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Abstract

We introduce differential game logic (dGL) for specifying and verifying properties of hybrid
games, i.e., determined, sequential/dynamic, non-cooperative, zero-sum games of perfect infor-
mation on hybrid systems that combine discrete and continuous dynamics. Unlike hybrid systems,
hybrid games allow choices in the system dynamics to be resolved by different players with differ-
ent objectives. The logic dGL can be used to study properties of the resulting adversarial behavior.
It unifies differential dynamic logic for hybrid systems with game logic. We define a regular modal
semantics for dGL, present a proof calculus for dGL, and prove soundness. We identify separating
axioms, i.e., the axioms that distinguish dGL and its game aspects from logics for hybrid systems.
We also define an operational game semantics, prove equivalence, and prove determinacy.





1 Introduction
Hybrid systems [Hen96] are dynamical systems that combine discrete dynamics and continuous
dynamics. They are important for modeling systems that use computers to control physical sys-
tems. Hybrid systems allow discrete jump assignments for discrete dynamics and differential
equations for continuous dynamics. They combine conditional switching, nondeterminism, and
repetition. Hybrid systems are undecidable [Hen96, AM98, CL00], but nevertheless the focus of
many successful verification approaches. They have a complete axiomatization relative to differ-
ential equations in a logic called differential dynamic logic (dL) [Pla08, Pla12b, Pla12a], which
extends Pratt’s dynamic logic of conventional discrete programs [Pra76] to hybrid systems.

In this paper, we consider multi-agent hybrid systems, where two agents act and we are uncer-
tain how they will interact with each other. Agents often have only limited knowledge about their
environment or about the exact future behavior of other agents. In that case, the system turns into a
game in which every agent has a set of actions to choose from as the system evolves. Each agent can
control its own actions to realize its own objective but has to be prepared to handle all possible ac-
tions by other agents who may follow other objectives. Because the agents play on a hybrid system,
we obtain a hybrid game, i.e., a game of two agents on a hybrid system [TPS98, TLS00, VPVD11].
Hybrid systems also allow for nondeterminism and previous logics can be used to prove proper-
ties about all (dL formula [α]φ) or some (〈α〉φ) ways of resolving it [Pla08]. In hybrid systems,
exactly one entity chooses how to resolve the nondeterminism. In hybrid games, instead, two play-
ers have the opportunity to resolve nondeterministic choices interactively, based on the outcome
that previous decisions by the other player have had. Hybrid games are sequential/dynamic, non-
cooperative zero-sum two-player games of perfect information played on hybrid systems. They
are based on discrete games [vNM55, Nas51], which have been studied more exhaustively. Zero-
sum two-player games are general in that any non-zero sum n-player game reduces to a zero-sum
(n+1)-player game [vNM55, 56.2.2], and any n-player zero-sum game can be based on zero-sum
two-player games of a player against an aggregate player [vNM55, 25.2]. Note that, even if the
agents do not necessarily actively pursue the interest to spoil each others’ objectives, they may
still do so out of ignorance, or because their respective actions interfere. Every agent, thus, has to
choose his actions in some way while being prepared that other agents could choose any of their
actions, which is an adversarial resolution of the nondeterminisms in the game.

Games and logic have been shown to interact fruitfully in many ways [HS97]. We focus on
using logic to specify and verify properties of hybrid games. Our approach to verifying hybrid
games is inspired by Parikh’s game logic [Par85, PP03]. Game logic generalizes (propositional
discrete) dynamic logic to discrete games played on a finite state spaces. We introduce a logic,
differential game logic (dGL), that generalizes differential dynamic logic (dL) [Pla08, Pla12b,
Pla12a] to hybrid games and, simultaneously, generalizes game logic [Par85, PP03] to hybrid
systems with their uncountable state spaces and interacting discrete and continuous dynamics.

The logic dGL we present here has some similarity with our stochastic differential dynamic
logic (SdL) [Pla11], because both address the issue of how to verify properties of the system dy-
namics with partially uncertain behavior. Both approaches do, however, address uncertainty in
fundamentally different ways. SdL takes a probabilistic perspective on uncertainty in the system
dynamics. The dGL approach put forth in this paper, instead, takes an adversarial perspective
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on uncertainty. Both views on how to handle uncertain behavior are useful but serve different
purposes, depending on the nature of the system analysis question at hand. A probabilistic un-
derstanding of uncertainty can be superior whenever good information is available about the dis-
tribution of choices made by the environment. Whenever that is not possible, adversarial views
are more appropriate, since they do not lead to the inadequate biases that arbitrary probabilistic
assumptions would impose. Security questions about hybrid systems lead to inherently adversarial
situations. Controller synthesis for hybrid systems is another application that reduces to a hybrid
game [VPVD11].

Our primary contributions are that we identify the logical essentials of hybrid games and their
game combinators, introduce differential game logic, a semantics, and proof calculus, and that we
characterize what constitutes the fundamental difference of hybrid systems proving compared to
hybrid games proving. Furthermore, we relate this semantics to a game-theoretical operational
game semantics, prove equivalence, and prove determinacy.

2 Differential Game Logic
The games we consider have no draws and if a player is deadlocked, he loses. If the game com-
pletes without deadlock, the player who reaches one of his winning states wins. Thus, exactly one
player wins each game play, since the winning states are complementary. Our games are zero-sum
games, i.e., if one player wins, the other one loses, and vice versa, with player payoffs ±1. Classi-
cally, the two players are called Angel and Demon. Our games are non-cooperative and sequential
games. That is, the players do not negotiate binding contracts (beyond what is represented in the
rules of the game), but can choose to act at will. Furthermore, the games are sequential (or dy-
namic), i.e., the game proceeds in a series of steps. At each step, exactly one of the players can
choose an action and his next action can be based on the outcome of the last action (by the other
player or himself, whoever moved last) and, thus, may depend on the previous choices determining
the current state.

The hybrid games of differential game logic dGL are defined by the following grammar (α, β
are hybrid games, x a vector of variables, θ a vector of terms of the same dimension, H a formula
of first-order arithmetic, and φ is a dGL formula, usually first-order):

α, β ::= x := θ | ?φ | x′ = θ&H | α ∪ β | α; β | α∗ | αd

The formulas of differential game logic dGL are defined by the following grammar (φ, ψ are dGL
formulas, θi are terms, x a variable, and α is a hybrid game):

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ

The operator [α] dual to 〈α〉 is defined by [α]φ ≡ ¬〈α〉¬φ. Operators >,=,≤, <,∨,→,↔,∃x
can be defined as usual, e.g., ∀xφ ≡ ¬∃x¬φ. Formula 〈α〉φ expresses that Angel has a winning
strategy to achieve φ in game α, i.e., Angel has a strategy to reach a state satisfying formula φwhen
playing game α, no matter what strategy Demon chooses. The formula [α]φ expresses that Angel
does not have a winning strategy to achieve ¬φ in game α. This is equivalent to Demon having a
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winning strategy to achieve φ, because, any way how Demon plays to prevent Angel from winning
is a winning strategy for Demon, since there are no draws and the game cannot be played infinitely
long. That is, our games are determined, i.e., from each state and for each winning condition φ,
either Angel has a winning strategy or Demon has a winning strategy. Determinacy follows from
the Borel determinacy theorem [Kec94, Theorem 20.6]; see Section 4 for details.

The atomic games of dGL are assignments, continuous evolutions, and tests. In the determin-
istic assignment game x := θ, the value of variable x changes instantly and deterministically to
that of θ without any choice to resolve. In the continuous evolution game x′ = θ&H , the duration
of the evolution of the continuous evolution along differential equation x′ = θ is Angel’s choice,
but Angel is not allowed to choose a duration that would cause the state to leave the region where
formula H holds. In particular, Angel is deadlocked and loses if H does not hold in the current
state, because she cannot even evolve for duration 0 then. The test game or challenge ?φ has no
effect on the state, except that Angel loses the game if dGL formula φ does not hold in the current
state.

The compound games are sequential composition, choice, repetition, and duals. The sequential
game α; β is the game that first plays game α and, when game α terminates without a player
having won already, continues by playing game β. In the choice game α ∪ β, Angel chooses
whether to play game α or play game β. The repeated game α∗ plays game α repeatedly and
Angel chooses, after each play of α that terminates without a player having won already, whether
to play the game again or not, but she cannot choose to play infinitely often (any number n ∈ N
of repetitions is permitted, including zero). Thus, we consider games on non-Zeno hybrid system
runs [DN00, Hen96]. The dual game αd is the same as playing the game α with the roles of the
players swapped. That is, in αd, Demon decides all choices that Angel has in α, and Angel decides
all choices in αd that Demon has in α. Players who are supposed to move but deadlock lose. Test
game ?φ causes Angel to lose if formula φ does not hold. Dual test game (?φ)d causes Demon to
lose if φ does not hold.

Demonic choice between game α and β is (αd ∪ βd)d and denoted by α ∩ β, in which either
the game α or the game β is played, by Demon’s choice. Demonic repetition of game α is ((αd)∗)d

and denoted by α×, in which α is repeated as often as Demon chooses to. In α×, Demon chooses
after each play of α whether to repeat the game, but cannot play infinitely often. The dual operator
d is the only syntactic difference of dGL for hybrid games compared to dL for hybrid systems
[Pla08, Pla12b, Pla12a], but a fundamental one, because it is the only operator where control
passes from Angel to Demon or back. The dual differential equation (x′ = θ&H)d follows the
same dynamics as x′ = θ&H except that Demon chooses the duration. Dual assignment (x := θ)d

is equivalent to x := θ, because it involves no choices.
Observe that every play of a game is won or lost by exactly one player. Even a repeated game

α∗ has only one winner, because the game stops as soon as one player has won. This is different
than the classical repetition of game plays (including winning/losing), where the purpose is for the
players to repeat the same game over and over again, win and lose multiple times, and study who
wins how often in the long run with mixed strategies. In our scenario, the overall game is played
once (even if some part of it constitutes in repeating action choices) and stops as soon as either
Angel or Demon have won. In applications, the system is already in trouble even if it loses the
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game only once, because that may entail that a safety-critical property has already been violated.

3 Semantics
A state s is a mapping from variables to R. The set of states is denoted by S and isomorphic to a
Euclidean space Rn when n is the number of variables. We use sdx to denote the state that agrees
with state s except for the interpretation of variable x, which is changed to d ∈ R. We denote the
value of term θ in s by [[θ]]s. The semantics of a dGL formula φ is the subset [[φ]] ⊆ S of states in
which φ is true. It is defined as follows

1. [[θ1 ≥ θ2]] = {s ∈ S : [[θ1]]s ≥ [[θ2]]s}

2. [[¬φ]] = S \ [[φ]]

3. [[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]

4. [[∃xφ]] = {s ∈ S : srx ∈ [[φ]] for some r ∈ R}

5. [[〈α〉φ]] = ςα([[φ]])

A dGL formula φ is valid, written � φ, iff [[φ]] = S. The semantics of a hybrid game is not a
reachability relation of a hybrid system, because the interactions of the players have to be taken
into account. The semantics of a hybrid game α is a function ςα(·) that, for each set of Angel’s
winning states X ⊆ S gives the set of states ςα(X) from which Angel has a winning strategy to
achieve X (whatever strategy Demon chooses). It is defined as follows

1. ςx:=θ(X) = {s ∈ S : s
[[θ]]s
x ∈ X}

2. ςx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some 0 ≤ r ∈ R and some (differentiable)
ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]] for all 0 ≤ ζ ≤ r}

3. ς?φ(X) = [[φ]] ∩X

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)

5. ςα;β(X) = ςα(ςβ(X))

6. ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

7. ςαd(X) = S \ ςα(S \X)

Strategies do not occur explicitly in the dGL semantics, because it is based on the existence of
winning strategies, not the strategies themselves. The semantics is fully compositional, i.e., the
semantics of a compound dGL formula is a simple function of the semantics of its pieces, and the
semantics of a compound hybrid game is a function of the semantics of its pieces. In particular,
existence of a strategy in game α to achieve X is independent of any game and dGL formula
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surrounding α, but just depends on the remaining game α itself and on the goalX . By an inductive
argument, this reproves the classical result that we can focus on memoryless strategies, because the
existence of strategies does not depend on surroundings, hence, by working bottom up, the strategy
itself cannot depend on past states and choices, only the current state, remaining game, and goal.

Monotonicity, i.e., ςα(X) ⊆ ςα(Y ) for all X ⊆ Y , is easy to check for each case. Hence, the
least fixpoint in ςα∗(X) is well-defined. The equivalence [α]φ↔ ¬〈α〉¬φ has two interesting
consequences. The direction ¬(〈α〉φ∧ [α]¬φ) expresses that the game is consistent, i.e., from any
state, at most one of the players can have a winning strategy for complementary winning conditions
φ and ¬φ, respectively. The direction 〈α〉φ ∨ [α]¬φ represents that the game is determined, i.e.,
from any state, at least one of the players has a winning strategy to achieve complementary winning
conditions φ and ¬φ, respectively; see Section 4.

Note that dGL games branch finitely when the players decide which game to play in α ∪ β and
α ∩ β, respectively. The games α∗ and α× also branch finitely, because, after each repetition of
α, the respective player (Angel for α∗ and Demon for α×) may decide whether to repeat again or
stop. Repeated games still lead to countably infinitely many branches, because a repeated game
can be repeated any natural number of times. The game branches uncountably infinitely, how-
ever, when the players decide how long to evolve along differential equations in x′ = θ&H and
(x′ = θ&H)d, because uncountably many nonnegative real number could be chosen as a duration
(unless the system leaves H immediately).

In 〈α∗〉φ, Demon already has a winning strategy if he only has a strategy that prevents φ
indefinitely, because Angel eventually has to stop repeating. Dually, in 〈α×〉φ ≡ [α∗]φ, Angel
already has a winning strategy if she has a strategy that prevents φ indefinitely, because Demon
eventually has to stop repeating.

Note that it is crucial that we have chosen finite repetition by the least fixpoint for the semantics
of α∗. Otherwise, the filibuster formula would not have a well-defined truth-value:

〈(x := 0 ∩ x := 1)∗〉x = 0

The game in this formula never deadlocks (stalemates), because every player always has a re-
maining move (here even two). But, without the least fixpoint, the game would have perpet-
ual checks, because no strategy helps either player win the game; see Fig. 1. Demon can move
x := 1 and would win, but Angel observes this and decides to repeat, upon which Demon can
again move x := 1. Thus (unless Angel is lucky starting from an initial state where she has won
already) every strategy that one player has to reach x = 0 or x = 1 could be spoiled by the
other player and the game would not be determined. Every player can let his opponent win, but
would not have a strategy to win himself. Because of the least fixpoint ςα∗(X) = µZ.X ∪ ςα(Z)
in the semantics, however, repetitions have to stop eventually (after an arbitrary and unbounded
but finite number of rounds). That is why, in the example in Fig. 1, Demon wins and the for-
mula is false, unless x = 0 already holds initially. Likewise, the dual filibuster game formula
x = 0→ 〈(x := 0 ∪ x := 1)×〉x = 0 is (determined and) valid in dGL, because Demon has to stop
repeating eventually.

Lemma 1 (Scott-continuity of non-interactive dGL). For d-free α, the semantics is Scott-continuous,
i.e., ςα(

⋃
n∈I Xn) =

⋃
n∈I ςα(Xn) for all families {Xn}n∈I with index set I .
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Figure 1: The filibuster game formula 〈(x := 0 ∩ x := 1)∗〉x = 0 is false (unless x = 0 initially),
but would be non-determined without least fixpoints (strategies follow thick actions). Here and in
subsequent figures, we illustrate Angel’s action choices by dashed edges from dashed diamonds,
Demon’s action choices by solid edges from solid squares, and use double lines to indicate identical
states with the same continuous state and a subgame of the same structure of subsequent choices.
We mark states where Angel wins by � and states where Demon wins by �. If a winning state can
be reached by a winning strategy, we enclose the mark in a circle � or �, respectively.

A proof is in Appendix A. Interactive games with both duals and repetitions, however, do not
generally have a Scott-continuous semantics:

R = ςy:=y+1×(
∞⋃
n=1

(−∞, n]︸ ︷︷ ︸
R

) *
∞⋃
n=1

ςy:=y+1×((−∞, n]) = ∅

since � 〈y := y + 1×〉 ∃n :N y ≤ n︸ ︷︷ ︸
true

but 2 ∃n :N 〈y := y + 1×〉y ≤ n

Observe that this is related to a failure of the Barcan axiom (Section 6).
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4 Operational Game Semantics
In order to relate the intuition of interactive game play to the semantics of hybrid games, we
show an operational semantics for hybrid games that is more complicated than the regular modal
semantics from Section 3 but makes strategies explicit and more directly reflects the intuition how
hybrid games are played successively. The regular modal semantics is beneficial, because it is
simpler. The operational semantics formalizes the intuition behind the game tree in Fig. 1 and
relates to standard notions in game-theory. We prove in Theorem 2 below that the operational game
semantics is equivalent to the regular modal semantics from Section 3. The operational semantics
makes winning strategies explicit. As the set of actions A for a hybrid game, we choose:

{l, r, s, g, d} ∪ {(x := θ) : x variable, θ term}
∪ {(x′ = θ&H@r) : x variable, θ term, H formula, r ∈ R≥0} ∪ {?φ : φ formula}

For game α∪β, action l decides to descend left into α, r is the action of descending right into β. In
game α∗, action s decides to stop repeating, action g decides to go back and repeat. Action d starts
and ends a dual game for αd. The other actions represent assignment actions, continuous evolution
actions (in which time r is the critical decision), and test actions.

The set of finite sequences of actions is denoted by A(N), the set of infinite sequences by AN.
The empty sequence of actions is (). The concatenation, sˆt, of sequences s, t ∈ A(N) is defined
as (s1, . . . , sn, t1, . . . , tm) if s = (s1, . . . , sn) and t = (t1, . . . , tm). For an a ∈ A, we write aˆt
for (a)ˆt and write tˆa for tˆ(a). For a set S ⊆ A(N), we write Sˆt for {sˆt : s ∈ S} and tˆS for
{tˆs : s ∈ S}. The state dtes reached by playing a sequence of actions t ∈ A(N) from a state s is
inductively defined by applying the actions sequentially, i.e., as follows:

1. dx := θes = s
[[θ]]s
x

2. dx′ = θ&H@res = ϕ(r) whereϕ : [0, r]→ S differentiable, ϕ(0) = s, dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ)

and ϕ(ζ) ∈ [[H]] for all ζ ≤ r. Where dx′ = θ&H@res is not defined if no such ϕ exists.

3. d?φes =

{
s if s ∈ [[φ]]

not defined otherwise

4. dles = dres = dses = dges = ddes = d()es = s

5. daˆtes = dte(daes) for a ∈ A and t ∈ A(N)

A tree is a set T ⊆ A(N) that is closed under prefixes, that is, whenever t ∈ T and s is a prefix of
t (i.e., t = sˆr for some r ∈ A(N)), then s ∈ T . A node t ∈ T is a successor of node s ∈ T iff
t = sˆa for some a ∈ A. By leaf(T ) we denote the set of all leaves of T , i.e., nodes t ∈ T that
have no successor in T . The operational game semantics of hybrid game α is, for each state s, a
tree g(α)(s) ⊆ A(N) defined as follows (see Fig. 2 for a schematic illustration):

1. g(x := θ)(s) = {(), (x := θ)}
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Figure 2: Operational game semantics for hybrid games of dGL

2. g(x′ = θ&H)(s) = {(), (x′ = θ&H@r) : r ∈ R≥0, ϕ(0) = s for some (differentiable)
ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]] for all ζ ≤ r}

3. g(?φ)(s) =

{
{(), (?φ)} if s ∈ [[φ]]

{(), (?false)} otherwise

4. g(α ∪ β)(s) = {(), (l), (r)} ∪ lˆg(α)(s) ∪ rˆg(β)(s)

5. g(α; β)(s) = g(α)(s) ∪
⋃

t∈leaf(g(α)(s))

g(β)(dtes)

6. g(α∗)(s) =
⋂{

T ⊆ A(N) : {(), (s), (g)} ∪
⋃

tˆg∈leaf(Z)

tˆgˆg(α)(dtˆges)ˆ{(), (s), (g)} ⊆ T
}

.

7. g(αd)(s) = {(), (d)} ∪ dˆg(α)(s)ˆ{(), d}

Angel gets to choose which action to take at node t ∈ g(α)(s) if t has an even number of occur-
rences of d, otherwise Demon gets to choose. In the former case we say Angel acts at t, in the
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latter Demon acts at t. If the player who chooses the action at t ∈ g(α)(s) is deadlocked, because
the only successor actions have a condition that is not satisfied like ?false or x′ = θ&x ≥ 0 at a
state where x < 0, then that player loses immediately.

A strategy for Angel from initial state s is a nonempty subtree σ ⊆ g(α)(s) such that

1. for all t ∈ σ at which Demon acts, tˆa ∈ σ for all a ∈ A such that tˆa ∈ g(α)(s).

2. for all t ∈ σ at which Angel acts, t 6∈ leaf(g(α)(s)), there is a unique a ∈ A with tˆa ∈ σ.

Strategies for Demon are defined accordingly, with “Angel” and “Demon” swapped. The action
sequence σ⊕ τ played from state s when Angel plays strategy σ and Demon plays strategy τ from
s is defined as the sequence (a1, . . . , an) ∈ A(N) of maximal length such that

an+1 :=


a if Angel acts at (a1, . . . , an) and (a1, . . . , an)ˆa ∈ σ
a if Demon acts at (a1, . . . , an) and (a1, . . . , an)ˆa ∈ τ
not defined otherwise

By definition of a strategy for Angel/Demon, the a is unique. A winning strategy for Angel for
winning condition X ⊆ S from state s is a strategy σ ⊆ g(α)(s) for Angel from s such that,
for all strategies τ ⊆ g(α)(s) for Demon from s: Demon deadlocks or dσ ⊕ τes ∈ X . A winning
strategy for Demon for (Demon’s) winning conditionX ⊆ S from state s is a strategy τ ⊆ g(α)(s)
for Demon from s such that, for all strategies σ ⊆ g(α)(s) for Angel from s: Angel deadlocks or
dσ ⊕ τes ∈ X . By definition, it cannot be that Angel has a winning strategy for X from s and,
at the same time, Demon has a winning strategy for S \ X from s. If we understand [α]φ as
Demon having a strategy to achieve φ, this justifies the consistency direction ¬(〈α〉φ ∧ [α]¬φ) of
[α]φ ↔ ¬〈α〉¬φ. Determinacy, i.e., the direction 〈α〉φ ∨ [α]¬φ of [α]φ ↔ ¬〈α〉¬φ, holds by
definition in the regular modal semantics of Section 3, but can now be justified in the operational
semantics based on the Borel determinacy theorem [Mar75].

Theorem 1 (Determinacy). Hybrid games are determined, i.e., for any hybrid game α, initial state
s, and winning condition X ⊆ S, either Angel has a winning strategy for X from s or Demon has
a winning strategy for S \X from s.

A proof is in Appendix B. We show that the regular modal semantics from Section 3 is equiva-
lent to the operational semantics (proof in Appendix C):

Theorem 2 (Equivalent semantics). The regular modal semantics of dGL is equivalent to the game
tree operational semantics of dGL, i.e., for each hybrid game α, each initial state s, and each
winning condition X ⊆ S for Angel:

s ∈ ςα(X)⇐⇒ there is a winning strategy σ ⊆ g(α)(s) for Angel for X from s
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5 Proof Calculus
Simple dGL formulas can be checked by a simple tableau procedure that expands the options of
all players and detects loops for termination as shown in the game tree examples. This does not
extend to more general dGL formulas, however, which have inherently infinite states. In Fig. 3, we
present a proof calculus for proving validity of general dGL formulas.

〈:=〉 〈x := θ〉φ(x)↔ φ(θ)

〈?〉 〈?ψ〉φ↔ (ψ ∧ φ)

〈′〉 〈x′ = θ〉φ↔ ∃t≥0 〈x := y(t)〉φ (y′(t) = θ)

〈∪〉 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ

〈;〉 〈α; β〉φ↔ 〈α〉〈β〉φ

〈∗〉 φ ∨ 〈α〉〈α∗〉φ→ 〈α∗〉φ

〈d〉 〈αd〉φ↔ ¬〈α〉¬φ
←−
B ∃x 〈α〉φ→ 〈α〉∃xφ (x 6∈ α)

R
φ→ ψ

〈α〉φ→ 〈α〉ψ

FP
φ ∨ 〈α〉ψ → ψ

〈α∗〉φ→ ψ

con
ϕ(v) ∧ v > 0→ 〈α〉ϕ(v − 1)

ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)
(v 6∈ α)

Figure 3: Differential game logic proof rules

The proof calculus of dGL shares sev-
eral axioms with the proof calculus of dL
[Pla08, Pla12b, Pla12a]. We use the first-
order Hilbert calculus (modus ponens and
∀-generalization) as a basis and allow all
instances of valid formulas of first-order
real arithmetic as axioms, which are decid-
able [Tar51]. Axiom 〈:=〉 is Hoare’s as-
signment rule. Formula φ(θ) is obtained
from φ(x) by substituting θ for x, pro-
vided x does not occur in the scope of
a quantifier or modality binding x or a
variable of θ. A modality 〈α〉 containing
z := or z′ binds z. In axiom 〈′〉, y(·) is
the (unique [Wal98, Theorem 10.VI]) so-
lution of the symbolic initial value prob-
lem y′(t) = θ, y(0) = x. It goes without
saying that variables like t are fresh in
Fig. 3. Axioms 〈?〉, 〈∪〉, and 〈;〉 are as
in dL [Pla12b]. Axiom 〈∗〉 is the itera-
tion axiom. The converse of 〈∗〉 can be
derived1 and is also denoted by 〈∗〉. Ax-
iom 〈d〉 is specific to dGL and character-
izes dual games. Recall ¬〈α〉¬φ ≡ [α]φ.
Axiom 〈d〉 says that Angel has a winning

strategy for φ in dual game αd iff Demon has a winning strategy for φ in α. Axiom
←−
B is the

converse Barcan formula of first-order modal logic, characterizing monotonic domains [HC96]. In
order for it to be sound for dGL, x must not occur in α, written x 6∈ α.

Rule R is the generalization rule of regular modal logic C. Rule FP is the fixpoint rule, char-
acterizing 〈α∗〉φ as a smallest fixpoint. Rule con, in which v does not occur in α, is a variation of
Harel’s convergence rule, suitably adapted to hybrid games over R. It expresses that, if Angel has
a strategy to make progress from ϕ(v) to ϕ(v− 1) along α, then, from any state where ϕ(v) holds,
she has a strategy to reach ϕ(v) for some v ≤ 0 by repeating α.

1 φ ∨ 〈α〉〈α∗〉φ → 〈α∗〉φ is valid by 〈∗〉. Thus, 〈α〉(φ ∨ 〈α〉〈α∗〉φ) → 〈α〉〈α∗〉φ by R. Hence, φ ∨ 〈α〉(φ ∨
〈α〉〈α∗〉φ)→ φ ∨ 〈α〉〈α∗〉φ by propositional congruence. Consequently, 〈α∗〉φ→ φ ∨ 〈α〉〈α∗〉φ by FP.

10



Example 1. The dual filibuster game formula from Section 3 can be proved as follows:

∗
R x = 0→0 = 0 ∨ 1 = 0
〈:=〉x = 0→〈x := 0〉x = 0 ∨ 〈x := 1〉x = 0
〈∪〉x = 0→〈x := 0 ∪ x := 1〉x = 0
〈d〉 x = 0→[x := 0 ∩ x := 1]x = 0
ind x = 0→[(x := 0 ∩ x := 1)∗]x = 0
〈d〉 x = 0→〈(x := 0 ∪ x := 1)×〉x = 0

Almost the same dGL proof proves x = 0→〈(x := x ∪ x := 1)×〉x = 0. We note that significantly
more challenging systems with complex hybrid dynamics are provable in the dGL calculus.

The primary difference of the axiomatization of dGL compared to differential dynamic logic
[Pla12a] is the addition of axiom 〈d〉 for dual games, the absence of axiom K, absence of the Barcan
formula (dGL only has the converse Barcan axiom

←−
B ), and absence of Gödel’s necessitation rule

(dGL only has the regular modal rule R). Given the big semantical difference of run versus game,
it is striking to see this concise difference in axioms. This indicates that we have found the right
logical characterizations. Due to the absence of K, we will see (in Section 6) why the induction
axiom and the convergence axiom are also absent in dGL, while corresponding rules are still valid.
The induction rule (ind, which is derivable from FP) and the convergence rule (con) are sound for
dGL (a proof is in Appendix D).

Lemma 2. Rule FP and the induction rule (ind) of dynamic logic are interderivable in the dGL
calculus:

(ind)
ψ → [α]ψ

ψ → [α∗]ψ

Theorem 3 (Soundness). The dGL proof rules in Fig. 3 are sound.

A proof is in Appendix D. The proof rules in Fig. 3 do not handle differential equations with
evolution domain constraints (other than true). Unlike in (poor test) differential dynamic logic
[Pla08, Pla10, Pla12a], however, every hybrid game containing a differential equation with evolu-
tion domain constraints can be replaced equivalently by a hybrid game without evolution domain
constrains (even with poor tests, i.e., each test ?φ uses only first-order formulas φ)!

Lemma 3. Evolution domains of differential equations are definable as hybrid games. That is, for
every hybrid game α, there is a hybrid game β that is equivalent (i.e., ςα(X) = ςβ(X) for all X)
but has no evolution domain constraints.

Proof. When, for notational convenience, we assume the (vectorial) differential equation x′ = θ(x)
to contain a clock x′0 = 1 and that t0 and z are fresh variables, then the following two hybrid games
are equivalent:

x′ = θ(x)&H(x) ≡ t0 := x0;x
′ = θ(x); (z := x; z′ = −θ(z))d; ?(z0 ≥ t0 → H(z)) (1)

11



t

x, z

H

z := x
revert flow and time x0;
Demon checks H backwards until
t0

x′ = θ(x)

t0 := x0 r
z′ = −θ(z)

Figure 4: Angel evolves x forwards in time along x′ = θ(x), Demon checks evolution domain
backwards in time along z′ = −θ(z) on a copy z of the state

See Fig. 4 for an illustration. Suppose the current player is Angel. The idea behind game equiva-
lence (1) is that the fresh variable t0 remembers the initial time x0, and Angel then evolves along
x′ = θ(x) for any amount of time (Angel’s choice). Afterwards, the opponent Demon copies
the state x into a fresh variable (vector) z that it can evolve backwards along (z′ = −θ(z))d for
any amount of time (Demon’s choice). The original player Angel must then pass the challenge
?(z0 ≥ t0 → H(z)), i.e., Angel loses immediately if Demon was able to evolve backwards and
leave region H(z) while satisfying z0 ≥ t0, which checks that Demon did not evolve backward for
longer than Angel evolved forward. Otherwise, when Angel passes the test, the extra variables t0, z
become irrelevant (they are fresh) and the game continues from the current state x that Angel chose
in the first place (by selecting a duration for the evolution that Demon could not invalidate).

6 Separating Axioms
In order to illustrate how and why dGL differs from differential dynamic logic dL [Pla08, Pla12a],
i.e., how reasoning about hybrid games really differs from reasoning about hybrid systems, we
identify separating axioms, that is, axioms of dL that do not hold in dGL. For each such fun-
damental separating axiom, we give a simple counterexample illustrating what makes the hybrid
game focus of dGL behave differently than hybrid systems. First, we show that dGL only is a reg-
ular modal logic, while dL is a normal modal logic [HC96]. Axiom K, the modal modus ponens
from modal logic [HC96], dynamic logic [Pra76], and differential dynamic logic [Pla12a]:

[α](φ→ ψ)→ ([α]φ→ [α]ψ)

is not sound for dGL as witnessed using the choice α ≡ (x := 1 ∩ x := 0); y := 0 and φ ≡ x = 1,
ψ ≡ y = 1; see Fig. 5. The global rule version of K, i.e., the implicative version of Gödel’s
generalization rule is still sound and derives with 〈d〉 from R using α ≡ βd

φ→ ψ

[β]φ→ [β]ψ

The normal Gödel generalization rule G, i.e.,

φ

[α]φ

12
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Figure 5: Game trees for counterexample to axiom K using α ≡ (x := 1 ∩ x := 0); y := 0.

however, is not sound for dGL as witnessed by the choice α ≡ (?false)d, φ ≡ true.
The Barcan axiom B, which characterizes anti-monotonic domains in first-order modal logic

[HC96], is sound for constant-domain first-order dynamic logic and for differential dynamic logic
dL when x does not occur in α [Pla12a]

〈α〉∃xφ→ ∃x 〈α〉φ (x 6∈ α)

but, unlike the converse Barcan
←−
B , the Barcan axiom is not sound for dGL as witnessed by the

choice α ≡ y := y + 1× and φ ≡ x ≥ y. The equivalent Barcan formula

∀x [α]φ→ [α]∀xφ (x 6∈ α)

is not sound for dGL as witnessed by the choice α ≡ y := y + 1× and φ ≡ y ≥ x.
The first arrival axiom, 〈α∗〉φ→ φ ∨ 〈α∗〉(¬φ ∧ 〈α〉φ), which holds for dL, expresses that, if

φ holds after a repetition of α, then it either holds right away or α can be repeated so that φ does
not hold yet but can hold after one more repetition. This axiom does not hold, however, for dGL
as witnessed by α∗ ≡ ((x := x− y ∩ x := 0); y := x)∗ and φ ≡ x = 0, since two iterations surely
yield x = 0, but one iteration may or may not yield x = 0, depending on Demon’s choice; see
Fig. 6.

Unlike induction rule ind, induction axiom [α∗](φ→ [α]φ)→ (φ→ [α∗]φ), which is the dual
of the first arrival axiom, holds for dL, but does not hold for dGL as witnessed by

α∗ ≡ ((x := a; a := 0) ∩ x := 0)∗

and φ ≡ x = 1; see Fig. 7.
Note that the failure of the induction axiom in this counterexample hinges on the fact that Angel

is free to decide whether or not to repeat α after each round depending on the state. This would be
different if we had chosen an advance notice semantics for α∗ in which the number of times that
game α will be repeated would have to be announced by the player when the loop begins. In this
example, if Angel announces that she has chosen n repetitions of the game, then Demon wins (for
a 6= 0) by choosing the x := 0 option n − 1 times followed by one choice of x := a; a := 0. Such
games that need a prior commitment from the player on the number of repetitions before α∗ starts
would lead to a very different semantics. If we had chosen an advance notice semantics, then the
following formula would be valid, but it is not valid in dGL (see Fig. 7 right):

x = 1 ∧ a = 1→ [((x := a; a := 0) ∩ x := 0)∗]x = 1 (2)
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Figure 6: Game trees for counterexample to first arrival axiom (notation: x, y) with game
α ≡ (x := x− y ∩ x := 0); y := x. (left) 〈α∗〉x = 0 is true no matter which choices Demon makes
(right) 〈α∗〉(x 6= 0 ∧ 〈α〉x = 0) is false, because stop can be defeated by x := x− y and repeat
can be defeated by x := 0.

The dual formula, instead, is valid in dGL but not with advance notice (Fig. 7):

x = 1 ∧ a = 1→ 〈((x := a; a := 0) ∩ x := 0)∗〉x 6= 1

Our semantics is more general, because advance notice games can be expressed easily in dGL by
having the players choose a counter c before the loop that decreases to 0 during the repetition. The
advance notice semantics for (2) can be expressed in dGL, e.g., as

x = 1 ∧ a = 1→ [c := 0; c := c+ 1∗; (((x := a; a := 0) ∩ x := 0); c := c− 1)∗; ?c = 0]x = 1

The dGL semantics cannot, however, be expressed conversely in an advance notice semantics, so
the dGL semantics is strictly more general. Many other game interactions can be defined in similar
ways from the elementary operators that dGL provides.

7 Related Work
Discrete games and the interaction of games and logic for various purposes have been studied with
much success [vNM55, Par85, HS97, PP03]. Differential games have been studied exhaustively
[Isa67] and are of interest to understand phenomena in games where the actions are continuous in
time. Here, we look at the complementary model of hybrid games where the underlying system
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Figure 7: Game trees for counterexample to induction axiom (notation: x, a) with game
α ≡ (x := a; a := 0) ∩ x := 0. (left) [α∗](x = 1 → [α]x = 1) is true by the strategy “if Angel
chose stop, choose x := a; a := 0, otherwise always choose x := 0” (right) [α∗]x = 1 is false by
strategy “repeat once and repeat once more if x = 1, then stop”

is that of a hybrid system with interacting discrete and continuous dynamics, but the game actions
are chosen at discrete instants of time, even if they take effect in continuous time.

Reachability aspects of games for hybrid systems have been studied before. A game view on
hybrid systems verification has been proposed by Tomlin and coauthors following a Hamilton-
Jacobi-Bellman PDE formulation [TMBO03, MBT05], with subsequent extensions by Gao et al.
[GLQ07]. Their primary focus is on adversarial choices in the continuous dynamics, which is very
interesting, but not what we consider here. It is also easier to get the axioms of our proof calculus
sound than numerical approximations of PDEs. WCTL properties of STORMED hybrid games,
which require monotonicity properties for the system evolution, have been shown to be decidable
using bisimulation quotients [VPVD11]. The special case of o-minimal hybrid games has been
shown to be decidable earlier by Bouyer et al. [BBC07]. The case of rectangular hybrid games is
known to be decidable [HHM99].

We take a complementary view and study logics and proofs for hybrid games instead of search-
ing for decidable fragments using bisimulation quotients [HHM99, BBC07, VPVD11]. Our notion
of hybrid games has more flexible nested hybrid choices for the agents than the fixed controller-
plant interaction considered in related work. We consider more general logical formulas.
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8 Conclusions and Future Work
We have presented differential game logic (dGL) for hybrid games, which unifies differential dy-
namic logic (dL) and Parikh’s game logic. We have provided a regular modal semantics for dGL,
a proof calculus, and proved soundness. Our logical setting enables us to characterize the essential
logical difference of hybrid systems proving compared to hybrid games proving by identifying the
axioms that separate dL and dGL: the axiom of duality, axiom K, Barcan axiom, and Gödel’s gen-
eralization rule (replaced with the regular rule). We observe that there is a striking similarity of our
dGL proof calculus with our calculus for stochastic differential dynamic logic SdL [Pla11, Pla12b],
despite their fundamentally different semantical presuppositions (adversarial nondeterminism ver-
sus stochasticity). This leads us to conjecture the existence of a deeper logical connection relating
stochastic and adversarial uncertainty.
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A Proof of Scott-Continuity
We provide a proof of the result about Scott-continuity.

Proof of Lemma 1. By monotonicity,
⋃
n∈I ςα(Xn) ⊆ ςα(

⋃
n∈I Xn). We show the converse inclu-

sion by induction on the structure of α: ςα(
⋃
n∈I Xn) ⊆

⋃
n∈I ςα(Xn).

1. ςx:=θ(
⋃
n∈I Xn) = {s ∈ S : s

[[θ]]s
x ∈

⋃
n∈I Xn} ⊆

⋃
n∈I{s ∈ S : s

[[θ]]s
x ∈ Xn} =⋃

n∈I ςx:=θ(Xn), because s[[θ]]sx ∈
⋃
n∈I Xn implies s[[θ]]sx ∈ Xn for some n.

2. ςx′=θ&H(
⋃
n∈I Xn) = {ϕ(0) ∈ S : dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]] for all ζ ≤ r for
some (differentiable) ϕ : [0, r]→ S such that ϕ(r) ∈

⋃
n∈I Xn} ⊆

⋃
n∈I ςx′=θ&H(Xn) =

{ϕ(0) ∈ S : . . . ϕ(r) ∈ Xn}, because ϕ(r) ∈
⋃
n∈I Xn implies ϕ(r) ∈ Xn for some n.

3. ς?φ(
⋃
n∈I Xn) = [[φ]] ∩

⋃
n∈I Xn =

⋃
n∈I([[φ]] ∩Xn) =

⋃
n∈I ς?φ(Xn)

4. ςα∪β(
⋃
n∈I Xn) = ςα(

⋃
n∈I Xn) ∪ ςβ(

⋃
n∈I Xn)

IH
= (

⋃
n∈I ςα(Xn)) ∪ (

⋃
n∈I ςβ(Xn))

=
⋃
n∈I(ςα(Xn) ∪ ςβ(Xn)) =

⋃
n∈I ςα∪β(Xn)

5. ςα;β(
⋃
n∈I Xn) = ςα(ςβ(

⋃
n∈I Xn))

IH
= ςα(

⋃
n∈I ςβ(Xn))

IH
=

⋃
n∈I ςα(ςβ(Xn)) =

⋃
n∈I ςα;β(Xn)

6. ςα∗(
⋃
n∈I Xn) = µZ.(

⋃
n∈I Xn) ∪ ςα(Z) = (

⋃
n∈I Xn) ∪ ςα(ςα∗(

⋃
n∈I Xn)) is the least

fixpoint. We will show that
⋃
n∈I ςα∗(Xn) also is a fixpoint, implying ςα∗(

⋃
n∈I Xn) ⊆⋃

n∈I ςα∗(Xn). Indeed, (
⋃
n∈I Xn)∪ ςα(

⋃
n∈I ςα∗(Xn))

IH
= (

⋃
n∈I Xn)∪

⋃
n∈I ςα(ςα∗(Xn)) =⋃

n∈I(Xn ∪ ςα(ςα∗(Xn))
fix
=

⋃
n∈I ςα∗(Xn).

B Determinacy Proof
In this section, we prove determinacy (Theorem 1) using the operational semantics of dGL based
on the Borel determinacy theorem.

Theorem 4 (Borel determinacy theorem [Mar75, Kec94, Theorem 20.6]). Let T a nonempty
pruned tree on a A and let X ⊆ [T ] Borel in the product topology on AN induced by the discrete
topology on A. Then the Gale-Stewart game with rules T and winning condition X is determined.

With this deep result from the literature, we can prove determinism of dGL (Theorem 1):

Proof of Theorem 1. Determinacy follows from the Borel determinacy theorem (Theorem 4), be-
cause there are no draws and all plays have (unbounded) finite length since Angel and Demon,
respectively, can only choose to repeat α∗ and α×, respectively, finitely often (repetition is defined
by a least fixpoint). For this we show that the winning condition is open in the product topology
on the action sequences AN induced by the discrete topology on the action set A. To see this, note
that the set of those sequences is a union of sets of the form {tˆr : r ∈ AN} for some finite action
sequence t ∈ A(N), which are open in the product topology on AN. Furthermore, arbitrary unions
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of open sets are open. In particular, the winning conditions are Borel in the product topology on
AN induced by the discrete topology on A.2 A hybrid game can be cast easily as a Gale-Stewart
game (a game of infinite length in which the players alternate strictly), which is assumed by the
Borel determinacy theorem, just by adding a stuttering action f to A. The stuttering action defined
by dfes = s is the only action that a player can choose in the Gale-Stewart game when the next
move in the hybrid game g(α)(s) is not his choice or the hybrid game has terminated already.

C Equivalence of Regular Modal and Operational Semantics
We prove equivalence of the regular modal semantics from Section 3 and the operational game
semantics from Section 4.

Proof of Theorem 2. We proceed by induction on the structure of α (and, simultaneously, on the
number of times repetitions in α are repeated) and prove equivalence. As part of the equivalence
proof, we construct a winning strategy σ achieving X using that s ∈ ςα(X).

1. s ∈ ςx:=θ(X) ⇐⇒ s
[[θ]]s
x ∈ X ⇐⇒ dσ ⊕ τes = dx := θes = s

[[θ]]s
x ∈ X , using

σ
def
= {(x := θ)}.

2. s ∈ ςx′=θ&H(X) ⇐⇒ s = ϕ(0), ϕ(r) ∈ X for some r ∈ R and some (differentiable)
ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]] for all ζ ≤ r ⇐⇒ dσ⊕τes =
dx′ = θ&H@res = ϕ(r) ∈ X , using σ def

= {(x′ = θ&H@r)}.

3. s ∈ ς?φ(X) = [[φ]] ∩X ⇐⇒ dσ ⊕ τes = d?φes = s ∈ X , using σ def
= {(?φ)}.

4. s ∈ ςα∪β(X) = ςα(X) ∪ ςβ(X) ⇐⇒ s ∈ ςα(X) or s ∈ ςβ(X). By induction hypothesis,
this is equivalent to: there is a winning strategy σα ⊆ g(α)(s) for Angel for X from s or
there is a winning strategy σβ ⊆ g(β)(s) for Angel for X from s. This is equivalent to σ ⊆
g(α ∪ β)(s) being a winning strategy for Angel for X from s, using either σ def

= {(l)} ∪ lˆσα
or σ def

= {(r)} ∪ rˆσβ .

5. s ∈ ςα;β(X) = ςα(ςβ(X)) By induction hypothesis, this is equivalent to the existence of
a strategy σα ⊆ g(α)(s) for Angel such that for all strategies τ ⊆ g(α)(s) for Demon:
dσα ⊕ τes ∈ ςβ(X). By induction hypothesis, dσα ⊕ τes ∈ ςβ(X) is equivalent to the ex-
istence of a winning strategy στ for Angel (which depends on the state dσα ⊕ τes that the
previous α game led to) with winning condition X from dσα ⊕ τes. This is equivalent to
σ ⊆ g(α; β)(s) being a winning strategy for Angel for X from s, using

σ
def
= σα ∪

⋃
σα⊕τ

(σα ⊕ τ)ˆστ

2Observe that the winning conditions are Borel in a different topology than the Euclidean topology.
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The union is over all leaves σα ⊕ τ for which the game is not won by a player yet. Note that
σ is a winning strategy for X , because, for all plays for which the game is decided during α,
the strategy σα already wins the game. For the others, στ wins the game from the respective
state dσα ⊕ τes that was reached by the actions σα ⊕ τ according to Demon’s strategy τ .

6. We prove the case α∗ using a simultaneous induction on the number of repetitions of α, si-
multaneously with the induction on the structure of hybrid games. This simultaneous induc-
tion is well-founded, because α∗ only repeats α finitely often (least fixpoint). s ∈ ςα∗(X) =⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z} implies s ∈ X or s ∈ ςα(ςα∗(X)). In the first case (s ∈ X),

Angel already wins with the winning strategy σ def
= {(s)}, so we only need to consider the

second case. By induction hypothesis (α is structurally simpler than α∗), this is equivalent
to: σ def

= {(s)} is a winning strategy for Angel for X from s or there is a winning strategy
σα ⊆ g(α)(s) for Angel, i.e., for all strategies τ ⊆ g(α)(s) for Demon: Demon deadlocks
or dσα ⊕ τes ∈ ςα∗(X). By induction hypothesis (from dσα ⊕ τes Angel can win X with
less repetitions than from s), dσα ⊕ τes ∈ ςα∗(X) is equivalent to the existence of a winning
strategy στ for Angel (which depends on the state dσα ⊕ τes that the previous α game led
to) with winning condition X from dσα ⊕ τes. This is equivalent to σ ⊆ g(α∗)(s) being a
winning strategy for Angel for X from s, using

σ
def
= {(g)} ∪ gˆσα ∪

⋃
σα⊕τ

gˆ(σα ⊕ τ)ˆστ

The union is over all leaves σα ⊕ τ for which the game is not won by a player yet. Note
that the above σ is a winning strategy for X , because, for all plays for which the game is
decided during the first α, the strategy σα already wins the game. For the others, στ wins the
game from the respective state dσα ⊕ τes that was reached by the actions σα ⊕ τ according
to Demon’s strategy τ for the first repetition of α. The converse direction uses the fact that
every game play is finite, hence, all strategies choose g only finitely often on each path,
which makes the repetition well-founded (least fixpoint).

7. s ∈ ςαd(X) = S \ ςα(S \ X) ⇐⇒ s 6∈ ςα(S \ X). By induction hypothesis, this is
equivalent to: there is no winning strategy σ ⊆ g(α)(s) for Angel winning S \X from s. By
Theorem 1, this is equivalent to: there is a winning strategy τ ⊆ g(α)(s) for Demon winning
X from s. Since the nodes where Angel acts swap with the nodes where Demon acts when
moving from α to αd, this is equivalent to: there is a winning strategy σ ⊆ g(αd)(s) for
Angel winning X from s using σ def

= {(d)} ∪ dˆτ ∪ dˆτ ˆd.

D Soundness Proof
First, we prove that FP and ind are interderivable in the dGL calculus.
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Proof of Lemma 2. Rule ind derives from FP: We first derive the following variant

(indR)
ψ → [α]ψ ψ → φ

ψ → [α∗]φ

From ψ → [α]ψ and ψ → φ propositionally derive ψ → φ ∧ [α]ψ, from which contraposition
and propositional logic yield ¬φ ∨ ¬[α]ψ → ¬ψ. By [α]ψ ≡ ¬〈α〉¬ψ, this is an abbreviation for
¬φ ∨ 〈α〉¬ψ → ¬ψ. Now FP derives 〈α∗〉¬φ → ¬ψ, which, by duality, is ¬[α∗]φ → ¬ψ, which

gives ψ → [α∗]φ by contraposition. The classical []-induction rule ind follows by φ
def≡ ψ. From

ind, the variant indR is derivable again by R on ψ → φ.
Rule FP derives from ind: From φ∨ 〈α〉ψ → ψ, propositionally derive φ→ ψ and 〈α〉ψ → ψ.

By R, the former gives 〈α∗〉φ→ 〈α∗〉ψ. By contraposition, the latter derives ¬ψ → ¬〈α〉ψ, which
is ¬ψ → [α]¬ψ by duality. Now ind derives ¬ψ → [α∗]¬ψ. By contraposition ¬[α∗]¬ψ → ψ,
which, by duality, is 〈α∗〉ψ → ψ. Thus, 〈α∗〉φ→ ψ by the formula derived above.

Now we prove soundness of the dGL proof calculus.

Proof of Theorem 3. Soundness of modus ponens (MP) is simple and not shown. In order to prove
soundness of an implication axiom φ→ ψ, we fix any set of states S, and need to show [[φ]] ⊆ [[ψ]].
To prove soundness of an equivalence axiom φ↔ ψ, we need to show [[φ]] = [[ψ]]. To prove sound-
ness of a rule

φ

ψ

we consider any set of states S and assume that φ is valid in S, i.e., [[φ]] = S and prove that ψ is
valid in S, i.e., [[ψ]] = S.

〈:=〉 [[〈x := θ〉φ(x)]] = ςx:=θ([[φ(x)]]) = {s ∈ S : s
[[θ]]s
x ∈ [[φ(x)]]} = {s ∈ S : s ∈ [[φ(θ)]]} =

[[φ(θ)]], where the middle equation holds by the substitution lemma. We can use the classical
substitution lemma if φ(θ) is in first-order logic. Otherwise the proof of the substitution
lemma for differential dynamic logic dL [Pla10, Lemma 2.2] immediately generalizes to
dGL.

〈′〉 [[〈x′ = θ〉φ]] = ςx′=θ([[φ]]) = {ϕ(0) ∈ S : dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) for all ζ ≤ r for some

ϕ : [0, r]→ S such that ϕ(r) ∈ [[φ]]}. On the other hand, we have

[[∃t≥0 〈x := y(t)〉φ]] = {s ∈ S : srt ∈ [[〈x := y(t)〉φ]] for some r ≥ 0} = {s ∈ S : srt ∈
{u ∈ S : u

[[y(t)]]u
x ∈ [[φ]]} for some r ≥ 0} = {s ∈ S : (srt )

[[y(t)]]srt
x ∈ [[φ]] for some r ≥ 0}.

The inclusion “⊇” between those two sides follows, because the function ϕ(ζ) := (sζt )
[[y(t)]]

s
ζ
t

x

solves the differential equation x′ = θ by assumption. The inclusion “⊆” follows, because
the solution of the smooth differential equation x′ = θ is unique [Pla10, Lemma 2.1].

〈?〉 [[〈?ψ〉φ]] = ς?ψ([[φ]]) = [[ψ]] ∩ [[φ]] = [[ψ ∧ φ]]

〈∪〉 [[〈α ∪ β〉φ]] = ςα∪β([[φ]]) = ςα([[φ]]) ∪ ςβ([[φ]]) = [[〈α〉φ]] ∪ [[〈β〉φ]] = [[〈α〉φ ∨ 〈β〉φ]]
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〈;〉 [[〈α; β〉φ]] = ςα;β([[φ]]) = ςα(ςβ([[φ]])) = ςα([[〈β〉φ]]) = [[〈α〉〈β〉φ]].

〈d〉 [[〈αd〉φ]] = ςαd([[φ]]) = S \ ςα(S \ [[φ]]) = S \ ςα([[¬φ]]) = S \ [[〈α〉¬φ]] = [[¬〈α〉¬φ]]

〈∗〉 Since [[〈α∗〉φ]] = ςα∗([[φ]]) = µZ.[[φ]] ∪ ςα(Z) is a fixpoint, we know that [[〈α∗〉φ]] = [[φ]] ∪
ςα([[〈α∗〉φ]]). Thus, [[φ∨ 〈α〉〈α∗〉φ]] = [[φ]] ∪ [[〈α〉〈α∗〉φ]] = [[φ]] ∪ ςα([[〈α∗〉φ]]) = [[〈α∗〉φ]]. In
particular, [[φ ∨ 〈α〉〈α∗〉φ]] ⊆ [[〈α∗〉φ]].

R Assume the premise φ→ ψ is valid in a state space S, i.e., [[φ]] ⊆ [[ψ]]. Then the conclusion
〈α〉φ→ 〈α〉ψ is valid in S, i.e., [[〈α〉φ]] = ςα([[φ]]) ⊆ ςα([[ψ]]) = [[〈α〉ψ]] by monotonicity of
ςα(·).

FP Assume the premise φ ∨ 〈α〉ψ → ψ is valid in a state space S, i.e., [[φ ∨ 〈α〉ψ]] ⊆ [[ψ]].
Thus, [[φ]] ∪ ςα([[ψ]]) = [[φ]] ∪ [[〈α〉ψ]] = [[φ ∨ 〈α〉ψ]] ⊆ [[ψ]]. That is, ψ is a pre-fixpoint
of Z = [[φ]] ∪ ςα(Z). Now [[〈α∗〉φ]] = ςα∗([[φ]]) = µZ.[[φ]] ∪ ςα(Z) is the least fixpoint
and even the least pre-fixpoint [Koz06, Appendix A], because of monotonicity. This implies
[[〈α∗〉φ]] ⊆ [[ψ]], which implies that 〈α∗〉φ→ ψ is valid in S.

con By premise, we know for all values of v that [[ϕ(v) ∧ v > 0]] ⊆ [[〈α〉ϕ(v − 1)]] = ςα([[ϕ(v −
1)]]). To prove the conclusion, we show that for all values of v: [[ϕ(v)]] ⊆ [[〈α∗〉∃v≤0ϕ(v)]] =
ςα∗([[∃v≤0ϕ(v)]]) = µZ.[[∃v≤0ϕ(v)]] ∪ ςα(Z). Since [[∃v≤0ϕ(v)]] ⊆ ςα∗([[∃v≤0ϕ(v)]]),
this holds trivially whenever v ≤ 0. By induction on r ∈ R, we assume [[ϕ(v)]] ⊆
ςα∗([[∃v≤0ϕ(v)]]) for all v ≤ r and prove it for any v > r. It is enough to consider the
case where v < r + 1. Consider any s ∈ [[ϕ(v)]] (if no such s exists, there is nothing to
show). Since v > r ≥ 0, we know, by premise, that

s ∈ [[ϕ(v) ∧ v > 0]] ⊆ ςα([[ϕ(v − 1)]])
mon
⊆ ςα(ςα∗([[∃v≤0ϕ(v)]]))

µ

⊆ ςα∗([[∃v≤0ϕ(v)]])

where the indicated inclusions are, respectively, by the induction hypothesis (v − 1 ≤ r) to-
gether with monotonicity (mon) and the fact (marked µ) that ςα∗([[∃v≤0ϕ(v)]]) is a fixpoint.
Thus, s ∈ ςα∗([[∃v≤0ϕ(v)]]) = [[〈α∗〉∃v≤0ϕ(v)]].

←−
B We show that [[∃x 〈α〉φ]] = {s ∈ S : srx ∈ [[〈α〉φ]] = ςα([[φ]]) for some r ∈ R} is contained

in the following set, because of the assumption x 6∈ α:

[[〈α〉∃xφ]] = ςα([[∃xφ]]) = ςα({s ∈ S : srx ∈ [[φ]] for some r ∈ R}). Let s ∈ S with
srx ∈ ςα([[φ]]) for some r ∈ R. Since x 6∈ α, ςα([[φ]]) is independent of r, and the same
sequence of game actions is applicable from srx as from s. By srx ∈ ςα([[φ]]), there is a play
of game α from srx to some state of the form trx ∈ [[φ]]. Note that x is unchanged during α.
Without loss of generality, we can choose t to be a state with t(x) = r. Since x 6∈ α, the
exact same play of game α leads from s to t, just with the value s(x) for x. This proves the
inclusion “⊆” of the above sets, because t ∈ [[∃xφ]]. Note that the inclusion “⊇” does not
hold, because, even if x 6∈ α, the winning states in the second set depend on the value of x,
so the strategy may depend on that value.
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