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Abstract

Transport protocols must accommodate diverse application needs as well as network requirements.
As a result, TCP has evolved over time with new congestion control algorithms such as support
for generalized AIMD, background flows, and multipath. On the other hand, explicit congestion
control algorithms have shown to be more efficient. However, they are inherently more rigid be-
cause they rely on in-network components. Therefore, it is not clear whether they can evolve to
support diverse application needs at least as much as TCP. This paper presents a novel framework
for network resource allocation that supports evolution by accommodating diversity and exposing
a flexible but simple abstraction for resource allocation. The core idea is to design a resource al-
location scheme that allows aggregation and local control. To implement this idea, we leverage
ideas from economics-based congestion control (but without actual congestion charging) with ex-
plicit virtual price feedback. We show that our design, FCP, allows evolution by accommodating
diversity and ensuring coexistence, while being as efficient as existing explicit congestion control
algorithms.





1 Introduction
Networked applications often require a wide range of communication features, such as reliability,
flow control, and in-order delivery, in order to operate effectively. Since the Internet provides only
a very simple, best-effort, datagram-based communication interface, we have relied on transport
protocols to play the key role to implementing the application’s desired functionality on top of
the simple Internet packet service. As application needs and workloads have changed over time,
transport protocols have evolved to meet their needs. In general, changes to transport protocols,
such as adding better loss recovery mechanisms, have been relatively simple since they require
only changes to the endpoints. However, among the functions that transport protocols implement,
congestion control is unique since it concerns resource allocation, which requires coordination
among all participants using the resource. As a result, two very different styles of congestion
control cannot coexist, making evolution of congestion control difficult.

The need for evolution in congestion control becomes apparent when we look at the history
of TCP. While TCP’s congestion control was not designed with evolution in mind, the develop-
ment of TCP-Friendliness principles [14] enabled the development of a wide range of congestion
control techniques to meet different application requirements; these include support for: streaming
applications that require bandwidth guarantees [14, 9, 5, 29], or low-latency recovery [26, 20],
non-interactive applications that can leverage low-priority, background transfer [39], applications
that require multi-path communication for robustness [41], and Bittorrent-like content transfers
that involve in transferring chunks from multiple sources.

The ability for TCP’s congestion control to evolve has been enabled by two key aspects of its
design: 1) Purely end-point based nature allowed new algorithms to be easily deployed and 2) its
AIMD-based congestion avoidance led to the notion of TCP-friendliness.

Unfortunately, recent efforts, such as RCP [13] and XCP [22], rely on explicit congestion
feedback from the network. While these designs are far more efficient than TCP, they limit the
range of different end-point application behaviors that the network can support. It is not understood
whether such explicit congestion control algorithms can be made flexible to allow evolution. In
this paper, we explore the design of FCP (flexible control protocol), a novel congestion control
framework that is as efficient as explicit congestion control algorithms (e.g., RCP and XCP), but
retains (or even expands) the flexibility of TCP-friendliness based solutions.

FCP leverages ideas from economics-based congestion control [24, 23] and explicit congestion
control. In particular, to enable flexible resource allocation with in a host, we allow each domain
to allocate resources (budget) to a host, and make networks explicitly signal the congestion price.
The flexibility comes from the end-points being able to assign their own resources to their flows
and the networks being able to aggregate flows and assign differential price to different classes of
flows to provide extra functionality. The system maintains a key invariant that the amount of traffic
a sender can generate per unit time is limited by its budget and the congestion price. Co-existence
of different styles and strategies of rate control is ensured simply by maintaining this key invariant,
allowing evolution.

Our primary contribution is showing that explicit congestion control algorithms can be made
flexible enought to allow evolution just as end-point based algorithms. To this end, we design an
explicit congestion control algorithm, called FCP, and demonstrate that FCP easily allows different
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features to coexist within the same network; end-hosts can implement diverse styles of rate control
and networks can leverage differential pricing and aggregate control to achieve different goals.

To make economics-based congestion control [24, 23, 25] practical, this paper extends past
theoretical work in three critical ways:

• FCP uses “pricing” as a pure abstraction and the key form of explicit feedback. In contrast,
others [24, 8, 25, 11] directly associate congestion control to the real-world pricing and
modify existing congestion control algorithms to support weighted proportional fairness.

• We address practical system design and resource management issues, such as dealing with
relative pricing, and show that FCP is efficient.

• Finally, unlike previous explicit rate feedback designs [13, 23], FCP accommodates high
variability and rapid shifts in workload, which is critical for flexibility and performance.
This property of FCP comes from a novel preloading feature that allows senders to commit
the amount of resource it wants to spend ahead of time.

In the remaining sections, we present related work (§2) and motivate our design (§3). We then
present our detailed design and how it allows evolution (§4), discuss practical issues in deployment
(§5), evaluate FCP (§6), and conclude in §7.

2 Related Work
Our framework builds upon concepts from previous designs to provide a generalized framework
for resource allocation.

Economics-driven resource allocation has been much explored in the early days of the com-
mercial Internet [31, 34, 10]. MacKie-Mason and Varian [28] proposed a smart market approach
for assigning bandwidth. Since then many have tried to combine economics-driven resource al-
location with congestion control, which led to the development of economics-based congestion
control.

Kelly [23] proved that when users choose the charge per unit time that maximizes their utility,
the rate can be determined by the network so that the total utility of the system is maximized, and
the rate assignment satisfies the weighted proportional fairness criterion. It also proved that two
classes of globally stable algorithms can achieve such rate allocation: 1) The primal algorithm im-
plicitly signals the congestion price, and the senders use additive increase/multiplicative decrease
rules to control rate. 2) The dual algorithm uses explicit rate feedback based on shadow pricing.

The primal algorithms use end-point based congestion control [11, 8, 18]. MulTCP [11], for
example, adjusts the aggressiveness of TCP proportional to the host’s willingness to pay. Gibbens
and Kelly [18] show how marking packets (with an ECN bit) and charging the user the amount
proportional to the number of marked packets achieves the same goal, and allows evolution of end-
point based congestion control algorithms. The dual algorithm uses rate as an explicit feedback,
and was materialized by Kelly et al. [25] by extending RCP [13].
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FCP also adopts proportional fairness, but is different from these approaches in that 1) it uses
congestion pricing as a pure abstraction, decoupling from real-world pricing and billing, and 2) it
is an explicit congestion control algorithm that is designed for supporting evolution using price as
an explicit feedback. FCP also addresses practical issues of implementation and deployment that
others do not address [23, 25], such as differential pricing and accommodating large fluctuations
in workload.

Congestion control with various features: We categorize works that introduce new features
into congestion control in §3.1. Our work enables such diverse features to coexist by using pricing
as the core abstraction in the common congestion control framework and by allowing aggregation
and local control, generalizing the idea first explored in CM [3].

Extensible transport: Others focus on designing an extensible [32, 7] or configurable [6] trans-
port protocol. These works either focus on security aspects of installing mobile code at the end-
host or take software engineering approaches to modularize transport functionality at compile time.
However, the core mechanism for coexistence is TCP-friendliness.

Virtualization: Finally, virtualization [1, 35] partitions a physical network allowing completely
different congestion control algorithms to operate within each virtualized network. Although this is
good for creating a testbed for new networking technologies and protocols that run in isolation [35],
it is not meant to support coexistence of diverse protocols in reality and has a number of practical
limitations. Slicing bandwidth creates fragments and reduces the degree of statistical multiplexing,
which we rely on to provision resources. Also, this increases the complexity of applications and
end-hosts who want to use multiple protocols simultaneously as they have to participate in multiple
slices and maintain multiple networking stacks.

3 Motivation
In this section, we first identify two key requirements for evolution and closely look at each of
them (§3.1). We then describe the two key principles that the FCP design uses to satisfy these
requirements (§3.2).

3.1 Requirements for evolution
To support evolution, the system must accommodate diversity such that different algorithms and
policies coexist and be flexible enough that new algorithms can be implemented to accommodate
(future) changes in communication patterns.

Accommodating diversity: To understand the nature of diversity, we categorize previous work
on network resource allocation into four categories:
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1. Allocating resources locally: Prior works, such as congestion manager [3], SCTP [30], and
SST [16], have shown benefits of flexible bandwidth sharing across (sub) flows that share a
common path.

2. Allocating resource within a network: Support for differential or weighted bandwidth allocation
across different flows has been explored previously. Generalized AIMD [42, 4], weighted fair-
sharing [11, 12], and support for background flows [39] are some examples.

3. Allocating resource in a network-wide fashion: Bandwidth is sometimes allocated on aggregate
flows or sub-flows: Multipath TCP (MPTCP) [41] controls the total amount of bandwidth allo-
cated to its sub-flows; distributed rate limiting [33] and assured forwarding in DiffServ control
resource allocation to a group of flows. In such systems, flows that do not traverse the same path
are allocated a resource that is shared among themselves (e.g., MPTCP is fair to regular TCP at
shared bottlenecks). In such designs, one can be more aggressive in some parts of the network
at the expense of being less aggressive in other parts [33].

4. Stability in resource allocation: Although strict bandwidth or latency guarantees require in-
network support, many transport designs aim to provide some level of performance guaran-
tees [14, 38]. For example, TFRC is designed such that the throughput variation over consecu-
tive RTTs is bounded and OverQoS [38] provides similar but probabilistic guarantees.

Flexibility is the key to accommodating as yet unforeseen communication styles of the future.
To achieve this, more control should be exposed to the end-host as well as to the network. Fur-
thermore, a scalable mechanism is needed to exert control over aggregate flows—a scheme that
requires per-flow state in the network for control would not work.

Note that apart from these requirements for evolution, there are also common, traditional goals
such as high efficiency, fast convergence, and fair bandwidth allocation. Many works [19, 22, 13,
37, 15], such as TCP-cubic, XCP, and core-stateless fair-queuing, fall into this category. Our goal
is to design a flexible congestion control framework that accommodates above-mentioned diversity
and flexibility, while still achieving these traditional goals.

3.2 Principles of design
FCP employs two key principles for accommodating diversity and flexible resource allocation:
aggregation and local control.

Aggregation: FCP assigns resources to a group of flows. Aggregation allows the network to
control the amount of resources that the group is consuming in a distributed and scalable fashion
while preserving the relative weight of the individual flows within the group. For example, we
assign resources (a budget) to a host so that the host can generate traffic proportional to the amount
of budget it has. Aggregation also simplifies control and enforcement; the network can enforce
that a host is generating traffic within its allocated resources without having to keep per-flow state.
For additional flexibility, we allow aggregation at various levels. As networks aggregate flows that
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come from a host, ISPs can also aggregate traffic coming from another ISP and assign resources.
For example, each domain can independently assign weights to the neighboring domains traffic or
to any group of flows. As we show in §4, such aggregation provides a mechanism for the network to
ensure fairness while allowing flexibility at the end-host, one of the key ingredients for evolution.

Local control: Local control gives freedom to distribute the resource to individual flows, once
resources are allocated on aggregate flows. For example, when the network assigns resources to
the aggregate flows from a single host, the host can control how to distribute the resource locally
amongst its flows (diversity category 1 in §3.1). The network then respects the resource (or weight)
given to the flow and assigns bandwidth proportional to its weight (category 2 support). A host
can also spend more resources on some flows while spending less on others (diversity category
3 support). Various points in the network may also control how their own resources are shared
between groups of flows. For example, networks can allocate bandwidth in a more stable manner
to certain group of flows (category 4 support).

As such, both the end-host and the network have local control, ensuring flexibility; the network
decides how its own resource is used within its domain, and end-hosts decide how to use their own
resources given the network constraint.

Feedback design: Designing the form of network to end-point feedback that meets both require-
ments is challenging. Providing an absolute feedback as in XCP or RCP leaves no local control
at the end-point because the feedback strictly defines the end-point’s behavior. Using an abstract
or implicit feedback, such as loss rate or latency, or loosely defining the semantics of feedback,
on the other hand, increases end-point control, allowing a range of end-host behaviors. However,
using such feedback typically involves guesswork. As a result, end-hosts end up probing for band-
width, which in turn sacrifices performance and increases the convergence time (e.g., in a large
bandwidth-delay product link). Providing differential feedback for differential bandwidth alloca-
tion is also hard in this context. As a result, differential bandwidth allocation typically is done
through carefully controlling how aggressively end-points respond to feedback relative to each
other [42]. This, in turn, makes enforcement and resource allocation on aggregate flows very hard.
For example, for enforcement, the network has to independently measure the implicit feedback
that an end-point is receiving and correlate it with the end-point’s sending rate.

We take a different approach by leveraging ideas from Kelly [23, 18]. We use pricing as a form
of explicit feedback and design an evolvable explicit congestion control algorithm by supporting
flexible aggregation and local control. Contrary to the common belief, we demonstrate explicit
congestion control can be made flexible to allow evolution.

4 Design
We now describe our design in steps.
(1) Each sender (host) is assigned a budget ($/sec), the maximum amount it can spend per unit
time. We first focus on how FCP works when the budget is assigned by a centralized entity. Our
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Flow 1 

Budget W 
($/sec) 

Flow i’s price: Pi ($/bit) 

Sender ReceiverNetwork 

... 

Flow 2 

Flow n 
Flow i’s budget: 

wi subject to W= Σwi 

Flow i’s rate: 
Ri = budget/price = wi /Pi

Figure 1: Design Overview

Budget ($/sec)

Sender Receiver
Network 

PRICE DATA

PRICE ACK

(Echoes back price info)

(Determines price)

(Pays price to send)

Figure 2: Network generates the price feed-
back.

budget defines the weight of a sender, but is different from the notion of “willingness to pay” in
[23] in that it is not a real monetary value. Later, in §4.3, we extend FCP to support distributed
budget management in which each domain can assign budgets completely independently and may
not trust each other. The central challenge there is how to value a budget assigned by a different
domain. We show that FCP allows flexible aggregate congestion control by dynamically translating
the value of a budget assigned by different entities.
(2) At the start of a flow, a sender allocates part of its budget to the flow. This budget now deter-
mines the weight of the flow. End-point evolution is enabled at this stage because the sender can
implement various strategies of resource allocation to achieve different goals (see §4.2).

Figure 1 illustrates this. The sender has a budget of W , and can distribute its budget to its
flows at its will provided that the sum of the flows’ budgets,

∑
wi, is less than or equal to W . The

rate of flow i, Ri, is then defined as wi/Pi where Pi is the price for the path flow i is traversing.
This allows the end-host to control its own resource and achieve differential bandwidth allocation
on a flow-by-flow basis, as we show in §4.2. FCP also allows this budget assignment to change
at any time in the lifetime of a flow, providing additional flexibility. As such, we reintroduce the
end-point’s flexibility of end-point based designs to an explicit congestion control algorithm. Next,
we show how the path price is generated.
(3) The network determines the congestion price ($/bit) of each link. In FCP, the sender learns the
path price in the form of explicit feedback. The price of path r, Pr, is defined as the sum of link
prices: Pr =

∑
l∈r

pl, where pl is the price of link l in path r. To ensure efficiency, the price adapts to

the amount of budget (traffic times its price) flowing through the system and its capacity. In §4.1,
we first show a uniform pricing scheme in which all packets see the same price. In §4.2, we show
how networks can employ differential pricing and aggregate congestion control to support various
features such as quality of service, aggregate resource allocation, and multicast-aware congestion
control.
(4) The flow now ramps up to its fair-share, Ri, by spending its budget wi. Two problems remain
at this stage: At the start of the flow the sender does not know the path price, Pi. More importantly,
the network does not know the budget amount (wi) it should expect for accurate price generation.
This leads to serious problems when the workload changes rapidly. For example, when a path is
not congested, its congestion price will be an infinitesimal value, ε. Any wi >> ε will set the
sending rate to an infinite value, and overload the network significantly. To address this problem,
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we introduce preloading, a distinct feature of our design that allows a host to rapidly increase or
decrease a flow’s budget. Preloading allows the sender to specify the amount of budget increase for
the next round in multiples of the current price, allowing the network to adjust the expected input
budget and generate prices based on this committed budget. The challenge here is to accurately
calculate price using this information and for hosts and routers to update the budget wi and the
price Pi in a coordinated fashion so that wi is only spent when the network is expecting it. This
is especially challenging when the system is asynchronous and feedback is delayed. For this, in
FCP, routers update the price on every packet reception, and hosts preload on a packet-by-packet
basis when the budget changes (e.g., initial ramp up). In §4.1, we show how our pricing works
with preloading and how the sender updates its budget, wi.

The sender now ramps up in two steps using preloading:
(4-1) Along with the first packet, we preload how much we want to send in the next RTT. However,
at this point we do not yet know the path price. Therefore, we preload a conservative amount. (See
§4.1 for details.)
(4-2) After the price is discovered, the sender can preload the appropriate amount to spend the
budget assigned to the flow. Preloading is also used when an active flow’s budget assignment
changes.

4.1 Flexible Control Framework
We now describe the details. In FCP, the system maintains the following invariant: For all hosts h,∑

s∈Packets

price(s) · size(s) ≤ Wh (1)

where Packets is the set of packets sent by host h during unit time, price(s) is the most recent price
of the path that packet s is sent through, and Wh is host h’s budget.

Explicit price feedback: To satisfy the invariant, senders have to know the path price. As Fig-
ure 2 illustrates, an FCP header contains a price value, which gets accumulated in the forward
path and echoed back to the sender. Each router on the path updates the price in the header as:
price = price+ pl, where pl is the egress link price.

Pricing ensures network efficiency by dynamically adapting the price to the amount of incoming
budget. We show how each router calculates the link price to achieve this. Each link’s price must
reflect the amount of incoming budget and the capacity of the link. Each router calculates the link
price per bit p(t) ($/bit) at time t as:

p(t) =
I(t)

C − αq(t)/d
(2)

I(t) =

∑
s∈(t−d,t]

p(t− rtt(s)) · size(s)

d
(3)
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Equation 2 sets the price as the incoming budget (amount of traffic times its price) over remain-
ing link capacity. I(t), the numerator, denotes the total incoming budget per unit time ($/sec),
which is the sum of all packets’ prices ($) seen during the averaging window interval (t-d,t]. The
denominator reflects the remaining link capacity, where C is the link-capacity, q(t) is the instanta-
neous queue size, α is a constant, and d is the averaging window. rtt(s) is the RTT of the packet
s, and p(t − rtt(s)) is the past feedback price per bit. Unlike other explicit congestion control
protocols [22, 13], the router calculates the link price at every packet reception, and keeps the time
series p(·). We set d as multiples of average RTT (twice the RTT in our implementation).

Equation 2 deals with efficiency control by quickly adapting the price based on the incoming
budget and the remaining link capacity. Fairness is achieved because everyone sees the same price,
and therefore the bandwidth allocation is proportional to budget. In §6.1, we show simulations
in various environments to demonstrate the stability of this algorithm, and perform local stability
tests by introducing perturbations.

Equation 3 estimates the amount of incoming budget that a router is going to see in the future
using recent history. When incoming budget, I(t), is relatively constant over time the price is
stable. However, when the input budget constantly changes by a large amount, the price will also
fluctuate because the fair-share rate also fluctuates. This, coupled with the inherent delayed feed-
back, can leave the system in an undesirable state for an extended period. During convergence, the
network may see high loss rate, under-utilization, or unfairness. Other state-of-the-art congestion
control frameworks also have this problem. For example, when new flows arrive RCP results in
periods of high loss, and XCP results in slow convergence to fair-share, as we show in §6.1.

This problem has been regarded as being acceptable in other systems because changes are
viewed as either temporary or incremental. Theory of economics-based congestion control [23]
shows that even for a theoretical proof of global stability the analysis requires such an assumption
when users can dynamically adapt their willingness to pay. However, this is not the case in our
system. One of the key enablers of evolution in FCP is the end-host’s ability to arbitrarily assign
its budget to individual flows, and we expect that rapid change in the input budget will be the
norm. Increasing budget rapidly also allows senders to quickly ramp up their sending rates to their
fair-share. However, this is especially problematic when the amount of budget can vary by large
amounts between flows. For example, consider a scenario where a link has an incoming budget
of 1$/sec. When, a new flow with a budget of 1000 $/sec arrives, this link now sees 1001x the
current load. Preventing this behavior and forcing users to incrementally introduce budget will
make convergence (to fairness) significantly slower and limit the flexibility of the end-hosts.

Preloading: To address this problem, we introduce preloading, a distinct feature of our design
that allows a host to rapidly increase or decrease the budget amount per flow. Preloading allows
the sender to specify the amount of budget willing to introduce in the next round, allowing the
network to adjust the expected input budget and generate prices based on this committed budget.

However, the sender cannot just specify the absolute budget amount that it wants to spend
on the path because the path price is a sum of link prices. Given only the total amount, each
individual link cannot estimate how much budget is spent traversing it. Instead, we let senders
preload in multiples of the current price. For example, if the sender wants to introduce 10 times
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more budget in the next round, it specifies the preload value of 10. For routers to take this preload
into account, we update Equation 3 as follows:

I(t) =

∑
s∈(t−d,t]

p(·) size(s) (1 + preload(s) · d/rtt(s))

d
(4)

The additional preload term takes account the expected increase in the incoming budget, and
rtt(s) accounts for the difference between the flow’s RTT and the averaging window. Preloading
provides a hint for routers to accurately account for rapid changes in the input budget. Preloading
significantly speeds up convergence and reduces estimation errors as shown in §6.

Header: We now describe the full header format. An FCP data packet contains the following
congestion header:

RTT price preload balance

When the sender initializes the header, RTT field is set to the current RTT of the flow, price is
set to 0, and preload to the desired value (refer to sender behavior below). The balance field is
set as the last feedback price—i.e., the price that the sender is paying to send the packet. This
is used for congestion control enforcement (§5). Price and preload value are echoed back by an
acknowledgement.

Sender behavior with preloading: Senders can adjust the allocation of budget to its flows at
any time. Let xi be the new target budget of flow i, and wi the current budget whose unit is $/sec.
When sending a packet, it preloads by (xi − wi)/wi, the relative difference in budget. When
an ACK for data packet s is received, both the current budget and the sending rate are updated
according to the feedback. When preload value is non-zero, the current budget is updated as:

wi = wi + paid · size(s) · preload/rtt

where paid is the price of packet p in the previous RTT. The sending rate ri is updated as: ri =
wi/pi, where pi is the price feedback in the ACK packet. Note that preloading occurs on a packet
by packet basis and the sender only updates the budget after it receives the new price that accounts
for its new budget commitment. Also note that the preload can be negative. For example, a flow
preloads -1 when it is terminating. Negative preloading allows the network to quickly respond to
decreasing budget influx, and is useful when there are many flows that arrive and leave. Without
negative preload, it takes the average window, d, amount of time to completely decay the budget
of the flow that has departed.

Start-up behavior: We now describe how FCP works from the start of a flow. We assume a
TCP-like 3-way handshake. Along with a SYN packet, we preload how much we want to send
in the next RTT. However, because we do not yet know the path price, we do not aggressively
preload. In our implementation of FCP, we adjust the preload so that we can send 10 packets
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per RTT after receiving a SYN/ACK. The SYN/ACK contains the price. Upon receiving it, we
initialize the budget assigned to this flow wi as: price · size · preload/rtt. After this, the sender
adjusts its flows’ budget assignments as described earlier.

4.2 Evolution
FCP’s common framework enables evolution by providing greater flexibility with local control and
aggregation. We show a number of examples that demonstrate end-point and network evolution.
Coexistence is guaranteed as long as end-hosts stick to the invariant of Equation 1, which defines
the host-level fairness. Therefore, it is much easier to design various resource allocation schemes.

End-point evolution: End-hosts can assign budget to individual flows at will. This enables intel-
ligent and flexible policies and algorithms to be implemented. Below we outline several strategies
that end-hosts can employ.

• Equal budget: Flow-level fairness between flows within a single host can also be achieved by
equally partitioning the budget between flows. For example, when there are n flows, each flow
gets budget/n. Then the throughput of each flow will be purely determined by the path’s con-
gestion level.

• Equal throughput: End-points may want to send equal rates to all parties with which it is commu-
nicating (e.g., a conference call). This is achieved by carefully assigning budget (i.e., assigning
more budget to expensive flows).

• Max throughput: The goal is to maximize throughput. To maximize throughput, end-points use
relatively more budget towards inexpensive paths (less congested) and use little budget for more
congested paths. This generalizes the approach used in multipath TCP [41] even to subflows
sent to different destinations as we show in §6.

• Background flows, similar to those in TCP Nice [39], are also supported by FCP. A background
flow is a flow that only utilizes “spare capacity”. When foreground flows are able to take up all
the capacity, background flows should yield and transmit at a minimal rate. This can be achieved
by assigning a minimal budget to background flows. When links are not fully utilized, the price
goes down to “zero” and path price becomes marginal. Therefore, with only a marginal budget,
background flows can fill up the capacity.

• Statistical bandwidth stability: Some flows require a relatively stable throughput [14]. This can
be achieved by reallocating budget between flows; if a bandwidth stability flow’s price increases
(decreases), we increase (decrease) its budget. When the budget needs to increase, the flow steals
budget from other flows. This is slightly different from smooth bandwidth allocation given by
TFRC in that temporary variation is allowed, but the average throughput over a few RTTs is
probabilistically stable. The probability depends on how much budget can be stolen and the
degree of path price variation. Such a statistical guarantee is similar to that of OverQoS [38].
Later, we show how we can achieve guaranteed bandwidth stability with network support.
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Note that these algorithms are not mutually exclusive; they can coexisit as long as the invariant
(Eq.1) is satisfied. Different hosts can use different strategies. Even within a host, different groups
of flows can use different strategies.

Network and end-point evolution: End-points and networks can also simultaneously evolve to
achieve a common goal. FCP’s local control and aggregation allow routers to give differential
pricing to different groups of flows. We show how this may support various features in congestion
control. In our examples, algorithms change from the original design including the path price
generation, link price calculation, and preloading behavior. However, the invariant of Equation 1
remains unchanged.

• Bandwidth stability: We implement a version of slowly changing rate with end-point coopera-
tion and differential pricing: 1) For stability flows, end-points limit the maximum preload to 1
which limits the speed at which flow budget and rates can ramp up. 2) Routers have two virtual
queues: stability and normal1. The stability queue’s price variation during a time window of
twice the average RTT is bounded by a factor of two. When the price has to go up more than
that amount, it steals bandwidth from the normal queue to bound the price increase of the stabil-
ity queue. As a result, the normal queue’s price increase even more, but the bandwidth stability
queue’s price is bounded. When the price might go down by a factor of two during a window, it
assigns less bandwidth to the stability queue. However, because we allow the stability queue’s
price to change, at steady state the prices of both queues converge to the same value. Below
shows the algorithm in pseudocode.

function UPDATEPRICE(Packet p)
// update average RTT
// update total input budget, deadline queue’s and best effort queue’s input budget.

// Calculate price according to Eq.2 using the total input budget
price = calculatePrice(totalInputBudget, linkCapacity)
if isOutofRange(price) then

stabilityPrice = priceLimit(price) // Price increase/decrease is bounded
// calculate BW needed to bound the price
requiredBW = stabilityInputBudget/stabilityPrice/avgRTT/d

else
// calculate normal queue’s price
normalPrice = calculatePrice(nomalInputBudget, linkCapacity - requiredBW)

end if
end function

function ISOUTOFRANGE(price)
return true if the price is too high or too low.
otherwise return false

1We assume that routers can easily classify packets into these queues
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end function

• Multicast-aware congestion control: FCP allows the network to evolve to support a different
service model. For example, FCP can support multicast-aware congestion control by changing
how the path price is generated from link prices. We sum up the link price in a multicast tree,
by aggregating the price information at the router. The price of a multicast packet is the sum of
the price of links that it traverses. To calculate the price, we sum up the price of a packet in a
recursive manner in a multicast tree. When a router receives a multicast packet, it remembers
its upstream link price, resets the price feedback to zero, and sends out a copy of the packet to
each of its outgoing interfaces along the multicast tree (See pseudocode for ReceiveMulticast
below). This allows us to account for the link price only once. Receivers echo back the price
information. Upon receiving an ACK, each router computes the price of its subtree and sends
a new ACK containing the new price. The price of the subtree is computed by summing up the
price of the link from its parent to itself that it remembered previously and all the price feedback
from its children in the multicast tree (See pseudocode for ReceiveACK below). Through a
recursive process, the sender at the root receives the total price of sending a packet down the
multicast tree.

function RECEIVEMULTICAST(Packet p, SourceAddress sa, MulticastAddress ma)
upstremPrice[(sa, ma)] = p.price // remember upstream link price
p.price = 0 // reset price
for all c in children[(sa,ma)] do

send(p)
end for

end function

function RECEIVEACK(Packet p, SourceAddress sa, MulticastAddress ma)
price = 0
price += upstremPrice[(sa, ma)]
subTreePrice[previousHop(p)] = p.price
for all c in children[(sa,ma)] do

price += subTreePrice[c]
end for
p.price = price // SubTree’s price
sendDelayed(p) // Limit the number of ACKs to prevent ACK implosion

end function

• FCP can also support Paris Metro Pricing (PMP) sytle [31] differential pricing. The network
can assign higher price to a priority service in multiples of the standard price. For example, the
priority queue’s price can be 10 times the standard queue. The end-host will only use the priority
queue when it is worth it and necessary making the priority queue see much less traffic that the
standard one.

• D3[40]-style deadline support can be implemented using differential pricing with two virtual
queues: deadline queue and best effort queue. Assume the best effort queue is assigned a small

12



10$/sec

100¥/sec
Linkprice:1€/bit

Weight2

Weight1

Pricefeedback(¥): 1€/bit xexchange¥/€

Pricefeedback($): 1€/bit xexchange$/€

€$

₩ £

$$ $€1) 2) Ex
$

4) feedback
$

3) $¥ Ex
¥

Figure 3: Budget management: (a) Aggregate congestion control using dynamic value trans-
lation. (b) Value translation between domains.

fraction of bandwidth at least. The deadline queue always gives a small agreed-upon fixed price.
Flows indicate their desired rate by preloading. The router gives the fixed price only when the
desired rate can be satisfied. Otherwise, it puts the packet into the best-effort queue and gives
a normal price to control the aggregate rate to the bandwidth allocated to the normal queue.
The host first tries deadline support, but falls back to best effort service when it receives a price
different from the fixed value after the preloading. Below is the algorithm in pseudocode.

function UPDATEPRICE(Packet p)
(omitted)... // update average RTT

if p in Deadline flow then
updateDeadlineInputBudget(p)

else
updateBestEffortInputBudget(p)

end if

requiredBW = stabilityInputBudget/fixedDeadlinePrice/avgRTT/d
if requiredBW > linkCapacity then

subtractDeadlineInputBudget(p) // Demote the flow to best-effort flow
updateBestEffortInputBudget(p)

end if

// calculate best-effort queue’s price
bestEffortPrice = calculatePrice(bestEffortInputBudget, linkCapacity - requiredBW)

end function

4.3 Budget Management
Budget management is another form of flexibility that FCP provides. This allows networks to
dynamically translate the value of a budget belonging to different flow groups or assigned by
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different domains. The former allows aggregate congestion control between groups of flows, and
the latter enables distributed budget assignment between mutually untrusted domains.

Aggregate congestion control: FCP allows the network to perform aggregate congestion control
over an arbitrary set of flows so that each group in aggregate attains bandwidth proportional to some
predefined weight. This, for example, can be used to dynamically allocate bandwidth between
multiple tenants in a data-center [36].

To achieve this, FCP views each group as having its own currency unit whose value is propor-
tional to the weight of the group, and inversely proportional to the aggregate input budget of the
group. When giving feedback, a router translates its price into the group’s current currency value
(Figure 3 (a)). For example, if flow group A has a weight of 2 and B has a weight of 1, and their
current input budgets are, respectively, 10 $/sec and 100 U/sec, A’s currency has more value. To
estimate the input budget for each group of flows, we use the balance field. Each router keeps a
separate input budget for each group. It also keeps the aggregate input budget using its own link’s
price history and updates the price as in the original scheme using Equation 2. Thus, we calculate
the normalized exchange rate EG for flow group G as:

EG(t) =
wG∑

H∈GroupwH

/
IG(t)∑

H∈Group IH(t)

And adjust the price feedback for packet s as:

price(s) = price(s) + p(t) · EG(t)

where p(·) is defined in Equation 2.
The implementation can be efficient, requiring O(1) computation for every packet arrival. This

can be achieved using a timer, where a timer decays the input budget and updates the exchange rate
for the queue when a packet expires out of the averaging time window. At every packet reception,
we also update the input budget and exchange rate of the queue that the incoming packet belongs
to.

Inter-domain budget management: In an Internet scale deployment, budget assignment must
be made in a distributed fashion. One solution is to let each ISP or domain assign budget to its
customers without any coordination, and rely on dynamic translation of the value. Here, we outline
this approach, and leave the exact mechanism and demonstration as future work. When a packet
enters another domain, the value the packet is holding (balance field in the header) can be translated
to the ingress network’s price unit (Figure 3 (b)). One can use a relatively fixed exchange rate that
changes slowly or a dynamic exchange rate similar to the previous design. This allows the provider
(peering) network to assign bandwidth to its customers (peers) proportional to their weight. Only
one thing needs to be changed in the feedback. For the price feedback to be represented in the unit
of the sender’s price, the data packet also carries an exchange rate field, Ex. This mechanism also
protects the provider’s network from malicious customer networks who intentionally assign a large
budget in an attempt to get more share because their budget’s actual value will be discounted.
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5 Practical Issues
§4 addressed the first order design issues. We now address remaining issues in implementation and
deployment.

Real number to floating point: The first thing that has to be addressed in implementing Equa-
tion 2 is that price cannot be arbitrarily small as it must be represented as a floating point. However,
in our relative pricing, the price can be an infinitesimal value. To address this problem, we define
a globally agreed upon minimum price. We treat this value as zero when summing up the price of
each link, i.e., for any price P , P = P +MININUM . Now, an uncongested path has the mini-
mum price. When a new flow joins, the sender preloads to its target budget. If the target budget is
larger than the bottleneck capacity over MINIMUM, the flow can saturate the link. For a host with
a unit budget to be able to saturate any link, this minimum price has to be sufficiently lower than
unit budget over any link’s capacity. We use the minimum price of 10−18$/byte or $1/Exabyte in
our implementation.

Computational complexity: To calculate price, routers need to keep a moving window of input
budget and update the average RTT. When packets arrive at the router, the router updates these
statistics and assigns a timer for the packet so that its value can expire when it goes out of the
window. It requires roughly 20 floating point operations for each packet.2 We believe high-speed
implementation is possible even with software implementations on modern hardware.3

Security and Enforcement: FCP easily lends itself to enforcement of fair-share with only per-
user state at the edge router. The network has to enforce two things: 1) the sender is paying the right
amount, and 2) the sender is operating within its budget. To enforce 1), we use Re-feedback’s [8]
enforcement mechanism. The sender set the balance field to the amount it is paying, and every
router along the path subtracts its link’s price for this packet, p(t − rtt). If the amount reaches a
negative value, this means that the sender did not pay enough. The egress edge router maintains
an average of the balance value. If the value is consistently below zero, the egress router computes
the average balance for each sender and identifies who is consistently paying less, and drops its
packet. This information is then propagated upstream to drop packets near the source. Details
on statistical methods for efficient detection are described in [8]. To enforce 2), the ingress edge
router enforces a modified version of invariant that accounts for preloading:

for each∑
packet in (t-1,t]

paid(packet) · size · preload ≤ budget

This requires a classifier and per-user state at the ingress edge, and ensures that a host does not
increase its budget arbitrarily. Ingress edge routers can drop packets once a host uses more budget
than it is assigned.

2It requires 6 operations to update intermediate values when packets arrive and 2 operations when packets leave
the window. An additional 7 operations are required to update the final price, average RTT, and calculate the feedback.

3As a rough estimate, Intel Core i7 series have advertised performance of ∼100 GFLOPS. At 100 Gbps, this gives
a budget of ∼500 FLOPS/packet.
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Figure 4: Convergence dynamics of a) FCP, b) XCP, and c) RCP: FCP achieves fast con-
vergence and accurate rate control. When new flows arrive, XCP’s convergence is slow, and
RCP’s rate overshoot is significant.

Implementation details: In our experiments in §6, we set the average window size, d in Equa-
tion 2, to twice the average RTT. The queue parameter α is set to 2, but to prevent the remaining
link capacity (denominator of Equation 2) from becoming negative,4 we bound its minimum value
to 1/2 the capacity. Under this setting, we verified the steady-state local stability of the algorithm
using simulations in §6.1.

Finally, we also make our implementation robust to RTT measurement errors. Equation 4 uses
p(t−rtt(s)), however, when price variation is large around time t−rtt(s), small measurement error
can have adverse effect on a router’s estimate of the feedback price. Or even worse, routers may
not store the full price history. We take the minimum of p(·) and balance field in the congestion
header. This bounds the error between the paid price of the sender and the router’s estimation of
it, even when routers do not fully remember its past pricing.

6 Evaluation
We answer three questions in this section:

1. How does FCP perform compared to other schemes and what are the unique properties of
FCP?

2. Does the flexibility allow evolution in the end-point?

3. Does the flexibility allow evolution in the network?

6.1 Performance
We implement FCP’s algorithm described in §4 using ns-2. Using simulations, we study the per-
formance of FCP. First, we compare the performance of FCP with other schemes (TCP, RCP, and
XCP). We, then, look at unique characteristics of FCP, including fairness, preloading effective-
ness, and its stability. Finally, we look at FCP’s performance under a wide range of scenarios. The

4This can happen when the queue capacity is relatively large compared to the current bandwidth delay product.
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Protocol AFCT Loss rate Avg. queuing delay Avg. utilization

XCP 0.52 sec 0% 0.13 ms 64%
TCP 0.60 sec 1.6% 12 ms 68%
RCP 0.21 sec 0% 3.2 ms 66%
FCP 0.33 sec 0% 0.027 ms 65%

Figure 5: Short flows: Comparison of various
statistics. AFCT stands for average flow com-
pletion time.
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Figure 6: Short flows: Average flow comple-
tion time versus flow size. Mean flow size is 30
KB.

results show that FCP provides fast convergence while providing more accurate feedback during
convergence and is as efficient as other explicit congestion control algorithms in many cases.

6.1.1 Performance comparison

First, we compare the performance of FCP with other schemes (TCP, RCP, and XCP) in various
environments.

Long Running Flows: We first compare the convergence dynamics of long-running flows. We
generate flows with different round-trip propagational delays ranging from 25 ms to 625 ms. Each
flow starts one second after another traversing the same 100 Mbps bottleneck in a dumbbell topol-
ogy. Each flow belongs to a different sender, and all senders were assigned a budget of 1 $/sec.
For RCP and XCP, we used the default parameter setting. Figure 4 shows the sending rate of each
flow, queue size, and utilization for a) FCP, b) XCP, and c) RCP over time.5 FCP’s convergence
is faster than RCP’s and XCP’s. XCP flows do not converge to the fair-share even at t=10 sec.
In RCP, all flows get the same rate as soon as they start because the router gives the same rate to
all flows. However, large fluctuation occurs during convergence because the total rate overshoots
the capacity and packets accumulate in the queue when new flows start. Average bottleneck link
utilization was 99% (FCP), 93% (XCP), and 97% (RCP).

Short flows: To see how FCP works with short flows, we generate a large number of short flows.
We generate a Pareto distributed flows size with mean of 30 KB and shape of 1.2, flows arriving
as a Poisson process with a mean arrival rate 438 flows/sec (offered load of 0.7). The bottleneck
bandwidth and round trip delay is set to 150Mbps and 100 ms.

All FCP senders have the same budget of 1 $/sec. However, because the flow is short, using
the entire budget is unnecessary. Thus, we only preload to achieve at most flowsize

RTT
Bytes/sec.

Table 5 and Figure 6 show the statistics and average flow completion time by flow size. For
flow size less than 500KB, FCP performs better than TCP and XCP. However, RCP is faster

5Sending rate is averaged over a 100 ms. For XCP (t ≥ 3), we use a 500 ms averaging window.
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Figure 7: FCP’s fair-share is determined by the budget.

because it jump-starts with the current rate after the SYN-ACK exchange, whereas FCP has to
conservatively preload in the first round. (We assume every flow is going to a different destination.)
For larger flows, FCP performance is in between that of XCP and TCP, but RCP still performs
better. However, we saw that RCP makes an undesirable trade-off to achieve this. We further study
RCP’s limitation in §6.1.2.

The large variance for FCP and RCP is due to the fair-share rate changing as the load changes.
On the other hand, XCP and TCP’s rate is largely a function of how long the flow has been active
because they slowly reach the fair-share rate. Finally, FCP shows the same zero loss rate as other
explicit congestion control schemes, but has a much lower queueing delay. This is because FCP
uses preloading to accounts for variations in the workload.

6.1.2 Fairness, stability, and preloading

To better understand FCP, we look at behaviors specific to FCP. In particular, we look at the
fairness, stability, and the preloading behavior of FCP. We show that 1) the fair-share in FCP is
determined by the budget, 2) FCP is locally stable under random perturbations, and 3) preloading
allows fast convergence and accurate feedback.

Fairness: Fairness in FCP is very different from traditional flow-level fairness. In FCP, two
hosts that have the same budget achieve the same throughput if their traffic goes through the same
bottleneck. To show this, we create two hosts A and B of equal budget. Host A generates 50 flows,
but B sends only one, which go through a common bottleneck link. Host A’s flow size is 1 MB
each and they arrive randomly between [1,3]. Host B sends a long-running flow starting at t=1.
Figure 7 shows the topology (left), the sending rate of each host, and the number of active flows
(right). Host A’s traffic, when present, gets 50% share regardless of the number of flows.

Local stability: A common method to prove the local stability is to show the stability of a lin-
earized equation of the congestion controller near its equilibrium point [22]. However, it is shown
that explicit congestion control algorithms whose equilibrium is at zero queue length is discon-
tinuous at equilibrium and that the above traditional method produces incorrect results [2]. As a
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Figure 9: Preloading allows fast convergence and accurate rate estimation.

result, several studies have used much more complicated methods, such as Lyapunov methods, and
verified the result with simulations [27, 2].

In this work, we demonstrate the stability using packet-level simulations. In particular, in this
experiment, we perform a local stability test by introducing perturbations. The system’s stability
depends on the stability of the price feedback equation. We, therefore, intentionally introduce er-
rors in the price calculation and observe whether the system is able to restore itself on its own. If
the system is stable, it will return to the equilibrium state shortly after the perturbation is intro-
duced. We use a single link with a round trip delay of 100 ms with 100 Mbps of capacity. A long
running flow starts at t=1.1 sec with a unit budget. At every second from t=2, we introduce random
perturbation of [-30%, 30%] in the router’s price calculation for a duration of 100 ms. For example,
during the interval, t=[2,2.1] sec, the feedback price off from the correct price by a random fraction
between 1 to 30%. Figure 8 shows the instantaneous and average rate of the flow. We observe after
the perturbation is introduced the system either overshoots or undershoots the capacity. However,
the system recovers the equilibrium shortly (i.e., the sending rate stabilizes at 100 Mbps).
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Figure 10: Performance with long-lived flows and short-lived flows.

Case new flows/sec utilization (%)

(a) 41.6 98.2
(b) 83.2 95.7
(c) 125 81.9

Figure 11: Performance statistics with long-lived flows and short-lived flows.

How effective is preloading? Preloading is one of the distinguishing features of FCP. So far,
we have seen the end-to-end performance of FCP with preloading. Here, we look at the benefit of
preloading in isolation.

We demonstrate the benefit of FCP by comparing it with RCP that does not have preloading.
We compare a FCP flow that continuously doubles its budget every 100 ms (one RTT) with RCP
flows that double in flow count for a duration of 1 second. In both cases, the load (input budget for
FCP and flow count for RCP) doubles every RTT.

Figure 9 shows the normalized incoming traffic at the bottleneck link while the load is ramping
up from 1 to 1000 during the first second. We see that preloading allows fast convergence and
accurate rate control; FCP’s normalized rate is close to 1 at all times. On the other hand, RCP
overestimates the sending rate by up to 5 times the capacity because RCP allocates bandwidth in
a very aggressive manner to mimic processor sharing. With preloading, however, end-hosts can
rapidly increase or decrease a flow’s budget without causing undesirable behaviors in the network.

6.1.3 In-depth study of FCP’s behavior

Finally, we look at detailed behaviors of FCP with mixed flow sizes, the convergence dynamics
with multiple links, and the impact of misbehaving users.

Mixed flow sizes: We now study how FCP performs with long-lived flows and short-lived flows.
All flows go through a common bottleneck of 100 Mbps. Long running flows start at t=0.5 sec and
introduce a unit budget to the bottleneck link. They run for the duration of the simulation. Short
flows arrive as a Poisson process and their size is Pareto distributed as earlier with a mean size of 30
KB. We vary the fraction of bandwidth that short flows occupy from 10% to 30%. Figure 10 shows
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Figure 12: FCP’s convergence dynamics with multiple links. Flow 0’s round trip delay is
100 ms. Each column presents a different scenario: 1) (a) and (b) shows the dynamics of the
sending rate and price of the two links when Flow 0 starts up first. 2) (c) and (d) shows the
dynamics when Flow 0 starts up after Flow 1 and Flow 2.

the link utilization and the throughput of the long-lived flows. Figures 10 (a), (b), (c) respectively
illustrate the case when the short flows account for 10%, 20%, and 30% of the bottleneck. Table 11
show the average number of new short flows per second and the average link utilization from t=0.5
sec to t=30 sec for each experiment. We observe that the link utilization becomes lower as the
number of new flows increase. This is because when flows terminate, even though they preload
a negative value, it takes some time for the price to reflect due to the averaging window. During
this period, it results in a slight underutilization. The utilization has a negative correlation with the
amount of input budget variance per unit time. In other words, the utilization is high when a small
fraction of input budget changes because of flow arrival and departure. For example, when the
average flow size of the short flows is made larger (300 KB) with the fraction of short flows being
30%, the utilization slightly goes up to 90% from 82%. Also, when the long running flows’ total
budget is high, the utilization also goes up. When the long running flow’s budget is set to 10$/sec,
the utilization goes up from 82% to 99% This shows that when the fraction of stable flows’ input
budget is relatively high, the system is highly efficient.

Convergence dynamic with multiple links: FCP adopts proportional fairness. FCP’s conver-
gence dynamics with multiple links best illustrates how link prices are determined with propor-
tional fairness. To demonstrate this, we use the topology of Figure 19 (b) with a larger link latency
of 12.5 ms to better observe the dynamics. First, we start a single flow (Flow 0) at t=1.1 sec with
a unit budget. Figure 12 (a) shows the instantaneous sending rate of the flow. Figure 12 (b) shows
the how the price of the two links and the price of Flow 0 (the sum of the two prices) change
over time. At the start of the flow, the price is at its minimum, 10−18$/byte (not visible in the
figure). Because the sum of two minimum prices is the minimum price, the path price is also min-
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Figure 13: A misbehaving flow negatively impacts the link utilization.

imum. Both links’ prices go up when Flow 0 preloads to use its entire budget. However, because
the path price was at minimum, each link thinks that the flow’s budget is entirely used toward its
own link, which results in a temporary over-estimation of the path price. However, soon the price
goes down because there is spare capacity. During this process, the system results in a temporary
under-estimation of path price because the two links adjust its price independently. However, the
path price and the sending rate stabilizes soon after. In particular, only the bottleneck link’s price
remain above the minimum price; the 100 Mbps link’s price eventually falls down to the minimum
price as its link is never fully utilized. On the other hand, the 50 Mbps bottleneck’s price stabilizes
above the minimum price level and dominates the path price. As a result, Flow 0’s sending rate
stabilizes at 50 Mbps. Our result shows that there is an interaction between links within a path in
adjusting the link’s price. However, it converges to the correct equilibrium point.

Above, we observed the cold startup behavior of a flow with multiple links. The behavior is
slightly different when both links’ prices do not start from the minimum price. Two show this we
introduce a flow (Flow 0 of Figure 19) after Flow 1 and Flow 2 of Figure 19 have started. Old flows
starts at t=0 sec and the new flow (Flow 0) starts at t=1.1 sec. All flows have a unit budget. Now,
Flow 0 traverses two bottleneck links (i.e., the price of both links are not minimum). Figure 12 (c)
and (d) respectively shows the sending rate of each flow and price of each link. We observe that
the convergence is faster and overestimation/underestimation is much smaller. This is because the
relative difference in the input budget after the introduction of a new flow is much smaller in this
scenario than the cold startup. We also observe that the throughput of Flow 0 is lower than that of
flow 1 even though they are sharing the 50 Mbps bottleneck link. This is because Flow 0’s price
is higher than Flow 1’s price; Flow 1 only pays for the 50 Mbps link bottleneck where as Flow 0
pays for both bottlenecks.

In summary, we saw that the system converges to proportional fairness relatively quickly even
though the link prices are calculated independently and the feedback only contains the total price.
We also observed that only the bottleneck link’s price stay above the minimum price level.

Misbehaving users: Misbehaving users may commit to use its own budget, but not live up to its
promise. For example, a user may preload to use a budget of 1 $/sec, but actually use nothing. This
results in an underutilization because when a user preloads the network update its price reflecting
the expected incoming budget. We illustrate this scenario here. We generate two flows, a normal
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flow and a misbehaving flow, on a common 100 Mbps bottleneck link. The round-trip delay is
set to 40 ms. Figure 13 (a) shows the sending rate for both flows at every 10 ms period. For
comparison, Figure 13 (b) shows the correct behavior when Flow 1 is a short-lived flow. In this
case, the utilization is close to 100%. This is because a well-behaving flow does not over-preload.
It also performs negative preloading at the end of the flow, as explained earlier.

Figure 13 (a) shows the misbehavior. A long-running flow (Flow 0) starts up at t=1 sec and
starts to saturate the bottleneck link. At time t=2 sec, a user who has a unit budget starts up a
misbehaving flow (Flow 1). It preloads its entire budget (1 $/sec) but does not send any traffic after
the preload. As a result, the path price goes up and Flow 0 nearly halves its sending rate. The period
underutilization ends after the duration of the averaging window because the routers lower the price
to achieve full utilization. However, in general, if the misbehaving users preload constantly without
actually using the budget in the next round, the network is going to be underutilized constantly. We
believe that this is not any worse than sending junk traffic. Even if a user preloads and does not live
up to its promise, it can never harm other traffic more than what would have been its fair-share had
it generated real traffic. However, the network can easily detect misbehaving users by comparing
the expected incoming budget calculated in the previous averaging window to the actual incoming
budget of the current averring window. If the former is consistently greater than the latter, the
network classify the sender as an attacker and take appropriate measures.

Another type of misbehavior is to perform negative preload, but not decreasing the budget
spent. This results in an overload. Similar to the underutilization problem, if a user constantly
performs negative preloading, the network will be overloaded constantly. Here, the solution is to
perform enforcement at the network similar to the method mentioned above. When the expected
incoming budget for a host is consistently less than the actual incoming budget, the network should
classify the host as an attacker and block its traffic.

6.2 End-point Evolution
In FCP, an end-point can freely distribute its budget to its own flows. This allows evolution in the
end-point’s resource allocation schemes. Here, we evaluate end-point based algorithms outlined in
Section 4.2. For easy comparison, we use the topology of Figure 14. Sender 0 (S0) has a flow to
receiver 0. S1 and S2 each has a flow to receiver 0 and receiver 1. S0 and S2 have a budget of 1
$/sec, and S1 has twice as much.

Equal-budget (baseline) splits the budget equally among flows within a host. For example,
S1 splits its budget in half; the top flow (to receiver 0), and the bottom flow (to receiver 1), each
gets 1 $/sec. Figure 15 shows the instantaneous sending rate of each sender with S1’s rate broken
down. It shows FCP achieves weighted bandwidth allocation. The top 250 Mbps bottleneck link’s
total input budget is 2.5 $/sec. Because S0 and S1’s top flow use 1 $/sec, their throughput is 100
Mbps.

Equal throughput: Now, S1 changes its budget assignment to equal-throughput where it tries
to achieve equal throughput on its flows, while others still use equal-budget assignment. For this,
we start with the equal-budget assignment, and reassign every 2 average RTTs, and increase the
budget of a flow whose rate is less than the average rate. Figure 16 shows the result. At steady-
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Figure 14: Topology
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Figure 15: Equal-budget flows
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Figure 16: Equal-throughput
flows
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Figure 17: Max-throughput
flows

state, S1’s two flows achieve equal throughput of 38.7 Mbps. A budget of 0.27 $/sec is assigned
to the top flow, and 1.73 $/sec to the bottom.

Max-throughput: S1 now uses max-throughput assignment, where it tries to maximize the
its total throughput. Others still use the base-line assignment. We implement this using gradient
ascent. S1’s flows start with equal budget, and at every 2 average RTT, it performs an experiment
to change the budget assignment. It chooses a flow in round robin and increases its budget by
10% while decreasing others uniformly to maintain the total budget assignment. After 2 average
RTTs, it compares the current throughput averaged over an RTT with the previous result, and
move towards the gradient direction. The algorithm terminates when the throughput difference is
less than 0.5%. The algorithm restarts when it observes a change in the price of a flow.

Figure 17 shows the result. S1’s total throughput converges at 150.6 Mbps, and the assigned
budget for the top flow (X) converges at 1.56 $/sec. Figure 18 a) shows the theoretical throughput
versus the budget assignment,X . The theoretical maximum throughput is 151.6 Mbps atX = 1.68
When more (less) budget is spent on X than this, the top (bottom) bottleneck link’s price goes up
(down), and the marginal utility becomes negative. Figure 18 b) shows such non-linear utility (rate
per unit budget) curve for the two flows.
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S1’s top flow.

Background flows: FCP can also support background flows. A background flow by definition is
a long-running flow that only occupies bandwidth if there’s no other flow competing for bandwidth.
This can be achieved with a flow having a very small assigned budget compared to other long
running flow. For this, each host uses 1/10000 of its budget towards background flows. Using the
topology in Figure 19, we ran a background flow with three other flows with a unit budget. Flow
0 starts at t=1 and immediately occupies the 50 Mbps bottleneck link (Figure 19). Flow 1 arrives
at t=2 and shares the bottleneck with Flow 0. At t=5, the background flow (Flow 2) starts and
occupies the remaining 75 Mbps of the 100 Mbps link. Note this did not influence Flow 0’s rate.
Flow 3 arrives at t=10 with unit budget and drives out the background flow. Note that now the 100
Mbps link also became a bottleneck, and Flow 0 is getting a smaller throughput than Flow 1. This
is because Flow 0 is now paying the price of the two bottlenecks combined.

6.3 Network Evolution
We now evaluate the network evolution scenarios in §4.2.

Bandwidth stability: We the implemented bandwidth stability feature described in §4.2. Fig-
ure 20 shows the sending rate of a stability flow (Flow 2) compared to a normal flow (Flow 1)
under changing network conditions. Flow 2 starts at t=2 and slowly ramps up doubling its assigned
budget at every RTT (100 ms). Cross traffic (Flow 3, dashed blue line) that has 50 times the budget
of Flow 1 repeats a periodic on/off pattern starting from t=3. Flow 1’s sending rate (solid black
line) changes abruptly when the cross traffic join and leave, but the stability flows react slowly
because its price does not change by more than twice in any direction during a window of 200 ms
(twice the average RTT).

Multicast congestion control: FCP allows the network to evolve to support a different service
model. For example, FCP can support multicast-aware congestion control as described in §4.2. We
use the topology of Figure 24 (b) and generate a multicast flow from the top node to the bottom
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Figure 19: Background flows only take up the spare capacity. The sending rate is averaged
over 40 ms.

four receiver nodes. The link capacity varies by link from 10 to 100 Mbps. We also introduce
unicast cross traffic to vary the load, and show that the multicast flow dynamically adapts its rate.

Figure 21 shows the result. A multicast flow starts at t=1 and saturates the bottleneck link
capacity of 10 Mbps. Three unicast flows then start sequentially at t=2, 2.5, 3. When Unicast
1 arrives, it shares equally shares the bottleneck bandwidth. As other unicast flows arrive, other
links also become a bottleneck and their price goes up. As a result, the multicast flow’s price (the
sum of all link price) goes up and its sending rate goes down. At steady state, the multicast flow’s
throughput is around 4 Mbps. The unicast flows take up the remaining capacity (e.g., unicast 3’s
rate is 36 Mbps).

Deadline support: As we described in §4.2, FCP can offer D3-style deadline support using two
virtual queues (best effort and deadline) and differential pricing. Deadline flows are guaranteed
a fixed price when admitted. We use the minimum price (§5) as the fixed price. A deadline flow
at the beginning of the flow preloads the amount required to meet the desired rate R at once. If
the routers on the path can accommodate the new deadline flow, they return the fixed price. The
deadline flow is then able to send at desired rate and meet the deadline. Otherwise, routers give
the best effort pricing and treat the flow as a best effort flow. We run an experiment to show both
cases.

Figure 22 shows the instantaneous rates of deadline and best effort flows going through a 100
Mbps bottleneck link with a round-trip delay of 2 ms. The queue is set to admit up to 80 Mbps
of deadline flows and assigns at least 20 Mbps to best effort flows in a work conserving manner.
A best effort (BE) flow starts at the beginning and saturates the link. At t=0.1 sec, two deadline
flows (D1 and D2) requiring 30 Mbps of throughput arrive to meet a flow completion time of∼200
ms. Because the link can accommodate the deadline flows, they both get admitted and complete
within the deadline. At t=0.6 sec, four deadline flows (D3 to D6) arrive with the same requirement.
However, the network can only accommodate two deadline flows (D4 and D5). The other two (D5
and D6) receive the best effort pricing and become best effort flows. We then additionally preload
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adapts to congestion.
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Figure 23: Aggregate control

to make it achieve its fair-share in the best effort queue. As a result, all the best effort flows achieve
the same throughput.

Budget management and aggregate congestion control: We implement aggregate congestion
control using the algorithm described in §4.3. To show how aggregate congestion control may
work in a data-center to allocate resources between tenants, we use a flow pattern of Figure 24 (a),
similar to the example shown in [36]. Within a rack, there are 20 servers and each have two virtual
machines (VMs). Each server is connected to the ToR switch at 1 Gbps. Odd numbered VMs (VM
group 1) belong to one tenant and even ones (VM group 0) to the other. Each tenant allocates a
budget to each of its own VM independently. We assume all VMs have an equal budget. The data-
center provider allocated a weight of 1 to group 0, and weight of 2 to group 1. In group 0, there is
only one flow. In group 1, there are multiple flows starting one after another, all originating from
a different VM (see Figure 24 (a)). Figure 23 shows the throughput of each group as well as the
individual flows. At t=1, a flow starts in the VM group 0. From t=1.5 sec, VM group 1’s flows start
to arrive, and get twice as much share as group 0. Dotted lines show that the throughput of group
1’s individual flows who have equal budget achieve the same throughput. The result highlights two
benefits of aggregate congestion control: 1) regardless of the number of flows in the group, the
aggregate flows get bandwidth proportional to their weights (group 1 gets twice as much as group
0), and 2) the weight of flows within each group is preserved (individual flows in group 1 receive
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the same throughput).

7 Conclusion
This paper explores an important open problem of designing networks for evolution. While there
have been a number of initial studies on evolvable Internet architectures [17, 21], little research has
been done in designing an evolvable transport layer. In this paper, we argue existing approaches
such as virtualization and TCP-friendly designs have limitations and call for a universal framework
for congestion control in which various strategies and algorithms can coexist. We propose a design
based on a pricing abstraction and a simple invariant. We present an explicit feedback-based algo-
rithm that realizes this idea and demonstrate that it is flexible enough to allow evolution. Finally,
we address practical concerns such as enforcement of fair-share and implementation issues.
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