
Session Types as Intuitionistic Linear Propositions

Luis Caires Frank Pfenning Bernardo Toninho
December 21, 2011
CMU-CS-11-138

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Several type disciplines for π-calculi have been proposed in which linearity plays a key role, even if their precise
relationship with pure linear logic is still not well understood. In this paper, we introduce a type system for the π-
calculus that exactly corresponds to the standard sequent calculus proof system for dual intuitionistic linear logic. Our
type system is based on a new interpretation of linear propositions as session types, and provides the first purely logical
account of all (both shared and linear) features of session types. We show that our type discipline is useful from a
programming perspective, and ensures session fidelity, absence of deadlocks, and a tight operational correspondence
between π-calculus reductions and cut elimination steps.

Support for this research was provided by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) through the Carnegie Mellon Portugal Program, under grants SFRH / BD / 33763 / 2009 and INTERFACES NGN-44
/ 2009, and CITI.

Keywords: linear logic, session types, π-calculus

1 Introduction
Linear logic has been intensively explored in the analysis of π-calculus models for communicating and mobile system,
given its essential ability to deal with resources, effects, and non-interference. The fundamental way it provides for
analyzing notions of sharing versus uniqueness, captured by the exponential “!”, seems to have been a source of
inspiration for Milner when introducing replication in the π-calculus [22]. Following the early works of Abramsky
[1], several authors have exploited variants of π-calculi to express proof reductions (e.g., [5]) or game semantics (e.g.,
[19]) in systems of linear logic. In the field of concurrency, many research directions have also drawn inspiration
from linear logic for developing type-theoretic analyses of mobile processes, motivated by the works of Kobayashi,
Pierce, and Turner [21]; a similar influence is already noticeable in the first publications by Honda on session types
[16]. Many expressive type disciplines for π-calculi in which linearity frequently plays a key role have been proposed
since then (e.g., [20, 18, 26, 15]). However, linearity has been usually employed in such systems in indirect ways,
exploiting the fine grained type context management techniques it provides, or the assignment of usage multiplicities
to channels [21], rather than the deeper type-theoretic significance of linear logical operators.

In this paper we present a type system for the π-calculus that exactly corresponds to the standard sequent calculus
proof system for dual intuitionistic linear logic. The key to our correspondence is a new, perhaps surprising, interpre-
tation of intuitionistic linear logic formulas as a form of session types [16, 18], in which the programming language
is a session-typed π-calculus, and the type structure consists precisely of the connectives of intuitionistic linear logic,
retaining their standard proof-theoretic interpretation.

In session-based concurrency, processes communicate through so-called session channels, connecting exactly two
subsystems, and communication is disciplined by session protocols so that actions always occur in dual pairs: when
one partner sends, the other receives; when one partner offers a selection, the other chooses; when a session terminates,
no further interaction may occur. New sessions may be dynamically created by invocation of shared servers. Such
a model exhibits concurrency in the sense that several sessions, not necessarily causally related, may be executing
simultaneously, although races in unshared resources are forbidden; in fact this is the common situation in disci-
plined concurrent programming idioms. Mobility is also present, since both session and server names may be passed
around (delegated) in communications. Session types have been introduced to discipline interactions in session-based
concurrency, an important paradigm in communication-centric programming (see [11]).

It turns out that the connectives of intuitionistic linear logic suffice to express all the essential features of finite
session disciplines. While in the linear λ-calculus types are assigned to terms (denoting functions and values), in our
interpretation types are assigned to names (denoting communication channels) and describe their session protocol. The
essence of our interpretation may already be found in the interpretation of the linear logic multiplicatives as behavioral
prefix operators. Traditionally, an object of type A(B denotes a linear function that given an object of type A returns
an object of type B [14]. In our interpretation, an object of type A(B denotes a session x that first inputs a session
channel of type A, and then behaves as B, where B specifies again an interactive behavior, rather than a closed value.
Linearity of(is essential, otherwise the behavior of the input session after communication could not be ensured. An
object of type A⊗ B denotes a session that first sends a session channel of type A and afterwards behaves as B. But
notice that objects of type A⊗B really consist of two objects: the sent session of type A and the continuation session,
of type B. These two sessions are separate and non-interfering, as enforced by the canonical semantics of the linear
multiplicative conjunction (⊗). Our interpretation ofA⊗B appears asymmetric, in the sense that, of course, a channel
of type A ⊗ B is in general not typable by B ⊗ A. In fact, the symmetry captured by the proof of A ⊗ B ` B ⊗ A
is realized by an appropriately typed process that coerces any session of type A⊗ B to a session of type B ⊗ A. The
other linear constructors are also given compatible interpretations, in particular, the !A type is naturally interpreted
as a type of a shared server for sessions of type A, and additive product and sum, to branch and choice session type
operators. We thus obtain the first purely logical account of both shared and linear features of session types.

We briefly summarize the contributions of the paper. We describe a system of session types for the π-calculus
(Section 3) that corresponds to the sequent calculus for dual intuitionistic linear logic DILL (Section 4). The cor-
respondence is bidirectional and tight, in the sense that (a) any π-calculus computation can be simulated by proof
reductions on typing derivations (Theorem 5.3), thus establishing a strong form of subject reduction (Theorem 5.6),
and (b) that any proof reduction or conversion corresponds either to a computation step or to a process equivalence
on the π-calculus side (Theorems 5.4 and 5.5). An intrinsic consequence of the logical typing is a global progress
property, that ensures the absence of deadlock for systems with an arbitrary number of open sessions (Theorem 5.8).

1

Finally, we illustrate the expressiveness of our system (Section 6) with some examples and discussion.

2 Process Model
We briefly introduce the syntax and operational semantics of the process model: the synchronous π-calculus (see [24])
extended with (binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (x, y, z, u, v), the set of processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| x.inl;P | x.inr;P | x.case(P,Q)

The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restriction) comprise the static frag-
ment of any π-calculus. We then have x〈y〉.P (send y on x and proceeds as P), x(y).P (receive a name z on x and
proceed as P with the input parameter y replaced by z), and !x(y).P which denotes replicated (or persistent) input.
The remaining three operators define a minimal labeled choice mechanism, comparable to the n-ary branching con-
structs found in standard session π-calculi (see eg., [18]). For the sake of minimality and without loss of generality we
restrict our model to binary choice. In restriction (νy)P and input x(y).P the distinguished occurrence of the name y
is binding, with scope the process P . For any process P , we denote the set of free names of P by fn(P). A process is
closed if it does not contain free occurrences of names. We identify process up to consistent renaming of bound names,
writing≡α for this congruence. We write P{x/y} for the process obtained from P by capture avoiding substitution of
x for y in P . Structural congruence expresses basic identities on the structure of processes, while reduction expresses
the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q), is the least congruence relation on processes such that

P | 0 ≡ P (S0) P ≡α Q⇒ P ≡ Q (Sα)
P | Q ≡ Q | P (S|C) P | (Q | R) ≡ (P | Q) | R (S|A)
(νx)0 ≡ 0 (Sν0) x 6∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q) (Sν|)
(νx)(νy)P ≡ (νy)(νx)P (Sνν)

Definition 2.3. Reduction (P → Q), is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} (RC)
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P (R!)
x.inl;P | x.case(Q,R)→ P | Q (RL)
x.inr;P | x.case(Q,R)→ P | R (RR)
Q→ Q′ ⇒ P | Q→ P | Q′ (R|)
P → Q⇒ (νy)P → (νy)Q (Rν)
P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q (R≡)

Notice that reduction is closed (by definition) under structural congruence. Reduction specifies the computations a
process performs on its own. To characterize the interactions a process may perform with its environment, we introduce
a labeled transition system; the standard early transition system for the π-calculus [24] extended with appropriate labels
and transition rules for the choice constructs. A transition P α→ Q denotes that process P may evolve to process Q by
performing the action represented by the label α. Transition labels are given by

α ::= x〈y〉 | x(y) | (νy)x〈y〉 | x.inl | x.inr | x.inl | x.inr

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-actions, respectively the output
x〈y〉 and bound output (νy)x〈y〉 actions, and the left/ right selections x.inl and x.inr. The bound output (νy)x〈y〉
denotes extrusion of a fresh name y along (channel) x. Internal action is denoted by τ , in general an action α (α)
requires a matching α (α) in the environment to enable progress, as specified by the transition rules. For a label α, we
define the sets fn(α) and bn(α) of free and bound names, respectively, as usual. We denote by s(α) the subject of α
(e.g., x in x〈y〉).

2

P
α→ Q

(νy)P
α→ (νy)Q

(res)
P

α→ Q

P | R α→ Q | R
(par)

P
α→ P ′ Q

α→ Q′

P | Q τ→ P ′ | Q′
(com)

P
(νy)x〈y〉→ P ′ Q

x(y)→ Q′

P | Q τ→ (νy)(P ′ | Q′)
(close)

P
x〈y〉→ Q

(νy)P
(νy)x〈y〉→ Q

(open) x〈y〉.P x〈y〉→ P (out)

x(y).P
x(z)→ P{z/y} (in) !x(y).P

x(z)→ P{z/y} | !x(y).P (rep) x.inl;P
x.inl→ P (lout)

x.inr;P
x.inr→ P (rout) x.case(P,Q)

x.inl→ P (lin) x.case(P,Q)
x.inr→ Q (rin)

Figure 1: π-calculus Labeled Transition System.

Definition 2.4 (Labeled Transition System). The relation labeled transition (P α→ Q) is defined by the rules in
Figure 1, subject to the side conditions: in rule (res), we require y 6∈ fn(α); in rule (par), we require bn(α)∩ fn(R) =
∅; in rule (close), we require y 6∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We recall some basic facts about reduction, structural congruence, and labeled transition, namely: closure of
labeled transitions under structural congruence, and coincidence of τ -labeled transition and reduction [24]: (1) if
P ≡ α→ Q, then P α→≡ Q, and (2) P → Q if and only if P τ→≡ Q. We write ρ1ρ2 for relation composition (e.g,
τ→≡).

3 Type System
We first describe our type structure, which coincides with intuitionistic linear logic [14, 3], omitting atomic formulas
and the additive constants > and 0.

Definition 3.1 (Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A⊗B | A(B | A⊕B | A N B

Types are assigned to (channel) names, and may be conveniently interpreted as a form of session types; an assign-
ment x:A enforces that the process will use x according to the discipline A. A ⊗ B is the type of a session channel
that first performs an output (sending a session channel of type A) to its partner before proceeding as specified by
B. In a similar way, A(B types a session channel that first performs an input (receiving a session channel of type
A) from its partner, before proceeding as specified by B. The type 1 means that the session terminated, no further
interaction will take place on it. Notice that names of type 1 may still be passed around in sessions, as opaque values.
A ⊕ B types a session that either selects “left” and then proceed as specified by A, or else selects “right”, and then
proceeds as specified by B. Dually, ANB types a session channel that offers its partner a choice between an A typed
behavior (“left” choice) and a B typed behavior (“right” choice). The type !A types a non-session (non-linearized,
shared) channel (called standard channel in [13]), to be used by a server for spawning an arbitrary number of new
sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments, of the form x : A where x is a name and A a type,
the names being pairwise disjoint. Following the insights behind dual intuitionistic linear logic, which goes back
to Andreoli’s dyadic system for classical linear logic [2], we distinguish two kinds of type environments subject to
different structural properties: a linear part ∆ and an unrestricted part Γ, where weakening and contraction principles
hold for Γ but not for ∆. A judgment of our system has then the form Γ; ∆ ` P :: z:C where name declarations
in Γ are always propagated unchanged to all premises in the typing rules, while name declarations in ∆ are handled
multiplicatively or additively, depending on the nature of the type being defined. The domains of Γ,∆ and z:C are
required to be pairwise disjoint.

Intuitively, such a judgment asserts: P is ensured to safely provide a usage of name z according to the behavior
(session) specified by typeC, whenever composed with any process environment providing usages of names according
to the behaviors specified by names in Γ; ∆. As shown in Section 5, in our case safety ensures that the behavior is

3

Γ; ∆ ` P :: T

Γ; ∆, x:1 ` P :: T
(T1L)

Γ; · ` 0 :: x:1
(T1R)

Γ; ∆, y:A, x:B ` P :: T

Γ; ∆, x:A⊗B ` x(y).P :: T
(T⊗L)

Γ; ∆ ` P :: y:A Γ; ∆′ ` Q :: x:B

Γ; ∆,∆′ ` (νy)x〈y〉.(P | Q) :: x:A⊗B
(T⊗R)

Γ; ∆ ` P :: y:A Γ; ∆′, x:B ` Q :: T

Γ; ∆,∆′, x:A(B ` (νy)x〈y〉.(P | Q) :: T
(T(L)

Γ; ∆, y:A ` P :: x:B

Γ; ∆ ` x(y).P :: x:A(B
(T(R)

Γ; ∆ ` P :: x:A Γ; ∆′, x:A ` Q :: T

Γ; ∆,∆′ ` (νx)(P | Q) :: T
(Tcut)

Γ; · ` P :: y:A Γ, u:A; ∆ ` Q :: T

Γ; ∆ ` (νu)(!u(y).P | Q) :: T
(Tcut!)

Γ, u:A; ∆, y:A ` P :: T

Γ, u:A; ∆ ` (νy)u〈y〉.P :: T
(Tcopy)

Γ, u:A; ∆ ` P{u/x} :: T

Γ; ∆, x:!A ` P :: T
(T!L)

Γ; · ` Q :: y:A

Γ; · ` !x(y).Q :: x:!A
(T!R)

Γ; ∆, x:A ` P :: T Γ; ∆, x:B ` Q :: T

Γ; ∆, x:A⊕B ` x.case(P,Q) :: T
(T⊕L)

Γ; ∆, x:B ` P :: T

Γ; ∆, x:ANB ` x.inr;P :: T
(TNL2)

Γ; ∆ ` P :: x:A Γ; ∆ ` Q :: x:B

Γ; ∆ ` x.case(P,Q) :: x:ANB
(TNR)

Γ; ∆, x:A ` P :: T

Γ; ∆, x:ANB ` x.inl;P :: T
(TNL1)

Γ; ∆ ` P :: x:A

Γ; ∆ ` x.inl;P :: x:A⊕B
(T⊕R1)

Γ; ∆ ` P :: x:B

Γ; ∆ ` x.inr;P :: x:A⊕B
(T⊕R2)

Figure 2: The Type System πDILL.

free of communication errors and deadlock. A pure client Q that just relies on external services, and does not provide
any, will be typed as Γ; ∆ ` Q :: −:1. In general, a process P such that Γ; ∆ ` P :: z:C represents a system
providing behavior C at channel z, building on “services” declared in Γ; ∆. Of particular interest is a system typed
as Γ; ∆ ` R :: z:!A, representing a shared server. Quite interestingly, the asymmetry induced by the intuitionistic
interpretation of !A enforces locality of shared names but not of linear (session names), which exactly corresponds to
the intended model of sessions.

We present the rules of our type system πDILL in Fig. 2. We use T, S for right hand side singleton environments
(e.g., z:C). The interpretation of the various rules should be clear, given the explanation of types given above. Notice
that since in ⊗R the sent name is always fresh, our typed calculus conforms to a session-based internal mobility
discipline [23, 7], without loss of expressiveness. The composition rules (cut and cut!) follow the “composition plus
hiding” principle [1], extended to a name passing setting. More familiar linear typing rules for parallel composition
(e.g., as in [21]) are derivable (see Section 6). Since we are considering π-calculus terms up to structural congruence,
typability is closed under ≡ by definition. πDILL enjoys the usual properties of equivariance, weakening in Γ and
contraction in Γ. The coverage property also holds: if Γ; ∆ ` P :: z:A then fn(P) ⊆ Γ ∪∆ ∪ {z}. In the presence of
type-annotated restrictions (νx:A)P , as usual in typed π-calculi [24], type-checking is decidable.

We illustrate the type system with a simple example, frequently used to motivate session based interactions (see
e.g., [13]). A client may choose between a “buy” operation, in which it indicates a product name and a credit card
number to receive a receipt, and a “quote” operation, in which it indicates a product name, to obtain the product price.
From the client perspective, the session protocol exposed by the server may be specified by the type

ServerProto , (N(I((N⊗ 1)) N (N((I⊗ 1))

We assume that N and I are types representing shareable values (e.g., strings N and integers I). To simplify, we set
N = I = 1. Assuming s to be the name of the session channel connecting the client and server, consider the code

QClntBodys , s.inr; (νtea)s〈tea〉.s(pr).0

QClntBodys specifies a client that asks for the price of tea (we simply abstract away from what the client might do

4

Γ; ∆ ` D : C

Γ; ∆, x : 1 ` 1L x D : C
(1L)

Γ; · ` 1R : 1
(1R)

Γ; ∆, y : A, x : B ` D : C

Γ; ∆, x : A⊗B ` ⊗L x (y.x. D) : C
(⊗L)

Γ; ∆ ` D : A Γ; ∆′ ` E : B

Γ; ∆,∆′ ` ⊗R D E : A⊗B
(⊗R)

Γ; ∆ ` D : A Γ; ∆′, x : B ` E : C

Γ; ∆,∆′, x : A(B `(L x D (x. E) : C
((L)

Γ; ∆, y : A ` D : B

Γ; ∆ `(R (y. D) : A(B
((R)

Γ; ∆ ` D : A Γ; ∆′, x : A ` E : C

Γ; ∆,∆′ ` cut D (x.E) : C
(cut)

Γ; · ` D : A Γ, u : A; ∆ ` E : C

Γ; ∆ ` cut! D (u.E) : C
(cut!)

Γ, u : A; ∆, y : A ` D : C

Γ, u : A; ∆ ` copy u (y. D) : C
(copy)

Γ; · ` D : A

Γ; · ` !R D : !A
(!R)

Γ, u : A; ∆ ` D : C

Γ; ∆, x : !A ` !L x (u.D) : C
(!L)

Γ; ∆, x : A ` D : C

Γ; ∆, x : ANB ` NL1 x (x. D) : C
(NL1)

Γ; ∆, x : B ` D : C

Γ; ∆, x : ANB ` NL2 x (x. D) : C
(NL2)

Γ; ∆ ` D : A Γ; ∆ ` E : B

Γ; ∆ ` NR D E : ANB
(NR)

Γ; ∆x : A ` D : C Γ; ∆, x : B ` E : C

Γ; ∆, x : A⊕B ` ⊕L x (x. D) (x. E) : C
(⊕L)

Γ; ∆ ` D : A

Γ; ∆ ` ⊕R1 D : A⊕B
(⊕R1)

Γ; ∆ ` D : B

Γ; ∆ ` ⊕R2 D : A⊕B
(⊕R2)

Figure 3: Dual Intuitionistic Linear Logic DILL.

with the price after reading it). It first selects the quoting operation on the server (s.inr), then sends the id of the
product to the server (s〈tea〉), then receives the price s(pr) from the server and finally terminates the session (0). Then

·; s : ServerProto ` QClntBodys :: −:1

is derivable (by T1R, T⊗L, T(L and TNL2). Here we wrote − for an anonymous variable that does not appear in
QClntBody. This is possible even in a linear type discipline since the inactive process 0 is typed by x:1 and does not
use x. Concerning the server code, let SrvBodys , s.case(s(pn).s(cn).(νrc)s〈rc〉.0, s(pn).(νpr)s〈pr〉.0) .
Then ·; · ` SrvBodys :: s:ServerProto is derivable, by TNR. By T cut we obtain for the system QSimple ,
(νs)(SrvBodys | QClntBodys) the typing ·; · ` QSimple :: −:1. In this example we have only introduced processes
interacting in a single session, but clearly the system accomodates all the generality of session types, e.g., a simple
process interacting in different sessions is x:A(1, y:A⊗ 1 ` y(w).(νk)x〈k〉.0 :: −:1.

4 Dual Intuitionistic Linear Logic
As presented, session type constructors correspond directly to intuitionistic linear logic connectives. Typing judgments
directly correspond to sequents in dual intuitionistic linear logic, by erasing processes [3, 10]. In Figure 3 we present
the DILL sequent calculus. In our presentation, DILL is conveniently equipped with a faithful proof term assignment,
so sequents have the form Γ; ∆ ` D : C where Γ is the unrestricted context, ∆ the linear context, C a formula
(= type) and D the proof term that faithfully represents the derivation of Γ; ∆ ` C. Our use of names in the proof
system will be consistent with the proof discipline, u, v, w for variables in Γ and x, y, z for variables in ∆. This is
consistent with standard usage of names in π-calculi. Given the parallel structure of the two systems, if Γ; ∆ ` D : A
is derivable in DILL then there is a process P and a name z such that Γ; ∆ ` P :: z:A is derivable in πDILL, and the
converse result also holds: if Γ; ∆ ` P :: z:A is derivable in πDILL there is a derivation D that proves Γ; ∆ ` D : A.
This correspondence is made explicit by a translation from faithful proof terms to processes, defined in Fig. 4: for
Γ; ∆ ` D : C we write D̂z for the translation of D such that Γ; ∆ ` D̂z :: z:C.

5

D D̂z

1R 0

1L x D D̂z

⊗R D E (νy) z〈y〉. (D̂y | Êz)
⊗L x (y.x.D) x(y). D̂z

(R (y.D) z(y). D̂z

(L x D (x.E) (νy)x〈y〉. (D̂y | Êz)
NR D E z. case(D̂z, Êz)

NL1 x (x.D) x. inl; D̂z

NL2 x (x.E) x. inr; Êz

D D̂z

⊕R1 D z.inl; D̂z

⊕R2 E z.inr; Êz

⊕L x (x.D) (x.E) x.case(D̂z, Êz)

cut D (x.E) (νx)(D̂x | Êz)

!R D !z(y). D̂y

!L x (u.D) D̂z{x/u}
copy u (y.D) (νy)u〈y〉. D̂z

cut! D (u.E) (νu)((!u(y). D̂y) | Êz)

Figure 4: Proof D extracts to process D̂z .

Definition 4.1 (Typed Extraction). We write Γ; ∆ ` D P :: z:A, meaning “proof D extracts to P”, whenever
Γ; ∆ ` D : A and Γ; ∆ ` P :: z:A and P ≡ D̂z .

Typed extraction is unique up to structural congruence, in the sense that if Γ; ∆ ` D P :: z:A and Γ; ∆ `
D Q :: z:A then P ≡ Q, as a consequence of closure of typing under structural congruence. The system DILL
as presented does not admit atomic formulas, and hence has no true initial sequents. However, the correspondence
mentioned above yields an explicit identity theorem:

Proposition 4.2. For any type A and distinct names x, y, there is a process idA(x, y) and a cut-free derivation D
such that ·;x:A ` D idA(x, y) :: y:A.

The idA(x, y) process, with exactly the free names x, y, implements a synchronous mediator that bidirectionally
plays the protocol specified by A between channels x and y. For example, we analyze the interpretation of the sequent
A⊗B ` B ⊗A. We have

x:A⊗B ` F x(z).(νn)y〈n〉.(P | Q) :: y:B ⊗A
where F = ⊗L x (z.x. ⊗R D E), P = idB(x, n) and Q = idA(z, y). This process is an interactive proxy that
coerces a session of type A⊗B at x to a session of type B⊗A at y. It first receives a session of type A (bound to z)
and after sending on y a session of type B (played by copying the continuation of x to n), it progresses with a session
of type A on y (copying the continuation of z to y).

As processes are related by structural and computational rules, namely those involved in the definition of≡ and→,
derivations in DILL are related by structural and computational rules, that express certain sound proof transformations
that arise in cut-elimination. The reductions (Figure 5) generally take place when a right rule meets a left rule for the
same connective, and correspond to reduction steps in the process term assignment. On the left, we show the usual
reductions for cuts; on the right, we show the corresponding reductions (if any) of the process terms, modulo structural
congruence. Since equivalences depend on variable occurrences, we write Dx if x may occur in D.

The structural conversions in Figure 6 correspond to structural equivalences in the π-calculus, since they just
change the order of cuts, e.g., (cut/−/cut1) translates to

(νx)(D̂x | (νy)(Êy | F̂ z)) ≡ (νy)((νx)(D̂x | Êy) | F̂ z)
In addition, we have two special conversions. Among those, (cut/1R/1L) is not needed in order to simulate the π-
calculus reduction, while (cut/!R/!L) is. In cut-elimination procedures, these are always used from left to right. Here,
they are listed as equivalences because the corresponding π-calculus terms are structurally congruent. The root cause
for this is that the rules 1L and !L are silent: the extracted terms in the premise and conclusion are the same, modulo
renaming. For 1L, this is the case because a terminated process, represented by 0 :: − : 1 silently disappears from a
parallel composition by structural congruence. For !L, this is the case because the actual replication of a server process
is captured in the copy rule which clones u:A to y:A, rule rather than !L. It is precisely for this reason that the rule
commuting a persistent cut (cut!) over a copy rule (copy) is among the computational conversions.

6

The structural conversions in Figure 8 propagate cut!. From the proof theoretic perspective, because cut! cuts a
persistent variable u, cut! may be duplicated or erased. On the π-calculus side, these no longer correspond to structural
congruences, but, quite remarkably, to behavioral equivalences, derivable from known properties of typed processes,
the (sharpened) Replication Theorems [24]. These hold in our language, due to our interpretation of ! types. Our
operational correspondence results also depend on six commuting conversions, four in Figure 7 plus two symmetric
versions. The commuting conversions push a cut up (or inside) the 1L and !L rules. During the usual cut elimination
procedures, these are used from left to right. In the correspondence with the sequent calculus, the situation is more
complex. Because the 1L and !L rules do not affect the extracted term, cuts have to be permuted with these two
rules in order to simulate π-calculus reduction. From the process calculus perspective, such conversions correspond to
identity. There is a second group of commuting conversions (not shown), not necessary for our current development.
Those do not correspond to structural congruence nor to strong bisimilarities on π-calculus, as they may not preserve
process behavior in the general untyped setting, since they promote an action prefix from a subexpression to the top
level. We conjecture that such equations denote behavioral identities under a natural definition of typed observational
congruence for our calculus.

Definition 4.3 (Relations on derivations induced by conversions). (1) ≡ : the least congruence on derivations gener-
ated by the structural conversions (I) and the commuting conversions (II): (2)'s: the least congruence on derivations
generated by all structural conversions (I-III). We extend 's to processes as the congruence generated by the process
equations on the right. (3) Z⇒: the reduction on derivations obtained by orienting all conversions in the direction
shown, from left to right or top to bottom.

As discussed above, 's is a typed behavioral equivalence on processes.

5 Computational Correspondence, Preservation, and Progress
We now present the results stating the key properties of our type system and logical interpretation. Theorem 5.3 states
the existence of a simulation between reductions in the typed π-calculus and proof conversions / reductions, expressing
a strong form of subject reduction for our type system. The proof relies on several auxiliary lemmas that relate process
reduction with proof reduction at a particular type. The lemmas themselves are all very similar, so we only present the
lemmas for ⊗ and !. The remaining lemmas, and their proofs, are detailed in Appendix A.

Lemma 5.1. Assume

1. Γ; ∆1 ` D1 P1 :: x:C1 ⊗ C2 with P1
(νy)x〈y〉→ P ′1;

2. Γ; ∆2, x:C1 ⊗ C2 ` D2 Q1 :: z:C with Q1
x(y)→ Q′1.

Then

1. cut D1(x.D2) ≡⇒≡ D for some D;

2. Γ; ∆1,∆2 ` D Q2 :: z : C for some Q2 ≡ (νx)(P ′1 | Q′1).

Proof. See Appendix A.6.

Lemma 5.2. Assume

1. Γ; ∆1 ` D1 P1 :: x:!A with P1
x(y)→ P ′1;

2. Γ; ∆2, x:!A ` D2 Q1 :: z:C with Q1
(νy)x〈y〉→ Q′1.

Then

1. cut D1(x.D2) ≡⇒≡ D for some D;

7

cut (⊗R D1 D2) (x.⊗L x (y.x.Exy)) (νx)(((νy)x〈y〉. (D̂y
1 | D̂x

2)) | x(y). Êz)
⇒ →
cut D1 (y. cut D2 (x.Exy)) (νx)(νy)(D̂y

1 | D̂x
2 | Êz)

cut ((R (y.Dy)) (x.(L x E1 (x.E2x)) (νx)((x(y). D̂x) | (νy)x〈y〉. (Êy1 | Êz2))
⇒ →
cut (cut E1 (y.Dy)) (x.E2x) (νx)(νy)(D̂x | Êy1 | Êz2)

cut (NR D1 D2) (x.NLi x (x.Ex)) (νx)(x.case(D̂x
1 , D̂

x
2) | x.inl; Êz)

⇒ →
cut Di (x.Ex) (νx)(D̂x

i | Êz)
cut (⊕Ri D) (x.⊕L x (x.E1x) (x.E2x)) (νx)(x.inl; D̂x | x.case(Êz1 , Êz2))
⇒ →
cut D (x.Eix) (νx)(D̂x | Êzi)

cut! D (u. copy u (y. Euy)) (νu)((!u(y). D̂y) | (νy)u〈y〉. Êz)
⇒ →
cut D (y. cut! D (u. Euy)) (νy)(D̂y | (νu)((!u(y). D̂y) | Êz))

Figure 5: Computational Conversions

(cut/−/cut1) cut D (x. cut Ex (y. Fy)) ≡ cut (cut D (x.Ex)) (y. Fy)
(cut/−/cut2) cut D (x. cut E (y. Fxy)) ≡ cut E (y. cut D (x. Fxy))
(cut/cut!/−) cut (cut! D (u.Eu)) (x. Fx) ≡ cut! D (u. cut Eu (x. Fx))
(cut/−/cut!) cut D (x. cut! E (u. Fxu)) ≡ (cut! E (u. cut D (x. Fxu))
(cut/1R/1L) cut 1R (x.1L x D) ≡ D
(cut/!R/!L) cut (!R D) (x. !L x (u.E)) ≡ cut! D (u.E)

Figure 6: Structural Conversions (I): Cut Conversions

(cut/1L/−) cut (1L y D) (x. Fx) ≡ 1L y (cut D (x. Fx))
(cut/!L/−) cut (!L y (u.Du)) (x. Fx) ≡ !L y (u. cut Du (x. Fx))
(cut!/−/1L) cut! D (u.1L y Eu) ≡ 1L y (cut! D (u.Eu))
(cut!/−/!L) cut! D (u. !L y (v.Euv)) ≡ !L y (v. cut! D (u.Euv))

Figure 7: Structural Conversions (II): Commuting Conversions
cut! D (u. cut Eu (y. Fuy)) (νu)(!u(y).D̂y | (νy)(Êy | F̂ z))
' '
cut (cut! D (u.Eu)) (y. cut! D (u. Fuy)) (νy)((νu)(!u(y).D̂y | Êy) |

(νu)(!u(y).D̂y | F̂ z))

cut! D (u. cut! Eu (v. Fuv)) (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂ z))
' '
cut! (cut! D (u.Eu)) (v. cut! D (u. Fuv)) (νv)((!v(y).(νu)(!u(y).D̂y | Êy)) |

(νu)(!u(y).D̂y | F̂ z))

cut! (cut! D (u.Eu)) (v. Fv) (νv)(!v(y).(νu)(!u(y).D̂y | Êy)) | F z)
' '
cut! D (u. cut! Eu (v. Fv)) (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂ z))
cut! D (u.E) (νu)(!u(y).D̂y | Êz)
' '
E Êz (for u 6∈ FN(Êz))

Figure 8: Structural Conversions (III): Cut! Conversions

8

2. Γ; ∆1,∆2 ` D Q2 :: z : C for some Q2 ≡ (νx)(νy)(P ′1 | Q′1).

Proof. See Appendix A.8.

The key idea of the lemmas above is that by relating process reduction with proof reduction at a given type we
canconclude a strong form of type preservation, as follows.

Theorem 5.3. Let Γ; ∆ ` D P :: z:A and P → Q. Then there is E such that D ≡⇒≡ E and Γ; ∆ ` E Q ::
z:A

Proof. See Appendix A.11.

Theorems 5.4 and 5.5 state that any proof reduction or conversion also corresponds to either a process equivalence
or to a reduction step on the π-calculus.

Theorem 5.4. Let Γ; ∆ ` D P :: z:A and D 's E. Then there is Q where P 's Q and Γ; ∆ ` E Q :: z:A.

Proof. Following the commuting squares relating ≡, and ' in Figures 6, 7 and 8. �

Theorem 5.5. Let Γ; ∆ ` D P :: z:A and D ⇒ E. Then there is Q such that P → Q and Γ; ∆` E Q :: z:A.

Proof. Following the commuting squares relating⇒, and→ in Figure 5. �

Notice that the simulation of π-calculus reductions by proof term conversions provided by Theorem 5.3, and from
which subject reduction follows, is very tight indeed, as reduction is simulated up to structural congruence, which is a
very fine equivalence on processes. To that end, structural conversions need to be applied symmetrically (as equations),
unlike in a standard proof of cut-elimination, where they are usually considered as directed computational steps. Under
the assumptions of Theorem 5.3, we can also prove that there is an E such that D Z⇒⇒ E and Γ; ∆ ` E R :: z:A,
for Q 's R. Thus, even if one considers the proof conversions as directed reduction rules (Z⇒), we still obtain a sound
simulation up to typed strong behavioral congruence.

We now state type preservation and progress results for our type system. The subject reduction property (Theorem
5.6) directly follows from Theorem 5.3.

Theorem 5.6 (Subject Reduction). If Γ;∆ `P ::z:A and P→Q then Γ;∆ `Q ::z:A.

Together with direct consequences of linear typing, Theorem 5.6 ensures session fidelity. Our type discipline also
enforces a global progress property. For any P , define

live(P) iff P ≡ (νn)(π.Q | R) for some π.Q,R, n

where π.Q is a non-replicated guarded process. We first establish the following contextual progress property, from
which Theorem 5.8 follows as a corollary. Lemma 5.7 relies on an inversion lemma that relates types with action
labels (Lemma A.1) and on a lemma that characterizes the typing of non-live processes (Lemma A.12).

Lemma 5.7. Let Γ; ∆ ` D P :: z:C. If live(P) then there is Q such that either

1. P → Q, or

2. P α→ Q for α where s(α) ∈ (z,Γ,∆). More: if C = !A for some A, then s(α) 6= z.

Proof. See Appendix A.13 �

Theorem 5.8 (Progress). If ·; · `D P :: x:1 and live(P) then exists Q st. P → Q.

Proof. See Appendix A.14 �

9

6 Discussion and Further Examples
We further compare our linear type system for (finite) session types with more familiar session type systems [21, 18,
13]. An immediate observation is that in our case types are freely generated, while traditionally there is a stratification
of types in “session” and “standard types” (the later corresponding to our !A types, typing session initiation channels).
In our interpretation, a session may either terminate (1), or become a replicated server (!A), which is more general
and uniform, and a natural consequence of the logical interpretation. Concerning parallel composition, usually two
rules can be found, one corresponding to the cancellation of two dual session endpoints (a name restriction rule),
and another corresponding to independent parallel composition, also present in most linear type systems for mobile
processes. In our case, cut combines both principles, and the following rule is derivable:

Γ; ∆ ` P :: −:1 Γ; ∆′ ` Q :: T

Γ; ∆,∆′ ` P | Q :: T
(comp)

A consequence of the logical composition rules cut and cut! is that typing intrinsically enforces global progress,
unlike with traditional session type systems [18, 13], which do not ensure progress in the presence of multiple open
sessions, as we do here. Techniques to ensure progress in sessions, but building on extraneous devices such as well-
founded orderings on events, have been proposed [20, 12]. It would be interesting to further compare the various
approaches, as far as process typability is concerned.

Channel “polarities” are captured in our system by the left-right distinction of sequents, rather than by annotations
on channels (cf. x+, x−). Session and linear type systems [21, 18, 13] also include a typing rule for output of the form

Γ; ∆ ` P :: x:C

Γ; ∆, y:A ` x〈y〉.P :: x:A⊗ C
In our case, an analogous rule may be derived by ⊗R and the copycat construction, where a “proxy” for the free name
y, bidirectionally copying behavior A, is linked to z.

Γ; ∆ ` P :: x:C

Γ; ∆, y:A ` (νz)x〈z〉.(idA(y, z) | P) :: x:A⊗ C
The copycat idA(y, z) plays the role of the “link” processes of [23, 7]. Notice that in our case the definition of the
“link” is obtained for free by the interpretation of identity axioms (Proposition 4.2). The two processes can be shown
to be behaviorally equivalent, under an adequate notion of observational equivalence, as in [7].

We now elaborate on the example of Section 3, in order to illustrate sharing and session initiation. Consider now
a different client, that picks the “buy” rather than the “quote” operation, and the corresponding composed system.

BClntBodys , s.inl; (νcof)s〈cof〉.(νpin)s〈pin〉.s(rc)0

BSimple , (νs)(SrvBodys | BClntBodys)

We have the typings ·; s:ServerProto ` BClntBodys :: −:1 and ·; · ` BSimple :: −:1.
In these examples, there is a single installed pair client-server, where the session is already initiated, and only

known to the two partners. To illustrate sharing, we now consider a replicated server. Such a replicated server is able
to spawn a fresh session instance for each initial invocation, each one conforming to the general behavior specified by
ServerProto, and can be typed by !ServerProto. Correspondingly, clients must initially invoke the replicated server to
instantiate a new session (cf. the Tcopy rule).

QClient , (νs)c〈s〉.QClntBodys BClient , (νs)c〈s〉.BClntBodys
Server , !c(s).SrvBodys SharSys , (νc)(Server | BClient | QClient)

For the shared server, by T!R, we type ·; · ` Server :: c:!ServerProto. We also have, for the clients, by Tcopy the
typings c:ServerProto ; · ` BClient :: −:1 and c:ServerProto ; · ` QClient :: −:1. By (comp), T!L, and Tcut we
obtain the intended typing for the whole system: ·; · ` SharSys :: − : 1. Notice how the session instantiation protocol
is naturally explained by the logical interpretation of the ! operator.

10

7 Related Work and Conclusions
We have established a tight correspondence between a session-based type discipline for the π-calculus and intuition-
istic linear logic: typing rules correspond to dual intuitionistic linear sequent calculus proof rules, moreover process
reduction may be simulated in a type preserving way by proof conversions and reductions, and vice versa. As a result,
we obtain the subject reduction property, from which session fidelity follows. Our basic typing discipline intrinsically
ensures global progress, beyond the restricted “progress on a single session” property obtained in pure session type
systems.

Other works have investigated π-calculus models of linear logic proofs. Bellin and Scott [5] establish a mapping
from linear logic proofs to a variant of the π-calculus and some connections between proof reduction and π-calculus
reduction. However, this mapping results in complex encodings, so that their system could hardly be considered a type
assignment system for processes, which has been achieved in this work. Moreover, no relation between behavioral
descriptions and logical propositions was identified, as put by the authors: “[our encodings] have less to do with
logic than one might think, they are essentially only about the abstract pluggings in proof structures”. A realizability
interpretation for a linear logic augmented with temporal modalities (cf. Hennessy-Milner) was proposed in [4], also
based on a π-calculus variant. A recent related development is [17], where a correspondence between (independently
formulated) proof nets and an IO-typed π-calculus is established. In our case, the type system and the logic proof
system are exactly the same, and we reveal a direct connection between pure linear logic propositions and behavioral
types on π-calculus, that covers all (both shared and linear) features of finite session types. A development of session
types as linear process types (in the sense of [21]) is presented in [15], where linearity and sharing are expressed by
special annotations, unrelated to a linear logic interpretation.

We have also analyzed the relation between our type discipline and (finite, deadlock-free) session types. It is
important to notice that our interpretation does not require locality for session (linear) channels (under which only the
output capability of names could be transmitted), which seems required in other works on linearity for π-calculi (e.g.,
[26]). On the other hand, our intuitionistic discipline enforces locality of shared channels, which, quite interestingly,
seems to be the sensible choice for distributed implementations of sessions. Interesting related topics would be the
accommodation of recursive types, logical relations [8], and the characterization of observational equivalences under
our typing discipline. In particular, we expect that all conversions (including commuting conversions) between DILL
derivations correspond to observational equivalences on our typed π-calculus.

One important motivation for choosing a purely logical approach to typing is that it often suggests uniform and
expressive generalizations. In ongoing work, we have also established an explicit relationship between session-based
concurrency and functional computation where in both cases determinacy (no races) and progress (deadlock-freedom)
are expected features. In particular, we have been investigating new encodings of λ-calculi into the π-calculus that arise
from translations from DILL natural deduction into sequent calculus. We also believe that dependent generalizations
of our system of simple linear types, perhaps along the lines of LLF [9] or CLF [25], may be able to capture many
additional properties of communication behavior in a purely logical manner. Already, some systems of session types
have dependent character, such as [6] that, among other properties, integrates correspondence assertions into session
types.
Acknowledgments. To FCT/MCTES (INTERFACES NGN44), and the ICTI at Carnegie-Mellon. Thanks also to
Bernardo Toninho, Nobuko Yoshida, and Andre Platzer.

References
[1] S. Abramsky. Computational Interpretations of Linear Logic. Theor. Comp. Sci., 111(1&2), 1993.

[2] J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation,
2(3):197–347, 1992.

[3] A. Barber and G. Plotkin. Dual Intuitionistic Linear Logic. Technical Report LFCS-96-347, Univ. of Edinburgh,
1997.

[4] E. Beffara. A Concurrent Model for Linear Logic. ENTCS, 155:147–168, 2006.

11

[5] G. Bellin and P. Scott. On the π-Calculus and Linear Logic. Theor. Comp. Sci., 135:11–65, 1994.

[6] E. Bonelli, A. Compagnoni, and E. L. Gunter. Correspondence Assertions for Process Synchronization in Con-
current Communications. J. of Func. Prog., 15(2):219–247, 2005.

[7] M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoretical Computer Science,
195(2):205–226, 1998.

[8] L. Caires. Logical Semantics of Types for Concurrency. In International Conference on Algebra and Coalgebra
in Computer Science, CALCO’07, pages 16–35. Springer LNCS 4624, 2007.

[9] I. Cervesato and F. Pfenning. A linear logical framework. Inf. & Comput., 179(1), 2002.

[10] B.-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A Judgmental Analysis of Linear Logic. Technical Report
CMU-CS-03-131R, Carnegie Mellon University, 2003.

[11] M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions and Session Types: an Overview. In 6th Intl Workshop on
Web Services and Formal Methods WS-FM’09, Lecture Notes in Computer Science. Springer-Verlag, 2010.

[12] M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Communications. In
G. Barthe and C. Fournet, editors, 3th Symposium Trustworthy Global Computing, TGC 2007, pages 257–275.
Springer LNCS 4912, 2008.

[13] S. Gay and M. Hole. Subtyping for Session Types in the Pi Calculus. Acta Informatica, 42(2-3):191–225, 2005.

[14] J.-Y. Girard and Y. Lafont. Linear Logic and Lazy Computation. In H. Ehrig, R. A. Kowalski, G. Levi, and
U. Montanari, editors, Theory and Practice of Software Development, TAPSOFT’87, pages 52–66. Springer
LNCS 250, 1987.

[15] M. Giunti and V. T. Vasconcelos. A Linear Account of Session Types in the Pi-Calculus. In 21st International
Conference on Concurrency Theory, CONCUR’10, pages 432–446. Springer LNCS 6269, 2010.

[16] K. Honda. Types for dyadic interaction. In 4th International Conference on Concurrency Theory, CONCUR’93,
pages 509–523. Springer LNCS 715, 1993.

[17] K. Honda and O. Laurent. An exact correspondence between a typed pi-calculus and polarised proof-nets. Theor.
Comp. Sci., 411:2223–2238, 2010.

[18] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured
communication-based programming. In ESOP’98, pages 122–138. Springer LNCS 1381, 1998.

[19] J. M. E. Hyland and C.-H. L. Ong. Pi-Calculus, Dialogue Games and PCF. In WG2.8 Conference on Functional
Programming Languages, pages 96–107, 1995.

[20] N. Kobayashi. A Partially Deadlock-Free Typed Process Calculus. ACM Tr. Progr. Lang. Sys., 20(2):436–482,
1998.

[21] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In 23rd Symposium on Principles
of Programming Languages, POPL’96, pages 358–371. ACM, 1996.

[22] R. Milner. Functions as processes. Math. Struct. in Comp. Sci., 2(2):119–141, 1992.

[23] D. Sangiorgi. Pi-Calculus, Internal Mobility, and Agent Passing Calculi. Theoretical Computer Science,
167(1&2):235–274, 1996.

[24] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge University Press, 2001.

12

[25] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. Specifying properties of concurrent computations in
CLF. In C.Schürmann, editor, 4th Intl. Workshop on Logical Frameworks and Meta-Languages (LFM’04), Cork,
Ireland, July 2004. ENTCS, vol 199.

[26] N. Yoshida, K. Honda, and M. Berger. Linearity and Bisimulation. J. Logic and Algebraic Programming,
72(2):207–238, 2007.

A Proofs

A.1 Inversion Lemmas

Lemma A.1. Let Γ; ∆ ` D P :: x : C.

1. If P α→ Q and C = 1 then s(α) 6= x.

2. If P α→ Q and y : 1 ∈ ∆ then s(α) 6= y.

3. If P α→ Q and s(α) = x and C = A⊗B then α = (νy)x〈y〉.

4. If P α→ Q and s(α) = y and y : A⊗B ∈ ∆ then α = y(z).

5. If P α→ Q and s(α) = x and C = A(B then α = x(y).

6. If P α→ Q and s(α) = y and y : A(B ∈ ∆ then α = (νz)y〈z〉.

7. If P α→ Q and s(α) = x and C = ANB then α = x.inl or α = x.inr.

8. If P α→ Q and s(α) = y and y : ANB ∈ ∆ then α = y.inl or α = y.inr.

9. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr.

10. If P α→ Q and s(α) = y and y : A⊕B ∈ ∆ then α = y.inl or α = y.inr.

11. If P α→ Q and s(α) = x and C = !A then α = x(y).

12. If P α→ Q and s(α) = y and y : !A or y ∈ Γ then α = (νz)y〈z〉.

Proof. By induction on the structure of D.

1. If P α→ Q and C = 1 then s(α) 6= x.

Case: copy, all left rules except 1L and !L

s(α) 6= x by the definition of the l.t.s.

Case: 1L or !L

s(α) 6= x by i.h.

Case: cut D1 (y.D2)

D1 P1 and D2 P2

Subcase: P1
α→ Q1

s(α) 6= x trivial, since x 6∈ fn(P1) by typing
Subcase: P2

α→ Q2

s(α) 6= x by i.h. on D2

Case: cut! D1 (u.D2)

13

D1 P1 and D2 P2

Subcase: P1
α→ Q1

s(α) 6= x trivial, since x 6∈ fn(P1) by typing
Subcase: P2

α→ Q2

s(α) 6= x by i.h. on D2

Case: All other rules do not offer α→ or C 6= 1

2. If P α→ Q and y : 1 ∈ ∆ then s(α) 6= y.

Case: copy, all left rules except 1L and !L

s(α) 6= y by the definition of the l.t.s.

Case: 1L or !L

s(α) 6= y by i.h.

Case: Γ; ∆1,∆2 ` cut D1 (z.D2) P :: x : C, with D1 P1 and D2 P2

Subcase: y : 1 ∈ ∆1

s(α) 6= y by i.h. and y 6∈ fn(P2)
Subcase: y : 1 ∈ ∆2 with z 6= y
s(α) 6= y by i.h. and y 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

Subcase: P1
α→ Q1

s(α) 6= y trivial, since linear ctxt. is empty for D1 and y : 1

Subcase: P2
α→ Q2

s(α) 6= y by i.h.

3. If P α→ Q and s(α) = x and C = A⊗B then α = (νy)x〈y〉

Case: 1L or !L

α = (νy)x〈y〉 by i.h.

Case: ⊗R

α = (νy)x〈y〉 by the l.t.s

Case: cut D1 (y.D2) with D1 P1 and D2 P2

α = (νy)x〈y〉 by i.h. on D2 and x 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = (νy)x〈y〉 by i.h. on D2

Case: All other rules do not have s(α) = x and C = A⊗B

4. If P α→ Q and s(α) = y and y : A⊗B ∈ ∆ then α = y(z)

Case: 1L or !L

α = y(z) by i.h.

Case: ⊗L

α = y(z) by the l.t.s

14

Case: Γ; ∆1,∆2 ` cut D1 (z.D2) P :: x : C with D1 P1 and D2 P2

Subcase: y ∈ ∆1

α = y(z) by i.h. on D1 and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y(z) by i.h. on D2 and y 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = y(z) by i.h. on D2

5. If P α→ Q and s(α) = x and C = A(B then α = x(y)

Case: 1L or !L

α = x(y) by i.h.

Case: (R

α = x(y) by the l.t.s

Case: cut D1 (y.D2) with D1 P1 and D2 P2

α = x(y) by i.h. on D2 and x 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = x(y) by i.h. on D2

Case: All other rules do not have s(α) = x and C = A(B

6. If P α→ Q and s(α) = y and y : A(B ∈ ∆ then α = (νz)y〈z〉

Case: 1L or !L

α = (νz)y〈z〉 by i.h.

Case: (L

α = (νz)y〈z〉 by the l.t.s

Case: Γ; ∆1,∆2 ` cut D1 (w.D2) P :: x : C with D1 P1 and D2 P2

Subcase: y ∈ ∆1

α = (νz)y〈z〉 by i.h. on D1 and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = (νz)y〈z〉 by i.h. on D2 and y 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = (νz)y〈z〉 by i.h. on D2

7. If P α→ Q and s(α) = x and C = ANB then α = x.inl or α = x.inr

Case: 1L or !L

α = x.inl or α = x.inr by i.h.

Case: NR

α = x.inl or α = x.inr by the l.t.s

15

Case: cut D1 (y.D2) with D1 P1 and D2 P2

α = x(y) by i.h. on D2 and x 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = x(y) by i.h. on D2

Case: All other rules do not have s(α) = x and C = ANB

8. If P α→ Q and s(α) = y and y : ANB ∈ ∆ then α = y.inl or α = y.inr

Case: 1L or !L

α = y.inl or α = y.inr by i.h.

Case: NL1

α = y.inl by the l.t.s

Case: NL2

α = y.inr by the l.t.s

Case: Γ; ∆1,∆2 ` cut D1 (w.D2) P :: x : C with D1 P1 and D2 P2

Subcase: y ∈ ∆1

α = y.inl or α = y.inr by i.h. on D1 and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y.inl or α = y.inr by i.h. on D2 and y 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = y.inl or α = y.inr by i.h. on D2

9. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr

Case: 1L or !L

α = x.inl or α = x.inr by i.h.

Case: ⊕R1

α = x.inl by the l.t.s

Case: ⊕R2

α = x.inr by the l.t.s

Case: cut D1 (y.D2) with D1 P1 and D2 P2

α = x.inl or α = x.inr by i.h. on D2 and x 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = x.inl or α = x.inr by i.h. on D2

Case: All other rules do not have s(α) = x and C = A⊕B

10. If P α→ Q and s(α) = y and y : A⊕B ∈ ∆ then α = y.inl or α = y.inr

Case: 1L or !L

α = y.inl or α = y.inr by i.h.

16

Case: ⊕L

α = y.inl or α = y.inr by the l.t.s

Case: Γ; ∆1,∆2 ` cut D1 (w.D2) P :: x : C with D1 P1 and D2 P2

Subcase: y ∈ ∆1

α = y.inl or α = y.inr by i.h. on D1 and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y.inl or α = y.inr by i.h. on D2 and y 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = y.inl or α = y.inr by i.h. on D2

11. If P α→ Q and s(α) = x and C = !A then α = x(y)

Case: 1L or !L

α = x(y) by i.h.

Case: !R

α = x(y) by the l.t.s

Case: cut D1 (z.D2) with D1 P1 and D2 P2

α = x(y) by i.h. on D2 and x 6∈ fn(P1)

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

α = x(y) by i.h. on D2

Case: All other rules do not have s(α) = x and C = !A

12. If P α→ Q and s(α) = y and y : !A or y ∈ Γ then α = (νz)y〈z〉.

Case: 1L or !L

α = (νz)y〈z〉 by i.h.

Case: copy

α = (νz)y〈z〉 by the l.t.s

Case: Γ; ∆1,∆2 ` cut D1 (w.D2) P :: x : C with D1 P1 and D2 P2

Subcase: y : !A and y ∈ ∆1

α = (νz)y〈z〉 by i.h. on D1 and y 6∈ fn(P2)
Subcase: y : !A and y ∈ ∆2

α = (νz)y〈z〉 by i.h. on D2 and y 6∈ fn(P1)

Subcase: y ∈ Γ and P α→ Q from P1
α→ Q1

α = (νz)y〈z〉 by i.h. on D1

Subcase: y ∈ Γ and P α→ Q from P2
α→ Q2

α = (νz)y〈z〉 by i.h. on D2

Case: cut! D1 (u.D2) with D1 P1 and D2 P2

17

Subcase: y : !A

α = (νz)y〈z〉 by i.h. on D2

Subcase: y ∈ Γ

α = (νz)y〈z〉 by i.h. on D2

A.2 Preservation Lemmas
Lemma A.2. Assume

(a) Γ; ∆1 ` D P :: x:C1 N C2 with P x.inl→ P ′;

(b) Γ; ∆2, x:C1 N C2 ` E Q :: z:C with Q x.inl→ Q′.

Then

(c) cut D(x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. By simultaneous induction on D and E. That is, in each appeal to the induction hypothesis either D becomes
smaller and E remains the same, or D remains the same and E becomes smaller.

The possible cases for D are NR, 1L, !L, cut, and cut!. In all other cases P x cannot offer x.inl. The possible cases
for E are NL1, 1L, !L, cut, and cut!.

Case: D = NR D1 D2 and E = NL1 x (x.E1).

cut D (x.E) = cut (NR D1 D2) (NL1 x (x.E1)) = F [a]

F (νx)(x.case(P x1 , P
x
2) | x.inl;Qz1) = (νx)(P x | Qz) [b]

F ⇒ cut D1 (x.E1) = F ′ By reduction (cut/NR/NL1) [c]

F ′ (νx)(P x1 | Qz1) ≡ R′ with P x1 = P ′x and Qz1 = Q′z [d]

Case: D = 1L y D1 and E arbitrary.

cut D (x.E) = cut (1L y D1) (x.E)
≡ 1L y (cut D1 (x.E)) = F By rule (cut/1L/−) [a]

F (νx)(P x | Qz) = R since D1 P x [b]

cut D1 (x.E) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′z1 ≡ (νx)(P ′x | Q′z) By i.h. on D1, E

F = 1L y F1 ⇒ 1L y F ′1 = F ′ By congruence [c]
F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: D = !L y (u.D1) and E arbitrary.

cut D (x.E) = cut (!L y (u.D1)) (x.E)
≡ !L y (u. cut D1 (x.E)) = F By rule (cut/!L/−) [a]

F (νx)(P x | Qz) = R since D1 P x{u/y} [b]

18

cut D1 (x.E) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′z1 ≡ (νx)(P ′x | Q′z) By i.h. on D1, E

F = !L y (u. F1)⇒ !L y (u. F ′1) = F ′ By congruence [c]
F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: D = cut D1 (y.D2) and E arbitrary.

cut D (x.E) = cut (cut D1 (y.D2)) (x.E)
≡ cut D1 (y. cut D2 (x.E)) = F By rule (cut/−/cut1) [a]

F (νy)(P y1 | ((νx)(P x2 | Qz))) ≡ (νx)((νy)(P y1 | P x2) | Qz) = R [b]

cut D2 (x.E) ≡ F2 with
F2 R2 and R2 ≡ (νx)(P x2 | Qz) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x2 | Q′z) By i.h. on D2, E

F ⇒ cut D1 (y. F ′2) = F ′ By congruence [c]
F ′ (νy)(P y1 | (νx)(P ′x2 | Q′z)) ≡ (νx)((νy)(P y1 | P ′x2) | Q′z)
= (νx)(P ′x | Q′z) [d]

Case: D = cut! D1 (u.D2) and E arbitrary.

cut D (x.E) = cut (cut! D1 (u.D2)) (x.E)
≡ cut! D1 (u. cut D2 (x.E)) = F By rule (cut/cut!/−) [a]

F (νu)((!u(y).P y1) | (νx)(P x2 | Qz))
≡ (νx)((νu)((!u(y).P y1) | P x2) | Qz) = R By struct. cong. [b]

cut D2 (x.E) ≡ F2 with
F2 R2 and R2 ≡ (νx)(P x2 | Qz) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x2 | Q′z) By i.h. on D2, E

F ⇒ cut! D1 (u. F ′2) = F ′ By congruence [c]

F ′ (νu)((!u(y).P y1) | (νx)(P ′x2 | Q′z))
≡ (νx)((νu)((!u(y).P y1) | P ′x2) | Q′z) = (νx)(P ′x | Q′z) [d]

Case: E = 1L y E1 and D arbitrary.

cut D (x.E) = cut D (x.1L y E1)
≡ 1L y (cut D (x.E1)) = F By rule (cut/−/1L) [a]

F (νx)(P x | Qz) = R [b]

cut D (x.E1) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′1 ≡ (νx)(P ′x | Q′z) By i.h. on D,E1

F = 1L y F1 ⇒ 1L y F ′1 = F ′ By congruence [c]

F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: E = !L y (u.E1) and D arbitrary.

19

cut D (x.E) = cut D (x. !L y (u.E1))
≡ !L y (u. cut D (x.E1)) = F By rule (cut/−/!L) [a]

F (νx)(P x | Qz) = R since E1 Qz{u/y} [b]

cut D (x.E1) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′1 ≡ (νx)(P ′x | Q′z) By i.h. on D,E1

F = !L y (u. F1)⇒ 1L y (u. F ′1) = F ′ By congruence [c]

F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: E = cut E1 (y.E2) with x ∈ FV (E1) and D arbitrary.

cut D (x.E) = cut D (x. cut E1 (y.E2))
≡ cut (cut D (x.E1)) (y.E2) = F By reduction (cut/−/cut1) [a]

F (νy)((νx)(P x | Qy1) | Qz2) ≡ (νx)(P x | (νy)(Qy1 | Qz2)) = R [b]

cut D (x.E1) ≡ F1 with
F1 R1 ≡ (νx)(P x | Qy1) and
F1 ⇒ F ′1 with
F ′1 R′1 ≡ (νx)(P ′x | Q′y1) By i.h. on D,E1

F ⇒ cut F ′1 (y.E2) = F ′ By congruence [c]
F ′ (νy)((νx)(P ′x | Q′y1) | Qz2) ≡ (νx)(P ′x | (νy)(Q′y1 | Qz2))
= (νx)(P ′x | Q′z) [d]

Case: E = cut E1 (y.E2) with x ∈ FV (E2) and D arbitrary.

cut D (x.E) = cut D (x. cut E1 (y.E2))
≡ cut E1 (y. cut D (x.E2)) = F By reduction (cut/−/cut2) [a]

F (νy)(Qy1 | (νx)(P x | Qz2)) ≡ (νx)(P x | (νy)(Qy1 | Qz2)) = R [b]

cut D (x.E2) ≡ F2 with
F2 R2 ≡ (νx)(P x | Qz2) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x | Q′z2) By i.h. on D,E2

F ⇒ cut E1 (y. F ′2) = F ′ By congruence [c]
F ′ (νy)(Qy1 | (νx)(P ′x | Q′z2)) ≡ (νx)(P ′x | (νy)(Qy1 | Q′z2))
= (νx)(P ′x | Q′z) [d]

Case: E = cut! E1 (u.E2) with x ∈ FV (E1) and D arbitrary. This case is impossible because E1 contains no free
linear variables.

Case: E = cut! E1 (u.E2) with x ∈ FV (E2) and D arbitrary.

cut D (x.E) = cut D (x. cut! E1 (u.E2))
≡ cut! E1 (u. cut D (x.E2)) = F By reduction (cut/−/cut!) [a]

F (νu)((!u(y).Qy1) | (νx)(P x | Qz2)) ≡
(νx)(P x | (νu)((!u(y).Qy1) | Qz2)) = R [b]

cut D (x.E2) ≡ F2 with
F2 R2 ≡ (νx)(P x | Qz2) and
F2 ⇒ F ′2 with

20

F ′2 R′2 ≡ (νx)(P ′x | Q′z2) By i.h. on D,E2

F ⇒ cut! E1 (u. F ′2) = F ′ By congruence [c]
F ′ (νu)((!u(y).Qy1) | (νx)(P ′x | Q′z2))
≡ (νx)(P ′x | (νu)((!u(y).Qy1) | Q′z2)) = (νx)(P ′x | Q′z) [d]

Lemma A.3. Assume

(a) Γ; ∆1 ` D P :: x:C1 N C2 with P x.inr→ P ′;

(b) Γ; ∆2, x:C1 N C2 ` E Q :: z:C with Q x.inr→ Q′.

Then

(c) cut D(x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. Completely symmetric to the previous lemma.

Lemma A.4. Assume

(a) Γ; ∆1 ` D P :: x:C1 ⊕ C2 with P x.inl→ P ′;

(b) Γ; ∆2, x:C1 ⊕ C2 ` E Q :: z:C with Q x.inl→ Q′.

Then

(c) cut D(x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. By simultaneous induction on D and E. That is, in each appeal to the induction hypothesis either D becomes
smaller and E remains the same, or D remains the same and E becomes smaller.

The possible cases for D are ⊕R1, 1L, !L, cut, and cut!. In all other cases P x cannot offer x.inl. The possible
cases for E are ⊕L, 1L, !L, cut, and cut!.

Case: D = ⊕R1 D1 and E = ⊕L x (x.E1) (x.E2).

cut D (x.E) = cut (⊕R1 D1) (⊕L x (x.E1) (x.E2)) = F [a]

F (νx)(x.inl;P x1 | x.case(Qz1, Qz2)) = (νx)(P x | Qz) [b]

F ⇒ cut D1 (x.E1) = F ′ By reduction (cut/⊕R1/⊕L) [c]

F ′ (νx)(P x1 | Qz1) ≡ R′ with P x1 = P ′x and Qz1 = Q′z [d]

Case: D = 1L y D1 and E arbitrary.

cut D (x.E) = cut (1L y D1) (x.E)
≡ 1L y (cut D1 (x.E)) = F By rule (cut/1L/−) [a]

F (νx)(P x | Qz) = R since D1 P x [b]

cut D1 (x.E) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′z1 ≡ (νx)(P ′x | Q′z) By i.h. on D1, E

F = 1L y F1 ⇒ 1L y F ′1 = F ′ By congruence [c]
F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

21

Case: D = !L y (u.D1) and E arbitrary.

cut D (x.E) = cut (!L y (u.D1)) (x.E)
≡ !L y (u. cut D1 (x.E)) = F By rule (cut/!L/−) [a]

F (νx)(P x | Qz) = R since D1 P x{u/y} [b]

cut D1 (x.E) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′z1 ≡ (νx)(P ′x | Q′z) By i.h. on D1, E

F = !L y (u. F1)⇒ !L y (u. F ′1) = F ′ By congruence [c]
F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: D = cut D1 (y.D2) and E arbitrary.

cut D (x.E) = cut (cut D1 (y.D2)) (x.E)
≡ cut D1 (y. cut D2 (x.E)) = F By rule (cut/−/cut1) [a]

F (νy)(P y1 | ((νx)(P x2 | Qz))) ≡ (νx)((νy)(P y1 | P x2) | Qz) = R [b]

cut D2 (x.E) ≡ F2 with
F2 R2 and R2 ≡ (νx)(P x2 | Qz) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x2 | Q′z) By i.h. on D2, E

F ⇒ cut D1 (y. F ′2) = F ′ By congruence [c]
F ′ (νy)(P y1 | (νx)(P ′x2 | Q′z)) ≡ (νx)((νy)(P y1 | P ′x2) | Q′z)
= (νx)(P ′x | Q′z) [d]

Case: D = cut! D1 (u.D2) and E arbitrary.

cut D (x.E) = cut (cut! D1 (u.D2)) (x.E)
≡ cut! D1 (u. cut D2 (x.E)) = F By rule (cut/cut!/−) [a]

F (νu)((!u(y).P y1) | (νx)(P x2 | Qz))
≡ (νx)((νu)((!u(y).P y1) | P x2) | Qz) = R By struct. cong. [b]

cut D2 (x.E) ≡ F2 with
F2 R2 and R2 ≡ (νx)(P x2 | Qz) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x2 | Q′z) By i.h. on D2, E

F ⇒ cut! D1 (u. F ′2) = F ′ By congruence [c]

F ′ (νu)((!u(y).P y1) | (νx)(P ′x2 | Q′z))
≡ (νx)((νu)((!u(y).P y1) | P ′x2) | Q′z) = (νx)(P ′x | Q′z) [d]

Case: E = 1L y E1 and D arbitrary.

cut D (x.E) = cut D (x.1L y E1)
≡ 1L y (cut D (x.E1)) = F By rule (cut/−/1L) [a]

F (νx)(P x | Qz) = R [b]

cut D (x.E1) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;

22

F ′1 R′1 ≡ (νx)(P ′x | Q′z) By i.h. on D,E1

F = 1L y F1 ⇒ 1L y F ′1 = F ′ By congruence [c]

F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: E = !L y (u.E1) and D arbitrary.

cut D (x.E) = cut D (x. !L y (u.E1))
≡ !L y (u. cut D (x.E1)) = F By rule (cut/−/!L) [a]

F (νx)(P x | Qz) = R since E1 Qz{u/y} [b]

cut D (x.E1) ≡ F1 for some F1;
F1 Rz1 ≡ (νx)(P x | Qz);
F1 ⇒ F ′1;
F ′1 R′1 ≡ (νx)(P ′x | Q′z) By i.h. on D,E1

F = !L y (u. F1)⇒ 1L y (u. F ′1) = F ′ By congruence [c]

F ′ Rz1 ≡ (νx)(P ′x | Q′z) [d]

Case: E = cut E1 (y.E2) with x ∈ FV (E1) and D arbitrary.

cut D (x.E) = cut D (x. cut E1 (y.E2))
≡ cut (cut D (x.E1)) (y.E2) = F By reduction (cut/−/cut1) [a]

F (νy)((νx)(P x | Qy1) | Qz2) ≡ (νx)(P x | (νy)(Qy1 | Qz2)) = R [b]

cut D (x.E1) ≡ F1 with
F1 R1 ≡ (νx)(P x | Qy1) and
F1 ⇒ F ′1 with
F ′1 R′1 ≡ (νx)(P ′x | Q′y1) By i.h. on D,E1

F ⇒ cut F ′1 (y.E2) = F ′ By congruence [c]
F ′ (νy)((νx)(P ′x | Q′y1) | Qz2) ≡ (νx)(P ′x | (νy)(Q′y1 | Qz2))
= (νx)(P ′x | Q′z) [d]

Case: E = cut E1 (y.E2) with x ∈ FV (E2) and D arbitrary.

cut D (x.E) = cut D (x. cut E1 (y.E2))
≡ cut E1 (y. cut D (x.E2)) = F By reduction (cut/−/cut2) [a]

F (νy)(Qy1 | (νx)(P x | Qz2)) ≡ (νx)(P x | (νy)(Qy1 | Qz2)) = R [b]

cut D (x.E2) ≡ F2 with
F2 R2 ≡ (νx)(P x | Qz2) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x | Q′z2) By i.h. on D,E2

F ⇒ cut E1 (y. F ′2) = F ′ By congruence [c]
F ′ (νy)(Qy1 | (νx)(P ′x | Q′z2)) ≡ (νx)(P ′x | (νy)(Qy1 | Q′z2))
= (νx)(P ′x | Q′z) [d]

Case: E = cut! E1 (u.E2) with x ∈ FV (E1) and D arbitrary. This case is impossible because E1 contains no free
linear variables.

Case: E = cut! E1 (u.E2) with x ∈ FV (E2) and D arbitrary.

23

cut D (x.E) = cut D (x. cut! E1 (u.E2))
≡ cut! E1 (u. cut D (x.E2)) = F By reduction (cut/−/cut!) [a]

F (νu)((!u(y).Qy1) | (νx)(P x | Qz2)) ≡
(νx)(P x | (νu)((!u(y).Qy1) | Qz2)) = R [b]

cut D (x.E2) ≡ F2 with
F2 R2 ≡ (νx)(P x | Qz2) and
F2 ⇒ F ′2 with
F ′2 R′2 ≡ (νx)(P ′x | Q′z2) By i.h. on D,E2

F ⇒ cut! E1 (u. F ′2) = F ′ By congruence [c]
F ′ (νu)((!u(y).Qy1) | (νx)(P ′x | Q′z2))
≡ (νx)(P ′x | (νu)((!u(y).Qy1) | Q′z2)) = (νx)(P ′x | Q′z) [d]

Lemma A.5. Assume

(a) Γ; ∆1 ` D P :: x:C1 ⊕ C2 with P x.inr→ P ′;

(b) Γ; ∆2, x:C1 ⊕ C2 ` E Q :: z:C with Q x.inr→ Q′.

Then

(c) cut D (x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. Symmetric to the previous lemma.

Lemma A.6. Assume

(a) Γ; ∆1 ` D P :: x:C1 ⊗ C2 with P
(νy)x〈y〉→ P ′;

(b) Γ; ∆2, x:C1 ⊗ C2 ` E Q :: z:C with Q
x(y)→ Q′.

Then

(c) cut D(x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(P ′ | Q′).

Proof. By simultaneous induction on D and E. The possible cases for D are ⊗R, 1L, !L, cut and cut!. The possible
cases for E are ⊗L, 1L, !L, cut, and cut!.

Case: D = ⊗R D1 D2 and E = ⊗L x (y.x.E′).

D1 P y1 and D2 P x2 where

P x = (νy)(x〈y〉. (P y1 | P x2))
(νy)x〈y〉→ (νy)(P y1 | P x2) = P ′x By inversion

E′ Q′z where Qz = x(y).Q′z
x(y)→ Q′z By inversion

cut D (x.E) = cut (⊗R D1 D2) (⊗L x (y.x.E′))
⇒ cut D1 (y. cut D2 (x.E′)) = F By rule (cut/⊗R/⊗L)

F (νy)(P y1 | (νx)(P x2 | Q′z)) ≡ (νx)((νy)(P y1 | P x2) | Q′z) = (νx)(P ′x | Q′z)

24

Case: D = 1L n D′ and E arbitrary.

D′ P By inversion

cut D (x.E) = cut (1L n D′) (x.E)
≡ 1L n (cut D′ (x.E)) By rule (cut/1L/−)
⇒ 1L n F ′ = F for some F ′ (νx)(P ′ | Q′) By i.h. on D′ and E

F (νx)(P ′ | Q′)

Case: D = !L n (u.D′) and E arbitrary.

D′ P By inversion

cut D (x.E) = cut (!L n (u.D′)) (x.E)
≡ !L n (u. cut D′ (x.E)) By rule (cut/!L/−)
⇒ !L n (u. F ′) = F for some F ′ (νx)(P ′ | Q′) By i.h. on D′ and E

F (νx)(P ′ | Q′)

Case: D = cut D1 (n.D2) and E arbitrary.

D1 Pn1 and D2 P x2 and P x2
(νy)x〈y〉→ P ′x2 where

P = (νn)(Pn1 | P x2)
(νy)x〈y〉→ (νn)(Pn1 | P ′x2) = P ′x By inversion

cut D (x.E) = cut (cut D1 (n.D2)) (x.E)
≡ cut D1 (n. cut D2 (x.E)) By rule (cut/cut/−)
⇒ cut D1 (n. F2) = F where F2 (νx)(P ′x2 | Q′z) By i.h. on D2 and E

F (νn)(Pn1 | (νx)(P ′x2 | Q′z))
≡ (νx)((νn)(Pn1 | P ′x2) | Q′z)
= (νx)(P ′x | Q′z)

Case: D = cut! D1 (u.D2) and E arbitrary.

D1 (!u(n).Pn1) and D2 P x2 and P x2
(νy)x〈y〉→ P ′x2 where

P = (νu)((!u(n).Pn1) | P x2)
(νy)x〈y〉→ (νu)((!u(n).Pn1) | P ′x2) = P ′x By inversion

cut D (x.E) = cut (cut! D1 (u.D2)) (x.E)
≡ cut! D1 (u. cut D2 (x.E)) By rule (cut/cut!/−)
⇒ cut D1 (u. F2) = F where F2 (νx)(P ′x2 | Q′z) By i.h. on D2 and E

F (νu)((!u(n).Pn1) | (νx)(P ′x2 | Q′z))
≡ (νx)((νu)((!u(n).Pn1) | P ′x2) | Q′z)
= (νx)(P ′x | Q′z)

Case: E = 1L n E′ and D arbitrary.

E′ Qz By inversion
cut D (x.E) = cut D (x.1L n E′)
≡ 1L n (cut D (x.E′)) By rule (cut/−/1L)
⇒ 1L n F ′ = F for some F ′ (νx)(P ′x | Q′z) By i.h. on D and E′

F (νx)(P ′x | Q′z)

Case: E = !L n (u.E′) and D arbitrary.

25

E′ Qz By inversion
cut D (x.E) = cut D (x. !L n (u.E′)
≡ !L n (u. cut D (x.E′)) By rule (cut/−/!L)
⇒ !L n (u. F ′) = F for some F ′ (νx)(P ′x | Q′z) By i.h. on D and E′

F (νx)(P ′x | Q′z)

Case: E = cut E1 (n.E2) and x ∈ FV (E1).

E1 Qn1 and E2 Qz2 for Qn1
x(y)→ Q′n1 where

Q = (νn)(Qn1 | Qz2)
x(y)→ (νn)(Q′n1 | Qz2) By inversion

cut D (x.E) = cut D (x. cut E1 (n.E2))
= cut (cut D (x.E1)) (n.E2) By rule (cut/cut/−) and x 6∈ FV (E2)
⇒ cut F1 (n.E2) = F for some F1 (νx)(P ′x | Q′n1) By i.h. on D and E1

F (νn)((νx)(P ′x | Q′n1) | Qz2)
≡ (νx)(P ′x | (νn)(Q′n1 | Qz2))
= (νx)(P ′x | Q′z)

Case: E = cut E1 (n.E2) and x ∈ FV (E2).

E1 Qn1 and E2 Qz2 for Qz2
x(y)→ Q′z2 where

Q = (νn)(Qn1 | Qz2)
x(y)→ (νn)(Qn1 | Q′z2) By inversion

cut D (x.E) = cut D (x. cut E1 (n.E2))
= cut E1 (n. cut D (x.E2)) By rule (cut/−/cut) and x 6∈ FV (E1)
⇒ cut E1 (n. F2) = F for some F2 (νx)(P ′x | Q′z2) By i.h. on D and E2

F (νn)(Qn1 | (νx)(P ′x | Q′z2))
≡ (νx)(P ′x | (νn)(Qn1 | Q′z2))
= (νx)(P ′x | Q′z)

Case: E = cut! E1 (u.E2)

x ∈ FV (E2) By inversion

E1 (!u(n).Qn1) and E2 Qz2 for Qz2
x(y)→ Q′z2 where

Q = (νu)((!u(n).Qn1) | Qz2)
x(y)→ (νu)((!u(n).Qn1) | Q′z2) By inversion

cut D (x.E) = cut D (x. cut! E1 (u.E2))
= cut! E1 (u. cut D (x.E2)) By rule (cut/−/cut!)
⇒ cut! E1 (u. F2) = F for some F2 (νx)(P ′x | Q′z2) By i.h. on D and E2

F (νu)((!u(n).Qn1) | (νx)(P ′x | Q′z2))
≡ (νx)(P ′x | (νu)((!u(n).Qn1) | Q′z2))
= (νx)(P ′x | Q′z)

Lemma A.7. Assume

(a) Γ; ∆1 ` D P :: x:C1(C2 with P
x(y)→ P ′;

(b) Γ; ∆2, x:C1(C2 ` E Q :: z:C with Q
(νy)x〈y〉→ Q′.

Then

26

(c) cut D(x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(νy)(P ′ | Q′).

Proof. By simultaneous induction on D and E. The possible cases for D are(R, 1L, !L, cut and cut!. The possible
cases for E are(L, 1L, !L, cut, and cut!.

Case: D =(R (x.D1) and E =(L x E1 (x.E2).

E1 Qy1 and E2 Qz2 where

Qz = (νy)(x〈y〉. (Qy1 | Qz2))
(νy)x〈y〉→ (νy)(Qy1 | Qz2) = Q′x By inversion

D1 P ′x where P x = x(y).P ′x
x(y)→ P ′x By inversion

cut D (x.E) = cut ((R (x.D1)) ((L x E1 (x.E2))
⇒ cut E1 (y. cut D1 (x.E2)) = F By rule (cut/(R/(L)

F (νy)(Qy1 | (νx)(P x1 | Qz2)) ≡ (νx)((νy)P x1 | (Q
y
1 | Qz2)) = (νx)(P ′x | Q′z)

Case: D = 1L n D′ and E arbitrary.

D′ P By inversion

cut D (x.E) = cut (1L n D′) (x.E)
≡ 1L n (cut D′ (x.E)) By rule (cut/1L/−)
⇒ 1L n F ′ = F for some F ′ (νx)(P ′ | Q′) By i.h. on D′ and E

F (νx)(P ′ | Q′)

Case: D = !L n (u.D′) and E arbitrary.

D′ P By inversion

cut D (x.E) = cut (!L n (u.D′)) (x.E)
≡ !L n (u. cut D′ (x.E)) By rule (cut/!L/−)
⇒ !L n (u. F ′) = F for some F ′ (νx)(P ′ | Q′) By i.h. on D′ and E

F (νx)(P ′ | Q′)

Case: D = cut D1 (n.D2) and E arbitrary.

D1 Pn1 and D2 P x2 and P x2
(νy)x〈y〉→ P ′x2 where

P = (νn)(Pn1 | P x2)
(νy)x〈y〉→ (νn)(Pn1 | P ′x2) = P ′x By inversion

cut D (x.E) = cut (cut D1 (n.D2)) (x.E)
≡ cut D1 (n. cut D2 (x.E)) By rule (cut/cut/−)
⇒ cut D1 (n. F2) = F where F2 (νx)(P ′x2 | Q′z) By i.h. on D2 and E

F (νn)(Pn1 | (νx)(P ′x2 | Q′z))
≡ (νx)((νn)(Pn1 | P ′x2) | Q′z)
= (νx)(P ′x | Q′z)

Case: D = cut! D1 (u.D2) and E arbitrary.

D1 (!u(n).Pn1) and D2 P x2 and P x2
(νy)x〈y〉→ P ′x2 where

P = (νu)((!u(n).Pn1) | P x2)
(νy)x〈y〉→ (νu)((!u(n).Pn1) | P ′x2) = P ′x By inversion

27

cut D (x.E) = cut (cut! D1 (u.D2)) (x.E)
≡ cut! D1 (u. cut D2 (x.E)) By rule (cut/cut!/−)
⇒ cut D1 (u. F2) = F where F2 (νx)(P ′x2 | Q′z) By i.h. on D2 and E

F (νu)((!u(n).Pn1) | (νx)(P ′x2 | Q′z))
≡ (νx)((νu)((!u(n).Pn1) | P ′x2) | Q′z)
= (νx)(P ′x | Q′z)

Case: E = 1L n E′ and D arbitrary.

E′ Qz By inversion
cut D (x.E) = cut D (x.1L n E′)
≡ 1L n (cut D (x.E′)) By rule (cut/−/1L)
⇒ 1L n F ′ = F for some F ′ (νx)(P ′x | Q′z) By i.h. on D and E′

F (νx)(P ′x | Q′z)

Case: E = !L n (u.E′) and D arbitrary.

E′ Qz By inversion
cut D (x.E) = cut D (x. !L n (u.E′)
≡ !L n (u. cut D (x.E′)) By rule (cut/−/!L)
⇒ !L n (u. F ′) = F for some F ′ (νx)(P ′x | Q′z) By i.h. on D and E′

F (νx)(P ′x | Q′z)

Case: E = cut E1 (n.E2) and x ∈ FV (E1).

E1 Qn1 and E2 Qz2 for Qn1
x(y)→ Q′n1 where

Q = (νn)(Qn1 | Qz2)
x(y)→ (νn)(Q′n1 | Qz2) By inversion

cut D (x.E) = cut D (x. cut E1 (n.E2))
= cut (cut D (x.E1)) (n.E2) By rule (cut/cut/−) and x 6∈ FV (E2)
⇒ cut F1 (n.E2) = F for some F1 (νx)(P ′x | Q′n1) By i.h. on D and E1

F (νn)((νx)(P ′x | Q′n1) | Qz2)
≡ (νx)(P ′x | (νn)(Q′n1 | Qz2))
= (νx)(P ′x | Q′z)

Case: E = cut E1 (n.E2) and x ∈ FV (E2).

E1 Qn1 and E2 Qz2 for Qz2
x(y)→ Q′z2 where

Q = (νn)(Qn1 | Qz2)
x(y)→ (νn)(Qn1 | Q′z2) By inversion

cut D (x.E) = cut D (x. cut E1 (n.E2))
= cut E1 (n. cut D (x.E2)) By rule (cut/−/cut) and x 6∈ FV (E1)
⇒ cut E1 (n. F2) = F for some F2 (νx)(P ′x | Q′z2) By i.h. on D and E2

F (νn)(Qn1 | (νx)(P ′x | Q′z2))
≡ (νx)(P ′x | (νn)(Qn1 | Q′z2))
= (νx)(P ′x | Q′z)

Case: E = cut! E1 (u.E2)

x ∈ FV (E2) By inversion

E1 (!u(n).Qn1) and E2 Qz2 for Qz2
x(y)→ Q′z2 where

28

Q = (νu)((!u(n).Qn1) | Qz2)
x(y)→ (νu)((!u(n).Qn1) | Q′z2) By inversion

cut D (x.E) = cut D (x. cut! E1 (u.E2))
= cut! E1 (u. cut D (x.E2)) By rule (cut/−/cut!)
⇒ cut! E1 (u. F2) = F for some F2 (νx)(P ′x | Q′z2) By i.h. on D and E2

F (νu)((!u(n).Qn1) | (νx)(P ′x | Q′z2))
≡ (νx)(P ′x | (νu)((!u(n).Qn1) | Q′z2))
= (νx)(P ′x | Q′z)

Lemma A.8. Assume

(a) Γ; ∆1 ` D P :: x:!A with P
x(y)→ P ′;

(b) Γ; ∆2, x:!A ` E Q :: z:C with Q
(νy)x〈y〉→ Q′.

Then

(c) cut D(x.E) ≡⇒≡ F for some F ;

(d) Γ; ∆1,∆2 ` F R :: z : C for some R ≡ (νx)(νy)(P ′ | Q′).

Proof. By simultaneous induction on the structure ofD, E. There are only five possible cases forD: !R D′1, 1L n D′1,
!L n (u.D1), cut D′1 (n.D′′1), and cut! D′1 (u.D′′1). In all other cases P cannot offer x(y), which follows by analysis
of the typed extraction rules and the definition of α→. There are only four possible cases for E: !L n (u.E′2), 1L n E′2,
cut E′2 (n.E′′2), and cut! E′2 (u.E′′2). In all other cases Q cannot offer (νy)x〈y〉, which follows by analysis of the
typed extraction rules and the definition of α→.

Case: D = !R D′1, E = !L x (u. E′2).

∆1 = (·)
Γ; · ` D′1 R1 :: u:A where P = !x(u).R1

Γ, u : A; ∆2 ` E′ Q1 :: z:C where Q = (νy)x〈y〉.Q′1 by inversion
cut D (x.E) = this case
cut (!R D′1) (x. !L x (u. E′2))
≡ cut! D′1 (u.E′2) by (cut/!R/!L)
cut! D′1 (u.E′2) ≡⇒≡ cut! D′1 (u.E∗) for some E∗

Γ, u : A; ∆2 ` E∗ R′ :: z:C with R′ ≡ (νy)(R1{y/u} | Q′1) by Lemma !Red
Pick F = cut! D′1 (u.E∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by cut
with R = (νx)(!x(u).R1 | (νy)(R1{y/u} | Q′1))
≡ (νy)(νx)(!x(u).P1 | R1{y/u} | Q′1)
≡ (νy)(νx)(P ′1 | Q′1) since P ′1 ≡ !x(u).R1 | R1{y/u} [satisfying (d)]

Case: D arbitrary, E = !L y (u. E′2).

∆2 = (∆∗, y : !B)
Γ, u : B; ∆∗, x : !A ` E′2 Q1 :: z:C by inversion
cut D (x.E′2) ≡⇒≡ E∗ for some E∗

Γ, u : B; ∆∗ ` E∗ R′ :: z:C with R′ ≡ (νy)(νx)(P ′1 | Q′1) by i.h.
cut D (x.E) = cut D (x. !L y (u. E′2))
≡ !L y (u. cut D (x.E′2)) by (cut/− /!L)

29

≡⇒≡ !L y (u. E∗) by congruence
Pick F = !L y (u. E∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by !L
with R = R′ [satisfying (d)]

Case: D = !L y (u. D′1), E arbitrary.

∆1 = (∆∗, y : !B)
Γ, u : B; ∆∗ ` D′1 P1 :: x:!A by inversion
cut D′1 (x.E) ≡⇒≡ D∗ for some D∗

Γ, u : B; ∆∗ ` D∗ R′ :: z:C with R′ ≡ (νy)(νx)(P ′1 | Q′1) by i.h.
cut D (x.E) = cut (!L y (u. D′1)) (x.E)
≡ !L y (u. cut D′1 (x.E)) by (cut/!L/−)
≡⇒≡ !L y (u. D∗) by congruence
Pick F = !L y (u. D∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by !L
with R = R′ [satisfying (d)]

Case: D arbitrary, E = 1L n E′2.

∆2 = (∆∗, n : 1)
Γ, x : A; ∆∗ ` E′2 Q1 :: z:C by inversion
cut D (x.E′2) ≡⇒≡ E∗ for some E∗

Γ; ∆∗ ` E∗ R′ :: z:C with R′ ≡ (νy)(νx)(P ′1 | Q′1) by i.h.
cut D (x.E) = cut D (x.1L n E′2)
≡ 1L n (cut D (x.E′2)) by (cut/−/1L)
≡⇒≡ 1L n E∗ by congruence
Pick F = 1L n E∗ [satisfying (c)]
Γ; ∆ ` F R :: z:C by 1L
with R = R′ [satisfying (d)]

Case: D = 1L n D′1, E arbitrary.

∆1 = (∆∗, n : 1)
Γ; ∆∗ ` D′1 P1 :: x:!A by inversion
cut D′1 (x.E) ≡⇒≡ D∗ for some D∗

Γ; ∆∗ ` D∗ R′ :: z:C with R′ ≡ (νy)(νx)(P ′1 | Q′1) by i.h.
cut D (x.E) = cut (1L n. D′1) (x.E)
≡ 1L n. (cut D′1 (x.E)) by (cut/1L/−)
≡⇒≡ 1L n D∗ by congruence
Pick F = 1L n D∗ [satisfying (c)]
Γ; ∆ ` F R :: z:C by 1L
with R = R′ [satisfying (d)]

Case: D arbitrary, E = cut E′2 (n. E′′2).

∆2 = (∆′2,∆
′′
2)

Q1 = (νn)(R1 | R2)
Γ, x : A; ∆′2 ` E′2 R1 :: n:B
Γ, x : A; ∆′′2 , n : B ` E′′2 R2 :: z:C by inversion

Subcase: R1
(νy)x〈y〉→ R′1 and Q′1 = (νn)(R′1 | R2)

30

cut D (x.E′2) ≡⇒≡ D∗ for some D∗

Γ; ∆′2 ` D∗ R′ :: n:B with R′ ≡ (νy)(νx)(P ′1 | R′1) by i.h.
cut D (x.E) = cut D (x. cut E′2 (n. E′′2))
≡ cut (cut D (x. E′2)) (n.E′′2) by (cut/− /cut1)
≡⇒≡ cut D∗ (n.E′′2) by congruence
Pick F = cut D∗ (n.E′′2) [satisfying (c)]
Γ; ∆ ` F R :: z:C by cut
with R = (νn)(R′ | R2)
≡ (νn)((νy)(νx)(P ′1 | R′1) | R2)
≡ (νn)(νy)(νx)(P ′1 | R′1 | R2)
≡ (νy)(νx)(P ′1 | (νn)(R′1 | R2))
≡ (νy)(νx)(P ′1 | Q′1) [satisfying (d)]

Subcase: R2
(νy)x〈y〉→ R′2 and Q′1 = (νn)(R1 | R′2)

cut D (x.E′′2) ≡⇒≡ D∗ for some D∗

Γ; ∆′′2 , n : B ` D∗ R′ :: z:C with R′ ≡ (νy)(νx)(P ′1 | R′2) by i.h.
cut D1 (x.D2) = cut D (x. cut E′2 (n. E′′2))
≡ cut E′2 (n. cut D (x.E′′2)) by (cut/− /cut2)
≡⇒≡ cut E′2 (n.D∗) by congruence
Pick F = cut E′2 (n.D∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by cut
with R = (νn)(R1 | R′)
≡ (νn)(R1 | (νy)(νx)(P ′1 | R′2))
≡ (νy)(νx)(νn)(R1 | P ′1 | R′2)
≡ (νy)(νx)(νn)(P ′1 | R1 | R′2)
≡ (νy)(νx)(P ′1 | (νn)(R1 | R′2))
≡ (νy)(νx)(P ′1 | Q′1) [satisfying (d)]

Case: D = cut D′1 (n. D′′1), E arbitrary.

∆1 = (∆′1,∆
′′
1)

P1 = (νn)(R1 | R2)
Γ; ∆′1 ` D′1 R1 :: n:B
Γ; ∆′′1 , n:B ` D′′1 R2 :: x:!A by inversion

R2
x(y)→ R′2 and P ′1 = (νn)(R1 | R′2)

cut D′′1 (x.E) ≡⇒≡ D∗ for some D∗

Γ; ∆′′1 , n:B,∆2 ` D∗ R′ :: z:C with R′ ≡ (νy)(νx)(R′2 | Q′1) by i.h.
cut D (x.E) = cut (cut D′1 (n. D′′1)) (x. E)
≡ cut D′1 (n. cut D′′1 (x.E)) by (cut/− /cut1)
≡⇒≡ cut D′1 (n.D∗) by congruence
Pick F = cut D′1 (n.D∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by cut
with R = (νn)(R1 | R′)
≡ (νn)(R1 | (νy)(νx)(R′2 | Q′1)
≡ (νy)(νx)(νn)(R1 | R′2 | Q′1)
≡ (νy)(νx)(νn)(R1 | R′2) | Q1))
≡ (νy)(νx)(P ′1 | Q′1) [satisfying (d)]

Case: D arbitrary, E = cut! E′2 (u. E′′2).

Q1 = (νu)(!u(w).R1 | R2)

31

Γ; · ` E′2 R1 :: w:B
Γ, u : B; ∆2, x : !A ` E′′2 R2 :: z:C by inversion

R2
(νy)x〈y〉→ R′2 and Q′1 = (νu)(!u(w).R1 | R′2)

cut D (x.E′′2) ≡⇒≡ D∗ for some D∗

Γ, u : B; ∆2 ` D∗ R′ :: z:C with R′ ≡ (νy)(νx)(P ′1 | R′2) by i.h.
cut D (x.E) = cut D (x. cut! E′2 (u. E′′2))
≡ cut! E′2 (u. cut D (x.E′′2)) by (cut/− /cut!)
≡⇒≡ cut! E′2 (u.D∗) by congruence
Pick F = cut! E′2 (u.D∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by cut!

with R = (νu)(!u(w).R1 | R′)
≡ (νu)(!u(w).R1 | (νy)(νx)(P ′1 | R′2))
≡ (νy)(νx)(νu)(!u(w).R1 | P ′1 | R′2)
≡ (νy)(νx)(νu)(P ′1 | !u(w).R1 | R′2)
≡ (νy)(νx)(P ′1 | (νu)(!u(w).R1 | R′2))
≡ (νy)(νx)(P ′1 | Q′1) [satisfying (d)]

Case: D1 = cut! D′1 (u. D′′1), E arbitrary.

P1 = (νu)(!u(w).R1 | R2)
Γ ` D′1 R1 :: w:B
Γ, u : B; ∆1 ` D′′1 R2 :: x:!A by inversion

R2
x(y)→ R′2 and P ′1 = (νu)(!u(w).R1 | R′2)

cut D′′1 (x.E) ≡⇒≡ D∗ for some D∗

Γ, u : B; ∆ ` D∗ R′ :: z:C with R′ ≡ (νy)(νx)(R′2 | Q′1) by i.h.
cut D1 (x.E) = cut (cut! D′1 (u. D′′1)) (x.E)
≡ cut! D′1 (u. cut D′′1 (x.E)) by (cut/cut!/−)
≡⇒≡ cut! D′1 (u.D∗) by congruence
Pick F = cut! D′1 (u.D∗) [satisfying (c)]
Γ; ∆ ` F R :: z:C by cut!

with R = (νu)(!u(w).R1 | (νy)(νx)(R′2 | Q′1))
≡ (νy)(νx)(νu)(!u(w).R1 | R′2 | Q′1))
≡ (νy)(νx)((νu)(!u(w).R1 | R′2) | Q′1))
≡ (νy)(νx)(P ′1 | Q′1) [satisfying (d)]

Lemma A.9. Assume

(a) Γ; · ` D P :: u:A and

(b) Γ, u:A; ∆ ` E Q :: z:C with Q
(νy)u〈y〉→ Q′.

Then

(c) cut! D1 (u.D2) ≡⇒≡ cut! D1 (u. F) for some F ;

(d) Γ, u:A; ∆ ` F R :: z:C with R ≡ (νy)(P{y/u} | Q′).

Proof. By induction on the structure of E. There are only five possible cases for E: 1L n E′2, copy u (x.E′2),
!L n (u.E′2), cut E′2 (n.E′′2), and cut! E′2 (v.E′′2). In all other cases Q1 cannot offer (νy)u〈y〉, which follows by
analysis of the typed extraction rules and the definition of α→.

32

Case: E = copy u (x. E′2).

Q1 ≡ (νy)u〈y〉.Q′1
Γ, u : A; ∆, y : A ` E′2 Q′1 :: z : C by inversion
cut! D (u. (copy u (y. E′2))
⇒ cut D (y. cut! D (u. E′2)) by (cut!/− /copy)
≡ cut! D (u. cut D (y.E′2)) by (cut/− /cut!)
Pick F = cut D (y. E′2) [satisfying (c)]
Γ, u : A; ∆ ` F R :: z:C with R ≡ (νy)(P1{y/u} | Q′1) [satisfying (d)]

Case: E = 1L n E′2.

∆ = (∆∗, n : 1)

Γ, u:A; ∆∗ ` E′2 Q1 :: z:C with Q1
(νy)u〈y〉→ Q′1 By inversion

cut! D (u.E′2) ≡⇒≡ cut! D (u.D∗) for some D∗

Γ; ∆∗ ` D∗ R′ :: z:C with R′ ≡ (νy)(P1{y/u} | Q′1) By i.h.

cut! D (u.1L n E′2)
≡ 1L n (cut! D (u.E′2)) by (cut!/− /1L)
≡⇒≡ 1L n (cut! D (u.D∗)) By congruence
≡ cut! D (u.1L n D∗) by (cut!/− /1L)
Pick F = 1L n D∗ [satisfying (c)]
Pick R = R′

Γ, u : A; ∆ ` F R :: z:C with R ≡ (νy)(P1{y/u} | Q′1) By 1L [satisfying (d)]

Case: E = !L x (v.E′2).

∆ = (∆∗, x : !B)

Γ, v:B, u:A; ∆∗ ` E′2 Q1 :: z:C with Q1
(νy)u〈y〉→ Q′1 By inversion

cut! D (u.E′2) ≡⇒≡ cut! D (u.D∗) for some D∗

Γ, v:B; ∆∗ ` D∗ R′ :: z:C with R′ ≡ (νy)(P1{y/u} | Q′1) By i.h.

cut! D (u. (!L x (v.E′2)))
≡ !L x (v.cut! D (u.E′2)) by (cut!/− /!L)
≡⇒≡ !L x (v. cut! D (u.D∗)) By congruence
≡ cut! D (u. !L x (v.D∗)) by (cut!/− /!L)
Pick F = !L x (v.D∗)) [satisfying (a)]
Pick R = R′

Γ, u : A; ∆ ` F R :: z:C with R ≡ (νy)(P1{y/u} | Q′1) By !L [satisfying (b)]

Case: E = cut E′2 (n.E′′2).

∆ = (∆1,∆2)
Γ, x : A; ∆1 ` E′2 R1 :: n:B
Γ, x : A; ∆2, n:B ` E′′2 R2 :: z:C By inversion
Q1 = (νn)(R1 | R2)

33

Either R1
(νy)x〈y〉→ R′1 and Q′1 ≡ (νn)(R′1 | R2), or

R2
(νy)x〈y〉→ R′2 and Q′1 ≡ (νn)(R1 | R′2)

Subcase: R1
(νy)x〈y〉→ R′1

cut! D (u.E′2) ≡⇒≡ cut! D (u.D∗) for some D∗

Γ, u : A; ∆1 ` D∗ S :: n:B
with S ≡ (νy)(P1{y/u} | R′1) By i.h.

cut! D (u. cut E′2 (n.E′′2))
≡ cut (cut!D (u.E′2)) (n. cut! D (u. E′′2)) by (cut!/− /cut)
≡ cut (cut! D (u.D∗)) (n. cut! D (u. E′′2)) By congruence
≡ cut! D (u. cut D∗ (n.E′′2)) by (cut!/− /cut)
Pick D = cut D∗ (n.D′′2) [satisfying (c)]
Pick R = (νn)(S | R2)
Γ, u : A; ∆ ` D R :: z:C By cut
with R = (νn)((νy)(P1{y/u} | R′1) | R2)
≡ (νy)(P1{y/u} | (νn)(R′1 | R2))
≡ (νy)(P1{y/u} | Q′1) [satisfying (d)]

Subcase: R2
(νy)x〈y〉→ R′2

cut! D (u.E′′2) ≡⇒≡ cut! D (u.D∗) for some D∗

Γ, u : A; ∆2, n : B ` D∗ S :: z:C
with S ≡ (νy)(P1{y/u} | R′2) By i.h.

cut! D (u. cut E′2 (n.E′′2))
≡ cut (cut!D (u.E′2)) (n. cut! D (u. E′′2)) By (cut!/− /cut)
≡ cut (cut! D (u.E′2)) (n. cut! D (u. D∗)) By congruence
≡ cut! D (u. cut E′2 (n.D∗)) by (cut!/− /cut)
Pick F = cut E′2 (n.D∗) [satisfying (c)]
Pick R = (νn)(R1 | S)
Γ, u : A; ∆ ` D R :: z:C By cut
with R = (νn)(R1 | (νy)(P1{y/u} | R′2))
≡ (νy)(P1{y/u} | (νn)(R1 | R′2))
≡ (νy)(P1{y/u} | Q′1) [satisfying (d)]

Case: E = cut! E′2 (v.E′′2).

Γ, u : A;` E′2 R1 :: w:B
Γ, v:B, u : A; ∆2,` E′′2 R2 :: z:C By inversion
Q1 = (νv)(!v(w).R1 | R2)

R2
(νy)x〈y〉→ R′2 and Q′1 ≡ (νv)(!v(w).R1 | R′2)

cut! D (v.E′′2) ≡⇒≡ cut! D (v.D∗) for some D∗

Γ, v : B, u : A; ∆2 ` D∗ S :: z:C
with S ≡ (νy)(P1{y/u} | R′2) By i.h.

cut! D (u. cut! E′2 (v.E′′2))
≡ cut! (cut!D (u.E′2)) (v. cut! D (u. E′′2)) by (cut!/− /cut!)
≡ cut! (cut!D (u.E′2)) (v. cut! D (u. D∗)) By congruence
≡ cut! D (u. cut! E′2 (v.D∗)) by (cut!/− /cut!)
Pick F = cut! E′2 (v.D∗) [satisfying (c)]

34

Γ, u : A; ∆ ` F R :: z:C By cut
with R = (νv)(!v(w).R1 | S)
≡ (νv)(!v(w).R1 | (νy)(P1{y/u} | R′2))
≡ (νy)(νv)(!v(w).R1 | P1{y/u} | R′2)
≡ (νy)(νv)(P1{y/u} | !v(w).R1 | R′2)
≡ (νy)(P1{y/u} | (νv)(!v(w).R1 | R′2))
≡ (νy)(P1{y/u} | Q′1) [satisfying (d)]

Lemma A.10. Assume

(a) Γ; · ` D P :: u:A and

(b) Γ, u:A; ∆2 ` E Q :: z:C with Q
(νy)u〈y〉→ Q′.

Then

(c) cut! D (u.E) ≡⇒≡ F for some F and

(d) Γ; ∆ ` F R :: z : C for some R ≡ (νu)(!u(x).P | (νy)(P{y/u} | Q′)).

Proof. Directly from Lemma A.9 and the typed extraction rule for cut!.

Theorem A.11. Assume Γ; ∆ ` D P :: z:A and P → Q.
Then there is E such that D ≡⇒≡ E and Γ; ∆ ` E Q :: z:A

Proof. By induction on the structure of D. The possible cases for D are 1L, !L, cut, and cut!. In all other cases P
cannot offer τ .

Case: D = 1L n D′.

∆ = (∆∗, n : 1)
Γ; ∆∗ ` D′ P :: z:A by inversion
Γ; ∆∗ ` E′ Q :: z:A for some E′ with D′ ≡⇒≡ E′ by i.h.
Pick E = 1L n E′.
D ≡⇒≡ E by congruence
Γ; ∆ ` E Q :: z:A by 1L

Case: D = !L x (u. D′).

∆ = (∆∗, x : !B)
Γ, u : B; ∆∗ ` D′ P :: z:A by inversion
Γ, u : B; ∆∗ ` E′ Q :: z:A for some E′ with D′ ≡⇒≡ E′ by i.h.
Pick E = !L x (u. E′).
D ≡⇒≡ E by congruence
Γ : ∆ ` E Q :: z:A by 1L

Case: D = cut! D1 (u.D2).

P ≡ (νu)(!u(w).P1 | P2)
Γ;` D1 P1 :: u:C
Γ, u : C; ∆ ` D2 P2 :: z:A by inversion
From P → Q either

35

(1) P2 → Q2 and Q = (νu)(!u(w).P1 | Q2)

(2) P2
(νy)u〈y〉→ Q2 and Q = (νu(!u(w).P1 | (νy)(P1{y/u} | Q2))

Subcase (1):
Γ, u : C; ∆ ` D Q2 :: z:A for some E′ with D2 ≡⇒≡ E by i.h.
cut! D1 (u.D2) ≡⇒≡ cut! D1 (u.E′)
Pick E = cut! D1 (u.E′)
Γ; ∆ ` E Q :: z:A by cut!

Subcase (2):
cut! D1 (u.D2) ≡⇒≡ E for some E
Γ; ∆ ` E R :: z:A with R ≡ Q by Corollary A.10

Case: D = cut D1 (x.D2).

P ≡ (νx)(P1 | P2)
∆ = (∆1,∆2)
Γ; ∆1 ` D1 P1 :: x:C
Γ; ∆2, x : C ` D2 P1 :: z:A by inversion
Since P → Q there are four subcases:
(1) P1 → Q1 and Q = (νx)(Q1 | P2)
(2) P2 → Q2 and Q = (νx)(P1 | Q2)

(3) P1
α→ Q1 and P2

α→ Q2

(4) P1
α→ Q1 and P2

α→ Q2

Subcase (1): P1 → Q1

D1 ≡⇒≡ E1 for some E1

Γ; ∆1 ` E1 Q1 :: x:C by i.h.
D = cut D1 (x.D2)
≡⇒≡ cut E1 (x.D2) by congruence
Pick E = cut E1 (x.D2)
Γ; ∆ ` E Q :: z:A

Subcase (2): P2 → Q2

Symmetric to Subcase (1).
Subcase (3): P1

α→ Q1 and P2
α→ Q2

Subsubcase: C = 1
not possible

Subsubcase: C = C1 N C2

α = x.inl or α = x.inr By Lemma A.1
cut D1 (x.D2) ≡⇒≡ D for some D
Γ; ∆ ` D R :: z : C
with R ≡ (νx)(Q1 | Q2) = Q by Lemmas A.2 and A.3

Subsubcase: C = C1 ⊕ C2

not possible

Subsubcase: C = C1 ⊗ C2

not possible

Subsubcase: C = C1(C2

α = x(y) and α = (νy)x〈y〉 By Lemma A.1
cut D1 (x.D2) ≡⇒≡ D for some D
Γ; ∆ ` D Q :: z : C
with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma A.7

36

Subsubcase: C = !C1

α = x(y) and α = (νy)x〈y〉 By Lemma A.1
cut D1 (x.D2) ≡⇒≡ D for some D
Γ; ∆ ` D Q :: z : C
with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma A.8
Subcase (4): P1

α→ Q1 and P2
α→ Q2

Subsubcase: C = 1
not possible

Subsubcase: C = C1 N C2

not possible

Subsubcase: C = C1 ⊕ C2

α = x.inl or α = x.inr By Lemma A.1
cut D1 (x.D2) ≡⇒≡ D for some D
Γ; ∆ ` D R :: z : C
with R ≡ (νx)(Q1 | Q2) = Q by Lemmas A.4 and A.5

Subsubcase: C = C1 ⊗ C2

α = (νy)x〈y〉 and α = x(y) By Lemma A.1
cut D1 (x.D2) ≡⇒≡ D for some D
Γ; ∆ ` D Q :: z : C
with R ≡ (νx)(νy)(Q1 | Q2) = Q

Subsubcase: C = C1(C2

not possible

Subsubcase: C = !C1

not possible

A.3 Progress Lemmas
Lemma A.12. Assume Γ,∆ ` D P :: z : C and not live(P); then

1. C = 1 or C = !C ′ for some C ′.

2. (xi : Ai) ∈ ∆ implies Ai = 1 or there is Bj with Ai = !Bi;

3. C = !C ′ implies P ≡ (νx)(!z(y).R | R′).

Proof. By structural induction on the structure of D. The only possible cases for D are 1R, 1L D′, !L x (u.D′),
cut D′ (x. D′′), R! D′, and cut! D′ (x. D′′) , which follows by analysis of the typing rules.

Case: D = cut D′ (x. D′′)

∆ = (∆1, D2)
P ≡ (νx)(P1 | P2)
Γ; ∆1 ` D′ P1 :: x:A
Γ; ∆2, x : A ` D′′ P2 :: z:C by inversion
not live(P1) and not live(P2) Since not live(P2)

C = 1 or C = !C ′ for some C ′ [satisfying (1)]
(xi : Ai) ∈ (∆2, x : A) implies Ai = 1 or there is Bj with Ai = !Bi
C = !C ′ implies P2 ≡ (νn)(!z(y).P ′2 | P ′′′2) by i.h.

A = 1 or A = !A′ for some A′

37

(xi : Ai) ∈ ∆1 implies Ai = 1 or there is Bj with Ai = !Bi
A = !A′ implies P1 ≡ (νm)(!x(y).P ′1 | P ′′′1) by i.h.

(xi : Ai) ∈ (∆1,∆2) = ∆ implies Ai = 1
or there is Bj with Ai = !Bi [satisfying (2)]

C = !C ′ implies P ≡ (νx)(P1 | P2)
≡ (νx)((νm)(!x(y).P ′1 | P ′′1) | (νn)(!z(y).P ′2 | P ′′2))
≡ (νx)(νm)(νn)(!x(y).P ′1 | P ′′1 | !z(y).P ′2 | P ′′2)
≡ (νx)(νm)(νn)(z(y).R | R′)
with R = P ′2 and R′ = !x(y).P ′1 | P ′′1 | !z(y).P ′2 | P ′′2 [satisfying (3)]

Case: D = cut! D′ (u. D′′)

P ≡ (νx)(!x(y).P1 | P2)
Γ;` D′ P1 :: y:A
Γ, u : A; ∆ ` D′′ P2 :: z:C by inversion
not live(P2) Since not live(P2)

C = 1 or C = !C ′ for some C ′ [satisfying (1)]
(xi : Ai) ∈ ∆ implies Ai = 1 or there is Bj with Ai = !Bi [satisfying (2)]
C = !C ′ implies P2 ≡ (νn)(!z(y).P ′2 | P ′′2) by i.h.

C = !C ′ implies P ≡ (νx)(!x(y).P1 | P2)
≡ (νx)(!x(y).P1 | (νn)(!z(y).P ′2 | P ′′2))
≡ (νx)(νn)(!x(y).P1 | !z(y).P ′2 | P ′′2))
≡ (νx)(νn)(z(y).R | R′)
with R = P ′2 and R′ = !x(y).P1 | P ′′2 [satisfying (3)]

Lemma A.13. Let Γ; ∆ ` D P :: z : C. If live(P) then there is Q such that one of the following holds:

(a) P → Q,

(b) P α→ Q for some α where s(α) ∈ z,Γ,∆ and s(α) ∈ Γ,∆ if C = !A.

Proof. By induction on the structure of D. All cases are possible for D except 1R and !R D′, which follows by
analysis of the typing rules.

Case: D = 1L n D′

∆ = (∆∗, n : 1)
Γ; ∆∗ ` D′ P :: z:C by inversion
There is Q such that either P → Q, or P α→ Q
for some α with s(α) ∈ z,Γ,∆∗ and s(α) ∈ Γ,∆∗ if C = !A. by i.h.
There is Q such that either P → Q, or P α→ Q
for some α with s(α) ∈ z,Γ,∆ and s(α) ∈ Γ,∆ if C = !A.

Case: D = !L n (u. D′)

∆ = (n : !A,∆∗)
Γ, u : A; ∆∗ ` D′ P :: z:C by inversion
There is Q such that either P → Q, or P α→ Q

38

for some α with s(α) ∈ z,Γ, u,∆∗ and s(α) ∈ Γ, u,∆∗ if C = !A. by i.h.
There is Q such that either P → Q, or P α→ Q
for some α with s(α) ∈ z,Γ,∆ and s(α) ∈ Γ,∆ if C = !A.

Case: D = ⊗R D1 D2

∆ = (∆1,∆2), C = C1 ⊗ C2.
Γ; ∆1 ` D1 Q :: y:C1

Γ; ∆2 ` D′2 R :: z:C2

P ≡ (νy)z〈y〉.(Q | R) by inversion

P
(νy)z〈y〉→ Q with z ∈ z,Γ,∆ and C 6= !A.

Case: D = ⊗L (y. D1)

∆ = (D∗, x : C1 ⊗ C2)
Γ; ∆∗, y : C1, x : C2 ` D1 Q :: z:C
P ≡ x(y).Q by inversion

P
x(y)→ Q with x ∈ Γ,∆

Case: D =(R D1

C = C1(C2.
Γ; ∆, y : C1 ` D1 Q :: z:C2

P ≡ z(y).Q by inversion

P
z(y)→ Q with z ∈ z,Γ,∆ and C 6= !A.

Case: D =(L D1 D2

∆ = (∆1,∆2, x : C1(C2)
Γ; ∆1 ` D1 Q :: y:C1

Γ; ∆2, x : C2 ` D′2 R :: z:C2

P ≡ (νy)x〈y〉.(Q | R) by inversion

P
(νy)x〈y〉→ Q with x ∈ Γ,∆

Case: D = cut D1 (x. D2)

∆ = (∆1,∆2)
Γ; ∆1 ` D1 P1 :: x:A
Γ; ∆2, x : A ` D2 P2 :: z:C
P ≡ (νx)(P1 | P2) by inversion
live(P1) or live(P2) since live(P)

Case (1): live(P1) and live(P2).
There is P ′1 such that either P1 → P ′1, or P1

α1→ P ′1
for some α1 with s(α1) ∈ x,Γ,∆1 and s(α1) ∈ Γ,∆1 if A = !B1.
There is P ′2 such that either P2 → P ′2, or P2

α2→ P ′2
for some α2 with s(α2) ∈ x,Γ,∆2, z and s(α2) ∈ x,Γ,∆2 if C = !B2. by i.h.

Subcase (0.1): P1 → P ′1 or P2 → P ′2
P → Q [satisfying (a)]

Subcase (1.1): s(α1) 6= x

39

P
α1→ Q ≡ (νx)(P ′1 | P2) with α1 ∈ Γ,∆ [satisfying (b)]

Subcase (1.2): s(α2) 6= x

P
α2→ Q ≡ (νx)(P1 | P ′2) with α2 ∈ z,Γ,∆ [satisfying (b)]

Subcase (1.3): s(α1) = s(α2) = x
α2 = α1 By Lemma A.1
P → Q with Q ≡ (νx)(νy)(P ′1 | P ′2) or Q ≡ (νx)(P ′1 | P ′2) [satisfying (a)]

Case (2): not live(P1) and live(P2)

There is P ′2 such that either P2 → P ′2, or P2
α2→ P ′2

for some α2 with s(α2) ∈ x,Γ,∆2, z and s(α2) ∈ x,Γ,∆2 if C = !B2 by i.h.

Subcase (2.1): P2 → P ′2
P → Q with Q ≡ (νx)(P1 | P ′2) [satisfying (a)]

Subcase (2.2): P2
α2→ P ′2

Subcase (2.2.1): s(α2) 6= x

P
α2→ Q with Q ≡ (νx)(P1 | P ′2) [satisfying (b)]

Subcase (2.2.2): s(α2) = x
A 6= 1 By Lemma A.1
P1 ≡ (νy)(!x(w).R′1 | R′′1)
A = !B By Lemma A.12

P1
x(y)→ P1

α2 = (νy)x〈w〉 By Lemma A.1
P → Q with Q ≡ (νx)(νy)(P1 | P ′2) [satisfying (a)]

Case (3): live(P1) and not live(P2)

There is P ′1 such that either P1 → P ′1, or P1
α1→ P ′1

for some α1 with s(α1) ∈ Γ,∆1, x and s(α1) ∈ Γ,∆1 if C = !B2 by i.h.
Subcase (3.1): P1 → P ′1
P → Q with Q ≡ (νx)(P ′1 | P2) [satisfying (a)]

Subcase (3.1): P1
α1→ P ′1

for some α1 with s(α1) ∈ Γ,∆1, x and s(α1) ∈ Γ,∆1 if A = !B for some B
Subcase (3.1.1) s(α1) = x
A = 1 or A = !B for some B By Lemma A.12
Subcase (3.1.1.1) A = 1

Impossible, since P1
α1→ P ′1 and s(α1) = x By Lemma A.1

Subcase (3.1.1.2) A = !B for some B
Impossible, since s(α1) = x contradicts x ∈ Γ,∆1.

Case: D = cut! D1 (u. D2)

Γ;` D1 P1 :: y:A
Γ, u : A; ∆ ` D2 P2 :: z:C
P ≡ (νu)(!u(y).P1 | P2) by inversion
live(P2) since live(P)

There is P ′2 such that either P2 → P ′2, or P2
α2→ P ′2

for some α2 with s(α2) ∈ u,Γ,∆, z and s(α2) ∈ u,Γ,∆ if C = !B.

Subcase (1): P2 → P ′2
P → Q with Q ≡ (νu)(P1 | P ′2) [satisfying (a)]

Subcase (2): P2
α2→ P ′2

Subcase (2.1): s(α2) 6= u

40

P
α2→ Q with Q ≡ (νu)(P1 | P ′2)

where s(α2) ∈ Γ,∆, z and s(α1) ∈ Γ,∆ if C = !B [satisfying (b)]
Subcase (2.2): s(α2) = u

P2
(νy)u〈y〉→ P ′2 By Lemma A.1

!u(y).P1
u(y)→ (P1 | !u(y).P1)

P → Q with Q ≡ (νx)(νy)(P1 | !u(y).P1 | P ′2) [satisfying (a)]

Theorem A.14. Let ·; · ` D P :: x : 1. If live(P) then there is Q such that P → Q.

Proof. (a) P → Q, or (b) P α→ Q for some α where s(α) = x, by Lemma A.13. But P α→ Q with s(α) = x is not
possible since x : 1, by Lemma A.1. So P → Q.

41

	Introduction
	Process Model
	Type System
	Dual Intuitionistic Linear Logic
	Computational Correspondence, Preservation, and Progress
	Discussion and Further Examples
	Related Work and Conclusions
	Proofs
	Inversion Lemmas
	Preservation Lemmas
	Progress Lemmas

