
Abstractions for Model Checking System Security

Jason Douglas Franklin

CMU-CS-12-113

April 2012

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Anupam Datta, Chair

Sagar Chaki,
Virgil Gligor,

Jeannette Wing
John Mitchell, Stanford University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Jason Douglas Franklin

This research was sponsored by the Department of Homeland Security Scholarship and Fellowship
Program, the National Science Foundation Graduate Research Fellowship, the NSF Science and
Technology Center TRUST.
The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Software Model Checking, Semantic Security, Abstraction, Parametricity,
Refinement

To those that favor thought before blind action.

iv

Abstract

Systems software such as operating systems, virtual machine monitors, and hypervisors
form the foundation of security for desktop, cloud, and mobile platforms. Despite their ubiq-
uity, these security-critical software systems regularly suffer from serious vulnerabilities in
both their design and implementation. A critically important goal is to automatically provide
verifiable security guarantees for systems software.

Software model checking is a promising approach toward automated verification of pro-
grams. Yet, the size and complexity of systems software presents a major challenge to model
checking their security properties. In this thesis, we develop a framework that enables au-
tomated, verifiable security guarantees for a wide range of systems software. Central to the
framework are novel abstractions that improve the scalability of model checking the security
of systems. The abstractions exploit structure common to systems software and the non-
determinism inherent in adversary models.

Our key insight is that much of the complexity of model checking security properties
of systems software stems from two sources: 1) system data-structures and functions that
operate over them with a form of well-structured data-flow, and 2) adversary-controlled data
structures and functions that operate over them. We develop a family of techniques to abstract
these components of a system.

We introduce the problem of semantic security verification and develop three abstrac-
tions to improve the scalability of model checking secure systems: 1) Constrained-to-System-
Interface (CSI) adversary abstraction, a technique to scalably integrate flexible system-
specific adversary models into the verification process, 2) Small Model Analysis, a family
of parametric verification techniques that scale even when a system and adversary operate
over unbounded but finite data structures, and 3) Havoc abstraction, a source-level analysis
technique that reduces the verification complexity associated with system components that
operate on adversary-controlled data structures.

We prove that our abstractions are sound—no attacks are missed by the abstractions.
Further, we prove a completeness result that provides theoretical justification for our zero false
positive rate. Finally, we prove a refinement theorem that carries our results to a hypervisor,
implemented in a subset of the C programming language.

We perform a number of case studies focused on verifying hypervisors which were de-
signed to enforce a variety of security properties in the presence of adversary-controlled guest
operating systems. These empirical evaluations demonstrate the effectiveness of our abstrac-
tions on several hypervisors. We identify previously unknown vulnerabilities in the design of
SecVisor, the C code of ShadowVisor (a prototype hypervisor), and successfully model check
their code using the CBMC model checker after fixing the vulnerabilities. Without the ab-
stractions, CBMC - a state-of-the-art model checker - is unable to model check these systems;
in all attempts, it either exhausts system resources or times out after an extended period. With
the abstractions, CBMC model checks the systems in a few seconds.

vi

Acknowledgments

First and foremost, I wish to thank my parents, Beth and Doug Franklin, for all their
support over the years and my advisor, Anupam Datta, and collaborator, Sagar Chaki, for
their patience, guidance, and mentoring.

Additionally, I would like to thank the following groups:

Committee members: Sagar Chaki, Anupam Datta, Virgil Gligor, John Mitchell, and
Jeannette Wing.

Undergraduate advisors: Eric Bach and Mary Vernon.

Professors from undergraduate studies: Jin-Yi Cai, Somesh Jha, and Marvin Solomon.

Professors and researchers from graduate school and internships: David Anderson,
Mor Harchol-Balter, Arie Gurfinkel, Garth Gibson, Yuri Gurevich, Daniel Kroen-
ing, K. Rustan M. Leino, Adrian Perrig, Ofer Strichman, Luis von Ahn, and Helen
Wang.

Co-authors: John Bethencourt, Deepak Garg, Limin Jia, Michael Kaminsky, Dilsun Kay-
nar, Mark Luk, Jonathan M. McCune, Amar Phanishayee, Arvind Seshadri, Parisa
Tabriz, Lawrence Tan, Michael Carl Tschantz, Jamie Van Randwyk, Amit Vasude-
van, and Vijay Vasudevan.

Department staff: Deborah Cavlovich and Catherine Copetas.

And finally, those friends that haven’t been mentioned above: Nels Beckman, Jim
Cipar, Mike Dinitz, Alex Grubb, Shiva Kaul, Leonid Kontorvich, Elie Krevat, Dan
Lee, Stephen Magill, Rowena Mittal, Abe Othman, Milo Polte, and Elaine Shi.

vii

viii

Contents

1 Introduction 1

2 The Semantic Security Verification Problem 7
2.1 Introduction . 7
2.2 Definition of Semantic Security . 7
2.3 Verification Framework Goals . 8
2.4 The CSI-Adversary Abstraction . 8

2.4.1 Kernelized Systems and their Adversary Models 9
2.4.2 Adversary Model Framework 9
2.4.3 Flexible, System-Specific Adversary Models 10
2.4.4 Expressiveness of CSI-Adversaries 10
2.4.5 Flexibility, Scalability, and Simplicity 11

2.5 Scalability and Abstraction . 12
2.5.1 Overcoming Data Structure Complexity 12
2.5.2 Overcoming Adversary-induced Complexity 13

2.6 Interpreting Verification Results . 15

3 Parametric Verification 17
3.1 Introduction . 17
3.2 Motivating Example: SecVisor . 20
3.3 Small Model Analysis . 23

3.3.1 PGCL Syntax . 23
3.3.2 PGCL Semantics . 27
3.3.3 Specification Logic . 29
3.3.4 Small Model Theorem . 35
3.3.5 Proofs of Small Model Theorems 37

3.4 Case Studies . 42
3.4.1 SecVisor . 43

ix

3.4.2 sHype Security Architecture . 48
3.5 Expressiveness and Limitations . 53
3.6 Conclusion . 56

4 Parametric Verification with Hierarchical Data Structures 59
4.1 Introduction . 59
4.2 Address Space Translation and Separation 62
4.3 Definitions of PGCL+ and PTSL . 65

4.3.1 PGCL+ Syntax . 65
4.3.2 ShadowVisor Code in PGCL+ 66
4.3.3 PGCL+ Semantics . 69
4.3.4 Specification Formalism . 72
4.3.5 Small Model Theorems . 76

4.4 Case Studies . 77
4.4.1 ShadowVisor . 78
4.4.2 Xen . 80

4.5 Conclusion . 83

5 The Havoc Adversary Abstraction 85
5.1 Introduction . 85
5.2 Havoc-Function Abstraction . 87

5.2.1 Problem Statement . 89
5.2.2 Soundness . 90
5.2.3 Details . 91

5.3 Case Studies . 94
5.3.1 ShadowVisor . 94
5.3.2 SecVisor . 102

5.4 Conclusion . 107

6 Towards Refinement 109
6.1 Introduction . 109
6.2 Definition of PGCL++ . 111

6.2.1 PGCL++ Syntax . 111
6.2.2 PGCL++ Semantics . 113
6.2.3 ShadowVisor Code in PGCL++ 116

6.3 Specification Formalism . 117
6.4 Small Model Theorems . 119
6.5 MiniCee Definition . 119

6.5.1 MiniCee Syntax . 120

x

6.5.2 MiniCee Semantics . 122
6.5.3 Concrete Code . 123

6.6 Towards Refinement . 124
6.7 Conclusion . 131

7 Related Work 133
7.1 Parametric Verification for Correctness 133
7.2 Parametric Verification for Security . 134
7.3 Model Checking System Security . 135
7.4 Bug Finding . 135
7.5 Operating System Verification . 136
7.6 QBF Solving . 137
7.7 Program Summarization . 137

8 Conclusions 139

A Proofs of Small Model Theorems 141
A.1 Proofs . 141

A.1.1 Introductory Lemmas . 141
A.1.2 Store Projection Lemmas . 143
A.1.3 Store Projection and Command Lemmas 147
A.1.4 Store Generalization Lemmas 150
A.1.5 Proofs of Lemmas Presented in Main Paper 154

B Proofs of Small Model Theorems for Hierarchical Data Structures 159
B.1 Proofs . 159

B.1.1 Introductory Lemmas . 159
B.1.2 Store Projection Lemmas . 160
B.1.3 Store Projection and Command Lemmas 164
B.1.4 Store Generalization Lemmas 170
B.1.5 Proofs of Small Model Theorems 175
B.1.6 Proof of Theorem 9 . 181
B.1.7 Proof of Theorem 10 . 182
B.1.8 Proof of Corollary 11 . 183

C Proofs of Small Model Theorems with Write-only Variables 185
C.1 Proofs . 185

C.1.1 Introductory Lemmas . 185
C.1.2 Store Projection Lemmas . 186

xi

C.1.3 Store Projection and Command Lemmas 190
C.1.4 Store Generalization Lemmas 197
C.1.5 Proofs of Small Model Theorems 202
C.1.6 Proof of Theorem 14 . 208
C.1.7 Proof of Theorem 15 . 210
C.1.8 Proof of Corollary 16 . 210

Bibliography 213

xii

List of Figures

3.1 Functional overview of SecVisor. 21
3.2 PGCL Syntax . 24
3.3 PGCL program for SecVisor. 26
3.4 Rules for expression evaluation. 29
3.5 Rules for commands . 30
3.6 Syntax of PTSL . 31
3.7 This figure depicts the transition from an initial secure state to the compromised

state resulting from an Approved Page Remapping exploit. The attacker modifies
KPT entry 01 to point to the writable physical page 00. Subsequently, the CPU
executes the unapproved code in page 00 in kernel mode. 43

3.8 This figure depicts the transition from an initial secure state to the compromised
state resulting from an Writable Virtual Alias exploit. The attacker modifies KPT
entry 00 to be a writable alias for physical page 01 then injects code into 01 using
the alias. 45

3.9 Verification results for models with increasing page table sizes. 46

4.1 Typical two-level page table structure. 62
4.2 PGCL+ Syntax. Note the addition of nesting where z denotes depth. 66
4.3 ShadowVisor model in PGCL+. 68
4.4 Rules for expression evaluation. 70
4.5 Rules for commands . 71
4.6 Syntax of PTSL (1≤ z≤ d). In ESF, Æy is ∀ or ∃, at least one Æy is ∃. 73
4.7 ShadowVisor’s vulnerable shadow page fault handler. 78

5.1 A CSI-adversary operates on data that is read by a kernel. 88
5.2 Overview of abstraction process. 91

6.1 PGCL++ Syntax, z denotes depth. 112
6.2 Rules for expression evaluation in PGCL++. 114
6.3 Rules for PGCL++ commands . 115

xiii

6.4 ShadowVisor model in PGCL++. 118
6.5 MiniCee Syntax . 121
6.6 Rules for MiniCee commands . 122
6.7 ShadowVisor Adversary . 124
6.8 ShadowVisor Page Fault Handler . 125
6.9 ShadowVisor SPT Invalidation . 126
6.10 ShadowVisor New Context Load . 126

xiv

List of Tables

4.1 ShadowVisor verification with increasing PT size. * means out of 1GB
memory limit; Vars, Clauses = # of CNF variables and clauses generated
by CBMC. 79

4.2 Xen verification with increasing PT size. * means out of 1GB memory
limit; Vars, Clauses = # of CNF variables and clauses generated by CBMC. 82

xv

xvi

Chapter 1

Introduction

Background. Systems depend on reference monitors to correctly enforce their security

policies in the presence of adversaries who actively interfere with their execution. Oper-

ating systems, virtual machine monitors, hypervisors, and web browsers implement the

reference-monitor concept by protecting security-sensitive operations and enforcing a se-

curity policy. For example, the address translation subsystem of a hypervisor is designed

to enforce address space separation in the presence of malicious guest operating systems.

If it fails, software running above the hypervisor that relies on address separation is vul-

nerable to attack. This dependence makes systems software the foundation of security for

important platforms including mobile devices, cloud data centers, and desktop computers.

Problem and Challenges. Software systems today lack verifiable security guaran-

tees. This lack of assurance has lead to a bleak security landscape where security-critical

systems are continuously vulnerable to compromise. A critically important goal is to auto-

matically provide verifiable security guarantees for systems software. Verifiable security

requires that a system, adversary, and security property be formally specified and a for-

mal verification be performed [21]. In this thesis, we make a contribution in this space

1

by developing abstractions that enable automated formal verification of a class of security

properties for a class of systems that includes several research and commercial hyper-

visors. A formal security verification guarantees that a security property holds when a

system executes in the presence of an adversary.

The primary reason for the poor assurance levels of systems software is the high cost of

verification [50]. Verification costs are dependent on two factors: the level of automation

and the complexity of systems software. These costs result in systems being developed

and deployed without any guarantees about their security.

Semantic Security. The focus of this thesis is the problem of semantic security

verification: verifying that every execution of a system in conjunction with a system-

specific adversary satisfies a security property [39, 56]. For example, we verify that a

security hypervisor satisfies an address separation property in the presence of a malicious

guest operating system (OS). We refer to our approach as the verification of “semantic”

security to distinguish it from related work aiming to identify patterns of behavior which

may or may not lead to security vulnerabilities or searching for bugs without an explicit

adversary model [42, 18, 79].

Tiny Hypervisors Aren’t Sufficient. Recent progress in developing hypervisors

with small code size and narrow interfaces has made automated verification of security

hypervisors a more tractable goal [50, 70]. Security lore would have us believe that for-

mally verifying semantic security properties of hypervisors to demonstrate the absence of

security flaws requires only a small code base. This perspective has resulted in hypervisors

becoming the de facto standard foundation for high-assurance systems [35, 67, 68, 70].

Unfortunately, this “hypervisor security hypothesis” remains unsubstantiated; hypervisors

of all sizes regularly suffer from security vulnerabilities in both their designs and imple-

mentations [34, 74, 3]. Even hypervisors designed with security as their primary goal have

2

serious security flaws [34, 74, 3]. Further evidence is provided by the fact that we identify

serious security flaws in all of the hypervisor implementations we analyze.

Our Approach is Model Checking. Model checking is a promising approach to

automatically verify properties of system models [20]. Model checking exhaustively enu-

merates all states in a model in order to demonstrate the absence of bad behaviors. In the

case that a property violation is found, model checkers produce a counterexample, a con-

crete set of program inputs that lead to the violation. While originally applied to identify

bugs in manually-constructed hardware models, model checking has been extended to au-

tomatically verify properties of software [19, 7, 46, 17]. The primary challenge with model

checking techniques, especially software model checking, is scalability [20]. As system

size and complexity grows, the model checker must overcome the exponential growth in

the state space or else model checking becomes intractable.

Despite significant progress, the size and complexity of systems software presents a

major challenge to model checking semantic security. State-of-the-art model checkers do

not scale to the level of complexity of even small hypervisors. The primary challenge is

the size and hierarchical nesting of common system data structures, such as page table and

access control data structures. By exploiting system structure - in particular, structured

data flow common to memory protection subsystems and the nondeterminism inherent in

adversary models - we enable scalable software model checking of semantic security. By

reducing the costs of semantic security verification, we enable the automated verification

of formal security guarantees for an important class of systems.

Thesis Statement. This thesis addresses two primary challenges:

• Scalability concerns with respect to model checking system data structures must be

overcome, and

• Adversaries must be scalably integrated in the verification process.

3

Our thesis statement is that:

Abstracting data structures in programs with structured data flow and

automatically simplifying “havoc” functions that output arbitrary values

because of non-determinism inherent in adversary models makes soft-

ware model checking semantic security feasible.

Abstractions. To demonstrate the validity of this thesis, we develop three abstrac-

tions that substantially improve the scalability of model checking security properties of

systems: 1) Constrained-to-System-Interface (CSI) adversary abstraction, a technique to

scalably integrate flexible system-specific adversary models into the verification process,

2) Small Model Analysis, a family of parametric verification techniques that scale even

when a system and adversary operate over unbounded but finite data structures, and 3)

Havoc abstraction, a source-level analysis technique that reduces the verification complex-

ity associated with system components that operate on adversary-controlled data struc-

tures.

Theoretical Results. We prove that our abstractions are sound—no attacks are

missed by the abstractions. Further, we prove completeness results for the small model

abstraction, providing the theoretical basis for our observed zero false positive rate. Fi-

nally, we prove a refinement theorem that carries our results to a hypervisor implemented

in a subset of the C programming language.

Case Studies. We perform case studies on three hypervisors; SecVisor, two variants

of the popular open-source hypervisor Xen, and ShadowVisor; under a variety of security

properties (e.g., W ⊗X and address separation) and adversary models (e.g., adversary-

controlled guest OS). These case studies demonstrate the effectiveness of our abstractions:

we identify previously unknown vulnerabilities in the design of SecVisor, the C code of

ShadowVisor (a prototype hypervisor), and successfully model check their code using the

4

state-of-the-art C Bounded Model Checker (CBMC) after fixing the vulnerabilities. With-

out the abstractions, CBMC is unable to model check these systems; in all attempts, it

either exhausts system resources or times out after an extended period. With the abstrac-

tions, CBMC model checks the systems in a few seconds.

Outline. In Chapter 2, we provide an overview of our model checking framework and

summarize our contributions. In Chapters 3 and 4, we formally define our system model

and develop a family of parametric verification techniques. We apply our techniques to

verify both the designs and implementations of commercial and research hypervisors. In

Chapter 5, we develop the Havoc abstraction. Finally, in Chapter 6 we prove a refinement

theorem that carries our results to a hypervisor implemented in a subset of the C program-

ming language. We detail related work in Chapter 7 and conclude in Chapter 8. Full proofs

are included in Appendix A, Appendix B, and Appendix C.

5

6

Chapter 2

The Semantic Security Verification

Problem

2.1 Introduction

We present an overview of our model checking framework and process including the def-

inition of semantic security, goals of our framework, our flexible approach to defining

system-specific adversary models, sources of complexity, approaches to improving scala-

bility, and how to interpret the results of a verification.

2.2 Definition of Semantic Security

Informally, the problem of verifying semantic security is to verify that every execution of

a system in conjunction with a system-specific adversary satisfies a security property. For

example, we verify that a security hypervisor satisfies an address separation property in

the presence of a malicious guest OS. Formally, the problem is stated as follows: given a

7

CSI-adversary A, a system S, and a security property ϕ, show that A running in conjunction

with S satisfies ϕ, denoted A ‖ S |= ϕ. The adversary and system programs, A and S, are

written in a programming language and the security property, ϕ, is specified using a logic

that is described in the next chapter. Note that our formulation closely parallels the model

checking problem.

2.3 Verification Framework Goals

We aim to build a framework for verifying semantic security with the following properties:

Expressive: Able to express many systems, security properties, and adversary models.

Flexible: No fixed adversary.

Scalable: Scale to large and complex systems.

Sound: No missed attacks.

Complete: No false alarms.

2.4 The CSI-Adversary Abstraction

We posit that a general approach to verifiable security should enable one to model a va-

riety of adversaries and parametrically reason about different classes of adversaries. This

is critical because while specific domains may have a canonical adversary model (e.g.,

the standard network adversary model for cryptographic protocols), it is unreasonable to

expect that a standard adversary model can be developed for all of system security.

8

2.4.1 Kernelized Systems and their Adversary Models

A common paradigm for secure system design is to layer software on top of a system

core (sometimes called a kernel) with an external interface (i.e., a system call interface)

that is exposed to potentially-malicious higher-layer software. A goal of systems with this

architecture is to remain secure when executing concurrently with an adversary that has

complete control over higher-layer (i.e., lower privilege) software.

Since the adversary has complete control over higher-layer software, we abstract the

higher-layer software and use the system-call interface exposed to the adversary as a def-

inition of the adversary’s capabilities. This endows the adversary with the ability to make

interface calls with arbitrary input parameter values, compute arbitrary functions utiliz-

ing fresh values and the return values of interface calls, and the ability to input computed

values as parameters to system calls.

2.4.2 Adversary Model Framework

To design our framework for specifying adversary models, we divide an adversary model

into three aspects: the adversary’s capabilities, complexity, and goals.

Capabilities: We employ capabilities, rather than attacks, to distinguish between an ad-

versary endowed with a set of basic capabilities and one that is limited to a known

set of attacks. The former is clearly preferred, as it enables the adversary to carry

out known and unknown attacks by combining capabilities in new and novel ways.

Complexity: The adversary’s complexity is the number of primitive steps the adversary

may take in their attempt to break the system’s security. Two options are common:

either the adversary is polynomially bounded in some parameter, or the adversary

may perform an unbounded number of steps. In our case, the systems of interest

9

are meant to be secure no matter how many attacks are launched, hence we endow

the adversary with an unbounded number of computational steps (e.g., system calls,

messages sent, etc.).

Goals: In this work, the adversary’s goal is simple: use their endowed capabilities to

violate the system’s security property.

2.4.3 Flexible, System-Specific Adversary Models

We introduce the notion of a Constrained-to-System-Interface (CSI)-adversary. A key

insight underlying the development of these flexible system-specific adversary models is to

view a trusted system in terms of the interfaces that the various components expose: larger

trusted components are built by combining interface calls in known ways; the adversary

is confined to the interfaces it has access to, but may combine interface calls without

restriction. Such interface-confined adversaries provide a generic way to model different

classes of adversaries. For example, an operating system may consist of subsystems for

memory protection, I/O management, and scheduling.

2.4.4 Expressiveness of CSI-Adversaries

CSI-adversary models are widespread in systems security. Our abstract view of an adver-

sary is expressive enough to model a wide variety of systems adversary models. Consider

the following examples.

Remote Adversary. A canonical adversary that captures the threats of remote exploita-

tion, the remote adversary, is constrained to the system interface exposed by the

networking subsystem.

10

Malicious Guest OS. An adversary model for hypervisors and VMMs, the malicious

guest OS, is a CSI-adversary that is constrained to the VMM’s hypercall interface.

Malicious Gadget. An adversary model for web browsers, the gadget adversary [10], is

a CSI-adversary constrained to the read and write interfaces for frames guarded by

the same origin policy as well as the frame navigation policies.

2.4.5 Flexibility, Scalability, and Simplicity

There are a number of benefits from specifying adversaries according to the CSI-adversary

framework.

Flexibility. CSI-adversaries are flexible. The CSI-adversary framework allows adversary

models to be strengthened and weakened in a natural way. This allows a system

to be verified against a diverse set of possible adversary models. Consider a CSI-

adversary model A = {I1,I2, . . . ,In} composed of n interfaces and A′ ⊂ A. We say

that A′ is weaker than A (or A is stronger than A′) since the set of traces of interface

calls that A′ can generate is a subset of the traces of A.

Simplicity. Specifying a CSI-adversary is simple; an adversary is just the composition of

a system interface. The definition of composition may vary; in our case studies, we

use parallel composition with interleaving semantics.

Scalability. Finally, the CSI-adversary model forms the basis for a class of abstractions

(discussed in Chapter 5) that improve the scalability of verification.

In our work on the logic of secure systems [21, 36], we developed an alternative for-

mulation of the CSI-adversary framework tailored to hand-written proofs of security prop-

erties.

11

2.5 Scalability and Abstraction

Next, we describe the challenges inherent in model checking hypervisors and give an

overview of our results. In addition to the CSI-adversary abstraction, we develop two

classes of abstractions that enable scalable verification.

First, we overcome the challenges associated with verifying systems that operate on

large and hierarchical data structures, by exploiting system structure inherent in the mem-

ory management subsystems that enforce memory protection.

Secondly, we address the scalability challenges introduced by the non-deterministic

nature of CSI-adversaries. The two classes of abstractions are complementary, and in the

cases we consider, the simultaneous application of both abstractions is necessary to enable

successful verification.

2.5.1 Overcoming Data Structure Complexity

The size and hierarchical nesting of the data structures over which systems operate raises

challenges for successful application of model checking. A common approach is to bound

data structures sizes to a small cutoff which reduces the cost of verification. However,

doing so leaves the question of soundness open; if the system is secure when the system

and adversary operate on larger data structures. We consider the following question: Does

the verification of a bounded system imply the verification of the system with unbounded,

but finite data structures?

To answer this question, we develop a family of sound and complete parametric veri-

fication techniques that scale even when reference monitors and adversaries operate over

unbounded, but finite data structures. Specifically, we develop a parametric guarded com-

mand language for modeling reference monitors and adversaries. We also present a para-

metric temporal specification logic for expressing security policies that the monitor is ex-

12

pected to enforce.

Our central technical results are a set of small model theorems (SMTs). We develop

our results incrementally by developing SMTs first, for a single parametric array, and

second, for the more complex case of a tree of parametric arrays. For a single array,

our theorems state that in order to verify that a policy is enforced by a reference monitor

with an arbitrarily large data structure, it is sufficient to model check the monitor with

just one entry in its data structure. We apply our methodology to verify the designs of a

number of hypervisors including SecVisor, the sHype mandatory-access-control extension

to Xen, the shadow paging mechanisms of Xen version 3.0.3, and ShadowVisor, a research

hypervisor developed for the x86 platform. Our approach is able to prove that sHype and a

variant of the original SecVisor design correctly enforces the expected security properties

in the presence of powerful adversaries. Chapter 4 generalizes our SMTs to apply to a tree

of parametric arrays of arbitrary depth. This generalization requires new conceptual and

technical insights, and brings interesting systems (such as multi-level paging and context

caching as used in Xen) within the scope of analysis.

2.5.2 Overcoming Adversary-induced Complexity

A CSI-adversary model defines a security boundary between unknown, adversarial code

and a system. A system must correctly enforce its security properties given arbitrary

behavior by the CSI-adversary. CSI-adversaries pass data to the system as parameters

in the system calls. Because this data originates from the adversary, it is considered

non-deterministic. In many systems, the adversary can pass an address of an adversary-

controlled data structure. For example, in shadow paging hypervisors, a malicious guest

OS has control of the kernel page tables. In cases like these, the adversary controls both

the size of and contents of the data structure. Thus, model checking is complicated since

13

the model checker will try (and fail) to exhaustively enumerate data structures of all sizes.

Because of the non-deterministic nature of CSI-adversaries, our SMTs do not apply to

these adversary-controlled data structures and the code that manipulates them.

Consider the case of hypervisors designed to enforce address separation properties

among adversarially-controlled guest operating systems running on top of them and be-

tween the hypervisor and guest’s address spaces. Observing that significant model check-

ing complexity stems from adversary-controlled data structures (e.g., kernel page tables)

and functions that operate over them (e.g., for reading and writing kernel page tables), we

develop an automated technique to abstract these components of a system.

The abstraction involves: (i) detecting “havoc” functions, i.e., functions that return

non-deterministic values, and (ii) replacing calls to havoc functions with non-deterministic

assignments. We develop an approach to detecting havoc functions based on checking

validity of Quantified Boolean Formulas (QBF).

We prove that our abstraction is sound—no attacks are missed by the abstraction. In

addition, our approach includes an efficient technique to proving a form of completeness

directly at the source level which we term local completeness. We formulate the problem

of proving completeness as a Quantified Boolean Formula validity problem. This formu-

lation allows us to exploit recent progress in the development of efficient QBF solvers and

to operate directly at the source code level. We implement the abstraction technique on

top of state-of-the-art QBF solvers.

Our empirical evaluation demonstrates the effectiveness of our abstractions on real

software: we identify two previously unknown vulnerabilities in the C code of Shad-

owVisor (a prototype hypervisor), and successfully model check its code using the CBMC

model checker after fixing the vulnerabilities. In addition, we model check two seman-

tic security properties of the SecVisor hypervisor. The vulnerabilities allow a malicious

guest OS to gain complete control of the underlying hypervisor, rendering its protections

14

useless. Without the abstractions, CBMC is unable to model check these systems; in all

attempts, it either exhausts system resources or times out after an extended period. With

the abstractions, CBMC verifies that the hypervisor’s C implementation correctly enforces

address separation in the presence of a strong adversary model in approximately 3 seconds.

2.6 Interpreting Verification Results

An important question to ask is: What does the outcome of a verification imply about

the security of a system? Our verification techniques are sound, meaning that we never

suffer from false negatives. Therefore, there are two possible outcomes of a verification:

1) verification fails and a counterexample is generated, and 2) verification succeeds and

the property holds.

In the failure case, the model checker outputs the trace that may lead to a property vio-

lation. Only if the verification framework is complete are we guaranteed that a violation is

not a false positive and hence represents a real vulnerability. In this case, the counterexam-

ple contains a set of inputs which represent an exploit. While our small model theorems

are backed by provable guarantees of completeness, our havoc abstraction has weaker lo-

cal completeness guarantees. While the potential to produce false positives exists, we have

yet to experience a false positive in any of our case studies. We believe that custom tailor-

ing our abstractions to a class of programs of interest has proven to be a successful strategy

for build a precise verification framework that experiences few false positives.

Given that the framework developed in this thesis is provably sound, a successful ver-

ification guarantees that a security property of a system holds when executing in parallel

with an adversary. Interpreting the security implications of successful verifications must

be performed on a case-by-case basis. For example, consider the case of ShadowVisor.

During verification, we identified a vulnerability whereby a CSI-adversary constrained to

15

ShadowVisor’s system call interface could allocate a physical memory page in the Shad-

owVisor’s protected memory region. This region contains ShadowVisor’s code and data.

This allocation is clearly a violation of address separation and could lead to an attack

where the adversary overwrites hypervisor code and thereby hijacks system control-flow.

Once we fixed the vulnerability, verification was successful. We now know that there are

no traces whereby the adversary can successfully violate the address separation property.

Because our adversary model allows any sequence of interface calls, verification implies

that specific attacks composed of sequences of interface calls can not violate our system’s

security property. The ability of a CSI-adversary to encompass a wide variety of specific

attacks is one of the key strengths of our methodology.

16

Chapter 3

Parametric Verification

3.1 Introduction

A major challenge in verifying reference monitors in systems software and hardware is

scalability: typically, the verification task either requires significant manual effort (e.g., us-

ing interactive theorem proving techniques) or becomes computationally intractable (e.g.,

using automated finite state model checking techniques). The development of systems

software such as microkernels and hypervisors with relatively small code size and narrow

interfaces alleviates the scalability problem. However, another significant factor for au-

tomated verification techniques is the size of the data structures over which the programs

operate. For example, the complexity of finite state model checking reference monitors

in hypervisors and virtual machine monitors grows exponentially in the size of the page

tables used for memory protection.

This chapter develops a verification technique that scales even when reference moni-

tors and adversaries operate over very large data structures. The technique extends para-

metric verification techniques developed for system correctness to the setting of a class

17

of secure systems and adversaries. Specifically, we develop a parametric guarded com-

mand language for modeling reference monitors and adversaries, and a parametric tem-

poral specification logic for expressing security policies that the monitor is expected to

enforce. Data structures such as page tables are modeled in the language using an array

where the number of rows in the array is a parameter that can be instantiated differently to

obtain systems of different sizes. The security policies expressed in the logic also refer to

this parameter.

The central technical results of the chapter are a set of small model theorems that state

that for any system M expressible in the language, any security property ϕ expressible

in the logic, and any natural number n, M(n) satisfies ϕ(n) if and only if M(1) satisfies

ϕ(1) where M(i) and ϕ(i) are the instances of the system and security policy, respectively,

when the data structure size is i. For example, M(n) may model a hypervisor operating on

page tables of size n in parallel with an adversary that is interacting with it, and ϕ(n) may

express a security policy that any of the n pages (protected by the page table) containing

kernel code is not modified during the execution of the system. The consequence of the

small model theorem is that in order to verify that the policy is enforced for an arbitrarily

large page table, it is sufficient to model check the system with just one page table entry.

The small model analysis framework is described in Section 3.3.

The twin design goals for the programming language are expressivity and data inde-

pendence: the first goal is important in order to model practical reference monitors and

adversaries; the second is necessary to prove small model theorems that enable scalable

verification. The language provides a parametric array where the number of rows is a

parameter and the number of columns is fixed. In order to model reference monitor opera-

tions such as synchronizing kernel page tables with shadow page tables (commonly used in

software-based memory virtualization), it is essential to provide support for atomic whole

array operations over the parametric array. In addition, such whole array operations are

18

needed in order to model an adversary that can non-deterministically set the values of an

entire column of the parametric array (e.g., the permission bits in the kernel page table if

the adversary controls the guest operating system). On the other hand, all operations are

row-independent, i.e., the data values in one row of the parametric array do not affect the

values in a different row. Also, the security properties expressible as reachability proper-

ties in the specification logic refer to properties that hold either in all rows of the array or

in some row. Intuitively, it is possible to prove a small model theorem (Theorem 1) for all

programs in the language with respect to such properties because of the row-independent

nature of the operations. Row-independence is also the reason for the existence of the sim-

ulation relations necessary to prove the small model theorem for the temporal formulas in

our specification logic (Theorem 2). The logic is expressive enough to capture separation-

style access control policies commonly enforced by hypervisors and virtual machines as

well as history-dependent policies (e.g., no message send after reading a sensitive file).

We apply this methodology to verify that the designs of two hypervisors—

SecVisor [70] and the sHype [68] mandatory-access-control extension to Xen [9]—

correctly enforce the expected security properties in the presence of adversaries. For

SecVisor, we check the security policy that a guest operating system should only be able

to execute user-approved code in kernel mode. The original version of SecVisor does not

satisfy this property in a small model with one page table entry. We identify two attacks

while attempting to model check the system, repair the design, and then successfully verify

the small model. For sHype, we successfully check the Chinese Wall Policy [15], a well-

known access control policy used in commercial settings. These applications are presented

in Section 3.4. In addition, we further demonstrate the expressivity of the programming

language by showing in Section 3.5 how to encode any finite state reference monitor that

operates in a row-independent manner as a program; the associated security policy can be

expressed in the logic.

19

This thesis builds on a line of work on data independence, introduced in an influential

paper by Wolper [78]. He considered programs whose control-flow behavior was com-

pletely independent of the data over which they operated. His motivating example was

the alternating bit protocol. Subsequent work on parametric verification, which we sur-

vey in the related work (Chapter 7), has relaxed this strong independence assumption to

permit the program’s control-flow to depend in limited ways on the data. The closest line

of work to ours is by Emerson and Kahlon [25], and Lazic et al. on verifying correctness

of cache coherence protocols [55, 54]. However, there are significant differences in our

technical approach and results. In particular, since both groups focus on correctness and

not security, they do not support the form of whole array operations that we do in order to

model atomic access control operations in systems software as well as a non-deterministic

adversary.

3.2 Motivating Example: SecVisor

We use SecVisor [70], a security hypervisor, as our motivating example. We informally

discuss the design of SecVisor below. In subsequent sections, we show how our small

model analysis approach enables us to model SecVisor and verify that it satisfies the de-

sired security properties even with arbitrarily large protection data structures (page tables).

SecVisor supports a single guest operating system, GUEST, which executes in two

privilege levels – user mode and kernel mode. In addition, GUEST supports two types of

executable code – approved and unapproved. We assume that the set of approved code

is fixed in advance and remains unchanged during system execution. Figure 3.1 shows a

functional overview of SecVisor. K is the GUEST kernel. A is the adversary. S is SecVisor.

PM stands for physical memory. KPT and SPT are the kernel and shadow page tables,

respectively. A shaded shape represents an active element or code while an unshaded

20

KPT

SPT

K A

MMU
PM

S

Figure 3.1: Functional overview of SecVisor.

shape is a data structure. The direction of arrows indicates the kind of access (read or

write) of data structure by element. We now describe SecVisor’s protection mechanisms,

adversary model, and security properties.

Protection Mechanisms Memory is organized in pages, which are indexed and ac-

cessed via page tables. Each page table entry contains the starting address and other at-

tributes (e.g., read-write-execute permissions, approved or unapproved status) of the cor-

responding page. GUEST maintains a Kernel Page Table (KPT). However, in order to

provide the desired security guarantees even when GUEST is compromised, SecVisor sets

its memory protection bits in a separate shadow page table (SPT). The SPT is used by the

Memory Management Unit (MMU) to determine whether a process should be allowed to

access a physical memory page. To provide adequate functionality, the SPT is synchro-

nized with the KPT when necessary. This is useful, for example, when GUEST transitions

between user and kernel modes, and when the permissions in KPT are updated.

Adversary Model. SecVisor’s attacker controls everything except the Trusted Com-

puting Base (TCB) – the CPU, MMU, and physical memory (PM). The attacker is able to

read and write the KPT, and thus modify the SPT indirectly via synchronization. There-

21

fore, to achieve the desired security properties, it is critical that SecVisor’s page table

synchronization logic be correct. These capabilities model a very powerful and realistic

attacker who is aware of vulnerabilities in GUEST’s kernel and application software, and

uses these vulnerabilities to locally or remotely exploit the system.

Security Properties. SecVisor’s design goal is to ensure that only approved code

executes in the kernel mode of GUEST. To this end, SecVisor requires that the following

two properties be satisfied: (i) execution integrity, which mandates that GUEST should

only execute instructions from memory pages containing approved code while in kernel

mode, and (ii) code integrity, which stipulates that memory pages containing approved

code should only be modifiable by SecVisor and its TCB. We now describe these two

properties in more detail. We refer to memory pages containing approved and unapproved

code as approved and unapproved pages, respectively.

Execution Integrity. We assume that only code residing in executable memory pages

can be loaded and executed. Any attempt to violate this condition results in an exception.

Therefore, to satisfy execution integrity we require that in kernel mode, the executable

permission of all unapproved memory pages are turned off.

Code Integrity. In general, memory pages are accessed by software executing on the

CPU and peripheral devices (via DMA). Since all non-SecVisor code and all peripheral

devices are outside SecVisor’s TCB, the code integrity requirement reduces to the follow-

ing property: approved pages should not be modifiable by any code executing on the CPU,

except for SecVisor, or by any peripheral device. Thus, to satisfy code integrity, SecVisor

marks all approved pages as read-only to all entities other than itself and its TCB.

22

3.3 Small Model Analysis

In this section, we describe our small model analysis approach to analyze security prop-

erties of parametric systems. In our approach, a parametric system is characterized by a

single parametric array P, which is instantiated to some finite but arbitrary constant size

during any specific system execution (e.g., SecVisor’s page tables). In addition, the system

has a finite number of other variables (e.g., SecVisor’s mode bit). Parametric systems are

modeled as programs in our model parametric guarded command language (PGCL), while

security properties of interest are expressed as formulas in our parametric temporal spec-

ification logic (PTSL). We prove small model theorems that imply that a PTSL property

ϕ holds on a PGCL program Prog for arbitrarily large instantiations of P if and only if ϕ

holds on Prog with a small instance of P. In the rest of this section, we present PGCL

and PTSL, interleaved with the formal SecVisor model and security properties, as well as

the small model theorems that enable parametric verification of SecVisor and other similar

systems.

3.3.1 PGCL Syntax

For simplicity, we assume that all variables in PGCL are Boolean. The parametric array P

is two-dimensional, where the first dimension (i.e., number of rows) is arbitrary, and the

second dimension (i.e., number of columns) is fixed. All elements of P are also Boolean.

Note that Boolean variables enable us to encode finite valued variables, finite arrays with

finite valued elements, records with finite valued fields, and relations and functions with

finite domains over such variables.

Let K be the set of numerals corresponding to the natural numbers {1,2, . . .}. We fix the

number of columns of P to some q∈ K. Note that this does not restrict the set of systems we

are able to handle since our technical results hold for any q. Let > and ⊥ be, respectively,

23

Natural Numerals K

Index Variable i

Boolean Variables B

Parametric Variable n

Expressions E ::= > | ⊥ | ∗ | B | E∨E | E∧E | ¬E
Parameterized Expressions Ê ::= E | Pn,q[i][K] | Ê∨ Ê | Ê∧ Ê | ¬Ê
Instantiated Guarded Commands G ::= GC(K)
Guarded Commands GC ::= E ? C Guarded command

| GC ‖ GC Parallel composition
Commands C ::= B := E Assignment

| for i : Pn,q do Ê ? Ĉ Parametric loop
| C;C Sequencing

Parameterized Commands Ĉ ::= Pn,q[i][K] := Ê Param. array assignment
| Ĉ; Ĉ Sequencing

Figure 3.2: PGCL Syntax

the representations of the truth values true and false. Let B be a set of Boolean variables,

I be a set of variables used to index into a row of P, and n be the variable used to store the

number of rows of P.

The syntax of PGCL is shown in Figure 3.2. Expressions in PGCL include natural

numbers, Boolean variables, a parameterized array Pn,q, a variable i for indexing into

Pn,q, a variable n representing the size of Pn,q, propositional expressions over Boolean

variables and elements of Pn,q. For notational simplicity, we often write P to mean Pn,q.

The commands in PGCL include guarded commands that update Boolean variables and el-

ements of Pn,q, and parallel and sequential compositions of guarded commands. A guarded

command executes by first evaluating the guard; if it is true, then the command that fol-

lows is executed. The parallel composition of two guarded commands executes by non-

deterministically picking one of the commands to execute. The sequential composition of

two commands executes the first command followed by the second command.

24

SecVisor in PGCL

We give an overview of our PGCL model of SecVisor followed by the PGCL program for

SecVisor.

Example 1. For our purposes, the key unbounded data structures maintained by SecVisor

are the KPT and the SPT. Hence, we represent these two page tables using our param-

eterized array Pn,q. Without loss of generality, we assume that the KPT and the SPT

have the same number of entries. Thus, each row of Pn,q represents a KPT entry, and

the corresponding SPT entry. The columns of Pn,q – KPTRW,KPTX,KPTPA,SPTRW,SPTX and

SPTPA – represent the permissions and page types of KPT and SPT entries. Specifically,

P[i][KPTRW] and P[i][KPTX] refer to read/write and execute permissions for the i-th KPT

entry. Also, P[i][KPTPA] refers to the type, i.e., kernel code (KC), kernel data (KD), or user

memory (UM), of the page mapped by the i-th KPT entry. The SPTRW, SPTX, and SPTPA

columns are defined analogously for SPT entries. Finally, the variable MODE indicates if

the system is in KERNEL or USER mode.

The SecVisor program is a parallel composition of four guarded commands:

SecVisor ≡ Kernel Entry ‖ Kernel Exit ‖ Sync ‖ Attacker

These four guarded commands represent, respectively, entry to kernel mode, exit from

kernel mode, page table synchronization, and attacker action. We now describe each of

these commands in more detail. Note, in particular, the extensive use of whole array op-

erations to model the protection mechanisms in SecVisor as well as the non-deterministic

adversary updates to the KPT.

Kernel Entry. If the system is in user mode then a valid transition is to kernel mode.

On a transition to kernel mode, SecVisor’s entry handler sets the SPT such that the kernel

25

Kernel Entry ≡
¬kernelmode ? kernelmode :=>;
for i : Pn,q do

Pn,q[i][SPTPA] = UM ?
Pn,q[i][SPTRW] :=>;Pn,q[i][SPTX] :=⊥;

for i : Pn,q do

Pn,q[i][SPTPA] = KC ?
Pn,q[i][SPTRW] :=⊥;Pn,q[i][SPTX] :=>;

for i : Pn,q do

Pn,q[i][SPTPA] = KD ?
Pn,q[i][SPTRW] :=>;Pn,q[i][SPTX] :=⊥

Kernel Exit ≡
kernelmode ? kernelmode :=⊥;
for i : Pn,q do

Pn,q[i][SPTPA] = UM ?
Pn,q[i][SPTRW] :=>;Pn,q[i][SPTX] :=>;

for i : Pn,q do

Pn,q[i][SPTPA] = KC ?
Pn,q[i][SPTRW] :=⊥;Pn,q[i][SPTX] :=⊥;

for i : Pn,q do

Pn,q[i][SPTPA] = KD ?
Pn,q[i][SPTRW] :=>;Pn,q[i][SPTX] :=⊥

(a) (b)

Sync ≡
> ? for i : Pn,q do

> ? Pn,q[i][SPTPA] :=
Pn,q[i][KPTPA]

(c)

Attacker ≡
> ? for i : Pn,q do

Pn,q[i][KPTPA] := ∗;
Pn,q[i][KPTRW] := ∗;
Pn,q[i][KPTX] := ∗

(d)

Figure 3.3: PGCL program for SecVisor.

code becomes executable and the kernel data and user memory become non-executable.

This prevents unapproved code from being executed during kernel mode, and is modeled

by the guarded command shown in Figure 3.3(a).

Kernel Exit. If the system is in kernel mode then a valid transition is to transition to

user mode. On a transition to user mode, the program sets: (i) the mode to user mode, and

(ii) the SPT such that user memory becomes executable and kernel code pages become

non-executable. This is modeled by the guarded command shown in Figure 3.3(b).

Page Table Synchronization. SecVisor synchronizes the SPT with the KPT when the

kernel: (i) wants to use a new KPT, or (ii) modifies or creates a KPT entry. An attacker can

modify the kernel page table entries. Hence, SecVisor must prevent the attacker’s modifi-

26

cations from affecting the SPT fields that enforce code and execution integrity. SecVisor’s

design specifies that to prevent adversary modification of sensitive SPT state, SecVisor

may not copy permission bits from the kernel page table during synchronization with the

shadow page table. We model this by the guarded command shown in Figure 3.3(c).

Attacker Action. The attacker arbitrarily modifies every field of every KPT entry,

including the read/write permissions, execute permissions, and physical address mapping

for user memory, kernel code, and kernel data. We model this by the guarded command

shown in Figure 3.3(d) where the expression ∗ non-deterministically evaluates to either

true or false.

3.3.2 PGCL Semantics

We present the operational semantics of PGCL as a relation on “stores”. Let N be the set

of natural numbers and B be the truth values {true, false}. For any numeral k we write

dke to mean the natural number represented by k in standard arithmetic. Often, we write k

to mean dke when the context disambiguates such usage. For two natural numbers j and

k such that j ≤ k, we write [j,k] to mean the set { j, . . . ,k} of numbers in the closed range

between j and k. We write Dom(f) to mean the domain of a function f . Then, a store σ is

a tuple (σB,σn,σP) such that:

• σB : B→ B maps Boolean variables to B;

• σn : N is the value of n;

• σP : [1,σn]× [1,dqe]→ B is a function that maps P to a two-dimensional Boolean

array.

Equivalently, by Currying, we also treat σP as a function of type [1,σn]→ [1,dqe]→B.

In the rest of this chapter, we omit the relevant superscript of σ when it is clear from the

27

context. For example, we write σ(b) to mean σB(b). The rules for evaluating PGCL

expressions under stores are presented in Figure 3.4. These rules are defined via induction

on the structure of expressions. To define the semantics of PGCL, we have to first present

the notion of store projection.

Definition 1 (Store Projection). Let σ = (σB,σn,σP) be any store. For i ∈ [1,σn] we write

σ � i to mean the store (σB,1,X) such that X(1) = σP(i).

Intuitively, σ � i is constructed by retaining σB, setting σn to 1, and projecting away

all but the i-th row from σP. Note that since projection retains σB, it does not affect the

evaluation of expressions that do not refer to elements of Pn,q.

We overload the ·[· 7→ ·] operator in the following way. First, for any function f : X →

Y , x ∈ X and y ∈ Y , we write f [x 7→ y] to mean the function that is identical to f , except

that x is mapped to y. Second, for any PGCL expression or guarded command X, variable

v, and expression e, we write X[v 7→ e] to mean the result of replacing all occurrences of v

in X simultaneously with e.

Store Transformation. For any PGCL command c and stores σ and σ′, we write

{σ} c {σ′} to mean that σ is transformed to σ′ by the execution of c. The rules defining

{σ} c {σ′}, via induction on the structure of c, are shown in Figure 3.5. Most of the

definitions are straightforward. For example, the “GC” rule states that σ is transformed to

σ′ by executing the guarded command e ? c if: (i) the guard e evaluates to true under σ,

and (ii) σ is transformed to σ′ by executing the command c.

The “Unroll” rule states that if c is a for loop, then {σ} c {σ′} if there exists appro-

priate intermediate stores that represent the state of the system after the execution of each

iteration of the loop. The premise of the “Unroll” rule involves the instantiation of the loop

variable i with specific values. This is achieved via the� notation, which we define next.

28

〈>,σ〉 → true 〈⊥,σ〉 → false 〈∗,σ〉 → true 〈∗,σ〉 → false

b ∈ dom(σB)

〈b,σ〉 → σ
B(b)

dke ≤ σ
n dle ≤ dqe

〈Pn,q[k][l],σ〉 → σ
P(dke,dle)

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∨e′,σ〉 → t ′′
where t ′′ = true if t = true or t ′ = true, and t ′′ = false otherwise.

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∧e′,σ〉 → t ′′
where t ′′ = true if t = true and t ′ = true, and t ′′ = false otherwise.

〈e,σ〉 → t

〈¬e,σ〉 → t ′
where t ′ = true if t = false, and t ′ = false otherwise.

Figure 3.4: Rules for expression evaluation.

Definition 2 (Loop Variable Instantiation). Let σ and σ′ be two stores such that σn = σ′n =

N, and ê ? ĉ ∈ Ê ? Ĉ be a guarded command containing the index variable i. Then for any

dje ∈ [1,N], we write {σ} (ê ? ĉ)(i� j) {σ′} to mean:

{σ � dje} (ê ? ĉ)[i 7→ 1] {σ′ � dje}
∧

∀k ∈ [1,N] � k 6= dje ⇒ σ
P(k) = σ

′P(k)

Thus, {σ} (ê ? ĉ)(i� j) {σ′} means that σ′ is obtained from σ by first replacing i

with j in ê ? ĉ, and then executing the resulting guarded command.

3.3.3 Specification Logic

Next we present our specification logic. We support two types of specifications – reacha-

bility properties and temporal logic specifications. Reachability properties are useful for

29

σ
n = σ

′n = dke {σ} gc {σ′}
{σ} gc(k) {σ′}

Parameter Instantiation

〈e,σ〉 → t

{σ} b := e {σ[σB 7→ σ
B[b 7→ t]]}

Assign
〈e,σ〉 → true {σ} c {σ′}

{σ} e ? c {σ′}
GC

{σ} gc {σ′}∨{σ} gc′ {σ′}
{σ} gc ‖ gc′ {σ′}

Parallel
{σ} c {σ′′} {σ′′} c′ {σ′}

{σ} c;c′ {σ′}
Sequential

〈e,σ〉 → t die ≤ σ
n dje ≤ dqe

{σ} Pn,q[i][j] := e {σ[σP 7→ σ
P[(die,dje) 7→ t]]}

Parameterized Array Assign

σ
n = N ∃σ1, . . . ,σN+1 �σ = σ1∧σ

′ = σN+1∧∀dje ∈ [1,N] �{σdje} (ê ? ĉ)(i� j) {σdje+1}
{σ} for i : Pn,q do ê ? ĉ {σ′}

Unroll

Figure 3.5: Rules for commands

checking whether the target system is able to reach a state that exhibits a specific condi-

tion, e.g., a memory page storing kernel code is made writable. Reachability properties

are expressed via “state formulas.” In addition, state formulas are also used to specify the

initial condition under which the target system begins execution.

Syntax. The syntax of state formulas is defined in Figure 3.6. Note that we sup-

port three distinct types of state formulas – universal, existential, and generic – which

differ in the way they quantify over rows of the parametric array P. Specifically, universal

formulas allow one universal quantification over P, existential formulas allow one existen-

tial quantification over P, while generic formulas allow one universal and one existential

quantification over P.

In contrast, temporal logic specifications enable us to verify a rich class of properties

over the sequence of states observed during the execution of the target system, e.g., once a

30

Basic Propositions BP ::= b , b ∈ B
| ¬BP
| BP∧BP

Parametric Propositions PP(i) ::= {Pn,q[i][l] | dle ≤ dqe}
| ¬PP(i)
| PP(i)∧PP(i)

Universal State Formulas USF ::= BP
| ∀i �PP(i)
| BP∧∀i �PP(i)

Existential State Formulas ESF ::= BP
| ∃i �PP(i)
| BP∧∃i �PP(i)

Generic State Formulas GSF ::= USF
| ESF
| USF∧ESF

PTSL Path Formulas TLPF ::= TLF “state formula”
| TLF∧TLF “conjunction”
| TLF∨TLF “disjunction”
| X TLF “in the next state”
| TLF U TLF “until”

PTSL Formulas TLF ::= USF | ¬USF “propositions and their negations”
| TLF∧TLF “conjunction”
| TLF∨TLF “disjunction”
| A TLPF “for all computation paths”

Figure 3.6: Syntax of PTSL

sensitive file is read, in all future states network sends are forbidden. In our approach, such

specifications are expressed as formulas of the temporal logic PTSL. In essence, PTSL is

a subset of the temporal logic ACTL* [20] with USF as atomic propositions.

SecVisor’s Security Properties in PTSL. We now formalize SecVisor’s security

31

properties in our specification logic. We assume that only kernel code is approved by

SecVisor. We require that SecVisor begins execution in KERNEL mode, where only kernel

code pages are executable. Thus, the initial state of SecVisor is expressed by the following

USF state formula:

ϕinit , MODE= KERNEL∧∀i �P[i][SPTX]⇒ (P[i][SPTPA] = KC)

In addition, the execution and code integrity properties are expressed in our specification

logic as follows:

1. Execution Integrity: Recall that this property requires that in kernel mode, only

kernel code should be executable. It is stated as follows:

ϕexec , MODE= KERNEL⇒ (∀i �P[i][SPTX]⇒ (P[i][SPTPA] = KC))

To verify this property, we check if the system is able to reach a state where its

negation holds. The negation of ϕexec is expressed as the following ESF state for-

mula:

¬ϕexec , MODE= KERNEL∧ (∃i �P[i][SPTX]∧¬(P[i][SPTPA] = KC))

2. Code Integrity: Recall that this property requires that every kernel code page should

be read-only. It is expressed as follows:

ϕcode , ∀i � ((P[i][SPTPA] = KC)⇒ (¬P[i][SPTRW]))

To verify this property, we check if the system is able to reach a state where its

negation holds. The negation of ϕcode is expressed as the following ESF state for-

32

mula:

¬ϕcode , ∃i � ((P[i][SPTPA] = KC)∧P[i][SPTRW])

Semantics. We now present the semantics of our specification logic. We start with

the notion of satisfaction of formulas by stores.

Definition 3. The satisfaction of a formula π by a store σ (denoted σ |= π) is defined, by

induction on the structure of π, as follows:

• σ |= b iff σB(b) = true.

• σ |= Pn,q[k][l] iff dke ≤ σn and σP(dke,dle) = true.

• σ |= ¬π iff σ 6|= π.

• σ |= π1∧π2 iff σ |= π1 and σ |= π2.

• σ |= π1∨π2 iff σ |= π1 or σ |= π2.

• σ |= ∀i �π iff ∀i ∈ [1,σn] �σ � i |= π[i 7→ 1].

• σ |= ∃i �π iff ∃i ∈ [1,σn] �σ � i |= π[i 7→ 1].

The definition of satisfaction of Boolean formulas and the logical operators are stan-

dard. Parametric formulas, denoted Pn,q[k][l], are satisfied if and only if the index k is in

bounds, and the element at the specified location is true. An universally quantified for-

mula, ∀i �π, is satisfied by σ if and only if all projections of σ satisfy π[i 7→ 1]. Finally,

an existentially quantified formula, ∃i � π, is satisfied by σ if and only if there exists a

projection of σ that satisfies π[i 7→ 1].

We now present the semantics of a PGCL program as a Kripke structure. We use this

Kripke semantics subsequently to prove a small model theorem for PTSL specifications.

33

Kripke Semantics. Let gc be any PGCL guarded command and k ∈ K be any nu-

meral. We denote the set of stores σ such that σn = dke, as Store(gc(k)). Note that

Store(gc(k)) is finite. Let Init be any PTSL formula and AP = USF be the set of atomic

propositions. Intuitively, a Kripke structure M(gc(k), Init) over AP is induced by execut-

ing gc(k) starting from any store σ ∈ Store(gc(k)) that satisfies Init.

Definition 4. Let Init ∈ USF be any PTSL formula. Formally, M(gc(k), Init) is a four

tuple (S ,I ,T ,L), where:

• S = Store(gc(k)) is a set of states;

• I = {σ|σ |= Init} is a set of initial states;

• T = {(σ,σ′) | {σ}gc(k){σ′}} is a transition relation given by the operational se-

mantics of PGCL; and

• L : S → 2AP is the function that labels each state with the set of propositions true in

that state; formally,

∀σ ∈ S �L(σ) = {ϕ ∈ AP | σ |= ϕ}

If φ is a PTSL formula, then M,σ |= φ means that φ holds at state σ in the Kripke

structure M. We use a standard inductive definition of the relation |= [20]. Informally, an

atomic proposition π holds at σ iff σ |= π; A φ holds at σ if φ holds on all possible (infinite)

paths starting from σ. TLPF formulas hold on paths. Informally, a TLF formula φ holds

on a path Π iff it holds at the first state of Π; X φ holds on a path Π iff φ holds on the suffix

of Π starting at second state of Π; φ1 U φ2 holds on Π if φ1 holds on suffixes of Π until φ2

begins to hold. The definitions for ¬, ∧ and ∨ are standard.

34

3.3.4 Small Model Theorem

We now present two small model theorems – one for reachability properties, and one for

PTSL specifications. Both theorems relate the behavior of a PGCL program when P has

arbitrarily many rows to its behavior when P has a single row. We defer the proofs of the

theorems to Section 3.3.5.

Definition 5. A Kripke structure M(gc(k), Init) exhibits a formula ϕ iff there is a reachable

state σ of M(gc(k), Init) such that σ |= ϕ.

Theorem 1 (Small Model Safety 1). Let gc(k) be any instantiated guarded command. Let

ϕ ∈ GSF be any generic state formula, and Init ∈ USF be any universal state formula.

Then M(gc(k), Init) exhibits ϕ iff M(gc(1), Init) exhibits ϕ.

We now prove a small model theorem that relates Kripke structures via simulation.

The following example motivates the form of Theorem 2.

Example 2. Consider the example of a system that restricts message transmission after a

principal accesses sensitive data. Suppose the system consists of an arbitrary number of

principals, each of whom is modeled by a row of P. Also, suppose that the columns READ

and SEND represent, respectively, that the sensitive data has been read, and that a message

has been transmitted. Then, the fact that no principal has read sensitive data is encoded

by the following USF proposition:

NotRead , ∀i �¬Pn,q[i][READ]

Also, the fact that no principal has sent a message is encoded by the following USF propo-

sition:

NotSent , ∀i �¬Pn,q[i][SEND]

35

Therefore, our security property is expressed by the following PTSL formula:

AG(NotRead∨AXG(NotSent))

where Gφ is a path formula meaning that φ holds at all states of a path, and is a shorthand

for (φ U false). Proving this temporal formula with a small model requires the following

small model theorem.

Simulation. The following small model theorem relies on that fact that PTSL formu-

las are preserved by simulation between Kripke structures. We use the standard definition

of simulation [20], as presented next.

Definition 6. Let M1 = (S1,I1,T1,L1) an M2 = (S2,I2,T2,L2) be two Kripke structures

over sets of atomic propositions AP1 and AP2 such that AP2 ⊆ AP1. Then M1 is simulated

by M2, denoted by M1 �M2, iff there exists a relation H ⊆ S1×S2 such that the following

three conditions hold:

(C1) ∀s1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H⇒ L1(s1)∩AP2 = L2(s2)

(C2) ∀s1 ∈ I1 �∃s2 ∈ I2 � (s1,s2) ∈ H

(C3) ∀s1,s′1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H ∧ (s1,s′1) ∈ T1⇒

∃s′2 ∈ S2 � (s2,s′2) ∈ T2∧ (s′1,s′2) ∈ H

It is known [20] that the satisfaction of ACTL* formulas is preserved by simulation.

Therefore, since PTSL is a subset of ACTL*, it is also preserved by simulation. This is

expressed formally by the following fact, which we state without proof.

Fact 1. Let M1 and M2 be two Kripke structures over propositions AP1 and AP2 such that

M1 � M2. Hence, by Definition 6, AP2 ⊆ AP1. Let ϕ be any PTSL formula over AP2.

Therefore, ϕ is also a PTSL formula over AP1. Then M2 |= ϕ⇒M1 |= ϕ.

36

Theorem 2 (Small Model Simulation). Let gc(k) be any instantiated guarded command.

Let Init ∈ GSF be any generic state formula. Then M(gc(k), Init) � M(gc(1), Init) and

M(gc(1), Init)�M(gc(k), Init).

The following is a corollary of Theorem 2. Note that this corollary is the dual of

Theorem 1 obtained by swapping the types of ϕ and Init.

Corollary 3 (Small Model Safety 2). Let gc(k) be any instantiated guarded command.

Let ϕ ∈ USF be any universal state formula, and Init ∈ GSF be any generic state formula.

Then M(gc(k), Init) exhibits ϕ iff M(gc(1), Init) exhibits ϕ.

Proof. Follows from: (i) the observation that exhibition of a USF formula φ is expressible

in PTSL as the TLF formula F φ, (ii) Theorem 2, and (iii) Fact 1.

3.3.5 Proofs of Small Model Theorems

In this section, we prove our small model theorems1. We first present a set of supporting

lemmas for the proof of Theorem 1. The proofs of these lemmas, along with the statements

and proofs of lemmas on which they rely, can be found in the appendix.

Two types of lemmas follow: (i) store projection lemmas that show that the effect of

executing a PGCL program carries over from larger stores to unit stores, and (ii) store

generalization lemmas that show that the effect of executing a PGCL program carries over

from the unit store to larger stores. Intuitively, the two types of lemmas enable the for-

ward and backward reasoning necessary for the proof of Theorem 1’s forward and reverse

implications, respectively.

The first lemma states that a store σ satisfies an universal state formula ϕ iff every

projection of σ satisfies ϕ.

1The reader may skip this section without loss of continuity.

37

Lemma 4. Let ϕ ∈ USF and σ be any store. Then:

σ |= ϕ⇔∀i ∈ [1,σn] �σ � i |= ϕ

The next lemma states that if a store σ satisfies a generic state formula ϕ, then some

projection of σ satisfies ϕ.

Lemma 5. Let ϕ ∈ GSF and σ be any store. Then:

σ |= ϕ⇒∃i ∈ [1,σn] �σ � i |= ϕ

The next lemma states that if a store σ is transformed to σ′ by executing an instantiated

guarded command gc(k), then every projection of σ is transformed to the corresponding

projection of σ′ by executing gc(k).

Lemma 6 (Instantiated Command Projection). For any stores σ,σ′ and instantiated

guarded command gc(k):

{σ} gc(k) {σ′}⇒ ∀i ∈ [1,σn] �{σ � i} gc(1) {σ′ � i}

The last lemma relating store projection and formulas states that if every projection of

a store σ satisfies a generic state formula ϕ, then σ satisfies ϕ.

Lemma 7. Let ϕ ∈ GSF and σ be any store. Then:

∀i ∈ [1,σn] �σ � i |= ϕ⇒ σ |= ϕ

So far, we used the concept of store projection to show that the effect of executing

a PGCL program carries over from larger stores to unit stores (i.e., stores obtained via

38

projection). To prove our small model theorems, we also need to show that the effect of

executing a PGCL program propagates in the opposite direction, i.e., from unit stores to

larger stores. To this end, we first present a notion, called store generalization, that relates

unit stores to those of arbitrarily large size.

Definition 7 (Store Generalization). Let σ = (σB,1,σP) be any store. For any k ∈ N we

write σ � k to mean the store satisfying the following condition:

(σ � k)n = k∧∀i ∈ [1,k] � (σ � k) � i = σ

Intuitively, σ � k is constructed by duplicating k times the only row of σP, and leaving

the other components of σ unchanged. We now present a lemma related to store gener-

alization, which is needed for the proof of Theorem 1. The lemma states that if a store

σ is transformed to σ′ by executing an instantiated guarded command gc(k), then every

generalization of σ is transformed to the corresponding generalization of σ′ by executing

gc(k).

Lemma 8 (Instantiated Command Generalization). For any stores σ,σ′ and instantiated

guarded command gc(1):

{σ} gc(1) {σ′}⇒ ∀dke ∈ N �{σ � dke} gc(k) {σ′ � dke}

Proof of Theorem 1

We now prove Theorem 1. We utilize the preceding store projection lemmas for the for-

ward implication and the generalization lemmas for the reverse implication.

Proof. For the forward implication, let σ1,σ2, . . . ,σn be a sequence of states of

39

M(gc(k), Init) such that:

σ1 |= Init
∧

σn |= ϕ
∧
∀i ∈ [1,n−1] �{σi} gc(k) {σi+1}

Since ϕ ∈ GSF, by Lemma 5 we know that:

∃ j ∈ [1,dke] �σn � j |= ϕ

Let j0 be such a j. By Lemma 4, since Init ∈ USF:

σ1 � j0 |= Init

By Lemma 6, we know that:

∀i ∈ [1,n−1] �{σi � j0} gc(1) {σi+1 � j0}

Therefore, σn � j0 is reachable in M(gc(1), Init) and σn � j0 |= ϕ. Hence,

M(gc(1), Init) exhibits ϕ. For the reverse implication, let σ1,σ2, . . . ,σn be a sequence

of states of M(gc(1), Init) such that:

σ1 |= Init
∧

σn |= ϕ
∧
∀i ∈ [1,n−1] �{σi} gc(1) {σi+1}

For each i ∈ [1,n], let σ̂i = σi � dke. Therefore, since Init ∈ USF, by Lemma 4, we

know:

∀ j ∈ [1,dke] � σ̂1 � j |= Init⇒ σ̂1 |= Init

40

Also, since ϕ ∈ GSF, by Lemma 7 we know that:

∀ j ∈ [1,dke] � σ̂n � j |= ϕ⇒ σ̂n |= ϕ

Finally, by Lemma 8, we know that:

∀i ∈ [1,n−1] �{σ̂i} gc(k) {σ̂i+1}

Therefore, σ̂n is reachable in M(gc(k), Init) and σ̂n |= ϕ. Hence, M(gc(k), Init) exhibits

ϕ. This completes the proof.

Proof of Theorem 2

We now prove Theorem 2.

Proof. Recall the conditions C1–C3 in Definition 6 for simulation. For the first simula-

tion, we propose the following relation H and show that it is a simulation relation:

(σ,σ′) ∈H ⇔∃i ∈ [1,dke] �σ′ = σ � i

C1 holds because our atomic propositions are USF formulas, and Lemma 4; C2 holds

because Init ∈ GSF and Lemma 5; C3 holds by Definition 4 and Lemma 6. For the second

simulation, we propose the following relation H and show that it is a simulation relation:

(σ,σ′) ∈H ⇔ σ
′ = σ � dke

Again, C1 holds because our atomic propositions are USF formulas, Definition 7, and

41

Lemma 4; C2 holds because Init ∈ GSF, Definition 7, and Lemma 7; C3 holds by Defini-

tion 4 and Lemma 8. This completes the proof.

Note the asymmetry between Theorem 1 and Theorem 2. Ideally, we would like to

prove a dual of Theorem 2 with Init ∈ USF, and the atomic propositions of PTSL being

GSF. Then, Theorem 1 would be a corollary of this dual theorem. Unfortunately, such a

dual of Theorem 2 is difficult to prove. Specifically, the problem shows up when proving

that M(gc(k), Init) � M(gc(1), Init). Suppose we attempt to prove this by showing that

the following relation is a simulation:

(σ,σ′) ∈H ⇔∃i ∈ [1,dke] �σ′ = σ � i

Unfortunately, Lemma 5 is too weak to imply that H satisfies even condition C1- specifi-

cally this is because in the consequent of Lemma 5’s implication we have ∃i instead of ∀i.

Indeed, since GSF subsumes ESF, replacing ∃i with ∀i in Lemma 5 results in an invalid

statement. Essentially, this loss of validity stems from the fact that the whole-array updates

in PGCL allow different rows to be assigned different values. On the other hand, Lazic et

al. [55] allow only a more restricted form (i.e., reset) of whole-array updates. This enables

Lazic et al. to prove simulation, but reduces the expressivity of their modeling language.

As noted earlier, we found this additional expressivity in PGCL to be crucial for modeling

SecVisor.

3.4 Case Studies

We demonstrate our methodology on two hypervisors: SecVisor and the sHype [68]

mandatory-access-control extension to Xen [9].

42

IP=00)Hardware State = (mode = KERNEL,

10:

01:

00: User Mem.

Kernel Code

Kernel Data 10:

01:

00: User Mem.

Kernel Code

Kernel Data

00

10

00

10

00

01

10

00

01

1010:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

10:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

Initial Hardware State = (mode = KERNEL, IP = 01)

Initial Secure State After Synchronization

00 00

Kernel Page Table Shadow Page Table Physical Memory Kernel Page Table Shadow Page Table Physical Memory

Figure 3.7: This figure depicts the transition from an initial secure state to the compromised state
resulting from an Approved Page Remapping exploit. The attacker modifies KPT entry 01 to point
to the writable physical page 00. Subsequently, the CPU executes the unapproved code in page 00
in kernel mode.

3.4.1 SecVisor

Recall our model of SecVisor from Section 3.3.1 and the expression of SecVisor’s security

properties as PTSL formulas from Section 3.3.3.

Initial Failed Verification and Vulnerabilities

We used the Murϕ model checker to verify ϕexec and ϕcode on our SecVisor model. Murϕ

discovered counterexamples to both properties. Based on these counterexamples, we iden-

tified vulnerabilities in SecVisor’s design. We crafted exploits to ensure that the vulner-

abilities were also exploitable in SecVisor’s implementation.2 Both vulnerabilities result

from flaws in Sync.

Approved Page Remapping. The first vulnerability, called Approved Page Remap-

ping, was derived from Murϕ’s counterexample to ϕexec. The counterexample involves the

attacker modifying a Pn,q row with SPTPA = KC and SPTX = >. Specifically, the attacker

changes the value of KPTPA from KC to UM. The new KPTPA value is then copied by Sync

into SPTPA. Since SPTX = >, this results in a violation of ϕexec. The key flaw here, in

2These vulnerabilities were identified independently by two of SecVisor’s authors during an audit of
SecVisor’s implementation, but were not reported in any peer-reviewed publication. However, an informal
update to the SecVisor paper [70] detailing the vulnerabilities is available.

43

terms of SecVisor’s operation, is that a KPT entry is copied into the SPT without ensuring

that kernel code virtual addresses are not mapped to physical pages containing kernel data

or user memory. Subsequently, the CPU is in a position to execute arbitrary (and possibly

malicious) code. Figure 3.7 illustrates this attack.

To demonstrate that this vulnerability is present in SecVisor’s implementation, we

crafted an exploit (about 37 lines of C) as a kernel module. This exploit modifies the

physical address of a page table entry mapping an approved code page, to point to a page

containing unapproved code. When executed on a SecVisor-protected Linux kernel run-

ning on an AMD SVM platform, our exploit overwrote a page table entry which originally

mapped a physical page containing approved code to point to an arbitrary (unapproved)

physical page. SecVisor copied this entry into the SPT, potentially permitting the CPU to

execute unapproved code in kernel mode.

Our current exploit implementation requires that SecVisor approve the kernel module

containing the exploit code for execution in kernel mode. This is unrealistic since any

reasonable approval policy will prohibit the execution of kernel modules obtained from

untrusted sources. However, it could be possible for the attacker to run our exploit without

loading a kernel module. This could be done by executing pre-existing code in the kernel

that modifies the kernel page table entries with attacker-specified parameters. The attacker

could, for example, exploit a control-flow vulnerability (such as a buffer overflow) in the

kernel to call the kernel page table modification routine with attacker-supplied parameters.

Writable Virtual Alias. The second vulnerability, called Writable Virtual Alias, was

derived from Murϕ’s counterexample to ϕcode. The counterexample involves the attacker

modifying a Pn,q row with SPTPA= UM and SPTRW=>. Specifically, the attacker changes

the value of KPTPA from UM to KC. The new KPTPA value is then copied by Sync into

SPTPA. Since SPTRW = >, this results in a violation of ϕcode. The key flaw here, in

44

10:

01:

00: User Mem.

Kernel Code

Kernel Data 10 10

00

01

10

00

01

1010:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

10:

01:

00: RW

RW

X

RW

RW

X

10:

01:

00:

Initial Hardware State = (mode = KERNEL, IP = 01)

Initial Secure State After Synchronization

Kernel Page Table Shadow Page Table Physical Memory Kernel Page Table Shadow Page Table Physical Memory

01

01

01

01

Kernel Data10:

01:

00: User Mem.

Injected Code

Hardware State = (mode = KERNEL, IP = 01)

Figure 3.8: This figure depicts the transition from an initial secure state to the compromised
state resulting from an Writable Virtual Alias exploit. The attacker modifies KPT entry 00 to be a
writable alias for physical page 01 then injects code into 01 using the alias.

terms of SecVisor’s operation, is that a KPT entry is copied into the SPT without ensuring

that virtual addresses mapped to kernel data or user memory are not replaced by virtual

addresses mapped to kernel code. Then, the attacker uses the writable virtual alias to inject

arbitrary (and possibly malicious) code into kernel code pages. Figure 3.8 illustrates the

attack.

To demonstrate that this vulnerability is present in SecVisor’s implementation, we cre-

ated an exploit using about 15 lines of C code. Our exploit opens /dev/mem, maps a user

page with write permissions to a physical page (at address KERNEL CODE ADDR) con-

taining approved kernel code, and writes an arbitrary value into the target physical page

via the virtual user page. When executed against SecVisor on an AMD SVM platform

running Linux 2.6.20.14, our exploit successfully overwrote an approved kernel code with

arbitrary code. An interesting aspect of the exploit is that it can be executed from user

mode by an attacker that has administrative privileges.

Repair and Final Successful Verification

Both vulnerabilities in SecVisor are due to Sync copying untrusted data into the SPT

without validation. Our fix introduces two checks into Sync, resulting in a Secure Sync,

shown by the following guarded command:

45

Verification States Rules Fired Time Memory Result
3 PTEs 55,296 2,156,544 2.52 sec. 8MB Success
4 PTEs 1,744,896 88,989,696 343.97 sec. 256MB Success
5 PTEs - - - - Out of Memory

Figure 3.9: Verification results for models with increasing page table sizes.

Secure Sync ≡

> ? for i : Pn,q do

(¬Pn,q[i][SPTX] ∧ ¬(Pn,q[i][KPTPA] = KC)) ? Pn,q[i][SPTPA] := Pn,q[i][KPTPA]

The two checks ensure that: (i) executable SPT entries are not changed by

Secure Sync, eliminating the Approved Page Remapping attack, and (ii) KPT entries

pointing to kernel code are never copied over to the SPT by Secure Sync, eliminating the

Writable Virtual Alias attack. Murϕ is no longer able to find any attacks that violate ϕexec

or ϕcode in the fixed SecVisor program. Note that the initial condition, ϕinit, is expressible

in USF, and the negations of ϕexec and ϕcode are expressible in GSF. Therefore, by Theo-

rem 1, we know that the fixed SecVisor satisfies both ϕexec and ϕcode for SPTs and KPTs

of arbitrary size.

We added the two checks shown above to SecVisor’s SPT synchronization procedure

by modifying 105 lines of C code. We checked that our exploits failed against the patched

version of SecVisor. More details on the fixes to SecVisor’s implementation including

pseudo-code are available in a companion technical report [34].

46

Strength of Our Approach

To highlight the power of our approach, we used Murϕ to verify the correct SecVisor with

an increasing number of KPT and SPT entries. We used a 3.20GHz Pentium 4 machine

with 2GB of memory. Each verification includes three pages of physical memory repre-

senting, respectively, kernel code, kernel data, and user memory.

As shown in Table 3.9, we initially included three entries in both the KPT and the SPT.

Murϕ reported a successful verification after searching over 55,000 states, firing over 2

million rules, and running for 2.5 seconds, with a maximum memory utilization of less

than 8MB. We increased the number of entries in both the KPT and the SPT to four and

repeated the verification. Murϕ successfully verified the new model after searching over

1.7 million states, firing more than 88 million rules, and running around 6 minutes, with a

maximum memory utilization of less than 256MB. Since the adversary arbitrarily modifies

every bit of a page table entry (about 4 bits), and we add two additional pages, we expected

the resulting model to be between 9 and 27 times larger. The actual observed explosion

was 25 times in terms of explored states and required memory.

The verification of a model with five KPT and SPT entries exceeded available memory.

Given the observed state space explosion, we estimate that this verification would require

about 8GB of memory. Verifying a realistic model with 256MB of paged memory (216

4KB pages) would require multiple terabytes of memory to represent the state space ex-

plicitly. More importantly, successful verification of such a model would not demonstrate

the correctness of larger models. In contrast, our SMTs enable us to handle models of

unbounded size.

47

3.4.2 sHype Security Architecture

Next, we explore the expressiveness of PGCL and PTSL by analyzing the Chinese Wall

Policy (CWP) [15] as implemented in sHype hypervisor security architecture [68]. sHype

is a mandatory-access-control-based system implemented in the Xen hypervisor [9], the

research hypervisor rHype [64], and the PHYP commercial hypervisor [75].

Chinese Wall Policy

Access control policies distinguish between two primary types: principals and objects.

The Chinese Wall Policy aims to prevent conflicts of interest when a principal can access

objects owned by competing parties. It is both a confidentiality and integrity policy since

it governs all accesses (e.g., reads and writes). It can be viewed as a two-level separation

policy as it partitions resources based on their membership in sets that are contained in

other sets.

In sHype’s CWP implementation, principals are virtual machine (VM) instances, and

objects are abstract workloads, represented concretely by sets of executable programs and

their associated input and output data. Workloads are grouped into Chinese Wall types

(CW-types), and CW-types are grouped further into Conflict of Interest (CoI) classes. The

ability of a VM to gain access to a new workload is constrained by workloads it already

has access to. Specifically, a VM may access workloads of, at most, one CW-type for

each CoI class, with its first workload access being arbitrary. We now formalize the sHype

CWP security property.

Definition 8. Formally, a sHype CWP is a five tuple

(WL,CWTypes,CoIClasses,TypeMap,ClassMap) where: (i) WL = {w1, . . . ,wL} is

a finite set of L workloads, (ii) CWTypes = {cwt1, . . . ,cwtT} is a finite set of T CWTypes,

(iii) CoIClasses = {coi1, . . . ,coiC} is a finite set of C Conflict of Interest classes, (iv)

48

TypeMap maps WL to CWTypes, and (v) ClassMap maps WL to CoIClasses.

Encoding sHype CWP in PGCL

Each row of the parameterized array P represents a VM, and each column of P represents a

workload. Thus, P[i][j] => iff the i-th virtual machine vmi has access to the j-th workload

w j.

The CWP confidentiality (read) policy in sHype says that a VM vm may access a work-

load w iff for all other workloads w′ that vm can access already, either TypeMap(w′) =

TypeMap(w), or ClassMap(w′) 6= ClassMap(w). Moreover, sHype’s CWP write policy

is equivalent to its read policy. Hence, we can combine the two policies, and express the

combination as a safety property as follows:

Definition 9 (sHype CWP Access Property).

∀i �
∧

w∈WL

(P[i][w]⇒ (φ1(i,w) ∨ φ2(i,w))) ,where

φ1(i,w)≡
∨

w′∈WL\{w}
P[i][w′] ∧ (TypeMap(w′) = TypeMap(w))

φ2(i,w)≡
∧

w′∈WL\{w}
P[i][w′]⇒ (ClassMap(w′) 6=ClassMap(w))

Note that WL, CWTypes and CoIClasses are all finite sets, and TypeMap and

ClassMap have finite domains and ranges. Therefore, sHype’s CWP policy is express-

ible as a USF formula, and its negation as a ESF formula.

Initial State. A system implementing CWP starts in an initial state when no previous

accesses have occurred. This is expressed by the following USF formula:

Init , ∀i �
∧

w∈WL

¬P[i][w]

49

Reference Monitor

We compile an arbitrary CWP policy P=(WL,CWTypes,CoIClasses,TypeMap,ClassMap)

into a reference monitor that enforces the CWP access property for P by restricting VM

accesses to workloads. Specifically, for each w ∈WL, let g(i,w) be the guard that allows

the i-th VM access to workload w under the CWP Access Property. For example, consider

the following policy:

P = (WL = {w1,w2,w3,w4,w5},

CWTypes = {BankA,BankB,TechA,TechB},

CoIClasses = {Banks,TechCompanies},

TypeMap(w1) = BankA,TypeMap(w2) = BankA,

TypeMap(w3) = BankB,TypeMap(w4) = TechA,

TypeMap(w5) = TechB,ClassMap(w1) = Banks,

ClassMap(w2) = Banks,ClassMap(w3) = Banks,

ClassMap(w4) = TechCompanies,

ClassMap(w5) = TechCompanies.)

Following Definition 9:

g(i,w1), φ1(i,w1)∨φ2(i,w1)⇔

(P[i][w2] ∨ (¬P[i][w2]∧¬P[i][w3]))⇔ (P[i][w2] ∨ ¬P[i][w3])

g(i,w3), (¬P[i][w1]∧¬P[i][w2])

50

The other guards are defined analogously. Let there be a variable hypercall such

that the monitor runs whenever hypercall=>. Moreover, for each w ∈WL, the column

ACCESS(w) is used to request access to w. Then, the following PGCL guarded command

implements the CWP policy:

access ref monitor ≡

hypercall ?

hypercall :=⊥;

for i : Pn,q do

Pn,q[i][ACCESS(w1)]∧g(i,w1) ? Pn,q[i][w1] :=>;
...

Pn,q[i][ACCESS(wL)]∧g(i,wL) ? Pn,q[i][wL] :=>;

The attacker attempts any sequence of accesses of any workloads from any VM. It is

expressed by the following guarded command:

CWP Adv ≡

> ?

hypercall := ∗;

for i : Pn,q do

> ? Pn,q[i][ACCESS(w1)] := ∗;
...

> ? Pn,q[i][ACCESS(wL)] := ∗

Finally, we define the overall sHype system:

51

sHype CWP ≡ access ref monitor ‖ CWP Adv

sHype is expressible as a PGCL program, its initial state is expressible in USF, and the

negation of the sHype CWP access property is expressible in GSF. Therefore, Theorem 1

applies and we need only verify the system with one VM (i.e., a system parameter of one).

We used the Murϕ model checker to verify the CWP access property of our sHype

model. As before, verifications were run on a 3.20GHz Pentium 4 machine with 2GB of

memory. Our initial verification checked a model with one VM, corresponding to a single

row in the parameterized array. No counterexamples were found after searching 230 states,

firing 1,325 rules, and running for 0.10s while utilizing less than 1MB of memory. By

applying Theorem 1, this successful verification extends to any finite number of VMs.

Although no additional verification is necessary to demonstrate the absence of coun-

terexamples, we explored scaling trends and demonstrated the utility of our technique by

increasing the number of virtual machines instances. With two virtual machines instances,

the verification completed in less than one second after exploring 34,000 states, firing

over 370,000 rules, and using close to 8MB of memory. With three virtual machines,

the verification required more than one hour and twenty minutes and explored greater than

5,600,000 states, firing over 89,000,000 rules and utilizing almost 1GB of memory. Subse-

quent verifications with larger numbers of virtual machines exceeded the memory capacity

of the machine.

52

3.5 Expressiveness and Limitations

We demonstrate that our approach is expressive enough to model and analyze any “param-

eterized” reference monitor and policy that is expressible as finite state automata (FSA).

We say that a reference monitor is parameterized if it operates over the rows of a param-

eterized data structure in a “row-independent” and “row-uniform” manner. Specifically,

row-uniform means that the same policy is enforced on each row, while row-independent

means that the policy does not refer to or depend on the content of any other row.

A FSA is defined as a five-tuple FSA = (States, Init,Actions,T,Accept) where: (i)

States is a finite set of states of size S, (ii) Init ⊆ States is the set of initial states, (iii)

Actions is a finite set of actions with size A, (iv) T ⊆ States×Action×States is the tran-

sition relation, and (v) Accept ⊆ States is the set of accepting states. Note that FSA are

in general non-deterministic. While this does not provide additional expressive power, it

enables us to represent policies compactly.

Consider the policy from Example 2 that restricts message transmission after a princi-

pal accesses sensitive data. When parameterized over processes, this policy can be viewed

as the following FSA (both states are accepting, indicated by the double circle). In other

words, a process respects the policy as long as its behavior is a string of actions accepted

by the FSA.

Implementing a reference monitor in PGCL that enforces the policy represented by

FSA = (States, Init,Actions,T,Accept) is straightforward, and involves the following

steps:

• Encode the finite but unbounded aspect of the policy (i.e., VMs, processes, memory

pages, etc...) as the rows of P.

• Each state σi ∈ States is encoded by two columns, σi and σ′i, which represent the

53

not read not send

read

send

start

error

noSnd

Actions

current and next states of the FSA respectively. We need the σ′i columns to simulate

FSA since FSA is non-deterministic, and could end up in multiple possible states

after a sequence of actions.

• Each ai ∈ Actions is encoded as a column of P. The action columns represent the

action performed by the system.

• A formula Init constrains each FSA to start in an initial state. Specifically:

Init, ∀i �
∧

s∈Init

P[i][s]∧
∧

s∈States\Init

¬P[i][s]

• The transition relation T is encoded as a finite number of Boolean variables of the

form:

∀σi,σk ∈ States,a j ∈ Action �bσi,a j,σk ⇔ T (σi,a j,σk)

• Then a general reference monitor that enforces the policy represented by FSA is a

guarded command that loops over the rows of P, considers the action performed by

the system by inspecting the action columns, and updates each row in three steps:

54

1. Sets all σ′k columns to ⊥.

2. Sets appropriate σ′k columns to> based on the σi and a j columns, and bσi,a j,σk .

3. Copies σ′k columns into the σi columns.

Note that this essentially simulates the execution of FSA from the states encoded by

the σi columns upon seeing the actions encoded by the a j columns. The reference

monitor is described by the following PGCL guarded command.

universal reference monitor ≡

> ?

for i : Pn,q do

Pn,q[i][σ
′
1] :=⊥; . . . ;Pn,q[i][σ′S] :=⊥;

for i : Pn,q do

Pn,q[i][σ1] ∧ Pn,q[i][a1] ∧ bσ1,a1,σ1 ? Pn,q[i][σ′1] :=>;
...

for i : Pn,q do

Pn,q[i][σS] ∧ Pn,q[i][aA] ∧ bσS,aA,σS ? Pn,q[i][σ′S] :=>;

for i : Pn,q do

Pn,q[i][σ1] := Pn,q[i][σ
′
1]; . . . ;Pn,q[i][σS] := Pn,q[i][σ

′
S];

The following guarded command implements an adversary that non-deterministically

selects a sequence of input actions (via the action columns of P) to the reference monitors.

Clearly, this is the strongest adversary that is constrained to input actions alone.

universal adv ≡

> ? for i : Pn,q do

> ? Pn,q[i][a1] := ∗; . . .Pn,q[i][aA] := ∗;

55

We model the FSA policy as a formula in PTSL. Our specification logic admits param-

eterized row formulas of the form ∀i ∈ N �ϕ(i) where the index i denotes the i-th formula

and it refers only to the variables in the i-th row of P. Given this form, we can encode the

security policy represented by the parametric reference monitor as a row formula.

Finally, we can employ a model checker to determine if the reference monitor running

in parallel with the adversary implementation satisfies the security property, equivalently:

universal reference monitor ‖ universal adv � ϕ

The restrictions of row-uniform and row-independent behavior are required to express

parameterized reference monitors in PGCL. These restrictions are a limitation of this work.

There exist important cases of reference monitor policies, such as type enforcement [14],

that are not row-independent and row-uniform. In general, safety analysis for access-

control-based systems in the style of the HRU model [43] allows for the possibility of

enforcing richer policies that are not expressible with our restrictions.

3.6 Conclusion

The reference monitors in operating systems, hypervisors, and web browsers must cor-

rectly enforce their desired security policies in the presence of adversaries. Despite

progress in developing reference monitors with small code sizes, a significant remaining

factor in the complexity of automatically verifying reference monitors is the size of the

data structures over which they operate. We developed a verification technique that scales

even when reference monitors and adversaries operate over unbounded, but finite data

structures. Our technique significantly reduces the cost and improves the practicality of

56

automated formal verification for reference monitors. We developed a parametric guarded

command language for modeling reference monitors and adversaries, and a parametric

temporal specification logic for expressing security policies that the monitor is expected

to enforce. The central technical results of this chapter are a set of small model theorems

that state that in order to verify that a policy is enforced for a reference monitor with an ar-

bitrarily large data structure, it is sufficient to model check the monitor with just one entry

in its data structure. We applied this methodology to verify that the designs of two hyper-

visors – SecVisor and the sHype mandatory-access-control extension to Xen – correctly

enforce the expected security properties in the presence of adversaries.

Next, we extend PGCL and PTSL to include security properties and programs that al-

low relations between rows of the parameterized array. These extensions enable modeling

and analysis of reference monitors that implement more expressive access control policies.

Such policies include those with relationships (e.g., ownership, sharing, and communica-

tion) between principals. In addition, this extension enables us to apply our results to

verify security properties of reference monitor implementations.

57

58

Chapter 4

Parametric Verification with

Hierarchical Data Structures

4.1 Introduction

A common use of protection mechanisms in systems software is to prevent one execution

context from accessing memory regions allocated to a different context. For example,

hypervisors, such as Xen [9], are designed to support memory separation not only among

guest operating systems, but also between the guests and the hypervisor itself. Separation

is achieved by an address translation subsystem that is self-contained and relatively small

(around 7000 LOC in Xen version 3.0.3). Verifying security properties of such separation

mechanisms is both: (i) important, due to their wide deployment in environments with

malicious guests, e.g., the cloud; and (ii) challenging, due to their complexity. Addressing

this challenge is the subject of this chapter.

A careful examination of the source code for two hypervisors – Xen and ShadowVisor

(a research hypervisor) – reveals that a major source of complexity in separation mecha-

59

nisms is the size, and hierarchical nesting, of the data-structures over which they operate.

For example, Xen’s address translation mechanism involves multi-level page tables where

a level has up to 512 entries in a 3-level implementation, or up to 1024 entries in a 2-

level implementation. The number of levels is further increased by optimizations, such

as context caching (see Section 4.2 for a detailed description). Since the complexity of

model checking grows exponentially with the size of these data-structures, verifying these

separation mechanisms directly is intractable.

We address this problem by developing a parametric verification technique that is able

to handle separation mechanisms operating over multi-level data structures of arbitrary

size and with arbitrary number of levels. Specifically, we make the following contribu-

tions. First, we develop an extended parametric guarded command language (PGCL+) for

modeling hypervisors and adversaries. In particular, PGCL+ supports: (i) nested paramet-

ric arrays to model data structures, such as multi-level page tables, where the parameters

model the size of page tables at each level; and (ii) whole array operations to model an

(indeed, the most powerful possible) adversary which non-deterministically sets the values

of data structures under its control.

In addition, the design of PGCL+ is driven by the fact that our target separation mech-

anisms operate over tree-shaped data structures in a row independent and hierarchically

row uniform manner. Consider a mechanism operating over a tree-shaped multi-level page

table. Row independence means that the values in different rows of a page table are mu-

tually independent. Hierarchical row uniformity implies that: (a) for each level i of the

page table, the mechanism executes the same command on all rows at level i; (b) the

command for a row at level i involves recursive operation over at most one page table at

the next level i+1; (c) the commands for distinct rows at level i never lead to operations

over the same table at level i+1. Both row independence and hierarchical uniformity are

baked syntactically into PGCL+ via restricted forms of commands and nested whole array

60

operations.

Second, we develop a parametric specification formalism, a strict extension of PTSL

referred to by the same name, for expressing security policies of separation mechanisms

modeled in PGCL+. Our formalism is able to express both safety and liveness properties

that involve arbitrary nesting of quantifiers over multiple levels of the nested parametric

arrays in PGCL+.

Third, we prove a set of small model theorems that roughly state that for any system M

expressible in PGCL+, and any security property ϕ in our extended specification formalism,

an instance of M with a data structure of arbitrary size satisfies ϕ iff the instance of M

where the data structure has 1 element at every level satisfies ϕ. Note that these theorems

apply to the extended language PGCL+ and extended specification logic PTSL and hence

are strictly more general than those developed in Chapter 3. These theorems yield the best

possible reduction – e.g., verifying security of a separation mechanism over an arbitrarily

large page table is reduced to verifying the mechanism with just 1 page table entry at each

level. This ameliorates the lack of scalability of verification due to data structure size.

Finally, we demonstrate the effectiveness of our approach by modeling, and verifying,

shadow paging mechanisms of Xen version 3.0.3 and ShadowVisor, together with asso-

ciated address separation properties. The models were created manually from the actual

source code of these systems. In the case of ShadowVisor, our initial verification identified

a previously unknown vulnerability. After fixing the vulnerability, we are able to verify

the new model successfully.

The rest of this chapter is organized as follows. Section 4.2 presents an overview of

address translation mechanisms and associated separation properties. Section 4.3 presents

the parametric modeling language, the specification logic, as well as the small model the-

orems and the key ideas behind their proofs. Section 4.4 presents the case studies. Finally,

Section 4.5 presents our conclusions.

61

Page Table Base Address

Page Directory
Table

Page Table

Physical Page

Physical
Address Space

Physical
Address

Virtual Address

Figure 4.1: Typical two-level page table structure.

4.2 Address Space Translation and Separation

In this section, we give an overview of the systems we target, viz., address space translation

schemes, and the properties we verify, viz., address separation.

Translation. Consider a system with memory sub-divided into pages. Each page has

a base address (or address, for short). Address space translation maps source addresses

to destination addresses. In the simplest setting, it is implemented by a single-level page

table (PT). Each row of the PT is a pair (x,y) such that x is a source base address and y is

its corresponding destination base address.

Multi-level Paging. More sophisticated address translation schemes use multi-level

PTs. Figure 4.1 shows a typical two-level address translation. A 2-level PT consists of a

top level Page Directory Table (PDT) and a set of leaf PTs. An n-level PT is essentially

a set of tables linked to form a tree of depth n. Specifically, each row of a table at level

i contains either a destination address, or the starting address of a table at level i+ 1. In

62

addition to addresses, rows contain flags (e.g., to indicate if the row contains a destination

addresses or the address of another table). We now present a concrete example.

Example 3. To perform a translation between address spaces, a source address i is split

into two parts, whose sizes are determined during the design of the PT. Let i = (i1, i2).

To compute the destination address corresponding to i, we first find the row (i1,o1) in the

PDT where o1 is the entry at index i1. The entry o1 contains an address a1, a Page Size

Extension flag PSE, and a present flag PRESENT . If PRESENT is unset, then there is

no destination address corresponding to i. Otherwise, if PSE is set, then the destination

address is a1. Finally, if PSE is unset, we find the entry (i2,a2) in the table located at

address a1, and return a2 as the destination address. Note the use of PSE and PRESENT

to disambiguate between different types of rows. Also, note the dual use of the address

field a1 as either a destination address or a table address.

Address Separation. While the systems we target are address translation schemes,

the broad class of properties we aim for is address separation. This is a crucial property –

in essence, requiring that disjoint source address spaces be mapped to disjoint destination

address spaces. Our notion of address separation is conceptually similar to that used by

Baumann et al. [12]. Formally, an address translation scheme M violates separation if it

maps addresses a1 and a2 from two different source address spaces to the same destination

address. For example, an OS’s virtual memory manager enforces separation between the

address spaces of the OS kernel and various processes. Address space separation is a

safety property since its violation is exhibited by a finite execution.

Shadow Paging. The key technique, used by hypervisor address translation schemes

involving page tables, to ensure memory separation is shadowing. For example, a separa-

tion kernel employs shadow paging to isolate critical memory regions from an untrusted

guest OS. In essence, the kernel maintains its own trusted version of the guest’s PT, called

63

the shadow PT or sPT. The guest is allowed to modify its PT. However, the kernel in-

terposes on such modifications and checks that the guest’s modifications do not violate

memory separation. If the check succeeds, the sPT is synchronized with the modified

guest’s PT.

Uses of multi-level PTs. Multi-level PTs are the canonical tree-shaped data-

structures that motivates our work in this chapter. In real systems, such PTs are used

for various optimizations. One use is to translate large source address spaces without the

overhead of one PT entry for each source base address. Another use is to implement con-

text caching, a performance optimization – used by both Xen and VMWare – for shadow

paging. Normally, every virtual address space (or context) has its own PT, e.g., for a hy-

pervisor, each process running on each guest OS has a separate context. Suppose that all

context PTs are shadowed to a single sPT. When the context changes (e.g., when a new

process is scheduled to run), the sPT is re-initialized from the PT of the new context. This

hampers performance. Context caching avoids this problem by shadowing each context

PT to a separate sPT. In essence, the sPT itself becomes a multi-level PT, where each row

of the top-level PT points to a PT shadowing a distinct context.

Our goal is to verify address separation for address translation schemes that operate

on multi-level PTs with arbitrary (but fixed) number of levels and arbitrary (but fixed)

number of rows in each table, where each row has an arbitrary (but fixed) number of flags.

These goals crucially influence the syntax and semantics of PGCL+ and our specification

formalism, and our technical results, which we present next.

64

4.3 Definitions of PGCL+ and PTSL

In this section, we present our extended language PGCL+ and our extended specification

formalism for modeling programs and security properties, respectively.

4.3.1 PGCL+ Syntax

All variables in PGCL+ are Boolean. In contrast to PGCL which includes a single array,

PGCL+ includes nested parametric arrays to a finite depth d. Each row of an array at depth

d is a record with a single field F, a finite array of Booleans of size qd . Each row of an

array at depth z (1 ≤ z < d) is a structure with two fields: F, a finite array of Booleans of

size qz, and P an array at depth z+ 1. Our results do not depend on the values of d and

{qz | 1≤ z≤ d}, and hence hold for programs that manipulate arrays that are nested (as

describe above) to arbitrary depth, and with Boolean arrays of arbitrary size at each level.

Also, Boolean variables enable us to encode finite valued variables, and arrays, records,

relations and functions over such variables.

Let 1 and 0 be, respectively, the representations of the truth values true and false.

Let B be a set of Boolean variables, i1, . . . ,id be variables used to index into P1, . . . ,Pd ,

respectively, and n1, . . . ,nd be variables used to store the number of rows of P1, . . . ,Pd ,

respectively. The syntax of PGCL+ is shown in Figure 4.2. PGCL+ supports natural num-

bers, Boolean variables, propositional expressions over Boolean variables and F elements,

guarded commands that update Boolean variables and F elements, and parallel compo-

sition of guarded commands. A skip command does nothing. A guarded command

e ? c1 : c2 executes c1 or c2 depending on whether e evaluates to true or false. We write

e ? c to mean e ? c : skip. The parallel composition of two guarded commands executes

by non-deterministically picking one of the commands to execute. The sequential com-

position of two commands executes the first command followed by the second command.

65

Natural Numerals K

Boolean Variables B

Parametric Index Variables i1, . . . ,id
Parameter Variables n1, . . . ,nd
Expressions E ::= 1 | 0 | ∗ | B | E∨E | E∧E | ¬E
Param. Expressions (1≤ z≤ d) Êz ::= E | P[i1] . . .P[iz].F[K] | Êz∨ Êz | Êz∧ Êz | ¬Êz
Instantiated Guarded Commands G ::= GC(Kd)
Guarded Commands GC ::= E ? C1 : C1

| GC ‖ GC Parallel comp.
Commands (depth 1≤ z≤ d) Cz ::= B := E (if z = 1) Assignment

| for iz do Êz ? Ĉz : Ĉz Parametric for
| Cz;Cz Sequencing
| skip Skip

Param. Commands (1≤ z≤ d) Ĉz ::= P[i1] . . .P[iz].F[K] := Êz Array assign
| Ĉz; Ĉz Sequencing
| Cz+1 (if z < d) Nesting

Figure 4.2: PGCL+ Syntax. Note the addition of nesting where z denotes depth.

Note that commands at depth z+1 are nested within those at depth z.

Language Design. Values assigned to an element of an F array at depth z can depend

only on: (i) other elements of the same F array; (ii) elements of parent F arrays along

the nesting hierarchy (to ensure hierarchical row uniformity); and (iii) Boolean variables.

Values assigned to Boolean variables depend on other Boolean variables only. This is

crucial to ensure row-independence which is necessary for our small model theorems (cf.

Sec. 4.3.5).

4.3.2 ShadowVisor Code in PGCL+

We use ShadowVisor as a running example, and now describe its model in PGCL+. Shad-

owVisor uses a 2-level PT scheme. The key unbounded data structures are the guest and

shadow Page Directory Table (gPDT and sPDT) at the top level, and the guest and shadow

Page Tables (gPTs and sPTs) at the lower level. Since each shadow table has the same size

66

as the corresponding guest table, we model them together in the 2-level PGCL+ parametric

array.

For simplicity, let PDT be the top-level array P. Elements PDT[i1].F[gPRESENT] and

PDT[i1].F[gPSE] are the present and page size extension flags for the i1-th gPD entry,

while PDT[i1].F[gADDR] is the destination address contained in the i1-th gPD entry. El-

ements sPRESENT, sPSE, and sADDR are defined analogously for sPD entries. Again for

simplicity, let PDT[i1].PT be the array P[i1].P. Elements gPTE PRESENT and gPTE ADDR of

PDT[i1].PT[i2].F are the present flag and destination address contained in the i2-th entry

of the PT pointed to by the i1-th gPDT entry. Elements sPTE PRESENT and sPTE ADDR

of PDT[i1].PT[i2].F are similarly defined for the sPDT. Terms gPDE refers to the set of

elements corresponding to a gPDT entry (i.e., gPRESENT, gPSE, and gADDR). Terms gPTE,

sPDE and sPTE are defined similarly for the gPT, sPDT, and sPT, respectively.

Our ShadowVisor model (see Figure 4.3) is a parallel composition of four guarded

commands shadow page fault, shadow invalidate page, shadow new context, and

adversary. Command shadow page fault synchronizes sPDT and sPT with gPDT and

gPT when the guest kernel: (i) loads a new gPT, or (ii) modifies or creates a gPT entry. To

ensure separation, shadow page fault only copies destination addresses from the gPT or

gPDT that are less than MEM LIMIT minus an offset that depends on the page size. This

results in two distinct checks depending on the level of the table since pages mapped in

the PDT are of size MPS PDT and pages mapped in the PT are of size MPS PT.

Command shadow invalidate page invalidates entries in the sPD and sPT (by set-

ting to zero) when the corresponding guest entries are not present, the PSE bits are in-

consistent, or the if both structures are consistent and the guest OS invalidates a page.

Command shadow new context initializes a new context by clearing all the entries of

the sPD. Finally, command adversary models the attacker by arbitrarily modifying every

gPD entry and every gPT entry.

67

shadow page fault ≡
for i1 do

PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧
PDT[i1].F[gADDR]< MEM LIMIT−MPS PDT ?
PDT[i1].F[sPDE] := PDT[i1].F[gPDE];

for i2 do

PDT[i1].F[gPRESENT]∧
PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR]< MEM LIMIT−MPS PT ?
PDT[i1].PT[i2].F[sPTE] := PDT[i1].PT[i2].F[gPTE];

shadow invalidate page ≡
for i1 do

(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[gPRESENT])∨
(PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
(PDT[i1].F[sPSE]∨PDT[i1].F[gPSE])) ?
PDT[i1].F[sPDE] := 0;

for i1 do

PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
¬PDT[i1].F[gPSE]∧¬PDT[i1].F[sPSE] ?
for i2 do

PDT[i1].PT[i2].F[sPTE] := 0;

shadow new context ≡
for i1 do

PDT[i1].F[sPDE] := 0;

adversary ≡
for i1 do

PDT[i1].F[gPDE] := ∗;
for i2 do

PDT[i1].PT[i2].F[gPTE] := ∗;

Figure 4.3: ShadowVisor model in PGCL+.

68

For brevity, we write c to mean 1 ? c. Since all PGCL variables are Boolean, we write

x< C to mean the binary comparison between a finite valued variable x and a constant C.

4.3.3 PGCL+ Semantics

We now present the operational semantics of PGCL+ as a relation on stores. The seman-

tics of PGCL+ closely parallel the semantics of PGCL. However, the addition of nested

parametric arrays complicates the definitions of stores and store projection.

Let B be the truth values {true, false}. Let N denote the set of natural numbers. For

two natural numbers j and k such that j ≤ k, we write [j,k] to mean the set of numbers in

the closed range from j to k. For any numeral k we write dke to mean the natural number

represented by k in standard arithmetic. Often, we write k to mean dke when the context

disambiguates such usage.

We write Dom(f) to mean the domain of a function f ; (t, t′) denotes the concatenation

of tuples t and t′; ti, j is the subtuple of t from the ith to the jth elements, and ti means ti,i.

Given a tuple of natural numbers t= (t1, . . . , tz), we write ⊗(t) to denote the set of tuples

[1, t1]×·· ·× [1, tz]. Recall that, for 1≤ z≤ d, qz is the size of the array F at depth z. Then,

a store σ is a tuple (σB,σn,σP) such that:

• σB : B→ B maps Boolean variables to B;

• σn ∈ Nd is a tuple of values of the parameter variables;

• σP is a tuple of functions defined as follows:

∀z ∈ [1,d] �σP
z :⊗(σn

1,z,qz)→ B

We omit the superscript of σ when it is clear from the context. The rules for evaluat-

ing PGCL+ expressions under stores are defined inductively over the structure of PGCL+

expressions, and shown in Figure 4.4. To define the semantics of PGCL+, we first present

69

〈1,σ〉 → true 〈0,σ〉 → false 〈∗,σ〉 → true 〈∗,σ〉 → false

b ∈ dom(σB)

〈b,σ〉 → σ
B(b)

〈e,σ〉 → t
〈¬e,σ〉 → [¬]t

(dk1e, . . . ,dkze,dre) ∈ Dom(σP
z)

〈P[k1] . . .P[kz].F[r],σ〉 → σ
P
z (dk1e, . . . ,dkze,dre)

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∨e′,σ〉 → t[∨]t ′
〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∧e′,σ〉 → t[∧]t ′

Figure 4.4: Rules for expression evaluation.

the notion of store projection.

We overload the 7→ operator as follows. For any function f : X → Y , x ∈ X and y ∈ Y ,

we write f [x 7→ y] to mean the function that is identical to f , except that x is mapped to y.

X[y 7→ w] is a tuple that equals X, except that (X[y 7→ w])y = w. For any PGCL+ expression

or guarded command X, variable v, and expression e, we write X[v 7→ e] to mean the result

of replacing all occurrences of v in X simultaneously with e. For any z ∈N, 1z denotes the

tuple of z 1’s.

Definition 10 (Store Projection). Let σ = (σB,σn,σP) be any store and 1 ≤ z ≤ d. For

k= (k1, . . . ,kz) ∈ ⊗(σn
1, . . . ,σ

n
z) we write σ � k to mean the store (σB,σm,σQ) such that:

1. σm = σn[1 7→ 1][2 7→ 1] . . . [z 7→ 1]

2. ∀y ∈ [1,z] �∀X ∈ Dom(σQ
y) �σ

Q
y (X) = σP

y (X [1 7→ k1][2 7→ k2] . . . [y 7→ ky])

3. ∀y ∈ [z+1,d] �∀X ∈ Dom(σQ
y) �σ

Q
y (X) = σP

y (X [1 7→ k1][2 7→ k2] . . . [z 7→ kz])

Note: ∀z ∈ [1,d] �∀k ∈ ⊗(σn
1, . . . ,σ

n
z) �σ � k= (σ � k) � 1z.

Intuitively, σ � k is constructed by retaining σB, changing the first z elements of σn to 1

and leaving the remaining elements unchanged, and projecting away all but the ky-th row

70

σ
n = (dk1e, . . . ,dkde) {σ} gc {σ′}

{σ} gc(k1, . . . ,kd) {σ′}
Parameter Instantiation

〈e,σ〉 → true∧{σ} c1 {σ′}
∨
〈e,σ〉 → false∧{σ} c2 {σ′}

{σ} e ? c1 : c2 {σ′}
GC

{σ} c {σ′′} {σ′′} c′ {σ′}
{σ} c;c′ {σ′}

Sequential
{σ} gc {σ′}∨{σ} gc′ {σ′}
{σ} gc ‖ gc′ {σ′}

Parallel

〈e,σ〉 → t

{σ} b := e {σ[σB 7→ σ
B[b 7→ t]]}

Assign
{σ} skip {σ}

Skip

ê ∈ Êz 〈ê,σ〉 → t (dk1e, . . . ,dkze,dre) ∈ Dom(σP
z)

{σ} P[k1] . . .P[kz].F[r] := ê {σ[σP 7→ σ
P[σP

z 7→ [σP
z [(dk1e, . . . ,dkze,dre) 7→ t]]]]}

Param. Array Assign

σ
n
1,z = (1z−1,N) ê ? ĉ1 : ĉ2 ∈ (Êz ? Ĉz : Ĉz)[i1 7→ 1] . . . [iz−1 7→ 1]
∀y ∈ [1,N] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

{σ} for iz do ê ? ĉ1 : ĉ2 {σ′}
Unroll

Figure 4.5: Rules for commands

of the parametric array at depth y for 1 ≤ y ≤ z. Note that since projection retains σB, it

does not affect the evaluation of expressions that do not refer to elements of P.

Store Transformation. For any PGCL+ command c and stores σ and σ′, we write

{σ} c {σ′} to mean that σ is transformed to σ′ by the execution of c. We define {σ} c {σ′}

via induction on the structure of c, as shown in Figure 4.5. [∧], [∨], and [¬] denote logical

conjunction, disjunction, and negation, respectively.

The “GC” rule states that σ is transformed to σ′ by executing the guarded command

e ? c1 : c2 if: (i) either the guard e evaluates to true under σ and σ is transformed to σ′ by

executing the command c1; (ii) or e evaluates to false under σ and σ is transformed to σ′

by executing c2. Note the addition of an “else” condition to the “GC” rule in Chapter 3.

The addition of nested parametric arrays requires a new “Unroll” rule. The new “Un-

71

roll” rule states that for an array at depth z if c is a for loop, then {σ} c {σ′} if each row

of σ′ results by executing the loop body from the same row of σ. The nesting of for-loops

complicates the proofs of our small model theorems. Indeed, we require to reason using

mutual induction about loop bodies (Êz ? Ĉz) and commands (Cz), starting with the loop

bodies at the lowest level, and moving up to commands at the highest level.

4.3.4 Specification Formalism

The following specification formalism is a strict extension of PTSL as presented in Chap-

ter 3 to allow formulas over the nested parametric arrays in PGCL+. As before, we support

both reachability properties and temporal logic specifications. The syntax of state formulas

is defined in Figure 4.6. We support three types of state formulas – universal, existential,

and generic. Specifically, universal formulas allow only nested universal quantification

over P, existential formulas allow arbitrary quantifier nesting with at least one ∃, while

generic formulas allow one of each.

Temporal logic specifications are expressed in PTSL. In essence, PTSL is a subset of

the temporal logic ACTL* [20] with USF as atomic propositions. The syntax of PTSL is

defined in Figure 4.6. The quantification nesting allowed in our specification logic allows

expressive properties spanning multiple levels of P. Not that these properties were not

expressible in the version of PTSL presented in Chapter 3. This will be crucial for our

case studies, as shown in Sec. 4.4.

ShadowVisor Security Properties in PTSL. ShadowVisor begins execution with ev-

ery entry of the sPDT and sPT set to not present. This initial condition is stated in the

following USF state formula:

ϕinit , ∀i1,i2 � ¬PDT[i1].F[sPRESENT]∧¬PDT[i1].PT[i2].F[sPTE PRESENT]

72

Basic Propositions BP ::= b , b ∈ B | ¬BP | BP∧BP
Parametric Propositions PP(i1, . . . ,iz) ::= {P[i1] . . .P[iz].F[r] | dre ≤ qz}

| ¬PP(i1, . . . ,iz)
| PP(i1, . . . ,iz)∧PP(i1, . . . ,iz)

Universal State Formulas USF ::= BP
| ∀i1 . . .∀iz �PP(i1, . . . ,iz)
| BP∧∀i1 . . .∀iz �PP(i1, . . . ,iz)

Existential State Formulas ESF ::= BP
|Æ1i1 . . .Æziz �PP(i1, . . . ,iz)
| BP∧Æ1i1 . . .Æziz �PP(i1, . . . ,iz)

Generic State Formulas GSF ::= USF | ESF | USF∧ESF
PTSL Path Formulas TLPF ::= TLF | TLF∧TLF | TLF∨TLF

| X TLF | TLF U TLF
PTSL Formulas TLF ::= USF | ¬USF | TLF∧TLF

| TLF∨TLF | A TLPF

Figure 4.6: Syntax of PTSL (1≤ z≤ d). In ESF, Æy is ∀ or ∃, at least one Æy is ∃.

ShadowVisor’s separation property states that the physical addresses accessible by the

guest must be less than MEM LIMIT. This requires two distinct conditions depending on

the table since pages mapped in the PDT are of size MPS PDT and pages mapped in the PT

are of size MPS PT. Given a PDT mapped page frame starting at address a, a guest OS can

access from a to a+MPS PDT and a+MPS PT for a PT mapped page frame. Hence, to en-

force separation, ShadowVisor must restrict the addresses in the shadow page directory to

be less than MEM LIMIT−MPS PDT and page table to be less than MEM LIMIT−MPS PT.

Note that we are making the reasonable assumption that MEM LIMIT > MAX PDT and

MEM LIMIT> MAX PT to avoid underflow. This security property is stated in the following

USF state formula:

73

ϕsep , ∀i1,i2 � (PDT[i1].F[sPRESENT]∧PDT[i1].F[sPSE]⇒

(PDT[i1].F[sADDR]< MEM LIMIT−MPS PDT))∧

(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[sPSE]∧

PDT[i1].PT[i2].F[sPTE PRESENT]⇒

(PDT[i1].PT[i2].F[sADDR]< MEM LIMIT−MPT PT))

Semantics. We now present the semantics of our specification logic. We further

overload the 7→ operator such that for any PTSL formula π, variable x, and numeral m, we

write π[x 7→m] to mean the result of substituting all occurrences of x in π with m. We start

with the notion of satisfaction of formulas by stores.

Definition 11. The satisfaction of a formula π by a store σ (denoted σ |= π) is defined, by

induction on the structure of π, as follows:

• σ |= b iff σB(b) = true

• σ |= P[k1] . . .P[kz].F[r] iff (dk1e, . . . ,dkze,dre) ∈ Dom(σP
z) and

σP
z (dk1e, . . . ,dkze,dre) = true

• σ |= ¬π iff σ 6|= π

• σ |= π1∧π2 iff σ |= π1 and σ |= π2

• σ |= π1∨π2 iff σ |= π1 or σ |= π2

• σ |= Æ1i1, . . . ,Æziz �π iff Æ1k1 ∈ [1,σn
1] . . .Æzkz ∈ [1,σn

z] �σ � (k1, . . . ,kz) |= π[i1 7→

1] . . . [iz 7→ 1]

The definition of satisfaction of Boolean formulas and the logical operators are stan-

dard. Parametric formulas, denoted P[k1] . . .P[kz].F[r], are satisfied if and only if the in-

dices k1, . . . ,kz,r are in bounds, and the element at the specified location is true. Quan-

tified formulas are satisfied by σ if and only if appropriate (depending on the quantifiers)

projections of σ satisfy the formula obtained by substituting 1 for the quantified variables

74

in π. We present the semantics of a PGCL+ program as a Kripke structure.

Kripke Semantics. Let gc be any PGCL+ guarded command and k ∈ Nd . We denote

the set of stores σ such that σn = k, as Store(gc(k)). Note that Store(gc(k)) is finite. Let

Init be any formula and AP= USF be the set of atomic propositions. Intuitively, a Kripke

structure M(gc(k), Init) over AP is induced by executing gc(k) starting from any store

σ ∈ Store(gc(k)) that satisfies Init.

Definition 12. Let Init ∈ USF be any formula. Formally, M(gc(k), Init) is a four tuple

(S ,I ,T ,L), where:

• S = Store(gc(k)) is a set of states;

• I = {σ|σ |= Init} is a set of initial states;

• T = {(σ,σ′) | {σ}gc(k){σ′}} is a transition relation given by the operational se-

mantics of PGCL+; and

• L : S → 2AP is the function that labels each state with the set of propositions true in

that state; formally,

∀σ ∈ S �L(σ) = {ϕ ∈ AP | σ |= ϕ}

If φ is a PTSL formula, then M,σ |= φ means that φ holds at state σ in the Kripke

structure M. We use an inductive definition of |= [20]. Informally, an atomic proposition

π holds at σ iff σ |= π; A φ holds at σ if φ holds on all possible (infinite) paths starting

from σ. TLPF formulas hold on paths. A TLF formula φ holds on a path Π iff it holds at

the first state of Π; X φ holds on a path Π iff φ holds on the suffix of Π starting at second

state of Π; φ1 U φ2 holds on Π if φ1 holds on suffixes of Π until φ2 begins to hold. The

definitions for ¬, ∧ and ∨ are standard.

Simulation. For Kripke structures M1 and M2, we write M1 �M2 to mean that M1

75

is simulated by M2. We use the standard definition of simulation [20] (presented in the

appendix). Since satisfaction of ACTL* formulas is preserved by simulation [20], and

PTSL is a subset of ACTL*, we claim that PTSL formulas are also preserved by simulation.

The claim is expressed formally by Fact 3 in the appendix.

4.3.5 Small Model Theorems

In this section, we present two new small model theorems. While the statement of the

theorems appear superficially similar to those in Chapter 3, they apply to PGCL+ programs

and the extended PTSL logic developed in this chapter. Both theorems relate the behavior

of a PGCL+ program with nested parametric arrays with arbitrarily many rows at each

depth to its behavior with a single row at each level of nesting. The following definition

extends the previous definition of exhibits to a tuple k ∈ Nd .

Definition 13 (Exhibits). A Kripke structure M(gc(k), Init) exhibits a formula ϕ iff there

is a reachable state σ of M(gc(k), Init) such that σ |= ϕ.

The first theorem applies to safety properties.

Theorem 9 (Small Model Safety 1). Let gc(k) be any instantiated guarded command

in PGCL+. Let ϕ ∈ GSF be any generic state formula in PTSL, and Init ∈ USF be any

universal state formula in PTSL. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits

ϕ.

The second theorem is more general, and relates Kripke structures via simulation.

Theorem 10 (Small Model Simulation). Let gc(k) be any instantiated guarded command

in PGCL+. Let Init ∈ GSF be any generic state formula in PTSL. Then M(gc(k), Init) �

M(gc(1d), Init) and M(gc(1d), Init)�M(gc(k), Init).

76

Since, simulation preserves PTSL specifications, we obtain the following immediate

corollary to Theorem 10.

Corollary 11 (Small Model Safety 2). Let gc(k) be any instantiated guarded command

in PGCL+. Let ϕ ∈ USF be any universal state formula in PTSL, and Init ∈ GSF be any

generic state formula in PTSL. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits

ϕ.

Note that Corollary 11 is the dual of Theorem 9 obtained by swapping the types of ϕ

and Init. The proofs of Theorems 9 and 10 involve mutual induction over both the structure

of commands, and the depth of the parametric array P. This is due to the recursive nature

of PGCL+, where commands at level z refer to paramaterized commands at level z, which

in turn refer to commands at level z+1. We defer these proofs to the appendix.

4.4 Case Studies

We present two case studies – ShadowVisor and Xen – to illustrate our approach. In

addition to these two examples, we believe that our approach is, in general, applicable to

all paging systems that are strictly hierarchical. This includes paging modes of x86 [48]

and ARM [5], two of the most widely used architectures in practice. Note that super-pages

and super-sections in the ARM architecture require 16 adjacent entries to be identical

in the page tables. However, this requirement can be eliminated by a shadow paging

implementation that splits the super-pages and super-sections in the guest page tables into

small pages and sections within the shadow page tables, and handles the synchronization

appropriately.

77

shadow page fault original ≡
for i1 do

PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧PDT[i1].F[gADDR]< MEM LIMIT ?
PDT[i1].F[sPDE] := PDT[i1].F[gPDE];

for i2 do

PDT[i1].F[gPRESENT]∧PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR]< MEM LIMIT ?
PDT[i1].PT[i2].F[sPTE] := PDT[i1].PT[i2].F[gPTE];

Figure 4.7: ShadowVisor’s vulnerable shadow page fault handler.

4.4.1 ShadowVisor

Recall our model of ShadowVisor from Section 4.3.2 and the expression of ShadowVisor’s

initial condition and security properties as PTSL formulas from Section 3.3.3.

ShadowVisor’s separation property states that the physical addresses accessible by the

guest OS must be less than the lowest address of hypervisor protected memory, denoted

MEM LIMIT. This requires two distinct conditions depending on the table containing the

mapping since pages mapped in PDTs are of size MPS PDT and pages mapped in PTs are

of size MPS PT. Given a page frame of size s with starting address a, a guest OS can access

any address in the range [a,a+ s]. Hence, subtracting the maximum page size prevents

pages from overlapping the hypervisor’s protected memory. Note that we are making

the reasonable assumption that MEM LIMIT> MPS PDT and MEM LIMIT> MPS PT to avoid

underflow.

In ShadowVisor’s original shadow page fault handler, shown in Figure 4.7, the condi-

tionals allowed page directory and page table entries to start at addresses up to MEM LIMIT.

As a result, ShadowVisor running shadow page fault original has a serious vulner-

ability where separation is violated by an adversary that non-deterministically chooses an

address a such that a+MPS PDT ≥ MEM LIMIT or a+MPS PT ≥ MEM LIMIT. This vulner-

ability exists in ShadowVisor’s design and C source code implementation. We were able

78

PT-Size Time(s) Vars Clauses
1 0.14 1828 3685

10 7.08 94163 201732
20 79.6 362795 783022
30 * * *

Table 4.1: ShadowVisor verification with increasing PT size. * means out of 1GB memory
limit; Vars, Clauses = # of CNF variables and clauses generated by CBMC.

to fix the vulnerability by adding appropriate checks and verify that the resulting model is

indeed secure. We present our verification of PGCL+ models below.

Both the vulnerable and repaired ShadowVisor programs are expressible as a PGCL+

program, the initial state is expressible in USF, and the negation of the address separation

property is expressible in GSF. Therefore, Theorem 9 applies and we need only verify the

system with one table at each depth with one entry per table (i.e., a parameter of (1,1)).

Effectiveness of Small Model Theorems. For a concrete evaluation of the effectiveness

of our small model theorems, we verified ShadowVisor with increasing sizes of page tables

at both levels. More specifically, we created models of ShadowVisor in C (note that a

guarded command in PGCL+ is expressible in C) for various PT sizes (the sizes at both PT

levels were kept equal).

We then verified two properties using CBMC1, a state-of-the-art model checker for C:

• the initial state of the system ensures separation;

• if the system started in a state that ensures separation, executing any of the four

guarded commands in the ShadowVisor model preserves separation.

By induction, verifying these two properties guarantees that ShadowVisor ensures sep-

aration perpetually. Our results are shown in Table 4.1. Note that verification for size 1

1www.cprover.org/cbmc

79

www.cprover.org/cbmc

(which is sound and complete due to our small model theorem) is quick, while it blows up

for even page tables of size 30 (an unrealistically small number, implying that brute-force

verification of ShadowVisor is intractable).

4.4.2 Xen

Next, we analyze address separation in a model of the Xen hypervisor, built from the

source code of Xen version 3.0.3. Xen manages multiple virtual machines, each running

a guest OS instance with multiple processes (i.e., contexts). Xen maintains a separate sPT

for each context, and uses context caching (cf. Sec. 4.2).

We model Xen’s context cache using a nested parametric array of depth 4. At the

top level, row P1[ii] (denoted VM[i1] below) contains an entry for a particular VM’s

guest. At the next level, the array P1[i1].P2 (denoted VM[i1].Ctx below) contains an

entry for each context of the i1-th guest. Next, the array P1[i1].P2[i2].P3 (denoted

VM[i1].Ctx[i2].PDT) represents the PDT of the i2-th context of the i1-th guest OS. Fi-

nally, the array P1[i1].P2[i2].P3[i3].P4 (denoted VM[i1].Ctx[i2].PDT[i3].PT) is the PT of

the i3-th page directory table entry of the i2-th context of the i1-th guest.

Security Property. Recall that our basic separation property requires that the

physical addresses mapped by the shadow page directory and shadow page table are less

than a constant MEM LIMIT minus a max page size. This constant represents the physical

memory address at which hypervisor protected memory begins. We consider a natural

extension of this separation property for a context caching system with multiple VMs that

states that all VMs and contexts should be separate from VMM protected memory. This

security property is stated in the following USF state formula:

80

ϕsep , ∀i1,i2,i3,i4�

(VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧VM[i1].Ctx[i2].PDT[i3].F[sPSE]⇒

(VM[i1].Ctx[i2].PDT[i3].F[sADDR]< MEM LIMIT−MPS PDT))∧

(VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧¬VM[i1].Ctx[i2].PDT[i3].F[sPSE]⇒

(VM[i1].Ctx[i2].PDT[i3].PT[i4].F[sADDR]< MEM LIMIT−MPS PT))

Initial State. We model Xen as starting in an initial state where all entries of all of the

sPDT and sPT are marked as not present. This is expressed by the following USF formula:

Init , ∀i1,i2,i3,i4 � ¬VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧

¬VM[i1].Ctx[i2].PDT[i3].PT[i4].F[sPRESENT]

We define the Xen address translation system using context caching in PGCL+ as fol-

lows:

XenAddressTrans ≡ shadow page fault

‖ shadow invalidate page

‖ context caching new context

‖ Xen adversary

The commands shadow page fault and shadow invalidate page generalize their

counterparts for ShadowVisor over multiple VMs and contexts, and are omitted. The

following PGCL+ guarded command implements context caching new context .

context caching new context ≡

for i1 do

for i2 do

for i3 do

∗ ? VM[i1].Ctx[i2].PDT[i3].F[sPDE] := 0;

81

PT-Size Time(s) Vars Clauses
1 0.76 5774 13634
3 4.44 34480 81666
6 24.91 122214 289674
9 * * *

Table 4.2: Xen verification with increasing PT size. * means out of 1GB memory limit;
Vars, Clauses = # of CNF variables and clauses generated by CBMC.

Note that to model VM and process scheduling soundly, we assume non-deterministic

context switching. Hence, we extend ShadowVisor’s shadow new context to non-

deterministically clear contexts.

Finally, we consider an adversary model where the the attacker has control over an un-

bounded but finite number of VMs, each with a unbounded but finite number of contexts.

This adversary is therefore expressed as follows:

Xen adversary ≡

for i1 do

for i2 do

for i3 do

VM[i1].Ctx[i2].PDT[i3].F[gPDE] := ∗;

for i4 do

VM[i1].Ctx[i2].PDT[i3].PT[i4].F[gPTE] := ∗;

Our Xen model is clearly expressible in PGCL+, its initial state is expressible in USF,

and the negation of the address separation property is expressible in GSF. Therefore,

Theorem 9 applies and we need only verify the system with one table at each depth with

one entry per table (i.e., a system parameter of (1,1,1,1)).

Effectiveness of Small Model Theorems. As in the case of ShadowVisor we verified the

82

Xen model with increasing (but equal) sizes of page tables at both levels, and 2 VMs and

2 contexts per VM. We verified the same two properties as for ShadowVisor to inductively

prove that Xen ensures separation perpetually. Our results are shown in Table 4.2. Note

again that verification for size 1 (which is sound and complete due to our small model

theorem) is quick, while it blows up for even page tables of size 9 (an unrealistically small

number, implying that brute-force verification of Xen is also intractable).

4.5 Conclusion

Verifying separation properties of address translation mechanisms of operating systems,

hypervisors, and virtual machine monitors in the presence of adversaries is an important

challenge toward developing secure systems. A significant factor behind the complexity

of this challenge is that the data structures over which the translation mechanisms oper-

ate have both unbounded size and unbounded nesting depth. We developed a parametric

verification technique to address this challenge. Our approach involves a new modeling

language and specification mechanism to model and verify such parametric systems. We

applied this methodology to verify that the designs of two hypervisors – ShadowVisor and

Xen – correctly enforce the expected security properties in the presence of adversaries.

Next, we extend our approach to operate directly on system implementations, and relax

the restrictions of row independence and hierarchical row uniformity.

83

84

Chapter 5

The Havoc Adversary Abstraction

5.1 Introduction

A significant source of model checking complexity is adversary-controlled data structures

(e.g., kernel page tables) and “accessor” functions that operate over them (e.g., for reading

and writing kernel page table entries). Since model checkers explore the complete state

space of a program, an increase in the number of variables and functions can potentially

lead to an exponentially larger analysis cost – the state space explosion problem.

A crucial insight is that many accessor functions return values read from adversary-

controlled data structures and not constrained by input validation checks. An example is a

hypervisor function that reads from a guest page table to return the physical address cor-

responding to a virtual address. Since adversary-controlled data-structures (e.g., the guest

page table), by definition of our adversary model, contain arbitrary values when an acces-

sor function is invoked, the return value of the accessor is also arbitrary. Therefore, it is

possible to replace a call to an accessor function with a non-deterministic assignment. The

resulting code is smaller, simpler, and still verifiable by state-of-the-art software model

85

checkers (all of which support non-deterministic assignments).

Based on this insight, we develop an abstraction technique consisting of two main

steps:

Step 1: Detection. For every function f of a system, determine if it returns a non-

deterministic value; we call such a function havoc.

Step 2: Replacement. If f is found to be a havoc function, replace every call x := f () by

the non-deterministic assignment x = ∗.

We develop an automated technique to perform havoc function detection. Specifically,

we formalize the problem of deciding whether a function f is a havoc function as a validity

problem for a Quantified Boolean formula (QBF). The formula is of the form ∀o � ∃i �

φ f (i,o) where φ f (i,o) captures the relation between the inputs i and outputs o of f . The

form of quantification ensures that the formula is valid iff for all possible values of output

variables o there exist values for input variables i such that the function will produce the

outputs o. In other words, since the adversary controls the inputs to the function, the return

value of the function is truly non-deterministic. We formalize and prove this claim (see

Theorem 12 in Section 5.2).

Once Step 1 succeeds to prove that a function f is havoc, the next step of our ab-

straction is to replace every call x := f () by the non-deterministic assignment x = ∗. One

of our key results is (see Theorem 13 in Section 5.2) that our abstraction is sound—no

attacks are missed by the abstraction. In addition, our QBF-based formulation of the de-

tection problem is an efficient technique for proving a form of completeness - we term

local completeness - directly at the source level.

We implement havoc function detection via a tool chain to:

1. Automatically construct a QBF formula corresponding to ∀o � ∃i � φ f (i,o) from C

source code for f .

86

2. Use a state-of-the-art QBF solver, e.g., Skizzo, QuBe, GhostQ, and Quantor, to solve

the QBF formula obtained above.

Our empirical evaluation demonstrates the effectiveness of this abstraction on real soft-

ware: we identified two vulnerabilities in the C code of ShadowVisor (a prototype hyper-

visor), and successfully model check the code using the CBMC model checker after fixing

the vulnerabilities. These vulnerabilities are related to those identified in the previous

chapter. However, in this chapter they were discovered directly at the source code level

rather than the design level. As a second case study, we model check two security proper-

ties of the SecVisor security hypervisor’s implementation. Without the abstraction, CBMC

either times out or exhausts system resources in its failed attempts to model check these

systems. After applying the abstraction, CBMC takes less than 3 seconds on five-year-old

hardware to model check each system.

The rest of this chapter is organized as follows. In Section 5.2, we describe our method-

ology, followed by a case study verification of ShadowVisor and SecVisor in Section 5.3.

We conclude in Section 5.4.

5.2 Havoc-Function Abstraction

We present our abstraction methodology – which we refer to as havoc-function abstrac-

tion – in detail. Figure 5.1 illustrates the kind of systems and adversaries we consider.

The figure depicts a kernel that exposes an interface, a CSI-adversary, and an adversary-

controlled data structure. When we define a CSI-adversary, we abstract away software in

an adversary-controlled layer (e.g., user space) and endow the adversary with a set of capa-

bilities (e.g., the ability to make system calls) that account for any program the adversary

could execute. However, abstracting away software in adversary-controlled layers alone

87

Figure 5.1: A CSI-adversary operates on data that is read by a kernel.

(i.e., ignoring everything above the system call interface) does not necessarily make model

checking tractable. Havoc-function abstraction aims to reduce the state space further by

eliminating adversary-controlled data structures and functions inside the kernel itself.

Example. We describe havoc-function abstraction over a running example of a hyper-

visor system that synchronizes an adversary-controlled GPT with a hypervisor-controlled

SPT. The hypervisor’s synchronization routine synchronizes the SPT with the GPT by

indexing into the GPT, reading an adversary-controlled entry, and writing the entry into

an entry in the SPT. Havoc-function abstraction enables us to replace the GPT and the

code that reads from it by a non-deterministic assignment. Note that our small model ab-

stractions typically do not apply to hypervisor or adversary programs that manipulate the

GPT because these programs do not obey the necessary data-flow restrictions (i.e., row

uniformity and row hierarchically) required for the small model theorems applicability.

In many cases, this replacement results in a cascade effect where operations that use a

non-deterministic value as an operand are further reduced if their result is completely non-

deterministic. The cascade effect also works in the “opposite” direction to abstract code

that occurs before the data-structure access. For example, the computation of an index

into a GPT can be abstracted if all values read from an index result in a non-deterministic

value. The result of this cascade is a reduction of the resulting search space. In the case

88

of ShadowVisor, model checking the abstract system is feasible while model checking the

concrete system is intractable. We report experimental results in Section 5.3.

5.2.1 Problem Statement

We now present havoc-function abstraction. Let f be the target function, i be its input

variables, and o be its output variables. If f is written in C, then i is the set of its input

variables, and any global variable it reads from, while o is its return variable (if any) and all

global variables it writes to. Without loss of generality, we assume a single input variable

i and a single output variable o.

Definition 14 (Function Semantics). The semantics of a function f with input variable i

and output variable o, denoted by Sem(f), is a formula with {i,o} as its free variables,

such that following holds: there exists a satisfying assignment A to Sem(f) iff there is an

execution of f where the initial value of i is A(i), and the final value of o is A(o).

In our experiments, we use the CBMC tool to extract Sem(f) from the C code of f .

We now define a havoc function.

Definition 15 (Havoc Function). A function f , with input variable i and output variable

o, is said to be a havoc function iff for every value vo of o there exists a value vi of i and

an execution of f such that the initial value of i is vi, and the final value of o is vo.

We reduce the problem of deciding if a function f is havoc to deciding the validity of

a logical formula. The following theorem expresses our reduction.

Theorem 12. (Havoc Function Detection as Validity) A function f , with input variable i

and output variable o, is a havoc function iff the following havoc-verification-condition

formula HVC(f) is valid:

HVC(f)≡ ∀o �∃i �Sem(f)

89

Proof. Follows directly from Definition 14 and Definition 15.

In our implementation, we extract Sem(f) from the C code of f as a Boolean formula

using the CBMC tool. After adding the required quantifiers, HVC(f) is a QBF. Thus we

reduce the problem of deciding if a function f is havoc to deciding QBF validity. This

reduction allows us to exploit recent progress in the development of efficient QBF solvers.

5.2.2 Soundness

Once we prove that a function f is havoc, the next step of havoc-function abstraction is to

replace every call x := f () by the non-deterministic assignment x = ∗. We now prove the

soundness of havoc-function abstraction.

Soundness of Abstraction. We consider an abstraction α as a transformation that con-

verts a concrete program p to an abstract program α(p). The abstraction is sound for

safety properties if for any program p: if a safety property ϕ holds on α(p) then it also

holds on p. Equivalently, it is known that an abstraction α is sound for safety properties if

for any program p, each finite execution of p is also an execution of α(p). We now prove

the soundness of havoc-function abstraction.

Theorem 13. Soundness Havoc-function abstraction is sound.

Proof. (Sketch) Let p be a program and α(p) be the result of applying havoc-function

abstraction on it. Without loss of generality, assume that p contains a single havoc function

f called once. Thus, α(p) is the same as p, except that the call x := f () is replaced by the

non-deterministic assignment x = ∗. Also, let f have a single input variable i and a single

output variable o.

Let e be a finite execution of p. Consider a sub-execution e′ of e where a call to f is

being executed. Suppose e′ ends with a value vo being assigned to o. Replace the entire

90

Figure 5.2: Overview of abstraction process.

sub-execution e′ by the direct assignment of vo to o to obtain the new finite execution α(e).

Clearly, α(e) is an execution of α(p). This proves that α is sound.

We now describe the overall havoc-function abstraction process in more detail, includ-

ing automatic construction of QBFs from C source code, and solving QBFs to check for

havoc functions.

5.2.3 Details

An overview of the entire havoc-function abstraction process followed by model checking

of the abstracted code is shown in Figure 5.2. It consists of five steps, which we describe

now in more detail.

Step 1: Specify adversary model. First, we specify a CSI-adversary as a set of

functions which the adversary calls an arbitrary number of times with arbitrary parameter

values. To specify data structures that are under adversary control, we either encapsulate

these data structures in simple accessor functions or explicitly include a set of adversary-

controlled data structures in the adversary model.

In our running example, we specify a malicious guest OS as constrained to the inter-

face exposed to software running at the hardware privilege level of user code. Note that

we rely on hardware-enforced privilege-level separation to prevent the adversary from cir-

cumventing the system call interface. We feel this is an advantageous problem separation

91

as it enables a compositional analysis whereby the hardware and software are verified sep-

arately and verification results are composed to achieve a system-wide security property

that covers both the hardware and software.

Step 2: Convert code region to Boolean formulas. Next, we use a semantics ex-

tractor (e.g., CBMC) to automatically convert source code regions that touch adversary-

controlled data structures to a Boolean formula representation. The semantics extractor

is composed of two components: a program annotator and a Boolean formula generator.

The program annotator identifies and tags output variables and lazily initializes adversary-

controlled data. The Boolean formula generator converts C code to Boolean formulas.

These Boolean formulas encode the semantics of code regions.

Code regions can be of any granularity. For concreteness of presentation, we operate

at function granularity, but our techniques apply to other levels of granularity as well. We

select functions by extracting a function call graph by starting at the adversary interface

and walking the call graph to identify functions that read from adversary-controlled data

structures. For each such function, we use the program annotator to identify and tag output

variables.

We implemented our program annotator using OCAML and the CIL source-to-source

transformation framework. For Boolean formula generation, we use the CBMC tool [16]

to convert C code to a Boolean formula in DIMACS format [23]. In some cases, CBMC

makes assumptions about the system memory model, in particular, the initialization of

variables. In cases where these assumptions do not match our requirements, we initial-

ize variables according to our requirements. For example, CBMC initializes all global

variables to zero. We instead initialize adversary-controlled global variables to a non-

deterministic value.

Step 3: Quantify Boolean formulas. In the previous step, our approach produces

92

a set of Boolean formulas where each formula, denoted ϕ f (i,o), defines the semantics of

a function f (see Definition 14) with input variable i and output variable o. From each

formula ϕ f (i,o), we construct the formula HVC f = ∀o �∃i �ϕ f (i,o), and then check the

validity of HVC f using a QBF solver.

We developed an automated quantification tool that takes as input ϕ f (i,o) in DIMACS

format and generates ∀o �∃i �ϕ f (i,o) in QDIMACS format. DIMACS and QDIMACS are

standard formats for SAT and QBF solvers, respectively. Using them gives us flexibility

in our choice of solvers.

Step 4: Solve QBF, abstract code. Next, we pass the QBFs output from Step 3 to a

QBF solver. If the QBF ∀o �∃i �ϕ f (i,o) is valid, then f is a havoc function. In this case,

we proceed with the next step of havoc-function abstraction and replace all calls x := f ()

by the non-deterministic assignment x = ∗.

Note that Steps 2, 3 and 4 were performed for each function in the source code by

traversing the call-graph in a bottom-up manner. This enables us to leverage a cascade of

havocs, where a function g that calls function f is determined to be havoc after all calls

x := f () in the body of g have been replaced by x = ∗.

The QBF validity problem is PSPACE-complete. However, modern QBF solvers em-

ploy a variety of efficient decision procedures to quickly decide validity. Our implemen-

tation interfaces with any QBF solver that supports QDIMACS, including sKizzo [72],

QuBe [63], and GhostQ [51]. All the solvers take a QDIMACS-formatted input and return

either “valid” or “invalid”. In most cases we’ve encountered, the solvers immediately re-

turn an answer and the different solvers have always agreed on the answer returned. In a

few cases, a solver has taken longer (e.g., several minutes) than the others to solve a QBF,

but the correct answer was eventually returned.

Step 5: Model check abstract system. Finally, we pass the abstracted system to

93

a software model checker. If the model checker halts and returns that the target security

property is satisfied, then the concrete system is secure against the interface constrained

adversary defined in Step 1. If instead it halts and returns that the target security property

is unsatisfied, then it outputs a counter-example – an assignment of values and a program

trace that lead to the insecure state. Since our approach is sound, we are guaranteed that if

no counter-example is returned then the system is indeed secure.

In our implementation, we employ CBMC to verify the abstract system. CBMC’s

support for bit-vectors and bit-wise operations makes it well-suited to verify the types of

functions typically found in operating system kernel code. CBMC also supports the casts

between integers and pointers that are necessary for address separation.

5.3 Case Studies

In this section, we present empirical evaluation of our approach on two hypervisors –

ShadowVisor and SecVisor.

5.3.1 ShadowVisor

Our first case-study is the verification of ShadowVisor, a fully-functional shadow-paging

hypervisor we built for the x86 platform. This case study demonstrates that our approach

enables software model checking of realistic systems.

System Overview. ShadowVisor’s goal is to protect its memory, which contains its

code and data, from a potentially malicious guest OS. To accomplish this goal, ShadowVi-

sor virtualizes the guest’s view of memory through the use of shadow paging. In shadow

paging, the guest’s page tables are remapped using a set of underlying shadow page-tables

that the guest is unaware of. Only the shadow page tables are used by the hardware mem-

94

ory management unit, making them the authoritative page tables.

When a guest OS modifies its page tables, ShadowVisor interposes and updates the

shadow page tables after performing necessary security checks. To ensure address space

separation, ShadowVisor performs a number of simple security checks to verify that the

physical addresses mapped by the guest page tables are within an allowed range. These

checks are implemented as conditionals that compare physical memory addresses against

an integer constant signifying the largest physical memory address that a guest is allowed

to access. If designed and implemented correctly, ShadowVisor’s shadow paging mecha-

nism should ensure that the guest OS cannot write to protected memory, thereby ensuring

the integrity of ShadowVisor’s code and data.

Complicating matters is the fact that the guest page tables and the shadow page tables

are implemented as multi-level page tables. Multi-level page tables virtualize large source

address spaces (e.g., 32 or 64-bit address spaces) without the overhead of maintaining one

page table entry for each source page number. They are implemented using a tree of linked

tables where lower level (indexed by less-significant bits of the virtual address) tables are

excluded if no addresses in the relevant ranges are present.

In the two level paging approach used by ShadowVisor, there is a top level Page Direc-

tory Table and a set of Page Tables. Virtual addresses are split into three fields and used

to index into the different tables to obtain the corresponding physical page frame. PDT

entries can contain either a page frame number (indicated by the Page Size Extension, or

PSE, flag being set), an address of a page table, or neither (indicated by the PRESENT bit

being clear).

ShadowVisor is implemented in about 2000 lines of C code (374 of which is the ac-

tual shadow paging logic). Its small code size makes it an ideal target for software model

checking. However, its extensive use of large and complex data structures such as guest

and shadow page tables make it challenging to verify. In this case study, we demonstrate

95

that the abstractions we developed make model checking ShadowVisor’s source code fea-

sible. Model checking the system without applying abstraction is simply infeasible since

the size of the state space increases exponentially with the number of page table entries.

Adversary Model. ShadowVisor’s adversary model is that of a malicious guest OS.

The CSI-adversary abstraction gives us a natural way to express a malicious guest OS as

an interface containing the hypercall interface and the guest page tables. In particular,

we define the malicious guest OS adversary as having access to the three functions in the

hypercall interface, new context, invalidate, and page f ault, and the guest page table data

structures including g pdt and g pt.

Security Property. ShadowVisor’s goal is to separate a malicious guest OS from the

hypervisor’s protected memory. The protected memory region starts near the top of mem-

ory as defined by the constant PHY MEM LIMIT . We specify ShadowVisor’s security

property using the assertion language that is used by CBMC with the addition of impli-

cation and a universal quantifier. The assertion states if a Page Directory Table entry is

present and directly mapped to a memory address (i.e., has the PSE flag set) then it should

map to an address that is less than the physical memory limit. This is specified as follows:

∀i.(s pdt[i]&PAGE PRESENT)&&(s pdt[i]&PAGE PSE))⇒

(((u32)(s pdt[i])&(∼ ((u32)PAGE SIZE 4K−1)))+

PAGE SIZE 4M)< PHY MEM LIMIT)

(5.1)

We apply the small model abstraction of Chapters 3 and 4 to simplify this formula

further. This enables us to consider an s pdt array with a single element. Thus, our

security property reduces to the following formula:

96

(s pdt[0]&PAGE PRESENT)&&(s pdt[0]&PAGE PSE))⇒

(((u32)(s pdt[0])&(∼ ((u32)PAGE SIZE 4K−1)))+

PAGE SIZE 4M)< PHY MEM LIMIT)

(5.2)

Abstraction

We describe the steps of our abstraction and model checking process and show the results

of applying our abstractions. During the verification of ShadowVisor, we re-discovered

the two previously identified “page-overlap” vulnerabilities that allow a malicious guest

OS to violate memory separation. This time, they were discovered directly at the source

code level without the need for a model of the system’s design.

Level of Automation. For the havoc-function abstraction process, human input is

only required to specify the adversary model. For the verification process, human input is

only required to specify the adversary model, initial condition, and security property. Since

our adversary models are simply sets of procedure and data structure names, it is possible

to automate the process of generating adversary models. However, one would have to then

verify the system against all possible combinations of functions and data structures, many

of which may not represent “reasonable” adversary models. Since CSI-adversary models

are concise and easy to specify, we manually specify them. After providing these inputs,

the tool runs automatically without any user intervention. We show intermediate steps

below only to demonstrate the process – during a normal verification, they are invisible to

the user.

Havoc-Function Abstraction. By employing the havoc-function abstraction, we are

able to abstract ShadowVisor’s get guestentry function. This function takes as input a

97

guest virtual address, gva, the guest’s CR3 control register containing the guest physical

memory address of the start of the guest PDT, gCR3, and two pointers to pointers to thirty-

two bit values. The function sets these pointers to point to the guest PDT and PTE as

indexed by the gva. Since the contents of the guest PDT and PT are non-deterministic,

we expect the resulting reads to be non-deterministic and for the abstraction to eliminate

unnecessary code.

1 void get_guestentry(u32 gva, u32 gCR3, u32 **pdt_entry, u32 **pt_entry){

2 u32 index_pdt, index_pt, g_pdt_entry;

3 npt_t g_pt;

4

5 index_pdt= (gva >> 22);

6 index_pt = ((gva & (u32)0x003FFFFF) >> 12);

7

8 *pdt_entry = *pt_entry = (u32 *)0;

9 g_pdt_entry = g_pdt[index_pdt];

10 *pdt_entry = (u32 *)& g_pdt[index_pdt];

11

12 if(!(g_pdt_entry & PAGE_PRESENT))

13 return;

14

15 if(g_pdt_entry & PAGE_PSE)

16 return;

17

18 g_pt = (npt_t)(u32)pae_get_addr_from_pde(g_pdt_entry);

19

20 *pt_entry = (u32 *)&g_pt[index_pt];

21 return;

22 }

After passing the above code to our abstraction tool, the QBF solver returns that the

thirty-two bit values, set by the function after indexing into adversary-controlled data

structures, are non-deterministic. Our tool then abstracts the function and generates the

following abstract code. The entire abstraction process took just a few seconds to com-

plete.

98

1 void get_guestentry(u32 gva, u32 gCR3, u32 **pdt_entry, u32 **pt_entry){

2 *pt_entry = (u32 *)0;

3

4 *pdt_entry = (u32 *)& nondet_u32();

5

6 if(!(**pdt_entry & PAGE_PRESENT))

7 return;

8

9 if(**pdt_entry & PAGE_PSE)

10 return;

11

12 *pt_entry = (u32 *)& nondet_u32();

13 return;

14 }

Note that the adversary-controlled guest data structures have been abstracted away and

replaced by a function that returns non-deterministic 32-bit values (i.e., nondet u32()).

The result is a significantly simpler, sound abstraction that can be model checked more

efficiently than the concrete program.

Small Model Abstraction. We utilize the small model theorems to reduce the size of

the shadow PDT to a single entry. That entry may point to a single PT with a single entry.

The abstraction, which we apply manually, allows us to remove loops that iterate over

table entries and operate instead on a single value. For example, consider the following

code that allocates a page table by indexing into an array holding all the page tables and

setting each entry of one page table to zero.

1 u32 shadow_alloc_pt(u32 gva){

2 u32 index_pdt;

3 index_pdt= (gva >> 22);

4

5 for (int i=0; i < 1024; i++) {

6 *((u32 *)((index_pdt * PAGE_SIZE_4K) + (u32)shadow_p_tables)+i) = (u32) 0;

7 }

8

99

9 return (((index_pdt * PAGE_SIZE_4K) + (u32)shadow_p_tables));

10 }

After abstracting the code, we are left with a single assignment to the one remaining

page table’s single entry.

1 u32 shadow_alloc_pt(){

2 *((u32 *)shadow__p_tables = (u32) 0;

3 return (u32)shadow_p_tables;

4 }

We apply this abstraction at any point in ShadowVisor that operates on the shadow

page directory and shadow page tables. The abstraction’s reduction of source code is sub-

stantial – it eliminates every loop in ShadowVisor’s shadow paging functions. While the

loops always perform a bounded number of iterations (e.g. 1024), the elimination of loops

removes the central biggest hurdle that a model checker must handle. Without the abstrac-

tion, CBMC would unroll loops for a finite number of iterations. In the above example,

if the number of iterations was less than 1024, then the result would be an incomplete

verification that is suitable for only bug finding, not for verification. We ran a number

of experiments where we directed CBMC to completely unroll all loops, but the resulting

formula generation exhausted the memory of the machines. Even if it was able to generate

the formula, exhaustively searching the state space would be infeasible.

Model Checking Abstract System

We model checked the abstracted C code using CBMC. We discovered two vulnerabilities

in the implementation of the shadow-paging code as shown below.

Page Overlap Vulnerabilities.

1 if(((u32)(gPDE) & (˜((u32)PAGE_SIZE_4K - 1))) < PHYMEM_LIMIT){

2 s_pd_t[index_pdt] = gPDE;

100

3 }

4

5 ...

6

7 if(((u32)(gPTE) & (˜((u32)PAGE_SIZE_4K - 1))) < PHYMEM_LIMIT){

8 s_pt[index_pt] = gPTE;

9 }

ShadowVisor’s shadow paging logic keeps the shadow page tables synchronized with

the guest page tables during the lifetime of the guest execution. This synchronization re-

sults in two different types of updates to the shadow page tables depending upon the guest

page table contents: (a) updating a PDT entry (in case of a 4MB physical memory map-

ping), and (b) updating a page table entry (in case of a 4KB physical memory mapping).

Either of these updates are performed after employing the guest physical memory limit

checks as shown above.

If PHY MEM LIMIT is a multiple of 4MB, these checks ensure that the guest can

never access physical memory beyond what it is allocated. However, if PHY MEM LIMIT

is not a multiple of 4MB (let say PHY MEM LIMIT =2MB) and if the adversary makes

a 4MB mapping at the PDT entry corresponding to PHY MEM LIMIT (in our example

entry 0) then the first check shown above will pass and the shadow page table will be up-

dated. However, since its a 4MB mapping, the adversary can now access anywhere from

0-4MB which is beyond PHY MEM LIMIT (2MB in our example). A similar vulnera-

bility is found with a 4K guest page mapping and the second check as shown above, if

PHY MEM LIMIT is not a multiple of 4K.

Vulnerability Repair and Successful Model Checking. We repaired the first vul-

nerability by adding PAGE SIZE 4M to the left hand side of the conditional. Similarly,

we repaired the second vulnerability by adding PAGE SIZE 4K to the left hand side of

the second conditional. These two constants denote the maximum page size that can be

101

mapped in the two scenarios. By adding the maximum page size to the page table and

page directory entries, the conditionals check that the adversary is unable to create a page

that overlaps with the protected memory range.

We ran CBMC on the repaired abstract system and it returned that the security property

was satisfied after approximately 3 seconds of runtime on a several-year-old laptop. This

result is in contrast to attempts to verify the system without the optimizations, which ran

out of memory during the process of generating formulas. These formulas need to encode

all possible 1024 entries of the shadow PDT. Moreover, for each entry of the shadow PDT,

the formula encodes a shadow PT which has 1024 additional entries. The total formula

must encode more than one million entries each with thirty-two bits allowing for 233,554,432

possible values. In contrast, our abstraction techniques completely abstracted away the

guest PDT and PTs, reduced the size of the shadow PDT to a single entry, and eliminated

all but a single shadow PT with a single entry. The resulting abstract system only contains

two, thirty-two bit entries between the shadow PDT and PT.

5.3.2 SecVisor

We perform our second case study on the SecVisor [70] security hypervisor. SecVisor

was built independently of ShadowVisor by different authors, but uses a similar shadow

paging approach to memory virtualization. SecVisor’s design and implementation differ

significantly from ShadowVisor. In particular, SecVisor uses a three-level paging scheme

that adds an additional level of complexity and aims to satisfy different security properties

(lifetime kernel code integrity) than ShadowVisor. Despite this additional complexity and

significant differences in design and implementations, we demonstrate that our approach

as well as our abstraction technique and tools are flexible and enable efficient software-

model checking of security properties at the source level.

102

System Overview. SecVisor was previously described in Section 3.2. Recall that

SecVisor virtualizes memory using shadow paging and sets the memory protection bits in

the shadow page tables to prevent integrity violations of authorized code. SecVisor also

performs bounds checks to ensure that its own code and data are not modifiable by an

adversary.

The SecVisor code base is split between initialization and runtime code with a total of

4092 lines of code. SecVisor’s shadow paging code, which is responsible for performing

address separation and other runtime security checks is the focus of our verification and is

implemented in about 1200 lines of C code.

Adversary. SecVisor’s adversary is expressible as a CSI-adversary that is constrained

to SecVisor’s hypercall interface and has complete control over the guest OS kernel’s code

and data including the kernel page tables. This model endows the adversary with the

ability to synchronize the KPT with the shadow page tables (SPT) and cause transitions

between user mode and kernel mode.

Security Property. SecVisor’s security properties were previously described in Sec-

tion 3.2. In addition to those “application-level” security properties, SecVisor must protect

its code and data from the adversary and ensure that the adversary is unable to circumvent

its interposition on kernel and user mode transitions. SecVisor protects itself using a com-

bination of address separation and bounds checks. In particular, we verify that the adver-

sary cannot map into SecVisor’s memory with a KPT entry. We specify this property for

the KPT as follows (a similar property is specified for entries in the kernel page directory

(KPD)).

103

∀i.!((kpt[i]>= visor relocate address)&&

(kpt[i]< (visor relocate address+0x2000000)))
(5.3)

To prevent circumvention of SecVisor’s kernel to user mode and user to kernel mode

handlers, we verify that the Global Descriptor Table (GDT), a CPU data structure that con-

tains various code and data segment descriptions (type, base memory address, limit, and

privilege level) is always mapped above the guest OS user space’s virtual memory map-

ping (which starts at 0xc0000000 for the Linux OS). We specify this property as follows.

(linux vmcb−> gdtr.base >> 28) == 0xc) (5.4)

Abstraction

Next, we describe the application of our abstractions to SecVisor’s source code.

CSI-adversary Abstraction. We applied the CSI-adversary abstraction to abstract

SecVisor’s guest OS kernel page table (KPT) walk function, kernel pt walk. This function

indexes up to three levels of the guest OS kernel’s page tables and returns entries that are

under the control of the adversary. The KPT walker is similar in design to ShadowVisor’s

get guest entry code but includes an additional level of page tables to efficiently map

the kernel’s 64-bit address space. We include a snippet of the function below which is

approximately 70 lines of C code. After preprocessing, many of the calls are replaced

with inline macros that perform complex bit shifts, masks, and bit-wise logical operations.

1 u32 kernel_pt_walker (u32 vaddr)

2 ...

3 /* get fields from virtual addr */

4 pdp_index = pae_get_pdpt_index(vaddr);

104

5 pd_index = pae_get_pdt_index(vaddr);

6 pt_index = pae_get_pt_index(vaddr);

7 offset = pae_get_offset_4K_page(vaddr);

8

9 //tmp is phy addr of page dir

10 tmp = pae_get_addr_from_32bit_cr3(kcr3);

11 kpdp = (pdpt_t)__gpa2hva((u32)tmp);

12 pdp_entry = kpdp[pdp_index];

13 tmp = pae_get_addr_from_pdpe(pdp_entry);

14 kpd = (pdt_t)__gpa2hva((u32)tmp);

15 pd_entry = kpd[pd_index];

16

17 // if 0, then 4 KB page else 2MB

18 if ((pd_entry & _PAGE_PSE) == 0) {

19 /* get addr of page table from entry */

20 tmp = pae_get_addr_from_pde(pd_entry);

21 kpt = (pt_t)__gpa2hva((u32)tmp);

22 pt_entry = kpt[pt_index];

23 /* find physical page base addr from page table entry */

24 paddr = (u64)pae_get_addr_from_pte(pt_entry) + offset;

25 }

26 else { /* 2MB page */

27 offset = pae_get_offset_big(vaddr);

28 paddr = pae_get_addr_from_pde_big(pd_entry);

29 paddr += (u64)offset;

30 }

31 ...

32 return (u32) paddr;

We applied our adversary abstraction tool to the kernel pt walk code while specify-

ing that (u32)paddr (i.e, the lower 32-bits of the paddr variable) could take any possible

32-bit value. The tool returned T RUE in around 3 seconds, signifying that all 70 lines of

code of the function could be abstracted to a single return of the function nondet u32(), a

nondeterministic 32-bit value. The function is called at eight distinct locations in SecVi-

sor’s code and can be abstracted at each location, to significantly reduce the complexity of

each calling function.

105

Parametricity Abstraction. We applied the parametricity abstraction to SecVisor’s

shadow paging code in much the same way as in the ShadowVisor case study. Since

SecVisor’s source code operates over three-level page tables, there were three levels of

nested loops (in contrast, to ShadowVisor’s two levels) that iterated over all the entries

of the guest OS kernel page tables and the shadow page tables performing initialization,

synchronization, and security checks. The result of the abstraction was an elimination of

these loops and the reduction of each paging level to a single entry in the respective tables

(i.e., PDPT, PDT, PT).

Model Checking Abstract System

We model checked the abstracted C code using CBMC and found that it satisfied both

of the checked security properties. CBMC took approximately 3 seconds to model check

the system. Both abstractions were necessary to model check the system. With just the

parametricity abstraction alone, we were able to check that the adversary is unable to map

into SecVisor’s memory with a KPT entry, but the model checker did not terminate after

thirty minutes of attempting to simplify the program’s representation as a SAT formula. To

test the scaling trends at work with just the parametricity abstraction, we bounded the size

of the KPT in the kernel pt walker function (to alleviate the complexity stemming from

this function). We observed runtimes of a few seconds for a kernel page table with less

than 10 entries and exponentially increasing runtimes up to around 5 minutes for trivially

small page tables with around 90 entries. This scaling test was performed on just a single

level of the three-level page table hierarchy.

Next, to show that the adversary abstraction alone is not sufficient, we enabled the

adversary abstraction and abstracted away the kernel pt walker function, but did not ap-

ply the parametricity result. Since the page table synchronization code loops over page

106

tables with 1024 entries, the model checker was not able to build the SAT formulas that

represented the program semantics.

Finally, we enabled both abstractions and were able to check both properties in just

a few seconds of runtime. These experiments demonstrate the importance of employing

abstraction techniques that reduce the complexity of both adversary-controlled and trusted

data structures.

5.4 Conclusion

Despite its promise, scaling software model checking to verify security properties of sys-

tems code remains an open challenge. We presented an approach – called havoc-function

abstraction – to address this challenge in the context of verifying security of hypervi-

sors. The key insight behind this approach is that many functions in systems code op-

erate on adversary-controlled data structures. In essence, these functions, which we call

havoc functions, return non-deterministic values. We developed a fully automated solu-

tion, based on QBF solving, to detect havoc functions and abstract them away in a sound

manner. Empirical evaluation on two real-life hypervisors demonstrate the effectiveness

of our approach.

107

108

Chapter 6

Towards Refinement

6.1 Introduction

In this chapter, we show that small model theorems similar to those in Chapter 4 apply to

a detailed model of ShadowVisor’s implementation. In particular, we prove a refinement

theorem between ShadowVisor’s implementation defined in a subset of the C language

(denoted MiniCee) and an extension to PGCL+, PGCL++, that allows previously forbidden

data flow. This requires a number of steps.

First, the syntax and semantics of our source-level modeling language, MiniCee, must

be formally defined. Next, new programming constructs must be added to PGCL+ to allow

previously forbidden data flows that occur in ShadowVisor’s implementation. The SMTs

must be updated to account for new data flows and programming constructs. A refinement

mapping between ShadowVisor’s high-level PGCL++ model and more detailed MiniCee

model must be developed. We state and sketch the proof of a refinement theorem that re-

lates the abstract and concrete models by simulation. We address each of these challenges

in turn.

109

We begin by defining the MiniCee language, a subset of the ANSI-C standard. MiniCee

is expressive enough to model our target system, ShadowVisor, while being simple enough

to enable concise manual proofs. We reduce the complexity of the language and proofs

in the language by abstracting away program constructs that are unused in ShadowVisor

such as pointers and inline function calls that would enable recursion.

PGCL++ by adding write-only variables that enable previously disallowed data flow

from tables lower in the hierarchy to tables higher in the hierarchy. This extension is nec-

essary to model the behavior of the lower-level system and successfully prove a refinement

theorem. For example, consider a multi-level paging system that writes to an entry in a

higher-level table depending on the value of the flag in a lower-level table. This system is

not expressible in PGCL+ because there is a data flow that violates hierarchical row inde-

pendence. Indeed, such a system may not be expressible in any language that is amenable

to Small Model Theorems with optimal cutoffs. If data is allowed to flow both up and

down the hierarchy, then a security property may be violated by a data flow that includes

more than just one entry at each level of the data structure. In PGCL++, we allow a lim-

ited form of upward data flow that is sufficient to model systems of interest while being

amenable to SMTs with optimal cutoffs. The key idea is allowing upward flow only into

write-only variables. We bake this restriction syntactically into the definition of PGCL++

and prove new SMTs that are analogous to those in Chapter 4.

To establish our refinement result, we fully specify a number of details missing from

the ShadowVisor models of previous chapters. In particular, we describe each column of

the parametrized arrays and define the store in full detail. We define a refinement mapping

that relates states in the ShadowVisor model defined in the MiniCee language and states in

the model defined in PGCL++. Our primary technical result is a simulation theorem that

preserves PTSL properties between a concrete and abstract model of ShadowVisor.

110

Organization. This chapter is organized as follows. In Section 6.2, we extend PGCL+

to PGCL++. We define our specification formalism in Chapter 6.3. We extend our SMTs

to apply to PGCL++ programs in Section 6.4. Section 6.5 defines MiniCee. We state our

refinement theorem and prove it in Chapter 6.6. We conclude in Section 6.7.

6.2 Definition of PGCL++

We define the syntax and semantics of PGCL++. PGCL++ is a strict extension of PGCL+

that includes write-only variables to enable a new class of data flows required for our

refinement proof.

6.2.1 PGCL++ Syntax

The syntax of PGCL++ is similar to PGCL+. The primary difference is a new class of write-

only variables and a write-only variable assignment operator. All variables in PGCL++ are

Boolean. As in PGCL+, PGCL++ includes nested parametric arrays to a finite depth d. Each

row of an array at depth d is a record with a single field F, a finite array of Booleans of size

qd . Each row of an array at depth z (1 ≤ z < d) is a structure with two fields: F, a finite

array of Booleans of size qz, and P an array at depth z+1. Let 1 and 0 be, respectively, the

representations of the truth values true and false. Let B be a set of Boolean variables, W be

a set of write-only Boolean variables, i1, . . . ,id be variables used to index into P1, . . . ,Pd ,

respectively, and n1, . . . ,nd be variables used to store the number of rows of P1, . . . ,Pd ,

respectively.

The syntax of PGCL++ is shown in Figure 6.1. New constructs are highlighted in bold.

As in PGCL+, PGCL++ supports natural numbers, Boolean variables, propositional expres-

sions over Boolean variables and F elements, guarded commands that update Boolean vari-

111

Natural Numerals K

Boolean Variables B

Write-only Boolean Variables W

Parametric Index Variables i1, . . . ,id
Parameter Variables n1, . . . ,nd
Expressions E ::= 1 | 0 | ∗ | B | E∨E | E∧E | ¬E
Parameterized Expressions (1≤ z≤ d) Êz ::= E | P[i1] . . .P[iz].F[K] | Êz ∨ Êz | Êz ∧ Êz

| ¬Êz
Instantiated Guarded Commands G ::= GC(Kd)
Guarded Commands GC ::= E ? C1 : C1 Simple guarded command

| GC ‖ GC Parallel composition
Commands (depth 1≤ z≤ d) Cz ::= B := E (if z = 1) Assignment

| for iz do Êz ? Ĉz : Ĉz Parametric for
| Cz;Cz Sequencing
| skip Skip

Parameterized Commands (1≤ z≤ d) Ĉz ::= P[i1] . . .P[iz].F[K] := Êz Array assignment
| W := Êz Write-only variable assignment
| Ĉz; Ĉz Sequencing
| Cz+1 (if z < d) Nesting

Figure 6.1: PGCL++ Syntax, z denotes depth.

ables and F elements, and parallel composition of guarded commands. PGCL++ extends

PGCL+ by including write-only variables and a write-only variable assignment operator.

We define a parallel interleaving semantics where guarded commands are executed

atomically. In more detail, a guarded command e ? c1 : c2 executes c1 or c2 depending on

whether e evaluates to true or false. The parallel composition of two guarded commands

executes by non-deterministically picking one of the commands to execute. The sequen-

tial composition of two commands executes the first command followed by the second

command. Note that commands at depth z+1 are nested within those at depth z.

Language Design. As in PGCL+, values assigned to an element of an F array at depth

z can depend only on: (i) other elements of the same F array; (ii) elements of parent F ar-

rays along the nesting hierarchy (to ensure hierarchical row uniformity); and (iii) Boolean

variables. Values assigned to Boolean variables depend only on other Boolean variables.

In PGCL++, we add a write-only assignment operator that enables “upward” data flow

from F and Boolean variables B to a class of write-only Boolean variables, W. The write-

112

only variables can be seen as a part of the array F, however for simplicity we separate their

definitions. The addition of write-only variables and a write-only assignment operator

allows us to model systems that were not able to be expressed in PGCL+. For example, a

multi-level paging system that writes to an entry in a higher-level table depending on the

value of the flag in a lower-level table. This system is not expressible in PGCL+ because

there is a data flow that violates hierarchical row independence. Since PGCL++ is a strict

extension of PGCL+, we are able to model all the previous systems and new systems of

interest.

6.2.2 PGCL++ Semantics

We now present the operational semantics of PGCL++ as a relation on stores. The seman-

tics are a strict extension of PGCL+ with an extended store that includes a mapping of

Write-only Boolean variables to Boolean values. Formally, in PGCL++, a store σ is a tuple

(σB,σW ,σn,σP) such that:

• σB : B→ B maps Boolean variables to B;

• σW : W→ B maps Write-only Boolean variables to B;

• σn ∈ Nd is a tuple of values of the parameter variables;

• σP is a tuple of functions defined as follows:

∀z ∈ [1,d] �σP
z :⊗(σn

1,z,qz)→ B

The rules for evaluating PGCL++ expressions under stores are analogous to those in

PGCL+ and are defined inductively over the structure of PGCL++ expressions, and shown

in Figure 6.2.

To define the semantics of PGCL++, we first present the updated notion of store pro-

jection. The following definitions are straight-forward extensions of those presented in

113

〈1,σ〉 → true 〈0,σ〉 → false 〈∗,σ〉 → true 〈∗,σ〉 → false
b ∈ dom(σB)

〈b,σ〉 → σ
B(b)

w ∈ dom(σW)

〈w,σ〉 → σ
W (w)

〈e,σ〉 → t
〈¬e,σ〉 → [¬]t

(dk1e, . . . ,dkze,dre) ∈ Dom(σP
z)

〈P[k1] . . .P[kz].F[r],σ〉 → σ
P
z (dk1e, . . . ,dkze,dre)

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∨e′,σ〉 → t[∨]t ′
〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∧e′,σ〉 → t[∧]t ′

Figure 6.2: Rules for expression evaluation in PGCL++.

previous chapters. We repeat them here for purposes of presentation.

Definition 16 (Store Projection). Let σ = (σB,σW ,σn,σP) be any store and 1≤ z≤ d. For

k = (k1, . . . ,kz) ∈ ⊗(σn
1, . . . ,σ

n
z) we write σ � k to mean the store (σB,σW ,σm,σQ) such

that:

σ
m = σ

n[1 7→ 1][2 7→ 1] . . . [z 7→ 1] (1)

∀y ∈ [1,z] �∀X ∈ Dom(σQ
y) �σ

Q
y (X) = σ

P
y (X [1 7→ k1][2 7→ k2] . . . [y 7→ ky]) (2)

∀y ∈ [z+1,d] �∀X ∈ Dom(σQ
y) �σ

Q
y (X) = σ

P
y (X [1 7→ k1][2 7→ k2] . . . [z 7→ kz]) (3)

Note: ∀z ∈ [1,d] �∀k ∈ ⊗(σn
1, . . . ,σ

n
z) �σ � k= (σ � k) � 1z.

σ � k retains σB and σW , changes the first z elements of σn to 1, and leaves the remain-

ing elements unchanged, and projects away all but the ky-th row of the parametric array at

depth y for 1 ≤ y ≤ z. Note that since projection retains σB and σW , it does not affect the

evaluation of expressions that do not refer to elements of P.

114

σ
n = (dk1e, . . . ,dkde) {σ} gc {σ′}

{σ} gc(k1, . . . ,kd) {σ′}
Parameter Instantiation

{σ} c {σ′′} {σ′′} c′ {σ′}
{σ} c;c′ {σ′}

Sequential
{σ} skip {σ}

Skip

σ
n
1,z = (1z−1,N) ê ? ĉ1 : ĉ2 ∈ (Êz ? Ĉz : Ĉz)[i1 7→ 1] . . . [iz−1 7→ 1]
∀y ∈ [1,N] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

{σ} for iz do ê ? ĉ1 : ĉ2 {σ′}
Unroll

〈e,σ〉 → true∧{σ} c1 {σ′}
∨
〈e,σ〉 → false∧{σ} c2 {σ′}

{σ} e ? c1 : c2 {σ′}
GC

{σ} gc {σ′}∨{σ} gc′ {σ′}
{σ} gc ‖ gc′ {σ′}

Parallel
〈e,σ〉 → t

{σ} b := e {σ[σB 7→ σ
B[b 7→ t]]}

Assign

ê ∈ Êz 〈ê,σ〉 → t

{σ} w := ê {σ[σW 7→ σ
W [w 7→ t]]}

Write-only Assign

ê ∈ Êz 〈ê,σ〉 → t (dk1e, . . . ,dkze,dre) ∈ Dom(σP
z)

{σ} P[k1] . . .P[kz].F[r] := ê {σ[σP 7→ σ
P[σP

z 7→ [σP
z [(dk1e, . . . ,dkze,dre) 7→ t]]]]}

Parameterized Array Assign

Figure 6.3: Rules for PGCL++ commands

115

Store Transformation. For any PGCL++ command c and stores σ and σ′, we write

{σ} c {σ′} to mean that σ is transformed to σ′ by the execution of c. We define {σ} c {σ′}

via induction on the structure of c, as shown in Figure 6.3.

The only rule not already in PGCL+ is the “Write-only Assign” rule that states that a σ

is transformed to σ′ by assigning either a Boolean variable, an element of F, or the result

of a Boolean expression to a write-only variable. Note that write-only variables are not

included in the right-hand size of any commands or allowed in expressions. This is our

definition of write-only. We define Loop Variable Instantiation as in PGCL+.

Definition 17 (Loop Variable Instantiation). Let σ and σ′ be two stores such that σn = σ′n.

Let 1≤ z≤ d and ê ? ĉ1 : ĉ2 ∈ Êz ? Ĉz be a guarded command. Then for any 1≤ y≤ z and

ky ∈ [1,σn
y], we write {σ} (ê ? ĉ1 : ĉ2)(iy� ky) {σ′} to mean:

∀i ∈ ⊗(σn
1,d) � iy = ky⇒{σ � i} (ê ? ĉ1 : ĉ2)[iy 7→ 1] {σ′ � i}

∧
iy 6= ky⇒ σ � i= σ

′ � i

Thus, {σ} (ê ? ĉ1 : ĉ2)(iy� ky) {σ′}means that σ′ is obtained from σ by first replac-

ing iy with ky in ê ? ĉ1 : ĉ2, and then executing the resulting guarded command.

6.2.3 ShadowVisor Code in PGCL++

Figure 6.4 shows our ShadowVisor model in PGCL++. Since all PGCL++ variables are

Boolean, we write x < C to mean the binary comparison between a finite-valued variable

x and a constant C.

Data Structures. Our ShadowVisor model uses a 2-level PT scheme. The guest and

shadow Page Directory Table (gPDT and sPDT) and the guest and shadow Page Tables

(gPTs and sPTs) are modeled using the 2-level PGCL++ parametric array.

Let PDT be the top-level array P. Elements PDT[i1].F[gPRESENT] and PDT[i1].F[gPSE]

116

are the present and page size extension flags for the i1-th gPDT entry, while

PDT[i1].F[gADDR] is the destination address contained in the i1-th gPDT entry. Elements

sPRESENT, sPSE, and sADDR are defined analogously for sPD entries. Below, we refer

to the present and page size extension flags of the i1 entry of the gPDT and sPDT as

PDT[i1].F[gFlags] and PDT[i1].F[sFlags], respectively.

Let PDT[i1].PT be the array P[i1].P. Elements gPTE PRESENT and gPTE ADDR of

PDT[i1].PT[i2].F are the present flag and destination address contained in the i2-th en-

try of the PT pointed to by the i1-th gPDT entry. Elements sPTE PRESENT and sPTE ADDR

of PDT[i1].PT[i2].F are similarly defined for the sPT. Terms gPDE refers to the set of el-

ements corresponding to a gPDT entry (i.e., gPRESENT, gPSE, and gADDR). Terms gPTE,

sPDE and sPTE are defined similarly for the gPT, sPDT, and sPT, respectively.

Interface. ShadowVisor’s interface is a parallel composition of four guarded

commands shadow page faultA, shadow invalidate pageA, shadow new contextA,

and adversaryA. The commands operate as in previous chapters. Command

shadow page faultA synchronizes sPDT and sPT with gPDT and gPT. Com-

mand shadow invalidate pageA invalidates entries in the sPD and sPT. Command

shadow new contextA initializes a new context by clearing all the entries of the sPD.

Finally, command adversaryA models the attacker by arbitrarily modifying every gPDT

and gPT entry.

6.3 Specification Formalism

Temporal logic specifications are expressed in PTSL as defined in Chapter 4. The seman-

tics of a PGCL++ program are defined as in Chapter 4.

117

adversaryA ≡
for i1 do

PDT[i1].F[ADV] := ∗;
PDT[i1].F[gPDE] := ∗;
for i2 do

PDT[i1].PT[i2].F[ADV] := ∗;
PDT[i1].PT[i2].F[gPTE] := ∗;

shadow page faultA ≡
for i1 do

PDT[i1].F[ADV]∧PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧
PDT[i1].F[gADDR]< PMEM LIMIT−SIZE 4M ?
PDT[i1].F[sPDE] := PDT[i1].F[gPDE];

for i2 do

PDT[i1].F[ADV]∧PDT[i1].F[gPRESENT]∧PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR]< PMEM LIMIT−SIZE 4K ?
PDT[i1].PT[i2].F[sPTE] := PDT[i1].PT[i2].F[gPTE];
PDT[i1].F[sFlags] := PDT[i1].F[gFlags];

shadow invalidate pageA ≡
for i1 do

(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[gPRESENT])∨
(PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
(PDT[i1].F[sPSE]∨PDT[i1].F[gPSE])) ?
PDT[i1].F[sPDE] := 0;

for i1 do

PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
¬PDT[i1].F[gPSE]∧¬PDT[i1].F[sPSE] ?
for i2 do

PDT[i1].PT[i2].F[sPTE] := 0;

shadow new contextA ≡
for i1 do

PDT[i1].F[sPDE] := 0;

Figure 6.4: ShadowVisor model in PGCL++.

118

6.4 Small Model Theorems

The following small model theorems are identical to those for PGCL+, except they apply

to PGCL++ programs. Both theorems relate the behavior of a PGCL++ program when P has

arbitrarily many rows to its behavior when P has a single row. The first theorem applies to

safety properties.

Definition 18 (Exhibits). A Kripke structure M(gc(k), Init) exhibits a formula ϕ iff there

is a reachable state σ of M(gc(k), Init) such that σ |= ϕ.

Theorem 14 (Small Model Safety 1). Let gc(k) be any instantiated guarded command in

PGCL++. Let ϕ ∈ GSF be any generic state formula, and Init ∈ USF be any universal state

formula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

The second theorem relates Kripke structures via simulation.

Theorem 15 (Small Model Simulation). Let gc(k) be any instantiated guarded com-

mand in PGCL++. Let Init ∈ GSF be any generic state formula. Then M(gc(k), Init) �

M(gc(1d), Init) and M(gc(1d), Init)�M(gc(k), Init).

Since, simulation preserves PTSL specifications, we obtain the following immediate

corollary to Theorem 15.

Corollary 16 (Small Model Safety 2). Let gc(k) be any instantiated guarded command in

PGCL++. Let ϕ ∈ USF be any universal state formula, and Init ∈ GSF be any generic state

formula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

6.5 MiniCee Definition

We define MiniCee, our language for specifying concrete programs.

119

6.5.1 MiniCee Syntax

MiniCee is a simple imperative language whose syntax and semantics are based on ANSI-

C. A primary abstraction employed in MiniCee is the use of multi-dimensional arrays to

model memory. The arrays-as-memory abstraction enables us to ignore pointers and issues

related to aliasing. To implement this abstraction, we include pointers in the syntax of

MiniCee, but abstract pointer operations in the semantics by converting them to semantic

nops.

The syntax of MiniCee is shown in Figure 6.5. The language supports ASCII characters,

natural numerals, finite precision unsigned integer variables (bit vectors), semantically-

meaningless pointer variables, and standard arithmetic, bitwise, logical, and relational

operators over bit vectors. Since all variables are unsigned 32bit vectors, we ignore types

and treat the u32 as sugar which is excluded from our syntax. Like PGCL++, MiniCee

includes nested parametric arrays to a finite depth d. Each row of an array at depth d

is a record with a single field F, a finite array of Booleans of size qd . Each row of an

array at depth z (1 ≤ z < d) is a structure with two fields: F, a finite array of Booleans of

size qz, and P an array at depth z+ 1. Let 1 and 0 be, respectively, the representations of

the truth values true and false. Let I be a set of Integer variables, R be a set of pointer

variables, i1, . . . ,id be variables used to index into P1, . . . ,Pd , respectively, and n1, . . . ,nd

be variables used to store the number of rows of P1, . . . ,Pd , respectively.

Unlike PGCL++, MiniCee allows the parameterized array to be updated in a non-row-

uniform and non-row-hierarchical manner. As a result, our Small Model Theorems do not

directly apply to programs written in MiniCee. Instead, we apply our SMTs to MiniCee

programs through a refinement argument.

120

ASCII Characters S

Natural Numerals K

Integer Variables I

Pointer Variables R

Parametric Index Variables i1, . . . ,id
Parameter Variables n1, . . . ,nd
Arithmetic Operators aop ::= + | − |% | ∗ | /
Binary Bitwise Operators bop ::= & | or | ∼ | << | >>
Unary Bitwise Operators ubop ::= ∼
Binary Logical Operators lop ::= && | ∨
Unary Logical Operators ulop ::= !
Pointer Operators pop ::= ∗
Relational Operators rop ::= > | < | ≥ | ≤ | ! = | ==
Integer Expressions IE ::= K | ∗ | I | IE aop IE | IE bop IE

| IE lop IE | IE rop IE | ulop IE
| ubop IE | P[i1] . . .P[iz].F[K]

Program Prg ::= FnList Intr

Function Defn. List FnList ::= FnList Fn | Fn
Function Defn. Fn ::= u32 S+(FP){C}
Fun. Parameters FP ::= I,FP | I
Interface Intr ::= IFn

| Intr ‖ Intr Parallel composition
Instantiated Function IFn ::= C(∗)
Commands C ::= P[i1] . . .P[iz].F[K] = IE Assignment (Array)

| I= IE Assignment (Integer)
| R= IE Assignment (Pointer)
| if(IE){C}else{C} Conditional
| return IE Return
| C;C Sequencing

Figure 6.5: MiniCee Syntax

121

〈e,σ〉 → true∧{σ} c1 {σ′}
∨
〈e,σ〉 → false∧{σ} c2 {σ′}

{σ} if(e){c1}else{c2} {σ′}
COND

〈i,σ〉 → t

{σ} i= i {σ[σI 7→ σ
I [b 7→ t]]}

Assign (Integer)
〈i,σ〉 → t
{σ} p= i {σ}

Pointer Assign (Nop)

〈e,σ〉 → t
{σ} return e {σ}

Return (Nop)

〈e,σ〉 → t (dk1e, . . . ,dkze) ∈ Dom(σP
z)

{σ} P[k1] . . .P[kz] = e {σ[σP 7→ σ
P[σP

z 7→ [σP
z [(dk1e, . . . ,dkze) 7→ t]]]]}

Parameterized Array Assign

Figure 6.6: Rules for MiniCee commands

6.5.2 MiniCee Semantics

We now present the operational semantics of MiniCee as a relation on stores. Let B be

the truth values {true, false}. Let N denote the set of natural numbers. For two natural

numbers j and k such that j ≤ k, we write [j,k] to mean the set of numbers in the closed

range from j to k. We write Dom(f) to mean the domain of a function f ; (t, t′) denotes

the concatenation of tuples t and t′; ti, j is the subtuple of t from the ith to the jth elements,

and ti means ti,i. Given a tuple of natural numbers t= (t1, . . . , tz), we write ⊗(t) to denote

the set of tuples [1, t1]×·· ·× [1, tz]. We write Bk to represent the set of all bit (Boolean)

vectors of length k. Recall that, for 1≤ z≤ d, qz is the size of the array F at depth z. Then,

a store σ is a tuple (σI,σn,σP) such that:

• σI : I→ B32 maps Integer variables to B32;

• σn ∈ Nd is a tuple of values of the parameter variables;

• σP is a tuple of functions defined as follows:

∀z ∈ [1,d] �σP
z :⊗(σn

1,z,qz)→ B

122

The rules for evaluating MiniCee expressions under stores are defined according to the

ANSI-C standard and are omitted.

Store Transformation. We overload the 7→ operator as in previous chapters. For any

z ∈ N, 1z denotes the tuple of z 1’s. As before, for any MiniCee command c and stores

σ and σ′, we write {σ} c {σ′} to mean that σ is transformed to σ′ by the execution of

c. We define {σ} c {σ′} via induction on the structure of c, as shown in Figure 6.6.

Straightforward rules such as sequential, parallel, and parameter instantiation have been

omitted. See previous chapters for examples of similar rules.

6.5.3 Concrete Code

ShadowVisor implemented in MiniCee uses a 2-level PT scheme. The guest page table

entries (gPDE and gPTE) have been abstracted using the havoc abstraction and the shadow

Page Directory Table and shadow Page Tables (s pdt and s pt) are modeled using the 2-

level MiniCee parametric array.

The ShadowVisor implementation in MiniCee consists of the following three func-

tions: shadow new context, shadow invalidate page, and shadow page fault and

the adversary interface. To keep the refinement proof focused on the relevant details,

we elide a number of details. For example, we ignore typing since all types are unsigned

thirty-two bit vectors. Function calls have been inlined, which in this case is possible since

all functions are non-recursive. The for loop in shadow new context is syntactic sugar for

an unrolled loop. Unrolling is feasible since the loop executes for a finite number of

iterations. The elseif construct is syntactic sugar for a nested conditional. Direct as-

signments to s pt are treated as pointer assignments and hence are semantic NOPS while

assignments to its elements are considered array assignments. This differentiation is the

key to our arrays-as-memory abstraction.

123

We ignore declarations in the syntax and declare variables as follows. Let s pdt be the

top-level array P.F and let s pt be the array P[i1].P.F. Let n1 be 1024 and n2 be 1024. Let

gPDE and gPTE be integer variables. Let i pdt and i pt be i1 and i2, respectively. The

0x prefix signifies a hexadecimal value. Let PFERR WR MASK, PFERR PRESENT, CANCEL,

INJECT be uniquely defined natural numbers. The particular values are unimportant. Let

PRESENT and PSE be the PRESENT and PSE flags. Let PMEMLIMIT be the physical mem-

ory limit beyond which hypervisor code is stored and SIZE 4k be 212.

The ShadowVisor Adversary is modeled in Figure 6.7 as a parallel composition of

functions calls with non-deterministic parameters. ShadowVisor’s Page Fault Handler is

modeled in Figure 6.8. This handler extracts indexes from the passed control register, cr2,

and checks the PRESENT and PSE flags and the physical memory limit before synchro-

nizing the guest page table with the shadow page table. ShadowVisor’s Page Invalidation

Handler is modeled in Figure 6.9. This handler extracts indexes from cr2, checks the

PRESENT and PSE flags, and invalidates pages by clearing all bits to zero. ShadowVi-

sor’s New Context Load Handler, shown in Figure 6.10, clears all entries of the shadow

page directory table.

1 shadow_new_context(*) ||
2 shadow_invalidate_page(*) ||
3 shadow_page_fault(*, *)

Figure 6.7: ShadowVisor Adversary

6.6 Towards Refinement

We state a refinement theorem and sketch the key details of the proof. Informally, our

refinement theorem relates each step in the execution of the concrete system with a step

of execution in the abstract system. Formally, the theorem is a weak simulation where

124

1 u32 shadow_page_fault(u32 cr2, u32 error_code){
2 u32 *s_pt;
3 u32 gPDE = *;
4 u32 gPTE = *;
5

6 u32 i_pdt = (cr2 >> 22);
7 u32 i_pt = ((cr2 & 0x003FFFFF) >> 12);
8

9 if((s_pdt[i_pdt] & PRESENT) && !(s_pdt[i_pdt] & PSE)){
10 s_pt = s_pdt[i_pdt];
11 }
12

13 if(!(error_code & PFERR_PRESENT)){
14 if(((gPDE & PRESENT) && (gPDE & PSE)) ||
15 ((gPDE & PRESENT) && (!(gPDE & PSE)) && (gPTE & PRESENT))) {
16

17 if(gPDE & PSE){
18 if((gPDE & (˜(SIZE_4K-1))) + SIZE_4M < PMEMLIMIT){
19 s_pdt[i_pdt] = gPDE;
20 }
21

22 } else {
23 s_pdt[i_pdt] = ((s_pdt[i_pdt] & (˜(SIZE_4K-1))) &
24 (˜(SIZE_4K-1))) | (gPDE & (SIZE_4K-1));
25

26 if((gPTE & (˜(SIZE_4k-1))) + SIZE_4K < PMEMLIMIT){
27 s_pt[i_pt] = gPTE;
28 }
29

30 }
31 return CANCEL;
32 } else {
33 return INJECT;
34 }
35 }else if (error_code & PFERR_WR_MASK){
36 return INJECT;
37 }else{
38 return INJECT;
39 }
40 }

Figure 6.8: ShadowVisor Page Fault Handler

125

1 u32 shadow_invalidate_page(u32 address){
2 u32 *s_pt;
3 u32 gPDE = *;
4 u32 gPTE = *;
5

6 u32 i_pdt = (address >> 22);
7 u32 i_pt = ((address & 0x003FFFFF) >> 12);
8

9 if((s_pdt[i_pdt] & PRESENT) && !(s_pdt[i_pdt] & PSE)) {
10 s_pt = s_pdt[i_pdt];
11 }
12

13 if(!(s_pdt[i_pdt] & _PAGE_PRESENT))
14 return 0;
15

16 if(!(gPDE & _PAGE_PRESENT)){
17 s_pdt[i_pdt] = 0;
18 }else{
19 if(((gPDE & PSE) && !(s_pdt[i_pdt] & PSE)) ||
20 (!(gPDE & PSE) && (s_pdt[i_pdt] & PSE))){
21 s_pdt[i_pdt] = 0;
22 }else{
23 if(s_pt){
24 s_pt[i_pt] = 0;
25 }else{
26 s_pdt[i_pdt] = 0;
27 }
28 }
29 }
30 return 0;
31 }

Figure 6.9: ShadowVisor SPT Invalidation

1 u32 shadow_new_context(u32 guest_CR3){
2

3 for (u32 i= 0; i < 1024; i++) {
4 s_pdt[i] = 0;
5 }
6

7 return s_pdt;
8 }

Figure 6.10: ShadowVisor New Context Load

126

guarded commands are the atomic unit of execution in the abstract language and functions

are the atomic unit of execution in the concrete language [20]. Note that it is reasonable to

consider functions and guarded commands as atomic execution blocks because the system

implementation disables interrupts when the hypervisor executes, making functions non-

interruptable. The theorem requires two relationships be established: 1) the whole-array

operations of the abstract program are related to the adversary-driven one-row-at-a-time

execution of the concrete system, and 2) the stores of the abstract system are related to the

stores of the concrete system.

We develop the first relationship by formalizing the following intuition: each function

in the concrete code (excluding shadow new context) updates, at most, one row in the

page directory table and, at most, one row in a page table. This behavior can be simulated

by a trace of the abstract system where the adversary chooses the corresponding row and

sets the adversary choice column, ADV , to true while setting all other rows of the adversary

choice column to false. The key being that we have augmented the abstract system with

a special indicator column, ADV , whereby the adversary selects the particular row to be

updated by the whole-array operation rather than updating all rows at once.

The remaining discrepancy between the concrete and abstract programs, which is ad-

dressed with the abstraction function defined below, is that the stores of the abstract and

concrete systems are named differently. Despite the apparent differences, there exists an

exact bit-to-bit correspondence whereby a concrete state can be mapped into an abstract

state. For example, the indices in the concrete programs are computed from the adversary

input, while the indices in the abstract program are enumerated as a part of whole-array

operations. Nonetheless, we show that the same indices are computed. A parallel argu-

ment can be made with respect to the arrays used in the concrete and abstract programs.

We formalize this reasoning in the following theorem.

127

Theorem 17. (Refinement) Let A = adversaryA;shadow page f aultA and let C =

adversary;shadow page f ault as defined in Figures 6.7, 6.8, and 6.4. Let Init ∈ GSF

be any generic state formula of the form ϕ where ϕ ∈ GSF. Let MA = M(A, Init) and

MC = M(C, Init) be the transition systems induced by executing A and C, respectively.

Then MC �MA.

Proof. Let MC = (SC,IC,TC,LC) and MA = (SA,IA,TA,LA) be Kripke structures over sets

of atomic propositions APC and APA induced by executing C and A such that APA ⊆ APC.

We propose the following abstraction function H and show that it is a satisfies the

conditions of simulation:

H(σC,σA)⇔

∀X ∈ ⊗(σn
1) �σ

U32
C (gPDE)(PRESENT) = σP

A(X)(gPRESENT)

∧ ∀X ∈ ⊗(σn
1) �σ

U32
C (gPDE)(PSE) = σP

A(X)(gPSE)

∧ ∀X ∈ ⊗(σn
1) �σ

U32
C (gPDE)(ADDR) = σP

A(X)(gADDR)

∧ ∀X ∈ ⊗(σn
1) �σ

spdt
C (X)(PRESENT) = σP

A(X)(sPRESENT)

∧ ∀X ∈ ⊗(σn
1) �σ

spdt
C (X)(PSE) = σP

A(X)(sPSE)

∧ ∀X ∈ ⊗(σn
1) �σ

spdt
C (X)(ADDR) = σP

A(X)(sADDR)

∧ ∀X ∈ ⊗(σn
1,2) �σ

U32
C (gPT E)(PRESENT) = σP

A(X)(gPT E PRESENT)

∧ ∀X ∈ ⊗(σn
1,2) �σ

U32
C (gPT E)(ADDR) = σP

A(X)(gPT E ADDR)

∧ ∀X ∈ ⊗(σn
1,2) �σ

spt
C (X)(PRESENT) = σP

A(X)(sPT E PRESENT)

∧ ∀X ∈ ⊗(σn
1,2) �σ

spt
C (X)(ADDR) = σP

A(X)(sPT E ADDR)

Recall the conditions C1–C3 in Definition 6 in Chapter 3 for simulation.

C1 holds because the atomic propositions are formulas that do not mention the deleted

columns ADV and hence are equal;

128

C2 analogous to C1;

C3 Consider the set of traces of MC, denoted T (MC). Let L2C be a function that maps

line numbers to their respective commands. Let σC ∈ SC and σA ∈ SA. Let tC ∈ T (MC) be

an arbitrary trace such that {σC} L2C(tC) {σ′C}.

To show:

∀tC ∈ T (MC) �∃tA ∈ T (MA) �H(σA,σC)
∧
{σA} L2C(tA) {σ′A}

∧
H(s′A,s

′
C)

The following abstractions reduce the number of concrete traces that need be consid-

ered: (1) MiniCee abstracts away pointer details by converting pointer operations to NOPS,

(2) our adversary model (nondeterministic choice) is unchanged by return values and our

initial and security properties do not refer to return values allowing us to treat returns as

NOPS, and (3) the index variables and the gPDE and gPTE variables are not mentioned

in the initial or security properties and hence are not relevant for simulation. After ap-

plying these abstractions, we need only consider those traces that modify key system data

structures. The following proof ignores stutter steps.

Let [...k] of a program P be the sequence of commands that are executed up to line k.

It is sufficient to consider only distinct sequences including [...19], [...24], and [...27]:

Case [...19]. Let PMEMLIMIT ∈ K and SIZE 4M ∈ K be constants.

Consider {σC} adversary;L2C([...19]) {σ′C}, by Figure 6.6, we know that ∃t1,t2 ∈

129

U32 such that:

〈cr2,σ′C〉 → t1 ∧

〈gPDE,σ′C〉 → t2 ∧

〈ipdt,σ′C〉 → (t1>> 22) ∧

〈ipt,σ′C〉 → ((t2 & 0x003FFFFF)>> 12) ∧

〈t2 & PRESENT,σ′C〉 → > ∧ 〈t2 & PSE,σ′C〉 → > ∧

〈((t2 & (∼ (SIZE 4K−1)))+SIZE 4M< PMEMLIMIT),σ′C〉 → >

And as a result:

σ
′
C = σ[σspdt 7→ σ

spdt [(t1>> 22) 7→ t2]] (6.1)

[σU32 7→ σ
U32[cr2 7→ t1,gPDE 7→ t2, (6.2)

ipdt 7→ (t1>> 22),ipt 7→ ((t2 & 0x003FFFFF)>> 12)]] (6.3)

Consider tA ∈ adversaryA;shadow page f aultA(1024,1024) where

{σA} adversaryA {σ′′A} sets the columns of PDT as follows:

〈PDT[(t1>> 22)].F[ADV],σ′′A〉 → > ∧

〈PDT[(t1>> 22)].F[gPDE],σ′′A〉 → t2 ∧

∀i ∈ [1,1024] � i 6= (t1 >> 22)⇒ 〈PDT[i].F[ADV],σ′′A〉 → ⊥ ∧

∀(i, j) ∈ ⊗(σn
A(1,2)) � 〈PDT[i].PT[j].F[ADV],σ

′′
A〉 → ⊥ ∧

〈PDT[(t1>> 22)].F[gPRESENT],σ′′A〉 → > ∧

〈PDT[(t1>> 22)].F[gPSE],σ′′A〉 → > ∧

〈(PDT[(t1>> 22)].F[gADDR]< PMEMLIMIT−SIZE 4M),σ′′A〉 → >

Next, consider {σ′′A} shadow page f aultA {σ′A} where by Figure 6.3 we arrive at:

130

σ
′
A = σ[σP 7→ σ

P[(t1>> 22) 7→ t2]] (6.4)

[σU32 7→ σ
U32[cr2 7→ t1,gPDE 7→ t2]] (6.5)

and hence H(s′A,s
′
C).

Case [...24]. This case follows analogously to the previous.

Case [...27]. We construct tA from adversary;shadow page f ault as follows:

Let i1 = (cr2 >> 22) and i2 = ((cr2&0x003FFFFF) >> 12). Consider the trace

of adversary where PDT [i1].F [gPDE] := ∗, PDT [i1].PT [i2].F [gPT E] := ∗, and for all

i1! = (cr2 >> 22) and for all i2! = ((cr2&0x003FFFFF) >> 12) the values are left

unchanged (i.e., ∗ evaluates to the current value). By Figure 6.3, H(s′A,s
′
C).

6.7 Conclusion

We show that Small Model Theorems apply to a detailed model of ShadowVisor’s im-

plementation by proving a refinement theorem between ShadowVisor defined in MiniCee

and ShadowVisor defined in PGCL++. We formally defined the syntax and semantics of

MiniCee and added new programming constructs to PGCL+ to allow previously forbid-

den data flows. We updated the SMTs to account for new data flows and programming

constructs. A refinement mapping between ShadowVisor’s high-level PGCL++ model and

more detailed MiniCee model was developed. We stated a refinement theorem and sketched

a proof.

131

132

Chapter 7

Related Work

We describe related work in parametric verification for correctness, parametric verification

for security, model checking for security, bug finding using model checking, operating

system verification, QBF solving, summarization, and refinement.

7.1 Parametric Verification for Correctness

Parametric verification has been applied successfully to a wide variety of problems, in-

cluding cache coherence [29, 27, 77], bus arbitration [31], and resource allocation [26].

The general parametric model checking problem is undecidable [4, 73]. However,

restricted versions of the problem, typically tailored to cache coherence protocols, yield

decision procedures [38, 28]. These decision procedures are more efficient [30, 25, 27]

when the problem is restricted to a greater degree.

We consider a family of data-independent systems [78] for which efficient decision

procedures exist [55, 54]. These procedures enable verification of all finite parameter

instantiations by considering only a finite number of such instantiations. However, all

133

these approaches are either not expressive enough to model reference monitors, or are

less efficient than our technique. In particular, the forms of whole-array (i.e., for) opera-

tions supported by PGCL are critical for modeling and verifying the security of reference

monitor-based systems that operate on unbounded data structures. Existing formalisms for

parameterized verification of data-independent systems either do not allow whole-array

operations [54], or restrict them to a reset or copy operation that updates array elements

to fixed values [55]. Neither case can model our adversary. Our whole-array operations

allow atomic updates across the array, a necessary feature for modeling reference monitors

that is missing in Emerson and Kahlon [25].

Pnueli et al [62], Arons et al., [6], and Fang et al. [33] investigate finite bounded-

data systems which support stratified arrays that map to Booleans, a notion similar to

our hierarchical arrays. However, they consider a restricted logic that allows for safety

properties and a limited form of liveness properties, referred to as “response properties.” In

contrast, we consider both safety and more expressive liveness properties that can include

both next state and until operators in addition to the forall operator. Moreover, the cutoffs

of their small model theorems are a function of the type signatures, number of quantified

index variables, and other factors. When instantiated with the same types used in our

languages, their small model theorems have larger cutoffs than our own. By focusing on

the specific case of address translation systems and address separation properties, we are

able to arrive at smaller cutoffs.

7.2 Parametric Verification for Security

Lowe et al. [57] study parametric verification of authentication properties of network pro-

tocols. Roscoe and Broadfoot [65] apply data independence techniques to model check

security protocols. Durgin et al. [24] show that small model theorems do not exist for a

134

general class of security protocols. Millen [58] presents a family of protocols such that for

any k ∈ N, a member of the family has a cutoff greater than k. We present the first small

model theorems for system security.

7.3 Model Checking System Security

Several projects have looked at applying model checking for verifying security of software.

Guttman et al. [41] employ model checking to verify information-flow properties of the

SELinux system. In addition, Lie et al. verify XOM [56], a hardware-based approach for

tamper-resistance and copy-resistance, using the Murϕ model checker. Mitchell et al. [60,

59] use Murϕ to verify the correctness of security protocol specifications. The Murϕ tool

has its own modeling language. Our approach to parametric verification is amenable to

verification via other model checkers, such as SPIN [47], TLA+ [53] and SMV 1. Rather

than model checking a particular system, the focus of this thesis is on development of a

general framework for direct verification of C source code using a software model checker

and specialized abstractions that apply to a broad class of systems.

7.4 Bug Finding

A number of projects use software model checking and static analysis to find errors in

source code, without a specific attacker model. Some of these projects [42, 18, 79] target

a general class of bugs. Others focus on specific types of errors, e.g., Kidd et al. [49]

detect atomic set serializability violations, while Emmi et al. [32] verify correctness of

reference counting implementation. All these approaches require abstraction, e.g., random

isolation [49] or predicate abstraction [32], to handle source code, and are unsound and/or

1http://www.cs.cmu.edu/∼modelcheck/smv.html

135

incomplete. In contrast, our focus is on bug detection and verification in the presence of a

CSI-adversary with precisely defined capabilities.

7.5 Operating System Verification

Prior work [61, 66, 71, 44, 40, 37, 13, 69] has explored the problem of verifying the design

of secure systems. These works are similar to our own in spirit, but differ in the methods

applied. They suggest an approach where properties are manually proven using a logic

and without an explicit adversary model. We focus on model checking source code with

an explicit adversary model.

A number of groups – Walker et al. [76] were one of the first – have used theorem

proving to verify security properties of OS implementations. For example, Heitmeyer et

al. [45] use PVS to verify correctness of a data separation kernel, while Klein et al. [50]

use Isabelle to prove functional correctness properties of the L4 microkernel. In contrast,

we use model checking to automatically verify semantic security properties of systems

that enforce protections with unbounded data structures.

Recently, there has been a flurry of work using theorem proving to verify hypervi-

sors. Barthe et al. [11] formalized an idealized model of a hypervisor in the Coq proof

assistant and established formal guarantees of isolation. Alkassar et al. [2, 1] and Bau-

mann et al. [12] annotated the C code of a hypervisor, including shadow paging code, with

Hoare-like annotations at a total cost of two person-years of effort and then utilized the

VCC verifier to prove correctness properties. In contrast, we use software model checking

and sound abstractions to automatically check security properties of systems, including

hypervisors, that enforce address space separation with unbounded data structures.

136

7.6 QBF Solving

Developing efficient QBF solvers is an active area of research. Even though QBF validity

is PSPACE-complete, a number of efficient tools have been developed in recent years.

Notable tools are sKizzo [72], QuBE [63], and GhostQ [51]. QBFs solvers have been

applied to solve a variety of problems, including bounded model checking [22]. However,

to our knowledge, we are the first to employ QBF solvers to improve the scalability of

verification by detecting havoc functions.

7.7 Program Summarization

Havoc abstraction is a form of program summarization, an active area of research in soft-

ware verification. Inter-procedural model checkers, such as BEBOP [8], perform function

summarization. In addition, several projects, such as LoopFrog [52], have looked at sum-

marization of loops. Our focus is on detecting if a function can return arbitrary values,

rather than computing general summaries.

137

138

Chapter 8

Conclusions

Systems software forms the foundation of security for platforms including desktop, cloud,

and mobile. Despite their ubiquity, these security-critical systems regularly suffer from

serious vulnerabilities. In this thesis, we introduce and formally define the problem of

semantic security verification: verifying that every execution of a program running in

parallel with a system-specific adversary satisfies a security property.

We develop an approach to semantic security verification that utilizes model checking

to enable automated verifiable security guarantees for a wide range of systems software.

Central to the effectiveness of our framework are novel abstractions that significantly im-

prove the scalability of model checking secure systems. The abstractions exploit structure

common to secure systems and the non-determinism inherent in adversary models to re-

duce the complexity of verification.

We develop three abstractions: CSI-adversary abstraction, Small Model Analysis, and

Havoc abstraction. We prove soundness theorems to demonstrate that no attacks are

missed by the abstractions. We prove a completeness theorem that provides the theo-

retical basis for our zero false positive rate. Finally, we sketch a proof of a refinement

139

theorem that carries our results to the source level.

We perform case studies on hypervisors designed to enforce a variety of security prop-

erties in the presence of adversary-controlled guest operating systems. Our framework

accomplishes a variety of previously intractable results: we identified unknown vulnera-

bilities in two research hypervisors and successfully model checked their code after fixing

the vulnerabilities. We also successfully model check the design of two complex Xen

variants.

140

Appendix A

Proofs of Small Model Theorems

A.1 Proofs

This appendix contains lemmas used in the small model theorems and their associated

proofs.

A.1.1 Introductory Lemmas

First we prove that projection does not affect the evaluation of expressions, as expressed

by the following lemma.

Lemma 18. Let e ∈ E, t ∈ B, and σ be any store. Then:

〈e,σ〉 → t⇔∀i ∈ [1,σn] � 〈e,σ � i〉 → t

⇔∃i ∈ [1,σn] � 〈e,σ � i〉 → t

Proof. Follows from the fact that e depends only on Boolean variables, and the following

141

observation:

∀i ∈ [1,σn] �σB = (σ � i)B

We now state a fact, and prove a lemma about the “Unroll” rule.

Fact 2. Suppose {σ} (ê ? ĉ1 : ĉ2)(i� j) {σ′}. Then the only possible difference between

σP and σ′P is in the dje-th row. Also, since c ∈ Ĉ, we have σB = σ′B. Thus, the only

possible difference between σ and σ′ is in the dje-th row of σ′P.

Lemma 19. Suppose that {σ} for i : Pn,q do ê ? ĉ1 : ĉ2 {σ′}, and σn = N. Let

σ1, . . . ,σN+1 be any set of stores satisfying the premise of the “Unroll” rule of Figure 3.5.

Let j,k ∈ N be any two natural numbers such that 1≤ j ≤ k ≤ N +1. Then:

∀l ∈ [1,N] � (l < j∨ l ≥ k)⇒ (σ j � l = σk � l)

In other words, the only possible difference between σ j and σk are in rows j through

k−1 of σP
j and σP

k .

Proof. By induction on k− j.

Case 1. Let k− j = 0, i.e., j = k. In this case, the claim holds trivially, since

∀l ∈ [1,N] �σ j � l = σk � l

Case 2. Suppose the claim holds for k− j = x. Suppose k− j = x+1, i.e, (k−1)− j = x.

Therefore, by the inductive hypothesis:

∀l ∈ [1,N] � l < j∨ l ≥ k−1⇒ σ j � l = σk−1 � l

142

In other words, the only possible difference between σ j and σk−1 are in rows j

through k− 2 of σP
j and σP

k−1. Now, from the premise of the “Unroll” rule, we know

that {σk−1} (ê ? ĉ1 : ĉ2)(i� k′) {σk}, where dk′e= k−1. Therefore, by Fact 2, the only

possible difference between σk−1 and σk is in the (k− 1)-th row of σP
k−1 and σP

k . Thus,

the only possible difference between σ j and σk are in rows j through k−1 of σP
j and σP

k ,

which is what we want to prove.

A.1.2 Store Projection Lemmas

We now present a series of lemmas that explore the relationship between store projection

and different types of formulas. These lemmas will be used later to prove our small model

theorems. The first lemma states that a store σ satisfies a basic proposition π iff every

projection of σ satisfies π.

Lemma 20. Let π ∈ BP and σ be any store. Then:

σ |= π⇔∀i ∈ [1,σn] �σ � i |= π⇔∃i ∈ [1,σn] �σ � i |= π

Proof. Follows from the fact that π depends only on Boolean variables, and the following

observation:

∀i ∈ [1,σn] �σB = (σ � i)B

The next lemma states that a store σ satisfies an universally quantified formula π iff

every projection of σ satisfies π.

Lemma 21. Let π = ∀i �π′, π′ ∈ PP(i) and σ be any store. Then:

σ |= π⇔∀i ∈ [1,σn] �σ � i |= π

143

Proof. By Definition 3, we know that:

σ |= π⇔∀i ∈ [1,σn] �σ � i |= π
′[i 7→ 1]

B since ((σ � i) � 1) = (σ � i)

⇔∀i ∈ [1,σn] � (σ � i) � 1 |= π
′[i 7→ 1]

B let j be a fresh variable

⇔∀i ∈ [1,σn] �∀ j ∈ {1} � (σ � i) � j |= π
′[i 7→ 1]

B since (σ � i)n = 1

⇔∀i ∈ [1,σn] �∀ j ∈ [1,(σ � i)n] � (σ � i) � j |= π
′[i 7→ 1]

B let j be a fresh variable

⇔∀i ∈ [1,σn] �∀ j ∈ [1,(σ � i)n] � (σ � i) � j |= π
′[i 7→ j][j 7→ 1]

B by Definition 3

⇔∀i ∈ [1,σn] �σ � i |= ∀j � (π′[i 7→ j])

By alpha renaming, we know that ∀j � (π′[i 7→ j]) is equivalent to π. This give us our

desired result.

The next lemma states that a store σ satisfies an existentially quantified formula π iff

some projection of σ satisfies π.

Lemma 22. Let π = ∃i �π′ and π′ ∈ PP(i) and σ be any store. Then:

σ |= π⇔∃i ∈ [1,σn] �σ � i |= π

144

Proof. By Definition 3, we know that:

σ |= π⇔∃i ∈ [1,σn] �σ � i |= π
′[i 7→ 1]

B since ((σ � i) � 1) = (σ � i)

⇔∃i ∈ [1,σn] � (σ � i) � 1 |= π
′[i 7→ 1]

B let j be a fresh variable

⇔∃i ∈ [1,σn] �∃ j ∈ [1,1] � (σ � i) � j |= π
′[i 7→ 1]

B since (σ � i)n = 1

⇔∃i ∈ [1,σn] �∃ j ∈ [1,(σ � i)n] � (σ � i) � j |= π
′[i 7→ 1]

B let j be a fresh variable

⇔∃i ∈ [1,σn] �∃ j ∈ [1,(σ � i)n] � (σ � i) � j |= π
′[i 7→ j][j 7→ 1]

B by Definition 3

⇔∃i ∈ [1,σn] �σ � i |= ∃j � (π′[i 7→ j])

By alpha renaming, we know that ∃j � (π′[i 7→ j]) is equivalent to π. This give us our

desired result.

The next lemma states that a store σ satisfies an existential state formula ϕ iff some

projection of σ satisfies ϕ.

Lemma 23. Let ϕ ∈ ESF and σ be any store. Then:

σ |= ϕ⇔∃i ∈ [1,σn] �σ � i |= ϕ

145

Proof. From Figure 3.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = ∃i �π and π ∈ PP(i). Our result follows from Lemma 30.

Case 3. ϕ = π∧∃i �π′ such that π ∈ BP, and π′ ∈ PP(i). For the forward implication, by

Definition 3:

σ |= ϕ⇒ σ |= π
∧

σ |= ∃i �π′

B by Lemma 29 and Lemma 30

⇒∀ j ∈ [1,σn] �σ � j |= π
∧
∃ j ∈ [1,σn] �σ � j |= ∃i �π′

B playing around with ∧, ∀, and ∃

⇒ ∃ j ∈ [1,σn] �σ � j |= π∧σ � j |= ∃i �π′

B again by Definition 3

⇒∃ j ∈ [1,σn] �σ � j |= π∧∃i �π′

By alpha renaming j to i, we get our desired result. For the reverse implication:

∃i ∈ [1,σn] �σ � i |= π∧∃i �π′

B by Definition 3

⇒∃i ∈ [1,σn] �σ � i |= π∧σ � i |= ∃i �π′

B playing around with ∨ and ∃

⇒ ∃i ∈ [1,σn] �σ � i |= π
∧
∃i ∈ [1,σn] �σ � i |= ∃i �π′

B by Lemma 29 and Lemma 30

146

⇒ σ |= π
∧

σ |= ∃i �π′

B again by Definition 3

⇒ σ |= ϕ

This completes our proof.

A.1.3 Store Projection and Command Lemmas

The following lemma states that if a store σ is transformed to σ′ by executing a com-

mand c, then every projection of σ is transformed to the corresponding projection of σ′ by

executing c.

Lemma 24 (Command Projection). For any stores σ,σ′ and any command c ∈ C:

{σ} c {σ′}⇒ ∀i ∈ [1,σn] �{σ � i} c {σ′ � i}

Proof. By induction on the structure of c. We consider three subcases.

Case 1. c, b := e. Suppose 〈e,σ〉 → t. By Figure 3.5:

{σ} c {σ′}⇒ σ
′ = σ[σB 7→ σ

B[b 7→ t]]⇒

B by Definition 1 and Lemma 28, ∀i ∈ [1,σn]

σ
′ � i = (σ � i)[(σ � i)B 7→ (σ � i)B[b 7→ t]]∧〈e,σ � i〉 → t

B again by Figure 3.5

⇒∀i ∈ [1,σn] �{σ � i} c {σ′ � i}

147

Case 2. c, for i : Pn,q do ê ? ĉ1 : ĉ2. Let σn = N. By Figure 3.5:

{σ} c {σ′}⇒ ∃σ1, . . . ,σN+1�

σ = σ1∧σ
′ = σN+1∧∀dje ∈ [1,N] �{σdje} ê ? ĉ1 : ĉ2(i� j) {σdje+1}

B First, by Definition 2

∀dje ∈ [1,N] �{σdje � dje} ê ? ĉ1 : ĉ2[i 7→ 1] {σdje+1 � dje}

B Second, by Lemma 19

∀dje ∈ [1,N] � ((σ � dje= σdje � dje)∧ (σ′ � dje= σdje+1 � dje))

B Combining two previous facts

∀dje ∈ [1,N] �{σ � dje} ê ? ĉ1 : ĉ2[i 7→ 1] {σ′ � dje}

B Again by Figure 3.5

∀dje ∈ [1,N] �{σ � dje} c {σ′ � dje}

Case 3. c, c1;c2. By Figure 3.5:

{σ} c {σ′}⇒ ∃σ′′ �{σ} c1 {σ′′}∧{σ′′} c2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀i ∈ [1,σn] �{σ � i} c1 {σ′′ � i}∧

∀i ∈ [1,σn] �{σ′′ � i} c2 {σ′ � i}⇒

B Swapping ∀ and ∃

148

∀i ∈ [1,σn] �∃σ′′ �{σ � i} c1 {σ′′ � i}∧{σ′′ � i} c2 {σ′ � i}

B Again by Figure 3.5

⇒∀i ∈ [1,σn] �{σ � i} c {σ′ � i}

This completes the proof.

The next lemma states that if a store σ is transformed to σ′ by executing a guarded

command gc, then every projection of σ is transformed to the corresponding projection of

σ′ by executing gc.

Lemma 25 (Guarded Command Projection). For any stores σ,σ′ and any guarded com-

mand gc ∈ GC:

{σ} gc {σ′}⇒ ∀i ∈ [1,σn] �{σ � i} gc {σ′ � i}

Proof. We consider two cases.

Case 1. gc, e ? c1 : c2. By Figure 3.5:

{σ} gc {σ′}⇒ 〈e,σ〉 → true∧{σ} c {σ′}⇒

B By Lemma 28 and Lemma 33

∀i ∈ [1,σn] � 〈e,σ � i〉 → true∧∀i ∈ [1,σn] �{σ � i} c {σ′ � i}

B Since ∧ distributes over ∀

⇒ ∀i ∈ [1,σn] � 〈e,σ � i〉 → true∧{σ � i} c {σ′ � i}

B Again by Figure 3.5

⇒∀i ∈ [1,σn] �{σ � i} gc {σ′ � i}

149

Case 2. gc, gc1 ‖ gc2. By Figure 3.5:

{σ} gc {σ′}⇒ {σ} gc1 {σ′}∨{σ} gc2 {σ′}⇒

B By inductive hypothesis

∀i ∈ [1,σn] �{σ � i} gc1 {σ′ � i}
∨

∀i ∈ [1,σn] �{σ � i} gc2 {σ′ � i}⇒

B Playing around with ∨ and ∀

∀i ∈ [1,σn] �{σ � i} gc1 {σ′ � i}∨{σ � i} gc2 {σ′ � i}

B Again by Figure 3.5

⇒∀i ∈ [1,σn] �{σ � i} gc {σ′ � i}

This completes the proof.

A.1.4 Store Generalization Lemmas

We now present a series of lemmas that relate the execution semantics of PGCL to store

generalization. The first lemma states that if a store σ is transformed to σ′ by executing a

command c, then every generalization of σ is transformed to the corresponding general-

ization of σ′ by executing c.

Lemma 26 (Command Generalization). For any stores σ,σ′ such that σn = σ′n = 1, and

any command c ∈ C:

{σ} c {σ′}⇒ ∀k ∈ N �{σ � k} c {σ′ � k}

150

Proof. By induction on the structure of c. We consider three subcases.

Case 1. c, b := e. Suppose 〈e,σ〉 → t. By Figure 3.5:

{σ} c {σ′}⇒ σ
′ = σ[σB 7→ σ

B[b 7→ t]]⇒

B by Definition 7 and Lemma 28, ∀k ∈ N

σ
′ � k = (σ � k)[(σ � k)B 7→ (σ � k)B[b 7→ t]]∧〈e,σ � k〉 → t

B again by Figure 3.5

⇒∀k ∈ N �{σ � k} c {σ′ � k}

Case 2. c, for i : Pn,q do ê ? ĉ1 : ĉ2. By Figure 3.5:

{σ} c {σ′}⇒ {σ} ê ? ĉ1 : ĉ2(i� 1) {σ′}

Pick any k ∈ N. For j ∈ [1,k+1], define σ j as follows:

σ
B
j = σ

B∧σ
n
j = k

∧
∀i ∈ [1, j−1] �σP

j (i) = σ
′P(1)

∧
∀i ∈ [j,k] �σP

j (i) = σ
P(1)

B By Definition 7

⇒∀k ∈ N �∃σ1, . . . ,σk+1 �σ1 = σ � k
∧

σk+1 = σ
′ � k

∧
∀dje ∈ [1,k] �{σdje} ê ? ĉ1 : ĉ2[i 7→ j] {σdje+1}

B Again by Figure 3.5

⇒∀k ∈ N �{σ � k} c {σ′ � k}

151

Case 3. c= c1;c2. By Figure 3.5:

{σ} c {σ′}⇒ ∃σ′′ �{σ} c1 {σ′′}∧{σ′′} c2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀k ∈ N �{σ � k} c1 {σ′′ � k}∧

∀k ∈ N �{σ′′ � k} c2 {σ′ � k}⇒

B Playing around with ∃, ∀, and ∧

∀k ∈ N �∃σ′′ �{σ � k} c1 {σ′′ � k}∧{σ′′ � k} c2 {σ′ � k}

B again by Figure 3.5

⇒∀k ∈ N �{σ � k} c {σ′ � k}

This completes the proof.

The next lemma states that if a store σ is transformed to σ′ by executing a guarded

command gc, then every generalization of σ is transformed to the corresponding general-

ization of σ′ by executing gc.

Lemma 27 (Guarded Command Generalization). For any stores σ,σ′ such that σn =σ′n =

1, and any guarded command gc ∈ GC:

{σ} gc {σ′}⇒ ∀k ∈ N �{σ � k} gc {σ′ � k}

Proof. We consider two cases.

152

Case 1. gc, e ? c1 : c2. By Figure 3.5:

{σ} gc {σ′}⇒ 〈e,σ〉 → true∧{σ} c {σ′}⇒

B By Lemma 28 and Lemma 36

∀k ∈ N � 〈e,σ � k〉 → true∧∀k ∈ N �{σ � k} c {σ′ � k}

B Since ∧ distributes over ∀

⇒ ∀k ∈ N � 〈e,σ � k〉 → true∧{σ � k} c {σ′ � k}

B again by Figure 3.5

⇒∀k ∈ N �{σ � k} gc {σ′ � k}

Case 2. gc, gc1 ‖ gc2. By Figure 3.5:

{σ} gc {σ′}⇒ {σ} gc1 {σ′}∨{σ} gc2 {σ′}⇒

B By inductive hypothesis

∀k ∈ N �{σ � k} gc1 {σ′ � k}
∨

∀k ∈ N �{σ � k} gc2 {σ′ � k}⇒

B Playing around with ∨ and ∀

∀k ∈ N �{σ � k} gc1 {σ′ � k}∨{σ � k} gc2 {σ′ � k}

B again by Figure 3.5

⇒∀k ∈ N �{σ � k} gc {σ′ � k}

153

This completes the proof.

A.1.5 Proofs of Lemmas Presented in Main Paper

In this section, we prove lemmas that were stated without proof in Section 3.3.5.

Proof of Lemma 4.

Proof. From Figure 3.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = ∀i �π and π ∈ PP(i). Our result follows from Lemma 21.

Case 3. ϕ = π∧∀i �π′ such that π ∈ BP, and π′ ∈ PP(i). In this case, by Definition 3:

σ |= ϕ⇔ σ |= π
∧

σ |= ∀i �π′

B by Lemma 29 and Lemma 21

⇔∀ j ∈ [1,σn] �σ � j |= π
∧
∀ j ∈ [1,σn] �σ � j |= ∀i �π′

B since ∀ distributes over ∧

⇔ ∀ j ∈ [1,σn] �σ � j |= π∧σ � j |= ∀i �π′

B again by Definition 3

⇔∀ j ∈ [1,σn] �σ � j |= π∧∀i �π′

By alpha renaming of j to i, we get our desired result.

Proof of Lemma 5.

Proof. By considering the structure of ϕ. We consider three cases:

154

Case 1. ϕ ∈ USF. By Lemma 4, we know that:

σ |= ϕ⇔∀i ∈ [1,σn] �σ � i |= ϕ⇒∃i ∈ [1,σn] �σ � i |= ϕ

Case 2. ϕ ∈ ESF. By Lemma 23, we know that:

σ |= ϕ⇔∃i ∈ [1,σn] �σ � i |= ϕ⇒∃i ∈ [1,σn] �σ � i |= ϕ

Case 3. ϕ ∈ USF∧ESF. Without loss of generality, let ϕ = ϕ1∧ϕ2∧ϕ3 where ϕ1 ∈ BP,

ϕ2 ∈ ∀i �PP(i), and ϕ3 ∈ ∃i �PP(i). In this case, by Definition 3:

σ |= ϕ⇔ σ |= (ϕ1∧ϕ2)
∧

σ |= ϕ3⇔

B by Lemma 4 and Lemma 30

∀i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)
∧
∃i ∈ [1,σn] �σ � i |= ϕ3⇒

B playing around with ∧, ∀, and ∃

∃i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)
∧

σ � i |= ϕ3⇒

B again by Definition 3

∃i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)∧ϕ3⇒

∃i ∈ [1,σn] �σ � i |= ϕ

This completes the proof.

Proof of Lemma 6.

155

Proof. The proof proceeds as follows. By Figure 3.5:

{σ} gc(k) {σ′}⇒ σ
n = σ

′n = dke∧{σ} gc {σ′}⇒

B By Lemma 35

∀i ∈ [1,σn] � (σ � i)n = (σ′ � i)n = 1∧{σ � i} gc {σ′ � i}

B Again by Figure 3.5

⇒∀i ∈ [1,σn] �{σ � i} gc(1) {σ′ � i}

This completes the proof.

Proof of Lemma 7.

Proof. By considering the structure of ϕ. We consider three cases:

Case 1. ϕ ∈ USF. Follows directly from Lemma 4.

Case 2. ϕ ∈ ESF. By Lemma 23, we know that:

∀i ∈ [1,σn] �σ � i |= ϕ⇒∃i ∈ [1,σn] �σ � i |= ϕ⇒ σ |= ϕ

Case 3. ϕ ∈ USF∧ESF. Without loss of generality, let ϕ = ϕ1∧ϕ2∧ϕ3 where ϕ1 ∈ BP,

ϕ2 ∈ ∀i �PP(i), and ϕ3 ∈ ∃i �PP(i). In this case, by Definition 3:

∀i ∈ [1,σn] �σ � i |= ϕ⇔

∀i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)∧ϕ3⇔

∀i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)
∧

σ � i |= ϕ3⇔

156

B playing around with ∧ and ∀

∀i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)
∧
∀i ∈ [1,σn] �σ � i |= ϕ3⇒

B weakening ∀ to ∃

∀i ∈ [1,σn] �σ � i |= (ϕ1∧ϕ2)
∧
∃i ∈ [1,σn] �σ � i |= ϕ3⇒

B by Lemma 4 and Lemma 30

σ |= (ϕ1∧ϕ2)∧σ |= ϕ3⇒ σ |= (ϕ1∧ϕ2)∧ϕ3⇒ σ |= ϕ

This completes the proof.

Proof of Lemma 8.

Proof. The proof proceeds as follows. By Figure 3.5:

{σ} gc(1) {σ′}⇒ σ
n = σ

′n = 1∧{σ} gc {σ′}⇒

B By Lemma 38

∀dke ∈ N � (σ � dke)n = (σ′ � dke)n = dke
∧

{σ � dke} gc {σ′ � dke}

B Again by Figure 3.5

⇒∀dke ∈ N �{σ � dke} gc(k) {σ′ � dke}

This completes the proof.

157

158

Appendix B

Proofs of Small Model Theorems for

Hierarchical Data Structures

B.1 Proofs

This appendix contains proofs of our small model theorems and supporting lemmas. We

begin with some introductory lemmas.

B.1.1 Introductory Lemmas

First we prove that projection does not affect the evaluation of expressions, as expressed

by the following lemma.

Lemma 28. Let e ∈ E, t ∈ B, z ∈ [1,d], and σ be any store. Then:

〈e,σ〉 → t⇔∀i ∈ ⊗(σn
1,z) � 〈e,σ � i〉 → t

⇔∃i ∈ ⊗(σn
1,z) � 〈e,σ � i〉 → t

159

Proof. Follows from the fact that e depends only on Boolean variables, and the following

observation:

∀i ∈ ⊗(σn
1,z) �σ

B = (σ � i)B

B.1.2 Store Projection Lemmas

We now present a series of lemmas that explore the relationship between store projection

and different types of formulas. These lemmas will be used later to prove our small model

theorems. The first lemma states that a store σ satisfies a basic proposition π iff every

projection of σ satisfies π.

Lemma 29. Let z ∈ [1,d], π ∈ BP, and σ be any store. Then:

σ |= π⇔∀i ∈ ⊗(σn
1,z) �σ � i |= π

⇔∃i ∈ ⊗(σn
1,z) �σ � i |= π

Proof. Follows from the fact that π depends only on Boolean variables, and the following

observation:

∀i ∈ ⊗(σn
1,z) �σ

B = (σ � i)B

The next lemma states that a store σ satisfies an existentially quantified formula π iff

some projection of σ satisfies π.

Lemma 30. Let z ∈ [1,d], π = Æ1i1 . . .Æziz � π′ and π′ ∈ PP(i1, . . . ,iz) and σ be any

160

store. Then:

σ |= π⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z] �σ � (i1, . . . , iz) |= π

Proof. By Definition 11, we know that:

σ |= π⇔∃Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

σ � (i1, . . . , iz) |= π
′[i1 7→ 1] . . . [iz 7→ 1]

B let i= (i1, . . . , iz); from Definition 10, since ((σ � i) � 1z) = (σ � i)

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

(σ � i) � 1z |= π
′[i1 7→ 1] . . . [iz 7→ 1]

B let j= (j1, . . . , jz) be fresh variables; since (σ � i)n
1,z = 1z

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

Æ1 j1 ∈ [1,(σ � i)n
1] . . .Æz jz ∈ [1,(σ � i)n

z]�

(σ � i) � j |= π
′[i1 7→ 1] . . . [iz 7→ 1]

B let j1, . . . ,jz be fresh variables

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

Æ1 j1 ∈ [1,(σ � i)n
1] . . .Æz jz ∈ [1,(σ � i)n

z]�

(σ � i) � j |= π
′[i1 7→ j1] . . . [iz 7→ jz][j1 7→ 1] . . . [jz 7→ 1]

B by Definition 11

161

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

σ � i |= Æ1j1 . . .Æzjz � (π
′[i1 7→ j1] . . . [iz 7→ jz])

By alpha renaming, we know that Æ1j1 . . .Æzjz � (π′[i1 7→ j1] . . . [iz 7→ jz]) is equivalent

to π. This gives us our desired result.

The next lemma states that a store σ satisfies an existential state formula ϕ iff certain

projection of σ satisfy ϕ.

Lemma 31. Let ϕ ∈ ESF and σ be any store. Then:

σ |= ϕ⇒∃i ∈ ⊗(σn
1,d) �σ � i |= ϕ

Proof. From Figure 4.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = Æ1i1 . . .Æziz �π and π ∈ PP(i1, . . . ,iz). Our result follows from Lemma 30.

Case 3. ϕ = π∧Æ1i1 . . .Æziz �π′ such that π ∈ BP, and π′ ∈ PP(i1, . . . ,iz). By Defini-

tion 11:

σ |= ϕ⇒ σ |= π
∧

σ |= Æ1i1 . . .Æziz �π
′

B by Lemma 29 and Lemma 30

⇒∀j ∈ ⊗(σn
1,z) �σ � j |= π

∧
∃j ∈ ⊗(σn

1,z) �σ � j |= Æ1i1 . . .Æziz �π
′

B playing around with ∧, ∀, and ∃

⇒ ∃j ∈ ⊗(σn
1,z) �σ � j |= π∧

σ � j |= Æ1i1 . . .Æziz �π
′

162

B again by Definition 11

⇒∃j ∈ ⊗(σn
1,z) �σ � j |= π∧Æ1i1 . . .Æziz �π

′

By alpha renaming j to i, we get our desired result.

Lemma 32. Let ϕ ∈ ESF and σ be any store. Then:

∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇒ σ |= ϕ

Proof. From Figure 4.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = Æ1i1 . . .Æziz �π and π ∈ PP(i1, . . . ,iz). Our result follows from Lemma 30.

Case 3. ϕ = π∧Æ1i1 . . .Æziz �π′ such that π ∈ BP, and π′ ∈ PP(i1, . . . ,iz).

∀i ∈ ⊗(σn
1,d) �σ � i |= π∧Æ1i1 . . .Æziz �π

′

B by Definition 11

⇒∀i ∈ ⊗(σn
1,d) �σ � i |= π∧

σ � i |= Æ1i1 . . .Æziz �π
′

B playing around with ∧ and ∀

⇒ ∀i ∈ ⊗(σn
1,d) �σ � i |= π

∧
∀i ∈ ⊗(σn

1,d) �σ � i |= Æ1i1 . . .Æziz �π
′

B by Lemma 29 and Lemma 30

⇒ σ |= π
∧

σ |= Æ1i1 . . .Æziz �π
′

163

B again by Definition 11

⇒ σ |= ϕ

This completes our proof.

B.1.3 Store Projection and Command Lemmas

The following lemma states that if a store σ is transformed to σ′ by executing a command

c1, then every projection of σ is transformed to the corresponding projection of σ′ by

executing c1.

Lemma 33 (Command Projection). For z ∈ [1,d], any stores σ,σ′ such that σn
1,z−1 =

σ′n1,z−1 = 1z−1, and any command c ∈ Cz[i1 7→ 1] . . . [iz−1 7→ 1]:

{σ} c {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

Proof. By induction on the structure of c. We consider four subcases.

Case 0. c, skip. Trivially since by Figure 4.5, σ = σ′.

Case 1. c, b := e. Suppose 〈e,σ〉 → t. By Figure 4.5:

{σ} c {σ′}⇒ σ
′ = σ[σB 7→ σ

B[b 7→ t]]⇒

B by Definition 10 and Lemma 28, ∀i ∈ ⊗(σn
1,d)

σ
′ � i= (σ � i)[(σ � i)B 7→ (σ � i)B[b 7→ t]]∧〈e,σ � i〉 → t

B again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

164

Case 2. c, for iz do ê ? ĉ1 : ĉ2.

Let σn
z = N. By Figure 4.5:

∀y ∈ [1,N] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

B By Lemma 34

∀y ∈ [1,N] �∀i ∈ ⊗(1z,σn
z+1,d)�

{σ � (1z−1,y) � i} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y) � i}

B Combining the two ∀ quantifiers

∀i ∈ ⊗(σn
1,d)�

{σ � i} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � i}

B Expanding out

∀i ∈ ⊗(σn
1,d) �∀y ∈ [1,1]�

{σ � i � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � i � (1z−1,y)}

B Again by Figure 4.5

∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

Case 3. c, c1;c2. By Figure 4.5:

{σ} c {σ′}⇒ ∃σ′′ �{σ} c1 {σ′′}∧{σ′′} c2 {σ′}⇒

B By inductive hypothesis

165

∃σ′′ �∀i ∈ ⊗(σn
1,d) �{σ � i} c1 {σ′′ � i}∧

∀i ∈ ⊗(σn
1,d) �{σ

′′ � i} c2 {σ′ � i}⇒

B Swapping ∀ and ∃

∀i ∈ ⊗(σn
1,d) �∃σ

′′�

{σ � i} c1 {σ′′ � i}∧{σ′′ � i} c2 {σ′ � i}

B Again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

This completes the proof.

Lemma 34 (Parameterized Command Projection). For z∈ [1,d], any stores σ,σ′ such that

σn
1,z = σ′n1,z = 1z, and any command ê ? ĉ : ĉ′ ∈ (Êz ? Ĉz : Ĉz)[i1 7→ 1] . . . [iz 7→ 1]:

{σ} ê ? ĉ : ĉ′ {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} ê ? ĉ : ĉ′ {σ′ � i}

Proof. First consider the case 〈ê,σ〉 → true. Note that ê does not contain any index

variables and only refers to the parametric array at depth z. Since σn
1,z = σ′n1,z = 1z, we

claim that:

〈ê,σ〉 → true⇔∀i ∈ ⊗(σn
1,d)〈ê,σ � i〉 → true

⇔∀i ∈ ⊗(σn
1,d)〈ê,σ

′ � i〉 → true⇔ 〈ê,σ′〉 → true

Now by Figure 4.5, {σ} ĉ {σ′}. We proceed by induction on the structure of ĉ. We

consider three subcases.

Case 1. ĉ , P[1] . . .P[1].F[r] := ê′. Suppose 〈ê′,σ〉 → t. Since ê′ also refers to the para-

166

metric array at depth z and σn
1,z = σ′n1,z = 1z. By Figure 4.5:

σ
′ = σ[σP 7→ σ

P[σP
z 7→ [σP

z [(1
z,dre) 7→ t]]]]

B by Definition 10, ∀i ∈ ⊗(σn
1,d)

σ
′ � i= σ � i[σ � iP 7→ σ � iP[σ � iPz 7→ [σ � iPz [(1

z,dre) 7→ t]]]]∧

〈e,σ � i〉 → t

B again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ {σ

′ � i}

Case 2. ĉ, ĉ1; ĉ2. By Figure 4.5:

{σ} ĉ {σ′}⇒ ∃σ′′ �{σ} ĉ1 {σ′′}∧{σ′′} ĉ2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ1 {σ′′ � i}∧

∀i ∈ ⊗(σn
1,d) �{σ

′′ � i} ĉ2 {σ′ � i}⇒

B Swapping ∀ and ∃

∀i ∈ ⊗(σn
1,d) �∃σ

′′�

{σ � i} ĉ1 {σ′′ � i}∧{σ′′ � i} ĉ2 {σ′ � i}

B Again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ {σ

′ � i}

167

Case 3. ĉ, c. Follows directly from Lemma 33.

Since ∀i ∈ ⊗(σn
1,d)〈ê,σ � i〉 → true and ∀i ∈ ⊗(σn

1,d) � {σ � i} ĉ {σ
′ � i}, from Fig-

ure 4.5, we have our desired result ∀i ∈ ⊗(σn
1,d) �{σ � i} ê ? ĉ : ĉ′ {σ′ � i}.

The proof for the case when 〈ê,σ〉→ false is analogous. This completes the proof.

Note that the dependence between Lemma 33 and Lemma 34 is not circular since for

Lemma 34 to be valid for z, Lemma 33 must be valid for z+1, and for z = d, Lemma 34

does not require Lemma 33 to be valid. Hence we can argue using mutual induction,

starting from z = d, and prove that both lemmas are valid for all z ∈ [1,d].

The next lemma states that if a store σ is transformed to σ′ by executing a guarded

command gc, then every projection of σ is transformed to the corresponding projection of

σ′ by executing gc.

Lemma 35 (Guarded Command Projection). For any stores σ,σ′, and any guarded com-

mand gc ∈ GC:

{σ} gc {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} gc {σ

′ � i}

Proof. We consider two cases.

Case 1. gc, e ? c1 : c2. By Figure 4.5, we have two sub-cases:

Case 1.1. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → true∧{σ} c1 {σ′}⇒

B By Lemma 28 and Lemma 33

∀i ∈ ⊗(σn
1,d) � 〈e,σ � i〉 → true∧

∀i ∈ ⊗(σn
1,d) �{σ � i} c1 {σ′ � i}

B Since ∧ distributes over ∀

168

⇒∀i ∈ ⊗(σn
1,d) � 〈e,σ � i〉 → true∧{σ � i} c1 {σ′ � i}

B Again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} gc {σ

′ � i}

Case 1.2. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → false∧{σ} c2 {σ′}

The proof is analogous to the previous sub-case.

Case 2. gc, gc1 ‖ gc2. By Figure 4.5:

{σ} gc {σ′}⇒ {σ} gc1 {σ′}∨{σ} gc2 {σ′}⇒

B By inductive hypothesis

∀i ∈ ⊗(σn
1,d) �{σ � i} gc1 {σ′ � i}

∨
∀i ∈ ⊗(σn

1,d) �{σ � i} gc2 {σ′ � i}⇒

B Playing around with ∨ and ∀

∀i ∈ ⊗(σn
1,d)�

{σ � i} gc1 {σ′ � i}∨{σ � i} gc2 {σ′ � i}

B Again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} gc {σ

′ � i}

This completes the proof.

169

B.1.4 Store Generalization Lemmas

We now present a series of lemmas that relate the execution semantics of PGCL to store

generalization. The first lemma states that if a store σ is transformed to σ′ by executing a

command c, then every generalization of σ is transformed to the corresponding general-

ization of σ′ by executing c.

Lemma 36 (Command Generalization). For z∈ [1,d], any stores σ,σ′ such that σn =σ′n =

1d , any k ∈ Nd such that k1,z−1 = 1z−1, and any command c ∈ Cz[i1 7→ 1] . . . [iz−1 7→ 1]:

{σ} c {σ′}⇒ {σ � k} c {σ′ � k}

Proof. By induction on the structure of c. We consider four subcases.

Case 0. c, skip. Trivially since by Figure 4.5, σ = σ′.

Case 1. c, b := e. Suppose 〈e,σ〉 → t. By Figure 4.5:

{σ} c {σ′}⇒ σ
′ = σ[σB 7→ σ

B[b 7→ t]]⇒

B by Definition 19 and Lemma 28

σ
′ � k= (σ � k)[(σ � k)B 7→ (σ � k)B[b 7→ t]]∧〈e,σ � k〉 → t

B again by Figure 4.5

⇒{σ � k} c {σ′ � k}

Case 2. c, for iz do ê ? ĉ1 : ĉ2. By Figure 4.5:

∀y ∈ [1,1] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

170

B Simplifying

{σ} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′}

B By Lemma 37

{σ � k[z 7→ 1]} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � k[z 7→ 1]}

B Let kz = N. Expanding out

∀y ∈ [1,N] �{σ � k � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � k � (1z−1,y)}

B Again by Figure 4.5

⇒{σ � k} c {σ′ � k}

Case 3. c= c1;c2. By Figure 4.5:

{σ} c {σ′}⇒ ∃σ′′ �{σ} c1 {σ′′}∧{σ′′} c2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀k ∈ Nd �{σ � k} c1 {σ′′ � k}∧

∀k ∈ Nd �{σ′′ � k} c2 {σ′ � k}⇒

B Playing around with ∃, ∀, and ∧

∀k ∈ Nd �∃σ′′ �{σ � k} c1 {σ′′ � k}∧{σ′′ � k} c2 {σ′ � k}

B again by Figure 4.5

⇒∀k ∈ Nd �{σ � k} c {σ′ � k}

171

This completes the proof.

Lemma 37 (Parameterized Command Generalization). For z∈ [1,d], any stores σ,σ′ such

that σn = σ′n = 1d , any k ∈Nd such that k1,z = 1z, and any command ê ? ĉ : ĉ′ ∈ (Êz ? Ĉz :

Ĉz)[i1 7→ 1] . . . [iz 7→ 1]:

{σ} ê ? ĉ : ĉ′ {σ′}⇒ {σ � k} ê ? ĉ : ĉ′ {σ′ � k}

Proof. First consider the case 〈ê,σ〉 → true. Note that ê does not contain any index

variables and only refers to the parametric array at depth z. Since σn
1,z = σ′n1,z = 1z, we

claim that:

〈ê,σ〉 → true⇔ 〈ê,σ � k〉 → true

⇔ 〈ê,σ′ � k〉 → true⇔ 〈ê,σ′〉 → true

Now by Figure 4.5, {σ} ĉ {σ′}. We proceed by induction on the structure of ĉ. We

consider three subcases.

Case 1. ĉ , P[1] . . .P[1].F[r] := ê′. Suppose 〈ê′,σ〉 → t. Since ê′ also refers to the para-

metric array at depth z and σn
1,z = σ′n1,z = 1z. By Figure 4.5:

σ
′ = σ[σP 7→ σ

P[σP
z 7→ [σP

z [(1
z,dre) 7→ t]]]]

B by Definition 19

σ
′ � k= σ � k[σ � kP 7→ σ � kP[σ � kP

z 7→ [σ � kP
z [(1

z,dre) 7→ t]]]]∧

〈e,σ � k〉 → t

B again by Figure 4.5

172

⇒{σ � k} ĉ {σ′ � k}

Case 2. ĉ, ĉ1; ĉ2. By Figure 4.5:

{σ} ĉ {σ′}⇒ ∃σ′′ �{σ} ĉ1 {σ′′}∧{σ′′} ĉ2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �{σ � k} ĉ1 {σ′′ � k}∧{σ′′ � k} ĉ2 {σ′ � k}

B Again by Figure 4.5

⇒{σ � k} ĉ {σ′ � k}

Case 3. ĉ, c. Follows directly from Lemma 36.

Since 〈ê,σ � k〉 → true and {σ � k} ĉ {σ′ � k}, from Figure 4.5, we have our desired

result {σ � k} ê ? ĉ : ĉ′ {σ′ � k}.

The proof for the case when 〈ê,σ〉→ false is analogous. This completes the proof.

Note that the dependence between Lemma 36 and Lemma 37 is not circular since for

Lemma 37 to be valid for z, Lemma 36 must be valid for z+1, and for z = d, Lemma 37

does not require Lemma 36 to be valid. Hence we can argue using mutual induction,

starting from z = d, and prove that both lemmas are valid for all z ∈ [1,d].

The next lemma states that if a store σ is transformed to σ′ by executing a guarded

command gc, then every generalization of σ is transformed to the corresponding general-

ization of σ′ by executing gc.

Lemma 38 (Guarded Command Generalization). For any stores σ,σ′ such that σn =σ′n =

173

1d , and any guarded command gc ∈ GC:

{σ} gc {σ′}⇒ ∀k ∈ Nd �{σ � k} gc {σ′ � k}

Proof. We consider two cases.

Case 1. gc, e ? c1 : c2. By Figure 4.5, we have two sub-cases:

Case 1.1. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → true∧{σ} c1 {σ′}⇒

B By Lemma 28 and Lemma 36

∀k ∈ Nd � 〈e,σ � k〉 → true∧∀k ∈ Nd �{σ � k} c1 {σ′ � k}

B Since ∧ distributes over ∀

⇒ ∀k ∈ Nd � 〈e,σ � k〉 → true∧{σ � k} c1 {σ′ � k}

B again by Figure 4.5

⇒∀k ∈ Nd �{σ � k} gc {σ′ � k}

Case 1.2. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → false∧{σ} c2 {σ′}

The proof is analogous to the previous sub-case.

Case 2. gc, gc1 ‖ gc2. By Figure 4.5:

{σ} gc {σ′}⇒ {σ} gc1 {σ′}∨{σ} gc2 {σ′}⇒

174

B By inductive hypothesis

∀k ∈ Nd �{σ � k} gc1 {σ′ � k}
∨

∀k ∈ Nd �{σ � k} gc2 {σ′ � k}⇒

B Playing around with ∨ and ∀

∀k ∈ Nd �{σ � k} gc1 {σ′ � k}∨{σ � k} gc2 {σ′ � k}

B again by Figure 4.5

⇒∀k ∈ Nd �{σ � k} gc {σ′ � k}

This completes the proof.

B.1.5 Proofs of Small Model Theorems

In this section, we prove our small model theorems. We first present a set of supporting

lemmas for the proof of Theorem 9. In some cases, the proof of the lemma is in the

appendix. In addition, the proofs of these lemmas rely on other lemmas, which are in the

appendix.

In the following proofs, for z ∈ [1,d], and any tuple iz = (i1, . . . , iz), we write Æiz to

mean Æ1ı1, . . . ,Æzız where the tuple of quantifiers (Æ1, . . . ,Æz) (where for each z, Æ is

either ∀ or ∃) is fixed and remains fixed across all instances of Æ in the same line of

reasoning. This ensures consistency between all Æiz and Æ jz. Note that our results hold

for any combination of quantifiers as long as they are consistent.

The first lemma states that if a store σ satisfies a generic state formula ϕ, then some

projection of σ satisfies ϕ.

175

Lemma 39. Let ϕ ∈ GSF, and σ be any store. Then:

σ |= ϕ⇒∃i ∈ ⊗(σn
1,d) �σ � i |= ϕ

Proof. By considering the structure of ϕ. We consider three cases:

Case 1. ϕ ∈ USF. By Lemma 40, we know that:

σ |= ϕ⇔∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇒∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ

Case 2. ϕ ∈ ESF. Follows directly from Lemma 31.

Case 3. ϕ ∈ USF∧ESF. Without loss of generality, let ϕ = ϕ1∧ϕ2∧ϕ3 where ϕ1 ∈ BP,

ϕ2 ∈ ∀i1 . . .∀iz � PP(i1, . . . ,iz), and ϕ3 ∈ Æ1i1, . . . ,Æziz � PP(i1, . . . ,iz). By Defini-

tion 11:

σ |= ϕ⇔ σ |= (ϕ1∧ϕ2)
∧

σ |= ϕ3⇔

B by Lemma 40 and Lemma 30

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ3⇒

B playing around with ∧, ∀, and ∃

∃i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
σ � i |= ϕ3⇒

B again by Definition 11

∃i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)∧ϕ3⇒∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ

This completes the proof.

The next lemma states that a store σ satisfies an universal state formula ϕ iff every

projection of σ satisfies ϕ.

176

Lemma 40. Let ϕ ∈ USF and σ be any store. Then:

σ |= ϕ⇔∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ

Proof. From Figure 4.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = ∀i1 . . .∀iz �π and π ∈ PP(i1, . . . ,iz). Our result follows from Lemma 30.

Case 3. ϕ = π∧∀i1 . . .∀iz �π′ such that π ∈ BP, and π′ ∈ PP(i1, . . . ,iz). In this case, by

Definition 11:

σ |= ϕ⇔ σ |= π
∧

σ |= ∀i1 . . .∀iz �π
′

B by Lemma 29 and Lemma 30

⇔∀j ∈ ⊗(σn
1,z) �σ � j |= π

∧
∀j ∈ ⊗(σn

1,z) �σ � j |= ∀i1 . . .∀iz �π
′

B since ∀ distributes over ∧

⇔ ∀j ∈ ⊗(σn
1,z) �σ � j |= π∧σ � j |= ∀i1 . . .∀iz �π

′

B again by Definition 11

⇔∀j ∈ ⊗(σn
1,z) �σ � j |= π∧∀i1 . . .∀iz �π

′

By alpha renaming of j to i, we get our desired result.

The next lemma states that if a store σ is transformed to σ′ by executing an instantiated

guarded command gc(k), then every projection of σ is transformed to the corresponding

projection of σ′ by executing gc(k).

Lemma 41 (Instantiated Command Projection). For any stores σ,σ′ and instantiated

177

guarded command gc(k):

{σ} gc(k) {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} gc(1

d) {σ′ � i}

Proof. The proof proceeds as follows. By Figure 4.5:

{σ} gc(k) {σ′}⇒ σ
n = σ

′n = k∧{σ} gc {σ′}⇒

B By Lemma 35

∀i ∈ ⊗(σn
1,d) � (σ � i)

n = (σ′ � i)n = 1d ∧{σ � i} gc {σ′ � i}

B Again by Figure 4.5

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} gc(1

d) {σ′ � i}

This completes the proof.

The last lemma relating store projection and formulas states that if every projection of

a store σ satisfies a generic state formula ϕ, then σ satisfies ϕ.

Lemma 42. Let ϕ ∈ GSF and σ be any store. Then:

∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇒ σ |= ϕ

Proof. By considering the structure of ϕ. We consider three cases:

Case 1. ϕ ∈ USF. Follows directly from Lemma 40.

Case 2. ϕ ∈ ESF. Follows directly from Lemma 32.

Case 3. ϕ ∈ USF∧ESF. Without loss of generality, let ϕ = ϕ1∧ϕ2∧ϕ3 where ϕ1 ∈ BP,

178

ϕ2 ∈ ∀i1 . . .∀iz �PP(i1 . . .iz), and ϕ3 ∈Æi1 . . .∀iz �PP(i1 . . .iz). by Definition 11:

∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇔

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)∧ϕ3⇔

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
σ � i |= ϕ3⇔

B playing around with ∧ and ∀

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
∀i ∈ ⊗(σn

1,d) �σ � i |= ϕ3⇒

B weakening ∀ to ∃

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ3⇒

B by Lemma 40 and Lemma 30

σ |= (ϕ1∧ϕ2)∧σ |= ϕ3⇒ σ |= (ϕ1∧ϕ2)∧ϕ3⇒ σ |= ϕ

This completes the proof.

So far, we used the concept of store projection to show that the effect of executing

a PGCL program carries over from larger stores to unit stores (i.e., stores obtained via

projection). To prove our small model theorems, we also need to show that the effect of

executing a PGCL program propagate in the opposite direction, i.e., from unit stores to

larger stores. To this end, we first present a notion, called store generalization, that relates

unit stores to those of arbitrarily large size.

Definition 19 (Store Generalization). Let σ = (σB,1d,σP) be any store. For any k ∈ Nd

179

we write σ � k to mean the store satisfying the following condition:

(σ � k)n = k∧∀i ∈ ⊗(k) � (σ � k) � i= σ

Intuitively, σ � k is constructed by duplicating the only rows of σP at each depth, and

leaving the other components of σ unchanged. We now present a lemma related to store

generalization, which is needed for the proof of Theorem 9. The lemma states that if a store

σ is transformed to σ′ by executing an instantiated guarded command gc(k), then every

generalization of σ is transformed to the corresponding generalization of σ′ by executing

gc(k).

Lemma 43 (Instantiated Command Generalization). For any stores σ,σ′ and instantiated

guarded command gc(1d):

{σ} gc(1d) {σ′}⇒ ∀k ∈ Nd �{σ � k} gc(k) {σ′ � k}

Proof. The proof proceeds as follows. By Figure 4.5:

{σ} gc(1d) {σ′}⇒ σ
n = σ

′n = 1d ∧{σ} gc {σ′}⇒

B By Definition 19 and Lemma 38

∀k ∈ Nd � (σ � k)n = (σ′ � k)n = k
∧
{σ � k} gc {σ′ � k}

B Again by Figure 4.5

⇒∀k ∈ Nd �{σ � k} gc(k) {σ′ � k}

This completes the proof.

180

B.1.6 Proof of Theorem 9

Theorem 1 (Small Model Safety 1). A Kripke structure M(gc(k), Init) exhibits a formula

ϕ iff there is a reachable state σ of M(gc(k), Init) such that σ |= ϕ. Let gc(k) be any

instantiated guarded command. Let ϕ∈ GSF be any generic state formula, and Init ∈USF

be any universal state formula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits

ϕ.

Proof. For the forward implication, let σ1,σ2, . . . ,σw be a sequence of states of

M(gc(k), Init) such that:

σ1 |= Init
∧

σw |= ϕ
∧
∀i ∈ [1,w−1] �{σi} gc(k) {σi+1}

Since ϕ ∈ GSF, by Lemma 39 we know that:

∃j ∈ ⊗(σn
w) �σw � j |= ϕ

Let j0 be such a j. By Lemma 40, since Init ∈ USF:

σ1 � j0 |= Init

By Lemma 41, we know that:

∀i ∈ [1,w−1] �{σi � j0} gc(1d) {σi+1 � j0}

Therefore, σw � j0 is reachable in M(gc(1d), Init) and σw � j0 |= ϕ. Hence,

M(gc(1d), Init) exhibits ϕ. For the reverse implication, let σ1,σ2, . . . ,σw be a sequence of

181

states of M(gc(1), Init) such that:

σ1 |= Init
∧

σw |= ϕ
∧
∀i ∈ [1,w−1] �{σi} gc(1d) {σi+1}

For each i ∈ [1,w], let σ̂i = σi � k. Therefore, since Init ∈ USF, by Lemma 40, we

know:

∀j ∈ ⊗(k) � σ̂1 � j |= Init⇒ σ̂1 |= Init

Also, since ϕ ∈ GSF, by Lemma 42 we know that:

∀j ∈ ⊗(k) � σ̂n � j |= ϕ⇒ σ̂w |= ϕ

Finally, by Lemma 43, we know that:

∀i ∈ [1,w−1] �{σ̂i} gc(k) {σ̂i+1}

Therefore, σ̂w is reachable in M(gc(k), Init) and σ̂w |= ϕ. Hence, M(gc(k), Init) exhibits

ϕ. This completes the proof.

B.1.7 Proof of Theorem 10

Theorem 2 (Small Model Simulation). Let gc(k) be any instantiated guarded command.

Let Init ∈ GSF be any generic state formula. Then M(gc(k), Init) �M(gc(1d), Init) and

M(gc(1d), Init)�M(gc(k), Init).

Proof. Recall the conditions C1–C3 in Definition 20 for simulation. For the first simula-

182

tion, we propose the following relation H and show that it is a simulation relation:

(σ,σ′) ∈H ⇔∃i ∈ ⊗(σn
1,d) �σ

′ = σ � i

C1 holds because our atomic propositions are USF formulas, and Lemma 40; C2 holds

because Init ∈ GSF and Lemma 39; C3 holds by Definition 12 and Lemma 41. For the

second simulation, we propose the following relation H and show that it is a simulation

relation:

(σ,σ′) ∈H ⇔ σ
′ = σ � σ

′n

Again, C1 holds because our atomic propositions are USF formulas, Definition 19, and

Lemma 40; C2 holds because Init ∈ GSF, Definition 19, and Lemma 42; C3 holds by

Definition 12 and Lemma 43. This completes the proof.

B.1.8 Proof of Corollary 11

We begin with the formal definition of simulation [20].

Definition 20. Let M1 = (S1,I1,T1,L1) an M2 = (S2,I2,T2,L2) be two Kripke structures

over sets of atomic propositions AP1 and AP2 such that AP2 ⊆ AP1. Then M1 is simulated

by M2, denoted by M1 �M2, iff there exists a relation H ⊆ S1×S2 such that the following

three conditions hold:

(C1) ∀s1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H⇒ L1(s1)∩AP2 = L2(s2)

(C2) ∀s1 ∈ I1 �∃s2 ∈ I2 � (s1,s2) ∈ H

(C3) ∀s1,s′1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H ∧ (s1,s′1) ∈ T1⇒

∃s′2 ∈ S2 � (s2,s′2) ∈ T2∧ (s′1,s′2) ∈ H

183

Next, we formalize our claim that PTSL formulas are preserved by simulation.

Fact 3. Let M1 and M2 be two Kripke structures over propositions AP1 and AP2 such that

M1 � M2. Hence, by Definition 20, AP2 ⊆ AP1. Let ϕ be any PTSL formula over AP2.

Therefore, ϕ is also a PTSL formula over AP1. Then M2 |= ϕ⇒M1 |= ϕ.

We are now ready to prove Corollary 11.

Corollary 3 (Small Model Safety 2). Let gc(k) be any instantiated guarded command.

Let ϕ ∈ USF be any universal state formula, and Init ∈ GSF be any generic state formula.

Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

Proof. Follows from: (i) the observation that exhibition of a USF formula φ is expressible

in PTSL as the TLF formula F φ, (ii) Theorem 10, and (iii) Fact 3.

184

Appendix C

Proofs of Small Model Theorems with

Write-only Variables

C.1 Proofs

This appendix contains proofs of our small model theorems and supporting lemmas. We

begin with some introductory lemmas.

C.1.1 Introductory Lemmas

First we prove that projection does not affect the evaluation of expressions, as expressed

by the following lemma.

Lemma 4. Let e ∈ E, t ∈ B, z ∈ [1,d], and σ be any store. Then:

〈e,σ〉 → t⇔∀i ∈ ⊗(σn
1,z) � 〈e,σ � i〉 → t

⇔∃i ∈ ⊗(σn
1,z) � 〈e,σ � i〉 → t

185

Proof. Follows from the fact that e depends only on Boolean variables, and the following

observation:

∀i ∈ ⊗(σn
1,z) �σ

B = (σ � i)B

Next we prove an analogous result that generalization does not affect the evaluation of

expressions, as expressed by the following lemma.

Lemma 5. Let e ∈ E, t ∈ B, z ∈ [1,d], and σ be any store. Then:

〈e,σ〉 → t⇔∀i ∈ ⊗(σn
1,z) � 〈e,σ � i〉 → t

⇔∃i ∈ ⊗(σn
1,z) � 〈e,σ � i〉 → t

Proof. Follows from the fact that e depends only on Boolean variables, and the following

observation:

∀i ∈ ⊗(σn
1,z) �σ

B = (σ � i)B

C.1.2 Store Projection Lemmas

We now present a series of lemmas that explore the relationship between store projection

and different types of formulas. These lemmas will be used later to prove our small model

theorems. The first lemma states that a store σ satisfies a basic proposition π iff every

projection of σ satisfies π.

186

Lemma 6. Let z ∈ [1,d], π ∈ BP, and σ be any store. Then:

σ |= π⇔∀i ∈ ⊗(σn
1,z) �σ � i |= π

⇔∃i ∈ ⊗(σn
1,z) �σ � i |= π

Proof. Follows from the fact that π depends only on Boolean variables, and the following

observation:

∀i ∈ ⊗(σn
1,z) �σ

B = (σ � i)B

The next lemma states that a store σ satisfies an existentially quantified formula π iff

some projection of σ satisfies π.

Lemma 7. Let z∈ [1,d], π = Æ1i1 . . .Æziz �π′ and π′ ∈ PP(i1, . . . ,iz) and σ be any store.

Then:

σ |= π⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z] �σ � (i1, . . . , iz) |= π

Proof. By Definition 11, we know that:

σ |= π⇔∃Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

σ � (i1, . . . , iz) |= π
′[i1 7→ 1] . . . [iz 7→ 1]

B let i= (i1, . . . , iz); from Definition 16, since ((σ � i) � 1z) = (σ � i)

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

(σ � i) � 1z |= π
′[i1 7→ 1] . . . [iz 7→ 1]

B let j= (j1, . . . , jz) be fresh variables; since (σ � i)n
1,z = 1z

187

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

Æ1 j1 ∈ [1,(σ � i)n
1] . . .Æz jz ∈ [1,(σ � i)n

z]�

(σ � i) � j |= π
′[i1 7→ 1] . . . [iz 7→ 1]

B let j1, . . . ,jz be fresh variables

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

Æ1 j1 ∈ [1,(σ � i)n
1] . . .Æz jz ∈ [1,(σ � i)n

z]�

(σ � i) � j |= π
′[i1 7→ j1] . . . [iz 7→ jz][j1 7→ 1] . . . [jz 7→ 1]

B by Definition 11

⇔Æ1i1 ∈ [1,σn
1] . . .Æziz ∈ [1,σn

z]�

σ � i |= Æ1j1 . . .Æzjz � (π
′[i1 7→ j1] . . . [iz 7→ jz])

By alpha renaming, we know that Æ1j1 . . .Æzjz � (π′[i1 7→ j1] . . . [iz 7→ jz]) is equivalent

to π. This gives us our desired result.

The next lemma states that a store σ satisfies an existential state formula ϕ iff certain

projection of σ satisfy ϕ.

Lemma 8. Let ϕ ∈ ESF and σ be any store. Then:

σ |= ϕ⇒∃i ∈ ⊗(σn
1,d) �σ � i |= ϕ

Proof. From Figure 4.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = Æ1i1 . . .Æziz �π and π ∈ PP(i1, . . . ,iz). Our result follows from Lemma 7.

188

Case 3. ϕ = π∧Æ1i1 . . .Æziz �π′ such that π ∈ BP, and π′ ∈ PP(i1, . . . ,iz). By Defini-

tion 11:

σ |= ϕ⇒ σ |= π
∧

σ |= Æ1i1 . . .Æziz �π
′

B by Lemma 6 and Lemma 7

⇒∀j ∈ ⊗(σn
1,z) �σ � j |= π

∧
∃j ∈ ⊗(σn

1,z) �σ � j |= Æ1i1 . . .Æziz �π
′

B playing around with ∧, ∀, and ∃

⇒ ∃j ∈ ⊗(σn
1,z) �σ � j |= π∧

σ � j |= Æ1i1 . . .Æziz �π
′

B Again by Definition 11

⇒∃j ∈ ⊗(σn
1,z) �σ � j |= π∧Æ1i1 . . .Æziz �π

′

By alpha renaming j to i, we get our desired result.

Lemma 9. Let ϕ ∈ ESF and σ be any store. Then:

∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇒ σ |= ϕ

Proof. From Figure 4.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 29.

Case 2. ϕ = Æ1i1 . . .Æziz �π and π ∈ PP(i1, . . . ,iz). Our result follows from Lemma 7.

Case 3. ϕ = π∧Æ1i1 . . .Æziz �π′ such that π ∈ BP, and π′ ∈ PP(i1, . . . ,iz).

∀i ∈ ⊗(σn
1,d) �σ � i |= π∧Æ1i1 . . .Æziz �π

′

189

B by Definition 11

⇒∀i ∈ ⊗(σn
1,d) �σ � i |= π∧

σ � i |= Æ1i1 . . .Æziz �π
′

B playing around with ∧ and ∀

⇒ ∀i ∈ ⊗(σn
1,d) �σ � i |= π

∧
∀i ∈ ⊗(σn

1,d) �σ � i |= Æ1i1 . . .Æziz �π
′

B by Lemma 6 and Lemma 7

⇒ σ |= π
∧

σ |= Æ1i1 . . .Æziz �π
′

B Again by Definition 11

⇒ σ |= ϕ

This completes our proof.

C.1.3 Store Projection and Command Lemmas

The following lemma states that if a store σ is transformed to σ′ by executing a command

c1, then every projection of σ is transformed to the corresponding projection of σ′ by

executing c1.

Lemma 10 (Command Projection). For z ∈ [1,d], any stores σ,σ′ such that σn
1,z−1 =

σ′n1,z−1 = 1z−1, and any command c ∈ Cz[i1 7→ 1] . . . [iz−1 7→ 1]:

{σ} c {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

190

Proof. By induction on the structure of c. We consider four subcases.

Case 0. c, skip. Trivially, since by Figure 6.3:

{σ} c {σ′}⇒ σ
′ = σ

Case 1. c, b := e. Suppose 〈e,σ〉 → t. By Figure 6.3:

{σ} c {σ′}⇒ σ
′ = σ[σB 7→ σ

B[b 7→ t]]⇒

B by Definition 16 and Lemma 4, ∀i ∈ ⊗(σn
1,d)

σ
′ � i= (σ � i)[(σ � i)B 7→ (σ � i)B[b 7→ t]]∧〈e,σ � i〉 → t

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

Case 2. c, for iz do ê ? ĉ1 : ĉ2. Let σn
z = N. By Figure 6.3:

∀y ∈ [1,N] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

B By Lemma 11

∀y ∈ [1,N] �∀i ∈ ⊗(1z,σn
z+1,d)�

{σ � (1z−1,y) � i} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y) � i}

B Combining the two ∀ quantifiers

∀i ∈ ⊗(σn
1,d)�

{σ � i} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � i}

191

B Expanding out

∀i ∈ ⊗(σn
1,d) �∀y ∈ [1,1]�

{σ � i � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � i � (1z−1,y)}

B Again by Figure 6.3

∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

Case 3. c, c1;c2. By Figure 6.3:

{σ} c {σ′}⇒ ∃σ′′ �{σ} c1 {σ′′}∧{σ′′} c2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀i ∈ ⊗(σn
1,d) �{σ � i} c1 {σ′′ � i}∧

∀i ∈ ⊗(σn
1,d) �{σ

′′ � i} c2 {σ′ � i}⇒

B Swapping ∀ and ∃

∀i ∈ ⊗(σn
1,d) �∃σ

′′�

{σ � i} c1 {σ′′ � i}∧{σ′′ � i} c2 {σ′ � i}

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} c {σ

′ � i}

This completes the proof.

Lemma 11 (Parameterized Command Projection). For z∈ [1,d], any stores σ,σ′ such that

192

σn
1,z = σ′n1,z = 1z, and any command ê ? ĉ : ĉ′ ∈ (Êz ? Ĉz : Ĉz)[i1 7→ 1] . . . [iz 7→ 1]:

{σ} ê ? ĉ : ĉ′ {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} ê ? ĉ : ĉ′ {σ′ � i}

Proof. First consider the case 〈ê,σ〉 → true. Note that ê does not contain any index

variables and only refers to the parametric array at depth z. Since σn
1,z = σ′n1,z = 1z, we

claim that:

〈ê,σ〉 → true⇔∀i ∈ ⊗(σn
1,d)〈ê,σ � i〉 → true

⇔∀i ∈ ⊗(σn
1,d)〈ê,σ

′ � i〉 → true⇔ 〈ê,σ′〉 → true

Now by Figure 6.3, {σ} ĉ {σ′}. We proceed by induction on the structure of ĉ. We

consider three subcases.

Case 1. ĉ , P[1] . . .P[1].F[r] := ê′. Suppose 〈ê′,σ〉 → t. Since ê′ only refers to the

parametric array at depth z and σn
1,z = σ′n1,z = 1z. By Figure 6.3:

σ
′ = σ[σP 7→ σ

P[σP
z 7→ [σP

z [(1
z,dre) 7→ t]]]]

B By Definition 16, ∀i ∈ ⊗(σn
1,d)

σ
′ � i= (σ � i)[(σ � i)P 7→ (σ � i)P[(σ � i)P

z 7→ [(σ � i)P
z [(1

z,dre) 7→ t]]]]∧

〈ê′,σ � i〉 → t

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ {σ

′ � i}

193

Case 2. ĉ, w := ê′. Suppose 〈ê′,σ〉 → t. By Figure 6.3:

σ
′ = σ[σW 7→ σ

W [w 7→ t]]⇒

B by Definition 16, ∀i ∈ ⊗(σn
1,d)

σ
′ � i= (σ � i)[(σ � i)W 7→ (σ � i)W [w 7→ t]]∧〈ê′,σ � i〉 → t

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ {σ

′ � i}

Case 3. ĉ, ĉ1; ĉ2. By Figure 6.3:

{σ} ĉ {σ′}⇒ ∃σ′′ �{σ} ĉ1 {σ′′}∧{σ′′} ĉ2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ1 {σ′′ � i}∧

∀i ∈ ⊗(σn
1,d) �{σ

′′ � i} ĉ2 {σ′ � i}⇒

B Swapping ∀ and ∃

∀i ∈ ⊗(σn
1,d) �∃σ

′′�

{σ � i} ĉ1 {σ′′ � i}∧{σ′′ � i} ĉ2 {σ′ � i}

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} ĉ {σ

′ � i}

Case 4. ĉ , c. Follows directly from Lemma 10. Since ∀i ∈ ⊗(σn
1,d)〈ê,σ � i〉 → true

194

and ∀i ∈ ⊗(σn
1,d) � {σ � i} ĉ {σ′ � i}, from Figure 6.3, we have our desired result ∀i ∈

⊗(σn
1,d) �{σ � i} ê ? ĉ : ĉ′ {σ′ � i}.

The proof for the case when 〈ê,σ〉→ false is analogous. This completes the proof.

Note that the dependence between Lemma 10 and Lemma 11 is not circular since for

Lemma 11 to be valid for z, Lemma 10 must be valid for z+1, and for z = d, Lemma 11

does not require Lemma 10 to be valid. Hence we can argue using mutual recursion,

starting from z = d, and prove that both lemmas are valid for all z ∈ [1,d].

The next lemma states that if a store σ is transformed to σ′ by executing a guarded

command gc, then every projection of σ is transformed to the corresponding projection of

σ′ by executing gc.

Lemma 12 (Guarded Command Projection). For any stores σ,σ′, and any guarded com-

mand gc ∈ GC:

{σ} gc {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} gc {σ

′ � i}

Proof. We consider two cases.

Case 1. gc, e ? c1 : c2. By Figure 6.3, we have two sub-cases:

Case 1.1. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → true∧{σ} c1 {σ′}⇒

B By Lemma 4 and Lemma 10

∀i ∈ ⊗(σn
1,d) � 〈e,σ � i〉 → true ∧

∀i ∈ ⊗(σn
1,d) �{σ � i} c1 {σ′ � i}

B Since ∧ distributes over ∀

195

⇒∀i ∈ ⊗(σn
1,d) � 〈e,σ � i〉 → true∧{σ � i} c1 {σ′ � i}

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} gc {σ

′ � i}

Case 1.2. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → false∧{σ} c2 {σ′}

The proof is analogous to the previous sub-case.

Case 2. gc, gc1 ‖ gc2. By Figure 6.3:

{σ} gc {σ′}⇒ {σ} gc1 {σ′}∨{σ} gc2 {σ′}⇒

B By inductive hypothesis

∀i ∈ ⊗(σn
1,d) �{σ � i} gc1 {σ′ � i}

∨
∀i ∈ ⊗(σn

1,d) �{σ � i} gc2 {σ′ � i}⇒

B Playing around with ∨ and ∀

∀i ∈ ⊗(σn
1,d)�

{σ � i} gc1 {σ′ � i}∨{σ � i} gc2 {σ′ � i}

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} gc {σ

′ � i}

This completes the proof.

196

C.1.4 Store Generalization Lemmas

We now present a series of lemmas that relate the execution semantics of PGCL++ to store

generalization. The first lemma states that if a store σ is transformed to σ′ by executing a

command c, then every generalization of σ is transformed to the corresponding general-

ization of σ′ by executing c.

Lemma 13 (Command Generalization). For z∈ [1,d], any stores σ,σ′ such that σn =σ′n =

1d , any k ∈ Nd such that k1,z−1 = 1z−1, and any command c ∈ Cz[i1 7→ 1] . . . [iz−1 7→ 1]:

{σ} c {σ′}⇒ {σ � k} c {σ′ � k}

Proof. By induction on the structure of c. We consider four subcases.

Case 0. c, skip. Trivially since by Figure 6.3, σ = σ′.

Case 1. c, b := e. Suppose 〈e,σ〉 → t. By Figure 6.3:

{σ} c {σ′}⇒ σ
′ = σ[σB 7→ σ

B[b 7→ t]]⇒

B by Definition 21 and Lemma 5

σ
′ � k= (σ � k)[(σ � k)B 7→ (σ � k)B[b 7→ t]]∧〈e,σ � k〉 → t

B again by Figure 6.3

⇒{σ � k} c {σ′ � k}

Case 2. c, for iz do ê ? ĉ1 : ĉ2. By Figure 6.3:

∀y ∈ [1,1] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � (1z−1,y)}

197

B Simplifying

{σ} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′}

B By Lemma 14

{σ � k[z 7→ 1]} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � k[z 7→ 1]}

B Let kz = N. Expanding out

∀y ∈ [1,N] �{σ � k � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz 7→ 1] {σ′ � k � (1z−1,y)}

B Again by Figure 6.3

⇒{σ � k} c {σ′ � k}

Case 3. c, c1;c2. By Figure 6.3:

{σ} c {σ′}⇒ ∃σ′′ �{σ} c1 {σ′′}∧{σ′′} c2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �∀k ∈ Nd �{σ � k} c1 {σ′′ � k}∧

∀k ∈ Nd �{σ′′ � k} c2 {σ′ � k}⇒

B Playing around with ∃, ∀, and ∧

∀k ∈ Nd �∃σ′′ �{σ � k} c1 {σ′′ � k}∧{σ′′ � k} c2 {σ′ � k}

B Again by Figure 6.3

⇒∀k ∈ Nd �{σ � k} c {σ′ � k}

198

This completes the proof.

Lemma 14 (Parameterized Command Generalization). For z∈ [1,d], any stores σ,σ′ such

that σn = σ′n = 1d , any k ∈Nd such that k1,z = 1z, and any command ê ? ĉ : ĉ′ ∈ (Êz ? Ĉz :

Ĉz)[i1 7→ 1] . . . [iz 7→ 1]:

{σ} ê ? ĉ : ĉ′ {σ′}⇒ {σ � k} ê ? ĉ : ĉ′ {σ′ � k}

Proof. First consider the case 〈ê,σ〉 → true. Note that ê does not contain any index

variables and only refers to the parametric array at depth z. Since σn
1,z = σ′n1,z = 1z, we

claim that:

〈ê,σ〉 → true⇔ 〈ê,σ � k〉 → true

⇔ 〈ê,σ′ � k〉 → true⇔ 〈ê,σ′〉 → true

Now by Figure 6.3, {σ} ĉ {σ′}. We proceed by induction on the structure of ĉ. We

consider three subcases.

Case 0. ĉ , P[1] . . .P[1].F[r] := ê′. Suppose 〈ê′,σ〉 → t. Since ê′ only refers to the

parametric array at depth z and σn
1,z = σ′n1,z = 1z. By Figure 6.3:

σ
′ = σ[σP 7→ σ

P[σP
z 7→ [σP

z [(1
z,dre) 7→ t]]]]

B by Definition 21

σ
′ � k= (σ � k)[(σ � k)P 7→ (σ � k)P[(σ � k)P

z 7→ [(σ � k)P
z [(1

z,dre) 7→ t]]]]∧

〈ê,σ � k〉 → t

B Again by Figure 6.3

199

⇒{σ � k} ĉ {σ′ � k}

Case 1. ĉ, w := ê′. Suppose 〈ê′,σ〉 → t. By Figure 6.3:

σ
′ = σ[σW 7→ σ

W [w 7→ t]]⇒

B by Definition 21

σ
′ � k= (σ � k)[(σ � k)W 7→ (σ � k)W [w 7→ t]]∧〈ê′,σ � k〉 → t

B Again by Figure 6.3

⇒{σ � k} ĉ {σ′ � k}

Case 2. ĉ, ĉ1; ĉ2. By Figure 6.3:

{σ} ĉ {σ′}⇒ ∃σ′′ �{σ} ĉ1 {σ′′}∧{σ′′} ĉ2 {σ′}⇒

B By inductive hypothesis

∃σ′′ �{σ � k} ĉ1 {σ′′ � k}∧{σ′′ � k} ĉ2 {σ′ � k}

B Again by Figure 6.3

⇒{σ � k} ĉ {σ′ � k}

Case 3. ĉ, c. Follows directly from Lemma 13.

Since 〈ê,σ � k〉 → true and {σ � k} ĉ {σ′ � k}, from Figure 6.3, we have our desired

result {σ � k} ê ? ĉ : ĉ′ {σ′ � k}.

The proof for the case when 〈ê,σ〉→ false is analogous. This completes the proof.

Note that the dependence between Lemma 13 and Lemma 14 is not circular since for

200

Lemma 14 to be valid for z, Lemma 13 must be valid for z+1, and for z = d, Lemma 14

does not require Lemma 36 to be valid. Hence we can argue using mutual recursion,

starting from z = d, and prove that both lemmas are valid for all z ∈ [1,d].

The next lemma states that if a store σ is transformed to σ′ by executing a guarded

command gc, then every generalization of σ is transformed to the corresponding general-

ization of σ′ by executing gc.

Lemma 15 (Guarded Command Generalization). For any stores σ,σ′ such that σn =σ′n =

1d , and any guarded command gc ∈ GC:

{σ} gc {σ′}⇒ ∀k ∈ Nd �{σ � k} gc {σ′ � k}

Proof. We consider two cases.

Case 1. gc, e ? c1 : c2. By Figure 6.3, we have two sub-cases:

Case 1.1. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → true∧{σ} c1 {σ′}⇒

B By Lemma 5 and Lemma 13

∀k ∈ Nd � 〈e,σ � k〉 → true∧∀k ∈ Nd �{σ � k} c1 {σ′ � k}

B Since ∧ distributes over ∀

⇒ ∀k ∈ Nd � 〈e,σ � k〉 → true∧{σ � k} c1 {σ′ � k}

B Again by Figure 6.3

⇒∀k ∈ Nd �{σ � k} gc {σ′ � k}

201

Case 1.2. In this case:

{σ} gc {σ′}⇒ 〈e,σ〉 → false∧{σ} c2 {σ′}

The proof is analogous to the previous sub-case.

Case 2. gc, gc1 ‖ gc2. By Figure 6.3:

{σ} gc {σ′}⇒ {σ} gc1 {σ′}∨{σ} gc2 {σ′}⇒

B By inductive hypothesis

∀k ∈ Nd �{σ � k} gc1 {σ′ � k}
∨

∀k ∈ Nd �{σ � k} gc2 {σ′ � k}⇒

B Playing around with ∨ and ∀

∀k ∈ Nd �{σ � k} gc1 {σ′ � k}∨{σ � k} gc2 {σ′ � k}

B Again by Figure 6.3

⇒∀k ∈ Nd �{σ � k} gc {σ′ � k}

This completes the proof.

C.1.5 Proofs of Small Model Theorems

In this section, we prove our small model theorems. We first present a set of supporting

lemmas for the proof of Theorem 14. In some cases, the proof of the lemma is in the

appendix. In addition, the proofs of these lemmas rely on other lemmas, which are in the

appendix.

202

In the following proofs, for z ∈ [1,d], and any tuple iz = (i1, . . . , iz), we write Æiz to

mean Æ1ı1, . . . ,Æzız where the tuple of quantifiers (Æ1, . . . ,Æz) (where for each z, Æ is

either ∀ or ∃) is fixed and remains fixed across all instances of Æ in the same line of

reasoning. This ensures consistency between all Æiz and Æ jz. Note that our results hold

for any combination of quantifiers as long as they are consistent.

The first lemma states that if a store σ satisfies a generic state formula ϕ, then some

projection of σ satisfies ϕ.

Lemma 16. Let ϕ ∈ GSF, and σ be any store. Then:

σ |= ϕ⇒∃i ∈ ⊗(σn
1,d) �σ � i |= ϕ

Proof. By considering the structure of ϕ. We consider three cases:

Case 1. ϕ ∈ USF. By Lemma 17, we know that:

σ |= ϕ⇔∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇒∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ

Case 2. ϕ ∈ ESF. Follows directly from Lemma 8.

Case 3. ϕ ∈ USF∧ESF. Without loss of generality, let ϕ = ϕ1∧ϕ2∧ϕ3 where ϕ1 ∈ BP,

ϕ2 ∈ ∀i1 . . .∀iz � PP(i1, . . . ,iz), and ϕ3 ∈ Æ1i1, . . . ,Æziz � PP(i1, . . . ,iz). By Defini-

tion 11:

σ |= ϕ⇔ σ |= (ϕ1∧ϕ2)
∧

σ |= ϕ3⇔

B by Lemma 17 and Lemma 7

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ3⇒

B playing around with ∧, ∀, and ∃

203

∃i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
σ � i |= ϕ3⇒

B Again by Definition 11

∃i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)∧ϕ3⇒∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ

This completes the proof.

The next lemma states that a store σ satisfies an universal state formula ϕ iff every

projection of σ satisfies ϕ.

Lemma 17. Let ϕ ∈ USF and σ be any store. Then:

σ |= ϕ⇔∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ

Proof. From Figure 4.6, we consider three sub-cases:

Case 1. ϕ ∈ BP. Our result follows from Lemma 6.

Case 2. ϕ = ∀i1 . . .∀iz �π and π ∈ PP(i1, . . . ,iz). Our result follows from Lemma 7.

Case 3. ϕ = π∧∀i1 . . .∀iz �π′ such that π ∈ BP, and π′ ∈ PP(i1, . . . ,iz). In this case, by

Definition 11:

σ |= ϕ⇔ σ |= π
∧

σ |= ∀i1 . . .∀iz �π
′

B by Lemma 6 and Lemma 7

⇔∀j ∈ ⊗(σn
1,z) �σ � j |= π

∧
∀j ∈ ⊗(σn

1,z) �σ � j |= ∀i1 . . .∀iz �π
′

B since ∀ distributes over ∧

⇔ ∀j ∈ ⊗(σn
1,z) �σ � j |= π∧σ � j |= ∀i1 . . .∀iz �π

′

B Again by Definition 11

204

⇔∀j ∈ ⊗(σn
1,z) �σ � j |= π∧∀i1 . . .∀iz �π

′

By alpha renaming of j to i, we get our desired result.

The next lemma states that if a store σ is transformed to σ′ by executing an instantiated

guarded command gc(k), then every projection of σ is transformed to the corresponding

projection of σ′ by executing gc(k).

Lemma 18 (Instantiated Command Projection). For any stores σ,σ′ and instantiated

guarded command gc(k):

{σ} gc(k) {σ′}⇒ ∀i ∈ ⊗(σn
1,d) �{σ � i} gc(1

d) {σ′ � i}

Proof. The proof proceeds as follows. By Figure 6.3:

{σ} gc(k) {σ′}⇒ σ
n = σ

′n = k∧{σ} gc {σ′}⇒

B By Lemma 12

∀i ∈ ⊗(σn
1,d) � (σ � i)

n = (σ′ � i)n = 1d ∧{σ � i} gc {σ′ � i}

B Again by Figure 6.3

⇒∀i ∈ ⊗(σn
1,d) �{σ � i} gc(1

d) {σ′ � i}

This completes the proof.

The last lemma relating store projection and formulas states that if every projection of

a store σ satisfies a generic state formula ϕ, then σ satisfies ϕ.

205

Lemma 19. Let ϕ ∈ GSF and σ be any store. Then:

∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇒ σ |= ϕ

Proof. By considering the structure of ϕ. We consider three cases:

Case 1. ϕ ∈ USF. Follows directly from Lemma 17.

Case 2. ϕ ∈ ESF. Follows directly from Lemma 9.

Case 3. ϕ ∈ USF∧ESF. Without loss of generality, let ϕ = ϕ1∧ϕ2∧ϕ3 where ϕ1 ∈ BP,

ϕ2 ∈ ∀i1 . . .∀iz �PP(i1 . . .iz), and ϕ3 ∈Æi1 . . .∀iz �PP(i1 . . .iz). by Definition 11:

∀i ∈ ⊗(σn
1,d) �σ � i |= ϕ⇔

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)∧ϕ3⇔

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
σ � i |= ϕ3⇔

B playing around with ∧ and ∀

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
∀i ∈ ⊗(σn

1,d) �σ � i |= ϕ3⇒

B weakening ∀ to ∃

∀i ∈ ⊗(σn
1,d) �σ � i |= (ϕ1∧ϕ2)

∧
∃i ∈ ⊗(σn

1,d) �σ � i |= ϕ3⇒

B by Lemma 17 and Lemma 7

σ |= (ϕ1∧ϕ2)∧σ |= ϕ3⇒ σ |= (ϕ1∧ϕ2)∧ϕ3⇒ σ |= ϕ

This completes the proof.

So far, we used the concept of store projection to show that the effect of executing a

206

PGCL++ program carries over from larger stores to unit stores (i.e., stores obtained via

projection). To prove our small model theorems, we also need to show that the effect of

executing a PGCL++ program propagate in the opposite direction, i.e., from unit stores to

larger stores. To this end, we first present a notion, called store generalization, that relates

unit stores to those of arbitrarily large size.

Definition 21 (Store Generalization). Let σ = (σB,σW ,1d,σP) be any store. For any k ∈

Nd we write σ � k to mean the store satisfying the following condition:

(σ � k)n = k∧∀i ∈ ⊗(k) � (σ � k) � i= σ

Intuitively, σ � k is constructed by duplicating the only rows of σP at each depth, and

leaving the other components of σ unchanged.

We now present a lemma related to store generalization, which is needed for the proof

of Theorem 14. The lemma states that if a store σ is transformed to σ′ by executing an

instantiated guarded command gc(k), then every generalization of σ is transformed to the

corresponding generalization of σ′ by executing gc(k).

Lemma 20 (Instantiated Command Generalization). For any stores σ,σ′ and instantiated

guarded command gc(1d):

{σ} gc(1d) {σ′}⇒ ∀k ∈ Nd �{σ � k} gc(k) {σ′ � k}

Proof. The proof proceeds as follows. By Figure 6.3:

{σ} gc(1d) {σ′}⇒ σ
n = σ

′n = 1d ∧{σ} gc {σ′}⇒

B By Definition 21 and Lemma 15

207

∀k ∈ Nd � (σ � k)n = (σ′ � k)n = k
∧
{σ � k} gc {σ′ � k}

B Again by Figure 6.3

⇒∀k ∈ Nd �{σ � k} gc(k) {σ′ � k}

This completes the proof.

C.1.6 Proof of Theorem 14

Theorem 1 (Small Model Safety 1). A Kripke structure M(gc(k), Init) exhibits a formula

ϕ iff there is a reachable state σ of M(gc(k), Init) such that σ |= ϕ. Let gc(k) be any

instantiated guarded command. Let ϕ∈ GSF be any generic state formula, and Init ∈USF

be any universal state formula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits

ϕ.

Proof. For the forward implication, let σ1,σ2, . . . ,σw be a sequence of states of

M(gc(k), Init) such that:

σ1 |= Init
∧

σw |= ϕ
∧
∀i ∈ [1,w−1] �{σi} gc(k) {σi+1}

Since ϕ ∈ GSF, by Lemma 16 we know that:

∃j ∈ ⊗(σn
w) �σw � j |= ϕ

Let j0 be such a j. By Lemma 17, since Init ∈ USF:

σ1 � j0 |= Init

208

By Lemma 18, we know that:

∀i ∈ [1,w−1] �{σi � j0} gc(1d) {σi+1 � j0}

Therefore, σw � j0 is reachable in M(gc(1d), Init) and σw � j0 |= ϕ. Hence,

M(gc(1d), Init) exhibits ϕ. For the reverse implication, let σ1,σ2, . . . ,σw be a sequence of

states of M(gc(1), Init) such that:

σ1 |= Init
∧

σw |= ϕ
∧
∀i ∈ [1,w−1] �{σi} gc(1d) {σi+1}

For each i ∈ [1,w], let σ̂i = σi � k. Therefore, since Init ∈ USF, by Lemma 17, we

know:

∀j ∈ ⊗(k) � σ̂1 � j |= Init⇒ σ̂1 |= Init

Also, since ϕ ∈ GSF, by Lemma 19 we know that:

∀j ∈ ⊗(k) � σ̂n � j |= ϕ⇒ σ̂w |= ϕ

Finally, by Lemma 20, we know that:

∀i ∈ [1,w−1] �{σ̂i} gc(k) {σ̂i+1}

Therefore, σ̂w is reachable in M(gc(k), Init) and σ̂w |= ϕ. Hence, M(gc(k), Init) exhibits

ϕ. This completes the proof.

209

C.1.7 Proof of Theorem 15

Theorem 2 (Small Model Simulation). Let gc(k) be any instantiated guarded command.

Let Init ∈ GSF be any generic state formula. Then M(gc(k), Init) �M(gc(1d), Init) and

M(gc(1d), Init)�M(gc(k), Init).

Proof. Recall the conditions C1–C3 in Definition 22 for simulation. For the first simula-

tion, we propose the following relation H and show that it is a simulation relation:

(σ,σ′) ∈H ⇔∃i ∈ ⊗(σn
1,d) �σ

′ = σ � i

C1 holds because our atomic propositions are USF formulas, and Lemma 17; C2 holds

because Init ∈ GSF and Lemma 16; C3 holds by Definition 4 and Lemma 18. For the

second simulation, we propose the following relation H and show that it is a simulation

relation:

(σ,σ′) ∈H ⇔ σ
′ = σ � σ

′n

Again, C1 holds because our atomic propositions are USF formulas, Definition 21, and

Lemma 17; C2 holds because Init ∈ GSF, Definition 21, and Lemma 19; C3 holds by

Definition 4 and Lemma 20. This completes the proof.

C.1.8 Proof of Corollary 16

We begin with the formal definition of simulation [20].

Definition 22. Let M1 = (S1,I1,T1,L1) and M2 = (S2,I2,T2,L2) be two Kripke structures

over sets of atomic propositions AP1 and AP2 such that AP2 ⊆ AP1. Then M1 is simulated

by M2, denoted by M1 �M2, iff there exists a relation H ⊆ S1×S2 such that the following

three conditions hold:

210

(C1) ∀s1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H⇒ L1(s1)∩AP2 = L2(s2)

(C2) ∀s1 ∈ I1 �∃s2 ∈ I2 � (s1,s2) ∈ H

(C3) ∀s1,s′1 ∈ S1 �∀s2 ∈ S2 � (s1,s2) ∈ H ∧ (s1,s′1) ∈ T1⇒

∃s′2 ∈ S2 � (s2,s′2) ∈ T2∧ (s′1,s′2) ∈ H

Next, we formalize our claim that PTSL formulas are preserved by simulation.

Fact 4. Let M1 and M2 be two Kripke structures over propositions AP1 and AP2 such that

M1 � M2. Hence, by Definition 6, AP2 ⊆ AP1. Let ϕ be any PTSL formula over AP2.

Therefore, ϕ is also a PTSL formula over AP1. Then M2 |= ϕ⇒M1 |= ϕ.

We are now ready to prove Corollary 16.

Corollary 3 (Small Model Safety 2). Let gc(k) be any instantiated guarded command.

Let ϕ ∈ USF be any universal state formula, and Init ∈ GSF be any generic state formula.

Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

Proof. Follows from: (i) the observation that exhibition of a USF formula φ is expressible

in PTSL as the TLF formula F φ, (ii) Theorem 15, and (iii) Fact 4.

211

212

Bibliography

[1] E. Alkassar, E. Cohen, M. Hillebrand, M. Kovalev, and W. Paul. Verifying shadow

page table algorithms. In Proceedings of FMCAD, 2010.

[2] Eyad Alkassar, Mark A. Hillebrand, Wolfgang J. Paul, and Elena Petrova. Automated

verification of a small hypervisor. In Proceedings of VSTTE, 2010.

[3] Anonymous. Xbox 360 hypervisor privilege escalation vulnerability.

http://www.securityfocus.com/archive/1/461489, Feb. 2007.

[4] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concurrent

systems. Information Processing Letters, 22(6):307–309, 1986.

[5] ARM Holdings. ARM1176JZF-S technical reference manual. Revision r0p7, 2009.

[6] Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Ying Xu, and Lenore Zuck. Parameter-

ized verification with automatically computed inductive assertions. In Proceedings

of CAV, 2001.

[7] Thomas Ball and Sriram K. Rajamani. Automatically Validating Temporal Safety

Properties of Interfaces. In Matthew B. Dwyer, editor, Proceedings of the 8th Inter-

national SPIN Workshop on Model Checking of Software (SPIN ’01), volume 2057 of

213

Lecture Notes in Computer Science, pages 103–122, Toronto, Canada, May 19–20,

2001. New York, NY, May 2001. Springer-Verlag.

[8] Thomas Ball and Sriram K. Rajamani. Bebop: a path-sensitive interprocedural

dataflow engine. In Proc. of PASTE, pages 97–103, 2001.

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In

Proceedings of SOSP, 2003.

[10] Adam Barth, Collin Jackson, and John C. Mitchell. Securing frame communication

in browsers. In Proceedings of 17th USENIX Security Symposium, 2008.

[11] G. Barthe, G. Betarte, J. D. Campo, and C. Luna. Formally verifying isolation and

availability in an idealized model of virtualization. In Proc. of FM, 2011.

[12] C. Baumann, H. Blasum, T. Bormer, and S Tverdyshev. Proving memory separation

in a microkernel by code level verification. In Proc. of AMICS, 2011.

[13] D.M. Berry. Towards a formal basis for the formal development method and the ina

jo specification language. IEEE Transactions on Software Engineering, 13:184–201,

1987.

[14] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies.

In Proceedings of the 8th National Computer Security Conference, Gaithersburg,

Maryland, 1985.

[15] D. F. C. Brewer and M.J. Nash. The chinese wall security policy. In Proceedings of

the IEEE Symposium on Security and Privacy, May 1989.

[16] CBMC website, Accessed August, 2011. http://www.cprover.org/cbmc|.

214

[17] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular

Verification of Software Components in C. IEEE Transactions on Software Engi-

neering (TSE), 30(6):388–402, June 2004.

[18] Hao Chen and David Wagner. MOPS: an infrastructure for examining security prop-

erties of software. In Proceedings of the ACM Conference on Computer and Com-

munications Security, pages 235–244, 2002.

[19] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c

programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the

Construction and Analysis of Systems, volume 2988 of Lecture Notes in Computer

Science, pages 168–176. Springer Berlin / Heidelberg, 2004.

[20] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,

Cambridge, MA, 2000.

[21] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kirli Kaynar. A logic of

secure systems and its application to trusted computing. In IEEE Symposium on

Security and Privacy, pages 221–236, 2009.

[22] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. Bounded model checking with

qbf. In Proc. of SAT, pages 408–414, 2005.

[23] DIMACS. Satisability Suggested Format. Accessed from

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/, May 1993.

[24] Nancy A. Durgin, Patrick Lincoln, and John C. Mitchell. Multiset rewriting and the

complexity of bounded security protocols. Journal of Computer Security, 12(2):247–

311, 2004.

215

[25] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the

few. In Proc. of CADE, 2000.

[26] E. Allen Emerson and Vineet Kahlon. Model checking large-scale and parameterized

resource allocation systems. In Proc. of TACAS, 2002.

[27] E. Allen Emerson and Vineet Kahlon. Exact and efficient verification of parameter-

ized cache coherence protocols. In Proc. of CHARME, 2003.

[28] E. Allen Emerson and Vineet Kahlon. Model checking guarded protocols. In Pro-

ceedings of LICS, 2003.

[29] E. Allen Emerson and Vineet Kahlon. Rapid parameterized model checking of

snoopy cache coherence protocols. In Proc. of TACAS, 2003.

[30] E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of parameterized

synchronous systems (extended abstract). In Proceedings of CAV, 1996.

[31] E. Allen Emerson and Kedar S. Namjoshi. Verification of parameterized bus arbitra-

tion protocol. In Proceedings of CAV, 1998.

[32] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference counting im-

plementations. In Proceedings of the 15th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS ’09), 2009.

[33] Yi Fang, Nir Piterman, Amir Pnueli, and Lenore Zuck. Liveness with invisible rank-

ing. In Proceedings of VMCAI, 2003.

[34] Jason Franklin, Arvind Seshadri, Ning Qu, Sagar Chaki, and Anupam Datta. Attack-

ing, repairing, and verifying SecVisor: A retrospective on the security of a hypervi-

sor. Technical Report CMU-CyLab-08-008, Carnegie Mellon University, 2008.

216

[35] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: a

virtual machine-based platform for trusted computing. In Proceedings of the Sympo-

sium on Operating System Principals (SOSP), 2003.

[36] Deepak Garg, Jason Franklin, Dilsun Kirli Kaynar, and Anupam Datta. Compo-

sitional system security with interface-confined adversaries. Electr. Notes Theor.

Comput. Sci., 265:49–71, 2010.

[37] S. L. Gerhart. An overview of Affirm: A specification and verification system. In

IFIP, 1980.

[38] Steven M. German and A. Prasad Sistla. Reasoning about systems with many pro-

cesses. Journal of the ACM, 39(3):675–735, 1992.

[39] Virgil D. Gligor. Analysis of the hardware verification of the Honeywell SCOMP. In

Proceedings of the IEEE Symposium on Security and Privacy, 1985.

[40] D. I. Good and R. M. Cohen. Verifiable communications processing in gypsy. In

17th COMPCON, 1978.

[41] Joshua D. Guttman, Amy L. Herzog, John D. Ramsdell, and Clement W. Skorupka.

Verifying information flow goals in security-enhanced linux. Journal of Computer

Security, 13(1):115–134, 2005.

[42] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and lan-

guage for building system-specific, static analyses. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI

’02), 2002.

[43] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.

Communications of the ACM, 19(8), August 1976.

217

[44] Bret A. Hartman. A gypsy-based kernel. In Proceedings of the IEEE Symposium on

Security and Privacy, 1984.

[45] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John D. McLean.

Formal specification and verification of data separation in a separation kernel for an

embedded system. In Proceedings of ACM CCS, 2006.

[46] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy

Abstraction. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Langauges (POPL ’02), volume 37(1) of SIGPLAN No-

tices, pages 58–70, Portland, OR, January 16–18, 2002. New York, NY, January

2002. Association for Computing Machinery.

[47] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng.,

23(5):279–295, 1997.

[48] Intel Corporation. Intel 64 and IA-32 Intel architecture software developer’s manual.

Intel Publication nos. 253665–253669, 2008.

[49] N. Kidd, T. Reps, J. Dolby, and M. Vaziri. Finding concurrency-related bugs using

random isolation. In Proceedings of the 10th International Conference on Verifica-

tion, Model Checking, and Abstract Interpretation (VMCAI ’09), 2009.

[50] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:

Formal verification of an os kernel. In Proceedings of SOSP, 2009.

[51] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. A non-prenex,

non-clausal qbf solver with game-state learning. In Proc. of 13th International Con-

218

ference on Theory and Applications of Satisfiability Testing (SAT’10), pages 128–

142, 2010.

[52] Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and

Christoph M. Wintersteiger. Loopfrog: A static analyzer for ansi-c programs. In

Proc. of ASE, pages 668–670, 2009.

[53] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002.

[54] Ranko Lazić, Tom Newcomb, and Bill Roscoe. On model checking data-independent

systems with arrays with whole-array operations. LNCS, 3525:275–291, July 2004.

[55] R.S. Lazić, T.C. Newcomb, and A.W. Roscoe. On model checking data-independent

systems with arrays without reset. Theory and Practice of Logic Programming,

4(5&6), 2004.

[56] David Lie, John Mitchell, Chandramohan A. Thekkath, and Mark Horowitz. Speci-

fying and Verifying Hardware for Tamper-Resistant Software. In Proceedings of the

2003 IEEE Symposium on Security and Privacy, 2003.

[57] Gavin Lowe. Towards a completeness result for model checking of security proto-

cols. Journal of Computer Security, 7(1), 1999.

[58] Jonathan Millen. A necessarily parallel attack. In Proceedings of the Workshop on

Formal Methods and Security Protocols (FMSP), 1999.

[59] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-State Analysis of SSL 3.0. In

Proceedings of the Seventh USENIX Security Symposium, pages 201–216, 1998.

219

[60] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated Analysis of Cryp-

tographic Protocols Using Murϕ. In Proceedings of the 1997 IEEE Symposium on

Security and Privacy, 1997.

[61] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson. A provably

secure operating system: The system, its applications, and proofs. Technical report,

SRI International, 1980.

[62] Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. Automatic deductive verification

with invisible invariants. In Proc. of TACAS, 2001.

[63] QuBE website, Accessed August, 2011. www.star.dist.unige.it/ qube|.

[64] IBM Research. The research hypervisor - a multi-platform, multi-purpose research

hypervisor. http://www.research.ibm.com/hypervisor, 2012.

[65] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model checkers by

data independence techniques. Journal Computer Security, 7(2-3):147–190, 1999.

[66] John Rushby. The design and verification of secure systems. In Proceedings of

SOSP, 1981. (ACM OS Review, Vol. 15, No. 5).

[67] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, and S. Berger.

sHype:secure hypervisor approach to trusted virtualized systems. Technical Report

RC23511, IBM Research Report, 2005.

[68] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramon Caceres, Ronald Perez, Stefan

Berger, John Linwood Griffin, and Leendert van Doorn. Building a MAC-Based

security architecture for the Xen open-source hypervisor. In Proceedings of the 21st

Annual Computer Security Applications Conference (ACSAC), 2005.

220

[69] W. L. Schiller. Design and abstract specification of a multics security kernel. Tech-

nical report, MITRE Corp, Bedford MA, 1977.

[70] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A Tiny Hypervi-

sor to Provide Lifetime Kernel Code Integrity for Commodity OSes. In Proceedings

of the ACM Symposium on Operating Systems Principles (SOSP), October 2007.

[71] Jonathan S. Shapiro and Sam Weber. Verifying the eros confinement mechanism. In

Proceedings of IEEE S&P, 2000.

[72] sKizzo website, Accessed August, 2011. http://skizzo.info|.

[73] I. Suzuki. Proving properties of a ring of finite state machines. Information Process-

ing Letters, 28:213–213, 1988.

[74] Core Security Technologies. Virtual pc hypervisor memory protection vulner-

ability. http://www.coresecurity.com/content/virtual-pc-2007-hypervisor-memory-

protection-bug, March 2010.

[75] Enriquillo Valdez, Reiner Sailer, and Ronald Perez. Retrofitting the ibm power hy-

pervisor to support mandatory access control. In Proceedings of the Twenty-Third

Annual Computer Security Applications Conference (ACSAC), 2007.

[76] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification of the

UCLA Unix security kernel. CACM, 23(2):118–131, 1980.

[77] Jeannette M. Wing and Mandana Vaziri-Farahani. A case study in model checking

software systems. Science of Computer Programming, 28:273–299, 1997.

[78] Pierre Wolper. Expressing interesting properties of programs in propositional tem-

poral logic. In Proceedings of POPL, 1986.

221

[79] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi. Using

model checking to find serious file system errors. In Proceedings of the USENIX

Symposium on Operating System Design and Implementation (OSDI), pages 273–

288, 2004.

222

	1 Introduction
	2 The Semantic Security Verification Problem
	2.1 Introduction
	2.2 Definition of Semantic Security
	2.3 Verification Framework Goals
	2.4 The CSI-Adversary Abstraction
	2.4.1 Kernelized Systems and their Adversary Models
	2.4.2 Adversary Model Framework
	2.4.3 Flexible, System-Specific Adversary Models
	2.4.4 Expressiveness of CSI-Adversaries
	2.4.5 Flexibility, Scalability, and Simplicity

	2.5 Scalability and Abstraction
	2.5.1 Overcoming Data Structure Complexity
	2.5.2 Overcoming Adversary-induced Complexity

	2.6 Interpreting Verification Results

	3 Parametric Verification
	3.1 Introduction
	3.2 Motivating Example: SecVisor
	3.3 Small Model Analysis
	3.3.1 PGCL Syntax
	3.3.2 PGCL Semantics
	3.3.3 Specification Logic
	3.3.4 Small Model Theorem
	3.3.5 Proofs of Small Model Theorems

	3.4 Case Studies
	3.4.1 SecVisor
	3.4.2 sHype Security Architecture

	3.5 Expressiveness and Limitations
	3.6 Conclusion

	4 Parametric Verification with Hierarchical Data Structures
	4.1 Introduction
	4.2 Address Space Translation and Separation
	4.3 Definitions of PGCL+ and PTSL
	4.3.1 PGCL+ Syntax
	4.3.2 ShadowVisor Code in PGCL+
	4.3.3 PGCL+ Semantics
	4.3.4 Specification Formalism
	4.3.5 Small Model Theorems

	4.4 Case Studies
	4.4.1 ShadowVisor
	4.4.2 Xen

	4.5 Conclusion

	5 The Havoc Adversary Abstraction
	5.1 Introduction
	5.2 Havoc-Function Abstraction
	5.2.1 Problem Statement
	5.2.2 Soundness
	5.2.3 Details

	5.3 Case Studies
	5.3.1 ShadowVisor
	5.3.2 SecVisor

	5.4 Conclusion

	6 Towards Refinement
	6.1 Introduction
	6.2 Definition of PGCL++
	6.2.1 PGCL++ Syntax
	6.2.2 PGCL++ Semantics
	6.2.3 ShadowVisor Code in PGCL++

	6.3 Specification Formalism
	6.4 Small Model Theorems
	6.5 MiniCee Definition
	6.5.1 MiniCee Syntax
	6.5.2 MiniCee Semantics
	6.5.3 Concrete Code

	6.6 Towards Refinement
	6.7 Conclusion

	7 Related Work
	7.1 Parametric Verification for Correctness
	7.2 Parametric Verification for Security
	7.3 Model Checking System Security
	7.4 Bug Finding
	7.5 Operating System Verification
	7.6 QBF Solving
	7.7 Program Summarization

	8 Conclusions
	A Proofs of Small Model Theorems
	A.1 Proofs
	A.1.1 Introductory Lemmas
	A.1.2 Store Projection Lemmas
	A.1.3 Store Projection and Command Lemmas
	A.1.4 Store Generalization Lemmas
	A.1.5 Proofs of Lemmas Presented in Main Paper

	B Proofs of Small Model Theorems for Hierarchical Data Structures
	B.1 Proofs
	B.1.1 Introductory Lemmas
	B.1.2 Store Projection Lemmas
	B.1.3 Store Projection and Command Lemmas
	B.1.4 Store Generalization Lemmas
	B.1.5 Proofs of Small Model Theorems
	B.1.6 Proof of Theorem 9
	B.1.7 Proof of Theorem 10
	B.1.8 Proof of Corollary 11

	C Proofs of Small Model Theorems with Write-only Variables
	C.1 Proofs
	C.1.1 Introductory Lemmas
	C.1.2 Store Projection Lemmas
	C.1.3 Store Projection and Command Lemmas
	C.1.4 Store Generalization Lemmas
	C.1.5 Proofs of Small Model Theorems
	C.1.6 Proof of Theorem 14
	C.1.7 Proof of Theorem 15
	C.1.8 Proof of Corollary 16

	Bibliography

