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Abstract

Matching is an important component of a logical framework. It is at the heart of many reasoning
tasks and is sufficient to support the operational semantic of well-moded logic programs. Match-
ing is poorly understood for logical frameworks such as CLF, designed to effectively capture the
specifications of parallel, concurrent and distributed systems. The witnesses of their computa-
tions, and therefore their term language, are concurrent traces. A concurrent trace is a sequence
of computations where independent steps can be permuted. We study the problems of matching
concurrent traces on large fragments of CLF. Specifically, we give a sound and complete algorithm
for matching traces with a single variable standing for an unknown subtrace. We also examine the
unification problem for some simple fragments of CLF and give an algorithm for solving unification
problems with with one variable standing for an unknown subtrace on each side of the equation.
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1 Introduction

Meta-logical frameworks are specialized formalisms designed to capture the meta-theory of formal
systems such as programming languages and logics. They allow expressing properties such as type
preservation, semantics-preserving compilation and cut-elimination, as well as their proofs. Meta-
logical frameworks form the very foundations that underlie systems such as Coq [14], Isabelle [33,
22], Agda [23], and Twelf [25], which can automate the verification that a proof is correct. The
form of reasoning that the current generation of meta-logical frameworks handles well operates
on inductively-defined derivation trees that obey a simple equational theory (often just equality
modulo α-equivalence). Typing and evaluation derivations for sequential programming languages
have this form; so do the derivations of many logics.

Reasoning about languages, such as the π-calculus [20] or Petri nets [24], that exhibit a parallel,
concurrent or distributed semantics, does not fit this pattern, however. Steps on parallel threads
can occur in any order without affecting the result of a computation, but communication and other
forms of concurrency introduce dependencies that force the order of some steps. This selective per-
mutability of steps poses a new challenge for the design of meta-logical frameworks for concurrent
systems. The resulting equational theory is more complex and algorithmically not as well under-
stood. Indeed, computation traces in these systems are often depicted as directed acyclic graphs,
because graphs are agnostic to the particular order in which independent computation steps are
executed while still capturing the causal dependencies between inputs and outputs [26].

Reasoning about such languages can be automated in two ways. One way is to encode the
equational theory of concurrent computations in a traditional logical framework. Honsell et al. [13]
did precisely this when developing a significant portion of the meta-theory of the π-calculus in Coq.
The main drawbacks of this approach are that it is extremely labor intensive and that applying it
to a new language often amounts to starting from scratch. The other way is to develop a logical
framework that internalizes the equational theory of concurrent computations. This is the approach
taken in CLF [31, 7], an extension of the LF type theory [12] with monads and constructs borrowed
from linear logic. CLF has supported the syntax and semantics of every concurrent language we
have attempted to encode in it: we could simulate the execution of concurrent programs written
in these languages in the accompanying Celf tool [29], obtaining proof-terms that, thanks to CLF’s
equational theory, express the corresponding computations in their full generality. We are now
in the process of extending Celf with support for reasoning about these concurrent computations.
This report presents an initial step in this direction.

A key functionality for any reasoning task on computations is to isolate steps and name subcom-
putations: the steps are immediately examined and the subcomputations are analyzed recursively
or co-recursively. Operationally, naming computations is realized through unification when sub-
computations of different origin are required to be equal, or matching when reasoning about one
given trace. Furthermore, matching is sufficient to define the operational semantics of well-moded
programs in a logical framework. This is advantageous because matching algorithms are often more
efficient and better behaved than unification procedures. This appears to be the case for CLF as
well.

In this report, we examine the matching problem for a succession languages of computational
traces of increasing expressive power, leading to a large sublanguage of CLF. We show that, for
the fragments considered, matching is decidable although highly non-deterministic. We define a
series of matching algorithms for the case where there is at most one logic variable standing for an
unknown trace, and prove their soundness and completeness.
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CLF( CLF@! CLFΠ CLFx

1-var matching Yes Yes Yes Yes
n-var matching Decidable Decidable Decidable Decidable
1-var unification Yes Yes No No
n-var unification No No No No

Table 1: Status of Matching and Unification in Fragments of CLF

We also survey the much harder unification problem for two simply-typed fragments of CLF.
For them, we adapt the corresponding matching algorithms to handle unification in the case of
equations with one logic variable standing for an unknown trace on each side.

1.1 Overview

To make our exposition easier to follow, we consider a series of subsystems of CLF of increasing
expressiveness. We analyze the matching problem for each for them. This way, the complexities
and design choices of the matching algorithm are presented incrementally.

Specifically, we consider the following four subsystems of CLF of increasing expressive power:

1. CLF( (Section 2): This is the fragment of CLF featuring purely linear traces and simple
types. Its expressive power is equivalent to that of place/transition Petri nets [24] or propo-
sitional multiset rewriting [8]. Its traces are bipartite directed acyclic graphs [35].

2. CLF@! (Section 3): This language extends CLF( with affine and persistent hypotheses. It
remains simply-typed.

3. CLFΠ (Section 4): This fragment of CLF extends CLF@! with dependent types. It can
represent many real-world specifications and is indeed as expressive as languages such as
GAMMA [2, 16] and colored Petri nets [15].

4. CLFx (Section 5): This language extends CLFΠ with embedded clauses. This enables it to
simulate directly constructs found in the π-calculus [20, 27] and other process algebras.

CLF extends this last system with standard constructs found in the type theories of LF [12, 25]
and its linear variant, LLF [5]. Unification, and therefore matching, are well-understood in LF and
LLF [30, 4, 19, 21], neither of which supports concurrent traces.

For each of the four systems examined in this report, we define a matching algorithm where there
is at most one logic variable standing for an unknown trace. We show how the matching algorithm
is extended to account for the new features provided by each subsystem. We also analyze the
general matching problem where there any number of logic variables. We show that this problem
is decidable, although highly non-deterministic: the number of solutions of a problem can be
exponential on the size of the trace. In the case of CLF( and CLF@!, we also consider the
unification problem, where there is at most one logic variable standing for an unknown trace on
each side of the equation (Sections 2.3 and 3.3, respectively).

Table 1 shows a summary of what problems have been solved for each system: 1-var matching
(resp. n-var matching) refers to the matching problem where there is at most one (resp. any number
of) logic variables standing for unknown trace on one side of an equation — the other side being
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ground. This report describes correct algorithms for 1-var matching but only notes that the problem
is decidable for n-var. Similarly, 1-var unification (resp. n-var unification) refers to the unification
problem where there is at most one (resp. any number of) logic variable standing for unknown
trace on each side of the equation. This report describes an algorithmic procedure to solve 1-var
unification in CLF( and CLF@!, but not in the other systems. We have not examined the general
unification problem with an arbitrary number of trace variables.

1.2 Organization

Sections 2, 3, 4 and 5 examine the matching problem for the sublanguages CLF(, CLF@!, CLFΠ

and CLFx, respectively. The first two also discuss unification. We review related work in the
literature in Section 6. We conclude and outline areas of future development in Section 7. Two
case studies that exhibit the kind of matching problems examined in this report are presented in
Appendix A.

2 CLF(: Linear Traces

In this section, we consider the matching problem for the purely linear sublanguage of CLF, denoted
CLF(. It includes only traces and linear functions (no affine nor intuitionistic functions) and simple
types. CLF( is expressive enough to represent place/transition Petri nets [7] and traditional
multiset rewriting [2, 16].

2.1 Language

Contexts A context is an ordered sequence of variable declarations of the form x:a, where a is a
base type:

Contexts: ∆ ::= · | ∆, x:a

Contexts support a non-deterministic splitting operation: a context ∆ splits into ∆1 and ∆2, written
judgmentally as ∆ = ∆1 ./ ∆2, if every declaration in ∆ appears in exactly one of the contexts ∆1

and ∆2. Formally, splitting is defined by the following rules:

· = · ./ ·
∆0 = ∆′1,∆

′′
1 ./ ∆2

∆0, x:a = ∆′1, x:a,∆′′1 ./ ∆2

∆0 = ∆1 ./ ∆′2,∆
′′
2

∆0, x:a = ∆1 ./ ∆′2, x:a,∆′′2

We will generally use it as a (non-deterministic) operation, writing ∆1 ./ ∆2 in a context position
in a rule. We will also use the same syntax to indicate the context obtained by merging ∆1 and
∆2. In this case, we assume that ∆1 and ∆2 declare distinct variables.

We write ∆1 ≈ ∆2 if ∆1 and ∆2 only differ in the order of their declarations. I.e., ∆1 ≈ ∆2 iff
∆1 = ∆2 ./ ·. This relations are used for the purposes of typing.

Traces and expressions The trace of a concurrent computation is a record of all the steps
performed together with any dependency among them. Each step uses certain resources modeled
here as context variables, possibly embedded within terms, and produces other resources, modeled
as a context with fresh variables. This notion of step is found in all forms of concurrency based on
state transitions, e.g., Petri nets [24, 15] and multiset rewriting [2, 3].
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Traces and the related notion of expressions are defined as follows in our language:

Traces: ε ::= � | ε1; ε2 | {∆}�c·∆′
Expressions: E ::= {let ε in ∆}

A trace is either empty (�), a composition of two traces (ε1; ε2), or an individual computation step
of the form {∆}�c·∆′, where c is a constant in a global signature Σ (defined below). We write δ
for a generic computational step {∆}�c·∆′. We call c the head of δ, written head(δ). A step of
the form {∆}�c·∆′ represents an atomic computation c that uses the variables in ∆′ and produces
the variables in ∆. In examples, we will often omit the type of the declarations in ∆ and ∆′ for
readability.

In a step δ = {∆′}�c·∆, the context ∆′ acts as a binder for the variables it declares. Its
scope is any trace that may follow δ. As with any binder, variables bound in this way are subject
to automatic α-renaming as long as no variable capture arises. These variables will need to be
managed with care in the matching algorithm.

An expression {let ε in ∆} is essentially a trace with delimited scope: no variable produced by
ε is visible outside it. These variables are all collected in the context ∆.

The global signature collects the constant declarations. Formally signatures are defined by the
following grammar:

Signatures: Σ ::= · | c:∆( {∆′}

Each constant is declared with a type of the form ∆( {∆′}, where ∆′ corresponds to the positive
types of CLF [28]. The scope of the declarations in ∆ and {∆′} is limited to the context itself. In
other words, the names of the declared variables are meaningless; the situation will be different for
the systems with dependent types presented in Sections 4 and 5.

Since we are assuming a fixed global signature, we will not mention it implicitly in the judgments
used in this report.

Typing The typing rules of CLF( are defined by the following judgments:

Traces: ∆ ` ε : ∆′

Expressions: ∆ ` E ⇐ {∆′}

In the second judgment, the form {∆′} is viewed as the type of the expression E. We call it a
monadic type.

The typing rules are by given in Figure 1. Viewing contexts as the states of a concurrent com-
putation, the typing rules for traces allow us to see a trace as the witness of a state transformation.
The empty trace does not change the state (rule tp(-empty). A step transforms a part of the state
(rule tp(-step); the step uses ∆1 and produces the ∆2 leaving the rest of the state, represented by
∆0, intact. Since variables declared in the type of constant c are meaningless, we can α-rename
the type to match the variables used in the step.

The typing rule for trace composition effectively composes the transformations given by each
trace (rule tp(-comp). Note that the monadic type of an expression does not leak out the variables
produced by the trace it embeds.
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Expressions:
∆1 ` ε : ∆2 ∆2 ≈ ∆′

∆1 ` {let ε in ∆′} ⇐ {∆′}
tp(-expr

Traces:

∆ ` � : ∆
tp(-empty

c:∆1 ( {∆2} ∈ Σ

∆0 ./ ∆1 ` {∆2}�c·∆1 : ∆0 ./ ∆2
tp(-step

∆0 ` ε1 : ∆1 ∆1 ` ε2 : ∆2

∆0 ` ε1; ε2 : ∆2
tp(-comp

Figure 1: Typing Rules of CLF(

Independence The input interface of a trace ε, denoted •ε, is the set of variables available for
use in ε, the free variables of ε. The output interface of ε, denoted ε•, is the set of variables available
for use to any computation that may follow ε. Together they form the interface of ε. They are
formally defined as follows:

•(�) = ∅ (�)• = ∅
•({∆′}�c·∆) = dom(∆) ({∆′}�c·∆)• = dom(∆′)

•(ε1; ε2) = •ε1 ∪ (•ε2 \ ε1•) (ε1; ε2)• = ε2• ∪ (ε1• \ •ε2)

where dom(∆) denotes the set of variables declared in ∆. Variables in a trace ε that do not belong
to either •ε or ε• are internal. Internal variables are subject to implicit α-renaming (with the usual
proviso that doing so does not identify distinct variables).

In CLF(, for any typable expression {let ε in ∆}, we have that ε• = dom(∆). In the extensions
of this language examined in later sections of this report, only the right-to-left inclusion will hold,
in general.

Two traces ε1 and ε2 are independent, denoted ε1 ‖ ε2, iff •ε1 ∩ ε2• = ∅ and •ε2 ∩ ε1• = ∅ [26].
Permuting a typable composition of independent traces is always typable (Lemma 2.1).

Trace equality Two traces are equal if there is an α-renaming of their internal variables so that
they both contain the same steps (although possibly in a different, dependency-preserving, order).
For example, trace ({x2}�c·x1; {y2}�c·y1) is equal to trace ({y2}�c·y1; {x2}�c·x1). Formally, trace
equality, written ≡, is defined as the closure of the relation defined by the following rules:

ε; � ≡ ε �; ε ≡ ε ε1; (ε2; ε3) ≡ (ε1; ε2); ε3

ε1 ‖ ε2
ε1; ε2 ≡ ε2; ε1

ε1 ≡ ε′1
ε1; ε2 ≡ ε′1; ε2

ε2 ≡ ε′2
ε1; ε2 ≡ ε1; ε′2

The first two rules state that the empty trace is a unit element, while the third rule states that
composition is associative. This effectively endows traces with a monoidal structure. The fourth rule
states that independent traces can be permuted. Finally, the last two rules define the compatible
closure of the equality relation: it is a congruence.
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Expression equality In an expression {let ε in ∆}, the scope of the variables produced by ε
extends to the context ∆ (and indeed stops there). It is therefore natural to allow the output
variables to α-vary in unison with the variables declared in ∆ when defining α-equivalence over
expressions. Specifically, two expressions {let ε1 in ∆1} and {let ε2 in ∆2} are α-equivalent if the
internal and output variables of the two traces ε1 and ε2 can be renamed (without distinct variables
within each trace being identified) as to become syntactically equal and the same output renaming
makes the two contexts syntactically equal as well. For example,

{let

(
{z}�c;
{y}�c′ z

)
in y} and {let

(
{x}�c;
{z}�c′ x

)
in z}

are α-equivalent, although the traces in them are not (since their output interfaces differ). As
usual, α-equivalence yields the derived notion of α-renaming, which we will exploit to implicitly
rewrite an expression {let ε in ∆} by altering synchronously the output interface ε• of ε and the
variables dom(∆) declared by ∆ whenever convenient.

Exploiting this implicit α-renaming of bound variables in expressions, we can define expression
equality simply as

ε1 ≡ ε2 ∆1 ≡ ∆2

{let ε1 in ∆1} ≡ {let ε2 in ∆2}

For example, the following relation hold between traces(
{x}�c;
{y}�c′·x

)
≡
(
{z}�c;
{y}�c′·z

)
6≡
(
{x}�c;
{z}�c′·x

)
The last trace is not equal to the first two, since the output interface contains z, while in the first
two traces the output interface contains y. On the other hand, the following expressions are all
α-equivalent

{let

(
{x}�c;
{y}�c′·x

)
in y} ≡ {let

(
{z}�c;
{y}�c′·z

)
in y} ≡ {let

(
{x}�c;
{z}�c′·x

)
in z}

2.1.1 Metatheory

We present some metatheoretical results that are needed in the rest of the paper. As a subsystem
of CLF, CLF( enjoys desirable properties such as decidability of type checking. However, we only
focus on properties that are related to our presentation using traces, or needed later in the proofs
of soundness and completeness of the matching algorithm.

Since we only consider linear functions, weakening and strengthening of the typing relation
are not valid in CLF( (although traces satisfy a form of frame rule). Typing is invariant under
permutations of independent subtraces, as stated in the following lemma.

Lemma 2.1 If ∆ ` ε1 : ∆′ and ε1 ≡ ε2, then ∆ ` ε2 : ∆′.

Proof: By induction on the type derivation. �

In particular, whenever ε1 ‖ ε2, we have that ∆ ` ε1 : ∆′ iff ∆ ` ε2 : ∆′. Typing is also invariant
under reordering of the context.
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Lemma 2.2

1. If ∆1 ` ε : ∆2 and ∆1 ≈ ∆′1 and ∆2 ≈ ∆′2, then ∆′1 ` ε : ∆′2.

2. If ∆1 ` E : {∆2} and ∆1 ≈ ∆′1, then ∆′1 ` E : {∆2}.

Proof: By induction on the type derivation. �

Typing of traces satisfy the following frame rule.

Lemma 2.3 (Frame rule) If ∆1 ` ε : ∆2, then ∆0 ./ ∆1 ` ε : ∆0 ./ ∆2.

Proof: By induction on the type derivation. �

The next lemma states the inverse of the frame rule.

Lemma 2.4 If ∆1 ` ε : ∆2, then there exists ∆0,∆
′
1,∆

′
2 such that ∆1 = ∆0 ./ ∆′1, ∆2 = ∆0 ./

∆′2, •ε = dom(∆′1), ε• = dom(∆′2), and ∆′1 ` ε : ∆′2.

The following lemma states a form of inversion of the typing derivation for the particular case of
traces.

Lemma 2.5 If ∆0 ` ε1; ε2 : ∆2, then there exists ∆1 such that ∆0 ` ε1 : ∆1 and ∆1 ` ε2 : ∆2.

Proof: By induction on the type derivation. �

2.1.2 Equations

An equation is a postulated equality between entities that may contain logic variables. A logic
variable X stands for an unknown trace. Logic variables are distinct from term variables x.

Logic variables They are declared in a contextual modal context [21]. Formally a contextual
modal context is a sequence of logic variable declarations, defined as follows:

Ψ ::= · | Ψ, X :: ∆ ` {∆′}

Each declaration of the form X :: ∆X ` {∆′X} determines a distinct logic variable X with its own
context ∆X and type {∆′X}. We will assume a global contextual modal context Ψ.

Within a trace defined in a context ∆0, a logic variable X is accompanied by a substitution θ
that maps the variables in ∆X to variables in ∆0, denoted X[θ]. Substitutions are defined by the
following grammar:

θ ::= · | θ, y/x

We extend the syntax of our language by allowing logic variables as heads in steps:

Steps δ ::= {∆}�c·∆′ | {∆}�X[θ]

Substitutions are type-checked using the following judgment:

∆1 ` θ : ∆2

7



Logic variables:
X :: ∆X ` {∆′X} ∈ Ψ ∆1 ` θ : ∆X

∆0 ./ ∆1 ` {∆′X}�X[θ] : ∆0,∆
′
X

tp(-lvar

Substitutions:

· ` · : ·
tp(-sub-empty

∆0 ` θ : ∆2

∆0 ./ y:A ` θ, y/x : ∆2, x:A
tp(-sub-cons

Figure 2: Typing Rules for Substitutions and Logic Variables of CLF(

The typing rules related to logic variables and substitutions are given in Figure 2.
In the case of CLF(, a substitution replaces variables with variables, since there is no notion of

terms. The definition of substitutions is revised in subsequent systems that include more complex
notions of terms.

An assignment σ is a sequence of bindings of the form X ← E where X is a logic variable. An
assignment σ is well typed if for every X ← E ∈ σ with X :: ∆X ` {∆′X}, we have ∆X ` E : {∆′X}.
Applying an assignment [X ← N ] to a term M (resp. expression, type, etc.), denoted [X ← N ]M ,
means replacing every occurrence of X[θ] in M with θN and reducing the resulting expression to
canonical form. For traces, applying an assignment is defined by the following rule:

[X ← {let ε0 in ∆0}](ε1; {∆}�X[θ]; ε2) = (ε1; (θε0){∆/∆0}; ε2)

In CLF(, any well-typed substitution is a bijection between variables. Because they are injec-
tive, an equation of the form X[θ] = ε has at most one solution namely θ−1ε. However, it may have
no solution if ε contains variables not present in θ.

Lemma 2.6 (Inversion for CLF() Let E be a well-typed expression. There exists E′ such that
E ≡ θE′ if FV(E) = rng(θ).

2.2 Matching

Given two objects T1 and T2 of the same syntactic class (expression or traces) such that T2 is
ground (i.e., does not contain logic variables) the matching problem tries to find an assignment σ

for the logic variables in T1 such that σT1 ≡ T2. We write T1
?
= T2 to denote a matching problem.

Matching on traces is inherently non-deterministic. For example, the equation

{let

(
{·}�X;
{·}�Y

)
in ·} ?

= {let

{·}�c1;
. . . ;
{·}�cn

 in ·}

has 2n solutions: it encodes the problem of partitioning the multiset {c1, . . . , cn} into the (disjoint)
union of multisets X and Y .

Matching is decidable: in ε1
?
= ε2, any solution instantiates the monadic logic variables in ε1 to

subtraces of ε2. Since there are only finitely many subtraces, one can try all possible partitions of
ε2 among these monadic logic variables; a solution is found if the interface of each subtrace matches
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the interface of the logic variable and the inverse of the substitution can be applied. Clearly, this
approach is extremely inefficient.

We present an algorithm for solving the matching problem in the presence of (at most) one
logic variable. This restriction suffices for many reasoning tasks of interest, for example monitoring
a computation and some program transformation. Furthermore, restricting ourselves to only one
logic variable reduces the explosion on the size of the search space.

A trace matching problem constrained in this way can then be expressed by the equation

(1)

δ1; . . . ; δk;
{∆}�X[θ];
δk+1; . . . ; δn

 ?
=
(
δ′1; . . . ; δ′m

)
where δi, δ

′
i have the form {∆′}�c·∆. The algorithm proceeds by matching individual steps any-

where from both traces. To match, two steps must have the same head, use the same resources,
and produce resources that are used in the same way. Matching pairs of steps are removed from
the traces. The process is repeated, matching two steps with the same head, until a problem of the
form (

{∆}�X[θ]
) ?

= ε

is obtained. The solution is then X ← θ−1({let ε in ∆}), if this term is well typed and the inverse
substitution θ−1 can be applied. If this is not the case, then either the steps where matched in
the wrong order (meaning that is necessary to backtrack and try a different permutation of the
right-hand side), or if all possible orders have been tried, the problem has no solution. We will
examine an example below.

Design of the matching algorithm Matching traces involves picking an appropriate permu-
tations of one of the traces and finding a renaming that identifies the variables introduced by the
trace. The matching algorithm for traces is given by a judgment of the form

ε1
?
= ε2 7→ σ

meaning that σε1 ≡ ε2. We assume that ε1 and ε2 have the same interface, i.e., there exists ∆1 and
∆2 such that ∆1 ` εi : ∆2 for i = 1, 2. Furthermore, we assume that ε2 is ground and ε1 contains
at most one logic variable.

The algorithm proceeds by matching individual steps on each side of the equation. Each step
of the form {∆′}�c·∆ in ε1 must be matched with a similar step in ε2. We rely on α-conversion to
match internal variables. Once a step is matched, it is removed from both traces and the process
is repeated until either an empty trace is found on both sides (meaning that ε1 is ground), or we
are left with an equation of the form

{∆′}�X[θ]
?
= ε

Since both sides have the same interface (an invariant of the algorithm), the term θ−1{let ε in ∆′}
is well typed and is the solution for X.

The basic structure of the matching algorithm is kept in later systems (matching individual
steps until we are left with only the logic variable). However, as we introduce new features in
the language we are forced to adapt the algorithm to handle them. In CLF@! (Section 3) the
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introduction of affine and persistent hypotheses means that we cannot rely anymore on implicit
α-conversion, as variables may be used more than once (persistent), or not at all (affine). We
deal with this problem by introducing explicit renamings (Section 3.2). In CLFΠ and CLFx, we
introduce full terms, meaning that the matching algorithm needs to combine trace matching with
traditional higher-order matching (Section 4.2). These languages also allow dependent types, which
will force steps to be matched at either ends of a trace, but not in the middle.

The algorithm The matching algorithm is defined by the judgments:

Expressions: E1
?
= E2 7→ σ

Traces: ε1
?
= ε2 7→ σ

Matching on expression and traces return an assignment. The invariant for both judgment is that
both sides have the same type.

The rules of the matching algorithm are given in Figure 3. This algorithm is non-deterministic
algorithm and it fails when no rule is applicable. The non-determinism comes from rule dec(-tr-step,
where any matching steps on both sides can be chosen.

Some remarks about the matching rules are in order. In rule dec(-expr we rely on implicit
α-conversion to ensure the context on both sides is the same. Typing invariants ensure that this is
possible. Matching on traces is defined by rules dec(-tr-empty, dec(-tr-step, and dec(-tr-inst. If
rule dec(-tr-empty applies, it means that the left side in the original equation does not have any
logic variable. In this case the matching algorithm amounts to checking trace equivalence.

Rule dec(-tr-step performs a match between two individual steps in both traces that have the
same head. Note that doing so may change the interface of the traces on each side of the equation.
As in rule dec(-expr, we use implicit α-renaming to ensure that the interface of the matched steps
is the same. Matching proceeds with the rest of the trace, after removing the matched steps.
After repeatedly applying rule dec(-tr-step we reach either an empty trace on both sides which is
matched using rule dec(-tr-empty, or the left side has a logic variable in which case we apply rule
dec(-tr-inst. Rule dec(-tr-inst is applicable if the output of ε coincides with the output of ∆ (the
algorithm invariants ensure that this condition is satisfied); the term {let ε in ∆} is thus well typed.

Examples We illustrate the matching algorithm with an example. In this and the following
examples, we do not specify the declaration of logic variables and omit local variables (unless nec-
essary). E.g., given a logic variable X :: x1:a1, x2:a2 ` {∆} we write X[y1, y2] for X[y1/x1, y2/x2].
We also omit the type of context variables.

Consider the following matching equation where f , g, and h are constants:

{let


{x1, x2}�g;
{x3}�f ·x1;
{·}�X[x3]
{·}�h·x2

 in ·} ?
= {let


{y1, y2}�g;
{y3}�f ·y1;
{·}�h·y2

{·}�h·y3

 in ·}

This problem has only one solution: X ← {let {·}�h·y3 in ·}. Note that the algorithm may back-
track in order to find this solution. Let us consider what happens if the algorithm chooses a wrong
pair of steps to match. For example, if the algorithm chooses initially to match {·}�h·x2 against
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E1
?
= E2 7→ σ

ε1
?
= ε2 7→ σ

{let ε1 in ∆} ?
= {let ε2 in ∆} 7→ σ

dec(-expr

ε1
?
= ε2 7→ σ

� ?
= � 7→ ·

dec(-tr-empty

ε1; ε′1
?
= ε2; ε′2 7→ σ

(ε1; {∆′}�c·∆; ε′1)
?
= (ε2; {∆′}�c·∆; ε′2) 7→ σ

dec(-tr-step

({∆}�X[θ])
?
= ε 7→ (X ← θ−1({let ε in ∆}))

dec(-tr-inst

Figure 3: Matching Algorithm for CLF(

{·}�h·y3, this will force to rename the internal variables to make them match, e.g., y3/x2. The
matching problem is reduced to{x1, y3}�g;

{x3}�f ·x1;
{·}�X[x3]

 ?
=

{y1, y2}�g;
{y3}�f ·y1;
{·}�h·y2


At this point, matching {x1, y3}�g against {y1, y2}�g fails, since it implies matching y2 against y3;
y2 is an internal variable, while y3 is in the output interface.

The algorithm then will backtrack and try to match {·}�h·x2 against {·}�h·y2 leading to the
solution for X.

Correctness of the algorithm The matching algorithm of Figure 3 is sound and complete as
stated in the following lemmas.

In the proofs, we occasionally write ∆0
ε1−→ ∆1 . . .

εn−→ ∆n to mean that ∆i−1 ` εi : ∆i for all
i = 1, . . . , n.

Lemma 2.7 (Soundness of matching for CLF()

• If ∆ ` E1, E2 ⇐ {∆′} and E1
?
= E2 7→ σ, then σE1 ≡ E2.

• If ∆ ` ε1 : ∆1 and ∆ ` ε2 : ∆2 and ∆1 ≈ ∆2 and ε1
?
= ε2 7→ σ, then σε1 ≡ ε2.

Proof: By induction on the matching derivation. We only consider the most interesting cases.

Rule dec(-expr. By inversion on the typing derivation, there exists ∆1 and ∆2 such that ∆1 ≈
∆2 ≈ ∆′, ∆ ` ε1 : ∆1, and ∆ ` ε1 : ∆2. The result follows by IH.
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Rule dec(-tr-step. Let δ = {∆′}�c·∆. By Lemma 2.5 on the judgment ∆ ` ε1; δ1; ε′1 : ∆1, there
exists ∆∗1 such that the following diagram holds:

∆
ε1−→ ∆∗1 ./ ∆

δ−→ ∆∗1 ./ ∆′
ε′1−→ ∆1

By the frame rule on ε1 and ε′1 and composing the results we have: ∆ ./ ∆′ ` ε1; ε′1 : ∆1 ./ ∆.

By a similar reasoning on the right-hand side, there exists ∆∗2 such that the following diagram
holds:

∆
ε2−→ ∆∗2 ./ ∆

δ2−→ ∆∗2 ./ ∆′
ε′2−→ ∆2

Similarly, by the frame rule, we have ∆ ./ ∆′ ` ε2; ε′2 : ∆ ./ ∆2.

Since ∆1 ./ ∆′ ≈ ∆2 ./ ∆′, we can apply the IH; we have σ(ε1; ε′1) ≡ (ε2; ε′2). Then
σ(ε1; δ1; ε′1) ≡ (ε2; δ2; ε′2).

Rule dec(-tr-inst. The expression {let ε in ∆} is well typed, since both traces have the same
interface. The conditions of Lemma 2.6 are satisfied, so the inverse substitution can be
applied.

�

The matching algorithm of Figure 3 is complete as stated in the following lemmas.

Lemma 2.8 (Completeness of trace matching for CLF() Let ∆ ` ε1 : ∆1 and ∆ ` ε2 :
∆2, where ∆1 ≈ ∆2, and ε1 contains at most one logic variable. If σε1 ≡ ε2, then there exists a

derivation of the judgment ε1
?
= ε2 7→ σ.

Proof: Let ε1 be of the form δ1; . . . ; δn; {∆}�X[θ]; δn+1; . . . ; δm, and σ = (X ← {let ε0 in ∆0}).
Then ε2 can be written as

δ′1; . . . ; δ′n; ε′0; δ′n+1; . . . ; δ′m,

where each δ′i corresponds to δi and ε0 corresponds to X. Let δi = {∆′1i}�ci·∆1i and δ′i =
{∆′2i}�c′i·∆2i.

Matching succeeds for δ1 and δ′1 since we must have ∆11 = ∆21, and we can assume that
∆′11 = ∆′21. Rule dec(-tr-step can be applied n times to match δi with δ′i for i = 1, . . . , n.

We can proceed the same way from the other end of the trace, since the interfaces are the same
(modulo permutation). Rule dec(-tr-step can be applied m times to match the steps δi and δ′i for
i = n+ 1, . . . ,m. σ′δ1; . . . ; δnσ

′; θε0;σ′θ0δn+1; . . . ;σ′θ0δm Finally rule dec(-tr-inst for the last step
containing the logic variable. �

Lemma 2.9 (Completeness of expression matching for CLF() Let ∆ ` E1, E2 : {∆′},
where E1 contains at most one logic variable X. If σE1 ≡ E2, then there exists a derivation of the

judgment E1
?
= E2 7→ σ.

Proof: Rule dec(-dec-expr can be applied; the result follows from the previous lemma. �
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2.3 Unification

We can extend the matching algorithm given above to handle a special case of unification. The

unification problem is the following: given an equation of the form T1
?
= T2, find a substitution σ

for the logic variables in T1 and T2 such that σT1 ≡ σT2. As in the case of matching, we restrict to
the case where T1 and T2 can contain at most one logic variable.

We make the further assumption that the logic variable on each side is distinct. The case where
the same logic variable is used on both sides is unexpectedly more complex and is left for future

work. For example, in the λ-calculus, a matching problem of the form X[x, y]
?
= X[y, x] does not

have solution. However, in CLF, a matching problem of the form {·}�X[x, y]
?
= {·}�X[y, x] has

solutions since x and y can be reordered in X if they are independent; for example, a solution for
X is {let {·}�Z[x]; {·}�Z[y] in ·}.

The unification algorithm follows the same pattern as the matching algorithm, by matching
individual steps on both sides of the equation. The base case is then of the form

(2) ε1; ({∆1}�X1[θ1])
?
= ({∆2}�X2[θ2]); ε2

or the symmetric equation. If the interface of ε1 coincide with the interface of {∆2}�X2[θ2] and
the interface of ε2 coincide with the interface of {∆1}�X1[θ1], then a solution to this problem is
X1 ← θ−1

1 {let ε2 in ∆1} and X2 ← θ−1
2 {let ε1 in ∆2}. If the interfaces do not match, then certain

conditions must satisfy in order to have a solution.
A more general solution to this problem looks like

X1 ← θ−1
1 ({let {∆′}�Z[θ′]; ε2 in ∆1})

X2 ← θ−1
2 ({let ε1; {∆′}�Z[θ′] in ∆2})

where θ′ and ∆′ must be chosen so that the above expressions are well typed. The expression
assigned to X1 is well typed if the following holds:

FV(θ1) = •({∆′}�Z[θ′]; ε2)

dom(∆1) = ({∆′}�Z[θ′]; ε2)•

where FV(θ1) means
⋃
a∈rng(θ1) FV(a) — in CLF(, FV(θ1) coincides with rng(θ1). (A similar

condition holds for the expression assigned to X2.) Expanding the definitions of input and output
interface, we obtain the following equations:

FV(θ1) = FV(θ′) ∪ (•ε2 \ dom(∆′)) FV(θ2) = •ε1 ∪ (FV(θ′) \ ε1•)
dom(∆1) = ε2• ∪ (dom(∆′) \ •ε2) dom(∆2) = dom(∆′) ∪ (ε1• \ FV(θ′))

A necessary conditions for these equations to have a solution is that ε2• ⊆ dom(∆1) and •ε1 ⊆
FV(θ2). Note that the number of solutions is finite as FV(θ′) ⊆ FV(θ1), and dom(∆′) ⊆ dom(∆2).
Any solution to these equations gives a solution for the unification problem.

Thus, the algorithm of Figure 3 can be adapted to handle a unification problem by changing
rule dec(-tr-inst to the following rule (dec(-tr-inst-unif1):

σ = (X1 ← θ−1
1 ({let {∆′}�Z[θ′]; ε2 in ∆1})), (X2 ← θ−1

2 ({let ε1; {∆′}�Z[θ′] in ∆2}))

ε1; ({∆1}�X1[θ1])
?
= ({∆2}�X2[θ2]); ε2 7→ σ
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where ∆′, and θ′ satisfy the equations given above. We also need a symmetric rule, called

dec(-tr-inst-unif2, that handles the problem ({∆1}�X1[θ1]); ε1
?
= ε2; ({∆2}�X2[θ2]).

Note that there is no most-general solution to a unification problem, since the reduction of a
unification problem to an equation of the form (2) is not unique (as shown in the example below).
However, all solutions can be found by reducing the problem to the form above.

Example Consider the following unification problem{x2}�c·x;
{x3}�c·x2;
{z}�X1[x3]

 ?
=

{y2}�X2[x];
{y3}�c·y2;
{z}�c·y3


The input interface contains x and the output interface contains z. Applying rule dec(-tr-inst-unif1,
we obtain one solution

X1 ← x−1
3 {let {y2}�Z[x3]; {y3}�c·y2; {z}�c·y3 in z}

X2 ← x−1
2 {let {x2}�c·x; {x3}�c·x2; {y2}�Z[x3] in y2}

Another solution is found if we first match {x3}�c·x2 against {y3}�c·y2, thus reducing the
problem to (

{w1}�c·x;
{z}�X1[w2]

)
?
=

(
{w1}�X2[x];
{z}�c·w2

)
Applying rule dec(-tr-inst-unif1, we obtain one solution

X1 ← w−1
2 {let {·}�Z[·]; {z}�c·w2 in z}

X2 ← x−1{let {w1}�c·x; {·}�Z[·] in w1}

2.4 Graph Interpretation

A concurrent trace ε can be interpreted as a bipartite directed acyclic graph (BDAG) G =
(N1, N2, E) where N1 is the set of steps δ in ε and N2 is the set of the variables x mentioned
in ε. For each δ = {∆}�c·∆′, there is an edge from x ∈ N2 to δ ∈ N1 if and only if x is declared
in ∆′, and there is an edge from δ to y ∈ N2 iff y appears in ∆. Figure 4 shows an example of a
trace and its graphical representation, where nodes in N1 are drawn as rectangle and nodes in N2

as circles. The BDAGs obtained in this way are exactly what we get by graphically unfolding the
computation of a place/transition Petri net [24].

Equality over traces corresponds therefore to a graph isomorphism problem. Although the
complexity of checking whether two BDAGs are isomorphic has not been determined as far as we
know, the isomorphism problem for both bipartite graphs and directed acyclic graphs is known to
be GI-complete, where GI is a complexity class between P and NP [35].

Trace equations correspond to isomorphism problems with holes in them. Specifically, every step
{∆}�X[θ] corresponds to an unknown subgraph with incoming edges from the N2-nodes associated
with the domain of θ and outgoing edges to the N2-nodes determined by the variables in dom(∆).
Note that each such step behaves like a node in N1.

The matching problem over traces corresponds to overlaying a fully determined BDAG with a
BDAG containing such holes (at most one in our discussion). Our algorithm spots and removes
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{y1, y2}�r1·x1;
{z1}�r2·y1;
{z3}�r3·x2, y2


x2

x1 y1

y2

z1

z3

{y1, y2}�r1·x1 {z1}�r2·y1

{z3}�r3·x2 y2

Figure 4: A Trace and its Graphical Representation

compatible N1-nodes until just the hole is left on one side — the graph on the other side is then
the solution to the problem. Incorrect guesses cause backtracking.

Trace unification corresponds to the problem of overlaying two BDAGs, both of which may
contain holes. The algorithm outlined in the last section spots and removes compatible N1-nodes
until the hole on each side must cover every N1-node on the other side (or a dead-end has been
encountered).

The graphical interpretation just outlined applies to the other languages examined in this report.
The corresponding graphs become structurally more and more complex, and so do the matching
and unification problems. We will not draw the parallels between traces in these languages and the
corresponding graphs, although this can be easily done.

3 CLF@!: Affine and Persistent Functions

In this section we present CLF@!, an extension of CLF( with affine and persistent functions
(Section 3.1). We analyze the matching problem for CLF@! in the presence of at most one logic
variable (Section 3.2). The introduction of affine and persistent functions complicates the matching
algorithm as we cannot rely on implicit α-conversion to match internal variables as we do in CLF(;
since persistent variables can be used more than once we need to make sure that the matching
of internal variables is one-to-one. We introduce explicit renamings between variables that are
computed by the matching algorithm; variables are marked to ensure the renaming is one-to-one
(Section 3.2).

3.1 Language

CLF@! extends CLF( with affine and persistent functions. Variables in CLF@! are decorated with
a modality indicating whether they are linear, affine, or persistent. Persistent variables may be
reused in a trace; affine variables may be used at most once but, unlike linear variables, do not
need to be consumed and may be simply ignored.

Contexts CLF@! extends the definition of contexts for CLF( by including affine and persistent
hypotheses. A context is a sequence of variable declarations of the form x:a, where a is a base
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type and is one of three modalities: ! (persistent), @ (affine), or ↓ (linear).

Modalities: ::= ! | @ | ↓
Contexts: ∆ ::= · | ∆, x:a

The declarations x:a of CLF( are written as linear declarations ↓x:a in CLF@!.
We write !∆ for the largest subcontext of ∆ containing only persistent variables. Similarly, @∆

is the largest subcontext of ∆ containing only affine or persistent variables (i.e., @∆ is obtained
from ∆ by removing all linear variables). For uniformity, we write ↓∆ as a synonym for ∆. At
times, !∆ will denote a context consisting of persistent declarations only. We write nolin(∆) to
mean that the context ∆ contains no linear declaration.

Given a context ∆ and a variable x declared in ∆, we denote with ∆ \\ x the context obtained
by removing the declaration for x if it is affine or linear, formally:

(∆0, x:a,∆1 \\ x) =

{
(∆0,∆1) if ∈ {@, ↓}
∆0, x:a,∆1 if = !

Modulo the update to the notion of contexts, the definition of signature is as in CLF(. We
continue to assume an implicit global signature Σ, which declares the constants in use.

We redefine the splitting operation on contexts to account for affine and persistent hypotheses:
∆ = ∆1 ./ ∆2 if all persistent declarations in ∆ may appear in both ∆1 and ∆2, linear declarations
are included in exactly one of ∆1 and ∆2, and affine declarations are included in at most one of
∆1 and ∆2. Formally, splitting is defined by the following rules:

· = · ./ ·
∆ = ∆1,∆

′
1 ./ ∆2,∆

′
2

∆, !x:a = ∆1, !x:a,∆′1 ./ ∆2, !x:a,∆′2

∆ = ∆1 ./ ∆2

∆,@x:a = ∆1,∆2

∆ = ∆1,∆
′
1 ./ ∆2

∆,@x:a = ∆1,@x:a,∆′1 ./ ∆2

∆ = ∆1 ./ ∆2,∆
′
2

∆,@x:a = ∆1 ./ ∆2,@x:a,∆′2

∆ = ∆1,∆
′
1 ./ ∆2

∆, ↓x:a = ∆1, ↓x:a,∆′1 ./ ∆2

∆ = ∆1 ./ ∆2,∆
′
2

∆, ↓x:a = ∆1 ./ ∆2, ↓x:a,∆′2

We write ∆1 ≈ ∆2 if ∆1 = ∆2 ./ ·. Note that, if ∆ = ∆1 ./ ∆2, then !∆ = !∆1 = !∆2 and each
affine or linear declaration in ∆ appear in exactly one of ∆1 and ∆2

We define an partial-order relation between contexts: we say that ∆ is weaker than ∆′, denoted
∆ 4 ∆′ (or equivalently ∆′ < ∆), iff ∆ = ∆′ ./ @∆0 for some context ∆0, i.e., if ∆′ is included in
∆ and ∆ does not contain any linear hypotheses not present in ∆′.

Traces We redefine the notion of step in CLF@!. Traces and steps are defined as follows:

Traces: ε ::= � | ε1; ε2 | {∆}�c·S
Spines: S ::= · | x, S

Expressions: E ::= {let ε in ∆}

Traces have the same structure as in CLF(. A step has the form {∆}�c·S where S is a spine [6],
and c is a constant from the signature. In the case of CLF@!, a spine is just a list of variables
annotated with a modality. In later systems, the notion of spine is redefined to allow more complex
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terms. In an expression {let ε in ∆}, the context ∆ collects all unused linear variables and, some
affine and persistent variables.

The interface of a trace in CLF@! reflects the fact that persistent variables can be reused. The
input and output interface are given by the following rules:

•(�) = ∅ (�)• = ∅
•({∆′}�c·∆) = dom(∆) ({∆′}�c·∆)• = dom(∆′)

•(ε1; ε2) = •ε1 ∪ (•ε2 \ ε1•) (ε1; ε2)• = ε2• ∪ (ε1• \ •ε2) ∪ !(ε1•)

The only difference with the rules of CLF( is the last rule of the output interface where persistent
variables in ε1 are not removed with the output interface of ε1; ε2.

Equality of traces and expressions is defined as in CLF(. However, note that persistent vari-
ables are always in the output interface. This means that the trace {!x}�c; {!y}�c·!x is not
equal to {!z}�c; {!y}�c·!z, since they differ in the output interface. However, the expressions
{let {!x}�c; {!y}�c·!x in ·} and {let {!z}�c; {!y}�c·!z in ·} are α-equivalent, since enclosing a trace
inside a let-expression turns its type into a type of the form {∆} where the names declared in ∆
are local.

The global signature collects the constant declaration. As in CLF(, each constant is declared
with a type of the form ∆ ( {∆′}, where the scope of the declarations in ∆ and {∆′} is limited
to the context itself.

Typing The typing rules of CLF@! are defined by the following judgments:

Expressions: ∆ ` E ⇐ {∆′}
Traces: ∆ ` ε : ∆′

Spines: ∆ ` S : ∆′

The typing rules of CLF@! are given in Figure 5. Note that the context ∆ of an expression
{let ε in ∆} contains all linear hypotheses produced by the trace ε, but does not have to contain all
the affine and persistent hypotheses.

The rules for spines state that a persistent hypotheses can only be fulfilled by a persistent
variable, an affine hypotheses can only be fulfilled by a persistent or affine variable, while there are
no restrictions for linear hypotheses.

Metatheory In addition to the properties stated in Section 2.1.1, the typing relation satisfies
the properties stated below. Weakening is valid for affine and intuitionistic hypotheses.

Lemma 3.1 If ∆ ` E ⇐ {∆′}, then ∆,@∆0 ` E ⇐ {∆′}, for ∈ {@, !}.

Strengthening is also valid for affine and intuitionistic hypotheses.

Lemma 3.2 Let ∆0, x:a,∆1 ` E ⇐ {∆′} be a valid judgment, where ∈ {@, !}. If x /∈ FV(E),
then ∆0,∆1 ` E ⇐ {∆′}.
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Expressions:
∆1 ` ε : ∆2 ∆2 4 ∆′

∆1 ` {let ε in ∆′} ⇐ {∆′}
tp@!-expr

Traces:

∆ ` � : ∆
tp@!-empty

c:∆′( {∆2} ∈ Σ ∆1 ` S : ∆′

∆0 ./ ∆1 ` {∆2}�c·S : ∆0 ./ ∆2
tp@!-step

∆ ` ε1 : ∆1 ∆1 ` ε2 : ∆2

∆ ` ε1; ε2 : ∆2
tp@!-comp

X :: ∆X ` {∆2} ∆1 ` θ : ∆X

∆0 ./ ∆1 ` {∆2}�X[θ] : ∆0 ./ ∆2
tp@!-lvar

Spines

@∆ ` · : ·
tp@!-sp-empty

∆1 ` S : ∆2

∆1 ./ !x:a ` !x, S : !y:a,∆2
tp@!-sp-bang

∈ {@, !} ∆1 ` S : ∆2

∆1 ./ x:a ` x, S : @y:a,∆2
tp@!-sp-aff

∆1 ` S : ∆2

∆1 ./ x:a ` x, S : ↓y:a,∆2
tp@!-sp-lin

Substitutions

· ` · : ·
tp@!-sub-empty

∆1 ` θ : ∆2

∆1 ./ 1y:a ` θ, 1y/ 2x : ∆2, 2x:a
tp@!-sub-cons

Figure 5: Typing Rules of CLF@!

3.2 Matching

The main structure of the matching algorithm remains the same as in CLF(: individual steps are
matched on both sides and removed until we reach the empty trace or a step with a logic variable.
Recall that we assume that there is at most one logic variable. In this section, we describe the
changes needed for logic variables, and substitutions. We then revisit the algorithm and proof that
is sound and complete.

Equations We consider steps with logic variables as in the case of CLF(. Logic variables are
declared in a contextual modal context (cf. Section 2.1.2). We extend the syntax of steps by allowing
logic variables at the head:

Steps δ ::= {∆}�c·∆′ | {∆}�X[θ]

We redefine the notion of substitution by annotating variables with their modality:

θ ::= · | θ, y/ ′x

In a substitution item y/ ′x, the modalities and ′ may be different: indeed, a linear variable
may be replaced by a persistent term without violating typing (so that !y/↓x is allowed), while
the opposite may yield an ill-typed term (e.g., ↓y/!x may lead to multiple copies of ↓y). The valid
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Logic variables:
X :: ∆X ` {∆′X} ∈ Ψ ∆1 ` θ : ∆X

∆0 ./ ∆1 ` {∆′X}�X[θ] : ∆0,∆
′
X

tp@!-lvar

Substitutions

· ` · : ·
tp@!-sub-empty

∆1 ` θ : ∆2

∆1 ./ 1y:a ` θ, 1y/ 2x : ∆2, 2x:a
tp@!-sub-cons

Figure 6: Typing Rules for Substitutions and Logic Variables of CLF@!

values for ( , ′) are given by the reflexive-transitive closure of {(!,@), (@, ↓)}. Substitutions of this
form are called linear changing.

Substitutions are type-checked using the same judgment as in CLF(: ∆ ` θ : ∆′. The updated
typing rules for logic variables and substitutions are given in Figure 6. In rule tp@!-sub-cons, we
split the context according to the modalities ( 1, 2) as explained above.

Different from CLF(, a substitution in CLF@! is not necessarily injective, since persistent
variables can occur more than once. The lemma below states the conditions under which the
inverse of a substitution can be applied to an expression. The statement relies on the following
definition.

A variable x occurs in a linear position if it occurs in a step of the form {∆}�c·(S1, x, S2),
where the type of c is of the form ∆1, ↓y:a,∆2 ( {∆′} with ∆1 and ∆2 of the same size as S1 and
S2. Similarly, if the type of c is of the form ∆1,@y:a,∆2 ( {∆′} or ∆1, !y:a,∆2 ( {∆′}, we say
that x occurs in an affine position or persistent position, respectively.

The inverse of a linear-changing substitution can be applied to a term under certain conditions
stated in the following lemma.

Lemma 3.3 (Inversion for CLF@!) Let E be an expression and θ a linear-changing pattern sub-
stitution. Then, there exists E′ such that E ≡ θE′ iff the following conditions hold:

• for every !y/↓x ∈ θ, variable !y occurs exactly once in E in a linear position;

• for every !y/@x ∈ θ, variable !y occurs at most once in E in a linear or affine position;

• for every @y/↓x ∈ θ, variable @y occurs exactly once in E in a linear position.

Renamings The main issue in designing a matching algorithm for traces is how to deal with
variables introduced in the trace. Recall that, differently from CLF(, in a CLF@! expression
{let ε in ∆} the context ∆ does not necessarily list all the persistent and affine variables in the output
interface ε• of ε. When matching two expressions, which such unmentioned variables correspond to
which is initially unknown but revealed incrementally as the two embedded traces are examined.
Rather than guessing this correspondence a priori, we rely on the notion of renaming to delay it
until matching step pairs force it, incrementally. A renaming is a modality-preserving substitution
of variables by fresh variables:

Renamings: ϕ, ρ ::= · | ϕ, x/ y
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We write ε{ϕ} and ∆{ϕ} for the application of the renaming ϕ to the free variables and bound
variables in a trace ε and a context ∆, respectively. Application of a renaming is defined by the
following rules:

(�){ϕ} = �
({∆}�c·S){ϕ} = {∆{ϕ}}�c·ϕS

(ε1; ε2){ϕ} = ε1{ϕ}; ε2{ϕ}
·{ϕ} = ·

∆, x:a{ϕ} = ∆{ϕ}, ϕx:a

The composition ϕ1ϕ2 of two renamings ϕ1 and ϕ2 is defined as their union. Renamings are
used to keep track of the one-to-one correspondence between local variables in a trace matching
problem. When we compose two renamings during a matching problem, their domains are disjoint
(once a variable has been renamed, it is not renamed again).

Design of the algorithm Matching traces involves picking an appropriate permutation of one of
the traces and finding a renaming that identifies the variables introduced by the trace. Intuitively,

the algorithm is based on the CLF(-style judgment of the form ∆ ` ε1
?
= ε2 7→ σ which attempts to

match ε1 against ε2 (both well typed under context ∆) and results in the assignment σ (although
we will update this judgment shortly). However, with the addition of affine and intuitionistic
hypotheses, the invariants of the algorithm are different in CLF@!. We will now illustrate some of
the design choices we made with some examples.

Let us consider the following matching problem (for simplicity deprived of logic variables):

{let

(
{!x1}�c;
{!x2}�c

)
in ·} ?

= {let

(
{!y1}�c;
{!y2}�c

)
in ·}

Both expressions are α-equivalent, so the matching algorithm should succeed. The problem is
reduced to matching the inner traces, but note that their output interfaces are different. Unlike
CLF(, the variables introduced by the two traces do not occur in each expression’s context (here
“·”). Therefore, there is no obvious way to rename these variables at the outset so that the output
interface of the two traces match. We will handle this problem by delaying giving these variable
a common name: specifically, rather than relying on explicit α-renaming, we will incrementally
compute a renaming for each side of the equation as the algorithm gathers information. Conse-
quently, we will need to equip most matching judgments with additional arguments representing
these renamings, as discussed below.

Matching steps at the end of two traces involves matching the output of steps, incrementally
building a renaming between both traces. However, we should be careful not to rename variables
twice. For example, in a problem of the formε1;

{·}�c·!x1;
{·}�c·!x1

 ?
=

ε2;
{·}�c·!y1;
{·}�c·!y2


matching {·}�c !x1 against {·}�c !y2 renames !x1 and !y2 to a fresh !z (assuming both are introduced
in the trace), reducing the problem to(

ε1{!z/!x1};
{·}�c·!z

)
?
=

(
ε2{!z/!y2};
{·}�c·!y1

)
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Now matching {·}�c !z against {·}�c !y1 would identify !z and !y1, but this is wrong since !z is
already defined in ε2{!z/!y2}. To avoid this issue we mark variables introduced in the trace and
remove the mark once they have been renamed (a marked variable is denoted as x). For example,
the equation over expressions

{let

(
{!x1}�c1;
{!x2}�c2·!x1

)
in ·} ?

= {let

(
{!y1}�c1;
{!y2}�c2·!y1

)
in ·}

reduces to the following trace equation, where all variables bound in a step have been marked:(
{!x1}�c1;
{!x2}�c2·!x1

)
?
=

(
{!y1}�c1;

{!y2}�c2·!x2

)
Matching {!x1}�c1 against {!y1}�c1 identifies !x1 with !y1 renaming both to a new unmarked
variable, say !z, and reducing the problem to(

{!x2}�c2·!z
) ?

=
(
{!y2}�c2·!z

)
In general, matching a step {∆1}�c·S1 against {∆2}�c·S2 implies matching S1 against S2 and

∆1 against ∆2. The latter problem is defined by the judgment

∆1
?
= ∆2 7→ ϕ1;ϕ2

which is derivable iff ∆1{ϕ1} ≡ ∆2{ϕ2}. It is an invariant of this judgment that the domains of
ϕ1 and ϕ2 contain only marked variables and the codomains contain only unmarked variables. We
call a renaming with this property a matching renaming.

The matching judgment for traces is modified to return the renamings that match the variables
introduced in the trace:

∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

derivable iff (σε1){ϕ1} ≡ ε2{ϕ2}.
An invariant of our algorithm is that ε1 and ε2 are well typed under ∆. In the presence

of affine and persistent hypotheses, it is necessary to keep track of the type of each variable, as
unused pattern steps cannot be matched. Let us illustrate the problem with the following matching
equation: (

{!x1}�X[!x]
) ?

=

(
{!y1}�c1·!x;

{!y2}�c2·!x

)
As the output of the trace on the right (!y1 and !y2) is not used, these variables are still marked
and have no relation to the output of the left trace (!x1). The solution to this matching problem
would be to assign to X the trace on the right hand side: X ← {let {!y1}�c1 !x; {!y2}�c2 !x in©}.
However, the output © is missing. This problem has a solution only if !x1 has the same type as
either !y1 or !y2.

This example is a particular case of a matching problem of the form(
{∆}�X[θ]

) ?
= ε

which has a solution if we can match the context ∆ with the output context of ε. Assume that
both traces are well typed in a context ∆0 and ∆0 ` ε : ∆2. There is a solution for X if ∆ is a
valid output interface for ε, up to renaming. In other words, if there exists renamings ϕ1 and ϕ2

such that ∆2{ϕ2} 4 ∆{ϕ1}.
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The algorithm It is defined by the following judgments:

Contexts: ∆1
?
= ∆2 7→ ϕ1;ϕ2

∆1 < ∆2 7→ ϕ1;ϕ2

Spines: S1
?
= S2 7→ ϕ1;ϕ2

Expressions: ∆ ` E1
?
= E2 7→ σ

Traces: ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

The first context judgment is used for matching contexts introduced by steps, while the second

judgment is used for matching the output contexts in equations of the form ({∆}�X[θ])
?
= ε.

They are defined in Figure 7. The output renamings are always matching renamings. This is an
invariant of the matching algorithm (easily checked by induction on the rules). Rules dec@!-ctx-eq-*

deal with context equality. A judgment ∆1
?
= ∆2 7→ ϕ1;ϕ2 is derivable if ∆1 and ∆2 have the same

length, and variables in corresponding positions are either both marked (rule dec@!-ctx-eq-mark),
or both unmarked (rule dec@!-ctx-eq-unmark).

The judgment ∆1 < ∆2 7→ ϕ1;ϕ2, defined by the rules dec@!-ctx-weak-*, is derivable when every
declaration in ∆1 has a corresponding declaration in ∆2 (with a matching mark). It is defined by
induction on the structure of ∆1. If ∆1 is empty (rule dec@!-ctx-weak-empty), then ∆2 can only
contain affine and persistent variables. This means that all linear declarations in ∆1 must be
matched against a linear declaration in ∆2. A marked variable in ∆1 must be matched against a
marked variable in ∆2 (rule dec@!-ctx-weak-mark). Similarly, an unmarked variable in ∆1 must be
matched against an unmarked variable in ∆2 (rule dec@!-ctx-weak-unmark).

The judgment S1
?
= S2 7→ ϕ1;ϕ2 is given by rules dec@!-sp-* in Figure 8. It is similar to

context matching, except that spines contain no type information and variables may be repeated.
We require that variables in corresponding positions in matching spines be both marked or both
unmarked.

Matching on expressions and traces is defined in Figure 8. We write ε for the trace obtained by
marking every variable introduced in ε; similarly we write ∆ for the context obtained by replacing
every variable x declared in ∆ by x. We write ∆ for the context obtained by removing all marked
variables from ∆.

Matching on expressions is given by rule dec@!-expr. The problem is reduced to matching
traces by renaming the part of the output interfaces that is collected in the expression (recall that
renamings introduce fresh variables). This does not imply that both traces have the same interface,
as they might contain persistent and affine hypotheses that are not present in the context. Unlike
the case of CLF(, we do not use implicit α-renaming but instead build a renaming between the
interfaces on both traces incrementally.

Matching on traces is given by the rules dec@!-tr-*. In a matching equation of the form ε1
?
= ε2

we leave the order of ε1 fixed, while we implicitly reorder ε2 to match the order of ε1. Rule
dec@!-tr-empty matches the empty trace on both sides. This rule is applicable only if the left trace
does not contain monadic logic variables.

Rule dec@!-tr-step is similar to the corresponding rule in CLF(, except that we build explicit
renamings and we keep track of the context where both traces are well typed.

Finally, rule dec@!-tr-inst handles the case of a monadic logic variable. The input context on
both sides is the same, but the output context might differ. Hence, we need to ensure that all
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∆1
?
= ∆2 7→ ϕ1;ϕ2

· ?
= · 7→ ·; ·

dec@!-ctx-eq-empty

∆1
?
= ∆2 7→ ϕ1;ϕ2

x:a,∆1
?
= x:a,∆2 7→ ϕ1;ϕ2

dec@!-ctx-eq-unmark

∆1
?
= ∆2 7→ ϕ1;ϕ2

x1:a,∆1
?
= x2:a,∆2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)

dec@!-ctx-eq-mark

∆1 < ∆2 7→ ϕ1;ϕ2

· < @∆ 7→ ·; ·
dec@!-ctx-weak-empty

x:a ∈ ∆2 ∆1 < (∆2 \\ x) 7→ ϕ1;ϕ2

x:a,∆1 < ∆2 7→ ϕ1;ϕ2
dec@!-ctx-weak-unmark

x2:a ∈ ∆2 ∆1 <(∆2 \\ x2) 7→ ϕ1;ϕ2

x1:a,∆1 < ∆2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)
dec@!-ctx-weak-mark

Figure 7: Matching on Contexts in CLF@!

variables in the output context on the left (∆′) are contained in the output on the right (∆2). The
rule is applicable only if the inverse substitution θ−1 can be applied to {let ε2{ϕ2} in ∆′{ϕ1}}.

Correctness of the algorithm The proof of soundness of the matching algorithm proceeds in
a similar way as in the case of CLF(. However, in the case of CLF@! we cannot enforce that both
sides of a matching equation should have the same type (as shown in the examples above).

The following lemma states soundness of the matching algorithm for contexts.

Lemma 3.4 (Soundness of context matching for CLF@!)

• If ∆1
?
= ∆2 7→ ϕ1;ϕ2, then ∆1{ϕ1} ≡ ∆2{ϕ2}.

• If ∆1 < ∆2 7→ ϕ1;ϕ2, then ∆1{ϕ1} < ∆2{ϕ2}.

Proof: By induction on the given derivation. �

Soundness of matching for spines is similar to context equality.

Lemma 3.5 (Soundness of spine matching for CLF@!)

If S1
?
= S2 7→ ϕ1;ϕ2, then ϕ1S1 = ϕ2S2.

Proof: By induction on the given derivation. �

Finally, the next lemma states soundness of matching for expressions and traces.
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∆ ` E1
?
= E2 7→ σ

∆ ` ε1{∆′/∆1}
?
= ε2{∆′/∆2} 7→ σ;ϕ1;ϕ2

∆ ` {let ε1 in ∆1}
?
= {let ε2 in ∆2} 7→ σ

dec@!-expr

∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

∆ ` � ?
= � 7→ ·; ·; ·

dec@!-tr-empty

S1
?
= S2 7→ ϕ1;ϕ2 ∆′1

?
= ∆′2 7→ ϕ′1;ϕ′2

∆ ./ ∆′1{ϕ1} ` (ε1; ε′1){ϕ1ϕ
′
1}

?
= (ε2; ε′2){ϕ2ϕ

′
2} 7→ σ;ϕ′′1;ϕ′′2

∆ ` (ε1; {∆′1}�c·S1; ε′1)
?
= (ε2; {∆′2}�c·S2; ε′2) 7→ σ;ϕ′′1ϕ

′
1ϕ1;ϕ′′2ϕ

′
2ϕ2

dec@!-tr-step

∆0 ` ε : ∆2 ∆′ < ∆2 7→ ϕ1;ϕ2

∆0 ` ({∆′}�X[θ])
?
= ε 7→ (X ← θ−1({let ε{ϕ2} in ∆′{ϕ1}}));ϕ1;ϕ2

dec@!-tr-inst

S1
?
= S2 7→ ϕ1;ϕ2

· ?
= · 7→ ·; ·

dec@!-sp-nil

[ x/ x1]S1
?
= [ x/ x2]S2 7→ ϕ1;ϕ2

x1, S1
?
= x2, S2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)

dec@!-sp-mark

S1
?
= S2 7→ ϕ1;ϕ2

x, S1
?
= x, S2 7→ ϕ1;ϕ2

dec@!-sp-unmark

Figure 8: Matching Algorithm for CLF@!

Lemma 3.6 (Soundness of matching for CLF@!)

• If ∆ ` E1, E2 ⇐ {∆′} and ∆ ` E1
?
= E2 7→ σ, then σE1 ≡ E2.

• If ∆ ` ε1 : ∆1 and ∆ ` ε2 : ∆2 and ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2, then ∆2{ϕ2} 4 ∆1{ϕ1}

and σε1{ϕ1} ≡ ε2{ϕ2}.

Proof: By induction on the matching derivation. We only consider the most relevant cases.

Rule dec@!-expr. By inversion on the typing derivation, there exists ∆′1 and ∆′2 such that ∆ ` ε1 :
∆′1 with ∆′1 4 ∆1 and ∆ ` ε2 : ∆′2 with ∆′2 4 ∆2. Applying renamings ρ1 = ∆2/∆1 and
ρ2 = ∆2/∆2 respectively, we obtain ∆ ` ε1{ρ1} : ∆′1{ρ1} and ∆ ` ε2{ρ2} : ∆′2{ρ2}. By IH,
σε1{ρ1}{ϕ1} ≡ ε2{ρ2}{ϕ2}. We have then σ{let ε1{ρ1}{ϕ1} in ∆2} ≡ {let ε2{ρ2}{ϕ2} in ∆2}.
The result follows since {let ε1{ρ1}{ϕ1} in ∆2} ≡ {let ε1 in ∆1} and {let ε2{ρ2}{ϕ2} in ∆2} ≡
{let ε2 in ∆2}.
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Rule dec@!-tr-step. Let ∆ ` ε1; {∆′1}�c·S1; ε′1 : ∆1 and ∆ ` ε2; {∆′2}�c·S2; ε′2 : ∆2. Assume that
c:∆c( {∆′c} ∈ Σ. By inverting on the typing derivation, there exists ∆∗i and ∆S

i (for i = 1, 2)
such that

∆
εi−→ ∆∗i ./ ∆S

i

{∆′
i}�c·Si−−−−−−→ ∆∗i ./ ∆′i

ε′i−→ ∆i

where ∆S
i ` {∆′i}�c·Si : ∆′i and ∆S

i is the minimum context such that ∆S
i ` Si : ∆c. By IH,

ϕ1S1 ≡ ϕ2S2, and ∆′1{ϕ′1} ≡ ∆′2{ϕ′2}. From the former, we observer that ∆S
1 {ϕ1} ≡ ∆S

2 {ϕ2}.
Applying the frame rule to εi and ε′i and combining the results, we have ∆ ./ ∆′i ` εi; ε′i :
∆i ./ ∆S

i . Applying the renaming ϕiϕ
′
i we have that εi; ε

′
i{ϕiϕ′i} is well typed under context

∆ ./ ∆′1{ϕ1} (equal to ∆ ./ ∆′2{ϕ2}).
By IH, σε1; ε′1{ϕ1ϕ

′
1} ≡ ε2; ε′2{ϕ2ϕ

′
2}. The result follows.

Rule dec@!-tr-inst. By IH ∆2{ϕ2} 4 ∆′{ϕ1}. Then {let ε{ϕ2} in ∆′{ϕ2}} is well typed in context
∆0. Let X :: ∆X ` {∆′X} and ∆′0 ` θ : ∆X , where ∆′0 is a subcontext of ∆0. The result
follows since we assume that applying θ−1 to {let ε{ϕ2} in ∆′{ϕ2}} is well defined.

�

Next, we give completeness statements for the matching judgments. Recall that a matching
renaming is a renaming whose domain contains only marked variables and its codomain contains
only unmarked variables. Furthermore, a renaming is a bijection whose codomain contains only
fresh variables.

Lemma 3.7 (Completeness of context matching for CLF@!)

• Let ϕ1 and ϕ2 be matching renamings such that ∆1{ϕ1} ≡ ∆2{ϕ2}. Then there exists

ϕ′1 ⊆ ϕ1 and ϕ′2 ⊆ ϕ2 such that ∆1
?
= ∆2 7→ ϕ′1;ϕ′2.

• Let ϕ1 and ϕ2 be matching renamings such that ∆1{ϕ1} < ∆2{ϕ2}. Then there exists
ϕ′1 ⊆ ϕ1 and ϕ′2 ⊆ ϕ2 such that ∆1 < ∆2 7→ ϕ′1;ϕ′2.

Proof: By induction on the structure of ∆1. �

The next lemma states completeness of the matching judgment for spines.

Lemma 3.8 (Completeness of spine matching for CLF@!) Let S1 and S2 be spines and ϕ1

and ϕ2 matching renamings such that ϕ1S1 = ϕ2S2. Then there exists ϕ′1 ⊆ ϕ1 and ϕ′2 ⊆ ϕ2 such

that S1
?
= S2 7→ ϕ′1;ϕ′2.

Proof: By induction on the structure of the spine. �

Completeness of matching for traces is similar to the case of CLF(. However, we do not
assume that both traces have the same output interface. We write ∆1 ≈↓ ∆2 to mean ∆1 and ∆2

coincide (at least) in their linear declarations, i.e., if there exists ∆0, ∆′1, and ∆′2, with nolin(∆′1)
and nolin(∆′2), such that ∆1 = ∆0 ./ ∆′1 and ∆2 = ∆0 ./ ∆′2.
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Lemma 3.9 (Completeness of trace matching for CLF@!) Let ε1 and ε2 be expressions such
that ε2 is ground and ∆ ` ε1 : ∆1 and ∆ ` ε2 : ∆2, with ∆1 ≈↓ ∆2. Assume there exists matching
renamings ϕ1 and ϕ2, where dom(ϕ1) ⊆ @ε1• and dom(ϕ2) ⊆ @ε2•, and an assignment σ such

that σε1{ϕ1} ≡ ε2{ϕ2}, then there exists ϕ′1 and ϕ′2 such that ∆ ` ε1
?
= ε2 7→ σ;ϕ′1;ϕ′2 is derivable

and ϕ′1|ε2• = ϕ1 and ϕ′2|ε2• ⊆ ϕ2.

Proof: Let ∆0, ∆′1, and ∆′2 be contexts, with nolin(∆1) and nolin(∆2), such that ∆1 = ∆0 ./ ∆′1
and ∆2 = ∆0 ./ ∆′2. We can assume that all internal variables in ε1 and ε2 are marked, as well as
the variables in @ε1• and @ε2•. That is, we can consider the traces ε′i = εi{∆0/∆0}, for i = 1, 2,
because ε′1 and ε′2 satisfy the same hypotheses as the lemma.

We proceed by induction on the length of ε1. We have three cases.

1. Consider the case ε1 = δ; ε′1, where δ = {∆∗}�c·S. Then ε2 must be of the form δ′; ε′2 with
δ′ = {∆′∗}�c·S′. Furthermore, there exist internal renamings ϕ and ϕ′ such that δ{ϕ1}{ϕ} ≡
δ′{ϕ2}{ϕ′} and ϕε′1{ϕ1} ≡ ϕ′ε′2{ϕ2}. We can choose ϕ and ϕ′ such that ϕ|ε1• ⊆ ε1 and
ϕ′|ε1• ⊆ ε2. Matching ∆∗ and ∆′∗ succeeds (Lemma 3.7). Note that S = S′ since they only
include variables in ∆. Traces ε′1 and ε′2 satisfy the conditions of the lemma using renamings

ϕ1|@ε′1• and ϕ2|@ε′2•. By IH, there exists a derivation of ∆ ./ ∆∗{ϕ} ` ε′1{ϕ}
?
= ε′2{ϕ′}. The

result follows by applying rule dec@!-tr-step.

2. Consider the case ε1 = {∆∗}�X[θ]; ε′1; δ, where where δ = {∆∗}�c·S. Then ε2 must be of the
form ε′2; δ′ with δ′ = {∆′∗}�c·S′. Furthermore, there exist internal renamings ϕ and ϕ′ such
that ϕδ{ϕ1} ≡ ϕ′δ′{ϕ2} and ({∆∗}�X[θ]; ε′1{ϕ1}){ϕ} ≡ ε′2{ϕ2}{ϕ′}. We have ∆∗{ϕ1} ≡
∆∗{ϕ2}; matching the contexts succeeds. Furthermore, ϕϕ1S = ϕ′ϕ2S

′; matching the spines
succeeds. Similar to the previous case, the result follows from the IH and rule dec@!-tr-step.

3. Finally, consider the case ε1 = {∆′1}�X[θ]. Let σ = X ← {let ε0 in ∆0}. The hypothesis says
that (θε0){∆′1/∆0{θ}}{ϕ1} ≡ ε2{ϕ2}. Now, (θε0){∆′1/∆0{θ}}{ϕ1} ≡ (θε0){∆′1{ϕ1}/∆0{θ}}.
Then, the term {let ε2{ϕ2} in ∆′1{ϕ1}} is well typed. Then ∆′1{ϕ1} < ∆2{ϕ2}. The result
follows from completeness of context matching.

�

Lemma 3.10 (Completeness of expression matching for CLF@!) Let E1 and E2 be well-
typed expressions under context ∆ such that E2 is ground. If there exists σ such that σE1 ≡ E2,

then ∆ ` E1
?
= E2 7→ σ is derivable.

Proof: Follows directly from the previous lemma. �

3.3 Unification

As in CLF(, we restrict ourselves to the subset of CLF@! where there is at most one logic variable
occurrence in each side of the equation, and these variables are distinct. The unification algorithm
proceeds like matching, reducing the problem to the base case

∆ ` ε1; ({∆1}�X1[θ1])
?
= ({∆2}�X2[θ2]); ε2
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The intention is, as in CLF(, to assign ε2 to X1 and ε1 to X2. We assume that the linear parts of
the output coincide, but the affine and persistent do not have to coincide. We apply renamings on
both sides for the output interfaces, as well as the internal interfaces between ε1 and {∆1}�X1[θ1],
and between ({∆2}�X2[θ2]) and ε2.

Similar to the case of CLF( the general solution to this problem is the following:

X1 ← (ϕ1θ1)−1{let {∆′}�Z[θ′]; ε2{ϕ2} in ∆1{ϕ1}}
X2 ← (ϕ2θ2)−1{let ε1{ϕ1}; {∆′}�Z[θ′] in ∆2{ϕ2}}

The following conditions ensure that both terms above are well typed.

FV(ϕ1θ1) 4 FV(θ′) ∪ (•ε2{ϕ2} \ dom(∆′))

FV(ϕ2θ2) 4 •ε1{ϕ1} ∪ (FV(θ′) \ ε1•)
dom(∆1{ϕ1}) < ε2{ϕ2}• ∪ (dom(∆′) \ •ε2{ϕ2}) ∪ !dom(∆′)

dom(∆2{ϕ2}) < dom(∆′) ∪ (ε1• \ FV(θ′)) ∪ !(ε1•)

As in CLF(, there is an infinite number of solutions to these equations, whenever any exists.
Assume that (ϕ1, ϕ2, θ

′,∆′) is a solution. Then, (ϕ1, ϕ2, θ
′, (∆′,@∆0)) is also a solution for any

@∆0. However, these solution are not useful. We can restrict ∆′ so that they do not occur.
Specifically, we only search for solutions that satisfy dom(∆′) ⊆ dom(∆2{ϕ2}). Note from the first
equation that dom(θ′) ⊆ dom(θ1). The search space is thus finite, modulo equivalent renamings.
Recall, however, that the reduction of a unification problem to a problem of the form (3.3) is not
unique.

3.4 Extensions of CLF@!

We briefly consider an extension of CLF@! that extends the syntax of expressions to allow spines
in place of the trailing context of an expression. Expressions are then defined by the grammar:

E ::= {let ε in S}

For example, in this extension the expression {let {!x}�c in !x, !x} is well typed. The typing rule
for expressions is adapted as expected, typing the spine in the output context of the trace:

∆1 ` ε : ∆2 ∆2 ` S : ∆′

∆1 ` {let ε in S} ⇐ {∆′}

This implies that the spine must use all linear resources produced by the trace, but might not
mention all affine or persistent resources.

Matching We adapt the matching algorithm to this extension. The main change is in the match-
ing of trailing spines. It is now possible to match a marked persistent variable against an unmarked
persistent variable. The matching rules for spines are the following:

· ?
= · 7→ ·; ·

dec@!-sp-nil
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[ x/ x1]S1
?
= [ x/ x2]S2 7→ ϕ1;ϕ2

x1, S1
?
= x2, S2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)

dec@!-sp-mark

S1
?
= S2 7→ ϕ1;ϕ2

x, S1
?
= x, S2 7→ ϕ1;ϕ2

dec@!-sp-unmark

[!x2/!x1]S1
?
= S2 7→ ϕ1;ϕ2

!x1, S1
?
= !x2, S2 7→ (ϕ1, !x2/!x1);ϕ2

dec@!-sp-mark-unmark

With respect to Figure 8, we added rule dec@!-sp-mark-unmark to deal with cases such as the one
at the beginning of this section, where different variables on the left will be assigned to the same
variable on the right. Let us illustrate this point with an example. Consider the following matching
problem, where all variables are marked as usual{!x1, !x2}�X[·];

{·}�c·!x1

{·}�c·!x2

 ?
=

{!y}�c0;

{·}�c·!y
{·}�c·!y


Matching the last step on both traces reduces the problem to(

{!x1, !y}�X[·];
{·}�c·!x1

)
?
=

(
{!y}�c0;
{·}�c·!y

)
Matching again the last two steps involves using rule dec@!-sp-mark-unmark since we need to match
x1 with y. The problem is reduced to

{!y, !y}�X[·]; ?
= {!y}�c0;

This gives the solution X ← {let {!y}�c0 in !y, !y}, by applying rule dec@!-sp-mark. Note that this
rule and rules for context matching are unchanged.

However, note that the last equation is not well formed because of the context produced by
X. To prove that this algorithm is correct, we need to relax the typing rules to allow this kind
of context. Specifically, for steps of the form {∆}�X[θ], we allow repeated persistent variables in
∆ if they have the same type. We leave for future work to adapt to this extension the proofs of
soundness and completeness given in the previous section.

4 CLFΠ: Dependent Types

CLFΠ is an extension of CLF@! with dependent types and terms. CLFΠ is a significant fragment of
full CLF [31, 7]; many real-world specifications fit in this fragment (see the examples in Section 4.3).

The main structure of the matching algorithm is the same as in CLF@! and CLF(. However,
given the presence of terms in CLFΠ, we need to combine the matching algorithm for traces with
traditional techniques of higher-order matching based on pattern substitutions [19]. Furthermore,
because of dependent types, we cannot anymore remove steps from the middle of a trace, since this
might break dependencies. Instead, the algorithm proceeds by removing steps from the beginning
or the end of a trace (Section 4.2).
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4.1 Language

CLFΠ is an extension of CLF@! with dependent types and terms. CLFΠ includes types and kinds
as in LF, as well as full λ-terms. We use the LF-style presentation based on canonical forms
introduced in [31]. However, to simplify the presentation of the matching algorithm, we keep more
type information in the terms. This type information can be inferred by type reconstruction, so it
is not necessary for the user to provide it.

Contexts Similarly to CLF@!, a context is a sequence of variable declarations of the form x:A,
where A is a type (CLFΠ types are defined below) and is one of the three modalities of CLF@!: !
(persistent), @ (affine), or ↓ (linear). In CLFΠ, context variables have dependent types instead of
the base types of CLF@!.

Contexts: ∆ ::= · | ∆, x:A

As usual, we assume that each variable name x is declared at most once in a context. The typing
semantics below allows persistent variables (!x) to occur free in a type, but not linear (↓x) or
affine (@x) variables. Said differently, we allow dependencies on persistent, but not affine or linear
declarations.

We use the same operations defined in Section 3.1 for CLF@!. In particular, !∆, @∆, ↓∆, and
∆ \\ x have the same definition.

Terms The language of terms of our language combines aspects of the spine calculus of [6] and
of the pattern-based presentation of CLF in [28]. It is given by the following grammar:

Terms: N ::= λ̂∆. H·S
Heads: H ::= x | c
Spines: S ::= · | N,S

A term λ̂∆. H·S consists of an abstraction pattern ∆ applied to an atomic term H·S. Its head H
can be either a variable x or a constant c from the global signature Σ (whose definition remains as
in previous systems). Its spine S is a sequence of moded terms, and has therefore a structure similar
to a context. A spine can be viewed as the uncurrying of iterated applications in a Curry-style
λ-calculus. An atomic term is closely related to the monadic terms of [31, 28]. The abstraction
pattern ∆ is a binder for the term and its scope is H·S. It can be understood as the uncurrying of
iterated abstractions over individual variables. In examples, we omit empty abstraction contexts,
writing H·S for λ̂·. H·S. We also omit empty spines in an atomic term.

Given a spine S and a context ∆ of the same length (and type, see below), we write S/∆ for
the simultaneous substitution of each variable in ∆ with the corresponding term in S. Given a
term N , we write N [S/∆] for the term obtained after applying S/∆ hereditarily to N . Hereditary
substitution applies S/∆ and reduces the result at once to canonical form [31, 28]. We similarly
write S′[S/∆] and ∆′[S/∆] for the simultaneous substitution hereditarily applied to a spine and a
context, respectively.
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Traces and expressions Traces are essentially the same as in CLF@!. In particular, the argu-
ment of steps is a spine.

Traces: ε ::= � | ε1; ε2 | {∆}�c·S
Expressions: E ::= {let ε in ∆}

As in CLF@!, the context ∆ of an expression {let ε in ∆} collects all unused linear variables and,
some affine and persistent variables. In full CLF, expressions can appear in terms. We disallow
this here. Terms of the form λ̂∆. E are not considered since they play no part in our matching
algorithm, although we occasionally use them in the examples (see Section 4.3). Note that the head
of a step must be a constant from the signature — we will allow variables in Section 5.

Types and kinds While CLF( and CLF@! only mentioned constant types and only featured
traces, CLFΠ includes dependent types and full terms.

Terms and expressions are classified by types, themselves classified by kinds. They are defined
by the following grammar:

Base types: P ::= a·S | {∆}
Types: A ::= Π∆.P
Kinds: K ::= Π!∆.type

Base types are either atomic or monadic. Atomic types have the form a·S, where a is a constant
defined in the signature Σ applied to a spine S containing only persistent terms (i.e., terms of the
form !N). Monadic types have the form {∆}, which are equivalent to the positive types of CLF [29].
As in previous systems, the scope of the declarations in {∆} is limited to ∆ itself.

For convenience, we write A → B for Π(!x:A).B when x does not occur in B. Similarly, we
write A ( B for Π(↓x:A).B and A −@ B for Π(@x:A).B — recall that only persistent variables
can appear free in a type. These are the types of persistent, linear and affine functions, respectively.
Although the syntax prevents iterated functions, the general form Π∆.P captures them in uncurried
form: for example, the function A → B ( C −@ D is expressed as Π(!x:A, ↓y:B,@z:C). D. We
will often curry such types for clarity. As for terms, we usually omit empty contexts in types and
kinds: we write type for Π · .type and P for Π · .P .

Equality Equality for terms, spines, types and contexts, denoted ≡, is defined in the usual way,
up to α-equivalence; its definition is omitted. Equality for traces and expressions is defined as in
CLF@!. The notions of trace interface and trace independence are also as in CLF@! (Section 3.1).

Typing The typing semantics of our language is expressed by the following judgments:

Kinds: !∆ ` K : kind
Base types: !∆ ` P : type

Types: !∆ ` A : type
Contexts: !∆ ` ∆′

Signatures: ` Σ

Expressions: ∆ ` E ⇐ {∆}
Traces: ∆ ` ε : ∆′

Spines: ∆ ` S ⇐ ∆′

Terms: ∆ ` N ⇐ A

Their definition, in Figures 9 and 10, relies on equality ≡ (defined below) and the two additional
relations already seen in Section 3.1: ∆ = ∆1 ./ ∆2 and ∆1 4 ∆2. Recall that if ∆ = ∆1 ./ ∆2,
then !∆ = !∆1 = !∆2 and each affine or linear declaration in ∆ appear in exactly one of ∆1 and
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Kinds:
!∆ ` !∆′

!∆ ` Π!∆′.type : kind
tpΠ-kind

Base types:

a:Π!∆′.type ∈ Σ !∆ ` S : !∆′

!∆ ` a·S : type
tpΠ-tp-atom

!∆ ` ∆′

!∆ ` {∆′} : type
tpΠ-tp-mon

Types:
!∆ ` ∆′ !(∆,∆′) ` P : type

!∆ ` Π∆′.P : type
tpΠ-tp-prod

Contexts:

!∆ ` ·
tpΠ-ctx-empty

!∆ ` A : type !(∆, x: A) ` ∆′

!∆ ` x: A,∆′
tpΠ-ctx-cons

Signatures:

` ·
tpΠ-sig-empty

` Σ · ` A : type

` Σ, c:A
tpΠ-sig-type

` Σ · ` K : kind

` Σ, a:K
tpΠ-sig-kind

Figure 9: Typing Rules for Types and Kinds of CLFΠ

∆2; and ∆ 4 ∆′ iff ∆ = ∆′ ./ @∆0 for some context ∆0, i.e., if ∆′ is included in ∆ and ∆ does not
contain any linear hypotheses not present in ∆′. Furthermore, we implicitly rely on α-renaming to
ensure that a context extension or concatenation does not declare duplicate variable names.

The rules for types and kinds in Figure 9 are standard. Note that only persistent hypotheses
are used for type-checking them as linear and affine hypotheses cannot appear free in them — !∆ in
these rules is required to mention only persistent variables while ! applied to constructed contexts
filters out non-persistent declarations. Context typing works similarly.

The typing rules for terms and spines are a minor variant of the semantics of [6, 28] for these
entities. The typing rules for traces reflect that a trace can be seen as a state transformation. The
empty trace does not change the state. A step transforms a part of the state. The spine S in rule
tpΠ-step uses ∆1 and produces the ∆2 leaving the rest of the state, represented by ∆0, intact. The
typing rule for composition of traces effectively composes the transformations given by each trace.
Note that the monadic type of an expression does not leak out the variables produced by the trace
it embeds.

By relying on hereditary substitution, these judgment ensure that well-typed objects are canon-
ical, i.e., do not contain redexes [31, 28].

4.2 Matching

The infrastructure needed to carry out matching in CLFΠ differs from that of CLF@! mainly by the
addition of judgments that handle terms. The matching algorithm is extended with some of the
standard means to solve equations for atomic variables. Dependencies also limit matching steps at
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Terms:
!∆ ` ∆′ ∆,∆′ ` H·S ⇐ P

∆ ` λ̂∆′. H·S ⇐ P
tpΠ-lam

x:Π∆′.a·S′ ∈ ∆ ∆ \\ x ` S ⇐ ∆′ P ≡ a·S′[S/∆′]
∆ ` x·S ⇐ P

tpΠ-var

c:Π∆′.a·S′ ∈ Σ ∆ ` S ⇐ ∆′ P ≡ a·S′[S/∆′]
∆ ` c·S ⇐ P

tpΠ-const

Spines:

@∆ ` · : ·
tpΠ-sp-empty

!∆1 ` N ⇐ P ∆0 ` S[!N/!x] : ∆2[!N/!x]

∆0 ./ @∆1 ` !N,S ⇐ !x:A,∆2
tpΠ-sp-bang

@∆1 ` N ⇐ P ∆0 ` S[@N/@x] : ∆2[@N/@x]

∆0 ./ @∆1 ` @N,S ⇐ @x:A,∆2
tpΠ-sp-aff

↓∆1 ` N ⇐ P ∆0 ` S[↓N/↓x] : ∆2[↓N/↓x]

∆0 ./ ↓∆1 ` ↓N,S ⇐ ↓x:A,∆2
tpΠ-sp-lin

Traces:

∆ ` � : ∆
tpΠ-empty

∆ ` ε1 : ∆1 ∆1 ` ε2 : ∆2

∆ ` ε1; ε2 : ∆2
tpΠ-comp

c:Π∆′.{∆′′} ∈ Σ ∆1 ` S ⇐ ∆′ ∆2 ≡ ∆′′[S/∆′]

∆0 ./ ∆1 ` {∆2}�c·S : ∆0,∆2
tpΠ-step

Expressions:
∆0 ` ε : ∆1 ∆1 4 ∆′

∆0 ` {let ε in ∆′} ⇐ {∆′}
tpΠ-expr

Figure 10: Typing Rules for Terms and Traces of CLFΠ

the beginning or at the end of a trace only.

Equations As in the cases of CLF( and CLF@!, we consider steps with logic variables. However,
since CLFΠ also includes full terms, we need to consider logic variables as head of terms as well.

We slightly redefine the notion of contextual modal context to accommodate both kinds of
logic variables. Concretely, a contextual modal context is a sequence of logic variable declarations,
formally defined as follows:

Ψ ::= · | Ψ, X :: ∆ ` A

where A can be either a monadic type (for logic variables occurring as head of steps), or an atomic
type (for logic variables occurring as head of terms). We say that a logic variable is atomic (resp.
monadic) if its type is atomic (resp. monadic).

As in the cases of CLF( and CLF@!, each declaration of the form X :: ∆X ` AX determines
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a distinct logic variable X with its own context ∆X and type AX (under ∆X). The notion of
substitution is also redefined to include full terms:

θ ::= · | θ, N/ ′x

As in CLF@!, we allow linear-changing substitutions.
We extend the syntax of our language by allowing logic variables as heads and in steps and

terms:
Heads: H ::= x | c | X[θ]

Steps δ ::= {∆}�c·S | {∆}�X[θ]·S

Substitutions are type-checked using the following judgment:

∆1 ` θ : ∆2

The typing rules related to logic variables and substitutions are given in Figure 11.
For the rest of the report, we assume that all logic variables have base types. We write X[θ]

instead of X[θ]·(·). Logic variables with function types can indeed be lowered [21], i.e., replaced
with a new logic variable of base type. Given a logic variable X :: ∆X ` Π∆.P , we introduce a
new logic variable Y declared by Y :: ∆X ,∆ ` P and replace every occurrence of X by λ̂∆. Y [id],
where id is the identity substitution over the appropriate context.

Pattern substitutions A pattern substitution is a substitution whose codomain consists of dis-
tinct variables: it has the form ′

1y1/ 1x1, . . . ,
′
nyn/ nxn where y1, . . . , yn are pairwise distinct.

Pattern substitutions are bijections. Because they are injective, an equation of the form X[θ] = N
has at most one solution if θ is a (linear-changing) pattern substitution, namely θ−1N [19]. However,
it may have no solution if N contains variables not present in θ.

For linear-changing pattern substitutions the existence of the inverse applied to a term is subject
to the same conditions on the occurrences of variables as in CLF@!. In particular, a variable x occurs
in a persistent position (resp. affine position, linear position) in a term N if it occurs in N inside
a term of the form !N (resp. @N , ↓N). The following inversion result is similar to Lemma 3.3.

Lemma 4.1 (Inversion [30]) Let T be either an expression, a trace, a spine or a term, and θ a
linear-changing pattern substitution. There exists T ′ such that T ≡ θT ′ iff the following conditions
hold:

• for every !y/↓x ∈ θ, variable !y occurs exactly once in T in a linear position;

• for every !y/@x ∈ θ, variable !y occurs at most once in T in a linear or affine position;

• for every @y/↓x ∈ θ, variable @y occurs exactly once in T in a linear position.

Design of the matching algorithm As for other systems in this report, we consider trace
matching problems that have at most one monadic logic variable:

(*)

δ1; . . . ; δk;
{∆}�X[θ];
δk+1; . . . ; δn

 ?
=
(
δ′1; . . . ; δ′m

)
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Logic variables:

X :: ∆X ` Π∆′.a·!S′ ∈ Ψ ∆1 ` θ : ∆X ∆2 ` S : θ∆′ P ≡ a·!θS′[S/∆′]
∆1 ./ ∆2 ` X[θ]·S : P

tpΠ-lvar-atom

X :: ∆X ` Π∆′.{∆′′} ∈ Ψ ∆1 ` θ : ∆X ∆2 ` S ⇐ θ∆′ ∆3 ≡ ∆′′[S/∆′]

∆0 ./ ∆1 ./ ∆2 ` {∆3}�X[θ]·S : ∆0,∆3
tpΠ-lvar-mon

Substitutions:

@∆ ` · : @∆
tpΠ-sub-empty

∆0 ` θ : ∆2 1∆1 ` N ⇐ A

∆0 ./ 1∆1 ` θ, 1N/ 2x : ∆2, 2x:A
tpΠ-sub-cons

Figure 11: Typing Rules for Substitutions and Logic Variables of CLFΠ

where δi, δ
′
i have the form {∆}�c·S, where S might now contain atomic logic variables. Assuming

that all logic variables in a trace matching problem are applied to (linear-changing) pattern sub-

stitutions, matching is decidable for the reasons outlined in Section 2.2: in ε1
?
= ε2, any solution

instantiates the monadic logic variables in ε1 to subtraces of ε2 and, since there are only finitely
many subtraces, one can try all possible partitions of ε2 among these monadic logic variables.

The basis of the algorithm for CLFΠ is similar to the algorithms for CLF( and CLF@!: matching
individual steps until an empty trace is left on both sides, or a step with a monadic logic variable
is left on the left side. However, unlike CLF( and CLF@!, steps have to be matched at either end
of the trace. In the presence of dependent types, removing steps from the middle of the trace may
lead to ill-typed traces. For example, consider the trace{!x2, ↓y2}�c·!x1;

{!x3, ↓y3}�c·!x2;
{!x4, ↓y4}�c·!x3


in a context containing ↓!x1:a and c:Π!x:a.{!x′:a, ↓y:b !x}. Removing the middle step leads to an
ill-typed trace. Rule *-tr-step from the previous algorithms is divided in two rules: decΠ-tr-step-hd
and decΠ-tr-step-tl matching steps at the beginning and at the end of the trace, respectively.

Matching in full CLF, where expressions have the form {let ε0 in S}, is a much more difficult
problem than the one considered in Section 3.4. This is because substituting a trace can trigger
reductions. The CLF substitution rule

[X ← {let ε0 in S}](ε1; {∆}�X[θ]; ε2) = (ε1; θε0; [S/∆]ε2)

does not necessarily produce a canonical term, as [S/∆]ε2 might have redexes. These reductions
can have the effect of removing steps in ε2. Indeed, [S/∆]ε2 could even reduce to the empty trace.

Some of the issues described above are related to the use of names to represent variables. A
natural question is what happens if we use de Bruijn indices [10] for representing variables. However,
de Bruijn indices are not a good representation for concurrent traces. First, any permutation of
independent traces involves shifts. Second, a monadic logic variable stands for a shift of unknown
size. Put together, this means that, when matching two steps at the end of a trace, the indices

34



∆1
?
= ∆2 7→ ϕ1;ϕ2

· ?
= · 7→ ·; ·

decΠ-ctx-eq-empty

∆1
?
= ∆2 7→ ϕ1;ϕ2

x:A,∆1
?
= x:A,∆2 7→ ϕ1;ϕ2

decΠ-ctx-eq-unmark

[ x/ x1]∆1
?
= [ x/ x2]∆2 7→ ϕ1;ϕ2

x1:A,∆1
?
= x2:A,∆2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)

decΠ-ctx-eq-mark

∆1 < ∆2 7→ ϕ1;ϕ2

· < @∆ 7→ ·; ·
decΠ-ctx-weak-empty

x:A ∈ ∆2 ∆1 < (∆2 \\ x) 7→ ϕ1;ϕ2

x:A,∆1 < ∆2 7→ ϕ1;ϕ2
decΠ-ctx-weak-unmark

x2:A ∈ ∆2 ∆1{ x/ x1} < (∆2 \\ x2){ x/ x2} 7→ ϕ1;ϕ2

x1:A,∆1 < ∆2 7→ (ϕ1, x/ x1); (ϕ2, x/ x2)
decΠ-ctx-weak-mark

Figure 12: Matching on Contexts in CLFΠ

on both sides have no obvious relation between them as they depend on the order of the previous
steps.

The algorithm Our matching algorithm relies on the following judgments:

Contexts: ∆1
?
= ∆2 7→ ϕ1;ϕ2

∆1 < ∆2 7→ ϕ1;ϕ2

Spines: (∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2

Terms: (∆1 ` N1)
?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2

(∆1 ` H1·S1)
?
= (∆2 ` H2·S2) 7→ σ;ϕ1;ϕ2

Expressions: ∆ ` E1
?
= E2 7→ σ

Traces: ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

Context matching is similar to CLF@!, except for the presence of dependent types; the rules have
the same structure.

When matching spines (and terms), each side is well typed in its own context. This is necessary

for matching steps at the end of a trace: in the matching equation ε1; {∆1}�c·S1
?
= ε2; {∆2}�c·S2,

spines S1 and S2 are well typed in different contexts that contain the variables introduced by ε1
and ε2, respectively. Similarly to CLF@!, the algorithm also returns renamings between the marked
variables in S1 and S2 that are propagated to ε1 and ε2, respectively. Matching on spines and terms
is defined in Figure 13.
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(∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2

(· ` ·) ?
= (· ` ·) 7→ ·; ·; ·

decΠ-sp-nil

( 1, 2) ∈ {(@, !), (@,@), (↓, ↓)} (∆′′1|N1 ` N1)
?
= (∆′′2|N2 ` N2) 7→ σ;ϕ1;ϕ2

(σ∆′1{ϕ1} ` σϕ1S1)
?
= (∆′2{ϕ2} ` ϕ2S2) 7→ σ′;ϕ′1;ϕ′2

(∆′1 ./ 2∆′′1 ` 1N1, S1)
?
= (∆′2 ./ 2∆′′2 ` 1N2, S2) 7→ σ′σ;ϕ′1ϕ1;ϕ′2ϕ2

decΠ-sp-cons

(∆1 ` N1)
?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2

(∆1,∆
′ ` H1·S1)

?
= (∆2,∆

′ ` H2·S2) 7→ σ;ϕ1;ϕ2

(∆1 ` λ̂∆′. H1·S1)
?
= (∆2 ` λ̂∆′. H2·S2) 7→ σ;ϕ1;ϕ2

decΠ-term-lam

(∆1 ` H1·S1)
?
= (∆2 ` H2·S2) 7→ σ;ϕ1;ϕ2

(∆1|S1 ` S1)
?
= (∆2|S2 ` S2) 7→ σ;ϕ1;ϕ2

(∆1 ` c·S1)
?
= (∆2 ` c·S2) 7→ σ;ϕ1;ϕ2

decΠ-head-const

(∆1 \\ x|S1 ` S1)
?
= (∆2 \\ x|S2 ` S2) 7→ σ;ϕ1;ϕ2

(∆1 ` x·S1)
?
= (∆2 ` x·S2) 7→ σ;ϕ1;ϕ2

decΠ-head-var-unmark

((∆1 \\ x1){x/x1}|S1 ` S1)
?
= ((∆2 \\ x2){x/x2}|S2 ` S2) 7→ σ;ϕ1;ϕ2

(∆1 ` x1·S1)
?
= (∆2 ` x2·S2) 7→ σ; (ϕ1, x/x1); (ϕ2, x/x2)

decΠ-head-var-mark

∆2 < ∆1 7→ ϕ1;ϕ2

(∆1 ` X[θ])
?
= (∆2 ` H·S) 7→ (X ← (ϕ1θ)

−1ϕ2(H·S));ϕ1;ϕ2

decΠ-head-lvar

Figure 13: Matching on terms in CLFΠ

The judgment (∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2 is given by rules decΠ-sp-* and defined by

induction on the structure of the spines. In rule decΠ-sp-nil we require both spines to be empty (to
ensure that both spines have the same length) and both context to have no linear hypotheses (to
maintain the typing invariant). In the case of a non-empty spine, the first term of both spines is
matched and the results are propagated to the rest of the spine. We write ∆|N , where N is a term
well typed under ∆, to mean the minimum subcontext ∆0 of ∆ such that N is well typed under
∆0. Because of dependencies, this is not necessarily ∆|FV(N).

The judgments (∆1 ` N1)
?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2 and (∆1 ` H1·S1)

?
= (∆2 ` H2·S2) 7→

σ;ϕ1;ϕ2 are given by the rule decΠ-term-lam and the rules decΠ-head-*, respectively. Note in rule
decΠ-term-lam that the context introduced by the abstraction is added without marking variables.
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∆ ` E1
?
= E2 7→ σ

∆ ` ε1{∆2/∆1}
?
= ε2{∆2/∆2} 7→ σ;ϕ1;ϕ2

∆ ` {let ε1 in ∆1}
?
= {let ε2 in ∆2} 7→ σ

decΠ-expr

∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

∆ ` � ?
= � 7→ ·; ·; ·

decΠ-tr-empty

(∆|S1 ` S1)
?
= (∆|S2 ` S2) 7→ σ; ·; · σ∆1

?
= ∆2 7→ ϕ1;ϕ2

∆ ./ σ∆1{ϕ1} ` σϕ1ε1
?
= ϕ2ε2 7→ σ′;ϕ′1;ϕ′2

∆ ` ({∆1}�c·S1; ε1)
?
= ({∆2}�c·S2; ε2) 7→ σ′σ;ϕ′1ϕ1;ϕ′2ϕ2

decΠ-tr-step-hd

∆ ` ε1 : ∆′1 ∆ ` ε2 : ∆′2

(∆′1|S1 ` S1)
?
= (∆′2|S2 ` S2) 7→ σ;ϕ1;ϕ2 σϕ1∆1

?
= ϕ2∆2 7→ ϕ′1;ϕ′2

∆ ` σε1{ϕ1}
?
= ε2{ϕ2} 7→ σ′;ϕ′′1;ϕ′′2

∆ ` (ε1; {∆1}�c·S1)
?
= (ε2; {∆2}�c·S2) 7→ σ′σ;ϕ′′1ϕ

′
1ϕ1;ϕ′′2ϕ

′
2ϕ2

decΠ-tr-step-tl

∆0 ` ε : ∆2 ∆′ < ∆2 7→ ϕ1;ϕ2

∆0 ` ({∆′}�X[θ])
?
= ε 7→ (X ← θ−1{let ε{ϕ2} in ∆′{ϕ1}});ϕ1;ϕ2

decΠ-tr-inst

Figure 14: Matching on traces in CLFΠ

Marked variables are only used for variables introduced by a trace.
In rule decΠ-head-const, both terms have the same constant at the head, so the problem reduces

to matching the two spines. Rule decΠ-head-unmark is similar for the case when both terms have
the same unmarked variable at the head. In rule decΠ-head-unmark both terms contain marked
heads; the heads are identified and the spines are matched.

Finally, rule decΠ-head-lvar considers the case where the left term has a logic variable at the
head. Recall that we assume that logic variables have base types, so that the right-hand side must
be of the form H·S (actually λ̂(·). H·S). The solution is essentially X ← θ−1(H·S) (if defined),
but since both terms are typed in different contexts, we first need to match the contexts. Note
that ∆1 may contain affine and persistent hypotheses (occurring in θ) that are not matched in ∆2.
However, every linear hypotheses in ∆1 and ∆2 must be matched. We assume that the rule is
applicable only if the conditions of Lemma 4.1 are satisfied.

Matching on expressions and traces is defined in Figure 14. As for CLF@!, we write ε for the
trace obtained by marking every variable introduced in ε. We write ∆ for the context obtained by
removing all marked variables from ∆.

Matching on expressions is given by rule decΠ-expr, which is the same as in CLF@!. Matching
on traces is given by the rules decΠ-tr-*. Rule decΠ-tr-empty matches the empty trace on both sides
(same as CLF( and CLF@!).

Rule decΠ-tr-step-hd matches a step at the beginning of the traces. As explained above, we
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assume that the trace on the right side can be reordered (preserving dependencies). Both steps use
the same constant at the head. The rule proceeds by matching the spines using the necessary part
of the context ∆. We write ∆|S , where S is a spine well typed under ∆, to mean the minimum
subcontext ∆0 of ∆ such that S is well typed under ∆0. Note that S1 and S2 do not contain
marked variables so matching returns the empty renaming. Then, the output context of the steps
are matched. Matching proceeds with the rest of the trace. We add the output of the first step to
the context to ensure that the rest of the trace is well typed.

Rule decΠ-tr-step-tl matches a step at the end of the traces. The context necessary to type
S1 and S2 is part of the output context of ε1 and ε2, respectively. Similar to decΠ-tr-step-hd, the
spines and output contexts of the step are matched, and the results are propagated to the rest of
the trace. In this case, the context used to type the rest of the trace does not change.

Finally, rule decΠ-tr-inst handles the case of a monadic logic variable. The input context on
both sides is the same, but the output context might differ. Hence, we need to ensure that all
variables in the output context on the left (∆′) are contained in the output on the right (∆2). The
rule is applicable only if the inverse substitution θ−1 can be applied to {let ε2{ϕ2} in ∆′{ϕ1}}.

Correctness of the algorithm We prove that the algorithm in Figures 12, 13, and 14 is sound
and complete.

Before stating the results, we need some definitions. We say that a term (resp. assignment,
context, expression, spine, trace) is unmarked if no free variable is marked. Recall that a renaming
is a matching renaming if the domain contains only marked variables and its codomain contains
only unmarked variables. It is easy to check that all renamings and assignments returned by the
matching judgments are matching renamings.

The following lemmas state the soundness of the various matching judgments.

Lemma 4.2 (Soundness of matching for contexts)

• If ∆1
?
= ∆2 7→ ϕ1;ϕ2, then ∆1{ϕ1} ≡ ∆2{ϕ2}.

• If ∆1 < ∆2 7→ ϕ1;ϕ2, then ∆1{ϕ1} < ∆2{ϕ2}.

Proof: By induction on the given derivation. �

Lemma 4.3 (Soundness of matching for terms)

• Let N1 and N2 be well typed terms under contexts ∆1 and ∆2, respectively, such that ∆1 ≡
∆1|N1 and ∆2 ≡ ∆2|N2. If (∆1 ` N1)

?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2, then ∆1{ϕ1} 4 ∆2{ϕ2}

and σϕ1N1 = ϕ2N2.

• Let S1 and S2 be well typed spines under contexts ∆1 and ∆2, respectively, such that ∆1 ≡
∆1|S1 and ∆2 ≡ ∆2|S2. If (∆1 ` S1)

?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2, then ∆1{ϕ1} 4 ∆2{ϕ2} and

σϕ1S1 = ϕ2S2.

Proof: By simultaneous induction on the given derivation. �

Lemma 4.4 (Soundness of matching for traces)

• If ∆ ` E1, E2 ⇐ {∆} and ∆ ` E1
?
= E2 7→ σ, then σE1 ≡ E2
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• If ∆ ` ε1 : ∆1, ∆ ` ε2 : ∆2 and ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2, then ∆2{ϕ2} 4 ∆1{ϕ1} and

σε1{ϕ1} ≡ ε2{ϕ2}.

Proof: By induction on the matching derivation. We expand the most relevant cases.

Rule decΠ-expr. By inversion on the typing derivation, there exists ∆′1 and ∆′2 such that ∆ ` ε1 :
∆′1 with ∆′1 4 ∆1 and ∆ ` ε2 : ∆′2 with ∆′2 4 ∆2. Applying renamings ρ1 = ∆2/∆1 and
ρ2 = ∆2/∆2 respectively, we obtain ∆ ` ε1{ρ1} : ∆′1{ρ1} and ∆ ` ε2{ρ2} : ∆′2{ρ2}. By IH,
σε1{ρ1}{ϕ1} ≡ ε2{ρ2}{ϕ2}. We have then σ{let ε1{ρ1}{ϕ1} in ∆2} ≡ {let ε2{ρ2}{ϕ2} in ∆2}.
The result follows since {let ε1{ρ1}{ϕ1} in ∆2} ≡ {let ε1 in ∆1} and {let ε2{ρ2}{ϕ2} in ∆2} ≡
{let ε2 in ∆2}.

Rule decΠ-tr-step-hd. By IH, σS1 ≡ S2, and σ∆1{ϕ1} ≡ ∆2{ϕ2}. Note that ε1 and ε2 are well
typed under ∆,∆1 and ∆,∆2, respectively. Then, σε1{ϕ1} and ε2{ϕ2} are well typed under
∆ ./ σ∆1{ϕ1}. By IH, σ′σε1{ϕ1}{ϕ′1} ≡ ε2{ϕ2}{ϕ′2}. Then, ({∆2}�c·S2);σ′σε1{ϕ1ϕ

′
1} ≡

({∆2}�c·S2); ε2{ϕ2ϕ
′
2}. The result follows, since {∆2}�c·S2 ≡ σ({∆1}�c·S1){ϕ1ϕ

′
1}.

Rule decΠ-tr-step-tl. By inversion on the typing derivation, there exists contexts ∆0
1 and ∆0

2 such
that the following diagrams hold:

∆
ε1−→ ∆0

1 ./ ∆′1
{∆1}�c·S1−−−−−−−→ ∆0

1 ./ ∆1

∆
ε2−→ ∆0

2 ./ ∆′2
{∆2}�c·S2−−−−−−−→ ∆0

2 ./ ∆2

By renaming, ∆ ` ε1{ϕ1} : (∆0
1 ./ ∆′1){ϕ1} and ∆ ` ε2{ϕ2} : (∆0

2 ./ ∆′2){ϕ2}. By IH,
σ′σε1{ϕ1ϕ

′′
1} ≡ ε2{ϕ2ϕ

′′
2}. By IH on the last step of the trace, σϕ1S1 ≡ ϕ2S2, and

σ∆1{ϕ1ϕ
′
1} ≡ ∆2{ϕ2ϕ

′
2}. (Note that ϕ′i does not affect εi nor Si (for i = 1, 2).) Then,

σ({∆1}�c·S1){ϕ1ϕ
′
1}) ≡ ({∆2}�c·S2){ϕ2ϕ

′
2}). The result follows by combining with the IH

from the rest of the trace.

Rule decΠ-tr-inst. By IH ∆2{ϕ2} 4 ∆′{ϕ1}. Then {let ε{ϕ2} in ∆′{ϕ2}} is well typed in context
∆0. Let X :: ∆X ` {∆′X} and ∆′0 ` θ : ∆X , where ∆′0 is a subcontext of ∆0. The result
follows since we assume that applying θ−1 to {let ε{ϕ2} in ∆′{ϕ2}} is well defined.

�

Next, we give completeness statements for the matching algorithm for CLFΠ.

Lemma 4.5 (Completeness of context matching for CLFΠ)

• Let ϕ1 and ϕ2 be matching renamings such that ∆1{ϕ1} ≡ ∆2{ϕ2}. Then there exists ϕ′1 ⊆ ϕ1

and ϕ′2 ⊆ ϕ2 such that ∆1
?
= ∆2 7→ ϕ′1;ϕ′2.

• Let ϕ1 and ϕ2 be matching renamings such that ∆1{ϕ1} < ∆2{ϕ2}. Then there exists ϕ′1 ⊆ ϕ1

and ϕ′2 ⊆ ϕ2 such that ∆1 < ∆2 7→ ϕ′1;ϕ′2.

Proof: By induction on the structure of ∆1. �

The next lemma states completeness of the matching judgment for spines.
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Lemma 4.6 (Completeness of term matching for CLFΠ) Let F1 and F2 be elements
of the same syntactic category (either terms, spines, or head applied to spine, i.e., H·S) well typed
terms under contexts ∆1 and ∆2, respectively, such that ∆1 ≡ ∆1|F1 and ∆2 ≡ ∆2|F2. Assume
there exists matching renamings ϕ1 and ϕ2, and an assignment σ such that dom(ϕ1) ⊆ FV(F1),
dom(ϕ2) ⊆ FV(F2), σϕ1F1 = ϕ2F2, and ∆1{ϕ1} 4 ∆2{ϕ2}. Then, there exists ϕ′1 and ϕ′2 such

that (∆1 ` F1)
?
= (∆2 ` F2) 7→ σ;ϕ′1;ϕ′2 is derivable, ϕ′1 ⊆ ϕ1, and ϕ′2 = ϕ2.

Proof: By induction on the structure of the structure of the elements F1 and F2. �

Completeness of trace matching is similar to the case of CLF@!.

Lemma 4.7 (Completeness of trace matching for CLFΠ) Let ε1 and ε2 be expressions such
that ε2 is ground and ∆ ` ε1 : ∆1 and ∆ ` ε2 : ∆2, with ∆1 ≈↓ ∆2. Assume there exists matching
renamings ϕ1 and ϕ2, where dom(ϕ1) ⊆ @ε1• and dom(ϕ2) ⊆ @ε2•, and an assignment σ such

that σε1{ϕ1} ≡ ε2{ϕ2}, then there exists ϕ′1 and ϕ′2 such that ∆ ` ε1
?
= ε2 7→ σ;ϕ′1;ϕ′2 is derivable

and ϕ′1|ε2• = ϕ1 and ϕ′2|ε2• ⊆ ϕ2.

Proof: We proceed in a similar way as in Lemma 3.9. We can assume that ε1 and ε2 have all their
variables marked, i.e., they are of the form ε. If there are renamings ϕ1 and ϕ2 between the output
interfaces of ε1 and ε2, then there exists renamings ϕ∗1 and ϕ∗2 between the output interfaces of ε1
and ε2.

Let ε1 be δ1; . . . ; δn; {∆}�X[θ]; δn+1; . . . ; δm, and σ = (X ← {let ε0 in ∆0}), σ′. Then ε2 can be
written as

δ′1; . . . ; δ′n; ε′0; δ′n+1; . . . ; δ′m,

where each δ′i corresponds to δi and ε0 corresponds to X. Let δi = {∆i}�ci·Si and δ′i = {∆′i}�c′i·S′i.
Matching succeeds for δ1 and δ′1 since matching is complete for the terms in S1 and S′1. This
introduces a renaming between ∆1 and ∆′1 that is propagated to the rest of the trace. Rule
decΠ-tr-step-hd can be applied n times to match δi with δ′i for i = 1, . . . , n.

Since there is a renaming between the output interfaces of ε1 and ε2, matching δm and δ′m
succeeds; in particular, matching the output contexts return a renaming that is a subset of the
renaming between ε1 and ε2. Rule decΠ-tr-step-tl can be applied m times to match the steps δi and
δ′i for i = n+ 1, . . . ,m. σ′δ1; . . . ; δnσ

′; θε0;σ′θ0δn+1; . . . ;σ′θ0δm Finally rule decΠ-tr-inst for the last
step containing the logic variable. �

Lemma 4.8 (Completeness of expression matching for CLFΠ) Let E1 and E2 be well-typed
expressions under context ∆ such that E2 is ground. If there exists σ such that σE1 ≡ E2, then

∆ ` E1
?
= E2 7→ σ is derivable.

Proof: Follows directly from the previous lemma. �

4.3 Examples

We consider two examples of specifications: a π-calculus with correspondence assertions and
Kruskal’s algorithm for computing minimum spanning trees. Running this examples in a moded
semantics based on matching involves solving the kind of trace matching problems that we address
in this section.
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π-calculus We consider a formalization of the asynchronous π-calculus with correspondence as-
sertions [34], taken from [32]. We only present part of the code, the full version can be found in
Appendix A.1.

The syntax of processes is given by:

Q ::= 0 | (Q1|Q2) | !Q | (νx).Q | Q1 +Q | x(y).Q | x〈y〉 | beginL;Q | endL;Q

The standard meaning of these operators will be reviewed shortly as we describe their CLF encoding.
CLF supports, actually encourages, representations using higher-order abstract syntax. In the

case of the π-calculus, we use types pr (process), nm (name), and label, and the following signature
constants to represent processes:

stop : pr choose : pr→ pr→ pr

par : pr→ pr→ pr out : nm→ nm→ pr

repeat : pr→ pr inp : nm→ (nm→ pr)→ pr

new : (nm→ pr)→ pr begin : label→ pr→ pr

end : label→ pr→ pr

The process stop corresponds to (0) and represents a finished process (0); par·Q1Q2 corresponds
to (Q1|Q2) and represents a concurrent execution of Q1 and Q2; repeat·Q corresponds to !Q and
represents a process that can create copies of itself; new·(λx.Q) corresponds to νx.Q and repre-
sents a process that creates a new name x that can be used in Q (note the use of higher-order
abstract syntax to represent names); choose·Q1Q2 corresponds to Q1 + Q2 and represents a non-
deterministic choice between Q1 and Q2; inp·x (λy.Q) and outx y correspond to x(y).Q and x〈y〉,
respectively, and represent communication between processes; finally, begin·LQ and end·LQ rep-
resent correspondence assertions that have to be matched in well-formed processes.

The operational semantics is modeled by the type constructor run : pr → type. The process
state is represented in the context as a sequence of running processes of the form runP and actions
that transform the state. Examples of the actions representing the operational semantics are the
following:

ev stop : run·stop( {·}
ev par : run·(par·Q1Q2)( {@run·Q1,@run·Q2}

ev repeat : run (repeat·Q)( {!run·Q}
ev sync : run·(out·X Y )( run·(inp·X (λy.Q·y))

( {@run·(Q·Y )}
ev begin : run (begin·LQ)( {@run·Q}

A process state is modeled by declarations of type @run·Q and !run·Q; the latter represents a process
that can be executed repeatedly. The objects of type run·Q( {·} represent computations starting
from a process Q. Computations that only differ in the order of independent steps are represented
by the same object.

We illustrate execution with an example: consider the process νx.(x(y).Q(y)|x〈x〉), represented
by P ≡ new(λx.par(inpx (λy.Q(y)))(outxx)). Assuming p : runP , an execution of this process is
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the following:

EP ≡ {let

{!x, p′}�ev new p;
{p1, p2}�ev par p′;
{p1, P2}�ev sync p1 p2;

 in ·}

We will demonstrate our matching algorithm on computations drawn from this language below.
We consider a second operational semantics taken from Gordon and Jeffrey [11] based on event
sequences. An event is either beginL (where L is a label), endL, tint for internal actions, or genN ,
where N is a name (corresponding to new names). A computation is represented by P

s−→ P ′, where
s is an event sequence.

Event sequences are represented in CLF by a type ev and the following signature constants:

snil : ev

sint : ev→ ev

sbegin : label→ ev→ ev

send : label→ ev→ ev

sgen : (nm→ ev)→ ev

This second operational semantics is given by an abstraction predicate that relates an execution of
a process with an event sequence. It is represented in CLF by a type family abst : {·} → ev→ type.
Some of the constructors of this type family are the following:

abst sync : abst {let

(
{@r}�ev sync·@R1 @R2;

{·}�E· r

)
in ·} (sint·!s)

← (Πr.abst·(E·@r) !s)

abst begin : abst {let

(
{@r}�ev begin·!L@R;

{·}�E· r

)
in ·} (sbegin·!L !s)

← (Πr.abst·(E·@r) !s)

abst end : abst {let

(
{@r}�ev end·!L@R;

{·}�E· r

)
in ·} (send·!L !s)

← (Πr.abst·(E·@r) !s)

abst new : abst {let

(
{!x,@r1}�ev new·@R;

{·}�E·x, r1

)
in ·} (sgen·(λ!x.s x)

← (Πx, r1.abst·(E·x, r1c) (s x))

The constructor abst sync relates an execution that starts with a synchronization step with the event
sequence sint s if the rest of the execution is abstracted by s. Similarly, abst begin (resp. abst end)
treat the case where the execution starts with a begin (resp. end) step. Since independent steps in
an execution can be reordered, an execution can be related to several event sequences.

We can view this definition as a logic program where the first argument of abst is an input and
the second is an output. Running this program with a query of the form abst·eX, where e is a
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ground computation and X is a logic variable, reduces to solving matching problems of the form (*)
on page 33. The variable E in the above clauses represents an unknown computation (a trace in
CLF). For example, consider the process P and execution EP given above. Querying abstEP X for
X would mean trying all the constructors of the type family abst. Trying abst new would trigger
solving the following matching problem:

EP
?
= {let {!x,@r1}�ev new·@R; {·}�E·x, r1 in ·}

where R and E are logic variables — R is atomic and E is monadic. Matching succeeds yielding a
value for R and E, reducing the problem to solve a query of the form abst·E Y for Y , where E is
the value returned by matching.

Kruskal’s algorithm Next, we consider a CLF specification of Kruskal’s algorithm. This exam-
ple uses additive conjunctions which is not included in the subsystems of CLF that we consider in
this work. However, additive conjunctions are unproblematic for the problem of trace matching.

Kruskal’s algorithm is a greedy algorithm used to find a minimum spanning tree in a weighted
graph. It proceeds by picking the edge with lowest weight in the graph, removing it, and adding it
to a partially constructed tree if it does not create cycles. The process is repeated for all edges of
the graph. The partial tree is actually a set of connected components, each of them a tree. Adding
an edge does not create a cycle iff the vertices belong to different components.

This example also shows the use of traces to represent multisets. Weighted graphs are repre-
sented using the following signature:

node : type.

isnode : node→ type.

edge : nat→ node→ node→ type.

We omit the representation of natural numbers and their usual operations. A graph is represented
in the context by a set of affine resources of the form isnodeV to represent the vertices and a set
of linear resources of the form edgeN V W . Let us illustrate this representation with an example:

v1

v2

v3

v4

v56

1

3

4

2
5 @v1 : isnode, @v2 : isnode, @v3 : isnode,

@v4 : isnode, @v5 : isnode, @v6 : isnode,

↓e1 : edge 6 v1 v2, ↓e2 : edge 1 v1 v3, ↓e3 : edge 3 v1 v4,

↓e4 : edge 4 v2 v5, ↓e5 : edge 2 v3 v4, ↓e6 : edge 5 v4 v5

A tree is represented as a multiset of nodes and edges, using the following signature:

ktree : type.

itree : ktree→ node→ {·}.
kedge : ktree→ nat→ node→ node→ {·}.

component : (ktree→ {·})→ type.
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The canonical terms of type ktree→ {·} have the form

λ(!c : ktree).{let {·}�H1·c, S1; . . . ; {·}�Hn·c, Sn in ·},

where each Hi is either itree or kedge. To ensure that only itree and kedge are used as constructors
in the tree we use the flag ktree. Each monadic type is guarded by a similar flag. The above term
has a flag c that restrict us to use only constructors whose type includes a flag of the same type as
c. In the full program (Appendix A.2) we use another flag to find the minimal edge in a graph.

The following diagram shows a partial tree with two components and its representation in CLF:

v1

v2

v3

v4

v56

3

5
1

2

4

component (λ!c. let {{·}�itree c v1;

{·}�itree c v3;

{·}�itree c v4;

{·}�kedge c 1 v1 v3;

{·}�kedge c 2 v3 v4 in ·})
component (λ!c. let {{·}�itree c v2;

{·}�itree c v5;

{·}�kedge c 4 v2 v5 in ·})

Note there is no dependency between the steps that belong to a component. Steps in a component
can be reordered in any way, effectively encoding a multiset.

The algorithm itself is represented by the following signature:

kruskal : (ktree→ {·})→ type.

build : nat→ node→ node→ (ktree→ {·})→ type.

The type kruskalC is inhabited when C is a component representing the minimum spanning tree
of the graph represented in the context. To construct kruskalC we repeatedly call buildN ABC
with each edge (N,A,B). Let us consider some constructors of build.

build/1 : buildN ABC

(edgeN AB

(isnodeA

(isnodeB

((component (λ!c. {let {·}�itree cA;

{·}�itree cB;

{·}�kedge cN AB

in ·}
−@ kruskalC)).

The edge (N,A,B) is the edge with minimum weight in the graph (we show below how to find
the minimum edge). In this case, the nodes A and B are not in the tree yet, so we build an affine
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component containing only the edge (N,A,B) and proceed by calling kruskalC. Note that the edge
and the nodes are consumed.

build/2 : buildN ABC

(edgeN AB

(isnodeA

@− (component (λ!c. {let {·}�itree cB;

{·}�(K c)

in ·}))
((component (λ!c. {let {·}�itree cA;

{·}�itree cB;

{·}�kedge cN AB;

{·}�(K c)

in ·}
−@ kruskalC)).

In this case, the node A is not in the tree, but the node B is in a component of the form
λ!c. {let {·}�itree cB; {·}�(K !c) in ·}. The component is consumed and a new component gener-
ated adding the node A and the edge (N,A,B). To execute this program we need to match the
trace representing the tree to find a value for K. A similar constructor considers the symmetric
case where node A is in the tree while node B is not.

build/5 : buildN ABC

(edgeN AB

@− (component (λ!c. let {{·}�itree cA;

{·}�(K1 c) in ·}
@− (component (λ!c. let {{·}�itree cB;

{·}�(K2 c) in ·}
((component (λ!c. let {{·}�itree cA;

{·}�itree cB;

{·}�kedge cN AB;

{·}�(K1 c);

{·}�(K2 c); in ·} −@ kruskalC).

In this case, both nodes A and B are in the tree, but in different components. A new component
is generated that unites the components containing A and B. Executing this constructor implies
solving two matching problems on traces to find the components containing A and B.
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Finally, the type family kruskal is defined by the following constructors:

run : kruskalC

((mflag→ {minN AB}) & buildN ABC.

stop : kruskalC

@− componentC.

Clause run considers if it is possible to add edge (N,A,B) to the tree. Clause stop can only be
called when no linear hypotheses are in the context; in particular, this means that all edges have
been considered. At this point there is only one component in the context. The flag mflag is used
to compute the minimum edge of the graph by restricting the constructors used in terms of type
{min N A B} to use this flag. This means, for example, that itree and kedge cannot be used to
construct terms of this type, since they use a different flag (ktree). See Appendix A.2 for the full
code of this example in Celf.

Running this algorithm in a well-moded semantics would reduce to solving the kind of matching
problems we solve in this paper. For example, to apply rule build/5 we need to find a term of the
form component·(λ!c.E·c), where E is an expression, and solve the matching problem

E(c)
?
= {let

(
{·}�itree c A;

{·}�K1 c;

)
in ·}

where K1 is a logic variable (we do not need to solve A since it is given by the edge to be tried).
We also need to solve the matching problem

E′(c)
?
= {let

(
{·}�itree c B;

{·}�K2 c;

)
in ·}

for a term of the form component·(λ!c.E′·c). If both matching problems succeed, it means that
vertices A and B belong to different components, so adding the edge between them to the partial
tree will not create cycles. The search for the minimum spanning tree continues by consuming both
components and building one that combines both together with the edge between A and B. We do
not delve into the details of the operational semantics of Celf; see [17] for the semantics of Lollimon
on which Celf is based.

5 CLFx: Variable Heads

In this section, we extend CLFΠ with embedded clauses in traces. In previous systems, steps have
had the form {∆}�c·S where c is a constant from the signature. In CLFx steps can also have the
form {∆}�x·S where x is a variable in the context (e.g., introduced in a previous step).

Given that CLFx is close to CLFΠ we only present a summary of the language highlighting the
differences (Section 5.1). We present a comparison between CLFx and full CLF (Section 5.2). We
adapt the matching algorithm from CLFΠ to handle embedded clauses (Section 5.3).
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Traces:

∆ ` � : ∆
tpx-empty

∆ ` ε1 : ∆1 ∆1 ` ε2 : ∆2

∆ ` ε1; ε2 : ∆2
tpx-comp

c:Π∆′.{∆′′} ∈ Σ ∆1 ` S ⇐ ∆′ ∆2 ≡ ∆′′[S/∆′]

∆0 ./ ∆1 ` {∆2}�c·S : ∆0,∆2
tpx-step-const

x:Π∆′.{∆′′} ∈ ∆0 ∆1 ` S ⇐ ∆′ ∆2 ≡ ∆′′[S/∆′]

∆0 ./ ∆1 ` {∆2}�x·S : (∆0 \\ x),∆2
tpx-step-var

Figure 15: Typing Rules for Traces of CLFx

5.1 Language

Syntax The language CLFx (including logic variables) is defined by the following syntax:

Kinds: K ::= Π!∆.type
Base types: P ::= a·S | {∆}

Types: A ::= Π∆.P
Expressions: E ::= {let ε in ∆}

Traces: ε ::= � | δ | ε1; ε2
Steps: δ ::= {∆}�H·S

Heads: H ::= x | c | X[θ]
Spines: S ::= · | N,S

Terms: N ::= λ̂∆. H·S
Modalities: ::= ↓ | @ | !

Contexts: ∆ ::= · | Γ, x: A

The only difference with respect to CLFx is that a step can have a variable as a head. This allows us
to write forward-chaining specifications that use embedded clauses. Typical examples that include
this feature include shallow embedding of process calculi.

Typing The typing rules are given by the following judgments:

Kinds: !∆ ` K : kind
Base types: !∆ ` P : type
Types: !∆ ` A : type
Contexts: !∆ ` ∆′ : type
Expressions: ∆ ` E ⇐ {∆′}

Traces: ∆ ` ε : ∆′

Spines: ∆ ` S : ∆′

Terms: ∆ ` N ⇐ A
Substitutions: ∆ ` θ : ∆′

The typing rules for types, kinds, and contexts are the same as in CLFΠ (cf. Figure 9). The typing
rules for terms, spines, and expressions are also the same as in CLFΠ (cf. Figure 10). The typing
rules for traces are extended to deal with variables as heads and are given in Figure 15. Rules
tpx-step-const and tpx-step-var cover the cases where the variable at the head of a step is a constant
or a variable, respectively.

5.2 Comparison with CLF

The languages presented in this report, ultimately CLFx, differs from CLF [31, 28] in a several
ways.

1. CLF includes additive conjunctions at the level of types and, correspondingly, pairs and
projections at the level of terms. We decided to exclude it from our language since it is
orthogonal to the problem of matching. Reintroducing them is unproblematic.
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2. In a step, we replaced CLF’s untyped patterns with contexts in binding positions. This has
the effect of simplifying the typing rules in two ways: first contexts are flat while patterns can
be nested arbitrarily, and second the availability of the typing information avoids hunting it
down.

3. In CLF, expressions have the form {let ε in M}, where M is a monadic term (essentially a
spine). In our case, we only allow a context (basically a sequence of variables) instead of
terms. This is the biggest difference with respect to CLF. We make this restriction for two
reasons. First, most of the CLF specifications fit in the fragment presented in this paper.
Second, matching in full CLF (with monadic terms) is a much more difficult problem than
the one considered here. This is because substitution of traces can trigger more reductions.
As mentioned in Section 3.4, in CLF the equivalent rule for substitutions

[X ← {let ε0 in M}](ε1; {∆}�X[θ]; ε2) = (ε1; θε0; [M/∆]ε2)

does not give necessarily a canonical term, as [M/∆]ε2 might have redexes. These reductions
can have the effect of removing steps in ε2; in particular, after reductions, [M/∆]ε2 could be
reduced to the empty trace.

The language presented here allows us to develop a simpler algorithm for matching that is
described in the next section in the case of CLFx, our most complete fragment. We leave for
future work the problem of matching in full CLF.

5.3 Matching

Trace matching in CLFx is similar to matching in CLFΠ: individual steps at the beginning or at
the end of the trace are matched until a step with a monadic logic variable is obtained. The trace
matching problem is defined by

∆ ` ε1
?
= ε2

where ε1 and ε2 are well typed traces in the (unmarked) context ∆. Assume that ε1 = {∆1}�H·S1; ε′1.
The head H is either a constant c from the signature, or a variable x from ∆. In both cases, ε2 is
equivalent to a trace of the form {∆2}�H·S2; ε′2 with the same head H in the first step. Matching
steps at the beginning of the trace follows the same procedure as in CLFΠ.

Let us consider the case of matching steps at the end of the trace. Assume that ε1 has the form
ε′1; {∆1}�H1·S1. Then ε2 is equivalent to a trace of the form ε′2; {∆2}�H2·S2, where the last step
corresponds to the last step of ε1. If H1 is a constant c from the signature, then H2 must also be
c. If H1 is a variable x1 introduced in ε1, then H2 must be a variable x2 introduced in ε2. In the
latter case, matching the last step would identify x1 with x2. However, note that the types of x1

and x2 do not necessarily match, since they may depend on other variables introduced in the trace
and not yet matched. For example, consider the following matching problem:(

{!x1:a, x2:Πx′:a.R·x1, x
′}�c0·!x0;

{x3}�x2·!z

)
?
=

(
{!y1:a, y2:Πy′:a.R·y1, y

′}�c0·!y0;
{y3}�y2·!z

)
Note that in {x3}�x2·!z and {y3}�y2·!z, the variables x2 and y2 have different types; they depend on
x1 and y1, respectively. We could also match the types to have more assurance that we have chosen
the correct step. This approach would reduce the search space, but it is not strictly necessary; if
the wrong step was chosen, matching will eventually fail and backtrack to this point.
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We proceed in a similar way as in CLFΠ, by matching the spines and the contexts produced
by the step. Note, however, that when matching the contexts we cannot force the types to be the
same on both sides. For example, x3 and y3 do not have the same type in the example above.
Hence, we remove types from the context for matching this kind of steps. We define the operation
|∆| removes all types from ∆, changing them to a fixed type α. Formally, it is defined by the rules

| · | = ·
|∆, x:A| = |∆|, x:α

Although α is an abstraction that conflates arbitrary types, types in matching position have to
match because everything else around them does: for example, in rule x:-tr-step-tl-unmark, if ε1
and ε2 match, and S1 and S2 match, then the types of ∆1 and ∆2 also match, since it is the same
variable applied to the same spines.

The trace matching rules of CLFx are given in Figure 16. The matching rules for terms and
contexts are the same as for CLFΠ (Figures 13 and 12, respectively). As explained above, there are
two rules for matching at the end of traces, depending if the heads are marked (decx-tr-step-tl-mark)
or unmarked (decx-tr-step-tl-unmark).

Correctness of the algorithm The proof of soundness and completeness follow the same pattern
as for CLFΠ.

We need to slightly modify the soundness and completeness for spines and terms, since we
cannot enforce matching on the full contexts: consider a spine S well typed under a context ∆;
then ∆ might declare variables that do not occur in S (due to type dependencies). The matching
judgment only ensures that the spine is matched.

Lemma 5.1 (Soundness of matching for terms)

• Let N1 and N2 be well typed terms under contexts ∆1 and ∆2, respectively, such that ∆1 ≡
∆1|N1 and ∆2 ≡ ∆2|N2. If (∆1 ` N1)

?
= (∆2 ` N2) 7→ σ;ϕ1;ϕ2, then σϕ1N1 = ϕ2N2.

• Let S1 and S2 be well typed spines under contexts ∆1 and ∆2, respectively, such that ∆1 ≡
∆1|S1 and ∆2 ≡ ∆2|S2. If (∆1 ` S1)

?
= (∆2 ` S2) 7→ σ;ϕ1;ϕ2, then σϕ1S1 = ϕ2S2.

Proof: By simultaneous induction on the given derivation. �

The following lemma states the soundness of matching for traces and expressions.

Lemma 5.2 (Soundness of matching for traces)

• If ∆ ` E1, E2 ⇐ {∆} and ∆ ` E1
?
= E2 7→ σ, then σE1 ≡ E2.

• If ∆ ` ε1 : ∆1 and ∆ ` ε2 : ∆2 and ∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2, then ∆2{ϕ2} 4 ∆1{ϕ1}

and σε1{ϕ1} ≡ ε2{ϕ2}.

Proof: We proceed by induction on the given derivation. We only consider the case of rule
decx-tr-step-tl-mark. The case of rule decx-tr-step-tl-unmark is similar, while the other cases are
similar to the proof of soundness for CLFΠ (Lemma 4.4).
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∆ ` E1
?
= E2 7→ σ

∆ ` ε1{∆2/∆1}
?
= ε2{∆2/∆2} 7→ σ;ϕ1;ϕ2

∆ ` {let ε1 in ∆1}
?
= {let ε2 in ∆2} 7→ σ

decx-expr

∆ ` ε1
?
= ε2 7→ σ;ϕ1;ϕ2

∆1 ` S1
?
= ∆2 ` S2 7→ σ;ϕ1;ϕ2 ϕ1σ∆′1

?
= ϕ2∆′2 7→ ϕ′1;ϕ′2

∆1 ` {∆′1}�H·S1
?
= ∆2 ` {∆′2}�H·S2 7→ σ;ϕ′1ϕ1;ϕ′2ϕ2

decx-step

∆ ` � ?
= � 7→ ·; ·; ·

decx-tr-empty

(∆|S1 ` {∆1}�H·S1)
?
= (∆|S2 ` {∆2}�H·S2) 7→ σ;ϕ1;ϕ2

(∆ \\ H) ./ σ∆1{ϕ1} ` σϕ1ε1
?
= ϕ2ε2 7→ σ′;ϕ′1;ϕ′2

∆ ` ({∆1}�H·S1; ε1)
?
= ({∆2}�H·S2; ε2) 7→ σ′σ;ϕ′1ϕ1;ϕ′2ϕ2

decx-tr-step-hd

∆ ` ε1 : ∆′1 ∆ ` ε2 : ∆′2

(∆′1|S1 ` S1)
?
= (∆′2|S2 ` S2) 7→ σ;ϕ1;ϕ2 |∆1|

?
= |∆2| 7→ ϕ′1;ϕ′2

∆ ` σε1{ϕ1, x/x1}
?
= ε2{ϕ2, x/x2} 7→ σ′;ϕ′′1;ϕ′′2

∆ ` (ε1; {∆1}�x1·S1)
?
= (ε2; {∆2}�x2·S2) 7→ σ′σ;ϕ′′1ϕ

′
1ϕ1, x/x1;ϕ′′2ϕ

′
2ϕ2, x/x2

decx-tr-step-tl-mark

∆ ` ε1 : ∆′1 ∆ ` ε2 : ∆′2

(∆′1|S1 ` S1)
?
= (∆′2|S2 ` S2) 7→ σ;ϕ1;ϕ2 |∆1|

?
= |∆2| 7→ ϕ′1;ϕ′2

∆ ` σε1{ϕ1}
?
= ε2{ϕ2} 7→ σ′;ϕ′′1;ϕ′′2

∆ ` (ε1; {∆1}�H·S1)
?
= (ε2; {∆2}�H·S2) 7→ σ′σ;ϕ′′1ϕ

′
1ϕ1;ϕ′′2ϕ

′
2ϕ2

decx-tr-step-tl-unmark

∆0 ` ε : ∆2 ∆′ < ∆2 7→ ϕ1;ϕ2

∆0 ` ({∆′}�X[θ])
?
= ε 7→ (X ← θ−1{let ε{ϕ2} in ∆′{ϕ1}});ϕ1;ϕ2

decx-tr-inst

Figure 16: Matching on traces in CLFx

By IH on the spines, we have σS1{ϕ1} ≡ S2{ϕ2}. By IH on the trace, σ′σε1{ϕ1, x/x1}{ϕ′′1} ≡
ε2{ϕ2, x/x2}{ϕ′′2}, and σ′σ∆′1{ϕ1, x/x1}ϕ′′1 ≡ ∆′2{ϕ2, x/x2}ϕ′′2. This means that σ(x·S1){ϕ1} ≡
x·S2{ϕ2}. Furthermore, this ensures that the contexts restricted to S1 and S2 also match, as well
as ∆1 and ∆2 (when applied to the resulting assignments and renamings). By IH on the context,
|∆1|{ϕ′1} = |∆2|{ϕ′2}. The result follows. �

Completeness of the matching algorithm follows the same pattern as in CLFΠ. As in the case
of soundness, we slightly change the completeness theorem for terms and spines.
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Lemma 5.3 (Completeness of matching for terms)

• Let N1 and N2 be well typed terms under contexts ∆1 and ∆2. Assume there exists matching
renamings ϕ1 and ϕ2, and an assignment σ such that dom(ϕ1) ⊆ FV(N1), dom(ϕ2) ⊆
FV(N2), and σϕ1N1 ≡ N2. Then, there exists ϕ′1 and ϕ′2 such that (∆1 ` N1)

?
= (∆2 ` N2) 7→

σ;ϕ′1;ϕ′2, ϕ′1 ⊆ ϕ1 and ϕ′2 = ϕ2.

• Let S1 and S2 be well typed terms under contexts ∆1 and ∆2. Assume there exists matching
renamings ϕ1 and ϕ2, and an assignment σ such that dom(ϕ1) ⊆ FV(S1), dom(ϕ2) ⊆ FV(S2),

and σϕ1S1 ≡ S2. Then, there exists ϕ′1 and ϕ′2 such that (∆1 ` S1)
?
= (∆2 ` S2) 7→ σ;ϕ′1;ϕ′2,

ϕ′1 ⊆ ϕ1 and ϕ′2 = ϕ2.

Proof: By simultaneous induction on the given derivation. �

Completeness of trace and expression matching is stated in the following two lemmas.

Lemma 5.4 (Completeness of trace matching for CLFx) Let ε1 and ε2 be well-typed expres-
sions under context ∆ such that ε2 is ground. Assume there exists renamings ϕ1 and ϕ2, where
dom(ϕ1) ⊆ @ε1• and dom(ϕ2) ⊆ @ε2•, and an assignment σ such that σε1{ϕ1} ≡ ε2{ϕ2}, then

there exists ϕ′1 and ϕ′2 such that ∆ ` ε1
?
= ε2 7→ σ;ϕ′1;ϕ′2 is derivable.

Proof: Similar to Lemma 4.7. �

Lemma 5.5 (Completeness of expression matching for CLFx) Let E1 and E2 be well-typed
expressions under context ∆ such that E2 is ground. If there exists σ such that σE1 ≡ E2, then

∆ ` E1
?
= E2 7→ σ is derivable.

Proof: Follows directly from the previous lemma. �

6 Related work

We are not aware of any comprehensive study of matching, let alone unification, for computational
traces, even as they are at the heart of automated reasoning on parallel and concurrent computa-
tions. Closest is the work of Messner [18], which studies a specific form of matching for Mazurkiewicz
traces [26]. Mazurkiewicz traces are partially commutative strings over a given alphabet of symbols
representing the atomic steps of a concurrent computation: like ordinary strings, concatenation is
associative and has the empty string as its unit; unlike ordinary strings, it allows designated pairs of
symbols to commute. These structures, called trace monoids, capture the computations in simple
concurrent languages at an abstract level: in particular, the notion of independence in Mazurkiewicz
traces is given by this fixed relation on symbols. The notion of concurrent trace studied in this
report is more complex in that individual steps have the structured form {∆}�c·S rather than
just a symbol — this is akin to going from a propositional to a first-order calculus. The variables
used in S and produced in ∆ enable a finer notion of independence between concurrent steps that
is based on explicit dependencies (modeled by the variables in S and ∆). This binding structure
makes our computational traces both more concrete and more general than Mazurkiewicz traces.

The fragment of CLF examined in this paper captures a general form of concurrent computation
based on state transition rules. Languages that can be directly expressed in this fragment include
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place/transition Petri nets [24], colored Petri nets [15] and various forms of multiset rewriting [2, 3].
CLF also allows arbitrary combinations of forward chaining, typical of concurrent computations,
and backward chaining found in top-down logic programming. The operational semantics of CLF
is based on the operational semantics of Lollimon [17]. In this paper, we focused on matching for
forward chaining traces, as unification in the backward chaining sublanguage is well understood [21].

Matching and unification have been studied extensively for related equational theories [1, 9].
Examples include unification in a commutative monoid (ACU unification) which is the basis of
any multiset rewriting framework and string unification (which is associative with a unit). The
problem studied here is characterized by a partially commutative operation and, maybe surprisingly,
is substantially harder than either. Indeed, it is more closely related to problems such as graph
matching and isomorphism, analyzed for example in [35]: as we saw in Section 2.4, the dependency
between computational steps is captured rather directly by the edges of a graph. In general,
subgraph matching techniques (combined with higher-order matching on λ-terms) could be used
to match the known steps of the trace.

7 Conclusions and Future Work

We have presented sound and complete algorithms to perform matching on a series of fragments
of CLF, with at most one variable standing for an unknown concurrent trace. We showed that the
matching problem is decidable for the fragments of CLF studied in this report. These fragments
cover a large subset of CLF sufficient to express many real-world specifications. We exemplified
the use of matching with two examples: π-calculus and Kruskal’s algorithm.

We also studied the unification problem with at most one variable standing for an unknown
trace on each side of the equation. We showed that the matching algorithm can be adapted to
unification in the simply-typed case (systems CLF( and CLF@!). We leave for future work a more
systematic study of unification.

In the short term, this algorithm will be used as the basis for a run-time environment for well-
moded CLF programs. Our long-term objective is to extend the Celf implementation of CLF with
algorithms and methods for reasoning about concurrent and distributed computations. This work
represents a small step in that direction.
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[29] Anders Schack-Nielsen and Carsten Schürmann. Celf — A logical framework for deductive
and concurrent systems (system description). In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, IJCAR, volume 5195 of LNCS, pages 320–326. PUB-SP, 2008.
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A Examples in Celf

We show the Celf code for the examples considered in Section 4.3.

A.1 π-calculus

%%

%% Processes (untyped, asynchronous, non-polyadic)

%%

pr : type.

ch : type.

out : ch -> ch -> pr.

inp : ch -> (ch -> pr) -> pr.

choose : pr -> pr -> pr.

new : (ch -> pr) -> pr.

par : pr -> pr -> pr.

repeat : pr -> pr.

stop : pr.

label : type.

begin : label -> pr -> pr.

end : label -> pr -> pr.

%%

%% Executions

%%

%% Executions can stop at any time. (See exec_encap.)

%%

flag : type.

exec : flag -> pr -> type.

run : pr -> type.

ev_stop : flag -> run stop -o {1}.

ev_par : flag -> run (par P Q) -o {@run P * @run Q}.

ev_repeat : flag -> run (repeat P) -o {!run P}.

ev_choose1 : flag -> run (choose P Q) -o {@run P}.

ev_choose2 : flag -> run (choose P Q) -o {@run Q}.

ev_new : flag -> run (new \!x. P x) -o {Exists x. @run (P x)}.

ev_sync : flag -> run (out X Y) -o run (inp X \!y. Q !y) -o {@run (Q !Y)}.

ev_begin : flag -> run (begin L P) -o {@run P}.

ev_end : flag -> run (end L P) -o {@run P}.
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exec_encap : Pi f. exec f P <- (run P -o {1}).

%%

%% Traces

%%

%% We capture bound channel names inp a trace so that labels can

%% depend on channel names if necessary.

%%

ev : type.

snil : ev.

sint : ev -> ev.

sbegin : label -> ev -> ev.

send : label -> ev -> ev.

sgen : (ch -> ev) -> ev.

%%

%% Abstraction

%%

%% We can stop abstracting at any time. Thus the set of traces

%% abstractable from an execution is prefix-closed. (See abst_nil.)

%%

abst : (flag -> {1}) -> ev -> type.

abst_nil : abst E snil.

abst_stop : abst (\!x. { let {1} = ev_stop x R in let {1} = E !x in 1 }) S

<- abst (\!x. E !x) S.

abst_par : abst (\!x. { let {[@r1,@r2]} = ev_par x R in

let {1} = E !x r1 r2 in 1 }) S

<- (Pi r1. Pi r2. abst (\!x. E !x r1 r2) S).

abst_repeat : abst (\!x. { let {!r1} = ev_repeat x R in

let {1} = E x r1 in 1 }) S

<- (Pi r1. abst (\!x. E x r1) S).

abst_choose1 : abst (\!x. { let {@r1} = ev_choose1 x R in

let {1} = E x r1 in 1 }) (sint S)

<- (Pi r1. abst (\!x. E x r1) S).

abst_choose2 : abst (\!x. { let {@r2} = ev_choose2 x R in

let {1} = E x r2 in 1 }) (sint S)

<- (Pi r2. abst (\!x. E x r2) S).

abst_new : abst (\!f. { let {[!x,@r1]} = ev_new f R in

let {1} = E f !x r1 in 1 }) (sgen \!x. S x)

<- (Pi x. Pi r1. abst (\!f. E f !x r1) (S x)).

abst_sync : abst (\!f. { let {@r} = ev_sync f R1 R2 in

let {1} = E f r in 1 }) (sint S)

<- (Pi r. abst (\!f. E f r) S).

abst_begin : abst (\!f. { let {@r} = ev_begin f R in
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let {1} = E f r in 1 }) (sbegin L S)

<- (Pi r. abst (\!f. E f r) S).

abst_end : abst (\!f. { let {@r} = ev_end f R in

let {1} = E f r in 1 }) (send L S)

<- (Pi r. abst (\!f. E f r) S).

A.2 Kruskal’s Algorithm

%%

%% Natural numbers

%%

nat : type.

z : nat.

s : nat -> nat.

le : nat -> nat -> type.

le0 : le z N.

les : le (s N) (s M)

<- le N M.

add : nat -> nat -> nat -> type.

add/z : add z N N.

add/s : add (s M) N (s K)

<- add M N K.

%%

%% Graphs

%%

node: type.

isnode : node -> type.

edge : nat -> node -> node -> type.

%%

%% Trees. Connected components

%%

ktree : type.

itree : ktree -> node -> {1}.

kedge : ktree -> nat -> node -> node -> {1}.

component : (ktree -> {1}) -> type.

%%

%% Find the minimal edge in a graph

%%

min : nat -> node -> node -> type.

mflag : type.

min/edge : mflag -> edge N A B -o {min N A B}.

min/min : mflag -> min N A B -o min M _ _ -o le N M -> {min N A B}.
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%%

%% The algorithm

%%

kruskal : (ktree -> {1}) -> type.

build : nat -> node -> node -> (ktree -> {1}) -> type.

build/1 : build N A B C

o- edge N A B

o- isnode A

o- isnode B

o- (component (\!c. {let {1} = itree c A in

let {1} = itree c B in

let {1} = kedge c N A B in 1}) -@ kruskal C).

build/2 : build N A B C

o- edge N A B

o- isnode A

@- component (\!c. {let {1} = itree c B in

let {1} = (K !c) in 1})

o- (component (\!c. {let {1} = itree c B in

let {1} = itree c A in

let {1} = kedge c N A B in

let {1} = (K !c) in 1}) -@ kruskal C).

build/3 : build N A B C

o- edge N A B

o- isnode B

@- component (\!c. {let {1} = itree c A in

let {1} = (K !c) in 1})

o- (component (\!c. {let {1} = itree c A in

let {1} = itree c B in

let {1} = kedge c N A B in

let {1} = (K !c) in 1}) -@ kruskal C).

build/4 : build N A B C

o- edge N A B

@- component (\!c. {let {1} = itree c A in

let {1} = itree c B in

let {1} = (K !c) in 1})

o- (component (\!c. {let {1} = itree c A in

let {1} = itree c B in

let {1} = (K !c) in 1}) -@ kruskal C).

build/5 : build N A B C

o- edge N A B

@- component (\!c. {let {1} = itree c A in

let {1} = (K1 !c) in 1})

@- component (\!c. {let {1} = itree c B in

let {1} = (K2 !c) in 1})

o- (component (\!c. {let {1} = itree c A in

let {1} = itree c B in
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let {1} = kedge c N A B in

let {1} = (K1 !c) in

let {1} = (K2 !c) in 1}) -@ kruskal C).

run : kruskal C

o- (mflag -> {min N A B}) & build N A B C.

stop : kruskal C

@- component C.
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