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Abstract

How do we find patterns and anomalies, on graphs with billions of nodes and edges,
which do not fit in memory? How to use parallelism for such Tera- or Peta-scale graphs?
In this thesis, we propose PEGASUS, a large scale graph mining system implemented on the
top of the HADOOP platform, the open source version of MAPREDUCE. PEGASUS includes
algorithms which help us spot patterns and anomalous behaviors in large graphs.

PEGASUS enables the structure analysis on large graphs. We unify many different struc-
ture analysis algorithms, including the analysis on connected components, PageRank, and
radius/diameter, into a general primitive called GIM-V. GIM-V is highly optimized, achiev-
ing good scale-up on the number of edges and available machines. We discover surprising
patterns using GIM-V, including the 7-degrees of separation in one of the largest publicly
available Web graphs, with 7 billion edges.

PEGASUS also enables the inference and the spectral analysis on large graphs. We design
an efficient distributed belief propagation algorithm which infer the states of unlabeled nodes
given a set of labeled nodes. We also develop an eigensolver for computing top k eigenvalues
and eigenvectors of the adjacency matrices of very large graphs. We use the eigensolver to
discover anomalous adult advertisers in the who-follows-whom Twitter graph with 3 billion
edges. In addition, we develop an efficient tensor decomposition algorithm and use it to
analyze a large knowledge base tensor.

Finally, PEGASUS allows the management of large graphs. We propose efficient graph
storage and indexing methods to answer graph mining queries quickly. We also develop an
edge layout algorithm for better compressing graphs.
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Chapter 1

Introduction

Graphs are ubiquitous: computer networks, social networks, mobile call networks, the World Wide Web
[Broder et al., 2000], protein regulation networks to name a few. The large volume of available data, the
low cost of storage and the stunning success of online social networks and Web2.0 applications all lead to
graphs of unprecedented size. Typical graph mining algorithms silently assume that the graph fits in the
memory of a typical workstation, or at least on a single disk; the above graphs violate these assumptions,
spanning multiple Giga-bytes, and heading to Tera- and Peta-bytes of data. As a consequence, the vast
majority of large graphs has remained untouched.

This thesis aims to unleash the potential by making extremely scalable graph mining algorithms on dis-
tributed platforms. Specifically, we use MAPREDUCE [Dean and Ghemawat, 2004] and its open source
version, HADOOP, for their extreme scalability, fault tolerance, and cheap cost of maintenance. This thesis
address the answers to the following two questions.

Theory and Engineering. How can we design and develop efficient MAPREDUCE algorithms for mining
very large graphs with billions of nodes and edges? There are several challenges to answer the question.
First, how can we formulate many graph mining algorithms using simple operations that can be efficiently
implemented on MAPREDUCE? Second, how to manage graphs efficiently so that storage spaces are
minimized and graph mining queries can be answered quickly?

Discovery. What are the patterns and anomalies that we can discover in very large, real-world graphs
with billions of nodes and edges? Large graphs have interesting patterns or regularities with regard to
radius, connected components, triangles, etc. Discovering the patterns helps us spot anomalies which
can be useful for applications ranging from cyber-security (computer networks), fraud-detection (phone
companies), and spammer detection (social networks).

1.1 Overview

Toward the goal of enabling extremely scalable graph mining analysis, this thesis describes the theory,
engineering, and discoveries on mining very large graphs. As a main contribution, we propose a carefully
selected set of fundamental operations, that help answer the questions in the previous section, including
diameter estimation, connected components, inference on graphs, solving eigenvalues, and tensor decom-
position. We package all these operations in PEGASUS (http://www.cs.cmu.edu/˜pegasus),
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which, to the best of our knowledge, is the first such library, implemented on the top of the HADOOP

platform, the open source version of MAPREDUCE.

The works in this thesis divide into three groups: basic graph algorithms, advanced graph algorithms, and
graph management.

1.1.1 Basic Graph Algorithms

What are the structures of very large graphs with billions of nodes and edges which do not fit in the
memory of a single machine? How do we study them? In the first part we describe distributed algorithms
based on MAPREDUCE/HADOOP for analyzing the structure of very large graphs.

Radius Plot (Chapter 3). We describe HAdoop DIameter and radii estimator (HADI), a carefully de-
signed and fine-tuned distributed algorithm to compute the radii and the diameter of massive graphs. We
employ HADI to study large, real world graphs, and report interesting discoveries including the 7-degrees
of separation in the Web graph. Our optimization on HADI leads to 7.6× faster performance than the
naive algorithm.

Generalized Iterative Matrix-Vector Multiplication (Chapter 4). We generalize the HADI operation
(Chapter 3) to propose a graph mining primitive called Generalized Iterated Matrix-Vector multiplication
(GIM-V) which unifies many different graph mining operations including PageRank, diameter estima-
tion, and connected components. GIM-V is highly optimized, achieving good scale-up on the number of
available machines, and linear running time on the number of edges. Our optimization on GIM-V leads
to more than 5× faster performance than the naive algorithm.

1.1.2 Advanced Graph Algorithms

The second part deals with advanced graph mining algorithms to find patterns and anomalies in large
graphs. The algorithms include inference in graph, spectral graph analysis, and tensor analysis.

Inference In Graph (Chapter 5). Given a graph and a set of labeled nodes, how can we infer the labels
of initially unlabeled nodes? There is a standard graph inference algorithm called belief propagation;
however, existing belief propagation algorithm is limited in its scalability. We propose HADOOP LINE

GRAPH FIXED POINT (HA-LFP), an efficient distributed algorithm for inference in billion-scale graphs,
using HADOOP platform. HA-LFP scales up linearly on the number of edges and machines.

Spectral Graph Analysis (Chapter 6). We design and implement algorithms for spectral analysis of
graphs: i.e., to study the eigenvalues and eigenvectors of graph adjacency matrices. Spectral analysis
on graphs leads to many interesting applications including triangle counting, and our proposed HEIGEN

algorithm handles 1000× larger matrices than the state of the art.

Tensor Analysis (Chapter 7). We study tensors, or multi dimensional arrays: e.g., predicates (subject,
verb, object) in knowledge bases, and hyperlinks/anchor texts in Web graphs. We generalize the spectral
analysis algorithm to multiple dimensions, and propose GIGATENSOR, a large scale tensor decomposi-
tion algorithm which solves more than 100× bigger problems than existing methods. We study a large
knowledge base tensor, and present interesting findings which include the discovery of potential synonyms
among millions of noun-phrases.
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1.1.3 Graph Management

Given a very large graph which do not fit in the disk or the memory of a single machine, how to store,
compress, and index it so that graph mining queries can be answered quickly? In the third part we tackle
the graph management problem.

Graph Storage and Indexing (Chapter 8). We describe GBASE, a scalable and general graph manage-
ment system. GBASE provides a parallel indexing mechanism for graph mining operations that both saves
storage space, as well as accelerates queries. GBASE reduces the storage space and the running time up to
50×.

Edge Layout (Chapter 9). We study edge layout problem: given a graph, reorder nodes so that the
nonzeros (edges) of the adjacency matrix are well-clustered. Better layout of edges of graphs leads to
better compression; however, existing methods based on the assumptions of the existence of clear-cut
communities do not work nicely on real world graphs. We propose SLASHBURN, an edge layout algorithm
which utilizes the characteristic of real world graphs to compress graphs well. SLASHBURN outperforms
all the state of the art algorithms in terms of the compression ratio, and the running time for graph mining
queries.

1.2 Contribution

We summarize the contribution of this thesis.

Basic Graph Algorithms:

• We develop HADI, a large scale radius/diameter computation algorithm. HADI scales linearly on
the number of edges, and the optimized version of HADI is 7.6× faster than the naive algorithm.

• We develop GIM-V, a general primitive for many different graph mining operations. GIM-V scales
linearly on the number of edges, and the optimized version of GIM-V is more than 5× faster than
the naive algorithm.

• We are the first to discover the 7-degrees of separation of the Web.

Advanced Graph Algorithms:

• We develop HA-LFP, an efficient distributed belief propagation algorithm. HA-LFP is the first
inference algorithm to handle billion-scale graphs.

• We develop HEIGEN, an eigensolver to perform spectral analysis on large graphs. HEIGEN analyzes
1000× larger matrices than the state of the art.

• We develop GIGATENSOR, a large scale tensor decomposition algorithm. GIGATENSOR handles
more than 100× larger tensors than the state of the art.

Graph Management:

• We develop GBASE, a scalable and general graph management system. GBASE reduces the storage
space and the running time up to 50×.

• We develop SLASHBURN, an edge layout algorithm for better compressing graphs. SLASHBURN

outperforms all the state of the art algorithms in terms of compression ratio, and the running time
for graph mining queries.
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1.3 Technology Transfer

Our work in large graph mining and the PEGASUS system have impacts in academia as well as in industry.
We summarize the technology transfers of our work.

• The PEGASUS system has been downloaded more than 410 times from 83 countries. It led to two
U.S. patents, and won the award at the open source software world challenge.

• Microsoft included PEGASUS as part of their HADOOP distribution for Windows Azure.
• PEGASUS system is used as one of the core systems for several DARPA projects including Anomaly

Detection At Multiple Scale (ADAMS).
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Chapter 2

Survey

In this chapter we review the related works in large scale graph mining and MAPREDUCE/HADOOP. We
also summarize the symbols and the dataset used.

2.1 Large Scale Graph Mining

Given a very large graph spanning Terabytes or Petabytes, how to find patterns and anomalies? Large scale
graph mining poses challenges in dealing with massive amount of data. We review several approaches to
large graph mining.

Single Machine. An obvious option is to use a single machine to analyze graphs. However, this option is
not viable for graphs whose size is larger than the memory or disks of a single machine.

Sampling. One might consider using a sampling approach to decrease the amount of data. However,
sampling from a large graph can lead to multiple nontrivial problems that do not have satisfactory solu-
tions [Leskovec and Faloutsos, 2006]. For example, which sampling methods should we use? Should
we get a random sample of the edges, or the nodes? Both options have their own share of problems: the
former gives poor estimation of the graph diameter, while the latter may miss high-degree nodes. For this
reason, we avoid using sampling methods.

Distributed Computing. For handling large graphs which span several disks of multiple machines, we
need distributed computing platforms. Among many distributed computing platforms, we chose MAPRE-
DUCE/HADOOP, a programming framework [Dean and Ghemawat, 2004] for processing Web-scale data,
for its nice scalability, fault tolerance, and low maintenance costs. In the next subsection we provide a
brief overview of MAPREDUCE/HADOOP.

2.2 MAPREDUCE and HADOOP

MAPREDUCE is a programming framework [Dean and Ghemawat, 2004, Aggarwal et al., 2004] for pro-
cessing huge amounts of unstructured data in a massively parallel way. MAPREDUCE has two major ad-
vantages: (a) the programmer is oblivious of the details of the data distribution, replication, load balancing
etc. and furthermore (b) the programming concept is familiar, i.e., the concept of functional programming.
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Symbol Definition

G a graph
V set of nodes in a graph
E set of edges in a graph
d diameter of a graph

H(.) Shannon entropy function
GCC giant connected component of a graph

Table 2.1: Table of symbols.

Briefly, the programmer needs to provide only two functions, a map and a reduce. The typical framework
is as follows [Lämmel, 2008]: (a) the map stage sequentially passes over the input file and outputs (key,
value) pairs; (b) the shuffling stage groups of all values by key, and (c) the reduce stage processes the
values with the same key and outputs the final result.

HADOOP is the open source implementation of MAPREDUCE. HADOOP provides the Distributed File
System (HDFS) and PIG, a high level language for data analysis [Olston et al., 2008]. Due to its power,
simplicity, fault tolerance, and low maintenance costs, HADOOP is a very promising tool for large scale
graph mining applications, something already reflected in academia (e.g., see [Papadimitriou and Sun,
2008, Kang et al., 2009, 2010, 2011e,d,a,b, Cordeiro et al., 2011, Kang et al., 2011c]). In addition to
PIG, there are several high-level language and environments for advanced MAPREDUCE-like systems,
including Sphere [Grossman and Gu, 2008], SCOPE [Chaiken et al., 2008], and Sawzall [Pike et al.,
2005].

2.3 Table of Symbols

We list the common symbols used in this thesis in Table 2.1. Each chapter also defines chapter-specific
symbols.

2.4 Table of Dataset

We summarize the dataset used in this thesis in Table 2.2 with the following details. Each chapter also
contains the list of the data used.

• YahooWeb: Web pages and their links, crawled by Yahoo! at year 2002.
• Twitter: social network (who follows whom) extracted from Twitter, in June 2010 and Nov 2009.
• VoiceCall: phone call records (who calls whom) during Dec. 2007 to Jan. 2008 from an anonymous

phone service provider.
• LinkedIn: social network (who connects to whom) from LinkedIn.
• SMS: short message service records (who sends to whom) during Dec. 2007 to Jan. 2008 from an

anonymous phone service provider.
• Patents: U.S. patents citations from 1975 to 1999 (http://www.nber.org/patents).
• LiveJournal: friendship social network from LiveJournal.
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Graph Nodes Edges File Size Type Description

YahooWeb 1.4 B 6.6 B 0.12 TB real WWW links in 2002
Twitter’10 104 M 3.7 B 0.13 TB real person-person
Twitter’09 63 M 1.8 B 56 GB real person-person
VoiceCall 30 M 260 M 8.4 GB real who calls whom
LinkedIn 7.5 M 58 MB 1 GB real person-person in 2006

4.4 M 27 MB 490 MB person-person in 2005
1.6 M 6.8 MB 121 MB person-person in 2004
85 K 230 KB 4 MB person-person in 2003

SMS 7 M 38 M 629 MB real who sends to whom
Patents 6 M 16 M 264 MB real patent-patent

LiveJournal 4.8 M 69 M 1.1 GB real friendship social network
Wikipedia 3.5 M 42 M 605 MB real doc-doc in 2007/02

3 M 35 M 495 MB doc-doc in 2006/09
1.6 M 18.5 M 252 MB doc-doc in 2005/11

DBLP 471 K 112 K 1 MB real document-document
WWW-Barabasi 325 K 1.5 M 20 MB real WWW links in nd.edu

Flickr 404 K 2.1 M 28 MB real person-person
Enron 80 K 313 K 11 MB real Enron email

Epinions 75 K 508 K 5 MB real who trusts whom
AS-Oregon 14 K 75 K 385 KB real router connetions
Kronecker 177 K 2 B 25 GB synthetic from Kronecker generator [Leskovec et al., 2005]

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB
20 K 40 M 439 MB

Erdős-Rényi 177 K 2 B 25 GB synthetic random Gn,p

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB
20 K 40 M 439 MB

Table 2.2: Datasets. B: Billion, M: Million, K: Thousand, TB: Terabytes, GB: Gigabytes, MB:
Megabytes, KB: Kilobytes.

• Wikipedia: citation network from Wikipedia articles.
• DBLP: DBLP document to document network (www.informatik.uni-trier.de/˜ley/
db/).

• WWW-Barabasi: WWW links inside nd.edu [Albert et al., 1999].
• Flickr: social network from Flickr.
• Enron: email network (who sends to whom) [Klimt and Yang, 2004].
• Epinions: who trusts whom social network [Richardson et al., 2003].
• AS-Oregon: router connections network.
• Kronecker: synthetic Kronecker graph [Leskovec et al., 2005] with similar properties as real-world

graphs.
• Erdős-Rényi: synthetic random graphs Gn,p [Erdős and Rényi, 1959].
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Part I

Basic Graph Algorithms
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Part I - Basic Graph Algorithms: Overview

What are the structures of very large graphs with billions of nodes and edges which do not fit in the
memory of a single machine? How do we study them? In this part we describe distributed graph structure
analysis algorithms based on MAPREDUCE/HADOOP, and use them to analyze the structures of very large
graphs.

First, we describe HAdoop DIameter and radii estimator (HADI), a carefully designed and fine-tuned
distributed algorithm to compute the radii and the diameters of massive graphs. We employ HADI to
study large, real world graphs, and report interesting discoveries including the 7-degrees of separation in
the Web graph.

Second, we generalize the HADI operation to propose a graph mining primitive called Generalized Iterated
Matrix-Vector multiplication (GIM-V) which unifies many different graph mining operations including
PageRank, diameter estimation, and connected components. GIM-V is highly optimized, achieving good
scale-up on the number of available machines, and linear running time on the number of edges. We employ
GIM-V to study anomalous connected components in the Web graph.

9



Chapter 3

Radius Plot

Given large, multi-million node graphs (e.g., Facebook, Web-crawls, etc.), how do they evolve over time?
How are they connected? What are the central nodes and the outliers? In this chapter we define the
Radius plot of a graph and show how it can answer these questions. However, computing the Radius plot
is prohibitively expensive for graphs reaching the planetary scale.

There are two major contributions in this chapter: (a) We propose HAdoop DIameter and radii estimator
(HADI), a carefully designed and fine-tuned algorithm to compute the radii and the diameters of massive
graphs, that runs on the top of the MAPREDUCE/HADOOP system, with excellent scale-up on the number
of available machines, (b) We run HADI on several real world datasets including YahooWeb (6B edges,
1/8 of a Terabyte), one of the largest public graphs ever analyzed.

Thanks to HADI, we report fascinating patterns on large graphs, like the surprisingly small effective
diameter, the multi-modal/bi-modal shape of the Radius plot, and its palindrome motion over time.

3.1 Introduction

How do real, Terabyte-scale graphs look like? Is it true that the nodes with the highest degree are the most
central ones, i.e., have the smallest radius (defined in Section 3.2)? How do we compute the diameter and
node radii in graphs of such size?

This chapter addresses the answers to the questions above. The contributions of this chapter are the
following:

1. Design. We propose HADI, a scalable algorithm to compute the radii and diameter of network. As
shown in Figure 3.1 (c), our method is 7.6× faster than the naive version.

2. Optimization and Experimentation. We carefully fine-tune our algorithm, and we test it on one
of the largest public Web graph ever analyzed, with several billions of nodes and edges, spanning
1/8 of a Terabyte.

3. Observations. Thanks to HADI, we find interesting patterns and observations, like the “Multi-
modal and Bi-modal” pattern, and the surprisingly small effective diameter of the Web. For ex-
ample, see the Multi-modal pattern in the radius plot of Figure 3.1, which also shows the effective
diameter and the center node of the Web (‘google.com’).
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(a) Radius plot of YahooWeb

(b) Radius plot of GCC of YahooWeb

(c) Running time of HADI

Figure 3.1: (a): Radius plot (Count versus Radius) of the YahooWeb graph. Notice the “effective diame-
ter” is surprisingly small. Also notice the peak (marked ‘S’) at radius 2, due to star-structured
disconnected components.
(b): Radius plot of GCC (Giant Connected Component) of YahooWeb graph. The only node
with radius 5 (marked ‘C’) is google.com.
(c): Running time of HADI with/without optimizations for Kronecker and Erdős-Rényi
graphs with billions edges. Run on the M45 HADOOP cluster, using 90 machines for 3 it-
erations. HADI-OPT is up to 7.6× faster than HADI-plain.
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The HADI algorithm (implemented in HADOOP) is available at
http://www.cs.cmu.edu/˜pegasus. The rest of the chapter is organized as follows: Section 3.2
defines related terms and a sequential algorithm for the Radius plot. Section 3.3 describes large scale
algorithms for the Radius plot, and Section 3.4 analyzes the complexity of the algorithms and provides
a possible extension. In Section 3.5 we present timing results, and in Section 3.6 we observe interesting
patterns. After describing backgrounds in Section 3.7, we conclude in Section 3.8.

3.2 Preliminaries; Sequential Radii Calculation

3.2.1 Definitions

In this section, we define several terms related to the radius and the diameter. Recall that, for a node v
in a graph G, the radius r(v) is the distance between v and a reachable node farthest away from v. The
diameter d(G) of a graph G is the maximum radius of nodes v ∈ G. That is, d(G) = maxv r(v) [Lewis.,
2009].

Since the radius and the diameter are susceptible to outliers (e.g., long chains), we follow the litera-
ture [Leskovec et al., 2005] and define the effective radius and diameter as follows.
Definition 1 (Effective Radius). For a node v in a graph G, the effective radius reff (v) of v is the 90th-
percentile of all the shortest distances from v.
Definition 2 (Effective Diameter). The effective diameter deff (G) of a graph G is the minimum number
of hops in which 90% of all connected pairs of nodes can reach each other.

The effective radius is very related to closeness centrality that is widely used in network sciences to
measure the importance of nodes [Newman., 2005]. Closeness centrality of a node v is the mean shortest-
path distance between v and all other nodes reachable from it. On the other hand, the effective radius of v
is 90% quantile of the shortest-path distances. Although their definitions are slightly different, they share
the same spirit and can both be used as a measure of the ‘centrality’, or the time to spread information
from a node to all other nodes.

We will use the following three Radius-based Plots:

1. Static Radius Plot (or just “Radius plot”) of graph G shows the distribution (count) of the effective
radius of nodes at a specific time. See Figure 3.1 and 3.2 for the example radius plots of real-world
and synthetic graphs.

2. Temporal Radius Plot shows the distributions of effective radius of nodes at several timestamps
(see Figure 3.14 for an example).

3. Radius-Degree Plot shows the scatter-plot of the effective radius reff (v) versus the degree dv for
each node v, as shown in Figure 3.12.

Table 3.1 lists the symbols used in this chapter.

3.2.2 Computing Radius and Diameter

To generate the Radius plot, we need to calculate the effective radius of every node. In addition, the
effective diameter is useful for tracking the evolution of networks. Therefore, we describe our algorithm
for computing the effective radius and the effective diameter of a graph. As described in Section 3.7,
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Figure 3.2: Radius plots of real-world and synthetic graphs. (a) and (c) are from the anomalous discon-
nected components of YahooWeb graph. (e) and (g) are synthetic examples to show the radius
plots. ER means the Effective Radius of nodes. A node inside a rounded box represents N
nodes specified in the top area of the box. For example, (c) is a compact representation of a
star graph where the core node at the bottom is connected to 20,871 neighbors. Notice that
Radius plots provide concise summary of the structure of graphs.
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Symbol Definition

n number of nodes in a graph
m number of edges in a graph
h number of hops

N(h) number of node-pairs reachable in ≤ h hops (neighborhood function)
N(h, i) number of neighbors of node i reachable in ≤ h hops
b(h, i) Flajolet-Martin bitstring for node i at h hops
b̂(h, i) Partial Flajolet-Martin bitstring for node i at h hops

Table 3.1: Table of symbols.

existing algorithms do not scale well. To handle graphs with billions of nodes and edges, we use the
following two main ideas:

1. We use an approximation rather than an exact algorithm.
2. We design a parallel algorithm for MAPREDUCE/HADOOP (the algorithm can also run in a parallel

RDBMS).

We first describe why exact computation is infeasible due to the huge output space of O(n2). Assume we
have a ‘set’ data structure that supports two functions: add() for adding an item, and size() for returning
the count of distinct items. With the set, radii of nodes can be computed as follows:

1. For each node i, make a set Si and initialize by adding i to it.
2. For each node i, update Si by adding one-step neighbors of i to Si.
3. For each node i, continue updating Si by adding 2,3,...-step neighbors of i to Si. If the size of Si

before and after the addition does not change, then the node i reached its radius. Iterate until all
nodes reach their radii.

Although simple and clear, the above algorithm requires too much space, O(n2), since there are n nodes
and each node requires n space in the end. Since exact implementation is hopeless, we turn to an ap-
proximation algorithm for the effective radius and the diameter computation. For the purpose, we use
the Flajolet-Martin algorithm [Flajolet and Martin, 1985, Palmer et al., 2002] for counting the number of
distinct elements in a multiset. While many other applicable algorithms exist (e.g., [Beyer et al., 2007,
Charikar et al., 2000, Garofalakis and Gibbons, 2001]), we choose the Flajolet-Martin algorithm because
it gives an unbiased estimate, as well as a tight O(log n) bound for the space complexity [Alon et al.,
1996].

The main idea of Flajolet-Martin algorithm is as follows. We maintain a bitstring BITMAP[0 . . . L− 1] of
length L which encodes the set. For each item to add, we do the following:

1. Pick an index ∈ [0 . . . L− 1] with probability 1/2index+1.
2. Set BITMAP[index] to 1.

Let R denote the index of the leftmost ‘0’ bit in BITMAP. The main result of Flajolet-Martin is that the
unbiased estimate of the size of the set is given by

1

ϕ
2R, (3.1)
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where ϕ = 0.77351 · · · . The more concentrated estimate can be get by using multiple bitstrings and
averaging the R. If we use K bitstrings R1 to RK , the size of the set can be estimated by

1

ϕ
2

1
K

∑K
l=1Rl. (3.2)

Picking an index from an item depend on a value computed from a hash function with the item as an input.
Thus, merging the two set A and B is simply bitwise-OR’ing the bitstrings of A and B without worrying
about the redundant elements. The application of Flajolet-Martin algorithm to radius and diameter estima-
tion is straightforward. We maintain K Flajolet-Martin (FM) bitstrings b(h, i) for each node i and current
hop number h. b(h, i) encodes the number of nodes reachable from node i within h hops, and can be
used to estimate radii and diameter as shown below. The bitstrings b(h, i) are iteratively updated until the
bitstrings of all nodes stabilize. At the h-th iteration, each node receives the bitstrings of its neighboring
nodes, and updates its own bitstrings b(h− 1, i) handed over from the previous iteration:

b(h, i) = b(h− 1, i) BIT-OR {b(h− 1, j)|(i, j) ∈ E}, (3.3)

where “BIT-OR” denotes bitwise-OR function. After h iterations, a node i has K bitstrings that encode
the neighborhood function N(h, i), that is, the number of nodes within h hops from the node i. N(h, i) is
estimated from the K bitstrings by

N(h, i) =
1

0.77351
2

1
K

∑K
l=1 bl(i), (3.4)

where bl(i) is the position of leftmost ‘0’ bit of the lth bitstring of node i. The iterations continue until the
bitstrings of all nodes stabilize, which is a necessary condition that the current iteration number h exceeds
the diameter d(G). After the iterations finish at hmax, we calculate the effective radius for every node and
the diameter of the graph, as follows:

• reff (i) is the smallest h such that N(h, i) ≥ 0.9 ·N(hmax, i).
• deff (G) is the smallest h such that N(h) =

∑
iN(h, i) = 0.9 · N(hmax). If N(h) > 0.9 ·

N(hmax) > N(h − 1), then deff (G) is linearly interpolated from N(h) and N(h − 1). That is,
deff (G) = (h− 1) + 0.9·N(hmax)−N(h−1)

N(h)−N(h−1) .

Algorithm 3.1 shows the summary of the algorithm described above.

The parameter K is typically set to 32 [Flajolet and Martin, 1985], and MaxIter is set to 256 since real
graphs have relatively small effective diameter. The NewFMBitstring() function in line 2 generates K
FM bitstrings [Flajolet and Martin, 1985]. The effective radius reff (i) is determined at line 21, and the
effective diameter deff (G) is determined at line 23.

Algorithm 3.1 runs in O(dm) time, since the algorithm iterates at most d times with each iteration run-
ning in O(m) time. By using approximation, Algorithm 3.1 runs faster than previous approaches (see
Section 3.7 for discussion). However, Algorithm 3.1 is a sequential algorithm and requires O(n log n)
space and thus can not handle extremely large graphs (more than billions of nodes and edges) which do
not fit into a single machine. In the next sections we present efficient parallel algorithms.
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Algorithm 3.1: Computing Radii and Diameter
Input: graph G,

maximum iteration MaxIter, and
number of bitstring K.

Output: reff (i) of every node i, and
diameter deff (G).

1: for i = 1 to n do
2: b(0, i)← NewFMBitstring(n);
3: end for
4: for h = 1 to MaxIter do
5: Changed← 0;
6: for i = 1 to n do
7: for l = 1 to K do
8: bl(h, i)← bl(h− 1, i)BIT-OR{bl(h− 1, j)|∀j adjacent from i};
9: end for

10: if ∃l s.t. bl(h, i) 6= bl(h− 1, i) then
11: increase Changed by 1;
12: end if
13: end for
14: N(h)←

∑
iN(h, i);

15: if Changed equals to 0 then
16: hmax ← h, and break for loop;
17: end if
18: end for
19: for i = 1 to n do
20: // estimate eff. radii
21: reff (i)← smallest h′ where N(h′, i) ≥ 0.9 ·N(hmax, i);
22: end for
23: deff (G)← smallest h′ where N(h′) = 0.9 ·N(hmax);
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3.3 Proposed Method

In the next two sections we describe HADI, a parallel radius and diameter estimation algorithm. As
mentioned in Section 3.2, HADI can run on the top of both a MAPREDUCE system and a parallel SQL
DBMS. In the following, we first describe the general idea behind HADI and show the algorithm for
MAPREDUCE. The algorithm for a parallel SQL DBMS is sketched in Section 3.4.

3.3.1 HADI Overview

HADI follows the flow of Algorithm 3.1; that is, it uses the Flajolet-Martin (FM) bitstrings and iteratively
updates them using the bitstrings of its neighbors. The most expensive operation in Algorithm 3.1 is line
8 where bitstrings of each node are updated. Therefore, HADI focuses on the efficient implementation of
the operation using MAPREDUCE framework.

It is important to notice that HADI is a disk-based algorithm; indeed, memory-based algorithm is not
possible for Tera- and Peta-byte scale data. HADI saves two kinds of information to a distributed file
system (such as HDFS (Hadoop Distributed File System) in the case of HADOOP):

• Edge has a format of (srcid, dstid).
• Bitstrings has a format of (nodeid, bitstring1, ..., bitstringK).

Combining the bitstrings of each node with those of its neighbors is very expensive operation which needs
several optimizations to scale up near-linearly. In the following sections we will describe three HADI

algorithms in a progressive way. That is we first describe HADI-naive, to give the big picture and explain
why such a naive implementation should not be used in practice, then the HADI-plain, and finally HADI-
optimized, the proposed method that should be used in practice.

3.3.2 HADI-naive in MAPREDUCE

HADI-naive is inefficient, but we present it for ease of explanation.

Data. The edge file is saved as a sparse adjacency matrix in HDFS. Each line of the file contains a nonzero
element of the adjacency matrix of the graph, in the format of (srcid, dstid). Also, the bitstrings of each
node are saved in a file in the format of (nodeid, flag, bitstring1, ..., bitstringK). The flag records
information about the status of the nodes (e.g., ‘Changed’ flag to check whether one of the bitstrings
changed or not). Notice that we do not know the physical distribution of the data in HDFS.

Main Program Flow. The main idea of HADI-naive is to use the bitstrings file as a logical “cache” to
machines which contain edge files. The bitstring update operation in Equation (3.3) of Section 3.2 requires
that the machine which updates the bitstrings of node i should have access to (a) all edges adjacent from
i, and (b) all bitstrings of the adjacent nodes. To meet the requirement (a), it is needed to reorganize the
edge file so that edges with a same source id are grouped together. That can be done by using an Identity
mapper which outputs the given input edges in (srcid, dstid) format. The most simple yet naive way to
meet the requirement (b) is sending the bitstrings to every reducer which receives the reorganized edge
file.

Thus, HADI-naive iterates over two-stages of MAPREDUCE. The first stage updates the bitstrings of each
node and sets the ‘Changed’ flag if at least one of the bitstrings of the node is different from the previous
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Figure 3.3: One iteration of HADI-naive. Stage 1. Bitstrings of all nodes are sent to every reducer. Stage
2. Sums up the count of changed nodes.

bitstring. The second stage counts the number of changed nodes and stops iterations when the bitstrings
stabilized, as illustrated in the swim-lane diagram of Figure 3.3.

Although conceptually simple and clear, HADI-naive is unnecessarily expensive, because it ships all the
bitstrings to all reducers. Thus, we propose HADI-plain and additional optimizations, which we explain
next.

3.3.3 HADI-plain in MAPREDUCE

HADI-plain improves HADI-naive by copying only the necessary bitstrings to each reducer. The details
are next.

Data. As in HADI-naive, the edges are saved in the format of (srcid, dstid), and bitstrings are saved in the
format of (nodeid, flag, bitstring1, ..., bitstringK) in files over HDFS. The initial bitstrings generation,
which corresponds to line 1-3 of Algorithm 3.1, can be performed in a completely parallel way. The flag
of each node records the following information:

• Effective Radii and Hop Numbers to calculate the effective radius.
• Changed flag to indicate whether at least a bitstring has been changed or not.

Main Program Flow. As mentioned in the beginning, HADI-plain copies only the necessary bitstrings to
each reducer. The main idea is to replicate bitstrings of node j exactly x times where x is the in-degree
of node j. The replicated bitstrings of node j is called the partial bitstring and represented by b̂(h, j).
The replicated b̂(h, j)’s are used to update b(h, i), the bitstring of node i where (i, j) is an edge in the
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Figure 3.4: One iteration of HADI-plain. Stage 1. Edges and bitstrings are matched to create partial
bitstrings. Stage 2. Partial bitstrings are merged to create full bitstrings. Stage 3. Sums up
the count of changed nodes, and compute N(h), the neighborhood function. Computing N(h)
is not drawn in the figure for clarity.

graph. HADI-plain iteratively runs three-stage MAPREDUCE jobs until all bitstrings of all nodes stop
changing. Algorithm 3.2, 3.3, and 3.4 shows HADI-plain, and Figure 3.4 shows the swim-lane. We use
h for denoting the current iteration number which starts from h=1. Output(a,b) means to output a pair of
data with the key a and the value b.

Stage 1. We generate (key, value) pairs, where the key is the node id i and the value is the partial bitstrings
b̂(h, j)’s where j ranges over all the neighbors adjacent from node i. To generate such pairs, the bitstrings
of node j are grouped together with edges whose dstid is j. Notice that at the very first iteration, bitstrings
of nodes do not exist; they have to be generated on the fly, and we use the Bitstring Creation Command
for that. Notice also that line 22 of Algorithm 3.2 is used to propagate the bitstrings of one’s own node.
These bitstrings are compared to the newly updated bitstrings at Stage 2 to check convergence.

Stage 2. Bitstrings of node i are updated by combining partial bitstrings of itself and nodes adjacent
from i. For the purpose, the mapper is the Identity mapper (output the input without any modification).
The reducer combines them, generates new bitstrings, and sets flag by recording (a) whether at least a
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Algorithm 3.2: HADI Stage 1
Input: edge data E = {(i, j)}, and

current bitstring B = {(i, b(h− 1, i))} or Bitstring Creation Command BC = {(i, cmd)}.
Output: partial bitstring B′ = {(i, b(h− 1, j))}.

1: Stage1-Map(Key k, Value v):
2: if (k, v) is of type B or BC then
3: Output(k, v);
4: else if (k, v) is of type E then
5: Output(v, k);
6: end if
7:

8: Stage1-Reduce(Key k, Value v[1..r]):
9: SRC← [];

10: for z ∈ v[1..r] do
11: if (k, z) is of type BC then
12: b̂(h− 1, k)←NewFMBitstring();
13: else if (k, z) is of type B then
14: b̂(h− 1, k)← z;
15: else if (k, z) is of type E then
16: Add z to SRC;
17: end if
18: end for
19: for src ∈ SRC do
20: Output(src, b̂(h− 1, k));
21: end for
22: Output(k, b̂(h− 1, k));
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Algorithm 3.3: HADI Stage 2

Input: partial bitstring B = {(i, b̂(h− 1, j)}.
Output: full bitstring B = {(i, b(h, i)}.

1: Stage2-Map(Key k, Value v): // Identity Mapper
2: Output(k, v);
3:

4: Stage2-Reduce(Key k, Value v[1..r]):
5: b(h, k)← 0;
6: for z ∈ v[1..r] do
7: b(h, k)← b(h, k) BIT-OR z;
8: end for
9: Update flag of b(h, k);

10: Output(k, b(h, k));

Algorithm 3.4: HADI Stage 3
Input: full bitstring B = {(i, b(h, i))}.
Output: number of changed nodes, and

neighborhood N(h).
1: Stage3-Map(Key k, Value v):
2: Analyze v to get (changed, N(h, i));
3: Output(key for changed,changed);
4: Output(key for neighborhood, N(h, i));
5:

6: Stage3-Reduce(Key k, Value v[1..r]):
7: Changed← 0;
8: N(h)← 0;
9: for z ∈ v[1..r] do

10: if k is key for changed then
11: Changed← Changed+ z;
12: else if k is key for neighborhood then
13: N(h)← N(h) + z;
14: end if
15: end for
16: Output(key for changed,Changed);
17: Output(key for neighborhood, N(h));

bitstring changed or not, and (b) the current iteration number h and the neighborhood valueN(h, i) (line 9
of Algorithm 3.3). This h and N(h, i) are used to calculate the effective radius of nodes after all bitstrings
converge, i.e., do not change. Notice that only the last neighborhood N(hlast, i) and other neighborhoods
N(h′, i) that satisfy N(h′, i) ≥ 0.9 · N(hlast, i) need to be saved to calculate the effective radius. The
output of Stage 2 is fed into the input of Stage 1 at the next iteration.

Stage 3. We calculate the number of changed nodes and sum up the neighborhood value of all nodes
to calculate N(h). We use only two unique keys (key for changed and key for neighborhood), which
correspond to the two calculated values. The analysis of line 2 of Algorithm 3.4 can be done by checking
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Figure 3.5: Converting the original edge and bitstring to blocks. The 4-by-4 edge and length-4 bitstring
are converted to 2-by-2 super-elements and length-2 super-bitstrings. Notice the lower-left
super-element of the edge is not produced since there is no nonzero element inside it.

the flag field and using Equation (3.4) in Section 3.2. The variable changed is set to 1 or 0, based on
whether the bitmask of node k changed or not.

When all bitstrings of all nodes converged, a MAPREDUCE job to finalize the effective radius and diameter
is performed and the program finishes. Compared to HADI-naive, the advantage of HADI-plain is clear:
bitstrings and edges are evenly distributed over machines so that the algorithm can handle as much data
as possible, given sufficiently many machines.

3.3.4 HADI-optimized in MAPREDUCE

HADI-optimized further improves HADI-plain. It uses two orthogonal ideas: “block operation” and “bit
shuffle encoding”. Both try to address some subtle performance issues. Specifically, HADOOP has the
following two major bottlenecks:

• Materialization: at the end of each map/reduce stage, the output is written to the disk, and it is also
read at the beginning of next reduce/map stage.

• Sorting: at the Shuffle stage, data is sent to each reducer and sorted before they are handed over to
the Reduce stage.

HADI-optimized addresses these two issues.

Block Operation. Our first optimization is the block encoding of the edges and the bitstrings. The main
idea is to group w by w sub-matrix into a super-element in the adjacency matrix E, and group w bitstrings
into a super-bitstring. Now, HADI-plain is performed on these super-elements and super-bitstrings, instead
of the original edges and bitstrings. Of course, appropriate decoding and encoding are necessary at each
stage. Figure 3.5 shows an example of converting data into block-format.

By this block operation, the performance of HADI-plain changes as follows:

• Input size decreases in general, since we can use fewer bits to index elements inside a block.
• Sorting time decreases, since the number of elements to sort decreases.
• Network traffic decreases since the result of matching a super-element and a super-bitstring is a

bitstring which can be at maximum block width times smaller than that of HADI-plain.
• Map and Reduce functions take more time, since the block must be decoded to be processed, and

be encoded back to block format.
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For reasonable-size blocks, the performance gains (smaller input size, faster sorting time, less network
traffic) outweigh the delays (more time to perform the map and reduce function). Also notice that the
number of edge blocks depends on the community structure of the graph: if the adjacency matrix is nicely
clustered, we will have fewer blocks. See Section 3.5, where we show results from block-structured graphs
(‘Kronecker graphs’ [Leskovec et al., 2005]) and from random graphs (‘Erdős-Rényi graphs’ [Erdős and
Rényi, 1959]).

Bit Shuffle Encoding. In our effort to decrease the input size, we propose an encoding scheme that can
compress the bitstrings. Recall that in HADI-plain, we use K (e.g., 32, 64) bitstrings for each node, to
increase the accuracy of our estimator. Since HADI requires O(K(m + n) log n) space, the amount of
data increases when K is large. For example, the YahooWeb graph in Section 3.6 spans 120 GBytes
(with 1.4 billion nodes, 6.6 billion edges). However the required disk space for just the bitstrings is
32 · (1.4B + 6.6B) · 8 byte = 2 Tera bytes (assuming 8 byte for each bitstring), which is more than 16
times larger than the input graph.

The main idea of Bit Shuffle Encoding is to carefully reorder the bits of the bitstrings of each node, and
then use Run Length Encoding. By construction, the leftmost part of each bitstring is almost full of
one’s, and the rest is almost full of zeros. Specifically, we make the reordered bit strings to contain long
sequences of 1’s and 0’s: we get all the first bits from all K bitstrings, then get the second bits, and so on.
As a result we get a single bit-sequence of length K · |bitstring|, where most of the first bits are ‘1’s, and
most of the last bits are ‘0’s. Then we encode only the length of each bit sequence, achieving good space
savings (and, eventually, time savings, through fewer I/Os).

3.4 Analysis and Discussion

In this section, we analyze the time/space complexity of HADI and its possible implementation on RDBMS.

3.4.1 Time and Space Analysis

We analyze the time and the space complexities of HADI with s machines for a graph G with diameter
d.
Lemma 3.1 (Time Complexity of HADI). HADI takes O(d(|V |+|E|)s log |V |+|E|s ) time.

Proof. In all stages, HADI has O(|input size|/s) running time. The Shuffle steps after Stage1 takes
O( |V |+|E|s log |V |+|E|s ) time which dominates the time complexity.

Notice that the time complexity of HADI is less than previous approaches in Section 3.7 (O(|V |2+|V ||E|),
at best). Similarly, for space we have:
Lemma 3.2 (Space Complexity of HADI). HADI requires O((|V |+ |E|) log |V |) space.

Proof. The maximum space k · ((|V |+ |E|) log |V |) is required at the output of Stage1-Reduce. Since
k is a constant, the space complexity is O((|V |+ |E|) log |V |).
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SELECT INTO B NEW E.src, BIT-OR(B.b)
FROM E, B
WHERE E.dst=B.id
GROUP BY E.src

Table 3.2: SQL statement for updating bitstrings in parallel RDMBS.

3.4.2 HADI in parallel DBMSs

Using relational database management systems (RDBMS) for graph mining is a promising research di-
rection, especially given the findings of [Pavlo et al., 2009]. We mention that HADI can be implemented
on the top of an Object-Relational DBMS (parallel or serial): it needs repeated joins of the edge table
with the appropriate table of bit-strings, and a user-defined function for bit-OR-ing. We sketch a potential
implementation of HADI in a RDBMS. The generalization of the HADI algorithm in a RDBMS will be
discussed in Section 4.2.1.

Data. In parallel RDBMS implementations, data is saved in tables. The edges are saved in the table E
with attributes src (source node id) and dst (destination node id). Similarly, the bitstrings are saved in the
table B with id (node id) and b (bitstring) as its attributes.

Main Program Flow. The main flow comprises iterative execution of SQL statements with appropriate
UDF (user defined function)s. The most important and expensive operation is updating the bitstrings of
nodes. Observe that the operation can be concisely expressed by the following SQL statement:

The SQL statement requires BIT-OR(), a UDF function that implements the bit-OR-ing of the Flajolet-
Martin bitstrings. The RDBMS implementation iteratively runs the SQL until B NEW is same as B.
B NEW created at an iteration is used as B at the next iteration.

3.5 Scalability of HADI

In this section, we perform experiments to answer the following questions:

Q1 How fast is HADI?
Q2 How does it scale up with the graph size and the number of machines?
Q3 How do the optimizations help performance?

3.5.1 Experimental Setup

We use both real and synthetic graphs in Table 3.3 whose entries are repeated from Table 2.2 for conve-
nience.

For the performance experiments, we use synthetic Kronecker (using a 3-nodes chain graph as an initiator)
and Erdős-Rényi graphs. The reason of this choice is that we can generate any size of these two types
of graphs, and Kronecker graphs mirror several real-world graph characteristics, including small and
constant diameters, power-law degree distributions, etc. The number of nodes and edges of Erdős-Rényi
graphs have been set to the same as those of the corresponding Kronecker graphs. The main difference of
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Graph Nodes Edges File Size Type Description

YahooWeb 1.4 B 6.6 B 0.12 TB real WWW links in 2002
LinkedIn 7.5 M 58 MB 1 GB real person-person in 2006

4.4 M 27 MB 490 MB person-person in 2005
1.6 M 6.8 MB 121 MB person-person in 2004
85 K 230 KB 4 MB person-person in 2003

Patents 6 M 16 M 264 MB real patent-patent
Kronecker 177 K 2 B 25 GB synthetic from Kronecker generator [Leskovec et al., 2005]

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB

Erdős-Rényi 177 K 2 B 25 GB synthetic random Gn,p

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB

Table 3.3: Datasets. B: Billion, M: Million, K: Thousand, TB: Terabytes, GB: Gigabytes, MB:
Megabytes.

Kronecker compared to Erdős-Rényi graphs is the emergence of a block-wise structure of the adjacency
matrix, from its construction [Leskovec et al., 2005]. We will see how this characteristic affects in the
running time of our block-optimization in the next sections.

HADI runs on M45, one of the fifty most powerful supercomputers in the world. M45 has 480 hosts (each
with 2 quad-core Intel Xeon 1.86 GHz, running RHEL5), with 3.5 Terabytes aggregate RAM, and over
1.5 Petabytes disk size.

Finally, we use the following notations to indicate different optimizations of HADI:

• HADI-BSE: HADI-plain with bit shuffle encoding.
• HADI-BL: HADI-plain with block operation.
• HADI-OPT: HADI-plain with both bit shuffle encoding and block operation.

3.5.2 Running Time and Scale-up

Figure 3.6 gives the wall-clock time of HADI-OPT versus the number of edges in the graph. Each curve
corresponds to a different number of machines used (from 10 to 90). HADI has excellent scalability,
with its running time being linear on the number of edges. The rest of the HADI versions (HADI-plain,
HADI-BL, and HADI-BSE), were slower, but had a similar, linear trend, and they are omitted to avoid
clutter.

Figure 3.7 gives the throughput 1/TM of HADI-OPT. We also tried HADI with one machine; however it
did not complete, since the machine would take so long that it would often fail in the meanwhile. For this
reason, we do not report the typical scale-up score s = T1/TM (ratio of time with 1 machine, over time
with M machine), and instead we report just the inverse of TM . HADI scales up near-linearly with the
number of machines M , close to the ideal scale-up.
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3.5.3 Effect of Optimizations

Among the optimizations that we mentioned earlier, which one helps the most, and by how much? Fig-
ure 3.1 (c) plots the running time of different graphs versus different HADI optimizations. For the Kro-
necker graphs, we see that block operation is more efficient than bit shuffle encoding. Here, HADI-OPT
achieves 7.6× better performance than HADI-plain. For the Erdős-Rényi graphs, however, we see that
block operations do not help more than bit shuffle encoding, because the adjacency matrix has no block
structure, while Kronecker graphs do. Also notice that HADI-BLK and HADI-OPT run faster on Kro-
necker graphs than on Erdős-Rényi graphs of the same sizes. Again, the reason is that Kronecker graphs
have fewer nonzero blocks (i.e., “communities”) by their construction, and the “block” operation yields
more savings.

3.6 HADI At Work

HADI reveals new patterns in massive graphs which we present in this section.

3.6.1 Static Patterns

Diameter

What is the diameter of the Web? Albert et al. [Albert et al., 1999] computed the diameter on a directed
Web graph with ≈ 0.3 million nodes, and conjectured that it is around 19 for the 1.4 billion-node Web
as shown in the upper line of Figure 3.8. Broder et al. [Broder et al., 2000] used sampling from ≈ 200
million-nodes Web and reported 16.15 and 6.83 as the diameter for the directed and the undirected cases,
respectively. What should be the effective diameter, for a significantly larger crawl of the Web, with
billions of nodes? Figure 3.1 gives the surprising answer:
Observation 1 (Small Web). The effective diameter of the YahooWeb graph (year: 2002) is surprisingly
small (≈ 7 ∼ 8).

The previous results from Albert et al. and Broder et al. are based on the average diameter. For the
reason, we also computed the average diameter and show the comparison of diameters of different graphs
in Figure 3.8. We first observe that the average diameters of all graphs are relatively small (< 20) for both
the directed and the undirected cases. We also observe that the Albert et al.’s conjecture of the diameter
of the directed graph is over-pessimistic: both the sampling and HADI reported smaller values for the
diameter of the directed graph. For the diameter of the undirected graph, we observe the constant or
shrinking diameter pattern [Leskovec et al., 2007].

Shape of Distribution

The next question is, how are the radii distributed in real networks? Is it Poisson? Lognormal? Figure 3.1
gives the surprising answer: multimodal! In other relatively small networks, however, we observed bi-
modal structures. As shown in the Radius plots of U.S. Patent and LinkedIn networks in Figure 3.9, they
have a peak at zero, a dip at a small radius value (9, and 4, respectively) and another peak very close
to the dip. Given the prevalence of the bi-modal shape, our conjecture is that the multi-modal shape of
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Figure 3.8: Average diameter vs. number of nodes in lin-log scale for the three different Web graphs,
where M and B represent millions and billions, respectively. (0.3M): Web pages inside nd.edu
at 1999, from Albert et al.’s work. (203M): Web pages crawled by Altavista at 1999, from
Broder et al.’s work (1.4B): Web pages crawled by Yahoo at 2002 (YahooWeb in Table 3.3).
The annotations (Albert et al., Sampling, and HADI) near the points represent the algorithms
for computing the diameter. The Albert et al.’s algorithm seems to be an exact breadth first
search, although not clearly specified in their paper. Notice the relatively small diameters for
both the directed and the undirected cases. Also notice that the diameters of the undirected
Web graphs remain near-constant.

YahooWeb is possibly due to a mixture of relatively smaller sub-graphs, which got loosely connected
recently.
Observation 2 (Multi-modal and Bi-modal). The Radius distribution of the Web graph has a multi-modal
structure. Many smaller networks have the bi-modal structure.

About the bi-modal structure, a natural question to ask is what are the common properties of the nodes that
belong to the first peak; similarly, for the nodes in the first dip, and the same for the nodes of the second
peak. After investigation, the former are nodes that belong to the disconnected components (DCs); nodes
in the dip are usually core nodes in the giant connected component (GCC), and the nodes at the second
peak are the vast majority of well connected nodes in the GCC. Figure 3.10 exactly shows the radii distri-
bution for the nodes of the GCC (in blue), and the nodes of the few largest remaining components.

In Figure 3.10, we clearly see that the second peak of the bimodal structure came from the giant connected
component. But, where does the first peak around radius 0 come from? We can get the answer from
the distribution of connected component of the same graph in Figure 3.11. Since the ranges of radius
are limited by the size of connected components, we see the first peak of Radius plot came from the
disconnected components whose size follows a power law.

Now we can explain the three important areas of Figure 3.9: ‘outsiders’ are the nodes in the disconnected
components, and responsible for the first peak and the negative slope to the dip. ‘Core’ are the central
nodes with the smallest radii from the giant connected component. ‘Whiskers’ [Leskovec et al., 2008] are
the nodes connected to the GCC with long paths (resembling a whisker), and are the reasons of the second
negative slope.
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(a) U.S. Patent (b) LinkedIn

Figure 3.9: Static Radius Plot (Count versus Radius) of U.S. Patent and LinkedIn graphs. Notice the
bi-modal structure with ‘outsiders’ (nodes in the DCs), ‘core’ (central nodes in the GCC),
and ‘whiskers’ (nodes connected to the GCC with long paths).

Figure 3.10: Radius plot (Count versus radius) for several connected components of the U.S. Patent data
in 1985. In blue: the distribution for the GCC (Giant Connected Component); rest colors:
several DC (Disconnected Component)s.
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(a) Patent (b) LinkedIn

Figure 3.11: Size distribution of connected components. Notice the size of the disconnected components
(DCs) follows a power-law which explains the first peak around radius 0 of the radius plots
in Figure 3.9.

Radius plot of GCC

Figure 3.1 (b) shows a striking pattern: all nodes of the GCC of the YahooWeb graph have radius 6 or
more, except for 1 node (only!). Inspection shows that this is google.com. We were surprised, because
we would expect a few more popular nodes to be in the same situation (eg., Yahoo, eBay, Amazon).

“Core” and “Whisker” nodes

The next question is, what can we say about the connectivity of the core nodes, and the whisker nodes?
For example, is it true that the highest degree nodes are the most central ones (i.e. minimum radius)? The
answer is given by the “Radius-Degree” plot in Figure 3.12: this is a scatter-plot, with one dot for every
node, plotting the degree of the node versus its radius. We also color-coded the nodes of the GCC (in
blue), while the rest are in magenta.
Observation 3 (High degree nodes). High degree nodes have relatively small radii. The highest degree
node (a) belongs to the core nodes inside the GCC but (b) is not necessarily the one with the smallest
radius.
Observation 4 (Whisker nodes). Whisker nodes have small degree, that is, they belong to chains (as
opposed to more complicated shapes).

Radius plots of anomalous DCs

Observation 5 (Anomalous Radius Plot). The radius plots of some of the largest disconnected components
of YahooWeb graph show anomalous radius distributions as opposed to the bi-modal distribution.

The graph in Figure 3.2 (a) is the largest disconnected component which has a near-bipartite-core structure.
The component is very likely to be a link farm since almost all the nodes are connected to the three nodes
at the bottom center with the effective radius 1. Similarly, we observed many star-shaped disconnected
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(a) Patent

(b) YahooWeb

(c) LinkedIn

Figure 3.12: Radius-Degree plots of real-world graphs. HD represents the node with the highest degree.
Notice that HD belongs to core nodes inside the GCC, and whiskers have small degree.
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(a) Patent (b) LinkedIn

Figure 3.13: Evolution of the effective diameter of real graphs. The diameter increases until a ‘gelling’
point, and starts to decrease after the point.

components as shown in Figure 3.2 (c). This is also a strong candidate for a link farm, where a node with
the effective radius 1 is connected to all the other nodes with the effective radius 2.

3.6.2 Temporal Patterns

Here we study how the radius distribution changes over time. We know that the diameter of a graph
typically grows with time, spikes at the ‘gelling point’ (the point when a GCC emerges), and then
shrinks [Mcglohon et al., 2008, Leskovec et al., 2007]. Indeed, this holds for our datasets as shown in
Figure 3.13.

The question is, how does the radius distribution change over time? Does it still have the bi-modal pattern?
Do the peaks and slopes change over time? We show the answer in Figure 3.14 and Observation 6.
Observation 6 (Expansion-Contraction). The radius distribution expands to the right until it reaches the
gelling point. Then, it contracts to the left.

Another striking observation is that the decreasing segments seem to be well fit by a line, in log-lin axis,
thus indicating an exponential decay.
Observation 7 (Exponential Decays). The decreasing segments of several, real radius plots seem to decay
exponentially, that is

count(r) ∝ exp (−cr) (3.5)

for every time tick after the gelling point. count(r) is the number of nodes with radius r, and c is a
constant.

For the Patent and LinkedIn graphs, the correlation coefficient was excellent (typically, -0.98 or bet-
ter).
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(a) Patent-Expansion (b) Patent-Contraction

(c) LinkedIn-Expansion (d) LinkedIn-Contraction

Figure 3.14: Radius distribution over time. “Expansion”: the radius distribution moves to the right until
the gelling point. “Contraction”: the radius distribution moves to the left after the gelling
point.
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3.7 Background

We briefly review related works on algorithms for radius and diameter computation. The typical al-
gorithms to compute the radius and the diameter of a graph include Breadth First Search (BFS) and
Floyd’s algorithm [Cormen et al., 1990]. Both approaches are prohibitively slow for large graphs, requir-
ing O(|V |2 + |V ||E|) and O(|V |3) time. For the same reason, related BFS or all-pair shortest-path based
algorithms like [Ferrez et al., 1998, Bader and Madduri, 2008, Ma and Ma, 1993, Sinha et al., 1986]
can not handle large graphs. A sampling approach starts BFS from a subset of nodes, typically chosen
at random as in [Broder et al., 2000]. Despite its practicality, this approach has no obvious solution for
choosing the representative sample for BFS.

3.8 Conclusion

In this chapter, we design HADI, an algorithm for computing radii and diameter of Tera-byte scale graphs,
and analyze large networks to observe important patterns. The contributions of this chapter are the fol-
lowing:

• Design. We develop HADI, a scalable MAPREDUCE algorithm for diameter and radius estimation,
on massive graphs.

• Optimization. Careful fine-tunings on HADI, leading to up to 7.6× faster computation, linear
scalability on the size of the graph (number of edges) and near-linear speed-up on the number
of machines. The experiments run on the M45 HADOOP cluster of Yahoo, one of the 50 largest
supercomputers in the world.

• Observations. Thanks to HADI, we study the diameter and radii distribution of one of the largest
public Web graphs ever analyzed (over 6 billion edges); we also observe the “Small Web” phe-
nomenon, multi-modal/bi-modal radius distributions, and palindrome motions of radius distribu-
tions over time in real networks.
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Chapter 4

Generalized Iterative Matrix-Vector
Multiplication

In this chapter, we generalize the HADI operation (Chapter 3) to propose a graph mining primitive called
Generalized Iterated Matrix-Vector multiplication (GIM-V) which unifies many graph mining operations
including PageRank, diameter estimation, connected components, and etc. GIM-V is highly optimized,
achieving (a) good scale-up on the number of available machines, (b) linear running time on the number
of edges, and (c) more than 5 times faster performance over the non-optimized version of GIM-V.

We run experiments on M45, and report our findings on several real graphs, including one of the largest
publicly available Web graphs, thanks to Yahoo!, with ≈ 6,7 billion edges.

4.1 Introduction

How can we analyze the structure (e.g. connected components, PageRank, etc.) of very large graphs with
billions of nodes and edges? How do we unify many different graph mining algorithms? In this chapter
we introduce a general primitive called Generalized Iterated Matrix-Vector multiplication (GIM-V) which
unifies many different graph mining operations, and use it to analyze real world graphs. The contributions
are the following:

1. Unification of seemingly different graph mining tasks, via a generalization of matrix-vector multi-
plication (GIM-V).

2. The careful implementation of GIM-V, with several optimizations, and several graph mining oper-
ations (PageRank, Random Walk with Restart (RWR), diameter estimation, and connected compo-
nents). Moreover, the method is linear on the number of edges, and scales up well with the number
of available machines.

3. Performance analysis, pinpointing the most successful combination of optimizations, which lead to
up to 5 times better speed than naive implementation.

4. Analysis of large, real graphs, including one of the largest publicly available graph that was ever
analyzed, Yahoo’s Web graph.

The rest of the chapter is organized as follows. Section 4.2 describes our framework and explains several
graph mining algorithms. Section 4.3 discusses optimizations that allow us to achieve significantly faster
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Symbol Definition

M a matrix
v a vector
A adjacency matrix of a graph
D diagonal matrix induced from A such that Dii =

∑
j Aij

Table 4.1: Table of symbols.

performance in practice. In Section 4.4 we present timing results and Section 4.5 our findings in real world,
large scale graphs. After presenting the related work in Section 4.6, we conclude in Section 4.7.

Table 4.1 lists the symbols frequently used in this chapter.

4.2 Proposed Method

How can we quickly find connected components, diameter, PageRank, node proximities of very large
graphs? We show that, even if they seem unrelated, eventually we can unify them using the GIM-V primi-
tive, standing for Generalized Iterative Matrix-Vector multiplication, which we describe in the next.

4.2.1 Main Idea

GIM-V, or ‘Generalized Iterative Matrix-Vector multiplication’ is a generalization of normal matrix-
vector multiplication. Suppose we have a n by n matrix M and a vector v of size n. Let mi,j denote
the (i, j)-th element of M . Then the usual matrix-vector multiplication is

M × v = v′ where v′i =
∑n

j=1mi,jvj .

There are three operations in the previous formula, which, if customized separately, will give a surprising
number of useful graph mining algorithms:

1. combine2: multiply mi,j and vj .
2. combineAlli: sum n multiplication results for node i.
3. assign: overwrite the previous value of vi with the new result to make v′i.

In GIM-V, let us define the operator ×G, where the three operations can be defined arbitrarily. Formally,
we have:

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j = 1..n, and xj =combine2(mi,j , vj)})).

The functions combine2(), combineAlli(), and assign() have the following signatures (generaliz-
ing the product, the sum and the assignment, respectively, that the traditional matrix-vector multiplication
requires):

1. combine2(mi,j , vj) : combine mi,j and vj .
2. combineAlli(x1, ..., xn) : combine all the results from combine2() for node i.
3. assign(vi, vnew) : decide how to update vi with vnew.
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SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

Table 4.2: GIM-V in terms of SQL.

The ‘Iterative’ in the name of GIM-V denotes that we apply the ×G operation until an algorithm-specific
convergence criterion is met. As we will see in a moment, by customizing these operations, we can obtain
different, useful algorithms including PageRank, Random Walk with Restart, connected components, and
diameter estimation. But first we want to highlight the strong connection of GIM-V with SQL: when
combineAlli() and assign() can be implemented by user defined functions, the operator ×G can be
expressed concisely in terms of SQL. This viewpoint is important when we implement GIM-V in large
scale parallel processing platforms, including HADOOP, if they can be customized to support several SQL
primitives including JOIN and GROUP BY. Suppose we have an edge table E(sid, did, val) and
a vector table V(id, val), corresponding to a matrix and a vector, respectively. Then, ×G corre-
sponds to the SQL statement in Table 4.2. We assume that we have (built-in or user-defined) functions,
combineAlli() and combine2(), and we also assume that the resulting table/vector will be fed into
the assign() function (omitted, for clarity).

In the following sections we show how we can customize GIM-V, to handle important graph mining
operations including PageRank, Random Walk with Restart, diameter estimation, and connected compo-
nents.

4.2.2 GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous algorithm used by Google to calculate relative
importance of Web pages [Brin and Page, 1998]. The PageRank vector p of n Web pages satisfies the
following eigenvector equation:

p = (cATD−1 + (1− c)U)p ,

where c is a damping factor (usually set to 0.85), AT is the transpose of the n by n adjacency matrix A,
D is the diagonal matrix whose ith element Dii is

∑
j Aij , and U is a n by n matrix with all elements set

to 1/n.

To calculate the eigenvector p we can use the “power method”, which multiplies an initial vector with the
matrix, several times. We initialize the current PageRank vector pcur and set all its elements to 1/n. Then
the next PageRank vector pnext is calculated by pnext = (cATD−1 + (1 − c)U)pcur. We continue to do
the multiplication until p converges.

PageRank is a direct application of GIM-V. In this view, we first construct a matrix M = ATD−1, which
is the column-normalized adjacency matrix. Then the next PageRank is calculated by pnext = M ×G pcur
where the three operations are defined as follows:

1. combine2(mi,j , vj) = c×mi,j × vj .
2. combineAlli(x1, ..., xn) = (1−c)

n +
∑n

j=1 xj .
3. assign(vi, vnew) = vnew.
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4.2.3 GIM-V and Random Walk with Restart

Random Walk with Restart (RWR) is an algorithm to measure the proximity of nodes in graph [Pan et al.,
2004]. In RWR, the proximity vector rk from node k indicates how close other nodes are to node k. It
satisfies the equation:

rk = cATD−1rk + (1− c)ek ,

where ek is a n-vector whose kth element is 1, and every other elements are 0. c is a restart probability
parameter which is typically set to 0.85 [Pan et al., 2004], AT is the transpose of the n by n adjacency
matrix A, and D is the diagonal matrix whose ith element Dii is

∑
j Aij , as in Section 4.2.2. In GIM-V,

RWR is formulated by rnextk = M ×G rcurk , where M = ATD−1 is the column-normalized adjacency
matrix. The three operations are defined as follows ( δik is the Kronecker delta, equal to 1 if i = k and 0
otherwise):

1. combine2(mi,j , vj) = c×mi,j × vj .
2. combineAlli(x1, ..., xn) = (1− c)δik +

∑n
j=1 xj .

3. assign(vi, vnew) = vnew.

4.2.4 GIM-V and Diameter Estimation

HADI, which is described in Chapter 3, is an algorithm to estimate the diameter and radius of large graphs.
The main operation of HADI is updating the number of neighbors as h increases. Specifically, the number
of neighbors within hop h reachable from node vi is encoded in a probabilistic bitstring bhi which is
updated as follows:

bh+1
i = bhi BITWISE-OR {bhk | (i, k) ∈ E},

where E is the set of edges. In GIM-V, the bitstring update of HADI is represented by

bh+1 = M ×G bh ,

where M is the adjacency matrix, bh+1 is a vector of length n which is updated by
bh+1
i =assign(bhi ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j , b

h
j )})),

and the three operations are defined as follows:

1. combine2(mi,j , vj) = mi,j × vj .
2. combineAlli(x1, ..., xn) = BITWISE-OR{xj | j = 1..n}.
3. assign(vi, vnew) = BITWISE-OR(vi, vnew).

The ×G operation is run iteratively until the bitstring for all the nodes do not change.

4.2.5 GIM-V and Connected Components

We propose HCC, a new algorithm for finding connected components in large graphs. Like HADI, HCC

is an application of GIM-V with custom functions. The main idea is as follows. For every node vi in the
graph, we maintain a component id chi which is the minimum node id within h hops from vi. Initially,
chi of vi is set to its own node id: that is, c0i = i. For each iteration, each node sends its current chi to
its neighbors. Then ch+1

i , component id of vi at the next step, is set to the minimum value among its
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current component id and the received component ids from its neighbors. The crucial observation is that
this communication between neighbors can be formulated in GIM-V as follows:

ch+1 = M ×G ch ,

where M is the adjacency matrix, ch+1 is a vector of length n which is updated by
ch+1
i =assign(chi ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j , c

h
j )})),

and the three operations are defined as follows:

1. combine2(mi,j , vj) = mi,j × vj .
2. combineAlli(x1, ..., xn) = MIN{xj | j = 1..n}.
3. assign(vi, vnew) = MIN(vi, vnew).

By repeating this process, component ids of nodes in a component are set to the minimum node id of the
component. We iteratively do the multiplication until component ids converge. The upper bound of the
number of iterations in HCC are determined by the following theorem.
Theorem 4.1 (Upper bound of iterations in HCC). HCC requires maximum d iterations where d is the
diameter of the graph.

Proof. The minimum node id is propagated to its neighbors at most d times.

Since the diameter of real graphs are relatively small, HCC completes after small number of iterations.

4.3 Fast Algorithms for GIM-V

How can we parallelize the algorithm presented in the previous section? In this section, we first describe
naive HADOOP algorithms for GIM-V. Then we propose several faster methods for GIM-V.

4.3.1 GIM-V BASE: Naive Multiplication

GIM-V BASE is a two-stage algorithm whose pseudo code is shown in Algorithm 4.1 and 4.2. The
inputs are an edge file and a vector file. Each line of the edge file contains one (idsrc, iddst,mval) which
corresponds to a non-zero cell in the adjacency matrix M . Similarly, each line of the vector file contains
one (id, vval) which corresponds to an element in the vector V . Stage1 performs combine2 operation
by combining columns of matrix (iddst of M ) with rows of vector (id of V ). The output of Stage1 are
(key, value) pairs where key is the source node id of the matrix (idsrc of M ) and the value is the partially
combined result (combine2(mval, vval)). This output of Stage1 becomes the input of Stage2.
Stage2 combines all partial results from Stage1 and assigns the new vector to the old vector. The
combineAlli() and assign() operations are done in line 15 of Stage2, where the “self” and “others”
tags in line 15 and line 21 of Stage1 are used to make vi and vnew of GIM-V, respectively.

This two-stage algorithm is run iteratively until application-specific convergence criterion is met. In Al-
gorithm 4.1 and 4.2, Output(k, v) means to output data with the key k and the value v.

39



Algorithm 4.1: GIM-V BASE Stage 1.
Input: matrix M = {(idsrc, (iddst,mval))}, and

vector x = {(id, vval)}.
Output: partial vector x′ = {(idsrc,combine2(mval, vval)}.

1: Stage1-Map(Key k, Value v):
2: if (k, v) is of type x then
3: Output(k, v); // (k: id, v: vval)
4: else if (k, v) is of type M then
5: (iddst,mval)← v;
6: Output(iddst, (k,mval)); // (k: idsrc)
7: end if
8:

9: Stage1-Reduce(Key k, Value v[1..r]):
10: saved kv ←[ ];
11: saved v ←[ ];
12: for z ∈ v[1..r] do
13: if (k, z) is of type x then
14: saved v ← z;
15: Output(k, (“self”, saved v));
16: else if (k, z) is of type M then
17: Add z to saved kv; // (z: (idsrc,mval))
18: end if
19: end for
20: for (id′src,mval

′) ∈ saved kv do
21: Output(id′src, (“others”,combine2(mval′, saved v)));
22: end for

4.3.2 GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm for GIM-V which is based on block multiplication. The main idea is to
group elements of the input matrix into blocks or submatrices of size b by b. Also we group elements
of input vectors into blocks of length b. Here the grouping means we put all the elements in a group
into one line of input file. Each block contains only non-zero elements of the matrix or vector. The for-
mat of a matrix block with k nonzero elements is (rowblock, colblock, rowelem1 , colelem1 ,mvalelem1 , ...,
rowelemk

, colelemk
,mvalelemk

). Similarly, the format of a vector block with k nonzero elements is
(idblock, idelem1 , vvalelem1 , ..., idelemk

, vvalelemk
). Only blocks with at least one nonzero elements are

saved to disk. This block encoding forces nearby edges in the adjacency matrix to be closely located; it
is different from HADOOP’s default behavior which do not guarantee co-locating them. After grouping,
GIM-V is performed on blocks, not on individual elements. GIM-V BL is illustrated in Figure 4.1.

In our experiment at Section 4.4, GIM-V BL is more than 5 times faster than GIM-V BASE. There are
two main reasons for this speed-up.

• Sorting Time. Block encoding decreases the number of items to sort in the shuffling stage of
HADOOP. We observed that one of the main bottleneck of programs in HADOOP is its shuffling
stage where network transfer, sorting, and disk I/O happens. By encoding to blocks of width b, the
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Algorithm 4.2: GIM-V BASE Stage 2.
Input: partial vector x′ = {(idsrc, vval′)}.
Output: result vector x = {(idsrc, vval)}.

1: Stage2-Map(Key k, Value v):
2: Output(k, v);
3:

4: Stage2-Reduce(Key k, Value v[1..r]):
5: others v ←[ ];
6: self v ←[ ];
7: for z ∈ v[1..r] do
8: (tag, v′)← z;
9: if tag = “same” then

10: self v ← v′;
11: else if tag = “others” then
12: Add v′ to others v;
13: end if
14: end for
15: Output(k,assign(self v,combineAllk(others v)));

number of lines in the matrix and the vector file decreases to 1/b2 and 1/b times of their original
size, respectively for full matrices and vectors.

• Compression. The size of the data decreases significantly by converting edges and vectors to block
format. The reason is that in GIM-V BASE we need 4×2 bytes to save each (srcid, dstid) pair since
we need 4 bytes to save a node id using an Integer. However in GIM-V BL we can specify each
block using a block row id and a block column id with two 4-byte Integers, and refer to elements
inside the block using 2× log b bits. This is possible because we can use log b bits to refer to a row
or column inside a block. By this block method we decreased the edge file size (e.g., more than
50% for YahooWeb graph in Section 4.4).

4.3.3 GIM-V CL: Clustered Edges

When we use block multiplication, another advantage is that we can benefit from clustered edges. As
shown in Figure 4.2, we can use smaller number of blocks if input edge files are clustered. Clustered
edges can be built if we can use heuristics in data preprocessing stage so that edges are clustered, or by
co-clustering (e.g., see [Papadimitriou and Sun, 2008]). The preprocessing for edge clustering need to be
done only once; however, they can be used by every iteration of various application of GIM-V. So we have
two variants of GIM-V: GIM-V CL, which is GIM-V BASE with clustered edges, and GIM-V BL-CL,
which is GIM-V BL with clustered edges. Be aware that clustered edges are useful only when combined
with block encoding. If every element is treated separately, then clustered edges do not help anything for
the performance of GIM-V.
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Figure 4.1: GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block, and vi represents a vector
block. The matrix and the vector are joined block-wise, not element-wise.

Figure 4.2: Clustered vs. non-clustered adjacency matrices for two isomorphic graphs. The edges are
grouped into 2 by 2 blocks. The left graph uses only 3 blocks while the right graph uses 9
blocks.
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Figure 4.3: Propagation of component id (=1) when block width is 4. Each element in the adjacency
matrix of (a) represents a 4 by 4 block; each column in (b) and (c) represents the vector after
each iteration. GIM-V DL finishes in 4 iterations while GIM-V BL requires 8 iterations.

4.3.4 GIM-V DI: Diagonal Block Iteration

Specifically for the connected components algorithm (HCC), we can do one more optimization. As men-
tioned in Section 4.3.2, the main bottleneck of GIM-V is its shuffling and disk I/O steps. Since GIM-V
iteratively runs Algorithm 4.1 and 4.2, and each Stage requires disk IO and shuffling, we could decrease
running time if we decrease the number of iterations.

In HCC, it is possible to decrease the number of iterations. The main idea is to multiply diagonal matrix
blocks and corresponding vector blocks as many times as possible in one iteration. Remember that multi-
plying a matrix and a vector corresponds to passing node ids to one step neighbors in HCC. By multiplying
diagonal blocks and vectors until the contents of the vectors do not change in one iteration, we can pass
node ids to neighbors located more than one step away. This is illustrated in Figure 4.3.

We see that in Figure 4.3 (c) we multiply Bi,i with vi several times until vi do not change in one iteration.
For example in the first iteration v0 changed from {1,2,3,4} to {1,1,1,1} since it is multiplied to B0,0 four
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times. GIM-V DI is especially useful in graphs with long chains.

The upper bound of the number of iterations in HCC DI with chain graphs is determined by the following
theorem.
Theorem 4.2 (Upper bound of iterations in HCC DI). In a chain graph with length m, it takes maximum
2dm/be − 1 iterations in HCC DI with block size b.

Proof. The worst case happens when the minimum node id is in the beginning of the chain. It requires
2 iterations (one for propagating the minimum node id inside the block, another for passing it to the next
block) for the minimum node id to move to an adjacent block. Since the farthest block is dm/be− 1 steps
away, we need 2(dm/be − 1) iterations. When the minimum node id reached the farthest away block,
GIM-V DI requires one more iteration to propagate the minimum node id inside the last block. Therefore,
we need 2(dm/be − 1) + 1 = 2dm/be − 1 iterations.

4.3.5 GIM-V NR: Node Renumbering

In HCC, the minimum node id is propagated to the other parts of the graph within at most d steps, where d
is the diameter of the graph. If the node with the minimum id (which we call ‘minimum node’) is located
at the center of the graph, then the number of iterations is small (close to d/2). However, if it is located at
the boundary of the network, then the number of iteration can be close to d. Therefore, if we preprocess
the edges so that the minimum node id is swapped to the center node id, the number of iterations and the
total running time of HCC would decrease.

Finding the center node with the minimum radius could be done with the HADI (Chapter 3) algorithm.
However, the algorithm is expensive for the pre-processing step of HCC. Therefore, we instead propose
the following heuristic for finding the center node: we choose the center node by sampling from the
high degree nodes. This heuristic is based on the observation that nodes with high degree have small
radii (Observation 3 of Chapter 3). Moreover, computing the degree of very large graphs is trivial in
MAPREDUCE and could be performed quickly with one job of MAPREDUCE.

After finding a center node, we need to renumber the edge file to swap the current minimum node id with
the center node id. The MAPREDUCE algorithm for this renumbering is shown in Algorithm 4.3. Since
the renumbering requires only filtering, it can be done with a Map-only job.

4.3.6 Analysis

We analyze the time and the space complexities of GIM-V. In the lemmas below, s is the number of
machines.
Lemma 4.1 (Time Complexity of GIM-V). One iteration of GIM-V takes
O( |V |+|E|s log |V |+|E|s ) time.

Proof. Assuming uniformity, mappers and reducers of Stage1 and Stage2 receivesO( |V |+|E|s ) records
per machine. The running time is dominated by the sorting time for |V |+|E|s records, which is
O( |V |+|E|s log |V |+|E|s ).

Lemma 4.2 (Space Complexity of GIM-V). GIM-V requires O(|V |+ |E|) space.
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Algorithm 4.3: Renumbering the minimum node
Input: edge E = {(idsrc, iddst)},

current minimum node id minidcur, and
new minimum node id minidnew.

Output: renumbered edge E′ = {(id′src, id′dst)}.
1: Renumber-Map(Key k, Value v):
2: src← k;
3: dst← v;
4: if src = minidcur then
5: src← minidnew;
6: else if src = minidnew then
7: src← minidcur;
8: end if
9: if dst = minidcur then

10: dst← minidnew;
11: else if dst = minidnew then
12: dst← minidcur;
13: end if
14: Output(src, dst);

Proof. We assume the value of the elements of the input vector v is constant. Then the lemma is proved by
noticing that the maximum storage is required at the output of Stage1 mappers which requires O(|V |+
|E|) space up to a constant.

4.4 Performance and Scalability

We do experiments to answer the following questions:

Q1 How does GIM-V scale up?
Q2 Which of the proposed optimizations (block multiplication, clustered edges, diagonal block iteration,

and node renumbering) gives the highest performance gains?

The graphs used in our experiments at Section 4.4 and 4.5 are described in Table 4.3 whose entries are
repeated from Table 2.2 for convenience.

We run GIM-V in M45 HADOOP cluster by Yahoo! and our own cluster composed of 9 machines. As
we mentioned in Section 3.5, M45 is one of the top 50 supercomputers in the world with the total 1.5
Petabytes storage and 3.5 Terabytes memory. For the performance and scalability experiments, we use
synthetic Kronecker graphs [Leskovec et al., 2005] since we can generate them with any size, and they
are one of the most realistic graphs among synthetic graphs.

4.4.1 Results

We first show how the performance of our method changes as we add more machines. Figure 4.4 shows
the running time and performance of GIM-V for PageRank with Kronecker graph of 282 million edges,
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Graph Nodes Edges File Size Type Description

YahooWeb 1.4 B 6.6 B 0.12 TB real WWW links in 2002
LinkedIn 7.5 M 58 MB 1 GB real person-person in 2006

4.4 M 27 MB 490 MB person-person in 2005
1.6 M 6.8 MB 121 MB person-person in 2004
85 K 230 KB 4 MB person-person in 2003

Wikipedia 3.5 M 42 M 605 MB real doc-doc in 2007/02
3 M 35 M 495 MB doc-doc in 2006/09

1.6 M 18.5 M 252 MB doc-doc in 2005/11
DBLP 471 K 112 K 1 MB real document-document

WWW-Barabasi 325 K 1.5 M 20 MB real WWW links in nd.edu
Flickr 404 K 2.1 M 28 MB real person-person

Epinions 75 K 508 K 5 MB real who trusts whom
Kronecker 177 K 2 B 25 GB synthetic from Kronecker generator [Leskovec et al., 2005]

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB
20 K 40 M 439 MB

Table 4.3: Datasets. B: Billion, M: Million, K: Thousand, TB: Terabytes, GB: Gigabytes, MB:
Megabytes.

and size 32 blocks if necessary.

In Figure 4.4 (a), for all of the methods the running time decreases as we add more machines. Note that
clustered edges (GIM-V CL) did not help performance unless it is combined with block encoding. When
it is combined, however, it showed the best performance (GIM-V BL-CL).
Observation 8. GIM-V BL-CL, which combines the block encoding with the clustering, gives the best
performance.

In Figure 4.4 (b), we see that the relative performance of each method compared to GIM-V BASE method
decreases as number of machines increases. With 3 machines (minimum number of machines which
HADOOP ‘distributed mode’ supports), the fastest method (GIM-V BL-CL) ran 5.27 times faster than
GIM-V BASE. With 90 machines, GIM-V BL-CL ran 2.93 times faster than GIM-V BASE. This is
expected since there are fixed component (JVM load time, disk I/O, network communication) which can
not be optimized even if we add more machines.

Next we show how the performance of our methods changes as the input size grows. Figure 4.4 (c) shows
the running time of GIM-V with different number of edges under 10 machines. As we see, all of the
methods scale linearly with the number of edges.
Observation 9. GIM-V scales linearly with the number of edges.

Next, we compare the performance of GIM-V DI and GIM-V BL-CL for HCC in graphs with long chains.
For this experiment we made a synthetic graph whose diameter is 17, by adding a length 15 chain to the
282 million Kronecker graph which has diameter 2. As we see in Figure 4.5, GIM-V DI finished in 6
iteration while GIM-V BL-CL finished in 18 iteration. The running time of both methods for the first 6
iterations are nearly the same. Therefore, the diagonal block iteration method decreases the number of
iterations while not affecting the running time of each iteration much.

Finally, we compare the number of iterations with/without renumbering. Figure 4.6 shows the degree
distribution of LinkedIn. Without renumbering, the minimum node has degree 1, which is not surprising
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Figure 4.4: Scalability and Performance of GIM-V. (a): Running time decreases quickly as more ma-
chines are added. (b): The performance (=1/running time) of ‘BL-CL’ wins more than 5x
(for n=3 machines) over the ‘BASE’. (c): Every version of GIM-V shows linear scalability.
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Figure 4.5: Comparison of GIM-V DI and GIM-V BL-CL for HCC. GIM-V DI finishes in 6 iterations
while GIM-V BL-CL finishes in 18 iterations due to long chains.

since about 46 % of the nodes have degree 1 due to the power-law behavior of the degree distribution. We
show the number of iterations after changing the minimum node to each of the top 5 highest-degree nodes
in Figure 4.7. We see that the renumbering decreased the number of iterations to 81 % of the original.
Similar results are observed for the Wikipedia graph in Figure 4.8 and 4.9. The original minimum node
has degree 1, and the number of iterations decreased to 83 % of the original after renumbering.

4.5 GIM-V At Work

In this section we use GIM-V for mining very large graphs. We analyze connected components, diameter,
and PageRank of large real world graphs. We show that GIM-V is useful for finding patterns, outliers, and
interesting observations.

4.5.1 Connected Components of Real Networks

We used the LinkedIn social network and Wikipedia page-linking-to-page network, along with the Ya-
hooWeb graph for connected component analysis. Figure 4.10 shows the evolution of connected compo-
nents of LinkedIn and Wikipedia data. Figure 4.11 show the distribution of connected components in the
YahooWeb graph. We have the following observations.

Power Laws in Connected Components Distributions. We observed power law relation of count and
size of small connected components in Figure 4.10 (a,b) and Figure 4.11. This reflects that the connected
components in real networks are formed by processes similar to Chinese Restaurant Process and Yule
distribution [Newman, 2005].

Stable Connected Components After Gelling Point. In Figure 4.10 (a), the distribution of connected
components remain stable after a ‘gelling’ point [Mcglohon et al., 2008] at year 2003. We see that the
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Figure 4.6: Degree distribution of LinkedIn. Notice that the original minimum node has degree 1, which
is highly probable given the power-law behavior of the degree distribution. After the renum-
bering, the minimum node is replaced with a highest-degree node.

Figure 4.7: Number of iterations vs. the minimum node of LinkedIn, for connected components. Di
represents the node with i-th largest degree. Notice that the number of iterations decreased
by 19 % after renumbering.
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Figure 4.8: Degree distribution of Wikipedia. Notice that the original minimum node has degree 1, as in
LinkedIn. After the renumbering, the minimum node is replaced with a highest-degree node.

Figure 4.9: Number of iterations vs. the minimum node of Wikipedia, for connected components. Di
represents the node with i-th largest degree. Notice that the number of iterations decreased
by 17 % after renumbering.
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(a) Connected Components of LinkedIn

(b) Connected Components of Wikipedia

Figure 4.10: The evolution of connected components. (a): The giant connected component grows for
each year. However, the second largest connected component do not grow above Dunbar’s
number (≈ 150) and the slope of the size distribution remains constant after the gelling point
at year 2003. (b): As in LinkedIn, notice the growth of giant connected component and the
constant slope of the size distribution.
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Figure 4.11: Connected Components of YahooWeb. Notice the two anomalous spikes which are far from
the constant-slope line. Most of them are domain selling or porn sites which are replicated
from templates.

slope of the size distribution do not change after year 2003. We observed the same phenomenon in
Wikipedia graph in Figure 4.10 (b). The graph show stable slopes from the beginning, since the network
were already mature in year 2005.

Absorbed Connected Components and Dunbar’s Number. In Figure 4.10 (a), we find two large con-
nected components in year 2003. However they merged in year 2004. The giant connected component
keeps growing, while the second and the third largest connected components do not grow beyond size 100
until they are absorbed to the giant connected component in Figure 4.10 (a) and (b). This agrees with the
observation [Mcglohon et al., 2008] that the size of the second/third connected components remains con-
stant or oscillates. Lastly, the maximum connected component size except the giant connected component
in the LinkedIn graph agrees well with Dunbar’s number [Dunbar, October 1998], which says that the
maximum community size in social networks is roughly 150.

Anomalous Connected Components. In Figure 4.11, we found two outstanding spikes. In the first spike
at size 300, more than half of the components have exactly the same structure and they were made from
a domain selling company where each component represents a domain to be sold. The spike happened
because the company replicated sites using the same template, and injected the disconnected components
into WWW network. In the second spike at size 1101, more than 80 % of the components are adult
sites disconnected from the giant connected component. By looking at the distribution plot of connected
components, we could find interesting communities with special purposes which are disconnected from
the rest of the Internet.

4.5.2 PageRank Scores of Real Networks

We analyzed the PageRank scores of the nodes of real graphs, using GIM-V. Figure 4.12 and 4.13 show the
distribution of the PageRank scores for the Web graphs, and Figure 4.14 shows the evolution of PageRank
scores of the LinkedIn and Wikipedia graphs. We have the following observations.
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Figure 4.12: PageRank distribution of YahooWeb. The distribution follows a power law with an exponent
2.30.

Figure 4.13: PageRank distribution of WWW-Barabasi. The distribution follows a power law with an
exponent 2.25.
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(a) PageRanks of LinkedIn

(b) PageRanks of Wikipedia

Figure 4.14: The evolution of PageRanks. (a): The distributions of PageRanks follows a power-law.
However, the exponent at year 2003, which is around the gelling point, is much different
from year 2004, which are after the gelling point. The exponent increases after the gelling
point and becomes stable. Also notice the maximum PageRank after the gelling point is
about 10 times larger than that before the gelling point due to the emergence of the giant
connected component. (b): Again, the distributions of PageRanks follows a power-law.
Since the gelling point is before year 2005, the three plots show similar characteristics: the
maximum PageRanks and the slopes are similar.
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Power Laws in PageRank Distributions. In Figure 4.12, 4.13, and 4.14, we observe power-law relations
between the PageRank score and the number of nodes with such PageRank. Pandurangan et al. [Panduran-
gan et al., August 2002] observed such a power-law relationship for a 1.69 million network. Our result
is that the same observation holds true for about 1,000 times larger network with 1.4 billion pages snap-
shot of the Internet. The top 3 highest PageRank sites for the year 2002 are www.careerbank.com,
access.adobe.com, and top100.rambler.ru. As expected, they have huge in-degrees (from
≈70K to ≈70M).

PageRank and the Gelling Point. In the LinkedIn network (see Figure 4.14 (a)), we see a discontinuity
for the power-law exponent of the PageRank distribution, before and after the gelling point at year 2003.
For the year 2003 (up to the gelling point), the exponent is 2.15; from 2004 (after the gelling point), the
exponent stabilizes around 2.59. Also, the maximum PageRank value at 2003 is around 10−6, which is 1

10
of the maximum PageRank from 2004. This behavior is explained by the emergence of the giant connected
component at the gelling point: before the gelling point, there are many small connected components
where no outstanding node with large PageRank exists. After the gelling point, several nodes with high
PageRank appear within the giant connected component. In the Wikipedia network (see Figure 4.14 (b)),
we see the same behavior of the network after the gelling point. Since the gelling point is before year
2005, we see that the maximum PageRank-score and the slopes are similar for the three graphs from
2005.

4.5.3 Diameter of Real Network

We analyzed the diameter and radius of real networks with GIM-V. Figure 4.15 shows the radius plot of
real networks. We have following observations:

Small Diameter. For all the graphs in Figure 4.15, the average diameter was less than 6.09. This means
that the real world graphs are well connected.

Constant Diameter over Time. For LinkedIn graph, the average diameter was in the range of 5.28 and
6.09. For Wikipedia graph, the average diameter was in the range of 4.76 and 4.99. Note that the diameter
do not monotonically increase as network grows: they remain constant or shrinks over time.

Bimodal Structure of Radius Plot. For every plot, we observe a bimodal shape which reflects the
structure of these real graphs. The graphs have one giant connected component where majority of nodes
belong to, and many smaller connected components whose size follows a power law. Therefore, the
first mode is at radius zero which comes from one-node components; second mode (e.g., at radius 6 in
Epinions) comes from the giant connected component.

4.6 Background

We briefly review the related work on connected components computation. There are several con-
nected component algorithms, using Breadth-First Search, Depth-First-Search, “propagation” [Shiloach
and Vishkin, 1982, Awerbuch and Shiloach, 1983, Hirschberg et al., 1979], or “contraction” [Greiner,
June 1994] . These works rely on a shared memory model which limits their ability to handle large,
disk-resident graphs. In contrast, our GIM-V handles very large graphs which spans multiple disks over
multiple machines.
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Figure 4.15: Radius of real graphs. X axis: radius in linear scale. Y axis: number of nodes in log scale.
(Row 1): LinkedIn from 2003 to 2006. (Row 2): Wikipedia from 2005 to 2007. (Row
3): DBLP, Flickr, and Epinions. Notice that all the radius plots have the bimodal structure
due to many smaller connected components (first mode) and the giant connected component
(second mode).
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4.7 Conclusion

In this chapter we analyze the structure of large graphs using HADOOP. The main contributions are the
following:

• We identify the common, underlying primitive of several graph mining operations, and we show that
it is a generalized form of a matrix-vector multiplication. We call this operation Generalized Itera-
tive Matrix-Vector multiplication and showed that it includes the diameter estimation, the PageRank
estimation, RWR calculation, and finding connected-components, as special cases.

• Given its importance, we propose several optimizations (block-multiplication, diagonal block iter-
ation, node renumbering, and etc.) and reported the winning combination, which is 5 times faster
than the naive implementation.

• We implement GIM-V and run it on M45. We analyze real world graphs to reveal important patterns
including power law tails, stability of connected components, and anomalous components. Our
largest graph, “YahooWeb”, spanned 120Gb, and is one of the largest publicly available graph that
was ever studied.
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Part II

Advanced Graph Algorithms
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Part II - Advanced Graph Algorithms:
Overview

In this part we describe advanced graph algorithms for three important graph mining tasks: inference in
graph, spectral graph analysis, and tensor analysis.

First, we tackle the inference task: given a graph and a set of labeled nodes, infer the labels of initially
unlabeled nodes. We propose HADOOP LINE GRAPH FIXED POINT (HA-LFP), an efficient distributed
algorithm for inference in billion-scale graphs, using HADOOP platform.

Second, we design and implement algorithms for spectral analysis of graphs: i.e., to study the eigenvalues
and eigenvectors of graph adjacency matrices. Spectral analysis on graphs leads to many interesting appli-
cations including triangle counting, and our proposed HEIGEN algorithm handles 1000× larger matrices
than existing algorithms.

Finally, we study tensors, or multi dimensional arrays: e.g., predicates (subject, verb, object) in knowl-
edge bases, and hyperlinks/anchor texts in Web graphs. We generalize the spectral analysis algorithm
to multiple dimensions, and propose GIGATENSOR, a large scale tensor decomposition algorithm which
solves more than 100× bigger problems than existing methods. We study a large knowledge base tensor,
and present interesting findings which include the discovery of potential synonyms among millions of
noun-phrases.
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Chapter 5

Inference in Graph

In this chapter, we focus on inference, which often corresponds, intuitively, to “guilt by association”
scenarios. For example, if a person is a drug-abuser, probably its friends are so, too; if a node in a
social network is of male gender, his dates are probably females. We show how to do inference on such
huge graphs through our proposed HADOOP LINE GRAPH FIXED POINT (HA-LFP), an efficient parallel
algorithm for sparse billion-scale graphs, using the HADOOP platform.

Our contributions include (a) the design of HA-LFP, observing that it corresponds to a fixed point on a line
graph induced from the original graph; (b) scalability analysis, showing that our algorithm scales up well
with the number of edges, as well as with the number of machines; and (c) experimental results on two
private, as well as two of the largest publicly available graphs — the Web Graphs from Yahoo! (6.6 billion
edges and 0.24 Tera bytes), and the Twitter graph (3.7 billion edges and 0.13 Tera bytes). We evaluate our
algorithm using M45, and we report patterns and anomalies discovered by our algorithm, which would be
invisible otherwise.

5.1 Introduction

Given a large graph, with millions or billions of nodes, how can we find patterns and anomalies? One
method to do that is through “guilt by association”: if we know that nodes of type “A” (say, males) tend
to interact/date nodes of type “B” (females), we can infer the unknown gender of a node, by checking the
gender of the majority of its contacts. Similarly, if a node is a telemarketer, most of its contacts will be
normal phone users (and not telemarketers, or 800 numbers).

We show that the “guilt by association” approach can find useful patterns and anomalies, in large, real
graphs. The typical way to handle this is through the so-called Belief Propagation (BP) [Pearl, 1982,
Yedidia et al., 2003]. BP has been successfully used for social network analysis [Chau et al., 2006],
fraud detection [McGlohon et al., 2009], computer vision [Felzenszwalb and Huttenlocher, 2006], error-
correcting codes, and many other domains. In this work, we address the research challenge of scalability
- we show how to run BP on a very large graph with billions of nodes and edges. Our contributions are
the following:

1. We observe that the Belief Propagation algorithm is essentially a recursive equation on the line
graph induced from the original graph. Based on this observation, we formulate the BP problem as
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Symbol Definition

n number of nodes in a graph
l number of edges in a graph
S set of states

φi(s) prior of node i being in state s
ψij(s

′, s) edge potential when nodes i and j being in states s′ and s, respectively
mij(s) message that node i sends to node j expressing node i’s belief of node j’s being in state s
bi(s) belief of node i being in state s
MRF Markov Random Fields
LFP LINE GRAPH FIXED POINT

Table 5.1: Table of symbols.

finding a fixed point on the line graph. We propose the LINE GRAPH FIXED POINT (LFP) algorithm
and show that it is a generalized form of a linear algebra equation.

2. We formulate and devise an efficient algorithm for the LFP that runs on the HADOOP platform,
called HADOOP LINE GRAPH FIXED POINT (HA-LFP).

3. We run experiments on a HADOOP cluster and analyze the running time. We analyze the large real-
world graphs including YahooWeb and Twitter with HA-LFP, and show patterns and anomalies.

The rest of the chapter is organized as follows. Section 5.2 discusses the related works on the Belief
Propagation and HADOOP. Section 5.3 describes our formulation of the Belief Propagation in terms of
LINE GRAPH FIXED POINT (LFP), and Section 5.4 provides a fast algorithm in HADOOP. Section 5.5
shows the scalability results, and Section 5.6 gives the results of analyzing the large, real-world graphs.
We conclude in Section 5.7.

To enhance readability of this chapter, we have listed the symbols frequently used in this chapter in
Table 5.1.

5.2 Related Work

We review the related works on Belief Propagation (BP).

Belief Propagation(BP) [Pearl, 1982] is an efficient inference algorithm for probabilistic graphical mod-
els. Since its proposal, it has been widely, and successfully, used in a myriad of domains to solve many
important problems (some are seemingly unrelated at the first glance). For example, BP is used in some of
the best error-correcting codes, such as the Turbo code and low-density parity-check code, that approach
channel capacity. In computer vision, BP is among the top contenders for stereo shape estimation and im-
age restoration (e.g., denoising) [Felzenszwalb and Huttenlocher, 2006]. BP has also been used for fraud
detection, such as for unearthing fraudsters and their accomplices lurking in online auctions [Chau et al.,
2006], and pinpointing misstated accounts in general ledger data for the financial domain [McGlohon
et al., 2009].

BP is typically used for computing the marginal distribution for the unobserved nodes in a graph, con-
ditional on the observed ones; we will only discuss this version in this chapter, though with slight and
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trivial modifications to our implementation, the most probable distribution of node states can also be
computed.

BP was first proposed for trees [Pearl, 1982] and it could compute the exact marginal distributions; it was
later applied on general graphs [Pearl, 1988] as an approximate algorithm. When the graph contains cycles
or loops, the BP algorithm applied on it is called loopy BP, which is also the focus of this work.

BP is generally applied on graphs whose nodes have finite number of states (treating each node as a
discrete random variable). Gaussian BP is a variant of BP where its underlying distributions are Gaussian
[Weiss and Freeman, 2001]. Generalized BP [Yedidia et al., 2003] allows messages to be passed between
subgraphs, which can improve accuracy in the computed beliefs and promote convergence.

BP is computationally-efficient; its running time scales linearly with the number of edges in the graph.
However, for graphs with billions of nodes and edges — a focus of our work — this cost becomes signifi-
cant. There are several recent works that investigated parallel BP on multicore shared memory [Gonzalez
et al., 2009b] and MPI [Gonzalez et al., 2009a, Mendiburu et al., 2007]. However, all of them assume
the graphs would fit in the main memory (of a single computer, or a computer cluster). Our work specif-
ically tackles the important, and increasingly prevalent, situation where the graphs would not fit in main
memory.

5.3 Proposed Method

In this section, we describe LINE GRAPH FIXED POINT (LFP), our proposed parallel formulation of the BP
on HADOOP. We first describe the standard BP algorithm, and then explains our method in detail.

5.3.1 Belief Propagation

We provide a quick overview of the Belief Propagation (BP) algorithm, which briefly explains the key
steps in the algorithm and their formulation; this information will help our readers better understand
how our implementation nontrivially captures and optimizes the algorithm in latter sections. For detailed
information regarding BP, we refer our readers to the excellent article by Yedidia et al. [Yedidia et al.,
2003].

The BP algorithm is an efficient method to solve inference problems for probabilistic graphical models,
such as Bayesian networks and pairwise Markov Random Fields (MRF). In this work, we focus on pair-
wise MRF, which has seen empirical success in many domains (e.g., Gallager codes, image restoration)
and is also simpler to explain; the BP algorithms for other types of graphical models are mathematically
equivalent [Yedidia et al., 2003].

When we view an undirected simple graph G = (V,E) as a pairwise MRF, each node i in the graph
becomes a random variable Xi, which can be in a discrete number of states S. The goal of the inference
is to find the marginal distribution P (xi) for all node i, which is an NP-complete problem.

Fortunately, BP may be used to solve this problem approximately (for MRF; exactly for trees). At a high
level, BP infers the “true” (or so-called “hidden”) distribution of a node from some prior (or “observed”)
knowledge about the node, and from the node’s neighbors. This is accomplished through iterative message
passing between all pairs of nodes vi and vj . We use mij(xj) to denote the message sent from i to j,
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which intuitively represents i’s opinion about j’s likelihood of being in state xj . The prior knowledge
about a node i, or the prior probabilities of the node being in each possible state are expressed through the
node potential function φ(xi). This prior probability may simply be called a prior. The message-passing
procedure stops if the messages no longer change much from one iteration to the another — or equivalently
when the nodes’ marginal probabilities are no longer changing much. The estimated marginal probability
is called belief, or symbolically bi(xi) (≈ P (xi)).

In detail, messages are obtained as follows. Each edge eij is associated with messages mij(xj) and
mji(xi) for each possible state. Provided that all messages are passed in every iteration, the order of
passing can be arbitrary. Each message vector mij is normalized to sum to one. Normalization also
prevents numerical underflow (or zeroing-out values). Each outgoing message from a node i to a neighbor
j is generated based on the incoming messages from the node’s other neighbors. Mathematically, the
message-update equation is:

mij(xj) =
∑
xi

φi(xi)ψij(xi, xj)

∏
k∈N(i)mki(xi)

mji(xi)
, (5.1)

where N (i) is the set of neighboring nodes of i, and ψij (xi, xj) is called the edge potential; intuitively,
it is a function that transforms a node’s incoming messages collected into the node’s outgoing ones. For-
mally, ψij (xi, xj) equals the probability of a node i being in state xi and that its neighbor j is in state
xj .

The algorithm stops when the beliefs converge (within some threshold, e.g., 10−5), or a maximum number
of iterations has finished. Although convergence is not guaranteed theoretically for general graphs, except
for those that are trees, the algorithm often converges in practice, where convergence is quick and the be-
liefs are reasonably accurate. When the algorithm ends, the node beliefs are determined as follows:

bi(xi) = cφi(xi)
∏

k∈N(i)

mki(xi), (5.2)

where c is a normalizing constant.

5.3.2 Recursive Equation

As seen in the last section, BP is computed by iteratively running equations (5.1) and (5.2), as described
in Algorithm 5.1.

In a shared-memory system in which random access to memory is allowed, the implementation of Al-
gorithm 5.1 might be straightforward. However, large scale algorithm for MAPREDUCE requires careful
thinking since the random access is not allowed and the data are read sequentially within mappers and re-
ducers. A good news is that the two equations (5.1) and (5.2) involve only local communications between
neighboring nodes, and thus it seems hopeful to develop a parallel algorithm for HADOOP. Naturally,
one might think of an iterative algorithm in which nodes exchange messages to update its beliefs using
an extended form of matrix-vector multiplication (Chapter 4). In such formulation, a current belief vector
and the message matrix is combined to compute the next belief vector. Thus, we want a recursive equation
to update the belief vector. However, such an equation cannot be derived due to the denominator mji(xi)
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Algorithm 5.1: Belief Propagation
Input: edge E,

node prior φn×1, and
propagation matrix ψS×S .

Output: belief matrix bn×S .
1: while m does not converge do
2: for (i, j) ∈ E do
3: for s ∈ S do
4: mij(s)←

∑
s′ φi(s

′)ψij(s
′, s)

∏
k∈N(i)\jmki(s

′);
5: end for
6: end for
7: end while
8: for i ∈ V do
9: for s ∈ S do

10: bi(s)← cφi(s)
∏
k∈N(i)mki(s);

11: end for
12: end for

in Equation (5.1). If it were not for the denominator, we could get the following modified equation where
the superscript t and t− 1 denote the iteration number:

mij(xj)
(t) =

∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)

mki(xi)
(t−1)

=
∑
xi

ψij(xi, xj)
bi(xi)

(t−1)

c
,

and thus

bi(xi)
(t) = cφi(xi)

∏
k∈N(i)

mki(xi)
(t−1)

= φi(xi)
∏

k∈N(i)

∑
xk

ψki(xk, xi)bk(xk)
(t−2). (5.3)

Notice that the recursive equation (5.3) is a fake, imaginary equation derived from the assumption that
equation (5.1) has no denominator. Although the recursive equation for the belief vector cannot be ac-
quired by this way, there is a more direct and intuitive way to get a recursive equation. We will describe
how to get it in the next section.

5.3.3 Main Idea: Line graph Fixed Point (LFP)

How can we get the recursive equation for the BP? What we need is a tractable recursive equation well-
suited for large scale MAPREDUCE framework. In this section, we describe LINE GRAPH FIXED POINT
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(a) Original graph (b) Directed graph (c) Directed line graph

Figure 5.1: Converting a undirected graph to a directed line graph. (a to b): Replace a undirected edge
with two directed edges. (b to c): For an edge (i, j) in (b), make a node (i, j) in (c). Make
a directed edge from (i, j) to (k, l) in (c) if j = k and i 6= l. The rectangular nodes in (c)
corresponds to edges in (b).

(LFP), our formulation of BP in terms of finding the fixed point of an induced graph from the original
graph. As seen in the last section, a recursive equation to update the beliefs cannot be acquired due to
the denominator in the message update equation. Our main idea to solve the problem is to flip the notion
of the nodes and edges in the original graph and thus use the equation (5.1), without modification, as the
recursive equation for updating the ‘nodes’ in the new formulation. The ‘flipping’ means we consider an
induced graph, called the line graph, whose nodes correspond to edges in the original graph, and the two
nodes in the induced graph are connected if the corresponding edges in the original graph are incident.
Notice that for each edge (i, j) in the original graph, two messages need to be defined since mij and mji

are different. Thus, the line graph should be directed, although the original graph is undirected. Formally,
we define the ‘directed line graph’ as follows.
Definition 3 (Directed Line Graph). Given a directed graph G, its directed line graph L(G) is a graph
such that each node of L(G) represents an edge of G, and there is an edge from vi to vj of L(G) if the
corresponding edges ei and ej form a length-two directed path from ei to ej in G.

For example, see Figure 5.1 for a graph and its directed line graph. To convert a undirected line graph G
to a directed line graph L(G), we first convert G to a directed graph by converting each undirected edge
to two directed edges. Then, a directed edge from vi to vj in L(G) is created if their corresponding edges
ei and ej form a directed path ei to ej in G.

Now, we derive the exact recursive equation on the line graph. LetG be the original undirected graph with
n nodes and l edges, and L(G) be the directed line graph of G with 2l nodes as defined by Definition 3.
The (i, j)th element L(G)i,j is defined to be 1 if the edge exist, or 0 otherwise. Let m be a 2l-vector
whose element corresponding to the edge (i, j) in G contains the reverse directional message mji. The
reason of this reverse directional message will be described soon. Let φ be a n-vector containing priors of
each node. We build a 2l-vector ϕ as follows: if the kth element ϕk of ϕ corresponds to an edge (i, j) in
G, then set ϕk to φ(i). A standard matrix-vector multiplication with vector addition operation on L(G),
m, ϕ is expressed as follows (we abuse notation to let L(G) denote the l by l adjacency matrix of the line
graph):

m′ = L(G)×m+ ϕ,

where

m′i =
∑n

j=1 L(G)i,j ×mj + ϕi.
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In the above equation, four operations are used to get the result vector:

1. combine2(L(G)i,j ,mj): multiply L(G)i,j and mj .
2. combineAlli(y1, ..., yn): sum n multiplication results for node i.
3. sumVector(ϕi, vaggr): add ϕi to the result vaggr of combineAlli.
4. assign(mi, oldvali, newvali): overwrite the previous value oldvali of mi with the new value
newvali to make m′i.

Now, we generalize the operators × and + to ×G and +G, respectively, so that the four operations can be
any functions of their arguments. In this generalized setting, the matrix-vector multiplication with vector
addition operation becomes

m′ = L(G)×G m+G ϕ,

where

m′i = assign(mi, oldvali,
sumVector(ϕi,combineAlli({yj | j = 1..n, and yj =combine2(L(G)i,j ,mj)}))).

An important observation is that the BP equation (5.1) can be represented by this generalized form of
the matrix-vector multiplication with vector addition. For simplifying the explanation, we omit the edge
potential ψij , since it is a tiny information (e.g. 2 by 2 or 3 by 3 table), and the summation over xi, both
of which can be accommodated easily. Then, the BP equation (5.1) is expressed by

m′ = L(G)T ×G m+G ϕ, (5.4)

m′′ = ChangeMessageDirection(m′), (5.5)

where

m′i = sumVector(ϕi,combineAlli({yj | j = 1..n, and yj =combine2(L(G)Ti,j ,mj)})),

the four operations are defined by

1. combine2(L(G)i,j ,mj) = L(G)i,j ×mj .
2. combineAlli(y1, ..., yn) =

∏n
j=1 yj .

3. sumVector(ϕi, vaggr) = ϕi × vaggr.
4. assign(mi, oldvali, newvali) = newvali/vali.

and the ChangeMessageDirection function is defined by Algorithm 5.2. The computed m′′ of equa-
tion (5.5) is the updated message which can be used as m in the next iteration. Thus, our LINE GRAPH

FIXED POINT (LFP) comprises running the equation (5.4) and (5.5) iteratively until a fixed point, where
the message vector converges, is found.

Two details should be addressed for the complete description of our method. First, notice that L(G)T , in-
stead of L(G), is used in the equation (5.4). The reason is that a message should aggregate other messages
pointing to itself, which is the reverse direction of the line graph construction. Second, what is the use of
ChangeMessageDirection function? We mentioned earlier that the BP equation (5.1) contained a denom-
inator mji which is the reverse directional message. Thus, the input message vector m of equation (5.4)
contains the reverse directional message. However, the result message vector m′ of equation (5.4) con-
tains the forward directional message. For the m′ to be used in the next iteration, it needs to change the
direction of the messages, and that is what ChangeMessageDirection does.
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Algorithm 5.2: ChangeMessageDirection
Input: message vector m of length 2l.
Output: new message vector m′ of length 2l.

1: for k ∈ 1..2l do
2: (i, j)← edge in G corresponding to mk;
3: k′ ← element index of m corresponding to the edge (j, i) in G;
4: m′k′ ← mk;
5: end for

Algorithm 5.3: LINE GRAPH FIXED POINT (LFP)
Input: edge E of a undirected graph G = (V,E),

node prior φn×1, and
propagation matrix ψS×S .

Output: belief matrix bn×S .
1: L(G)← directed line graph from E;
2: ϕ← line prior vector from φ;
3: while m does not converge do
4: for s ∈ S do
5: m(s)next = L(G)×G mcur +G ϕ;
6: end for
7: for i ∈ V do
8: for s ∈ S do
9: bi(s)← cφi(s)

∏
j∈N(i)mji(s);

10: end for
11: end for
12: end while
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In sum, a generalized matrix-vector multiplication with addition is the recursive message update equation
which is run until convergence. The resulting algorithm LFP is summarized in Algorithm 5.3.

5.4 Fast Algorithm for Hadoop

In this section, we first describe the naive algorithm for LFP and propose an efficient algorithm.

5.4.1 Naive Algorithm

The formulation of BP in terms of the fixed point in the line graph provides an intuitive way to understand
the computation. However, a naive algorithm without careful design is not efficient for the following
reason. In a naive algorithm, we first build the matrix for the line graph L(G) and the message vector,
and apply the recursive equation on them. The problem is that a node in G with degree d will generate
d(d− 1) edges in L(G). Since there exists many nodes with a very large degree in real-world graphs due
to the well-known power-law degree distribution, the number of nonzero elements will grow too large.
For example, the YahooWeb graph in Section 5.5 has several nodes with the several-million degree. As a
result, the number of nonzero elements in the corresponding line graph is more than 1 trillion. Thus, we
need an efficient algorithm for dealing with the problem.

5.4.2 Lazy Multiplication

The main idea to solve the problem in the previous section is not to build the line graph explicitly: in-
stead, we do the same computation on the original graph, or perform a ‘lazy’ multiplication. The crucial
observation is that the edges in the original graph G contain all the edge information in L(G): each edge
e ∈ E of G is a node in L(G), and e1, e2 ∈ G are adjacent in L(G) if and only if they share the node in
G. For each edge (i, j) in G, we associate the reverse message mji. Then, grouping edges by source node
id i enables us to get all the messages pointing to the source node. Thus, for each node j of i’s neighbors,

the updated message mij is computed by calculating
∏

k∈N(i)mki(xi)

mji(xi)
from the messages in the grouped

edges (incorporating priors and the propagation matrix is described soon). Since we associate the reverse
message for each edge, the output triple (src, dst, reverse message) is (j, i,mij).

An issue in computing
∏

k∈N(i)mki(xi)

mji(xi)
is that a straightforward implementation requires N(i)(N(i) − 1)

multiplications which are prohibitively large. However, we decrease the number of multiplication to
2N(i) by first computing t =

∏
k∈N(i)mki(s

′), and for each j ∈ N(i) computing t/mji(s
′).

The only remaining pieces of the computation is to incorporate the prior φ and the propagation matrix
ψ. The propagation matrix ψ is a tiny bit of information, so it can be sent to every reducer by a variable
passing functionality of HADOOP. The prior vector φ can be large, since the length of the vector can be
the number of nodes in the graph. In the HADOOP algorithm, we also group the φ by the node id: each
node prior is grouped together with the edges (messages) whose source id is the node id. Algorithm 5.4
shows the high-level algorithm of HADOOP LINE GRAPH FIXED POINT (HA-LFP). Algorithm 5.5 shows
the BP message initialization algorithm which requires only a Map function. Algorithm 5.6 shows the
HADOOP algorithm for the message update which implements the algorithm described above. After the
messages converge, the final belief is computed by Algorithm 5.7.
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Algorithm 5.4: HADOOP LINE GRAPH FIXED POINT (HA-LFP)
Input: edge E of a undirected graph G = (V,E),

node prior φn×1, and
propagation matrix ψS×S .

Output: belief matrix bn×S .
1: Initialization(); // Algorithm 5.5
2: while m does not converge do
3: MessageUpdate(); // Algorithm 5.6
4: end while
5: BeliefComputation(); // Algorithm 5.7

Algorithm 5.5: HA-LFP Initialization
Input: edge E = {(idsrc, iddst)}, and

set of states S = {s1, ..., sp}.
Output: message matrix M = {(idsrc, iddst,mdst,src(s1), ...,mdst,src(sp))}.

1: Initialization-Map(Key k, Value v):
2: Output((k, v), ( 1

|S| , ..., 1
|S| )); // (k: idsrc, v: iddst)

5.4.3 Analysis

We analyze the time and the space complexities of HA-LFP. The main result is that one iteration of the
message update on the line graph has the same complexity as one matrix-vector multiplication on the
original graph. In the lemma below, s is the number of machines.
Lemma 5.1 (Time Complexity of HA-LFP). One iteration of HA-LFP takesO( |V |+|E|s log |V |+|E|s ) time.
It could take O( |V |+|E|s ) time if HADOOP uses only hashing, not sorting, on its shuffling stage.

Proof. Notice that the number of states is usually very small (2 or 3), thus can be considered as a constant.
Assuming uniform distribution of data to machines, the time complexity is dominated by the Message-
Update job. Thanks to the ‘lazy multiplication’ described in the previous section, both Map and Reduce
takes linear time to the input. Thus, the time complexity is O( |V |+|E|s log |V |+|E|s ), which is the sorting
time for |V |+|E|s records. It could be O( |V |+|E|s ), if HADOOP performs only hashing without sorting on its
shuffling stage.

For space complexity, we have the following result.
Lemma 5.2 (Space Complexity of HA-LFP). HA-LFP requires O(|V |+ |E|) space.

Proof. The prior vector requires O(|V |) space, and the message matrix requires O(2|E|) space. Since the
number of edges is greater than the number of nodes, HA-LFP requires O(|V |+ |E|) space, in total.

5.5 Experiments

In this section, we present experimental results to answer the following questions:
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Algorithm 5.6: HA-LFP Message Update
Input: set of states S = {s1, ..., sp},

current message matrix M cur = {(sid, did,mdid,sid(s1), ...,mdid,sid(sp))},
prior matrix Φ = {(id, φid(s1), ..., φid(sp))}, and
propagation matrix ψ.

Output: updated message matrix Mnext = {(idsrc, iddst,mdst,src(s1), ...,mdst,src(sp))}.
1: MessageUpdate-Map(Key k, Value v):
2: if (k, v) is of type M then
3: Output(k, v); // (k: sid, v: did,mdid,sid(s1), ...,mdid,sid(sp))
4: else if (k, v) is of type Φ then
5: Output(k, v); // (k: id, v: φid(s1), ..., φid(sp))
6: end if
7:

8: MessageUpdate-Reduce(Key k, Value v[1..r]):
9: temps[1..p]← [1..1];

10: saved prior ←[ ];
11: HashTable<int, double[1..p]> h;
12: for z ∈ v[1..r] do
13: if (k, z) is of type Φ then
14: saved prior[1..p]← z;
15: else if (k, z) is of type M then
16: (did,mdid,sid(s1), ...,mdid,sid(sp))← z;
17: h.add(did, (mdid,sid(s1), ...,mdid,sid(sp)));
18: for i ∈ 1..p do
19: temps[i] = temps[i]×mdid,sid(si);
20: end for
21: end if
22: end for
23: for (did, (mdid,sid(s1), ...,mdid,sid(sp))) ∈ h do
24: outm[1..p]← 0;
25: for x ∈ 1..p do
26: for y ∈ 1..p do
27: outm[x] = outm[x] + saved prior[y]ψ(y, x)temps[y]/mdid,sid(sv);
28: end for
29: end for
30: Output(did, (sid, outm[1], ..., outm[p]));
31: end for
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Algorithm 5.7: HA-LFP Belief Computation
Input: set of states S = {s1, ..., sp},

current message matrix M cur = {(sid, did,mdid,sid(s1), ...,mdid,sid(sp))}, and
prior matrix Φ = {(id, φid(s1), ..., φid(sp))}.

Output: belief vector b = {(id, bid(s1), ..., bid(sp))}.
1: BeliefComputation-Map(Key k, Value v):
2: if (k, v) is of type M then
3: Output(k, v); // (k: sid, v: did,mdid,sid(s1), ...,mdid,sid(sp))
4: else if (k, v) is of type Φ then
5: Output(k, v); // (k: id, v: φid(s1), ..., φid(sp))
6: end if
7:

8: BeliefComputation-Reduce(Key k, Value v[1..r]):
9: b[1..p]← [1..1];

10: for z ∈ v[1..r] do
11: if (k, z) is of type Φ then
12: prior[1..p]← z;
13: for i ∈ 1..p do
14: b[i] = b[i]× prior[i];
15: end for
16: else if (k, z) is of type M then
17: (did,mdid,sid(s1), ...,mdid,sid(sp))← z;
18: for i ∈ 1..p do
19: b[i] = b[i]×mdid,sid(si);
20: end for
21: end if
22: end for
23: Output(k, (b[1], ..., b[p]));
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Graph Nodes Edges File Size Type Description

YahooWeb 1.4 B 6.6 B 0.12 TB real WWW links in 2002
Twitter’10 104 M 3.7 B 0.13 TB real person-person
Twitter’09 63 M 1.8 B 56 GB real person-person
VoiceCall 30 M 260 M 8.4 GB real who calls whom

SMS 7 M 38 M 629 MB real who sends to whom
Kronecker 177 K 2 B 25 GB synthetic from Kronecker generator [Leskovec et al., 2005]

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB

Table 5.2: Datasets. B: Billion, M: Million, K: Thousand, TB: Terabytes, GB: Gigabytes, MB:
Megabytes.

Q1 How fast is HA-LFP, compared to a single-machine disk-based Belief Propagation algorithm?
Q2 How does HA-LFP scale up on the number of machines?
Q3 How does HA-LFP scale up on the number of edges?

We performed experiments in the M45 HADOOP cluster by Yahoo!. As mentioned earlier, the cluster
has total 480 machines with 1.5 Petabytes total storage and 3.5 Terabytes memory. The single-machine
experiment was done in a machine with 3 Terabyte of disk and 48 GB memory. The single-machine BP
algorithm is a scaled-up version of a memory-based BP which reads all the nodes, not the edges, in the
memory. That is, the single-machine BP loads only the node information into a memory, but it reads the
edges sequentially from the disk for every message update, instead of loading all the edges into a memory
once for all.

The graphs we used in our experiments at Section 5.5 and 5.6 are summarized in Table 5.2 whose entries
are repeated from Table 2.2 for convenience..

5.5.1 Results

Between HA-LFP and the single-machine BP, which one runs faster? At which point does the HA-LFP

outperform the single-machine BP? Figure 5.2 (a) shows the comparison of running time of the HA-LFP

and the single-machine BP. Notice that HA-LFP outperforms the single-machine BP when the number
of machines exceeds 40. The HA-LFP requires more machines to beat the single-machine BP due to the
fixed costs for writing and reading the intermediate results to and from the disk. However, for larger graphs
whose nodes do not fit in the memory, HA-LFP is the only solution to the best of our knowledge.

The next question is, how does our HA-LFP scale up on the number of machines and edges? Figure 5.2
(b) shows the scalability of HA-LFP on the number of machines. We see that our HA-LFP scales up
linearly close to the ideal scale-up. Figure 5.3 shows the linear scalability of HA-LFP on the number of
edges.

5.5.2 Discussion

Based on the experimental results, what are the advantages of HA-LFP? In what situations should it be
used? For a small graph whose nodes and edges fit in the memory, the single-machine BP is recommended
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Figure 5.2: Running time of HA-LFP with 10 iterations on the YahooWeb graph with 1.4 billion nodes
and 6.7 billion edges. (a): Comparison of the running times of HA-LFP and the single-
machine BP. Notice that HA-LFP outperforms the single-machine BP when the number of
machines exceed ≈40. (b): “Scale-up” (throughput 1/TM ) versus number of machines M ,
for the YahooWeb graph. Notice the near-linear scale-up close to the ideal (dotted line).
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Good Bad

Good 1-ε ε
Bad 0.5 0.5

Table 5.3: Edge potential (ψ matrix) for the YahooWeb. ε is set to 0.05 in the experiments. Good pages
point to other good pages with high probability. Bad pages point to bad pages, but also good
pages with equal chances, to boost their rank in Web search engines.

since it runs faster. For a medium-to-large graph whose nodes fit in the memory but the edges do not fit in
the memory, HA-LFP gives the reasonable solution since it runs faster than the single-machine BP. For a
very large graph whose nodes do not fit in the memory, HA-LFP is the only solution. We summarize the
advantages of the HA-LFP here:

• Scalability: HA-LFP is the only solution when the nodes information can not fit in the memory.
Moreover, HA-LFP scales up near-linearly.

• Running Time: even for a graph whose node information fits in the memory, HA-LFP ran 2.4 times
faster.

• Fault Tolerance: HA-LFP enjoys the fault tolerance that HADOOP provides: data are replicated,
and the failed programs due to machine errors are restarted in working machines.

5.6 Analysis of Real Graphs

In this section, we analyze real-world graphs using HA-LFP and show important findings.

5.6.1 HA-LFP on YahooWeb

Given a Web graph, how can we separate the educational (‘good’) Web pages from the adult (‘bad’) Web
pages? Manually investigating billions of Web pages would take so much time and efforts. In this section,
we show how to do it using HA-LFP. We use a simple heuristic to set priors: the Web pages which contain
‘edu’ have high goodness prior (0.95), and the Web pages which contain either ‘sex’, ‘adult’, or ‘porno’
have low goodness prior (0.05). Among 11.8 million Web pages containing sexually explicit keywords,
we keep 10% of the pages as a validation set (goodness prior 0.5), and use the rest 90% as a training set
by setting the goodness prior 0.05. Also, among 41.7 million Web pages containing ‘edu’, we randomly
sample 11.8 million Web pages, so that the number equals with that of adult pages given prior, and use
10% as a validation set (goodness prior 0.5), and use the rest 90% as a training set (goodness prior 0.95).
The edge potential function is given by Table 5.3. It is given by our observation that good pages tend to
point to other good pages, while bad pages might point to good pages, as well as bad pages, to boost their
ranking in Web search engines.

Figure 5.4 shows the HA-LFP scores and the number of pages in the test set having such scores. Notice
that almost all the pages with LFP score less than 0.9 in our test data contain adult Web sites. Thus, the
LFP score 0.9 can be used as a decision boundary for adult Web pages.

Figure 5.5 shows the HA-LFP scores vs. PageRank scores of pages in our test set. We see that the
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Figure 5.4: HA-LFP scores and the number of pages in the test set having such scores. Note that pages
whose goodness scores are less than 0.9 (the left side of the vertical bar) are likely to be adult
pages with very high chances.

Figure 5.5: HA-LFP scores vs. PageRank scores of pages in our test set. The vertical dashed line is the
same decision boundary as in Figure 5.4. Note that in contrast to HA-LFP, PageRank scores
cannot be used to differentiating the good from the bad pages.
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Celebrity Spammer Normal

Celebrity 0.1 0.05 0.85
Spammer 0.1 0.45 0.45
Normal 0.35 0.05 0.6

Table 5.4: Edge potential (ψ matrix) for Twitter and VoiceCall.

(a) Twitter (b) VoiceCall

Figure 5.6: HA-LFP scores of people in Twitter and VoiceCall data. The points represent the scores of
the final beliefs in each state, forming a simplex in 3-dimensional space whose axes are the
red lines that meet at the center (origin). Notice that people seem to form two groups, in both
datasets, despite the fact that the two datasets are completely of different nature.

PageRank cannot be used for differentiating between educational and adult Web pages. However, HA-
LFP can be used to spotting adult Web pages, by using the threshold 0.9.

5.6.2 HA-LFP on Twitter and VoiceCall

We run HA-LFP on Twitter and VoiceCall data which are both social networks representing who follows
whom or who calls whom. We define three roles: ‘celebrity’, ‘spammer’, and normal people. We define a
celebrity as a person with a high in-degree (≥1000), and not-too-large out-degree (< 10× indegree). We
define a spammer as a person with a high out-degree (≥1000), but low in-degree (< 0.1×outdegree). For
celebrities, we set (0.1, 0.05, 0.85) for (celebrity, spammer, normal) prior probabilities. For spammers,
we set (0.1, 0.45, 0.45) for (celebrity, spammer, normal) prior probabilities. The edge potential function
is given by Table 5.4. It encodes our observation that celebrities tend to follow normal persons the most,
spammers follow other spammers or normal persons, and normal persons follow other normal persons or
celebrities.

Figure 5.6 shows the HA-LFP scores of people in Twitter and VoiceCall data. There are two clusters in
both of the data. The large cluster starting from the ‘Normal’ vertex contains high degree nodes, and the
small cluster below the large cluster contains low degree nodes.
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(a) YahooWeb: In Degree (b) Yahoo Web: Out Degree (c) Twitter: In Degree (d) Twitter: Out Degree

(e) VoiceCall: In Degree (f) VoiceCall: Out Degree (g) SMS: In Degree (h) SMS: Out Degree

Figure 5.7: [(e): Best Viewed In Color] Degree distributions of real world graphs. Notice many high
in-degree or out-degree nodes which can be used to determine the classes for HA-LFP. Most
distributions follow power-law or lognormal, except (e) which seems to be a mixture of two
lognormal distributions. Also notice the several spikes which suggest anomalous nodes, sus-
picious activities, or software limits on the number of connections.

5.6.3 Finding Roles and Anomalies

In the experiments of previous sections, we used several classes (‘bad’ Web sites, ‘spammers’, ‘celebri-
ties’, etc.) of nodes. The question is, how can we find classes of a given graph? Finding out such classes
is important for BP since it helps to set reasonable priors which could lead to quick convergence. In this
section, we analyze real world graphs and give observations on the patterns and anomalies, which could
potentially help determine the classes. We focus on the structural properties of graphs, including degree,
connected component, and radius.

Using Degree Distributions. We first show the degree distributions of real world graphs in Figure 5.7.
Notice that there are nodes with very high in or out degrees, which gives valuable information for setting
priors.
Observation 10 (High In or Out Degree Nodes). The nodes with high in-degree can have a high prior for
‘celebrity’, and the nodes with high out-degree but low in-degree can have a high prior for ‘spammer’.

Most of the degree distributions in Figure 5.7 follow power law or log-normal. The VoiceCall in degree
distribution (Figure 5.7 (e)) is different from other distributions since it contains mixture of distribu-
tions:
Observation 11 (Mixture of Lognormals in Degree Distribution). VoiceCall in degree distributions in
Figure 5.7 seems to comprise two lognormal distributions shown in D1 (red color) and D2 (green color).

Another observation is that there are several anomalous spikes in the degree distributions in Figures 5.7
(b) and (d).
Observation 12 (Spikes in Degree Distribution). There is a huge spike at the out degree 1200 of YahooWeb
data in Figure 5.7 (b). They came from online market pages from Germany, where the pages are linked
to each other and forming link farms. Two outstanding spikes are also observed at the out degree 20 and
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(a) In degree vs. Rank (b) Out degree vs. Rank

Figure 5.8: Degree vs. Rank. in Twitter Jun. 2010 data. Notice the change of slope around the tilting
point in (a). The point can be used to distinguish super-celebrities (e.g., of international
caliber) versus plain celebrities (of national or regional caliber).

2001 of Twitter data in Figure 5.7 (d). The reason seems to be a hard limit in the maximum number of
people to follow.

Finally, we study the highest degrees that are beyond the power-law or lognormal cutoff points using the
rank plot. Figure 5.8 shows the top 1000 highest in and out degrees and its rank (from 1 to 1000) which
we summarize in the following observation.
Observation 13 (Tilt in Rank Plot). The out degree rank plot of Twitter data in Figure 5.8 (b) follows
a power law with a single exponent. The in degree rank plot, however, comprises two fitting lines with
a tilting point around rank 240. The tilting point divides the celebrities in two groups: super-celebrities
(e.g., possibly, of international caliber) and plain celebrities (possibly, of national or regional caliber).

Using Connected Component Distributions. The distributions of the sizes of connected components in
a graph informs us of the connectivity of the nodes (component size vs. number of components having that
size). When these distributions are plotted over time, we may observe when certain nodes participate in
various activities — patterns such as periodicity or anomalous deviations from such patterns can generate
important insights.
Observation 14 (Periodic Dips and Surges). Figure 5.9 shows the temporal connected component dis-
tribution of the VoiceCall (who-calls-whom) data, where each data point was computed using one day’s
worth of data (i.e., a one-day snapshot). On every Sunday, we see a dip in the size of the giant connected
component (largest component), and an accompanying surge in the number of connected components for
the day. This periodicity highlights the typical and rather constant call volume during the work days,
and lower volume outside them. Equipped with this information, we may infer that “business” phone
numbers (nodes) are those that are regularly active during work days but not weekends; we may in turn
characterize these “business” numbers as one class of nodes in our algorithm. The sizes of the second and
third largest component oscillate about some small numbers (68 and 50 respectively), echoing previous
research findings [Mcglohon et al., 2008].

Using Radius Distributions. We next analyze the (effective) radius distributions of real graphs. As
defined in Definition 1 of Section 3.2.1, effective radius of a node is defined to be the 90%th percentile
of all the distances to other nodes from it. Thus, nodes with low radii can reach other nodes in a small
number of steps. Figure 5.10 shows the radius distributions of real graphs. In contrast to the VoiceCall
and the SMS data, the Twitter data contains several anomalous nodes with long (>10) radii.
Observation 15 (Suspicious Accounts Created By A User). The Twitter data contain several nodes with
long radii. They form chains shown in Figure 5.11. Each chain seems to be created by one user, since the
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Figure 5.9: [Best Viewed In Color] Temporal connected component distributions of the VoiceCall data,
from Dec 1, 2007 to Jan 31, 2008, inclusively. Each data point computed using one day’s
worth of data (i.e., a one-day snapshot.) GCC, 2CC, and 3CC are the first (giant), second, and
third largest components respectively. The turquoise line denotes the number of connected
components. The temporal trend may be used to set priors for HA-LFP. See the text for
details.

79



(a) Twitter (b) VoiceCall (c) SMS

Figure 5.10: Radius distributions of real world graphs. Notice the nodes with long radius in the Twitter
data. They are usually suspicious nodes as described in Figure 5.11.

Figure 5.11: Accounts with long radii in the Twitter Nov. 2009 data. Each box represents an account
with the corresponding anonymized id. At the right of the boxes, the time that the account
was created is shown. All the accounts are suspicious since they form chains with very low
degree. They seem to be created from a user, based on the regular timestamps. Especially,
all the 7 accounts in the left figure are from Mumbai, India.

times in which accounts are created are regular.

5.7 Conclusion

In this chapter we propose HADOOP LINE GRAPH FIXED POINT (HA-LFP), a HADOOP algorithm for the
inferences of graphical models in billion-scale graphs. The main contributions are the following:

• Efficiency. We show that the solution of inference problem in graphical models is a fixed point in
line graph. We propose LINE GRAPH FIXED POINT (LFP), a formulation of BP on a line graph
induced from the original graph, and show that it is a generalized version of a linear algebra opera-
tion. We propose HADOOP LINE GRAPH FIXED POINT (HA-LFP), an efficient algorithm carefully
designed for LFP in HADOOP.
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• Scalability. We do the experiments to compare the running time of the HA-LFP and a single-
machine BP. We also gives the scalability results and show that HA-LFP has a near-linear scale
up.

• Effectiveness. We show that our method can find interesting patterns and anomalies, on some of
the largest publicly available graphs.
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Chapter 6

Spectral Graph Analysis

Given a graph with billions of nodes and edges, are there nodes that participate in too many or too few
triangles? Are there close-knit near-cliques? These questions are expensive to answer unless we have the
first several eigenvalues and eigenvectors of the graph adjacency matrix. However, eigensolvers suffer
from subtle problems (e.g., convergence) for large sparse matrices, let alone for billion-scale ones.

We address this problem with the proposed HEIGEN algorithm, which we carefully design to be accu-
rate, efficient and able to run on the highly scalable MAPREDUCE (HADOOP) environment. This enables
HEIGEN to handle matrices more than 1000× larger than those which can be analyzed by existing algo-
rithms. We implement HEIGEN and run it on the M45 cluster. We report important discoveries about
near-cliques and triangles on several real-world graphs.

6.1 Introduction

Given a billion-scale graph, how can we find near-cliques (a set of tightly connected nodes), the count
of triangles, and related graph properties? As we discuss later, triangle counting and related expensive
operations can be computed quickly, provided we have the first several eigenvalues and eigenvectors.
In general, spectral analysis is a fundamental tool not only for graph mining, but also for other areas
of data mining. Eigenvalues and eigenvectors are at the heart of numerous algorithms such as triangle
counting [Tsourakakis, 2008], Singular Value Decomposition (SVD) [Kamel, 1984, Berry., 1992], spec-
tral clustering [Shi and Malik, 1997, Ng et al., 2002, Luxburg, 2007], Principal Component Analysis
(PCA) [Pearson, 1901], Multi Dimensional Scaling (MDS) [Kruskal and Wish, 1978, Bartell et al., 1992],
Latent Semantic Indexing (LSI) [Deerwester et al., 1990], and tensor analysis [Sun et al., 2006b, Kolda
and Sun, 2008, Kolda and Bader, 2009, Dunlavy et al., 2011]. Despite their importance, existing eigen-
solvers do not scale well. As described in Section 6.7, the maximum order and size of input matrices
feasible for these solvers are in the order of millions.

In this chapter, we discover patterns on near-cliques and triangles, on several real-world graphs including a
Twitter dataset (56Gb, 1.8 billion edges) and the “YahooWeb” dataset, one of the largest publicly available
graphs (120Gb, 1.4 billion nodes, 6.6 billion edges). To enable discoveries, we propose HEIGEN, an
eigensolver for billion-scale, sparse symmetric matrices built on the top of HADOOP, an open-source
MAPREDUCE framework. Our contributions are the following:
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Graph Nodes Edges File Size Type Description

YahooWeb 1.4 B 6.6 B 0.12 TB real WWW links in 2002
Twitter’09 63 M 1.8 B 56 GB real person-person

LinkedIn 7.5 M 58 MB 1 GB real person-person in 2006
Wikipedia 3.5 M 42 M 605 MB real doc-doc in 2007/02

WWW-Barabasi 325 K 1.5 M 20 MB real WWW links in nd.edu
Epinions 75 K 508 K 5 MB real who trusts whom

Kronecker 177 K 2 B 25 GB synthetic from Kronecker generator [Leskovec et al., 2005]
121 K 1.1 B 13.9 GB

59 K 282 M 3.3 GB

Table 6.1: Datasets. B: Billion, M: Million, K: Thousand, TB: Terabytes, GB: Gigabytes, MB:
Megabytes.

1. Effectiveness. With HEIGEN we analyze billion-scale real-world graphs and report discoveries,
including a high triangle vs. degree ratio for adult sites and Web pages that participate in billions of
triangles.

2. Careful Design. We choose among several serial algorithms and selectively parallelize operations
for better efficiency.

3. Scalability. We use the HADOOP platform for its excellent scalability and implement several opti-
mizations for HEIGEN, such as cache-based multiplications and skewness exploitation. This results
in linear scalability in the number of edges, the same accuracy as standard eigensolvers for small
matrices, and more than a 76× performance improvement over a naive implementation.

Due to our focus on scalability, HEIGEN can handle sparse symmetric matrices which correspond to
graphs with billions of nodes and edges, surpassing the capability of previous eigensolvers (e.g. [Wu and
Simon, 1999, Song et al., 2008]) by more than 1,000×. Note that HEIGEN is different from Google’s
PageRank algorithm [Brin and Page, 1998] since HEIGEN computes the top k eigenvectors while PageR-
ank computes only the first eigenvector. Designing top k eigensolver is much more difficult and subtle
than designing the first eigensolver, as we will see in Section 6.4. With this powerful tool we are able
to study several billion-scale graphs, and we report fascinating patterns on the near-cliques and triangle
distributions in Section 6.2.

The HEIGEN algorithm (implemented in HADOOP) is available at
http://www.cs.cmu.edu/˜pegasus. The rest of the chapter is organized as follows. In Sec-
tion 6.2 we presents the discoveries in real-world, large scale graphs. Section 6.3 explains the design
decisions that we considered for selecting the best sequential method. Section 6.4 describes HEIGEN, our
proposed eigensolver. Section 6.5 explains additional uses of HEIGEN for interesting eigenvalue based
algorithms. Section 6.6 shows the performance results of HEIGEN. After describing previous works in
Section 6.7, we conclude in Section 6.8.

6.2 Discoveries

In this section, we show discoveries on billion-scale graphs using HEIGEN. The discoveries include
spotting near-cliques, finding triangles, and eigen power-laws. The graphs we used in this and Section 6.6
are described in Table 6.1 whose entries are repeated from Table 2.2 for convenience.
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(a) U4 vs. U1 (b) U3 vs. U2 (c) U7 vs. U5 (d) U8 vs. U6

(e) U1 spoke (f) U2 spoke (g) U3 spoke (h) U4 spoke (i) Structure of
bi-clique

Figure 6.1: EE-plots and spyplots from YahooWeb. (a)-(d): EE-plots showing the scores of nodes in the
ith eigenvector Ui vs. in the jth eigenvector Uj . Notice the clear ‘spokes’ in top eigenvectors
signify the existence of a strongly related group of nodes in near-cliques or bi-cliques as
depicted in (i). (e)-(h): spyplots (adjacency matrices of induced subgraphs) of the top 100
largest scoring nodes from each eigenvector. Notice that we see a near clique in U3, and
bi-cliques in U1, U2, and U4. (i): the structure of ‘bi-clique’ in (e), (f), and (h).

6.2.1 Spotting Near-Cliques

In a large, sparse network, how can we find tightly connected nodes, such as those in near-cliques or
bipartite cores? Surprisingly, eigenvectors can be used for this purpose [Prakash et al., 2010a]. Given an
adjacency matrix A and its SVD A = UΣV T , an EE-plot is defined to be the scatter plot of the vectors Ui
and Uj for any i and j. EE-plots of some real-world graphs contain clear separate lines (or ‘spokes’), and
the nodes with the largest values in each spoke distinguish themselves from the other nodes by forming
near-cliques or bipartite cores. Figures 6.1 shows several EE-plots and spyplots (i.e., adjacency matrix of
induced subgraph) of the top 100 nodes in top eigenvectors of YahooWeb graph.

In Figure 6.1 (a) - (d), we observe clear ‘spokes,’ or outstanding nodes, in the top eigenvectors. Moreover,
the top 100 nodes with largest values in U1, U2, and U4 form a ‘bi-clique’, shown in (e), (f), and (h),
which is defined to be the combination of a clique and a bipartite core as depicted in Figure 6.1 (i).
Another observation is that the top seven nodes shown in Figure 6.1 (g) belong to indymedia.org
which is the site with the maximum number of triangles as shown in Figure 6.3.

In the WWW-Barabasi graph of Figure 6.2, we also observe spokes in the top eigenvectors. The spokes
from the top four eigenvectors form near-cliques, and the union of them (329 nodes) clearly identify three
tightly connected communities in Figure 6.2 (i).
Observation 16 (Eigenspokes). EE-plots of real graphs show clear spokes. Additionally, the extreme
nodes in the spokes belong to cliques or bi-cliques.

84



(a) U2 vs. U1 (b) U4 vs. U3 (c) U6 vs. U5 (d) U8 vs. U7

(e) U1 spoke (f) U2 spoke (g) U3 spoke (h) U4 spoke (i) U1-U4 spyplot

Figure 6.2: EE-plots and spyplots of WWW-Barabasi. (a)-(d): EE-plots showing the scores in the ith
eigenvector Ui vs. in the jth eigenvector Uj . Notice the ‘spokes’ in top eigenvectors which
signify the cliques shown in the second row. (e)-(h): Spyplots (adjacency matrices of induced
subgraphs) from the top 100 largest scoring nodes from each eigenvector. Notice the cliques
in all the plots. (i): Spyplots of the union of nodes in the top 4 spokes. Notice the 3 cliques of
sizes 90, 100, and 130.

(a) LinkedIn (58M edges) (b) Twitter (2.8B edges) (c) YahooWeb (6.6B edges)

Figure 6.3: The distribution of the number of participating triangles of real graphs. In general, they
obey the “triangle power-law.” Moreover, well-known U.S. politicians participate in many
triangles, demonstrating that their followers are well-connected. In the YahooWeb graph, we
observe several anomalous spikes which possibly come from cliques.
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6.2.2 Triangle Counting

Given a particular node in a graph, how are its neighbors connected? Do they form stars? Cliques? The
above questions about the community structure of networks can be answered by studying triangles (three
nodes which are connected to each other). However, directly counting triangles in graphs with billions of
nodes and edges is prohibitively expensive [Tsourakakis et al., 2009]. Fortunately, we can approximate
triangle counts with high accuracy using HEIGEN by exploiting the connection of triangle counting to
eigenvalues [Tsourakakis, 2008]. In a nutshell, the total number of triangles in a graph is related to the
sum of cubes of eigenvalues, and the first few eigenvalues provide extremely good approximations. A
slightly more elaborate analysis approximates the number of triangles in which a node participates, using
the cubes of the first few eigenvalues and the corresponding eigenvectors. Specifically, the total number
of triangles ∆(G) of a graph G is ∆(G) = 1

6

∑n
i=1 λ

3
i , and the number of triangles ∆i that a node i

is participating in is ∆i = 1
2

∑n
j=1 λ

3
juj [i]

2 where λj is the jth eigenvalue and uj [i] is the ith element
of the jth eigenvector of the adjacency matrix of G. The top k eigenvalues can give highly accurate
approximations to the number of triangles since the top eigenvalues dominate the cubic sum given the
power-law relation of eigenvalues [Faloutsos et al., 1999], which we also observe in Section 6.2.3.

Using the top k eigenvalues computed with HEIGEN, we analyze the distribution of triangle counts of
real graphs including the LinkedIn, the Twitter, and the YahooWeb graphs in Figure 6.3. We first observe
that there exist several nodes with extremely large triangle counts. In Figure 6.3 (b), Barack Obama is
the person with the fifth largest number of participating triangles, and has many more than other U.S.
politicians. In Figure 6.3 (c), the Web page lists.indymedia.org contains the largest number of
triangles; this page is a list of mailing lists which apparently point to each other.

We also observe regularities in triangle distributions and note that the beginning part of the distributions
follows a power-law.
Observation 17 (Triangle power law). The beginning part of the triangle count distribution of real graphs
follows a power-law.

In the YahooWeb graph in Figure 6.3 (c), we observe many spikes. One possible explanation for these
spikes is that they come from cliques: a k-clique generates k nodes with (k−1

2 ) triangles.
Observation 18 (Spikes in triangle distribution). In the Web graph, there exist several spikes which pos-
sibly come from cliques.

The rightmost spike in Figure 6.3 (c) contains 125 Web pages each of which has about 1 million triangles
in their neighborhoods. They all belong to the news site ucimc.org, and are connected to a tightly
coupled group of pages.

Triangle counts exhibit even more interesting patterns when combined with the degree information as
shown in the triangle-degree plot of Figure 6.4. We see that celebrities have high degree and mildly
connected followers, while accounts for adult sites have significantly fewer, but extremely well connected,
followers. Degree-triangle plots can be used to spot and eliminate harmful accounts such as those of adult
advertisers and spammers.
Observation 19 (Anomalous Triangles vs. Degree Ratio). In Twitter, anomalous accounts have very high
triangles vs. degree ratio compared to other regular accounts.
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Figure 6.4: The number of participating triangles vs. degree of some ‘celebrities’ (rest: omitted, for
clarity) in Twitter accounts. Also shown are accounts of adult sites which have smaller degree,
but belong to an abnormally large number of triangles (= many, well connected followers -
probably, ‘robots’).

6.2.3 Eigen Exponent

The power-law relationship λi ∝ iε of eigenvalues λi vs. rank i has been observed in Internet topology
graphs with up to 4,389 nodes [Faloutsos et al., 1999]. Will the same power-law be observed in up to
300,000× larger graphs? The scree plots in Figure 6.5 show the answer. Note that all plots have corre-
lation coefficients equal to -0.94 or better, except for the WWW-Barabasi with the correlation coefficient
-0.84.
Observation 20 (Power-law scree plots). For all real graphs of Figure 6.5, the scree plots indicate power
laws. Most of the graphs have the correlation coefficients -0.94 or better.

The difference of the slopes between YahooWeb and WWW-Barabasi graphs means that the larger Web
graph (YahooWeb) has a more skewed eigenvalue distribution, with the small set of eigenvalues dominat-
ing most of the spectra compared to the smaller Web graph (WWW-Barabasi).

All of the above observations need a fast, scalable eigensolver. This is exactly what HEIGEN does, and
we describe our proposed design next.

6.3 Background - Sequential Algorithms

Our goal is an eigensolver that finds the top k eigenvalues of a billion-scale matrix. Our natural choice
of parallel platform is HADOOP, as described in Chapter 2. We limit our attention to symmetric matrices
due to the computational difficulty since even the best method for non-symmetric eigensolver requires
significantly heavier computations than the symmetric case [Trefethen and Bau III, 1997].

The problem of finding the eigenvalues of a matrix, however, is inherently difficult since it essentially
boils down to finding the roots of a high-degree polynomial which may not have the general solution.
Designing the parallel eigensolver algorithm is even more complicated since it requires a careful choice
of operations that could be performed well in parallel. In this section, we review some of the major
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Figure 6.5: The scree plot: absolute eigenvalue vs. rank in log-log scale. Notice that the similar power-
laws are observed in various real graphs.

Symbol Definition

n order of input matrix
m number of iterations in Lanczos

A, M n-by-n input matrix
As, Ms n-by-m input matrix, n� m
y, x n-vector
xs m-vector, n� m
α, β a real number
||y|| L2 norm of the vector y
||T || induced matrix L2 norm of the matrix T which is the largest singular value of T
em a vector whose mth element is 1, while other elements are 0

EIG(A) outputs QDQT by symmetric eigen decomposition
ε machine epsilon: upper bound on the relative computation error

Table 6.2: Table of symbols.
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sequential eigensolver algorithms and show the important design decisions that guided our choice of the
best sequential method for parallel eigensolvers for very large graphs. Table 6.2 lists the symbols used in
this chapter. For indexing elements of a matrix, we use A[i, j] for (i, j)th element of A, A[i, :] for ith row
of A, and A[:, j] for jth column of A.

6.3.1 Power Method

The simplest and probably most popular way of finding the first eigenvector of a matrix is the Power
method. The first eigenvector is simply the eigenvector corresponding to the largest eigenvalue of the
matrix. In the Power method, the input matrix A is multiplied with the initial random vector b multiple
times to compute the sequence of vectors Ab,A(Ab), A(A2b), ... which converges to the first eigenvector
of A. The intuition behind the power method is as follows: consider the eigendecomposition of A =
UΛUT . If we take A2 we essentially get

A2 = (UΛUT )(UΛUT ) = UΛ2UT

because UTU = I , by definition. At the k-th iteration of the Power method, we eventually get all
the eigenvalues lifted to the power k; as k grows, the largest eigenvalue begins to dominate the rest,
smaller eigenvalues, therefore, Akb, with some appropriate scaling, will be a very good estimate of the
first eigenvector of A: actually, Akb ≈ u1u

T
1 bλ

k
1 , where u1 is the first column of U , and λ1 is the largest

eigenvalue. This constitutes no proof of the Power method, but merely an intuitive explanation of why it
works.

The Power method is attractive since it requires only matrix-vector multiplications, which may be carried
out efficiently in many parallel platforms including HADOOP. Furthermore, it is one of the ways of
computing the PageRank of a graph [Brin and Page, 1998]. However, the main drawback of the Power
method in the present context is that it is very restrictive, since it computes only the first eigenvector.
Other variants of the power method, such as shifted inverse iteration and Rayleigh quotient iteration also
have the same limitation. Therefore, we need to find a better method which can find top k eigenvalues and
eigenvectors.

Shortcomings: Power method computes only the first eigenvector.

6.3.2 Simultaneous Iteration (or QR algorithm)

The simultaneous iteration (or QR algorithm, which is essentially the same) is an extension of Power
method in the sense that it applies the Power method to several vectors at once. It can be shown that the
orthogonal bases of the vectors converge to top k eigenvectors of the matrix [Trefethen and Bau III, 1997].
The main problem of the simultaneous iteration is that it requires several large matrix-matrix multiplica-
tions which are prohibitively expensive for billion-scale graphs. Therefore, we restrict our attention to
algorithms that require only matrix-vector multiplications.

Shortcomings: Simultaneous iteration is too expensive for billion-scale graphs due to large matrix-matrix
multiplications.
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6.3.3 Lanczos-NO: No Orthogonalization

The next method we consider is the basic Lanczos algorithm [Lanczos, 1950] which we henceforth call
Lanczos-NO (No Orthogonalization). Lanczos-NO method is attractive since it can find the top k eigen-
values of sparse, symmetric matrix, with its most costly operation being the matrix-vector multiplica-
tion.

Overview - Intuition. The Lanczos-NO algorithm is a clever improvement over the Power method. Like
the Power method,

• it requires several (m) matrix-vector multiplications, that can easily be done with HADOOP
• then it generates a dense, but skinny matrix (n×m, with n� m)
• it computes a small, sparse square m ×m matrix, whose eigenvalues are good approximations to

the required eigenvalues
• and then computes the top k eigenvectors (k < m), also with HADOOP-friendly operations.

Thus, all the expensive steps can be easily done with HADOOP. Next we provide more details on Lanczos-
NO, which can be skipped on first glance.

Details. The Lanczos-NO algorithm is a clever extension of the Power method. In the Power method,
the intermediate vectors Akb are discarded for the final eigenvector computation. In Lanczos-NO, the
intermediate vectors are used for constructing orthonormal bases of the so-called Krylov subspace Km,
which is defined as

Km =< b,Ab, ..., Am−1b > .

The orthonormal bases are constructed by creating a new vector which is orthogonal to all previous bases,
as in Gram-Schmidt orthogonalization. Therefore, Lanczos-NO can be summarized as an iterative algo-
rithm which constructs orthonormal bases for successive Krylov subspaces. Specifically, Lanczos-NO
with m iterations computes the Lanczos-NO factorization which is defined as follows:

AVm = VmTm + fme
T
m,

where An×n is the input matrix, V n×m
m contains the m orthonormal bases as its columns, Tm×mm is a tri-

diagonal matrix that contains the coefficients for the orthogonalization, fm is a new n-vector orthogonal
to all columns of Vm, and em is a vector whose mth element is 1, while other elements are 0. Here, m (the
number of matrix-vector multiplication) is much smaller than n (the order of the input matrix): e.g., for
billion-scale graphs, n = 109, and m = 20. The Lanczos-NO iteration is shown in Algorithm 6.1.

After m iterations, the Vm matrix and Tm matrices are constructed (Tm is built by Tm[i, i] ← αi, and
Tm[i, i + 1] = Tm[i + 1, i] ← βi). The eigenvalues of Tm are called the Ritz values, and the columns
of VmY , where Y contains the eigenvector of Tm in its columns, are called the Ritz vectors which are
constructed by Algorithm 6.2. The Ritz values and the Ritz vectors are good approximations of the
eigenvalues and the eigenvectors of A, respectively [Golub and Van Loan, 1996]. The computation of the
eigenvalues of Tm can be done quickly with direct algorithms such as QR since the matrix is very small
(e.g., 20 by 20). For details, see [Golub and Van Loan, 1996].

The problem of Lanczos-NO is that some eigenvalues jump up to the next eigenvalues, thereby creating
spurious eigenvalues. We will see the solution to this problem in the next section.
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Algorithm 6.1: Lanczos-NO (No Orthogonalization)
Input: matrix An×n,

random n-vector b, and
number of steps m.

Output: orthogonal matrix V n×m
m = [v1...vm], and

coefficients α[1..m], β[1..m− 1].
1: β0 ← 0, v0 ← 0, v1 ← b/||b||;
2: for i = 1, ..m do
3: v ← Avi;
4: αi ← vTi v;
5: v ← v − βi−1vi−1 − αivi; // make a new basis
6: βi ← ||v||;
7: if βi = 0 then
8: break for loop;
9: end if

10: vi+1 ← v/βi;
11: end for

Algorithm 6.2: Compute Top k Ritz Vectors
Input: orthogonal matrix V n×m

m , and
coefficients α[1..m], β[1..m− 1].

Output: Ritz vector Rn×kk .
1: Tm ← (build a tri-diagonal matrix from α and β);
2: QDQT ← EIG(Tm);
3: λ1..k ← (top k eigenvalues from D);
4: Qk ← (k columns of Q corresponding to λ1..k);
5: Rk ← VmQk;
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Shortcomings: Lanczos-NO outputs spurious eigenvalues.

6.4 Proposed Method

In this section we describe HEIGEN, a parallel algorithm for computing the top k eigenvalues and eigen-
vectors of symmetric matrices in MAPREDUCE.

6.4.1 Summary of the Contributions

Efficient top k eigensolvers for billion-scale graphs require careful algorithmic considerations. The main
challenge is to carefully design algorithms that work well on distributed systems and exploit the inherent
structure of data, including block structure and skewness, in order to be efficient. We summarize the
algorithmic contributions here and describe each in detail in later sections.

1. Careful Algorithm Choice. We carefully choose a sequential eigensolver algorithm that is efficient
for MAPREDUCE and gives accurate results.

2. Selective Parallelization. We group operations into expensive and inexpensive ones based on input
sizes. Expensive operations are done in parallel for scalability, while inexpensive operations are
performed on a single machine to avoid extra overhead of parallel execution.

3. Blocking. We reduce the running time by decreasing the input data size and the amount of network
traffic among machines.

4. Exploiting Skewness. We decrease the running time by exploiting the skewness of data.

6.4.2 Careful Algorithm Choice

In Section 6.3, we considered three algorithms that are not tractable for analyzing billion-scale graphs
with MAPREDUCE. Fortunately, there is an algorithm suitable for such a purpose. Lanczos-SO (Selec-
tive Orthogonalization) improves on the Lanczos-NO by selectively reorthogonalizing vectors instead of
performing full reorthogonalizations.

The main idea of Lanczos-SO (Algorithm 6.3) is as follows: we start with a random initial basis vector
b which comprises a rank-1 subspace. For each iteration, a new basis vector is computed by multiplying
the input matrix with the previous basis vector. The new basis vector is then orthogonalized against the
last two basis vectors and is added to the previous rank-(m − 1) subspace, forming a rank-m subspace.
Let m be the number of the current iteration, Qm be the n ×m matrix whose ith column is the ith basis
vector, and A be the matrix whose eigenvalues we seek to compute. We also define Tm = QTmAQm
to be a m ×m matrix. Then, the eigenvalues of Tm are good approximations of the eigenvalues of A .
Furthermore, multiplying Qm by the eigenvectors of Tm gives good approximation of the eigenvectors of
A. We refer to [Trefethen and Bau III, 1997] for further details.

If we used the exact arithmetic, the newly computed basis vector would be orthogonal to all previous basis
vectors. However, rounding errors from floating-point calculations compound and result in the loss of
orthogonality. This is the cause of the spurious eigenvalues in Lanczos-NO. Orthogonality can be recov-
ered once the new basis vector is fully re-orthogonalized to all previous vectors. However, this operation
is quite expensive as it requires O(m2) re-orthogonalizations, where m is the number of iterations. A
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Algorithm 6.3: Lanczos-SO (Selective Orthogonalization)
Input: matrix An×n,

random n-vector b,
maximum number of steps m,
error threshold ε, and
number of eigenvalues k.

Output: top k eigenvalues λ1..k, and
eigenvectors Un×k.

1: β0 ← 0, v0 ← 0, v1 ← b/||b||;
2: for i = 1..m do
3: v ← Avi; // Find a new basis vector
4: αi ← vTi v;
5: v ← v − βi−1vi−1 − αivi; // Orthogonalize against two previous basis vectors
6: βi ← ||v||;
7: Ti ← (build tri-diagonal matrix from α and β);
8: QDQT ← EIG(Ti); // Eigen decomposition of Ti
9: for j = 1..i do

10: if βi|Q[i, j]| ≤
√
ε||Ti|| then

11: r ← ViQ[:, j];
12: v ← v − (rT v)r; // Selectively orthogonalize
13: end if
14: end for
15: if (v was selectively orthogonalized) then
16: βi ← ||v||; // Recompute normalization constant βi
17: end if
18: if βi = 0 then
19: break for loop;
20: end if
21: vi+1 ← v/βi;
22: end for
23: T ← (build tri-diagonal matrix from α and β);
24: QDQT ← EIG(T ); // Eigen decomposition of T
25: λ1..k ← top k diagonal elements of D; // Compute eigenvalues
26: U ← VmQk; // Compute eigenvectors. Qk is the set of columns of Q corresponding to λ1..k

93



Operation Description Input P?

y ← y + ax vector update Large Yes
γ ← xTx vector dot product Large Yes
y ← αy vector scale Large Yes
||y|| vector L2 norm Large Yes
y ←Mn×nx large matrix-large, dense vector multiplication Large Yes
y ←Mn×m

s xs large matrix-small vector multiplication (n� m) Large Yes
As ←Mn×m

s Nm×k
s large matrix-small matrix multiplication (n� m > k) Large Yes

||T || matrix L2 norm which is the largest singular value of the matrix Tiny No
EIG(T ) symmetric eigen decomposition to output QDQT Tiny No

Table 6.3: Parallelization Choices. The last column (P?) indicates whether the operation is parallelized
in HEIGEN. Some operations are better to be run in parallel since the input size is very large,
while others are better in a single machine since the input size is small and the overhead of
parallel execution overshadows its decreased running time.

faster approach uses a quick test (line 10 of Algorithm 6.3) to selectively choose vectors that need to be
re-orthogonalized to the new basis [Demmel, 1997]. This selective-reorthogonalization idea is shown in
Algorithm 6.3.

The Lanczos-SO has all the properties that we need: it finds the top k largest eigenvalues and eigenvectors,
it produces no spurious eigenvalues, and its most expensive operation, a matrix-vector multiplication, is
tractable in MAPREDUCE. Therefore, we pick Lanczos-SO as our choice of the sequential algorithm for
parallelization.

6.4.3 Selective Parallelization

Among many sub-operations in Algorithm 6.3, which operations should we parallelize? A naive approach
is to parallelize all the operations; however, some operations run more quickly on a single machine rather
than on multiple machines in parallel. The reason is that the overhead incurred by using MAPREDUCE

exceeds gains made by parallelizing the task; simple tasks where the input data is very small are carried out
faster on a single machine. Thus, we divide the sub-operations into two groups: those to be parallelized
and those to be run in a single machine. Table 6.3 summarizes our choice for each sub-operation. Note
that the last two operations in the table can be done with a single-machine standard eigensolver since the
input matrices are tiny; they have m rows and columns, where m is the number of iterations.

6.4.4 Blocking

Minimizing the volume of information exchanged between nodes is important to designing efficient dis-
tributed algorithms. In HEIGEN, we decrease the amount of network traffic by using the block-based
operation which was also used in Section 4.3.2. Normally, one would put each edge “(source, desti-
nation)” in one line; HADOOP treats each line as a data element for its mapper functions. Instead, we
propose to divide the adjacency matrix into blocks (and, of course, the corresponding vectors also into
blocks), and put the edges of each block on a single line, and compress the source- and destination-ids.

94



Algorithm 6.4: Cache-Based Matrix-Vector Multiplication (CBMV) for HEIGEN

Input: matrix M = {(idsrc, (iddst,mval))}, and
vector x = {(id, vval)}.

Output: result vector y.
1: Stage1-Map(Key k, Value v, Vector x): // Multiply matrix and vector elements
2: idsrc ← k;
3: (iddst,mval)← v;
4: Output(idsrc, (mval × x[iddst])); // Multiply and output partial results
5:

6: Stage1-Reduce(Key k, Value v[1..r]): // Sum up partial results
7: sum← 0;
8: for z ∈ v[1..r] do
9: sum← sum+ z;

10: end for
11: Output(k, sum);

This makes the mapper functions a bit more complicated to process blocks, but it saves significant transfer
time of data over the network. We use these edge-blocks and the vector-blocks for many parallel opera-
tions in Table 6.3, including matrix-vector multiplication, vector update, vector dot product, vector scale,
and vector L2 norm. Performing operations on blocks is faster than doing so on individual elements since
both the input size and the key space decrease. This reduces the network traffic and sorting time in the
MAPREDUCE Shuffle stage. As we will see in Section 6.6, the blocking decreases the running time by
more than 4×.

6.4.5 Exploiting Skewness: Matrix-Vector Multiplication

HEIGEN uses an adaptive method for sub-operations based on the size of the data. In this section, we
describe how HEIGEN implements different matrix-vector multiplication algorithms by exploiting the
skewness pattern of the data. There are two matrix-vector multiplication operations in Algorithm 6.3: the
one with a large vector (line 3) and the other with a small vector (line 11).

The first matrix-vector operation multiplies a matrix with a large and dense vector, and thus it requires
a two-stage standard MAPREDUCE algorithm (see Algorithms 4.1 and 4.2). In the first stage, matrix
elements and vector elements are joined and multiplied to produce partial results which are added together
to get the result vector in the second stage.

The other matrix-vector operation, however, multiplies with a small vector. HEIGEN uses the fact that
the small vector can fit in a machine’s main memory, and distributes the small vector to all the mappers
using the distributed cache functionality of HADOOP. The advantage of the small vector being available in
mappers is that joining edge elements and vector elements can be done inside the mapper, and thus the first
stage of the standard two-stage matrix-vector multiplication can be omitted. In this one-stage algorithm
the mapper joins matrix elements and vector elements to make partial results, and the reducer adds up the
partial results. The pseudo code of this algorithm, which we call CBMV (distributed Cache-Based Matrix-
Vector multiplication), is shown in Algorithm 6.4. We want to emphasize that this operation cannot
be performed when the vector is large, as is the case in the first matrix-vector multiplication (line 3 of
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Algorithm 6.3). The CBMV is faster than the standard method by 57× as described in Section 6.6.

6.4.6 Exploiting Skewness: Matrix-Matrix Multiplication

Skewness can also be exploited to efficiently perform matrix-matrix multiplication (line 26 of Algo-
rithm 6.3). In general, matrix-matrix multiplication is very expensive. A standard, yet naive, way of
multiplying two matricesA andB in MAPREDUCE is to multiplyA[:, i] andB[i, :] for each column i ofA
and sum the resulting matrices. This algorithm, which we call direct Matrix-Matrix multiplication (MM),
is very inefficient since it generates huge matrices which are summed up many times. Fortunately, when
one of the matrices is very small, we may exploit the skewness to come up with an efficient MAPREDUCE

algorithm. This is exactly the case in HEIGEN; the first matrix is very large, and the second is very small.
The main idea is to distribute the second matrix using the distributed cache functionality in HADOOP,
and multiply each element of the first matrix with the corresponding rows of the second matrix. We call
the resulting algorithm distributed Cache-Based Matrix-Matrix multiplication, or CBMM. There are other
alternatives to matrix-matrix multiplication: one can decompose the second matrix into column vectors
and iteratively multiply the first matrix with each of these vectors. We call the algorithms, introduced
in Section 6.4.5, Iterative Matrix-Vector multiplications (IMV) and Cache-Based iterative Matrix-Vector
multiplications (CBMV). The difference between CBMV and IMV is that CBMV uses distributed cache-
based operations while IMV does not. As we will see in Section 6.6, the best method, CBMM, is faster
than naive methods by more than 76×.

6.4.7 Analysis

We analyze the time and the space complexities of HEIGEN. In the lemmas below, m is the number of
iterations, |V | is the dimension of the matrix, |E| is the number of nonzeros in the matrix, and s is the
number of machines.
Lemma 6.1 (Time Complexity). HEIGEN takes O(m |V |+|E|s log |V |+|E|s ) time.

Proof. The running time of one iteration of HEIGEN is dominated by the matrix-large vector multiplica-
tion whose running time is O(m |V |+|E|s log |V |+|E|s ).

Lemma 6.2 (Space Complexity). HEIGEN requires O(|V |+ |E|) space.

Proof. The maximum storage is required at the intermediate output of the two-stage matrix-vector multi-
plication where O(|V |+ |E|) space is needed.

6.5 Additional Use of HEigen

The HEIGEN algorithm can be readily extended to other eigenvalue-based algorithms. In this secton, we
describe large-scale algorithms for Singular Value Decomposition (SVD) and spectral clustering based on
HEIGEN.
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6.5.1 HEIGEN Gives SVD

Given any matrix A, the Singular Value Decomposition (SVD) gives the factorization

A = UΣV T ,

where U and V are unitary matrices (i.e. square matrices that satisfy UTU = UUT = I with I being the
identity matrix), and Σ is a diagonal (if A is square) or a rectangular diagonal matrix (if A is rectangular),
whose diagonal entries are real and non-negative, and are called singular values of A.

The SVD is a very powerful tool in analyzing graphs as well as matrices [Kamel, 1984, Berry., 1992]; some
of its applications include optimal matrix approximation in the least squares sense [Eckart and Young,
1936], Principal Component Analysis [Pearson, 1901], clustering [Zha et al., 2002] (more specifically a
relaxed version of the well known k-means clustering problem) and Information Retrieval/Latent Semantic
Indexing [Deerwester et al., 1990].

HEIGEN can be extended to SVD of both symmetric and asymmetric matrices.

Symmetric Matrix. For a symmetric matrix A, the singular values of A are the absolute eigenvalues of
A, and the singular vectors and the eigenvectors of A are the same up to signs. Thus, given an eigen
decomposition A = UΛUT computed by HEIGEN, we get the SVD

A = UΛUT

= UΣSUT

= UΣ(US)T ,

where Λ = ΣS, Σ is the diagonal matrix whose element Σ(i, i) contains the absolute value of Λ(i, i), and
S is the diagonal matrix whose (i, i)-th element S(i, i) is 1 if Λ(i, i) ≥ 0, and −1 otherwise.

Asymmetric Matrix. For an asymmetric matrix An×p, the standard method to compute the SVD A =
UΣV T is to build a symmetric (n+ p)× (n+ p) matrix

Â =

[
0 A
AT 0

]
,

and apply HEIGEN on Â [Berry., 1992]. The SVD (up to signs) of Â is given by

Â =

[
1√
2
U − 1√

2
U

1√
2
V 1√

2
V

] [
Σ 0
0 −Σ

][ 1√
2
UT 1√

2
V T

− 1√
2
UT 1√

2
V T

]
.

Algorithm 6.5 shows the algorithm for standard SVD on asymmetric matrix using HEIGEN.

There are two shortcomings in Algorithm 6.5 which can be improved. First, we need to construct Â
which is 2× larger than the original matrix A. Second, to get k singular values of A, we need to get 2k
eigenvalues of Â since there are 2 copies of the same eigenvalues in the eigen decomposition of Â.
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Algorithm 6.5: Standard SVD on asymmetric matrix using HEIGEN

Input: matrix An×p, and
number of singular values k.

Output: top k singular values σ[1..k],
left singular vectors Un×k, and
right singular vectors V p×k of A.

1: Â←
[

0 A
AT 0

]
;

2: Apply HEIGEN on Â;

Fast SVD for Asymmetric Matrix. We describe a faster SVD method for asymmetric matrices using
HEIGEN, with the two main ideas. First, we use the fact that if A = UΣV T is a SVD of A, then
AAT = UΣ2UT is a symmetric, positive definite matrix whose eigenvectors are the same as the left
singular vectors of A, and eigenvalues are the square of the singular values of A. Thus, HEIGEN on
AAT gives us U and Σ. Having computed U and Σ, we can solve for V T by V T = Σ−1UTA. Naively
applying HEIGEN on AAT is not desired, however, since AAT can be much larger and denser than A.
Our second idea solves the problem by never materializing the matrix AAT in applying HEIGEN on
AAT . Note that the input matrix in HEIGEN is used only for the matrix-vector multiplication on line
3 of Algorithm 6.3. We can efficiently compute the matrix-vector multiplication (AAT )vi by A(AT vi),
which means to first compute AT vi, and multiply the resulting vector by A, thereby replacing a dense
matrix-vector multiplication by two sparse matrix-vector multiplications.

6.5.2 HEIGEN Solves Large Scale Systems of Linear Equations

Solving large scale systems of linear equation is a very important task that pertains to almost every scien-
tific discipline. Consider the following system of linear equations:

y = Ax,

where A is of size m× p and x is the vector of unknowns. In general, this system might have one, infinite
or no solution, depending on the dimensions of A (if m > p the system is called overdetermined, else if
m < p it is called underdetermined), and on whether y exists in the column space of A or not. In all the
above cases, HEIGEN helps us calculate the only solution (when there exists one), find the best (in terms
of the `2 norm) whenever there are infinite ones, or get the best `2 approximation of x, when there is no
exact solution. For all the aforementioned cases, we call x̂ the outcome. It can be shown that the solution
x̂ is given by x̂ = A†y, where A† is the Moore-Penrose pseudoinverse of A [Penrose, 1955] which is
defined by A† = (ATA)−1AT for a real matrix A with full column rank. A computationally efficient way
to compute the pseudoinverse is to use the SVD. Specifically, given an SVD A = UΣV T by HEIGEN, the
pseudoinverse A† is given by

A† = V Σ−1UT .

Furthermore, x̂ = A†y = V Σ−1UT y can be computed efficiently in HADOOP by three matrix-vector
multiplications. Specifically,
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x̂ = V w,

where w = Σ−1z and z = UT y.

6.5.3 HEIGEN Gives HITS

HITS [Kleinberg, 1999] is a well-known algorithm to compute the ‘hubs’ and ‘authorities’ scores in Web
pages. Given an adjacency matrix A of Web pages, the hub and the authority scores are given by the
principal eigenvector of AAT and ATA, respectively. HEIGEN can give them since the left and the
right singular vectors of A are the principal eigenvectors of AAT and ATA, respectively, as described in
Section 6.5.1.

6.5.4 HEIGEN Gives Spectral Clustering

Spectral clustering is a popular clustering algorithm on graphs [Luxburg, 2007]. We consider the two spec-
tral clustering algorithms by Shi et al. [Shi and Malik, 1997] and Ng et al. [Ng et al., 2002], and show how
they can be easily computed with HEIGEN. Recall that the main idea of the spectral clustering is to first
compute the k smallest eigenvectors of Lrw = D−1L [Shi and Malik, 1997] or Lsym = D−

1
2LD−

1
2 [Ng

et al., 2002], respectively, and then run a k-means algorithm. Here, L = D − A is the graph Laplacian
matrix where A is a symmetric adjacency matrix of a graph and D is the diagonal matrix computed from
A with D(i, i) =

∑
j A(i, j).

Issues. Applying HEIGEN on the spectral clustering is not straightforward for the following two reasons.
First, the spectral clustering algorithms require k smallest eigenvectors, while HEIGEN computes k largest
eigenvectors of a matrix. Second, the Lrw is asymmetric, while HEIGEN works only on a symmetric
matrix. However, HEIGEN can be used for these algorithms as we show below. We mildly assume that
the input graph for the spectral clustering is connected.

Our solution on Lsym. Notice that Lsym = D−
1
2LD−

1
2 = I−D−

1
2AD−

1
2 , where I is an identity matrix,

and Lrw = D−1L = I−D−1A. It can be shown thatD−
1
2AD−

1
2 andD−1A share the same eigenvalues,

and the eigenvalues range from −1 to 1. Also note that if λ is an eigenvalue of D−
1
2AD−

1
2 , then 1 − λ

is an eigenvalue of Lsym with the same eigenvector. Thus, the k smallest eigenvalues and eigenvectors of
Lsym are mapped to the k largest eigenvalues and eigenvectors of D−

1
2AD−

1
2 , which can be computed

by HEIGEN. Algorithm 6.6 shows the spectral clustering with Lsym using HEIGEN.

Our solution on Lrw. It can be shown that u is an eigenvector of Lrw if and only ifD
1
2u is an eigenvector

of Lsym with the same eigenvalue [Luxburg, 2007]. Thus, multiplying D−
1
2 to the k largest eigenvectors

of D−
1
2AD−

1
2 leads to top k smallest eigenvectors of Lrw, as shown in Algorithm 6.7.

6.6 Performance

In this section, we present experimental results to answer the following questions:

Q1 How well does HEIGEN scale up?
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Algorithm 6.6: Spectral Clustering with Lsym using HEIGEN

Input: matrix An×m, and
number of clusters l.

Output: l clusters C1..l.
1: Construct D;
2: A′ ← D−

1
2AD−

1
2 ;

3: [U, λ1..k]← HEIGEN(A′);
4: C1..l ← k-mean on U ;

Algorithm 6.7: Spectral Clustering with Lrw using HEIGEN

Input: matrix An×m, and
number of clusters l.

Output: l clusters C1..l.
1: Construct D;
2: A′ ← D−

1
2AD−

1
2 ;

3: [U, λ1..k]← HEIGEN(A′);
4: U ′ ← D−

1
2U ;

5: C1..l ← k-means on U ′;

Q2 Which of our proposed methods give the best performance?

We perform experiments in the Yahoo! M45 HADOOP cluster. The scalability experiments are performed
using synthetic Kronecker graphs [Leskovec et al., 2005] since realistic graphs of any size can be easily
generated.

6.6.1 Scalability

Figure 6.6 (a,b) shows the scalability of HEIGEN-BLOCK, an implementation of HEIGEN that uses block-
ing, and HEIGEN-PLAIN, an implementation which does not, on Kronecker graphs. Notice that the
running time is near-linear in the number of edges and machines. We also note that HEIGEN-BLOCK
performs up to 4× faster when compared to HEIGEN-PLAIN.

6.6.2 Optimizations

Figure 6.6 (c) shows the comparison of running time of the skewed matrix-matrix multiplication and the
matrix-vector multiplication algorithms. We used 100 machines for YahooWeb data. For matrix-matrix
multiplications, the best method is our proposed CBMM which is 76× faster than repeated naive matrix-
vector multiplications (IMV). The slowest matrix-matrix multiplication algorithm did not even finish, and
failed due to heavy amounts of intermediate data. For matrix-vector multiplications, our proposed CBMV
is faster than the naive method (IMV) by 48×.
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Figure 6.6: (a): Running time vs. number of edges in 1 iteration of HEIGEN with 50 machines. Notice
the near-linear running time proportional to the edges size. (b): Running time vs. number of
machines in 1 iteration of HEIGEN. The running time decreases as number of machines in-
crease. (c): Comparison of running time between different skewed matrix-matrix and matrix-
vector multiplications. For matrix-matrix multiplication, our proposed CBMM outperforms
naive methods by at least 76×. The slowest matrix-matrix multiplication algorithm did not
even finish and the job failed due to excessive intermediate data. For matrix-vector multipli-
cation, our proposed CBMV is faster than the naive method by 57×.
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6.7 Related Work

We review the related works on large-scale eigensolvers. There are several eigensolvers for a single
machine, including [Jam, Div], but their scalability is limited by the memory of the machine. On the side
of parallel eigensolvers, there are several works including the work by Zhao et al. [Zhao et al., 2007b],
HPEC [Guarracino et al., 2006], PLANO [Wu and Simon, 1999], PREPACK [Lehoucq et al., 1998],
SCALABLE [Blackford et al., 1997], and PLAYBACK [Alpatov et al., 1997]. However, all of them are
based on Message Passing Interface (MPI) which has difficulty in dealing with billion-scale graphs. The
maximum order of matrices analyzed with these tools is less than 1 million [Wu and Simon, 1999, Song
et al., 2008], which is far from the Web-scale data. Recently (March 2010), the Mahout project [Mah]
provides SVD on top of HADOOP. Mahout suffers from two major issues: (a) it assumes that the vector
(b, with n=O(billion) entries) fits in the memory of a single machine, and (b) it implements the full re-
orthogonalization which is inefficient.

6.8 Conclusion

In this chapter we discover spectral patterns in real-world, billion-scale graphs. This is possible by us-
ing HEIGEN, our proposed eigensolver for the spectral analysis of very large-scale graphs. The main
contributions are the following:

• Effectiveness. We analyze the spectral properties of real world graphs, including Twitter and one
of the largest public Web graphs. We report patterns that can be used for anomaly detection and
finding tightly-knit communities.

• Careful Design. We carefully design HEIGEN to selectively parallelize operations based on how
they are most effectively performed.

• Scalability. We implement and evaluate a billion-scale eigensolver. Experiments show that HEIGEN

scales linearly with the number of edges.
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Chapter 7

Tensor Analysis

Many data are modeled as tensors, or multi dimensional arrays. Examples include the predicates (sub-
ject, verb, object) in knowledge bases, hyperlinks and anchor texts in Web graphs, sensor streams (time,
location, and type), social networks over time, and DBLP conference-author-keyword relations. Tensor
decomposition is an important data mining tool with various applications including clustering, trend de-
tection, and anomaly detection. However, current tensor decomposition algorithms are not scalable for
large tensors with billions of sizes and hundreds millions of nonzeros: the largest tensor in literatures
remains thousands of sizes and hundreds thousands of nonzeros.

Consider a knowledge base tensor consisting of about 26 million noun-phrases. The intermediate data
explosion problem, associated with naive implementations of tensor decomposition algorithms, would re-
quire the materialization and the storage of a matrix whose largest dimension would be ≈ 7 · 1014; this
amounts to ∼ 10 Petabytes, or equivalently a few data centers worth of storage, thereby rendering the
tensor analysis of this knowledge base, in the naive way, practically impossible. In this chapter, we pro-
pose GIGATENSOR, a scalable distributed algorithm for large scale tensor decomposition. GIGATENSOR

exploits the sparseness of the real world tensors, and avoids the intermediate data explosion problem by
carefully redesigning the tensor decomposition algorithm.

Extensive experiments show that our proposed GIGATENSOR solves 100× bigger problems than existing
methods. Furthermore, we employ GIGATENSOR in order to analyze a very large real world, knowledge
base tensor and present our findings which include discovery of potential synonyms among millions of
noun-phrases (e.g. the noun ‘pollutant’ and the noun-phrase ‘greenhouse gases’).

7.1 Introduction

Tensors, or multi-dimensional arrays appear in numerous applications: predicates (subject, verb, object)
in knowledge bases [Carlson et al., 2010], hyperlinks and anchor texts in Web graphs [Kolda and Bader,
2006], sensor streams (time, location, and type) [Sun et al., 2006a], and DBLP conference-author-keyword
relations [Kolda and Sun, 2008], to name a few. Analysis of multi-dimensional arrays by tensor decom-
positions, as shown in Figure 7.2, is a basis for many interesting applications including clustering, trend
detection, anomaly detection [Kolda and Sun, 2008], correlation analysis [Sun et al., 2006a], network
forensics [Maruhashi et al., 2011], and latent concept discovery [Kolda and Bader, 2006].

103



Work Tensor Size Nonzeros

Kolda et al. [Kolda and Bader, 2006] 787 × 787 × 533 3583
Acar et al. [Acar et al., 2007] 3.4 K × 100 × 18 (dense)

Maruhashi et al. [Maruhashi et al., 2011] 2 K × 2 K × 6 K × 4 K 281 K

GIGATENSOR (This work) 26 M × 26 M × 48 M 144 M

Table 7.1: Indicative sizes of tensors analyzed in the data mining literature. M: Million, K: Thousand.
Our proposed GIGATENSOR analyzes tensors with ≈ 1000× larger sizes and ≈ 500× larger
nonzero elements.

There exist two, widely used, toolboxes that handle tensors and tensor decompositions: The Tensor Tool-
box for Matlab [Bader and Kolda, 2007a], and the N-way Toolbox for Matlab [Andersson and Bro, 2000].
Both toolboxes are considered the state of the art; especially, the Tensor Toolbox is probably the fastest
existing implementation of tensor decompositions for sparse tensors (having attracted best paper awards,
e.g. see [Kolda and Sun, 2008]). However, the toolboxes have critical restrictions: 1) they operate strictly
on data that can fit in the main memory, and 2) their scalability is limited by the scalability of Matlab.
In [Bader and Kolda, 2007b, Kolda and Sun, 2008], efficient ways of computing tensor decompositions,
when the tensor is very sparse, are introduced and are implemented in the Tensor Toolbox. However, these
methods still operate in main memory and therefore cannot scale to Gigabytes or Terabytes of tensor data.
The need for large scale tensor computations is ever increasing, and there is a huge gap that needs to be
filled. In Table 7.1, we present an indicative sample of tensor sizes that have been analyzed so far; we can
see that these sizes are nowhere near as adequate as needed, in order to satisfy current real data needs,
which call for tensors with billions of sizes and hundreds of millions of nonzero elements.

In this chapter, we propose GIGATENSOR, a scalable distributed algorithm for large scale tensor decom-
position. GIGATENSOR can handle Tera-scale tensors using the MAPREDUCE [Dean and Ghemawat,
2004] framework, and more specifically its open source implementation, HADOOP [Had]. To the best of
our knowledge, this work is the first approach of deploying tensor decompositions in the MAPREDUCE

framework. The main contributions of this chapter are the following:

• Algorithm. We propose GIGATENSOR, a large scale tensor decomposition algorithm on MAPRE-
DUCE. GIGATENSOR is carefully designed to minimize the intermediate data size and the number
of floating point operations.

• Scalability. GIGATENSOR decomposes 100× larger tensors compared to existing methods, as
shown in Figure 7.1. Furthermore, GIGATENSOR enjoys linear scalability on the number of ma-
chines.

• Discovery. We discover patterns in a very large knowledge-base tensor dataset from the ‘Read the
Web’ project [Carlson et al., 2010], which until now, was unable to be analyzed using tensor tools.
Our findings include potential synonyms of noun-phrases, which were discovered after decompos-
ing the knowledge base tensor; these findings are shown in Table 7.2 and a detailed description of
the discovery procedure is covered on Section 7.4.

The rest of this chapter is organized as follows. Section 7.2 presents the preliminaries of the tensor de-
composition. Sections 7.3 describes our proposed algorithm for large scale tensor analysis. Section 7.4
presents the experimental results. After reviewing related works in Section 7.5, we conclude in Sec-
tion 7.6.
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Figure 7.1: The scalability of GIGATENSOR compared to the Tensor Toolbox with regard to the tensor
sizes. We fix the number of nonzero elements to 104 on the synthetic data. Notice that GI-
GATENSOR solves 100× larger problem than the Tensor Toolbox which runs out of memory
on tensors of sizes beyond 107.

(Given) (Discovered)
Noun Phrase Potential Synonyms

pollutants dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide,
air pollutants, cholesterol

disabilities infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone verizon, comcast
Christian history European history, American history, Islamic history, history
disbelief dismay, disgust, astonishment
cyberpunk online-gaming
soul body

Table 7.2: Given noun-phrases and potential synonyms, discovered using tensor decomposition of the
NELL-1 knowledge base dataset (more details in Section 7.4).
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Symbol Definition

X a tensor
X(n) mode-n matricization of a tensor
m number of nonzero elements in a tensor
a a scalar (lowercase, italic letter)
a a column vector (lowercase, bold letter)
A a matrix (uppercase, bold letter)
R number of components
◦ outer product
� Khatri-Rao product
⊗ Kronecker product
∗ Hadamard product
· standard product

AT transpose of A
M† pseudoinverse of M
‖M‖F Frobenius norm of M
bin(M) function that converts non-zero elements of M to 1

Table 7.3: Table of symbols.

7.2 Preliminaries; Tensor Decomposition

In this section, we describe the preliminaries on the tensor decomposition whose fast algorithm will be
proposed in Section 7.3. Table 7.3 lists the symbols used in this chapter. For vector/matrix/tensor indexing,
we use the Matlab-like notation, i.e. A(i, j) denotes the (i, j)-th element of matrix A, whereas A(:, j)
spans the j-th column of that matrix.

Matrices and the bilinear decomposition. Let X be an I × J matrix. There is a very intuitive way to
define the rank of X, namely, the minimum number of rank one matrices that are required to compose
X. A rank one matrix is simply an outer product of two vectors, say abT . If rank(X) = R, then we can
write

X = a1b
T
1 + a2b

T
2 + · · ·+ aRbTR,

which is called the bilinear decomposition of X. The bilinear decomposition is compactly written as
X = ABT , where the columns of A and B are ar and br, respectively, for 1 ≤ r ≤ R. Usually, one
may truncate this decomposition for R � rank(X), in which case we have a low rank approximation of
X.

There is a very natural decomposition of X, its Singular Value Decomposition (SVD). As mentioned
earlier in Section 6.5.1, the SVD of X is

X = UΣVT ,

where U,V are unitary I×I and J×J matrices, respectively, and Σ is a rectangular diagonal matrix, con-
taining the (non-negative) singular values of X. If we pick A = UΣ and B = V, and pickR < rank(X),
this is the optimal low rank approximation of X in the least squares sense [Eckart and Young, 1936]. The
SVD is also a very powerful tool used in computing the so called Moore-Penrose pseudoinverse [Penrose,
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Figure 7.2: PARAFAC decomposition of three-way tensor as sum ofR outer products (rank-one tensors),
reminiscing of the rank-R SVD of a matrix (top), and as product of matrices A, B, C, and a
super-diagonal core tensor G (bottom).

1955], which lies in the heart of the PARAFAC tensor decomposition which we will describe soon. The
Moore-Penrose pseudoinverse of X is simply:

A† = VΣ−1U
T
.

We now provide a brief introduction to tensors and the PARAFAC decomposition. For a more detailed
treatment of the subject, we refer the interested reader to [Kolda and Bader, 2009].

Introduction to PARAFAC. Consider a three way tensor X of dimensions I × J ×K; for the purposes
of this initial analysis, we restrict ourselves to the study of three way tensors. The generalization to higher
ways is trivial, provided that a robust implementation for three way decompositions exists.
Definition 4 (Three way outer product). The three way outer product of vectors a,b, c is defined as

[a ◦ b ◦ c](i, j, k) = a(i)b(j)c(k).

Definition 5 (PARAFAC decomposition). The PARAFAC [Harshman, 1970, Bro, 1997] (also known as
CP or trilinear) tensor decomposition of X in R components is

X ≈
R∑
r=1

ar ◦ br ◦ cr.

The PARAFAC decomposition, illustrated in Figure 7.2, is a generalization of the matrix bilinear decom-
position in three and higher ways. More compactly, we can write the PARAFAC decomposition as a triplet
of matrices A,B, and C, i.e. the r-th column of which contains ar,br and cr, respectively.
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Furthermore, one may normalize each column of the three factor matrices, and introduce a scalar term λr,
one for each rank-one factor of the decomposition (comprising a R× 1 vector λ), which forces the factor
vectors to be of unit norm. Hence, the PARAFAC model we are computing is:

X ≈
R∑
r=1

λrar ◦ br ◦ cr.

Definition 6 (Tensor Unfolding/Matricization). We may unfold/matricize the tensor X in the following
three ways: X(1) of size (I × JK), X(2) of size (J × IK) and X(3) of size (K × IJ). The tensor X and
the matricizations are mapped in the following way.

X(i, j, k)→ X(1)(i, j + (k − 1)J). (7.1)

X(i, j, k)→ X(2)(j, i+ (k − 1)I). (7.2)

X(i, j, k)→ X(3)(k, i+ (j − 1)I). (7.3)

We now set off to introduce some notions that play a key role in the computation of the PARAFAC
decomposition.
Definition 7 (Kronecker product). The Kronecker product of A and B is:

A⊗B :=

BA(1, 1) · · · BA(1, J1)
...

. . .
...

BA(I1, 1) · · · BA(I1, J1)


If A is of size I1 × J1 and B of size I2 × J2, then A⊗B is of size I1I2 × J1J2.
Definition 8 (Khatri-Rao product). The Khatri-Rao product (or column-wise Kronecker product) (A�B),
where A,B have the same number of columns, say R, is defined as:

A�B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, R)⊗B(:, R)

]
If A is of size I ×R and B is of size J ×R then (A�B) is of size IJ ×R.

The Alternating Least Squares Algorithm for PARAFAC. The most popular algorithm for fitting the
PARAFAC decomposition is the Alternating Least Squares (ALS). The ALS algorithm consists of three
steps, each one being a conditional update of one of the three factor matrices, given the other two. The
version of the algorithm we are using is the one outlined in Algorithm 7.1; for a detailed overview of the
ALS algorithm, see [Kolda and Bader, 2009, Harshman, 1970, Bro, 1997].

The stopping criterion for Algorithm 7.1 is either one of the following: 1) the maximum number of
iterations is reached, or 2) the cost of the model for two consecutive iterations stops changing significantly
(i.e. the difference between the two costs is within a small number ε, usually in the order of 10−6). The
cost of the model is simply the least squares cost.

The most important issue pertaining to the scalability of Algorithm 7.1 is the “intermediate data explo-
sion” problem. During the life of Algorithm 7.1, a naive implementation have to materialize matrices
(C�B) , (C�A) , and (B�A), which are very large in sizes.
Problem 1 (intermediate data explosion). The problem of having to materialize (C�B) , (C�A) ,
(B�A) is defined as the intermediate data explosion.
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Algorithm 7.1: Alternating Least Squares for the PARAFAC decomposition.

Input: tensor X ∈ RI×J×K ,
rank R, and
maximum iterations T .

Output: PARAFAC decomposition λ ∈ RR×1,
A ∈ RI×R,
B ∈ RJ×R, and
C ∈ RK×R.

1: Initialize A,B,C;
2: for t = 1, ..., T do
3: A← X(1) (C�B) (CTC ∗BTB)†;
4: Normalize columns of A (storing norms in vector λ);
5: B← X(2) (C�A) (CTC ∗ATA)†;
6: Normalize columns of B (storing norms in vector λ);
7: C← X(3) (B�A) (BTB ∗ATA)†;
8: Normalize columns of C (storing norms in vector λ);
9: if convergence criterion is met then

10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

In order to give an idea of how devastating this intermediate data explosion problem is, consider the NELL-
1 knowledge base dataset, described in Section 7.4, that we are using in this work; this dataset consists
of about 26 · 106 noun-phrases (and for a moment, ignore the number of the “context” phrases, which
account for the third mode). Then, one of the intermediate matrices will have an explosive dimension of
≈ 7·1014, or equivalently a few data centers worth of storage, rendering any practical way of materializing
and storing it, virtually impossible.

In [Bader and Kolda, 2007b], Bader et al. introduce a way to alleviate the above problem, when the tensor
is represented in a sparse form, in Matlab. This approach is however, as we mentioned earlier, bound by
the memory limitations of Matlab. In Section 7.3, we describe our proposed method which effectively
tackles intermediate data explosion, especially for sparse tensors, and is able to scale to very large tensors,
because it operates on a distributed system.

7.3 Proposed Method

In this section, we describe GIGATENSOR, our proposed MAPREDUCE algorithm for large scale tensor
analysis.

7.3.1 Overview

GIGATENSOR provides an efficient distributed algorithm for the PARAFAC tensor decomposition on
MAPREDUCE. The major challenge is to design an efficient algorithm for updating factors (line 3, 5,
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and 7 of Algorithm 7.1). Since the update rules are similar, we focus on updating the A matrix. As shown
in the line 3 of Algorithm 7.1, the update rule for A is

Â← X(1)(C�B)(CTC ∗BTB)†, (7.4)

where X(1) ∈ RI×JK , B ∈ RJ×R, C ∈ RK×R, (C�B) ∈ RJK×R, and (CTC ∗ BTB)† ∈ RR×R.
X(1) is very sparse, especially in real world tensors, while A, B, and C are dense.

There are several challenges in designing an efficient MAPREDUCE algorithm for Equation (7.4) in GI-
GATENSOR:

1. Minimize flops. How to minimize the number of floating point operations (flops) for computing
Equation (7.4)?

2. Minimize intermediate data. How to minimize the intermediate data, i.e. the amount of network
traffic in the shuffling stage of MAPREDUCE?

3. Exploit data characteristics. How to exploit the data characteristics including the sparsity of the
real world tensor and the skewness in matrix multiplications to design an efficient MAPREDUCE

algorithm?

We have the following main ideas to address the above challenges which we describe in detail in later
subsections.

1. Careful choice of order of computations in order to minimize flops (Section 7.3.2).
2. Avoiding intermediate data explosion by exploiting the sparsity of real world tensors (Section 7.3.3

and 7.3.4).
3. Parallel outer products to minimize intermediate data (Section 7.3.4).
4. Distributed cache multiplication to minimize intermediate data by exploiting the skewness in

matrix multiplications (Section 7.3.4).

7.3.2 Ordering of Computations

Equation (7.4) entails three matrix-matrix multiplications, assuming that we have already computed
(C�B) and (CTC ∗ BTB)†. Since matrix multiplication is commutative, Equation (7.4) can be com-
puted by either multiplying the first two matrices, and multiplying the result with the third matrix:

[X(1)(C�B)](CTC ∗BTB)†, (7.5)

or multiplying the last two matrices, and multiplying the first matrix with the result:

X(1)[(C�B)(CTC ∗BTB)†]. (7.6)

The question is, which equation is better between (7.5) and (7.6)? From a standard result of numerical
linear algebra (e.g. [Boyd and Vandenberghe, 2004]), the equation (7.5) requires 2mR + 2IR2 flops,
where m is the number of nonzeros in the tensor X, while the equation (7.6) requires 2mR + 2JKR2

flops. Given that the product of the two dimension sizes (JK) is larger than the other dimension size (I) in
most practical cases, Equation (7.5) results in smaller flops. For example, referring to the NELL-1 dataset
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Figure 7.3: The “intermediate data explosion ” problem in computing X(1)(C�B). Although X(1) is
sparse, the matrix C�B is very dense and long. Materializing C�B requires too much
storage: e.g., for J = K ≈ 26 million as in the NELL-1 data of Table 7.7, the number of
rows of C�B explodes to 676 trillion.

of Table 7.7, Equation (7.5) requires ≈ 8 · 109 flops while Equation (7.6) requires ≈ 2.5 · 1017 flops. For
the reason, we choose the Equation (7.5) ordering for updating factor matrices. That is, we perform the
following three matrix-matrix multiplications for Equation (7.4):

Step 1 : M1 ← X(1)(C�B) (7.7)

Step 2 : M2 ← (CTC ∗BTB)† (7.8)

Step 3 : M3 ←M1M2 (7.9)

7.3.3 Avoiding the Intermediate Data Explosion Problem

As introduced at the end of Section 7.2, one of the most important issue for scaling up the tensor decom-
position is the intermediate data explosion problem. In this subsection we describe the problem in detail,
and propose our solution.

Problem. A naive algorithm to compute X(1)(C�B) is to first construct C�B, and multiply X(1)

with C�B, as illustrated in Figure 7.3. The problem (“intermediate data explosion ”) of this algorithm is
that although the matricized tensor X(1) is sparse, the matrix C�B is very large and dense; thus, C�B
cannot be stored even in multiple disks in a typical HADOOP cluster.

Our Solution. Our crucial observation is that X(1)(C�B) can be computed without explicitly con-
structing C�B. 1 Our main idea is to decouple the two terms in the Khatri-Rao product, and perform
algebraic operations involving X(1) and C, then X(1) and B, and then combine the result. Our main idea

1Bader et al. [Bader and Kolda, 2007b] has an alternative way to avoid the intermediate data explosion, but it is implemented
in MATLAB and thus does not scale to a very large tensor.
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Figure 7.4: Our solution to avoid the intermediate data explosion, for R = 1. The main idea is to de-
couple the two terms in the Khatri-Rao product, and perform algebraic operations using X(1)

and C, and then X(1) with B, and combine the result. The symbols ◦,⊗, ∗, and · represents
the outer, Kronecker, Hadamard, and the standard product, respectively. Shaded matrices
are dense, and empty matrices with several circles are sparse. The clouds surrounding ma-
trices represent that the matrices are not materialized. Note that the matrix C�B is never
constructed, and the largest dense matrix is either the B or the C matrix.

is described in Algorithm 7.2 as well as in Figure 7.4. In line 7 of Algorithm 7.2, the Hadamard product
of X(1) and a matrix derived from C is performed. In line 8, the Hadamard product of X(1) and a matrix
derived from B is performed, where the bin() function converts any nonzero value into 1, preserving
sparsity. In line 9, the Hadamard product of the two result matrices from lines 7 and 8 is performed, and
the elements of each row of the resulting matrix are summed up to get the final result vector M1(:, r) in
line 10. The following theorem demonstrates the correctness of Algorithm 7.2.
Theorem 7.1. Computing X(1)(C�B) is equivalent to computing (N1 ∗N2)·1JK , where N1 = X(1)∗
(1I ◦ (C(:, r)T ⊗1TJ )), N2 = bin(X(1)) ∗ (1I ◦ (1TK ⊗B(:, r)T )), and 1JK is an all-1 vector of size JK.

Proof. The (i, y)-th element of N1 is given by

N1(i, y) = X(1)(i, y)C(d y
J
e, r).

The (i, y)-th element of N2 is given by

N2(i, y) = B(1 + (y − 1)%J, r).

The (i, y)-th element of N3 = N1 ∗N2 is
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Algorithm 7.2: Multiplying X(1) and C�B in GIGATENSOR.

Input: tensor X(1) ∈ RI×JK ,
C ∈ RK×R, and
B ∈ RJ×R.

Output: M1 ← X(1)(C�B).
1: M1 ← 0;
2: 1I ← all 1 vector of size I;
3: 1J ← all 1 vector of size J ;
4: 1K ← all 1 vector of size K;
5: 1JK ← all 1 vector of size JK;
6: for r = 1, ..., R do
7: N1 ← X(1) ∗ (1I ◦ (C(:, r)T ⊗ 1TJ ));
8: N2 ← bin(X(1)) ∗ (1I ◦ (1TK ⊗B(:, r)T ));
9: N3 ← N1 ∗N2;

10: M1(:, r)← N3 · 1JK ;
11: end for
12: return M1;

N3(i, y) = X(1)(i, y)C(d y
J
e, r)B(1 + (y − 1)%J, r).

Multiplying N3 with 1JK , which essentially sums up each row of N3, sets the i-th element M1(i, r) of
the M1(:, r) vector equal to the following:

M1(i, r) =

JK∑
y=1

X(1)(i, y)C(d y
J
e, r)B(1 + (y − 1)%J, r),

which is exactly the equation that we want from the definition of X(1)(C�B).

Notice that in Algorithm 7.2, the largest dense matrix required is either B or C (not C�B as in the naive
case), and therefore we have effectively avoided the intermediate data explosion problem.

Discussion. Table 7.4 compares the cost of the naive algorithm and GIGATENSOR for computing
X(1)(C�B). The naive algorithm requires total JKR + 2mR flops (JKR for constructing (C�B),
and 2mR for multiplying X(1) and (C�B)), and JKR+m intermediate data size (JKR for (C�B),
and m for X(1)). On the other hand, GIGATENSOR requires only 5mR flops (3mR for three Hadamard
products, and 2mR for the final multiplication), and max(J + m,K + m) intermediate data size. The
dependence on the term JK of the naive method makes it inappropriate for real world tensors which are
sparse and the sizes of dimensions are much larger compared to the number m of nonzeros (JK � m).
On the other hand, GIGATENSOR depends on max(J + m,K + m) which is O(m) for most practical
cases, and thus fully exploits the sparsity of real world tensors for computing the efficient tensor decom-
position.
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Algorithm Flops Intermediate Data Example

Naive JKR+ 2mR JKR+m 1.25 · 1016 Flops, 100 PB
GIGATENSOR 5mR max(J +m,K +m) 5.8 · 109 Flops, 1.2 GB

Table 7.4: Cost comparison of the naive and GIGATENSOR for computing X(1)(C�B). J and K are
the sizes of the second and the third dimensions, respectively, m is the number of nonzeros
in the tensor, and R is the desired rank for the tensor decomposition (typically, R ∼ 10).
GIGATENSOR does not suffer from the intermediate data explosion problem, and is much
more efficient than the naive algorithm. The example refers to the intermediate data size for
NELL-1 dataset of Table 7.7, for 8 bytes per value and R = 10.

7.3.4 Our Optimizations for MapReduce

In this subsection, we describe MAPREDUCE algorithms for computing the three steps in Equations (7.7),
(7.8), and (7.9).

Avoiding the Intermediate Data Explosion

The first step is to compute M1 ← X(1)(C�B) (Equation (7.7)). The factors C and B are given in
the form of < j, r,C(j, r) > and < j, r,B(j, r) >, respectively. The tensor X is stored in the format
of < i, j, k,X(i, j, k) >, but we assume the tensor data is given in the form of mode-1 matricization
(< i, j,X(1)(i, j) >) by using the mapping in Equation (7.1). We use Qi and Qj to denote the set
of nonzero indices in X(1)(i, :) and X(1)(:, j), respectively: i.e., Qi = {j|X(1)(i, j) > 0} and Qj =
{i|X(1)(i, j) > 0}.

We first describe the MAPREDUCE algorithm for line 7 of Algorithm 7.2. The reducer joins the tensor
data and the factor data, and performs the Hadamard product. Notice that only the tensor X and the factor
C are transferred in the shuffling stage.

• MAP-1: map < i, j,X(1)(i, j) > on d jJ e, and < j, r,C(j, r) > on j such that tuples with the same
key are shuffled to the same reducer in the form of < j, (C(j, r), {(i,X(1)(i, j))|∀i ∈ Qj}) >.

• REDUCE-1: take < j, (C(j, r), {(i,X(1)(i, j))|∀i ∈ Qj}) > and emit < i, j,X(1)(i, j)C(j, r) >
for each i ∈ Qj .

In the second MAPREDUCE algorithm for line 8 of Algorithm 7.2, we perform the similar task as the first
MAPREDUCE job but we do not multiply the value of the tensor, since line 8 uses the binary function.
Again, only the tensor X and the factor C are transferred in the shuffling stage.

• MAP-2: map < i, j,X(1)(i, j) > on d jJ e, and < j, r,B(j, r) > on j such that tuples with the same
key are shuffled to the same reducer in the form of < j, (B(j, r), {i|∀i ∈ Qj}) >.

• REDUCE-2: take < j, (B(j, r), {i|∀i ∈ Qj}) > and emit < i, j,B(j, r) > for each i ∈ Qj .

Finally, in the third MAPREDUCE algorithm for lines 9 and 10, we combine the results from the first and
the second jobs using Hadamard product, and sums up each row to get the final result.

• MAP-3: map < i, j,X(1)(i, j)C(j, r) > and < i, j,B(j, r) > on i such that tuples with the same i
are shuffled to the same reducer in the form of < i, {(j,X(1)(i, j)C(j, r),B(j, r))}|∀j ∈ Qi >.
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Algorithm Flops Intermediate Data Example

Naive KR2 K(R2 +R) 40 GB
GIGATENSOR KR2 d ·R2 40 KB

Table 7.5: Cost comparison of the naive (column-wise partition) method and GIGATENSOR for comput-
ing CTC. K is the size of the third dimension, d is the number of mappers used, and R is
the desired rank for the tensor decomposition (typically, R ∼ 10). Notice that although the
flops are the same for both methods, GIGATENSOR has much smaller intermediate data size
compared to the naive method, considering K � d. The example refers to the intermediate
data size for NELL-1 dataset of Table 7.7, for 8 bytes per value, R = 10 and d = 50.

• REDUCE-3: take < i, {(j,X(1)(i, j)C(j, r),B(j, r))}|∀j ∈ Qi > and emit
< i,

∑
j X(1)(i, j)C(j, r)B(j, r) >.

Note that the amount of data traffic in the shuffling stage is small (2 times the nonzeros of the tensor X),
considering that X is sparse.

Parallel Outer Products

The next step is to compute (CTC ∗BTB)† (Equation (7.8)). Here, the challenge is to compute
CTC ∗BTB efficiently, since once the CTC∗BTB is computed, the pseudo-inverse is trivial to compute
because matrix CTC ∗BTB is very small (R×R where R is very small; e.g. R ∼ 10). The question is,
how to compute CTC ∗BTB efficiently? Our idea is to first compute CTC, then BTB, and perform the
Hadamard product of the two R × R matrices. To compute CTC, we express CTC as the sum of outer
products of the rows:

CTC =

K∑
k=1

C(k, :)T ◦C(k, :), (7.10)

where C(k, :) is the kth row of the C matrix. To implement the Equation (7.10) efficiently in MAPRE-
DUCE, we partition the factor matrices row-wise [Liu et al., 2010]: we store each row of C into a line in the
HADOOP File System (HDFS). The advantage of this approach compared to the column-wise partition is
that each unit of data is self-joined with itself, and thus can be independently processed; column-wise par-
tition would require each column to be joined with other columns which is prohibitively expensive.

The MAPREDUCE algorithm for Equation (7.10) is as follows.

• Map: map < j,C(j, :) > on 0 so that all the output is shuffled to the only reducer in the form of
< 0, {C(j, :)T ◦C(j, :)}∀j >.

• Combine, Reduce: take < 0, {C(j, :)T ◦C(j, :)}∀j > and emit < 0,
∑

j C(j, :)T ◦C(j, :) >.

Since we use the combiner as well as the reducer, each mapper computes the local sum of the outer
product. The result is that the size of the intermediate data, i.e. the number of input tuples to the reducer,
is very small (d · R2 where d is the number of mappers) in GIGATENSOR. On the other hand, the naive
column-wise partition method requiresKR (the size of CT ) +K (the size of a column of C) intermediate
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Algorithm Flops Intermediate Data Example

Naive IR2 I(R+R2) +R2 23 GB
GIGATENSOR IR2 IR2 20 GB

Table 7.6: Cost comparison of the naive (column-wise partition) method and GIGATENSOR for multi-
plying X(1)(C�B) and (CTC ∗ BTB)†. I is the size of the first dimension, and R is the
desired rank for the tensor decomposition (typically, R ∼ 10). Notice that although the flops
are the same for both methods, GIGATENSOR has smaller intermediate data size compared
to the naive method. The example refers to the intermediate data size for NELL-1 dataset of
Table 7.7, for 8 bytes per value and R = 10.

data for 1 iteration, and thereby requires K(R2 +R) intermediate data for R iterations, as summarized in
Table 7.5.

Distributed Cache Multiplication

The final step is to multiply X(1)(C�B) ∈ RI×R and (CTC ∗ BTB)† ∈ RR×R (Equation (7.9)). We
note that the first matrix X(1)(C�B) is large and does not fit in the memory of a single machine, while
the second matrix (CTC ∗BTB)† is very small to fit in the memory. Thus, we use the distributed cache
multiplication (Section 6.4.6) to broadcast the second matrix to all the mappers that process the first matrix,
and perform join in the first matrix. The result is that our method requires only one MAPREDUCE job with
smaller intermediate data size (IR2). On the other hand, the standard naive matrix-matrix multiplication
requires two MAPREDUCE jobs (the first job for grouping the data by the column id of X(1)(C�B)

and the row id of (CTC ∗BTB)†, and the second job for aggregation) with larger intermediate data size
(IR+R2 for the first job, and IR2 for the second job), as summarized in Table 7.6.

7.4 Experiments

To evaluate our system, we perform experiments to answer the following questions:

Q1 What is the scalability of GIGATENSOR compared to other methods with regard to the sizes of ten-
sors?

Q2 What is the scalability of GIGATENSOR compared to other methods with regard to the number of
nonzero elements?

Q3 How does GIGATENSOR scale with regard to the number of machines?
Q4 What are the discoveries on real world tensors?

The tensor data in our experiments are summarized in Table 7.7, with the following details.

• NELL: real world knowledge base data containing (noun phrase 1, context, noun phrase 2) triples
(e.g. ‘George Harrison’ ‘plays’ ‘guitars’) from the ‘Read the Web’ project [Carlson et al., 2010].
NELL-1 data is the full data, and NELL-2 data is the filtered data from NELL-1 by removing entries
whose values are below a threshold.

• Random: synthetic random tensor of size I × I × I . The size I varies from 104 to 109, and the
number of nonzeros varies from 102 to 108.
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Data I J K Nonzeros

NELL-1 26 M 26 M 48 M 144 M
NELL-2 15 K 15 K 29 K 77 M
Random 10 K ∼ 1 B 10 K ∼ 1 B 10 K ∼ 1 B 100 ∼ 20 M

Table 7.7: Summary of the tensor data used. B: Billion, M: Million, K: Thousand.

Figure 7.5: The scalability of GIGATENSOR compared to the Tensor Toolbox with regard to the number
of nonzeros and tensor sizes on the synthetic data. For a tensor of size I × I × I , we set
the number of nonzero elements to be I/50. Notice that GIGATENSOR decomposes tensors
of sizes up to 109 and beyond, while the Tensor Toolbox ‘dies’, running out of memory on
tensors of sizes beyond 107.

7.4.1 Scalability

Scalability on the Size of Tensors. Figures 7.1 shows the scalability of GIGATENSOR with regard to
the sizes of tensors. We choose the Tensor Toolbox for Matlab [Bader and Kolda, 2007a] as our baseline
for comparison, since it is the current state of the art. We fix the number of nonzero elements to 104

on the synthetic data while increasing the tensor sizes I = J = K. We use 35 reducers for running
GIGATENSOR. Notice that GIGATENSOR solves 100× larger problem than the Tensor Toolbox which
runs out of memory on tensors of sizes beyond 107. We performed the same experiment while fixing the
nonzero elements to 107, and we get the similar results.

Scalability on the Number of Nonzero Elements. Figure 7.5 shows the scalability of GIGATENSOR

compared to the Tensor Toolbox with regard to the number of nonzeros and tensor sizes on synthetic data.
We set the tensor size to be I × I × I , and the number of nonzero elements to be either (a) I/50 or (b)
I/100. We use 35 reducers for running GIGATENSOR. Notice that GIGATENSOR decomposes tensors of
sizes up to 109, while the Tensor Toolbox implementation runs out of memory on tensors of sizes beyond
107. We choose to display only the case where the number of nonzeros is I/50 since the I/100 case was
almost identical.

Scalability on the Number of Machines. Figure 7.6 shows the scalability of GIGATENSOR with regard
to the number of machines. Notice that the running time scales up near linearly.
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Figure 7.6: The scalability of GIGATENSOR with regard to the number of machines on the NELL-1 data.
Notice that the running time scales up near linearly.

7.4.2 Discovery

In this section, we present discoveries on the NELL dataset that was previously introduced; we are mostly
interested in demonstrating the power of our approach, as opposed to the current state of the art which was
unable to handle a dataset of this magnitude. We perform two tasks: concept discovery, and the synonym
detection in the knowledge base tensor.

Concept Discovery. With GIGATENSOR, we decompose the NELL-2 dataset in R = 10 components,
and obtained λi,A,B,C (see Figure 7.2). Each one of the R columns of A,B,C represents a grouping
of similar (noun-phrase np1, noun-phrase np2, context words) triplets. The r-th column of A encodes
with high values the noun-phrases in position np1, for the r-th group of triplets, the r-th column of B
does so for the noun-phrases in position np2 and the r-th column of C contains the corresponding context
words. In order to select the most representative noun-phrases and contexts for each group, we choose
the k highest valued coefficients for each column. Table 7.8 shows 4 notable groups out of 10, and within
each group the 3 most outstanding noun-phrases and contexts. Notice that each concept group contains
relevant noun phrases and contexts.

Synonym Detection. The lower dimensional embedding of the noun phrases also permits a scalable and
robust strategy for synonym detection. We are interested in discovering noun-phrases that occur in similar
contexts, i.e. contextual synonyms. Using a similarity metric, such as Cosine Similarity, between the
lower dimensional embeddings of the Noun-phrases (such as in the factor matrix A), we can identify
similar noun-phrases that can be used alternatively in sentence templates such as np1 context np2. Using
the embeddings in the factor matrix A (appropriately column-weighted by λ), we get the synonyms that
might be used in position np1, using B leads to synonyms for position np2, and using C leads to contexts
that accept similar np1 and np2 arguments. In Table 7.2, which is located in Section 7.1, we show some
exemplary synonyms for position np1 that were discovered by this approach on NELL-1 dataset. Note that
these are not synonyms in the traditional definition, they are phrases that may occur in similar semantic
roles in a sentence.
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Noun Phrase 1 Noun Phrase 2 Context

Concept 1:“Web Protocol”
internet protocol ‘np1’ ‘stream’ ‘np2’

file software ‘np1’ ‘marketing’ ‘np2’
data suite ‘np1’ ‘dating’ ‘np2’

Concept 2:“Credit Cards”
credit information ‘np1’ ‘card’ ‘np2’
Credit debt ‘np1’ ‘report’ ‘np2’
library number ‘np1’ ‘cards’ ‘np2’

Concept 3: “Health System”
health provider ‘np1’ ‘care’ ‘np2’
child providers ‘np’ ‘insurance’ ‘np2’
home system ‘np1’ ‘service’ ‘np2’

Concept 4: “Family Life”
life rest ‘np2’ ‘of’ ‘my’ ‘np1’

family part ‘np2’ ‘of’ ‘his’ ‘np1’
body years ‘np2’ ‘of’ ‘her’ ‘np1’

Table 7.8: Four notable groups that emerge from analyzing the NELL dataset.

7.5 Related Work

In this section, we review related works on tensor analysis, emphasizing on data mining applications.
Tensors have a very long list of applications, in addition to data mining. For instance, tensors have been
used extensively in Chemometrics [Bro, 1997] and Signal Processing [Sidiropoulos et al., 2000]. Some
of the data mining applications that employ tensors are the following: in [Kolda and Bader, 2006], Kolda
et al. extend the famous HITS algorithm [Kleinberg, 1999] in order to incorporate topical information
in the links between Web pages. In [Acar et al., 2007], Acar et al. analyze epilepsy data using tensor
decompositions. In [Bader et al., 2006], Bader et al. employ tensors in order perform social network
analysis, using the Enron dataset for evaluation. In [Sun et al., 2005b], Sun et al. formulate click data on
Web pages as a tensor, in order to improve Web search by incorporating user interests in the results. In
[Chew et al., 2007], Chew et al. extend the Latent Semantic Indexing [Deerwester et al., 1990] paradigm
for cross-language information retrieval, using tensors. In [Tao et al., 2008], Tao et al. employ tensors
for 3D face modeling and in [Tao et al., 2007], a supervised learning framework, based on tensors is
proposed. In [Maruhashi et al., 2011], Maruhashi et al. present a framework for discovering bipartite
graph like patterns in heterogeneous networks using tensors.

7.6 Conclusion

In this chapter, we propose GIGATENSOR, a tensor decomposition algorithm which scales to billion
size tensors, and present interesting discoveries from real world tensors. Our major contributions in-
clude:
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• Algorithm. We propose GIGATENSOR, a carefully designed large scale tensor decomposition al-
gorithm on MAPREDUCE.

• Scalability. GIGATENSOR decomposes 100× larger tensors compared to previous methods, and
GIGATENSOR scales linearly to the number of machines.

• Discovery. We discover patterns of synonyms and concept groups in a very large knowledge base
tensor which could not be analyzed before.
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Part III

Graph Management
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Part III - Graph Management: Overview

Given a very large graph, how do we store and index it in distributed systems so that graph mining
queries can be answered quickly? How do we lay out edges of a graph so that the adjacency matrix
can be compressed well? In this part we describe algorithms for large graph management in MAPRE-
DUCE/HADOOP.

First, we describe GBASE, a scalable and general graph management system. GBASE provides a parallel
indexing mechanism for graph mining operations that both saves storage space, as well as accelerates
queries.

Second, we study edge layout problem: given a graph, reorder nodes so that the nonzeros (edges) of
the adjacency matrix are well-clustered. Better layout of edges of graphs leads to better compression;
however, existing methods based on the assumptions of the existence of clear-cut communities do not
work nicely on real world graphs. We propose SLASHBURN, an edge layout algorithm which utilizes the
characteristic of real world graphs to compress graphs well.
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Chapter 8

Graph Storage and Indexing

How to store large graphs efficiently? What are the core operations/queries on those graph? How to
answer the graph queries quickly? We propose GBASE, a scalable and general graph management system.
The key novelties lie in 1) our storage and compression scheme for a parallel setting and 2) the carefully
chosen graph operations and their efficient implementation. We design and implement an instance of
GBASE using MAPREDUCE/HADOOP. GBASE provides a parallel indexing mechanism for graph mining
operations that both saves storage space, as well as accelerates queries. We run numerous experiments on
real graphs, spanning billions of nodes and edges, and we show that our proposed GBASE is indeed fast,
scalable and nimble, with significant savings in space and time.

8.1 Introduction

Our goal is to build a general graph management system in parallel, distributed settings to support billion-
scale graphs for various applications. For the goal, we address the following problems:

1. Storage. How can we efficiently store and manage large graphs in parallel, distributed settings to
answer graph queries efficiently? How should we split the edges into smaller units? How should
we group the units into files?

2. Algorithms. How can we define common, core algorithms to satisfy various graph applications?
3. Query Optimization. How can we exploit the efficient storage and general algorithms to execute

queries efficiently?

For all the problems, scalability is a major challenge. The size of graphs has been experiencing an un-
precedented growth. For example, one of the graphs we use here, the Yahoo Web graph from 2002, has
more than 1 billion nodes and almost 7 billion edges. Similar size, or even larger graphs, exist: the Twit-
ter graph spans several Terabytes; click-streams are reported to reach Petabyte scale [Liu et al., 2009].
Such large graphs violate the assumption that the graph can be fit in main memory or at least the disk
of a single workstation, on which most of existing graph algorithms have been built. Thus, we need to
re-think those algorithms, and to develop scalable, parallel ones, to manage graphs that span Tera-bytes
and beyond.
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Our Contributions. We propose GBASE, a scalable and general graph management system, to address
the above challenges. The main contributions are the following:

1. Storage. We propose a novel graph storage method called ‘block compression’ to efficiently store
homogeneous regions of graphs. We also propose a grid based method to efficiently place blocks
into files. We run our algorithm on billion-scale graphs and show that the block compression method
leads up to 50× less storage and faster running time. Our block compression method is agnostic
to the underlying storage mechanism, which can be applied to distributed file systems as well as
relational databases.

2. Algorithms. We identify a core graph operation, and use it to formulate seven different types of
graph queries including neighborhood, induced subgraph, egonet, K-core, and cross-edges. The
novelty is in formulating edge-based queries (induced subgraph) as well as node-based queries
(neighborhoods) using a unified framework.

3. Query Optimization. We propose a grid selection strategy to minimize disk accesses and answer
queries quickly. We also propose a MAPREDUCE algorithm to support incidence matrix based
queries using the original adjacency matrix, without explicitly building the incidence matrix.

The rest of this chapter is organized as follows. We first present the overall framework in Section 8.2.
We describe the storage and indexing method in Section 8.3, and then the query execution in Section 8.4.
We provide experimental evaluations and comparisons in Section 8.5. After reviewing the related work in
Section 8.6, we conclude in Section 8.7.

8.2 Overall Framework

The overall framework of our GBASE is summarized in Figure 8.1. The design objective is to balance
storage efficiency and query performance on large graphs. It comprises of two components: the indexing
stage and the query stage. In this section, we give a high level overview of each stage; and we will give
more details in Sections 8.3 and 8.4, respectively.

In the indexing stage, given the original raw graph which is stored as a big edge file, GBASE first partitions
it into several homogeneous blocks. Second, according to the partition results, we reshuffle the nodes so
that the nodes belonging to the same partition are put nearby. Third, we compress all non-empty block
through standard compression such as GZip. Finally, we store the compressed blocks, together with
some meta information (e.g., the block row id and column id, and all the encoded node ids), into the
graph databases. For many real graphs, such homogeneous blocks, community-like structure, do exist.
Therefore, after partition and reshuffling, the resulting blocks are either relatively dense (e.g., the diagonal
blocks in Figure 8.1) or very sparse (e.g., the off-diagonal blocks in Figure 8.1). Both cases are space
efficient for compression (i.e., the compression ratio is high). In the extreme case that a given block is
empty, we do not store it at all. Our experiments (See Section 8.5) show that in some cases, we only need
less than 2% storage space of the original after the indexing stage.

In the query stage, our goal is to provide a set of core operations that will be sufficient to support a diverse
set of graph applications, e.g., ranking, community detection, anomaly detection, and etc. The key of
the on-line query stage is the query execution engine, which unifies the different types of inputs as query
vectors. It also unifies the (seemingly) different types of operations on the graph by a unified matrix-vector
multiplication which we will introduce in Section 8.4. By doing so, GBASE is able to support multiple
different types of queries simultaneously. Table 8.1 summarizes the queries (the first column) that are
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Figure 8.1: Overall framework of GBASE. 1. Indexing Stage: raw graph is clustered and divided into
compressed blocks. 2. Query Stage: global and targeted queries from various graph applica-
tions are handled by a unified query execution engine.
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Connected Comp. X X
Radius X X
PageRank, RWR X X X

Induced Subgraph X X X
(K)-Neighborhood X X X
(K)-Egonet X X X X
K-core X X
Cross-edges X X

Table 8.1: Applications of GBASE. Notice that GBASE answers wide range of both global (top 3 rows)
and targeted queries (bottom 5 rows with bold fonts) with applications in browsing [Page et al.,
1998, Tong et al., 2006, Lin et al., 2009], ranking [Page et al., 1998, Tong et al., 2006], finding
communities [Kang et al., 2009, Lin et al., 2009], anomaly detection [Sun et al., 2005a, Kang
et al., 2009, 2010, Akoglu et al., 2010], and visualization [Lin et al., 2009, Alvarez-Hamelin
et al.].
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Symbol Definition

A adjacency matrix of the graph G
B incidence matrix of the graph G
n number of nodes
m number of edges
k number of partitions
p, q partition indices, 1 ≤ p, q ≤ k
I(p) set of nodes belonging to the p-th partition
l(p) partition size, l(p) ≡ |I(p)|, 1 ≤ p ≤ k
G(p,q) subgraphs induced by p-th and q-th partitions
m(p,q) number of edges in G(p,q)

Table 8.2: Table of symbols.

supported by GBASE. These queries construct the main building blocks for a variety of important graph
applications (Table 8.1). For example, the diversity of Random Walk with Restart (RWR) [Tong et al.,
2006] scores among the neighborhood of a given edge/node is a strong indicator of abnormality of that
node/edge [Sun et al., 2005a]. The ratio between the number of edges (or the summation of edge weights)
and number of nodes within the egonet can help find abnormal nodes on weighted graphs [Akoglu et al.,
2010]. The K-cores and cross-edges can be used for visualization and finding communities in large
graphs.

8.3 Graph Storage and Indexing

In this section, we describe in details the indexing and storage stage of GBASE. We use the symbols in
Table 8.2.

8.3.1 Baseline Storage Scheme

A typical way to store the raw graph is to use the adjacency list format: for each node, it saves all the out-
neighbors adjacent from the node. The adjacency list format is simple and might be good for answering
out-neighbor queries. However, it is not efficient format for answering general queries including in-
neighbor queries and ego-net queries as we will see in Section 8.4. For the reason, we instead use the
sparse adjacency matrix format, where we save each edge by a (source,destination) pair. The advantage of
the sparse adjacency matrix format is its generality and flexibility to enable efficient storage and indexing
techniques as we will see later in this and the next sections.

The storage system should be designed to be efficient in both storage cost and on-line query response. To
this end, we propose to index and store the graph on the homogeneous block, community-like structure,
levels. Next, we will describe how to form, compress and store/place such blocks.
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8.3.2 Block Formulation

The first step is to partition the graph, i.e., re-order the rows and columns, and make homogeneous re-
gions into blocks. Partitioning algorithms form an active research area, and finding optimal partitions is
orthogonal to our work. Any partition algorithms, e.g., METIS [Karypis and Kumar, 1999a], Disco [Pa-
padimitriou and Sun, 2008], and SLASHBURN (Section 9), can be naturally plugged into GBASE.

Graph partitioning can be formally defined as follows. The input is the original raw graph denoted by G.
Given a graph G, we partition the nodes into k groups. The set of nodes that are assigned into the p-th
partition for 1 ≤ p ≤ k is denoted by I(p). The subgraph or block induced by p-th source partition and q-th
destination partition is denoted as G(p,q). The sets I(p) partition the nodes, in the sense that I(p) ∩ I(p′) = ∅
for p 6= p′, while

⋃
p I

(p) = {1, . . . , n}. In terms of storage, the objective is to find the optimal k partitions
which lead to smallest total storage cost of all blocks/subgraphs G(p,q) where 1 ≤ p, q ≤ k. Intuitively,
we want the induced subgraphs to be homogeneous (meaning the subgraphs are either very dense or very
sparse), which captures not only community structure but also leads to small storage cost.

For many real graphs, the community/clustering structure can be naturally identified. For instance, in
Web graphs, the lexicographic ordering of the URL can be used as an indicator of community [Boldi
and Vigna, 2004] since there are usually more intra-domain links compared with the inter-domain links.
For authorship network, the research interest is often a good indicator to find communities since authors
with the same or similar research interest tend to have more collaborations. For patient-doctor graph, the
patient information (e.g., geography, disease type, etc) can be used to find the communities (patients with
similar disease and living in the same neighborhood have higher chance to visit the same doctor).

8.3.3 Block Compression

The homogeneous block representation provides a more compact representation of the original graph. It
enables us to encode the graph in a more efficient way. The encoding of a block G(p,q) consists of the
following information:

• source and destination partition ID p and q;
• the set of sources I(p)and the set of destinations I(q).
• the payload, the bit string of subgraph G(p,q).

A naive way of encoding a block is raw block encoding which only stores the coordinates of the non-zero
entries in the block, as described in Section 4.3.2. Although this method saves the storage space since the
nonzero elements within the block can be encoded with a smaller number of bits (log(max(l(p), l(q))) than
the original, the savings are not great.

To achieve better compression, we propose zip block encoding which converts the adjacency matrix of
the subgraph into a binary string and stores the compressed string as the payload. Compared to the raw
block encoding, the zip block encoding requires more cpu time to zip and unzip blocks. However, the
storage savings and the reduced data transfer size help to improve performance of GBASE as we will see
in Section 8.5.
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(a) Vertical (b) Horizontal (c) Grid
Placement Placement Placement

Figure 8.2: Adjacency matrices showing possible placement of blocks into files in HADOOP. The smallest
rectangle represents a block in the adjacency matrix. The placement strategy determines
which of the blocks are grouped into files G1 to G6 or G9. Vertical placement in (a) is
good for in-neighbor queries, but inefficient for out-neighbor or egonet queries. Horizontal
placement in (b) is good for out-neighbor queries, but inefficient for in-neighbor or egonet
queries. GBASE uses the grid placement, shown in (c), which is efficient for all types of
queries.

For example, we have the following adjacency matrix of a graph:

G =

 1 0 0
1 0 0
0 1 1

 . (8.1)

Raw block encoding will just store the non-zero coordinates (0, 0), (1, 0), (2, 1), and (2, 2) as the payload.
Zip block encoding will converts the matrix into a binary string 110, 001, 001 (in the column major order)
and then use the compression of this string as the payload.

Storage Estimation. The storage needed for raw block encoding is 2 ∗m(p,q) ∗ log(max(l(p), l(q))). The
storage needed for zip block encoding is l(p)l(q)H(d), where d = m(p,q)

l(p)l(q)
is the density of G(p,q). H(·) is

the Shannon entropy function: H(X) = −
∑

x p(x) log p(x) where p(x) is the probability that X = x.
Note that the number of bits to encode an edge in zip block encoding decreases as d increases, while it is
constant in raw block encoding.

8.3.4 Block Placement

After we compress the blocks, we need to store/place them in the file system (e.g., HDFS of HADOOP,
relational DB). Here, the main idea is to place several blocks together into a file, and select only relevant
files as inputs in the query stage. The question is, how do we place blocks into files? A typical approach
is to use vertical placement to place the vertical blocks in a file as shown in Figure 8.2 (a). The other
alternative is to use horizontal placement to place the horizontal blocks in a file as shown in Figure 8.2 (b).
However, both of the placement techniques are good only for one type of query: for example, horizontal
and vertical placement is good for out-neighbor and in-neighbor queries, respectively.

To solve the problem, GBASE uses the grid placement as shown in Figure 8.2 (c). The advantage of
the grid placement is that it can answer various types of queries efficiently as we will see in Section 8.4.
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Suppose we store all the compressed blocks inK files. With vertical/horizontal placement, we needO(K)
file accesses to find the in- and out-neighbors of a given query node. In contrast, we only need O(

√
K)

files accesses with grid placement.

8.4 Handling Graph Queries

In this section, we describe query execution in GBASE. GBASE supports both “global” queries, as well as
“targeted” queries for one or a few specific nodes. The answer to global queries requires traversal of the
whole graph, like, e.g., diameter estimation. In contrast, “targeted” queries need to access only parts of
the graph. GBASE supports seven different queries including neighborhoods, induced subgraphs, egonets,
K-core, and cross-edges.

8.4.1 Global Queries

Global queries are performed by repeated joins of edge blocks and vector blocks. GBASE supports the
following graph queries: degree distribution, PageRank, RWR (“Random Walk with Restart”), radius es-
timations, and discovery of connected components. Our contribution here is that our proposed storage
and compression scheme reduce the graph storage significantly, and enable faster running time as shown
in Figure 8.5. The global queries also serve as primitives for targeted queries (see ‘T6: K-core’ in Sec-
tion 8.4.2), enabling a variety of applications as shown in Table 8.1.

8.4.2 Targeted Queries

Many graph mining operations can be unified as matrix-vector multiplication. Here that matrix is either
the adjacency matrix A of size n× n or the incidence matrix B of size m× n where n and m are the
number of nodes and edges in the graph, respectively. Each row of the incidence matrix corresponds to an
edge, and it has two non-zeros whose column ids are the node ids of the edge.

The matrix-vector multiplication observation has the extra benefit that it corresponds to an SQL join, as we
mentioned earlier in Section 4.2.1. Thus, graph mining could use all the highly optimized join algorithms
in the literature (hash join, indexed join etc), while still leverages the proposed block compression storage
scheme.

In fact, for each of the upcoming primitives, we shall first give the matrix-vector details, and then the SQL
code.

T1: 1-step neighbors. The first query is to find 1-step in-neighbors and out-neighbors of a query node
v.

Matrix-Vector version

Given a query node v, its 1-step in-neighbors can be found by the following matrix-vector multiplica-
tion:

in1(v) = A× ev, (8.2)
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where the matrix is the adjacency matrix of the graph A and the vector is the ‘indicator vector’ ev which
is the n-vector whose v-th element is 1, and all other elements are 0. The 1-step in-neighbors of the query
node v are those nodes whose corresponding values in in1(v) are 1s.

The 1-step out-neighbors can be obtained in the similar way by replacing A with its transpose AT .

SQL version

We can also find 1-step in-neighbors and out-neighbors by the standard SQL. Assume we have a table
E(src, dst) storing the edges, with attributes ‘source’ (src) and ‘destination’ (dst). The 1-step
out-neighbors of a query node ‘q’ are given by

SELECT dst
FROM E
WHERE src=‘q’

without even requiring a join. 1-step in-neighbor can be answered in a similar way.

T2: K-step neighbors. The next query is to find ‘within k-step’ neighbors. Let us only consider the
k-step in-neighbors. k-step out-neighbors can be found in similar way - we only need to replace the matrix
A by its transpose AT in the matrix-vector multiplication version; and switch src and dst in the SQL
version.

Matrix-Vector version

The k-step in-neighbors nhk(v) of the query node v is defined recursively by (k − 1)-step neighbors
nhk−1(v) in terms of matrix-vector multiplication as follows:

nhk(v) = A×nhk−1(v), (8.3)

where the 0-step in-neighbors nh0(v) is just the indicator vector ev. After the k multiplications, the k-step
in-neighbors are those nodes whose corresponding values in nhk(v) or nhk−1(v) are 1s.

SQL version

As before, assume we have a table E with attributes src and dst. The k-step in-neighbors can also be
found by SQL join. In general, the k-step in-neighbors is a (k − 1)-way join. For example, the 2-step
in-neighbors of a query node ‘q’ is given by the following SQL join:

SELECT E2.src
FROM E as E1, E as E2
WHERE E1.dst=‘q’

AND E1.src = E2.dst

T3: Induced subgraph. Given a set of nodes Vq in a graph G, the induced subgraph is defined to be a
graph whose nodes are Vq and an edge between two nodes v1 and v2 exist if they are adjacent in G.

Matrix-Vector version

Let B be the m× n incidence matrix where m and n are the number of edges and the nodes of the graph,
respectively. A row of B corresponds to an edge (i, j), and the elements of the row are 0 except the ith
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and jth elements which are 1. Let evq be the n-vector, whose corresponding elements for Vq are 1s, and
0s otherwise.

Then, the induced subgraph S(Vq) from Vq is expressed by the following matrix-vector multiplication:

S(Vq) = B× evq, (8.4)

where the resulting vector S(Vq) is m-vector and the elements in S(Vq) have values of 0, 1, or 2. The
induced subgraph is given by those edges whose corresponding values in S(Vq) are 2s since it means that
the incident nodes (both the source and the target) of the edges are in Vq.

SQL version

Assume we have an incidence matrix as table B, with attributes eid, srcid, and dstid, representing the
edge id, the source node id, and the destination id of a row in the incident matrix, respectively. Also
assume we have a query vector table Q with an attribute nodeid. Then the induced subgraph is given by
the following join:

SELECT B.eid, B.srcid, B.dstid
FROM B, Q as Q1, Q as Q2
WHERE B.srcid=Q1.nodeid

AND B2.dstid=Q2.nodeid

T4: 1-step egonet. Informally, the 1-step-away egonet (or just ‘egonet’) of a node v is its 1-step-away
vicinity. Formally, it is defined as the induced subgraph that includes v and its 1-step neighbors. Extracting
the egonet of a query node v is a special case of extracting induced subgraph. That is, the set of nodes Vq
is defined to be the v and its 1-step in-neighbors and out-neighbors.

The details are omitted, since we can combine earlier expressions (for both the matrix-vector case, as well
as for the SQL case).

T5: K-step egonet. K-step egonet of a node v is defined to be the induced subgraph from v and its
within-k step neighbors. Extracting the k-step egonet of a query node v is also a special case of extracting
induced subgraph. That is, the set of nodes Vq is defined to be the v and its within-k step neighbors. Thus,
the same expression for the k-step neighbors and the induced subgraph can be used for extracting k-step
egonet.

T6: K-core. K-core of a graph is a maximal connected subgraph in which all vertices have degree
at least K [Alvarez-Hamelin et al.]. K-core is useful for finding communities and visualizing graphs.
Although it seems complicated at first, all K-cores of a large graph can be enumerated by GBASE using
primitives defined before:

1. Compute degrees of all nodes. Let C be the set of nodes with degree ≥ K.
2. Compute induced subgraph G′ using C.
3. Find connected components of G′. The resulting components are the K-core.
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T7: Cross-edges. Given two disjoint sets V1 and V2 of nodes, how can we find the cross edges connect-
ing the two sets? Cross-edges are useful for visualizing the interaction of two distinct sets of nodes, as
well as anomaly detection (e.g., a set of nodes having few edges to the rest of the world are suspicious).
Cross-edges can be computed by GBASE using induced subgraph queries:

1. Computed induced subgraphs S(V1), S(V2), S(V1 ∪ V2) using nodes in V1, V2, and (V1 ∪ V2),
respectively.

2. Let E1, E2, and E12 be the set of edges in S(V1), S(V2), and S(V1 ∪ V2), respectively. The cross
edges are exactly the edges in E12 − E1 − E2.

8.4.3 Query Execution Engine

We describe the query execution engine of GBASE built on the top of HADOOP.

Overview. As described in previous sections, the main operation of GBASE is the matrix-vector multi-
plication. GBASE handles queries by executing appropriate block matrix-vector multiplication modules.
The global queries are typically handled by multiple matrix-vector multiplications since the answer to the
queries is often a fixed point of the multiplication (e.g., the first eigenvector in case of PageRank). The
local queries require one or few multiplications.

Most of the operations require the adjacency matrix of the graph. Thus, GBASE uses the adjacency matrix
directly as its input. However, some operations including the induced subgraph require the incidence
matrix which is different from the adjacency matrix. We will see how to handle the queries requiring
incidence matrix efficiently at the end of this subsection.

Grid Selection. Before running the matrix-vector multiplication, GBASE selects the grids containing
the blocks relevant to the queries. Only the files corresponding to the grids are fed into HADOOP jobs
that GBASE executes. For global queries, we need to select all the grids since all the blocks are relevant.
For targeted queries, however, we can select only relevant grids. For in-neighbor queries, we select grids
whose column range contains the query node as shown in Figure 8.3 (a). For out-neighbor queries, we
select grids whose row range contains the query node as shown in Figure 8.3 (b). For egonet queries,
we select grids whose row or column range contains the query. As we will see in Section 8.5, this grid
selection has advantages of decreasing the running time.

Handling Incidence Matrix Queries. While the majority of operations use the adjacency matrix, the
induced subgraph queries use the incidence matrix. Thus, GBASE need to access the incidence matrix to
support the queries. A naive approach is to build the incidence matrix Bm×n by numbering edges sequen-
tially. However, it requires the storage to save B which is twice the size of the original adjacency matrix.
The question is, can we answer incidence matrix queries efficiently without the additional storage?

Our proposed main idea is to derive the incidence matrix from the original adjacency matrix as required.
That is, an adjacency matrix element (src, dst) can be interpreted as ([src, dst], src) and ([src, dst], dst)
of the incidence matrix where [src, dst] is the edge id. Thus, the query execution algorithm for handling
incidence matrix can work on the original adjacency matrix by treating each adjacency matrix element as
two incidence matrix elements.
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(a) 1-step (b) 1-step (c) 1-step in- and
in-neighbors out-neighbors out-neighbors

Figure 8.3: Grid selection in 6 by 6 blocks where the query node belongs to the second block. The
smallest rectangle corresponds to a block, and a bigger rectangle containing 4 blocks is a grid
which is saved in a file. Notice that GBASE selects different grids based on the type of the
query and the query node id. For example, GBASE selects G1, G4, and G7, instead of all the
grids for in-neighbors query. This reduced input size results in the decreased running time.

The HADOOP algorithm for the induced subgraph, which reflects the main idea, is shown in Algorithm 8.1.
The algorithm is composed of two stages. In the first stage, the elements in the incidence matrix and the
query vector are grouped together to generate partial results. Notice that two incidence matrix elements
are generated (lines 5,6 of Algorithm 8.1) for an adjacency matrix element. In the second stage, the partial
results are summed to get the final result. Note that only edges having the sum 2 are included in the egonet
since it means that the two incidence nodes of the edges are contained in the query node set.

8.5 Experiments

To evaluate our GBASE system, we perform experiments to answer the following questions:

Q1 How much does our zip block encoding reduce the data size?
Q2 How do our algorithms scale up with the graph sizes and the number of machines?
Q3 How do our indexing and query execution methods save query response time?

Datasets. We use large graph datasets summarized in Table 8.3 whose entries are repeated from Table 2.2
for convenience. In order to show the performance across different data scales, we use two synthetic
graphs: Kronecker [Leskovec et al., 2005] and Erdős-Rényi [Erdős and Rényi, 1959].

Storage Schemes. We use the following notations to distinguish different storage and indexing meth-
ods:

• GBASE RAW (original RAW encoding): raw encoding which is the original adjacency matrix for-
mat.

• GBASE NNB (No clustering, No compression, Blocking): raw block encoding without compression
and clustering.

• GBASE NZB (No clustering, Zip compression, Blocking): zip block encoding without clustering.
• GBASE CZB (Clustering, Zip compression, Blocking): zip block encoding with clustering.
• GBASE CZB+GS (CZB with Grid Selection): grid selection as described in Section 4.3.
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Algorithm 8.1: HADOOP algorithm for Induced Subgraph
Input: edge E = {(src, dst)} of a graph G = (V,E), and

query node set Vq = {nodeid}.
Output: edges belonging to the subgraph induced from Vq.

1: InducedSubgraph-Map1(Key k, Value v):
2: if (k, v) is of type E then
3: (src, dst)← (k, v);
4: // Emit incidence matrix elements
5: Output(src, [src, dst]);
6: Output(dst, [src, dst]);
7: else if (k, v) is of type Vq then
8: (nodeid)← (k, v);
9: Output(nodeid,‘1’);

10: end if
11:

12: InducedSubgraph-Reduce1(Key k, Value v[1..r]):
13: if v[] contains ‘1’ then
14: Remove ‘1’ from v[];
15: for p ∈ v[1..r − 1] do
16: [src, dst]← p;
17: // Emit partial multiplication result
18: Output([src, dst], 1);
19: end for
20: end if
21:

22: InducedSubgraph-Map2(Key k, Value v):
23: Output(k, v); // Identity Mapper
24:

25: InducedSubgraph-Reduce2(Key k, Value v[1..r]):
26: sum← 0;
27: for num ∈ v[1..r] do
28: sum = sum+ num;
29: end for
30: // Select edges whose incident nodes belong to the query node set
31: if sum=2 then
32: [src, dst]← k;
33: Output(src, dst);
34: end if

We deploy our GBASE HADOOP implementation onto the M45 HADOOP cluster by Yahoo!. As men-
tioned earlier, the cluster has total 480 machines with 1.5 Petabytes total storage and 3.5 Terabytes mem-
ory.
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Graph Nodes Edges File Size Type Description

YahooWeb 1.4 B 6.6 B 0.12 TB real WWW links in 2002
Kronecker 177 K 2 B 25 GB synthetic from Kronecker generator [Leskovec et al., 2005]

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB
20 K 40 M 439 MB

Erdős-Rényi 177 K 2 B 25 GB synthetic random Gn,p

121 K 1.1 B 13.9 GB
59 K 282 M 3.3 GB
20 K 40 M 439 MB

Table 8.3: Datasets. B: Billion, K: Thousand, TB: Terabytes, GB: Gigabytes, MB: Megabytes.

8.5.1 Space Efficiency Comparison

We show the data size over three different graphs across different storage schemes in Figure 8.4: 1) KR-2B
is a graph of 177K nodes and about 2 billion edges generated using the Kronecker generator; 2) ER-2B is
of the same size as KR-2B but generated by Erdős-Rényi generator; 3) YahooWeb is a Web graph of 1.4
billion nodes and 6.6 billion edges. We have the following observations:

Size Reduction. The zip block encoding (NZB) reduces the raw data size significantly (50×, 9×, and
3.6× smaller than the original (RAW) size for Kronecker, Erdős-Rényi, and YahooWeb graphs, respec-
tively). In contrast, the raw block encoding (NNB) decrease the size at most 2.3× smaller than the original
(RAW).

Density and Compression. The zip block encoding compression ratio is better for the dense graphs
(Kronecker and Erdős-Rényi) than the sparse YahooWeb graph. The reason is that the number of nonzero
blocks is much smaller in the dense graphs and thus it results in more storage savings by compres-
sion.

Block Structure and Compression. The Kronecker graph has more than 5× better compression ratio
than the Erdős-Rényi graph. The reason is that the Kronecker graph is block structured by construction,
and thus it benefits the compression algorithm better than its random counterpart.

To summarize, zip block encoding has shown great space savings across all datasets, which confirms the
design objective of GBASE.

8.5.2 Indexing Time Comparison

So far, we have compared the resulting space efficiency of different methods. Next, we evaluate the
indexing time required by each method. In Figure 8.5, we show the running time of GBASE indexing
process vs. the number of edges for graphs generated by both Kronecker (KR) and Erdős-Rényi (ER)
generators.

Running Time. To our surprise, zip block encoding (NZB) requires much less time compared to raw
block encoding (NNB), despite the additional compression step: NZB performs 50× faster than NNB for
1977M edges. The reason is because the resulting compressed block is much smaller than straightforward
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Figure 8.4: Effect of different encoding methods for GBASE. KR-2B: Kronecker graph with 2 billion
edges. ER-2B: Erdős-Rényi random graph with 2 billion edges. Notice our proposed zip
block encoding (NZB) decreases the input sizes significantly, reducing to 50× smaller than
the original (RAW). The Kronecker and the Erdős-Rényi graphs have better performance gain
than the YahooWeb graph since the first two are denser than the last and thus take advantage
of the compression. The Kronecker graph has better compression than the Erdős-Rényi graph
since it has a block-like structure by construction.
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Figure 8.5: Scalability of indexing in GBASE. KR-NNB: Kronecker graph with raw block encoding.
ER-NNB: Erdős-Rényi graph with raw block encoding. ER-NZB: Erdős-Rényi graph with
zip block encoding. KR-NZB: Kronecker graph with zip block encoding. Notice that the
indexing time is linear on the number of edges. Also notice that the zip block encoding
(NZB) takes 50× smaller time than the raw block encoding (NNB), since the output size is
smaller.
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block encoding without compression. Thus, the running time for writing the compressed blocks to disks
is much smaller than the uncompressed block.

Linear Scalability. The indexing times for both zip (NZB) and raw block encoding (NNB) increase lin-
early with the number of edges for both Kronecker and Erdős-Rényi graphs. This confirms the scalability
of our encoding schemes.

Thanks to the great storage benefit, the additional compression step of zip block encoding (NZB) is worth-
while. In YahooWeb graph, we observe a similar trend as Kronecker and Erdős-Rényi graphs.

8.5.3 Global Query Time

So far, we confirmed the scalability and efficiency of the indexing phase. Next we evaluate the perfor-
mance of different schemes on the query phase. Here, we show the scalability of GBASE global queries
in Figure 8.6 (a,b). We run the PageRank queries on Kronecker and Erdős-Rényi graphs. All the ex-
periments except NZB are performed on Kronecker graphs. We use the zip blocked Kronecker graphs
for the CZB experiment since the Kronecker graphs are block structured from its construction. For NZB
experiment, we use the zip blocked Erdős-Rényi graph with the same number of nodes and edges since
the Erdős-Rényi graph has nonzeros randomly distributed in the adjacency matrix.

Running Time. We see that CZB, which combines the clustering and the zip block encoding, performs
the best. It outperforms RAW, NNB, NZB by 14×, 4.6×, and 2.6×, respectively, for 10 machines. The
main reason of the better performance is the decreased I/O time due to reduced storage.

Machine Scalability. All the methods scale up near-linearly with the number of machines as we see in
Figure 8.6 (a).

Edge Scalability. The methods also scale up near-linearly with the number of edges as we see in Fig-
ure 8.6 (b).

8.5.4 Targeted Query Time

We show the performance on targeted queries in Figure 8.6 (c). Since the targeted queries are often against
a small subset of the data, increasing the number of machines does not help speed. Therefore, we only
demonstrate the result with fixing the number of machines to 100. All the experiments report the average
running time of 5 randomly selected query nodes. The node ids in the YahooWeb graph is encoded in a
clustered manner since all the pages in a domain are numbered sequentially. Thus, we use the zip blocked
YahooWeb graph for the CZB experiment.

Grid Selection. We see that GBASE CZB+GS, which combines the clustering, the zip block encoding,
and the grid selection, works the best for all the targeted queries. Especially, it works the best for 1-
neighborhood query outperforming all other competitors from 1.6× to 4×. The reason is that the grid
selection method works better if the portion of the relevant grids is small. For 1-neighborhood query, the
portion is the smallest (

√
K for totalK grids), while other queries can have many relevant grids depending

on the number of neighbors of the query node.

Effect of Zip Block Encoding. The clustered zip block encoding (CZB) performs slightly better than
the raw block encoding (NNB) for 1-neighborhood and egonet queries, while it worked slightly worse
than NNB for the 2-neighborhood query. The reason is that the size gain of the zip block encoding in
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(a) Global query: machine scalability
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(b) Global query: edge scalability

(c) Targeted query: running time

Figure 8.6: (a,b): Running time and scalability in one iteration of global queries in GBASE on Kro-
necker and Erdős-Rényi graphs. The CZB method which combines the clustering and the
zip block encoding outperforms the RAW method by 14×. Notice also that all the methods
scale up near-linearly on the number of machines and edges. (c): Running time of targeted
queries over different storage and indexing methods, on YahooWeb graph. K-Nh denotes K
step neighborhood query. Note that the CZB+GS (grid selection method combined with the
clustered zip block encoding) outperforms the others by 4× at maximum.
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CZB is not big enough to overshadow the increased running time for the zip compression. However, the
performance of zip block encoding will continuously increase as better clustering algorithm is developed,
as shown in the well clustered graph results of Figure 8.6 (a,b). Moreover, the zip block encoding enjoys
additional benefits of less storage and indexing time.

8.6 Related Work

In this section, we review the related work, which can be categorized into three parts: (1) graph indexing
techniques, (2) graph queries, and (3) column store.

Graph Indexing. Graph indexing is very active in both databases community as well as data mining
community in the recent years. To name a few, Trißl et al [Trißl and Leser, 2007] proposed to index the
graph using pre- and postorder number to answer the reachability queries. Chierichetti et al [Chierichetti
et al., 2009] explored link reciprocity for adjacency queries. Aggarwal et al [Aggarwal et al., 2009]
proposed edge sampling to handle graph connectivity queries. Sarkar et al [Sarkar and Moore, 2010]
explored the clustering properties to proximity queries on graphs. Maserra et al [Maserrat and Pei, 2010]
proposed a Eulerian data structure for neighborhood queries.

Despite of their success, there are two major limitations of these works. First, all the indexing techniques
are designed for one particular type of queries. Therefore, their performance might be highly optimized
for that particular type of query, but they are far sub-optimal for the remaining, vast majority types of
queries. Second, they are implicitly designed for the centralized computational mode, which limits the
size of the graph such indexing techniques can support. These limitations are carefully addressed in the
GBASE, which supports multiple different types of queries simultaneously and is naturally applicable to
the distributed computing environment.

Finally, there are works on indexing many small graphs using frequent subgraph [Xin et al., 2005, Zhao
et al., 2007a] or significant graph patterns [Yan et al., 2008], which is quite different from our setting
where we have one large graph.

Graph Queries. There are numerous different queries on graphs. To name a few, graph-level queries
answer some global statistics of the whole graph, e.g., estimating diameters (Chapter 3), counting con-
nected components (Chapter 4), etc. Node-level queries, on the other hand, focus on the relationship
among individual nodes. Representative queries include neighborhood [Maserrat and Pei, 2010], prox-
imity [Tong et al., 2006], PageRank [Page et al., 1998], centrality [Bader et al., 2007], etc. Between
the graph-level and individual node-level, there are also queries on the sub-graph level, e.g., community
detection [Karypis and Kumar, 1999b, Andritsos et al., 2004], finding induced subgraph [Addario-Berry
et al., 2010], etc. GBASE covers a wide range of queries, including the global and the node-level ones, by
a unified matrix-vector multiplication framework.

Column Store. Column-oriented DBMS has gained its popularity in the recent years, due to (among
other merits) its excellent I/O efficiency for read-extensive analytical workloads. From research com-
munity, some representative works include [Stonebraker et al., 2005, Abadi et al., 2008, 2009, Ivanova
et al., 2009, Héman et al., 2010]. A notable work of column store database from industrial side is HBase
(http://hbase.apache.org/). HBase is designed for large sparse data, built on the top of HADOOP core.
Different from HBase, our GBASE partitions the data in two dimensions (both columns and rows) and it is
tailored for large real graphs. By leveraging the block and community-like property which exists in many
real graphs, GBASE enjoys the advantages of both row-oriented and column-oriented storages.
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8.7 Conclusion

In this chapter, we propose GBASE, a scalable and general graph management system. The main contri-
butions are the following:

1. Storage. We carefully design GBASE to efficiently store homogeneous regions of graphs in dis-
tributed settings using a novel ‘block compression’. Experiments on billion-scale graphs show that
the storage and the running time are reduced up to 50× of the original.

2. Algorithms. We unify node-based and edge-based queries using matrix-vector multiplications on
the adjacency and the incidence matrices. As a result, we get seven different types of versatile graph
queries supporting various applications.

3. Query Optimization. We propose a fast graph query execution algorithm using a grid selection.
Also, we provide an efficient MAPREDUCE algorithm to support incidence matrix based queries
using the original adjacency matrix, without explicitly building the incidence matrix.

140



Chapter 9

Edge Layout

Given a real world graph, how should we lay-out its edges in a file of (source, destination) pairs? How can
we compress it? These questions are closely related, and the typical approach so far is to find clique-like
communities, like the ‘cavemen graph’, and compress them. We show that the block-diagonal mental
image of the ‘cavemen graph’ is the wrong paradigm, in full agreement with earlier results that real world
graphs have no good cuts. Instead, we propose to envision graphs as a collection of hubs connecting
spokes, with super-hubs connecting the hubs, and so on, recursively.

Based on the idea, we propose the SLASHBURN method (“burn” the hubs, and “slash” the remaining graph
into smaller connected components). Our view point has several advantages: (a) it avoids the ‘no good
cuts’ problem, (b) it gives better compression, and (c) it leads to faster execution times for matrix-vector
operations, which are the back-bone of most graph processing tools.

Experimental results show that our SLASHBURN method consistently outperforms other methods on all
datasets, giving good compression and faster running time.

9.1 Introduction

How can we compress graphs efficiently? How should we try to find communities in graphs? The two
questions are closely related: if we find good communities, then we can compress the graph well since the
nodes in the same community have redundancies (e.g. similar neighborhood) which help us shrink the size
of the data (and thus, also shrink the I/O and communication costs for graph processing). Similarly, good
compression implies good communities. The traditional research focus was on finding homogeneous
regions in the graph so that nodes inside a region are tightly connected to each other than to nodes in
other regions. In other words, the focus was to search for ‘caveman communities’ where a person in a
cave knows others in the same cave very well, while knows very little about persons in different caves
as shown in Figure 9.1 (a). In terms of the adjacency matrix, the goal was to find an ordering of nodes
so that the adjacency matrix is close to block-diagonal, containing more ‘square’ blocks as in Figure 9.1
(b). Spectral clustering [Shi and Malik, 1997, Ng et al., 2002], co-clustering [Dhillon et al., 2003], cross-
associations [Chakrabarti et al., 2004], and shingle-ordering [Chierichetti et al., 2009] are typical examples
for such approaches.

However, real world graphs are much more complicated and inter-connected than caveman graphs. It
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(a) Caveman graph C (b) Adjacency Matrix of C

(c) Adjacency Matrix of (d) AS-Oregon after
AS-Oregon graph SLASHBURN

Figure 9.1: Caveman graph, real-world graph, and the result from our proposed SLASHBURN ordering.
Real world graphs are much more complicated and inter-connected than caveman graph, with
few ‘hub’ nodes having high degrees and majority of nodes having low degrees. Finding a
good ‘cut’ on real world graphs to extract homogeneous regions (like the square diagonal
blocks in the caveman adjacency matrix (b)) is difficult due to the hub nodes. Instead, our
proposed SLASHBURN finds novel ‘skinny’ communities which lead to good compression: in
(d), the edges are concentrated to the left, top, and diagonal areas while making empty spaces
in most of the areas.
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Symbol Definition

A adjacency matrix of a graph
n number of nodes in a graph
k number of hub nodes to slash per iteration in SLASHBURN

w(G) wing width ratio of a graph G, meaning the ratio of the number of total hub nodes to n
b block width used for block based matrix-vector multiplication

Table 9.1: Table of symbols.

is well known that most real world graphs follow power-law degree distributions with few ‘hub’ nodes
having very high degrees and majority of the nodes having low degrees [Faloutsos et al., 1999]. These
hub nodes break the assumption of caveman-like communities since the hubs are well connected to most
of the nodes in graphs, effectively combining all the caves into a huge cave. Thus, it is not surprising that
well defined communities in real world networks are hard to find [Leskovec et al., 2008].

In this chapter, we propose a novel approach to finding communities and compressions in graphs. Our
approach, called SLASHBURN, is to exploit the hubs and the neighbors (‘spokes’) of the hubs to define an
alternative community different from the traditional community. SLASHBURN is based on the observation
that real world graphs are easily disconnected by hubs, or high degree nodes: removing hubs from a
graph creates many small disconnected components, and the remaining giant connected component is
substantially smaller than the original graph. The communities defined using hubs and spokes correspond
to skinny blocks in an adjacency matrix as shown in Figure 9.1 (d), in contrast to the square blocks in
caveman communities as shown in Figure 9.1 (b). We show that these hubs and spokes can be carefully
ordered to get a compact representation of the adjacency matrix, which in turn leads to good compression.
Our contributions are the following:

1. Paradigm shift. Instead of looking for near-cliques (‘caves’), we look for hubs and spokes for a
good graph compression. Our approach is much more suitable for real world, power-law graphs
like social networks.

2. Compression. We show that our method gives good compression results when applied on real
world graphs, consistently outperforming other methods on all datasets.

3. Speed. Our method boosts the performance of matrix-vector multiplication of graph adjacency
matrices, which is the building block for various algorithms like PageRank, connected components,
etc.

The rest of the chapter is organized as follows. Section 9.2 precisely describes the problem and our
proposed method for laying out edges for better compressing graphs. We give experimental results in
Section 9.3, showing the compression and running time enhancements. After discussing related works on
Section 9.4, we conclude in Section 9.5.

To enhance the readability, we listed the symbols frequently used in Table 9.1.

9.2 Proposed Method

In this section, we give a formal definition of the problem, describe our proposed method, and analyze its
complexity.
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Figure 9.2: Importance of ordering. Left: adjacency matrix of Figure 9.1 (a) with a random ordering of
nodes. Right: adjacency matrix of the same graph, but with a compression-friendly ordering,
where nodes 1 to 6 are assigned to the left clique, and nodes 7 to 12 are assigned to the right
clique. If we use 2 by 2 blocks to cover all the nonzero elements inside the matrix, the right
matrix requires smaller number of denser blocks which lead to better compression.

9.2.1 Problem Definition

Given a large graph, we want to layout its edges so that the graph can be compressed well, and graph
mining queries can be answered quickly. Specifically, we consider the application of large scale matrix-
vector multiplication which is the building block of many graph mining algorithms including PageRank,
diameter estimation, and connected components, as described in Chapter 4. The state-of-the art method
for the large scale matrix-vector multiplication is the block multiplication method (Section 4.3.2), where
the original matrix is divided into b by b square matrix blocks, the original vector is divided into length b
vector blocks, and the matrix-vector blocks are multiplied.

For example, see Figure 4.1 for the block multiplication method where a 6 by 6 matrix is multiplied with a
length 6 vector using 2 by 2 matrix blocks and length 2 vector blocks. We assume that each block is stored
independently from each other, without requiring neighbor or reciprocal blocks to decode its edges, since
such independency among blocks allows more scalable processing in large scale, distributed platforms
like MAPREDUCE [Dean and Ghemawat, 2004].

In this scenario, it is desired that the adjacency matrix has clustered edges: smaller number of denser
blocks is better than larger number of sparser blocks. There are two reasons for this. First, smaller
number of denser blocks reduces the number of disk accesses. Second, it provides better opportunity
for compression. For example, see Figure 9.2. The left matrix is the adjacency matrix of Figure 9.1 (a)
with a random ordering of nodes, while the right matrix is the adjacency matrix of the same graph with
a compression-friendly ordering where nodes 1 to 6 are assigned to the left clique, and nodes 7 to 12 are
assigned to the right clique. Assume we use 2 by 2 blocks to cover all the nonzero elements inside the
matrix. Then the right matrix requires smaller number of blocks than the left matrix. Furthermore, each
block in the right matrix is denser than the one in the left matrix, which could lead to better compression
of graphs.

Formally, our main problem is as follows.
Problem 2. Given a graph with the adjacency matrix A, find a permutation π : V → [n] such that the
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storage cost function cost(A) is minimized.

The notation [n] means the ordering of n nodes. Following the motivation that smaller number of denser
blocks is better for compression than larger number of sparser blocks, the first cost function we consider
is the number of nonempty, b by b square blocks in the adjacency matrix:

costnz(A, b) = number of nonempty blocks, (9.1)

where b is the block width. The second, and more precise cost function uses the required number of bits
to encode the adjacency matrix using a block-wise encoding (divide the matrix into blocks, and encode
each block using standard compression algorithms like gzip). The required bits are decomposed into two
parts: one for the nonzero elements inside blocks, the other for storing the meta information about the
blocks.

• Nonzeros inside blocks. Bits to compress nonzero elements inside blocks.
• Meta information on blocks. Bits to store the row and column ids of blocks.

Using the decomposition, we define a cost function costit(A, b) assuming a compression method achiev-
ing the information theoretic lower bound [Rissanen and Langdon Jr., 1979, Chakrabarti et al., 2004]:

costit(A, b) = |T | · 2 log
n

b
+
∑
τ∈T

b2 ·H(
z(τ)

b2
), (9.2)

where n is the number of nodes, T is the set of nonempty blocks of size b by b, z(τ) is the number of
nonzero elements within a block τ , and H(p) = p log 1

p + (1− p) log 1
1−p is the binary Shannon entropy

function. The first term |T | · 2 log n
b in Equation (9.2) represents the bits to encode the meta information

on blocks. Since each block requires two log n
b bits to encode the block row and the block column ids,

the total required bits are |T | · 2 log n
b . The second term in Equation (9.2) is the bits to store nonzeros

inside blocks: we use information theoretic lower bound for encoding the bits, since it gives the minimum
number of bits achievable by any coding methods. Note b2 is the maximum possible edge counts in a b by
b block, and z(τ)

b2
is the density of the block.

The two cost functions defined in Equation (9.1) and (9.2) will be evaluated and compared on different
ordering methods in Section 9.3.

9.2.2 Why Not Classic Partitioning?

In general, directly minimizing the cost functions is a difficult combinatorial problem which could require
n! trials in the worst case. Traditional approach is to use graph partitioning algorithms to find good
‘cuts’ and homogeneous regions so that nodes inside a region form a dense community, and thereby
leading to better compressions. Examples include spectral clustering [Shi and Malik, 1997, Ng et al.,
2002], co-clustering [Dhillon et al., 2003], cross-associations [Chakrabarti et al., 2004], and shingle-
ordering [Chierichetti et al., 2009]. However, such approaches do not work well for real world, power law
graphs since there exists no good cuts in such graphs [Leskovec et al., 2008], which we also experimentally
show in Section 9.3.

The reason of the ‘no good cut’ in most real world graphs is explained by their power-law degree distribu-
tions and the existence of ‘hub’ nodes. Such hub nodes combine the communities to blend into each other,
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Figure 9.3: Degree distributions of power-law vs. random graphs. The left is from a real-world graph
showing a power law degree distribution with few hub nodes having very high degrees, and
majority of nodes having low degrees. The right is from a random (Erdős-Rényi) graph which
has the same number of nodes and edges as the graph for the left plot. The random graph has
an exponential tail in its degree distribution without distinct hubs.

making the cut-based algorithms fail. Rather than resorting to the cut-based algorithms that are not de-
signed to work on power-law graphs, we take a novel approach to finding communities and compressions,
which we explain next.

9.2.3 Graph Shattering

As described in the previous section, finding homogeneous regions in real world graphs is infeasible due
to hub nodes. Our main idea to solve the problem is to exploit the hubs to define an alternative community
different from the traditional community. Remember that most real-world graphs have a power law in its
degree distribution: there exist few hub nodes with very high degrees, while majority of the nodes having
low degrees, as shown in Figure 9.3 (a). In contrast, random graphs have degree distributions whose tails
drop exponentially: this means there are no hubs with extremely high degrees, as shown in Figure 9.3
(b).

We start with an observation that real-world graphs are easily shattered by removing hub nodes from
them: while majority of the nodes still belong to the giant connected component, a nontrivial portion of
the nodes belong to small disconnected components by the removal. The nodes belonging to the small
disconnected components after the removal of the hub nodes can be regarded as satellite nodes connected
to the hub nodes. In other words, those satellite nodes have links only to the hub nodes, and completely
disconnected from the rest of the nodes in the graph. This is the exact property we are utilizing.

To precisely describe our method, we define related terms.
Definition 9 (k-hubset). The k-hubset of a graphG is the set of nodes with top k highest centrality scores.

We use the degree of a node as the centrality score in this chapter, but any centrality (e.g., closeness,
betweenness [Borgatti and Everett, 2006], PageRank, “eigendrop” [Prakash et al., 2010b], etc.) can be
used for the score. Removing k-hubset from a graph leads to the definition of k-shattering.
Definition 10 (k-shattering). The k-shattering of a graph G is the process of removing the nodes in k-
hubset, as well as edges incident to k-hubset, from G.
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(a) AS-Oregon after 1 iteration (b) .. after 1 more iteration (c) .. after 1 more iteration

Figure 9.4: SLASHBURN in action: adjacency matrices of AS-Oregon graph after applying SLASHBURN
ordering. After 1 iteration, the nodes are decomposed into k-hubset, GCC, and the spokes.
The spokes are only connected to k-hubset, while completely disconnected to the GCC, which
makes large empty spaces in the bottom-right area of the adjacency matrix. The same process
applies to the remaining GCC recursively. Notice that the nonzero elements in the matrix are
concentrated to the left, top, and diagonal areas of the matrix, making an arrow-like shape.
Compared to the original adjacency matrix in Figure 9.1 (c), the final matrix has much larger
empty spaces, enabling better compression.

Let us consider the following shattering process. Given a graph G, we perform a k-shattering on G.
Among the remaining connected components, choose the giant connected component (GCC). Perform a
k-shattering on the GCC, and do the whole process recursively. Eventually, we stop at a stage where the
size of the GCC is less than or equal to k. A natural question is, how quickly is a graph shattered? To
measure the speed of the shattering process, we define the wing width ratio w(G) of a graph G.
Definition 11. The wing width ratio w(G) of a graph G is k·i

n where k is the number used for the k-
shattering, i is the number of iterations until the shattering finishes, and n is the number of nodes in
G.

Intuitively, the wing width ratio w(G) corresponds to the width of the blue wing of the typical spyplot
(visualization of the adjacency matrix; see Figure 9.4 (c)); notice that for all real world graphs, the cor-
responding spyplots look like ultra-modern airplanes, with the blue lines being their wings. w(G) is the
ratio of ‘wing’ width to the number of nodes in the graph. A low w(G) implies that the graph G is shat-
tered quickly, while a high w(G) implies that it takes long to shatter G. As we will see in Section 9.3.3,
real-world, power-law graphs have low w(G). Our proposed SLASHBURN method utilizes the low wing
width ratio in real world graphs.

9.2.4 Slash-and-Burn

In this section, we describe SLASHBURN, our proposed ordering method for compressing graphs. Given
a graph G, the SLASHBURN method defines a permutation π : V → [n] of a graph so that nonzero
elements in the adjacency matrix of G are grouped together. Algorithm 9.1 shows the high-level idea of
SLASHBURN.

The lines 1 and 2 of Algorithm 9.1 removes (‘slash-and-burn’) top k highest centrality scoring nodes,
thereby decomposing nodes in G into the following three groups:
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Algorithm 9.1: SLASHBURN

Input: edge set E of a graph G = (V,E), and
a constant k (default = 1).

Output: array Γ containing the ordering V → [n].
1: Remove k-hubset from G to make the new graph G′. Add the removed k-hubset to the front of Γ.
2: Find connected components in G′. Add nodes in non-giant connected components to the back of

Γ, in the decreasing order of sizes of connected components they belong to.
3: Set G to be the giant connected component (GCC) of G′. Go to step 1 and continue, until the

number of nodes in the GCC is smaller than k.

(a) Before SLASHBURN (b) After SLASHBURN

Figure 9.5: [Best Viewed In Color] A graph before and after 1 iteration of SLASHBURN. Removing a
hub node creates many smaller ‘spokes’, and the GCC. The hub node gets the lowest id (1),
the nodes in the spokes get the highest ids (9∼16)) in the decreasing order of the connected
component size they belong to, and the GCC takes the remaining ids (2∼8). The next iteration
starts on the GCC.

• k-hubset: top k highest centrality scoring nodes in G.
• GCC: nodes belonging to the giant connected component of G′. Colored blue in Figure 9.5.
• Spokes to the k-hubset: nodes belonging to the non-giant connected component of G′. Colored

green in Figure 9.5.

Figure 9.5 shows a graph before and after 1 iteration of SLASHBURN. After removing the ‘hub’ node at
the center, the graph is decomposed into the GCC and the remaining ‘spokes’ which we define to be the
non-giant connected components connected to the hubs. The hub node gets the lowest id (1), the nodes
in the spokes get the highest ids (9∼16)) in the decreasing order of the connected component size they
belong to, and the GCC takes the remaining ids (2∼8). The same process applies to the nodes in GCC,
recursively.

Figure 9.4 (a) shows the AS-Oregon graph after the lines 1 and 2 of Algorithm 9.1 are executed for the
first time with k = 256. In the figure, we see that a k-hubset comes first with GCC and spokes following
after them. The difference between (spokes1) and (spokes2) is that the nodes in (spokes2) are connected
only to some of the nodes in k-hubset, thereby making large empty spaces in the adjacency matrix. Notice
also that nodes in (spokes1) make a thin diagonal line, corresponding to the edges among themselves.
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A remarkable result is that the remaining GCC takes only 45% of the nodes in the original graph, after
removing 256 (=1.8 %) high degree nodes. Figure 9.4 (b) and (c) shows the adjacency matrix after
doing the same operation on the remaining GCC, recursively. Observe that nonzero elements in the final
adjacency matrix are concentrated on the left, top, and diagonal areas of the adjacency matrix, creating
an arrow-like shape. Observe also that the final matrix has huge empty spaces which could be utilized for
better compression, since the empty spaces need not be stored.

An advantage of our SLASHBURN method is that it works on any power-law graphs without requiring
any domain-specific knowledge or a well defined natural ordering on the graph for better permutation.
Finally, we note that setting k to 1 often gives the best compression by making the wing width ratio w(G)
minimum or close to minimum. However, setting k to 1 requires many iterations and longer running time.
We found that setting k to 0.5% of the number of nodes gives good compression results with small number
of iterations on most real world graphs.

9.2.5 Analysis

We analyze the time and the space complexities of the SLASHBURN algorithm.
Lemma 9.1 (Time Complexity of SLASHBURN). SLASHBURN takes O(|E|+ |V | log |V |)i time where
i = |V |·w(G)

k is the number of iterations.

Proof. In Algorithm 9.1, step 1 takes O(|V | + |E|) time to compute the degree of nodes, and to remove
k-hubset. Step 2 requires O(|E| + |V | log |V |) time since connected components require O(|V | + |E|)
time, and sorting takes |V | log |V | time. Thus, 1 iteration of SLASHBURN takes O(|E| + |V | log |V |)
time, and the lemma is proved by multiplying the number i of iterations to it.

Lemma 9.1 implies that smaller wing width ratio w(G) will result in faster running time. We note
that real world, power-law graphs have small wing width ratio, which we show experimentally in Sec-
tion 9.3.3.

For space complexity, we have the following result.
Lemma 9.2 (Space Complexity of SLASHBURN). SLASHBURN requires O(|V |) space.

Proof. In step 1, computing the degree requires O(|V |) space. In step 2, connected component requires
O(|V |) space, and sorting requires at most O(|V |) space. The lemma is proved by combining the space
requirements for the two steps.

9.3 Experiments

In this section, we present experimental results to answer the following questions:

Q1 How well does SLASHBURN compress graphs compared to other methods?
Q2 How does SLASHBURN decrease the running time of large scale matrix-vector multiplication?
Q3 How quickly can we shatter real world graphs? What are the wing width ratio of real world, power-

law graphs?

We compare SLASHBURN with the following six methods.
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Graph Nodes Edges File Size Type Description

LiveJournal 4.8 M 69 M 1.1 GB real friendship social network
WWW-Barabasi 325 K 1.5 M 20 MB real WWW links in nd.edu

Flickr 404 K 2.1 M 28 MB real person-person
Enron 80 K 313 K 11 MB real Enron email

Epinions 75 K 508 K 5 MB real who trusts whom
AS-Oregon 14 K 75 K 385 KB real router connetions

Table 9.2: Datasets. M: Million, K: Thousand, GB: Gigabytes, MB: Megabytes, KB: Kilobytes.

• Random. Random ordering of the nodes.
• Natural. Natural ordering of the nodes, that is, the original adjacency matrix. For some graphs,

the natural ordering provides high locality among consecutive nodes (e.g. lexicographic ordering in
Web graphs [Boldi and Vigna, 2004]).

• Degree Sort (DegSort). Ordering based on the decreasing degree of the nodes.
• Cross Association (CA). Cross-association [Chakrabarti et al., 2004] based ordering so that nodes

in a same group are numbered consecutively.
• Spectral Clustering. Normalized spectral clustering [Shi and Malik, 1997], also known as the

normalized cut. Order nodes by the second smallest eigenvector score of a generalized eigenvector
problem.

• Shingle. Shingle ordering is the most recent method for compressing social networks [Chierichetti
et al., 2009]. It groups nodes with similar fingerprints (min-wise hashes) obtained from the out-
neighbors of nodes.

The graphs used in our experiments along with their descriptions are summarized in Table 9.2 whose
entries are repeated from Table 2.2 for convenience.

9.3.1 Compression

We compare the ordering methods based on the cost of compression using the two cost functions defined
in Equation (9.1) and (9.2) of Section 9.2:

• costnz(A, b): number of nonempty blocks.
• costit(A, b): required bits using information-theoretic coding methods.

Figure 9.6 shows the costs of ordering methods. Figure 9.6 (a) shows the number of nonempty blocks
(costnz(A)), and Figure 9.6 (b) shows the bits per edge computed using costit(A, b). The exact numbers
are listed in Table 9.3 and 9.4, respectively. Notice that for all the cost functions, SLASHBURN performs
the best. For the number of nonempty blocks, SLASHBURN reduces the counts by up to 20× compared
to the random ordering, and by up to 6.1× compared to the second best orderings. For the bits per
edge, SLASHBURN reduces the bits by up to 2.1× compared to the random ordering, and by up to 1.2×
compared to the second best orderings.

The amount of compression can be checked visually. Figure 9.7 show the spyplots, which are nonzero
patterns in the adjacency matrices, of real world graphs permuted from different ordering methods. Ran-
dom ordering makes the spyplot almost filled; natural ordering provides more empty space than random
ordering, meaning that the natural ordering exploits some form of localities. Degree sort makes the upper-
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Figure 9.6: Compression comparison of ordering methods. DegSort: degree sort, CA: cross association,
and Spectral: spectral clustering. For all the cost functions, SLASHBURN performs the best.
(a): SLASHBURN reduces the number of nonempty blocks by up to 20× compared to the ran-
dom ordering, and by up to 6.1× compared to the second best orderings. (b): SLASHBURN
reduces the bits per edge by up to 2.1× compared to the random ordering, and by up to 1.2×
compared to the second best orderings.
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Degree
Graph Random Natural Sort CA SC Shingle SB

LiveJournal (bw=4096) 1401856 1060774 885153 * * 960642 873469
Flickr (bw=4096) 9801 4950 5091 6149 5042 3366 994
WWW-Barabasi (bw=4096) 6400 2774 2647 1997 2671 2751 384
Enron (bw=1024) 6241 4220 1922 1442 4220 1498 339
Epinions (bw=1024) 5624 4010 2703 3124 4010 4381 768
AS-Oregon (bw=256) 2845 2232 1552 1463 2197 2142 239

Table 9.3: Number of nonempty blocks for the competing ordering methods. CA: Cross Association, SC:
Spectral Clustering, SB: SLASHBURN. ‘bw’ denotes the block width, and the winners are in
bold fonts. For the LiveJournal data, cross association and spectral clustering (marked *) could
not be performed since the algorithms are too heavy to run on such a large graph. Notice that
SLASHBURN, formatted in bold fonts, outperforms all others. The results were similar for
other block widths.

Degree Cross Spectral
Graph Random Natural Sort Association Clustering Shingle SB

LiveJournal 19.89 16.82 16.87 * * 18.52 16.67
Flickr 17.71 16.27 11.19 11.45 16.27 13.02 10.73
WWW-Barabasi 17.58 10.43 11.25 10.32 8.5 12.06 8.41
Enron 15.82 12.62 9.94 9.63 12.62 11.08 9.43
Epinions 14.93 11.24 9.93 9.96 11.24 11.93 9.61
AS-Oregon 12.74 11.71 8.92 9.14 11.34 10.09 7.71

Table 9.4: Bits per edge for the competing ordering methods, according to the information theoretic lower
bound. SB: SLASHBURN. For the LiveJournal data, cross association and spectral clustering
(marked *) could not be performed since the algorithms are too heavy to run on such a large
graph. Note that the result from SLASHBURN, formatted in bold fonts, outperforms all others.
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left area of the adjacency matrix more dense. Cross association makes many rectangular regions that are
homogeneous. Spectral clustering tries to find good cuts, but obviously cannot find such cuts on the real
world graphs. In fact, for all the graphs except AS-Oregon in Figure 9.7, the spyplot after the spectral
clustering looks very similar to that of the natural ordering. Shingle ordering makes empty spaces on
the top portion of the adjacency matrix of some graphs: the rows of such empty spaces correspond to
nodes without outgoing neighbors, However, the remaining bottom portion is not concentrated well. Our
SLASHBURN method collects nonzero elements to the left, top, and the diagonal lines of the adjacency
matrix, thereby making an arrow-like shape. Notice that SLASHBURN requires the smallest number of
square blocks to cover the edges, leading to the best compression as shown in Table 9.4.

9.3.2 Running Time

We show the performance implication of SLASHBURN for large scale graph mining on distributed plat-
form, using HADOOP, an open source MAPREDUCE framework. We test the performance of block-based
PageRank using HADOOP on graphs created from different ordering methods. For storing blocks, we used
the standard gzip algorithm to compress the 0-1 bit sequences. Figure 9.8 shows file size vs. running time
on different ordering methods on LiveJournal graph. The running time is measured for one iteration of
PageRank on HADOOP. Notice that SLASHBURN results in the smallest file size, as well as the smallest
running time. We note that LiveJournal is one of the dataset that is very hard to compress. In fact, a similar
dataset was analyzed in the paper that proposed the shingle ordering [Chierichetti et al., 2009]: however,
their proposed ‘compression’ method increased the bits per edge, compared to the original graph. Our
SLASHBURN outperforms all other methods, including the shingle and the natural ordering, even on this
‘hard to compress’ dataset.

9.3.3 Real World Graphs Shatter Quickly

How quickly can a real world graph be shattered into tiny components? What are the differences of the
wing width ratio between real world, power-law graphs and random [Erdős and Rényi, 1959] graphs?
Table 9.5 shows the wing width ratio w(G) of real world and random graphs. We see that real world
graphs have coefficients between 0.037 and 0.099 which are relatively small. For WWW-Barabasi graph,
it means that removing 3.7 % of high degree nodes can shatter the graph.

In contrast, random (Erdős-Rényi) graphs have higher wing width ratio w(G). We generated two ran-
dom graphs, ‘ER-Epinions’, and ‘ER-AS-Oregon’, which have the same number of nodes and edges as
‘Epinions’, and ‘AS-Oregon’, respectively. The wing width ratios of the two random graphs are 0.611 and
0.358, respectively, which are at least 6.2× larger than their real world counterparts.

9.4 Related Work

The related works form two groups: structure of networks, and graph partition/compression.

Structure of Networks. Research on the structure of complex networks has been receiving significant
amount of attention. Most real world graphs have power law in its degree distribution [Faloutsos et al.,
1999], a property that distinguishes them from random graphs [Erdős and Rényi, 1959] with exponential
tail distribution. The graph shattering has been researched in the viewpoint of attack tolerance [Albert
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Flickr:
(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

WWW-Barabasi:
(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

Enron:
(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

Epinions:
(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

AS-Oregon:
(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

Figure 9.7: Adjacency matrix of real world graphs on different ordering methods. Notice that SLASH-
BURN requires the smallest number of square blocks to cover the edges, leading to the best
compression as shown in Table 9.4.
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Figure 9.8: File size vs. running time of different ordering methods on LiveJournal graph. The running
time is measured for one iteration of PageRank on HADOOP. Notice that SLASHBURN results
in the smallest file size, as well as the smallest running time.

Graph Type Graph w(G)

Real world Flickr 0.078
Real world WWW-Barabasi 0.037
Real world Enron 0.044
Real world Epinions 0.099
Real world AS-Oregon 0.040

Erdős-Rényi ER-Epinions 0.611
Erdős-Rényi ER-AS-Oregon 0.358

Table 9.5: Wing width ratio w(G) of real world and random (Erdős-Rényi) graphs. Notice that w(G)’s
are small for all the real world graphs, meaning that SLASHBURN works well on such graphs.
In contrast, random graphs have high w(G) (at least 6.2× larger than their real world counter-
parts), meaning that they cannot be shattered quickly.
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et al., 2000] and characterizing real world graphs [Appel et al., 2009]. Chen et al. [Chen et al., 2007]
studied the statistical behavior of a fragmentation measure from the removal of nodes in graphs. None of
the previous works relate the shattering and the power law to the problem of node permutation for graph
compression.

Graph Partition and Compression. There has been a lot of works on network community detection,
including METIS and related works [Karypis and Kumar, 1999a, Satuluri and Parthasarathy, 2009], edge
betweenness [Girvan and Newman, 2002], co-clustering [Dhillon et al., 2003, Papadimitriou and Sun,
2008], cross-associations [Chakrabarti et al., 2004], spectral clustering [Ng et al., 2002, Luxburg, 2007],
and shingle-ordering [Chierichetti et al., 2009]. All of them aimed to find homogeneous regions in the
graph so that cross edges between different regions are minimized. A recent result [Leskovec et al., 2008]
studied real world networks using conductance, and showed that real world graphs do not have good
cuts.

Graph compression has also been an active research topic. Boldi [Boldi and Vigna, 2004] studied the
compression of Web graphs using the lexicographic localities; Chierichetti et al. [Chierichetti et al., 2009]
extended it to the social networks; Apostolico et al. [Apostolico and Drovandi, 2009] used BFS based
method for compression. Maserrat et al. [Maserrat and Pei, 2010] used multi-position linearizations for
better serving neighborhood queries. Our SLASHBURN is the first work to take the power-law charac-
teristic of most real world graphs into advantage for addressing the ‘no good cut’ problem and graph
compression. Furthermore, our SLASHBURN is designed for large scale block based matrix vector mul-
tiplication where each square block is stored independently from each other for scalable processing in
distributed platforms like MAPREDUCE [Dean and Ghemawat, 2004]. The previously mentioned works
are not designed for this purpose: the information of the outgoing edges of a node is tightly inter-connected
to the outgoing edges of its predecessor or successor, making them inappropriate for square block based
distributed matrix vector multiplication.

9.5 Conclusion

In this chapter, we propose SLASHBURN, a novel method for laying out the edges of real world graphs,
so that they can be easily compressed, and graph mining algorithms based on block matrix-vector multi-
plication can run quickly.

The main novelty is the focus on real world graphs, that typically have no good cuts [Leskovec et al.,
2008], and thus cannot create good caveman-like communities and graph partitions. On the contrary, our
SLASHBURN is tailored towards jellyfish-type graphs [Siganos et al., 2006], with spokes connected by
hubs, and hubs connected by super-hubs, and so on, recursively. Our realistic view-point pays off: the
resulting graph lay-outs enjoy

• faster processing times (e.g., matrix-vector multiplications, that are in the inner loop of most typical
graph mining operations, like PageRank, connected components, etc), and

• lower disk space requirements.
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Part IV

Conclusion
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Chapter 10

Conclusion

Graphs are everywhere, from computer networks to the World Wide Web and social networks. Finding
patterns and anomalies in very large graphs leads to useful applications including cyber-security, fraud-
detection, and recommendation. Our goal is to design and implement large scale graph mining system,
and use it to discover important patterns and anomalies. Toward the goal, in this thesis we present the the-
ory, engineering, and discoveries of mining very large graphs using distributed MAPREDUCE/HADOOP

platform. We carefully select a set of fundamental graph mining operations, and package them in PEGA-
SUS (http://www.cs.cmu.edu/˜pegasus), which, to the best of our knowledge, is the first such
library, implemented on the top of the HADOOP platform.

One of the main research focus in this thesis is the structure analysis on large graphs. We developed graph
structure analysis algorithms including HADI, a diameter estimation algorithm, and GIM-V, a unifying
primitive for many different operations. We analyze real world graphs using HADI and GIM-V, and show
surprising patterns including the 7-degrees of separation and anomalous connected components in the
Web.

Another research focus is to develop advanced graph algorithms including inference in graph, eigenvalue
analysis, and tensor analysis. We develop efficient algorithms for the tasks. We use the algorithms to
analyze Twitter who-follows-whom graph to spot anomalous adult advertisers, and a large knowledge
base tensor to discover potential synonyms among millions of noun phrases.

Lastly, we design algorithms for efficient graph management in distributed systems. Our graph man-
agement system reduces storage space, as well as accelerates queries. We also develop an edge layout
algorithm to best compress graphs.

In the following, we summarize our contribution and present the vision for the future.

10.1 Summary of Contributions

We summarize the contributions and the impacts of this thesis.
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10.1.1 Contributions

The contributions span three areas: basic graph algorithms, advanced graph algorithms, and graph man-
agement.

Basic Graph Algorithms:

• We propose HAdoop DIameter and radii estimator(HADI), a carefully designed and fine-tuned dis-
tributed algorithm to compute the radii and the diameter of massive graphs. Our optimization on
HADI leads to 7.6× faster performance than the naive algorithm.

• We then generalize HADI to Generalized Iterated Matrix-Vector multiplication(GIM-V), a unifying
primitive for many different graph mining operations including PageRank, spectral clustering, diam-
eter estimation, and connected components. GIM-V is highly optimized, achieving good scale-up
on the number of available machines, and linear running time on the number of edges. Our opti-
mization on GIM-V leads to more than 5× faster performance than the naive algorithm.

• We employ HADI and GIM-V to study large, real world graphs. We are the first to discover the
7-degrees of separation of the Web.

Advanced Graph Algorithms:

• We propose HADOOP LINE GRAPH FIXED POINT (HA-LFP), an efficient distributed algorithm
for inference in billion-scale graphs, using HADOOP platform. HA-LFP scales up linearly on the
number of edges and machines.

• We propose HEIGEN, an eigensolver to perform spectral analysis on large graphs. HEIGEN handles
1000× larger matrices than the state of the art. We employ HEIGEN to analyze Twitter who-follows-
whom graph and find anomalous accounts with huge number of triangles.

• We generalize the spectral analysis algorithm to multiple dimensions, and propose GIGATENSOR,
a large scale tensor decomposition algorithm which can handle more than 100× larger tensors than
the state of the art. We study a large knowledge base tensor, and present interesting discoveries
which include the potential synonyms among millions of noun-phrases.

Graph Management:

• We propose GBASE, a scalable and general graph management system which provides a parallel in-
dexing mechanism for graph mining operations that both saves storage space, as well as accelerates
queries. GBASE reduces the storage space and the running time up to 50×.

• We propose SLASHBURN, an edge layout algorithm which utilizes the power-law characteristic of
real world graphs for better compressing graphs. SLASHBURN consistently outperforms all the
state of the art algorithms in terms of the compression ratio, and the running time for graph mining
queries.

10.1.2 Technology Transfer

Our work in large graph mining and the PEGASUS system have impacts in academia as well as in industry.
We summarize the technology transfers of our work.

• The PEGASUS system has been downloaded more than 410 times from 83 countries. It led to two
U.S. patents, and won the award at the open source software world challenge.

• Microsoft included PEGASUS as part of their HADOOP distribution for Windows Azure.
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• PEGASUS system is used as one of the core systems for several DARPA projects including Anomaly
Detection At Multiple Scale (ADAMS).

10.2 Vision & Research Directions

Our vision is to design and implement a big data analytics system which finds useful patterns and anoma-
lies, and thereby transforming massive raw data into valuable sources of knowledge. Toward this goal, we
have researched on algorithms for scalable graph mining. In the near future, we intend to extend the algo-
rithms and systems to support time evolving graphs, constrained problems, and approximate algorithms.
In the long run, we plan to support rich data type, near-real time processing, and low-level distributed
platform optimization in our big data analytics system to solve many real world problems. We elaborate
our future vision and research directions in the following.

10.2.1 Medium Term Goals

Time Evolving Graphs

In most of the works in this thesis we assumed static graphs. However, many real world graphs are
evolving over time, where edges and nodes are added or removed continuously. We want to extend our
graph management system to handle time evolving graphs efficiently. For example, a promising direction
is to study how to update the compressed graphs in distributed systems efficiently for the addition or
removal of edges or nodes. Another example is to study how to update the computed graph features (e.g.
connected components) on the new graph without re-computing the features from scratch. The effect is to
answer graph mining queries quickly.

Large Graph Mining with Constraints

We want to enrich our graph mining algorithms to handle constraints. For example, we want to impose
non-negativity constraints on the eigensolver or tensor decomposition algorithm to compute non-negative
matrix or tensor factorizations. Another example is to impose sparsity on the tensor factorization to enable
sparse factorization. The goal of adapting constraints is to apply graph mining algorithms in broader
contexts with more interesting applications.

Approximate Computing

For very large graphs with more than billions of nodes and edges, exact algorithms can be very expensive
in time or space. For example, computing neighborhoods from all nodes require quadratic storage to the
number of nodes, which is too expensive. In such cases approximation algorithm, which gives reasonable
accuracy while is much efficient, is very useful. A promising direction is on approximate graph mining
algorithms. For example, we want to study how to compute approximate PageRanks to find top k highest
PageRank pages. The goal is to enable computations whose exact algorithms are intractable.

10.2.2 Long Term Goals

Rich Data Types
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Our current work focuses on simple graphs with weighted edges. However, there are many other types
of data which can be supported by big data analytics systems: ‘colorful’ graphs (i.e. attributes in nodes
and edges), time series, multivariate variables, gene information, text, and images. A promising direction
is to incorporate these rich data types in our big data analytics system which can be applied to more di-
verse domains including astronomy, biology, accounting, health care, and environment monitoring, among
others.

Near-Real Time Analytics

The MAPREDUCE/HADOOP platform is best for offline batch processing, but not suitable for online real-
time processing. However some applications (e.g. network attack monitoring) require near-real time
processing and responses to queries. A promising direction is to redesign the big data analytics system to
support the near real time processing capability. The approaches include quickly combining precomputed
statistics and new data. The goal is to enhance the applicability of the big data analytics system to broader
areas.

Redesigning Distributed Computing Platform

In this thesis we developed algorithms on top of MAPREDUCE/HADOOP: we did not modify the design of
the underlying distributed computing platform. Although MAPREDUCE/HADOOP provides easy interface,
nice scalability, and fault tolerance, however, there are areas to improve on the underlying platform. A
promising direction is to combine the best of the memory based systems and the disk based systems to
improve performance (e.g. [Zaharia et al., 2010]). Another direction is to use and influence the location
of files in the distributed file system (e.g. HDFS) to exploit the locality even better. The goal is to provide
the best execution strategies based on the data access pattern of applications.
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