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Abstract

We present a formal proof of collision avoidance for a simple distributed hybrid system consisting
of an arbitrary finite number of cars on a one dimensional road. Our cars take actions indepen-
dently from one another and without synchronization, thus behaving in a truly distributed manner.
We allow cars to enter and exit the road. For the continuous dynamics, we show how differential
invariants and symbolic solutions can be used together harmoniously to prove things that neither
could prove alone. We have fully mechanized our formal proof within our theorem prover KeY-
maeraD.





1 Introduction
The design of software systems always involves some sort of theorem proving. A system’s correct-
ness proof might be muddled and bug-ridden and in fact might only exist in the system designer’s
mind, but it must exist in some form. Otherwise, the system was merely evolved, not designed.
In this light, formal verification is simply the process of making correctness proofs as explicit as
possible. We undertake formal verification with the natural expectation that it will be help us to
identify and eliminate bugs.

Formalization comes at a cost, of course. It is often claimed that this cost is too high and,
more strongly, that formalization turns blatantly true system properties into enormously difficult
verification problems. Although we do not argue that formal verification is always called for, we do
maintain that it can be quite useful in certain problem domains and that its reputation for injecting
difficulty is not entirely deserved.

One domain in which formal verification can be particularly useful is in the design of dis-
tributed hybrid systems, where software running on multiple independent agents must interact with
a continuously varying environment. In the course of this paper we will walk through the formal-
ization process for a simple example system in this domain. Along the way, we will see that even
systems with intuitively straightforward correctness proofs can be very easy to design incorrectly.
They can behave in ways that defy our intuition, and formalization helps us catch the problem
cases. We will also see that, even though a naı̈ve formalization produces a seemingly intractable
verification problem, the properties that are intuitively obvious actually do have proofs that are
relatively easy, once they are formulated properly and approached with appropriate methods.

Our walkthrough will feature several new techniques and technologies; the real purpose of
the paper is to showcase these. The crux of our approach to the formal proof is a harmonious
combination of two methods for dealing with the continuous dynamics: quantified differential
invariants [12], and symbolic integration. The former method ensures that intuitively easy facts
remain easy to prove, and the latter method gives us a blunt but powerful hammer that allows us
to prove the meat of the theorem. We achieved our formalization within the framework of the
KeYmaeraD theorem prover [13], adding to it the first mechanized implementation of the method
of quantified differential invariants.

2 Designing The System

2.1 Our Task
Suppose we have an infinite straight line, which we will call the road, upon which are a finite
number of autonomous agents, which we will call cars. Each car i has position xi, velocity vi,
and acceleration ai. These values implicitly depend on time and evolve according to the system of
differential equations

{x′i = vi, v
′
i = ai, a

′
i = 0}. (1)

Each car controls itself by adjusting its acceleration. Such adjustments may only occur at certain
times—in particular, only once for each control cycle of each car. There is a hard upper limit, ε,
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on the duration of any given control cycle. This means that when a car makes a control decision it
may assume that it will be able to make another control decision within time ε.

We assume that cars have a maximum braking force characterized by a positive constant B,
so that at all times we have ai ≥ −B for all cars i. We allow for the possibility of emergency
stops; at any time, a car might be forced to brake with acceleration −B. We assume moreover that
cars have zero length, that their velocity is always nonnegative, and that their control decisions are
made with perfect knowledge of the configuration of all other cars.

In this idealized setting, we would like to design car controllers that guarantee the absence of
collisions. We would also like to allow for nondeterminism; rather than ask what the best choice
would be, for some definition of best, we ask for a characterization of all safe choices. Thus, we
ask: at each control decision, what should be the allowed set of accelerations?

2.2 Informal Reasoning
Let us first try to proceed informally. We may formulate our task as follows: given a car f and
an acceleration A, we want to know whether A is a safe acceleration for f . Since all cars that are
behind f are required to account for the possibility of f making an emergency stop, we do not
need to worry about them. Let ` be a car that is ahead of f , so that x` > xf . What constraints does
` place on A? There are two things that we do not know: 1) the control decisions that ` is going to
make, and 2) the precise time when f will get to make another control decision. For both of these
unknowns, it suffices for us only to consider the worst possible case. Moreover, since the extent
of our goal is to prove that f remains safe, it suffices for us to assume that f will make the safest
possible choice at its next control decision. Thus, the trajectories of interest can be described as
follows: ` will immediately begin an emergency stop with acceleration −B, and f will continue
with acceleration A for the full time ε, after which it will make the safest possible choice, i.e. it
will begin an emergency stop with acceleration −B. These trajectories continue until both cars
come to rest, as illustrated in Figure 1, which shows a particular scenario in which f is indeed able
to stop safely before `. We claim that if these trajectories do not cross, then A is a safe acceleration
with respect to `.

Note that the trajectories cannot cross twice. For if they do then by the Mean Value Theorem
there is a future point in time t̃ when xf (t̃) > x`(t̃) and vf (t̃) = v`(t̃). Since ` has the maximum
possible decelerationB, the quantity xf−x` can never get any smaller after this point, contradicting
our assumption that the trajectories cross again. Therefore, we need only check whether the cars
f and ` are still in the proper order at the end of their trajectories, when both cars have come to a
stop.

Let us work through the algebra to see what this entails. To do so, we will use the following
symbolic solutions to the system’s dynamics:

ai(t) = ai(t0)
vi(t) = vi(t0) + ai(t0)(t− t0)
xi(t) = xi(t0) + vi(t0)(t− t0) + ai(t0)

2
(t− t0)2.

(2)

Usually we will suppress the time parameter and assume that we are evaluating at t0, the point
when we are making our decision.
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¶

Time

Position

car f

car {

Figure 1: A safe acceleration for f should allow f to stop before hitting `.

The time it takes for ` to stop is v`/B. Therefore, the stopping position of ` is

x` + v`
v`
B

+
−B
2

(v`
B

)2

or, more simply,

x` +
v2`
2B

. (3)

If f continues with acceleration A, then after time ε its position is

xf + vfε+
A

2
ε2

and its velocity is
vf + Aε.

Stopping with acceleration −B from a forward velocity vf +Aε takes a time of (vf +Aε)/B and
a distance of (vf + Aε)2/2B. This means that the stopping position of f is

xf + vfε+
A

2
ε2 +

(vf + Aε)2

2B
. (4)

Simplifying this expression and combining it with Expression (3) to assert that f stops in front of
` gives the following constraint on A:

x` +
v2`
2B

> xf +
v2f
2B

+

(
A

B
+ 1

)(
Aε2

2
+ vfε

)
. (5)

Therefore, if this condition holds for all cars ` that are in front of f , thenA is a safe acceleration
for f . So we are done, right? Wrong! Our reasoning in fact has a subtle and fatal bug. There are
some choices for A that satisfy Condition (5) and yet in certain circumstances still allow collisions
to occur. We encourage any readers for whom this comes as a surprise to go back and try to find
what could go wrong.
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3 Quantified Hybrid Programs

3.1 Formalizing the System
We are going to describe our system using the quantified hybrid program language defined in [11].
A program in this language describes a system by representing the set of possible traces of the
system’s execution, that is, the set of possible sequences of transitions that the system’s state can
undergo.

One important kind of transition that our system can undergo is a continuous evolution brought
about by its physical dynamics. We might attempt to represent transitions of this kind with the
program

dynamics1 ≡ ∀i : C.{x′i = vi, v
′
i = ai, a

′
i = 0},

where we use the symbol C to represent the set of cars. The transitions represented by dynamics1
are the evolutions of any duration in which each car i obeys the dynamics we introduced in (1).
These are, however, not quite the transitions that we want. Recall that we wish to allow our cars
only to move forward. If ai is negative for some i, then dynamics1 may transition to a state where
some car has negative velocity, violating our system’s specification. We need to add a constraint to
restrict the set of allowed transitions. We write such constraints to the right of an ampersand, as in
the following definition of dynamics, which is what we will actually use in our program:

dynamics ≡ ∀i : C {x′i = vi, v
′
i = ai, a

′
i = 0, s′i = 1 & vi ≥ 0 ∧ si ≤ ε}.

Now the evolution can proceed only so long as the constraint vi ≥ 0 ∧ si ≤ ε is satisfied. The first
part of the constraint, vi ≥ 0, ensures that the evolution stops before any car has negative velocity.
The second part of the constraint, si ≤ ε, enforces the upper bound of ε on the time between
control decisions; each car i will have a stopwatch si tracking the amount of time that has passed
since that car’s last control decision.

Another kind of transition that our system can undergo is a control flow transition. Two com-
mon varieties of such transitions are represented by the branching construct ∪, which nondetermin-
istically chooses between two programs, and the looping construct ∗, which repeats a program a
nondeterministic number of times. These constructs are used at the outermost level of our program:

cars ≡ (control ∪ dynamics)∗,

Thus, a transition of the cars system consists of any finite sequence of control transitions and
dynamics transitions. Of course, because of the constraints we introduced in dynamics, there are
some states in which dynamics cannot make a nonnull transition.

All that remains is for us to define the control subprogram. This part of our program demon-
strates the three remaining constructs in the hybrid program language: assignment, sequential
composition, and conditionals.

control ≡ i := ∗C; A := ∗R; ?Safe(A, i); ai := A; si := 0.

The control program nondeterministically assigns i to a value in C and A to a value in R. It
then tests to see whether A is a safe acceleration for car i, and, if so, assigns ai to A and restarts
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i’s stopwatch by assigning si to 0, indicating that i has successfully made a control decision.
Otherwise, it aborts execution of this branch.

We have reduced our problem to determining an appropriate condition to use for Safe(A, i). If
we give Condition (5) the name AvoidsAfter(A, ε, f, `), then in the previous section we proposed
the following definition:

Safe1(A, i) ≡ ∀` : C . xi < x` → AvoidsAfter(A, ε, i, `).

Now that we have posed the problem more formally, can we see what is wrong with this choice?

3.2 Bugs in the Informal Proof
An immediate problem with Safe1(A, i) is that it neglects to ensure that B is indeed the maximum
possible braking deceleration. Since this is a physical constraint, we kept it implicit in our informal
discussion, perhaps misleadingly. In our program, however, we need to be explicit about every-
thing; somewhere we must enforce the fact that ai ≥ −B for all cars i. This is easily accomplished
by updating our safety check:

Safe2(A, i) ≡ A ≥ −B ∧ Safe1(A, i),

because the control branch is the only place in the program where any car’s acceleration changes.
A more subtle and insidious problem is that we have, in our informal reasoning, unwittingly

required some cars to move in reverse, i.e. with negative velocity. As a result, we have failed to
consider some possible trajectories, and some of those that we have considered are not trajectories
that the system could actually follow. Figure 2 illustrates a scenario where basing our reasoning on
one of these impossible trajectories leads us to make an unsafe decision. The problem arises when
car f is able to stop before the full control cycle time ε. In this case, if we have vf + Aε < 0 then
Expression (4) does not accurately express f ’s final position. Instead, it expresses f ’s final position
if f , after braking to a stop, were to continue in reverse with the same negative acceleration A until
time ε, and were only then to brake, with positive acceleration B, to a final stop. If car ` is stopped
between the endpoint of this impossible trajectory and the endpoint of f ’s actual trajectory, then a
collision can occur, as shown in Figure 2.

How did this bug creep into our design? In our informal reasoning we concentrated on dealing
with the worst case. Perhaps we thought we could always imagine A being positive, because that
case seems to be strictly worse than the case when A is negative. However, if A is negative then
f ’s trajectory may be qualitatively different from the typical case, since it might flatten out rather
than continue on a quadratic path. That is, after all, what it means to brake to a stop. In that case,
the impossible quadratic trajectory might cross `’s trajectory twice; if we only look at its endpoint
we may mistakenly conclude that A is safe. Note that the actual trajectories can still only cross
once; that part of our reasoning was sound. To fix the bug, we split the safety condition into two
cases, depending on whether the acceleration A will cause the car to stop within time ε.

5



¶

Time

car {

Position

collision!

full brake

brake & reverse

partial brake
car f

Figure 2: Our informal proof incorrectly considers the endpoint of the impossible trajectory “brake
& reverse”.

Safe(A, i) ≡ A ≥ −B ∧
∀` : C. xi < x` →

(vi + Aε ≥ 0 ∧ AvoidsAfter(A, ε, i, `)) ∨
(vi + Aε < 0 ∧ StopsBefore(A, i, `)).

To complete our program cars we now just need to define

StopsBefore(A, i, `) ≡ x` +
v2`
2B

> xi −
v2i
2A

,

which asserts that the final positions of f and ` are in the proper order, assuming that f and ` brake
until stopping with respective decelerations −A and B.

Are we done now, or are there more bugs? As a sanity check, we might package our assump-
tions and the assertion that the trajectories do not cross into a formula in first-order real arithmetic
and we might pass that formula to a decision procedure, such the one provided by Mathematica.
If we do so, the procedure will return after a few minutes with an affirmative answer; those tra-
jectories do not cross. Whew! That puts some of our fears to rest, but we must not forget that
the formula only pertains to one specific pair of trajectories. We would like to check our earlier
reasoning as well, namely, the reasoning that led us to believe that this pair of trajectories was
the only pair we needed to consider. Moreover, working through all of the algebra to determine
exactly which formula to send to the decision procedure was a potentially error-prone undertaking.
We would like a way to get computerized help for that part of our reasoning, too.
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4 Quantified Differential Dynamic Logic

4.1 Formulating Safety
Our goal now will be to formulate and prove a formal theorem stating that cars in our system can
never collide with one another. This property can be expressed as a formula in QdL, a multimodal
logic expressly designed to allow reasoning about traces of quantified hybrid programs [11]. To
use QdL for our present purposes, we will only need to introduce one new construct beyond those
of standard classical multi-sorted first-order logic. This is the box modal operator. For every
program α, the modality [α] is defined in terms of the accessibility relation ρα given by α’s possible
executions. If φ is any QdL formula, then [α]φ is true if and only if φ is true after any execution of
α. That is, if σ is an initial state, then [α]φ is true at σ if and only if φ is true at all states σ′ that
are accessible from σ by ρα. An instance of a box modality appears in our first attempt to write a
formula that captures the collision avoidance property:

[cars](∀i : C. ∀j : C. i 6= j → xi 6= xj). (6)

This formula says that, after any execution of cars, any two distinct cars i, j have distinct positions
xi, xj . It might seem at first that this formula is inadequate because it only considers the end state,
but since the box modality quantifies over all executions and since any legal execution of dynamics
may be stopped early to yield another legal execution, the formula does indeed say what we want
it to say: that the trajectories of cars do not cross.

To prove a formula is to show that it is valid, i.e. true at every state. Unfortunately, Formula
(6) is not valid. It fails to include the vital assumptions B > 0 and ε > 0 and it does not account
for the fact that some initial states simply are not safe. If two distinct cars i, j begin at the same
position, for example, then cars i and j can also certainly end at the same position, because the null
execution is a legal execution of cars. We are therefore forced to make some assumptions about
the initial state. We do so by writing the assumptions to the left of an implication arrow→. The
formula that we actually prove will be of the form

(B > 0 ∧ ε > 0 ∧ SafeInit)→ [pcars]NoCollision, (7)

where we still need to define the initial condition SafeInit and revised versions of the program
pcars and the collision avoidance condition NoCollision. With SafeInit, we make what is perhaps
the simplest possible assumption about the initial state: we assume that the road starts with no cars
on it. That configuration is trivially safe. We now redefine our program so that it has branches
allowing cars to enter and exit the road. Generalizing our system in this way requires some new
machinery, but the effort is worthwhile—not only because it vastly simplifies our initial conditions,
but also because it gives us tools to reason about multi-lane roads, a topic that interests us anyway.
Our new program is

pcars ≡ (exit ∪ enter ∪ control ∪ dynamics)∗.

We give each car i a flag pi indicating whether i is present on the road. The flag pi can be un-
derstood as a boolean field whose value is 1 if car i is present on the road and 0 otherwise. We
define

SafeInit ≡ ∀i : C. pi = 0
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so that the system starts with no cars on the road. We must update our postcondition so that it only
catches collisions between the cars that are actually present:

NoCollision ≡ ∀i : C. ∀j : C. i 6= j ∧ pi = 1 ∧ pj = 1 → xi 6= xj.

We now define the new branches. A car that is on the road may exit at any time, but a car may
enter the road only if a certain safety condition is satisfied.

exit ≡ i := ∗C; ?(pi = 1); pi := 0; si := 0

enter ≡ i := ∗C; ?(pi = 0 ∧ SafeToEnter(i)); pi := 1; si := 0

The exit branch chooses an arbitrary car i and checks to see whether i is present. If it is, the branch
performs an exit by assigning pi to 0. We count exits and entrances as control decisions, so the
exit branch also restarts the i’s stopwatch upon success. The enter branch works in an analogous
way but also checks whether SafeToEnter(i) is true before performing its action. We postpone
a formulation of this safety condition until we arrive at a point in the proof where we can better
understand what we need from it. During our development of a proof, we will also need to make
some minor modifications to the Safe(i) condition and the SafeInit condition.

4.2 What is a Proof?
Before we begin searching for a proof of Formula (7), we first specify what we mean by proof. A
proof is a tree of proof rule applications whose root contains the formula we wish to prove, our
goal, and whose leaves contain evidently valid facts. A proof rule is a syntactic procedure for
transforming a goal into zero or more subgoals, such that the validity of the subgoals implies the
validity of the original goal. The proof rules we use are those of the QdL proof calculus, the details
of which are discussed at length elsewhere [11, 13]. The proof calculus does not operate directly
on QdL formulas, but rather on sequents of the form Γ⇒ ∆ where Γ and ∆ are finite sets of QdL
formulas. Such a sequent denotes the assertion that the conjunction of the formulas in Γ implies
the disjunction of the formulas in ∆. Proof rules in the calculus generally have the form

Γ1 ⇒ ∆1 ... Γn ⇒ ∆n

Γ⇒ ∆
,

indicating that to prove Γ⇒ ∆, it suffices to prove Γi ⇒ ∆i for i = 1, ..., n. If we want to prove a
formula φ, then we may set our initial goal to be the sequent · ⇒ φ, where · denotes the empty set.

Our calculus allows us to simplify goals by breaking them into smaller components. For ex-
ample, one of our proof rules tells us that in order to prove [α ∪ β]φ it suffices to prove both [α]φ
and [β]φ. During proof search, we attempt to reduce our goal into subgoals that contain none
of the special QdL constructs like modalities and indexed variables. If we succeed, we are left
with goals that contain only formulas from first-order real arithmetic, which is a decidable theory.
In principle, we could include the axioms of real arithmetic in our proof calculus and continue
searching for a proof using them. If we were to successfully build a proof in this way, the leaves
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of the resulting proof tree would contain only truly obvious facts like (0=1)⇒ ·. That is certainly
a desirable property for a proof to have. In practice, however, such an approach is prohibitively
expensive because the theory of first-order arithmetic is extremely difficult. Although there is at
least one implementation of a proof-producing decision procedure [10], it is orders of magnitude
less efficient than optimized solvers such as the one provided by Mathematica. Therefore, we al-
low subgoals that contain only first-order real arithmetic to be discharged by an external decision
procedure. Thus, the sense in which some of the facts at the leaves of our proofs are “evidently
valid” is that they have been checked by a trusted decision procedure and could easily be checked
again by other independent decision procedures.

5 Towards a Formal Proof

5.1 Building a Loop Invariant
Our first steps toward proving Formula (7) are completely straightforward and require no thought.
They consist of a few simple proof rule applications that transform our original goal into the se-
quent

B > 0, ε > 0, SafeInit ⇒ [pcars]NoCollision.

Here we reach our first nontrivial decision point. To make progress, we must deal with the loop
that is at the outermost level of pcars. Doing so requires us to come up with a loop invariant. The
proof rule for this situation is

Γ⇒ I,∆ I ⇒ [α]I I ⇒ φ

Γ⇒ [α∗]φ, ∆
(∗).

This says that in order to prove φ is true after the loop α∗, it suffices to find a loop invariant I and
to prove that I is initially true, I remains true after a single iteration of the loop, and I implies φ.
The sets Γ and ∆ contain whatever information we know about the initial state, and the comma
denotes set insertion, so that ψ,∆ is the set {ψ} ∪∆.

What formulas should we include in our loop invariant? There are a few obvious candidates.
In our formalization, we lump the parameters ε and B into the same syntactic category as state
variables like xi and temporary variables like A. Doing so buys us some conceptual simplicity, but
also means that we are not syntactically precluded from writing programs like B := 0 that assign
new values to the parameters. Thus, our program could in principle change these parameters’
values during execution. Since our proof will rely heavily on the assumption that ε and B are
positive, we must include in the invariant the formula

LoopInvA ≡ ε > 0 ∧ B > 0.

Otherwise we would only be able to use this information at the initial state.
Our proof also relies heavily on the fact that each car’s state always satisfies some basic sanity

conditions. At all times, each car has acceleration greater than or equal to −B, velocity greater
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than or equal to zero, and stopwatch between zero and ε inclusive. To allow ourselves access to
this information later in the proof, we include in our invariant the formula

LoopInvB ≡ ∀i : C. (ai ≥ −B ∧ vi ≥ 0 ∧ si ≥ 0 ∧ si ≤ ε).

Note that this formula requires the sanity conditions to hold for all cars, not just those that are
present. The idea is that cars not currently on our road still ought to behave like cars. Having this
requirement costs us little, and it will turn out to come in quite handy when we are working on the
dynamics branch of the proof. The small price we pay is that we must redefine SafeInit to include
the facts from LoopInvB.

As yet, our candidate loop invariant does not come close to implying the postcondition NoCollision.
Indeed, we have not said anything about how the states of cars compare to each other. We would
like somehow to generalize our informal worst-case reasoning about trajectories at control deci-
sions to apply to trajectories at any time. We would like to say that, for any pair of cars, at any
time, if the leading car begins an emergency stop, then the following car can slow down in time to
avoid it. We can express that property with the formula

LoopInvC ≡ ∀f : C. ∀` : C.
f 6= ` ∧ pf = 1 ∧ p` = 1 ∧ xf ≤ x` →
xf < x` ∧
((vf + af (ε− sf ) ≥ 0 ∧ AvoidsAfter(af , ε− sf , f, `)) ∨
(vf + af (ε− sf ) < 0 ∧ StopsBefore(af , f, `))).

For all pairs of distinct present cars f, ` such that f is not ahead of `, the formula LoopInvC tells us
that f and ` are not colliding at the current moment and they can avoid colliding in the future. It
expresses the former property by saying that f is in fact strictly behind car ` (line 3); this part of the
invariant is what will imply our postcondition, i.e. the fact that we have no collisions. It expresses
the latter property by saying that even if car ` immediately begins braking with deceleration B and
car f does not get to make its next control decision until its stopwatch reaches time ε, car f can
still avoid a collision (lines 4-5). This part of LoopInvC will be crucial when we need to prove
that the invariant remains true after an iteration of the loop. The formula LoopInvC is initially true
because initially no cars are present.

We now have all of the pieces in place. We define our full loop invariant to be

LoopInv ≡ LoopInvA ∧ LoopInvB ∧ LoopInvC.

With this invariant, we can apply (∗) to yield three new subgoals. The two subgoals

B > 0, ε > 0, SafeInit ⇒ LoopInv

and
LoopInv ⇒ NoCollision

10



are relatively straightforward to prove. The difficult part, and what we will spend most of our
subsequent effort on proving, is the inductive subgoal, where we must prove that the invariant
remains true after a single iteration of the loop:

LoopInv⇒ [exit ∪ enter ∪ control ∪ dynamics]LoopInv.

5.2 Using Symbolic Integration
Of the four branches in an iteration of our program’s loop, perhaps the most worrisome is the
dynamics branch. That is where we expect the most difficult arithmetic to arise, due to the differ-
ential equations. Moreover, if we want to stay faithful to our original specification, then our system
dynamics are essentially set in stone; unlike in other branches where we may be able to tweak the
program to get the proof to work, if our loop invariant fails in the dynamics branch then we are
going to need a new loop invariant. Therefore, to catch any potential problems as soon as possible,
our next step is to attempt a proof of the sequent

LoopInv⇒ [dynamics]LoopInv. (8)

We have several proof rules we can apply in this situation. One which seems particularly
promising is

Γ⇒ S(0),∆ Γ⇒ ∀t ≥ 0. [Ŝ(t)]
(
(∀i:C.H)→ φ

)
, ∆

Γ⇒ [∀i : C {D & H}]φ, ∆
(=′ep).

This rule requires that we provide it a set S of symbolic solutions to the differential equations D,
where we assume that the initial time is t0 = 0. To give a concrete example, we note that in our
case S(t) will be a conjunction of Equations (2) from page 2 and the stopwatch evolution equation

si(t) = (t− t0) + si(t0),

all with 0 given for t0. The (=′ep) rule has an implicit side condition demanding that the derivative
with respect to t of the solutions S(t) must agree with the original differential equations D. This
can usually be checked in a straightforward manner by symbolically differentiating S. To ensure
that S has the correct constants of integration, the rule’s first subgoal checks that S(0) is true in
the initial state. Thus, the side condition and the first subgoal together ensure that S is indeed a set
of solutions to D.

The second subgoal puts these symbolic solutions to use. Note that we can think of S as a curve
running through the state space of the system. We define the program Ŝ(t) to be an assignment
that fast-forwards our state to the point in this curve corresponding to time t. We can imagine Ŝ(t)
turning each equality relation in S(t) into an assignment operator. Now, in order to prove that a
formula φ is true after the evolution ∀i : C {D & H}, it certainly suffices for us to prove that φ
is true after the assignment Ŝ(t) for all t ≥ 0. However, doing that proof is not typically possible
because nothing prevents the curve S from exiting the region defined by the evolution constraint
H , and H usually contains critical information. The (=′ep) rule takes the constraint into account.
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B > 0, ε > 0, sf ≥ 0, sf ≤ ε,

af ≥ −B, a` ≥ −B, vf ≥ 0, v` ≥ 0,

t ≥ 0, t+ sf ≤ ε, vf + af t ≥ 0, v` + a`t ≥ 0,

xf < x`,

vf + af (ε− sf ) ≥ 0,

x` +
v2`
2B

> xf +
v2f
2B

+
(
A
B

+ 1
) (A(ε−sf )2

2
+ vf (ε− sf )

)
⇒(
x` + v`t+ a`

2
t2
)

+ (v`+a`t)
2

2B
>(

xf + vf t+
af
2
t2
)

+
(vf+af t)

2

2B
+(

A
B
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)
Figure 3: An arithmetic goal that is too difficult for us to handle.

The rule says that in order to prove φ is true after the evolution, it suffices to prove the weaker
formula (∀i:C.H) → φ is true after the assignment Ŝ(t) for all t ≥ 0. That is, we do not need to
consider points that do not satisfy the evolution constraint. We note in passing that rule (=′ep) is
called the endpoint rule because we could refine the second subgoal even further to only consider
points along S where the curve has not previously exited H; characterizing such points requires
us to look at all previous points on the curve, rather than just testing whether the endpoint satisfies
H . The rule that does this is called the (=′) rule.

The (=′ep) rule led us to a successful proof in our previous work [13]. Therefore it is with
high hopes that we apply it to our current goal. Indeed, we may continue building a proof from
this point, and for a while everything appears to go well. Using straightforward techniques, we
can reduce our goal to very plausible-looking subgoals that consist only of formulas in first-order
real arithmetic. Figure 3 shows one of these subgoals. The problem is that these subgoals are too
difficult for our solver to handle. Our Mathematica backend fails to return an answer for them,
even if it is allowed to run overnight. Unfortunately, there do not seem to be any obvious ways to
simplify or further reduce these subgoals before invoking the decision procedure. The situation is
perhaps even worse; for all we know, these subgoals might in fact be false, and we might need to
invoke the more complicated (=′) rule to get the proof to work.

These difficulties have arisen because our loop invariant needs to be more sophisticated than
those in previous work. The systems studied in [8] and [13] make use of a globally synchronized
control cycle—instead of each car i having a stopwatch si, all cars share a global stopwatch s and
make their control decisions simultaneously. That unrealistic setup allows the loop invariants to
be much simpler. But where does that leave us? Our current system still is quite simple, and we
have even come up with an informal correctness proof that is rather convincing. Are we forced to
accept the informal proof as the final word on this matter? Especially after we saw how easily we
can make mistakes in this domain, that seems hardly acceptable.
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6 Quantified Differential Invariants

6.1 Definitions
Recall the style of argument we adopted in our informal proof. We could not hope to consider
all possible future events, so we concentrated on what would happen in the worst case. Later,
we generalized our worst-case reasoning to derive an important part of our loop invariant. This
important part now happens to be what is responsible for generating the difficult arithmetic goals
we have just encountered. Does that not seem odd? Should not worst-case reasoning produce
invariants that obviously stay true? After all, the worst thing that could happen is precisely the
thing we have explicitly considered.

Fortunately, we have another tool at our disposal and it appears to be ideally suited to the
current situation. Differential invariants [12] give us a way of using properties that stay true during
the evolution of differential equations. We put differential invariants into action with the proof rule

Γ⇒ I,∆ ∀i:C.H ⇒ ∇DI Γ⇒ [∀i : C {D&H∧ I}]φ,∆
Γ⇒ [∀i : C {D&H}]φ, ∆

(∇).

This rule provides another way of proving that φ is true after the evolution ∀i : C {D&H}. Instead
of eliminating the evolution, this rule strengthens the evolution’s constraint. The first subgoal
says that the invariant I must initially be true. The second subgoal says that I must remain true
during the evolution of D. This subgoal uses the total derivative operator ∇D, which we need to
define. The third subgoal conjoins the invariant I to the evolution constraint H . Strengthening the
constraint is useful because we also have the proof rule

∀i:C.H ⇒ φ

Γ⇒ [∀i : C {D&H}]φ, ∆
(∇close),

which says that if the evolution constraint H implies φ then we are done.
Figure 4 gives the definition of the operator ∇D. Note that ∇D transforms a disjunction into

a conjunction and an inequation into an equation. On terms, ∇D behaves as a standard derivative
operator. When it reaches a state variable X , it looks to see whether X appears on the left hand
side of an equation in D. If it does not, then ∇D returns zero. If it does, then ∇D returns the value
θ on the right hand side of the equation. When ∇D reaches an indexed state variable X` appearing
in an equation X ′` = θ from D, it returns θ with i replaced by `, written θ`i . To operate on formulas
containing propositional connectives such as ¬ and→ that are not listed in Figure 4, the operator
∇D first converts its input into a form that contains only the ∧ and ∨ connectives.

6.2 Our Differential Invariants
One nice property of the (∇) rule is that it allows us to add differential invariants in stages. If
we have multiple formulas that we believe to be differential invariants, we can first prove that the
easier formula is an invariant. Then we will have extra information when we try to prove that more
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∇D(F1 ∧ F2) ≡ ∇DF1 ∧∇DF2

∇D(F1 ∨ F2) ≡ ∇DF2 ∧∇DF2

∇D(∀i : C. F ) ≡ ∀i : C. ∇DF
∇D(θ1 = θ2) ≡ ∇Dθ1 = ∇Dθ2
∇D(θ1 6= θ2) ≡ ∇Dθ1 = ∇Dθ2
∇D(θ1 < θ2) ≡ ∇Dθ1 ≤ ∇Dθ2
∇D(θ1 ≤ θ2) ≡ ∇Dθ1 ≤ ∇Dθ2
∇D(θ1 + θ2) ≡ ∇Dθ1 +∇Dθ2
∇D(θ1 · θ2) ≡ (∇Dθ1) · θ2 + θ1 · (∇Dθ2)

∇DX ≡ 0, if X 6∈ D
∇DX ≡ θ, if (X ′ = θ) ∈ D
∇DX` ≡ θ`i , if (X ′i = θ) ∈ D

Figure 4: Definitions for∇D.

difficult formula is an invariant. In this spirit, to prove Sequent (8) we first apply the (∇) rule with
the following formula:

EasyDiffInv ≡ ε > 0 ∧ B > 0 ∧ ∀i : C. (si ≥ 0 ∧ ai ≥ −B).

This formula, as a consequence of LoopInvA and LoopInvB, is initially true. It remains true during
the evolution because its total derivative with respect to dynamics is

0 ≥ 0 ∧ 0 ≥ 0 ∧ ∀i : C. (1 ≥ 0 ∧ 0 ≥ 0),

which is obviously valid. Therefore EasyDiffInv is a differential invariant and we may include it in
our evolution constraint.

We would now be quite pleased if we could similarly use LoopInvC as a differential invariant.
That would eliminate virtually all of our difficulties, as we would then be able to apply (∇close)
and be done. Unfortunately, LoopInvC fails to pass muster because of its subformulas xf ≤ x` and
xf < x`, whose total derivatives with respect to dynamics do not behave well. Tantalizingly, much
of the rest of LoopInvC looks ripe for inclusion in a candidate differential invariant. For example,
if D stands for the differential equations from dynamics, then we can compute

∇D(AvoidsAfter(af , ε− sf , f, `))  v` · (B + a`) ≥ 0,

and this latter formula is clearly valid. How can we take advantage of this observation? We need
to add some new data. We introduce a real-valued field ni for each car i. We think of ni as the
identification number of car i, but more importantly we require that it encode order information;
we insist at all times that nf < n` if and only if xf < x`. If cars do not cross trajectories, then
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the only time we need to worry about maintaining this ordering is when a car enters the road. We
now can go back and redefine LoopInvC to use these identification numbers, replacing the single
instance of xf ≤ x` with nf ≤ n`. Crucially, we may also define

DiffInv ≡ ∀f : C. ∀` : C.
f 6= ` ∧ pf = 1 ∧ p` = 1 ∧ nf ≤ n` →

((vf + af (ε− sf ) ≥ 0 ∧ AvoidsAfter(af , ε− sf , f, `)) ∨
(vf + af (ε− sf ) < 0 ∧ StopsBefore(af , f, `)))

and use the information from EasyDiffInv to prove that this is a differential invariant. This seems
very promising, as DiffInv encodes the worst-case reasoning that led to the difficult arithmetic sub-
goals responsible for sinking our previous effort. At this point, however, we get stuck. Strengthen-
ing our evolution constraint to include both EasyDiffInv and DiffInv does not provide quite enough
information for us to successfully close our proof with an application of (∇close). The problem
is that we still need to prove that cars present on the road remain in the same order during an
evolution. Indeed, this is the meat of the main safety theorem we are trying to establish. More
formally, it is the property that any pair of distinct present cars f, ` such that nf ≤ n` finishes the
evolution with xf < x`. It is hard to see how we could use differential invariants directly to prove
this. Thus, although we have found a tidy way to propagate the auxiliary information associated
with our worst-case reasoning, we appear once again to have reached an impasse.

6.3 Breakthrough
We have one last trick to employ, and though it perhaps seems straightforward in hindsight, it was
surprising to us when we first stumbled upon it. The key is to realize that (∇close) is not the only
rule that can help us at this stage in the proof; we can now make progress using the (=′ep) rule. Since
the complicated parts of LoopInvC are now part of the evolution constraint, after applying (=′ep) we
may easily discharge the subgoals that formerly left us with intractably difficult arithmetic. In fact,
after applying (=′ep) the rest of the proof proceeds in a relatively straightforward manner according
to methods from previous work [13]. We are done!

Why were we initially blind to this idea? In our prior work, whenever we could write down the
solutions to a system’s dynamics it usually made sense to immediately use those solutions with a
rule like (=′ep). When using the solutions resulted in intractable arithmetic, or when our system of
interest did not have symbolic solutions, we could usually find a differential invariant that implied
our desired property. We never used differential invariants and symbolic solutions in combination
because we never needed to, so the complementarity of their strengths never occurred to us.
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1 B > 0 ∧ ε > 0 ∧ (∀i : C. pi = 0 ∧ ai ≥ −B ∧ vi ≥ 0 ∧ si ≥ 0 ∧ si ≤ ε)→
2

[
3

(
(i := ∗C ; ?(pi = 1); pi := 0; si := 0)

4 ∪
5 (i := ∗C ; N := ∗R;
6 ?

(
pi = 0 ∧ ∀j : C.

(
j 6= i ∧ pj = 1→

7
((
nj < N ∧ xj < xi

8 ∧
((
vj + ajε ≥ 0 ∧ xi +

v2
i

2B
> xj +

v2
j

2B
+

(
aj

B
+ 1

)(
ajε

2

2
+ vjε

))
∨

9
(
vj + ajε < 0 ∧ xi +

v2
i

2B
> xj −

v2
j

2aj

)))
10 ∨
11

(
N < nj ∧ xi < xj

12 ∧
((
vi + aiε ≥ 0 ∧ xj +

v2
j

2B
> xi +

v2
i

2B
+

(
ai
B

+ 1
)(

aiε
2

2
+ viε

))
∨

13
(
vi + aiε < 0 ∧ xj +

v2
j

2B
> xi −

v2
i

2ai

))))))
;

14 pi := 1; ni := N ; si := 0)
15 ∪
16 (i := ∗C ; A := ∗R;
17 ?

(
A ≥ −B ∧

(
pi = 1→

(
A = −B ∨

18 (vi = 0 ∧ A = 0) ∨
19

(
∀` : C. i 6= ` ∧ p` = 1 ∧ ni ≤ n` →

20
((
vi + aiε ≥ 0 ∧ x` +

v2
`

2B
> xi +

vi
2B

+
(

A
B

+ 1
)(

Aε2

2
+ viε

))
∨

21
(
vi + aiε < 0 ∧ x` +

v2
`

2B
> xi −

v2
i

2A

))))
;

22 ai := A; si := 0)
23 ∪
24 (∀i : C {x′i = vi, v

′
i = ai, a

′
i = 0, s′i = 1& vi ≥ 0 ∧ si ≤ ε})

25
)∗

26
]
∀f : C. ∀` : C. f 6= ` ∧ pf = 1 ∧ p` = 1→ xf 6= x`

Figure 5: The theorem that we proved in KeYmaeraD.

7 The Mechanized Proof

7.1 The Theorem
Figure 5 gives a full statement of the theorem that we formally proved in our theorem prover
KeYmaeraD. Before we discuss the mechanization of the proof, we note a few things about the
theorem itself. The exit branch of the program (line 3) appears exactly as it did in our exposition.
The enter branch (lines 5-14) has a fleshed out SafeToEnter(i) condition which is slightly more
conservative than it strictly needs to be to get the proof to work. Our definition of SafeToEnter(i)
does not require an entering car to have any knowledge of the stopwatch values of any other cars.
We feel that, in real systems, such a condition is more implementable than the alternative. The
control branch (lines 16-22) has a version of the Safe(A, i) condition which has been updated to
use identification numbers and now has some added options that make liveness of our system more
apparent. The dynamics branch (line 24) appears exactly as it did inline.
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7.2 The Prover
KeYmaeraD is a theorem prover for QdL [13]. It consists of a small trusted core of data structures,
primitive operations, and proof rules. On top of these are non-soundness-critical components,
such as a tactic language that facilitates proof search and an interactive GUI. An important feature
of KeYmearaD is its ability to work on multiple goals in parallel by utilizing multiple worker
subprocesses. KeYmaearaD is written in the Scala programming language.

7.3 Proof Statistics
The mechanized proof is saved as a tactic script comprising 528 lines of Scala code. On an Intel
Core2 quad core machine, clocked at 2.83GHz, running Ubuntu Linux 10.04, and using Mathe-
matica 7.0.0 as a backend for first-order real arithmetic, the script takes 195 seconds to execute
with 4 workers, and 640 seconds with 1 worker, which indicates good scaling of our parallel proof
engine. The completed proof tree has 7154 nodes.

8 Next Steps

8.1 More Complicated Systems
There are many directions in which we could extend our system of cars to make it even more
interesting. One idea is to scrap the assumption that there is a universal maximum deceleration
B. If different cars have different braking forces, then all of our reasoning about trajectories only
being able to cross once becomes invalid. To make a safety proof succeed, we would need to
employ more sophisticated reasoning. Another idea is to add multiple lanes to the road. Since
each car i already has the field pi, we could use that to indicate which lane i occupies, as in [8].

8.2 Better Languages and Logics
An annoyance that we often encounter is the need to write the same lengthy formula over and over
again. For example, in Figure 5 we have written some form of the AvoidsAfter condition three
times. It would be helpful to have abstraction and modularity mechanisms that could eliminate
this kind of redundancy. Perhaps we could incorporate into our prover something similar to the
definition mechanism that we employ, using the≡ symbol, throughout our exposition in this paper.
Support for that style of reasoning would likely go a long way towards making proofs easier to
construct and manipulate.

Another possible area for improvement is in our hybrid program language. A simple variant
of our language might distinguish between parameters such as B and ε, and state variables such
as xi and vi. This would have the benefit of precluding our need to include obvious things like
B > 0 in invariants. We might then go a step further and refine the class of state variables into
discrete assignables that only mutate by assignment and continuous signals that only mutate during
the evolution of differential equations. Future variants of our language might also include better
support for describing systems with heterogeneous agents.
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9 Related work
Major initiatives have been devoted to developing safe next-generation automated car control sys-
tems, including the California PATH project [6], the SAFESPOT and PReVENT initiatives, the
CICAS-V system, and many others. With the exception of [8], safety verification for car control
systems has been for specific maneuvers or systems with a small number of cars [14, 1, 3, 9].
Our formal verification of collision avoidance applies to a more generic, distributed control for
arbitrarily many cars.

Other projects have attempted to ensure the safety of more general systems with simulation
and other non-formal methods [4, 6, 2, 7]. Our techniques follow a formal, mechanized, proof
calculus, which ensures safety completely, rather than using a finite number of simulations which
can only test safety partially.

Wongpiromsarn et al. [15] verify safety of the planner-controller subsystem of a single au-
tonomous ground vehicle. Their verification techniques restrict acceleration changes to fixed and
perfect polling frequency, while our model of an arbitrary number of cars allows changes in accel-
eration at any point in time, with irregular and unsynchronized sensor updates.

Lygeros and Lynch [9] prove safety only for one deceleration strategy for a string of vehicles:
the leading vehicle applies maximum deceleration until it stops, while at the same time, the cars
following it in the string decelerate to a stop. Dolginova and Lynch [5] verify that no collisions
with large relative velocity can occur when two adjacent platoons perform a merge maneuver. This
does not prove the absence of small relative velocity collisions, nor anything about the behavior of
three platoons or platoons that are not engaged a merge maneuver.

The present paper builds on the work of [8], which gives a cumbersome manual proof of colli-
sion avoidance for a highway system, and [13], our subsequent mechanization of a similar proof.
The system we consider here is significantly more challenging because it more realistically de-
scribes distributed control. Previous work on car collision avoidance verification [9, 15, 8, 13]
assumes that all cars reach control decisions at exactly the same points in time. This is an oversim-
plification that would be impossible to implement in practical distributed systems. In the present
paper we study the more general case of an arbitrary number of cars, with appearance and disap-
pearance, where the cars can react at arbitrary independent points in time.

10 Conclusion
After carrying out our proof, we can now confidently say that there are no bugs in the system;
our cars are not going to collide. Moreover, we have a powerful framework in place for verifying
the design of similar and more sophisticated systems. Crucial to our success has been a practical
technique we have developed for using quantified differential invariants in combination with sym-
bolic integration. Key to making approaches for distributed car control implementable has been
our reasoning approach for truly distributed control, which always has to allow for cars to perform
control decisions at unsynchronized points in time.
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