
Hybrid Fuzz Testing:
Discovering Software Bugs via

Fuzzing and Symbolic Execution
Brian S. Pak

CMU-CS-12-116

May 2012

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Professor David Brumley, Advisor
Professor David Andersen, Faculty

Submitted in partial fulfillment of the requirements
for the degree of Masters of Science.

Copyright c© 2012 Brian S. Pak

Keywords: Software, Security, Program Testing, Hybrid Fuzzing, Input Generation

Abstract

Random mutational fuzz testing (fuzzing) and symbolic executions are program testing
techniques that have been gaining popularity in the security research community. Fuzzing
finds bugs in a target program by natively executing it with random inputs while mon-
itoring the execution for abnormal behaviors such as crashes. While fuzzing may have
a reputation of being able to explore deep into a program’s state space efficiently, naı̈ve
fuzzers usually have limited code coverage for typical programs since unconstrained ran-
dom inputs are unlikely to drive the execution down many different paths. In contrast,
symbolic execution tests a program by treating the program’s input as symbols and inter-
preting the program over such symbolic inputs. Although in theory symbolic execution
is guaranteed to be effective in achieving code coverage if we explore all possible paths,
this generally requires exponential resource and is thus not practical for many real-world
programs.

This thesis presents our attempt to attain the best of both worlds by combining fuzzing
with symbolic execution in a novel manner. Our technique, called hybrid fuzzing, first
uses symbolic execution to discover frontier nodes that represent unique paths in the pro-
gram. After collecting as many frontier nodes as possible under a user-specifiable resource
constraint, it transits to fuzz the program with preconditioned random inputs, which are
provably random inputs that respect the path predicate leading to each frontier node. Our
current implementation supports programs with linear path predicates and can automat-
ically generate preconditioned random inputs from a polytope model of the input space
extracted from binaries. These preconditioned random inputs can then be used with any
fuzzer. Experiments show that our implementation is efficient in both time and space,
and the inputs generated by it are able to gain extra breadth and depth over previous ap-
proaches.

iii

iv

Acknowledgements

I am thankful to have really awesome people around me who have helped me get this thesis
out. There are too many people who have influenced me and my thesis to enumerate, but
I do want to specially thank some of them explicitly.

First, I would like to thank my advisor Dr. David Brumley and thesis committee Dr.
David Andersen for guiding me and giving me constructive feedbacks for my research.
While being extremely busy, both have devoted much time and effort for me to create this
thesis. Thank you so much.

My colleagues helped me significantly with my thesis by discussing and giving me
various feedback. Especially, I thank Andrew Wesie for providing an awesome JIT engine
for my research and thank Sang Kil Cha, Thanassis Avgerinos and Alexandre Rebert for
the support with Mayhem. Jiyong Jang and Maverick Woo helped me immensely to de-
velop ideas and carry out the research. I also thank Edward Schwartz for guiding me with
OCaml madness! Thanks to Doug, Sangjae, and Onha for moral support. And, of course,
I thank Plaid Parliament of Pwning for infinite encouragement and support.

Lastly, my parents and my brother are the ones who hold me tight whenever I have
hard time. Your warm support was delivered well despite the physical distance between
us. Thank you for the love and care.

Without above individuals along with numerous people I could not list, I would not
have successfully done my research. Thank you, everyone!

I can do all this through him who gives me strength. -Philippians 4:13

v

vi

Contents

Abstract iii

Acknowledgements v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Vulnerabilities and Bug Finding . 2

1.3 Thesis Outline . 3

2 Software Bug Finding Approaches 5

2.1 Static Analysis . 5

2.1.1 Static Code Analysis . 5

2.1.2 Static Binary Analysis . 7

2.2 Dynamic Analysis . 8

2.2.1 Fuzz Testing . 8

2.2.2 Symbolic Execution . 10

3 Hybrid Fuzz Testing 13

3.1 Overview . 13

vii

3.2 Architecture and Design . 17

4 Efficient Input Generation 23
4.1 Path Predicates . 23

4.2 Linear Inequalities and Z-Polytope . 25

4.3 Hypercube and Rejection Sampling . 30

4.3.1 Hypercube . 31

4.3.2 Rejection Sampling . 33

5 Evaluation 35
5.1 Formula Transformation . 35

5.2 Input Generation . 37

5.3 Code Coverage . 39

5.4 Observation . 42

6 Discussion 47
6.1 Discussion . 47

6.1.1 Limitations . 47

6.1.2 Improvements . 48

6.2 Future Work . 49

7 Related Work 51

8 Conclusion 53

A Formula Simplification 55

B strlen.c 57

C Synthetic Programs for Experiments 60

Bibliography 62

viii

List of Tables

3.1 Basic block profiling of the program shown in Listing 3.1 18

3.2 Runtime comparison between PIN and our custom JIT engine 18

4.1 Mayhem expression to PPL linear expression Transformation Rules. . . . 26

5.1 Predicate Transformability in synthetic programs + coreutils 36

5.2 Predicate Transformability in linux binaries 36

5.3 Path Transformability in synthetic programs + coreutils 37

5.4 Path Transformability in linux binaries 37

5.5 Statistics on Input Generation . 38

5.6 Statistics on Input Generation . 38

5.7 Code coverage for synthetic + coreutils (Fuzzing) 41

5.8 Code coverage for linux binaries (Fuzzing) 41

5.9 Code coverage for synthetic + coreutils (Symb) 42

5.10 Code coverage for linux binaries (Symb) . 42

ix

x

List of Figures

1.1 Software bug finding techniques diagram 2

3.1 Code exploration comparison between symbolic execution and fuzzing. . 13

3.2 Path selection based on BBL profile and target addresses. 19

4.1 Disjoint regions described by constraints: {x!=0 & y!=50} for signed bytes x and y. 27

4.2 Constraint Refinement of x!=10 . 29

4.3 Constraint Refinement of ¬(−7 ≤ x ≤ 20) 29

4.4 Range of byte value depending on the sign-ness 30

4.5 Visualization of the input space and hypercube for symb 0 and symb 1. . . 32

4.6 Visualization of rejection sampling. 33

4.7 Visualization of disjoint regions. 34

5.1 Uniform distribution of random test cases for simple 40

5.2 # Test Cases vs. Code Coverage . 43

5.3 Time vs. Coverage for coreutils + other Linux utilities (20 total) 44

5.4 Non-linear vs. Linear Predicates in mktemp 45

5.5 Time vs. Coverage for htpasswd-1.3.31 46

xi

xii

Chapter 1

Introduction

1.1 Introduction

There have been fair amount of work and research done in order to provide better ways to
discover software vulnerabilities and exploits. The techniques that have been proposed in-
clude source code auditing, static program analysis, dynamic program analysis, and formal
verification [24, 31, 10, 7, 22, 20, 39]. However, many of the techniques lie on extreme
ends of the spectrum regarding the cost-effectiveness as depicted in Figure 1.1.

Static program analyses are used by many developers to test their programs because
they are effective in finding some trivial bugs that can be caught by the rules that define
security violations with very small resource. However, they are limited in that the perfor-
mance is only good as the rules. Common technique used by many security researchers
is a program testing method called fuzzing. Fuzzing finds bugs in a target program by
natively executing it with randomly mutated or generated inputs while monitoring the ex-
ecution for abnormal crashes. Fuzzing is good at quickly exploring the program code in
depth because it runs the target program natively with concrete inputs. However, due to
its nature, fuzzing often suffers from low code coverage problem. symbolic execution is
another technique that has recently gotten the attention of security researchers. In contrast
to fuzzing, symbolic execution tests a program by treating the program’s input as symbols
and interpreting the program over these symbolic inputs. In theory, symbolic execution
is guaranteed to be effective in achieving high code coverage, yet this generally requires
exponential resource which is not practical for many real-world programs.

Our goal is to find more bugs faster than traditional approaches. In order to accomplish
this goal, we need to obtain high code coverage in reasonable resource bound (e.g. com-

1

puting power and time). High code coverage implies both breadth and depth in exploration
of the program. Although we may not achieve the best code coverage or speed, we aim to
find the sweet spot in cost-effective way to gain higher code coverage than the fuzzer and
higher speed than the symbolic executor as shown in Figure 1.1.

In this thesis, we present our attempt to attain the best of both worlds by combining
fuzzing with symbolic execution in a novel manner. Our technique, called hybrid fuzzing,
first uses symbolic execution to discover frontier nodes that represent unique paths in the
program. After collecting as many frontier nodes as possible under a user-configurable
resource constraint, it transits to fuzz the program with preconditioned random inputs,
which are provably random inputs that respect the path predicate leading to each frontier
node.

Performance

Co
de

 C
ov

er
ag

e

SlowFast

Lo
w

Hi
gh

Static
Analysis

Whitebox
Fuzzing

Blackbox
Fuzzing

Concolic
Execution

Symbolic
Execution

Hybrid
Fuzzing

Figure 1.1: Software bug finding techniques diagram

1.2 Vulnerabilities and Bug Finding

Software bugs Software bugs are the flaws in the computer programs that are introduced
by programmers. These flaws can cause various effects including the crashes, hanging or
incorrect behavior of the program. The consequences of such bugs range from small incon-
venience in the use of the software to catastrophic disasters where many lives and money
are lost. There are several types of software bugs as there are many different programming
paradigms and platforms to develop upon. While a lot of trivial bugs can be detected by
static analysis tools or manual debugging stage in the development cycle, most common

2

bugs we see these days in practice are ones categorized as resource bugs. Resource bugs
happen when a programmer does not properly manage the creation, modification, usage,
and deletion of the program resources. Null pointer dereference, uninitialized variable us-
age, memory access violation, and buffer overflow are common examples of the bugs of
this type. Sometimes it is tricky to find such bugs because the functionality behaves as
intended except for very few cases.

Security vulnerabilities Of these software bugs, we call ones that lead to denial of ser-
vice (DoS) or violation of security property such as privilege escalation and arbitrary code
execution software vulnerabilities. Vulnerability often has security implication that can
be abused by malicious users who try to take advantage of program flaws. Sometimes
DoS can cause a serious impact against the community such as website and/or service
outage [34, 9], but it does not have the risk of possible information leakage or infection
of malicious software (malware). More serious problem occurs when arbitrary code/com-
mand execution is possible. The attacker can take over the control of the victim machine,
which then allow oneself to perform a secondary attack inside of the network that the
victim machine belongs to. Recent cyber assaults that targeted numerous organizations
also started from exploiting the vulnerability on one of the outer network machines, then
moved on to the internal network for exploiting more machines and gathering sensitive
information [36, 49]. In order to avoid much damage done due to the exploitation of the
vulnerabilities, patching such vulnerabilities quickly is necessary. However, we need to
find them before we can fix them.

There are many approaches for finding vulnerabilities. In the past, the developers and
security researchers manually audited the source code (if available) or the disassembly of
the binary programs. However, this method does not scale as the program gets compli-
cated. Advance in automated systems that check for vulnerabilities in the program quickly
opened the path of efficiently finding bugs. Some of the automated methods actively being
used by the developers and security researchers are discussed and explained in Chapter 2.

1.3 Thesis Outline

This thesis consists of several chapters. While this chapter covers general terms and
insights on existing bug finding techniques, we describe in more detail bug finding ap-
proaches in the second chapter. Specifically, we explain commonly used analysis tech-
niques in both static and dynamic analysis realm.

Starting from Chapter 3, we delve into the new technique we propose in this thesis,

3

called Hybrid Fuzz Testing. We describe the intuition and overall architecture and design of
the new hybrid fuzzing system. Then, we move into specific problems that we encountered
while developing hybrid fuzzing and discuss our solutions. We describe the core concept
of Z-Polytope abstraction for efficient input generation in Chapter 4.

Evaluation is followed to present the effectiveness of the hybrid fuzzing technique.
In this chapter, we provide the statistics on formula transformation and input generation.
Then, we compare the code coverage with other known techniques for discovering vul-
nerabilities followed by the experimental results on three synthetic programs and twenty
real-world x86 Linux utilities (including 15 coreutils). Finally, we present observations on
these results to explain the effectiveness of our method.

Remaining chapters include discussion of our work, limitation, and future work along
with the conclusion we learned from the research in developing hybrid fuzzing system
with efficient input generation mechanism.

4

Chapter 2

Software Bug Finding Approaches

There have been much research done on developing and improving the methods to make
the programs more secure by finding the mistakes that are introduced by programmers
automatically [25, 7, 41, 19, 15, 1]. However, finding all bugs in a reasonably sized pro-
gram is infeasible. With this realization, researchers from both academia and industry
have come up with several techniques that can be applied in order to quickly locate as
many software bugs as possible. In this chapter, we present commonly used automated
approaches for finding bugs and discuss their strength and limitations.

2.1 Static Analysis

In this section we explore two different types of static program analysis techniques that
have been introduced and researched. Some techniques presented here are used in practice
in order to find critical security bugs in the programs. We illustrate the details and the
application for each analysis with couple examples.

2.1.1 Static Code Analysis

Static code analysis is a method to detect potential coding errors in the program source
code without actually executing the program. Usually the analysis is done by the auto-
mated tools that implement rules that are checked against the code to verify if any portion
violates them. Depending on the modeling, static code analysis can find from trivial bugs
(but easy to miss) to complex one, which requires understanding of cross file/class re-

5

lationship. Static code analysis is powerful because it is fast and cheap while generally
effective. It can provide detection of flaws in the software that dynamic analysis cannot
easily expose.

Static code analysis is usually implemented by parsing the source code and building an
abstract syntax tree (AST) of the program. Since modern compilers already perform the
above job, sophisticated tools extend upon this. For example, type checking and data-flow
analysis are performed. Common use case of static code analysis is in the realm of dis-
covering buffer overruns, format string vulnerabilities, and integer overflows as suggested
in [45].

1 c h a r ∗ d a t a = (c h a r ∗) ma l l oc (1 6) ; / / d a t a can be NULL
2 memcpy (da t a , i n p u t , 16) ;

Listing 2.1: Possible NULL dereference bug

Consider the code shown in 2.1. This piece of code contains a possible bug for NULL
pointer dereference because malloc call on line 2 may return NULL, in case of failure.
Static code analysis can spot these errors and suggest programmers to insert a NULL
checking routine as shown in 2.2.

1 c h a r ∗ d a t a = (c h a r ∗) ma l l oc (1 6) ; / / d a t a can be NULL
2 i f (d a t a == NULL) a b o r t () ;
3 memcpy (da t a , i n p u t , 16) ;

Listing 2.2: NULL pointer check

Static code analysis is very effective when finding incorrect usage of programming
idioms such as format string bugs. In the code 2.3, on line 2, the user controllable data
is directly passed to printf function as the first argument, which represents the format
string. This works without a problem when the passed string does not contain any format
specifier. However, when the user (or attacker) can control the contents of the string arbi-
trarily, serious security flaw is introduced that can be abused [32, 38]. Static code analysis
can discover this type of error easily and suggest a fix as shown on line 3. With the type
checking feature, it can also provide the appropriate format specifiers based on the passed
arguments.

1 c h a r ∗ buf = g e t u s e r i n p u t () ;
2 p r i n t f (buf) ; / / P o t e n t i a l f o r m a t s t r i n g bug
3 p r i n t f (”%s ” , buf) ; / / C o r r e c t usage o f p r i n t f

Listing 2.3: Format string bug

Another example of finding bugs with static code analysis is discovering integer over-
flow vulnerabilities. Integer overflow occurs when signed operation is used when unsigned

6

operation is intended or arithmetic operation results in an overflow. On line 3 in 2.4,
nresp multiplied by the size of char * can have integer overflow and becomes 0 with
carefully chosen nresp value. Then, the following loop can overflow the heap since the
size of allocated response buffer is actually 0. It is usually tricky to find this type of
bugs manually because there are only few cases where the bug is triggered. However, it is
indeed a type of bug that can lead to serious security problem [4].

1 n r e s p = p a c k e t g e t i n t () ;
2 i f (n r e s p > 0) {
3 r e s p o n s e = xma l loc (n r e s p ∗ s i z e o f (c h a r ∗)) ; / / P o t e n t i a l I n t Overf low
4 f o r (i = 0 ; i < n r e s p ; i ++)
5 r e s p o n s e [i] = p a c k e t g e t s t r i n g (NULL) ; / / P o t e n t i a l Heap Overf low
6 }

Listing 2.4: Excerpt from OpenSSH 3.3

However, the limitation of static code analysis soon becomes obvious. It usually does
not support all programming languages, and introduce many false negatives and false pos-
itives. Also, the static code analysis is only as helpful as the rules that are employed. More
importantly, static code analysis cannot reason about the concrete values for which are
generated dynamically. Therefore, when the analysis does not find any bug, it does not
imply that the target program is bug-free.

2.1.2 Static Binary Analysis

Static binary analysis is based on the same concept as static code analysis where it does not
involve concrete execution of the program, and checks any predefined rule is violated in
binary code as opposed to source code. Thus, it shares a lot of advantages and limitations
of static code analysis. However, since the platform is totally different (source vs. binary),
the engineering mechanics change in some degree.

Static binary analysis is quite different from static code analysis in that the context
we need to deal with is not in high-order languages, but rather compiled to low-level as-
sembly language for architecture specific programs or bytecode for platform-independent
programs such as Java or .NET. Also, unlike static code analysis, extracting and construct-
ing useful information from the program such as control flow graph may be challenging
especially when the symbols are missing or in case of indirect jump instructions. On the
other hand, static binary analysis can reveal errors that are introduced by compilers as a
part of optimization process, which is important because this type of information is hid-
den or not available in static code analysis. However, the underlying approach to discover

7

flaws remains the same where the code is transformed into some intermediate language
and faulty chain of operations is searched.

There are few researches in academia that advanced this field [44, 6]. Usually the
tools are targeted for x86 architecture, but the analyses are platform-independent since
they are performed in the level of intermediate language (IL). There are many non-trivial
design decisions to make because static binary analysis tools need to understand all pos-
sible opcodes that are in a certain instruction set architecture (ISA) and realize the correct
semantics of each instruction.

In some cases, static binary analysis platform is used to implement taint analysis on
top. Taint analysis needs to keep track of what registers and memory regions are tainted
or clean throughout the program since the initial user-controllable input is introduced.
However, due to the challenges such as indirect jump instructions and memory operations
(since it is static analysis, there is no dynamic, concrete values available), it is often not
practical to perform such analysis with real programs and requires manual investigation
(by human) [43].

Some researches target specifically for finding the software vulnerabilities in the pro-
grams [12, 13]. Even with these advanced techniques, however, static binary analysis may
not be sufficient to understand the program and discover bugs when there are compiler
optimizations or code obfuscation that the analyzer does not handle [35].

2.2 Dynamic Analysis

In order to overcome the limitations of static analysis, another program analysis paradigm
is suggested: dynamic analysis. In this section, we describe a couple major approaches
in dynamic program analysis and discuss their strength and limitation. Dynamic program
analysis technique, due to its nature, tends to have a significantly higher overhead com-
pared to static analysis technique. With the cost of performance and resource, however,
dynamic analysis provides extremely useful information such as concrete values and dy-
namic address resolution.

2.2.1 Fuzz Testing

Fuzz testing, or fuzzing for short, is a dynamic program testing method that effectively
finds software vulnerabilities by feeding malformed or unexpected data as input to the pro-
grams. It aims to discover cases that programmers have missed in testing such as extreme

8

or nonsensical values. Fuzzing achieves its goal by feeding generated or mutated inputs to
the program and monitors the effects on the target programs, especially for crashes.

There are many types of fuzzing based on the input generation mechanisms. Generally,
we categorize the fuzzing techniques as follows:

• Input Generation

– Mutation-based: Either deterministically or probabilistically modify parts of
the input file or arguments as a means of generating test cases. This requires
known valid seed files, and especially good seed files that will force the pro-
gram to exercise various code. Many available fuzzers employ this technique
by default since it is most intuitive and simple way of generating large test
cases quickly [37, 27, 14]. Listing 2.5 shows an example of mutated GIF file
that is derived from the original GIF file.

– Generation-based: Instead of mutating the available seed files, the files are
automatically generated based on the template (grammar) that describes the
file’s syntax. This type of input generation requires a good modeling of the
input, which requires thorough understanding of the specification to be effec-
tive [30, 14].

• Context Knowledge

– Blackbox fuzzing: The fuzzer does not realize the internals of the target pro-
gram in this type of fuzzing. Generated (known) files are fed into the program
and the fuzzer monitors the output (behavior) of the program. It is mostly
taken by default approach in many available fuzzers due to simplicity and per-
formance. However, blackbox fuzzing suffers from code coverage problem
since it does not reason about the process of the execution – thus does not
realize that it’s looking at the same portion of the code all the time.

– Whitebox fuzzing: The fuzzer takes an advantage of the target program’s
internal structures or design in this type of fuzzing. Fuzzer usually keeps track
of the state and each fuzz run has its goal to test the correctness of a certain
portion of the code iteratively. The goal may be maximizing the code coverage
or testing extreme values for a certain function. Whitebox fuzzing usually gets
assisted by other techniques such as symbolic execution or taint analysis to
decide on what to do next [22, 16].

9

00000000 47 49 46 38 39 61 10 00 10 04 aa 84 01 00 02 00 |GIF89a..........|
00000010 df fe ff 84 89 01 c0 c0 c0 ff ff ff 04 00 00 08 |................|
00000020 10 00 10 00 00 28 b9 06 81 10 1c 06 00 a8 02 00 |.....(..........|
00000030 41 40 09 00 10 00 80 83 38 4a 0b d8 1e 2a a2 40 |A@......8J...*.@|
00000040 6b 0d 63 82 69 6d 93 5d f8 8c c4 74 9c 20 ca 08 |k.c.im.]...t. ..|
00000050 15 1b 9c 94 bc b3 f6 23 6b 49 7d 8f 34 7f f3 7d |.......#kI}.4..}|
00000060 2a 6d 15 13 ee 66 b9 94 32 49 6a 82 1a 9f 27 14 |*m...f..2Ij...’.|
00000070 00 59 b4 79 09 00 13 |.Y.y...|

00000000 47 49 46 38 39 61 10 00 10 00 a2 04 00 00 00 00 |GIF89a..........|
00000010 ff ff ff 80 80 00 c0 c0 c0 ff ff ff 00 00 00 00 |................|
00000020 10 00 10 00 00 21 f9 04 01 00 00 04 02 2c 00 00 |.....!.......,..|
00000030 00 00 10 00 10 00 80 83 3c 48 0a dc 0e 2a a2 40 |........<H...*.@|
00000040 6b 05 23 92 69 6d 93 5d f8 8c a4 60 9e 28 ca 08 |k.#.im.]...‘.(..|
00000050 15 1b 9c 94 b9 b2 e6 6b ab 40 5d bf 34 3f f3 3c |.......k.@].4?.<|
00000060 1a 6d 15 13 ee 64 b9 94 32 49 6a 82 42 9e 27 14 |.m...d..2Ij.B.’.|
00000070 00 59 34 1d 09 00 3b |.Y4...;|

Listing 2.5: Original GIF vs. Mutated GIF

Fuzzing has been discussed extensively in both academia and industry and described
as one of the most effective approach of finding bugs [48, 46, 42]. There also have been
numerous heuristics suggested in trying of maximizing the effectiveness of the fuzzing and
eliminating some of the limitation that fuzzing suffers from [50, 20]. Some researchers
compare and contrast on effectiveness of various fuzzing approaches [33, 18].

2.2.2 Symbolic Execution

Symbolic execution is originally used as a means of program verification to prove the
program’s correctness. Researchers recently have started shifting the focus of the symbolic
execution from the formal verification to vulnerability analysis of the program. Symbolic
execution works by supplying and tracking abstract symbols rather than concrete values in
the hope of generating the symbolic formulas over the input symbols [26].

Pure Symbolic Execution There are a few different approaches in performing symbolic
execution. Based on the mechanics, they can be categorized as offline, online, and hybrid
symbolic execution. Details on each approach are as followed.

• Offline Symbolic Execution: A type of symbolic execution where the input is gen-
erated by solving path predicates that the executor has faced in the symbolic execu-
tion phase. Then, in order to find new input (or path), the executor is again run from
the beginning of the program and flips the predicate to force the execution to the dif-
ferent path from previous run. However, this usually entails execution overhead due
to re-executing the program symbolically from the beginning for finding new paths.
Good application of offline symbolic execution is SAGE, developed by Microsoft
Research [22].

10

• Online Symbolic Execution: A type of symbolic execution where the states are
duplicated and the predicate is flipped for each branch the executor encounter. By
doing so, online symbolic execution does not require multiple runs of the program
from the beginning. However, because most of the state information need to be
stored and accessible in online fashion, the memory usage becomes immediate prob-
lem, especially for large programs. An application of online symbolic execution is
KLEE from Stanford University [8].

• Hybrid Symbolic Execution: In order to overcome the limitations of offline and
online symbolic execution techniques, a new model is proposed, in which we com-
bine the both worlds. In this hybrid scheme, the seed file is produced when the
branching point is met. This seed file ensures the execution till that point of the code
when fed to the program. This way, it achieves better memory usage compared to
online symbolic execution due to state saving to disk as a prefix file, and also runs
performs path exploration faster than offline it does not need to run the program
symbolically for the path that the stored prefix (seed) file restores. This is imple-
mented in symbolic execution engine for Mayhem platform from Carnegie Mellon
University [40].

Concolic Execution Unlike pure symbolic execution, concolic execution is a hybrid
software verification technique that combine concrete execution and traditional symbolic
execution. That is, the execution of the program is initiated with some concrete input (but
also marked as symbolic) and follow the paths that chosen input lead to. When the exe-
cution encounters conditional branches, the path predicates are constructed to be used to
generate other concrete inputs that lead to different paths by flipping the condition on each
symbolic variable [19, 41, 7].

Here, we demonstrate a simple example of symbolic execution and show how it can
be used to reveal vulnerabilities and possible exploits. Consider the following program
shown in Listing 2.6 that reads an integer from a user and prints out the value of x and y
if the Path 2 and Path 3 are reached, respectively, but the bug is triggered when the
Path 1 is reached.

1 i n t main (i n t a rgc , c h a r ∗a rgv)
2 {
3 i n t x = u s e r i n p u t () ; / / User−c o n t r o l l a b l e d a t a i n t r o d u c e d
4 i n t y = 3∗x ;
5
6 i f (y <= 15) {
7 i f (x >= 0) {
8 / / Pa th 1
9 t r i g g e r b u g () ;

11

10 r e t u r n 0 ;
11 }
12 / / Pa th 2
13 p r i n t f (”%d\n ” , x) ;
14 r e t u r n 0 ;
15 }
16 / / Pa th 3
17 p r i n t f (”%d\n ” , y) ;
18 r e t u r n 0 ;
19 }

Listing 2.6: Simple program

Usually the variables that are associated with user-controllable input (such as files,
arguments, and data from socket) are marked as symbolic and be called symbolic vari-
ables. In the above program, x initially becomes a symbolic variable since the value is
determined by the user input on line 3. As explained earlier, these symbolic variables
and expressions that involve them are tracked by the symbolic executor. Now, on line 4,
new variable y appears and is marked as symbolic since y is derived from the expression
3 ∗ x, which involves the symbolic variable x. After this line, symbolic variable y con-
tains the expression 3 ∗ x, rather than the concrete value. On line 6, the executor faces
the branch and builds a path constraint for both branches – in this case, y ≤ 15 and
¬(y ≤ 15) – and update the constraint context. Then, the executor moves on to the next
line of the code to find another branch. Similarly, following path constraints are built:
{(y ≤ 15) ∧ (x ≥ 0)}, {(y ≤ 15) ∧ ¬(x ≥ 0)}. There are no more branches left in the
program, thus symbolic executor explored all possible paths. The final constraint context
contains three path constraints, {(y ≤ 15) ∧ (x ≥ 0)}, {(y ≤ 15) ∧ ¬(x ≥ 0)} and
{¬(y ≤ 15)}, which correspond to Path 1, Path 2, and Path 3, respectively.

In order to generate concrete inputs that will explore these three unique paths, the
theorem prover is queried with each of the path constraints and asked for the solution, if
solvable. Depending on the algorithm of the solver and complexity of the constraints, the
solver may not respond in a reasonable time. For the formulas we have in this example, the
satisfying solution can be computed quickly. A solution is an assignment of the values for
all symbolic variables in the context such that it satisfies the given formula (constraint).
Note that there are more than one solution for each path in the example program. The
solvers will return a set of assignment, thus generating one valid concrete input that will
lead to a certain path that the given path constraint represents. One possible set of solutions
that will reach all three paths is 2 for Path 1, −1 for Path 2, and 35 for Path 3.

12

Chapter 3

Hybrid Fuzz Testing

3.1 Overview

Our intuition on hybrid fuzzing comes from the obvious differences in characteristics of
symbolic execution and fuzzing. Symbolic execution is capable of discovering and explor-
ing all possible paths in the program, but is not practically scalable since the number of the
paths quickly becomes exponential. While fuzzing is much faster than symbolic execution
and thus guarantee to explore deeper portion of the code, it has limited code coverage in
breadth. Figure 3.1 depicts this difference by showing the explored code for each method
in given time.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
Symbolic Execution Fuzzing

Figure 3.1: Code exploration comparison between symbolic execution and fuzzing.

The goal is to take advantage of symbolic execution to spread out to various different
(unique) paths, then use fuzzing to quickly test each path. Of course, we may not be

13

able to cover entire program since the symbolic execution is stopped after exploring only
part of all paths in the program, then the system would transit to fuzzing, which does
not necessarily guarantee the exploration of all possible paths. By discovering as many
different paths as possible soon after the user data (e.g. command-line arguments, files,
data from network sockets, etc.) is introduced, and by ensuring the generated random
inputs follow each path, we can have similar effect of performing the fuzz testing on many
unique paths without having to collect good set of seed files to begin with.

Hybrid fuzzing consists of four phases: Basic block profiling, Symbolic
execution, Input generation and Guided random fuzzing. In the first
two phases, we collect path predicates for the target program, extract linear predicates to
build polytopes that describe the input space for each path. Then, we efficiently generate
random test cases that respect path predicate. In the last phase, we feed the generated
inputs to the target program and monitor its behavior. Also note that last four phases can
be pipe-lined for better performance.

Basic Block Profiling Basic block is a sequence of instructions with exactly one en-
trance and one exit. This means that we can safely assume that if the first instruction
in a basic block is executed, the rest of the code in the same basic block is executed as
well. Also, basic block is closely related to the code coverage measurement because the
executed basic blocks essentially represent the portion of the code that are covered in the
program by the given input.

We often run into the situation where the executions are stuck to limited code paths
and seed files do not span out for higher code coverage. Traditional way of exploiting
this problem is to increase the number of better seed files that will exercise more unique
program paths. However, it is usually not practical due to the limited resources/samples
available. The intuition behind Basic block profiling phase is that the portion
of the code that are visited with initial (possibly limited) seed files will likely be explored
easily without help of more expensive techniques such as symbolic execution. Thus, we
collect the union of basic blocks that have been executed during these executions to allo-
cate more computing resources to reveal the code paths that have not been executed in the
next phase, Symbolic execution.

In case the source code of the target program is available, we can recompile the pro-
gram such that we can easily track the basic blocks that are executed using such tool as
gcov [17]. However, in order to also handle the binary programs, we use dynamic binary
instrumentation (DBI) to profile which basic blocks are executed by the program with
given inputs. We adopt a custom JIT (Just-in-time compilation) engine to dynamically
instrument the target programs for profiling executed basic blocks. This gives us two ben-

14

efits: capability to handle binary only targets and competitive performance over publicly
available DBI tools. More detail is explained in Section 3.2.

Symbolic Execution In this phase, we perform an online symbolic execution of the
program with the inputs as symbolic variables. The goal is to explore as many paths as
possible within the specified resource constraint to increase the breadth of covered code
in the program. We are using a binary symbolic executor in order to support not only
programs with the source code, but also compiled binaries. The symbolic executor is
designed such that the basic block profile from the previous phase can be imported to
be used for path selection. Specifically, the paths that are not included in the profile are
assigned higher priority so we can reveal more paths that are not explored before.

For flexibility of the system, some of the parameters can be configured. One of the pa-
rameters that is critical is the scope of the path exploration. When a developer or a security
research is testing an application for any security vulnerabilities in the program, the target
is usually focused to the application itself. Thus, we provide a way to configure to avoid
other code base such as shared library code as much as possible during symbolic execu-
tion. Another important parameter is frontier node threshold. Frontier node represents the
basic block that a certain executor is trying to execute next. Thus, if the threshold for the
number of frontier nodes is set to the number of all possible paths in the program, it would
essentially be the same as full symbolic execution of the program. Since we are aiming
to attain some breadth, the threshold does not need to be set too high. It is basically the
number of unique paths to generate test cases for.

For each path the executor takes, it dynamically builds the path predicate. Therefore,
each path predicate represents a unique path in the program, and the solution to the formula
is an input that leads the program execution to that certain path. So, the path predicates
built up to frontier nodes describe the conditions to be satisfied in order to get to the end
of each path (i.e. frontier node).

Input Generation In order to perform fuzz testing, we need to be able to automatically
generate random inputs that will respect the path predicates to each frontier node. The key
idea is to introduce as much as randomness to the generated inputs such that we obtain
similar effects as running random fuzzing, which is known to be quite effective, on exe-
cution beyond the frontier nodes. We proceed to generate such inputs by transforming the
input possible input space for each path into Z-Polytope representation.

We first transform the linear formulas we obtained from the Symbolic execution
phase into the system of linear inequalities, called constraint system, using the transfor-

15

mation rules we have defined. We mark the symbolic bytes that are referenced by a given
formula as path critical bytes, meaning that these bytes are constrained and must satisfy
the condition. The remaining non-path-critical symbolic bytes can be any value and still
would not affect the possibility of getting down to the same path.

To represent precise input space for a given formula, we build a polytope described by
the constraint system transformed from the formula. Polytope is a geometric object with
bounding facets. In this thesis, we will be using the term polytope for convex polytope with
bounded convex set of points. n-Polytope is an n-dimensional polytope. For instance, a
polygon is 2-polytope, a polyhedron is 3-polytope, and so on. Also, in our context, a
polytope is considered to be convex lattice polytope (Z-Polytope) that is a convex hull of
finitely many integer points. Finite set of linear inequalities, all of which are satisfied by
the concrete values, can be used to build the convex polytope [11].

Not surprisingly, there is no efficient algorithm known for enumerating all possible in-
teger points (which are the solutions to the formula in our case) for a given polytope. Thus,
we build a hyperrectangle that inscribes the polytope. Hyperrectangle is a generalization of
a rectangle for higher dimensions. Thus, n-hyperrectangle is basically an n-polytope with
all edges being mutually perpendicular, or an orthotope. Although hypercube is a specific
type of hyperrectangle with edges of equal length, we may refer them interchangeably.
Finding such hyperrectangle is trivial given a polytope, and so is to choose random points
in the hyperrectangle. Note that, however, the point chosen from the hyperrectangle is not
necessarily contained in the inscribed polytope. In order to randomly select a point that
resides in the polytope, we perform a rejection sampling, where we test if a chosen point
indeed satisfies the constraint system that describes the polytope. If we find a point that
passes the test, that point is a valid input for the path. Also, number of dimensions needed
to represent the polytope (and thus, hyperrectangle) depends on the number of path critical
bytes.

Guided Random Fuzzing The remaining parts of the hybrid fuzzing system consist of
executing the target program with the generated random test cases. The fuzzer acts as a
concrete executor that simply feeds the input to the program and monitors its behavior.
When abnormal state such as crashes and hanging is detected, the fuzzer reports with the
faulty input that triggered the bug. The state to be monitored can be configured such that
only segmentation faults are reported, for example. Note that each input is randomized as
much as possible while still being able to reach the frontier node that the input is generated
for.

16

3.2 Architecture and Design

Basic Block Profiler For profiling the executed basic blocks over the initial seed files,
the hybrid fuzzing system uses a light-weight custom JIT engine for 32-bit Linux binary
programs, written by Andrew Wesie. It is trivial to extend to other architectures by using
more advanced DBI tools such as PIN or DynamoRIO [31, 5], but the choice was made
due to huge performance improvement. Our custom profiler consists of total 1500 lines of
C and x86 ASM. The profiler injects itself to the target program’s memory and monitors
every control transfer during the target program’s execution. Then, it emits arbitrary code
that we want to execute before the program continues with its own code.

Basic block in our tool is defined the same as in PIN instrumentation, where a basic
block is a single entrance, single exit sequence of instructions. The profiler discovers the
control flow of the program as it executes as PIN does. For example in 3.1, we find either
BBL 2 or BBL 3 based on the value of the first argument to the program, but never at the
same time.

80483b4: 55 push %ebp ; BBL 1 Start
80483b5: 89 e5 mov %esp,%ebp
80483b7: 83 ec 10 sub $0x10,%esp
80483ba: 8b 45 0c mov 0xc(%ebp),%eax
80483bd: 8b 40 04 mov 0x4(%eax),%eax
80483c0: 89 45 fc mov %eax,-0x4(%ebp)
80483c3: 8b 45 fc mov -0x4(%ebp),%eax
80483c6: 0f b6 00 movzbl (%eax),%eax
80483c9: 3c 63 cmp $0x63,%al
80483cb: 76 10 jbe 80483dd ; BBL 1 End
80483cd: 8b 45 fc mov -0x4(%ebp),%eax ; BBL 2 Start
80483d0: 0f b6 00 movzbl (%eax),%eax
80483d3: 8d 50 0a lea 0xa(%eax),%edx
80483d6: 8b 45 fc mov -0x4(%ebp),%eax
80483d9: 88 10 mov %dl,(%eax)
80483db: eb 0f jmp 80483ec ; BBL 2 End
80483dd: 8b 45 fc mov -0x4(%ebp),%eax ; BBL 3 Start
80483e0: 0f b6 00 movzbl (%eax),%eax
80483e3: 8d 50 ec lea -0x14(%eax),%edx
80483e6: 8b 45 fc mov -0x4(%ebp),%eax
80483e9: 88 10 mov %dl,(%eax)
80483eb: 90 nop
80483ec: c9 leave
80483ed: c3 ret ; BBL 3 End

Listing 3.1: Basic Block example

For our purpose, we simply logged the starting addresses of the basic blocks and the
counter which keeps track of how many times that basic block is executed. The BBL data
is written to a file that is later imported by the symbolic executor. Using the above example
program, we can obtain a table as shown in Table 3.1. For this profiling, we have executed
total of 5 seed inputs where three of which reached BBL 2 and the other two reached BBL
3. Obviously, BBL 1 is reached total of five times during the executions since this basic
block is executed regardless of the input.

17

BBL Address Count # instructions
80483b4 5 10
80483cd 3 6
80483dd 2 8

Table 3.1: Basic block profiling of the program shown in Listing 3.1

As a small optimization for both performance and space, we log the profile information
in binary format rather than in string format. Also, because our tool is minimally set up to
achieve the goal, it does not add any unnecessary overhead as other feature-full DBI tools
do such as operand extraction. Table 3.2 shows the runtime comparison between our tool
and Pin tool, where both tools perform the same job: basic block profiling.

Application Native (sec) PIN (sec) Custom Engine (sec)
gzip (decompress 432MB) 38 353 154

gzip (compress 1.7GB) 101 2199 855
md5sum (1600 files) 0.73 22.42 1.79
exim-4.41 (100 runs) 0.44 193 2.21

Table 3.2: Runtime comparison between PIN and our custom JIT engine

Usually, the cost of running complicated programs under Pin tool is too high that one
can argue running a mutational blackbox fuzzer would be a better choice for the same time
it takes for Pin tool to profile over the seed files. However, with our custom DBI tool, we
can efficiently profile executed basic blocks to aid the symbolic executor for discovering
more useful (i.e. not likely hit by concrete testing) paths. Also, we log all executed basic
blocks including the shared library code. The decision to either include or exclude library
code section to the scope of path exploration can be made in Symbolic execution
phase.

Symbolic Executor Symbolic executor of our choice for the hybrid fuzzer is Mayhem
symbolic executor. We use it to perform a pure online symbolic execution where it does
not generate any test case, thus not invoking the theorem prover at all. Because we do not
explore all paths in hybrid fuzzing system, pure online symbolic execution does not yield
a problem of memory exhaustion.

Path selection in Mayhem is based on the ranking of each available executor in the
queue. Ranking is determined by the score, which is increased or decreased depending on
the objective. For instance, if we were to maximize the number of explored paths, then the

18

7

. . .

2 5

2 5

2 2 3

Library
Code . . .

.

①

②

③

④

⑤⑥

⑦

⑧

P1 P2

P3

P4 P5 P6 P7

P8 P9

P10

hit count code explored by profiler
code explored by symbolic executor

order symbolic execution
path # path to frontier node

Figure 3.2: Path selection based on BBL profile and target addresses.

score of the executor is increased when a certain executor has found a path that we have
never explored before. Thus, the symbolic executor manages a priority queue that will
dispatch the next executor based on their scores. Also, in order to prevent one executor
exploring too deep alone, the maximum depth difference is maintained. If the scope of
the path exploration is limited to the main executable itself, we assign higher score to the
paths that reside in the program text and lower score to any other library codes such as
libc. This, however, can easily be relaxed in case the user wants to allow the symbolic
executor to discover paths in the libraries that are loaded with the main executable.

Modified Mayhem first imports the basic block profile that the profiler generated and
looks up whenever the executor needs to fork another executor (e.g. the conditional branch
is met). Unless the threshold for the number of frontier nodes has been reached, Mayhem
updates the score for the executors based on two factors: current depth and basic block
hit count. Figure 3.2 shows the process of path selection in Mayhem with imported pro-
file information. In the example above, the maximum depth difference and the maximum
number of frontier nodes are set to 2 and 10, respectively. Also, the path selection config-
uration tries to avoid any code other than the main executable.

19

Blue-shaded nodes in the figure represents basic blocks that are explored by the profiler
and thus Mayhem has hit counts for, which is shown by the number on each node. When
the symbolic execution reaches the root node in this diagram (note that this tree may be a
sub-tree of larger execution tree of the program), the executor needs to fork and updates
the score for each path. The profile shows left branch is less visited by the profiler (2 out
of 7 times), so Mayhem decides to explore left path first as the orange arrow with the order
1 suggests.

After a while, the symbolic executor forks again and sets higher priority to left branch
(marked by symbolic execution of order 2) because the left path is never explored by the
profiler whereas the right path is explored (executed) twice by the profiler. There is another
branching point afterward, but the symbolic executor prefers the left branch (symbolic
execution of order 3) since the right branch takes the execution to the library code which
is outside of the main executable code. Then, Mayhem sees the largest difference between
the current executor and delayed executor (in the queue) has reached the threshold – 2,
in this case –, so it stops exploring further with the current executor. Instead, Mayhem
resumes the execution of the best (i.e. highest score) executor from the queue, which is
execution to the path that is marked by symbolic execution of order 4 in the example above.
The rest of the paths are explored in the same manner until Mayhem reaches the frontier
node threshold, which is set to 10 as shown as green paths with the label (P1−P10).

As a result, this process generates total of 10 paths while preferring the discovery of the
code that is not explored by the profiler and avoiding the code segments that are not of our
interest – when all of the remaining (delayed) executors are targeting non-main executable
code paths and the frontier node threshold is not met, Mayhem will still explore those
paths.

When an executor terminates, the path constraints built up to that point of the program
are combined into one formula that essentially represents the path that the executor ex-
plored. There are two conditions under which the executors terminate. The first is when
the executor reached the end of the path (i.e. the leaf note in the execution tree), and the
second is when pre-defined number of frontier nodes (i.e. unique paths) is reached. Every
time an executor terminates and a path formula is constructed, the formula is sent to Input
Generator to be parsed, transformed and represented as a Z-Polytope defining the input
space for the given formula.

Because inputs are generated as the symbolic execution is still running, tasks can be
pipe-lined for the Guided Fuzzer to receive generated test cases from input generator, feed
them to the target program, and observe for anomaly. This is important since the bottle-
neck of the entire hybrid fuzzing system is the symbolic execution, which we limit its
resource of.

20

Input Generator As a numerical abstraction of input space, we use linear inequalities
and the corresponding convex polytope generated by the inequalities. The input genera-
tion module is developed upon Parma Polyhedra Library (PPL), which is developed and
maintained by University of Parma, Italy [3]. It generates pre-configured number of test
cases for each time it is invoked with a certain formula. Input generation module consists
of 940 lines of OCaml code that uses PPL’s OCaml interface.

Input generator first extracts linear predicates from the passed formula. Then, we use
PPL to build the constraint system by transforming the linear predicates to non-strict linear
inequalities that represent a closed polytope. Note that in our setting, any generated poly-
tope will be bounded because we know the maximum and the minimum values possible
for each variable. For instance, the implicit lower bound and upper bound would be 0 and
255 for the variable mapped to an unsigned byte. Most importantly, the library provides an
efficient way of performing rejection sampling. We can build a linear generator expression
of a point in n-dimensional space, where n is the number of symbolic variables. Then, this
point can be quickly tested if it is contained in a certain polytope (e.g. polytope, powerset
of polytopes, boxes, etc.).

We currently support simple formulas that involve only up to 2 symbolic variables in
a single expression with the symbolic variable being signed or unsigned 8-bit and 32-bit
integers. However, extending the system to handle more complex expressions is as easy
as adding more rules for transformation as we will show in Chapter 4.

Only path critical symbolic variable are mapped to a PPL variable so we can reduce the
required dimensions to produce a polytope of input space. For other symbolic variables
that are not path critical, the input generator assign random values to them. Since each
variable with lower and upper bound in the polytope data structure consumes about 360
bytes, the less there are variables for PPL to track, the less memory is used by the input
generator. However, this still gives quite flexible ranges of input size such as 300 KB
files which will require little above 100 MB of RAM. Note that the resource allocated for
polytope is freed when the sampling is finished.

Next step in Input Generation phase is to perform a rejection sampling. We
define a generator for a point, where the coefficients are determined randomly in the valid
range for each variable. Then, the provided method from PPL is used to check the relation
of the polytope with a generator. If the returned type is Subsumes, then we can conclude
that the chosen point is contained inside of the polytope – and thus the valid input. We
repeat random rejection sampling until we reach the pre-configured number of test cases
to be generated per frontier node. The generated inputs are stored to disk such that the
Guided fuzzer can later feed to the target program and monitor.

21

Guided Fuzzer / Monitor The fuzzer does not actually mutate the inputs, but rather
simply feed to the target program generated inputs that are outputted by the input genera-
tor. Also, this fuzzer needs to behave as a monitor that looks for crashes and hangs. For
this purpose, we use Zzuf fuzzer with mutation ratio of 0% [27]. Then, the hybrid fuzzing
system organizes the crashes into separate directories along with the crashing inputs for
further analysis. Since most of the interesting bugs cause the crash of the program, we
configure the fuzzer to monitor for segmentation faults. We do not perform any optimiza-
tion to remove duplicate crashes, but this can be easily done by adding some sort of hash
for the crashes based on the crashing location, stack trace, etc.

22

Chapter 4

Efficient Input Generation

The process of generating provably random inputs that are likely increase the code cover-
age while preserving the path predicates for frontier nodes is critical. However, efficiently
generating such inputs is not a trivial task. In this chapter, we present the abstraction of
the possible input space and provide an algorithm to efficiently produce random inputs
that respect the falsifiability of the given path predicates. This corresponds to Input
Generation phase where we use Parma Polyhedra Library as we stated in previous
chapter.

4.1 Path Predicates

We call an input path-preserving input if it satisfies the path predicate so the execution to
that path is guaranteed when running a such input. Our purpose is to produce as many
path-preserving inputs as the user specified without invoking any formula solvers. In fact,
we want to introduce as much randomness as we can while building such inputs for fuzzing
effect, which has shown its effectiveness [47].

We first consider the linearity of the formulas, since our abstraction is built with an
assumption of linear expression. By linear expression, we mean the expression that only
involves either constants or first-order variables with constant coefficients. In the con-
text of formulas, a linear formula is a formula that only involves constants and first-order
symbolic variables. For example, symb 0 <= 3·symb 1 + 0x70 is a linear formula
whereas symb 0·symb 1 >= 0x32 is not. Fortunately in many programs, path pred-
icates are fairly simple and linear. This is a sample formula generated with one of the
coreutils, id:

23

symb-argv_1_0:u8 == 0x2d:u8 & ˜(symb-argv_1_0:u8 == 0:u8)
& ˜(symb-argv_1_0:u8 == 0x2b:u8) & symb-argv_1_0:u8 == 0x2d:u8
& ˜(0:u8 == symb-argv_1_0:u8)

Listing 4.1: A sample formula from id

Predicates usually encode the ranges of values that each input byte can have. If we can
precisely describe these ranges and efficiently pick values in valid range, we can generate
path-preserving inputs. For instance, (symb 0 == 0x62 & symb 1 < 0x10) rep-
resents the condition where the first symbolic byte has to be equal to value 0x62 and the
second symbolic byte must be less than the value 0x10 at the same time. While solvers
can return a solution such as [symb 0 <- 0x62; symb 1 <- 0x9], there are 137
more values that symb 1 could have been with signed symbolic bytes. Therefore, we gain
significant benefit in generating path-preserving inputs by extracting linear relationships
(ranges) from the formulas as opposed to querying solver repeatedly to obtain a solution
at a time.

Also, we perform several formula simplifications prior to process the formula for lin-
ear expression transformation. We currently perform simplifications for and with true,
xor with self, less than eq, equal to val, plus zero, pad zero, is zero. Most of the original
formulas ended up more complicated than they need to be due to the way intermediate
language is generated based on the disassembly of the program. The simplification code
is shown in Appendix A.

There exist some non-linear formulas that can be transformed to linear expressions
via heuristics. One example is strlen function in libc where the operations are op-
timized with bit masking (example implementation for Red Hat Linux in Appendix B).
This introduces bit operation instructions such as xor or and, which is non-linear opera-
tion. However, the formulas generated can be easily pattern matched once we learn the
optimization used for such functions. The following is a set of formulas generated by the
code in Appendix B.

˜(0:u32 == (concat:[symb-argv_1_8:u8][concat:[symb-argv_1_7:u8][concat
:[symb-argv_1_6:u8][symb-argv_1_5:u8]]] - 0x1010101:u32 & 0
x80808080:u32))

˜(0:u32 == (concat:[symb-argv_1_4:u8][concat:[symb-argv_1_3:u8][concat
:[symb-argv_1_2:u8][symb-argv_1_1:u8]]] - 0x1010101:u32 & 0
x80808080:u32))

Listing 4.2: Example of non-linear formula

24

4.2 Linear Inequalities and Z-Polytope

The system of linear inequalities with the same variables can be expressed as matrix in-
equality A·x ≤ b, where A is an m-by-n coefficient matrix, x is n-by-1 variable vector and
b is m-by-1 constant vector. Then, this system of linear inequalities (or constraint system
in PPL) can directly be used to create a polytope object. Polytope object in PPL requires
non-strict inequalities [2], so we first transform all linear expressions to be non-strict.

Sample Mayhem’s formula output looks like the following:
∼(symb-argv 1 2:u8 <= 0x13:u8) & symb-argv 2 0:u8 <= 0x28:u8,
which is transformed into a set of constraints consisting PPL linear expressions:

Constraints cs =

1 · Variable(0) ≥ 0x14
1 · Variable(0) ≤ 0xFF
1 · Variable(1) ≤ 0x28
1 · Variable(1) ≥ 0x00

,

where Variable(0) and Variable(1) map to symb-argv 1 2 and symb-argv 2 0, re-
spectively.

Since each executor invokes the Input generator when terminating, the module only
needs to handle one path (formula) at a time. For each formula, the module extracts the
range information per symbolic variable using the rules listed in Table 4.1. Note that it
also includes that converts a strict inequality to a non-strict one. This rule set can easily
be extended to accommodate more complex formulas that we do not support currently, or
can be used to match non-linear expressions to extract linear relationship heuristically. We
handle both signed and unsigned operations of the expressions (only unsigned operations
shown Table 4.1, since the signed operations are analogous with different minimum and
maximum) with one variable and a constant or two variables.

There are some corner cases that are not trivial to handle and lead to non-linearity or
disjoint sets of linear inequalities. In our system, we mainly focus on handling these two
problems that arise while transforming formula to PPL linear expression:

• Non-linearity: Non-linearity can come from very trivial idioms of x86 binary codes
such as xor eax, eax. Note that this piece of code essentially is equivalent
to movl eax, 0. Since xor operation is considered to be non-linear function,
we cannot transform it to PPL’s linear expression when the symbolic variable is
involved with this type of operations. Thus, we employ transformation to convert
non-linear expressions into linear expressions, when possible. This can be also used

25

if var ∈ ∆ then d = ∆[var] else ∆′ = ∆[var ← next dim] d = ∆′[var]

∆, var (d, ∆′)
GETDIM

∆ ` (d, ∆′) = GETDIM(var) v = Variable(d) c = val

∆, var == val ∆′, {v = c}
EQUAL

∆ ` (d, ∆′) = GETDIM(var) v = Variable(d) c1 = val + 1 c2 = val− 1

∆,¬ (var == val) ∆′, {v ≥ c1; v ≤ c2; v ≤ u max; v ≥ u min}
NOTEQUAL U

∆ ` (d, ∆′) = GETDIM(var) v = Variable(d) c = val− 1

∆, var < val ∆′, {v ≤ c; v ≥ u min}
LESSTHAN U

∆ ` (d, ∆′) = GETDIM(var) v = Variable(d) c = val

∆, var ≤ val ∆′, {v ≤ c; v ≥ u min}
LESSTHANEQUAL U

∆ ` (d,∆′) = GETDIM(var) v = Variable(d) c = val

∆,¬ (var < val) ∆′, {v ≥ c; v ≤ u max}
NOTLESSTHAN U

∆ ` (d, ∆′) = GETDIM(var) v = Variable(d) c = val + 1

∆,¬ (var ≤ val) ∆′, {v ≥ c; v ≤ u max}
NOTLESSTHANEQUAL U

∆ ` (d1, ∆′) = GETDIM(var1) v1 = Variable(d1) ∆′ ` (d2,∆′′) = GETDIM(var2) v2 = Variable(d2)

∆, var1 == var2 ∆′′, {v1 = v2}
EQUALVAR

∆ ` (d1, ∆′) = GETDIM(var1) v1 = Variable(d1) ∆′ ` (d2,∆′′) = GETDIM(var2) v2 = Variable(d2)

∆,¬ (var1 == var2) ∆′′, {v1 ≤ v2 − 1; v1 ≥ v2 + 1}
NOTEQUALVAR U

∆ ` (d1,∆′) = GETDIM(var1) v1 = Variable(d1) ∆′ ` (d2,∆′′) = GETDIM(var2) v2 = Variable(d2)

∆, var1 < var2 ∆′′, {v1 ≤ v2 − 1; v1 ≥ u min}
LESSTHANVAR U

∆ ` (d1,∆′) = GETDIM(var1) v1 = Variable(d1) ∆′ ` (d2,∆′′) = GETDIM(var2) v2 = Variable(d2)

∆, var1 ≤ var2 ∆′′, {v1 ≤ v2; v1 ≥ u min}
LESSTHANEQUALVAR U

∆ ` (d1, ∆′) = GETDIM(var1) v1 = Variable(d1) ∆′ ` (d2,∆′′) = GETDIM(var2) v2 = Variable(d2)

∆,¬ (var1 < var2) ∆′′, {v1 ≥ v2; v1 ≤ u max}
NOTLESSTHANVAR U

∆ ` (d1,∆′) = GETDIM(var1) v1 = Variable(d1) ∆′ ` (d2,∆′′) = GETDIM(var2) v2 = Variable(d2)

∆,¬ (var1 ≤ var2) ∆′′, {v1 ≥ v2 + 1; v1 ≤ u max}
NOTLESSTHANEQUALVAR U

Table 4.1: Mayhem expression to PPL linear expression Transformation Rules.

26

for transforming strict inequalities (i.e. <, >) into non-strict inequalities (i.e. ≤, ≥)
as shown by LESSTHAN U and NOTLESSTHANEQUAL U rules in Table 4.1.

• Disjoint sets: Disjoint sets of linear inequalities also pose a problem of exponential
blow-up in the number of constraint systems and thus the number of polyhedra to
keep track of. Since all of the ranges must be represented as a linear expression with
non-strict inequalities, the formula such as x != 0 needs to be split into two dif-
ferent inequalities, namely x ≤ -1 and x ≥ 1. This leaves a hole in the possible
range that the variable is bound to. This type of formula is common in the context
of checking if a certain symbolic byte is a null byte. Also, whenever we have the
equality in a formula such as x == 10, there always exists one or more formula
that contains ¬(x == 10), which is essentially x != 10 that leads to another
path in the program. These discrete sets of inequalities can be tracked to build all
combinations of possible polyhedra of the input space as shown in Figure 4.1. Note
that the number of all combinations grow very quickly and soon make it infeasible
to enumerate constraint systems, build polytopes, and perform rejection sampling
against all of them. In our experiment, we can only handle a formula with up to
16 variables that have discrete property (i.e. != relationship) under 10 minutes per
formula.

-128 0 127
-128

50

127

x <= -1
y >= 51

x >= 1
y >= 51

x <= -1
y <= 49

x >= 1
y <= 49

Figure 4.1: Disjoint regions described by constraints: {x!=0 & y!=50} for signed bytes x and y.

In order to resolve this common case without hurting the performance, we have
implemented a base shifting trick that basically shifts the ranges of the variable
by certain offsets to eliminate the hole, and thus remaining with continuous range
that we can represent without multiple disjoint regions. We take the possible value

27

right after the hole and shift it to become the minimum value (e.g. u min or s min)
and keeps track of a mapping of the offset. Then we take advantage of modular
arithmetic for the integers in computer systems. Integer wraparound behavior lets
us to re-define the range for each variable. When we are actually picking a value
for a certain variable, the module first picks a random value from the refined range
and it looks up the offset table to obtain appropriate offset. The final value, then, is
simply calculated by adding the offset to the random value the module just picked.
Our shifting algorithm guarantees that only the values in the valid range (i.e. two
original discrete ranges) are chosen. Note that this trick works only when there is
one gap in the range, whether it is one value or a range of the values. The refinement
algorithm is presented in Algorithm 1 below.

Algorithm 1: Constraint Refinement with Base Shifting
Input: (Discrete) Constraints CS for variable v
Data: OffsetTable OT, d, start, end, min, max, offset
Output: Constraints CS’, OffsetTable OT’
begin

d← getDimension(v)
foreach c ∈ CS do

if isLessEqual(c) then
start← getUpperBound(c)

end
if isGreaterEqual(c) then

end← getLowerBound(c)
end

end
if isSignedByte(v) then

min← s min
max← (s max+ start− end+ 1)

else
min← u min
max← (u max+ start− end+ 1)

end
offset← end−min
OT’← OT[v ← offset]
CS’← {Variable(d) ≥ min;Variable(d) ≤ max}
return CS’, OT’

end

Consider the case where we want to deal with the range of the valid values de-
scribed by x !=10 with unsigned byte variable x. Then, this essentially means the
two valid regions are {u min ≤ x ≤ 9} and {u max ≥ x ≥ 11}. This, in a di-
agram, can be shown as on the left side of Figure 4.2 which shows clear two disjoint

28

0 10

9 11

255

{0 ≤ x ≤ 9} or {11 ≤ x ≤ 255}

0

254

{0 ≤ x ≤ 254, offset = 11}

255

Figure 4.2: Constraint Refinement of x!=10

regions. However, after applying the shift, we get a new range and a new entry in
the offset table. The effect of the shifting is shown on the right side of Figure 4.2.
Note that the new range is a single continuous block that we can easily deal with
PPL in order to build the polytope and to pick a random point quickly for testing.
In a way, we are hiding true representation of certain variables in order to make the
problem simpler and adjust it accordingly by consulting the table we have built in
the process. The same technique is equally applicable to signed integers without any
modification. Example of signed byte with larger gap is shown in Figure 4.3.

-128 -7

-8 21

127

{-128 ≤ x ≤ -8} or {21 ≤ x ≤ 127}

-128

99

{-128 ≤ x ≤ 99, offset = 149}

12720

0 0

Figure 4.3: Constraint Refinement of ¬(−7 ≤ x ≤ 20)

Apart from the transformability, we also take a careful approach in handling both
signed and unsigned operations. Since the sign-ness determines the minimum and maxi-
mum values, we need to take the sign-ness of the operation into account to first deduce the
type of the symbolic byte (i.e. signed char vs. unsigned char) and then apply appropriate
extreme values such that we correctly choose the random point that indeed will satisfy
the original formula. The difference between signed byte and unsigned byte is shown in
Figure 4.4. The same concept applies to larger data types such as short int or long
int.

When building test cases, we sometimes need to avoid certain values for symbolic
bytes even though it is allowed from the extracted range. For example, we need to avoid
choosing string terminators or special characters that have specific effect when used in
program arguments or environments such as a space (0x20), tab (0x09), and new line
(0x0a). In order to make this easily, we have made an option to include bad character

29

0 -128127 -1

0 128127 255

0x00 0x7F 0x80 0xFF

Signed
byte

Unsigned
byte

Figure 4.4: Range of byte value depending on the sign-ness

set, which will be later avoided as a value when picking a random point. If it is not possible
to pick a value without picking from the values specified bad character set, then the error
is raised.

Relationships between byte-level symbolic variables stay quite simple since we can
treat each symbolic variable as a PPL variable in a distinct dimension. However, if there is
a multi-byte (e.g. 32-bit integer) operation in the formula, the expression is represented as
the concatenation of 1 byte (8-bit) characters. It is much harder to extract separate range
definitions for each byte in this case. Consider the following example of 32-bit unsigned
integer comparison:
concat:[b 3:u8][concat:[b 2:u8][concat:[b 1:u8][b 0:u8]]] < 0x41424344:u32

Note that the ranges of the values for each byte is dependent of more-significant-byte.
In the example above, the value of b 3 can be expressed as a following inequality: b 3 ≤
0x41. Then, two cases are introduced for determining the value of b 2. First is when b 3
= 0x41 where b 2 is restricted to be b 2 ≤ 0x42 to satisfy the original inequality,
propagating similarly to lesser-significant-bytes. However, in case of b 3 < 0x41, the
remaining lesser-significant-bytes b 2, b 1 and b 0 are free in the range of the unsigned
minimum (i.e. 0) and maximum (i.e. 255), because b 3 < 0x41 already guarantees
the original inequality to hold. In order to handle this issue, rather than introducing the
disjunction of possible combinations of the ranges, we treat it as a single linear inequality
that is expressed as b 3 · 224+ b 2 · 216+ b 1 · 28+ b 0 · 20 ≤ 0x41424344. Obviously , this
approach can be generalized to incorporate data type of any size, such as 16-bit short
int or 64-bit long long int.

4.3 Hypercube and Rejection Sampling

Since efficiently enumerating all integer points in Z-Polytope that describes input space
in n dimension is not feasible, we propose an approximation of the space by defining the
bounding box (hyperrectangle) that inscribes the polytope resulting an over approximation

30

of the region. Finding the boundaries of the hypercube is trivial in our setting, so it is easy
to select random points that reside in such hyperrectangle. However, we need to verify
that the chosen point is indeed in the original polytope that describes valid input space.
For this we perform a rejection sampling.

4.3.1 Hypercube

In case of different length of sides per dimension, the term hyperrectangle is used, but we
will use both terms interchangeably in our context as we discussed in previous chapter.
Note that the sides of the surrounding box can always be forced to be of the same length,
but it is better to obtain the tightest length of the sides possible in order to reduce the
gap between the actual polytope and the face of the hypercube in any dimension. This
is because the probability of finding a valid random point from the hypercube increases
as the volume between the polytope’s surface and the hypercube’s boundaries decreases.
Thus, this often makes our hypercube in rectangular shape.

Consider an example of the input space and surrounding hypercube (in this case, it’s
2-dimensional rectangle) shown in Figure 4.5. In this figure, the input domain is specified
by the following inequalities, which is derived from the formula:

{symb 0 ≤ 90} ∧ {symb 1 ≤ symb 0} ∧ {symb 1 ≥ symb 0
4
}

The intuition on building hypercube is easily seen in that we have much higher prob-
ability to pick a point that resides in the actual input space if we choose a random point
from the hypercube instead of the universe. Note that the area (or volume depending on
the dimension) of the universe expands extremely fast as the number of dimension grows.
Specifically, the size of the universe is 256d, where d is the number of dimensions for the
input space. For simplicity, we assume that each dimension represents one byte, which
represents 28 = 256 integer points. We reduce the dimension for the polytope by limiting
the scope of variables only to path critical symbolic bytes.

Lower bound and Upper bound In order to pick a random point inside the hypercube
efficiently, we need to find out the boundaries (lower and upper bounds) of the cube for
each dimension. Unlike polytope, it is easy to compute the lower bound and upper bound
of the hypercube that inscribes the polytope which represents the precise input space. We
use linear programming to obtain both minimum and maximum values for each dimension
(variable). Linear programming is a method for the problem of achieving the maximum
or the minimum of a linear function in a given set of constraints. PPL already provides

31

Input Space
Hypercube
Universe

-128 0 90 127
-128

0

90

127

Figure 4.5: Visualization of the input space and hypercube for symb 0 and symb 1.

methods to maximize and minimize the given linear objective function subject to the con-
straint system for the polytope. By maximizing and minimizing an objective function that
only consists of a single variable, we can get the upper bound and the lower bound of the
variable, respectively.

For example, if we want to find the boundaries for the hypercube that tightly inscribes
the input space (a blue triangle) in Figure 4.5, we can first minimize and maximize the
variable symb 0 and repeat for the variable symb 1. Precisely, we get the following result,
producing the purple square we observe above.

symb 0 =

{
min : 0
max : 90

, symb 1 =

{
min : 0
max : 90

Notice that the generated hypercube still has some gaps between its boundaries and the
input space polytope. It is, however, far smaller compared to the gap from the universe.
We basically reduced the domain we choose the random points from, and thus significantly
increased the probability to pick the points inside of the polytope when the point is taken
from the hypercube.

32

4.3.2 Rejection Sampling

In mathematics, rejection sampling is used to generate a random set of samples from a
distribution by sampling uniformly from the probability density function’s region. This
is useful when it is difficult to sample points under the original probability distribution
function. Consequently an instrumental distribution – that is easier to sample from and
contains the original distribution – to perform the sampling. Then, the verification of the
chosen point against the original distribution and its rejection or acceptance is determined.

Accepted
Rejected

Figure 4.6: Visualization of rejection sampling.

In our setting, the original probability distribution is the original polytope of the input
space and the instrumental distribution corresponds to our hypercube. The random points
in the hypercube are sampled and tested for the acceptance based on relationship between
the polytope – i.e., the point is accepted if it resides in the polytope, but rejected otherwise.
As shown in Figure 4.6, points are chosen from the cube (3-hypercube), then the points that
reside inside of the polytope are accepted whereas the ones that are outside are rejected.

Random Sampling We can also use an extended rejection sampling, such as adaptive
rejection sampling, in order to provide better and tighter hypercube boundaries by reducing
wasted space (gap). However, this requires successive and adjacent point selection to refine
the distribution models adaptively. In context of fuzz testing, random sampling is more
suitable to increase the probability for making the program to exercise more various paths
by providing provably random inputs.

33

Discontinuous Ranges and Powerset Sometimes we observe that the formula is in lin-
ear form, but it consists of one or more disjoint ranges. For instance, {0 ≤ x ≤ 10, 80 ≤
x ≤ 100,−128 ≤ y ≤ 127} defines two disjoint regions: {0 ≤ x ≤ 10,−128 ≤ y ≤ 127}
and {80 ≤ x ≤ 100,−128 ≤ y ≤ 127}. In this case, it is not possible to define these
inequalities as a single polytope. Another example – more commonly found – is inequality
such as {x 6= 7}. Note this also splits the input space into two disjoint regions, namely
{x < 7} and {x > 7}. However, we demonstrated a method to transform these two dis-
joint regions into a single continuous range by refining the constraints with base shifting
as explained in Section 4.2. The visualization of discontinuous ranges for example above
is shown in Figure 4.7.

0 10 80 100-128 127
-128

127

Figure 4.7: Visualization of disjoint regions.

For the correctness, we need to ensure that the actual constraints are respected when we
test for rejection sampling. This means that we need to represent these types of the input
space precisely without approximation. We achieve this by using a powerset. We build
a powerset of disjoint polytopes generated by disjoint ranges. Building such powerset
can easily become exponential overhead with respect to the number of disjoint regions we
need to keep track. However, most of the constraints we examine were disjoint regions
with only one gap (e.g. x 6= c case).

34

Chapter 5

Evaluation

In this chapter, we evaluate our proposed approach through three different synthetic ex-
ample programs and twenty different x86 Linux binary programs that Mayhem is capable
of handling. In each section, we highlight the core components of our experiment and
point out how different configuration affects overall results for the code coverage, which
is closely related to the probability of finding bugs. Each component can be optimized
individually to provide a smoother transition between phases and a better result overall.
Source code for all of the synthetic program examples is attached in Appendix C.

The machine we used for all of our experiments is a desktop with Intel Core 2 CPU
6600 @ 2.40GHz, 4GB of RAM, and 32-bit Ubuntu Linux 11.10. The implementation
used for the experiment is not pipe-lined and assigns random value to the symbolic bytes
that the system cannot reason about due to non-linearity or unimplemented features. Al-
though the current system implements the basic block profiling, we have not used this
feature in the experiment due to lack of initial seed inputs and time. We discuss on possi-
ble improvements in Chapter 6.

5.1 Formula Transformation

We focus our evaluation on the transformability of the formulas that are generated in
Symbolic Execution phase. Recall that the transformability means the linearity of
the formula as well as the capability of our transformation rules. Transform is successful
if the resulting expression is in the form of linear inequalities and precise (i.e. correct
range). Note that the equality, x == a, can be represented as a conjunction of two linear
inequalities, x <= a and x >= a. Formulas that contain non-linear relationship are out
of scope of this paper, and thus not transformed. We have tested 3 synthetic programs,

35

15 coreutils programs and 5 other x86 Linux programs to survey how many of the total
formulas generated are transformable.

Application
Total
Preds.

Transformed
Preds.

Transformability
(%)

simple 9 9 100.0
simple file 5 5 100.0

int cmp 5 5 100.0
true 87 87 100.0

printenv 30110 29122 96.72
basename∗ 9891 6418 64.89

dirname 458 393 85.81
hostid 21394 21021 98.26
id∗ 17420 15944 91.53

whoami∗ 375312 311710 83.05
mktemp∗ 24635 22194 90.09

sync 6127 4324 70.56
link 1552 1340 86.34

mkdir∗ 4768 4606 96.60
readlink 17280 17044 98.63

ls∗ 9162 5489 59.91
who∗ 268211 206193 76.88
ptx∗ 592363 386634 65.27
Total 1378770 1032519 74.89

Total does not include synthetic programs.
∗ - process killed after 60min.

Table 5.1: Predicate Transformability in
synthetic programs + coreutils

Application
Total
Preds.

Transformed
Preds.

Transformability
(%)

htpasswd-1.3.31∗ 2929 2850 97.30
cdescent-0.0.1 70787 70742 99.94

fkey-0.1.3 7038 4301 61.11
exim-4.41∗ 40122 39555 98.59

sharutils-4.2.1∗ 680 398 58.53
Total 121556 117846 96.94

∗ - process killed after 60 min.

Table 5.2: Predicate Transformability in linux
binaries

In the experiment of 15 coreutils programs, we have successfully transformed 74.89%
of the total predicates into PPL linear expressions as shown in Table 5.1. A predicate in
this experiment is the smallest formula without any conjunction. Thus, this result shows
that most of the predicates that are generated from the branch conditions are linear and
simple. The majority of the unhandled formulas are due to the non-linear operations such
as and, xor, and not. We currently do not support bit shift operations, but these are still
linear operations and can be implemented by encoding them to either multiplication or
division by 2b where b is the number of bits shifted. The remaining predicates either
consist only with non-linear operations or mix of both linear and non-linear operations.
The transformability shown in Table 5.2 for 5 Linux utilities also show that most (96.94%)
of the predicates we encounter are linear and handled by the current system.

Note that, however, this does not necessarily imply that we successfully transform the
entire path with the probability demonstrated in above tables. As shown in Table 5.3 and
Table 5.4, the transformability for full path is lower. This is because a path consists of
multiple predicates, where each predicate may not necessarily be applicable for the trans-
formation. If any part of the predicate transformation fails, then the remaining predicates
in corresponding path are meaningless since we cannot guarantee the satisfiability of the
predicate that we failed to transform. In order to overcome this limitation, we can invoke
the solver to achieve a possible solution for such predicate and assign the returned values
appropriately. However, we have not implemented this extension in the current stage of the

36

research. If this component is implemented, we can expect to have similar transformability
of the paths to one of the predicates.

The following is a sample path formula that is not handled by the current system:
˜(low:u8((extend:u32(symb-argv_1_1:u8) & 0xffff00ff:u32 | pad:u32(low:u8(extend:u32(symb-argv_1_1:u8))) << 8:u32) << 0

x10:u32 & 0xffff0000:u32 | pad:u32(low:u16(extend:u32(symb-argv_1_1:u8) & 0xffff00ff:u32 | pad:u32(low:u8(extend:
u32(symb-argv_1_1:u8))) << 8:u32))) == low:u8((extend:u32(symb-argv_1_1:u8) & 0xffff00ff:u32 | pad:u32(low:u8(
extend:u32(symb-argv_1_1:u8))) << 8:u32) & 0xffffff00:u32))

The most important message to take away from these results is that we can significantly
reduce the number of invocation to the constraint solver for generating inputs – especially
for many random path-preserving test cases, which is a huge improvement in performance
compared to traditional methods.

Application
Total
Paths

Transformed
Paths

Transformability
(%)

simple 3 3 100.0
simple file 3 3 100.0

int cmp 3 3 100.0
true 14 14 100.0

printenv 1151 1067 92.70
basename∗ 298 35 11.74

dirname 38 27 71.05
hostid 702 633 90.17
id∗ 416 43 10.34

whoami∗ 10018 2256 22.52
mktemp∗ 902 3 0.33

sync 193 3 1.55
link 87 45 51.72

mkdir∗ 103 56 54.37
readlink 661 598 90.47

ls∗ 276 9 3.26
who∗ 3495 6 0.17
ptx∗ 10836 4 0.04
Total 29190 4799 16.44

Total does not include synthetic programs.
∗ - process killed after 60min.

Table 5.3: Path Transformability in syn-
thetic programs + coreutils

Application
Total
Paths

Transformed
Paths

Transformability
(%)

htpasswd-1.3.31∗ 172 153 88.95
cdescent-0.0.1 372 327 87.90
fkey-0.1.3∗ 250 7 2.80
exim-4.41 377 101 26.79

sharutils-4.2.1∗ 34 3 8.82
Total 1205 591 49.05

∗ - process killed after 60 min.

Table 5.4: Path Transformability in linux bi-
naries

5.2 Input Generation

Efficient and effective input generation is important to both developers and security re-
searchers. Generated inputs can be tested against the target program to be monitored for
any abnormal behaviors such as crash. Symbolic execution is usually capable of gener-
ating an input to a certain path by querying the constraint solvers – the solution which
satisfies the formula is the input itself. However, it may not reveal other significant portion
of possible inputs in case there are ranges of values that the input bytes could have.

With the assistance of Z-Polytope abstraction, the hybrid fuzzing system can derive
and produce a large number of random inputs that will respect the path constraints. The

37

random value will be chosen for each symbolic input byte within the range of the values
that the byte can have without disrupting the satisfiability of the given formula. This is
critical since generating such inputs require many queries to the solver, which causes high
latency. We generate N input samples per path for P frontier nodes (paths) as configured
by the user, generating total of N × P random inputs.

Application Zzuf Gen. Time (sec) Hybrid Fuzzer Gen. Time (sec) # Test Cases
true 9.6 4.5 7000

printenv 68.6 48.0 25000
basename 29.6 41.0 11000
dirname 51.9 33.5 19000
hostid 73.2 27.3 25000

id 78.0 84.1 25000
whoami 76.5 19.7 25000
mktemp 76.3 87.6 25000

sync 74.1 59.1 25000
link 73.2 34.9 25000

mkdir 73.0 23.6 25000
readlink 77.2 23.8 25000

ls 65.7 26.4 25000
who 63.2 66.8 25000
ptx 63.6 82.9 25000

Total 953.7 663.2 337000
Total of 500 test cases generated per frontier node per application (max 50 frontier nodes).
The time is averaged over 5 independent runs.

Table 5.5: Statistics on Input Generation

Application Zzuf Gen. Time (sec) Hybrid Fuzzer Gen. Time (sec) # Test Cases
htpasswd-1.3.31 80.0 9.2 25000
cdescent-0.0.1 64.5 26.4 25000

fkey-0.1.3 56.4 33.3 25000
exim-4.41 90.2 24.6 25000

sharutils-4.2.1 55.4 136.1 25000
Total 346.5 229.6 125000

Total of 500 test cases generated per frontier node per application (max 50 frontier nodes).
The time is averaged over 5 independent runs.

Table 5.6: Statistics on Input Generation

We present the generation time that hybrid fuzzer took to generate 500 random inputs
per path in various different programs in Table 5.5 and Table 5.6. For practicality, we have
limited the maximum number of frontier nodes to 50 in this experiment. This means 50
unique paths were symbolically executed after the symbolic inputs are introduced to the
target programs, which is usually sufficient in the context of argument parsing and simple
file parsing.

Statistics show that, in both coreutils and other Linux utilities, the hybrid fuzzer gen-
erates the same number of inputs about 45% faster than the mutational fuzzer does in

38

average. This is because the mutational fuzzer needs to open up the seed file, create new
(fuzzed) file, modify the values given the ratio, and finally write to disk, whereas the hy-
brid fuzzer only creates and writes to the new file with already (randomly) chosen values.
We have not tested other mutational fuzzer than Zzuf, but it may be possible to optimize
the mutation process to be faster.

An experiment that we could not perform due to the time limit is the input generation
time by the symbolic executor with constraint solver. Although we did not have a chance
to provide data, our hypothesis is that generating the same number of test cases using
constraint solver would take a lot longer time compared to both mutational fuzzer and
hybrid fuzzer. The reason is that, in order for the symbolic executor to create distinct and
random test cases, it needs to invoke the constraint solver for finding an assignment that
satisfies the given formula and is different from previously generated one. This requires
one or more invocations to the constraint solver each time the system needs to generate a
new test case, which is expensive.

Generated test cases are also tested for the uniformity of randomness. We have gener-
ated 50,000 test cases per path in synthetic program simple (C.1) and plotted the distribu-
tions per path in Figure 5.1. It shows a particular range of values that has been assigned
more or less in each path. This coincides with the actual code: Third byte in argv[1]
(b 0) needs to be greater than or equal to 20 (line 8) and the first byte in argv[2] (b 1)
needs to be less than or equal to −80 (line 10) simultaneously in order to reach PATH 1.
For PATH 2, b 0 needs to be greater than or equal to 20, but b 1 needs to be greater than
−80. Lastly, b 0 must be be less than 20 in order to reach PATH 3, regardless of the val-
ues for any other input bytes. Note that since the input for simple is program arguments,
we specified some bad characters (e.g. null character, tab, new line, etc.) which is shown
by the byte values of 0 frequency. Within the valid ranges of the input, however, the values
are uniformly distributed.

5.3 Code Coverage

Code coverage is one of the standard metrics in program analysis because it represents how
much of the code is exercised. Higher code coverage does not necessarily imply more bugs
to find, but it definitely increases the probability of finding them. By comparing our result
against traditional random mutation fuzzing and symbolic execution techniques, we show
that the hybrid fuzzing is effective in achieving high code coverage in relatively shorter
time period. We used gcov for the code coverage measurement. Specifically, the code
coverage is measured in the number of lines that are executed over the total number of

39

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 20 128 177 255

F
re

q
u
en

cy

Byte value

PATH 1

 0

 200

 400

 600

 800

 1000

 1200

 0 20 128 177 255

F
re

q
u
en

cy

Byte value

PATH 2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 255

F
re

q
u
en

cy

Byte value

PATH 3

Figure 5.1: Uniform distribution of random test cases for simple

lines of the source code present in the target application.

vs. Random mutational fuzzing We chose Zzuf application fuzzer for the random
mutational fuzzer [27]. Zzuf is a very fast and simple fuzzer that modifies the user-
controllable data (input arguments or files) that the target application handles. It has found
bugs in real-world programs and libraries such as VLC player, MPlayer, nm, and fire-
fox [28]. In our experiment, we target 3 synthetic programs, 15 coreutils programs and
5 other Linux utilities as listed in Table 5.7 and Table 5.8. These applications are chosen
accordingly to demonstrate the effectiveness in small (tens of lines), medium (hundreds of
lines), and large (thousands of lines) code bases.

For the comparison, we used the same test cases that are generated in input generation
experiment, which consists of N × P where N is 500 and P is at most 50. We let Zzuf
to generate the same amount of the test cases by mutating the seed file N × P times
for each program. Then, we measured the code coverage for feeding the test cases to
the target program. Specifically, an input is randomly mutated with 20% mutation ratio
with incremental seed number for creating test cases with Zzuf, and the random bytes
are chosen within the valid range for the hybrid fuzzer. In case of non-linear predicate,

40

Application
Zzuf Code

Coverage (%)
Hybrid Fuzzer

Code Coverage (%)
Total #

Lines of Code
simple 100.0 100.0 11

simple file 90.0 100.0 20
int cmp 100.0 100.0 11

true 52.63 57.89 19
printenv 73.68 78.95 38

basename 81.58 81.58 38
dirname 68.57 82.55 35
hostid 61.54 76.92 26

id 23.58 34.96 123
whoami 59.26 85.19 27
mktemp 62.11 66.32 95

sync 80.95 85.71 21
link 71.88 84.37 32

mkdir 48.53 69.12 68
readlink 50.00 60.42 48

ls 22.43 34.51 1382
who 24.15 49.81 265
ptx 43.18 43.48 660

Total 33.68 44.03 2877
Total does not include synthetic programs.

Table 5.7: Code coverage for synthetic +
coreutils (Fuzzing)

Application
Zzuf Code

Coverage (%)
Hybrid Fuzzer

Code Coverage (%)
Total #

Lines of Code
fkey-0.1.3 19.51 25.20 123

htpasswd-1.3.31 38.71 70.05 217
cdescent-0.0.1 34.22 36.40 1011
sharutils-4.2.1 17.66 28.28 640

exim-4.41 8.78 11.90 5055
Total 14.35 18.93 7046

Code that is not reached by both fuzzers are not counted.

Table 5.8: Code coverage for linux binaries
(Fuzzing)

we currently assign random values with full flexibility (i.e. 0-255 for a byte) in the hope
of satisfying the condition sometimes. If there are other linear predicates that provides a
tighter bound for a certain byte, the system prefers the tighter bound to the wider bound
by design (when building the polytope). In the worst case, where all of the predicates are
non-linear, hybrid fuzzer system defaults to a random fuzzer in current implementation.

As shown in Table 5.7 and Table 5.8, the hybrid fuzzer mostly covers more code than
random mutational fuzzer does. Because most of the predicates in each path are linear as
we discovered earlier, the hybrid fuzzer can reason about the precise input space (ranges)
in order to generate test cases that will lead to different paths.

vs. Symbolic execution We used Mayhem binary symbolic executor [40] to explore as
many paths as possible and generate test cases with the path predicates for 5 minutes.
Similarly, we let the hybrid fuzzer run and generate 200 fuzzed test cases per frontier
node it was able to reach in 5 minutes. Note that the time restriction includes the time to
generate inputs as well. Furthermore, most of the paths in the programs are discovered in
first 5 minutes with symbolic execution. However, the number of paths and the elapsed
time can highly vary depending on the symbolic execution configuration. To conduct fair
comparison, we used the same configuration for the symbolic execution regarding what
and how long to make symbolic.

We let both hybrid fuzzer and symbolic executor explore and generate test cases in a
given time (which is 5 minutes each), and measured the code coverage for executing the
target programs with generated test cases. Hybrid fuzzer is set to create 200 random test

41

Application
Mayhem

Code Coverage (%)
Hybrid Fuzzer

Code Coverage (%)
Total #

Lines of Code
simple 100.0 100.0 11

simple file 100.0 100.0 20
int cmp 100.0 100.0 11

true 52.63 57.89 19
printenv 100.0 78.95 38

basename 65.79 81.58 38
dirname 100.0 80.00 35
hostid 100.0 69.23 26

id 56.10 22.76 123
whoami 85.19 85.19 27
mktemp 54.74 66.32 95

sync 66.67 85.71 21
link 96.88 81.25 32

mkdir 70.59 73.53 68
readlink 52.08 66.67 48

ls 45.22 37.99 1382
who 84.53 49.81 265
ptx 63.18 43.18 660

Total 57.77 45.18 2877
Total does not include synthetic programs.

Table 5.9: Code coverage for synthetic +
coreutils (Symb)

Application
Mayhem Code
Coverage (%)

Hybrid Fuzzer
Code Coverage (%)

Total #
Lines of Code

fkey-0.1.3 23.58 23.58 123
htpasswd-1.3.31 77.42 76.04 217
cdescent-0.0.1 45.50 53.41 1011
sharutils-4.2.1 17.81 33.13 640

exim-4.41 17.10 17.34 5055
Total 23.92 25.86 7046

Table 5.10: Code coverage for linux binaries
(Symb)

cases per frontier node in this experiment.

Although the code coverage varies depending on the applications and the configura-
tion, we can observe that symbolic executor performs better in overall. Interesting to note
here is the types of the target programs that hybrid fuzzer performs better such as base-
name, mktemp, and readlink, where the symbolic execution does not terminate within 60
minutes with the given configuration. It shows that hybrid fuzzer can be effective with the
targets that have characteristics of yielding slow symbolic execution. Since the programs
in coreutils are rather small in size and simple, the symbolic executor performs quite well
even in 5 minutes. However, with more complicated or larger programs as listed in Ta-
ble 5.10, the hybrid fuzzer discovers more code than the symbolic executor does in first 5
minutes.

Again, given enough time and resource, traditional symbolic executor will outperform
the current hybrid fuzzer due to an inability to handle non-linear predicates. This can,
however, be improved by integrating the constraint solver to the system which we discuss
in Chapter 6.

5.4 Observation

In this section, we present some statistics on different configurations such as the number of
generated random test cases and the time restriction in symbolic execution phase. Also, we
construct and explain graphs that show the change in the code coverage over time as well

42

as the number of test case generated. The results highlight the speed and the effectiveness
of the hybrid fuzzing technique compared to traditional ones.

Code coverage vs. number of generated inputs Part of the strength in our hybrid
fuzzing technique comes from its randomness. Leveraging the flexibility in the input space
by capturing the precise range for each input byte enables us to achieve higher probability
to reach the code paths that Symbolic Execution phase has not explored in a given
time. Therefore, in this experiment, we expect to see that the more random path-preserving
test cases we generate, the higher code coverage we will reach especially when there are
not much time to explore all the paths.

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 1 10 100 200 500
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C
o
v
er

ag
e

(L
o
C

) C
o
v
erag

e (%
)

Test Cases

Figure 5.2: # Test Cases vs. Code Coverage

We measured the code coverage over different number of test cases generated. Specif-
ically, we restricted the execution time to 1 minute and created the following number of
test cases: 1, 10, 100, 200, and 500 for 6 selected applications based on their size. Specifi-
cally, we chose printenv, mktemp, ls, who, htpasswd-1.3.31, and cdescent-0.0.1. As shown
in Figure 5.2, the total code coverage increases as more test cases are generated. This

43

confirms our belief that the randomness (introduced by generating many path-preserving
uniformly random test cases) indeed helps augmenting the code coverage.

Code coverage over time In this experiment, we have most of the configuration as same
as above, where we run Zzuf fuzzer to generate as many test cases as possible by randomly
mutating the given input, allow Mayhem symbolic executor to explore as many paths as
possible to generate one input per unique path, and finally run Hybrid fuzzer to explore
and generate 200 guided random inputs per path, all within the given time period. Then,
we execute the target programs with test cases that are generated by each technique to
measure the code coverage. Note that we have randomly chosen the values for the bytes
that are associated with non-linear constraints (unless there were another linear constraint
that restricts the range of them), introducing to some non-path-preserving test cases.

 0

 500

 1000

 1500

 2000

 2500

 3000

0 0.25 0.5 1 2 3 5 10 20 30 40
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C
o
v
er

ag
e

(L
o
C

) C
o
v
erag

e (%
)

Time (Minutes)

Hybrid Fuzzer
Mutational Fuzzer

Symbolic Executor

Figure 5.3: Time vs. Coverage for coreutils + other Linux utilities (20 total)

The graph in Figure 5.3 confirms the traits of each technique as we expected. Code
coverage from fuzzing spikes up really high in first 30 seconds, but quickly saturates on-
ward such that it barely increases for the rest of the period. Both symbolic execution and
hybrid fuzzer increase the code coverage slowly in the beginning and eventually achieve

44

higher coverage than mutational fuzzer’s. When the permitted time is relatively short (20
to 90 seconds in Figure 5.3), the hybrid fuzzer acquires about 25% higher code coverage
compared to Mayhem symbolic executor. This time frame, also marked by the region be-
tween three curves below the hybrid curve, is when the hybrid fuzzer outperforms other
methods. After couple minutes, the symbolic executor catches up and discovers more
paths than the hybrid fuzzer. The code coverage for both symbolic executor and hybrid
fuzzer saturates soon after or finds more distinct paths very slowly depending on the target
application and the corresponding configuration.

Theoretically, the hybrid fuzzer should take the lead from the start until the symbolic
executor takes over. However, we observe that the symbolic executor actually performs
better in the first 15 seconds or so. This is because of the non-linear predicates that the
system face in the beginning of Symbolic Execution phase. When the symbolic
bytes are not constrained too much in the beginning of the execution, non-linearity of the
predicates lead the hybrid fuzzer to generate merely random test cases rather than guided
ones, whereas the symbolic executor invokes the constraint solver which guarantees the
execution of the paths that it has found so far. We present the distribution of the linearity of
the path predicates we encounter for mktemp program in Figure 5.4. As the figure shows,
few non-linear predicates (marked as red) appear in the beginning of the path predicates
and the linear predicates (marked as gray) follow for the remaining part of the path. This
means that we are blocked early with non-linear constraints that we do not handle currently
and the system act as a random input generator more or less. That is why we see the code
coverage by the hybrid fuzzer overtakes one by the symbolic execution after 20 seconds
in Figure 5.3. If we handle the non-linear constraints that are directly followed by the
first linear constraint, we can achieve high path transformability close to the individual
predicate transformability as shown in Table 5.1, which will significantly increase the
code coverage by guaranteeing each path more precisely.

Figure 5.4: Non-linear vs. Linear Predicates in mktemp

45

Also, with the same reason, the hybrid fuzzer does not reach the code coverage of
the symbolic executor. Some predicates in the path predicates are very constrained, non-
linear and complex, which the current system cannot handle only with PPL abstraction. It
would be an interesting and necessary future work to extend the current design to integrate
the constraint solver for non-linear predicates and observe how it performs in discovering
code. Our hypothesis is that the extended system will provide a lot faster code discovery
with less resource (e.g. less constraint solver invocation).

There are some cases that the hybrid fuzzer dominates both the mutational fuzzer and
the symbolic executor from the beginning (at least until the symbolic executor takes over),
such as htpasswd-1.3.31 shown in Figure 5.5. With this application, we see high path
transformability and simple formulas (generally plain equality of a byte), allowing the
hybrid fuzzer to perform extremely well from the beginning. It is clear that the region
where the users can get benefits from our system over other techniques has significantly
larger in this example.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.25 0.5 1 2 3 5 10 20 30 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

C
o
v
er

ag
e

(L
o
C

) C
o
v
erag

e (%
)

Time (Minutes)

Hybrid Fuzzer
Mutational Fuzzer

Symbolic Executor

Figure 5.5: Time vs. Coverage for htpasswd-1.3.31

46

Chapter 6

Discussion

In this chapter, we discuss possible limitations and improvements in our hybrid fuzzing
system. We describe known issues and explain how each component can be improved and
optimized in order to make a more robust and effective fuzzing system. We also discuss
about various configurations that we were not able to experiment and their implications
towards our system. Lastly, we talk about future works that can be built upon the hybrid
system.

6.1 Discussion

6.1.1 Limitations

There are few limitations that our hybrid fuzzing system has due to either the underlying
design of the system. We discuss the limitations we briefly mentioned in earlier chapters
and suggest possible solutions.

Non-linear formulas. Hybrid fuzzer is solely using an abstraction of Z-Polytope, which
limits the scope to linear constraints. Thus, if there exist non-linear formulas in the path
predicates, the system cannot extract possible ranges of the values for each symbolic byte
precisely. This challenge can be overcome by invoking the theorem prover to reason about
the possible values or relationships with some performance degradation. However, as
we observed in Chapter 5, there are very few non-linear formulas we encounter in usual
programs.

47

Another method to solve the problem of non-linearity is to use heuristics. When we
find a non-linear formula, we can try to extract constants from it and quickly perform
few satisfiability tests for each path critical variable to reason about possible range of
the values. For instance, given non-linear formula symb 0 & 0xF0 ≤ 0x56, we can
extract the constants 0xF0 and 0x56 to test few values that are less than, greater than,
or equal to these constants satisfy the formula. We can also implement heuristics for
specific non-linear operations that the behavior is well-defined and easy to over-/under-
approximate, such as and. For the formula in above example, we can notice that the
operation is essentially masking the top 4 bits and thus we can apply the masking to the
right-hand-side (i.e. 0x56) and obtain refined (and linear) formula, symb 0 ≤ 0x50.

Multiple disjoint ranges. If we use the powerset of the polytopes as the current system
does, we can guarantee the correctness when generating inputs. As we discussed in previ-
ous chapters multiple times, however, it is quite difficult to represent the powerset of the
polytopes efficiently. Since the disjoint ranges introduce disjunctive relations, the amount
of the constraint systems quickly becomes large making it infeasible to compute and verify
the random points. We have discussed a possible solution, which is implemented in the
current hybrid fuzzer, to handle two disjoint regions (i.e. one gap) through refining the
constraints by rebasing them and compensate later.

We can make the computation efficient either by over-approximating to include gaps in
between multiple disjoint ranges to pretend we have a single range, or by under-approximating
to select one of the ranges to be only range. Note that the over-approximation does not
guarantee the correctness anymore, whereas the under-approximation does. However, the
first option may be more effective in increasing the code coverage when the ranges are
scattered and large in size. With enough random inputs generated, losing some correctness
doesn’t hurt too much since the worst case in our setting is random blackbox fuzzing.

6.1.2 Improvements

The following improvements will not only advance the effectiveness of the hybrid fuzzer,
but also boost the speed of it. These are the possible trivial extensions that can be added
to the current system to provide better results.

Transformation rules. In Input Generation phase of the system, we implement
the transformation rules for converting path predicates (which is in BIL) to PPL linear
expressions. Some of these rules can be generalized in order to handle more general ex-

48

pressions. Also, the current implementation does not cover nested expressions, which can
be extended by recursively transforming them into linear expressions. Non-linear formu-
las derived from the optimized code such as strlen or strcmp can be handled by heuristic
rules, since they usually generate specific pattern of the bit operations. In fact, these rou-
tines can be transformed to naı̈ve loop operations looking for a null byte or checking if the
characters are the same.

Input source. When test cases are generated, we only handle either command line argu-
ments or files that are read in by the target programs. Although these are the most common
input sources that are fuzzed upon, we can easily support other input sources such as net-
work sockets or stdin since Mayhem already support symbolic input introduction on
these sources. Extending this feature enables fuzzing on network daemon services as well
as interactive applications.

Pipelining. As mentioned earlier, all phases in the hybrid fuzzing system can be pipelined
to yield better performance. This means that when the executors in Symbolic Execution
phase terminate (due to hitting the end of the path), their path predicates can directly passed
to Input Generation phase while other executors are still discovering paths. Then,
when there are test cases generated, Guided Fuzzing phase can start feeding these
test cases to monitor for abnormal behaviors. Current implementation is sequential in that
each phase is blocked till the previous phase is finished, and thus hybrid fuzzing can be
accelerated when the tasks are pipelined.

6.2 Future Work

In this section, we discuss the future works that can significantly improve our hybrid fuzzer
and allow it to become more practical.

Dynamic Symbolic Execution Configuration. One of the reasons that our symbolic
executor cannot reach all possible code paths in the target programs is due to the fixed
configuration. By fixed configuration, we mean the configuration that defines symbolic
input source and the length cannot be changed once the symbolic execution has started.
This is a reasonable design choice to avoid any confusion and provide a deterministic path
discovery. However, if the symbolic executor can automatically reason about the length

49

of the symbolic bytes for certain input sources that is needed to exercise more code paths,
we can significantly increase the breadth of the search.

Constraint Solver Integration. Although hybrid fuzzer can quickly create path-preserving
random test cases, it is not able to handle non-linear predicates, which is critical since
many paths (82%) contain non-linear predicates thus generated test cases do not guarantee
the path execution. In order to resolve this issue, the hybrid fuzzer can invoke the con-
straint solver when it finds predicates that either it cannot handle or is non-linear. When
we query the solver, we can also embed the current linear predicates in order to preserve
the satisfiability when the random value is freely chosen from the possible input space
described by these linear predicates. This way, we can precisely decide the values for the
path critical symbolic bytes that are associated with non-linear constraints. This integra-
tion certainly introduces some overhead, but note that the hybrid fuzzer still significantly
(75%) reduces the number of calls to the constraint solvers compared to traditional meth-
ods.

Adaptive Rejection Sampling. It is true that there can be a lot of wasted space in be-
tween the boundaries of the polytope and the hypercube, in case we have extreme dis-
tribution on the possible values for the input. By using adaptive rejection sampling, we
can model the instrumental distribution using a set of piecewise exponential distributions
rather than a single distribution and refine it as we perform the acceptance-rejection test-
ing. This approach allows the hybrid fuzzer to keep reducing the space that will likely get
rejected, cutting down the hypercube. This may reduce the number of rejections during
the selection of the random points, but it comes with the cost. Point evaluation of log
density is quite expensive, so in case there are not much gap between the hypercube and
the polytope, it is usually more efficient to perform a normal rejection sampling.

50

Chapter 7

Related Work

In this chapter, we describe some previous works that are closely related to our research.
We also compare and contrast our work with the related works to show possible improve-
ments and extension to our system.

In the paper, A Smart Fuzzer for x86 Exectuables [29], Lanzi et al. introduce a fuzzing
framework for x86 binary programs that improves the effectiveness of fuzzing compared
to traditional random blackbox fuzzing. This smart fuzzer incorporates results from both
static analysis and dynamic analysis to refine the input space for generating test cases.
Instead of randomly choosing the values for the test case, the smart fuzzer tries to reason
about the possible input space by statically analyze the binary, then monitors each execu-
tion to refine the input to lead the execution path to selected corner cases using constraint
solver. However, this work only describes the hypothesis along with the possible design,
but does not provide any implementation or evaluation of their work.

The above work is closely related to Static Detection of Vulnerabilities in x86 Executa-
bles [12], where the authors aim to identify security vulnerabilities in the binary programs
by combining static analysis and symbolic execution. This approach is closer to traditional
formal symbolic execution method, except they have added some heuristics (such as loop
and recursion termination) to make the symbolic execution more practical against the real-
world programs. Thus, the framework still requires to invoke constraint solvers to provide
precise path-sensitive and context-sensitive analysis. Our hybrid fuzzer is different from
this in that we aim to increase the code coverage while significantly reducing the number
of calls to the constraint solvers, which essentially scales to the number of the discovered
paths.

SAGE [21] is a hybrid fuzzer that has been developed and being continuously re-

51

searched in Microsoft Research. In this work, Godefroid et al. provide a way to perform a
guided execution by concolically executing the program and generate new inputs that will
lead to different execution paths by negating and solving the path predicates to increase
the code coverage. They describe a new search algorithm, called generational search, that
aims to address some of the known limitations of traditional symbolic execution such as
path explosion and imprecision. This system is similar in that the goal is to maximize the
code coverage, but the order of the phases is the opposite of our hybrid fuzzing system.
Specifically, the generational search algorithm first uses concrete inputs to dive (deep)
into the code, then generates test cases by flipping the conditions from the end of the path
predicate chain (which is repeated, possibly until all of the code has been covered). On the
other hand, our hybrid fuzzer uses symbolic execution to spread in breadth first followed
by random testing for the depth. Most critical distinction between two systems is the fact
that our hybrid fuzzer does not require the solver for linear constraints, whereas SAGE
needs to call the solver every time it needs to generate inputs for different paths.

Path-oriented random testing [23] is the closest related work of our research. The re-
searchers of this work also realized that blind random testing does not perform well in
case of complex constraints are present in the target program. In their work, they also try
to deduce the over-approximation of the solutions of a set of constraints by performing
constraint propagation. Our hybrid fuzzing system differs from this work in that we sym-
bolically execute the program only in the beginning to spread out and transit into random
testing from each frontier node such that we can achieve both the scalability (since random
testing is fast) and the high code coverage (unique path guarantees along with random val-
ues). Also, in this related work, they simply ignore the gap problem where it can introduce
false-positives in generating path-preserving test cases (i.e. it is prone to generate inputs
that will not necessarily go down the path it is guaranteed by the system).

Finally, TaintScope [50] is a checksum-aware directed fuzzer that involves symbolic
execution and taint analysis to automatically detect software vulnerabilities. While this
work does not focus on increasing the code coverage itself, this can be a useful extension
to the current system to be more practical fuzzer. In their research, Wang et al. aimed to
solve one of the biggest limitations of traditional blackbox fuzzers: checksums. When the
input is associated with checksum (somewhere in the input), most of the fuzzing runs will
fail quickly without knowledge of the correct checksum due to the checksum verification
routine in the target program. In this case, generating many test cases is far less effec-
tive since almost all of the test cases will not exercise more interesting part of the code.
TaintScope addresses this issue by automatically identifying the verification routine, by-
passing it when testing, and finally computes the correct checksum when needed using
constraint solver.

52

Chapter 8

Conclusion

In our research, we have shown the benefits of hybrid fuzz testing technique in increasing
the code coverage with relatively cheap overhead. Hybrid fuzzer provides an efficient way
to generate provably random test cases that will guarantee the execution of the unique
paths that they are generated from given that all predicates in a path predicate are linear.
We also showed that the majority of the predicates is usually simple and linear.

We show that we can reduce the number of invocation to the constraint solvers at least
75% by solving linear predicates via polytope abstraction, and thus allowing more efficient
test case generation. In case of some non-linear predicates, we adopt some heuristics
to recognize common optimizations in order to convert these predicates to PPL linear
expressions. We also discussed how non-linearity can be overcome by minimally invoking
the constraint solver, which is still far less calls – due to such low number of non-linear
predicates – compared to fully constraint solver dependent systems.

From the experiments we confirmed that random fuzzing is quite good at achieving
high code coverage in the beginning of the testing but gets stuck soon after, whereas sym-
bolic execution starts slowly but eventually discovers a lot more code than fuzzing. We
also have shown that hybrid fuzzer lies on the middle as we hypothesized, allowing us to
gain high code coverage in relatively short time. We only showed the results for fairly
small programs, but as the size of the application becomes larger, we believe the hybrid
fuzzing technique will be more effective: Fuzzing will not reason about complicated in-
put constraints and the symbolic execution will take longer time to explore and query the
constraint solvers for input generation.

Overall, the techniques we have proposed and developed in this thesis show that the
efficient generation of effective inputs is possible. This can not only be used as a fuzzing

53

system itself, but also extended to existing mechanisms to improve the performance. We
learned that alternating the order of the phases such that random fuzzing is done first
then followed by symbolic execution can be an interesting configuration possibility, since
fuzzing is extremely fast at finding some initial code paths in the beginning and symbolic
execution can leverage from each path that fuzzer already has found.

54

Appendix A

Formula Simplification
1 let change = ref false
2 let state_changed() = change := true
3 let unset_state() = change := false
4
5 let rec simplifications eval e =
6 let xor_self = function
7 | BinOp(XOR, e1, e2) when e1 === e2 ->
8 state_changed();
9 Int(bi0, get_type e1)

10 | e -> e
11 in
12
13 let less_than_eq = function
14 | BinOp(OR, BinOp(LT, e1, e2), BinOp(EQ, Int(i,_), BinOp(MINUS, e1’, e2’)))
15 when e1 === e1’ && e2 === e2’ && i ==% bi0 ->
16 state_changed();
17 BinOp(LE, e1, e2)
18 | BinOp(OR, BinOp(LT, e1, e2), BinOp(EQ, e1’, e2’))
19 when e1 === e1’ && e2 === e2’ ->
20 state_changed();
21 BinOp(LE, e1, e2)
22 | BinOp(XOR,Cast(CAST_HIGH,Reg(1),BinOp(MINUS,e1,e2)),Cast(CAST_HIGH,Reg(1),BinOp(AND,BinOp(XOR,e3,e4),BinOp(XOR,

e5,BinOp(MINUS,e6,e7)))))
23 when e1 === e3 && e2 === e4 && e1 === e5 && e1 === e6 && e2 === e7 ->
24 state_changed();
25 BinOp(SLT, e1, e2)
26 | BinOp(OR, BinOp(EQ, e1, e2), BinOp(XOR,Cast(CAST_HIGH,Reg(1),BinOp(MINUS,e3,e4)),Cast(CAST_HIGH,Reg(1),BinOp(

AND,BinOp(XOR,e5,e6),BinOp(XOR,e7,BinOp(MINUS,e8,e9))))))
27 when e1 === e3 && e2 === e4 && e1 === e5 && e2 === e6 && e1 === e7 && e1 === e8 && e2 === e9 ->
28 state_changed();
29 BinOp(SLE, e1, e2)
30 | e -> e
31 in
32
33 let equal_to_val = function
34 | BinOp(EQ, Int(i,_), BinOp(MINUS, e1, e2)) when i ==% bi0 ->
35 state_changed();
36 BinOp(EQ, e1, e2)
37 | BinOp(AND, UnOp(NOT, BinOp(EQ, e0, e1)), BinOp(EQ, e2, e3)) when e1 === e2 ->
38 state_changed();
39 BinOp(EQ, e1, e3)
40 | e -> e
41 in
42
43 let plus_zero = function
44 | BinOp(PLUS, e1, Int(i,_)) when i ==% bi0 ->
45 state_changed();
46 e1
47 | e -> e
48 in
49
50 let pad_zero = function
51 | Concat(Int(i1,Reg(8)),Concat(Int(i2,Reg(8)),Concat(Int(i3,Reg(8)),e)))
52 when i1 ==% bi0 && i2 ==% bi0 && i3 ==% bi0 ->
53 state_changed();
54 Cast(CAST_UNSIGNED, Reg(32), e);

55

55 | e -> e
56 in
57
58 let is_zero = function
59 | BinOp(EQ, Int(i1,_), Cast(CAST_LOW, Reg(8), Cast(CAST_UNSIGNED, Reg(32), UnOp(NOT, BinOp(EQ, e1, Int(i2,t2)))))

)
60 when i1 ==% bi0 && i2 ==% bi0 ->
61 state_changed();
62 BinOp(EQ, e1, Int(i2,t2))
63 | e -> e
64 in
65
66 let and_true = function
67 | BinOp(AND, e1, e2) when e1 === exp_true ->
68 state_changed();
69 e2
70 | BinOp(AND, e1, e2) when e2 === exp_true ->
71 state_changed();
72 e1
73 | e -> e
74 in
75 let vis = object(self)
76 inherit Ast_visitor.nop
77 method visit_exp e =
78 let e =
79 e
80 |> xor_self
81 |> less_than_eq
82 |> equal_to_val
83 |> plus_zero
84 |> pad_zero
85 |> is_zero
86 |> and_true
87 in
88 ‘ChangeToAndDoChildren e
89 end
90 in
91 Ast_visitor.exp_accept vis e
92
93 let rec simplify eval e =
94 unset_state();
95 let e’ = simplifications eval (eval e) in
96 if(e’ === e) then e’ else simplify eval e’

Listing A.1: Formula Simplification Code in OCaml

56

Appendix B

strlen.c
1 /* Copyright (C) 1991, 1993, 1997, 2000, 2003 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Torbjorn Granlund (tege@sics.se),
4 with help from Dan Sahlin (dan@sics.se);
5 commentary by Jim Blandy (jimb@ai.mit.edu).
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either

10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
21
22 #include <string.h>
23 #include <stdlib.h>
24
25 #undef strlen
26
27 /* Return the length of the null-terminated string STR. Scan for
28 the null terminator quickly by testing four bytes at a time. */
29 size_t
30 strlen (str)
31 const char *str;
32 {
33 const char *char_ptr;
34 const unsigned long int *longword_ptr;
35 unsigned long int longword, magic_bits, himagic, lomagic;
36
37 /* Handle the first few characters by reading one character at a time.
38 Do this until CHAR_PTR is aligned on a longword boundary. */
39 for (char_ptr = str; ((unsigned long int) char_ptr
40 & (sizeof (longword) - 1)) != 0;
41 ++char_ptr)
42 if (*char_ptr == ’\0’)
43 return char_ptr - str;
44
45 /* All these elucidatory comments refer to 4-byte longwords,
46 but the theory applies equally well to 8-byte longwords. */
47
48 longword_ptr = (unsigned long int *) char_ptr;
49
50 /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
51 the "holes." Note that there is a hole just to the left of
52 each byte, with an extra at the end:
53
54 bits: 01111110 11111110 11111110 11111111
55 bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
56

57

57 The 1-bits make sure that carries propagate to the next 0-bit.
58 The 0-bits provide holes for carries to fall into. */
59 magic_bits = 0x7efefeffL;
60 himagic = 0x80808080L;
61 lomagic = 0x01010101L;
62 if (sizeof (longword) > 4)
63 {
64 /* 64-bit version of the magic. */
65 /* Do the shift in two steps to avoid a warning if long has 32 bits. */
66 magic_bits = ((0x7efefefeL << 16) << 16) | 0xfefefeffL;
67 himagic = ((himagic << 16) << 16) | himagic;
68 lomagic = ((lomagic << 16) << 16) | lomagic;
69 }
70 if (sizeof (longword) > 8)
71 abort ();
72
73 /* Instead of the traditional loop which tests each character,
74 we will test a longword at a time. The tricky part is testing
75 if *any of the four* bytes in the longword in question are zero. */
76 for (;;)
77 {
78 /* We tentatively exit the loop if adding MAGIC_BITS to
79 LONGWORD fails to change any of the hole bits of LONGWORD.
80
81 1) Is this safe? Will it catch all the zero bytes?
82 Suppose there is a byte with all zeros. Any carry bits
83 propagating from its left will fall into the hole at its
84 least significant bit and stop. Since there will be no
85 carry from its most significant bit, the LSB of the
86 byte to the left will be unchanged, and the zero will be
87 detected.
88
89 2) Is this worthwhile? Will it ignore everything except
90 zero bytes? Suppose every byte of LONGWORD has a bit set
91 somewhere. There will be a carry into bit 8. If bit 8
92 is set, this will carry into bit 16. If bit 8 is clear,
93 one of bits 9-15 must be set, so there will be a carry
94 into bit 16. Similarly, there will be a carry into bit
95 24. If one of bits 24-30 is set, there will be a carry
96 into bit 31, so all of the hole bits will be changed.
97
98 The one misfire occurs when bits 24-30 are clear and bit
99 31 is set; in this case, the hole at bit 31 is not

100 changed. If we had access to the processor carry flag,
101 we could close this loophole by putting the fourth hole
102 at bit 32!
103
104 So it ignores everything except 128’s, when they’re aligned
105 properly. */
106
107 longword = *longword_ptr++;
108
109 if (
110 #if 0
111 /* Add MAGIC_BITS to LONGWORD. */
112 (((longword + magic_bits)
113
114 /* Set those bits that were unchanged by the addition. */
115 ˆ ˜longword)
116
117 /* Look at only the hole bits. If any of the hole bits
118 are unchanged, most likely one of the bytes was a
119 zero. */
120 & ˜magic_bits)
121 #else
122 ((longword - lomagic) & himagic)
123 #endif
124 != 0)
125 {
126 /* Which of the bytes was the zero? If none of them were, it was
127 a misfire; continue the search. */
128
129 const char *cp = (const char *) (longword_ptr - 1);
130
131 if (cp[0] == 0)
132 return cp - str;
133 if (cp[1] == 0)
134 return cp - str + 1;

58

135 if (cp[2] == 0)
136 return cp - str + 2;
137 if (cp[3] == 0)
138 return cp - str + 3;
139 if (sizeof (longword) > 4)
140 {
141 if (cp[4] == 0)
142 return cp - str + 4;
143 if (cp[5] == 0)
144 return cp - str + 5;
145 if (cp[6] == 0)
146 return cp - str + 6;
147 if (cp[7] == 0)
148 return cp - str + 7;
149 }
150 }
151 }
152 }
153 libc_hidden_builtin_def (strlen);

Listing B.1: strlen implementation in glibc

59

Appendix C

Synthetic Programs for Experiments
1 #include <stdio.h>
2
3 int main(int argc, char* argv[])
4 {
5 unsigned char *input = argv[1]; // unsigned byte
6 char *input2 = argv[2]; // signed byte
7
8 if(input[2] >= 20)
9 {

10 if(input2[0] <= -80)
11 {
12 printf("PATH 1\n");
13 return 0;
14 }
15 printf("PATH 2\n");
16 return 0;
17 }
18 printf("PATH 3\n");
19
20 return 0;
21 }

Listing C.1: simple.c code

1 #include <fcntl.h>
2 #include <stdio.h>
3 #include <string.h>
4 #include <stdlib.h>
5
6 int main(int argc, char* argv[])
7 {
8 int fd;
9 char buf[8];

10 size_t count;
11
12 fd = open("readme", O_RDONLY);
13 if(fd == -1) {
14 perror("open");
15 exit(-1);
16 }
17
18 count = read(fd, buf, 8);
19 if(count == -1) {
20 perror("read");
21 exit(-1);
22 }
23
24 if(buf[0] != ’b’)
25 {
26 if(buf[2] < ’h’)
27 {
28 printf("BUG!\n");
29 close(fd);
30 return 0;

60

31 }
32 printf("BUG2!\n");
33 close(fd);
34 return 0;
35 }
36 printf("BUG3!\n");
37 close(fd);
38
39 return 0;
40 }

Listing C.2: simple file.c code

1 #include <stdio.h>
2 #include <fcntl.h>
3
4 int main(int argc, char** argv)
5 {
6 int fd = open("readme", O_RDONLY);
7 int input;
8 read(fd, &input, sizeof(input));
9 if(input >= -0x41414141)

10 {
11 if(input < -0x10101010)
12 {
13 printf("BUG 1\n");
14 return 0;
15 }
16 printf("BUG 2\n");
17 return 0;
18 }
19 printf("BUG 3\n");
20 return 0;
21 }

Listing C.3: int cmp.c code

61

Bibliography

[1] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. Aeg:
Automatic exploit generation. In Network and Distributed System Security Sympo-
sium, pages 283–300, February 2011. 2

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: To-
ward a complete set of numerical abstractions for the analysis and verification of
hardware and software systems. Quaderno 457, Dipartimento di Matematica, Uni-
versità di Parma, Italy, 2006. URL http://bugseng.com/products/ppl/
documentation/BagnaraHZ06TR.pdf. 4.2

[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The parma polyhedra li-
brary: Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Sci. Comput. Program., 72(1-2):3–21,
June 2008. ISSN 0167-6423. doi: 10.1016/j.scico.2007.08.001. URL http:
//dx.doi.org/10.1016/j.scico.2007.08.001. 3.2

[4] blexim. Basic integer overflows. (January 2003), 2003. URL http:
//www.phrack.org/archives/60/p60_0x0a_Basic%20Integer%
20Overflows_by_blexim.txt. 2.1.1

[5] Derek L. Bruening. Efficient, transparent and comprehensive runtime code manipu-
lation. Technical report, MIT, PhD Thesis, 2004. 3.2

[6] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. Bap:
a binary analysis platform. In Proceedings of the 23rd international confer-
ence on Computer aided verification, CAV’11, pages 463–469, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-22109-5. URL http://dl.acm.org/
citation.cfm?id=2032305.2032342. 2.1.2

[7] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. En-
gler. Exe: automatically generating inputs of death. In Proceedings of the 13th ACM

62

http://bugseng.com/products/ppl/documentation/BagnaraHZ06TR.pdf
http://bugseng.com/products/ppl/documentation/BagnaraHZ06TR.pdf
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://www.phrack.org/archives/60/p60_0x0a_Basic%20Integer%20Overflows_by_blexim.txt
http://www.phrack.org/archives/60/p60_0x0a_Basic%20Integer%20Overflows_by_blexim.txt
http://www.phrack.org/archives/60/p60_0x0a_Basic%20Integer%20Overflows_by_blexim.txt
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dl.acm.org/citation.cfm?id=2032305.2032342

conference on Computer and communications security, CCS ’06, pages 322–335,
New York, NY, USA, 2006. ACM. ISBN 1-59593-518-5. doi: 10.1145/1180405.
1180445. URL http://doi.acm.org/10.1145/1180405.1180445. 1.1,
2, 2.2.2

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings
of the 8th USENIX conference on Operating systems design and implementation,
OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1855741.1855756. 2.2.2

[9] Kun chan Lan, Alefiya Hussain, and Debojyoti Dutta. Effect of malicious traffic on
the network, 2003. 1.2

[10] Hong-Zu Chou, I-Hui Lin, Ching-Sung Yang, Kai-Hui Chang, and Sy-Yen Kuo.
Enhancing bug hunting using high-level symbolic simulation. In Proceedings of the
19th ACM Great Lakes symposium on VLSI, GLSVLSI ’09, pages 417–420, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-522-2. doi: 10.1145/1531542.
1531637. URL http://doi.acm.org/10.1145/1531542.1531637. 1.1

[11] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’78, pages 84–96, New
York, NY, USA, 1978. ACM. doi: 10.1145/512760.512770. URL http://doi.
acm.org/10.1145/512760.512770. 3.1

[12] Marco Cova, Viktoria Felmetsger, Greg Banks, and Giovanni Vigna. Static detection
of vulnerabilities in x86 executables. In Proceedings of the 22nd Annual Computer
Security Applications Conference, ACSAC ’06, pages 269–278, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 0-7695-2716-7. doi: 10.1109/ACSAC.
2006.50. URL http://dx.doi.org/10.1109/ACSAC.2006.50. 2.1.2, 7

[13] Dewey and Giffin. Static detection of c++ vtable escape vulnerabilities in binary
code. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, 5th February - 8th February 2011. The
Internet Society, 2012. 2.1.2

[14] M. Eddington. Peach fuzzing platform. (June 2007), 2007. URL http://
peachfuzzer.com/. 2.2.1

63

http://doi.acm.org/10.1145/1180405.1180445
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://doi.acm.org/10.1145/1531542.1531637
http://doi.acm.org/10.1145/512760.512770
http://doi.acm.org/10.1145/512760.512770
http://dx.doi.org/10.1109/ACSAC.2006.50
http://peachfuzzer.com/
http://peachfuzzer.com/

[15] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for java. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and implemen-
tation, PLDI ’02, pages 234–245, New York, NY, USA, 2002. ACM. ISBN 1-58113-
463-0. doi: 10.1145/512529.512558. URL http://doi.acm.org/10.1145/
512529.512558. 2

[16] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox fuzzing.
In Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 474–484, Washington, DC, USA, 2009. IEEE Computer Society. ISBN
978-1-4244-3453-4. doi: 10.1109/ICSE.2009.5070546. URL http://dx.doi.
org/10.1109/ICSE.2009.5070546. 2.2.1

[17] GNU GCC. Invoking gcov, 2010. URL http://gcc.gnu.org/onlinedocs/
gcc/Invoking-Gcov.html. 3.1

[18] Patrice Godefroid. Random testing for security: blackbox vs. whitebox fuzzing. In
Proceedings of the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2007), RT ’07, pages 1–1, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-881-7. doi: 10.1145/1292414.1292416. URL http://doi.acm.org/
10.1145/1292414.1292416. 2.2.1

[19] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’05, pages 213–223, New York, NY,
USA, 2005. ACM. ISBN 1-59593-056-6. doi: 10.1145/1065010.1065036. URL
http://doi.acm.org/10.1145/1065010.1065036. 2, 2.2.2

[20] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox
fuzzing. In Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, pages 206–215, New York, NY,
USA, 2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.1375607. URL
http://doi.acm.org/10.1145/1375581.1375607. 1.1, 2.2.1

[21] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox
fuzz testing. In NDSS, 2008. 7

[22] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, January 2012. ISSN 1542-7730. doi: 10.

64

http://doi.acm.org/10.1145/512529.512558
http://doi.acm.org/10.1145/512529.512558
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html
http://doi.acm.org/10.1145/1292414.1292416
http://doi.acm.org/10.1145/1292414.1292416
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1375581.1375607

1145/2090147.2094081. URL http://doi.acm.org/10.1145/2090147.
2094081. 1.1, 2.2.1, 2.2.2

[23] Arnaud Gotlieb and Matthieu Petit. Path-oriented random testing. In Proceedings of
the 1st international workshop on Random testing, RT ’06, pages 28–35, New York,
NY, USA, 2006. ACM. ISBN 1-59593-457-X. doi: 10.1145/1145735.1145740. URL
http://doi.acm.org/10.1145/1145735.1145740. 7

[24] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, first edition, 2003. ISBN 0-321-22862-6. 1.1

[25] David Hovemeyer and William Pugh. Finding bugs is easy. In Companion to the
19th annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, OOPSLA ’04, pages 132–136, New York, NY, USA,
2004. ACM. ISBN 1-58113-833-4. doi: 10.1145/1028664.1028717. URL http:
//doi.acm.org/10.1145/1028664.1028717. 2

[26] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):
385–394, July 1976. ISSN 0001-0782. doi: 10.1145/360248.360252. URL http:
//doi.acm.org/10.1145/360248.360252. 2.2.2

[27] Caca Labs. zzuf multi-purpose fuzzer. (January 2010), 2010. URL http://caca.
zoy.org/wiki/zzuf. 2.2.1, 3.2, 5.3

[28] Caca Labs. List of bugs found by zzuf. (January 2010), 2010. URL http://
caca.zoy.org/wiki/zzuf/bugs. 5.3

[29] Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, and Roberto Paleari. A smart
fuzzer for x86 executables. In Proceedings of the Third International Workshop on
Software Engineering for Secure Systems, SESS ’07, pages 7–, Washington, DC,
USA, 2007. IEEE Computer Society. ISBN 0-7695-2952-6. doi: 10.1109/SESS.
2007.1. URL http://dx.doi.org/10.1109/SESS.2007.1. 7

[30] Codenomicon Ltd. Defensics fuzzer. (January 2001), 2001. URL http://www.
codenomicon.com/defensics/. 2.2.1

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and im-
plementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM. ISBN

65

http://doi.acm.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/1145735.1145740
http://doi.acm.org/10.1145/1028664.1028717
http://doi.acm.org/10.1145/1028664.1028717
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf/bugs
http://caca.zoy.org/wiki/zzuf/bugs
http://dx.doi.org/10.1109/SESS.2007.1
http://www.codenomicon.com/defensics/
http://www.codenomicon.com/defensics/

1-59593-056-6. doi: 10.1145/1065010.1065034. URL http://doi.acm.org/
10.1145/1065010.1065034. 1.1, 3.2

[32] Tilo M. Aslr smack & laugh reference seminar on advanced exploitation techniques.
(June 2005):1–21, 2008. URL http://netsec.cs.northwestern.edu/
media/readings/defeating_aslr.pdf. 2.1.1

[33] C. Miller. How smart is intelligent fuzzing - or - how stupid is dumb fuzzing? (June
2007), 2007. URL https://www.defcon.org/images/defcon-15/
dc15-presentations/dc-15-miller.pdf. 2.2.1

[34] Jelena Mirkovic, Sonia Fahmy, Peter Reiher, Roshan Thomas, Alefiya Hussain,
Steven Schwab, and Calvin Ko. P.: Measuring impact of dos attacks. In In: Pro-
ceedings of the DETER Community Workshop on Cyber Security Experimentation.
(2006). 1.2

[35] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In ACSAC, pages 421–430, 2007. 2.1.2

[36] Quinn Norton. Antisec hits private intel firm; millions of docs allegedly
lifted, 2011. URL http://www.wired.com/threatlevel/2011/12/
antisec-hits-private-intel-firm-million-of-docs-allegedly-lifted.
1.2

[37] T. Ormandy. fuzz. (June 2007), 2007. URL http://freecode.com/
projects/taviso-fuzz. 2.2.1

[38] Hass P. Advanced format string attacks. (June 2010), 2010. URL https:
//www.defcon.org/images/defcon-18/dc-18-presentations/
Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf. 2.1.1

[39] Daniel Quinlan and Thomas Panas. Source code and binary analysis of software
defects. In Proceedings of the 5th Annual Workshop on Cyber Security and Infor-
mation Intelligence Research: Cyber Security and Information Intelligence Chal-
lenges and Strategies, CSIIRW ’09, pages 40:1–40:4, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-518-5. doi: 10.1145/1558607.1558653. URL http:
//doi.acm.org/10.1145/1558607.1558653. 1.1

[40] Alexandre Rebert Sang Kil Cha, Thanassis Avgerinos and David Brumley. Unleash-
ing mayhem on binary code. In IEEE Symposium on Security and Privacy, May
2012. 2.2.2, 5.3

66

http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://netsec.cs.northwestern.edu/media/readings/defeating_aslr.pdf
http://netsec.cs.northwestern.edu/media/readings/defeating_aslr.pdf
https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-miller.pdf
https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-miller.pdf
http://www.wired.com/threatlevel/2011/12/antisec-hits-private-intel-firm-million-of-docs-allegedly-lifted
http://www.wired.com/threatlevel/2011/12/antisec-hits-private-intel-firm-million-of-docs-allegedly-lifted
http://freecode.com/projects/taviso-fuzz
http://freecode.com/projects/taviso-fuzz
https://www.defcon.org/images/defcon-18/dc-18-presentations/Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf
http://doi.acm.org/10.1145/1558607.1558653
http://doi.acm.org/10.1145/1558607.1558653

[41] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing en-
gine for c. In Proceedings of the 10th European software engineering confer-
ence held jointly with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, ESEC/FSE-13, pages 263–272, New York, NY,
USA, 2005. ACM. ISBN 1-59593-014-0. doi: 10.1145/1081706.1081750. URL
http://doi.acm.org/10.1145/1081706.1081750. 2, 2.2.2

[42] Guoqiang Shu, Yating Hsu, and David Lee. Detecting communication protocol se-
curity flaws by formal fuzz testing and machine learning. In Proceedings of the
28th IFIP WG 6.1 international conference on Formal Techniques for Networked
and Distributed Systems, FORTE ’08, pages 299–304, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 978-3-540-68854-9. doi: 10.1007/978-3-540-68855-6 19.
URL http://dx.doi.org/10.1007/978-3-540-68855-6_19. 2.2.1

[43] B. Sineath. Static binary analysis of recent smbv2 vulnerability. (October 2009),
2009. URL http://www.secureworks.com/research/threats/
windows-0day/. 2.1.2

[44] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
BitBlaze: A new approach to computer security via binary analysis. In Proceedings
of the 4th International Conference on Information Systems Security. Keynote invited
paper., Hyderabad, India, December 2008. 2.1.2

[45] Alexander Sotirov. Automatic vulnerability detection using static source code anal-
ysis. Technical report, 2005. 2.1.1

[46] I. Sprundel. Fuzzing: Breaking software in an automated fashion.
(December 2005), 2005. URL http://events.ccc.de/congress/2005/
fahrplan/attachments/582-paper_fuzzing.pdf. 2.2.1

[47] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnera-
bility Discovery. Addison-Wesley Professional, 2007. ISBN 0321446119. 4.1

[48] A. Takanen. Fuzzing: the past, the present and the future.
(June 2009), 2009. URL http://actes.sstic.org/SSTIC09/
Fuzzing-the_Past-the_Present_and_the_Future/
SSTIC09-article-A-Takanen-Fuzzing-the_Past-the_Present_
and_the_Future.pdf. 2.2.1

67

http://doi.acm.org/10.1145/1081706.1081750
http://dx.doi.org/10.1007/978-3-540-68855-6_19
http://www.secureworks.com/research/threats/windows-0day/
http://www.secureworks.com/research/threats/windows-0day/
http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://actes.sstic.org/SSTIC09/Fuzzing-the_Past-the_Present_and_the_Future/SSTIC09-article-A-Takanen-Fuzzing-the_Past-the_Present_and_the_Future.pdf
http://actes.sstic.org/SSTIC09/Fuzzing-the_Past-the_Present_and_the_Future/SSTIC09-article-A-Takanen-Fuzzing-the_Past-the_Present_and_the_Future.pdf
http://actes.sstic.org/SSTIC09/Fuzzing-the_Past-the_Present_and_the_Future/SSTIC09-article-A-Takanen-Fuzzing-the_Past-the_Present_and_the_Future.pdf
http://actes.sstic.org/SSTIC09/Fuzzing-the_Past-the_Present_and_the_Future/SSTIC09-article-A-Takanen-Fuzzing-the_Past-the_Present_and_the_Future.pdf

[49] L.A. Times. Sony pictures says lulzsec hacked 37,500 user accounts, not 1 million,
2011. URL http://www.webcitation.org/5zNXkePWU. 1.2

[50] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Checksum-aware fuzzing combined
with dynamic taint analysis and symbolic execution. ACM Trans. Inf. Syst. Secur., 14
(2):15:1–15:28, September 2011. ISSN 1094-9224. doi: 10.1145/2019599.2019600.
URL http://doi.acm.org/10.1145/2019599.2019600. 2.2.1, 7

68

http://www.webcitation.org/5zNXkePWU
http://doi.acm.org/10.1145/2019599.2019600

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Vulnerabilities and Bug Finding
	1.3 Thesis Outline

	2 Software Bug Finding Approaches
	2.1 Static Analysis
	2.1.1 Static Code Analysis
	2.1.2 Static Binary Analysis

	2.2 Dynamic Analysis
	2.2.1 Fuzz Testing
	2.2.2 Symbolic Execution

	3 Hybrid Fuzz Testing
	3.1 Overview
	3.2 Architecture and Design

	4 Efficient Input Generation
	4.1 Path Predicates
	4.2 Linear Inequalities and Z-Polytope
	4.3 Hypercube and Rejection Sampling
	4.3.1 Hypercube
	4.3.2 Rejection Sampling

	5 Evaluation
	5.1 Formula Transformation
	5.2 Input Generation
	5.3 Code Coverage
	5.4 Observation

	6 Discussion
	6.1 Discussion
	6.1.1 Limitations
	6.1.2 Improvements

	6.2 Future Work

	7 Related Work
	8 Conclusion
	A Formula Simplification
	B strlen.c
	C Synthetic Programs for Experiments
	Bibliography

