sub(s, n, os) ≡fst s 7→ n ∗ list(snd s,map snd os) ∧Good(os)

3 Good(ε) ≡ >
4 Good((O, f) · os) ≡ (∀i, k. {O(i)}run f(k){a : 1. O(k)}) spec ∧Good(os)

5 register(s, f) ≡ [letv cell = [!(snd s)] in
6 letv r = [newlistcell(N→©1)(cell)] in
7 snd s := Cons(f, r)]

8 broadcast(s, k) ≡
9 [letv = [fst s := k] in loop(k, snd s)]

10 loop(k, list) ≡
[letv cell = [!list] in

11 run case(cell,Nil→ [()],
12 Cons(f, tl)→ [letv = f(k) in
13 run loop(k, tl)])

14 newsub(n) ≡ [letv data = newN(n) in
15 letv callbacks = newlistcell(N→©1)(Nil) in
16 (data, callbacks)]

In line 1, we define the concrete type of the subject As to be a pair of a pointer to a reference,
and a mutable list of callback functions. On line 2, we define the three-place subject predicate,
sub(s, n, os). The first two subclauses of the predicate’s body describe the physical layout of the
subject, and assert that the first component of s should point to n, and that the second component
of s should be a linked list containing the function pointers in os. (The list predicate is described
in Figure 4.3, when we give the definition of the iterator predicates.)

Then we require that os be “Good”. Good-ness is defined on lines 3 and 4, and says a
sequence of predicates and functions is good when every (O, f) pair in the sequence satisfies
the same validity requirement the specification of register demanded – that is, that each observer
function f update O properly. (Note that we make use of our ability to nest specifications within
assertions, in order to constrain the behavior of code stored in the heap.)

Next, we give the implementations of register and broadcast. register, on lines 5-7, adds
its argument to the list of callbacks. Though the code is trivial, its correctness depends on the
fact the Good predicate holds for the extended sequence — we use the fact that the argument f
updates O properly to establish that the extended list remains Good.

broadcast, on lines 8-9, updates the subject’s data field (the first component), and then calls
loop (on lines 10-13) to invoke all the callbacks. loop(k, snd s) just recurs over the list and calls
each callback with argument k. The correctness of this function also relies on theGood predicate
– each time we call one of the functions in the observer list, we use the hypothesis of its behavior
given in Good(os) to be able to make progress in the proof.

Below, we give a simple piece of client code using this interface.

1 {emp}
2 letv s = newsub(0) in
3 {sub(s, 0, ε)}
4 letv d = newN((0)) in

181 Proving the Correctness of Design Patterns
5 letv b = newbool((true)) in
6 {sub(s, 0, ε) ∗ d 7→ 0 ∗ b 7→ true}
7 letv () = register(s, f) in
8 {sub(s, 0, (double, f) · ε) ∗ double(0) ∗ b 7→ true}
9 letv () = register(s, g) in
10 {sub(s, 0, (even, g) · (double, f) · ε) ∗ double(0) ∗ even(0)}
11 broadcast(s, 5)
12 {sub(s, 5, (even, g) · (double, f) · ε) ∗ double(5) ∗ even(5)}
13 {sub(s, 5, (even, g) · (double, f) · ε) ∗ d 7→ 10 ∗ b 7→ false}

14 f ≡ λn : N. [d := 2× n]
15 double(n) ≡ d 7→ (2× n)
16 g ≡ λx : N. [b := even?(x)]
17 even(n) ≡ b 7→ even?(n)

We start in the empty heap, and create a new subject s on line 2. On line 4, we create a new
reference to 0, and on line 5, we create a reference to true. So on line 6, the state consists of a
subject state, and two references. On line 7, we call register on the function f (defined on line 14),
which sets d to twice its argument. To the observer list in sub, we add f and the predicate double
(defined on line 15), which asserts that indeed, d points to two times the predicate argument.
On line 8, we call register once more, this time with the function g (defined on line 16) as its
argument, which stores a boolean indicating whether its argument was even into the pointer b.
Again, the state of sub changes, and we equip g with the even predicate (defined on line 17)
indicating that b points to a boolean indicating whether the predicate argument was even or not.
Since d 7→ 0 and b 7→ true are the same as double(0) and even(0), so we can write them in this
form on line 10. We can now invoke broadcast(s, 5) on line 11, and correspondingly the states
of all three components of the state shift in line 12. In line 13, we expand double and even to see
d points to 10 (twice 5), and b points to false (since 5 is odd).

Discussion. One nice feature of the proof of the subject-observer implementation is that the
proofs are totally oblivious to the concrete implementations of the notification callbacks, or to any
details of the observer invariants. Just as existential quantification hides the details of a module
implementation from the clients, the universal quantification in the specification of register and
broadcast hides all details of the client callbacks from the proof of the implementation – since
they are free variables, we are unable to make any assumptions about the code or predicates
beyond the ones explicitly laid out in the spec. Another benefit of the passage to higher-order
logic is the smooth treatment of observers with differing invariants; higher-order quantification
lets us store and pass formulas around, making it easy to allow each callback to have a totally
different invariant.

4.4.1 Correctness Proofs for Subject-Observer

Proof of the register Function

Proof.

182 Proving the Correctness of Design Patterns

1 Assume we have f,O, s, cs, n, os and the specification ∀i, k. 〈O(i)〉f(k)〈a : 1. O(k)〉
2 Assume we are in the prestate {sub((s, cs), n, os)}
3 This state is equivalent to s 7→ n ∗ list(cs,map snd os) ∧Good(os)
4 By the definition of list , we know

list(cs,map snd os) = ∃cell. cs 7→ cell ∗ listcell(cell,map snd os)
5 [letv cell = [!cs] in
6 We can drop the existential now, giving a state of

s 7→ n ∗ cs 7→ cell ∗ listcell(cell,map snd os) ∧Good(os)
7 letv r = [newref list (N→©1)(cell)] in
8 We add r 7→ cell to the state, and fold the definition of list, to get

s 7→ n ∗ cs 7→ − ∗ list(r,map snd os) ∧Good(os)
9 cs := Cons(f, r)]
10 Therefore s 7→ n ∗ cs 7→ Cons(f, r) ∗ list(r,map snd os) ∧Good(os)
11 Therefore s 7→ n ∗ list(cs,map snd ((O, f) · os)) ∧Good(os)
12 Since we assume ∀i, k. {O(i)}run f(k){a : 1. O(k)}, we can conjoin it to the state

to get s 7→ n ∗ list(cs,map snd ((O, f) · os)) ∧Good((O, f) · os)
13 This is sub((s, cs), n, (O, f) · os)
�

Proof of the newsub Function

Proof.

1 Assume we have a variable n and the initial state emp
2 Now consider the body of the newsub function:
3 [letv data = newN(n) in
4 The state is data 7→ n
5 letv callbacks = newlistcellN→©1(Nil) in
6 The state is data 7→ n ∗ callbacks 7→ Nil
7 This is equivalent to data 7→ n ∗ list(callbacks , ε)
8 This is equivalent to data 7→ n ∗ list(callbacks , ε) ∧Good(ε)
9 This is equivalent to sub((data, callbacks), n, ε)
10 (data, callbacks)]
11 Therefore sub(a, n, ε) with return value a
�

Proof of the broadcast Function

To prove this function, we first need to prove an auxilliary lemma about the loop function:
Lemma 63. (loop Invariant) For all k, fs and os we have

{Good(os) ∧ list(fs,map snd os) ∗ obs(os)}loop(k, fs){a : 1. list(fs,map snd os) ∗ obs at(os, k)}

Proof.

183 Proving the Correctness of Design Patterns

1 Assume we have a suitable k and fs, and then proceed by induction on os.
2 Pull Good(os) into the context as a pure assertion, and then frame it away.
3 Suppose os = ε:
4 Then our precondition is list(fs, ε) ∗ obs(ε)
5 This is equivalent to fs 7→ Nil
6 [letv cell = [!fs] in
7 So we know fs 7→ Nil ∧ cell = Nil
8 Since cell = Nil and equational reasoning, we know the remainder of the program is 〈〉
9 〈〉]
10 So the state is still list(fs, ε)
11 This is equivalent to list(fs, ε) ∗ emp
12 This is equivalent to list(fs, ε) ∗ obs at(ε, k)
13 This is equivalent to Good(ε) ∧ list(fs, ε) ∗ obs at(ε, k)
14 This is equivalent to Good(os) ∧ list(fs, ε) ∗ obs at(ε, k)
15 Suppose os = (O, f) · os′:
16 Then our precondition is list(fs, f ·map snd os′) ∗ obs((O, f) · os′)
17 This is equivalent to ∃fs′. fs 7→ Cons(f, fs′) ∗ list(fs′,map snd os′) ∗ ∃j. O(j) ∗ obs(os′)
18 By dropping existentials, fs 7→ Cons(f, fs′) ∗ list(fs′,map snd os′) ∗O(j) ∗ obs(os′)
19 [letv cell = [!fs] in
20 We know fs 7→ cell ∗ list(fs′,map snd os′) ∗O(j) ∗ obs(os′) ∧ cell = Cons(f, fs′)
21 Since cell = Cons(f, fs′), we can use equational reasoning to eliminate the case
22 Since we assumed Good(os), we know that Good(O, f) · os′
23 Hence we know that (∀i, k. {O(i)}run f(k){a : 1. O(k)}) spec ∧Good(os′)
24 Therefore we know that (∀i, k. {O(i)}run f(k){a : 1. O(k)})
25 letv = f(k) in
26 We know fs 7→ cell ∗ list(fs′,map snd os′) ∗O(k) ∗ obs(os′) ∧ cell = Cons(f, fs′)
27 Add Good(os′) to the precondition, since it is a consequence of Good(os), before
28 loop(k, fs′)]
29 Then by induction, we can conclude
30 Good(os′) ∧ fs 7→ cell ∗ list(fs′,map snd os′) ∗O(k) ∗ obs at(os′, k) ∧ cell = Cons(f, fs′)
31 This is equivalent to Good(os′) ∧ list(fs,map snd os) ∗ obs at(os, k)
32 Since we know Good(os), we can strengthen this to
33 Good(os) ∧ list(fs,map snd os) ∗ obs at(os, k)
34 Hence list(fs,map snd os) ∗ obs at(os, k)

�

There is an interesting feature of this proof which distinguishes it from the proofs we gave
for the iterator implementation. In this proof, we reason about branches by doing a case analysis
in the program logic, and then using the specification-level equality to justify simplifying the
program we are proving. That is, when we consider an empty input list, we can use the equational
theory of the lambda calculus to simplify the program we are proving to eliminate that case
altogether.

Now, the proof of the broadcast function is quite easy:

184 Proving the Correctness of Design Patterns

1 Assume we have s, i, os, k with a precondition of sub(s, i, os) ∗ obs(os)
2 This is equivalent to Good(os) ∧ fst s 7→ i ∗ list(snd s,map snd os) ∗ obs(os)
3 [letv = [fst s := k] in
4 This yields Good(os) ∧ fst s 7→ k ∗ list(snd s,map snd os) ∗ obs(os)
5 loop(k, snd s)]
6 This yields Good(os) ∧ fst s 7→ k ∗ list(snd s,map snd os) ∗ obs at(os, k)
7 This is equivalent to sub(s, k, os) ∗ obs at(os, k)

Chapter 5

Proving the Union-Find Disjoint Set
Algorithm

5.1 Introduction

In this chapter, we introduce the technique of “ramification”, as a way of recovering local rea-
soning in the face of imperative programs with global invariants.

The union-find disjoint set data structure [10] is a technique for efficiently computing canon-
ical representives for equivalence classes of values. The basic technique for doing so is to repre-
sent each value in the equivalence class as a node in a tree — but unlike the usual implementation
of trees, each node does not contain a pointer to its children, but rather the children each maintain
a pointer to the parent. The root of the tree has no parent pointer, and represents the canonical
representative for an equivalence class.

The canonical representative can be found (the find operation) by following the parent point-
ers to the root of the tree. Similarly, two disjoint sets can be merged (the union operation), by
finding their canonical representatives and setting one to point to the other.

As described, this data structure is no better than using a linked list. However, two optimiza-
tions give rise to an extremely efficient implementation [11]. First, the root node can be modified
to keep track of a bound on the maximum height, so that whenever two sets are merged, the
shorter tree can be made a subtree of the deeper one. Second, the algorithm can make use of path
compression – whenever the find operation is called, it can set all of the nodes on the path to the
root to point directly at the root. Together, these optimizations permit performing a sequence of
n union and find operations inO(n ·α(n)) time, where α is the inverse Ackermann function [46].

This permitted Huet [15] to give a simple implementation of near-linear-time unification
algorithms, and variants of this idea are used in the proofs of congruence closure algorithms [32].

However, path compression is an idiom difficult to accomodate within the framework of
separation logic. In informal reasoning about the union-find data structure, we do not explicitly
track all the elements of a union-find data structure in our reasoning — instead, we rely on the
fact that path compression only makes changes to the heap which our global program invariant
should be insensitive to. However, separation logic is a resource-aware logic, which demands
to know the footprint of any command. So we cannot simply leave the other elements of the

186 Proving the Union-Find Disjoint Set Algorithm
equivalence class out of the invariant, since union may read and modify them.

The solution I propose in this chapter is to use a global invariant structured in a way which
preserves modular reasoning, both in the style of separation logic, and in the interference-
insensitive style of the usual informal proofs.

However, we do not only want to hide interference! One of the features which makes union-
find so elegant is that the union operation features a well-structured use of aliased mutable
state. When merging two equivalence classes, a single update allows efficiently broadcasting
the change to every element of both classes in almost constant time. So we need a specifica-
tion technique that should also let us specify global interference in a clean, well-structured way.
We achieve this by introducing a ramification operator in our specification, which gives us an
abstract way of characterizing the information propagated globally.

To understand the idea of ramifications, we look back to McCarthy’s original paper intro-
ducing the frame problem [24]. There, he described the frame problem as the problem of how
to specify what parts of a state were unaffected by the action of a command, which inspired the
name of the frame rule in separation logic. In that paper, he also described the qualification
problem. He observed that many commands (such as a flipping a light switch turning on a light
bulb) have numerous implicit preconditions (such as there being a bulb in the light socket), and
dubbed the problem of identifying these implicit preconditions the qualification problem.

Some years later, Finger [9] observed that the qualification problem has a dual: actions can
have indirect effects that are not explicitly stated in their specification (e.g., turning on the light
can startle the cat). He called the problem of deducing these implicit consequences the “ram-
ification problem” — is there a simple way to represent all of the indirect consequences of an
action? If so, then we have a way of modularly specifying global effects. This is the idea we will
adopt to deal with the broadcast nature of union in the union-find algorithm.

5.2 The Specification
In Figure 5.1, we give our specification of the union-find algorithm.

On lines 1-5 of the specification, we specify that there is an abstract type τ of nodes of the
disjoint set forest, and three operations newset, find, and union, which create new nodes, find
canonical representatives, and merge equivalence classes, respectively. Furthermore, there is a
monolithic abstract predicate H(φ), which describes the entire disjoint-set forest all at once.

This monolithic predicate represents of one of the two tricks of this specification. Our first
trick is to replay the key idea of separation logic, only “one level up”. Even though we have
a single abstract predicate describing the whole forest, we can recover separation-style modu-
larity by indexing the abstract predicate with a formula φ, which gives a small (in fact, nearly
degenerate) “separation logic” for describing elements of these equivalence classes.

The datatype of formulas is given in the display above the specification. We give it both as an
inductive type, to illustrate why it is definable in higher-order, and as a grammar (which is more
readable, and what we use in the specifications). Formulas have three grammatical productions.
First, we have the forms I and φ⊗ψ, which are an (intuitionistic) unit and separating conjunction
for the elements of this little logic. We also have an atomic formula elt(x, y), which says that x
is a term whose canonical representative is y.

187 Proving the Union-Find Disjoint Set Algorithm

formula = I | Elt of τ × τ | Tensor of formula× formula
φ, ψ ::= I | elt(x, y) | φ⊗ ψ

R : (τ → τ)× formula→ formula
R(ρ, I) = I
R(ρ, ψ ⊗ φ) = R(ρ, ψ)⊗R(ρ, φ)
R(ρ, elt(x, y)) = elt(x, ρ(y))

φ ` elt(x, y)

elt(x, y) ` elt(x, y)

φ ` elt(x, y)

φ⊗ ψ ` elt(x, y)

ψ ` elt(x, y)

φ⊗ ψ ` elt(x, y)

1 ∃τ : ?
2 ∃H : formula→ prop
3 ∃newset :©τ
4 ∃find : τ →©τ
5 ∃union : τ × τ →©1
6 {H(φ)}newset{a : τ . H(φ⊗ elt(a, a))}

&
7 {H(φ) ∧ (φ ` elt(x, y))}find(x){a : τ . H(φ) ∧ a = y}

&
8 {H(φ) ∧ (φ ` elt(x, y)) ∧ (φ ` elt(u, v))}union(x, u){a : 1. H(R([y/v], φ))}

&
9 {∀φ, a, b, x, y. H(φ⊗ elt(a, b)⊗ elt(x, y)) ⊃ a 6= x}

&
10 {∀φ. H(φ) ⊃ H(I)}

&
11 {∀φ, ψ. H(φ⊗ ψ) ⇐⇒ H(ψ ⊗ φ)}

&
12 {∀φ. H(I ⊗ φ) ⇐⇒ H(φ)}

&
13 {∀φ, ψ, θ. H(φ⊗ (ψ ⊗ θ)) ⇐⇒ H((φ⊗ ψ)⊗ θ)}

Figure 5.1: Specification of Union Find Algorithm

188 Proving the Union-Find Disjoint Set Algorithm
These formulas have the usual resource-aware interpretation of separation logic, so that

elt(x, y)⊗ elt(a, b) implies that x 6= a.
We also give a simple judgement on formulas φ ` elt(x, y), which lets us say that φ entails

drawing the conclusion that x’s representative is y. This is of course a trivial judgement, since
the language of formulas is so simple.

In addition to this separation logic, our second trick is embodied in the modal operator
R(ρ, φ), which we call a “ramification operator”. Here, ρ is a substitution, and φ is a formula.
R is defined to operate homomorphically on the structure of formulas, with its action on atomic
formulas being R(ρ, elt(x, y)) = elt(x, ρ(y)). Intutively, a ramification R(ρ, φ) says to replace
the canonical witnesses in the domain of the substitution with the result of the substitution. This
lets us specify the aliasing effects of global updates in a modular fashion.

So we have the tools to reason both locally and globally in our specifications. An example of
local reasoning can be seen on line 6 of Figure 5.1. Here, we say that given a state H(φ), calling
newset will result in a new state H(φ ⊗ elt(a, a)). This functions a bit like a global axiom for
creating new equivalence classes, since we explicitly quantify over the frame.

By quantifying over φ, we can implement the frame rule for our library. This is similar to the
interpretation of the frame rule in our underlying semantics – there, we interpret Hoare triples
to mean all the assertions that can be safely framed on, and here, we quantify over all possible
frames.

On line 7, we see the necessity of this kind of interpretation. Our specification for find is
very simple – it says that in any state which entails elt(x, y), calling find(x) will return y. The
φ is unchanged from precondition to postcondition, and so the user of this library does not need
to know anything about any elements other than x. However, due to path compression, we can
modify many other nodes in the forest, a fact which our domain-specific logic conceals.

On line 8, we give the specification of union. Here, we say that if x’s witness is y, and
u’s witness is v, then calling union(x, u) will equate the two equivalence classes, setting u’s
witness to y. Furthermore, since this is globally visible, we need to push this ramification over
the entire set of known nodes φ. Observe that unlike in the previous function we do not want
local reasoning, since the purpose the union operation is to globally broadcast the update. But
the use of a ramification operator does structure this update.

On lines 9-13, we add axioms corresponding to our domain-specific logic. On line 9, we
say that disjoint elements are disjoint, and on line 10 we say that we can forget the existence of
elements (i.e., that this logic is like intuitionistic separation logic). On lines 11-13, we simply
say that formulas are commutative, unital and associative.

In Figure 5.2 we give the invariant for the union-find data structure. The node type τ is a
pointer to a term of type σ, which is either a Child value containing the parent of the current
node, or a Root(w, n) value containing the witness plus a number to maintain balance.1

Then on line 3, we say that H(φ) holds when there are D, p, and w such that G(D, p, w, φ)
holds. We require D to be a finite set of nodes D, p : D ⇀ D to be a partial map of nodes to
parents, and a map w : (D − dom(p)) → D. The set of nodes D represent all the elements that
have been allocated, and the parent map p maps each node to its parent. The function p is partial

1We do not track the ranks of subtrees in our invariant to avoid obscuring the essential simplicity of the techniques
underpinning ramification, though it is straightforward to add.

189 Proving the Union-Find Disjoint Set Algorithm

1 σ = Child of ref σ | Root of option (ref σ)× N
2 τ = ref σ

3 H(φ) , ∃D ⊆ τ, p ∈ D ⇀ D,w ∈ (D − dom(p))→ D. G(D, p, w, φ)

4 G(D, p, w, φ) = p+ strict partial order ∧
5 w injective ∧
6 (D, p, w) |= φ ∧
7 heap(D, p, w)

8 D, p, w |= I iff always
9 D, p, w |= φ⊗ ψ iff ∃D1, D2. D = D1]D2 and D1, p, w |= φ and D2, p, w |= ψ
10 D, p, w |= elt(x, y) iff x ∈ D ∧ ∃z. (x, z) ∈ p∗ ∧ z maximal ∧ w(z) = y

11 heap(D, p, w) = ∀∗l ∈ dom(p). l 7→ Child(p(l))
12 ∗ ∀∗l ∈ (D − dom(p)). ∃n. l 7→ Root(Some(w(l)), n)

Figure 5.2: Concrete Definition of Union Find Invariants

since some nodes are root nodes of the disjoint-set forest. The map w : (D − dom(p)) → D
sends those roots to the appropriate canonical witness.

Then, on lines 4-7, we define exactly howGworks. In order to ensure that the graph structure
actually has no cycles, on line 4 we impose the condition that the transitive closure of p is a strict
partial order. That is, we require that p+ is a transitive, irreflexive relation. Since the domain D
is finite, this also insures that p+ has no infinite ascending chains.

In terms of graph structure, this requirement means that the nodes form a directed acyclic
graph, and the fact that it arises as the closure of a function means that no node has more than
one parent. Together, these conditions ensure that the nodes form a forest. On line 5, we assert
that w is an injective function, which ensures that the canonical representatives for different
equivalence classes are all distinct from one another. On line 6, we assert that the triple (D, p, w)
models our formulas.

These formulas are a small subset of separation logic. We have the formula I , which is always
satisfied. (So this logic is like an intuitionistic rather than classical separation logic.) Then we
have the formula φ ⊗ ψ, which corresponds to the usual separating conjunction, in that the
resource n (the collection of disjoint-set nodes) is split into two parts, one of which must support
φ and the other of which must support ψ. Note that the whole of the parent function p and the
canonical witness function w functions are passed to both branches. This is the information that
will let us ensure that global constraints are maintained in local invariants. Finally, the atomic
proposition elt(x, y) asserts that x is a node whose canonical witness is y, by saying that x is in
D, and that there is some maximal z above x in the reflexive transitive closure of p (viewed as a
partial order), such that w(z) = y. (Note that z is maximal precisely when it is not in the domain
of p.)

Then, the predicate heap(D, p, w) asserts that every node in D is correctly realized by some
physical node in the heap. Every child node must point to its parent, and every root node must

190 Proving the Union-Find Disjoint Set Algorithm

1 newset = [letv r = [newσ(Root(None, 0))] in
2 letv 〈〉 = [r := Root(Some(r), 0)] in
3 r]

4 findroot(x) = [letv i = [!x] in
5 run case(i,
6 Root(w, n)→ [(x,w, n)],
7 Child(p)→ [letv (r, w, n) = findroot(p) in
8 letv = [x := Child(r)] in
9 (r, w, n)]

10 find(x) = [letv (, w,) = findroot(x) in w]

11 union(x, y) = [letv (r, u,m) = findroot x in
12 letv (s, v, n) = findroot y in
13 run if r 6= s then
14 if m < n then
15 [letv 〈〉 = [s := Root(u, n)] in
16 r := Child(s)]
17 else if n < m then
18 [s := Child(r)]
19 else
20 [letv 〈〉 = [r := Root(u, n+ 1)] in
21 s := Child(r)]
22 else
23 [〈〉]]

Figure 5.3: Implementation of Union-Find Algorithm

point to its witness and some count of its tree rank.
In Figure 5.3, we give the implementation of these functions. On lines 1-3, we give the code

for creating a new element. This works by allocating a pointer of type τ , and then updating it so
that it points to itself as its canonical witness.

The find function is defined on line 10, but it works by deferring almost all of its work to
an auxiliary function findroot. This function is defined on lines 4-9, and it works by recursively
following the parent pointers of each node. When it reaches a root, it returns a triple (r, w, n),
containing all three of the physical root r, the witness valuew, and the tree rank n. On a recursive
call (i.e., when the argument is a child node), we take the return triple, and before returning, we
implement path compression, by updating the child’s parent to be the root node r. The find
function simply calls findroot, and ignores its return values except for the witness.

The reason we have this auxilliary function becomes evident in the union function, on lines
11-23. Given arguments (x, y), what union does is to first call findroot on both x and y (on lines
11 and 12). Then, on line 13, we compare the two physical roots for inequality. If they are equal,

191 Proving the Union-Find Disjoint Set Algorithm
then there is no work to be done (lines 22-23). Otherwise, we compare the two returned tree
ranks, and add the smaller root as a child of the larger one (lines 14-19), and increment the size
counter if they are the same rank (lines 20-21).

5.3 Correctness Proofs

All of these proofs have a similar structure. First, we prove a lemma about how the properties
of the parent order p can change. Second, we prove how this changes (or doesn’t change) the
satisfaction of a formula φ. Third, we use these two properties to verify the program itself, in an
annotated specification style.
Lemma 64. (Soundness of Entailment) If D, p, w |= φ and φ ` elt(u, v), then D, p, w |=
elt(u, v).
Proof. This proof follows from an easy induction on the derivation of φ ` elt(u, v). �
Lemma 65. (Disjointness of Elements) The formula ∀φ, a, b, x, y. H(φ⊗ elt(a, b)⊗ elt(x, y)) ⊃
a 6= x is valid.
Proof.

1 Assume φ, a, b, x, y and H(φ⊗ elt(a, b)⊗ elt(x, y))
2 So we know that there are D, p, and w such that D, p, w |= φ⊗ elt(a, b)⊗ elt(x, y)
3 By the definition of ⊗, we know that there are disjoint D1, D2 and D3, such that

D1, p, w |= φ
D2, p, w |= elt(a, b)
D3, p, w |= elt(x, y)

4 So we know a ∈ D2 and x ∈ D3

5 Since D2 and D3 are disjoint, a 6= x

�
Lemma 66. (Structural Properties) The following properties are valid:
• ∀φ. H(φ) ⊃ H(I)
• ∀φ, ψ. H(φ⊗ ψ) ⇐⇒ H(ψ ⊗ φ)
• ∀φ. H(I ⊗ φ) ⇐⇒ H(φ)
• ∀φ, ψ, θ. H(φ⊗ (ψ ⊗ θ)) ⇐⇒ H((φ⊗ ψ)⊗ θ)

Proof. These properties follow immediately from the semantics of assertions. �

5.3.1 Proof of find

Suppose R ⊆ D ×D is a strict partial order. We say x ∈ D is maximal when there is no y such
that (x, y) ∈ R. Note that when we have a partial function f : D ⇀ D such that f+ is a strict
partial order, x ∈ D is maximal precisely when f(x) is not defined. (If f(x) were defined, then
(x, f(x)) ∈ f+. Hence it cannot be defined for any maximal element.)
Lemma 67. (Path Compression Lemma) Suppose D is a finite set and f : D ⇀ D is a partial
function on D, such that f+ is a strict partial order. Now suppose (x, y) ∈ f+ with y maximal.

192 Proving the Union-Find Disjoint Set Algorithm
Then, [f |x : y] has the same domain as f , and [f |x : y]+ is a strict partial order such that

for all u, v ∈ D, (u, v) ∈ [f |x : y]+ with v maximal if and only if (u, v) ∈ f+ with v maximal.
Proof.

1. Since (x, y) ∈ f+, we know that x ∈ dom(f). Hence [f |x : y] has the same domain as f .

2. For [f |x : y]+ to be a strict partial order, it must be an irreflexive transitive relation. Since
it is the transitive closure of a function, it is immediately transitive.
To show that it is irreflexive, assume that (u, u) ∈ [f |x : y]+. Therefore there is some
sequence (u, [f |x : y](u), . . . , [f |x : y]n+1(u) = u).
Now consider whether x is in the sequence. If it is not, then this sequence is equal to
(u, f(u), . . . , fn+1(u) = u), which is a contradiction, since f+ is irreflexive. If x is in
the sequence, then we know that either x is the last element, or the second-to-last element
(since f(x) = y, and y is maximal). Suppose x is the last element. Then we know that
u = x, and hence [f |x : y](u) = y, and so we have a contradiction. Suppose y is the last
element. Then the first element is y, and there is no f(y), since y is a maximal element,
and this is also a contradiction.
Therefore there is no (u, u) ∈ [f |x : y]+, and so [f |x : y]+ is irreflexive.

3. ⇐ Suppose that (u, v) in f+ with v maximal. Then there is some k such that fk(u) = v.
So we have a sequence u, f(u), . . . , fk(u).
If any of the f i(u) = x for i < k, then we know that v = y, since both v and y are
maximal. Therefore, it follows that the sequence u, [f |x : y](u), . . . , [f |x : y]i(u), y
shows that (u, v) ∈ [f |x : y]+ with v maximal.
If none of the f i(u) = x, then it follows that the sequence u, f(u), . . . , fk(u) is
exactly the same as u, [f |x : y](u), . . . , [f |x : y]k(u), and so (u, v) ∈ [f |x : y]+ with
v maximal.

⇒ Suppose (u, v) ∈ [f |x : y]+ with v maximal. Then we know that there is some
sequence u, [f |x : y](u), . . . , [f |x : y]k+1(u) with [f |x : y]k+1(u) = v.
Now, either x occurs in this sequence, or not. Suppose that x does not occur in the
sequence – that is, for every i ≤ k + 1, [f |x : y]i(u) 6= x. Then it follows that
this sequence is the same as (u, . . . , fk+1(u) = v). Since [f |x : y] and f have the
same domain, it follows that v is maximal in f , as well. Hence (u, v) ∈ f+ with v
maximal.
Now, suppose that x occurs in the sequence at position i. It cannot occur at i = k+1,
since fk+1(u) = v is the last element, and we know v is maximal. But since [f |x :
y](x) = y, we know that x is not maximal in [f |x : y]. Therefore it occurs at i ≤ k.
However, it also cannot occur at any i < k, since y is maximal in [f |x : y], and
if x occured at i < k, then the sequence would end at i + 1 with y, and we know
the sequence is k + 1 elements long. Therefore, x occurs at position i = k, and
(u, . . . , [f |x : y]k(u), [f |x : y]k+1(u) = v) = (u, . . . , fk(u) = x, [f |x : y]k+1(u) =
y = v).
Now, we know that (x, y) ∈ f+ with y maximal in f . Therefore, there is a sequence
(x, . . . , fn+1(x) = y). Therefore, the sequence (u, . . . , fk(u) = x, . . . , fn+k+1(u) =

193 Proving the Union-Find Disjoint Set Algorithm
y = v) is in f+, with v maximal in f .

�

Lemma 68. (Satisfaction Depends on Maximality) Suppose D is a finite set and f, g : D ⇀ D
are partial functions on D, such that f+ and g+ are strict partial orders such that for all x, y ∈
D, we have that (x, y) ∈ f+ with y maximal in f if and only if (x, y) ∈ g+ with y maximal in g.

Then for all φ,w and D′ ⊆ D, if D′, f, w |= φ, then D′, g, w |= φ.
Proof. This lemma follows by induction on φ.
• Case φ = I . This follows immediately from the definition of satisfaction.
• Case φ = ψ ⊗ θ.

1 By assumption, we have D′, f, w |= ψ ⊗ θ.
2 From the definition of satisfaction, we get D1, D2 such that D′ = D1]D2

and D1, f, w |= ψ and D2, f, w |= θ.
3 By induction, we get D1, g, w |= ψ
4 By induction, we get D2, g, w |= θ
5 By definition, we get D1 ∪D2, g, w |= ψ ⊗ θ

• Case φ = elt(x, y).

1 By assumption, D′, f, w |= elt(x, y)
2 So we know that x ∈ D′ and there exists an z such that

(x, z) ∈ f ∗ with z maximal and y = w(z)
3 By definition of reflexive transitive closure, either (x, z) ∈ f+ or x = z
4 Suppose (x, z) ∈ f+:
5 Then by hypothesis, (x, z) ∈ g+ with m maximal.
6 Hence D′, g, w |= elt(x, z)
7 Suppose x = z:
8 Since x is maximal, we know x 6∈ dom(f).
9 Suppose x ∈ dom(g).
10 Then there is a sequence (x, g(x), . . . , u) ∈ g+ with u maximal
11 Then (x, f(x), . . . , u) ∈ f+ with u maximal
12 This is a contradiction, since x is maximal in f
13 So x 6∈ dom(g)
14 Hence (x, x) ∈ g∗ and x maximal in g
15 Hence (x, z) ∈ g∗ and z maximal in g
16 Hence D′, g, w |= elt(x, y)

�
Now, we can specify and prove the correctness of findroot.

Lemma 69. (Correctness of findroot) The findroot function satisfies the following specification:

1 {G(D, f, w, φ) ∧ (D, f, w) |= elt(u, v)}
2 findroot(u)

194 Proving the Union-Find Disjoint Set Algorithm
3 {(r, c, n) : τ × τ × N.
4 ∃f ′. G(D, f ′, w, φ) ∧ c = v ∧ (u, r) ∈ f ′∗ ∧ r maximal ∧ w(r) = c ∧ dom(f) = dom(f ′)
5 ∧ (f, f ′) have same maximal relationships}

Here, f and f ′ “having the same maximal relationships” means that (u, v) ∈ f+ with v
maximal if and only if (u, v) ∈ (f ′)+ with v maximal.
Proof.

1 Assume our precondition state is G(D, f, w, φ) ∧ (D, f, w) |= elt(u, v)
2 Then we have a sequence (u, . . . , fk(u) = x) with x maximal and w(x) = v.
3 Then we know that f+ is a strict partial order, and D, f, w |= φ and

heap(D, f, w) and D, f, w |= elt(u, v)
4 Now, do a case split on whether or not u ∈ dom(f) (i.e., is maximal).
5 If u ∈ dom(f):
6 Then we have a sequence (u, f(u), . . . , fk(u) = x) with x maximal and w(x) = v
7 Hence (D, f, w) |= elt(f(u), v)
8 Next, heap(D, f, w) ⊃ (u ↪→ Child(f(u))
9 [letv i = [!u] in
10 So we add i = Child(f(u)) to the state, and simplify the case statement
11 letv (r, c, n) = findroot(f(u)) in
12 Then G(D, f ′, w, φ) ∧ (f(u), r) ∈ f ′∗ ∧ r maximal ∧ c = w(r) ∧ c = v for some f ′

13 with the same domain and maximal relationships as f
14 We know that (f(u), r) ∈ f ′∗ and r is maximal
15 If f(u) = r, then (f(u), r) ∈ f ∗ and r is maximal
16 If f(u) 6= r, then:
17 (f(u), r) ∈ f ′+ and r is maximal
18 Therefore (f(u), r) ∈ f+ and r is maximal, since

f and f ′ have the same domain and maximal relationships
19 Therefore (f(u), r) ∈ f ∗ and r is maximal
20 From line 6, (f(u), x) ∈ f ∗ and x maximal
21 Therefore r = x
22 From line 19, (u, r) ∈ f+ and r is maximal
23 Hence (u, r) ∈ f ′+ and r is maximal, since

f and f ′ have the same domain and maximal relationships
24 So we know that r = x, and that (u, r) ∈ f ′∗
25 So D, f ′, w |= φ and (f ′)+ is a strict partial order and w injective and heap(D, f ′, w),
26 Since we know r remains maximal in f ′, we know that (D, f ′, w) |= elt(u, v),

since satisfaction depends only on maximality
27 Therefore, due to path compression, [f ′|u : r]+ is a strict partial order

with the same maximal relationships and domain as f ′

28 Hence D, [f ′|u : r], w |= φ and dom([f ′|u : r]) = dom(f) and (u, r) ∈ [f ′|u : r]∗,
since satisfaction depends only on maximality

29 Now we will perform updates to make the physical heap match this logical heap
30 letv = [u := Child(r)] in

195 Proving the Union-Find Disjoint Set Algorithm
31 Hence heap(D, [f ′|u : r], w), together with the pure formulas above
32 (r, c, n)]
33 Choosing as the existential witness [f ′|u : r], we get
34 Hence (r, c, n). ∃f ′. G(D, f ′, w, φ) ∧ c = v ∧ w(r) = c ∧

dom(f) = dom(f ′) ∧ (u, r) ∈ f ′∗ ∧ r maximal ∧
(f, f ′) have the same maximal relationships.

35 If u 6∈ dom(f):
36 Then heap(D, f, w) ⊃ (u ↪→ Root(Some(p), n)) for some n and p = w(u)
37 [letv i = [!u] in
38 So we add i = Root(Some(w(u)), n) to the state, and simplify the case statement
39 (u, p, n)]
40 Note (u, u) ∈ f ∗ and u maximal, and that p = w(u), and that dom(f) = dom(f)
41 The fact that D, f, w |= elt(u, v) implies v = w(u)
42 And obviously f has the same maximal relationships as f
43 Hence (r, c, n). ∃f ′′. G(D, f ′′, w, φ) ∧ c = v ∧ w(r) = c ∧

dom(f) = dom(f ′′) ∧ (u, r) ∈ f ′′∗ ∧ r maximal ∧
(f, f ′′) have the same maximal relationships.

44 (with the choice of f as witness for f ′′)

�
Lemma 70. (The find Function is Correct) The find function meets the specification in Figure 5.1.
Proof. This proof is easy, since findroot does almost all the work.

1 Assume a precondition of H(φ) and φ ` elt(u, v)
2 This means we have G(D, f, w, φ) for some D, f , and w.
3 Furthermore, we also know that D, f, w |= elt(u, v).
4 Now, expand the call find(u):
5 [letv (, v′,) = findroot(u) in
6 Now we know G(D, f ′, w, φ) ∧ dom(f) = dom(f ′) ∧ v′ = v
7 v′]
8 Now we know G(D, f ′, w, φ) ∧ dom(f) = dom(f ′) ∧ a = v

�

5.3.2 Proof of newset

Lemma 71. (Satisfaction and Allocation) Suppose D, f, w |= φ and x 6∈ D.
Then D ∪ {x}, f, [w|x : x] |= φ⊗ elt(x, x)

Proof.

1 To prove this, we want to exhibit D1, D2 such that D ∪ {x} = D1]D2,
and D1, f, [w|x : x] |= φ and D2, f, [w|x : x] |= elt(x, x).

2 Take D1 = D and D2 = {x}, which are disjoint since x 6∈ D.
3 Note that {x}, f, [w|x : x] |= elt(x, x), since:

196 Proving the Union-Find Disjoint Set Algorithm
x ∈ {x}
(x, x) ∈ f ∗ (since this is a reflexive relation)
x is maximal (since it is not in the domain of f)
[w|x : x](x) = x.

4 Now it remains to be shown that D, f, [w|x : x] |= φ
5 By induction on φ, we will show

∀D,φ, if x 6∈ D and D, f, w |= φ then D, f, [w|x : x] |= φ
6 Case φ = I:
7 This case is immediate, since D, f, [w|x : x] |= I by definition
8 Case φ = ψ ⊗ θ:
9 Since D, f, w, |= ψ ⊗ θ, there are D1, D2 so D1, f, w |= ψ and D2, f, w |= θ

and D = D1]D2

10 Since x 6∈ D, we know x 6∈ D1 and x 6∈ D2

11 By induction, we know D1, f, [w|x : x] |= ψ
12 By induction, we know D2, f, [w|x : x] |= θ
13 Hence D, f, [w|x : x] |= φ
14 Case φ = elt(u, v)
15 So we know u ∈ D and that (u, z) ∈ f ∗ and z maximal and w(z) = v for some z
16 Since x 6∈ D, x 6∈ D − dom(f), and so it follows that [w|x : x](z) = v
17 Hence D, f, [w|x : x] |= elt(u, v)
18 Hence D, f, [w|x : x] |= elt(u, v)

�

Lemma 72. The newset procedure meets the specification in Figure 5.1.
Proof.

1 Assume we have a precondition state H(φ), and consider the body of newset.
2 Then we know that f+ is a strict partial order, and D, f, w |= φ and

heap(D, f, w) and D, f, w |= elt(u, v)
3 [letv r = [newσ(Root(None, 0))] in
4 Now the state is heap(D, f, w) ∗ r 7→ Root(None, 0), plus the pure predicates.
5 letv = [r := Root(Some(r), 0)] in
6 Now the state is heap(D, f, w) ∗ r 7→ Root(Some(r), 0), plus the pure predicates.
7 Since heap(D, f, w) has a pointer for each l ∈ D, it follows that r 6∈ D.
8 Thus, we know that D′, f, [w|r : r] |= φ⊗ elt(r, r) where D′ = D] {r}
9 f+ is still a strict partial order which is a subset of D′ ×D′
10 So f ∈ D′ ⇀ D′

11 [w|r : r] ∈ (D′ − dom(f))→ D′

12 It is clear that heap(D, f, w) ∗ r 7→ Root(Some(r), 0) is
equivalent to heap(D′, f, [w|r : r])

13 Hence G(D′, f, [w|r : r], φ⊗ elt(r, r))
14 r]
15 Hence a. G(D′, f, [w|a : a], φ⊗ elt(a, a))
16 Hence a. H(φ⊗ elt(a, a))

197 Proving the Union-Find Disjoint Set Algorithm
�

5.3.3 Proof of union

Lemma 73. If f+ is a strict partial order, (u, v) ∈ f+ and v maximal, and (x, y) ∈ f+ and y
maximal, and v 6= y, then it follows that for g = [f |v : y],

1. dom(g) = dom(f)] {v}
2. g+ is a strict partial order
3. If (a, b) ∈ f ∗ with b maximal, either b 6= v and (a, b) ∈ g∗ with b maximal, or b = v and

(a, y) ∈ g∗ with y maximal.

Proof.
1. Since v is maximal in f , it follows that v 6∈ dom(f), and hence dom([f |v : y]) = dom(f)]
{v}

2. To be a strict partial order, it suffices that there is no (z, z) ∈ g+.

1 Assume (z, z) ∈ g+

2 Then there is a k ≥ 1 such that gk(z) = z
3 Now, we’ll show that v does not occur in the sequence z, g(z), . . . , gk(z)
4 To do this, we’ll first show that y does not occur in the sequence z, g(z), . . . , gk(z)
5 Since y is maximal for f and v 6= y, we know y is maximal for g = [f |v : y]
6 As a result, y can only occur as the last element gk(z)
7 But since gk(z) = z and z ∈ dom(g), we know that y 6= gk(z),

and so it cannot occur as the last element, either.
8 As a result, v cannot occur at any i < k, since then gi+1(z) = y,
9 and we know this cannot happen
10 We also know v cannot occur at i = k, since gk(z) = z = g0(z), and
11 we know v cannot occur at i = 0
12 Therefore for i ≤ k, we have gi(z) 6= v.
13 Hence we have gi(z) = f i(z)
14 Therefore z, f(z), . . . , fk(z) = z shows that (z, z) ∈ f+

15 But f+ is a strict partial order, which is a contradiction.

3. If (a, b) ∈ f ∗ with b maximal, either b 6= v and (a, b) ∈ g∗ with b maximal, or b = v and
(a, y) ∈ g∗ with y maximal.

1 Assume (a, b) ∈ f ∗ with b maximal.
2 Then either a = b, or (a, b) ∈ f+

3 Suppose a = b:
4 Then either b = v or not
5 Suppose b = v:
6 Then (a, y) = (v, y) ∈ g ⊆ g∗, and
7 y is maximal since y 6∈ dom(g) = dom(f) ∪ {v}

198 Proving the Union-Find Disjoint Set Algorithm
8 Suppose b 6= v:
9 Then (a, y) = (b, b) ∈ g∗, since b is maximal since b 6∈ dom(g) = dom(f) ∪ {v}
10 Suppose (a, b) ∈ f+:
11 Then we have a k > 0 such that fk(a) = b
12 Now, either there is an i ≤ k such that f i(a) = v, or not.
13 Suppose f i(a) = v:
14 Since v is maximal, it is the last element, so b = v
15 Then we know that for all j < i, f j(a) 6= v, since v is maximal in f
16 Therefore for all j ≤ i, f j(a) = gj(a)
17 Therefore gi+1(a) = y
18 Hence (a, y) ∈ g∗ and y is maximal, since y 6∈ dom(g)
19 Suppose there is no i such that f i(a) = v:
20 Then we know that for all j ≤ k, f j(a) = gj(a), and b 6= v
21 Hence (a, b) ∈ g∗ and b is maximal since b 6∈ dom(f) ∪ {v} = dom(g)

�
Lemma 74. (Ramification) Suppose D, f, w |= φ and (x, y) ∈ f ∗ with y maximal and (u, v) ∈
f ∗ with v maximal, and y 6= v, and w injective. Let w′ be the restriction of [w|v : z] to exclude
y, and let g = [f |y : v].

Then, D, g, w′ |= R([z/w(v), z/w(y)], φ).
Proof. This proof follows by induction on the structure of φ.

1 Case φ = I:
2 This case is immediate since D, g, w′ |= I and R([z/w(v), z/w(y)], I) = I
3 Case φ = ψ ⊗ θ:
4 By satisfaction of φ, we have D1, D2 such that D = D1]D2 and

D1, f, w |= ψ and
D2, f, w |= θ

5 By induction, we have D1, g, w
′ |= R([z/w(v), z/w(y)], ψ)

6 By induction, we have D2, g, w
′ |= R([z/w(v), z/w(y)], θ)

7 By the definition of satisfaction, D, g, w′ |= R([z/w(v), z/w(y)], ψ)⊗R([w(v)/w(y)], θ)
8 By the definition of R, we have D, g, w′ |= R([z/w(v), z/w(y)], φ)
9 Case φ = elt(a, b):
10 We know that a ∈ D, (a, c) ∈ f ∗ with c maximal, and w(c) = b
11 Therefore either c 6= y and (a, c) ∈ g∗ with c maximal, or

c = y and (a, v) ∈ g∗ with v maximal
12 Suppose c 6= y:
13 Since w is injective, we know that w(c) 6= w(y). Hence [z/w(y)]w(c) = w(c)
14 Consider whether c is v.
15 If c 6= v:
16 Since w is injective, we know that w(c) 6= w(v). Hence [z/w(v)]w(c) = w(c)
17 Hence [z/w(v), z/w(y)]w(c) = w(c)
18 So elt(a, b) = R([z/w(v), z/w(y)], elt(a, b))

199 Proving the Union-Find Disjoint Set Algorithm
19 Furthermore w′(c) = w(c)
20 Hence D, g, w′ |= elt(a, b)
21 Hence D, g, w′ |= R([z/w(v), z/w(y)], elt(a, b))
22 If c = v:
23 Since w(c) = w(v), we have [z/w(v)]w(c) = z
24 Hence [z/w(v), z/w(y)]w(c) = z
25 Note w′(v) = z
26 Hence D, g, w′ |= elt(a, z)
27 Hence D, g, w′ |= R([z/w(v), z/w(y)], elt(a, b))
28 Suppose c = y:
29 Then, b = w(c) = w(y), so that [z/w(v), z/w(y)]b = z
30 So R([z/w(v), z/w(y)], elt(a, b)) = elt(a, z)
31 Furthermore, we know that (a, v) ∈ g∗ and v maximal and w′(v) = z
32 So D, g, w′ |= elt(a, z)
33 So D, g, w′ |= R([z/w(v), z/w(y)], elt(a, b))

�

Lemma 75. (Correctness of union) The union function meets the specification in Figure 5.1.
Proof.

1 Assume we have a precondition H(φ) and φ ` elt(x, y) and φ ` elt(u, v)
2 Then we have D, f , w, such that G(D, f, w, φ)
3 Furthermore D, f, w |= elt(x, y)
4 Now consider the body of union(x, u)
5 [letv (r, y′,m) = findroot(x) in
6 So we have f ′ such that G(D, f ′, w, φ) and

(x, r) ∈ f ′∗ and r maximal in f ′

f and f ′ have the same maximal relationships and domain
y = w(r)
y = y′

7 Furthermore D, f ′, w |= elt(u, v), so
8 letv (s, v′, n) = findroot(u) in
9 So we have f ′′ such that G(D, f ′′, w, φ) and

(u, s) ∈ f ′′∗ and s maximal in f ′′

f ′ and f ′′ have the same maximal relationships and domain
v = w(s)
v = v′

10 So we can substitute y for y′ and v for v′

11 Since f and f ′ have the same maximal relationships, and
since f ′ and f ′′ have the same maximal relationships,
we know that f and f ′′ have the same maximal relationships

12 Since (x, r) ∈ f ′∗ and r maximal in f ′, we know (x, r) ∈ f ′′∗ and r maximal in f ′′

13 Now case analyze on whether r = s:
14 If r = s:

200 Proving the Union-Find Disjoint Set Algorithm
15 Then we can simplify the remaining program to 〈〉
16 Now, note that since r = s, w(r) = w(s), and so y = v and R([y/v], φ) = φ
17 Hence we can hide D, f ′′, w to get H(φ)
18 If r 6= s:
19 Now, case analyze on the ranks m and n:
20 If m < n:
21 We can simplify the if-then-else, and continue
22 letv 〈〉 = [s := Root(y, n)] in
23 r := Child(s)
24 Now take w′ to be the restriction of [w|s : y] to exclude r
25 Now take g = [f ′′|r : s]
26 Since w(r) = y, and w is injective, w′ is still injective
27 From the ramification lemma, we know D, g, w′ |= R([y/y, y/v], φ)
28 This is the same as R([y/v], φ)
29 The two updates ensure that heap(D, g, w′) hold
30 Hiding D, g, w′, we get H(R([y/v], φ)
31 If n < m:
32 We can simplify the if-then-else, and continue
33 s := Child(r)
34 Now take w′ to be the restriction of [w|r : y] to exclude s
35 Now take g = [f ′′|s : r]
36 By the ramification lemma, D, g, w′ |= R([y/y, y/v], φ)
37 This is the same as R([y/v], φ)
38 The update ensures that heap(D, g, w′) holds
39 Hiding D, g, w′, we get H(R([y/v], φ)
40 If m = n:
41 letv 〈〉 = [r := Root(y,m+ 1)] in
42 s := Child(r)
43 Now take w′ to be the restriction of [w|r : y] to exclude s
44 Now take g = [f ′′|s : r]
45 By the ramification lemma, D, g, w′ |= R([y/y, y/v], φ)
46 This is the same as R([y/v], φ)
47 The update ensures that heap(D, g, w′) holds
48 Hiding D, g, w′, we get H(R([y/v], φ)

�

Acknowledgements I would like to thank Peter O’Hearn for pointing out the connection of
our work with the ramification problem of AI.

Bibliography

[1] A. Banerjee and D.A. Naumann. Representation independence, confinement and access
control [extended abstract]. ACM SIGPLAN Notices, 37(1):166–177, 2002. ISSN 0362-
1340.

[2] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional logic for local rea-
soning about global invariants. In ECOOP, pages 387–411, 2008.

[3] M. Barnett and D.A. Naumann. Friends Need a Bit More: Maintaining Invariants Over
Shared State. Mathematics of Program Construction (MPC), 2004.

[4] M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming System: An
Overview. Proceedings CASSIS 2004, 2005.

[5] N. Benton. Abstracting allocation. In Computer Science Logic, pages 182–196. Springer,
2006.

[6] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-hyperdoctrines, higher-order sep-
aration logic, and abstraction. ACM TOPLAS, 29(5):24, 2007. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/1275497.1275499.

[7] Lars Birkedal and Hongseok Yang. Relational parametricity and separation logic. In Hel-
mut Seidl, editor, FoSSaCS, volume 4423 of LNCS, pages 93–107. Springer, 2007. ISBN
978-3-540-71388-3.

[8] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning about a copying
garbage collector. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 220–231, New York, NY, USA,
2004. ACM. ISBN 1-58113-729-X. doi: http://doi.acm.org/10.1145/964001.964020.

[9] J. J. Finger. Exploiting constraints in design synthesis. PhD thesis, Stanford University,
Stanford, CA, USA, 1987.

[10] Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Computing Surveys, 23(3):319–344, 1991. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/116873.116878.

[11] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Commun.
ACM, 7(5):301–303, 1964.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1995.

202 BIBLIOGRAPHY
[13] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de larithmtique

dordre supérieur. PhD thesis, Université Paris VII, 1972.

[14] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969. ISSN 0001-0782.

[15] Gérard Huet. Resolution d’equations dans les langages d’ordre 1, 2, . . . , ω. PhD thesis,
Univ. de Paris VII, Paris, France, 1976.

[16] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte. Iterators revisited: Proof rules and
implementation. Proceedings FTfJP, 2005.

[17] S.P. Jones and S.L.P. Jones. Haskell 98 language and libraries: the revised report. Cam-
bridge University Press, 2003.

[18] N.J. Kokholm. An extended library of collection classes for .NET. Master’s thesis, IT
University of Copenhagen, Copenhagen, Denmark, 2004.

[19] Neel R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Verifying event-driven pro-
grams using ramified frame properties. In Proceedings of the 5th ACM SIGPLAN workshop
on Types in language design and implementation, TLDI ’10, pages 63–76, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-891-9. doi: 10.1145/1708016.1708025. URL
http://doi.acm.org/10.1145/1708016.1708025.

[20] Neelakantan R. Krishnaswami. Reasoning about iterators with separation logic. In SAVCBS
’06, pages 83–86, New York, NY, USA, 2006. ACM. ISBN 1-59593-586-X. doi:
http://doi.acm.org/10.1145/1181195.1181213.

[21] G.T. Leavens, A.L. Baker, and C. Ruby. JML: a Java modeling language. Formal Under-
pinnings of Java Workshop (at OOPSLA’98), 1998.

[22] K. Rustan M. Leino and Wolfram Schulte. Using history invariants to verify observers.
In European Symposium on Programming (ESOP), pages 80–94. Springer, 2007. ISBN
978-3-540-71314-2. doi: http://dx.doi.org/10.1007/978-3-540-71316-6 7.

[23] Barbara H. Liskov and Jeannette M. Wing. Behavioural subtyping using invariants and con-
straints. In Formal Methods for Distributed Processing: a Survey of Object-Oriented Ap-
proaches, pages 254–280. Cambridge University Press, New York, NY, USA, 2001. ISBN
0-521-77184-6.

[24] John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969.

[25] R. Milner. Implementation and applications of Scott’s logic for computable functions. ACM
sigplan notices, 7(1):1–6, 1972. ISSN 0362-1340.

[26] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Transactions on
Programming Languages and Systems (TOPLAS), 10(3):470–502, 1988.

[27] Eugenio Moggi. Notions of computation and monads. Information and Compututation, 93
(1):55–92, 1991. ISSN 0890-5401. doi: http://dx.doi.org/10.1016/0890-5401(91)90052-4.

[28] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and mutable

203 BIBLIOGRAPHY
ADTs in Hoare type theory. European Symposium on Programming (ESOP), 2007.

[29] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification of heap-manipulating
programs. ACM SIGPLAN Notices, 45(1):261–274, 2010. ISSN 0362-1340.

[30] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separation in
hoare type theory. In Proceedings ICFP, pages 62–73, New York, NY, USA, 2006. ACM.
ISBN 1-59593-309-3. doi: http://doi.acm.org/10.1145/1159803.1159812.

[31] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: Reasoning with the awkward squad. In In Proceedings of International Conference
on Functional Programming’08, 2008.

[32] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. In-
formation and Computation, 205(4):557 – 580, 2007. ISSN 0890-5401. doi: DOI:
10.1016/j.ic.2006.08.009. Special Issue: 16th International Conference on Rewriting Tech-
niques and Applications.

[33] M. Parkinson. Class invariants: The end of the road. Proceedings IWACO, 2007.

[34] Matthew Parkinson. Local Reasoning for Java. PhD in Computer Science, University of
Cambridge, August 2005.

[35] Matthew Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. SIGPLAN Not., 40(1):247–258, 2005. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1047659.1040326.

[36] Matthew Parkinson and Dino Distefano. jStar: Towards practical verification for Java. In
OOPSLA, 2008, to appear.

[37] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Math-
ematical Structures in Computer Science, 11(4):511–540, 2001. ISSN 0960-1295. doi:
http://dx.doi.org/10.1017/S0960129501003322.

[38] Benjamin C. Pierce and David N. Turner. Statically typed friendly functions via
partially abstract types. Technical Report ECS-LFCS-93-256, University of Edin-
burgh, LFCS, April 1993. Get by anonymous ftp from ftp.dcs.ed.ac.uk
in pub/bcp/friendly.ps.Z. Also available as INRIA-Rocquencourt Rapport de
Recherche No. 1899.

[39] C. Pierik, D. Clarke, and F.S. de Boer. Creational Invariants. Proceedings FTfJP, 2004.

[40] J.C. Reynolds. The essence of Algol. In ALGOL-like Languages, Volume 1, page 88.
Birkhauser Boston Inc., 1997. ISBN 0817638806.

[41] John C. Reynolds. An introduction to specification logic. In Proceedings of the Carnegie
Mellon Workshop on Logic of Programs, page 442, London, UK, 1984. Springer-Verlag.
ISBN 3-540-12896-4.

[42] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
in Computer Science (LICS 2002), pages 55–74. IEEE Computer Society, 2002. ISBN
0-7695-1483-9.

[43] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and frame

204 BIBLIOGRAPHY
rules for higher-order store. In Computer Science Logic, pages 440–454. Springer, 2009.

[44] Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular verification of higher-
order methods with mandatory calls specified by model programs. In Richard P. Gabriel,
David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors, OOPSLA, pages
351–368. ACM, 2007. ISBN 978-1-59593-786-5.

[45] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equa-
tions. SIAM J. Comput., 11(4):761–783, 1982.

[46] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, 1975.

[47] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and separation
logic. In Luı́s Caires and Vasco Thudichum Vasconcelos, editors, CONCUR, volume 4703
of Lecture Notes in Computer Science, pages 256–271. Springer, 2007. ISBN 978-3-540-
74406-1.

[48] J. Vouillon and P.A. Melliès. Semantic types: A fresh look at the ideal model for types.
ACM SIGPLAN Notices, 39(1):52–63, 2004. ISSN 0362-1340.

