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Abstract

The focus of this thesis is on the design and analysis of algorithms for basic prob-
lems in Stochastic Optimization, speciVcally a class of fundamental combinatorial
optimization problems where there is some form of uncertainty in the input. Since
many interesting optimization problems are computationally intractable (NP-Hard),
we resort to designing approximation algorithms which provably output good so-
lutions. However, a common assumption in traditional algorithms is that the exact
input is known in advance. What if this is not the case? What if there is uncertainty
in the input?

With the growing size of input data and their typically distributed nature (e.g.,
cloud computing), it has become imperative for algorithms to handle varying forms
of input uncertainty. Current techniques, however, are not robust enough to deal
with many of these problems, thus necessitating the need for new algorithmic tools.
Answering such questions, and more generally identifying the tools for solving such
problems, is the focus of this thesis. The exact problems we study in this thesis are
the following: (a) the Survivable Network Design problem where the collection of
(source,sink) pairs is drawn randomly from a known distribution, (b) the Stochastic
Knapsack problem with random sizes/rewards for jobs, (c) the Multi-Armed Bandits

problem, where the individual Markov Chains make random transitions, and Vnally
(d) the Stochastic Orienteering problem, where the random tasks/jobs are located
at diUerent vertices on a metric. We explore diUerent techniques for solving these
problems and present algorithms for all the above problems with near-optimal ap-
proximation guarantees. We also believe that the techniques are fairly general and
have wider applicability than the context in which they are used in this thesis.
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Chapter 1

Introduction

The main focus of this thesis is on the design and analysis of algorithms for stochastic combinato-
rial optimization problems, especially those arising in network design and scheduling. Since many
interesting problems in these domains turn out to be computationally intractable (NP-Hard), we
resort to designing eXcient approximation algorithms, i.e., those that compute solutions which
are provably near-optimal.

1.1 Traditional Approximation Algorithms

Owing to the intractability of most naturally occurring optimization problems, we have witnessed
rapid strides made in the development of techniques for the design and analysis of approximation
algorithms over the last two decades. However, the models that have predominantly been studied
thus far have been somewhat stylized and restrictive in their assumptions. and somewhat restric-
tive. Indeed, an important modeling assumption that is typically made by most earlier works is
that the exact input is known in advance by the algorithm. For example, consider the problem
of scheduling jobs to machines in order to minimize the makespan (i.e., the maximum load on
any machine). Over the years, we have developed very good approximation algorithms for this
problem, including a PTAS (polynomial-time approximation scheme) via dynamic programming,
and a 2-approximation using LP rounding techniques [73, 88]. However, all “classical algorithms”
require knowing the exact sizes of the jobs in advance. What if the algorithm does not know the
exact sizes in advance? What if it is revealed these values only as and when the jobs are being
processed?

1.2 Online Optimization and its Drawbacks

A common way to overcome this deVciency of traditional algorithms is by using models of on-
line optimization: here, the algorithm does not know the entire input up front, which is only
revealed over time. The algorithm must (typically) make irrevocable decisions in order to satisfy
the input that has been revealed until now. For example, in the online Steiner tree problem, the
vertices which require connectivity to the root are revealed online, and the algorithmmust always
maintain a feasible solution for the currently revealed demands.

1



Clearly the main advantage of this model is that the algorithm can handle varying inputs,
and does not need to have the entire input up front. In other words, this forces the algorithm
to adapt its solution online depending on the input that is being revealed. While this tackles the
issue traditional algorithms face in terms of handling input uncertainty, it has its own drawbacks
in terms of both modeling and measurement of an algorithm’s performance.

Indeed, the measure of performance often used in online analysis, i.e., the competitive ratio,
is typically too pessimistic an estimator, especially in real-world problems. This is because it com-
pares the worst case (over all possible input sequences) ratio of the cost of the online algorithm
to that of an optimal oYine algorithm (one that knows the exact input values in advance). For
many problems, such a comparison presents an inherently large information-theoretic gap be-
tween an online algorithm’s solution and that of an optimal oYine solution. For example, many
scheduling problems (e.g. broadcast scheduling on one server [8]) admits very good algorithms
in the oYine setting, but there are very strong lower bounds on the competitive ratio of any on-
line algorithm [8]. Intuitively, since the competitive ratio is the worst case over all inputs, and
the optimal solution knows the input, the competitive ratio can be thought to be the cost of not
knowing anything up front about the Vnal input.

However, it is often the case in practice that the algorithm is already cognizant about the
input, although not entirely. For example, we typically have some distributional information
about the jobs in a scheduling problem, which the algorithm could put to use. This modeling
advantage is not available for online algorithms. Furthermore, what if we don’t compare our
algorithm’s performance against the best-in-hindsight algorithm? What if we compare its per-
formance against an optimal algorithm, which also has to face the same uncertainty? The model
which captures both these phenomena is that of stochastic optimization. The following section
will detail the aspects relevant for this thesis.

1.3 Stochastic Optimization

In this model we assume that the algorithm is given a distribution over possible actual inputs
to the optimization problem up front (e.g. the distribution of possible processing times of jobs).
The actual input is, however, known only at a later stage. The goal is to design algorithms that
handle such uncertainty while also ensuring a good approximation guarantee (w.r.t the optimal
stochastic algorithm). Depending on the particular problem considered, we have diUerent models
on how the randomness is revealed. Furthermore, the solution space of the algorithm varies
based on the model being considered (and this is typically very diUerent than the solution space
of the underlying optimization problem). Finally, there are also various metrics for quantifying
the performance of an algorithm in a given model. In this thesis, we restrict our attention to
two stochastic models, the ones most relevant to the two kinds of problems we study — namely
network design and scheduling. In the coming sections, we will highlight the diUerent aspects
(modeling, solution space, and performance measurement) of these two models.

2



1.4 Model I: Two-Stochastic Optimization with Recourse

In this model, often useful in capturing long-term decision-making problems, all the input un-
certainty is revealed in one shot. That is, the initial input contains some uncertainty in the data.
Then the stochastic algorithm has to take some decisions, after which the exact input is revealed.
The algorithm can then take recourse actions. The Vnal cost of the solution is then a function of
the initial action and the random recourse action (which depends on the how the input random-
ness was realized, and may additionally depend on any inherent randomness in the algorithm).
We now present more details.

1.4.1 Model DeVnition

The stochastic algorithm works in two stages. In the Vrst stage, it is given the distributional
information about the uncertain parts of the input. The parts of the input which are certain are
completely speciVed exactly. At this point, the algorithm commits to an initial solution, called the
Vrst-stage solution, just by looking at the distributions. Subsequently, the actual input is revealed
(i.e., the uncertainty is resolved) in the second stage. Now, the algorithmmust take recourse action
in order to augment the Vrst-stage solution and ensure that the augmented solution is feasible for
the exact input that has been revealed. The objective function in this scenario is some function
of the Vrst-stage solution and the recourse action taken, with the overall goal of designing a good
Vrst-stage solution (and subsequent recourse actions) to minimize the expected objective function,
where the expectation is taken over the diUerent possible actual inputs which can be revealed in
the second stage.

To better motivate the model, consider the following practical long-term decision-making
problem in the domain of infrastructure building. Indeed, consider a network design problem
where an ISP (internet service provider) would like to build a network before beginning service.
Moreover, it is reasonable to expect that, by conducting some surveys and demographic research,
the ISP has some distributional information about the bandwidth requirement of each demand
vertex in the network. Therefore, in the Vrst stage, the ISP would build a base network, by just
looking at these distributions. Subsequently, when the service is launched, the ISP gets to see the
exact subscriber base, and he may have to augment the network in the second stage. Of course,
the augmentation process suUers inWated costs, due to the fact that it has to be done on short
notice, in rapid reaction to the observed demand. The goal, then is to carefully build the Vrst
stage network in order to minimize the total expected cost of the Vnal network (Vrst stage cost
plus expected (inWated) second stage cost).

Intuitively, the main algorithmic challenge is to carefully build a (common) Vrst-stage so-
lution on which the typical cost of recourse is small, for a random realization of the input. We
present this formally, in the deVnition below.

DeVnition 1.4.1 (Two-Stage Stochastic Optimization) We are given an underlying optimiza-

tion problem. The input to the 2-stage stochastic version of the problem consists of a probabil-

ity distribution over possible realizations of the input data called scenarios, and the goal is to

construct a feasible solution in two stages. In the Vrst stage, the algorithm may take some deci-

sions to construct an anticipatory part of the solution, x, incurring a cost of c(x). Subsequently

3



a scenario A is realized according to the distribution, and in the second stage, the algorithm may

augment the initial decisions by taking recourse actions yA (in order to make the combined solu-

tion x ∪ yA feasible for the scenario A), incurring a certain (typically inWated) augmentation cost

f(x, yA). The goal is then to choose the initial decisions so as to minimize the expected total cost,

c(x) + EA [f(x, yA)], where the expectation is taken over all scenarios A according to the given

probability distribution.

Typically, the possible actions in the two stages belong to the same set, but the actions are
more expensive in the second stage than in the Vrst. By having the second-stage actions be more
expensive, the algorithm faces a trade-oU between committing to actions in the Vrst stage while
having only imprecise information (but at lower costs), and deferring decisions to the second
stage, when we have no uncertainty about the input, but the actions are more expensive. As
mentioned above, there are many practical applications of this model, and much of the textbook
of Birge and Louveaux [20] is devoted to problems in this model. The interested reader may refer
to this book for additional examples of the two-stage stochastic optimization model.

1.4.2 Example: Stochastic Steiner Tree

In this problem, we are given a graph G = (V,E) with a non-negative cost function c : E → R
+

on the edges, and a designated root vertex r. Each non-root vertex v ∈ V \{r} has a probability pv
of requiring connectivity to r in the Vnal input. We are also given an inWation parameter σ > 0
which speciVes how much more expensive edges are in the second stage. These probabilities
are what captures the uncertainty in the input. Indeed, if pv ∈ {0, 1}, then this is just the
deterministic (minimum) Steiner tree problem. The algorithm, in the Vrst stage is allowed to
build an anticipatory subgraph H ⊆ E, which should intuitively be expandable (at low cost) to
cater to a typical demand realization.

Then, in the second stage, the actual set of terminals is sampled from the product distribution,
i.e., any vertex v requires connectivity with probability pv, independent of the other vertices. Now,
let D be the set of vertices which are sampled to require connectivity. Then, the algorithm must
augmentH with a subgraphHD ⊆ E such thatH∪HD contains a feasible Steiner tree connecting
the vertices in D ∪ {r}. The objective function is then to minimize the total expected cost of the
Vrst stage solution H and the recourse solution HD, i.e., minH c(H) + ED [σ · c(HD)].

Notice how the choice of H has to carefully trade-oU (i) a high cost of anticipatory solu-
tion, and (ii) a high recourse cost. Indeed, not building any anticipatory solution would lead to
very high second-stage costs, while on the other hand, the algorithm cannot also build an all-
encompassing Vrst-stage solution as that would incur a disproportionately large cost in the Vrst
stage. An example of a Vrst stage solution is given in Figure 1.1(a), and the corresponding recourse
action for a particular demand realization is given in Figure 1.1(b).

1.4.3 Related Work

Two-stage stochastic optimization problems have been widely studied in both the computer sci-
ence and OR literature, starting with the works of Dantzig [39], and Beale [12] for stochastic
linear programming. Due to the abundance of literature dealing with the eXcient computability
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of two-stage stochastic linear programming, we refer the interested reader to the book by Birge
and Louveaux [20] for a comprehensive discussion of this subject. On the other hand, the design
and analysis of algorithms for two-stage stochastic optimization problems, from the point of view
of obtaining integral solutions, is relatively less well-understood. The Vrst result in this regard
appears to be that of Dye et al. [43] who give a constant-factor approximation algorithm for a
resource-allocation problem with uncertainty. Subsequently, a series of papers [64, 76, 94, 95]
appeared on this topic in the CS literature, and showed that one can obtain guarantees for a vari-
ety of stochastic combinatorial optimization problems, by adapting the techniques developed for
the deterministic analogs. In particular Gupta et al. [64] consider the black-box model and show
an explicit connection between the approximability of the stochastic problem and the underly-
ing deterministic combinatorial optimization problem. We will crucially use these results in our
network design algorithms from Chapter 2.

1.5 Model II: Adaptive Stochastic Optimization

While the model of two-stage optimization is relevant and applicable for decision-making prob-
lems over a long time-frame (such as that of network design and layout), we need diUerent models
to handle more immediate-term decision-making problems such as scheduling (stochastic) jobs on
a processor. Indeed, in such scheduling problems where the input uncertainty is often manifested
in the processing times of the jobs, it makes much more sense for the randomness to be revealed
in more than one stage (e.g., as and when the jobs are being executed). The model of adaptive
stochastic optimization precisely captures such settings. While there is no formal deVnition of the
model we consider (the details diUer based on the problem being considered), we will introduce
the model with a particular problem in mind. It will be easy to generalize it subsequently for the
other problems we consider in this thesis.
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1.5.1 Model DeVnition, for the Stochastic Knapsack problem

In the deterministic Knapsack problem, we are given a collection J of n items, each with a
size (processing time) pi and reward ri, and there is a Knapsack of capacity B (which is the total
processing budget we have). The goal is to choose a subset of items which can be processed within
the budget, such that their total reward is maximized. An alternate view of the same problem that
is more amenable to our framework is that of scheduling the best subset of a collection of jobs
within a time/makespan budget of B.

The above problem is a classical one in the Velds of optimization and approximation algo-
rithms, and is perhaps the poster-child of the class of algorithms which admit an FPTAS (a fully

polynomial time approximation scheme).

Now, in the basic version of the Stochastic Knapsack problem, the jobs’ processing times are
random variables, whose exact values are unbeknownst to the algorithm, until the job is actually
processed. However, the algorithm is aware of the distribution over possible processing times
of each item (and these distributions are independent across jobs). An algorithm can therefore
schedule jobs in the following adaptive manner:

(i) at some time, a job may complete at a certain size, and the algorithm may choose a new job
to start, or

(ii) the Knapsack becomes overVlled, at which point the algorithm stops, and the job being
processed does not fetch any reward. Notice that in our model, the algorithm does not
know the size of a job until the job completes.

The objective is to maximize the total expected reward obtained from all completed items. Notice
that in the most basic model stated above, we do not allow the algorithm to cancel an item before
it completes, i.e., its decisions are irrevocable. One of the contributions in this thesis is in relaxing
such restrictions and solving a very general Stochastic Knapsack problem.

A word on Adaptivity. Indeed, the crucial step in adaptive solutions is step (i) above. In
deterministic Knapsack instances, the sizes of jobs are Vxed, and therefore the set of jobs to run
can be speciVed as a just a sequence or ordering up front. However, in the Stochastic Knapsack
problem, since the sizes are random variables, an algorithmmay choose to run diUerent jobs based
on how long the prior jobs took to complete. This makes the structure of the solution space a lot
more complex — in fact, a natural representation of an optimal adaptive strategy is in the form
of a decision tree, where the diUerent branches correspond to the diUerent random outcomes of
the job currently being processed. It can therefore be exponentially large1 to describe completely.
This in fact begets the natural goal of investigating whether compact strategies can capture these
exponential-sized ones, in an approximate manner with respect to the objective function. The
following simple example better illustrates this point.

1With respect to the input size
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1.5.2 A Simple Example

Consider the following instance of Stochastic Knapsack. There are 3 jobs: job 1 takes on a size of
p1 := 2 with probability 1/2, and p1 := 6 with probability 1/2; job 2 has a deterministic size of
p2 := 8, and job 3 has a size of p3 := 4 with probability 1/2 and p3 := 9 with probability 1/2.
The Knapsack budget B = 10, and all the rewards are 1.

Adaptive Optimal Strategy. In this case, an optimal adaptive) schedule is given in Figure 1.1(c),
and has the following structure: it Vrst runs job 1. If it Vnished after 2 timeunits, it runs job 2
(since it has a residual budget of 8, and job 2 can deterministically run in 8 timeunits). After
job 2 runs, the Knapsack has become full and it does not collect any subsequent reward. On the
other, if job 1 ran for 6 timeunits, there is no point in starting job 2 as it would not Vnish before
the budget runs out. Therefore, the algorithm runs job 3, which Vnishes within the Knapsack
budget with probability 1/2 (if its size came out to 4. Again, if job 3 runs for longer, the budget is
exceeded and the algorithm doesn’t collect reward from job 3 also.

A simple expectation calculation shows that the expected total reward of the above strategy
is 1.75.

Job 1

p1 = 2

p1 = 6

Job 2

Job 3

p2 = 8

p3 = 4

p3 = 9

Knapsack budget 1

(c) The optimal schedule for the 3 job example. Not to scale beyond t = 10

Non-Adaptive Solutions. We now highlight the power of adaptivity by estimating the expected
reward of the optimal non-adaptive solution. Non-adaptive solutions are those which do not

process diUerent jobs based on the outcomes of the prior jobs’ processing times. As a consequence,
these solutions can be expressed as just a sequence of jobs 〈j1, j2, . . . , jn〉 to run, just like solutions
to the deterministic Knapsack problem.

To this end, consider the non-adaptive solution 〈j1, j2, j3〉 for the toy example. It is easy to
see that j2 will be processed completely if and only if j1 takes on size 2, which happens with
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probability 1/2. In either scenario, the Knapsack budget is fully used up (or exceeded) after j2
and hence the expected reward is 1.5. Moreover, it is easy to see that this is the best possible
expected reward which we can achieve using non-adaptive solutions, thereby establishing a Ω(1)
adaptivity gap. A common theme in this model is in bounding this adaptivity gap, i.e., can simple
non-adaptive solutions approximate sophisticated adaptive solutions well? We will analyze this
issue for the problems we consider in this thesis as well.

1.5.3 Related Work

Approximation algorithms have been studied for adaptive versions of a number of combinatorial
optimization problems, e.g. in the areas of machine scheduling [89], knapsack [42], budgeted
learning [59], matchings [10], stochastic queuing [78], bandit problems [16], etc.

Of all of the above, the basic Stochastic Knapsack problem [42] is the one most related to the
results of this thesis. In their seminal paper, Dean et al. [42] show constant-factor approximation
algorithms (and also constant-factor upper bounds on the adaptivity gap) for the problem where
the jobs can have random sizes (which are independent across diUerent jobs). They left open
the various generalizations where, e.g., the reward of a job could be correlated with its size, or
the algorithm can preempt jobs, or even prematurely cancel jobs that are taking too long. We
address all these problems, and also substantially generalize these results to the case where each
job behaves in a Markovian way (making random transitions with every timestep), and the goal
is to maximize the expected reward of all the states we visit across the diUerent jobs.

1.6 Results in this Thesis

As mentioned earlier, we study the approximability of some basic problems in the Velds of net-
work design and scheduling, from the point of view of handling input uncertainty. We now
present a more rigorous description of the problems we study, as well as a few high-level tech-
nical ideas and contributions of this thesis. Each of the problems listed below will form the
subsequent chapters of this thesis.

1.6.1 Two-Stage Stochastic Survivable Network Design

In this two-stage Stochastic Survivable Network Design problem, we are given a graphG = (V,E)
with associated edge costs c : E → R

+. This is the deterministic part of the input. In the
uncertain part of the input, we are given, for each pair of vertices {s, t}, a probability pst of this
pair actually needing connectivity (to an extent of rst which is also given as input and is not part
of the uncertain data). There is also an inWation parameter of σ, speciVed in the input.

The goal of the algorithm is to build a subgraph H in the Vrst stage (at a cost c(H)). Then
a random set A of terminal pairs is sampled according to the given distribution, i.e., {s, t} ∈ D
with probability pst independent of other pairs. Now, in the second stage the algorithm must
augment H with a subgraph HD such that H ∪ HD satisVes the connectivity requirement of
the actual demand D, i.e., for all {s, t} ∈ D, H ∪ HD must support rst edge-disjoint paths
between s and t. Furthermore, the edges in the recourse stage are each more expensive by a
factor of σ. The objective function is then to minimize the total expected cost of the algorithm,
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i.e., c(H) + ED [σ · c(HD)].

Main Results

We show the Vrst non-trivial approximation algorithms for the two-stage Stochastic Survivable
Network Problem, with poly-logarithmic approximation ratios of Õ(rmax log

3 n), where rmax is
the largest connectivity requirement of any demand pair, and n is the number of vertices of
the graph. Along the way, we also obtain the Vrst non-trivial online algorithms (with similar
competitive ratios) for network design problems with connectivity requirements greater than
1. Finally, for the case when the edge costs satisfy the metric property, we can show O(1)-
approximations for the stochastic problem. These results are presented in Chapter 2.

Techniques

At a high level, our algorithm attempts to leverage techniques which are used to convert algo-
rithms for the deterministic instances to those which work the stochastic instance. Indeed, the
seminal work of Gupta et al. [64] shows the following result, stated informally. Suppose an algo-
rithm for the deterministic instance can apportion its total solution cost (i.e., assign the so-called
cost shares) among the diUerent vertices of the demand set D, such that it is always possible, for
any v ∈ D, to augment the algorithm’s solution on input D \ {v} using a cheap solution of cost
at most the “cost share of v”. Then, they provide a black-box procedure to use such an algorithm
for handling uncertain input demands. Intuitively, such a scheme assigns, to each demand, the
fraction of the total cost of the algorithm’s solution, that is devoted to satisfying that particular
demand.

Such good cost-sharing algorithms are known [64] for some simple network design problems
such as the Steiner Tree problem and the Steiner Forest problem. However, we don’t know of such
schemes for network design problems with higher connectivity requirements. Indeed, our main
contribution in this area is in developing a new algorithm for the deterministic survivable network
problem which yields good cost-sharing schemes. In fact, as mentioned earlier, our techniques for
the general setting in fact yield the Vrst online algorithms for general network design problems
with higher connectivity. Moreover, our guarantees in the online setting are identical to those we
get for the stochastic setting. Admittedly, this goes against our original motivation for studying
stochastic algorithms. However, we can showmuch better results in case the edge costs satisfy the
metric property — here, we can indeed obtain a tangible improvement in the stochastic setting,
over the guarantees of any online algorithm.

1.6.2 General Stochastic Knapsack

We next study some scheduling problems, from the point of view of adaptive stochastic opti-
mization. Our Vrst results pertain to the basic problem of scheduling a Knapsack: we are given a
Knapsack of total budget B and a collection of n stochastic items/jobs. For any item i ∈ [1, n],
we are given a probability distribution over (size, reward) pairs (refer to Section 1.7.1 for how this
distribution is speciVed in the input). These random (size, reward) pairs for two diUerent items
are still independent of each other.
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In general, an adaptive algorithm can take the following actions at the end of each timestep;

(i) an item may complete at a certain size (giving us the corresponding correlated reward), and
the algorithm may choose a new item to start, or

(ii) the algorithm may decide to cancel the current item; in this case, no reward is obtained
from this item and the item is said to be incomplete2, or

(iii) the Knapsack budget ofB is reached, at which point the algorithm stops, and the item being
processed does not fetch any reward.

The objective is to maximize the total expected reward obtained from all completed items. Recall
that the algorithm can adaptively decide to run/cancel jobs based on how the prior randomness
has instantiated.

Main Results

Our main result is to show a constant-factor non-adaptive approximation algorithm for the gen-
eral Stochastic Knapsack problem. A by-product of this result is the constant-factor bound on the
adaptivity gap of this problem. We also show constant-factor algorithms for the diUerent cases
where preemptions are/aren’t allowed, and when job cancellations are/aren’t allowed. Prior algo-
rithms [19, 41] only give algorithms for the setting when there are no cancellations, preemptions,
and most importantly, no correlations between the rewards and sizes for jobs. There are very sim-
ple (and practical) examples where such assumptions are not valid. These results are presented in
Chapter 3.

Techniques

Our high-level approach is to derive a linear programming formulation for the Knapsack problem
(using the expected values of the jobs), and show that (a) an optimal adaptive solution for the
Stochastic Knapsack problem can be “embedded” into the LP, i.e., there is a feasible LP solution
with value at least that of the optimal solution for the stochastic instance, and (b) any fractional
LP solution can be “rounded” into an integral solution (which can subsequently be interpreted
as a non-adaptive schedule) with only a constant-factor loss in terms of expected total reward in
both steps. A typical manner in which step (a) can be established is by showing that the marginal
probabilities of OPT placing the items are a feasible fractional solution for the LP formulation.

The above framework is in fact a general theme of all our results on the adaptive stochastic
optimization setting (in Chapters 3- 5). Since the adaptive stochastic optimization problems have
a very large solution space, we come up with a surrogate optimization problem (from which we
can infer solutions which have more structure), and perform the two steps (a) and (b) mentioned
above: (a) is an embedding step that shows that even the more restrictive surrogate problem has
a solution of value comparable to the optimal adaptive solution for the stochastic instance, and
(b) is a decoding step from which we recover a simple solution to the stochastic instance with a
large objective value.

2Formally, in this model, if a item is canceled it cannot be resumed at a later time, i.e., we are not allowing
preemptions. However, we can also extend our analysis to allow preemptions.
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However, standard relaxations for the Knapsack problem (and even those for some more
general problems such as MAB) fail to handle correlations between rewards and sizes of items.
We therefore introduce a new time-indexed LP formulation, which includes a family of partial
knapsack constraints for all preVxes of {1, 2, . . . , B}. While these constraints become redundant
for the deterministic Knapsack problem and even the uncorrelated Stochastic Knapsack problem,
they play a crucial role in the correlated version.

1.6.3 Multi-Armed Bandits

We next study a substantial generalization of the Stochastic Knapsack problem, where each
item/job is characterized my a more complex state space which we denote by an arm. In this
Multi-Armed Bandits problem (denoted byMAB), there are n arms: arm i has a collection of states
denoted by Si, a starting state ρi ∈ Si; Without loss of generality, we assume that Si∩Sj = ∅ for
i 6= j. Each arm also has a transition graph Ti, which is given as a polynomial-size (weighted)
directed graph rooted at ρi. If there is an edge u→ v in Ti, then the edge weight pu,v denotes the
probability of making a transition from u to v if we “play” arm i when its current state is node u;
hence

∑
v:(u,v)∈Ti

pu,v = 1. We can hence view the transition graph as a Markov Chain.

Each of the arms starts at the start state ρi ∈ Si. At any time instant, the algorithm observes
the states of each arm, and must choose one arm to play. If it plays an arm when it is at a state
u, the arm changes its state by making a random transition as dictated by its outward edges (and
their probabilities), and the algorithm gets the reward of the (random) state that was reached. The
goal is to maximize the total expected reward, while making at most B plays across all arms. We
note that while our main focus will be on the additive form of the problem, our general framework
can handle other problems (like the explore/exploit kind) as well.

It is easy to see that the Stochastic Knapsack problem considered in the previous section is a
special case where each item i corresponds to an arm with the following Markov transition graph.
The Vgure below illustrates such a reduction for a job which has the following distribution: it has
(size 1, reward r1) w.p 1/2, (size 3, reward r3) w.p 1/4, and (size 4, reward r4) w.p 1/4.

1

2

1

2 1

1

2

1

2

1

ρ

0 0 0 0

r1 r3 r4

Figure 1.1: Reducing Correlated Stochastic Knapsack to MAB

Main Results

We show a constant-factor approximation algorithm for the general MAB problem. Earlier re-
sults [55, 60] show constant-factor algorithms under a strongMartingaleness assumption that the
rewards of each Markov chain behaves like a Martingale process. That is, the reward of a state is
equal to the expected reward of the (random) state after a single pull of the arm. These results are
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presented in Chapter 4.

Techniques

Our techniques build on those we developed for handling the correlated Stochastic Knapsack
problem. As mentioned in Section 1.6.2, our high level idea is to come up with a surrogate problem
using which we can decode a solution of better structure for the original problem. Moreover, our
surrogate problem is again a suitable time-indexed LP formulation for which we show (a) that LP
formulation has a feasible fractional solution of value comparable to the optimal adaptive solution
for the stochastic instance, and (b) is a decoding step from which we recover a simple solution to
the stochastic instance with a large objective value, by a randomized rounding algorithm.

The crucial diUerence, though, is that our rounding algorithm for the general MAB problem
is adaptive which is in contrast to that for the Stochastic Knapsack problem, and also most earlier
algorithms for the bandit problems [55, 60]. On the Wip side, we show that there can be instances
of the MAB problem with arbitrarily large gaps between adaptive and non-adaptive solutions, in
essence showing that adaptivity is unavoidable for the general problem.

1.6.4 Stochastic Orienteering

The Vnal problem we consider is another generalization of the Stochastic Knapsack problem,
although along a diUerent direction. In the Stochastic Orienteering problem, we are given an
underlying metric space (V, d) with ground set |V | = n and symmetric integer distances d :
V × V → Z

+ (satisfying the triangle inequality) that represent travel times between the vertices.
Each vertex v ∈ V is associated with a unique stochastic job, which we also call v. Each job
v now has a Vxed reward rv ∈ Z≥0 and a random processing time (a.k.a. size) sizev, which is
distributed according to a known but arbitrary probability distribution πv : R

+ → [0, 1]. We are
also given a starting “root” vertex ρ, and a budget B on the total time available.

The only actions allowed to an algorithm are to travel to a vertex v and begin processing the
job there: when the job Vnishes after its random length sizev of time, we get the reward rv (so
long as the total time elapsed, i.e., travel time plus processing time, is at most B), and we can
then move to the next job. The objective is to Vnd a tour which maximizes the total expected
reward of jobs which are completely processed within the budget of B (i.e. traveling times plus
processing times must be within B).

Main Results

Our main result is to show an O(log logB)-approximation algorithm to the optimal adaptive
policy3. In fact, we show this by existentially showing an upper bound of O(log logB) on the
adaptivity gap, and then subsequently designing a constant-factor approximation algorithm for
the best non-adaptive optimal solution. Our algorithms also extend to the setting where cancel-
lations are permitted, wherein the algorithm can prematurely abort a job. We do not, however,
tackle the case of preemptions—where an algorithm may stop a job, visit a diUerent job, and then
re-visit the Vrst job and resume processing. These results are presented in Chapter 5.

3We assume that all metric distances and job sizes are integer multiples of 1.
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Techniques

Unlike the Stochastic Knapsack problem, we cannot immediately proceed via an LP-based ap-
proach to embed an adaptive optimal solution and subsequently round it, because we are not
aware of any good LP-relaxation for even the deterministic orienteering problem. Our main idea
to circumvent this, is to create a non LP-based surrogate deterministic problem (with appropri-
ately chosen “average” sizes and rewards for items) such that (i) it has a feasible solution with
reward at least OPT, and (ii) we can convert any feasible solution for the surrogate problem into
a non-adaptive tour for the Stochastic Orienteering problem with good expected proVt.

The advantage LP surrogates provide is that we can show (i) in a fairly procedural manner,
by showing that the marginal probabilities of an optimal stochastic solution (which can be viewed
as a stochastic process) form a feasible fractional solution to the LP. However, such a proof tech-
nique does not carry over to our case, since we need to exhibit a feasible integral solution to
our deterministic surrogate problem. Indeed, this is the technical heart of our contribution, for
which we use a martingale-based analysis on a carefully chosen sequence of random variables
pertaining to the optimal stochastic process.

1.7 Some Notes on the Models Studied

1.7.1 Specifying the Uncertainty

An important aspect which we have not yet explained is how the distribution is given as input
to the algorithm. Typical models for this include listing the possible scenarios along with their
probabilities (which is a viable option only if the number of them is polynomially bounded),
or assuming that there is a black-box oracle from which the algorithm can draw samples. Yet
another model model is to assume that each vertex has some individual probability of requiring
connectivity, and these are independent across vertices, i.e., the probability distribution can be
expressed as a product distribution.

We will assume that the input distribution is a product distribution over (most of) the ele-
ments of uncertainty. This assumption not only makes the input description easy, but also helps
signiVcantly with designing the algorithms. The following two paragraphs delve into some details
for the two kinds of problems we study in this thesis.

Stochastic Network Design. In the problems on stochastic network design, we will assume that
the demands in a network design problem are a probability distribution over vertices. That is,
for every vertex we have a probability pv of it requiring connectivity to a given root. The con-
nectivity requirements are speciVed up-front, and we assume they are not a part of the uncertain
component of the input.

Stochastic Scheduling. For these problems, we will assume that the uncertainty is independent
across diUerent jobs, but that the parameters may be correlated within a job. For example, a job
may have its random variables for the size and proVt as being correlated in an arbitrary fashion.
Or each job can have a more complex state space (say a Markov Chain), and for each unit of
processing it receives, it makes a random transition according to its Markovian process.
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Since we allow arbitrary distributions over job sizes and rewards, it might be unreasonable
to expect the entire distribution to be speciVed in the input. Indeed, for the simple scheduling
problems, our algorithms would only require poly(logB, n)-attributes about the job distribu-
tions. These attributes are of the form Esj∼πj

[min(sj, T )] for T ∈ T , where T is a Vxed set of
polynomially many values. Here πj denotes the distribution of job j, and sj is the random size it
assumes. Our algorithms require such attributes for the size and reward of each job.

One of the main objectives of this thesis is in designing techniques to handle correlations in
the uncertain part of the input data. We believe that our results are a step in this direction, and
can potentially lead to more general algorithmic design techniques in achieving this goal.

1.7.2 Computational Intractability

All the problems we study are computationally at least as hard as their deterministic counterparts.
This is because we allow arbitrary distributions which easily capture deterministic instances.
Indeed, if the distribution over demand vertices in the network design problems are pv ∈ {0, 1},
then it captures the underlying deterministic network design problem. Likewise, if the job-size
distribution in a stochastic scheduling problem has support at a single value, then it captures the
underlying deterministic problem. Combining this observation with the fact that the underlying
deterministic problems we study are all NP-hard (and mostly APX-hard as well), motivates our
goal of designing approximation algorithms for the stochastic problems. Notice that, from a
modeling perspective, this is diUerent from average-case analysis or smoothed analysis, where the
randomness assumptions are made to make the problem easier than its deterministic counterpart.
The diUerence here is that in our models, we allow arbitrary distributions on the uncertain input,
whereas in the average-case (or smoothed) analysis, these distributions obey some nice properties.

1.7.3 Quality of Solutions

In both the two-stage and the adaptive stochastic optimization models, we compare the (expected)
performance of our algorithm to that of the optimal stochastic algorithm, which also has to dis-
cover the uncertainty in the random variables only over time (e.g., as and when it completes
processing the diUerent jobs, in the scheduling example). Once again, this makes our comparison
purely one of computational complexity, as both algorithms (ours and the optimal) have the same
information, or entropy, about the input. This is in contrast to the online optimization setting
where the algorithm’s solution is compared to the best-in-hindsight solution.

1.7.4 Comparison to Competitive Ratio

While our problems are computationally at least as hard as the deterministic counterparts, they
are often “easier” (at an intuitive level) than their online versions. That is, the approximation
guarantees possible for the stochastic versions are typically better than the optimal competitive
ratio of any algorithm for the corresponding online version of the problem. At a high level, this
is because the performance guarantee of our algorithms are measured as the ratio of the expected
cost that our algorithm obtains to the expected cost that an optimal algorithm obtains, where
the corresponding expectations are taken over the randomness associated with the input and the
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random coin tosses of the respective algorithm. This is in contrast to the competitive ratio of the
algorithm, which compares the cost of our algorithm with that of the best minimum cost solution
for the instance which was revealed.

1.8 Roadmap

We Vrst consider the two-stage stochastic optimization setting, and present our results for the
Stochastic Survivable Network Design problem in Chapter 2. We next move on to the adaptive
stochastic optimization model, and focus on the Stochastic Knapsack problem in Chapter 3. Then
in Chapter 4, we move on to the more general MAB problem of scheduling bandits in a Vnite-
horizon setting. Finally, we consider the Stochastic Orienteering problem in Chapter 5. We
then present a few concluding remarks and mention some interesting avenues of future work in
Chapter 6.
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Chapter 2

Stochastic Survivable Network Design

In this chapter, we consider the edge-connectivity version of the survivable network design prob-
lem (SNDP). Let us Vrst recap the basic SNDP problem in the deterministic setting: we are given
a graph G = (V,E) with non-negative edge-costs c : E → R

+, and edge-connectivity require-
ments rst ∈ Z≥0 for every pair of vertices s, t ∈ V . The goal is to Vnd a subgraph H = (V,E ′)
with minimum cost c(E ′) such thatH contains rst edge-disjoint paths between s and t. Here, the
cost of subgraph H is c(H) :=

∑
e∈E′ c(e).

The problem is of much interest in the network design community, since it seeks to build
graphs which are resilient to edge failures. Moreover, it has also received signiVcant attention
from the theoretical computer science community as well. Since the problem contains the Steiner
tree problem as a special case (when rij = 1 for every pair of terminal vertices), the general
problem is NP-hard (and also APX-hard), and therefore it has been widely studied through the
approximation algorithms lens. The interested reader may refer to [63] for a survey of results and
techniques.

Owing to the appealing nature of the problem, both from the theoretical and practical per-
spectives, the problem has served as a test-bed for several new algorithmic techniques. For in-
stance, some of the earliest applications of the primal-dual method in this area have been to the
SNDP problem. There was a sequence of papers applying this technique, eventually leading to the
development of an O(log rmax)-approximation algorithm [57]. Subsequently, in his breakthrough
work, Jain applied the technique of iterative LP rounding to this problem to obtain a substantially
improved 2-approximation algorithm eUectively settling the approximability of the problem (up
to constant factors) [77]. However, all these techniques appeal to and crucially use the structural
properties that global graph connectivity provides, e.g., the sub-modularity of the cut function.
The work presented in this chapter deals with algorithm design for network connectivity, in the
presence of uncertain connectivity requirements.

More formally, we extend the study of Survivable Network Design problems in two diUerent
directions — the online setting, and the two-stage stochastic optimization setting.

Online SNDP. First, we study this problem in the online setting: we are given a graph with edge
costs, and an upper bound rmax on the connectivity demand. Now a sequence of vertex pairs
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{s, t} ∈ V × V is presented to us over time, each with some edge-connectivity demand rst—at
this point we may need to buy some edges to ensure that all the edges bought by the algorithm
provide an edge-connectivity of rst between vertices s and t. The goal is to remain competitive
with the optimal oYine solution of the current demand set, i.e., minimize the worst-case ratio
of the cost of the online algorithm to that of the optimal solution (with the demand sequence
known), where the worst-case is taken over all possible input demand sequences.

Stochastic SNDP. Secondly, we extend the online algorithm to the 2-stage stochastic version of
the problem with independent demand arrivals, i.e., each pair of vertices {s, t} ∈ V × V has an
associated probability pst of requiring rst edge-connectivity (i.e., the Vnal solution must have rst
edge-disjoint paths between s and t), where pst and rst are both given as input to our algorithm.
As mentioned earlier, the algorithm can buy a subgraph H in the Vrst stage, after which the
exact set D of terminal pairs requiring connectivity is sampled. Then in the second stage, the
algorithm must augment H with a subgraph HD such that H ∪ HD has rst edge-disjoint paths
for all {s, t} ∈ D. The goal is to minimize c(H) + σED [c(HD)]

2.1 Our Results

Our Vrst result is for the online version of the problem.

Theorem 2.1.1 For the edge-connected Survivable Network Design problem, there is an α =
O(rmax log

3 n)-competitive randomized online algorithm against oblivious adversaries. The run-

ning time of this algorithm is O(nO(rmax)), which is polynomially bounded for constant values of

rmax.

By combining this with the technique of Boosted Sampling [64], we can immediately get
approximation algorithms with a similar ratio for the 2-stage stochastic version of the problem as
well. This gives us the following result.

Theorem 2.1.2 For the two-stage stochastic version of the edge-connected Survivable Network

Design problem (with independent demand arrivals), there is an O(rmax log
3 n)-approximation

algorithm.

As mentioned earlier, the above result (which has the same performance guarantee as the
online algorithm in Theorem 2.1.1) does not do justice to our motivation for studying these prob-
lems from a stochastic setting. Our Vnal result addresses this concern for the special case when
the input graph is complete, and the edge-costs satisfy the triangle inequality, where we give a
constant-factor approximation algorithm for the stochastic version of the problem. Notice that
this is in stark contrast with the Ω(log n)-lower bounds on the competitive ratio of any online
algorithm for even the basic Steiner tree problem [74].

Theorem 2.1.3 For the two-stage stochastic version of the edge-connected Survivable Network

Design problem (with independent demand arrivals), there is a constant-factor approximation

algorithm if the input graph is complete and the edge costs c(·) satisfy the triangle inequality.
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2.2 Related Work

Steiner network problems have received considerable attention in approximation algorithms:
Agrawal et al. [3] and Goemans and Williamson [56] used primal-dual methods to design ap-
proximation algorithms for Steiner forests and other 1-connectivity problems (also some higher
connectivity problems where multiple copies of edges could be used). Klein and Ravi [80] gave
an algorithm for the 2-connectivity problem, which was extended by Williamson et al. [98] and
Goemans et al. [57] to higher connectivity problems, yieldingO(log k)-approximation algorithms
for k-connectivity, all using primal-dual methods. Jain [77] gives an iterative rounding technique
to obtain a 2-approximation algorithm for the most general problem of SNDP. These techniques
have recently been employed to obtain tight results (assuming P 6= NP ) for network design with
degree constraints [9, 86, 87]. Vertex connectivity problems are less well-understood: [36, 45, 83]
consider problems of spanning k-connectivity, and provide approximation algorithms with vary-
ing guarantees depending on k. Fleischer et al. [48] give a 2-approximation for vertex connec-
tivity when all rij ∈ {0, 1, 2}. Recently, improved approximation algorithms have been given
for the problem of single source k-vertex connectivity [25, 28], culminating in a simple greedy
O(k log n) algorithm [37]. In fact, the papers [28, 37] also implicitly give O(k)-strict cost-shares
for the single-source vertex-connectivity problem. As far as we can see, their techniques do
not apply in the case of general Survivable Network Design where vertex pairs do not share a
common root, nor do they imply online algorithms with adversarial inputs. When the edges
have metric costs, there are, quite expectedly, better approximation algorithms for vertex connec-
tivity. Khuller and Raghavachari [79] gave O(1)-approximations for k-vertex-connected span-
ning subgraphs. Cheriyan and Vetta [35] later gave O(1)-approximations for the single source
k-connected problem and a O(log rmax)-approximation for metric vertex-connected SNDP. Re-
cently, Chan et al. [26] give constant factor approximations for several degree bounded problems
on metric graphs. As for the inapproximability, Kortsarz et al. [84] give 2log

1−ε n hardness results
for the vertex-connected Survivable Network Design problem.

Imase and Waxman [74] Vrst considered the online Steiner tree problem and gave a tight
Θ(log |D|)-competitive algorithm. Awerbuch, Azar and Bartal [6] generalized these results for
the online Steiner forest problem, and subsequently Berman and Coulston [13] gave the same
Θ(log |D|) guarantee. However, we do not see how to use these ideas for the general problemwith
higher connectivity. In fact, to the best of our knowledge, no online algorithms were previously
known for this problem even for the online rooted 2-connectivity problem (i.e., for the case where
all the vertex pairs share a root vertex r and the connectivity requirement is 2 for all pairs)—in
fact, we also show a lower bound of Ω(min{|D|, log n}) on the competitive ratio for this special
case, where D is the set of terminal pairs given to the algorithm. This is in contrast to the case
of online 1-connectivity (i.e., online Steiner forest) where the best online algorithm is Θ(log |D|)-
competitive [13].

We use the results of Alon et al. [4] for the online (weighted) set cover problem as a sub-
routine in our online algorithm; the ideas used in that paper have subsequently also been extended
by Alon et al. [5] and Buchbinder and Naor [22] to get online primal-dual based algorithms for
fractional generalized network design. We remark that while we can solve the fractional version
of the online k-connectivity problems using these techniques, we do not know how to round this
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fractional solution online. Please see Section 2.4.2 for a more detailed discussion on this topic.

As for the stochastic version of the problem, the only previous results known for these ver-
sions of higher-connectivity problems were O(1)-strict cost-shares implicitly given by Chuzhoy
and Khanna [37], and independently (but explicitly) by Chekuri et al. [32] for the special case of
rooted connectivity, where all pairs seek k-connectivity to a single source r (and hence to each
other). The use of strict cost-shares to get algorithms for rent-or-buy network design appears
in [65]. Approximation algorithms for two-stage stochastic problems were studied in [75, 93],
and some general techniques were given by [64, 96]; in particular, using strict cost-shares to
obtain approximation algorithms for stochastic optimization problems appears in [64].

2.3 Chapter Roadmap

We begin with our discussion on online algorithms for SNDP: we Vrst motivate our algorithm
by discussing various approaches and why they fail in Section 2.4.2. We then describe our
embedding-based primitive in Section 2.4.3, followed by a quick sketch of why it helps for the
case of k = 2 connectivity in Section 2.4.4. We then move on to the details of our actual algo-
rithm in Sections 2.4.5-2.4.7. Next we show how these imply good algorithms for the stochastic
version of the problem as well in 2.5. Finally, in Sections 2.6 and 2.7, we consider the special
case when the graph is complete, and the edge-costs satisfy the triangle inequality to present
algorithms with improved guarantees.

2.4 Online SNDP on General Graphs

In this section, we focus our attention on designing good online algorithms for the SNDP prob-
lem. For the remainder of the section, we assume that all requirements rst ∈ {0, k} for some
constant value k. This is done just for simplicity of the proofs, and our algorithm carries through
unchanged for general values of rst as well. Before we presenting our algorithm, we begin with
some notation, and then motivate our algorithm by Vrst presenting a few bad examples and failed
algorithmic attempts.

2.4.1 Preliminaries

The kECND Problem

As mentioned above, we will present our results in the form of the k-edge-connected network

design problem (kECND), which is Survivable Network Design where rst ∈ {0, k}.

Notation

Consider the kECND problem, and let D ⊆
(
V
2

)
denote the set of demand pairs that require k-

connectivity (for the online problem, this will be the Vnal set of demand pairs which arrive over
time). For the rest of the paper, we shall refer to demand pairs by using curly brackets, e.g., {s, t},
and use the regular brackets to denote edges following standard convention, like (u, v). Finally,
we will use si-ti to denote the ith demand pair in the set D. These can be ordered arbitrarily for
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the deterministic or stochastic problems, and are ordered according to their arrival in the online
version.

2.4.2 Our Techniques and their Motivation

To motivate our algorithms, let us Vrst survey the known techniques for solving the online Steiner
tree problem (the special case when k = 1). Indeed, there are three broad categories of algorithmic
techniques which we can use.

Greedy Algorithms

For the online Steiner tree problem, there is a very elegant and easy to state greedy algorithm:
when a new terminal arrives, it simply buys the shortest path to the currently built Steiner tree
solution. One of the classical results in online algorithms literature is that this simple algorithm is
Θ(log n)-competitive for the online Steiner tree problem. Moreover, this is the best competitive
ratio possible, since there is a matching lower bound of Ω(log n) on the competitive ratio of any
online algorithm. See [74] for more details on these constructions. One could wonder how such
a greedy algorithm would perform for the case of higher connectivity? In the following example,
we show that it can be pretty bad, owing to the fact that 2-edge-connectivity is a more global
property than 1-edge-connectivity. Indeed, the high-level intuition is that, if there are multiple
ways of choosing the second path from a terminal to the root, it is not always optimal to choose
the shortest one.

Consider the following cycle graph on n vertices, numbered v1, v2, . . . , vn in clockwise fash-
ion. Each of the cycle edges ei := (vi, v(i+1) mod n) has a cost of 1, for all 1 ≤ i ≤ n. Additionally,
there are private edges fi := (vi, v1) of cost i−2−ε for 2 ≤ i ≤ n. In the online instance, suppose
the terminals all require 2-edge-connectivity to the root v1, and arrive in the order v2, v3, . . . , vn.
We now argue that the greedy algorithm will include all the private edges in its solution, whereas
the optimal solution is to include just the base cycle! It is easy to see that the cost of the former
solution is Ω(n2) whereas the cost of the latter solution is n.

v1
v2

v3

vn
e2

e3

e4

f2

f3

f4

Figure 2.1: Bad example for Greedy algorithm

Indeed, when terminal v2 arrives, among all choices the greedy algorithm has to 2-edge-
connect v2 to v1, the cheapest way would be to choose the edges e2 and f2. Now, when terminal
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v3 arrives, it is easy to see that by collapsing v2 and v1, the instance is identical to the original
one (but with one fewer vertex), and so the greedy algorithm chooses the edges e3 and f3 as its
augmentation edges, and so on.

The main diXculty with greedy algorithms is that, in 2-edge-connectivity, there is much
more global structure to solutions than there was for 1-connectivity. Indeed, it seems diXcult
to come up with a greedy policy that would make the Vrst terminal v2 purchase the entire base
cycle, instead of the short private cycle. E.g., trying to maximize the number of other vertices
covered is no-good as well, because those vertices may never appear as terminals subsequently!

Lower Bound for Online Algorithms. In fact, we show that, if D is the set of demands that
have arrived till some point, then there are instances where the competitive ratio of any online
algorithm is Ω(|D|) for |D| = O(log n), even for the rooted 2-edge connectivity problem. Notice
that this in sharp contrast with the case of single-connectivity for which the greedy algorithm is
O(log |D|)-competitive.

Consider the graph given in Figure 2.2. There is a binary tree of depth L, and all the leaves are
connected to the root with distinct “back” edges. All edges in this graph have unit cost. For ease
of exposition, we will assume that the edges bought when seeing any demand are a minimal set
of edges to achieve the connectivity requirement for that demand; any edges not in the minimal
set are considered to be bought at the Vrst time they are actually used.

r

L

.

.

.

level 2

s1

level 3

s2

s3

Figure 2.2: A lower bound of Ω(|D|)

All the requests will be vertices that need 2-connectivity to the root r. The Vrst request is
level-1 vertex s1; one feasible solution is to buy the edge s1-r, and the second path is some path
from s1 to a leaf and back to r using a “back” edge. However, this is not the only minimal solution
possible: perhaps the algorithm can buy two disjoint paths from s1 to two leaves which use their
back edges to connect to r. In any case, there will be at least one vertex on level 3 that is not yet
connected to the root. We then give any such vertex on level 3 as the next request. The third
request will be some vertex on level 5 that is a descendant of the second request, and which is
not yet connected to the root; in general, the next request is always chosen to be a descendant
of the previous demands. This ensures that there is always a feasible solution of cost L + 1 for
all the demands seen thus far, whereas the online algorithm pays at least Ω(L) for the Vrst Ω(L)
requests, giving us the claimed lower bound.

Note that this construction also works against oblivious adversaries if we choose a random
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descendant at level (2i− 1) as the ith request.

LP Rounding

Another approach which works for the online Steiner tree problem is that of (i) solving the frac-
tional LP relaxation online, and (ii) rounding the solution online. Indeed, the work of [5] fol-
lows precisely this approach for a range of single-connectivity problems. For higher-connectivity
though (even, say, k = 2), while step (i) of solving the LP relaxation online can be done while
maintaining good competitive ratio, we do not know of ways to round the LP solution online.
This is because typical online rounding strategies are based on the principle of independent ran-
domized rounding. For our problems, however, we don’t know of good independent rounding
strategies, for much of the same reasons why greedy-style algorithms don’t work: there is a lot
more global correlation in picking edges than there is for the case of single-connectivity.

Tree Embeddings

Yet another strategy which works for single-connectivity is that of using random tree embeddings.
In this procedure, we Vrst embed the graph onto a arefully chosen tree (e.g., one which preserves
distances between all pairs of vertices in expectation). Then, the problem becomes much easier to
solve on trees — in fact, the Steiner tree problem is trivial as there is now a unique path between
any terminal and the root. The embedding property of the tree ensures that we can move back
and forth between solutions on the original graph and solutions on the tree. However, we again
run into diXculty when applying this for higher-connectivity problems. Indeed, we can’t simply
solve the problem on a tree as trees are not 2-edge-connected objects!

What we do, however, is use the embedding to alter the edge-costs on the original graph and
get much more structural control on it. To this end, imagine we want to convert the connectivity
augmentation problem into a hitting set problem: we are given a subgraph H of G that has l-
edge-connected a demand pair si-ti (where l < k), and we want to (l+ 1)-edge-connect them. If
we think of the si-ti cuts as sets, then we would like to ”hit” all these si-ti cuts with edges. This is
clearly doomed, since there are M = 2n−1 cuts, and an O(logM)-approximation for hitting set
will be useless.

We could do better by noting that each minimal si-ti cut inH is given by only l edges. While
this bounds the number of cuts in H by M =

(
m
l

)
, the subgraph H might contain only a small

fraction of G, and there may be many more cuts in G corresponding to the same cut in H—even
an exponential number, and we are back to square one. Alternately, we could try to overcome
this by hitting the cuts by paths connecting two nodes in H (instead of hitting the cuts by edges
in G), but there could be exponentially many such paths, and this seems like another bad idea.

What the results in Section 2.4 show is that this is not a bad idea at all if we are slightly
careful. Loosely speaking, if we take a random distance-preserving spanning subtree T ⊆ G,
then we show that we can augment the connectivity using only the fundamental cycles (the
cycle formed by any non-tree edge (u, v) along with the tree path between u and v) with respect
to this spanning tree T . Interestingly, the (random) distance-preserving property allows us to
control the cost of these connectivity augmentations. Furthermore, there are only at mostm such
fundamental cycles, and this enables us to get a compact hitting set instance. Of course, this
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high-level view oversimpliVes things a bit: read on for the complete details. In Sections 2.4.3-2.4.5
we show how we can hit cuts by a small number of cycles/paths, and then Sections 2.4.6 and 2.4.7
use these ideas to develop our algorithms.

2.4.3 Embedding into Backboned Graphs

One of the major advantages of network design problems which only sought 1-edge-connectivity
is that one can embed the underlying metric space into random trees [1, 11, 44, 46], where the
problems are easier to (approximately) solve. Such a reduction seems impossible even for 2-
edge-connectivity as the problem is trivially infeasible on a tree. However, the simple but crucial
observation is to not ignore these ideas, as we show below.

Given a graph G = (V,E) with edge lengths/costs c(e), probabilistically embed it into a
spanning subtree (which we call the base tree) using the results of Elkin et al. and Abraham et
al. [1, 44]. Formally, this gives a random spanning tree T = (V,ET ⊆ E) of G with edge lengths
ĉT , such that for all x, y ∈ V :

1. ĉT (e) = c(e) for all edges e ∈ ET , and hence dT (x, y) ≥ dG(x, y); and

2. E[dT (x, y)] ≤ Õ(log n) · dG(x, y), where dG is the graph metric according to the edge
lengths c(e).

The distance dT is deVned in the obvious way: if PT (u, v) is the unique u-v path in T , then
dT (u, v) =

∑
e∈PT (u,v) ĉT (e).

Now instead of throwing away non-tree edges, imagine each non-tree edge e = (u, v) ∈
E \ ET being given a new weight ĉT (e) = max{c(e), dT (u, v)}. This suggests the following
deVnition.

DeVnition 2.4.1 A graph G = (V,E) with edge-costs c : E → R is called a backboned graph if

there exists a spanning tree T = (V,ET ) with ET ⊆ E such that all edges e = (u, v) 6∈ ET have

the property that c(e) ≥ dT (u, v). In this case, T is called the base tree of G.

The Vgure below illustrates an example of a particular backbone tree.

Note that the embeddings of [1, 44] probabilistically embed graphs into a distribution T over
backboned graphs (indexed by their base trees) with small expected stretch, i.e., ET∼T [ĉT (e)] ≤

Õ(log n)c(e) for all e ∈ G. This show that for any subgraphH , the expected costET∼T [ĉT (H)] ≤

Õ(log n)c(H). Finally, since ĉT (e) ≥ c(e) for all e ∈ E, T ∈ T , we can bound the cost of any
subgraph H ′ w.r.t edge costs c by the corresponding cost ĉT (H ′). We then get the following
theorem.

Theorem 2.4.2 A β-competitive online algorithm for kECND on backboned graphs implies a ran-

domized β × Õ(log n)-competitive algorithm for kECND on general graphs (against oblivious

adversaries). Also, β-approximation algorithms for kECND on backboned graphs imply random-

ized β × Õ(log n) approximation algorithms on general graphs.

Hence, for the subsequent sections (except those for the metric instances) we will assume that the
input graph is a backboned graph, and will use its properties to design online and “cost-sharing”
approximation algorithms.
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Figure 2.3: Illustration of Backbone tree and changed edge costs

2.4.4 Online 2-Edge-Connectivity

As a warm-up, consider the special case of kECND on a backboned graph G = (V,E), when the
connectivity requirement is k = 2 for all demand pairs, and furthermore, the problem instance
is rooted, i.e., all demand pairs are of the form {r, ti} for some Vxed root r ∈ V . A natural
approach for this problem would be to Vrst 1-edge-connect the root with the terminal which
has arrived, and then augment connectivity in the next phase. Because the graph is backboned,
it is easy to see that the optimal oYine subgraph which just 1-edge-connects a set of terminals
T = {t1, t2, . . . , tl} with root r is the collection of base tree paths ∪l

i=1PT (r, tl). Therefore, the
online 1-connectivity problem becomes trivial on backboned graphs—when a new terminal ti
arrives, we simply buy the base tree path PT (r, ti).

We now see how we can augment edges to 2-connect the terminals with the root, in an online
fashion. Consider the stage in the online algorithm when a terminal ti has arrived. As a Vrst step,
like mentioned above, we 1-edge-connect ti to the root r by buying the path PT (r, ti). Now if ti
is not 2-edge-connected to r in the current subgraph, then there must exist a cut-edge e = (x, y)
on the path PT (r, ti). Removing the edge e also cuts the base tree T into 2 components—call the
one containing the root as Cr, and the other containing the terminal ti as Cti . Since e is the only
tree-edge crossing this cut, there must exist a non-tree edge f = (u, v) in OPT (an optimal oYine
solution which 2-edge-connects the current set of terminals with r) such that f crosses the cut
(Cr, Cti) (and as a consequence, observe that the edge e would be contained in the base tree path
PT (u, v)).

The crucial observation now is the following: if we were to include the entire cycle O(u,v) =
PT (u, v)∪ (u, v) to our current subgraph, then e would no longer be a cut-edge separating r from
ti (because there is now an alternate path from x to y in O(u,v)). Furthermore, we can use the
backbone property of G and in fact charge the cost of the entire cycle to the single edge f that
OPT bought.

At a high level, this motivates modeling the augmentation problem as the following online
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set cover instance, where (i) the elements are the tree-edges, (ii) the sets Suv correspond to the
cycles O(u,v), and (iii) an element/tree-edge e is “covered” by a set Suv if and only if e ∈ O(u,v).
By the preceding arguments, we can see that the cost of an optimal oYine solution to cover all
the cut-edges on the paths PT (r, ti) is 2OPT. Hence, by the polylogarithmic competitiveness of
the online set cover algorithm of Alon et al. [4], we would get an online 2-edge-connectivity
algorithm with polylogarithmic guarantees. In what follows, we formalize this intuition, and
generalize it to the setting of kECND.

2.4.5 A Small Collection of Covering Cycles

In this section, we show how we can augment connectivity (from, say, l to l+1) for a demand pair
{si, ti} by showing that all its minimal cuts can be covered by a small collection of fundamental
cycles (w.r.t the base tree T ) of low cost. For the case when l = 1, this is just the set cover instance
outlined in the previous section. Before we state our Cut Cover Theorem, we begin with some
notation that will be useful for the rest of this section.

Notation: Base Cycles. Let G be a backboned graph that is an instance of the kECND problem
with demand set D, and let T be the base tree in G. For any edge e = (u, v) 6∈ ET , deVne the
base cycle Oe to be the fundamental cycle {e} ∪ PT (u, v) of e with respect to T .

Now, let H be a subgraph which l-edge-connects (for some l < k) the vertices si and ti for
some demand pair {si, ti} ∈ D, and suppose H also contains the base tree path PT (si, ti). The
l-edge-connectivity assumption implies there are l edge-disjoint paths from si to ti in H : denote
this set of edge-disjoint paths by Pi. Clearly, any l-cut (a set of l edges removing which would
separate si and ti inH) inH must pick exactly one edge from each path in Pi: we deVne violH(i)
to be the set of all such l-cuts.

Labeling: Consider any cut Q ∈ violH(i). Since Q is a minimal l-cut for the demand pair si-ti
in H , it must be that any end vertex of a cut edge is reachable from one of si or ti in H \Q. We
label each end vertex v reachable from si in H \Q by L (i.e., we set label(v) = L), and each end
vertex v reachable from ti by R (we set label(v) = R). Every other vertex in V (G) has a label U ;
hence all but at most 2|Q| nodes are labeled U , which we denote by a “trivial label”. Note that the
labeling of the end vertices of a cut Q depends on the subgraphH and not just the set of edges in
Q.

Theorem 2.4.3 (Cut Cover Theorem) Consider a kECND instance I , and let OPT denote any

optimal solution. LetH ⊆ G be any subgraph that l-edge-connects terminal pair {si, ti} for some

l < k, such that the base tree path PT (si, ti) ⊆ H . Then for any l-cut Q ∈ violH(i), given the

labeling of the endpoints ofQ as described above, we can Vnd an edge e = (u, v) ∈ E(OPT) such
that Oe \ Q connects some L-vertex to some R-vertex. This ensures that si and ti are connected
in (H ∪Oe) \Q.

Note that the algorithms in Section 2.4.6 and 2.4.7 depend only on the statement of the above
Cut Cover Theorem 2.4.3, so readers strapped for time can jump straight to the algorithms.

Proof Outline. The proof is by contradiction and assumes that there is no edge e s.t the base
cycle Oe can cover this cut. We Vrst give the outline of the proof, which would help in following
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the sequence of Lemmas 2.4.4–2.4.7. Suppose we delete all the edges of some minimal cut Q ∈
violH(i) from the current subgraph H . Such a cut (in particular, removing the edges Q ∩ T ) will
separate the base tree into |Q ∩ T | + 1 components (denoted by C), with si and ti belonging
to diUerent components (see Figure 2.4 for an illustration where the diUerent circles are the tree
components).

Firstly, observe that every component C ∈ C will have at least one vertex with a non-trivial
label (a vertex with a label not U ) since it has at least one edge from Q ∩ T in its boundary.
To get the main intuition behind the proof, let us make the simplifying assumption that each
component contains vertices of only one non-trivial label. If a component has its only non-trivial
labels as L-vertices, we refer to it as an L-component, and likewise R-components only contain
R-vertices.

Now, since OPT can (l + 1)-edge-connect si and ti, it means that there must exist a path
P ∗ including which would connect these 2 vertices in H . We focus on this path and traverse
it edge by edge, starting from si. Suppose we are considering the jth edge on this path, and
suppose it begins from an L-component. Then, in Lemma 2.4.4, we show that this edge must
also end in an L-component—otherwise, its base cycle would cover this cut Q. This then lets us
inductively proceed and show that each edge will always terminate in an L-component, since we
begin from si and it belongs to an L-component. Hence we would never reach ti (contained in
an R-component), which gives us the desired contradiction.

In general, it may not be the case that a component has only L or R-vertices. To handle this,
we extract out a subset of edges of the path P ∗ (called the Canonical Sequence), and argue that
the tree edges in Q ∩ T which are induced by the base cycles w.r.t the canonical sequence, will
satisfy this “consistency” property (Lemma 2.4.6). This is suXcient to push the induction through
and we would arrive at the same contradiction. We now present the complete details.

Proof: Consider a cut Q ∈ violH(i). Note that Q ∩ T 6= ∅, since by our assumption the base
tree path PT (si, ti) ⊆ H and hence the cut Q must contain some edge on it. Let the edges Q ∩ T
separate the base tree into into t ≤ l+1 components C = {C1, C2, . . . , Ct}. The terminals si and
ti must belong to diUerent components: let C(si) and C(ti) denote the components containing
them. In general, let C(v) denote the component containing vertex v. A component C ∈ C is
called a star component if it contains some vertex from PT (si, ti). We refer to the edges in Q∩ T
as portal edges. For every component C 6= C(ti) ∈ C, let the parent edge head(C) be the Vrst
portal edge on the base tree path from any vertex in C to ti; note that the component C(ti) does
not have a parent edge. Also note that for non-star components, head(C) also happens to be the
Vrst portal edge on the base tree path from any vertex in C to si.

For example, in Figure 2.4, the dashed edges are the portal edges, head(C2) is the portal edge
between C2 and C1, head(C6) is the portal edge between C6 and C5, and C1, C4, C5, C10 are the
star components.

Since each edge inQ belongs to a distinct path in Pi (Q is a minimal l-cut separating si from
ti), the end vertices of any portal edge—and indeed of any edge in Q—have distinct labels from
the set {L,R}. For a portal edge e, say its L-vertex is its unique endpoint labeled L, and its other
endpoint is its R-vertex.
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Figure 2.4: Example of the Portal Graph: circles are components, the dashed edges are portal
edges, and dotted edges are other base-tree edges.

To prove Theorem 2.4.3, we will show that there exists an edge e = (u, v) /∈ Q which lies in
an optimal solution such that Oe \Q contains a path between an L-vertex and an R-vertex in Q;
in turn, this will ensure that si and ti are connected in (H ∪ Oe) \ Q, completing the proof. For
the remainder of the proof, an edge (u, v) which satisVes this property is said to cover the cut Q.

The Canonical Sequence: Since si and ti can be k-edge-connected in G, there must be a si-ti
path P ∗ contained in the optimal kEC subgraph with P ∗ ∩ Q = ∅. We Vrst eliminate some
“redundant” edges from P ∗ and show that among the other edges, there is one that covers Q.
First remove all edges from P ∗ that are internal to some component in C. Now consider a new
undirected graph—the component graph—whose vertex set is the collection C of components,
and there is an edge (Ci, Cj) when there is an edge (u, v) ∈ P ∗ such that u ∈ Ci and v ∈
Cj . The edges in P ∗ now correspond to a path (not necessarily simple) between C(si) and
C(ti) in the component graph. We then remove edges from P ∗ that correspond to cycles in
the component graph, and are left with a set of edges P ∗ corresponding to a simple path between
C(si) andC(ti) in the component graph. Say the edges of P ∗ in this order are 〈e1 = (u1, v1), e2 =
(u2, v2), . . . , ep = (up, vp)〉. Note that C(ui) = C(vi−1) for 2 ≤ i ≤ p; however ui need not be
the same as vi−1 in general. We refer to this resulting sequence of edges also as P ∗ and call it the
canonical sequence, and all the components C(uj) the canonical components.

For a contradiction, suppose there is no edge (u, v) ∈ P ∗ that covers the cut Q. We now
prove a set of lemmas about the canonical sequence and the labeling of the portal edges to show
that this cannot happen. Recall that each portal edge has diUerent labels from {L,R} on its
endpoints. When tracing some u-v path in the base tree T , we say some portal edge is crossed
with signature (L → R) if the endpoint labeled L is closer to u than to v in the base tree T .
Clearly, the signature of the portal edge depends on the starting vertex u and ending vertex v of
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the path.

Lemma 2.4.4 (Alternating Paths Lemma) Suppose none of the edges (u′, v′) ∈ P ∗ covers Q. For

any edge (u, v) ∈ P ∗, if the Vrst portal edge on PT (u, v) is crossed with signature (L → R),
then the Vnal portal edge on PT (u, v) is crossed with signature (R → L). Also, the portal edges
crossed along the way have alternating signatures (L→ R), (R→ L), . . ., (L→ R), (R→ L).
An analogous statement is true in the case the Vrst portal edge is crossed with signature (R→ L).

Proof: If the u-v base tree path PT (u, v) Vrst crosses a portal edge with signature (L→ R) and
also ends by crossing a portal edge with signature (L→ R), the base cycle O(u,v) would connect
the Vrst L-vertex in C(u) to the Vnal R-vertex in C(v). Moreover, the portions of O(u,v) within
C(u) and C(v) are disjoint from Q, and hence O(u,v) \Q would connect these L and R vertices,
contradicting the fact that (u, v) does not cover Q. For example, in Figure 2.5(a) we see that x
and y would be connected in O(u,v) \Q.

x

u

vy

R

R
R L

e ∈ P ∗

L

L

(a) Alternating Paths Lemma

u1v1

u2

v2

C

entry(e1)entry(e2)

exit(e2)

e1

e2

R

L

L
L

R
R

exit(e1)

(b) (u1, v1) and (u2, v2) transit C

Figure 2.5: Illustrative Vgures for the proof. Again, the dashed edges are portal edges, dotted edges
are other base-tree edges, and solid edges belong to P ∗.

Likewise, if the path PT (u, v) enters some component C through a portal edge signed (L→
R) and also exits C through an (L → R) edge, the portion of O(u,v) within the component C
would connect the entry vertex labeled R and exit vertex labeled L in O(u,v) \ Q; as a result,
including the edges of O(u,v) to H would connect si and ti (even if the edges Q are deleted) by
the deVnition of L and R-vertices. This is also a contradiction, completing the proof.

Lemma 2.4.5 (Star-Path Lemma) Suppose no (u′, v′) ∈ P ∗ covers Q. Consider the portal edges

e′1, e
′
2, . . . , e

′
s when traversing the si-ti path PT (si, ti) on the base tree T . Then the signatures of

these edges alternate (L→ R), (R→ L), . . ., (L→ R).

Proof: If we have two consecutive portal edges e′j and e′j+1 that are signed (L → R), then
we would have an L-vertex and an R-vertex, both of which lie on the path PT (si, ti), belonging
to the same (star) component C . Since we assume that H contains PT (si, ti), these two vertices
would be connected inH \Q, thus contradicting the fact that Q is itself a violated cut separating
si from ti.
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Lemma 2.4.6 (Consistency Lemma) Suppose no (u′, v′) ∈ P ∗ covers Q. Consider a component

C 6= C(ti) such that head(C)’s L-vertex belongs to C . Then, for any (u, v) ∈ P ∗, if PT (u, v)
intersects the component C , the portal edge PT (u, v) takes when entering C (if any) has its L-
vertex in C . The same is true for the portal edge PT (u, v) takes when exiting C (if any). An

analogous statement holds if head(C)’s R-vertex is contained in C .

Proof: Let entry(u, v) and exit(u, v) denote the portal edges used by PT (u, v) to enter and exit
C respectively if we traverse PT (u, v) from u to v. For an edge (x, y) ∈ P ∗, we say (x, y) transits
a component C if PT (x, y) intersects C , but neither x nor y belong to C . (see Figure 2.5(b) for an
example.)

We Vrst consider the case when C is not a star component and is a canonical component;
the proof for the C not being canonical is only simpler and we later consider C being a star
component.

Let 〈e′1, e
′
2, . . . , e

′
a〉 ⊆ P ∗ be the edges in P ∗ which transit C (in that order) before some

edge e1 ∈ P ∗ has an endpoint in C . (Such an edge e1 exists because we have assumed that C
is a canonical component.) The subsequent edge e2 ∈ P ∗ exits C , and let 〈e′′1, e

′′
2, . . . , e

′′
b 〉 ⊆ P ∗

be the following edges that transit C . Since C is not a star component, entry(e′1) and exit(e′′b )
must be the edge head(C), which by the assumption of the lemma has its L-vertex in C . This is
because, if we shrink all the components and trace the path taken by P ∗ along the tree formed
by just the portal edges in Q ∩ T , the Vrst time we visit C has to be via its head edge, by the
deVnition of head edges. Likewise, the Vnal edge to visit C must leave along the same head edge,
since eventually this path ends up in ti. Furthermore, by Lemma 2.4.4, exit(e′1) must have its
L-vertex in C as well.

Moreover, since the base path traversals are all done along the tree T , it is not hard to see
that entry(e′j+1) = exit(e′j) for 1 ≤ j < a. Inductively applying the alternating paths lemma, all
the portal edges entry(e′j) and exit(e

′
j) have their L-vertices in C . Since entry(e1) = exit(e′a), we

also get that entry(e1) has its L-vertex in C . The same inductive argument applied starting with
e′′b and working backwards shows that the entry and exit edges used by e′′j for all j, and e2 all
have their L-vertices in C . For the case when C is not a canonical component, the argument is
only simpler, since we would not have the edges e1 and e2 and have only a set of transiting edges.

Finally, when C is a star component, it is no longer true that the edge entry(e′1) is the same
as head(C). However, either C = C(si) (in which case the proof is the same as above without
any edges e′j or e1), or else entry(e

′
1)must be the head edge for the previous star component Cprev

on the si-ti path. Hence, since head(C) has its L-vertex in C , the Star-Path Lemma 2.4.5 implies
that entry(e′1) = head(Cprev) also has its L-vertex in C . Now the rest of the proof is identical to
that above.

Lemma 2.4.7 (Final Component Lemma) Suppose there is no (u′, v′) ∈ P ∗ that covers Q. For

any (u, v) ∈ P ∗ such that PT (u, v) intersects C(ti), the portal edge taken to enter C(ti) has its
R-vertex in Cti . The same is the case for the portal edge taken to exit C(ti), if any.

Proof: The proof of the lemma is very similar to that for Lemma 2.4.6. Since Cti is the Vnal
component on the path P ∗, we would not have the edges of the form e2 and e′′j (there is only
one edge in P ∗ that has an end vertex in Cti , since we have eliminated all cycles). Also, because
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e′1 is the Vrst edge in P ∗ to transit C(ti), entry(e′1) must be the head edge for the previous
star component Cprev on the si-ti path. From the Star-Path Lemma 2.4.5, we get that entry(e′1)
has its R-vertex in C(ti). By Lemma 2.4.4, exit(e′1) must have its R-vertex in C(ti) as well.
Like in the previous proof, entry(e′j+1) = exit(e′j) for 1 ≤ j < a. Inductively applying the
alternating paths lemma, all the portal edges entry(e′j) and exit(e′j) have their R-vertices in C .
Since entry(e1) = exit(e′a), we also get that entry(e1) has its R-vertex in C .

To complete the proof of Theorem 2.4.3, we argue the following.

Lemma 2.4.8 Suppose no (u′, v′) ∈ P ∗ covers Q. Then for all vertices vj belonging to P ∗ (for

1 ≤ j ≤ p), we have C(vj) 6= C(ti).

Proof: The proof is an induction on j, for 1 ≤ j ≤ p. Since C(u1) = C(si), we know that
head(C(u1)) has its L-vertex in Cu1

. By the Alternating Paths Lemma 2.4.6, we know that the
Vnal portal edge on PT (u1, v1)must have its L-vertex in C(v1). This implies that C(v1) 6= C(ti),
otherwise we would violate the Final Component Lemma 2.4.7. This establishes the base case.
Now, since C(v1) 6= C(ti), the Consistency Lemma 2.4.6 implies that head(C(v1)) must have
its L-vertex in the component C(v1). But because C(uj+1) = C(vj) for all j, we have that
head(C(u2)) must have its L-vertex in C(u2), and therefore we can proceed inductively.

But note that Lemma 2.4.8 implies that we never reach C(ti) while following the canonical
path, which contradicts the fact that P ∗ corresponds to a path between C(si) and C(ti) in the
component graph. This contradiction completes the proof, and hence implies that there must be
some edge (u, v) ∈ P ∗ that covers the cut Q.

2.4.6 Augmentation using Hitting Sets

We now show how we can use the covering property to get a low-cost augmentation. Given
an instance G, c(·) of the kECND problem, suppose we have a subgraph H such that all terminal
pairs {si, ti} are l-edge-connected inH : we now identify sets and elements such that the Hitting
Set problem exactly captures the problem of augmenting H to (l + 1)-edge-connect every si to
ti. Moreover, we want to do this in a way such that the number of sets and elements is small; if
we were allowed exponentially many sets, we could imagine each l-cut (U, V \U) that separates
si from ti to be a set, and the edges ofG\H to be the elements, such that element/edge e belongs
to the set/cut (U, V \U) if e ∈ ∂U . But this gives us too many sets, as mentioned in Section 2.4.2.

To do this more eXciently, consider this: we can imagine H already contains the base tree,
since it costs at most as much as the optimum kEC solution. Now look at the following hitting
set instance IA: for each violated l-cut Q ∈ violH(i) for a terminal pair {si, ti}, we have a set in
our instance. (Recall that now Q ⊆ E can be just a set of edges.) In case the same set of edges
Q separate several terminal pairs, we have a set for each terminal pair. For each edge e = (u, v)
in G we have an element. An element/edge e belongs to a set/cut Q if the edge e covers the cut
Q—in other words, if the base cycle Oe satisVes the property that (H ∪ Oe) \ Q connects the
terminal pair {si, ti}. The cost of an element e is simply the cost of the base cycle Oe, which is at
most 2c(e), by the properties of the backboned graph. Note that in this instance, the number of
sets is at most |D| ·ml = O(n2ml) and the number of elements is at most m. A straightforward
consequence of the Cut Cover Theorem 2.4.3 establishes the following:
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Theorem 2.4.9 (Augmentation Theorem) Given an backboned instance G, c(·) of the kECND

problem, suppose we have a subgraph H containing the base tree such that the terminal pairs

{si, ti} are l-edge-connected inH , for some l < k. Then the instance of the hitting set problem IA
created above has a solution costing at most 2 c(OPT). Furthermore, if the set of elements/edges

bought in a solution to the hitting set instance is F , then the subgraph (H ∪ (∪e∈FOe)) is a
network that (l + 1)-edge-connects every terminal pair {si, ti}.

As a warm-up, this shows that we can solve the kECND problem, and more generally
the generalized Steiner connectivity problem, on any backboned graph by starting oU with the
base tree as the 1-edge-connected network, and repeatedly applying Theorem 2.4.9 (and a good
approximation algorithm for hitting set) to augment the connectivity from l to l + 1 at cost
O(log(n2ml))c(OPT). In total, this approach gives us an approximation guarantee of

∑
l O(l logm+

log n) = O(r2max logm + rmax log n). Finally, translating this to general networks loses another
almost-logarithmic factor via Theorem 2.4.2. However, we can do better (and even do it online),
as we now show.

2.4.7 Online Algorithm using Hitting Sets

To give an online algorithm for kECND, let us consider the above proofs again. When we deVned
the hitting set instance I corresponding to the (l + 1)-augmentation problem, it appeared as if
the notion of an element/edge e hitting a set/cut Q depended on the subgraph H . However, this
is not the case: recall that the Cut Cover Theorem 2.4.3 showed that for any l-cut Q ∈ violH(i),
there exists an edge e = (u, v) ∈ OPT such that Oe \Q connects an L-vertex to an R-vertex. In
fact, if we were only given some set of edges Q̂ and some labels on its endpoints, and the theorem
gives us an edge e, then this edge e is good for all subgraphs H such that (i) PT (si, ti) ⊆ H , (ii)
Q̂ is an l-cut separating si and ti in H , and (iii) the labels are indeed the labels we would get
givenH and Q̂. Moreover, for any cutQ, once we know the L andR labels of its end vertices, we
can also identify whether an element (u, v) covers the cut Q. These are the properties we exploit
in our online algorithm.

For the online algorithm for backboned graph, we Vrst set up an instance I of the hitting
set problem:

• Universe. For each edge e ∈ E, we have an element; there are N = m elements. The cost
of element e is c(Oe) ∈ [c(e), 2c(e)].

• Sets. For each l ∈ {1, 2, . . . , (k − 1)}, we have a collection Fl of Ml ≤
(
m
l

)
2l sets, where

each set Ql is a set of l edges along with {L,R} labels on the endpoints of these edges.
Hence F = ∪lFl are all theM := O((2m)k) sets.

• Incidence. A element e = (u, v) hits a set Ql if and only if the subgraph O(u,v) \ Q
l

connects an L-vertex and an R-vertex in Ql.

Now when a terminal pair {si, ti} arrives, we Vrst buy the edges on si-ti base tree path PT (si, ti)
that have not yet been bought, and then perform a series of (k − 1) augmentations. In round l,
we feed all the minimal violated cuts with l edges in the current subgraph H along with their
{L,R} labels to the online hitting set algorithm, which results in a new subgraph with increased
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connectivity. Note that the deterministic online algorithm for weighted set cover given by Alon et
al. [4] would be O(logN logM) = O(k log2 m)-competitive on this hitting set instance as well.
Formally, the algorithm is presented below.

Algorithm 1 OnlineAlg(D) for online kECND on backboned graphs

1: let H ← ∅.
2: set up the instance I of online hitting set.
3: for each terminal pair {si, ti} that arrives do
4: let H ← H ∪ PT (si, ti)
5: for l = 1 to k − 1 do
6: while {si, ti} not l + 1-edge-connected in H do

7: Vnd some violated l-cut Q between si and ti in H and its labeling w.r.t. H
8: feed (Q, labeling) to online hitting set algorithm; let its output be F ⊆ E
9: let H ← H ∪ (∪e∈FOe)

Theorem 2.4.10 The algorithmOnlineAlg is has a competitive ratio ofO(k log2 m) for the kECND
problem on backboned graphs.

Proof: The proof essentially reiterates the aforementioned facts. Consider the case where τ
terminals have arrived, and letOPT be an optimal oYine network k-edge-connecting the demand
pairs {si, ti}i≤τ . Clearly, the total cost spent in Step 4 in buying base tree paths is at most c(OPT).
Moreover, since for each request we feed the online algorithm, there is an element/edge e ∈ OPT

that hits it (Theorem 2.4.3), the optimal oYine cost to hit all our requests is at most 2c(OPT).
(The factor 2 arises because we buy Oe with cost at most 2c(e), even though OPT may only buy
e.) Hence, from the O(logM logN)-competitiveness of the online hitting set algorithm, we get
O(k log2 m)-competitiveness for our online algorithm.

Combining Theorem 2.4.10 with Theorem 2.4.2 (from the discussion in Section 2.4.3), we
immediately get:

Corollary 2.4.11 (Result for General Graphs) There is an Õ(k log2 m log n)-competitive ran-

domized online algorithm for the kECND problem on general graphs.

2.5 Two-Stage Stochastic SNDP On General Graphs

We now brieWy explain how online algorithms lead to algorithms in the stochastic setting almost
immediately. The main concept towards understanding this is the notion of strict cost-sharing
schemes. Indeed, the work of Gupta et al. [64] shows the following result, stated informally.
Suppose an algorithm for the deterministic instance can apportion its total solution cost (i.e.,
assign the so-called cost shares) among the diUerent vertices of the demand set D, such that
it is always possible, for any v ∈ D, to augment the algorithm’s solution on input D \ {v}
using a cheap solution of cost at most the “cost share of v”. Then, they provide a black-box
procedure to use such an algorithm for handling uncertain input demands. Intuitively, such a
scheme assigns, to each demand, the fraction of the total cost of the algorithm’s solution, that is
devoted to satisfying that particular demand. We now provide the more formal deVnition.
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Strict Cost-Sharing Schemes

An α-approximation algorithm Alg is said to be β-strict for the kECND problem if, for each
{si, ti} ∈ D, there exist cost-shares ξ(D, {si, ti}) such that the following properties hold:

1.
∑

{si,ti}∈D
ξ(D, {si, ti}) ≤ c(OPT), where OPT is an optimal solution which k-edge-

connects all terminal pairs in D.

2. There is an eXcient augmenting procedure Augment (which takes as input a terminal pair
and outputs a set of edges) such that si and ti are k-edge-connected in Augment({si, ti})∪
Alg(D \ {si, ti}).

3. For each {si, ti} ∈ D, the total cost of edges output by Augment({si, ti}) is at most
β ξ(D, {si, ti}).

By the results of [64], it is known that if we have an α-approximation algorithm for a problem
that admits β-strict cost-shares, we can then get randomized (α + β)-approximation algorithms
for the two-stage stochastic version of the problem. In the following, we explain how an online
algorithm for a problem immediately implies strict cost-sharing schemes.

Cost-Shares from Online Algorithms

Given an α-competitive online algorithm Alg for kECND, order all possible vertex pairs in some
universal canonical ordering, and feed the actual demands D in the induced ordering to Alg.
Then for any (si, ti) ∈ D, deVne the cost-share ξ(D, {si, ti}) to be 1

α
times the increase in total

cost incurred by the online algorithm. By the α-competitiveness of the online algorithm, we have∑
i ξ(D, {si, ti}) ≤

1
α
· αOPT = OPT. Moreover, the Vxed ordering of the demands means that

the augmentation cost for a demand pair si-ti to Alg(D\{si, ti}) is at most the online algorithm’s
cost increase when we had presented si-ti to it, i.e., α · ξ(D, {si, ti}).

Therefore, by combining the results of this section with Corollary 2.4.11, we can get our main
theorem (Theorem 2.1.2) for the stochastic setting on general graphs.

2.6 Online SNDP on Metric Instances

In this section, we consider the rooted version of the online kECND problem on complete metrics,
and give a deterministic online O(log n)-competitive algorithm. Formally, we are given a com-
plete graph G with the costs on edges c(·) satisfying the triangle inequality, and a root vertex r; a
new demand vertex vi arrives on the ith day requiring k-edge-connectivity to the root r. The goal
is to buy a set of edges Ei on the ith day such that the collection ∪i

j=1Ej contains k-edge-disjoint
paths from r to vj′ for all j′ ∈ [1, i], and the cost c(∪i

j=1Ej) is competitive with the cost of an
optimal oYine subgraph which k-edge-connects the demand vertices v1, v2, . . . , vi with root r.

At a high level, our idea for the online algorithm is the following: when a new terminal
arrives, run the online algorithm for Steiner tree; for each edge (u, v) that it buys, we buy a
minimum cost set of edges to k-edge-connect u and v. While such an algorithm would indeed
return a feasible solution to the kECND instance, it may not always be O(log n)-competitive.
However, what we can show is that it would be O(log n)-competitive provided the online Steiner
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tree constructed has bounded degree (i.e., every vertex has degree bounded by a constant).

We Vrst describe our kECND algorithm assuming such a good online algorithm for the Steiner
forest problem, and then show how we can modify the algorithm of Imase and Waxman [74] to
get the properties we desire. In the following, let Alg denote the O(log n)-competitive online
algorithm for Steiner tree which always maintains a feasible solution of bounded degree, and let
Nv represent the set of the k nearest neighbors around any vertex v in G.

Algorithm 2 OnlineMetricAlg(D) for metric kECND

1: let network S ← ∅.
2: for each terminal pair si that arrives do
3: let Ei denote the set of edges bought by online Alg when we give it demand vertex si.
4: for each edge e = (u, v) ∈ Ei do
5: let S ← S ∪ {(u, x) | x ∈ Nu} ∪ {(v, x) | x ∈ Nv}
6: let S ← S ∪ min-cost matching between (Nu \Nv) and (Nv \Nu)

Theorem 2.6.1 For any set of demandsD that arrive, the network SD output by algorithmOnlineMetricAlg

is feasible to k-edge-connecting the root with the demands in D, and has cost c(SD) at most

O(log n)OPTD, where OPTD is the cost of an optimal oYine subgraph which k-edge-connects
vertices in D ∪ {r}.

Proof: We Vrst show that the network SD is indeed a feasible solution. Let the terminals in D
be s1, s2, . . . , si, indexed by their arrival times. For any j ∈ [1, i], let Fj = ∪j

l=1El denote the
Steiner subgraph bought by Alg in Step 3. Now consider some demand vertex sj ∈ D. Since Alg
is an online algorithm for Steiner tree, the subgraph Fj contains a path from sj to r. Consider
vertices u and v such that (u, v) ∈ Fj . Since we connect u toNu and v toNv and add in a perfect
matching between the vertices of (Nu \ Nv) and (Nv \ Nu) in S, it is easy to see that u and v
are k-edge-connected. Therefore, from the transitivity of edge-connectivity, we see that any two
vertices that are connected in Fj are in fact k-edge-connected, and hence SD is a feasible solution.

To bound the cost, we use the following lower bounds on the cost of an optimal solution
(similar bounds were also used by Cheriyan and Vetta [35] for node-connectivity SNDP):

• c(OPTD) ≥
1
2

∑
v∈D c(v,Nv), and

• c(Fi) ≤
O(logn)

k
c(OPTD).

Let us explain why these are true: In any feasible solution, each terminal has to connect to at
least k distinct neighbors. So if we add up the cost of some k outgoing edges from each vertex,
the sum should be at most 2c(OPTD) since we can include each edge in OPTD at most twice.
This gives us the Vrst bound, since c(v,Nv) is at most the sum of the costs on some k outgoing
edges. For the second bound, consider the optimal fractional solution to the LP relaxation for the
rooted kECND problem on demand set D; clearly the cost of the fractional solution is at most
c(OPTD). Now, if we scale the fractional solution by a factor of k, we obtain a feasible fractional
solution for the Steiner tree LP on demand set D ∪ {r} of cost at most 1

k
c(OPTD). But now

because the LP for the minimum cost Steiner tree problem (which is a special case of SNDP) has
a constant integrality gap, we get that the cost of an optimal oYine Steiner tree feasible to the
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demand set D is at most 2
k
c(OPTD). The second inequality then follows as a consequence of the

O(log n)-competitiveness of the online Steiner tree algorithm Alg.

The total cost of the subgraph SD is then

c(SD) ≤
∑

u∈Fi
c(u,Nu) +

∑
(u,v)∈Fi

(c(u,Nu) + c(v,Nv) + k · c(u, v))

≤ O(1)
∑

u∈Fi
c(u,Nu) + k

∑
(u,v)∈Fi

c(u, v)

≤ O(log n) c(OPTD)

Here, the cost of the min-cost matching between Nu and Nv was bounded by c(u,Nu) +
c(v,Nv) + k · c(u, v) by using the triangle inequality of the metric space. Also, the second in-
equality follows from the assumption that Alg always maintains a bounded-degree online Steiner
tree.

It now remains to show how to design the bounded-degree O(log n)-competitive online al-
gorithm for Steiner tree; we now consider this sub-problem.

Online Degree-Bounded Steiner Tree

Imase and Waxman [74] show that the greedy algorithm (of each new demand connecting to its
nearest vertex on the current solution) isO(log n)-competitive for the online Steiner tree problem.
The only problem is that if several terminals share a common vertex as their nearest neighbors,
the common vertex would have a very high degree in the Steiner tree we maintain. To avoid
this, the simple idea we use is to maintain a chain for each vertex v, and connect these terminals
(which would have otherwise connected to the common vertex v) to the end of the chain instead.
Because the graph is a complete metric, this would allow us to bound the cost of the chain by
the cost of the star around each vertex v, and hence let us maintain a low-cost degree bounded
solution. In the following, let GreedySteiner denote the online greedy algorithm for the Steiner
tree problem.

Algorithm 3 LowDegAlg(D) for bounded-degree online Steiner tree

1: let network S ← ∅; deVne a chain Cv ← ∅ for each v ∈ V .
2: for each terminal vertex si that arrives do
3: let (v, si) denote the edge bought by GreedySteiner when we give it demand vertex si.
4: if Cv = ∅ then
5: set S ← S ∪ (v, si); add si to the chain Cv

6: else

7: let v′ be the tail of the chain Cv; set S ← S ∪ (v′, si) and add si to the end of the chain
Cv.

Theorem 2.6.2 The network SD output by algorithm LowDegAlg is feasible to the online Steiner

tree problem on demand set D, and has cost c(SD) at most O(1)c(GreedySteiner(D)). Further-
more, the degree of each vertex in SD is at most 3.

Proof: We Vrst show that the algorithm outputs a feasible solution. Consider a newly arrived
vertex si, and let (v, si) denote the edge bought by the online algorithm GreedySteiner (recall
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that the greedy online Steiner tree algorithm buys only the edge to the nearest neighbor on the
current solution). If the chain Cv is empty when si arrives, our online algorithm LowDegAlg also
buys the edge (v, si) and therefore connects si to the root r (since v was already connected to the
root). If on the other hand Cv was non-empty, then let Cv ≡ {v1, v2, . . . , vt}, with the vertices
ordered by time of addition to the chain. Then, by the way LowDegAlg adds edges within a chain
(in step 7), we are guaranteed that the edges (v, v1), (v1, v2), . . . , (vt−1, vt) are all present in the
network SD maintained. And since the edge (vt, si) is also added to SD when si is added to the
end of the chain Cv, we see that si is connected to v, and therefore to r in SD. This proves the
feasibility.

To bound the cost, consider a vertex v, and let the current chain be Cv ≡ {v1, v2, . . . , vt}.
Now, by the triangle inequality, the total cost of all the edges (v, v1), (v1, v2), . . . , (vt−1, vt) can
be bounded by 2

∑t
i=1 c(v, vi), which is precisely twice the total cost incurred by GreedySteiner

when connecting v1, v2, . . . , vt to the vertex v. Therefore, the total cost of SD can be bounded by
2c(GreedySteiner(D)).

It is also easy to see that the degree of each vertex in SD is at most 3. To see why, let us
consider a vertex v and look at when edges incident at v are added in SD. There are two reasons
why such edges are added: (i) an edge (v, v′) is added when v′ arrives to the chain that v is
present in, and (ii) v can have a chain of its own. In the former case, we know that v belongs
to the chain of only one other vertex v′ (the vertex to which it was connected in GreedySteiner

when it arrived), and therefore v can have at most 2 incident edges by being present in Cv′ . In the
latter case, since it is the head, it can have at most one edge incident on it (with the vertex which
Vrst entered v’s chain).

Therefore, the network SD constructed is feasible to the online Steiner tree, has a cost com-
petitive with GreedySteiner, and the degree of each vertex is bounded by 3.

2.7 Stochastic SNDP on Metric Instances

In this section, we assume that G is a complete graph, and that the edge costs c(·) satisfy the
triangle inequality, i.e., c(u, v) ≤ c(u, w) + c(w, v) for all u, v, w ∈ V . Under this assumption,
we can improve over even our results on the online algorithm from the previous section, and
show a constant-factor approximation algorithm for the stochastic version of kECND.

Our idea proceeds as follows: we Vrst give a new O(1)-approximation algorithm for metric-
kECND, one which admits O(1)-strict cost-shares (see Section 2.5 for their deVnition and how
these cost-shares help). Such an algorithm would immediately imply constant-approximations
for the stochastic version of the problem. We remark that while better algorithms are known for
even the k-node-connected generalization of kECND [35] on metric graphs, we need to come up
with one which provably admits good cost-shares.

Constant-Factor Approximation for Metric kECND

Consider an instance G = (V,E) of kECND with terminal pairs in D; let D represent the set
of all terminals, i.e., D = ∪(si,ti)∈D{si, ti}. Call a set S ⊆ V valid if there exist a demand
(si, ti) ∈ D such that |S ∩ {si, ti}| = 1. DeVne ∂S to be the set of edges with one endpoint in S,
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and x(E ′) =
∑

e∈E′ xe. Finally, let Nv represent the set of the k nearest neighbors of vertex v in
G. The LP relaxation of the kECND problem is the following:

(LPk) minimize
∑

e∈E cexe

subject to (1) x(∂S) ≥ k ∀ valid S ⊆ V
(2) 0 ≤ xe ≤ 1, ∀ e ∈ E

Let OPT and OPTLP be optimal integral and fractional solutions to the given instance; clearly
c(OPTLP) ≤ c(OPT). Our algorithm follows the ideas used in the online algorithm, with the
following changes: instead of running the online algorithm for Steiner tree, we run the AKR

algorithm ([3]) for Steiner forest to 1-edge-connect the demand pairs in the Vrst step. The AKR
algorithm is a primal-dual algorithm for the Steiner forest problem, which when given a set of
terminal pairs D, outputs a Steiner forest of cost at most twice the cost of an optimal fractional
solution to the LP relaxation of the Steiner forest problem.

Getting back to our algorithm, in our second step, in order to get a low-degree Steiner forest,
we simply take an euler tour of the AKR solution. Finally, we k-edge-connect u and v (using
nearby neighbors) for any edge (u, v) that the AKR algorithm buys, just like in the online algo-
rithm.

Algorithm 4MetricAlg(D) for metric kECND

1: let network S ← ∅. Run the AKR algorithm on D to get forest F .

2: let F̃ ← subgraph obtained by taking Euler tour of each component of F .

3: for each edge e = {u, v} in F̃ do

4: let S ← S ∪ {{u, x} | x ∈ Nu} ∪ {{v, x} | x ∈ Nv}
5: let S ← S ∪ min-cost matching between Nu and Nv

Theorem 2.7.1 The network S output by algorithmMetricAlg k-edge-connects the terminal pairs

in D, and has cost c(S) ≤ 10 c(OPT). Furthermore, if {u, v} ∈ F , then u and v are k-edge-
connected in S.

Proof: The proof is very similar to that of Theorem 2.6.1. We begin by showing that network
S is indeed a feasible solution. Consider a terminal pair (s, t) ∈ D: since F is a feasible Steiner
forest solution forD, we know that s and t belong to the same tree in F and therefore, to the same

cycle in F̃ . We now show that any pair of vertices that lie on a cycle in F̃ are k-edge-connected

in S. Consider vertices u and v such that {u, v} ∈ F̃ . Since we connect u to Nu and v to Nv and
add in a perfect matching between the vertices of Nu \Nv and Nv \Nu in S, it is easy to see that
u and v are k-edge-connected. By transitivity of edge-connectivity, any two vertices on a cycle

in F̃ are k-edge-connected. This proves that S is a feasible solution. To bound the cost, we again
use the following lower bounds (almost identical to the ones used in the online algorithm):

• c(OPT) ≥ 1
2

∑
v∈D c(v,Nv), and

• c(F̃ ) ≤ 4
k
c(OPT).

For completeness, let us explain why these are true:
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The Vrst bound has already been established in the proof for the online algorithm in the
earlier section (proof of Theorem 2.6.1). For the second bound, consider the optimal fractional
solution to the LP relaxation for the rooted kECND problem on demand set D; clearly the cost of
the fractional solution is at most c(OPTD). Now, if we scale the fractional solution by a factor of
k, we obtain a feasible fractional solution for the Steiner forest LP on demand set D∪ {r} of cost
at most 1

k
c(OPTD). But now because the AKR for the minimum cost Steiner forest problem has a

constant approximation factor (w.r.t the optimal LP solution), we get that the cost of the solution

F is at most 2
k
c(OPTD). Making an euler tour of F to get F̃ only increases the cost by a factor

of at most 2.

The total cost of S is then

c(S) ≤
∑

u∈F̃ c(u,Nu) +
∑

{u,v}∈F̃ (c(u,Nu) + c(v,Nv) + k · c(u, v))

≤ 3
∑

u∈F̃ c(u,Nu) + k
∑

{u,v}∈F̃ c(u, v)

≤ 10 c(OPT)

In the second step, we used the fact that because each vertex has degree 2 in F̃ , the term c(u,Nu)
can appear at most twice in the latter summation

∑
{u,v}∈F̃ (c(u,Nu) + c(v,Nv) + k · c(u, v)).

Getting Strict Cost-Shares

We now show how we can get strict cost-shares for the above algorithm. As basis for our cost-
sharing scheme, we use the cost-shares associated with the AKR algorithm, as given by Fleisher
et al. [49] (We refer to this cost-sharing scheme as the FKLS analysis.).

Let FD denote the AKR solution on demand set D. The FKLS analysis deVnes the cost-
sharing functions ξ′ : E × V → R and ξ : D → R in the following manner:

(i) Each edge e ∈ FD is assigned two witness terminals w1 and w2 such that ξ′(e, w1) =
ξ′(e, w2) = ce/4. The function ξ′(e, v) is set to 0 for all v ∈ V \ {w1, w2}.

(ii) For any vertex u and an edge e not in FD, ξ′(e, u) is set to 0.

(iii) The total cost-share of a terminal pair (si, ti) is then deVned as ξ((si, ti)) =
∑

e∈FD (ξ′(e, si) + ξ′(e, ti)).

In further notation, for any edge e ∈ FD, let τe denote the time at which e was bought by the
AKR algorithm; also denote the time at which (si, ti) gets connected in FD by τi. The FKLS

analysis shows that the witnesses satisfy the following properties:

1. Consider a demand (si, ti) and any edge e ∈ FD bought at time τe ≤ τi. If neither si nor
ti is a witness for e, then e is also bought in the run of AKR (D \ (si, ti)). In particular, for
any edge e on the unique path connecting si and ti in FD, if si and ti don’t witness e, then
e ∈ FD\(si,ti).

2.
∑|D|

i=1 ξ((si, ti)) ≤
2
k
c(OPTLP(D)). Further, the solution obtained by running AKR on

D \ (si, ti) can be augmented with edges of cost O(1)ξ((si, ti)) to get a subgraph which
connects si and ti. In fact, these “augmenting” edges are those which si or ti witness.

Given that the 1-edge-connectivity problem has nice witness properties, the most natural
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thing to try would be to deVne cost-shares for k-edge-connectivity in the following way: for any
edge e that si or ti witness, the cost-share for (si, ti) includes the cost of k-edge-connecting u
and v (at most 2 c(u,Nu) + 2 c(v,Nv) + k c(u, v)). When deVned in this form, although we
would be able to augment a solution ofMetricAlg(D \ (si, ti)) to k-edge-connect si-ti by paying

O(1)× ξk((si, ti)), we cannot directly bound
∑|D|

i=1 ξ
k((si, ti)), since the quantity c(u,Nu) could

be counted several times. However, this can happen only if the degree of u in the approximate
solution is high (just like in the online algorithm). We therefore look at transforming the AKR so-
lution into a low-degree one while preserving the witness properties. (An Euler tour would get us
the low-degree tree, but it would not satisfy good witness properties we desire.)

Let FD be the forest obtained by running the AKR algorithm on demand set D. We apply
the following modiVcation step for each tree in FD. Consider a tree TD, and arbitrarily root it at
r. We now perform a reverse breadth-Vrst (bottom up) traversal, and create a modiVed solution
Fmod (= ∅ initially).

ModiVcation: Suppose we are at vertex u in our traversal: Nothing is done if it is a leaf. If it is
an internal node having degree 2, then the edge between u and it’s child is included in Fmod. If
it has degree more than 2, then we perform the following local modiVcation (u is said to be the
main vertex being altered in the step, and the edges being altered are the children edges incident
at u):

Let v1, v2, . . . , vp be an ordering of the child vertices of u ordered such that τ{u,v1} ≤
τ{u,v2} ≤ . . . ≤ τ{u,vp}. We anchor the edge {u, v1} and add it to Fmod. For every other edge
{u, vi}, we add the edge {vi, vi−1} to Fmod. The witnesses of {u, v1} remain the same as those
assigned by the FKLS algorithm, and the witnesses of the edge {vi, vi−1} in Fmod are the FKLS
witnesses of {u, vi} in FD. Note that the degree of u in Fmod is reduced to 2, whereas the degree
of u’s child vertices (which were 2 before this step) are increased by at most 1. After this step, u
would never be the main vertex being altered in any step meaning that it’s degree will be at most
3 in Fmod.

u

v1 v2 v3 v1 v2 v3vp vp

F Fmod

u

Figure 2.6: A step in the modiVcation: u is the main vertex being altered

This local modiVcation is performed in a reverse breadth Vrst fashion. It is easy to see that
we obtain a forest whose cost is at most twice the cost of the AKR solution. Further, each vertex
has degree at most 3 and each edge has at most 2 witnesses.

Lemma 2.7.2 The forest Fmod created by the above modiVcation is such that the cost c(Fmod) is
at most 2c(FD), and any vertex has degree at most 3 in Fmod. Furthermore, there exists witness

deVnitions such that the following properties hold.
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(i) If Wi is the set of edges in Fmod for which either si or ti is a witness, then for any edge

{u, v} in the unique path connecting si and ti in FD, u and v remain connected in the

subgraphWi ∪ FD\(si,ti), where FD\(si,ti) is the forest returned by AKR(D \ (si, ti)).

(ii) At most 2 terminals witness any edge in Fmod.

Proof: The cost and degree bound follow directly as a consequence of the way our modiVcation
algorithm worked. We now prove the witness properties by showing that u and v are in fact
connected by a path comprising of a sequence of edges inWi followed by an edge which belongs
to FD\(si,ti). Consider the stage in the alteration procedure when {u, v} is being altered. One of
u or v has to be the main node being altered. Without loss of generality, we assume that u is the
vertex being altered. Two cases are to be considered:
Case (1): {u, v} is not witnessed by {si, ti}: Since {u, v} lies on the unique si-ti path in FD, we
know that τ{u,v} ≤ τi. Therefore, by the Vrst property of the FKLS analysis, this edge will be
bought by the AKR algorithm when run on D \ (si, ti), and therefore u and v are connected in
FD\(si,ti) ⊆ Wi ∪ FD\(si,ti).
Case (2): {u, v} is witnessed by one of {si, ti}. Recall that we had assumed that u is main the
vertex being altered. In the case that {u, v} was the edge being anchored, we know that {u, v} is
present in the modiVed tree Fmod and has the same witnesses as before, meaning {u, v} ∈ Wi ⊆
Wi∪F

D\(si,ti). If {u, v} was not the edge being anchored, let v1, v2, . . . , vp be the ordering of the
child vertices of u chosen by the alteration procedure. Note that v ∈ {v2, v3, . . . , vp}. Without
loss of generality, let v be vq. Also, let r be the largest index such that 1 ≤ r < q and that {u, vr}
is not witnessed by either si or ti. There are two cases to be considered.

1. If such an r does not exist: it means that each of the edges {u, v1}, {u, v2}, . . . , {u, vq}
are witnessed by si or ti, and therefore {u, v1}, {v1, v2}, . . . , {vq−1, vq} all belong to Wi,
meaning that u and v are connected in Wi ∪ FD\(si,ti).

2. If such an r exists: we know that each of the edges {u, vr+1}, . . . , {u, vq} are witnessed
by si or ti—this means that each of the edges {vr, vr+1}, . . . , {vq−1, vq} are inWi. Further,
by the way we ordered the children of u, it is clear that τ{u,vr} ≤ τ{u,vq} ≤ τi. The latter
inequality is because of the fact that {u, vq} is on the unique path connecting si and ti, and
therefore cannot be bought after si and ti are connected. Hence, by property 1 of the FKLS
algorithm, we know that {u, vr} is bought in the run of AKR(D\ (si, ti)). Therefore, u and
v are connected in Wi ∪ FD\(si,ti).

This proves the desired witness properties, and hence completes the proof.

We are now ready to deVne the O(1)-strict cost-shares for this problem.

Cost Shares: For each terminal pair (si, ti), we set its cost-share to be

ξk((si, ti)) =
∑

{u,v}∈Wi

(2 c(u,Nu) + 2 c(v,Nv) + k c(u, v))

Recall that Wi is the set of edges which either si or ti witness in Fmod. Since each vertex in
Fmod has degree at most 3 and each edge e has at most 2 witnesses, we get

∑
i ξ

k((si, ti)) ≤∑
u∈D 12 c(u,Nu) + 2k

∑
e∈Fmod c(u, v) ≤ 32 c(OPT(D)). To show that these cost-shares are
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O(1)-strict, we also need to give an algorithm which can augment edges of cost ξk((si, ti)) to a
subgraph returned by MetricAlg(D \ (si, ti)) in order to k-edge-connect si and ti.

Augmentation Algorithm: Augment ((si, ti)): For all {u, v} ∈ Wi, buy the set of edges of
minimum cost to k-edge-connect u and v.

Analysis: From Lemma 2.7.2, we know that if an edge {u, v} lies on the unique path connecting si
and ti in F

D, then u and v are connected inWi∪F
D\(si,ti). Now consider any edge {u′, v′} ∈ Wi∪

FD\(si,ti). If {u′, v′} is inWi, then the augmentation algorithm would k-edge-connect the vertices
u′ and v′. If it is in FD\(si,ti), then from Theorem 2.7.1, MetricAlg(D \ (si, ti)) would k-edge-
connect u′ and v′. Hence, each edge {u′, v′} on the u−v path contained inWi∪F

D\(si,ti) is such
that u′ and v′ are k-edge-connected in Augment((si, ti))∪MetricAlg(D\(si, ti)). Therefore, from
transitivity of edge-connectivity, we get that si and ti are k-edge-connected in Augment((si, ti))∪
MetricAlg(D\(si, ti)). This, and the fact that the cost of the augmenting edges to k-edge-connect
si-ti is at most ξk((si, ti)), establish the O(1)-strict cost-shares for Algorithm MetricAlg. The
following theorem therefore follows.

Theorem 2.7.3 The algorithm MetricAlg permits O(1)-strict cost-shares for kECND, implying

O(1) approximations for the two-stage stochastic kECND problem on metric instances.

2.8 Conclusion

In this chapter, we considered the SNDP problem from the models of online and two-stage
stochastic optimization. We presented the Vrst non-trivial algorithms with polylogarithmic com-
petitive and approximation ratios respectively. An interesting open problem that arises from
this is that of designing online algorithms for the SNDP problem with vertex-connectivity re-
quirements. Towards this end, following our work, Naor et al. [91] developed online (bi-criteria)
algorithms for the single-source l-vertex-connectivity problem with polylogarithmic competitive
ratio.
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Chapter 3

Stochastic Knapsack

We now move on to the setting of adaptive stochastic optimization from the point of view of
some basic scheduling problems. In this chapter, our focus will be on the Stochastic Knapsack

problem, which is perhaps the simplest single-machine scheduling problem. Subsequent chapters
generalize this problem in two very diUerent but substantial ways.

Deterministic Knapsack. In the basic Knapsack problem, we are given a set of items/jobs, each
with a size and reward, and a Knapsack of capacity B. The goal is to pick a collection of items
whose size add up to at mostB, and whose total reward is maximized. This fundamental problem
is a classical problem in all of optimization, and has received much attention from various Velds of
study owing to both its simplicity as well as practical applicability. From a complexity perspective,
the problem is NP-complete [51], but we know extremely good approximation algorithms known
as FPTASs, i.e., those that return solutions with proVt at least (1 − ε)OPT and whose running
time is polynomial in n and 1/ε.

The main focus of this chapter is, however, the following more general question: what if the
sizes and rewards are random variables, and the algorithm only knows the distributions up front,
and can only Vgure out the size (or reward) of an item/job only when it has been processed. In
other words, can we approximate the Stochastic Knapsack problem just as well as we can, the
deterministic problem?

Basic Stochastic Knapsack. The Stochastic Knapsack problem has garnered much attention in
the recent past both from the practical and theoretical points of view, starting with the work of
Dean et al. [41]. From the practical side, since they model the task of designing policies that can
handle uncertainty in the job parameters, the common belief is that the algorithmic techniques
developed could be useful in designing OS schedulers, real-time systems, etc. From the theoretical
side, they introduce new challenges at all stages of algorithm design. Firstly, the optimal solution
itself might require exponential size to describe (since it could be a complete decision tree, taking
diUerent actions for diUerent random outcomes of the jobs). Secondly, our algorithm may also
have to be adaptive (or else we need to bound the adaptivity gap to restrict our attention on
designing non-adaptive solutions), and Vnally we would need to compare the expected proVt of
our (possibly adaptive) algorithm with that of an optimal (adaptive) algorithm. We note that the
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disparities over set of issues to tackle means that solution techniques for solving these adaptive
stochastic optimization problems have a very diUerent theme when compared to those for the
two-stage stochastic problems.

While we now know good constant-factor approximations for the Stochastic Knapsack prob-
lem [18, 19, 41], all these algorithms work under two strong assumptions: (i) the (random) reward
of a job is independent of its (random) size, and (ii) the algorithm cannot preempt or cancel
jobs which are taking too long to complete. There are very simple (and often-arising) examples
which do not have the independence property: for example, think of each stochastic job as being
a randomized algorithm. Then, clearly its running time is a random variable, and so its resul-
tant utility (or correctness probability). Moreover, these quantities are directly dependent on the
internal coin-tosses of the algorithm, and are therefore correlated with each other. In a com-
pletely diUerent setting, what if each random job requires delivering diUerent articles at diUerent
places on a metric. Then depending on the traXc patterns, both the time, as well as the reward
(which could be the number of articles successfully delivered) are random variables, and they are
correlated with each other.

Likewise, the second assumption is also crucial in case the jobs have very large variance in
their running times. In such cases, there could be tremendous advantage by having the ability
to cancel jobs, as the following example illustrates. Consider the setting where there are N jobs.
Each job has a size of either 1 w.p 1/2 or N w.p 1/2, and has a Vxed reward of 1. The Knapsack
budget is N . Then, in this case, notice that if the algorithm cannot cancel a job, then it can only
get an expected reward of O(1). This is because, for the algorithm to get a reward of i jobs,
all of them must Vnish with size 1 (which happens with probability 1/2i). A simple calculation
then shows that the expected reward is at most a small constant. However, in the setting where
cancellations are allowed, the algorithm can simply cancel a job if it runs for 1 unit of time but
has not completed by itself. In this manner, our algorithm can schedule all the jobs, and gets a
proVt from each of them with probability 1/2, giving us a total expected reward of N/2.

General Stochastic Knapsack. Motivated by the above-mentioned reasons, we look at the gen-
eral version of the Stochastic Knapsack problem. In this problem, we are given a collection of
jobs, each equipped with a distribution over (size, reward) pairs. The goal is to adaptively sched-
ule these jobs so as to maximize the expected reward of all the jobs that have been successfully
scheduled within a time budget B. The algorithm gets to know the actual size/reward of a job
only when it completes. There are two variants within this basic framework. In the Vrst one, the
algorithm can’t arbitrarily preempt jobs or even prematurely cancel jobs during their execution,
i.e., its decision to schedule a job is irrevocable. In the second variant, the algorithm has the
power to prematurely cancel or preempt jobs during execution. However, in both variants, the
algorithm can take adaptive decisions on which jobs to run when, based on how the randomness
has instantiated.

3.1 Our Results

We prove the following results in this thesis. Our Vrst theorem concerns with the approximability
(and adaptivity gap) of the basic correlated Stochastic Knapsack problem in the model when job
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cancellations are not allowed.

Theorem 3.1.1 There is a polynomial-time (non-adaptive) randomized algorithm for the Stochas-

tic Knapsack problem with correlated rewards, which obtains an expected reward of at least
1
8
OPT, where OPT is the expected reward of an optimal adaptive algorithm.

We then extend this result to the model of the problem where the jobs can be prematurely
canceled, e.g., if they run long durations without completing. There are some simple examples
which show that the expected reward can be larger by an arbitrary factor in this model over the
former (see Section 3.4.1).

Theorem 3.1.2 For the Stochastic Knapsack problem with correlated reward and cancellations,

there is a polynomial-time (non-adaptive) randomized algorithm which obtains an expected re-

ward of at least 1
16
OPT, where OPT is the expected reward of an optimal adaptive algorithm.

The subsequent chapter on MAB’s will cover a much more general model which even cap-
tures job preemptions (i.e., switching between jobs) and shows a constant-approximation for that
version as well.

3.2 Related Work

Stochastic scheduling problems (in fact, even those with correlated rewards) have been long stud-
ied since the 1960s (e.g., [20, 38, 82, 92]); however, there are fewer papers on approximation algo-
rithms for such problems. These problems were Vrst studied from an approximations perspective
in an important paper of Dean et al. [42] (see also [40, 41]). They considered the Stochastic Knap-
sack problem. Via an LP relaxation and a rounding algorithm, they gave non-adaptive solutions
with expected rewards that are (surprisingly) within a constant-factor of the best adaptive ones,
resulting in a constant adaptivity gap (also a notion they introduced). However, the results re-
quired that (a) the random rewards and sizes are independent of each other, and (b) once an item
was placed, it can not be prematurely cancelled.

Kleinberg et al. [81], and Goel and Indyk [53] consider stochastic Knapsack problems with
chance constraints: Vnd the max-proVt set which will overWow the Knapsack with probability at
most p. However, their results hold for deterministic proVts and speciVc size distributions. The
problem of minimizing average completion times with arbitrary job-size distributions was studied
by [90, 97]. The work most relevant to us is that of Dean, Goemans and Vondrák [40, 41, 42] on
Stochastic Knapsack and packing; apart from algorithms (for independent rewards and sizes),
they show the problem to be PSPACE-hard when correlations are allowed. [27] study stochastic
Wow problems. Finally, the recent work of Bhalgat et al. [17, 19] presents a PTAS but violate the
capacity by a factor (1 + ε); they also get improved guarantees when there are no violations.

3.3 Chapter Roadmap

In the following section, we present an overview of why previous techniques don’t work, and
what our new technical contributions are. Then in Section 3.5, we present our algorithm for the
case when cancellations are not allowed. Finally, we extend this to the setting where cancellations
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are allowed in Section 3.6. Finally, in Sections 3.7-3.8, we furnish complete details of the omitted
proofs from the main sections.

3.4 Techniques

One reason why stochastic packing problems are more diXcult than deterministic ones is that,
unlike in the deterministic setting, we cannot simply take a solution with expected reward R∗

that packs into a Knapsack of size 2B and get one with reward Ω(R∗) whilst Vtting within the
budget of B (by appropriately sub-selecting some items). In fact, in stochastic settings, there are
examples where a budget of 2B can fetch much more reward than what a budget of size B can
(see Section 3.4.2 below).

The work of Dean et al. [40, 42] assumes that the reward of an item is independent of its size.
Moreover, their model does not consider the possibility of canceling items in the middle. These
assumptions simplify the structure of the optimal (adaptive) decision tree and make it possible to
formulate a Knapsack-style LP which captures even adaptive optimal solutions, and subsequently
round it. We present their high-level idea, both for completeness and the fact that our techniques
build on theirs.

max
∑

i E[ri] · xi (LPDGV)∑
i xi · E[min(Si, B)] ≤ 2B (3.1)

xi ∈ [0, 1] ∀i (3.2)

Above, the variable xi ∈ [0, 1] indicates that item i is included in the Knapsack; Si de-
notes the random variable for the size of item i, and E[ri] denotes the expected reward if item i
completes successfully within the budget of B. Intuitively, their proof proceeds by showing that
x∗
i = P [OPT inserts item i into the Knapsack ] is a feasible solution for the above LP, and that

it has value at least E [OPT]. Notice that, unlike deterministic problems where showing that an
LP is feasible is typically a trivial argument, it is not as immediate in the stochastic setting, be-
cause the LP we write uses expected values, whereas OPTdeals with the actual distributions. In
other words, it would be a misnomer to call the aforementioned LP a relaxation, since it actually
strengthens the problem by assuming that the random variables are replaced by their expecta-
tions.

Once this has been established, we can use the fact that the Knapsack LP is almost integral,
and therefore argue that OPTis, essentially, not adaptive — that is, it can decide on the jobs to
include in the Knapsack regardless of how the previous’ jobs sizes turned up. This also gives
them a simple non-adaptive algorithm which performs as well as the best adaptive solution (up
to constant-factors).

However, the above LP breaks down in the face of correlations or cancellations. The follow-
ing two sections gives a couple of examples illustrating why.
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3.4.1 Badness Due to Cancellations

We Vrst observe that the LP relaxation for the StocK problem used in [42] has a large integrality
gap in the model where cancellations are allowed, even when the rewards are Vxed for any item.
This was also noted in [40]. Consider the following example: there are n items, every item
instantiates to a size of 1 with probability 0.5 or a size of n/2 with probability 0.5, and its reward
is always 1. Let the total size of the Knapsack be B = n. For such an instance, a good solution
would cancel any item that does not terminate at size 1; this way, it can collect a reward of at
least n/2 in expectation, because an average of n/2 items will instantiate with a size 1 and these
will all contribute to the reward. On the other hand, the LP from [42] has value O(1), since the
mean size of any item is at least n/4. In fact, any strategy that does not cancel items will also
accrue only O(1) reward.

3.4.2 Badness Due to Correlated Rewards

We next present an example of Stochastic Knapsack (where the reward is correlated with the
actual size) for which the existing LP formulations for StocK (and even more generalMAB prob-
lems) all have a large integrality gap.

Consider the following example: there are n items, every item instantiates to a size of 1 with
probability 1−1/n or a size of n with probability 1/n, and its reward is 1 only if its size is n, and
0 otherwise. Let the total size of the Knapsack be B = n. Clearly, any integral solution can fetch
an expected reward of 1/n — if the Vrst item it schedules instantiates to a large size, then it gives
us a reward. Otherwise, no subsequent item can be Vt within our budget even if it instantiates to
its large size. The issue with the existing LPs is that the arm-pull constraints are ensured locally,
and there is one global budget. That is, even if we play each arm to completion individually, the
expected size (i.e., number of pulls) they occupy is 1 · (1 − 1/n) + n · (1/n) ≤ 2. Therefore,
such LPs can accommodate n/2 items, fetching a total reward of Ω(1). This example brings to
attention the fact that all these item are competing to be pulled in the Vrst time slot (if we begin
an item in any later time slot it fetches zero reward), thus naturally motivating our time-indexed
LP formulation in Section 3.6.1.

In fact, the above example also shows that if we allow ourselves a budget of 2B, i.e., 2n in
this case, we can in fact achieve an expected reward of O(1) (much higher than what is possible
with a budget of B) — keep playing all items one by one, until one of them does not step after
size 1 and then play that to completion; this event happens with probability Ω(1).

3.4.3 Intuition behind our LP

For the (correlated) Stochastic Knapsack problem, the main issue is that the earlier LPs do not
capture the case when all the items have high contention, i.e., they may all want to be played early
in order to collect a huge proVt from their large sizes. We resolve these issues in the following
manner. To handle the issues of contention, we formulate a global time-indexed formulation for
Knapsack that forces the LP solution to commit each item to begin at a time, and places constraints
on the maximum expected reward that can be obtained if the LP begins an item at a particular
time. We also additionally add a family of consistency constraints for each sub-Knapsack of sizes
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in {1, 2, . . . , B}. While these are completely redundant for the problem without correlations,
they are crucial in resolving the contention issue. Incorporating item cancellations into Stochastic
Knapsack can be done by adapting the Wow-like LPs from earlier works on MABs.

3.5 Correlated Stochastic Knapsack without Cancellation

We begin by considering the Stochastic Knapsack problem (StocK), when the item rewards may
be correlated with its size. In this section, we do not allow item cancellations prematurely, i.e.,
once the algorithm commits to running an item, it has to wait for the item to complete. As
mentioned earlier, this generalizes the problem studied by Dean et al. [41] who assume that the
rewards are independent of the size of the item.

3.5.1 Problem DeVnitions and Notation

We are given a knapsack of total budget B and a collection of n stochastic items. For any item
i ∈ [1, n], we are given a probability distribution over (size, reward) pairs speciVed as follows: for
each integer value of t ∈ [1, B], the tuple (πi,t, Ri,t) denotes the probability πi,t that item i has a
size t, and the corresponding reward isRi,t; The interpretation forRi,t is the conditional expected
reward of item i given that its size is t. Note that the (size, reward) pairs for two diUerent items
are still independent of each other.

An adaptive algorithm can take the following actions at the end of each timestep;

(i) an item may complete at a certain size (giving us the corresponding reward), and the algo-
rithm may choose a new item to start, or

(ii) the knapsack becomes full, at which point the algorithm stops, and the item being processed
does not fetch any reward.

The objective is to maximize the total expected reward obtained from all completed items.

3.5.2 LP Relaxation

The LP formulation in [41] was (essentially) a knapsack LP where the sizes of items are replaced
by the expected sizes, and the rewards are replaced by the expected rewards. While this was
suXcient when an item’s reward is Vxed (or chosen randomly but independent of its size), we
showed an example in Section 3.4.2 where their LP (and in fact, the class of more general LPs
used for approximating MAB problems) have a large integrality gap. Moreover, as mentioned
in Section 3.4, the reason why local LPs don’t work is that there could be high contention for
being scheduled early (i.e., there could be a large number of items which all fetch reward if they
instantiate to a large size, but these events occur with low probability). In order to capture this
contention, we write a global time-indexed LP formulation.

The variable xi,t ∈ [0, 1] indicates that item i is scheduled at (global) time t; Si denotes the
random variable for the size of item i, and ERi,t =

∑
s≤B−t πi,sR

′
i,s captures the expected reward

that can be obtained from item i if it begins at time t; (no reward is obtained for sizes that cannot
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Vt the (remaining) budget.)

max
∑

i,t ERi,t · xi,t (LPNoCancel)∑
t xi,t ≤ 1 ∀i (3.3)∑
i,t′≤t xi,t′ · E[min(Si, t)] ≤ 2t ∀t ∈ [B] (3.4)

xi,t ∈ [0, 1] ∀t ∈ [B], ∀i (3.5)

While the size of the above LP (and the running time of the rounding algorithm below) poly-
nomially depend on B, i.e., pseudo-polynomial, it is possible to write a compact (approximate)
LP and then round it; details on the polynomial time implementation appear in Section 3.7.1.

Notice the constraints involving the truncated random variables in equation (3.4): these are
crucial for showing the correctness of the rounding algorithm StocK-NoCancel. Furthermore, the
ideas used here will appear subsequently in the MAB algorithm later; for MAB, even though we
can’t explicitly enforce such a constraint in the LP, we will end up inferring a similar family of
inequalities from a near-optimal LP solution.

Lemma 3.5.1 The formulation LPNoCancel is valid for the StocK problem when cancellations are

not permitted, and has objective value OPTLP ≥ OPT, where OPT is the expected proVt of an

optimal adaptive policy.

Proof: Consider an optimal policyOPT and let x∗
i,t denote the probability that item i is scheduled

at time t. We Vrst show that {x∗} is a feasible solution for the LP formulation LPNoCancel. It is easy
to see that constraints (3.3) and (3.5) are satisVed. To prove that (3.4) are also satisVed, consider
some t ∈ [B] and some run (over random choices of item sizes) of the optimal policy. Let 1sched

i,t′

be indicator variable that item i is scheduled at time t′ and let 1size
i,s be the indicator variable

for whether the size of item i is s. Also, let Lt be the random variable indicating the last item
scheduled at or before time t. Notice that Lt is the only item scheduled before or at time t whose
execution may go over time t. Therefore, we get that

∑

i 6=Lt

∑

t′≤t

∑

s≤B

1
sched
i,t′ · 1

size
i,s · s ≤ t.

Including Lt in the summation and truncating the sizes by t, we immediately obtain

∑

i

∑

t′≤t

∑

s

1
sched
i,t′ · 1

size
i,s ·min(s, t) ≤ 2t.

Now, taking expectation (over all of OPT’s sample paths) on both sides and using linearity of
expectation we have ∑

i

∑

t′≤t

∑

s

E
[
1
sched
i,t′ · 1

size
i,s

]
·min(s, t) ≤ 2t.

However, because OPT decides whether to schedule an item before observing the size it
instantiates to, we have that 1sched

i,t′ and 1
size
i,s are independent random variables; hence, the LHS
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above can be re-written as
∑

i

∑

t′≤t

∑

s

P[1sched
i,t′ = 1 ∧ 1

size
i,s = 1]min(s, t)

=
∑

i

∑

t′≤t

P[1sched
i,t′ = 1]

∑

s

P[1size
i,s = 1]min(s, t)

=
∑

i

∑

t′≤t

x∗
i,t′ · E[min(Si, t)]

Hence constraints (3.4) are satisVed. Now we argue that the expected reward of OPT is equal
to the value of the solution x∗. Let Oi be the random variable denoting the reward obtained by
OPT from item i. Again, due to the independence between OPT scheduling an item and the size
it instantiates to, we get that the expected reward that OPT gets from executing item i at time t
is

E[Oi|1
sched
i,t = 1] =

∑

s≤B−t

πi,sRi,s = ERi,t.

Thus the expected reward from item i is obtained by considering all possible starting times for i:

E[Oi] =
∑

t

P[1sched
i,t = 1] · E[Oi|1

sched
i,t = 1] =

∑

t

ERi,t · x
∗
i,t.

This shows that LPNoCancel is a valid formulation for our problem and completes the proof of the
lemma.

3.5.3 Rounding Algorithm

Now, given an optimal fractional solution, our rounding algorithm StocK-NoCancel (Algorithm 5)
is very simple: (i) pick a random start deadline for each item according to the corresponding dis-
tribution in the optimal LP solution, and (ii) play the items in order of the (random) deadlines. To
ensure that the budget is not violated, we also drop each item independently with some constant
probability.

Algorithm 5 Algorithm StocK-NoCancel

1: for each item i, assign a random start deadline Di = t with probability
x∗
i,t

4
; with probability

1−
∑

t

x∗
i,t

4
, completely ignore item i (Di =∞ in this case).

2: for j from 1 to n do

3: Consider the item i which has the jth smallest deadline (and Di 6=∞)
4: if the items added so far to the knapsack occupy at most Di space then
5: add i to the knapsack.

Notice that the rounding strategy obtains reward from all items which are not dropped and
which do not fail (i.e. they can start being scheduled before the sampled deadline Di in Step 1);
we now bound the failure probability.
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Lemma 3.5.2 For every i, P(i fails | Di = t) ≤ 1/2.

Proof: Consider an item i and time t 6= ∞ and condition on the event that Di = t. Let us
consider the execution of the algorithm when it tries to add item i to the knapsack in steps 3-
5. Now, let Z be a random variable denoting how much of the interval [0, t] of the knapsack is
occupied by previously scheduling items, at the time when i is considered for addition; since i
does not fail when Z < t, it suXces to prove that P(Z ≥ t) ≤ 1/2.

For some item j 6= i, let 1Dj≤t be the indicator variable thatDj ≤ t; notice that by the order
in which algorithm StocK-NoCancel adds items into the knapsack, it is also the indicator that j
was considered before i. In addition, let 1size

j,s be the indicator variable that Sj = s. Now, if Zj

denotes the total amount of the interval [0, t] that that j occupies, we have

Zj ≤ 1Dj≤t

∑

s

1
size
j,s min(s, t).

Now, using the independence of 1Dj≤t and 1
size
j,s , we have

E[Zj] ≤ E[1Dj≤t] · E[min(Sj, t)] =
1
4

∑
t′≤t x

∗
j,t′ · E[min(Sj, t)] (3.6)

Since Z =
∑

j Zj , we can use linearity of expectation and the fact that {x∗} satisVes LP con-
straint (3.4) to get

E[Z] ≤ 1
4

∑
j

∑
t′≤t x

∗
j,t′ · E[min(Sj, t)] ≤

t
2
.

To conclude the proof of the lemma, we apply Markov’s inequality to obtain P(Z ≥ t) ≤ 1/2.

To complete the analysis, we use the fact that any item chooses a random start time Di = t with
probability x∗

i,t/4; conditioned on this, it is added to the knapsack with probability at least 1/2
from Lemma 3.5.2; in this case, we get expected reward at least ERi,t. The theorem below follows
by linearity of expectations.

Theorem 3.5.3 The expected reward of algorithm StocK-NoCancel is at least 1
8
of OPTLP.

Proof: Let addi denote the event that item i was added to the knapsack in Step 5. Also, let Vi

denote the random variable corresponding to the reward that our algorithm gets from item i.

Clearly if item i has Di = t and was added, then it is added to the knapsack before time
t. In this case it is easy to see that E[Vi | addi ∧ (Di = t)] ≥ Ri,t (because its random size is
independent of when the algorithm started it). Moreover, from the previous lemma we have that

P(addi | (Di = t)) ≥ 1/2 and from Step 1 we have P(Di = t) =
x∗
i,t

4
; hence P(addi ∧ (Di =

t)) ≥ x∗
i,t/8. Finally adding over all possibilities of t, we lower bound the expected value of Vi by

E[Vi] ≥
∑

t

E[Vi | addi ∧ (Di = t)] · P(addi ∧ (Di = t)) ≥
1

8

∑

t

x∗
i,tRi,t.

Finally, linearity of expectation over all items shows that the total expected reward of our
algorithm is at least 1

8
·
∑

i,t x
∗
i,tRi,t = OPTLP/8, thus completing the proof.
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3.6 Correlated Stochastic Knapsack with Cancellations

In this section, we present our algorithm for Stochastic Knapsack (StocK) where we allow corre-
lations between rewards and sizes, and also allow cancellation of items. Recall that the example
in Section 3.4.1 shows that there can be an arbitrarily large gap in the expected proVt between
strategies that can cancel items and those that can’t. Hence we need to write new LPs to capture
the beneVt of cancellation, which we do in the following manner.

Consider any item i: we can create two items from it, the “early” version of the item, where
we discard proVts from any instantiation where the size of the item is more than B/2, and the
“late” version of the item where we discard proVts from instantiations of size at mostB/2. Hence,
we can get at least half the optimal value by Wipping a fair coin and either collecting rewards from
either the early or late versions of items, based on the outcome. For the Vrst kind, we make use of
the fact that contention is not really an issue (since rewards are only for small size instantiations)
and write Wow-like LPs akin to those for MAB problems [61]. For the second kind, we argue that
cancellations don’t help, and hence we can reduce it to StocK without cancellations (considered
above).

Case I: Items with Early Rewards

We begin with the setting in which only small-size instantiations of items may fetch re-
ward, i.e., the rewards Ri,t of every item i are assumed to be 0 for t > B/2. In the following
LP formulation LPS , vi,t ∈ [0, 1] tries to capture the probability with which OPT will process
item i for at least t timesteps1, si,t ∈ [0, 1] is the probability that OPT stops processing item
i exactly at t timesteps. The time-indexed formulation causes the algorithm to have running
times of poly(B)—however, it is easy to write compact (approximate) LPs and then round them;
we describe the necessary changes to obtain an algorithm with running time poly(n, logB) in
Section 3.8.1.

max
∑

1≤t≤B/2

∑
1≤i≤n vi,t ·Ri,t

πi,t∑
t′≥t πi,t′

(LPS)

vi,t = si,t + vi,t+1 ∀ t ∈ [0, B], i ∈ [n] (3.7)

si,t ≥
πi,t∑
t′≥t πi,t′

· vi,t ∀ t ∈ [0, B], i ∈ [n] (3.8)

∑
i∈[n]

∑
t∈[0,B] t · si,t ≤ B (3.9)

vi,0 = 1 ∀ i (3.10)

vi,t, si,t ∈ [0, 1] ∀ t ∈ [0, B], i ∈ [n] (3.11)

Theorem 3.6.1 The linear program (LPS) is a valid formulation for the StocK problem, and hence

the optimal valueOPTLP of the LP is at least the total expected rewardOPT of an optimal solution.

Proof: Consider an optimal solution OPT and let v∗i,t and s∗i,t denote the probability that OPT
processes item i for at least t timesteps, and the probability that OPT stops processing item i at
exactly t timesteps. We will now show that all the constraints of LPS are satisVed one by one.

1In the following two sections, we use the word timestep to refer to processing one unit of some item.
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To this end, let Ri denote the random variable (over diUerent executions of OPT) for the
amount of processing done on item i. Notice that P[Ri ≥ t] = P[Ri ≥ (t + 1)] + P[Ri = t].
But now, by deVnition we have P[Ri ≥ t] = v∗i,t and P[Ri = t] = s∗i,t. This shows that {v

∗, s∗}
satisVes these constraints.

For the next constraint, observe that conditioned on OPT running an item i for at least t
time steps, the probability of item i stopping due to its size having instantiated to exactly equal to
t is πi,t/

∑
t′≥t πi,t′ , i.e., P[Ri = t | Ri ≥ t] ≥ πi,t/

∑
t′≥t πi,t′ . This shows that {v∗, s∗} satisVes

constraints (3.8).

Finally, to see why constraint (3.9) is satisVed, consider any particular run of the optimal
algorithm and let 1stop

i,t denote the indicator random variable of the event Ri = t. Then we have

∑

i

∑

t

1
stop
i,t · t ≤ B

Now, taking expectation over all runs of OPT and using linearity of expectation and the fact
that E[1stop

i,t ] = s∗i,t, we get constraint (3.9). As for the objective function, we again consider a
particular run of the optimal algorithm and let 1proc

i,t now denote the indicator random variable
for the event (Ri ≥ t), and 1

size
i,t denote the indicator variable for whether the size of item i is

instantiated to exactly t in this run. Then we have the total reward collected by OPT in this run
to be exactly ∑

i

∑

t

1
proc
i,t · 1

size
i,t ·Ri,t

Now, we simply take the expectation of the above random variable over all runs of OPT, and
then use the following fact about E[1proc

i,t 1
size
i,t ]:

E[1proc
i,t 1

size
i,t ] = P[1proc

i,t = 1 ∧ 1
size
i,t = 1]

= P[1proc
i,t = 1]P[1size

i,t = 1 |1proc
i,t = 1]

= v∗i,t
πi,t∑
t′≥t πi,t′

We thus get that the expected reward collected by OPT is exactly equal to the objective function
value of the LP formulation for the solution (v∗, s∗).

3.6.1 Rounding Algorithm

Our rounding algorithm is very natural, and simply tries to mimic the probability distribution
(over when to stop each item) as suggested by the optimal LP solution. In order to make sure the
knapsack is not violated with constant probability, we introduce some damping in the selection
probabilities up front. Let (v∗, s∗) denote an optimal fractional solution.

Notice that while we let the algorithm proceed even if its budget is violated, we will collect
reward only from items that complete before time B. This is purely for ease of analysis. In
Lemma 3.6.2 below, we show that for any item that is not dropped in step 2, its probability
distribution over stopping times is identical to the distribution {s∗i,t}. We then use this to argue
that the expected reward of our algorithm is Ω(OPTLP).
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Algorithm 6 Algorithm StocK-Small

1: for each item i do
2: ignore i with probability 3/4 (i.e., do not schedule it at all).
3: for 0 ≤ t ≤ B/2 do

4: cancel item i at this step with probability
s∗i,t
v∗i,t
− πi,t∑

t′≥t πi,t′
and continue to next item.

5: process item i for its (t+ 1)st timestep.
6: if item i terminates after being processed for exactly (t+ 1) timesteps then
7: collect a reward of Ri,t+1 from this item; continue onto next item;

Lemma 3.6.2 Consider item i that was not dropped in step 2, Then, for any timestep t ≥ 0, the
following hold:

(i) The probability (including cancellation& completion) of stopping at timestep t for item i is
s∗i,t.

(ii) The probability that item i gets processed for its (t+ 1)st timestep is exactly v∗i,t+1

(iii) If item i has been processed for (t+ 1) timesteps, the probability of completing successfully

at timestep (t+ 1) is πi,t+1/
∑

t′≥t+1 πi,t′

Proof: The proof works by induction. For the base case, consider t = 0. Clearly, this item
is forcefully canceled in step 4 of Algorithm 6 StocK-Small (in the iteration with t = 0) with
probability s∗i,0/v

∗
i,0 − πi,0/

∑
t′≥0 πi,t′ . But since πi,0 was assumed to be 0 and v∗i,0 is 1, this

quantity is exactly s∗i,0, and this proves property (i). For property (ii), item i is processed for its
1
st timestep if it did not get forcefully canceled in step 4. This therefore happens with probability

1 − s∗i,0 = v∗i,0 − s∗i,0 = v∗i,1. For property (iii), conditioned on the fact that it has been processed
for its 1st timestep, clearly the probability that its (unknown) size has instantiated to 1 is exactly
πi,1/

∑
t′≥1 πi,t′ . When this happens, the item stops in step 7, thereby establishing the base case.

Assuming this property holds for every timestep until some Vxed value t − 1, we show that
it holds for t; the proofs are very similar to the base case. Assume item i was processed for the
tth timestep (this happens w.p v∗i,t from property (ii) of the induction hypothesis). Then from
property (iii), the probability that this item completes at this timestep is exactly πi,t/

∑
t′≥t πi,t′ .

Furthermore, it gets forcefully canceled in step 4 with probability s∗i,t/v
∗
i,t−πi,t/

∑
t′≥t πi,t′ . Thus

the total probability of stopping at time t, assuming it has been processed for its tth timestep is
exactly s∗i,t/v

∗
i,t; unconditionally, the probability of stopping at time t is hence s∗i,t.

Property (ii) follows as a consequence of Property (i), because the item is processed for its
(t+1)st timestep only if it did not stop at timestep t. Therefore, conditioned on being processed for
the tth timestep, it continues to be processed with probability 1−s∗i,t/v

∗
i,t. Therefore, removing the

conditioning, we get the probability of processing the item for its (t+1)st timestep is v∗i,t− s∗i,t =
v∗i,t+1. Finally, for property (iii), conditioned on the fact that it has been processed for its (t+1)st

timestep, clearly the probability that its (unknown) size has instantiated to exactly (t + 1) is
πi,t+1/

∑
t′≥t+1 πi,t′ . When this happens, the item stops in step 7 of the algorithm.

Theorem 3.6.3 The expected reward of algorithm StocK-Small is at least 1
8
of OPTLP.
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Proof: Consider any item i. In the worst case, we process it after all other items. Then the
total expected size occupied thus far is at most

∑
i′ 6=i 1

keep
i′

∑
t≥0 t · s

∗
i′,t, where 1

keep
i′ is the

indicator random variable denoting whether item i′ is not dropped in step 2. Here we used
Lemma 3.6.2 to argue that if an item i′ is selected, its stopping-time distribution follows s∗i′,t. Tak-
ing expectation over the randomness in step 2, the expected space occupied thus far is at most∑

i′ 6=i
1
3

∑
t≥0 t · s

∗
i′,t ≤

B
4
. Markov’s inequality implies that this is at most B/2 with probability

at least 1/2. In this case, if item i is started (which happens w.p. 1/4), it runs without violating
the knapsack, with expected reward

∑
t≥1 v

∗
i,t ·πi,t/(

∑
t′≥t πi,t′); the total expected reward is then

at least
∑

i
1
8

∑
t v

∗
i,tπi,t/(

∑
t′≥t πi,t′) ≥

OPTLP

8
.

Case II: Items with Late Rewards

Now we handle instances in which only large-size instantiations of items may fetch reward,
i.e., the rewards Ri,t of every item i are assumed to be 0 for t ≤ B/2. For such instances, we Vrst
argue that cancellation is not helpful. To see why, notice that as an algorithm processes an item
for its tth timestep for t < B/2, it gets no more information about the reward than when starting
(since all rewards are at large sizes). Furthermore, there is no beneVt of canceling an item once
it has run for at least B/2 timesteps – we can’t get any reward by starting some other item. As
mentioned earlier, we can now appeal to the results of Section 3.5 and obtain a constant-factor
approximation for the large-size instances. Finally we can combine the algorithms that handle
the two diUerent scenarios (or choose one at random and run it), and get a constant fraction of
the expected reward that an optimal policy fetches.

3.7 Proofs from Section 3.5

3.7.1 Making StocK-NoCancel Fully Polynomial

Recall that our LP relaxation LPNoCancel in Section 3.5 uses a global time-indexed LP. In order to
make it compact, our approach will be to group the B timeslots in LPNoCancel and show that the
grouped LP has optimal value within constant factor of LPNoCancel; furthermore, we show also
that it can be rounded and analyzed almost identically to the original LP. To this end, consider
the following LP relaxation:

max
∑

i

∑logB
j=0 ERi,2j+1 · xi,2j (PolyLPL)∑logB

j=0 xi,2j ≤ 1 ∀i (3.12)
∑

i,j′≤j xi,2j
′ · E[min(Si, 2

j+1)] ≤ 2 · 2j ∀j ∈ [0, logB] (3.13)

xi,2j ∈ [0, 1] ∀j ∈ [0, logB], ∀i (3.14)

The next two lemmas relate the value of (PolyLPL) to that of the original LP (LPNoCancel).

Lemma 3.7.1 The optimum of (PolyLPL) is at least half of the optimum of (LPNoCancel).

Proof: Consider a solution x for (LPNoCancel) and deVne xi1 = xi,1/2 +
∑

t∈[2,4) xi,t/2 and
xi,2j =

∑
t∈[2j+1,2j+2) xi,t/2 for 1 < j ≤ logB. It suXces to show that x is a feasible solution to

(PolyLPL) with value greater than of equal to half of the value of x.
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For constraints (3.12) we have
∑logB

j=0 xi,2j =
∑

t≥1 xi,t/2 ≤ 1/2; these constraints are there-
fore easily satisVed. We now show that {x} also satisVes constraints (3.13):

∑

i,j′≤j

xi,2j
′ · E[min(Si, 2

j+1)] =
∑

i

2j+2−1∑

t=1

xi,tE[min(Si, 2
j+1)]

2

≤
∑

i

2j+2−1∑

t=1

xi,tE[min(Si, 2
j+2 − 1)]

2
≤ 2j+2 − 1,

where the last inequality follows from feasibility of {x}.

Finally, noticing that ERi,t is non-increasing with respect to t, it is easy to see that
∑

i

∑logB
j=0 ERi,2j+1 ·

xi,2j ≥
∑

i,t ERi, t ·xi,t/2 and hence x has value greater than of equal to half of the value of x ad
desired.

Lemma 3.7.2 Let {x} be a feasible solution for (PolyLPL). DeVne {x̂} satisfying x̂i,t = xi,2j/2
j

for all t ∈ [2j , 2j+1) and i ∈ [n]. Then {x̂} is feasible for (LPNoCancel) and has value at least as

large as {x}.

Proof: The feasibility of {x} directly imply that {x̂} satisVes constraints (3.3). For constraints
(3.4), consider t ∈ [2j , 2j+1); then we have the following:

∑

i,t′≤t

x̂i,t′ · E[min(Si, t)] ≤
∑

i

∑

j′≤j

∑

t∈[2j
′
,2j

′+1)

xi,2j

2j
E[min(Si, 2

j+1)]

=
∑

i

∑

j′≤j

xi,2jE[min(Si, 2
j+1)] ≤ 2 · 2j ≤ 2t.

Finally, again using the fact that ERi,t is non-increasing in t we get that the value of {x̂} is

∑

i,t

ERi,t · x̂i,t =
∑

i

logB∑

j=0

∑

t∈[2j ,2j+1)

ERi,t

xi,2j

2j
≥

∑

i

logB∑

j=0

∑

t∈[2j ,2j+1)

ERi,2j+1

xi,2j

2j
=

∑

i

logB∑

j=0

ERi,2j+1xi,2j ,

which is then at least as large as the value of {x}. This concludes the proof of the lemma.

The above two lemmas show that the PolyLPL has value close to that of LPNoCancel: let’s now
show that we can simulate the execution of Algorithm StocK-Large just given an optimal solution
{x} for (PolyLPL). Let {x̂} be deVned as in the above lemma, and consider the Algorithm StocK-

Large applied to {x̂}. By the deVnition of {x̂}, here’s how to execute Step 1 (and hence the whole
algorithm) in polynomial time: we obtain Di = t by picking j ∈ [0, logB] with probability xi,2j

and then selecting t ∈ [2j, 2j+1) uniformly; notice that indeed Di = t (with t ∈ [2j, 2j+1)) with
probability xi,2j/2

j = x̂i,t.

Using this observation we can obtain a 1/16 approximation for our instance I in polynomial
time by Vnding the optimal solution {x} for (PolyLPL) and then running Algorithm StocK-Large

over {x̂} as described in the previous paragraph. Using a direct modiVcation of Theorem 3.5.3
we have that the strategy obtained has expected reward at least at large as 1/8 of the value of
{x̂}, which by Lemmas 3.7.1 and 3.7.2 (and Lemma 3.5.1) is within a factor of 1/16 of the optimal
solution for I .
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3.8 Proofs from Section 3.6

3.8.1 StocK with Small Sizes: A Fully Polytime Algorithm

The idea is to quantize the possible sizes of the items in order to ensure that LP LPS has polyno-
mial size, then obtain a good strategy (via Algorithm StocK-Small) for the transformed instance,
and Vnally to show that this strategy is actually almost as good for the original instance.

Consider an instance I = (π,R) where Ri,t = 0 for all t > B/2. Suppose we start
scheduling an item at some time; instead of making decisions of whether to continue or can-
cel an item at each subsequent time step, we are going to do it in time steps which are powers of
2. To make this formal, deVne instance I = (π,R) as follows: set πi,2j =

∑
t∈[2j ,2j+1) πi,t and

Ri,2j = (
∑

t∈[2j ,2j+1) πi,tRi,t)/πi,2j for all i ∈ [n] and j ∈ {0, 1, . . . , ⌊logB⌋}. The instances are

coupled in the natural way: the size of item i in the instance I is 2j iU the size of item i in the
instance I lies in the interval [2j, 2j+1).

In Section 3.6, a timestep of an item has duration of 1 time unit. However, due to the con-
struction of I , it is useful to consider that the tth time step of an item has duration 2t; thus, an
item can only complete at its 0th, 1st, 2nd, etc. timesteps. With this in mind, we can write an LP
analogous to (LPS):

max
∑

1≤j≤log(B/2)

∑
1≤i≤n vi,2j ·Ri,2j

π
i,2j∑

j′≥j πi,2j
′

(PolyLPS)

vi,2j = si,2j + vi,2j+1 ∀ j ∈ [0, logB], i ∈ [n] (3.15)

si,2j ≥
πi,2j∑

j′≥j πi,2j
′

· vi,2j ∀ t ∈ [0, logB], i ∈ [n] (3.16)

∑
i∈[n]

∑
j∈[0,logB] 2

j · si,2j ≤ B (3.17)

vi,0 = 1 ∀ i (3.18)

vi,2j , si,2j ∈ [0, 1] ∀ j ∈ [0, logB], i ∈ [n] (3.19)

Notice that this LP has size polynomial in the size of the instance I .

Consider the LP (LPS) with respect to the instance I and let (v, s) be a feasible solution for
it with objective value z. Then deVne (v, s) as follows: vi,2j = vi,2j and si,2j =

∑
t∈[2j ,2j+1) si,j .

It is easy to check that (v, s) is a feasible solution for (PolyLPS) with value at least z, where the
latter uses the fact that vi,t is non-increasing in t. Using Theorem 3.6.1 it then follows that the
optimum of (PolyLPS) with respect to (π,R) is at least as large as the reward obtained by the
optimal solution for the Stochastic Knapsack instance (π,R).

Let (v, s) denote an optimal solution of (PolyLPS). Notice that with the redeVned notion
of timesteps we can naturally apply Algorithm StocK-Small to the LP solution (v, s). Moreover,
Lemma 3.6.2 still holds in this setting. Finally, modify Algorithm StocK-Small by ignoring items
with probability 1 − 1/8 = 7/8 (instead of 3/4) in Step 2 (we abuse notation slightly and shall
refer to the modiVed algorithm also as StocK-Small) and notice that Lemma 3.6.2 still holds.

Consider the strategy S for I obtained fromAlgorithm StocK-Small. We can obtain a strategy
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S for I as follows: whenever S decides to process item i of I for its jth timestep, we decide to
continue item i of I while it has size from 2j to 2j+1 − 1.

Lemma 3.8.1 Strategy S is a 1/16 approximation for I .

Proof: Consider an item i. Let O be the random variable denoting the total size occupied
before strategy S starts processing item i and similarly let O denote the total size occupied before
strategy S starts processing item i. Since Lemma 3.6.2 still holds for the modiVed algorithm StocK-

Small, we can proceed as in Theorem 3.6.3 and obtain that E[O] ≤ B/8. Due to the deVnition
of S we can see that O ≤ 2O and hence E[O] ≤ B/4. From Markov’s inequality we obtain
that P(O ≥ B/2) ≤ 1/2. Noticing that i is started by S with probability 1/8 we get that the
probability that i is started and there is at least B/2 space left on the knapsack at this point is
at least 1/16. Finally, notice that in this case S and S obtain the same expected value from item

i, namely
∑

j vi,2j · Ri,2j
π
i,2j∑

j′≥j πi,2j
′
. Thus S get expected value at least that of the optimum of

(PolyLPS), which is at least the value of the optimal solution for I as argued previously.

3.9 Conclusions

In this chapter, we presented constant-factor approximation algorithms (and adaptivitiy gaps) for
the Stochastic Knapsack problem with correlated rewards, both in the models where preemptions
are allowed, and in that where they aren’t. Despite the progress we have made in our understand-
ing of the stochastic version of the Knapsack problem, a fundamentcal question that remains open
is that of the limits of approximation, i.e., does the (basic uncorrelated) StocK problem admit a
PTAS, or is it APX-hard? The latter result would establish a nice separation with the deterministic
Knapsack problem, which indeed admits an FPTAS. As of this writing, the best known approxi-
mation algorithm for the basic StocK problem is a factor of (2 + ε) [17].
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Chapter 4

Multi-Armed Bandits

The Multi-Armed Bandits problem (MAB) is a classical problem which draws the interest of
researchers in several areas of science (Statistics, Machine Learning, and of course, TCS) with
research dating back to the 1950s. In the basic version of theMAB problem, there are a collection
of n coins, each having some (unknown) bias of turning up heads (which counts as giving us unit
reward). We have some a priori distributional information about the diUerent bias values. At each
time, the algorithm can choose a coin to toss, and collects a reward if the coin turns up heads.
The goal is to decide on which coin to toss at each time, in order to maximize the total expected
number of heads seen over a horizon of, say, time B. Notice that the algorithm can update the
distribution of each coin’s bias to the one conditioned on the observed history, thereby learning
the true bias better over time.

The MAB problem has several diUerent forms and variants and is widely studied by the
several aforementioned Velds owing to the fact that it models the exploration-exploitation trade-
oU, i.e., an agent that simultaneously attempts to acquire new knowledge (exploration) and to
optimize its decisions based on existing knowledge (exploitation). There are many practical ap-
plications, including but not restricted to (i) clinical trials for investigating the eUects of diUerent
experimental treatments while minimizing patient losses, (ii) adaptive routing to minimizing de-
lays in a network, etc.

Since MAB aptly captures the exploration-exploitation trade-oU so well, and both the ap-
plication areas listed above require balancing the notions of reward maximization based on the
knowledge already acquired, and attempting new actions to further increase knowledge, theMAB

models are often deployed to design good policies/strategies for these problems.

As mentioned above, this problem has received much attention in many diUerent areas of
research. However, most attempts at studying the problem can be classiVed as being from an
information-theoretic point of view, i.e., how well does a particular algorithm do when compared
to the best policy in hindsight, i.e., one which knows the true bias of each coin (and therefore
simply tosses the coin with highest bias at all times). This work, however, focuses on the problem
from a computational complexity perspective: how well does an algorithm do when compared to
the best possible algorithm (which is also on an equal playing-Veld information wise). Formally,
we study the following problem.
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TheMAB Problem DeVnition. We are given a collection of n arms; each arm is associated with a
Markov Chain (given completely as input). Each state in an arm’s Markov Chain is also associated
with some reward. At each timestep, the algorithm is given the current states that each of the
Markov Chains are in, and it must decide which arm to play. The chosen arm then transitions
into a new state as dictated by the Markov Chain, and the algorithm collects the reward from
the new state. Our task is to design an adaptive algorithm which maximizes the total expected
reward it can obtain over a horizon of B plays.

Moreover, the benchmark for measuring the performance of an algorithm is the ratioE[OPT]/E[Alg],
where OPT is an optimal adaptive algorithm for the problem. Here, the individual expectations
are over the randomness inherent in the problem (e.g., the random transitions of the Markov
Chains) and possibly any randomization used by the algorithm.

While the model we study does not directly reduce to the coin-bias problem mentioned
above, the intuition on why they are related is as follows: Each arm’s Markov chain corresponds to
how our prior distribution on the bias is updated, depending on that coin turning up heads or tails.
The states therefore correspond to diUerent outcome sequences of the coin, and the reward at the
corresponding states is the expected conditional bias of the coin given the sequence of outcomes.
In this manner, most earlier works on MAB compare the performance of an algorithm with one
that knows the actual bias of each coin. In our work however, we compare the performance of
our algorithm against one which also has to learn the bias of each coin by tossing them.

4.1 Related Work

The general area of learning with costs is a rich and diverse one with a variety of papers studying
diUerent forms of MAB problems. The interested reader is referred to [14, 52] for some pointers.
Since the results of this thesis concern with the computational aspects of the problem, we now
focus on Approximation algorithms for the MAB problems. The Vrst result in this direction
is the work of Guha and Munagala [59], who gave LP-rounding algorithms for some budgeted
learning problems. Further papers by these authors [47, 54, 58, 60, 61] and by Goel et al. [55]
give improvements, and also relate the LP-based techniques and index-based policies (which are
often used in regret algorithms) and also give new index policies. There are also variants which
considers a non-uniform cost of switching between playing diUerent arms [60], and also those
where there is delayed feedback of playing an arm [62].

However, an important distinction between all these papers and ours is that they all assume
what is known as theMartingale property of the diUerent Markov Chains: if an arm is some state
u, one pull of this arm would bring an expected payoU equal to the payoU of state u itself.

The motivation for such an assumption comes from the application of MABs in Bayesian
learning: each arm i is associated with an unknown distribution Di; the states of its Markov
chain correspond to diUerent priors for Di based on previous observations. We start with some
known prior for Di (the initial state of the Markov chain) and every pull gives a sample from
Di, which is used to update our prior (i.e., causes a state transition)—the payoU of a state is the
expected reward according to the conditional distribution. Under certain assumptions on the
distributions and update rules, these Markov chains would satisfy the martingale property (see
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for instance [55]).

However, the martingale assumption does not hold in many interesting situations—the corre-
lated Stochastic Knapsack being one such example. Perhaps more importantly, it is too restrictive
when we use the arms to model objects which can react to our actions. Such examples appear
in project allocation or marketing problems [15]: For example, arms may model costumers that
require repeated “pulls” (marketing actions) before they transition to a high payoU state, while
the intermediate states yield no payoU. In another example, arms could model advertisers com-
peting for B ad impressions; pulling an arm corresponds to assigning an impression—however,
each advertiser has a budget on the number of impression it is willing to pay for and the rewards
are typically non-increasing (a similar model is considered in [24]), implying that such instances
would violate the martingale property. On a technical side, obtaining guarantees without the
martingale assumption requires new tools that depart from the LP-based methods used before
our work. Our main result is then the following:

Theorem 4.1.1 There is a polynomial-time (adaptive) randomized algorithm for the MAB prob-

lem, which obtains an expected reward of at least Ω(1)OPT, where OPT is the expected reward

of an optimal adaptive algorithm for the givenMAB instance.

Notice that our algorithm is adaptive: in Section 4.3, we provide some intuition for reasons
as to why this is the case, and also an example showing arbitrarily large adaptivity gaps, this
showing that adaptivity is in fact, necessary to be a constant-approximation to the adaptive OPT.

4.2 Chapter Roadmap

We Vrst begin with an overview of our techniques for the MAB problem in Section 4.3. Then
in Section 4.4 we present the key details of our MAB algorithm, assuming that all the transi-
tion graphs are treelike. Subsequently, we furnish the complete details of this special case in
Sections 4.5-4.7. Finally, we extend our algorithm to work for arbitrary transition graphs (i.e.,
general Markov chains) in Section 4.8.

4.3 Techniques

Obtaining approximations for MAB problems is a more complicated task than the Stochastic
Knapsack problem for two crucial reasons. Firstly, cancellations are inherent in the problem
formulation (i.e., any strategy may stop playing a particular arm and switch to another), and
moreover, the payoU of an arm is naturally correlated with its current state. Secondly, the notion
of preemptions is also a feature we did not tackle in the previous chapter on StocK— namely, the
power to pause an arm at some state, run other arms, and then return to this arm and continue
from where we left oU.

While the Vrst issue (of cancellations) can tackled by using more elaborate LPs with a Wow-
like structure that compute a probability distribution over the diUerent times at which the LP
stops playing an arm (e.g., much like the LP formulation in [59]), the latter issue is much less
understood. Indeed, several papers on this topic present non-preempting strategies that fetch
an expected reward which is a constant-factor of an optimal solution’s reward, but which may
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violate the budget by a constant factor. Indeed, along the way, they show that there are near-

optimal strategies which do not, in fact, switch back-and-forth between arms provided there is a
slack in the budget. Then, in order to obtain a good solution without violating the budget, they
critically make use of the martingale property—with this assumption at hand, they can truncate
the last arm played to Vt the budget without incurring any loss in the expected reward. However,
such an idea fails without the martingale property, and all these LPs have large integrality gaps.

A major drawback with the previous LP relaxations is that the constraints are local for each
item/arm, i.e., they track the probability distribution over how long each item/arm is processed,
and there is a global constraint on the total number of pulls/Knapsack budget. We show that no
such localized solution can be good, since they do not capture the notion of preempting an arm.
Indeed, we show cases when any near-optimal strategy must repeatedly switch back-and-forth
between arms—this is the crucial diUerence from previous work with the martingale property
where there exist near-optimal strategies that never return to any arm [60, Lemma 2.1]. Hence our
algorithm needs to make highly adaptive decisions, contrasting with previously existing index-
based policies.

We overcome this by writing a time-indexed LP formulation that tracks the probability of
each arm being in each of its states, at every time instant t ∈ {1, 2, . . . , B}. Such an LP enables
our rounding scheme to extract information about when to preempt an arm and when to re-visit it
based on the LP solution; in fact, these decisions will depend on the (random) outcomes of previ-
ous pulls, but the LP encodes the information for each eventuality. We believe that our techniques
are fairly general and would be applicable for other problems in Stochastic optimization.

4.3.1 The BeneVt of Preemption in Non-Martingale Bandits

There are n identical arms, each of them with the following (recursively deVned) transition tree
starting at ρ(0):

When the root ρ(j) is pulled for j < m, the following two transitions can happen:

(i) with probability 1/(n · nm−j), the arm transitions to the “right-side”, where if it makes
B − n(

∑j
k=0 L

k) plays, it will deterministically reach a state with reward nm−j . All inter-
mediate states have 0 reward.

(ii) with probability 1 − 1/(n · nm−j), the arm transitions to the “left-side”, where if it makes
Lj+1 − 1 plays, it will deterministically reach the state ρ(j + 1). No state along this path
fetches any reward.

Finally, node ρ(m) makes the following transitions when played: (i) with probability 1/n, to
a leaf state that has a reward of 1 and the arm ends there; (ii) with probability 1− 1/n, to a leaf
state with reward of 0.

For the following calculations, assume that B ≫ L > n and m≫ 0.

Preempting Solutions. We Vrst exhibit a preempting solution with expected reward Ω(m). The
strategy plays ρ(0) of all the arms until one of them transitions to the “right-side”, in which case
it continues to play this until it fetches a reward of nm. Notice that any root which transitioned
to the right-side can be played to completion, because the number of pulls we have used thus far
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is at most n (only those at the ρ(0) nodes for each arm), and the size of the right-side is exactly
B − n. Now, if all the arms transitioned to the left-side, then it plays the ρ(1) of each arm until
one of them transitioned to the right-side, in which case it continues playing this arm and gets
a reward of nm−1. Again, any root ρ(1) which transitioned to the right-side can be played to
completion, because the number of pulls we have used thus far is at most n(1 + L) (for each
arm, we have pulled the root ρ(0), transitioned the walk of length L− 1 to ρ(1) and then pulled
ρ(1)), and the size of the right-side is exactly B − n(1 + L). This strategy is similarly deVned,
recursively.

We now calculate the expected reward: if any of the roots ρ(0)made a transition to the right-
side, we get a reward of nm. This happens with probability roughly 1/nm, giving us an expected
reward of 1 in this case. If all the roots made the transition to the left-side, then at least one of the
ρ(1) states will make a transition to their right-side with probability≈ 1/nm−1 in which case will
will get reward of nm−1, and so on. Thus, summing over the Vrstm/2 such rounds, our expected
reward is at least

1

nm
nm +

(
1−

1

nm

)
1

nm−1
nm−1 +

(
1−

1

nm

)(
1−

1

nm−1

)
1

nm−2
nm−2 + . . .

Each term above is Ω(1) giving us a total of Ω(m) expected reward.

Non-Preempting Solutions. Consider any non-preempting solution. Once it has played the Vrst
node of an arm and it has transitioned to the left-side, it has to irrevocably decide if it abandons
this arm or continues playing. But if it has continued to play (and made the transition of L − 1
steps), then it cannot get any reward from the right-side of ρ(0) of any of the other arms, because
L > n and the right-side requires B − n pulls before reaching a reward-state. Likewise, if it has
decided to move from ρ(i) to ρ(i+1) on any arm, it cannot get any reward from the right-sides of
ρ(0), ρ(1), . . . , ρ(i) on any arm due to budget constraints. Indeed, for any i ≥ 1, to have reached
ρ(i+1) on any particular arm, it must have utilized (1+L−1)+(1+L2−1)+. . .+(1+Li+1−1)
pulls in total, which exceeds n(1 + L + L2 + . . . + Li) since L > n. Finally, notice that if the
strategy has decided to move from ρ(i) to ρ(i+ 1) on any arm, the maximum reward that it can
obtain is nm−i−1, namely, the reward from the right-side transition of ρ(i+ 1).

Using these properties, we observe that an optimal non-preempting strategy proceeds in
rounds as described next.

Strategy at round i. Choose a set Ni of ni available arms and play them as follows: pick one
of these arms, play until reaching state ρ(i) and then play once more. If there is a right-side
transition before reaching state ρ(i), discard this arm since there is not enough budget to play
until reaching a state with positive reward. If there is a right-side transition at state ρ(i), play this
arm until it gives reward of nm−i. If there is no right-side transition and there is another arm in
Ni which is still to be played, discard the current arm and pick the next arm in Ni.

In round i, at least max(0, ni − 1) arms are discarded, hence
∑

i ni ≤ 2n. Therefore, the
expected reward can be at most

n1

n · nm
nm +

n2

n · nm−1
nm−1 + . . .+

nm

n
≤ 2

63



4.4 Approximating MAB on Tree-like Transition Graphs

In this section, we will present ourMAB algorithm, assuming that each arm’s transition graph has
the structure of an arborescence, i.e., a directed tree. We will subsequently relax this assumption
in Section 4.8.

We begin with the formal deVnition of the problem: There are n arms: arm i has a collection
of states denoted by Si, a starting state ρi ∈ Si; Without loss of generality, we assume that
Si ∩ Sj = ∅ for i 6= j. Each arm also has a transition graph Ti, which is given as a polynomial-
size (weighted) directed tree rooted at ρi. If there is an edge u → v in Ti, then the edge weight
pu,v denotes the probability of making a transition from u to v if we play arm i when its current
state is node u; hence

∑
v:(u,v)∈Ti

pu,v = 1. Each time we play an arm, we get a reward whose
value depends on the state from which the arm is played. Let us denote the reward at a state u by
ru.

Each of the arms starts at the start state ρi ∈ Si. We get a reward from every state we reach,
and the goal is to maximize the total expected reward, while making at most B plays across all
arms. Our general framework can handle other problems (like the explore/exploit kind) as well,
please refer to our paper [70] for more details.

Notation. The transition graph Ti for arm i is an out-arborescence deVned on the states Si
rooted at ρi. Let depth(u) of a node u ∈ Si be the depth of node u in tree Ti, where the root ρi
has depth 0. The unique parent of node u in Ti is denoted by parent(u). Let S = ∪iSi denote
the set of all states in the instance, and arm(u) denote the arm to which state u belongs, i.e., the
index i such that u ∈ Si. Finally, for u ∈ Si, we refer to the act of playing arm i when it is in
state u as “playing state u ∈ Si”, or “playing state u” if the arm is clear in context.

4.4.1 Global Time-indexed LP

Variable zu,t ∈ [0, 1] indicates that the algorithm plays state u ∈ Si at time t. For u ∈ Si and
time t, wu,t ∈ [0, 1] indicates that arm i Vrst enters state u at time t (happens if and only if the
algorithm played parent(u) at time t − 1 and the arm jumped to state u). The following lemma
bounds the LP cost.

max
∑

u,t ru · zu,t (LPmab)

wu,t = zparent(u),t−1 · pparent(u),u ∀t ∈ [2, B], u ∈ S \ ∪i{ρi} (4.1)∑
t′≤t wu,t′ ≥

∑
t′≤t zu,t′ ∀t ∈ [1, B], u ∈ S (4.2)

∑
u∈S zu,t ≤ 1 ∀t ∈ [1, B] (4.3)

wρi,1 = 1 ∀i ∈ [1, n] (4.4)

Lemma 4.4.1 The optimal LP reward OPTLP is at least OPT, the expected reward of an optimal

adaptive strategy.

Proof: We convention that OPT starts playing at time 1. Let z∗u,t denote the probability that
OPT plays state u at time t, namely, the probability that arm arm(u) is in state u at time t and
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is played at time t. Also let w∗
u,t denote the probability that OPT “enters” state u at time t, and

further let w∗
ρi,1

= 1 for all i.

We Vrst show that {z∗, w∗} is a feasible solution for LPmab and later argue that its LP objec-
tive is at least OPT. Consider constraint (4.1) for some t ∈ [2, B] and u ∈ S . The probability of
entering state u at time t conditioned on OPT playing state parent(u) at time t− 1 is pparent(u),u.
In addition, the probability of entering state u at time t conditioning on OPT not playing state
parent(u) at time t−1 is zero. Since z∗parent(u),t−1 is the probability thatOPT plays state parent(u)
at time t− 1, we remove the conditioning to obtain w∗

u,t = z∗parent(u),t−1 · pparent(u),u.

Now consider constraint (4.2) for some t ∈ [1, B] and u ∈ S . For any outcome of the
algorithm (denoted by a sample path σ), let 1enter

u′,t′ be the indicator variable that OPT enters state

u′ at time t′ and let 1play
u′,t′ be the indicator variable that OPT plays state u′ at time t′. Since Ti

is acyclic, state u is played at most once in σ and is also entered at most once in σ. Moreover,
whenever u is played before or at time t, it must be that u was also entered before or at time t,
and hence

∑
t′≤t 1

play
u,t′ ≤

∑
t′≤t 1

enter
u,t′ . Taking expectation on both sides and using the fact that

E[1play
u,t′ ] = z∗u,t′ and E[1enter

u,t′ ] = w∗
u,t′ , linearity of expectation gives

∑
t′≤t z

∗
u,t′ ≤

∑
t′≤t w

∗
u,t′ .

To see that constraint (4.3) is satisVed, notice that we can play at most one arm (or alterna-
tively one state) in each time step, hence

∑
u∈S 1

play
u,t ≤ 1 holds for all t ∈ [1, B]; the claim then

follows by taking expectation on both sides as in the previous paragraph. Finally, constraint (4.4)
is satisVed by deVnition of the start states.

To conclude the proof of the lemma, it suXces to show that OPT =
∑

u,t ru · z
∗
u,t. Since

OPT obtains reward ru whenever it plays state u, it follows that OPT’s reward is given by∑
u,t ru · 1

play
u,t ; by taking expectation we get

∑
u,t ruz

∗
u,t = OPT, and hence OPTLP ≥ OPT.

4.4.2 The Rounding Algorithm

In order to best understand the motivation behind our rounding algorithm, it would be useful
to go over the example which illustrates the necessity of preemption (repeatedly switching back
and forth between the diUerent arms) mentioned earlier in Section 4.3.1. At a high level, the
rounding algorithm proceeds as follows. In Phase I, given an optimal LP solution, we decompose
the fractional solution for each arm into a convex1 combination of integral “strategy forests”
(which are depicted in Figure 4.1): each of these tells us at what times to play the arm, and in
which states to abandon the arm. Now, if we sample a random strategy forest for each arm from
this distribution, we may end up scheduling multiple arms to play at some of the timesteps, and
hence we need to resolve these conWicts. A natural approach might be to (i) sample a strategy
forest for each arm, (ii) play these arms in some order, and (iii) for any arm follow the decisions
(about whether to abort or continue playing) as suggested by the sampled strategy forest. But this
is inherently non-preemptive and therefore, by the example in Section 4.3.1, it must fail.

Another approach would be to play the sampled forests at their prescribed times; if multiple

1Strictly speaking, we do not get convex combinations that sum to one; our combinations sum to
∑

t zρi,t, the
value the LP assigned to pick to play the root of the arm over all possible start times, which is at most one.
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forests want to play at the same time slot, we round-robin over them. But now if some arm needs
B contiguous steps to get to a state with very high reward, even a single play of some other arm
in the middle would end up fetching us no reward!

Guided by these bad examples, we try to use continuity information in the sampled strategy
forests—once we start playing some contiguous component (where the strategy forest plays the
arm in every consecutive time step), we make decisions to switch arms only at the end of the
component (i.e. at the leaves of the diUerent trees in Figure 4.1(b)). The naïve implementation
does not work, so we Vrst alter the solution to make all strategy forests “nice”—loosely, these are
forests where all the connected components of any strategy forest are separated by large gaps
(Phase II). The Vnal strategy is presented in Phase III, and the analysis appears in Section 4.4.2.

Phase I: Convex Decomposition

In this step, we decompose the fractional solution into a convex combination of “forest-like strate-
gies” {T(i, j)}i,j , corresponding to the jth forest for arm i. We Vrst formally deVne what these
forests look like: The jth strategy forest T(i, j) for arm i is an assignment of values time(i, j, u)
and prob(i, j, u) to each state u ∈ Si such that:

(i) For u ∈ Si and v = parent(u), it holds that time(i, j, u) ≥ 1 + time(i, j, v), and

(ii) For u ∈ Si and v = parent(u), if time(i, j, u) 6= ∞ then prob(i, j, u) = pv,u prob(i, j, v);
else if time(i, j, u) =∞ then prob(i, j, u) = 0.

We call a triple (i, j, u) a tree-node of T(i, j).2 For any state u ∈ Si, the values time(i, j, u) and
prob(i, j, u) denote the time at which arm i is played from state u, and the probability with which
the arm is played from state u, according to strategy forest T(i, j).

Observe that the probability values are particularly simple: if time(i, j, u) = ∞ then this
strategy does not play the arm at u, and hence the probability is zero, else prob(i, j, u) is equal
to the probability of reaching u over the random transitions according to Ti if we play the root
with probability prob(i, j, ρi). Hence, we can compute prob(i, j, u) just given prob(i, j, ρi) and
whether or not time(i, j, u) =∞. Note that the time values are not necessarily consecutive, plot-
ting these on the timeline and connecting a state to its parents only when they are in consecutive
timesteps (as in Figure 4.1) gives us forests, hence the name.

The algorithm to construct such a decomposition proceeds in rounds for each arm i; in a
particular round, it “peels” oU such a strategy as described above, and ensures that the residual
fractional solution continues to satisfy the LP constraints, guaranteeing that we can repeat this
process, which is similar to (but slightly more involved than) performing Wow-decompositions.
The decomposition lemma is proved in Section 4.5:

Lemma 4.4.2 Given a solution to (LPmab), there exists a collection of at most nB|S| strategy
forests {T(i, j)} such that zu,t =

∑
j:time(i,j,u)=t prob(i, j, u).

3 Hence,
∑

(i,j,u):time(i,j,u)=t prob(i, j, u) ≤
1 for all t.

2When i and j are understood from context, we identify the tree-node (i, j, u) with the state u.
3To reiterate, even though we call this a convex decomposition, the sum of the probability values of the root state

of any arm is at most one by constraint 4.3, and hence the sum of the probabilities of the root over the decomposition
could be less than one in general.
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(b) Strategy forest shown on a timeline

Figure 4.1: Strategy forests and how to visualize them: grey blobs are connected components

For any T(i, j), prob(·) satisVes “preWow” conditions: the in-Wow at any node v is at least the
out-Wow, namely prob(i, j, v) ≥

∑
u:parent(u)=v prob(i, j, u), which leads to the following simple

but crucial observation.

Observation 4.4.3 For any arm i, for any set of states X ⊆ Si such that no state in X is an

ancestor of another in the transition tree Ti, and for any z ∈ Si that is an ancestor of all states

in X , prob(i, j, z) ≥
∑

x∈X prob(i, j, x). More generally, if Z is a set of states such that for

any x ∈ X , there exists z ∈ Z such that z is an ancestor of x, we have
∑

z∈Z prob(i, j, z) ≥∑
x∈X prob(i, j, x)

Phase II: Eliminating Small Gaps

While Section 4.3.1 shows that switching between arms is necessary, we also should not get
“tricked” into switching arms during very short breaks taken by the LP strategy forest, e.g., if an
arm of length (B − 1) with high reward at the end was played in two continuous segments with
a small gap in the middle, we should not lose proVt from this arm by starting some other arms’
plays during the gap. We now handle this, by eliminating such small gaps between contiguous
segments of the strategy forest.

The motivation for the procedure comes from the following proof argument: we would like
to claim that our algorithm begins playing any component C before the start-time in the LP, with
probability at least 1/2. But the issue is that conditioned on playing C , we also get to know that
all its ancestors have been played; and since other arms may have also been scheduled before C ,
the desired claim would be false. But if we ensure that the number of ancestors is small (say at
most t/2, where t is the time when the LP begins playing C), this problem disappears—other arms
use upto t plays on average (which we can make t/2 by sampling), leaving enough room for the
ancestors’ plays. This is precisely the condition we use to advance some components to Vll small
gaps.

Before we make this formal, here is some useful notation: Given u ∈ Si, let head(i, j, u) be
its ancestor node v ∈ Si of least depth such that the plays from v through u occur in consecutive
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time values. More formally, the path v = v1, v2, . . . , vl = u in Ti is such that time(i, j, vl′) =
time(i, j, vl′−1)+1 for all l′ ∈ [2, l]. We also deVne the connected component of a node u, denoted
by comp(i, j, u), as the set of all nodes u′ such that head(i, j, u) = head(i, j, u′). Figure 4.1 shows
the connected components and heads.

The gap-Vlling procedure works as follows: if a head state v = head(i, j, u) is played at
time t = time(i, j, v) s.t. t < 2 · depth(v), then we “advance” the comp(i, j, v) and get rid of
the gap between v and its parent (and recursively apply this rule)4. The procedure is formally
described in Section 4.6. By construction this guarantees that the components have large gaps
between them. Additionally we show that the fractional number of plays made at any time t does
not increase by too much due to these “advances”. Intuitively this is because if for some time slot
t we “advance” a set of components that were originally scheduled after t to now cross time slot
t, these components moved because their ancestor paths (fractionally) used up at least t/2 of the
time slots before t; since there are only a total of t time slots to be used up, there can be at most
2 units of components that were advanced across t. Hence, in the following, we assume that our
T’s satisfy the properties in the following lemma (whose proof is also in Section 4.6):

Lemma 4.4.4 Algorithm GapFill produces a modiVed collection of T’s such that

(i) For each i, j, u such that ru > 0, time(head(i, j, u)) ≥ 2 · depth(head(i, j, u)).

(ii) The total extent of plays at any time t, i.e.,
∑

(i,j,u):time(i,j,u)=t prob(i, j, u) is at most 3.

Phase III: Scheduling the Arms

After the above processing, the Vnal algorithm is as follows: it samples a strategy forest from the
collection {T(i, j)}j for each arm i. Then, it picks an arm with the earliest connected component
(i.e., the one with smallest time(head(i, j, u))) that contains the current state (which is the root
state to begin with), plays it to the end of the component, and repeats this step—note that we
may switch out of an arm only if it jumps to a state played much later in time. Again we let the
algorithm run as long as there is some active node, regardless of whether or not the budget is
exceeded—however, we only count the proVt from the Vrst B plays in the analysis.

Observe that Steps 7-9 play a connected component of a strategy forest contiguously. In
particular, this means that all currstate(i)’s considered in Step 5 are head vertices of the corre-
sponding strategy forests. These facts will be crucial in the analysis.

Lemma 4.4.5 For arm i and strategy T(i, j), conditioned on σ(i) = j after Step 1 of AlgMAB, the

probability of playing state u ∈ Si is prob(i, j, u)/prob(i, j, ρi), where the probability is over the
random transitions of arm i.

The above lemma is relatively simple, and proved in Section 4.7. The rest of the section
proves that in expectation, we collect a constant factor of the LP reward of each strategy T(i, j)
before running out of budget; the analysis is inspired by our StocK rounding procedure. We
mainly focus on the following lemma.

Lemma 4.4.6 Consider any arm i and strategy T(i, j). Then, conditioned on σ(i) = j and on the

4The intuition is that such vertices have only a small gap in their play and should rather be played contiguously.
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Algorithm 7 Scheduling the Connected Components: Algorithm AlgMAB

1: for arm i, sample strategy T(i, j) with probability prob(i,j,ρi)
24

; ignore arm i w.p. 1 −∑
j
prob(i,j,ρi)

24
.

2: let A← set of “active” arms which chose a strategy in the random process.
3: for each i ∈ A, let σ(i)← index j of the chosen T(i, j) and let currstate(i)← root ρi.
4: while active arms A 6= ∅ do
5: let i∗ ← arm with state played earliest in the LP (i.e., i∗ ←

argmini∈A{time(i, σ(i), currstate(i))}.
6: let τ ← time(i∗, σ(i∗), currstate(i∗)).
7: while time(i∗, σ(i∗), currstate(i∗)) 6=∞ and time(i∗, σ(i∗), currstate(i∗)) = τ do

8: play arm i∗ at state currstate(i∗)
9: update currstate(i∗) be the new state of arm i∗; let τ ← τ + 1.
10: if time(i∗, σ(i∗), currstate(i∗)) =∞ then

11: let A← A \ {i∗}

algorithm playing state u ∈ Si, the probability that this play happens before time time(i, j, u) is
at least 1/2.

Proof: Fix an arm i and an index j for the rest of the proof. Given a state u ∈ Si, let Eiju denote
the event (σ(i) = j)∧ (state u is played). Also, let v = head(i, j, u) be the head of the connected
component containing u in T(i, j). Let r.v. τu (respectively τv) be the actual time at which state
u (respectively state v) is played—these random variables take value∞ if the arm is not played
in these states. Then

P[τu ≤ time(i, j, u) | Eiju] ≥
1
2
⇐⇒ P[τv ≤ time(i, j,v) | Eiju] ≥

1
2
, (4.5)

because the time between playing u and v is exactly time(i, j, u) − time(i, j,v) since the algo-
rithm plays connected components continuously (and we have conditioned on Eiju). Hence, we
can just focus on proving the right inequality in (4.5) for vertex v.

For brevity of notation, let tv = time(i, j,v). In addition, we deVne the order � to indicate
which states can be played before v. That is, again making use of the fact that the algorithm plays
connected components contiguously, we say that (i′, j′, v′) � (i, j,v) iU time(head(i′, j′, v′)) ≤
time(head(i, j,v)). Notice that this order is independent of the run of the algorithm; also it could
be that time(i′, j′, v′) > time(i, j,v) yet (i′, j′, v′) � (i, j,v).

For each arm i′ 6= i and index j′, we deVne random variables Zi′j′ used to count the number
of plays that can possibly occur before the algorithm plays state v. If 1(i′,j′,v′) is the indicator
variable of event Ei′j′v′ , deVne

Zi′,j′ = min
(
tv ,

∑
v′:(i′,j′,v′)�(i,j,v) 1(i′,j′,v′)

)
. (4.6)

We truncate Zi′,j′ at tv because we just want to capture how much time up to tv is being used.
Now consider the sum Z =

∑
i′ 6=i

∑
j′ Zi′,j′ . Note that for arm i′, at most one of the Zi′,j′ values

will be non-zero in any scenario, namely the index σ(i′) sampled in Step 1. The Vrst claim below
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shows that it suXces to consider the upper tail of Z , and show that P[Z ≥ tv/2] ≤ 1/2, and the
second gives a bound on the conditional expectation of Zi′,j′ . The proofs appear in Section 4.7.

Claim 4.4.7 P[τv ≤ tv | Eiju] ≥ P[Z ≤ tv/2].

Claim 4.4.8

E[Zi′,j′ | σ(i
′) = j′] ≤

∑

v′ s.t time(i′,j′,v′)≤tv

prob(i′, j′, v′)

prob(i′, j′, ρi′)
+ tv


 ∑

v′ s.t time(i′,j′,v′)=tv

prob(i′, j′, v′)

prob(i′, j′, ρi′)




Equipped with the above claims, we are ready to complete the proof of Lemma 4.4.6. Em-
ploying Claim 4.4.8 we get

E[Z] =
∑

i′ 6=i

∑

j′

E[Zi′,j′ ] =
∑

i′ 6=i

∑

j′

E[Zi′,j′ | σ(i
′) = j′] · P[σ(i′) = j′]

=
1

24

∑

i′ 6=i

∑

j′

{ ∑

v′:time(i′,j′,v′)≤tv

prob(i′, j′, v′) + tv

( ∑

v′:time(i′,j′,v′)=tv

prob(i′, j′, v′)

)}

(4.7)

=
1

24
(3 · tv + 3 · tv) ≤

1

4
tv . (4.8)

Equation (4.7) follows from the fact that each tree T(i, j) is sampled with probability prob(i,j,ρi)
24

and (4.8) follows from Lemma 4.4.4. Applying Markov’s inequality, we have that P[Z ≥ tv/2] ≤
1/2. Finally, Claim 4.4.7 says that P[τv ≤ tv | Eiju] ≥ P[Z ≤ tv/2] ≥ 1/2, which completes the
proof.

Theorem 4.4.9 The reward obtained by the algorithm AlgMAB is at least Ω(OPTLP).

Proof: The theorem follows by a simple linearity of expectation. Indeed, the expected reward
obtained from any state u ∈ Si is at least

∑
j P[σ(i) = j]P[state u is played | σ(i) = j]P[τu ≤

tu|Eiju] · Ru ≥
∑

j
prob(i,j,u)

24
1
2
· Ru. Here, we have used Lemmas 4.4.5 and 4.4.6 for the second

and third probabilities. But now we can use Lemma 4.4.2 to infer that
∑

j prob(i, j, u) =
∑

t zu,t;
Making this substitution and summing over all states u ∈ Si and arms i completes the proof.

4.5 Details of Phase I (from Section 4.4.2)

We Vrst begin with some notation that will be useful in the algorithm below. For any state u ∈ Si
such that the path from ρi to u follows the states u1 = ρi, u2, . . . , uk = u, let πu = Πk−1

l=1 pui,ui+1
.

Fix an arm i, for which we will perform the decomposition. Let {z, w} be a feasible solution
to LPmab and set z0u,t = zu,t and w0

u,t = wu,t for all u ∈ Si, t ∈ [B]. We will gradually alter
the fractional solution as we build the diUerent forests. We note that in a particular iteration
with index j, all zj−1, wj−1 values that are not updated in Steps 12 and 13 are retained in zj, wj

respectively. For brevity of notation, we shall use “iteration j of Step 2” to denote the execution
of the entire block (Steps 3 – 14) which constructs strategy forest T(i, j).
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Algorithm 8 Convex Decomposition of Arm i

1: set Ci ← ∅ and set loop index j ← 1.
2: while ∃ a node u ∈ Si s.t

∑
t z

j−1
u,t > 0 do

3: initialize a new tree T(i, j) = ∅.
4: set A← {u ∈ Si s.t

∑
t z

j−1
u,t > 0}.

5: for all u ∈ Si, set time(i, j, u)←∞, prob(i, j, u)← 0, and set εu ←∞.
6: for every u ∈ A do

7: update time(i, j, u) to the smallest time t s.t zj−1
u,t > 0.

8: update εu = zj−1
u,time(i,j,u)/πu

9: let ε = minu εu.
10: for every u ∈ A do

11: set prob(i, j, u) = ε · πu.
12: update zju,time(i,j,u) = zj−1

u,time(i,j,u) − prob(i, j, u).

13: update wj
v,time(i,j,u)+1 = wj−1

v,time(i,j,u)+1 − prob(i, j, u) · pu,v for all v s.t parent(v) = u.
14: set Ci ← Ci ∪ T(i, j).
15: increment j ← j + 1.

Lemma 4.5.1 Consider an integer j and suppose that {zj−1, wj−1} satisVes constraints (4.1)-(4.3)
of LPmab. Then after iteration j of Step 2, the following properties hold:

(a) T(i, j) (along with the associated prob(i, j, .) and time(i, j, .) values) is a valid strategy

forest, i.e., satisVes the conditions (i) and (ii) presented in Section 4.4.2.

(b) The residual solution {zj , wj} satisVes constraints (4.1)-(4.3).

(c) For any time t and state u ∈ Si, z
j−1
u,t − zju,t = prob(i, j, u)1time(i,j,u)=t.

Proof: We show the properties stated above one by one.

Property (a): We Vrst show that the time values satisfy time(i, j, u) ≥ time(i, j, parent(u)) + 1,
i.e. condition (i) of strategy forests. For sake of contradiction, assume that there exists u ∈ Si
with v = parent(u) where time(i, j, u) ≤ time(i, j, v). DeVne tu = time(i, j, u) and tv =
time(i, j, parent(u)); the way we updated time(i, j, u) in Step 7 gives that zj−1

u,tu > 0.

Then, constraint (4.2) of the LP implies that
∑

t′≤tu
wj−1

u,t′ > 0. In particular, there exists a time

t′ ≤ tu ≤ tv such that wj−1
u,t′ > 0. But now, constraint (4.1) enforces that zj−1

v,t′−1 = wj−1
u,t′ /pv,u > 0

as well. But this contradicts the fact that tv was the Vrst time s.t zj−1
v,t > 0. Hence we have

time(i, j, u) ≥ time(i, j, parent(u)) + 1.

As for condition (ii) about prob(i, j, .), notice that if time(i, j, u) 6= ∞, then prob(i, j, u)
is set to ε · πu in Step 11. It is now easy to see from the deVnition of πu (and from the fact
that time(i, j, u) 6= ∞ ⇒ time(i, j, parent(u)) 6= ∞) that prob(i, j, u) = prob(i, j, parent(u)) ·
pparent(u),u.

Property (b): Constraint (4.1) of LPmab is clearly satisVed by the new LP solution {zj, wj} be-
cause of the two updates performed in Steps 12 and 13: if we decrease the z value of any node at
any time, the w of all children are appropriately reduced (for the subsequent timestep).
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Before showing that the solution {zj , wj} satisVes constraint (4.2), we Vrst argue that they
remain non-negative. By the choice of ε in step 9, we have prob(i, j, u) = επu ≤ εuπu =
zj−1
u,time(i,j,u) (where εu was computed in Step 8); consequently even after the update in step 12,

zju,time(i,j,u) ≥ 0 for all u. This and the fact that the constraints (4.1) are satisVed implies that

{zj, wj} satisVes the non-negativity requirement.

We now show that constraint (4.2) is satisVed. For any time t and state u /∈ A (where A is
the set computed in step 4 for iteration j), clearly it must be that

∑
t′≤t z

j−1
u,t = 0 by deVnition of

the set A; hence just the non-negativity of wj implies that these constraints are trivially satisVed.

Therefore consider some t ∈ [B] and a state u ∈ A. We know from step 7 that time(i, j, u) 6=
∞. If t < time(i, j, u), then the way time(i, j, u) is updated in step 7 implies that

∑
t′≤t z

j
u,t′ =∑

t′≤t z
j−1
u,t′ = 0, so the constraint is trivially satisVed because wj is non-negative. If t ≥

time(i, j, u), we claim that the change in the left hand side and right hand side (between the
solutions {zj−1, wj−1} and {zj , wj}) of the constraint under consideration is the same, implying
that it will be still satisVed by {zj, wj}.

To prove this claim, observe that the right hand side has decreased by exactly zj−1
u,time(i,j,u) −

zju,time(i,j,u) = prob(i, j, u). But the only value which has been modiVed in the left hand side is

wj−1
u,time(i,j,parent(u))+1, which has gone down by prob(i, j, parent(u)) · pparent(u),u. Because T(i, j)

forms a valid strategy forest, we have prob(i, j, u) = prob(i, j, parent(u)) · pparent(u),u, and thus
the claim follows.

Finally, constraint (4.3) are also satisVed as the z variables only decrease in value over itera-
tions.

Property (c): This is an immediate consequence of the Step 12.

To prove Lemma 4.4.2, Vrstly notice that since {z0, w0} satisVes constraints (4.1)-(4.3), we can
proceed by induction and infer that the properties in the previous lemma hold for every strategy
forest in the decomposition; in particular, each of them is a valid strategy forest.

In order to show that the marginals are preserved, observe that in the last iteration j∗ of
procedure we have zj

∗

u,t = 0 for all u, t. Therefore, adding the last property in the previous lemma
over all j gives

zu,t =
∑

j≥1

(zj−1
u,t − zju,t) =

∑

j≥1

prob(i, j, u)1time(i,j,u)=t =
∑

j:time(i,j,u)=t

prob(i, j, u).

Finally, since some zju,t gets altered to 0 since in each iteration of the above algorithm, the
number of strategies for each arm in the decomposition is upper bounded byB|S|. This completes
the proof of Lemma 4.4.2.

4.6 Details of Phase II (from Section 4.4.2)

Proof of Lemma 4.4.4: Let timet(u) denote the time assigned to node u by the end of round
τ = t of the algorithm; timeB+1(u) is the initial time of u. Since the algorithm works backwards
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Algorithm 9 Gap Filling Algorithm GapFill

1: for τ = B to 1 do
2: while there exists a tree-node u ∈ T(i, j) such that τ = time(head(u)) < 2 ·

depth(head(u)) do
3: let v = head(u).
4: if v is not the root of T(i, j) then
5: let v′ = parent(v).
6: advance the component comp(v) rooted at v such that time(v) ← time(v′) + 1, to

make comp(v) contiguous with the ancestor forming one larger component. Also
alter the times of w ∈ comp(v) appropriately to maintain contiguity with v (and now
with v′).

in time, our round index will start at B and end up at 1. To prove property (i) of the statement
of the lemma, notice that the algorithm only converts head nodes to non-head nodes and not the
other way around. Moreover, heads which survive the algorithm have the same time as originally.
So it suXces to show that heads which originally did not satisfy property (i)—namely, those with
timeB+1(v) < 2 · depth(v)—do not survive the algorithm; but this is clear from the deVnition of
Step 2.

To prove property (ii), Vx a time t, and consider the execution of GapFill at the end of round
τ = t. We claim that the total extent of fractional play at time t does not increase as we continue
the execution of the algorithm from round τ = t to round 1. To see why, let C be a connected
component at the end of round τ = t and let h denote its head. If timet(h) > t then no fur-
ther advance aUects C and hence it does not contribute to an increase in the number of plays at
time t. On the other hand, if timet(h) ≤ t, then even if C is advanced in a subsequent round,
each node w of C which ends up being played at t, i.e., has time1(w) = t must have an an-
cestor w′ satisfying timet(w′) = t, by the contiguity of C . Thus, Observation 4.4.3 gives that∑

u∈C:time1(u)=t prob(u) ≤
∑

u∈C:timet(u)=t prob(u). Applying this for each connected component
C , proves the claim. Intuitively, any component which advances forward in time is only reducing
its load/total fractional play at any Vxed time t.

Then consider the end of iteration τ = t and we now prove that the fractional extent of
play at time t is at most 3. Due to Lemma 4.4.2, it suXces to prove that

∑
u∈U prob(u) ≤ 2,

where U is the set of nodes which caused an increase in the number of plays at time t, namely,
U = {u : timeB+1(u) > t and timet(u) = t}.

Notice that a connected component of the original forest can only contribute to this increase
if its head h crossed time t, that is timeB+1(h) > t and timet(h) ≤ t. However, it may be that this
crossing was not directly caused by an advance on h (i.e. h advanced till timeB+1(parent(h)) ≥
t), but an advance to a head h′ in a subsequent round was responsible for h crossing over t. But
in this case h must be part of the connected component of h′ when the latter advance happens,
and we can use h′’s advance to bound the congestion.

To make this more formal, let H be the set of heads of the original forest whose advances
made them cross time t, namely, h ∈ H iU timeB+1(h) > t, timet(h) ≤ t and timeB+1(parent(h)) <
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Figure 4.2: Depiction of a strategy forest T(i, j) on a timeline where each triangle is a connected
component. In this example,H = {h2, h5} and Ch2

consists of the grey nodes. From Observation
4.4.3 the number of plays at t do not increase as components are moved to the left

t. Moreover, for h ∈ H let Ch denote the connected component of h in the beginning of the it-
eration where an advance was executed on h, that is, when v was set to h in Step 3. The above
argument shows that these components Ch’s contain all the nodes in U , hence it suXces to see
how they increase the congestion at time t.

In fact, it is suXcient to focus just on the heads in H . To see this, consider h ∈ H
and notice that no node in U ∩ Ch is an ancestor of another. Then Observation 4.4.3 gives∑

u∈U∩Ch
prob(u) ≤ prob(h), and adding over all h inH gives

∑
u∈U prob(u) ≤

∑
h∈H prob(h).

To conclude the proof, we upper bound the right hand side of the previous inequality. The
idea now is that the play probabilities on the nodes in H cannot be too large since their par-
ents have timeB+1 < t (and each head has a large number of ancestors in [1, t] because it
was considered for an advance). More formally, Vx i, j and consider a head h in H ∩ T(i, j).
From Step 2 of the algorithm, we obtain that depth(h) > (1/2)timeB+1(h) ≥ t/2. Since
timeB+1(parent(h)) < t, it follows that for every d ≤ ⌊t/2⌋, h has an ancestor u ∈ T(i, j)
with depth(u) = d and timeB+1(u) ≤ t. Moreover, the deVnition of H implies that no head in
H ∩ T(i, j) can be an ancestor of another. Then again employing Observation 4.4.3 we obtain

∑

h∈H∩T(i,j)

prob(h) ≤
∑

u∈T(i,j):depth(u)=d,timeB+1(u)≤t

prob(u) (∀d ≤ ⌊t/2⌋).

Adding over all i, j and d ≤ ⌊t/2⌋ leads to the bound (t/2)·
∑

h∈H prob(h) ≤
∑

u:timeB+1(u)≤t prob(u).
Finally, using Lemma 4.4.2 we can upper bound the right hand side by t, which gives

∑
u∈U prob(u) ≤∑

h∈H prob(u) ≤ 2 as desired.

4.7 Details of Phase III (from Section 4.4.2)

Proof of Lemma 4.4.5: The proof is quite straightforward. Intuitively, it is because AlgMAB (Al-
gorithm 7) simply follows the probabilities according to the transition tree Ti (unless time(i, j, u) =
∞ in which case it abandons the arm). Consider an arm i such that σ(i) = j, and any state

74



u ∈ Si. Let 〈v1 = ρi, v2, . . . , vt = u〉 denote the unique path in the transition tree for arm
i from ρi to u. Then, if time(i, j, u) 6= ∞ the probability that state u is played is exactly the
probability of the transitions reaching u (because in Steps 8 and 9, the algorithm just keeps
playing the states5 and making the transitions, unless time(i, j, u) = ∞). But this is precisely
Πt−1

k=1pvk,vk+1
= prob(i, j, u)/prob(i, j, ρi) (from the properties of each strategy in the convex de-

composition). If time(i, j, u) = ∞ however, then the algorithm terminates the arm in Step 10
without playing u, and so the probability of playing u is 0 = prob(i, j, u)/prob(i, j, ρi). This
completes the proof.

Proof of Claim 4.4.7: We Vrst claim that P[τv ≤ tv | Eiju] ≥ P[Z ≤ tv/2 | Eiju]. So, let us
condition on Eiju. Then if Z ≤ tv/2, none of the Zi′,j′ variables were truncated at tv, and hence
Z exactly counts the total number of plays (by all other arms i′ 6= i, from any state) that could
possibly be played before the algorithm plays v in strategy T(i, j). Therefore, if Z is smaller than
tv/2, then combining this with the fact that depth(v) ≤ tv/2 (from Lemma 4.4.4(i)), we can infer
that all the plays (including those of v’s ancestors) that can be made before playing v can indeed
be completed within tv. In this case the algorithm will deVnitely play v before tv; hence we get
that conditioning on Eiju, the event τv ≤ tv holds when Z ≤ tv/2.

Finally, to remove the conditioning: note that Zi′j′ is just a function of (i) the random vari-
ables 1(i′,j′,v′), i.e., the random choices made by playing T(i′, j′), and (ii) the constant tv =
time(i, j, v). However, the r.vs 1(i′,j′,v′) are clearly independent of the event Eiju for i′ 6= i since
the plays of AlgMAB in one arm are independent of the others, and time(i, j, v) is a constant
determined once the strategy forests are created in Phase II. Hence the event Z ≤ tv/2 is inde-
pendent of Eiju; hence P[Z ≤ tv/2 | Eiju] = P[Z ≤ tv/2], which completes the proof.

Proof of Claim 4.4.8: Recall the deVnition of Zi′j′ in Eq (4.6): any state v′ with time(i′, j′, v′) >
tv may contribute to the sum only if it is part of a connected component with head head(i′, j′, v′)
such that time(head(i′, j′, v′)) ≤ tv, by the deVnition of the ordering�. Even among such states,
if time(i′, j′, v′) > 2tv, then the truncation implies that Zi′,j′ is unchanged whether or not we
include 1(i′,j′,v′) in the sum. Indeed, if 1(i′,j′,v′) = 1 then all of v′’s ancestors will have their
indicator variables at value 1; moreover depth(v′) > tv since there is a contiguous collection of
nodes that are played from this tree T(i′, j′) from time tv onwards till time(i′, j′, v′) > 2tv; so
the sum would be truncated at value tv whenever 1(i′,j′,v′) = 1. Therefore, we can write

Zi′,j′ ≤
∑

v′:time(i′,j′,v′)≤tv

1(i′,j′,v′) +
∑

v′:tv<time(i′,j′,v′)≤2tv
(i′,j′,v′)�(i,j,v)

1(i′,j′,v′) (4.9)

Recall we are interested in the conditional expectation given σ(i′) = j′. Note that P[1(i′,j′,v′) |
σ(i′) = j′] = prob(i′, j′, v′)/prob(i′, j′, ρi′) by Lemma 4.4.5, hence the Vrst sum in (4.9) gives the
Vrst part of the claimed bound. Now the second part: observe that for any arm i′, any Vxed value
of σ(i′) = j′, and any value of t′ ≥ tv,

∑

v′ s.t time(i′,j′,v′)=t′

(i′,j′,v′)�(i,j,v)

prob(i′, j′, v′) ≤
∑

v′ s.t time(i′,j′,v′)=tv

prob(i′, j′, v′)

5We remark that while the plays just follow the transition probabilities, they may not be made contiguously.
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This is because of the following argument: Any state that appears on the LHS of the sum above is
part of a connected component which crosses tv, they must have an ancestor which is played at
tv. Also, since all states which appear in the LHS are played at t′, no state can be an ancestor of
another. Hence, we can apply the second part of Observation 4.4.3 and get the above inequality.
Combining this with the fact that P[1(i′,j′,v′) | σ(i

′) = j′] = prob(i′, j′, v′)/prob(i′, j′, ρi′), and
applying it for each value of t′ ∈ (tv, 2tv], gives us the second term.

4.8 MABs with Arbitrary Transition Graphs

We now show how we can use techniques akin to those we described for the case when the
transition graph is a tree, to handle the case when it can be an arbitrary directed graph. A naïve
way to do this is to expand out the transition graph as a tree, but this incurs an exponential
blowup of the state space which we want to avoid. We can assume we have a layered DAGs,
though, since the conversion from a digraph to a layered DAG only increases the state space by a
factor of the horizon B.

4.8.1 Layered DAGs capture all Graphs

We Vrst show that layered DAGs can capture all transition graphs, with a blow-up of a factor of
B in the state space. For each arm i, for each state u in the transition graph Si, create B copies
of it indexed by (v, t) for all 1 ≤ t ≤ B. Then for each u and v such that pu,v > 0 and for each
1 ≤ t < B, place an arc (u, t)→ (v, t+1). Finally, delete all vertices that are not reachable from
the state (ρi, 1) where ρi is the starting state of arm i. There is a clear correspondence between
the transitions in Si and the ones in this layered graph: whenever state u is played at time t
and Si transitions to state v, we have the transition from (u, t) to (v, t + 1) in the layered DAG.
Henceforth, we shall assume that the layered graph created in this manner is the transition graph
for each arm.

4.8.2 Our Techniques

While we can again write an LP relaxation of the problem for layered DAGs, the challenge arises
in the rounding algorithm: speciVcally, in (i) obtaining the convex decomposition of the LP so-
lution as in Phase I, and (ii) eliminating small gaps as in Phase II by advancing forests in the
strategy.

• We handle the Vrst diXculty by considering convex decompositions not just over strategy
forests, but over slightly more sophisticated strategy DAGs. Recall (from Figure 4.1) that
in the tree case, each state in a strategy forest was labeled by a unique time and a unique
probability associated with that time step. As the name suggests, we now have labeled
DAGs—but the change is more than just that. Now each state has a copy associated with
each time step in {1, . . . , B}. This change tries to capture the fact that our strategy may
play from a particular state u at diUerent times depending on the path taken by the random
transitions used to reach this state. (This path was unique in the tree case.)

• Now having sampled a strategy DAG for each arm, one can expand them out into strategy
forests (albeit with an exponential blow-up in the size), and use Phases II and III from
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our previous algorithm—it is not diXcult to prove that this algorithm is a constant-factor
approximation. However, the above algorithm would not be eXcient, since the size of the
strategy forests may be exponentially large. If we don’t expand the DAG, then we do not
see how to deVne gap elimination for Phase II.

The following observation though, comes to our rescue to overcome this issue: instead
of explicitly performing the advance steps in Phase II, it in fact suXces to perform them
purely as thought experiments—i.e., to not alter the strategy forest at all, but merely to infer
when these advances would have happened, and play accordingly in the Phase III 6. Using
this, we can give an algorithm that plays just on the DAG, and argue that the sequence of
plays made by our DAG algorithm faithfully mimics the execution if we had constructed
the exponential-size tree from the DAG, and executed Phases II and III on that tree.

The details of the LP rounding algorithm for layered DAGs follows in Sections 4.8.3-4.8.5.

4.8.3 LP Relaxation

There is only one change in the LP—constraint (4.10) now says that if a state u is visited at time
t, then one of its ancestors must have been pulled at time t − 1; this ancestor was unique in the
case of trees.

max
∑

u,t ru · zu,t (LPmabdag)

wu,t =
∑

v

zv,t−1 · pv,u ∀t ∈ [2, B], u ∈ S \ ∪i{ρi}, v ∈ S (4.10)

∑
t′≤t wu,t′ ≥

∑
t′≤t zu,t′ ∀t ∈ [1, B], u ∈ S (4.11)

∑
u∈S zu,t ≤ 1 ∀t ∈ [1, B] (4.12)

wρi,1 = 1 ∀i ∈ [1, n] (4.13)

Again, a similar analysis to the tree case shows that this is a valid relaxation, and hence the LP
value is at least the optimal expected reward.

4.8.4 Convex Decomposition: The Altered Phase I

This is the step which changes the most—we need to incorporate the notion of peeling out a
“strategy DAG” instead of just a tree. The main complication arises from the fact that a play of
a state u may occur at diUerent times in the LP solution, depending on the path to reach state u
in the transition DAG. However, we don’t need to keep track of the entire history used to reach
u, just how much time has elapsed so far. With this in mind, we create B copies of each state u
(which will be our nodes in the strategy DAG), indexed by (u, t) for 1 ≤ t ≤ B.

The jth strategy dag D(i, j) for arm i is an assignment of values prob(i, j, u, t) and a rela-
tion ‘→’ from 4-tuples to 4-tuples of the form (i, j, u, t) → (i, j, v, t′) such that the following
properties hold:

6This is similar to the idea of lazy evaluation of strategies. The DAG contains an implicit randomized strategy
which we make explicit as we toss coins of the various outcomes using an algorithm.
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(i) For u, v ∈ Si such that pu,v > 0 and any time t, there is exactly one time t′ ≥ t + 1 such
that (i, j, u, t) → (i, j, v, t′). Intuitively, this says if the arm is played from state u at time
t and it transitions to state v, then it is played from v at a unique time t′, if it played at all.
If t′ =∞, the play from v never happens.

(ii) For any u ∈ Si and time t 6=∞, prob(i, j, u, t) =
∑

(v,t′) s.t (i,j,v,t′)→(i,j,u,t) prob(i, j, v, t
′) ·

pv,u.

For clarity, we use the following notation throughout the remainder of the section: states
refer to the states in the original transition DAG, and nodes correspond to the tuples (i, j, u, t)
in the strategy DAGs. When i and j are clear in context, we may simply refer to a node of the
strategy DAG by (u, t).

Equipped with the above deVnition, our convex decomposition procedure appears in Algo-
rithm 11. The main subroutine involved is presented Vrst (Algorithm 10). This subroutine, given
a fractional solution, identiVes the structure of the DAG that will be peeled out, depending on
when the diUerent states are Vrst played fractionally in the LP solution. Since we have a layered
DAG, the notion of the depth of a state is well-deVned as the number of hops from the root to this
state in the DAG, with the depth of the root being 0.

Algorithm 10 Sub-Routine PeelStrat (i,j)

1: mark (ρi, t) where t is the earliest time s.t. zρi,t > 0 and set peelProb(ρi, t) = 1. All other
nodes are un-marked and have peelProb(v, t′) = 0.

2: while ∃ a marked unvisited node do
3: let (u, t) denote the marked node of smallest depth and earliest time; update its status to

visited.
4: for every v s.t. pu,v > 0 do
5: if there is t′ such that zv,t′ > 0, consider the earliest such t′ and then

6: mark (v, t′) and set (i, j, u, t) → (i, j, v, t′); update peelProb(v, t′) :=
peelProb(v, t′) + peelProb(u, t) · pu,v.

7: else

8: set (i, j, u, t)→ (i, j, v,∞) and leave peelProb(v,∞) = 0.

The convex decomposition algorithm is now very easy to describe with the sub-routine in
Algorithm 10 in hand.

An illustration of a particular DAG and a strategy dag D(i, j) peeled oU is given in Figure 4.3
(notice that the states w, y and z appear more than once depending on the path taken to reach
them).

Now we analyze the solutions {zj, wj} created by Algorithm 11.

Lemma 4.8.1 Consider an integer j and suppose that {zj−1, wj−1} satisVes constraints (4.1)-(4.3)
of LPmabdag. Then after iteration j of Step 2, the following properties hold:

(a) D(i, j) (along with the associated prob(i, j, ., .) values) is a valid strategy dag, i.e., satisVes
the conditions (i) and (ii) presented above.

(b) The residual solution {zj , wj} satisVes constraints (4.10)-(4.12).
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Algorithm 11 Convex Decomposition of Arm i

1: set Ci ← ∅ and set loop index j ← 1.
2: while ∃ a state u ∈ Si s.t.

∑
t z

j−1
u,t > 0 do

3: run sub-routine PeelStrat to extract a DAG D(i, j) with the appropriate peelProb(u, t)
values.

4: let A← {(u, t) s.t peelProb(u, t) 6= 0}.
5: let ε = min(u,t)∈A zj−1

u,t /peelProb(u, t).
6: for every (u, t) do
7: set prob(i, j, u, t) = ε · peelProb(u, t).
8: update zju,t = zj−1

u,t − prob(i, j, u, t).

9: update wj
v,t+1 = wj−1

v,t+1 − prob(i, j, u, t) · pu,v for all v.
10: set Ci ← Ci ∪ D(i, j).
11: increment j ← j + 1.
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z

(a) DAG for some arm i

ρi

u

v

w

w

y

y

z

x z

(b) Strategy dag D(i, j)

Figure 4.3: Strategy DAGs and how to visualize them: notice the same state played at diUerent
times

(c) For any time t and state u ∈ Si, z
j−1
u,t − zju,t = prob(i, j, u, t).

Proof: We show the properties stated above one by one.

Property (a): This follows from the construction of Algorithm 10. More precisely, condition
(i) is satisVed because in Algorithm 10 each (u, t) is visited at most once and that is the only
time when a pair (u, t) → (v, t′) (with t′ ≥ t + 1) is added to the relation. For condition
(ii), notice that every time a pair (u, t) → (v, t′) is added to the relation we keep the invariant
peelProb(v, t′) =

∑
(w,τ) s.t (i,j,w,τ)→(i,j,v,t′) peelProb(w, τ) · pw,v; condition (ii) then follows since

prob(.) is a scaling of peelProb(.).

Property (b): Constraint (4.10) of LPmabdag is clearly satisVed by the new LP solution {zj , wj}
because of the two updates performed in Steps 8 and 9: if we decrease the z value of any state at
any time, the w of all children are appropriately reduced for the subsequent timestep.

Before showing that the solution {zj , wj} satisVes constraint (4.11), we Vrst argue that after
every round of the procedure they remain non-negative. By the choice of ε in Step 5, we have
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prob(i, j, u, t) = ε ·peelProb(u, t) ≤
zj−1

u,t

peelProb(u,t)
peelProb(u, t) = zj−1

u,t (notice that this inequality

holds even if peelProb(u, t) = 0); consequently even after the update in Step 8, zju,t ≥ 0 for all
u, t. This and the fact that the constraints (4.10) are satisVed implies that {zj , wj} satisVes the
non-negativity requirement.

We now show that constraint (4.11) is satisVed. Suppose for the sake of contradiction there
exist some u ∈ S and t ∈ [1, B] such that {zj, wj} violates this constraint. Then, let us consider
any such u and the earliest time tu such that the constraint is violated. For such a u, let t′u ≤ tu
be the latest time before tu where z

j−1
u,t′ > 0. We now consider two cases.

Case (i): t′u < tu. This is the simpler case of the two. Because tu was the earliest time where
constraint (4.11) was violated, we know that

∑
t′≤t′u

wj
u,t′ ≥

∑
t′≤t′u

zju,t′ . Furthermore, since zu,t

is never increased during the course of the algorithm we know that
∑tu

t′=t′u+1 z
j
u,t′ = 0. This fact

coupled with the non-negativity of wj
u,t implies that the constraint in fact is not violated, which

contradicts our assumption about the tuple u, tu.

Case (ii): t′u = tu. In this case, observe that there cannot be any pair of tuples (v, t1) →
(u, t2) s.t. t1 < tu and t2 > tu, because any copy of v (some ancestor of u) that is played
before tu, will mark a copy of u that occurs before tu or the one being played at tu in Step 6
of PeelStrat. We will now show that summed over all t′ ≤ tu, the decrease in the LHS is
counter-balanced by a corresponding drop in the RHS, between the solutions {zj−1, wj−1} and
{zj, wj} for this constraint (4.11) corresponding to u and tu. To this end, notice that the only
times when wu,t′ is updated (in Step 9) for t′ ≤ tu, are when considering some (v, t1) in Step 6
such that (v, t1) → (u, t2) and t1 < t2 ≤ tu. The value of wu,t1+1 is dropped by exactly
prob(i, j, v, t1) · pv,u. But notice that the corresponding term zu,t2 drops by prob(i, j, u, t2) =∑

(v′′,t′′) s.t (v′′,t′′)→(u,t2)
prob(i, j, v′′, t′′) · pv′′,u. Therefore, the total drop in w is balanced by a

commensurate drop in z on the RHS.

Finally, constraint (4.12) is also satisVed as the z variables only decrease in value.

Property (c): This is an immediate consequence of the Step 8 of the convex decomposition algo-
rithm.

As a consequence of the above lemma, we get the following.

Lemma 4.8.2 Given a solution to (LPmabdag), there exists a collection of at most nB2|S| strategy
dags {D(i, j)} such that zu,t =

∑
j prob(i, j, u, t). Hence,

∑
(i,j,u) prob(i, j, u, t) ≤ 1 for all t.

4.8.5 Phases II and III

We now show how to execute the strategy dags D(i, j). At a high level, the development of
the plays mirrors that of Sections 4.4.2 and 4.4.2. First we transform D(i, j) into a (possibly
exponentially large) blown-up tree and show how this playing these exactly captures playing the
strategy dags. Hence (if running time is not a concern), we can simply perform the gap-Vlling
algorithm and make plays on these blown-up trees following Phases II and III in Sections 4.4.2
and 4.4.2. To achieve polynomial running time, we then show that we can implicitly execute

the gap-Vlling phase while playing this tree, thus getting rid of actually performing Phase 4.4.2.
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Finally, to complete our argument, we show how we do not need to explicitly construct the
blown-up tree, and can generate the required portions depending on the transitions made thus far
on demand.

Transforming the DAG into a Tree

Consider any strategy dag D(i, j). We Vrst transform this dag into a (possibly exponential) tree
by making as many copies of a node (i, j, u, t) as there are paths from the root to (i, j, u, t) in
D(i, j). More formally, deVne DT(i, j) as the tree whose vertices are the simple paths in D(i, j)
which start at the root. To avoid confusion, we will explicitly refer to vertices of the tree DT

as tree-nodes, as distinguished from the nodes in D; to simplify the notation we identify each
tree-node in DT with its corresponding path in D. Given two tree-nodes P, P ′ in DT(i, j),
add an arc from P to P ′ if P ′ is an immediate extension of P , i.e., if P corresponds to some
path (i, j, u1, t1) → . . . → (i, j, uk, tk) in D(i, j), then P ′ is a path (i, j, u1, t1) → . . . →
(i, j, uk, t, k)→ (i, j, uk+1, tk+1) for some node (i, j, uk+1, tk+1).

For a tree-node P ∈ DT(i, j)which corresponds to the path (i, j, u1, t1)→ . . .→ (i, j, uk, tk)
inD(i, j), we deVne state(P ) = uk, i.e., state(·) denotes the Vnal state (in Si) in the path P . Now,
for tree-node P ∈ DT(i, j), if u1, . . . , uk are the children of state(P ) in Si with positive transi-
tion probability from state(P ), then P has exactly k children P1, . . . , Pk with state(Pl) equal to
ul for all l ∈ [k]. The depth of a tree-node P is deVned as the depth of state(P ).

We now deVne the quantities time and prob for tree-nodes in DT(i, j). Let P be a path in
D(i, j) from ρi to node (i, j, u, t). We deVne time(P ) := t and prob(P ) := prob(P ′)p(state(P ′),u),
where P ′ is obtained by dropping the last node from P . The blown-up tree DT(i, j) of our
running example D(i, j) (Figure 4.3) is given in Figure 4.4.

Lemma 4.8.3 For any state u and time t,
∑

P s.t time(P )=t and state(P )=u prob(P ) = prob(i, j, u, t).

ρi

u

v

w

w

y

y

z

x z

z

Figure 4.4: Blown-up Strategy Forest DT(i, j)

Now that we have a tree labeled with prob and time values, the notions of connected compo-
nents and heads from Section 4.4.2 carry over. SpeciVcally, we deVne head(P ) to be the ancestor
P ′ of P in DT(i, j) with least depth such that there is a path (P ′ = P1 → . . . → Pl = P )
satisfying time(Pi) = time(Pi−1) + 1 for all i ∈ [2, l], i.e., the plays are made contiguously from
head(P ) to P in the blown-up tree. We also deVne comp(P ) as the set of all tree-nodes P ′ such
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that head(P ) = head(P ′).

In order to play the strategies DT(i, j) we Vrst eliminate small gaps. The algorithm GapFill

presented in Section 4.4.2 can be employed for this purpose and returns trees DT′(i, j) which
satisfy the analog of Lemma 4.4.4.

Lemma 4.8.4 The trees returned by GapFill satisfy the followings properties.

(i) For each tree-node P such that rstate(P ) > 0, time(head(P )) ≥ 2 · depth(head(P )).

(ii) The total extent of plays at any time t, i.e.,
∑

P :time(P )=t prob(P ) is at most 3.

Now we use Algorithm 7 to play the trees DT(i, j). We restate the algorithm to conform
with the notation used in the trees DT(i, j).

Algorithm 12 Scheduling the Connected Components: Algorithm AlgDAG

1: for arm i, sample strategy DT(i, j) with probability prob(root(DT(i,j)))
24

; ignore arm i w.p. 1 −∑
j
prob(root(DT(i,j)))

24
.

2: let A← set of “active” arms which chose a strategy in the random process.
3: for each i ∈ A, let σ(i) ← index j of the chosen DT(i, j) and let currnode(i) ← root of

DT(i, σ(i)).
4: while active arms A 6= ∅ do
5: let i∗ ← arm with tree-node played earliest (i.e., i∗ ← argmini∈A{time(currnode(i))}).
6: let τ ← time(currnode(i∗)).
7: while time(currnode(i∗)) 6=∞ and time(currnode(i∗)) = τ do

8: play arm i∗ at state state(currnode(i∗))
9: let u be the new state of arm i∗ and let P be the child of currnode(i∗) satisfying

state(P ) = u.
10: update currnode(i∗) to be P ; let τ ← τ + 1.
11: if time(currnode(i∗)) =∞ then

12: let A← A \ {i∗}

Now an argument identical to that for Theorem 4.4.9 gives us the following:

Theorem 4.8.5 The reward obtained by the algorithm AlgDAG is at least a constant fraction of

the optimum for (LPmabdag).

Implicit gap Vlling

Our next goal is to execute GapFill implicitly, that is, to incorporate the gap-Vlling within Algo-
rithm AlgDAG without having to explicitly perform the advances.

To do this, let us review some properties of the trees returned by GapFill. For a tree-node P
in DT(i, j), let time(P ) denote the associated time in the original tree (i.e., before the application
of GapFill) and let time′(P ) denote the time in the modiVed tree (i.e., after DT(i, j) is modiVed
by GapFill).
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Claim 4.8.6 For a non-root tree-node P and its parent P ′, time′(P ) = time′(P ′) + 1 if and only

if, either time(P ) = time(P ′) + 1 or 2 · depth(P ) > time(P ).

Proof: Let us consider the forward direction. Suppose time′(P ) = time′(P ′)+ 1 but time(P ) >
time(P ′) + 1. Then P must have been the head of its component in the original tree and an
advance was performed on it, so we must have 2 · depth(P ) > time(P ).

For the reverse direction, if time(P ) = time(P ′)+1 then P could not have been a head since
it belongs to the same component as P ′ and hence it will always remain in the same component
as P ′ (as GapFill only merges components and never breaks them apart). Therefore, time′(P ) =
time′(P ′) + 1. On the other hand, if time(P ) > time(P ′) + 1 and 2 · depth(P ) > time(P ), then
P was a head in the original tree, and because of the above criterion, GapFill must have made an
advance on P ′ thereby including it in the same component as P ; so again it is easy to see that
time′(P ) = time′(P ′) + 1.

The crucial point here is that whether or not P is in the same component as its predeces-
sor after the gap-Vlling (and, consequently, whether it was played contiguously along with its
predecessor should that transition happen in AlgDAG) can be inferred from the time values of
P, P ′ before gap-Vlling and from the depth of P—it does not depend on any other advances that
happen during the gap-Vlling.

Algorithm 13 is a procedure which plays the original trees DT(i, j)while implicitly perform-
ing the advance steps of GapFill (by checking if the properties of Claim 4.8.6 hold). This change
is reWected in Step 7 where we may play a node even if it is not contiguous, so long it satisVes the
above stated properties. Therefore, as a consequence of Claim 4.8.6, we get the following Lemma
that the plays made by ImplicitFill are identical to those made by AlgDAG after running GapFill.

Algorithm 13 Filling gaps implicitly: Algorithm ImplicitFill

1: for arm i, sample strategy DT(i, j) with probability prob(root(DT(i,j)))
24

; ignore arm i w.p. 1 −∑
j
prob(root(DT(i,j)))

24
.

2: let A← set of “active” arms which chose a strategy in the random process.
3: for each i ∈ A, let σ(i) ← index j of the chosen DT(i, j) and let currnode(i) ← root of

DT(i, σ(i)).
4: while active arms A 6= ∅ do
5: let i∗ ← arm with state played earliest (i.e., i∗ ← argmini∈A{time(currnode(i))}).
6: let τ ← time(currnode(i∗)).
7: while time(currnode(i∗)) 6=∞ and (time(currnode(i∗)) = τ or 2 ·depth(currnode(i∗)) >

time(currnode(i∗))) do

8: play arm i∗ at state state(currnode(i∗))
9: let u be the new state of arm i∗ and let P be the child of currnode(i∗) satisfying

state(P ) = u.
10: update currnode(i∗) to be P ; let τ ← τ + 1.
11: if time(currnode(i∗)) =∞ then

12: let A← A \ {i∗}
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Lemma 4.8.7 Algorithm ImplicitFill obtains the same reward as algorithm AlgDAG ◦ GapFill.

Running ImplicitFill in Polynomial Time

With the description of ImplicitFill, we are almost complete with our proof with the exception of
handling the exponential blow-up incurred in moving from D to DT. To resolve this, we now
argue that while the blown-upDTmade it easy to visualize the transitions and plays made, all of it
can be done implicitly from the strategy DAGD. Recall that the tree-nodes inDT(i, j) correspond
to simple paths in D(i, j). In the following, the Vnal algorithm we employ (called ImplicitPlay)
is simply the algorithm ImplicitFill, but with the exponentially blown-up trees DT(i, σ(i)) being
generated on-demand, as the diUerent transitions are made. We now describe how this can be
done.

In Step 3 of ImplicitFill, we start oU at the roots of the trees DT(i, σ(i)), which corresponds
to the single-node path corresponding to the root of D(i, σ(i)). Now, at some point in time in
the execution of ImplicitFill, suppose we are at the tree-node currnode(i∗), which corresponds to
a path Q in D(i, σ(i)) that ends at (i, σ(i), v, t) for some v and t. The invariant we maintain is
that, in our algorithm ImplicitPlay, we are at node (i, σ(i), v, t) in D(i, σ(i)). Establishing this
invariant would show that the two runs ImplicitPlay and ImplicitFill would be identical, which
when coupled with Theorem 4.8.5 would complete the proof—the information that ImplicitFill

uses of Q, namely time(Q) and depth(Q), can be obtained from (i, σ(i), v, t).

The invariant is clearly satisVed at the beginning, for the diUerent root nodes. Suppose it is
true for some tree-node currnode(i), which corresponds to a path Q in D(i, σ(i)) that ends at
(i, σ(i), v, t) for some v and t. Now, suppose upon playing the arm i at state v (in Step 8), we
make a transition to state u (say), then ImplicitFill would Vnd the unique child tree-node P of Q
in DT(i, σ(i)) with state(P ) = u. Then let (i, σ(i), u, t′) be the last node of the path P , so that
P equals Q followed by (i, σ(i), u, t′).

But, since the tree DT(i, σ(i)) is just an expansion of D(i, σ(i)), the unique child P in
DT(i, σ(i)) of tree-node Q which has state(P ) = u, is (by deVnition of DT) the unique node
(i, σ(i), u, t′) of D(i, σ(i)) such that (i, σ(i), v, t) → (i, σ(i), u, t′). Hence, just as ImplicitFill

transitions to P in DT(i, σ(i)) (in Step 9), we can transition to the state (i, σ(i), u, t′) with just D
at our disposal, thus establishing the invariant.

For completeness, we present the implicit algorithm below.

4.9 Conclusions

In this chapter, we presented constant-factor approximation algorithms for the MAB problem,
generalizing earlier results (e.g., [55, 60]) which relied on a Martingale-like assumption for the
behavior of each arm. There are still several interesting problems in this area, however. Our
algorithms crucially depend on the independence arcoss arms, and also the fact that the problem
is restless— playing one arm does not aUect the state of other arms. What if other arms passively
make transitions as well? What if there is delayed feedback in the mechanism— we only get to
see the resulting state of a random transition after a pre-speciVed delay? While there has been
some work along these directions [62], we still lack a complete understanding.
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Algorithm 14 Algorithm ImplicitPlay

1: for arm i, sample strategy D(i, j) with probability prob(root(D(i,j)))
24

; ignore arm i w.p. 1 −∑
j
prob(root(D(i,j)))

24
.

2: let A← set of “active” arms which chose a strategy in the random process.
3: for each i ∈ A, let σ(i) ← index j of the chosen D(i, j) and let currnode(i) ← root of

D(i, σ(i)).
4: while active arms A 6= ∅ do
5: let i∗ ← arm with state played earliest (i.e., i∗ ← argmini∈A{time(currnode(i))}).
6: let τ ← time(currnode(i∗)).
7: while time(currnode(i∗)) 6=∞ and (time(currnode(i∗)) = τ or 2 ·depth(currnode(i∗)) >

time(currnode(i∗))) do

8: play arm i∗ at state state(currnode(i∗))
9: let u be the new state of arm i∗.
10: update currnode(i∗) to be u; let τ ← τ + 1.
11: if time(currnode(i∗)) =∞ then

12: let A← A \ {i∗}
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Chapter 5

Stochastic Orienteering

Our Vnal focus in this thesis is on the orienteering problem with stochastic items located at nodes.
This problem is essentially a generalization of the Stochastic Knapsack problem, but where the
jobs are now located at vertices on a metric, and the algorithm must actually be at the corre-
sponding location to process the job.

For a practical motivation of this orienteering problem, consider the following setting: you
start your day at home with a set of chores to run at various locations (e.g., at the bank, the post
oXce, the grocery store), but you only have limited time to run those chores in (say, you have from
9am until 5pm, when all these shops close). Each successfully completed chore/job j gives you
some Vxed reward rj . You know the time it takes you to travel between the various job locations:
these distances are deterministic form a metric (V, d). However, you do not know the amount
of time you will spend doing each job (e.g., standing in the queue, Vlling out forms). Instead,
for each job j, you are only given the probability distribution πj governing the random amount
of time you need to spend performing j. That is, once you start performing the job j, the job
Vnishes after sizej time units and you get the reward, where sizej is a random variable denoting
the size, and distributed according to πj .1 (You may cancel processing the job j prematurely,
but in that case you don’t get any reward, and you are barred from trying j again.) The goal
is now a natural one: given the metric (V, d), the starting point ρ, the time budget B, and the
probability distributions for all the jobs, give a strategy for traveling around and doing the jobs
that maximizes the expected reward accrued.

In a diUerent example, let us again consider the processor scheduling setting. In the StocK
problem, we had assumed that the jobs each have random processing times and rewards, and the
goal is to maximize the total reward of jobs completed within a total time of B. Now, what if
there is a cost associated with switching between tasks? That is, loading job j after completing
job j′ incurs a time of d(j, j′), and we have the same goal of maximizing the total reward of jobs
completed in a time of B. Notice that this requirement corresponds to having the total processing
times plus switching times being at most B. Furthermore, these d(·, ·) clearly form a metric since

1To clarify: before you reach the job, all you know about its size is what can be gleaned from the distribution πj

of sizej ; and even having worked on j for t units of time, all you know about the actual size of j is what you can
infer from the conditional (sizej | sizej > t).
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switching from j to j′′ can not take more time than switching from j to j′ and then from j′ to j′′.
Therefore, this setting exactly corresponds to our Stochastic Orienteering problem.

Two Special Cases. The case when all the sizes are deterministic (i.e., sizej = sj with probability
1) is the orienteering problem, for which we now know a (2+ε)-approximation algorithm [21, 31].
Another special case, where all the chores are located at the start node, but the sizes are random,
is the Stochastic Knapsack problem, which also admits a (2 + ε)-approximation algorithm [18,
42]. However, the stochastic orienteering problem above, which combines aspects of both these
problems, seems to have been hitherto unexplored in the approximation algorithms literature.

Finally, just as in the previous sections, our theoretical motivation stems from analyzing the
“adaptivity gap” of this problem, and devising good non-adaptive solutions2.

5.1 Our Results

In this thesis we showwe can achieve the following approximations for the stochastic orienteering
problem.

Theorem 5.1.1 There is an O(log logB)-approximation algorithm for the stochastic orienteering

problem.

Indeed, our proof proceeds by Vrst showing the following structure theorem which bounds the
adaptivity gap:

Theorem 5.1.2 Given an instance of the stochastic orienteering problem, then

1. either there exists a single job which gives an Ω(log logB) fraction of the optimal reward,

or

2. there exists a value W ∗ such that the optimal non-adaptive tour which spends at most W ∗

time waiting and B − W ∗ time traveling, gets an Ω(log logB) fraction of the optimal

reward.

Note that naïvely we would expect only a logarithmic fraction of the reward, but the structure
theorem shows we can do better. Indeed, this theorem is the technical heart of the analysis, and
is proved via a martingale argument, that we believe could be of independent interest. Since the
above theorem shows the existence of a non-adaptive solution close to the best adaptive solution,
we can combine it with the following result to prove Theorem 5.1.1.

Theorem 5.1.3 There exists a constant-factor approximation algorithm to the optimal non-adaptive

policy for stochastic orienteering.

Note that if we could show an existential proof of a constant adaptivity gap (which we conjec-
ture to be true), the above approximation for non-adaptive problems that we show immediately
implies an O(1)-approximation algorithm for the adaptive problem too.

We then generalize our model and results to the setting where both the rewards and job sizes
are random, and could be correlated with each other. For this correlated problem, we show:

2A non-adaptive solution for stochastic orienteering is simply a tour P of points in the metric space starting at
the root ρ: we visit the points in this Vxed order, performing the jobs at the points we reach, until time runs out
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Theorem 5.1.4 There is a polynomial-time algorithm that outputs a non-adaptive policy for cor-

related stochastic orienteering, achieving an O(log n logB)-approximation to the best adaptive

policy. Moreover, this problem is at least as hard as the orienteering-with-deadlines problem.

The orienteering-with-deadlines problem [7] is the following: given a metric with deadlines at
vertices, and a starting vertex ρ, compute a path originating from ρ (at time zero) that maximizes
the number of vertices visited before their respective deadlines. The best known approximation
algorithm for this problem achieves an O(log n) ratio [7]. Notice that this negative result is in
contrast with our knowledge for the Stochastic Knapsack problem, where we can show O(1)-
approximation algorithms for both the uncorrelated and correlated versions.

5.1.1 Related Work

The (deterministic) orienteering problem is known to be APX-hard, and the Vrst constant-factor
approximation algorithm was due to Blum et al. [21]. Their factor of 4 was improved by [7]
and ultimately by [31] to (2 + ε) for every ε > 0. There is a PTAS known for the orienteering
problem on low-dimensional Euclidean space [33]. The orienteering problem has also been useful
as a subroutine for obtaining approximation algorithms for other vehicle routing problems such
as TSP with deadlines and time-windows [7, 29, 30].

To the best of our knowledge, the stochastic version of the orienteering problem has not
been studied before from the perspective of approximation algorithms. Heuristics and empirical
guarantees for a similar problem were given by Campbell et al. [23].

As mentioned earlier, the Stochastic Knapsack problem [42] is a special case of stochastic ori-
enteering, where all the jobs are located at the root ρ itself. Dean et al. [42] gave the Vrst constant
factor approximation algorithm for this basic problem. In Chapter 3 of this thesis, we considered
the extension with correlated rewards and sizes, and showed a constant-factor approximation
algorithm for it as well.

Another very related body of work is on budgeted learning with metric switching costs.
SpeciVcally, in the work of Guha and Munagala [60], there is a collection of Markov chains
located in a metric, each state of each chain having an associated reward. When at a Markov
chain at location j, the policy can advance that chain one step every unit of time. Given a bound
of L time units for traveling, and a bound of C time units for advancing Markov chains, the goal
is maximize some function (say the sum or the max) of rewards of the Vnal states in expectation.
[60] gave an elegant constant factor approximation algorithm for this problem (under some mild
conditions on the rewards) via a reduction to classical orienteering using Lagrangean multipli-
ers. Our algorithm/analysis for the “knapsack orienteering” problem (deVned in Section 5.4) is
inspired by theirs; the analysis of our algorithm though is simpler, due to the problem itself be-
ing deterministic. This can be used to obtain a constant-factor approximation algorithm for the
variant of stochastic orienteering with two separate budgets for travel time and processing time.
However, it is unclear how to use the approach from [60] to obtain an approximation ratio better
than O(logB) for the (single budget) stochastic orienteering problem that we consider.

Approximation algorithms have been studied for adaptive versions of a number of combi-
natorial optimization problems. Many of these results (machine scheduling [89], knapsack [42],
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budgeted learning [59], matchings [10], and also those in Chapters 3 and 4 in this thesis) are
based on LP relaxations that capture certain expected values of the optimal adaptive policy. Such
an LP-based approach was also used in earlier optimality proofs for some stochastic queuing
problems [78] and the multi-armed bandit problem [16]. However, an LP-based approach is not
directly useful for stochastic orienteering since we do not know good LP relaxations for even the
deterministic orienteering problem.

On the other hand, there are also other papers (eg. stochastic matchings [34], stochastic
knapsack [18, 19], optimal decision trees [2, 67, 85]) that have had to reason about the optimal
adaptive policies directly. We hope that our martingale-based analysis for stochastic orienteering
will add to the set of tools used for adaptive optimization problems.

5.2 Chapter Roadmap

We begin by highlighting the main technical challenges we encounter, and also our ideas to han-
dle them in Section 5.3. We then deVne some useful notation in Section 5.4. En route to our
algorithm for StocOrient, we Vrst solve a crucial sub-routine which we call Knapsack Orienteer-
ing in Section 5.5. Then we show a constant-factor approximation to the optimal non-adaptive
solution for StocOrient in Section 5.6, and conclude the results of the uncorrelated version by
giving an existential proof bounding the adaptivity gap by O(log logB) in Section 5.7. Finally,
we show our algorithm for the StocOrient problem with correlated rewards in Section 5.9.

5.3 Techniques

A natural approach for StocOrient is to replace stochastic jobs by deterministic ones with size
equal to the expected sizeE[Sv], and Vnd a near-optimal orienteering solution P to the determin-
istic instance which gets reward R. One can then use this path P to get a non-adaptive policy for
the original StocOrient instance with expected reward Ω(R). Indeed, suppose the path P spends
time L traveling and W processing the deterministic jobs such that L +W ≤ B. Then, picking
a random half of the jobs and visiting them results in a non-adaptive solution for StocOrient
which travels at most L and processes jobs for time at mostW/2 in expectation. Hence, Markov’s
inequality says that with probability at least 1/2, all jobs Vnish processing within W time units
and we get the entire reward of this sub-path, which is Ω(R).

However, the problem is in showing that R = Ω(OPT)—i.e., that the deterministic instance
has a solution with reward that is comparable to the StocOrient optimum.

The above simplistic reduction of replacing random jobs by deterministic ones with mean
size fails even for stochastic knapsack: suppose the knapsack budget is B, and each of the n jobs
has size Bn with probability 1/n, and size 0 otherwise. Note that the expected size of every job
is now B. Therefore, a deterministic solution can pick only one job, whereas the optimal solution
would VnishΩ(n) jobs with high probability. However, observe that this problem disappears if we
truncate all sizes at the budget, i.e., set the deterministic size to be the expected “truncated” size
E[min(Sj, B)] where Sj is the random size of job j. (Of course, we also have to set the reward to
be rj P[sizej ≤ B] to discount the reward from impossible size realizations.) Now E[min(Wj, B)]
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reduces to B/n and so the deterministic instance can now get Ω(n) reward. Indeed, this is the
approach used by [42] to get an O(1)-approximation algorithm and adaptivity gap.

But for StocOrient, is there a good truncation threshold?

Considering E[min(sizej, B)] fails on the example where all jobs are co-located at a point
at distance B − 1 from the root. Each job v has size B with probability 1/B, and 0 otherwise.
Truncation by B gives an expected size Esizev∼πv

[min(sizev, B)] = 1 for every job, and so the
deterministic instance gets reward from only one job, while the StocOrient optimum can collect
Ω(B) jobs. Now noticing that any algorithm has to spendB−1 time traveling to reach any vertex
that has some job, we can instead truncate each job j’s size atB−d(ρ, j), which is the maximum
amount of time we can possibly spend at j (since we must reach vertex j from ρ). However,
while this Vx works for the aforementioned example, the following example shows that such a
deterministic instance might only get an O( log logB

logB
) fraction of the optimal stochastic reward.

ρ v1 v2 vlogB

B/2 B/4

Figure 5.1: Bad example for replacing by expectations.

Consider n = logB jobs on a line as in Figure 5.3. For i = 1, 2, . . . , logB, the ith job is at
distance B(1− 1/2i) from the root ρ; job i takes on size B/2i with probability p := 1/ logB and
size 0 otherwise. Each job has unit reward. The optimal (adaptive and non-adaptive) solution to
this instance is to try all the jobs in order 1, 2, . . . , logB : with probability (1− p)logB ≈ 1/e, all
the jobs instantiate to size 0 and we will accrue reward Ω(logB).

In the deterministic orienteering instance, each job i has its expected truncated size µi =
E[min{Si, B − d(ρ, i)}] = B/(2i logB). A feasible solution consists of a subset of jobs where
the total travel plus expected sizes is at most B. Suppose j is the Vrst job we pick along the
line, then because of its size being µj we cannot reach any jobs in the last µj length of the path.
The number of these lost jobs is log µj = logB − j − log logB (because of the geometrically
decreasing gaps between jobs), and hence we can reach only jobs j, j+1, j+log logB−1—giving
us a maximum proVt of log logB even if we ignore the space these jobs would take. (In fact, since
their sizes decrease geometrically, we can indeed get all but a constant number of these jobs.)

This shows that replacing jobs in a StocOrient instance by their expected truncated sizes
gives a deterministic instance whose optimal reward is smaller by an Ω( logB

log logB
) factor.

5.3.1 Our Approach: Reduction to Knapsack Orienteering

The reason why the deterministic techniques described above worked for Stochastic Knapsack,
but failed for Stochastic Orienteering is the following: the total sizes of jobs is always roughly B
in knapsack (so truncating at B was the right thing to do). But in orienteering it depends on the
total time spent traveling, which in itself is a random quantity, even for a non-adaptive solution.
One way around this is to guess the amount of timeW spent processing jobs (up to a factor of 2)
which gets the largest proVt, and use that as the truncation threshold, to deVne a knapsack orien-
teering instance. It seems that such an approach should lose an Ω(logB) fraction of the optimal
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reward, since there are log2 B choices for the truncation parameter W . Somewhat surprisingly,
we show that this algorithm actually gives a much better reward: it achieves a constant factor
approximation relative to a non-adaptive optimum, and an O(log logB)-approximation when
compared to the adaptive optimum!

Step 1: Enumerate over all choices for the truncation threshold W . Construct a suitable instance
Iko(W ) of Knapsack Orienteering (KnapOrient), with the guarantee that the optimal re-
ward from this KnapOrient instance Iko(W ) is at least OPT/α.

Step 2: Use Theorem 5.5.1 on Iko to Vnd a path P with reward Ω(OPT/α).

Step 3: Convert this KnapOrient solution P into a non-adaptive policy for StocOrient (Theo-
rem 5.6.4).

Given an instance Iso of StocOrientwith optimal (non-adaptive or adaptive) solution having
expected reward OPT, our algorithm is outlined above. However, there are many details to be
addressed, and we Wesh out the details of this algorithm over the next two sections. We will prove
that α = O(1) for non-adaptive StocOrient, and α = O(log logB) in the adaptive case.

5.4 DeVnitions and Notation

Stochastic Orienteering. An instance of Stochastic Orienteering (StocOrient) is deVned on an
underlying metric space (V, d) with ground set |V | = n and symmetric integer distances d :
V × V → Z

+ (satisfying the triangle inequality) that represent travel times. Each vertex v ∈ V
is associated with a unique stochastic job, which we also call v. For the remainder of this chapter,
each job v has a Vxed reward rv ∈ Z≥0; and a random processing time (a.k.a. size) sizev, which is
distributed according to a known but arbitrary probability distribution πv : R

+ → [0, 1]. We are
also given a starting “root” vertex ρ, and a budget B on the total time available.

The only actions allowed to an algorithm are to travel to a vertex v and begin processing the
job there: when the job Vnishes after its random length sizev of time, we get the reward rv (so
long as the total time elapsed, i.e., travel time plus processing time, is at mostB), and we can then
move to the next job. Recall that this is a non-preemptive model. We show in Section 5.8 that all
our results extend to a related model that allows cancellations: here we can cancel any job at any
time without receiving its reward, but we are not allowed to attempt this job again in the future.

Note that any solution (policy) corresponds to a decision tree where each “state” depends on
which previous jobs were processed, and what information we obtained about their sizes. Now
the goal is to devise a policy which, starting at the root ρ, decides for each possible state the next
job to visit and process. Such a policy is called “non-anticipatory” due to the fact that its action at
any point in time can only depend on already observed information. The objective is to obtain a
policy that maximizes the expected sum of rewards of jobs successfully completed before the total
time (travel and processing) reaches the threshold of B. The approximation ratio of an algorithm
is deVned to be the ratio of the expected reward of an optimal policy to that of the algorithm’s
policy.

Adaptive and Non-Adaptive Policies. We are interested in both adaptive and non-adaptive
policies, and in particular, want to bound the ratio between the performance of the best adaptive
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and best non-adaptive policies. An adaptive policy is a decision tree where each node is labeled by
a job/vertex of V , with the outgoing arcs from a node labeled by j corresponding to the possible
sizes in the support of πj . A non-adaptive policy, on the other hand, is simply given by a path
P starting at ρ; we just traverse this path, processing the jobs that we encounter, until the total
(random) size of the jobs plus the distance traveled exceeds B. A randomized non-adaptive policy

may pick a path P at random from some distribution before it knows any of the size instantiations,
and then follows this path as above. Note that in a non-adaptive policy, the order in which jobs
are processed is independent of their processing time instantiations.

Finally, for any integer m ≥ 0 we use [m] to denote the set {0, 1, . . . ,m}.

5.5 The (Deterministic) Knapsack Orienteering Problem

We now deVne a variant of the orienteering problem which will be crucially used in the rest of
the paper. Recall that in the basic orienteering problem, the input consists of a metric (V, d), the
root vertex ρ, rewards rv for each job v, and total budget B. The goal is to Vnd a path P of length
at most B starting at ρ that maximizes the total reward

∑
v∈P rv of vertices in P .

In the knapsack orienteering problem (KnapOrient), we are given a metric (V, d), root
vertex ρ, and two budgets: Lwhich is the “travel” budget, andW which is the “knapsack” budget.
Each job v has a reward r̂v , and now also a “size” ŝv. A feasible solution is a path P originating
at ρ having length at most L, such that the total size ŝ(P ) :=

∑
v∈P ŝv is at most W . The goal is

to Vnd a feasible solution of maximum reward
∑

v∈P r̂v.

Theorem 5.5.1 There is a polynomial timeO(1)-approximation algorithmAlgKO for theKnapOrient

problem.

The idea of the proof is consider the Lagrangian relaxation of the knapsack constraint; we
remark that such an approach was also taken in [60] for a related problem. This way we alter
the rewards of items while still optimizing over the set of feasible orienteering solutions. For a
suitable choice of the Lagrange parameter, we will show that we can recover a solution with large
(unaltered) reward while meeting both the knapsack (W ) and length (L) constraints.

Proof: For a value λ ≥ 0, deVne an orienteering instance I(λ) on metric (V, d) with root ρ,
travel budget L, and proVts rλv := r̂v − λ · ŝv at each v ∈ V . Note that the optimal solution to
this orienteering instance has value at least OPT− λ ·W , where OPT is the optimal value of the
original KnapOrient instance.

Let Algo(λ) denote an α-approximate solution to I(λ) as well as its proVt; we have α = 2+δ
via the algorithm from [31]. By exhaustive search, let us Vnd:

λ∗ := max

{
λ ≥ 0 : Algo(λ) ≥

λ ·W

α

}
(5.1)

Observe that by setting λ = OPT
2W

, we have Algo(λ) ≥
1
α
(OPT− λW ) = OPT

2α
. Thus λ∗ ≥ OPT

2W
.

Let σ denote the path in solution Algo(λ
∗), and let

∑
v∈σ ŝv = y · W for some y ≥ 0.

Partition the vertices of σ into c = max{1, ⌊2y⌋} parts σ1, . . . , σc with
∑

v∈σj
ŝv ≤ W for all
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j ∈ {1, . . . , c}. This partition can be obtained by greedy aggregation since maxv∈V ŝv ≤ W
(all vertices with larger size can be safely excluded by the algorithm). Set σ′ ← σk for k =
argmaxcj=1 r̂(σj). We then output σ′ (which follows path σ but only visits vertices in σk) as
our approximate solution to the KnapOrient instance. Clearly σ′ satisVes both the length and
knapsack constraints. It remains to bound the reward we obtain.

r̂(σ′) ≥
r̂(σ)

c
≥

λ∗ yW + λ∗ W/α

c
= λ∗ W ·

(
y + 1/α

c

)

≥ λ∗ W ·min

{
y +

1

α
,
1

2
+

1

2αy

}
≥

λ∗ W

α

The second inequality is by r̂(σ) − λ∗ · ŝ(σ) = Algo(λ
∗) ≥ λ∗W

α
due to the choice (5.1), which

implies that r̂(σ) ≥ λ∗ · ŝ(σ) + λ∗·W
α

= λ∗yW + λ∗W
α

by the deVnition of y. The third inequality
is by c ≤ max{1, 2y}. The last inequality uses α ≥ 2. It follows that r̂(σ′) ≥ OPT

2α
, thus giving

us the desired approximation guarantee.

As an aside, this Lagrangian approach can be used to obtain a constant-factor approximation
algorithm for a two-budget version of Stochastic Orienteering (with separate bounds on travel
and processing times). But it is unclear if this can be extended to the single-budget version.
In particular, we are not able to show that the Lagrangian relaxation (of processing times) has
objective value Ω(OPT). This is because diUerent decision paths in the OPTtree might vary
a lot in their processing times, implying that there is no reasonable candidate for a Lagrange
multiplier.

In the next subsection we discuss some simple reductions from StocOrient to deterministic
orienteering that fail to achieve a good approximation ratio. This serves as a warm up for our
algorithm which reduces StocOrient to KnapOrient; we outline this in Subsection 5.3.1.

5.6 Non-Adaptive Stochastic Orienteering

We Vrst consider the non-adaptive StocOrient problem, and present an O(1)-approximation al-
gorithm, which proves Theorem 5.1.3. This also contains many ideas used in the more involved
analysis of the adaptive setting.

Recall that the input consists of metric (V, d) with each vertex v ∈ V representing a stochas-
tic job having a deterministic reward rv ∈ Z≥0 and a random processing time/size sizev dis-
tributed according to πv : R

+ → [0, 1]; we are also given a root ρ and budget B. A non-adaptive
policy is an ordering σ of the vertices (starting with ρ), which corresponds to visiting vertices (and
processing the respective jobs) in the order σ. The goal in the non-adaptive StocOrient problem
is to compute an ordering that maximizes the expected reward, i.e., the total reward of all items
which are completed within the budget of B (travel + processing times). We Vrst perform some
preprocessing on the input instance. Throughout, OPTwill denote the optimal non-adaptive so-
lution to the given StocOrient instance, as well as its expected reward.

Assumption 5.6.1 We may assume without loss of generality that:

1. No single-vertex solution has expected reward more than OPT/8.
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2. For each vertex u ∈ V , PSu∼πu
[Su > B − d(ρ, u) ] ≤ 1/2.

Proof: (1) Note that we can enumerate over all single vertex solutions (there are only n of them)
and output the best one– if any such solution has value greater than OPT/8 then we already
have an 8-approximate solution. So the Vrst assumption follows.

(2) For the second assumption, call a vertex u bad if PSu∼πu
[Su > B − d(ρ, u) ] > 1/2.

We show below that all bad vertices can be ignored. Notice that if OPTvisits a bad vertex then
the probability that it continues further decreases geometrically by a factor 1/2, because the
total budget is exceeded with probability at least 1/2. Therefore, the total expected reward that
OPTcollects from all bad jobs is at most twice the maximum expected reward from any single
bad vertex. By the Vrst assumption, the maximum expected reward from any single vertex is at
most OPT/8. So the expected reward obtained by ignoring bad vertices is at least 3

4
· OPT.

DeVnition 5.6.2 (Truncated Means) For any vertex u ∈ V and any positive value Z ≥ 0, let
µu (Z) := ESu∼πu

[min(Su, Z)] denote the expected size truncated at Z . Note that µu (Z1) ≤
µu (Z2) and µu (Z1 + Z2) ≤ µu (Z1) + µu (Z2) for all Z2 ≥ Z1 ≥ 0.

DeVnition 5.6.3 (Valid KnapOrient Instances) Given an instance Iso of StocOrient and value

W ≤ B, deVne the valid KnapOrient instance Iko(W ) := KnapOrient(V, d, {(ŝu, ru) : ∀u ∈
V }, L,W, ρ) where:

(i) The travel budget L = B −W and size budget isW .

(ii) For all u ∈ V , its deterministic size ŝu = µu (W ).

Recall that AlgKO is an O(1)-approximation algorithm for KnapOrient. Algorithm 15 for non-
adaptive StocOrient proceeds in the following manner: (i) it enumerates over all possible powers-
of-two for the choice of size budgetW (see the deVnition of valid KnapOrient instances), (ii) uses
AlgKO to Vnd near-optimal solution for each of the valid KnapOrient instances, and Vnally (iii)
converts the best of them into a non-adaptive StocOrient solution. The Vnal part of this procedure
is characterized by the following Theorem 5.6.4. The proof is similar to that used in earlier works
on Stochastic Knapsack [42].

Theorem 5.6.4 Given any solution P to KnapOrient instance Iko(W ) (for any W ≤ B) having

reward R, we can obtain in polynomial time a non-adaptive policy for StocOrient of expected

reward R/12.

Proof: To reduce notation, let P also denote the set of vertices visited in the solution to Iko(W ).

L :=

{
u ∈ P : µu (W ) >

W

4

}
and S :=

{
u ∈ P : µu (W ) ≤

W

4

}

Notice that |L| < 4 since
∑

u∈P µu (W ) ≤ W by the size budget in Iko(W ). By averaging
max{ru : u ∈ L} ≥ r(L)/3. Moreover, by Observation 5.6.1 the best single vertex solution (to
StocOrient) among L has expected reward at least 1

2
·max{ru : u ∈ L} ≥ r(L)/6.

Since each v ∈ S has µv (W ) ≤ W/4 and
∑

u∈S µu (W ) ≤ W , we can partition S into
3 parts such that each part has total size at most W/2. Again by averaging, one of these parts
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S ′ ⊆ S satisVes
∑

u∈S′ µu (W ) ≤ W/2 and r(S ′) ≥ r(S)/3. Consider the following non-
adaptive policy for StocOrient: visit (and process) vertices in S ′ in the order of P . By triangle
inequality, the travel time is at most that of P , namely B −W . By Markov’s inequality, with
probability at least 1/2, the total processing time of S ′ is at most W . Hence the expected reward
of this policy to StocOrient is at least 1

2
· r(S ′) ≥ r(S)/6.

The better of the two policies above (from L and S) has reward at least R/12.

Algorithm 15 Algorithm AlgSO for StocOrient on input Iso = (V, d, {(πu, ru) : ∀u ∈ V }, B, ρ)

1: for all v ∈ V do

2: let Rv := rv · PSv∼πv
[Sv ≤ (B − d(ρ, v))] be the expected reward of the single-vertex

solution to v.
3: w.p. 1/2, just visit the vertex v with the highest Rv and exit.
4: delete all vertices u ∈ V with PSu∼πu

[Su > B − d(ρ, u) ] > 1/2.
5: for i = 0, 1, . . . , ⌈logB⌉ do
6: set W = B/2i

7: let Pi be the path returned by AlgKO on the valid KnapOrient instance Iko(W ).
8: let Ri be the reward of this KnapOrient solution Pi.
9: let Pi∗ be the solution among {Pi}i∈[logB] with maximum reward Ri.
10: output the non-adaptive StocOrient policy corresponding to Pi∗ , using Theorem 5.6.4.

Therefore, in order to prove a constant approximation ratio, it suXces to show the existence
of someW = B/2i for which the optimal value of Iko(W ) is Ω(OPT). Formally,

Theorem 5.6.5 (Structure Theorem 1) Given any instance Iso of non-adaptive StocOrient sat-
isfying Assumption 5.6.1, there exists W = B/2i for some i ∈ {0, 1, . . . , ⌈logB⌉} such that

Iko(W ) has optimal value Ω(OPT).

The rest of this section proves this result.

Without loss of generality, let the optimal non-adaptive ordering be {ρ = v0, v1, v2, . . . , vn}.
For any vj ∈ V letDj =

∑j
i=1 d(vi−1, vi) denote the total distance spent before visiting vertex vj .

Note that while the total time (travel plus processing) spent before visiting any vertex is a random
quantity, the distance (i.e. travel time) is deterministic, since we deal with non-adaptive policies.
Let vj∗ denote the Vrst index j such that

∑
i<j µvi (B −Dj) ≥ K · (B −Dj) (5.2)

Here K is some constant which we will Vx later. Observe that this condition is trivially satisVed
when Dj = B; so we may assume, without loss of generality, that Dj∗−1 ≤ B − 1.

Lemma 5.6.6 For index j∗ as in (5.2), we have
∑

i≤j∗−1 rvi ≥ OPT/2.

Proof: We Vrst deal with the corner case thatDj∗ = B. In this case vj∗ is the last possible vertex
visited by OPT. By Assumption 5.6.1, the expected reward from vertex vj∗ even if it is visited
directly from the root, is at most OPT/8. So the expected reward from the Vrst j∗ − 1 vertices is
at least 7

8
· OPT, which implies the lemma.
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In the following, we assume that Dj∗ ≤ B − 1.

Claim 5.6.7 The probability that OPTvisits some vertex indexed j∗ or higher is at most e1−K/2.

Proof: If OPTvisits vertex vj∗ then we have
∑

i<j∗ Svi ≤ B − Dj∗ . This also implies that∑
i<j∗ min(Svi , B − Dj∗) ≤ B − Dj∗ . Now, for each i < j∗ let us deVne a random variable

Xi :=
min(Svi

, B−Dj∗)

B−Dj∗
. Note that the Xi’s are independent [0, 1] random variables, and that

E[Xi] = µvi (B −Dj∗) /(B −Dj∗). From this deVnition, it is also clear that the probability that
OPTvisits vj∗ is upper bounded by the probability that

∑
i<j∗ Xi ≤ 1. To this end, we have from

Inequality (5.2) that
∑

i<j∗ E[Xi] ≥ K . Therefore we can apply a standard ChernoU bound to
conclude that

P [OPT visits vertex vj∗ ] ≤ P

[
∑

i<j∗

Xi ≤ 1

]
≤ e1−K/2

This completes the proof.

Claim 5.6.8 Conditional on reaching vj∗ , the expected reward obtained by the optimal policy from

vertices {vj∗ , vj∗+1, . . .} is at most OPT.

Proof: Consider the alternate policy {ρ = v0, vj∗ , vj∗+1, . . . , vn} that skips all vertices before
vj∗ . By triangle inequality the distance d(ρ, vj∗) ≤ Dj∗ . So the expected reward from this policy
is at least the conditional reward of OPTobtained beyond vertex vj∗ . The claim now follows by
optimality.

Combining these two claims, the expected reward from the Vrst j∗ − 1 vertices is at least(
1− e1−K/2

)
· OPT. SettingK ≥ 4, this implies the lemma.

Recall that Dj∗−1 ≤ B − 1; let ℓ ∈ Z+ be such that B/2ℓ < B − Dj∗−1 ≤ B/2ℓ−1. Set
W ∗ = B/2ℓ. We will show that the KnapOrient instance Iko(W

∗) has optimal value at least
OPT/(8K + 8), which would prove Theorem 5.6.5. Consider path P ∗ = 〈ρ = v0, v1, . . . , vj∗−1〉.
The reward on this path is at least OPT/2 and it satisVes the travel budget B −W ∗ in Iko(W

∗).
The total size on this path is:

∑

i≤j∗−1

µvi (W
∗) ≤

∑

i≤j∗−1

µvi (B −Dj∗−1) =
∑

i<j∗−1

µvi (B −Dj∗−1) + µvj∗−1
(B −Dj∗−1)

≤ (K + 1) (B −Dj∗−1) = 2(K + 1)W ∗

The second inequality is by choice of j∗ in equation (5.2). Although P ∗ may not satisfy the
size budget of W ∗, we obtain a subset P ′ ⊆ P ∗ that does. Since each vertex has size at most W ∗

and the total size of P ∗ is at most 2(K + 1)W ∗, there is a partition of P ∗ into at most 4(K + 1)
parts such that each part has size at mostW ∗. Choosing the maximum reward part amongst these
yields a feasible solution Iko(W

∗) of value at least OPT
8(K+1)

.

Combining Theorem 5.6.4 and 5.6.5, we obtain Theorem 5.1.3.
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5.7 Bounding the Adaptivity Gap

In this section we consider the adaptive StocOrient problem. We will show the same algorithm
(Algorithm AlgSO) is an O(3)-approximation algorithm to the best adaptive solution, thus prov-
ing Theorem 5.1.1. Note that this also establishes an adaptivity gap of O(log logB).

Here OPTdenotes the optimal adaptive policy, as well as its expected reward. Assump-
tion 5.6.1 holds in this adaptive setting as well; the proof is almost identical and not repeated
here. Recall the deVnition of valid KnapOrient instances and Theorem 5.6.4. The main result that
we need is an analog of Theorem 5.6.5, namely:

Theorem 5.7.1 (Structure Theorem 2) Given any instance Iso of adaptive StocOrient satisfying
Assumption 5.6.1, there existsW = B/2i for some i ∈ {0, 1, . . . , ⌈logB⌉} such that Iko(W ) has
optimal value Ω(OPT/ log logB).

Before we begin, recall the typical instance Iso := StocOrient(V, d, {(πu, ru) : ∀u ∈ V }, B, ρ)
of the Stochastic Orienteering problem.

Roadmap. We begin by giving a roadmap of the proof. Let us view the optimal adaptive policy
OPT as a decision tree where each node is labeled with a vertex/job, and the children correspond
to diUerent size instantiations of the job. For any sample path P in this decision tree, consider the
Vrst node xP where the sum of expected sizes of the jobs processed until xP exceeds the “budget
remaining”—here, if Lx,P is the total distance traveled from the root ρ to this node xP by visiting
vertices along P , then the remaining budget is B − Lx,P . Call such a node a frontier node, and
the frontier is the union of all such frontier nodes. To make sense of this deVnition, note that if
the orienteering instance was non-stochastic (and all the sizes would equal the expected sizes),
then we would not be able to get any reward from portions of the decision tree on or below the
frontier nodes. Unfortunately, since job sizes are random for us, this may not be the case.

The main idea in the proof is to show that we do not lose too much reward by truncation:
i.e., even if we truncate OPT along this frontier, we still obtain an expected reward of Ω(OPT/3)
from the truncated tree. Now an averaging argument says that there exists some path P ∗ of length
L where (i) the total rewards of jobs is Ω(OPT/3), and (ii) the sum of expected sizes of the jobs
is O(B − L) and this gives us the candidate KnapOrient solution.

Viewing OPTas a Discrete Time Stochastic Process. Note that the transitions of the decision
tree OPT represent travel between vertices: if the parent node is labeled with vertex u, and its
child is labeled with v, the transition takes d(u, v) time. To simplify matters, we take every such
transition, and subdivide it into d(u, v) unit length transitions. The intermediate nodes added in
are labeled with new dummy vertices, with dummy jobs of deterministic size 0 and reward 0. We
denote this tree as OPT′, and note the amount of time spent traveling is exactly the number of
edges traveled down this tree. (All this is only for analysis.) Now if we start a particle at the root,
and let it evolve down the tree based on the random outcomes of job sizes, then the node reached
at timestep t corresponds to some job with a random size and reward. This naturally gives us a
discrete-time stochastic process T , which at every timestep picks a job of size St ∼ Dt and reward
Rt. Note that St,Rt and the probability distribution Dt all are random variables that depend on
the outcomes of the previous timesteps 0, 1, . . . , t − 1 (since the actual job that the particle sees
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after going t hops depends on past outcomes). We stop this process at the Vrst (random) timestep
tend such that

∑tend

t=0 St ≥ (B − tend)—this is the natural point to stop, since it is precisely the
time step when the total processing plus the total distance traveled exceeds the budget B.

Some notation: Nodes will correspond to states of the decision tree OPT′, whereas vertices
are points in the metric (V, d). The level of a node x inOPT′ is the number of hops in the decision
tree from the root to reach x—this is the timestep when the stochastic process would reach x, or
equivalently the travel time to reach the corresponding vertex in the metric. We denote this by
level(x). Let label(x) be the vertex labeling x. We abuse notation and use Sx, Rx and πx to
denote the size, reward, and size distribution for node x—hence Sx = Slabel(x), Rx = Rlabel(x) and
πx = πlabel(x). We use x′ � x to denote that x′ is an ancestor of x.

Now to begin the proof of Theorem 5.7.1. Firstly, we assume that there are no co-located
stochastic jobs (i.e., there is only one job at every vertex); note that this also implies that we have
to travel for a non-zero integral distance between jobs. This is only to simplify the exposition of
the proof; we explain how to discharge this assumption at the end of this section.

DeVning the Frontiers. Henceforth, we will focus on the decision tree OPT′ and the induced
stochastic process T . Consider any intermediate node x and the sample path from the root to x in
OPT′. We call x a star node if x is the Vrst node along this sample path for which the following
condition is satisVed:

∑
x′≺x µx′ (B − level(x)) ≥ 8K (B − level(x)) (5.3)

Observe that this condition obviously holds when level(x) = B, and that no star node is an
ancestor of another star node. To get a sense of this deVnition of star nodes, ignore the truncation
for a moment: then x is a star node if the expected sizes of all the level(x) jobs on the sample
path until x sum to at least 8K(B − level(x)). But since we have spent level(x) time traveling
to reach x, the process only continues beyond vertex x if the actual sizes of the jobs is at most
B − level(x); i.e., if the sizes of the jobs are a factor 8K smaller than their expectations. If this
were an unlikely event, then pruning OPT′ at the star nodes would result in little loss of reward.
And that is precisely what we show.

Let OPT′′ denote the subtree of OPT′ obtained by pruning it at star nodes (OPT′′ does not
include rewards at star nodes). Note that leaf-nodes in OPT′′ are either leaves of OPT′ or parents
of star nodes. In particular, level(s) ≤ B − 1 for each leaf-node s ∈ OPT′′.

Lemma 5.7.2 The expected reward in OPT′′ is at least OPT/2.

Before proving this lemma, we show how this implies Theorem 5.7.1.

Proof of Theorem 5.7.1: We start with the following claim that uses the deVnition of star nodes.

Claim 5.7.3 Every leaf node s ∈ OPT′′ satisVes
∑

x�s µx (B − level(s)) ≤ 9K (B − level(s)).

Proof: By deVnition of OPT′′, leaf-node s is not a star node (nor a descendant of one). So:
∑

x�s

µx (B − level(s)) =
∑

x≺s

µx (B − level(s)) + µs (B − level(s)) < (8K + 1) · (B − level(s)).

99



The inequality is by (3.8). This proves the claim.

Now by an averaging argument, there exists a sample path P ∗ inOPT′′ to leaf node s∗ with travel
time level(s∗) such that:

1. The sum of rewards of nodes visited along P ∗ is at least OPT/2, using Lemma 5.7.2.

2. The sum of means (truncated at B − level(s∗)) of jobs in P ∗ is at most 9K (B − level(s∗)),
using Claim 5.7.3.

Recall that every leaf in OPT′′ has level at most B − 1, so level(s∗) ≤ B − 1. Choose ℓ ∈
{0, 1, . . . , ⌈logB⌉} so thatB/2ℓ ≤ B− level(s∗) ≤ B/2ℓ+1, and setW ∗ = B/2ℓ. Then we have:

∑

x�s∗

µx (W
∗) ≤

∑

x�s∗

µx (B − level(s∗)) ≤ 9K · (B − level(s∗)) ≤ 18K ·W ∗

Consider the KnapOrient instance Iko(W
∗); we will show that it has optimal value at least

Ω(OPT/K), which proves Theorem 5.7.1. Note that path P ∗ has length level(s∗) and satisVes
the travel budget of B −W ∗. The above calculation shows that the total size of P ∗ is at most
18K ·W ∗. Using the bin-packing-type argument as in the previous section, we obtain a subset
P ′ ⊆ P ∗ that has total size at mostW ∗ and reward at least r(P ∗)/(36K) ≥ OPT

72K
. Thus we obtain

Theorem 5.7.1.

We now prove Lemma 5.7.2. Group the star nodes into ⌈logB⌉+1 bands based on the value
of B − level(x). Star node x is in band i if B − level(x) ∈ (B/2i+1, B/2i] for 0 ≤ i ≤ ⌈logB⌉,
and in band ⌈logB⌉+ 1 if level(x) = B.

First consider star nodes of band ⌈logB⌉ + 1. Note that the policy terminates after these
nodes (since B time units have already been spent traveling). By Assumption 5.6.1, the loss in
reward by ignoring star nodes of band ⌈logB⌉+ 1 is at most OPT/8.

Next we consider bands {0, . . . , ⌈logB⌉}. We use the following key lemma that upper
bounds the probability of reaching star nodes in any particular band i.

Lemma 5.7.4 For any i ∈ {0, . . . , ⌈logB⌉}, the probability of reaching band i is at most 1
10⌈logB⌉

.

Taking a union bound, the probability of reaching some band {0, . . . , ⌈logB⌉} is at most 1
10
.

Then we have the following claim (similar to Claim 5.6.8 in the non-adaptive case).

Claim 5.7.5 Conditional on reaching any node x ∈ OPT′, the expected reward obtained by the

optimal policy from nodes below x is at most OPT.

Proof: Consider the alternate adaptive policy that visits node x directly from the root. Using
triangle inequality, the expected reward from this policy is at least the conditional reward of
OPT′ obtained below vertex x. The claim now follows by optimality.

Thus we obtain that the loss in reward by truncating at star nodes in bands {0, . . . , ⌈logB⌉} is at
most OPT/10. Combined with the loss due to band ⌈logB⌉+1, it follows that OPT′′ has reward
at least OPT/2.

It only remains to prove Lemma 5.7.4, which we do in the rest of this section.
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Proof of Lemma 5.7.4: In order to bound the probability, consider the following altered stochas-
tic process Ti: follow T as long as it could lead to a star node in band i. If we reach a node y
such that there is no band-i star node as a descendant of y, then we stop the process Ti at y. Else
we stop when we reach a star node in band i. An illustration of the optimal decision tree, the
diUerent bands and altered processes is given in Figure 5.2.

By a straightforward coupling argument, the probabilities of reaching a band-i star node in T
and in Ti are identical, and hence it suXces to bound the corresponding probability of continuing
beyond a band-i star node in Ti. Therefore, let us Vx a particular band i.

level(v)
Opt(1)

star nodes

frontier

ρ

Figure 5.2: Optimal Decision Tree example: dashed lines indicate the bands, × indicates star
nodes

Claim 5.7.6 For each i ∈ {0, 1, . . . , ⌈logB⌉}, and any star node x in band i,

2K
B

2i
≤

∑

x′≺x

µx′

(
B/2i+1

)
≤ 17K

B

2i

Proof: By deVnition of a star node (5.3), and since node x is in band-i, B/2i+1 ≤ B− level(x) ≤
B/2i,

∑

x′≺x

µx′

(
B/2i+1

)
≥

∑

x′≺x

µx′

(
1

2
(B − level(x))

)
≥

1

2

∑

x′≺x

µx′ (B − level(x))

≥ 4K(B − level(x)) ≥ 2K
B

2i
.

The Vrst two inequalities used the monotonicity and subadditivity of µx′ (·).

Moreover, since y, the parent node of x, is not a star node, it satisVes
∑

x′≺y µx′ (B − level(y)) <
8K(B − level(y)) = 8K(B − level(x) + 1). But since we are not considering band number
⌈logB⌉ + 1 and all distances are at least 1, level(x) ≤ B − 1, and hence B − level(x) + 1 ≤
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2(B − level(x)) ≤ 2B/2i. Thus we have
∑

x′≺y µx′ (B − level(y)) < 16K ·B/2i. Now,

∑

x′≺x

µx′

(
B/2i+1

)
=

∑

x′≺y

µx′

(
B/2i+1

)
+ µy

(
B/2i+1

)
≤

∑

x′≺y

µx′ (B − level(y)) +
B

2i+1

≤ 16K ·
B

2i
+

B

2i+1
≤ 17K ·

B

2i

The Vrst inequality uses B − level(y) ≥ B − level(x) ≥ B/2i+1. This completes the proof.

Claim 5.7.7 For any i ∈ {0, 1, . . . , ⌈logB⌉} and any star node x in band i, if process Ti reaches
x: ∑

x′≺x

min

(
Sx′ ,

B

2i+1

)
≤

B

2i

Proof: Clearly, if process Ti reaches node x, it must mean that
∑

x′≺x Sx′ ≤ (B − level(x)) ≤
B/2i, else we would have run out of budget earlier. The claim follows because truncation can
only decrease the left hand side.

We now Vnish upper bounding the probability of reaching a star node in band i using a Martingale
analysis. DeVne a sequence of random variables {Zt, t = 0, 1, . . .} where

Zt =
t∑

t′=0

(
min

{
St′ ,

B

2i+1

}
− µSt′

(
B/2i+1

))
. (5.4)

Since the subtracted term is precisely the expectation of the Vrst term, the one-term expected
change is zero and the sequence {Zt} forms a martingale. In turn, E[Zτ ] = 0 for any stopping
time τ . We will deVne τ to be the time when the process Ti ends—recall that this is the Vrst time
when (a) either the process reaches a band-i star node, or (b) there is no way to get to a band-i
star node in the future.

Claim 5.7.7 says that when Ti reaches any star node x, the sum over the Vrst terms in (5.4) is
at most B/2i, whereas Claim 5.7.6 says the sums of the means is at least 2K B

2i
. Because K ≥ 1,

we can infer that the Zt ≤ −K(B/2i) for any star node (at level t). To bound the probability
of reaching a star node in Ti, we appeal to Freedman’s concentration inequality for martingales,
which substantially generalizes the Azuma-HoeUding inequality.

Theorem 5.7.8 (Freedman [50] (Theorem 1.6)) Consider a real-valued martingale sequence {Xk}k≥0

such that X0 = 0, and E [Xk+1 | Xk, Xk−1, . . . , X0] = 0 for all k. Assume that the sequence is

uniformly bounded, i.e., |Xk| ≤ M almost surely for all k. Now deVne the predictable quadratic

variation process of the martingale to be

Wk =
∑k

j=0 E [X2
k | Xk−1, Xk−2, . . . X0]

for all k ≥ 1. Then for all l ≥ 0 and σ2 > 0, and any stopping time τ we have

P

[
|

τ∑

j=0

Xj| ≥ l and Wτ ≤ σ2

]
≤ 2 exp

(
−

l2/2

σ2 +Ml/3

)
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We apply the above theorem to the Martingale diUerence sequence {Xt = Zt−Zt−1}. Now,
since each term Xt is just min(St,

B
2i+1 ) − µSt

(B/2i+1), we get that E [Xt | Xt−1, . . .] = 0 by
deVnition of µSt

(B/2i+1). Moreover, since the sizes and means are both truncated at B/2i+1,
we have |Xt| ≤ B/2i+1 w.p 1; hence we can set M = B/2i+1. Finally in order to bound the
variance term Wt we appeal to Claim 5.7.6. Indeed, consider a single r.v Xt = min(St,

B
2i+1 ) −

µSt
(B/2i+1), and suppose we abbreviate min(St,

B
2i+1 ) by Y for convenience. Then:

E
[
X2

t | Xt−1, . . .
]

= E
[
(Y − E [Y ])2

]
= E

[
Y 2

]
− E[Y ]2

≤ Ymax · E[Y ] ≤
B

2i+1
· µSt

(
B/2i+1

)

Here, the Vrst inequality uses Y ≥ 0 and Ymax as the maximum value of Y . The last inequality
uses the deVnition of Y . Hence the term Wt is at most (B/2i+1)

∑
t′≤t µSt′

(B/2i+1) for the
process at time t. Now from Claim 5.7.6 we have that for any star node (say at level t) in band
i, we have

∑
t′≤t µt′ (B/2i+1) ≤ 17K(B/2i). Therefore we have Wt ≤ 9K · (B/2i)2 for star

nodes, and we set σ2 to be this quantity.

So by setting ℓ = K(B/2i), σ2 = 9K(B/2i)2, andM = B/2i+1, we get that

P [ reaching star node in Ti] ≤ P
[
|Zτ | ≥ K(B/2i) and Wτ ≤ 9K(B/2i)2

]
≤ 2 e−K/20.

Setting K = Ω(3) and performing a simple union bound calculation over the ⌈logB⌉ bands
completes the proof of Lemma 5.7.4.

Handling Co-Located Jobs To help with the presentation in the above analysis, we assumed
that a node x which is at depth l in the decision tree for OPTis actually processed after the
adaptive policy has traveled a distance of l. In particular, this meant that there is at most one
stochastic job per node (because if OPTis done with processing some job, it has to travel at least
1 timestep in the decision tree because its depth increases). However, if we are more careful in
deVning the truncations of any node (in equation (3.8)) by its actual length along the path, instead
of simply its depth/level in the tree, then we will be able to handle co-located jobs in exactly the
same manner as above. In this situation, there could be several nodes in a sample path which
have the same truncation threshold but it is not diXcult to see that the rest of the analysis would
proceed in an identical fashion. We do not present additional details here– the analysis in the
next section handles this issue in a much more general problem setting.

5.8 Stochastic Orienteering with Cancellations

Throughout the results in this chapter, we considered the non-preemptive model for processing
jobs. In this section, we extend those results to the model where a policy can cancel/abort jobs
during processing; however once a job is aborted, it can not be attempted again. As we have seen
in an earlier chapter (Section 3.4.1), there are instances that demonstrate an arbitrarily large gap
in the expected reward for policies which can cancel and those that can not, even in the special
case of Stochastic Knapsack.

We now show that our algorithms for StocOrient can be extended to StocOrient with can-
cellation, while preserving our approximation guarantee of O(log logB). The main idea is to
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slightly modify the instances we create of our deterministic subroutine, i.e. the KnapOrient prob-
lem. SpeciVcally, we create up to B co-located copies of each job v, each of which corresponds
to canceling the job v after a certain time t of processing it (the size and reward of copy 〈v, t〉
are appropriately deVned to reWect this, i.e., the size distribution will be truncated at t, and any
reward is assumed to be 0 if the size exceeds t, i.e., the truncation threshold is reached). It is easy
to see that any adaptive optimal solution, when it visits a vertex in fact just plays some copy of
it (it might be adaptive as to which copy it plays, i.e., the choice of copy might depend on the
history of the sample path taken to reach this vertex). But because it does not play multiple copies
of the same vertex, we can Vnd a good deterministic solution with suitably large reward (this is
the KnapOrient problem for the uncorrelated case. Now the only issue is when we translate back
from the deterministic instance to a non-adaptive solution for the StocOrient instance: the deter-
ministic solution which AlgKO computes might collect reward from multiple copies of the same
job.

However, we can bound this gap by using the following geometric scaling idea: when we
create the instance of KnapOrient, we also do a pre-processing that, if two copies of a vertex
〈v, t〉 and 〈v, t′〉 for t′ ≥ t have their (modiVed) rewards within a factor of 2 of each other, then
we do not place the copy correspond to 〈v, t′〉 in our KnapOrient instance. Furthermore, we do
this pruning in an ordered left-to-right manner starting with t = 1 and ending at t = B. Now,
our KnapOrient instance is such that for every vertex v, all its copies have rewards which are
geometrically separated by at least a factor of 2. Moreover, for every pruned copy 〈v, t′〉, there is
a copy 〈v, t〉 which (i) has not been pruned out, (ii) has t ≤ t′, and (iii) has reward at least half
the reward of 〈v, t〉.

We now see how this changes the reduction in both directions: in one way, it is easy to show
the optimal solution for KnapOrient does not drop by more than a factor of 2. This is because,
if the KnapOrient OPTuses a copy 〈v, t′〉 in the unpruned instance (and it has been pruned), we
can use the copy 〈v, t〉 which is guaranteed to exist, has t ≤ t′ and has reward at least half the
reward of 〈v, t′〉. Therefore, we can get a feasible solution for the pruned KnapOrient instance
with at least half the reward.

The beauty of this geometric scaling, though, is that it makes recovering a non-adaptive solu-
tion from a KnapOrient solution very simple. Indeed, suppose the KnapOrient instance “cheats”
by collecting reward from multiple copies of the same vertex. Then, we simply throw away all the
copies, with the exception of the one fetching most reward. By deVnition of our pruning strategy,
all copies of a vertex which remain have rewards which are geometrically well-separated, and
hence the total reward of all copies that a solution chooses is at most twice the reward of the
best single copy it chooses! Therefore, we can apply our reduction in Theorem 5.6.4 and recover
a non-adaptive solution for the StocOrient problem.

5.9 Stochastic Orienteering with Correlated Rewards

In this section we consider the StocOrient problem where the reward of each job is a random
variable that may be correlated with its processing time (i.e. size). Crucially, the distributions at
diUerent vertices are still independent of each other. The input to CorrOrient consists of a metric

104



(V, d) with root vertex ρ and a bound B. At each vertex v ∈ V , there is a stochastic job with a
given probability distribution over (size, reward) pairs: for each t ∈ {0, 1, . . . , B}, the job at v
has size t and reward rv,t with probability πv,t. Again we consider the non-preemptive setting, so
once a job is started it must be run to completion unless the budget B is exhausted. The goal is to
devise a (possibly adaptive) policy that maximizes the expected reward of completed jobs, subject
to the total budget (travel time + processing time) being at most B.

When there is no metric in the problem instance, this is precisely the correlated stochastic
knapsack problem, and [68] gave a non-adaptive algorithm which is a constant-factor approxi-
mation to the optimal adaptive policy; this used an LP-relaxation that is quite diUerent from that
in the uncorrelated setting. The trouble with extending that approach to StocOrient is again that
we do not know of LP relaxations with good approximation guarantees even for deterministic
orienteering. We circumvented this issue for the uncorrelated case by using a Martingale analysis
to bypass the need for an LP relaxation, which gave a direct lower bound. We adopt a similar ap-
proach for CorrOrient, but as Theorem 5.1.4 says, our approximation ratio is only O(log n logB)
: this is because our algorithm here relies on the “deadline orienteering” problem. Moreover, we
show that CorrOrient is at least as hard to approximate as the deadline orienteering problem, for
which the best known guarantee is an O(log n) approximation algorithm [7].

5.9.1 The Non-Adaptive Algorithm for CorrOrient

We now get into describing our approximation algorithm, which proceeds via a reduction to
suitably constructed instances of the deadline orienteering problem. Recall that an instance of
deadline orienteering consists of a metric (denoting travel times) with a reward and deadline at
each vertex, and a root vertex. The objective is to compute a path starting from the root that
maximizes the reward obtained from vertices that are visited before their deadlines. Our reduc-
tion proceeds via taking a Lagrangian relaxation of the processing times, and then performing
an amortized analysis to argue that the reward is high and the budget is met with constant prob-
ability. (In this it is similar to the ideas of [60].) However, new ideas are required to handle
correlations between sizes and rewards: indeed, this is where the deadline orienteering problem
is needed. Also, we use an interesting counting property (Claim 5.9.1) to avoid double-counting
reward.

Notation. Let OPTdenote an optimal decision tree. We classify every execution of a job in
this decision tree as belonging to one of (log2 B + 1) types thus: for i ∈ [log2 B], a type-i
job execution occurs when the processing time spent before running the job lies in the interval
[2i − 1, 2i+1 − 1). So if t′ is the distance spent before reaching a type-i job, its start time lies in
[t′ +2i− 1, t′ +2i+1− 1). Note that the same job might have diUerent types on diUerent sample
paths of OPT, but for a Vxed sample path down OPT, it can have at most one type. If OPT(i)
is the expected reward obtained from job runs of type i, then we have OPT =

∑
i OPT(i),

and hence maxi∈[log2 B]OPT(i) ≥ Ω( 1
logB

) · OPT. For all v ∈ V and t ∈ [B], let Rv,t :=
∑B−t

z=0 rv,z ·πv,z denote the expected reward when job v’s size is restricted to being at most B− t.
Note that this is the expected reward we can get from job v if it starts at time t. Recall that for
any v ∈ V , Sv denotes its random size which has distribution {πv,t}

B
t=0
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Reducing CorrOrient to (deterministic) DeadlineOrient

The high-level idea is the following: for any Vxed i, we create an instance of DeadlineOrient to
get an O(log n) fraction of OPT(i) as reward; then choosing the best such setting of i gives us
the O(log n logB)-approximation algorithm. To obtain the instance of DeadlineOrient, for each
vertex v we create several copies of it: for each time t there is a copy corresponding to starting job
v at time t (and hence has reward Rv,t). However, to prevent the DeadlineOrient solution from
collecting reward from many diUerent copies of the same vertex, we make copies of vertices only
when the reward changes by a geometric factor. Indeed, for t1 < t2, if it holds thatRv,t1 ≤ 2Rv,t2 ,
then we do not include the copy 〈v, t1〉 in our instance. The following claim is useful for deVning
such a minimal set of starting times for each job.

Claim 5.9.1 Given any non-increasing function f : [B] → R+, we can eXciently Vnd a subset

I ⊆ [B]:

f(t)

2
≤ max

ℓ∈I:ℓ≥t
f(ℓ) and

∑

ℓ∈I:ℓ≥t

f(ℓ) ≤ 2 · f(t), ∀t ∈ [B].

Proof: The set I is constructed as follows.

Algorithm 16 Computing the support I in Claim 5.9.1.

1: let i← 0, k0 ← 0, I ← ∅.
2: while ki ∈ [B] and f(ki) > 0 do

3: ℓi ← max
{
ℓ ∈ [B] : f(ℓ) ≥ f(ki)

2

}
.

4: ki+1 ← ℓi + 1, I ← I
⋃
{ℓi}.

5: i← i+ 1.
6: output set I .

Observe that B is always contained in the set I , and hence for any t ∈ [B], min{ℓ ≥ t : ℓ ∈
I} is well-deVned. To prove the claimed properties let I = {ℓi}

p
i=0. For the Vrst property, given

any t ∈ [B] let ℓ(t) = min{ℓ ≥ t : ℓ ∈ I}. Observe that if this set is empty then it must be that
f(t) = 0 and the claim trivially holds. Now assume that value ℓ(t) exists and that ℓ(t) = ℓi. By
the deVnition of ℓ(t) it must be that ℓi−1 < t, and so ki ≤ t. Hence f(ℓi) ≥ f(ki)/2 ≥ f(t)/2;
the Vrst inequality is by choice ℓi, and the second as f is non-increasing.

We now show the second property. For any index i, we have ℓi−1 < ki ≤ ℓi < ki+1 ≤ ℓi+1.
Note that f(ki+1) = f(ℓi + 1) < f(ki)/2 by choice of ℓi. So f(ℓi+1) ≤ f(ki+1) < f(ki)/2 ≤
f(ℓi−1)/2. Given any t ∈ [B] let q be the index such that ℓq = min{ℓ ≥ t : ℓ ∈ I}. Consider the
sum:

∑

i≥q

f(ℓi) =
∑

j≥0

f(ℓq+2j) +
∑

j≥0

f(ℓq+1+2j) ≤ f(ℓq) + f(ℓq+1) ≤ 2 · f(t)

The Vrst inequality uses f(ℓi+1) < f(ℓi−1)/2 and a geometric summation; the last is by t ≤ ℓq <
ℓq+1. This completes the proof.
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Consider any i ∈ [log2 B]. Now for each v ∈ V , apply Claim 5.9.1 to the function f(t) :=
Rv,t+2i−1 to obtain a subset I

i
v ⊆ [B]. These subsets deVne the copies of each job that we will use.

For each i and parameter λ ≥ 0 we deVne a deadline orienteering instance:

DeVnition 5.9.2 (DeadlineOrient Instance Ii(λ)) The metric is (V, d)with root vertex ρ. For each
v ∈ V and ℓ ∈ I iv there is a job 〈v, ℓ〉 located at vertex v with deadline ℓ and reward r̂i(v, ℓ, λ) :=
Rv,ℓ+2i−1 − λ · E [min(Sv, 2

i)]. The objective in Ii(λ) is to Vnd a path originating at ρ that

maximizes the reward of the jobs visited within their deadlines.

Also deVne Ni = {〈v, ℓ〉 : ℓ ∈ I iv, v ∈ V }; for each job 〈v, ℓ〉 ∈ Ni, its size si(〈v, ℓ〉) =
si(v) := E [min(Sv, 2

i)], and ri(〈v, ℓ〉) = Rv,ℓ+2i−1.

The co-located jobs {〈v, ℓ〉 : ℓ ∈ I iv} in Ii(λ) are copies of job v in the original CorrOrient
instance, where copy 〈v, ℓ〉 corresponds to running v as a type-i job after distance ℓ. Also, λ
should be thought of as a Lagrangean multiplier, and Ii(λ) is really a Lagrangean relaxation
of a DeadlineOrient instance with an additional side constraint that the size is at most 2i. It is
immediate by the deVnition of rewards that OPT(Ii(λ)) is a non-increasing function of λ.

The idea of our algorithm is to argue that for the “right” setting of λ, the optimalDeadlineOrient
solution for Ii(λ) has value Ω(OPT(i)), which is shown in Lemma 5.9.4. Moreover, as shown in
Theorem 5.9.8, we can recover a valid solution to CorrOrient from an approximate solution to
Ii(λ).

Lemma 5.9.3 For any i ∈ [logB] and λ > 0, the optimal value of the DeadlineOrient instance

Ii(λ) is at least OPT(i)/2− λ 2i+1.

Proof: Consider the optimal decision tree OPTof the CorrOrient instance, and label every node
in OPTby a (dist, size) pair, where dist is the total time spent traveling and size the total time
spent processing jobs before visiting that node. Note that both dist and size are non-decreasing as
we move down OPT. Also, type-i nodes are those where 2i − 1 ≤ size < 2i+1 − 1, so zeroing
out rewards from all but type-i nodes yields expected reward OPT(i).

For any vertex v ∈ V , let X i
v denote the indicator r.v. that job v is run as type-i in OPT,

and Sv be the r.v. denoting its instantiated size—note that these are independent. Also let Y i =∑
v∈V X i

v ·min(Sv, 2
i) be the random variable denoting the sum of truncated sizes of type-i jobs.

By deVnition of type-i, we have Y i ≤ 2 · 2i with probability one, and hence E[Y i] ≤ 2i+1. For
ease of notation let qv = P[X i

v = 1] for all v ∈ V . We now have,

2i+1 ≥ E[Y i] =
∑

v∈V

qv · E[min(Sv, 2
i) | X i

v = 1]

=
∑

v∈V

qv · E[min(Sv, 2
i)] =

∑

v∈V

qv · si(v) (5.5)

Now consider the expected reward OPT(i). We can write:

OPT(i) =
∑

v∈V

∑

ℓ∈[B]

2i+1−2∑

k=2i−1

P[1v,dist=l,size=k] ·Rv,ℓ+k ≤
∑

v∈V

∑

ℓ∈[B]

P[1v,type=i,dist=ℓ] ·Rv,ℓ+2i−1

(5.6)
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where 1v,dist=l,size=k is the indicator for whether OPT visits v with dist = l and size = k, and
1v,type=i,dist=ℓ is the indicator for whether OPT visits v as type-i with dist = ℓ. Now going back
to the metric, let P denote the set of all possible rooted paths traced by OPT(i) in the metric
(V, d). Now for each path P ∈ P , deVne the following quantities.

1. β(P ) is the probability that OPT(i) traces P .

2. For each vertex v ∈ P , dv(P ) is the travel time (i.e. dist) incurred in P prior to reaching v.
Note that the actual time at which v is visited is dist+ size, which is in general larger than
dv(P ).

3. wλ(P ) =
∑

v∈P

[
1
2
·Rv,dv(P )+2i−1 − λ · si(v)

]
.

Moreover, for each v ∈ P , let ℓv(P ) = min{ℓ ∈ I iv | ℓ ≥ dv(P )}; recall the deVnition I iv using
Claim 5.9.1, and since B ∈ I iv, the quantity ℓv(P ) is well-deVned.

For any path P ∈ P , consider P as a solution to Ii(λ) that visits the copies {〈v, ℓv(P )〉 :
v ∈ P} within their deadlines. It is feasible for the instance Ii(λ) because for each vertex in P ,
we deVned ℓv(P ) ≥ dv(P ) and therefore we would reach the chosen copy within its deadline.
Moreover, the objective value of P is precisely

∑

v∈P

r̂i(v, ℓv(P ), λ) =
∑

v∈P

[
Rv,ℓv(P )+2i−1 − λ · si(v)

]
≥

∑

v∈P

[
1

2
·Rv,dv(P )+2i−1 − λ · si(v)

]
= wλ(P )

where the inequality above uses the deVnition of ℓv(P ) and Claim 5.9.1. Now,

OPT(Ii(λ)) ≥ max
P∈P

wλ(P ) ≥
∑

P∈P

β(P ) · wλ(P ) =
∑

P∈P

β(P ) ·
∑

v∈P

[
1

2
·Rv,dv(P )+2i−1 − λ · si(v)

]

≥
1

2

∑

v∈V

∑

ℓ∈[B]

P[1v,type=i,dist=l] ·Rv,ℓ+2i−1 − λ ·
∑

v∈V

P[Xi
v] · si(v) ≥

OPT(i)

2
− λ · 2i+1

Above the second-to-last inequality is by interchanging summations and splitting the two terms
from the previous expression, the Vrst term in the Vnal inequality comes from (5.6), and the
second term comes from (5.5) and the fact that qv = P[X i

v] = P[v visited as type-i].

Now let AlgDO denote an α-approximation algorithm for the DeadlineOrient problem. (We
abuse notation and use AlgDO(Ii(λ)) to denote both the α-approximate solution on instance
Ii(λ) as well as its value.) We focus on the “right” setting of λ deVned thus:

λ∗
i := max

{
λ : AlgDO(Ii(λ)) ≥

2i · λ

α

}
(5.7)

Lemma 5.9.4 For any i ∈ [log2 B], we get λ∗
i ≥ OPT(i)/2i+3, and hence AlgDO(Ii(λ

∗
i )) ≥

OPT(i)/8α.

Proof: Consider the setting λ̂ = OPT(i)/2i+3; by Lemma 5.9.3, the optimal solution to the
DeadlineOrient instance Ii(λ̂) has value at least OPT(i)/4 ≥ 2i · λ̂. Since AlgDO is an α-
approximation algorithm for DeadlineOrient, it follows that AlgDO(Ii(λ̂)) ≥ OPT(Ii(λ̂))/α ≥
2i · λ̂/α. So λ∗

i ≥ λ̂ ≥ OPT(i)/2i+3.
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Obtaining CorrOrient solution from AlgDO(λ∗
i )

It just remains to show that the solution output by the approximation algorithm forDeadlineOrient
on the instance Ii(λ

∗
i ) yields a good non-adaptive solution to the original CorrOrient instance.

Let σ = AlgDO(λ∗
i ) be this solution—hence σ is a rooted path that visits some set P ⊆ Ni of

nodes within their respective deadlines. The algorithm below gives a subset Q ⊆ P of nodes
that we will visit in the non-adaptive solution; this is similar to the algorithm for KnapOrient in
Section 5.5.

Algorithm 17 Algorithm Ai for CorrOrient given a solution for Ii(λ
∗
i ) characterized by a path P .

1: let y =
(∑

v∈P si(v)
)
/2i.

2: partition the vertices of P into c = max(1, ⌊2y⌋) parts P1, . . . , Pc s.t
∑

v∈Pj
si(v) ≤ 2i for

all 1 ≤ j ≤ c.
3: set Q← Pk where k = argmaxcj=1

∑
〈v,ℓ〉∈Pj

ri(v, ℓ).

4: for each v ∈ V , deVne dv := min{ℓ : 〈v, ℓ〉 ∈ Q}
5: let Q := {v ∈ V : dv <∞} be the vertices with at least one copy in Q.
6: sample each vertex in Q independently w.p. 1/2, and visit these sampled vertices in order

given by P .

At a high level, the algorithm partitions the vertices in σ into groups, where each group
obeys the size budget of 2i in expectation. It then picks the most proVtable group of them. The
main issue with Q chosen in Step 3 is that it may include multiple copies of the same vertex. But
because of the way we constructed the sets Ivi (based on Claim 5.9.1), we can simply pick the copy
which corresponds to the earliest deadline, and by discarding all the other copies, we only lose
out on a constant fraction of the reward ri(Q). Our Vrst claim bounds the total (potential) reward
of the set Q we select in Step 3.

Claim 5.9.5 The sum ri(Q) =
∑

〈v,ℓ〉∈Q ri(v, ℓ) is at least OPT(i)/(8α).

Proof: Consider the following chain of inequalities:

ri(Q) ≥
ri(P )

c
≥

λ∗
i y2

i + λ∗
i 2

i/α

c
= λ∗

i 2
i ·

(
y + 1/α

c

)

≥ λ∗
i 2

i ·min

{
y +

1

α
,
1

2
+

1

2αy

}
≥

λ∗
i 2

i

α

The second inequality is due the the fact that 2i λ∗
i /α ≤ AlgDO(λ∗

i ) = r̂i(P ) = ri(P )−λ∗
i ·si(P )

due to the choice of λ∗
i in equation (5.7); the third inequality is by c ≤ max{1, 2y}; and the last

inequality uses α ≥ 2. To conclude we simply use Lemma 5.9.4.

Next, we show that we do not lose much of the total reward by discarding duplicate copies
of vertices in Q.

Claim 5.9.6
∑

v∈Q Rv,dv+2i−1 ≥ OPT(i) / 16α.
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Proof: For each u ∈ Q, let Qu = Q
⋂
{〈u, ℓ〉}ℓ∈[Iiu] denote all copies of u in Q. Now by the

deVnition of du we have ℓ ≥ du for all 〈u, ℓ〉 ∈ Qu. So for any u ∈ Q,

∑

〈u,ℓ〉∈Qu

Ru,ℓ+2i−1 ≤
∑

ℓ∈Iiu:ℓ≥du

Ru,ℓ+2i−1 ≤ 2 · Ru,du+2i−1

Above, the last inequality uses the deVnition of I iu as given by Claim 5.9.1. Adding over all u ∈ Q,

∑

u∈Q

Ru,du+2i−1 ≥
1

2

∑

u∈Q

∑

〈u,ℓ〉∈Qu

Ru,ℓ+2i−1 =
1

2

∑

〈v,ℓ〉∈Q

ri(〈v, ℓ〉) ≥
OPT(i)

16α

Here, the last inequality above uses Claim 5.9.5. This completes the proof.

We now argue that the algorithm Ai reaches any vertex v ∈ Q before the time dv + 2i − 1
with constant probability.

Claim 5.9.7 For any vertex v ∈ Q, it holds that P [Ai reaches job v by time dv + 2i − 1] ≥ 1
2
.

Proof: We know that because P is a feasible solution for the DeadlineOrient instance, the
distance traveled before reaching the copy 〈v, dv〉 is at most dv. Therefore in what remains, we
show that with probability 1/2, the total size of previous vertices is at most 2i − 1. To this end,

let Q
′
denote the set of vertices sampled in Step 6. We then say that the bad event occurs if∑

u∈Q
′
\v min(Su, 2

i) ≥ 2i. Indeed if
∑

u∈Q
′
\v min(Su, 2

i) < 2i, then certainly we will reach v

by time dv + 2i − 1.

We now bound the probability of the bad event. For this purpose, observe that

E


 ∑

u∈Q
′
\v

min(Su, 2
i)


 ≤

1

2

∑

u∈Q

E
[
min(Su, 2

i)
]
,

by linearity of expectation and the fact that each u ∈ Q is sampled into Q
′
with probability 1/2.

Now the latter sum is at most (1/2)
∑

u∈Q si(u) ≤ 2i−1, by the partitioning in Step 2. Hence, the
probability of the bad event is at most 1/2 by Markov’s inequality.

Theorem 5.9.8 The expected reward of the algorithm Ai is at least OPT(i)/64α.

Proof: We know from the above claim that for each vertex v ∈ Q,Ai reaches v by time dv+2i−1
with probability at least 1/2. In this event, we sample v with probability 1/2. Therefore, the
expected reward collected from v is at least (1/4)Rv,dv+2i−1. The proof is complete by using
linearity of expectation and then Claim 5.9.6.

5.9.2 Evidence of hardness for CorrOrient

Our approximation algorithm for CorrOrient can be viewed as a reduction to DeadlineOrient, at
the loss of an O(logB) factor. We now provide a reduction in the reverse direction: namely,
a β-approximation algorithm for CorrOrient implies a (β − o(1))-approximation algorithm for
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DeadlineOrient. In particular this means that a sub-logarithmic approximation ratio for CorrOrient
would also improve the best known approximation ratio for DeadlineOrient.

Consider any instance I of DeadlineOrient on metric (V, d) with root ρ ∈ V and deadlines
{tv}v∈V ; the goal is to compute a path originating at ρ that visits the maximum number of vertices
before their deadlines. We now deVne an instance J of CorrOrient on the same metric (V, d)with
root ρ. Fix parameter 0 < p ≪ 1

n2 . The job at each v ∈ V has the following distribution: size
B − tv (and reward 1/p) with probability p, and size zero (and reward 0) with probability 1− p.
To complete the reduction from DeadlineOrient to CorrOrient we will show that:

(1− o(1)) · OPT(I) ≤ OPT(J ) ≤ (1 + o(1)) · OPT(I).

Let τ be any solution to I that visits subset S ⊆ V of vertices within their deadline; so
the objective value of τ is |S|. This also corresponds to a (non-adaptive) solution to J . For
any vertex v ∈ S, the probability that zero processing time has been spent prior to v is at least
(1−p)n; in this case, the start time of job v is at most tv (recall that τ visits v ∈ S by time tv) and
hence the conditional expected reward from v is p · 1

p
= 1 (since v has size B − tv and reward

1/p with probability p). It follows that the expected reward of τ as a solution to J is at least∑
v∈S(1 − p)n ≥ |S| · (1 − np) = (1 − o(1)) · |S|. Choosing τ to be the optimal solution to I ,

we have (1− o(1)) · OPT(I) ≤ OPT(J ).

Consider now any adaptive policy σ for J , with expected reward R(σ). DeVne path σ0

as one starting from the root of σ that always follows the branch corresponding to size zero
instantiation. Consider σ0 as a feasible solution to I ; let S0 ⊆ V denote the vertices on path σ0

that are visited prior to their respective deadlines. Clearly OPT(I) ≥ |S0|. When policy σ is
run, every size zero instantiation gives zero reward; so if positive reward is obtained, the sample
path must diverge from σ0. Moreover, if there is positive reward, the sample path must have
positive size instantiation at some vertex in S0: this is because a positive size instantiation at any
(V \ S0)-vertex violates the bound B (by deVnition of sizes and set S0). Hence,

P [σ gets positive reward] ≤ p · |S0| (5.8)

Moreover, since the reward is always an integral multiple of 1/p,

R(σ) =
1

p
·

n∑

i=1

P [σ gets reward at least i/p]

=
1

p
· P [σ gets positive reward] +

1

p
·

n∑

i=2

P [σ gets reward at least i/p] (5.9)

Furthermore, for any i ≥ 2, we have:

P [σ gets reward at least i/p] ≤ P [at least i jobs instantiate to positive size] ≤

(
n

i

)
· pi ≤ (np)i.

It follows that the second term in (5.9) can be upper bounded by 1
p
·
∑n

i=2(np)
i ≤ 2n2p since np <

1
2
. Combining this with (5.8) and (5.9), we obtain that R(σ) ≤ |S0| + 2n2p = |S0| + o(1) since

n2p≪ 1. Since this holds for any adaptive policy σ forJ , we getOPT(I) ≥ (1−o(1))·OPT(J ).
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5.10 Conclusions

In this chapter, we presented constant-factor approximation algorithms for the non-adaptive ver-
sion of the StocOrient problem, and also an O(log logB)-factor adaptivity gap for the adaptive
version. We believe that the O(log logB) loss in the adaptivity gap is purely an artifact of our
analysis and that the gap is indeed a constant factor. Following the results of this thesis, we also
considered several variants of this problem such as the sequence orienteering problem, where the
algorithm must visit a pre-speciVed set of vertices (say depots) in a Vxed order. These results
appear in [71].
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Chapter 6

Conclusion

The main focus of this thesis was on the approximability of combinatorial optimization problems
from a stochastic setting, i.e., the algorithm gets to know exact input only over several stages,
but the input is chosen from a known distribution (unlike online algorithms where the input
is adversarially chosen). Mor speciVcally, we studied the following problems: (a) the Two-stage
Stochastic Survivable Network Design problem where the collection of (source,sink) pairs is drawn
randomly from a known distribution, (b) the Stochastic Knapsack problem with random (and
potentially correlated) sizes/rewards for jobs, (c) the Multi-Armed Bandits problem, where the
individual Markov Chains make random transitions, and Vnally (d) the Stochastic Orienteering
problem, where the random tasks/jobs are located at diUerent vertices on a metric. We presented
diUerent fairly general techniques (and consequently, algorithms) for solving these problems with
near-optimal approximation guarantees.

We now present some of the main open problems which arise from the works in this thesis.
Please also refer to the conclusion of each chapter for some speciVc open questions relating to the
contents of the chapter.

6.1 Stochastic Knapsack with Correlated Jobs

In this section, we consider the StocK problem, but where the sizes may be correlated across

jobs. Recall that all the results of this thesis work only for the distributions of each job being
independent of the others. Indeed, for a motivating example of such a correlated setting, consider
the following Map-Reduce example.

Problem DeVnition: Two-Wise Correlated Knapsack

There are a collection of n pairs of task at the server, which also has a time budget of B.
Each pair (i,m(i)) of tasks comes with a joint distribution over sizes and rewards. Above, m(i)
is the mate job of i. The goal, as always, is to schedule these jobs adaptively so as to maximize
the expected total reward of jobs completed within the budget of B.

The reader can think of one of the jobs of a given pair as the map task and its corresponding
mate as the reduce task. Notice that the running time of a map task can be highly correlated with
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that of the corresponding reduce task, since they essentially operate on the same input data1.

From a technical point, the problem becomes more challenging than the basic StocK problem
because of the presence of a large adaptivity gap. Indeed, the following example will illustrate
this phenomenon.

Example 6.1.1 There are n pairs of jobs indexed by {(si, li) 1 ≤ i ≤ n}. A job pair (si, li) has the
following size distribution: with ptobability 1/n, si has size 1 and li has size n. With probability

1− 1/n, si has size 2 and li has size 3n. The budget of the knapsack is 3n. All small jobs si have
0 reward while the large jobs li have unit reward.

It is easy to construct an adaptive solution with expected Ω(1) reward — try all small jobs,
and if any of them completed at size 1, then run the corresponding large job. The total space
occupied by all the small jobs is at most 2n, and with probability at least 1−(1−1/n)n ≥ 1−1/e,
at least one of the small jobs will complete at size 1: in this case, the corresponding large has size n
and will Vt inside the knapsack and fetch us unit reward. However, since a non-adaptive strategy
must specify an ordering of jobs up front, it does not have the luxury of deciding which large job
to try and extract reward from. Therefore, it can eUectively try at most three large job, and will
fetch expected reward O(1/n).

In a more general problem, we can have polynomially many scenarios of job sizes: each sce-
nario speciVes a particular size of a job, and the goal is to maximize the total expected reward of
jobs which Vt into the knapsack. In this problem, even though there are polynomially many sce-
narios, the algorithm faces the daunting exploration-exploitation task: Indeed, the algorithmmust
decide between running the jobs whose size it knows but which provide little information about
the actual scenario that has arisen, and running those jobs which help “isolating” the scenario but
don’t provide as much reward themselves.

6.2 SNDP with Vertex Connectivity Requirements

While we have a very good understanding of the edge-connectivity versions of the SNDP prob-
lem, the vertex-connectivity versions still pose many unresolved challenges. For example, all
known vertex-connectivity SNDP algorithms (with any non-trivial guarantees) are highly global
in their function: this immediately means that we don’t know how to make these algorithms
handle input uncertainty. It is an interesting challenge to design more “local” algorithms that are
amenable to ones which can handle input uncertainty. In particular, the following is a concrete
open problem.

Problem DeVnition: Online 2-VCND

We are given a graph with non-negative edge-costs, and a speciVed root vertex r. A sequence
of demand vertices arrives online with vertex vi arriving on the i

th day. The goal is to buy a set of
edgesEi on the i

th day such that ∪i
j=1Ej forms a feasible solution in that vi is 2-vertex-connected

to the root r. The performance of the online algorithm is, as always, measured by its competitive
ratio.

1While it is the case that in actual Map-Reduce systems, execution of the map task must preceed that of the reduce
task, we omit this requirement for simplicity of presentation
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The main reason why our techniques from Chapter 2 do not extend to the case of vertex-
connectivity is that edge-connectivity is transitive, i.e., if u is 2-edge-connected to v and v is
2-edge-connected to w, then u is 2-edge-connected to w as well. Our algorithm heavily relies on
this feature of edge-connectivity.

6.3 Stochastic Routing Problems

In the stochastic network design problems often studied in literature (see Chapter refchap:sndp
for references), edges eUectively have inVnite capacity. That is, once an edge is bought, it can
provide connectivity to all the demands which use it. An interesting future direction to study is
one where edges also have capacities. Indeed, the following is a question which formalizes this
notion in one particular manner.

Problem DeVnition: Two-Stage Stochastic Routing

In this problem, we are given a graph G = (V,E) and a distribution over demand vertices
and their desired connectivity (i.e., Wow) requirement to a pre-speciVed root vertex r. Now, in the
Vrst stage, the algorithm can reserve some capacity on each edge e ∈ E, and it incurs a concave
cost depending fe(c) for reserving c units of capacity on edge e. Then in the second stage, the
actual demands are realized, and the algorithm can augment capacity on the edges so that the
resultant edge capacities can support the realized demand values. However, the augmentation
can only be done at an inWated price — i.e., if the capacity on edge e is augmented from c to c′, the
algorithm incurs a cost of σ(fe(c

′)−fe(c)). The goal is then to devise a strategy which minimizes
the total expected cost.
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