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Abstract:

Proteins are dynamic molecules. They flex in space, adopting many different spatial

configurations while performing their function and evolve over time, changing their

amino acid composition in response to changing fitness landscapes. The thesis of this

dissertation is that this inherent variability of proteins can be modeled by structurally

sparse representations. These sparse models can then be used to efficiently reason

about the properties of the protein by the means of algorithms that exploit their sparsity.

This dissertation develops the first Probabilistic Graphical Model that models the entire

protein across spatial configurations (GOBLIN). By compactly encoding and manipu-

lating a probability distribution over an exponentially large space, and using statistical

inference algorithms that exploit structural sparsity, GOBLIN is able to compute ex-

perimentally measurable properties of protein interactions quickly and accurately.

We then develop a method of learning generative models of amino acid composition

of evolutionarily related protein families (GREMLIN) that captures dependencies be-

tween sequential and long-range pairs of positions in the protein. GREMLIN is vastly

more accurate than existing statistical models based on Hidden Markov Models; by

effectively utilizing a distributed map-reduce framework, it also presents a scalable

alternative to these extant approaches.

Building on these two contributions, this dissertation develops a game-theoretic ap-

proach to drug design (GAMUT). GAMUT determines the affects of a change in the

fitness landscape on the composition of the protein. GAMUT can be used to design

drug cocktails that remain effective against natural possible mutant variants of the tar-

get. Towards this, GAMUT develops a novel algorithm that bounds properties of the

Correlated Equilibria of Graphical Games based on outer relaxations to the marginal

polytope.
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Chapter 1

Introduction

Proteins are large polypeptide molecules that are workhorses of a cell. Despite their rela-

tively limited compositional diversity (twenty letter alphabet) they are responsible for the

birth, maintenance and death of cells and ultimately of life. They perform these functions

by folding into diverse spatial configurations, by varying their configurations and in the long

run, by varying their composition through the means of evolution.

This document proposes to model the protein probabilistically. The exponentially large

degrees of freedom that have to be modeled entail the development of special purpose mod-

els that exploit the special properties of these molecules to efficiently encode their behavior.

This document develops several structured models to perform these tasks.

First, we establish the basis for probabilistic modeling of proteins in Ch. 2 and the utility

of graphical models in this task. This chapter shows the physical motivation behind such

modeling and provides precedent for such models in the biophysics literature by describing

them within the framework of graphical models. This chapter provides the motivation for

the rest of the dissertation as well as the mapping from the output of subsequent models to
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biophysically relevant properties of proteins.

Building on this, Ch. 3 describes a Probabilistic Graphical Model(PGM) to model pro-

teins across spatial landscapes. This PGM models both backbone and side-chain configura-

tional flexibility by modeling them as a multinomial distribution over one of (exponentially)

many discrete configurations making it the first graphical model based approach to do so.

The PGM compactly encodes the Boltzmann distribution over the spatial landscape around

the native state, thereby allowing efficient (approximate) computations of its partition func-

tion. Ch. 4 and Ch. 5 describe the utility of this approach in two different applications:

Bayesian model quality assessment in the context of structure prediction, and determin-

ing binding free-energies of Protein interactions. The former demonstrates that Bayesian

estimates of model quality can out-perform traditional MAP estimates while the latter in-

corporates entropic contributions into computation of binding free energies of bio-molecular

interactions thereby improving the accuracy by nearly 10%.

Ch. 6 proposes a new algorithm for learning the statistical patterns of protein sequences

that utilizes recent advances in compressive sensing and sparse coding to accurately learn

sparse graphical models of protein sequences. In Ch. 7 we study how this method could be

used to learn generative models of protein families. We learn these models for very large

protein families in a timely fashion by utilizing a distributed learning framework.

Finally, Ch. 8 develops an approach to approximate the properties of a Correlated Equi-

librium in graphical games. Our approach, based on outer relaxations to the marginal poly-

tope computes these approximations efficiently. We demonstrate that these relaxations are

also remarkably accurate, often giving the exact solution. Using utilities computed using

methods developed in Ch. 3 and Ch. 6, we then analyze the behavior of games arising in

pathogen-drug interactions in Ch. 9. Our approach allows us to reason about possible future

2



mutations, the possible evolution of drug resistance, the efficacy of a set of drugs and design

game-theoretically optimal drugs.
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Chapter 2

Probabilistic models: A Biophysical

interpretation

The thesis of this work is that proteins are efficiently and accurately modeled using struc-

tured probabilistic representations. At this juncture, it is natural to wonder if there is any

particular reason for the emphasis on probabilistic representations. The aim of this chap-

ter is to re-iterate the natural correspondence between the natural laws governing physical

systems and certain probability distributions. Indeed, the hope is that by the end of this

chapter, the reader would wonder if any representation other than a probabilistic one could

be meaningful in this setting.

I start with a result that is the basis of statistical physics. It describes how the energies

of particles are distributed under the laws of physics. The purpose of deriving this result

is two-fold: (a) to remind the reader that there are fundamental reasons for probabilistic

representations of proteins, and (b) to show that this result can be cast in more familiar terms.

I then describe how graphical models allow for compact representation of such distributions.
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Finally I will describe some previously published models that can be expressed as graphical

models.

2.1 Boltzmann distribution from the laws of thermodynam-

ics

Consider a closed classical system of N particles in thermal equilibrium (ie, the system is

at constant temperature and the particles have been given time to “settle”). The first law of

thermodynamics states that energy is conserved.

For simplicity of exposition, let us assume that there are a finite number of discrete (and

distinct) energy levels E0, E1, . . . Em in the system and an associated distribution p(E) =

[p0, . . . pm] that describes the probability of a particle occupying a particular energy level.

In such a system, the first law in conjuction with the conservation of mass can be stated as

∑
i

piEi = E (2.1)

The second law states the tendency of a system to attain the state of maximum entropy

at equilibrium. This can be expressed as an objective function:

−
∑
i

pi log(pi) (2.2)

Taken together, the two laws can be expressed as
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max −
∑

i pi log(pi)

s.t.
∑

i piEi = E∑
i pi = 1

∀i, pi ≥ 0

Theorem 1. The Boltzmann distribution The solution to the above problem is of the form

pi = 1
Z

exp(−βEi) where Z is a normalization constant and is commonly referred to as the

partition function.

Proof. Adding lagrange multipliers β, µ for the constraints, we have

minA =
∑

i pi log(pi)− β(
∑

i piEi − E)− µ(
∑

i pi − 1)

s.t. β ≥ 0, µ ≥ 0,∀i, pi ≥ 0

Taking derivatives,

∂A
∂pi

= 1 + log(pi)− β(Ei)− µ = 0

∂A
∂β

= 0⇒
∑

i piEi = E

∂A
∂µ

= 0⇒
∑

i pi = 1

s.t.β ≥ 0, µ ≥ 0,∀i, pi ≥ 0x

This gives,

∂A
∂pi

= 0 ⇒ pi = exp(−βEi − µ− 1)∑
i pi = 1 ⇒ exp(−µ− 1)

∑
i exp(−βEi) = 1

⇒ exp(−µ− 1) = 1P
i exp(−βEi)

⇒ pi = 1P
i exp(−βEi) exp(−βEi)
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which is the required result.

Some readers will recognize this as the “max-entropy” problem. Interestingly, the orig-

inal use of this principle in statistics was due to Jaynes [1957, 1963] who argued on its use

based on this natural correspondence between statistical physics and statistics. Much of this

thesis will exploit the same correspondence, but in the reverse direction: from statistics to

statistical physics and specifically to biophysics. This correspondence will allow us to use

statistical inference algorithms to compute biophysical quantities and use statistical learning

algorithms to learn a boltzmann distribution from data.

In exploiting this correspondence in this fashion, we follow Kumar et al. [1992], Neal

[2005] and other modern workhorses in biophysics that trace their origin to statistical meth-

ods. The interested reader is referred to Neal [1993] (Sections 2.4 and 6.2) and Kollman

[1993] for an elaboration of this subject.

2.2 Markov Random Fields as a representation of the Boltz-

man distribution

E(c) , the total energy of the configuration can be be written asE(c) =
∑a

i=1

∑a
j=i+1Ec(i, j),

the sum of
(
a
2

)
individual pair-wise contributions if there are a atoms in the system.

If we are dealing with a protein of n residues, it will be easier to rewrite the above

expression by grouping contributions from atoms according to the residues they belong to

E(c) =
n∑
k=1

n∑
l=k+1

Ec(k, l) (2.3)
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where Ec(k, l) =
∑ak

i=1

∑al
j=1Ec(i, j) and ak, al are the number of atoms in residues k, l

respectively group the contributions from all atoms between a pair of residues into a single

term – Ec(k, l) between residues k and l for example.

In general, not all Ec(k, l) will be non-zero. In fact, most of the
(
a
2

)
terms will be

negligible and can be assumed to be zero. If we imagine a graph between residues with

edges connecting residues only when Ec(k, l) 6= 0, then, we can rewrite Eq. 2.3 as

E(c) =
∑

e=(k,l)∈E

Ec(e) (2.4)

The graph encodes the zeros of the interaction energies in this configuration c – an

absence of an edge between a pair of residues implies that the energy of interaction between

them when the protein is in configuration c, is zero.

While we defined the graph for a specific configuration, it should be intuitive to see

that multiple “close” configurations can share the same graph structure. This shared graph

encodes the zeros of the interaction energies that are common across a set of configurations.

In particular, GOBLIN , a method presented in Ch. 3 determines the shared structure for all

configurations of the protein that have the same backbone. Given this shared structure over

the set of configurations, we can go back to the Boltzmann distribution and model it over

this set. The structure of the graph tells us which energies are zero and do not have to be

computed.
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2.3 Biophysical models as examples of the Graphical Model

framework

In this section, we will describe a few published biophysical models and describe how these

can be described using the Graphical Models framework. The aim of this section is to

illustrate that the framework is fairly general, and that this insight can automatically yield

algorithms for various tasks using these biphysical models.

2.3.1 Gaussian and Anisotropic Network Models

Gaussian Network models (GNM) and their subsequent extension, the Anisotropic Network

Model (ANM) are examples of simple coarse-grained models that model the structural flex-

ibility of the protein around its native structure. Both models share the assumption of a

harmonic potential (ie. a gaussian model) of structural flexibility. I will describe the GNM

model here; the ANM is an extension of the GNM which can be treated analogously.

The GNM models the fluctuation of the protein structure around the native “mean” struc-

ture. It is a coarse-grained representation that treats the protein as a spring-mass system with

each amino acid being represented by a single point mass and interactions between nearby

positions of the protein with elastic springs (hence the name). According to the GNM, the

probability of a fluctuation ∆X = [∆X1, . . .∆Xn] is

P (∆X) ∝ exp(
∑

(i,j)∈E

∆Xiγ∆Xj)

where γ is model parameter that models the spring constant. By comparing this with Eq. 1,

it is easy to see that this can be represented as a Markov Random Field with a harmonic

10



Figure 2.1: Elastic Network Models of proteins model the protein as a mass-spring system

potential. Edges E connect amino-acids between variables that are in contact with each

other in the native structure of the protein. This corresponds to modeling the protein fluc-

tuations as a multi-variate gaussian distribution with the precision matrix being defined by

the contact matrix of the protein structure.

For a fluctuation ∆R = [∆X,∆Y,∆Z], the probability is given simply as P (∆R) =

P (∆X)P (∆Y )P (∆Z) (being “isotropic”).

2.3.2 Computing pKa of proteins

The acid dissociation constant, pKa, of an acid is a quantitative measure of the strength of

the acid. In proteins, the pKa of amino-acid side-chains play an important role in defining

the pH dependent characteristics of a protein. Since the strength of an acidic (or basic)

amino acid is affected by other neighboring acidic (or basic) amino acids nearby, the pKa of

11



the protein is dependent on how these interactions between residues affect the state of the

protein. These interactions are naturally modelled as a graphical model. The probabilistic

interpretation of the graphical model has a natural physical basis in terms of ionization free

energies [Gilson, 1993, Bashford and Karplus, 1991].

The pKa of a protein is defined as follows:

pKa ∝ −β
n∑
i=1

1∑
xi=0

xiGi +
n∑
i=1

n∑
j>i

1∑
xj=0

xixjGij

where xi refers to the ionization state (neutral, or charged) and Gi, Gij are contributions to

the ionization energies.

This is an example of a binary-valued graphical model where the pKa is equal to the log

partition function of this graphical model. Classical approaches to this problem include a

naive mean field approach [Bashford and Karplus, 1990], brute-force summation with some

pruning[Bashford and Karplus, 1991] and even Structured Mean Field techniques [Gilson,

1993].

The examples described in the previous two subsections develop graphical models that

model proteins using a simplified force-field in a coarse grained fashion, and another that

models a subset of the positions of the protein and only model their electrostatic interactions

between them. In the following chapter we will aim to considerably generalize this approach

by constructing graphical models that model all the atoms of proteins using a realistic force-

field.
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Chapter 3

Graphical Models of Protein Structures

across Spatial Landscapes

A protein consists of some number of atoms across one or more polypeptide chains. A con-

figuration of the protein corresponds to the geometry of each of its constituent atoms. While

a protein is commonly represented as a single configuration (usually the crystalline form),

at room temperature, a more accurate representation of the protein would be as an ensemble

of configurations. We will adopt such a representation, by treating the configuration of a

protein as a random variable C in some configurational space C.

Boltzmann’s law describes the probability distribution over C of a physical system at

equilibrium; according to it, the probability of a configuration c ∈ C, P (C = c), with

internal energy Ec is

P (C = c) =
1

Z
exp

(
−Ec

kBT

)
(3.1)

where Z =
∑

c∈C exp(−Ec/kBT ) is the partition function, kB is Boltzmann’s constant, and
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T is the absolute temperature in Kelvin.

Much of statistical physics is devoted to the study of the properties of this distribution

since many physical properties of the protein can be expressed as functions of this distribu-

tion. The rate of a chemical reaction, for example, depends on the logarithm of the ratios of

the corresponding partition functions.

Note that this distribution is over the entire configurational space C, a space that is

exponentially large in the size of the protein making this distribution too complicated to

explicitly manipulate for proteins with a realistic size. In what follows, we will attempt to

simplify this distribution by exploiting its properties around near-native equilibrium while

reducing as little of the predictive power as possible.

We first partition the entire set of atoms into two disjoint sets – backbone and side-chain

– since the nature of the assumptions we’ll make in each set are very different. Backbone

atoms (denoted by b here) refer to those that are common to all 20 amino acid types, while

side-chain atoms (denoted by r) are those that differ among the different kinds of amino

acids. b = {b1,b2, . . .}, is a set of variables, one for each chain in the protein, representing

the conformation of the backbone atoms, r = {r1, r2, . . .} where ri represents the confor-

mation of the side-chain atoms of residue i, and Eb, Eb(r) represent energies of backbone

b and side-chain r in backbone b respectively.

Using the fact that c = {b, r}, Ec = E(b) + Eb(r), we can now rewrite the joint

distribution and the partition function as:

P (C = c) = P (B = b)P (R = r|B = b) (3.2)

Z =
∑

b

exp(− Eb

kBT
)Zb (3.3)
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where Zb =
∑

r exp(−Er
kBT

) is the partition function over the side-chain conformational space

with a fixed backbone.

Given a specific backbone trace b, due to the nature of the physical forces in action,

pairs of residues distally located according to trace are expected to exert very little direct

influence on one another. In statistical terms, we say that such residues are independent

of each other when conditioned on the event B = b. We will exploit these conditional

independencies present in P (R = r|B = b) to compactly encode it as a Markov Random

Field(MRF).

An MRF G is a probability distribution over a graph, and can be represented as a tuple

(X, E ,Φ), where the set of random variables in the multivariate probability distribution are

the set of vertices – S and B in this case – while edges e ∈ E join residues that are directly

dependent on each other and Φ = {φ1, φ2, ..., φm} is a set of functions (popularly called

factors) over random variables. ∗

The PDB structure is assumed to be one of the micro-states of the system at equilib-

rium. Atoms are allowed to deviate from their crystal structure coordinates. This is done by

discretizing each degree of freedom and grouping atoms together according to side-chain

rotamer libraries (e.g., Lovell et al. [2000]). Additional simplifying assumptions include

fixing bond lengths and bond angles to idealized values or to the observed in the crystal

structure. When discrete approximations are used, the MRF efficiently encodes an en-

semble of micro-states of size O(kn), in O(kn) space, where k is the average number of

conformations per residue, and n is the number of residues in the protein.

In our model, the functions in G (i.e., φi) are defined in terms of a Boltzmann factor. That

∗Since we use G to represent a conditional probability distribution, this is also referred as a Conditional
Random Field(CRF). Since commonly used CRFs [Lafferty et al., 2001] are usually chain graphs, we use the
more general term, MRF, to avoid confusion.
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is, φi(rφi) = exp
(
− E(xφi )

kBT

)
, where xφi is the set of atoms that serve as arguments to φi, and

E(xφi) is the potential energy of those atoms as defined by a molecular force field. In theory,

any molecular force field can be used. We specifically use the ROSETTA potential ERosetta

that ROSETTA uses in computing ∆∆G[Kortemme and Baker, 2002] which is composed

of the following terms:

• Eljatr, Eljrep, the attractive and repulsive parts of a 6 − 12 Lennard-Jones potential

used to model van der Waals interactions.

• Esol, the Lazardus-Karplus solvation energy that approximates the solvation energy

by using an implicit solvent Lazaridis and Karplus [1999].

• Ehb, is the Hydrogen bond energy as computed by Kortemme et al. [2003]

ERosetta is a linear combination wTE = wljatrEljatr +wljrepEljrep +wsolEsol +whbEhb.

The vector w that defines the linear combination is typically learnt by fitting the energy

terms to physical observations like ∆∆G[Kortemme and Baker, 2002].

Fig. 3.1 illustrates the construction of G using a protein complex: Chymotrypsin com-

plexed with the third domain of turkey ovomucoid(OMTKY). Fig. 3.1-A shows a single

configuration c of the protein complex, with the residues in the Chymotrypsin chain and the

OMTKY chain shown in different colors (red,blue respectively) for visual clarity. In con-

trast, the MRF G shown in Fig. 3.1-B models a distribution over all possible r for a given

backbone trace. The construction of G is identical irrespective of whether the protein is a

single chain, or multiple chains as in the case of a protein complex. What does change is the

nature of the physical interactions being captured by the φ in G in each case. The potential

terms in ERosetta capture both the intra-molecular interactions (shown as solid lines), and

the inter-molecular interactions(shown as dashed lines).
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Given the structure of G and the potentials Φ as described above, we can rewrite the con-

ditional distribution P (R = r|B = b) by using the Hammersley-Clifford theorem Clifford

[1990] in the following manner.

P (R = r|B = b) =
1

Zb

∏
φi∈Φ

φi(rφi) (3.4)

where once again we have the partition function Zb associated with a specific backbone:

Zb =
∑

R

∏
φi∈Φ

rφi (3.5)

Notice that the due to the choice of the Boltzmann factor for Φs, this distribution is consis-

tent with the Boltzmann distribution of Eq. 3.1. To obtain the joint distribution, one needs

to simply multiply Eq. 3.4 with the probability of the particularly backbone conformation b

according to Eq. 3.2.

Thus, the probability of a given state is simply the product of the functions, suitably

normalized.

3.1 Probabilistic Inference and Free Energy Calculations

The free energy of a protein is a measure on the ensemble and is defined as: G = H − TS

where H is the enthalpy, or the expected internal energy, S is the entropy of the ensemble

and T is the temperature of the system. The rates of biochemical reactions are determined

by changes in free energies. For example, ∆Gbind , the binding free energy, is the change in

free energy when two proteins, A and B, bind: GAB − (GA + GB). It determines the rate

of association of A and B. Often, the quantity of interest in tasks such as protein design is
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Figure 3.1: (A) Chymotrypsin complexed with the third domain of turkey ovomucoid (OMTKY).
While protein structures are often shown as a single conformation, in reality they occupy ensembles
of conformations; our method models both side-chain and backbone ensembles. (B) Part of an MRF
encoding the conditional distribution over the ensembles of conformations. Blue nodes with thick
lines correspond to Chymotrypsin, red nodes with thin lines correspond to OMTKY. Solid lines refer
to intra-molecular interactions, and dashed lines refer to inter-molecular interactions. The nodes
labeled b1, b2 represent the conformation of the backbone atoms in the two chains, while the nodes
labeled ri and rj corresponds to conformations of side-chain atoms. (Since all the variables in the
graph represent conformations, for visual clarity, we omit the X in their labels.)

∆∆G, the change in the ∆G value upon mutation from wild-type: ∆Gmutant−∆Gwild−type .

For example, a beneficial mutation results in a better ∆G for the variant than for the wild-

type, and thus a negative ∆∆G. Computing G therefore is extremely useful in determining

the properties of the protein.

The free energy of a physical system is related to the Boltzmann distribution by way of

the partition function: G is simply −kBT logZ. The MRF model from the previous section

provides a compact representation of the Boltzmann distribution that enables us to compute

a quick and good approximation to the binding free energy by solving a statistical inference

problem to compute Z.

Evaluating the product in Eq. 3.4 is straightforward for any given configuration of the

random variables. Computing the partition function in Eq. 3.5, on the other hand, is compu-

tationally intractable in the general case [Dagum and Chavez, 1993] because it involves sum-
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ming over every state. However, a number of rigorous approximation algorithms have been

devised for performing inference in MRFs. Significantly, it has been shown that mathemat-

ically, these algorithms are equivalent to performing free-energy approximations [Yedidia

et al., 2005]. This is not surprising, because inference and free energy calculations both

require estimating a partition function. What is surprising, however, is that some exist-

ing inference algorithms are mathematically equivalent to specific free-energy approxima-

tions introduced by statistical physicists (e.g., Bethe [1935], Kikuchi [1951], Morita [1991],

Morita et al. [1994]). For example, it is now known that Pearl’s Belief Propagation (BP)

algorithm [Pearl, 1986] is equivalent to the Bethe approximation [Bethe, 1935] of the free

energy. Unless otherwise specified, we use Belief Propagation for inference in the following

sections.

The term ‘belief’ in both BP refers to the marginal distributions over the random vari-

ables in the MRF. Briefly, each node in the graph keeps track of its own marginal probability

distribution (i.e., belief). Belief Propagation algorithms start with random initial beliefs, and

then use message passing between nodes to converge on a final set of beliefs. Informally,

each node updates its own beliefs based on the beliefs of its neighbors in the graph, and the

value of the potential function, Φ. When the algorithm converges, the final beliefs can be

used to obtain the partition function (or an approximation thereof), and hence a free energy.

If the MRF happens to form a tree (i.e., a graph with no cycles), Belief Propagation is exact

and takes O(|E|) time, where |E| is the number of edges in the graph. The MRFs consid-

ered in this proposal, however, are not trees and have O(|V|) edges. In this case, we use a

closely related algorithm known as Loopy Belief Propagation. Loopy BP is not guaranteed

to converge, but has always done so in our experiments.

Using Loopy Belief Propagation on the MRF that encodes the conditional distribution,
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we can obtain an estimate of the partition function of the conditional distribution Zb for

each backbone configuration xb as we previously did for folding free energies [Kamisetty

et al., 2008, 2007]; Z, the partition function over xc can then be computed using Eq. 3.3.

3.2 Discretization

We now briefly discuss a subtle, yet important issue that we have glossed over so far in our

presentation: the effects of discretizing the conformational space C.

The assumption of a discrete rotamer library is fairly well-founded, cf. Canutescu et al.

[2003], Ponder and Richards [1987], McGregor et al. [1987]. While a common use of

such rotamer libraries is in performing side-chain placement, i.e. finding the single most

energetically favorable side-chain conformation xr [Yanover and Weiss, 2002, Xu, 2005,

Kingsford et al., 2005, Canutescu et al., 2003], these rotamer libraries have also been used

in computing free energies and conformational entropies of protein structures [Koehl and

Delarue, 1994, Kamisetty et al., 2007, 2008, Lilien et al., 2005].

This approach of using a set of discrete rotameric states to compute the entropy faces a

subtle problem. To understand this, let us consider an imaginary protein with exactly one

residue whose side-chain atoms are unconstrained in configurational space, i.e. the energy

Er of the side-chain atoms is the same, no matter what configuration they are in.

This protein has a physically measurable amount of entropy Sphysical. Now suppose we

discretized the configurational space into n points, each representing an equal fraction of

the space. It is clear that in this scenario, the probability of each rotamer will be equal

to 1/n(and indeed, this is what Belief Propagation would predict). The free energy in our

discrete model, H − TS equals < Er > −T
∑n

i=1−
1
n

log( 1
n
) = Er − T log(n). In other
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words, as the granularity of the discretization increases, the discrete entropy increases and

as n −→∞, S −→∞ and is completely unconnected to Sphysical.

This problem arises in many scenarios, most notably for our purposes, in information-

theoretic treatments of statistical physics [Jaynes, 1963, 1968]. Fortunately, a solution to

this problem is available, which to the best of our knowledge is due to E.T. Jaynes [Jaynes,

1963]. By using a measure (i.e. a possibly unnormalized probability distribution) m over

the configurational space and replacing the discrete entropy by the relative entropy S =

−
∑

Xr
P (Xr) log P (Xr)

m(r)
, we now obtain a quantity that behaves correctly in the limit. To

use this for our purposes, we point out that the rotamer library we use [Canutescu et al.,

2003] provides such a measure mdun for each rotamer which we utilize.

Our earlier treatment of inference can be modified to use the relative entropy instead of

the discrete entropy by observing that

S = −
∑
Xr∈C

(P (Xr) logP (Xr)− P (Xr) logm(Xr))

and therefore, G =

∑
Xr

P (Xr)Er +
∑
Xr

(P (Xr) logP (Xr)− P (Xr) logP (m(Xr)))

=
∑
Xr

P (Xr)(Er − logm(Xr))−
∑
Xr

P (Xr) logP (Xr)

In other words, the move from the discrete entropy to the discrete relative entropy can

be made by adding a Erot = − logm(Xr) term to the energy function. A similar problem

arises when summing over multiple backbone traces according to Eq. 3.3: by increasing

the number of backbone traces, the value of Z monotonically increases. Again, this can be
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easily fixed by assigning a fraction of volume of the conformational space to each trace.

For our experiments we assume that the conformational space is uniformly sampled by the

traces, i.e. each trace represents an equal volume of the conformational space.
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Chapter 4

Applications: Model Quality Assessment

The protein structure prediction problem is one of the most challenging unsolved problems

in Biology. Informally, it is the task of computing the three dimensional structure of a pro-

tein, given its chemical description as a sequence of amino acids. Knowing the three dimen-

sional structure of a protein can provide deep insights into its working, and the mechanisms

of its interaction with the environment. This can be used, for example, in the design of new

drugs and bio-sensors. Unfortunately, despite significant progress, experimental methods

(i.e., X-ray crystallography and Nuclear Magnetic Resonance) to determine protein struc-

tures still require months of effort and O($100K) — per protein. Therefore there has been

a lot of focus on in-silico approaches to Protein Structure Prediction.

Given a protein sequence s, a common feature of structure prediction algorithms is the

ability to (stochastically) generate a large number of putative models, b1,b2, . . .bn, and then

assess the quality of each of these models using a ranking algorithm. Extant algorithms rank

by first computing the optimal set riopt of parameters ri and then computing a point estimate

E(bi, riopt , s) of the model quality. A natural question to ask, is if a Bayesian estimate of
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model quality can be computed efficiently. Such an estimate involves computing an integral

over all possible ri, a computation that is infeasible to perform exactly for protein structures.

There are a variety of computational techniques for estimating this integral in the struc-

tural biology community. The more accurate amongst them require extensive sampling or

molecular dynamics simulations (e.g., Alder and Wainwright [1959]), which can take hours

to days on real-proteins, making them infeasible for the task of in-silico Protein Structure

Prediction. Faster coarse-grained methods exist, e.g., Muegge [2006], but it has been argued

[Thomas and Dill, 1994] that they are not accurate enough.

In contrast to these techniques, we estimate the integral for each bi by first discretizing ri

and then performing approximate inference on a discrete Markov Random Field constructed

over ri, s as described in Sec. 3.1. Hyper-parameters of our model are learnt by minimizing

a loss-function for ranking over training data, using gradient descent.

Our results on a database of in-silico models for 32 proteins show that moving from a

point estimate to a Bayesian estimate improves the accuracy of ranking by multiple criteria:

the average rank of best model improves from nearly 27 to less than 7, the model ranked

first is significantly better in quality, and the rank correlation improves by nearly 0.3 over

point estimates.

4.1 Learning to Rank (log) Partition Functions

Given models B = {b1,b2, . . .bn}, and a ranking (permutation over 1 . . . n) y for these

models, the learning task involves finding a function G that computes a numerical score for

each model that minimizes some loss-function L between G and y on B. Many approaches

have been developed for the task of learning to rank, especially in IR tasks like document-
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retrieval [Herbrich et al., 2000] and web-search [Joachims, 2002]. These tasks differ in

their choice of the loss function L and the algorithms used to minimize it. While initial

approaches to ranking approached the ranking problem as a large number of pair-wise clas-

sifications [Herbrich et al., 2000, Joachims, 2002], recent approaches have shown the utility

of using loss-functions based on the entire rank, or the so-called “list-wise” approaches

[Cao et al., 2007, Xia et al., 2008]. Further, a “soft” approach to ranking [Burges et al.,

2005] has allowed the use of gradient-based continuous optimization techniques instead of

combinatorial optimization.

We use a “list-wise” soft-ranking approach to ranking since it has been shown to have

good performance. We study the properties of two loss-functions: the negative log-likelihood

and the cross-entropy. Each loss-function is minimized by a quasi-Newton method. Details

of these metrics are available in our paper [Kamisetty and Langmead, 2009].

4.2 Results

We studied the efficacy of our approach on a database of 32 proteins selected from Wrob-

lewska and Skolnick [2007]. For each protein, this database contains a set of 50 plausi-

ble models generated in-silico and the actual structure of the protein (“native”). Each of

them contain b and ropt and an associated “distance” – the root mean square displacement

(RMSD) in Å (angstroms) between the coordinates of the atoms in the model to the native.

This dataset covers all four classes of proteins according to the CATH classification, and the

models for each protein cover a large fraction of the model space – very close (< 2 RMSD)

to very distant ( > 10 RMSD).

We split this database of 32 proteins into five, randomly generated, equal-sized train/test
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Table 4.1: Rank of Native and Quality of Best Decoy across 5 test sets

Method Rank of Native Best - closest
(out of 51 total) (RMSD)

Point Estimate 26.75 3.413
G 8.05 1.85
G-NegLL 21.19 3.71
G-Cross Entropy 6.60 1.743

partitions. Thus, each training set contains 16 proteins, containing the native and 50 plausi-

ble models for each of these proteins, along with the RMSD of these models to the native.

Each test set contains 16 proteins containing 50+1 (in-silico+native) models which have to

be ranked based on their quality. Ideally, the native should always be ranked first, along

with the models in increasing order of RMSD to ground truth.

We compared the performance of four methods: (i) a point estimate obtained by comput-

ing ERosetta on the optimized parameters, (ii) a Bayesian estimate G obtained using default

hyper-parameters, and the Bayesian estimates of G using the learnt hyper-parameters with

the two loss functions, which we shall refer to as (iii) G-neg LL and (iv) G-Cross Entropy.

Tab. 4.1 compares the average rank of the native structure across the 5 test sets and

the average difference between the RMSD of the best in-silico model as predicted by the

method, to the RMSD of the actual closest model. The average rank of the native structure

is significantly improved by moving from a point estimate (26.75) to a Bayesian estimate

(8.05). Further, by optimizing the hyper-parameters using the cross entropy loss function,

this can be further improved to 6.6.

The average difference in RMSD between the predicted best model and the actual closest

model is significantly reduced, from 3.4 Å to nearly half its value – 1.85 Å using G and

1.74 Å using G-Cross Entropy. Surprisingly, optimizing the hyper-parameters using the
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Figure 4.1: Pearson’s rank correlation coefficient between predicted ranking and actual
ranking for the four methods listed.

likelihood loss function is almost as bad as the point estimate, indicating that the likelihood

loss function isn’t suitable for this task. We believe that this is due to the fact the likelihood

function neglects the RMSD information while computing the likelihood of a ranking. In

a data-scarce setting such as ours, this could lead to a significant difference in the optimal

solution.

While the rank of the top structure and the quality of top prediction are important metrics

of performance, the quality of the overall ranking is also important. This is because, often,

the models are iteratively generated, ranked, and selectively refined. Thus, it is important

that the ranking is reasonably accurate at all positions.

To measure this, we compute the rank-correlation of the ranks with the ranks obtained

by ranking according to RMSD from native. Fig. 4.1 shows the rank-correlation of the

ranks computed in this manner. Again, it can be seen that the performance improves sig-

nificantly by moving from a point-estimate to a Bayesian estimate, and learning using the

cross-entropy loss function improves it further.
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Figure 4.2: Scatter plots showing ranking for three different proteins in a test set, using
the point estimate and the Bayesian estimate. The x-axis is the value of the correspond-
ing estimate, while the y-axis shows the RMSD from the ground truth (shown with a red
diamond)

Fig. 4.2 shows the values of the point estimates (first column) and the Bayesian esti-

mates learnt using the cross-entropy (second column), for three protein structures (rows) in

a particular test set. The native structure in each of these proteins is shown as a red asterisk

while the 50 in-silico models are shown in blue.

These three proteins were selected to show the different types of behavior in learnt rank-

ing. In 1btn, the first protein, using the Bayesian estimate the native structure is ranked

correctly, the best in-silico model is ranked next and there is a good correlation between G

and the RMSD. In the second protein, 1bm8, the native structure is not ranked the best, but
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the best in-silico model is correctly identified. However, there is no strong correlation be-

tween RMSD and G for the distant models. Notice also, that in this case, the point estimate

performs almost as well. In the third dataset, while the native structure is not ranked at the

top, its rank is significantly better than using the point estimate. However, the model closest

in RMSD is neither ranked well, nor is the top ranked structure of good quality. It must be

noted that while there is variability in the ranking performance across the datasets, in all

these cases, there is an improvement in results due to the Bayesian approach.
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Chapter 5

Applications: Computing Binding Free

Energies

5.1 Modeling Protein-protein Interactions with GOBLIN

Protein-protein interactions are essential to the molecular machinery of the cell; transient or

persistent complexes mediate processes including regulation, signaling, transport, and catal-

ysis. While coarse-grained, high-throughput techniques such as yeast two-hybrid [Fields

and Song, 1989] are primarily focused on which proteins interact, finer-grained techniques

based on structural analysis address questions of how and why these interactions occur. By

modeling the physical interactions between constituent atoms, structure-based approaches

provide deeper insights into, for example, the specificity of an interaction or its sensitivity

to various mutations (e.g., [Weber and Harrison, 1999, Wang and Kollman, 2001]). In ad-

dition to answering questions of interest to basic science, such methods are also well-suited

to designing variants with improved or novel properties [Kortemme and Baker, 2004, Lilien
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et al., 2005, Joachimiak et al., 2006].

A fundamental law of thermodynamics states that interactions are governed by binding

free energies. Free energy is a property of the entire configuration space and consists of

both enthalpic and entropic contributions. There are a variety of techniques for estimating

free energies computationally, and each method makes a different trade-off between com-

putational efficiency and fidelity to the underlying physics.

This chapter introduces a method, called GOBLIN (Graphical mOdel for BiomoLecular

INteractions), that lies between the extremes of detailed molecular dynamics and statistical

potentials. GOBLIN models the energy landscape for a protein-protein complex as a proba-

bility distribution over an exponentially large number of configurations. This distribution is

compactly encoded using an undirected probabilistic graphical model known as a Markov

Random Field (MRF). Under this model, internal energies are calculated using standard

atomic-resolution force-fields, and rigorous binding free energy calculations are performed

using Belief Propagation [Pearl, 1986]. Our method runs in a few minutes and this therefore

is significantly faster than MD. At the same time, GOBLIN is more rigorous than statistical

methods.

GOBLIN significantly extends the state of the art of all-atom graphical models of pro-

teins, including our own previous work [Kamisetty et al., 2007, 2008] in this area. Our

earlier work focused on computing intra-molecular folding free energies for fixed backbone

configurations, while GOBLIN is a technique for computing inter-molecular binding free

energies under backbone flexibility. Additionally, in order to account for the particularities

of the binding free energies of the system under study, we solve a non-linear optimization

problem to fit the force-field parameters to predict the partition function correctly.
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MRFs of apo and holo forms. The binding free energy of a protein complex is the dif-

ference between the free energies of the apo (unbound) and the holo (bound) forms. To

compute this, it is therefore necessary to model both the apo and the holo forms. Thus, for

a complex involving molecule A and B, we construct three separate MRFs: (i) one for the

holo form, (ii) one for A in isolation, using the backbone of A from the holo form, and (iii)

one for B in isolation, using the backbone of B from the holo form.

MRFs of mutants. Separate MRFs are constructed for each mutation considered. This is

done by performing an in silico mutation to the PDB structure, and constructing a new MRF

accordingly.

Data Preparation

The atomic coordinates for each complex were obtained from the PDB. Hydrogen atoms

were then added using the REDUCE software program Word et al. [1999]. In order to

compute ∆∆G, we also need the structures of the individual partners. As is common in

high-throughput approaches (e.g., Kortemme and Baker [2002], Guerois et al. [2002]), we

assumed that the native backbone in the complex is also a good approximation for the apo

and holo backbones of the engineered proteins. Thus, at the end of this process, we have

generated plausible structures for the apo and holo forms of the engineered structures.

Backbone ensembles for the complexes were generated using the -backrub Smith

and Kortemme [2008] option of Rosetta. The method performs independent Monte Carlo

simulations with “generalized-backrub” moves and selects the lowest energy structure found

in each simulation. When using the backrub option, we allowed all residues whose Cα atoms

were within 6 Å of the mutated position (the distance suggested by Smith and Kortemme
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[2008]) and ran 104 Monte Carlo steps within each simulation.

Learning force field parameters against free energies

A molecular mechanics force-field consists of: (i) a defined set of atom types; (ii) a function

defining the internal energy of the system; and (iii) a set of parameters. It is common

Guerois et al. [2002], Kortemme and Baker [2002], Benedix et al. [2009] to take the atom

types and energy functions as fixed, but to adjust the parameters for a particular type of

study.

A commonly used strategy for optimizing force field parameters is to minimize the sum

of the squared errors between predicted and experimentally measured internal energies us-

ing fixed structures. In contrast, we consider the problem of minimizing the sum of of the

squared errors in free energies, as computed using MRFs. The two problems are funda-

mentally different. In particular, whereas minimizing differences in internal energies gives

rise to a simple linear regression problem, minimizing differences in free energies is a com-

plicated non-linear regression problem involving the minimization of a functional (i.e., the

partition function). We developed a novel algorithm to solve this problem in an efficient

albeit approximate manner.

Given a training set of experimentally measured ∆∆G values for N mutants of that

complex, along with the wild-type ∆G, consider the problem of learning force-field param-

eters to minimize the mean square error (MSE) between predicted and observed ∆∆G. We

do so by adjusting the vector of weights w = [wljatr, wljrep, whbond, wrot, wsasa, wcoop] with

which we linearly combine the corresponding force-field terms.

In referring to the different observations and predictions, let us use superscripts e for

experimental and p for predicted, and subscripts i ∈ {1, . . . , N} for the various datapoints
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This allows us to express the MSE as

mse =
1

N

N∑
i=1

(∆∆Gp
i −∆∆Ge

i )
2 (5.1)

To minimize MSE subject to w � 0 by gradient descent, we must compute the gradient

∇mse:

∇mse =
[ ∂mse

∂wljatr

,
∂mse

∂wljrep

, . . . ,
∂mse

∂wcoop

]
(5.2)

∀w, ∂mse

∂w
=

1

N

N∑
i=1

2 (∆∆Gp
i −∆∆Ge

i )

(
∂∆∆Gp

i

∂w

)
(5.3)

Using ∂Gconf
∂w

= 〈E〉c where 〈E〉c is the expected value of the corresponding force-field

terms over all xc using the current value of w, and the fact that the derivative of differences

is just the difference of derivatives, we have:

∂∆∆Gp

∂w
=



∂∆∆Gpconf
∂w

= ∆∆〈Ei〉c, for w ∈ {wljatr , wljrep , whbond , wrot}

∆∆SASA, for wsasa

Iwt, for wcoop

(5.4)

respectively.

In the case of a fixed backbone, the expectation 〈E〉 is over just xr. In both cases the

expectations, and thus the gradient, can be computed along with the free energy during infer-

ence. Given this method of computing gradients, we performed gradient descent, updating

the weights w at iteration i using the following equation w(i+1) = w(i) − η∇mse where the

step size η was set to 0.05. To test for the sensitivity of our results to η, we experimented
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on one training set with various values between 0.01 and 0.15. We found that the step size

affected the rate of convergence but had negligible effect on the final values indicating that

the quality of results aren’t sensitive to this parameter.

Given the enthalpies and free energies of each backbone trace, we can compute the free

energy of the entire distribution and its derivatives.

5.2 Results

We studied the importance of entropy on a database of 704 single-point mutants from eight

large and well studied complexes. For each of these mutants, the database contains the

∆∆Ge, the experimental change in binding free energy upon mutation. The details of the

datasets, along with the Protein Data Bank (PDB) Berman et al. [2000] ids of the wildtype

complexes, are shown in Table 5.1. Of these, the three largest datasets (wildtype PDB ids:

1sgr, 1cho, 1ppf) are from the Kazal family of serine protease inhibitors Lu et al. [2001]

while the rest of the interactions are part of an Alanine-scanning database previously used

in Kortemme and Baker [2002] and Kortemme et al. [2003]. We note that the amount of

thermodynamic data available for protein-protein interactions is limited, and the database

we considered is among the largest of its kind.

The atomic coordinates for each complex were obtained from the PDB and converted

into probabilistic graphical models (PGM), which are used to perform free energy calcula-

tions. Briefly, if X = {X1, ..., Xn} is a vector encoding the conformation of the protein (or

protein complex), each PGM encodes the distribution P (X) using a factored representation.

By construction, the probability of any particular conformation is inversely proportional to

the exponential of its internal energy, as computed using a molecular mechanics force field.
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Table 5.1: Datasets for mutant protein-protein complexes.

Wt PDB id Partner A Partner B # residues in A and B # mutants in A, B
1sgr OMTKY SGP B 236 150,0
1cho OMTKY Chymotrypsin 291 170,0
1ppf OMTKY Human LE 274 170, 0
1a22 (AS) HGH HGHBP 429 34,29
1gc1 (AS) CD4 GP120 920 49,0
1dan (AS) BCF VII-A TF 587 20,23
1bxi (AS) E9 Dnase IM 9 212 30,0
3hfm (AS) HYHEL HEL 558 12,13

“AS”: alanine-scanning experiments

Interaction energies fall off quickly with distance leading to conditional independencies in

the Boltzmann distribution.∗ GOBLIN takes advantage of these conditional independencies

in its factorization, which leads to a compact encoding of the joint distribution (Figure 5.1).

This factorization also leads to an efficient means for performing free energy calculations,

and for optimizing force field parameters against experimentally observed ∆∆G (see Meth-

ods).

For each complex C = AB consisting of proteins A and B, we construct three separate

PGMs (Figure 5.2). The first two PGMs model the Boltzmann distribution over the apo

(unbound) conformations of A and B, and the third models the Boltzmann distribution over

the holo (bound) conformation. Loopy Belief Propagation Pearl [1988] is then performed

on each PGM to compute the free energies GA, GB, and GC (i.e., before and after binding).

The free energy of binding is computed as: ∆G = GC − (GA + GB). Similarly, the

change in binding free energy upon mutation, ∆∆G, is computed by performing an in

silico mutation, repeating the binding free energy calculation, and computing the difference:

∗Two random variables X and Y are said to be conditionally independent, given Z, iff P (X, Y |Z) =
P (X|Z)P (Y |Z).
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Figure 5.1: Graphical models of protein complexes. (A) Turkey ovomucoid third do-
main. (Left) Ensemble of backbones, with inset showing ensemble of side-chains for one
backbone. (Right) Graphical model of the backbone and side-chain ensembles. For vi-
sual clarity, only the subscripts of the random variables are shown. The node labeled b
corresponds to a random variable over the backbone ensemble, while the remaining nodes
correspond to random variables over rotameric side-chain conformations. Edges capture
intra-molecular interactions (vdW, hydrogen bonds, etc.) with φ functions according to a
molecular mechanics force-field. The graphical model encodes a Boltzmann distribution
over conformations in terms of the φ functions. Dashed nodes and edges represent a subset
of the positions and interactions in the rest of the protein that GOBLIN models but have
been omitted in this figure for simplicity. (B) Complex of chymotrypsin with turkey ovo-
mucoid third domain. (Left) Ensemble of backbones. (Right) Graphical model. It combines
the inhibitor model (red) with an analogous model for chymotrypsin (blue), and introduces
inter-molecular edges (purple) with φ functions for inter-molecular interaction terms. This
model encodes a Boltmann distribution over complex conformations.
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∆∆G = ∆Gmut−∆G. ∆∆E values were computed using max-product Belief Propagation

that approximates the global minimum energy conformation (GMEC).

We considered two scenarios. In the first scenario, the PGM models the Boltzmann dis-

tribution over side-chain conformations, conditioned on a fixed backbone. Side-chains con-

formations are modeled using the backbone specific rotamer library described in Canutescu

et al. [2003]. The second scenario models the Boltzmann distribution over both side-chain

and backbone conformations. Alternative backbone conformations were obtained using the

BACKRUB method Smith and Kortemme [2008].

Computation of interaction energies employs a molecular mechanics force-field with

weights on different terms; GOBLIN learns those weights from a training set of ∆∆G data.

We thus formed 20 random partitions of the 704 mutants into 352 training structures and 352

testing structures. The training structures were used to optimize the parameters of GOBLIN’s

force-field. The optimized parameters are shown in Table 5.2. We note that the parameters

are optimized to maximize predictive performance, and not necessarily for biophysical in-

terpretability. However, our optimized parameters are at least in part comparable to those in

existing force fields. Our weight for the Lennard-Jones term, for example, is comparable to

the weight used by Rosetta when modeling discrete rotameric states. Similarly, the weights

on the SASA and the Iwt terms are comparable in magnitude to Benedix et al. [2009]. The

differences between our weights and other force fields is likely due to both differences in

training data and the fact that our method models entropy explicitly, which leads to a differ-

ent objective function. Our weight for hydrogen bonding is lower than expected. We note,

however, that our method models solvent using terms proportional to the SASA. The SASA

term, in turn, partially accounts for hydrogen bonding between solvent atoms and solvent-

protein atoms. Thus, the weight on the hydrogen bond term may be lower than might be
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Figure 5.2: Free energies in graphical models of protein complexes. (Top-left) Two
separate graphical models, A and B, encoding the wild-type apo forms of two proteins.
(Top-right) A graphical model, C, encoding the wild-type complex. Binding free energies
are obtained by computing the free energies of the three models, GA, GB, and GC , and
then calculating ∆G = GC − (GA + GB). (Bottom-left, bottom-right) Graphical models
of corresponding mutant forms. The mutated position and the interactions that are affected
by it are shown in thick lines. While the energetic effect (via these interactions) is local, the
entropic effect can be distal. GOBLIN accounts for both effects by performing variational
inference to compute ∆GA′ and ∆GC′ . ∆∆Gs are obtained by computing the binding
free energy of the mutant, ∆Gmut = GC′ − (GA′ + GB), and then calculating ∆∆G =
∆Gmut −∆G.
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expected if the solvent was modeled explicitly.

Table 5.2: Learned Force-field Parameters

Name Learned Value
wljatr 0.46
wljrep 0.70
whb 0.11
wrot 0.23 kcal mol−1

wsasa 0.027 kcal mol−1 A◦−2

wiwt 0.0006 kcal mol−1 A◦−2

Parameters corresponding to terms from ROSETTA’s force-field are dimensionless since
the corresponding force-field terms already have units of energy.

The trained model was used to predict the binding free energies for the test structures,

and to identify the GMEC. In what follows, all errors are reported as averages over the 20

partitions. For comparison, we also used the programs FOLDX (version 3.0) and ROSETTA

(version 2.3) to compute binding free energies.

Changes in Entropy Upon Binding

We first consider the nature of the changes in entropy caused by binding, and the effects

of mutations on those changes. GOBLIN can compute detailed information on the changes

in entropy (and enthalpy) for each residue. For example, Figure 5.3 illustrates the change

in marginal over side chain configurations upon binding for residue Trp 304 in the HGH-

HGHBP complex. Notice that the dominant rotamer has just under 50% of the probability

mass before binding and that the rest of the mass is primarily distributed among four addi-

tional rotamers. After binding, there is a substantial shift in probability mass; the dominant

rotamer now has almost 80% of the probability mass, and most of the rest of the mass is
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Figure 5.3: Effect of rotameric-occupancy due to binding. Change in rotameric probabil-
ities for Trp 304 in the HGH-HGHBP complex. Trp has 9 rotamers in the rotamer library
we use, 3 for each of χ1 = {60◦,−180◦, 60◦} respectively. The blue bars show the ro-
tameric occupancies for the apo structure while the red bars show the occupancies in the
holo structure. Upon binding, the probability mass redistributes.

42



distributed among two additional rotamers. Figure 5.4-A visualizes GOBLIN’s predicted

change in entropy upon binding for the wild-type Human Leukocyte Elastase : Turkey

Ovomucoid and the Human Growth Hormone : Human Growth Hormone Binding Partner

complexes. In these figures, the surfaces of the two partners are shown in purple and yellow

respectively. Spheres mark the Cα atoms of residues that show a non-trivial change (ab-

solute change in entropy ≥ 0.1 kB units) in their entropy, with red spheres for the largest

change and blue for the smallest. Not surprisingly, all the interface residues showed large

decrease in entropy. More interestingly, the decrease in flexibility in the interface affects the

entropy of neighboring residues. In the HLE-OMTKY complex, Ser 214 of HLE showed

lower entropy in the holo form than the apo form, despite being> 10 Å away from the inter-

face. In the HGH-HGHBP complex, these distal effects were stronger: Trp 86 and Glu 373

of HGH and Glu 373 of HGHBP (distances to interface: 17.2 Å, 12.9 Å and 12.9 Å resp.)

all showing a non-trivial change in binding despite being far away from the interface. These

changes in entropy, which are unfavorable, are compensated by a corresponding decrease in

enthalpy, to make the binding favorable.

Figure 5.4-B shows the difference in binding entropy upon mutation (i.e., ∆∆S) for one

mutation from each of these two complexes: L18H of OMTKY and D171A of HGH. Again,

the surface colors represent the two partners. All atoms of the residues showing a non-trivial

binding entropy difference with respect to the wild-type (∆∆S ≥ 0.1) are shown in spheres.

Of the distal residues from panel A, Trp 86 of HGH and Ser 214 of HLE show a non-trivial

change in entropy. In the former case, the change in entropy is actually positive (i.e., there

is less entropic cost to binding in the alanine mutant than the wild-type) while in the latter

case the change in entropy is negative. These results demonstrate that the distal entropic

effects on binding of a mutation can be different from those in the wild-type, underlining
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HLE-OMTKY (wild-type) HGH-HGHBP (wild-type)

HLE-OMTKY (L18G mutant) HGH-HGHBP (D171A mutant)

Figure 5.4: Localized evaluation of change in entropy. (Top) Change in entropy upon
binding; (Bottom) Change in entropy upon mutation. (Left) HLE-OMTKY, wild-type and
with L18G mutation; (Right) HGH-HGHBP, wild-type and with D171A mutation. The
surface color distinguishes the partners. Spheres mark Cα atoms of residues whose marginal
entropy changes by more than 0.1kB (yielding < 10% of the residues).
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the need to determine them accurately.

Quantitative Analysis

We next consider the quantitative accuracy of the free energy predictions, and the relative

importance of side-chain and backbone conformational entropies.

Effects of Side-chain Entropy

The quantitative accuracies of GOBLIN under the fixed backbone scenario are presented

in Table 5.3. The row labeled “GOBLIN” reports the root mean squared errors (RMSE)

between prediction and observation for our method. The row labeled “GOBLIN-E” is the

RMSE obtained when ∆∆Gconf is replaced with ∆∆Econf — the change in internal energy

for the GMECs in the apo and holo forms. The row labeled “GOBLIN-H” is the RMSE when

∆∆Gconf is replaced with ∆∆Hconf , the expected energy averaged over the Boltzmann

distribution, computed by neglecting the entropic component of the free energy computed

by Belief Propagation. GOBLIN’s RMSE is 1.6 kcal/mol, which is 9% lower than GOBLIN-

E (p < 0.05), and about 12% lower than GOBLIN-H (p < 0.01). The drop in RMSEs persists

when the 5th and 10th percentile of errors are removed (final two columns), suggesting that

the difference in accuracies is robust to outliers. We conclude that entropic contributions

play a significant role in protein-protein interactions, because ignoring them results in a

significant increase in RMSE. We discuss the errors in more detail below.

Table 5.3 also compares GOBLIN’s RMSE with that for the programs FOLDX and

ROSETTA. GOBLIN outperforms FOLDX by nearly 10% (p < 0.03), and ROSETTA by

36% (p < 6.8× 10−7). Significantly, GOBLIN continues to have lower RMSEs after remov-

ing each approach’s least-accurate predictions, suggesting that the difference in accuracies
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Table 5.3: ∆∆G (kcal/mol) root mean squared errors.

Method Overall RMSE (std err) 95% RMSE (std err) 90% RMSE (std err)
GOBLIN 1.63 (0.06) 1.27 (0.05) 1.10 (0.04)
GOBLIN-E 1.80 (0.06) 1.40 (0.05) 1.22 (0.04)
GOBLIN-H 1.85 (0.09) 1.42 (0.08) 1.22 (0.07)
FOLDX 1.82 1.42 1.20
ROSETTA 2.54 1.92 1.68

Root mean squared error (RMSE) for GOBLIN, FOLDX, and ROSETTA. GOBLIN-E and
GOBLIN-H refer to the RMSE for the GMEC and enthalpy, respectively. The values for
GOBLIN and its variants are cross-validated test errors with the standard errors for these
estimates reported in parentheses. The final two columns are the RMSE after the 5% and
10% worst outliers have been removed, respectively.

is robust to outliers. In particular, when the 5th (resp. 10th) percentile of errors are re-

moved, GOBLIN outperforms FOLDX by 11% (resp. 9%) (p < 0.01; resp. p < 0.08), and

outperforms ROSETTA by 34% (resp. 35%) (p < 1.5× 10−5; resp. p < 2.2× 10−4). Notice

that the RMSE of FOLDX, which uses a knowledge-based approximation of the change in

entropy, is approximately the same as GOBLIN-H, which ignores entropy altogether. These

results suggest that GOBLIN’s variational approach to free energy calculations is superior to

the knowledge-based methods used by FOLDX and ROSETTA. The difference in accuracy

is likely due to the fact that the variational approach considers not only the direct effects

of each mutation on the free energies, but also the indirect effects on neighboring residues.

Indeed, the very nature of Belief Propagation involves diffusing information throughout the

graphical model.

Figure 5.5 shows a scatter plot comparing GOBLIN’s predictions using the weights se-

lected by cross-validation on the entire dataset. The correlation coefficient (R2) across the

entire dataset was 0.56. Outlier elimination improved this substantially, to 0.66 without the
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Figure 5.5: Scatter plot comparing GOBLIN’s predictions with experimental values.
The correlation coefficient (R2) was 0.56 across the entire dataset. The nine worst outliers
are labeled with the mutation and chain id. When the worst 5% (resp. 10%) outliers are
removed, R2 = 0.66 (resp. R2 = 0.70).
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top 5% outliers and to 0.70 without the top 10% outliers. In comparison, the correlation

coefficient for FoldX was 0.52 and increased to 0.62 (resp. 0.67) after removing the top

5% (resp. 10%) outliers. The corresponding values for Rosetta were 0.0, 0.06, and 0.15,

respectively.

Errors for different residue types: Figure 5.6 (top and middle) show boxplots of the error

in prediction according to mutant and wild-type amino acids respectively. In each box, the

central red line is the median, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points not considered outliers, and outliers are

plotted individually with red ‘+’ marks. Note that not all 20 amino acids were mutated in

our dataset: some (Cys, Gly) weren’t mutated at all and a mutation from Met occurred only

once, while mutations from Lys and Glu each accounted for about 12% of all mutations. The

median signed error for most mutant amino acid types is close to zero, with a few notable

exceptions, namely Pro, Lys, Asp, and Glu. Of these, mutations to and from Pro produced

the highest errors. Indeed the three largest RMSEs in the entire data set were all proline

mutations. This is to be expected since proline has an atypical backbone and a mutation

to it can cause significant structural changes. The median signed error for mutations to

lysine was nearly 2.0 kcal/mol and mutations to aspartic acid and glutamic acid had a larger

spread in errors than other amino acids. These errors were likely caused due to their charged

nature, and the fact that our force field does not presently account for electrostatics. Across

the entire data set, GOBLIN’s error on charged mutants was larger than on neutral residues,

indicating the greater difficulty in modeling their interactions.

Errors due to change in charge or volume: Tables 5.4 and 5.5 stratify the errors in terms

of the change in residue charge and volume after mutation, respectively. Relative to a global

RMSE of 1.6 kcal/mol, certain kinds of mutations yield larger than average RMSEs, includ-
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Figure 5.6: Characterization of prediction error. (Top) According to mutant residue type;
(Middle) according to wild-type residue type; (Bottom) according to complex (in decreasing
order by number of mutations). See text for an explanation of box plots. The error is actual
minus predicted, so positive indicates an under-prediction, while negative means an over-
prediction.
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Table 5.4: RMSEs (kcal/mol) according to charge of amino acid: negative (D, E), neu-
tral (A, N, C, Q, G, H, I, L, M, F, P, S, T, W, Y, V), and positive (R, K). Values in
brackets indicate net change in RMSE upon incorporating backbone flexibility.

Wild-Type \Mutant Negative Neutral Positive
Negative 1.71 [0.02] 1.20 [0.05] 1.38 [0.03]

Neutral 2.40 [0.04] 1.56 [0.11] 1.85 [-0.21]
Positive 1.57 [0.22] 1.80 [0.05] 0.96 [0.3]

Table 5.5: RMSEs (kcal/mol) according to volume of amino acid: small (A, G, S),
medium (N, D, C, Q, E, H, I, L, K, M, P, T, V), and large (R, F, W, Y). Values in
brackets indicate net change in RMSE upon incorporating backbone flexibility.

Wild-Type\Mutant Small Medium Large
Small 0.75 [0.05] 1.57 [-0.29] 2.04 [-0.24]

Medium 1.47 [0.04] 1.64 [0.01] 1.45 [0.18]
Large 1.81 [0.35] 2.22 [0.05] 1.16 [0.44]

ing: mutations from one negatively charged residue to another; mutations from a neutral

residue to a charged residue; and mutations from a positively charged residue to a neutral

residue. These errors may reflect the fact that GOBLIN’s force field, like ROSETTA’s, does

not explicitly account for electrostatic interactions other than hydrogen bonds. Mutations

from small to large residues, and from large to either small or medium size residues are

also associated with an increase in RMSE (Table 5.5). This is to be expected given that our

backbones were held fixed for these experiments, and so no change is made to account for

unfavorable packings. As explained subsequently, the error in such cases improves upon

incorporating backbone flexibility.

Errors in different complexes: Figure 5.6-bottom shows the breakdown of GOBLIN’s

performance across the eight datasets listed in Table 5.1 arranged in decreasing order of
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number of mutants. In four of the eight complexes, GOBLIN’s error is around 1.5 kcal/mol

or smaller. The largest error is in 3hfm where the RMSE is nearly 3.0 kcal/mol, which is

marginally better than FOLDX’s RMSE, and previously published results using ROSETTA

Kortemme and Baker [2002]. One possible reason for such behavior might be due to con-

formational changes with distal effects, as suggested by Pons et al. [1999]. Additionally,

the three programs (GOBLIN, FOLDX, and ROSETTA) assume that the apo backbones of

the proteins are similar to their holo forms. When this assumption is violated, no program

is expected to perform well, suggesting that it may be necessary to minimize the structure

of the apo forms, or use apo forms deposited in the PDB.

Table 5.6: Outliers

Mutant Error (kcal/mol) Complex Possible Reasons
R21PI -7.68 1sgr Mutation to proline; solvent interactions
R21PI -7.37 1cho Mutation to proline; solvent interactions
Y50AH -7.08 3hfm Large-scale rearrangement Pons et al. [1999]
R21PI -6.88 1ppf Mutation to proline; solvent interactions
K96AY -6.29 3hfm Large-scale rearrangement; loss of salt-bridge Pons et al. [1999]
N32AL -5.47 3hfm Large-scale rearrangement Pons et al. [1999]
Y33AH -5.46 3hfm Large-scale rearrangement Pons et al. [1999]
D51AA -5.21 1bxi Loss of strong electrostatic interaction Wallis et al. [1998]
L18PI -5.10 1cho Mutation to proline; possible destabilization of complex

Outliers: Table 5.6 lists GOBLIN’s largest outliers (absolute error≥ 5 kcal/mol). Four of

the nine involve a mutation to proline from arginine in the serine protease inhibitor. Prolines

have an atypical backbone, and often result in a substantial change in backbone configura-

tion. Our means for sampling backbones does not, in general, handle such changes well.

Of the remaining five outliers, four are mutants to the HyHEL-10 Fab-lysozyme complex

(3hfm), a system that is known to undergo large scale re-arrangements upon binding. Here,
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our assumption that the apo and holo backbones are approximately the same is inappropri-

ate. Moreover, one of these mutations, K96A, has been postulated to result in a loss of a

salt bridge Pons et al. [1999]. The force-field we currently use does not capture such in-

teractions. The final outlier involves the loss of a strong electrostatic interaction, which, as

previously mentioned, is not presently implemented in GOBLIN’s force field.

Effects of Backbone and Side-Chain Entropy

We next consider PGMs modeling Boltzmann distributions over both side-chain and back-

bone conformations. Our expectation was that we would see a further reduction in RMSE,

especially for disruptive mutations (e.g., those involving a large increase in the size of the

side chain). We generated a set of nine alternative backbone conformations using a Backrub-

like method developed by Kortemme and others Smith and Kortemme [2008] that is imple-

mented in Rosetta. The method runs independent Monte-carlo simulations with “general-

ized backrub” moves and selects the lowest energy structure from each simulation. Along

with the native backbone, this gave us an ensemble of ten backbones which is the size of

the ensemble used by Smith and Kortemme [2008], Friedland et al. [2008] in their backrub

studies. We then re-optimized the parameters and re-computed RMSEs in a cross-validated

fashion.

Surprisingly, as shown in Figure 5.7, incorporating backbone flexibility did not change

the prediction significantly in most cases. As expected, the error on incorporating disruptive

mutations (small → large) decreases. However, on some other mutations, incorporating

backbone flexibility tends to increase RMSE slightly rather than decrease it (Tables 5.4

and 5.5). The overall test error using backbone flexibility increased slightly from the rigid

backbone case, albeit not significantly (p = 0.11), to 1.69 kcal/mol. This is still less than
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Figure 5.7: Incorporation of backbone flexibility. GOBLIN prediction error with (y-axis)
and without (x-axis) backbone flexibility. Marked outliers indicate wild-type amino acid
type, residue position and mutant amino acid type.
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the RMSEs of FOLDX and ROSETTA. We note that our data is dominated by mutations to

alanines (a small residue). GOBLIN tends to underestimate binding free energy in mutations

from a large residue to a small one, and does so to a greater degree when accounting for

backbone flexibility. This partially explains the increase in RMSE.

There are three cases where backbone flexibility does tend to decrease RMSE (Table

5.5): when the wild-type residue is small, and the mutant is either medium or large, or when

the wild-type has neutral charge, and the mutant is positively charged. These reductions in

RMSE are due to more favorable enthalpies made possible through alternative backbones,

as opposed to an entropic contribution. There are some notable exceptions to this trend,

as seen in Figure 5.7. For example, the incorporation of backbone flexibility in mutations

L18G of the SGP B : OMTKY complex and D101A of the HYHEL : HEL complex lead

to more than 2 kcal/mol reduction in error. In both cases, the improvement was caused by

accounting for the increase in backbone entropy due to the mutation.

Further analysis from Molecular Dynamics simulations: To understand the cause of the

outliers in our predictions, we investigated one of our largest outliers: R21P mutant (outlier)

of the chymotrypsin : inhibitor complex (pdb id 1cho) by performing Molecular Dynamics

simulations on the wild-type and the mutant in explicit solvent. The molecular dynamics

simulations on the wild-type complex revealed a potential salt bridge between Arg 21 and

Asp 35, and a hydrogen bond between the backbone of Arg 21 and Phe 41. Upon muta-

tion to proline, the simulation revealed that both of these bonds were lost, resulting in a

loop displacing further away from the serine protease inhibitor’s hydrophobic pocket. This

movement resulted in additional waters entering the binding site, further destabilizing the

complex. This particular combination of changes (backbone conformational changes due

to proline mutation, the loss of a salt-bridge, and solvent effects) explains why GOBLIN

54



underestimates the change in free energy. In particular, the BACKRUB-generated backbone

ensemble did not provide adequate sampling, GOBLIN’s force-field doesn’t account for elec-

trostatics and doesn’t explicitly model solvent.

To demonstrate the importance of backbone sampling, we replaced the BACKRUB-generated

backbones in the graphical model with the 3,000 backbones generated via MD. The mod-

ified graphical model thus encoded a Boltzmann distribution over the side chains and this

larger backbone ensemble. We then re-computed the free energies. We note that the com-

plexity of performing this calculation scales linearly with the number of backbones, and

is trivially distributed across a computer cluster. More importantly, there was a dramatic

drop in error — from ≈ 8 kcal/mol to ≈ 1 kcal/mol. We note, however, that only 10 of

the MD-generated backbones had substantial probability mass. This suggest that it may

be necessary to generate a significantly larger backbone ensemble for such outliers. As a

control experiment, we performed additional Molecular Dynamics simulations for L18GI,

a mutation where GOBLIN was fairly accurate in its prediction when using the BACKRUB

ensemble (∆∆Ge: 6 kcal/mol, ∆∆Gp: 5.2 kcal/mol). On this mutant, the prediction did

not change appreciably (∆∆Gp: 5.4 kcal/mol). This highlights the importance of obtain-

ing a well-sampled ensemble of backbones when performing free energy calculations of

protein-protein complexes and suggests that when given such a set of backbones, GOB-

LIN predictions can be substantially more accurate.

5.3 Extensions to Model Protein-Ligand Interactions

While the previous sections describe the results of using GOBLIN to model protein-protein

interactions, the framework itself is much more general and can model biomolecular interac-
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tions in general provided an appropriate discretization of conformational states is available.

To demonstrate this framework, we extended GOBLIN to model protein-ligand interac-

tions. We implemented AutoDock 4.2sHuey et al. [2007] force-field to model Protein-ligand

interactions. Intra-protein interactions were modeled using the Rosetta force-field as previ-

ously. The protein-ligand force-field includes an explicit term for electrostatics which are

known to be important in such interactions. Partial charges were assigned using Gasteiger

charges and rotatable bonds in the ligands were identified using AutoDock tools.

Fig. 5.8-(A) shows a torsion tree of a ligand as generated by Autodock Tools. The

root of the tree corresponds to the core of the ligand; each rotatable bond connects two

rigid parts of the ligand. Starting from this torsion tree representation, GOBLIN-Ligand

constructs conformations of the ligand by discretizing each rotatable bond. The resulting

conformations behave like side-chains of an amino-acid and can be used within the MRF

framework. Fig. 5.8-(B) shows a portion of the MRF generated for one such protein-ligand

interaction.

A dataset of 122 protein-ligand crystal complexes for the Ligand Protein Database

Roche et al. [2001] was used to evaluate GOBLIN . As previously, for each complex in

the database, the crystal structure of the bound complex as well as binding energy terms

were available. Unlike previously where only changes in ∆Gbindupon mutation were avail-

able for the protein-protein interaction dataset, in this case the experimentally calculated

values for binding free energies ∆Gbind were available.

The dataset was split into equal sized randomly selected train/test partitions. Force-

field parameters were trained to experimental values in the training set and the errors were

computed on the test set. This process was repeated for 20 random train/test partitions.

Fig. 5.9-(A) shows the root mean square test error across these twenty partitions for
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GOBLIN-Ligand and Autodock with default and re-trained parameters. In addition, the

accuracy of GOBLIN-Ligand’s predictions without entropic contributions is also shown.

Fig. 5.9-(B) shows a boxplot the breaks down GOBLIN-Ligand’s performance as a func-

tion of the number of rotatable bonds.
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(A)

(B)

Figure 5.8: Graphical models of protein-ligand complexes. (A) Figure showing an exam-
ple torsion tree of a ligand. Each directed edge corresponds to rotatable bond and is a degree
of freedom. The core of the ligand corresponding to the nodes of the torsion tree around
the root are kept rigid while the rest of the ligand is allowed to rotate. (B) Graphical model
of the backbone and side-chain ensembles. The nodes on the protein correspond to random
variables over rotameric side-chain conformations while the nodes on the ligand correspond
to torsional degrees of freedom. (B)
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(A)

(B)

Figure 5.9: Results of GOBLIN-Ligand on 122 protein-ligand complexes (A)Comparison
of root mean square errors with experimentally measured ∆Gvalues Figure shows error in
prediction for multiple approaches: AutoDock 4.2 run with its default settings; Autdock 4.2
with force-field parameters re-trained on this dataset; using the predicted free energy accord-
ing to GOBLIN (GOBLIN-G) and using only the enthalpic component of GOBLIN (GOBLIN-
H). GOBLIN-Ligand outperforms all other approaches on this dataset. (B) Boxplot showing
variation of GOBLIN-Ligand’s error as the number of rotatable bonds in the ligand increase.
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Chapter 6

Structured Priors over Sequence Space

We introduce a new approach to learning statistical models from multiple sequence align-

ments (MSA) of proteins. Our method, called GREMLIN (Generative REgularized ModeLs

of proteINs), learns an undirected probabilistic graphical model of the amino acid com-

position within the MSA. The resulting model encodes both the position-specific conser-

vation statistics and the correlated mutation statistics between sequential and long-range

pairs of residues. Existing techniques for learning graphical models from multiple sequence

alignments either make strong, and often inappropriate assumptions about the conditional

independencies within the MSA (e.g., Hidden Markov Models), or else use sub-optimal al-

gorithms to learn the parameters of the model. In contrast, GREMLIN makes no a priori

assumptions about the conditional independencies within the MSA. We formulate and solve

a convex optimization problem, thus guaranteeing that we find a globally optimal model at

convergence. The resulting model is also generative, allowing for the design of new pro-

tein sequences that have the same statistical properties as those in the MSA. We perform a

detailed analysis of covariation statistics on the extensively studied WW and PDZ domains
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and show that our method out-performs an existing algorithm for learning undirected prob-

abilistic graphical models from MSA. We then apply our approach to 71 additional families

from the PFAM database and demonstrate that the resulting models significantly out-perform

Hidden Markov Models in terms of predictive accuracy.

6.1 Introduction

A protein family∗ is a set of evolutionarily related proteins descended from a common an-

cestor, generally having similar sequences, three dimensional structures, and functions. By

examining the statistical patterns of sequence conservation and diversity within a protein

family, we can gain insights into the constraints that determine structure and function. These

statistical patterns are often learned from multiple sequence alignments (MSA) and then en-

coded using probabilistic graphical models (e.g., Krogh et al. [1994], Karplus et al. [1997,

1998], Bateman et al. [2002], Liu et al. [2006]). The well-known database PFAM Bate-

man et al. [2002], for example, contains more than 11,000 profile Hidden Markov Models

(HMM) Eddy [1998] learned from MSAs. The popularity of generative graphical models

is due in part to the fact that they can be used to perform important tasks such as structure

and function classification (e.g., Karplus et al. [1997], Liu et al. [2006]) and to design new

protein sequences (e.g., Thomas et al. [2009a]). Unfortunately, existing methods for learn-

ing graphical models from MSAs either make unnecessarily strong assumptions about the

nature of the underlying distribution over protein sequences, or else use greedy algorithms

that are often sub-optimal. The goal of this chapter is to introduce a new algorithm that

addresses these two issues simultaneously and to demonstrate the superior performance of

∗In this chapter, the expression protein family is synonymous with domain family.
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the resulting models.

A graphical model encodes a probability distribution over protein sequences in terms

of a graph and a set of functions. The nodes of the graph correspond to the columns of

the MSA and the edges specify the conditional independencies between the columns. Each

node is associated with a local function that encodes the column-specific conservation statis-

tics. Similarly, each edge is associated with a function that encodes the correlated mutation

statistics between pairs of residues.

The task of learning a graphical model from an MSA can be divided into two sub-

problems: (i) learning the topology of the graph (i.e., the set of edges), and (ii) estimating

the parameters of the functions. The first problem is especially challenging because the

number of unique topologies on a graph consisting of p nodes is O(2p
2
). For that reason, it

is common to simply impose a topology on the graph, and then focus on parameter estima-

tion. An HMM, for example, has a simple topology where each column is connected to its

immediate neighbors. That is, the model assumes each column is conditionally independent

of the rest of the MSA, given its sequential neighbors. This assumption dramatically reduces

the complexity of learning the model but is not well justified biologically. In particular, it

has been shown by Ranganathan and colleagues that it is necessary to model correlated

mutations between non-adjacent residues Lockless and Ranganathan [1999], Socolich et al.

[2005], Russ et al. [2005].

Thomas and colleagues Thomas et al. [2005] demonstrated that correlated mutations be-

tween non-adjacent residues can be efficiently modeled using a different kind of graphical

model known as a Markov Random Field (MRF). However, when using MRFs one must

first identify the conditional independencies within the MSA. That is, one must learn the

topology of the model. Thomas and colleagues address that problem using a greedy algo-
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rithm, called GMRC, that adds edges between nodes with high mutual information Thomas

et al. [2005, 2008b, 2009c,b]. Unfortunately, their algorithm provides no guarantees as to

the optimality of the resulting model.

The algorithm presented in this chapter, called GREMLIN (Generative REgularized Mod-

eLs of proteINs), solves the same problem as Thomas et al. [2005] but does so using a

method with strong theoretical guarantees. In particular, our algorithm is consistent, i.e. it

is guaranteed to yield the true model as the data increases, and it has low sample-complexity,

i.e. it requires less data to identify the true model than any other known approach. GREM-

LIN also employs regularization to penalize complex models and thus reduce the tendency

to over-fit the data. Finally, our algorithm is also computationally efficient and easily paral-

lelizable. We demonstrate GREMLIN by performing a detailed analysis on the well-studied

WW and PDZ domains and demonstrate that it produces models with higher predictive ac-

curacy than those produced using the GMRC algorithm. We then apply GREMLIN to 71

other families from the PFAM database and show that our algorithm produces models with

consistently higher predictive accuracy than profile HMMs.

6.2 Modeling Domain Families with Markov Random Fields

Let Si be a finite discrete random variable representing the amino-acid composition at po-

sition i of the MSA of the domain family taking values in {1...k} where the number of

states, k, is 21 (20 amino acids with one additional state corresponding to a gap). Let

S = {S1, S2, ..Sp} be the multi-variate random variable describing the amino acid composi-

tion of an MSA of length p. Our goal is to model P (S), the amino-acid composition of the

domain family.
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Unfortunately, P(S) is a distribution over a space of size kp, rendering the explicit mod-

eling of the joint distribution computationally intractable for naturally occurring domains.

However, by exploiting the properties of the distribution, one can significantly decrease the

number of parameters required to represent this distribution. To see the kinds of properties

that we can exploit, let us consider a toy domain family represented by an MSA as shown

in Fig. 6.1-(A). A close examination of the MSA reveals the following statistical properties

of its composition: (i) the Tyrosine (‘Y’) at position 2 is conserved across the family; (ii)

positions 1 and 4 are co-evolving – sequences with a (S) at position 1 have a Histidine (H)

at position 4, while sequences with a Phenylalanine (F) at position 1 have a Tryptophan (W)

at position 4; (iii) the remaining positions appear to evolve independently of each other. In

probabilistic terms we say that S1, S3 are co-varying, and that the remaining Si’s are statis-

tically independent. We can therefore encode the joint distribution over all positions in the

MSA by storing one joint distribution P (S1, S4), and the univariate distributions P (Si), for

the remaining positions (since they are all statistically independent of every other variable).

The ability to factor the full joint distribution, P (S), in this fashion has an important

consequence in terms of space complexity. Namely, we can reduce the space requirements

from 217 to 212 +7∗21 parameters. This drastic reduction in space complexity translates to

a corresponding reduction in time complexity for computations over the distribution. While

this simple example utilizes independencies in the distribution; this kind of reduction is

possible in the more general case of conditional independencies. A Probabilistic Graph-

ical Model (PGM) exploits these (conditional) independence properties to store the joint

probability distribution using a small number of parameters.

Intuitively, a PGM stores the joint distribution of a multivariate random variable in a

graph; while any distribution can be modeled by a PGM with a complete graph, exploit-
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ing the conditional independencies in the distribution leads to a PGM with a (structurally)

sparse graph. Following Thomas et al. [2008b], we use a specific type of probabilistic

graphical model called a Markov Random Field (MRF). In its commonly defined form with

pair-wise log-linear potentials, a Markov Random Field (MRF) can be formally defined as

a tupleM = (S, E ,Φ,Ψ) where (S, E) is an undirected graph over the random variables. S

represents the set of vertices and E is the set of edges of the graph. The graph succinctly rep-

resents conditional independencies through its Markov properties, which state for instance

that each node is independent of all other nodes given its neighbors. Thus, graph separa-

tion in (S, E) implies conditional independence. Φ,Ψ are a set of node and edge potentials,

respectively, usually chosen to be log-linear functions of the form:

φi = [ev
i
1 ev

i
2 ... ev

i
k ]; ψij =



ew
ij
11 ew

ij
12 ... ew

ij
1k

ew
ij
21 ew

ij
22 ... ew

ij
2k

...

ew
ij
k1 ew

ij
k2 ... ew

ij
kk


(6.1)

where i is a position in the MSA, and (i, j) is an edge between the positions i and j in the

MSA. φi is a (k × 1) vector and ψij is a (k × k) matrix. For future notational simplicity we

further define

vi = [vi1 vi2 ... vik] wij =



wij11 wij12 ... wij1k

wij21 wij22 ... wij2k

...

wijk1 wijk2 ... wijkk


(6.2)

where vi is a (k × 1) vector and wij is a (k × k) matrix. v = {vi|i = 1 . . . p} and
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(A) (B)

Figure 6.1: (A) A multiple sequence alignment (MSA) for a hypothetical domain family.
(B) The Markov Random Field encoding the conservation in and the coupling in the MSA.
The edge between random variables S1 and S4 reflects the coupling between positions 1 and
4 in the MSA.

w = {wij|(i, t) ∈ E} are node and edge “weights”. v is a collection of p, (k × 1) vectors

and w is a collection of p, (k × k) matrices.

The probability of a particular sequence s = {s1, s2, . . . , sp} according toM is defined

as:

PM(S = s) =
1

Z

∏
i∈V

φi(si)
∏

(i,j)∈E

ψij(si, sj) (6.3)

where Z, the so-called partition function, is a normalizing constant defined as a sum over all

possible assignments to S:

Z =
∑
s∈S

∏
i∈V

φi(si)
∏

(i,j)∈E

ψij(si, st) (6.4)

The structure of the MRF for the MSA shown in Fig. 6.1(A) is shown in Fig. 6.1(B). The

edge between variables S1 and S4 reflects the statistical coupling between those positions in
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the MSA.

6.3 Structure learning with L1 Regularization

In the previous section we outlined how an MRF can parsimoniously model the probability

distribution P (S). In this section we consider the problem of learning the MRF from an

MSA.

Eq. 6.3 describes the probability of a sequence s for a specific modelM. Given a set of

independent sequences S = {s1, s2, s3, ...., sn}, the log-likelihood of the model parameters

Θ = (E ,v,w) is then:

ll(Θ) =
∑
sd∈S

∑
i∈V

log φi(sdi ) +
∑

(i,j)∈E

log ψij(sdi , s
d
t )

− log Z (6.5)

where the term in the braces is the unnormalized likelihood of each sequence, and Z is the

global partition function. The problem of learning the structure and parameters of the MRF

is now simply that of maximizing ll(Θ).

MLE(θ) = max
Θ

ll(Θ) (6.6)

This Maximum Likelihood Estimate (MLE) is guaranteed to recover the true parameters as

the amount of data increases. However, this formulation suffers from two significant short-

comings: (i) the likelihood involves the computation of the global partition function which

is computationally intractable and requires O(kp) time to compute, and (ii) in the absence

of infinite data, the MLE can significantly over-fit the training data due to the potentially

large number of parameters in the model.
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An overview of our approach to surmount these shortcomings is as follows: first, we ap-

proximate the likelihood of the data with an objective function that is easier to compute, yet

retains the optimality property of MLE mentioned above. To avoid over-fitting and learn-

ing densely connected structures, we then add a regularization term that penalizes complex

models to the likelihood objective. The specific regularization we use is particularly attrac-

tive because it has high statistical efficiency.

The general regularized learning problem is then formulated as:

max
Θ

pll(Θ)− Reg(Θ) (6.7)

where the pseudo log-likelihood pll(Θ) is an approximation to the exact log-likelihood and

Reg(Θ) is a regularization term that penalizes complex models.

While this method can be used to jointly estimate both the structure E and the parameters

v,w, it will be convenient to divide the learning problem into two parts: (i) structure learn-

ing — which learns the edges of the graph, and (ii) and parameter estimation — learning

v,w given the structure of the graph. We will use a regularization penalty in the structure

learning phase that focuses on identifying the correct set of edges. In the parameter estima-

tion phase, we use these edges and learn v and w using a different regularization penalty

that focuses on estimating v and w accurately. We note that once the set of edges has been

fixed, the parameter estimation problem can be solved efficiently. Thus, we will focus on

the problem of learning the edges or, equivalently, the set of conditional independencies

within the model.
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6.3.1 Pseudo Likelihood

The log-likelihood as defined in Eq. 6.5 is smooth, differentiable, and concave. However,

maximizing the log-likelihood requires computing the global partition function Z and its

derivatives, which in general can take up to O(kp) time. While approximations to the parti-

tion function based on Loopy Belief Propagation [Lee et al., 2007b] have been proposed as

an alternative, such approximations can lead to inconsistent estimates.

Instead of approximating the true-likelihood using approximate inference techniques,

we use a different approximation based on a pseudo-likelihood proposed by Besag [1977],

and used in Wainwright et al. [2007], Schmidt et al. [2008]. The pseudo-likelihood is de-

fined as:

pll(Θ) =
1

n

∑
sd∈S

p∑
i=1

log(P (sdi |sd−i))

=
1

n

∑
sd∈S

p∑
j=1

log φi(sdi ) +
∑
j∈V ′i

log ψij(sdi , s
d
j )− log Zi


where sdi is the residue at the ith position in the dth sequence of our MSA, sd−i denotes the

“Markov blanket” of sdi , and Zi is a local normalization constant for each node in the MRF.

The set V ′i is the set of all vertices which connect to vertex i in the PGM. The only differ-

ence between the likelihood and pseudo-likelihood is the replacement of a global partition

function with local partition functions (which are sums over possible assignments to single

nodes rather than a sum over all assignments to all nodes of the sequence). This difference

makes the pseudo-likelihood significantly easier to compute in general graphical models.

The pseudo-likelihood retains the concavity of the original problem, and this approx-
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imation makes the problem tractable. Moreover, this approximation is known to yield a

consistent estimate of the parameters under fairly general conditions if the generating dis-

tribution is in fact a pairwise MRF defined by a graph over S [Gidas, 1988]. That is, under

these conditions, as the number of samples increases, parameter estimates using pseudo-

likelihood converge to the true parameters.

6.3.2 L1 Regularization

The study of convex approximations to the complexity and goodness of fit metrics has re-

ceived considerable attention recently [Wainwright et al., 2007, Lee et al., 2007b, Hofling

and Tibshirani, 2009, Schmidt et al., 2008]. Of these, those based on L1 regularization are

the most interesting because of their strong theoretical guarantees. In particular methods

based on L1 regularization exhibit consistency in both parameters and structure (i.e., as the

number of samples increases we are guaranteed to find the true model), and high statistical

efficiency (i.e., the number of samples needed to achieve this guarantee is small). See Tropp

[2006] for a recent review of L1-regularization. Our algorithm uses L1-regularization for

both structure learning and parameter estimation.

For the specific case of block-L1 regularization, Reg(Θ) usually takes the form:

Reg(Θ) = λnode

p∑
i=1

‖vi‖2
2 + λedge

p∑
i=1

p∑
j=i+1

‖wij‖2 (6.8)

where λnode and λedge are regularization parameters that determine how strongly we penalize

higher (absolute) weights. The value of λnode and λedge control the trade-off between the

log-likelihood term and the regularization term in our objective function.

The regularization described above groups all the parameters that describe an edge to-
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gether in a block. The second term in Eq. 6.8 is the sum of the L2 norms of each block.

Since the L2 norm is always positive, our regularization is exactly equivalent to penalizing

the L1 norm of the vector of norms of each block with the penalty increasing with higher

values of λedge. It is important to distinguish the block-L1 regularization on the edge weights

from the more traditional L2 regularization on the node weights where we sum the squares

of the L2 norms.

The L1 norm is known to encourage sparsity (by setting parameters to be exactly zero),

and the block L1 norm we have described above encourages group sparsity (where groups of

parameters are set to zero). Since, each group corresponds to all the parameters of a single

edge, using the block L1 norm leads to what we refer to as structural sparsity (i.e. sparsity

in the edges). In contrast, the L2 regularization also penalizes high absolute weights, but

does not usually set any weights to zero, and thus does not encourage sparsity.

6.3.3 Optimizing Regularized Pseudo-Likelihood

In the previous two sections we described an objective function, and then a tractable and

consistent approximation to it, given a set of weights (equivalently, potentials). However, to

solve this problem we still need to be able to find the set of weights that maximizes the like-

lihood under the block-regularization form of Eq. 6.7. We note that the objective function

associated with block-L1 regularization is no longer smooth. In particular, its derivative with

respect to any parameter is discontinuous at the point where the group containing the pa-

rameter is 0. We therefore consider an equivalent formulation where the non-differentiable

part of the objective is converted into a constraint making the new objective function differ-
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entiable.

maxΘ,α pll(Θ)− λnode
∑p

i=1‖vi‖2
2 − λedge

∑p
i=1

∑p
j=i+1 αij

subject to: ∀(1 ≤ i < j ≤ p) : αij ≥ ‖wij‖2

where the constraints hold with equality at the optimal (Θ,α). Intuitively, αij behaves as

a differentiable proxy for the non-differentiable ‖wij‖2, making it possible to solve the

problem using techniques from smooth convex optimization. Since the constraints hold

with equality at the optimal solution (ie αij = ‖wij‖2), the solutions and therefore, the

formulations are identical.

We solve this reformulation through the use of projected gradients. We first ignore the

constraints, compute the gradient of the objective, and take a step in this direction. If the

step results in any of the constraints being violated we solve an alternative (and simpler)

Euclidean projection problem:

minΘ′α′‖

 Θ′

α′

−
 Θ

α

‖2
2

subject to: ∀(1 ≤ i < j ≤ p) : αij ≥ ‖wij‖2

which finds the closest parameter vector to the vector obtained by taking the gradient step

(in Euclidean distance), which satisfies the original constraints. In this case the projection

problem can be solved extremely efficiently (in linear time) using an algorithm described in

Schmidt et al. [2008]. Methods based on projected gradients are guaranteed to converge to a
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stationary point [Boyd and Vandenberghe, 2004], and convexity ensures that this stationary

point is globally optimal.

In order to scale the method to significantly larger domains, we can sub-divide the struc-

ture learning problem into two steps. In the first step, each node is considered separately to

identify its neighbors. This may lead to an asymmetric adjacency matrix, and so in the sec-

ond step the adjacency matrix is made symmetric. This two-step approach to structure learn-

ing has been extensively compared to the single step approach by Hofling and Tibshirani

[2009] and has been found to have almost identical performance. The two-step approach

however has several computational advantages. The problem of learning the neighbors of

a node is exactly equivalent to solving a logistic regression problem with block-L1 regular-

ization, and this problem can be solved quickly and with low memory requirements. Addi-

tionally, the problem of estimating the graph can now be trivially parallelized across nodes

of the graph since these logistic regression problems are completely decoupled. Parameter

learning of the graph with just L2 regularization can then be solved extremely efficiently

using quasi-Newton methods [Nocedal, 1980].

74



Chapter 7

Application: Learning Generative

Models over Protein Fold Famlies

7.1 Results

The probabilistic framework defined in Sec. 6.2 and the optimization objectives and algo-

rithms defined in Sec. 6.3 constitute a method for learning a graphical model from a given

MSA. The optimization framework has two major penalty parameters that can be varied

(λv, λe). To understand the effects of these parameters, we first evaluated GREMLIN on

artificial protein families whose sequence records were generated from known, randomly

generated models. This lets us evaluate the success of the various components of GREM-

LIN in a controlled setting where the ground truth was known.

Our experiments involve comparing the performance of ranking edges and learning a

graph structure using a variety of techniques, including: (i) our algorithm, GREMLIN; (ii)

the greedy algorithm of Thomas et al. [2005, 2008b], denoted GMRC method’; and (iii)
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Profile Hidden Markov Models [Eddy, 1998] used by Bateman et al. [2002].

We note that the GMRC method only considers edges that meet certain coupling criteria

(see Thomas et al. [2005, 2008b] for details). In particular, we found that it returns sparse

graphs (fewer than 100 edges), regardless of choice of run-time parameters. GREMLIN, in

contrast, returns a full spectrum from disconnected to completely connected graphs depend-

ing on the choice of the regularization parameter. In our experiments, we use our parameter

estimation code on their graphs, and compare ourselves to the best graph they return.

In the remainder of this section, we demonstrate that GREMLIN significantly out-performs

other algorithms. In particular, we show that GREMLIN achieves higher goodness of fit to

the test set, and has lower prediction error than the GMRC method - even when we learn

models of similar sparsity. Finally, we show that GREMLIN also significantly out performs

profile HMM-based models for 71 real protein families, in terms of goodness of fit. These

results demonstrate that the use of block-regularized structure learning algorithms can re-

sult in higher-quality MRFs than those learnt by the GMRC method, and that MRFs produce

higher quality models than HMMs.

7.1.1 Simulations

We generated 32-node graphs. Each node had a cardinality of 21 states, and each edge

was included with probability ρ. Ten different values of ρ varying from 0.01 and 0.45 were

used; for each value of ρ, twenty different graphs were generated resulting in a total of 200

graphs. For each edge that was included in a graph, edge and node weights were drawn

from a Normal distribution (weights ∼ N (0,1)). Since each edge involves sampling 441

weights from this distribution, the edges tend to have many small weights and a few large

ones. This reflects the observation that in positions with known correlated mutations, a few
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favorable pairs of amino acids are usually much more frequent than most other pairs. When

we sample from our simulated graphs using these parameters, we therefore tend to generate

such sequences.

For each of these 200 graphical models, we then sampled 1000 sequences using a Gibbs

sampler with a burn-in of 10,000 samples and discarding 1,000 samples between each ac-

cepted sequence. These 1000 sequences were then partitioned into two sets: a training set

containing 500 sequences and a held-out set of 500 sequences used to test the model. The

training set was then used to train a model using the block regularization norm.

We first test our accuracy on structure learning. We measure accuracy by the F-score

which is defined as

F-score =
2 ∗ precision ∗ recall

precision + recall

Precision and recall are in turn defined in terms of the number of true positives (tp), false

positives (fp) and false negatives (fn) as precision = tp
tp+fp

and recall = tp
tp+fn

.

Since the structure of the model directly depends only on the regularization weight on

the edges, the structures were learnt for each norm and each training set with different values

of λe (between 1 and 500), keeping λv fixed at 1.

Fig. 7.1 shows our performance in predicting the true structure by using L1-L2 (Fig. 7.1)

We observe that for all settings of ρ GREMLIN learns fairly accurate graphs at some value

of λe.

Figure 7.2-A compares our structure learning method with the algorithm in Thomas

et al. [2008b]. We evaluate their method over a wide range of parameter settings and select

the best model. Figure 7.2-A shows that our method significantly out-performs their method

for all values of ρ. We see that over all settings our best model has an average F-score of at

least 0.63. We conclude that we are able to infer accurate structures given the proper choice
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Figure 7.1: F-scores of structures learnt by using L1-L2 norm The figure shows the average
and standard deviation of the F-score across 20 different graphs as a function of ρ, the
probability of edge-occurrence.
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Figure 7.2: (A) Edge occurrence probability ρ versus F-score for the structure learning
methods we propose, and the method proposed in Thomas et al. [2008b]. (B) L2 norm of
the error in the estimated parameters as a function of the weight of the regularization in
stage two. The inset shows the case when no regularization is used in stage two. The much
higher parameter estimation error in this case highlights the need for regularization in both
stages.

of settings.

Figure 7.2-B, shows the error in our parameter estimates given the true graph as a func-

tion of ρ. We also find that parameter estimation is reasonably robust to the choice of the

regularization weights, as long as the regularization weights are non-zero.

Fig. 7.3-A shows a qualitative analysis of edges missed by each method (we consider

all simulated graphs and the best learnt graph of each method). We divide the missed edges

into three groups (weak, intermediate and strong) based on their true L2 norm. We see again

that the three norms perform comparably, significantly out-performing the GMRC method in

all three groups.

Finally, Fig. 7.3-B shows the sensitivity of our structure learning algorithms to the size

of training set. In particular, we see that for the simulated graphs around 400 sequences
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Figure 7.3: (A) Qualitative grouping of edges missed by GREMLIN and the GMRC method
(B) Sensitivity of structure learning to size of training set.

results in us learning very accurate structures. However, as few as 50 sequences are enough

to infer reasonable structures.

7.1.2 Evaluating Structure and Parameters Jointly

In a simulated setting, structure and parameter estimates can be compared against known

ground truth. However, for real domain families we need other evaluation methods. We

evaluate the structure and parameters for real domain families by measuring the imputa-

tion error of the learnt models. Informally, the imputation error measures the probability

of not being able to “generate” a complete sequence, given an incomplete one. The im-

putation error of a column is measured by erasing it in the test MSA, and then computing

the probability that the true (known) residues would be predicted by the learnt model. This

probability is calculated by performing inference on the erased columns, conditioned on the

rest of the MSA. The imputation error of a model is the average of its imputation error over
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columns.

Using imputation error directly for model selection generally gives us models that are

too dense. Intuitively, once we have identified the true model, adding extra edges decreases

the imputation error by a very small amount, probably a reflection of the finite-sample bias.

7.1.3 Model selection using information criteria

We consider modifications to two widely used model selection strategies. The Bayesian

Information Criterion (BIC) [Schwarz, 1978], is used to select parsimonious models and is

known to be asymptotically consistent in selecting the true model. The Akaike Information

Criterion (AIC) [Akaike, 2003], typically selects denser models than the BIC, but is known

to be asymptotically consistent in selecting the model with lowest predictive error (risk). In

general, they do not however select the same model [Yang, 2003].

We use the following definitions:

pseudo-BIC(λ) = −2pll(λ) + log(n)df(λ)

pseudo-AIC(λ) = −2pll(λ) + 2df(λ)

Where we use the pseudo log-likelihood approximation to the log-likelihood. While it may

be expected that using the pseudo log-likelihood instead of the true log-likelihood may in

fact lead to inconsistent selection a somewhat surprising result [Csiszar and Talata, 2006]

shows that in the case of BIC using pseudo log-likelihood is in fact also consistent for model

selection. Although we aren’t aware of the result, we expect a similar result to hold for the

risk consistency of the pseudo-AIC.
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Figure 7.4: Graph density versus the rank correlation for ranking and selection using (A)
BIC (B) AIC.

We evaluate the likelihood on the training sample to score the different models. n is the

number of training sequences.

Estimating the degrees of freedom of a general estimator is quite hard in practice. This

has lead to use of various heuristics in practice. For the LASSO estimator which uses a

pure-L1 penalty, it is known that the number of non-zeros in the regression vector is a good

estimate of the degrees of freedom. A natural extension when using a block-L1 penalty is

the number of non-zero blocks (i.e. edges). Since this does not differentiate between weak

and strong edges, we used the block-L1 norm as an estimate of the degress of freedom. In

our simulations, we find that choice often results in good model selection.

Figure 7.4 shows the performance of the two model selection strategies at different spar-

sity levels. We evaluate the performance by learning several graphs (at different levels of

regularization) and comparing the Spearman rank-correlation between the F-score of the

graphs and their rank. We can clearly see that when the true graph is sparse the modified
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BIC has a high rank-correlation, whereas when the true graph is dense the modified AIC

does well, with neither method providing reliable model selection for all graphs.

For this reason, we considered an approach to model selection based on finite sample

error control. We chose to control the false discovery rate (FDR) in the following way. Con-

sider permuting the each column of the MSA independently (and randomly). Intuitively, the

true graph is now a graph with no edges. Thus, one approach to selecting the regularization

parameter is to find the value that yields no edges on the permuted MSA. A more robust

method, which we use, is to use the average regularization parameter obtained from multi-

ple random permutations as in Listgarten and Heckerman [2007]. In the results that follow

we use 20 random permutations.

Given the success of GREMLIN on simulated data, and equipped with a method for

model selection described above, we proceed to apply GREMLIN to real protein MSAs. We

consider the WW and PDZ families in some detail since the extensive literature on these

families allows us to draw meaningful conclusions about the learnt models.

7.1.4 A generative model for the WW domain

The WW domain family (Pfam id: PF00397 [Bateman et al., 2002]) is a small protein inter-

action module with two highly conserved tryptophans that adopts a curved three-stranded

β-sheet structure with a binding site for proline-containing peptides. In Socolich et al.

[2005] and Russ et al. [2005], the authors determine, using Statistical Coupling Analysis

(SCA), that the residues can be divided into two clusters: the first cluster contains a set

of 8 strongly coupled residues and the second cluster contains everything else. Based on

this finding, the authors then designed 44 sequences that satisfy co-evolution constraints of

the first cluster, of which 12 actually fold in vitro. An alternative set of control sequences,
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which did not satisfy the constraints, failed to fold.

We first constructed an MSA by starting with the PFAM alignment and removing se-

quences to construct a non-redundant alignment (no pair of sequences was greater than

80% similar). This resulted in an MSA with 700 sequences of which two thirds were used

as a training set and the rest were used as a test set. Each sequence in the alignment had 30

positions. The training set was used to learn the model, for multiple values of λe. Given the

structure of the graph, parameters were learned using λv = 1, λe = 1. The learnt model is

presented in Figure 7.5.

Figure 7.6 compares the imputation errors of our approach (in red and yellow) with the

GMRC method of Thomas et al. [2008b] and Profile HMMs [Eddy, 1998]. The model in red

was learnt using λe selected by performing a permutation study. Since this model had more

edges than the model learnt by GMRC, we used a higher λe to learn a model that had fewer

edges than the GMRC model. The x-intercept was based on a loose lower bound on the

error and was estimated by computing the imputation error on the test-data of a completely

connected model learnt on the test data. Due to over-fitting, this is likely to be a very loose

estimate of the lower bound. We find that our imputation errors are lower than the methods

we compare to (even at comparable levels of sparsity).

To see which residues are affected by these edges, we construct a “coupling profile” (Fig.

7.5-C). We construct a shuffled MSA by taking the natural MSA and randomly permuting

the amino acids within the same position (column of MSA) for each position. The new MSA

now contains no co-evolving residues but has the same conservation profile as the original

MSA. To build a coupling profile, we calculate the difference in the imputation error of

sequences in a held-out test set and the shuffled MSA. Intuitively, having a high imputation

error difference means that the position was indeed co-evolving with some other positions
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(A) (B)

(C)

Figure 7.5: WW domain model. Edges returned by GREMLIN overlayed on a circle (a)
and on the structure (b) of the WW domain of Transcription Elongation Factor 1 (PDB id:
2DK7) [Berman et al., 2000]. (c) Coupling profile (see text).
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Figure 7.6: Comparison of Imputation errors on WW and PDZ families. We consider two
variants of GREMLIN - with the regularization parameter selected either to produce a model
with a smaller number of edges than GMRC (third bar in each group, shown in yellow) or to
have zero edges on 20 permuted MSAs (last bar, shown in red). The x-intercept was chosed
by estimating a lower bound on the imputation error as described in the text.

in the MSA. The other positions would also have a high imputation error difference in the

coupling profile.

We also performed a retrospective analysis of the artificial sequences designed by Russ

et al. [2005]. We attempt to distinguish sequences that folded from those that didn’t.

Although this is a discriminative test (folded or not) of a generative model, we nev-

ertheless achieve a high AUC of 0.87Fig. 7.7. We therefore postulate that the additional

constraints we identify are indeed critical to the stability of the WW fold. In comparing

our AUC to the published results of Thomas et al. [2008b] (AUC of 0.82) and the Profile

HMM (AUC of 0.83) we see that we are able to better distinguish artificial sequences that

fold from those that don’t.
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Figure 7.7: Receiver operating characteristic (ROC) curve of GREMLIN for the task of
distinguishing artificial WW sequences that fold from those that don’t.
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7.1.5 Allosteric regulation in the PDZ domain

The PDZ domain is a family of small, evolutionarily well represented protein binding mo-

tifs. The domain is most commonly found in signaling proteins and helps to anchor trans-

membrane proteins to the cytoskeleton and hold together signaling complexes. The PDZ

domain is also interesting because it is considered an allosteric protein. The domain, and

its members have been studied extensively, in multiple studies, using a wide range of tech-

niques ranging from computational approaches based on statistical coupling ([Lockless and

Ranganathan, 1999]) and Molecular Dynamics simulations [Dhulesia et al., 2008], to NMR

based experimental studies ([Fuentes et al., 2004]).

We use the MSA from Lockless and Ranganathan [1999]. The MSA is an alignment

of 240 non-redundant sequences, with 92 positions. We chose a random sub-sample with

two-thirds of the sequences as the training set and use the rest as a test set. Using this

training set, we learnt generative models for each of the block regularizers, and choosing

the smallest value of λe that gave zero edges for 20 permuted MSAs as explained previ-

ously. The resulting model had 112 edges (Fig. 7.8). Figure 7.6 summarizes the imputation

errors on the PDZ domain. We again observe that the model we learn is denser than that

learnt by GMRC and has lower imputation error. However, even at comparable sparsity

GREMLIN out-performs the Profile HMM and GMRC.

The SCA based approach of Lockless and Ranganathan [1999] identified a set of residues

that were coupled to a residue near the active site (HIS-70) including a residue at a distal

site on the other end of the protein (GLY-49 in this case). Since the SCA approach can only

determine the presence of a dependence but cannot distinguish between direct and indirect

couplings, only a cluster of residues was identified. Our model also identifies this interac-

tion, but more importantly, it determines that this interaction is mediated by ALA-74 with
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(A) (B)

(C)

Figure 7.8: PDZ domain model. Edges returned by GREMLIN overlayed on a circle (a)
and on the structure (b) of PDZ domain of PSD-95 (PDB id:1BE9). (c) Coupling profile
(see text).
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position 74 directly interacting with both these positions. By providing such a list of sparse

interactions our model can provide a small list of hypotheses to an experimentalist looking

for possible mechanisms of such allosteric behavior.

In addition to the pathway between HIS-70 and GLY-49, we also identify residues not on

the pathway that are connected to other parts of the protein including, for example ASN-61

of the protein. This position is connected to ALA-88 and VAL-60 in our model, and does

not appear in the network suggested by Lockless and Ranganathan [1999], but has been

implicated by NMR experiments [Fuentes et al., 2004] as being dynamically linked to the

active site.

From our studies on the PDZ and WW families we find that GREMLIN produces higher

quality models than GMRC and profile HMMs, and identifies richer sets of interactions.

In the following section we consider the application of GREMLIN to a larger subset of the

PFAM database. Since the greedy algorithm of GMRC does not scale to large families, our

experiments are restricted to comparing the performance of GREMLIN with that of profile

HMMs.

7.1.6 Large-scale analysis of families from Pfam

We selected all protein families from PFAM [Bateman et al., 2002] that had at least 300

sequences in their seed alignment. We restricted ourselves to such families because the

seed alignments are manually curated before depositing and are therefore expected to have

higher quality than the whole alignments. We pre-processed these alignments to remove re-

dundant sequences (sequence similarity > 80%) in order to generate non-redundant align-

ments. From each alignment, we then removed columns that had gaps in more than half

the sequences, and then removed sequences in the alignment that had more than insertions
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Figure 7.9: Histogram of MSA lengths of the 73 PFAM families in our study.

at more than 10% of these columns. Finally, we removed sequences that had more than

20% gaps in their alignment. If this post-processing resulted in an alignment with less than

300 sequences, it was dropped from our analysis. 71 families remained at the end of this

process. These families varied greatly in their length with the shortest family having 15

positions and the longest having more than 450 positions and the median length being 78

positions. Figure 7.9 shows the distribution of lengths.

For each of these families, we created a random partition of the alignment into training

(with 2/3 of the sequences) and test (with 1/3 of the sequences) alignments and trained an

MRF using our algorithm. As mentioned earlier, we chose λe by performing 20 random

permutations of each column and choosing the smallest λe that gave zero edges on all 20

permutations. As a baseline comparison, we also trained a profile-HMM using the Bioin-

formatics toolkit in Matlab on the training alignments. We then used the learnt models to
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Figure 7.10: (A) Histogram of the distance in crystal structure. (B) Degree distribution
across all proteins.

impute the composition of each position of the test MSA and computed the overall and per-

position imputation errors for both models. We provide the models and detailed analyses for

each family on a supporting website ∗ and focus on overall trends in the rest of this section.

Figure 7.10 shows the histograms of the distance between residues connected by an

edge and the degree of the nodes. Approximately 30% of the edges are between residues

that are more than 10 Å of each other. That is, GREMLIN learns edges that are different than

those that would be obtained from a contact map. Despite the presence of long-range edges,

GREMLIN does learn a sparse graph; most nodes have degree less than 5, and the majority

have 1 or fewer edges.

Fig. 7.11-(A) shows a boxplot demonstrating the effect of incorporating co-evolution

information according to our model. The y-axis shows the decrease in the per-position

imputation error when moving from a profile-HMM model to the corresponding MRF, while

the x-axis bins this improvement according to the number of edges in the MRF at that

∗http://www.cs.cmu.edu/˜cjl/gremlin/
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(A)

(B)

Figure 7.11: (A) Boxplot displaying the effect of coupling on improvement in imputation
error at a position when compared to a profile-HMM. The median imputation error shows
a near-linear decrease as the number of neighbors learnt by the model increases. (B) Im-
provement in overall imputation error across all positions for each family.
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position. In each box, the central red line is the median, the edges of the box are the 25th

and 75th percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are plotted individually with red ‘+’ marks. As the figure shows,

moving from a profile-HMM model to an MRF never hurts: for positions with 0 edges,

there is no difference in imputation; for positions with at least one edge, the MRF model

always results in lower error. While this is not completely surprising given that the MRF has

more parameters and is therefore more expressive, it is not obvious that these parameters can

be learnt from such little data. Our results demonstrate that this is indeed possible. While

there are individual variations within each box, the median improvement in imputation error

shows a clear linear relationship to the number of neighbors of the position in the model.

This linear effect falls off towards the right in the high-degree vertices where the relationship

is sub-linear. Fig. 7.11-(B) shows the effect of this behavior on the improvement in overall

imputation error across all positions for a family.

7.1.7 Computational efficiency

In this subsection we briefly discuss the computational efficiency of GREMLIN . The ef-

ficiency of GREMLIN was measured based on the running time (i.e. CPU seconds until a

solution to the convex optimization problem is found). GREMLIN was run on a 64 node

cluster. Each node had 16GB DRAM and 2xquad-cores (each with 2.8-3 GHZ), allowing

us to run 512 jobs in parallel with an average of 2GB RAM per job.

Fig. 7.12 shows a plot of the running time for a given λe on all the PFAM MSAs.

Fig. 7.12-(A) plots the running time for learning the neighbors of a position, against the

number of columns (positions) in the MSA (A) while 7.12-(B) plots it against number of

rows (sequences) in the training MSA. In both, the average running time per column is
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Figure 7.12: (A) Number of Positions in the MSA versus runtime of Neighborhood learning
(in seconds) (B) Number of sequences in the MSA versus runtime of Neighborhood learning
(C) Runtime of Neighborhood learning versus runtime of Parameter learning95



shown in red circles. While learning the neighbors at a position, since GREMLIN is run in

parallel for each column of the MSA, the actual time to completion for each protein depends

on the maximum running time across these columns. This number is shown in blue squares.

Fig. 7.12-(C) plots the running time for parameter learning against the maximum running

time to learn the neighbors at a position. Recall that this task is performed serially. As the

figure demonstrates, GREMLIN takes roughly similar amounts of time in its parallel stage

(neighborhood learning) as it does in its serial stage (parameter learning).

The plots show that the running time has an increasing trend as the size of the MSA

increases (number of positions and number of sequences). Also, the dependence of the run-

ning time on the number of columns is stronger than its dependence on the number of rows.

This is consistent with the analysis in Wainwright et al. [2007] which shows that a similar

algorithm for structure learning with a pure L1 penalty has a computational complexity that

scales as O(max(n, p)p3), where n corresponds to the number of rows and p to the number

of columns in the MSA.

7.2 Discussion

7.2.1 Related Work

The study of co-evolving residues in proteins has been a problem of much interest due to

its wide utility. Much of the early work focused on detecting such pairs in order to pre-

dict contacts in a protein in the absence of a solved structure [Altschuh et al., 1988, Göbel

et al., 1994] and to perform fold recognition. The pioneering work of Lockless and Ran-

ganathan [1999] used an approach to determine probabilistic dependencies they call SCA

and observed that analyzing such patterns could provide insights into the allosteric behav-

96



ior of the proteins and be used to design new sequences [Socolich et al., 2005]. Others

have since developed similar methods [Fatakia et al., 2009, Fodor and Aldrich, 2004, Fuchs

et al., 2007]. By focusing on co-variation or probabilistic dependencies between residues,

such methods conflate direct and indirect influences and can lead to incorrect estimates.

In contrast, Thomas et al. [2008b] developed an algorithm for learning a Markov Random

Field over sequences. Their constraint-based algorithm proceeds by identifying conditional

independencies and adding edges in a greedy fashion. However, the algorithm can pro-

vide no guarantees on the correctness of the networks it learns. They then extended this

approach to incorporate interaction data to learn models over pairs of interacting proteins

[Thomas et al., 2009c] and also develop a sampling algorithm for protein design using such

models [Thomas et al., 2009b]. More recently, Weigt et al. [2009] use a similar approach

to determine residue contacts at a protein-protein interface. Their method uses a gradient

descent approach using Loopy Belief Propagation to approximate likelihoods. Additionally,

their algorithm does not regularize the model and may therefore be prone to over-fitting. In

contrast, we use a Pseudo-Likelihood as our objective function thereby avoiding problems

of convergence that Loopy BP based methods can face and regularize the model using block

regularization to prevent over-fitting.

Block regularization is most similar in spirit to the group Lasso [Yuan and Lin, 2006]

and the multi-task Lasso [Argyriou et al., 2007]. Lasso [Tibshirani, 1994] is the problem

of finding a linear predictor, by minimizing the squared loss of the predictor with an L1

penalty. It is well known that the shrinkage properties of the L1 penalty lead to sparse

predictors. The group Lasso extends this idea by grouping the weights of some features

of the predictor using an L2 norm, [Yuan and Lin, 2006] show that this leads to sparse

selection of groups. The multi-task Lasso solves the problem of multiple separate (but
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similar) regression problems by grouping the weight of a single feature across the multiple

tasks. Intuitively, we solve a problem similar to a group Lasso, replacing the squared loss

with an approximation to the negative log-likelihood, where we group all the feature weights

of an edge in an undirected graphical model. Thus, sparse selection of groups gives our

graphs the property of structural sparsity.

Lee and co-workers [Lee et al., 2007a] introduced structure learning in MRFs with a pure

L1 penalty, but do not go further to explore block regularization. They also use a different

approximation to the likelihood term, using Loopy Belief Propagation. Schmidt and co-

workers [Schmidt et al., 2008] apply block-regularized structure learning to the problem

of detecting abnormalities in heart motion. They also developed an efficient algorithm for

tractably solving the convex structure learning problem based on projected gradients.

7.2.2 Mutual Information performs poorly in the structure learning

task

One of the key advantages of a graphical model based approach to modeling protein families

is that the graph reveals which interactions are direct and which are indirect. One might

assume that alternative quantities, like Mutual Information, might yield similar results. We

now demonstrate with an example that a simple Mutual Information based metric cannot

distinguish well between direct and indirect interactions. Fig. 7.13-(A) shows the adjacency

matrix of a Probabilistic Graphical Model. The elements of the matrix are color-coded

by the strength of their interaction: blue represents the weakest interaction (of strength

0, i.e. a non-interaction) and red the strongest interaction in this distribution. Fig. 7.13-

(B) shows the mutual information induced between the variables by this distribution as

measured from 500 sequences sampled from the graphical model (the diagonal elements
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(A)

(B)

(C)

Figure 7.13: (A) Adjacency matrix of a Boltzmann distribution colored by edge strength.
(B) Mutual Information between positions induced by this Boltzman distribution. While
the mutual information of the strongest edges is highest; a large fraction of the edges have
MI comparable to many non-interactions. (C) Shows the weak ability of MI to distinguish
between edges and indirect interactions in contrast to GREMLIN . AUC using MI: 0.71;
AUC using GREMLIN : 0.98.
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of the mutual information matrix have been omitted to highlight the information between

different positions). While it may appear visually that (B) shares a lot of structure with (A),

it isn’t actually the case. In particular, the edges with the highest mutual information indeed

tend to be direct interactions; however a large fraction of the direct interactions might not

have high MI. This is demonstrated in Fig. 7.13-(C) where MI is used as a metric to classify

edges into direct and indirect interactions. The blue line shows the ROC curve using MI as

a metric and has only moderate discriminatory power for this task (AUC: 0.71). In contrast,

our approach, shown in red, is much more successful at discriminating between direct and

indirect interactions: the AUC of our approach is a near-perfect 0.98.

7.2.3 Influence of Phylogeny

One limitation associated with a sequence-only approach to learning a statistical model for

a domain family is that the correlations observed in the MSA can be inflated due to phy-

logeny [Pollock and Taylor, 1997, Felsenstein, 2003]. A pair of co-incident mutations at

the root of the tree can appear as a significant dependency even though they correspond to

just once co-incident mutation event. To test if this was the case with the WW domain, we

constructed a phylogenetic tree from the MSA using Junes-Cantor measure of sequence dis-

similarity. In the case of WW, this resulted in a tree with two clear sub-trees, corresponding

to two distinct (nearly equal-sized) clusters in sequence space. Since each sub-tree had a

number of sequences, we re-learnt MRFs for each sub-tree separately. The resulting models

for each sub-tree did not vary significantly from our original models – a case that would

have occurred if there were co-incident mutations at the root that lead to spurious depen-

dencies. Indeed the only difference between the models was in the C-terminal end was an

edge between positions 1 and 2 that was present in sequences from the first sub-tree but
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was absent in the second sub-tree. This occurred because in the second sub-tree, these po-

sitions were completely conserved due to which our model was not able to determine the

dependency between them. While this does not eliminate the possibility of confounding

due to phylogeny, we have reason to believe that our dependencies are robust to significant

phylogenetic confounding in this family. A similar analysis for the PDZ domain, found 3

sub-trees, and again we found that the strongest dependencies were consistent across models

learnt on each sub-tree separately. Nevertheless, we believe that incorporating phylogenetic

information into our method is an important direction for future research.
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Chapter 8

Graphical Games over Fitness

Landscapes

The previous chapters have dealt with probabilistic scenarios and modeled the equilibria

that arise in such scenarios. In the case of GOBLIN, the motivation for such equilibrium

distributions arose directly from the thermodynamics of the physical system being modeled;

GREMLIN was motivated by analogy as a coarse-grained model of the physical systems

considered by GOBLIN. In contrast, this chapter deals with scenarios that are strategic in

nature. The laws of thermodynamics, and the resulting Boltzmann equilibria don’t apply in

such scenarios. We will look at alternate notions of equilibria that are applicable in such

scenarios with an emphasis on their computability.

Such strategic scenarios are ubuiquitous in Biology. Indeed, it can be argued that the

process of evolution is best modeled in such a strategic manner: organisms adapt to the be-

havior of other organisms and the environment to maximize their chances of survival. While

these adaptations by themselves are not the output of strategic behavior, the combination of
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random mutations with non-random selective pressures can, and is often modeled as such.

Game theory deals with the behavior of individual entities in such strategic scenarios. It

has been widely used to model evolutionary behavior since the pioneering work of Hamilton

[1964a,b] and Smith and Price [1973]. However, these analyses have been largely focused

on modeling the outcomes of simple strategies under ideal settings. For example, the clas-

sical “Hawk-Dove” game described in detail later in this chapter analyzes outcomes of a

game between two populations: one population is aggressive and seeks conflict (“Hawk”)

while the other is submissive and seeks to avoid conflict (“Dove”).

In contrast, we will analyze games where the different strategies correspond to the amino

acid composition of a position in the protein (or similar building blocks of molecular diver-

sity). By modeling the smallest unit of evolutionary change (the mutation of an amino acid)

this chapter lays the groundwork for an approach that models strategic behavior in much

higher-resolution than previous game-theoretic approaches in biology.

This chapter starts with an introduction to the basics of Game theory focussing on

classical representations of strategic games, notions of equilibria and their computability.

The subsequent section will then introduce more recent developments in representations of

games, followed by a Linear Programming formulation of equilibria on acyclic and cyclic

graphs and introduce new relaxations that allow efficient computation of bounds on the

properties of these equilibria. The section introducing Game theory follows standard treat-

ments. A reader interested in more details could refer [Leyton-Brown and Shoham, 2008]

and references therein.
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8.1 Introduction to Game Theory

Definition 1 (Normal form Game). An n-person normal-form game G is a tuple (X,A, u)

where

• X is a finite set of n players;

• A =
∏
Ai where Ai is the set of actions available to player i;

• u = (u1, . . . ui, . . . un) where ui : A → R is a utility function that player i seeks to

maximize.

Given the set of possible actions available to a player, a strategy is a choice of action(s).

A strategy that chooses a single action to play is called a pure strategy. In contrast, a mixed

strategy each player independently chooses a probability distribution over the set of actions

and chooses an action by sampling from this distribution.

The n player normal form game is commonly represented as n, n dimensional matrices,

one for each ui. We will first look at specific examples of two player normal form games

while introducing additional concepts from the theory of games. In subsequent sections, we

will introduce structured representations that exploit sparsity to efficiently store the game

more compactly and develop algorithms that compute equilibria.

8.1.1 Two-player zero sum games and Minimax

Definition 2 (Two player zero-sum). A game with n = 2 and u1 = −u2.

Theorem 2 (The Minimax theorem. von Neumann, 1951). [Von Neumann, 1928, Von Neu-

mann et al., 2007] For every two-person zero-sum game with finite strategies, there exists a
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R P S
R (0,0) (-1, 1) (1,-1)
P (1,-1) (0,0) (-1, 1)
S (-1,1) (1, -1) (0,0)

Table 8.1: “Rock Paper Scissors”. Rock beats Scissors; Paper beats Rock and Scissors beats
Paper. The minimax mixed strategy places equal probability on each action for both players
and results in a value of 0

H T
H (1,-1) (-1, 1)
T (-1,1) (1, -1)

Table 8.2: “Matching Pennies”. Row player wins if both choose same strategy; column
player wins otherwise

value V and a mixed strategy for each player such that (a) given the column player’s strat-

egy, the best payoff possible for the row player is V, and (b) given the row player’s strategy,

the best payoff possible for the column player is -V.

The minimax value, and the corresponding strategy reflect the best worst-case scenario

for both players. Rational players in a two player zero-sum game would therefore play the

minimax strategy.

Tab. 8.2 and Tab. 8.1 show the utilities of two classical zero-sum games: “Matching

Pennies” and “Rock Paper Scissors”. By convention, the first value in each entry of the

pay-off matrix is the utility of the row-player while the second value is the utility of the

column player. Naturally, in zero sum games these values sum to zero in zero-sum games.
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8.1.2 Nonzero sum games and Equilibria

Games in which u1 6= −u2 are called non-zero sum games. In general, in such games, it

is not possible to define a unique minimax value. A generalization of the minimax idea to

non-zero sum games is the notion of an equilibrium.

The idea is as follows: suppose s = (s1, s2) was a particular strategy profile. Given that

the column player is playing s2, the row player has no incentive to deviate from s1 if it is

the best response to s2. Additionally, if s2 is the best response for the column player given

that the row player is playing s1, then neither has an incentive to deviate from this strategy.

Such a state is called an equilibrium state of the game.

Definition 3 (Best-response). Player i’s best response to the strategy profile s−i is a (possi-

bly mixed) strategy s∗i ∈ Si such that ui(s∗i , s−i) ≥ ui(si, s−i)∀si ∈ Si

Definition 4 (Nash Equilibrium). A strategy profile s = (s1, . . . si, . . . sn) is a nash equilib-

rium if si is the best responses to s−i for all players i.

In other words, a strategy profile is a Nash Equilibrium (NE) if no player has an incentive

to unilaterally deviate from this profile.

Theorem 3 (Existence of Nash Eq. Nash, 1951). Every game with a finite number of players

and action profiles has atleast one Nash Equilibrium.

Tab. 8.3 and Tab. 8.4 show the utilities of two classic two player non-zero sum games.

8.1.3 Correlated Equilibria

If we associate the strategy profile s = (s1, . . . , sn) with a probability vector π = (π1, . . . , πn)

where πi is the (possibly) mixed strategy of player i, the requirements for π to be a Nash

107



C S
C (-4,-4) (-1, -5)
S (-5, -1) (-2, -2)

Table 8.3: Prisoner’s dilemma. Two accomplices in a crime are caught and interrogated
separately. Each can choose to confess (C) or stay silent (S). The Nash Equilibrium of this
game is (C,C)

B S
B (5,6) (1, 1)
S (2,2) (6, 5)

Table 8.4: The “Battle of the Sexes”. A couple can either go visit a Baseball game (B) or a
softball game (S). They have differing incentives for each but prefer going together to going
alone. This game has two Nash Equilibria: (B,B) and (S,S)

Equilibrium can be written as:

∀i, ∀ai, a′i ∈ Ai,
∑
a−i

π(ai, a−i)ui(a
i, a−i) ≥

∑
a−i

π(ai, a−i)ui(a
′
i, a
−i)

where π(ai, a−i) = π(a1)×. . . π(ai) . . . π(an) since the definition of a mixed strategy profile

specifies that each player samples from πi independent of other players.

Relaxing this requirement of independence results in equilibria called correlated equi-

libria (CE)[Aumann, 1974]. Thus, a CE is any joint distribution π over the player’s actions

such that

∀i, ∀ai, a′i ∈ Ai,
∑
a−i

π(ai, a−i)ui(a
i, a−i) ≥

∑
a−i

π(ai, a−i)ui(a
′
i, a
−i)

It is easy to see that this relaxation results in constraints that are linear in π. Thus the
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problem of finding a π that is a CE can be solved using a Linear Program as follows:

min 1

s.t. ∀i,∀ai, a′i ∈ Ai,
∑

a−i π(ai, a−i)ui(a
i, a−i) ≥

∑
a−i π(ai, a−i)ui(a

′i, a−i)

∀a ∈ A, π(a) ≥ 0∑
a∈A π(a) = 1

CE have several properties that make it more attractive than NE: they can lead to more ef-

ficient outcomes; they can be viewed as a Bayesian alternative to NE [Aumann, 1987], they

are easier to compute than NE (which are PPAD-complete [Daskalakis et al., 2009]). Fi-

nally, there exist natural algorithms that allow players of a game to converge to a CE[Foster

and Vohra, 1997]; no such algorithms are known to exist for NE in general.

Fig. 8.1 shows the CE and NE constraints for the “Battle of the Sexes” game. Each

point in the green polytope corresponds to a valid CE. The hyperbolic surface represents

the points that satisfy the constraint π = π1π2. Any point that is both a CE and on the

hyperbolic surface is an NE. This game has 3 NE.

In an n-player game where each player has m actions, this LP formulation has O(n ×

m2 + mn) constraints over mn variables. While this might appear to be excessive, it must

be noted that the matrix representation of the game itself takes O(n × mn) space. In the

following section, we’ll explore formulations that could potentially result an exponential

saving in the space required to represent the game and corresponding LP formulations over

the sparse representations for computing CE.
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Figure 8.1: The constraints on Nash and Correlated Equilibria illustrated for a simple two-
player game. The set of correlated equilibria form a linear polytope while the constraints
for a Nash Equilibrium form a non-convex surface. Figure thanks to Prof. Geoff Gordon

8.2 Graphical Games

A Graphical Game (G,M) is a tuple consisting of a graph G and a set of local utility

functions M = (M1, ...,Mn) that compactly represents a multi-player game. Each player is

represented by a vertex in the graph G and edges are drawn between vertices i and j if the

utility function of either depends on the actions of the other. If Mi depends on the actions

of all remaining players, this representation offers no advantages; however, when Mi only

depends on a subset of players, the graphical game representation can be more compact than

the matrix form representation. In particular, the graphical game requires space exponential

in the largest degree d of the graph.

This representation is evocative of a Markov Random Field. While MRFs represent

probabilistic interactions, the graphical game represents strategic interactions. An important

result due to Kakade et al. [2003] shows that there is a natural relationship between the
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structure of the graphical game and the probabilistic relations of a subset of its CE. To

describe this result, we first need the following definition:

Definition 5 (Expected Payoff-Equivalence). For a graph G, two distributions P , Q are

equivalent up to expected payoff if for all players i, and actions ~ai over ∆i, Ea∼Pui(~ai) =

Ea∼Qui(~ai).

Here, ∆i refers to the set containing i and its neighbors N(i) in G, and ~ai refers to an

assignment of actions to ∆i.

Kakade et al. [2003] show that any CE of the game that does not factorize according to

G is equivalent (up to expected payoff) to some CE of the game that does. The rest of this

work therefore limits itself to the CE that factorize according to G.

8.3 CE in Graphical Games

Before we discuss algorithms, it will be useful to define some notation and sets of interest.

We use indexed superscripts to denote components of these assignments: ~aij corresponds

to the assignment of an action to player j according to ~ai. We use the notation ~ai[i : a′] to

denote the vector that is obtained by replacing the ith component of ~ai with action a′. {µi}

will refer to the set of marginals that each store the marginal probability over variable i and

its neighbors.

8.3.1 Exact CE

If G has no cycles, computing a CE of the graphical game can be solved satisfying a set

of linear constraints. An important departure from the standard MRF treatment is that the
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potentials of a graphical game are usually not pairwise. This is due to the fact that the utility

is a function from an assignment ~ai of actions to all neighbors of i. Thus, in general, the

smallest region over i that would allow incorporation of the CE constraints would need to

include all neighbors of i.

The marginal polytopeM∆ is defined to be the set of marginals µi(~ai) (over sets of vari-

ables of size ∆i) that are realizable by a joint distribution. This is analogous to the common

definition of a marginal polytope over pair-wise marginals commonly used in approximate

inference [Wainwright and Jordan, 2008], a set we shall refer to asM2.

M∆(G) = {µ ∈ <d|∃p with marginals µi(~ai)}

M2(G) = {µ ∈ <d|∃p with marginals µi(ai, aj)∀(i, j) ∈ E}

For an acyclic graph, the marginal polytopeM∆ can be expressed using the following linear

constraints over each ∆i and their pair-wise intersections:

Positivity: ∀i,∀~ai, µi(~ai) ≥ 0

Local Normalization: ∀i,
∑

µi(~ai) = 1

Local consistency: ∀i, j,∀Nij ∈ ∆i ∩∆j,

and assignments yNij

∑
~ai:~ai

Nij=yNij

µi(~ai) =
∑

~aj : ~aj
Nij=yNij

µj(~aj)

Since these constraints involve variables that are adjacent to each other in G, the set of

marginals that satisfy them are referred to as LOCAL∆(G). In a graph without cycles,

LOCAL∆(G) = M∆(G), since the joint can always be uniquely reconstructed from the
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µi’s in such graphs. Since the definition of a CE only imposes constraints on the solution,

it is common to determine a CE that optimizes some objective function, for example, the

expected social utility
∑

i

∑
~ai
µ(~ai)ui(~ai). We will use f(µ) to refer to any such objective

function. While we assume that f is linear, our approach can be naturally extended to

any class of functions as long as we can efficiently perform optimization, for example,

minimizing convex functions.

The LP for computing a CE that maximizes some function f can be expressed as:

max f(µ)

s.t.

∀i,∀a, a′ ∈ Ai,
∑

~ai:~ai
i=a

µi(~ai)(ui(~ai)− ui(~ai[i : a′])) ≥ 0

(CE constraints)

µ = [µ1 . . . µn] ∈M∆

8.3.2 Relaxations to outer marginal polytopes

If G has cycles, LOCAL∆(G) 6=M∆(G). In such cases, one option is to run the algorithm

on the junction tree JT (G) instead of the original graph. Since by the junction tree property,

LOCAL∆(JT (G)) =M∆(JT (G)) [Wainwright and Jordan, 2008] this process is guaran-

teed to give the exact CE. However, the algorithm has to maintain marginals over the size of

tree-width of the graph which can be prohibitively expensive in games with many players or

actions even if each vertex of the graph has a small degree. For example, a grid-structured

graphical game of size n × n with k actions for each player has a maximum degree of 4
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resulting in representation cost of O(nk4) but its tree-width is n.

If we are primarily interested in the value of the objective function f(µ) or in the

marginal distribution induced by a CE, we can trade-off accuracy for time by approximat-

ing M∆(G) with LOCAL∆(G). This is analogous to a Generalized Belief Propagation

approach to inference on an MRF. Since LOCAL∆(G) ⊃ M∆(G), this is an outer relax-

ation of the problem. Solving it will therefore give a lower bound on the objective function.

The CE constraints require all marginals of size ∆i implying that a relaxation looser than

LOCAL∆ is not possible for general games. However, in cases where the utility function

additional structure, it is possible to construct further relaxations.

8.3.3 Pair-wise additive utility functions

Consider a setting where the utility of a particular player ui(~ai) can be expressed as the sum

of pair-wise functions over the actions of the player’s neighbors

ui(~ai) =
∑
j∈N(i)

gi,j(~ai
i, ~ai

j)

The expression in the CE constraint can then be expressed as

∑
~ai:~ai

i=a

µi(~ai)ui(~ai) =
∑

~ai:~ai
i=a

µi(~ai)
∑
j∈N(i)

gi,j(~ai
i, ~ai

j)

=
∑
j∈N(i)

∑
~ai:~ai

i=a

µi(~ai)gi,j(~ai
i, ~ai

j)

=
∑
j∈N(i)

∑
aj

µi(a, aj)gi,j(a, aj)
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Thus, if the utility can be expressed as a sum of pair-wise functions, the constraint µ ∈M∆

in the LP for the exact CE can be replaced with µ ∈ M2. It is possible to then construct an

outer relaxation toM2 using local constraints over edges and vertices of the graph. We will

therefore refer to this relaxation as LOCAL2.

8.3.4 Cycle Inequalities

Cycle inequalities are among the constraints that are satisfied byM2 and not explicitly en-

forced by LOCAL2. They arise from the following simple observation on a graph with

binary variables: if we start from a node in a cycle and traverse the cycle to come back to

the node this traversal must have seen an even number of edges where adjacent variables

had different values (if not, the value at the end of the traversal must be different from at the

beginning, a contradiction). The advantage of these constraints is that their violation can be

detected and a violated constraint identified in graphs in polytime [Barahona and Mahjoub,

1986] by computing shortest paths in a related graph. Violated cycle inequalities are incor-

porated incrementally into the constraint set and the LP is re-solved until no more violations

occur. Sontag and Jaakkola [2007] devise an extension of this idea for graphs over variables

with k values that first constructs different binary instantiations of these variables and iden-

tifies violated constraints on these instantiations. Since there are 2k possible instantiations

for each variable in the graph, we restrict ourselves to the k-projection graph[Sontag and

Jaakkola, 2007] that considers k different binary instantiations for a variable with k values.

We will refer to the set of solutions that satisfy these constraints as Cycle − Ineq.

LOCAL2 + Cycle − Ineq will therefore refer to solutions that are in both LOCAL2 and

CY CLE − Ineq.
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8.4 Simulation Results

We generated 16-node graphs corresponding to games with 16 players. Each player had

two actions, and an edge was included between any pair of vertices with probability ρ. We

generated graphs with the value of ρ varying from 0.01 and 0.5 (corresponding to a graph

with half the density of a completely connected graph). We generated 10 graphs for each

setting for ρ resulting in a total of 70 graphs. For each player, each element in the utility

matrix was randomly generated from U(−1, 1). We note that our choice of values was

limited by a need to be able to compute CE exactly so as to compare the accuracy of our

relaxations. The relaxations themselves can be used on games with many more players and

actions.

For each of these graphs, we computed exact Correlated Equilibria while optimizing for

social utility and computed the marginal distributions of the CE strategy for each player.

We then computed approximate marginal distributions that optimized the same objective

function but made progressively looser outer relaxations: the first relaxation stored marginal

distributions over a player and all its neighbors, for each player while the second relaxation

only stored pair-wise marginal distributions, one for each edge in graph.

Fig. 8.2-A shows a boxplot of the error induced in the individual marginal distributions

of each player due to approximate inference as ρ, the density of the graph, increases. In

each group, the first box shows the error when using the LOCAL∆ relaxation, the second

box shows the errors when using LOCAL2 and the third, when using LOCAL2 +Cycle−

Ineq. Increasing ρ has marginal effect on the error of LOCAL∆ but increases the error of

LOCAL2 . Remarkably, adding the cycle inequality constraints drastically improves the

accuracy of LOCAL2 : the error is nearly zero across all settings of ρ.

To test the sensitivity of these results to the choice of utility and objective function, we
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(A)

(B)

Figure 8.2: Boxplot showing L2 error of marginal distributions on randomly generated
graphs with utilities sampled from U(−1, 1) as the density, ρ, increases (A) and from a
coupled distribution as the correlation between utilities, σ, increases(B). In each group,
the first boxplot corresponds to LOCAL∆, the second to LOCAL2 and the third to
LOCAL2 + Cycle− Ineq.
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Figure 8.3: Boxplot showing absolute error of the marginal distribution at a variable across
all simulated graphs as a function of the degree of the position. As the degree increases,
the error tends to increase although the median error remains very low. Order within each
group: LOCAL∆, LOCAL2, LOCAL2 + Cycle− Ineq.

Figure 8.4: Histogram of the percentage gap between the upper bound of the objective
function using an outer approximation and the exact value. Both LOCAL2 and LOCAL∆

relaxations produce bounds that are remarkably close to the actual value of the objective
function.
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generated 100, 16-node graphs with ρ = 0.3. For each of these graphs, we then generated

graphical games where the utilities for each action-pair on each edge were sampled from a

bi-variate normal distribution N ([0, 0], [1, σ;σ, 1]) where −1 ≤ σ ≤ 1 resulting in a total

of 700 graphical games with wide variety of utilities. At σ = −1, for example, the utilities

for any action pair on each edge sum to zero, while for σ = 1, the utilities on a particular

edge are the same for both players. Instead of the social utility, we optimized a random

linear function of the marginals. Fig. 8.2-B shows the error in marginals using the outer

relaxations as σ increased. LOCAL∆ still has consistently low error while the spread of the

distribution of errors for LOCAL2 appears to increase as utilities become more coupled.

Again incorporating the cycle inequalities to LOCAL2 drastically improves the accuracy to

near zero error.

Fig. 8.3 shows a boxplot of the error induced in the individual marginal distributions

of each player due to approximate inference as ρ, the density of the graph, increases. As

previously, LOCAL∆ and LOCAL2 + Cycle − Ineq are accurate in all settings while

LOCAL2’s error increases as the degree of the vertex increases.

Fig. 8.4 shows the CDF of the percentage gap between the upper bound as computed by

an outer relaxation and the exact value using the marginal polytope. The bounds provided

by all relaxations are < 10% away from the optimal value for all graphs with the maximum

error of LOCAL2 + Cycle− Ineq being less than 1%.
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Chapter 9

Application: Games of Molecular

Conflict

9.1 Introduction

An important type of protein interactions is their interaction with drugs. Drug-design is

the process of engineering a drug to selectively bind to specific proteins and modify their

behavior. In this task, it is traditional to assume that the protein itself does not mutate. While

this approach has led to a lot of successful drugs, it has also led to the evolution of proteins

that evade this interaction through mutations. This phenomena is commonly referred to as

drug resistance.

This resistance could be caused due to mutations in the drug target or elsewhere that im-

pair the functioning of the drug, or, in cases of single-celled organisms, through the direct

transfer of entire genes (horizontal gene transfer) between organisms. Drug resistance is a

significant topical health problem with the WHO estimating that, “. . . resistance to first-line
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drugs in most of the pathogens causing these diseases ranges from zero to almost 100%. In

some instances resistance to second- and third line agents is seriously compromising treat-

ment outcome. . . .” It is particularly common in scenarios where rapid evolution is possible

– cancer [Sakai et al., 2008, Eliopoulos et al., 1995] and HIV [Clavel and Hance, 2004]

for example – although bacteria and other microorganisms can also exhibit drug resistance

from prolonged exposure [Soulsby, 2005].

To address this problem, this chapter develops a technique called GAMUT(GAmes of

MolecUlar conflicT) that applies a game-theoretic approach to drug design. We focus on

modeling spontaneous mutations in the drug target that confer an evolutionary benefit to

the pathogen and therefore establish themselves in the population. The game models the

interactions between the drug designer and the protein: the protein makes “moves” by mu-

tating its positions and the drug designer makes moves by choosing one of several candidate

drugs. If these moves result in a protein-drug pair that has high affinity, the drug designer

wins; else, the protein wins. The aim of the drug designer is to therefore design a drug that

plays well against all moves of the protein.

9.2 HIV Protease

The HIV-1 Protease (HIVPR) is a HIV protein that cleaves HIV’s other gene products in

order to make them into functional proteins. The normal functioning of HIV1PR i s essential

for the propagation of the virus. Due to its importance in HIV replication, it has been

extensively studied as a drug target. More than 10 protease inhibitors that target HIVPR are

currently approved by the FDA.

HIV is a retrovirus. This means that the genetic code of the virus is transmitted in the
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RNA form. Inside the host cell, the genetic code is then reverse-transcribed into DNA and

is integrated into the host’s DNA. When the host cell’s ribosome transcribes and translates

this DNA into protein form, the HIV proteins are activated eventually shutting down the

host’s immune system and causing AIDS. The cellular transcription machinery in human’s

is remarkably accurate and rarely induces random mutations. In contrast, the reverse tran-

scriptase is more error-prone. This erroneous nature of the reverse transcriptase frequently

induces random mutations into HIV’s genetic code. While this can induce deleterious mu-

tations to the virus, it also allows it to rapidly evolve in the face of evolutionary pressure.

Any mutations that positively affect HIV’s fitness are therefore quickly introduced (by this

erroneous copying mechanism) and establish themselves into the HIV population.

When Saquinavir, the first protease inhibitor approved by the FDA, was administered

to patients, the virus quickly evolved to develop drug-resistance. Since then, designing

inhibitors that are robust to mutant forms of HIV has been a subject of active research. A

common current strategy is to use a combination of drugs to treat the disease. Our goal here

is to predict the possibility of resistance, estimate optimal combinations of drugs in the light

of such resistance and determine the success (or lack thereof) of such combinations.

Fig. 9.1 shows the strategy profile of the worst-case equilibrium strategy (equilibrium

with weakest binding). According to our model, the expected interaction energy of this

game is ∼ -8 kcal/mol indicating that all likely mutants of HIV are expected to be inhibited

by the cocktail. Interestingly, when the game is analyzed with the drug player allowed the

use of Saquinavir only, the result is very different: under the best case scenario, the expected

binding energy is 0 kcal/mol with the worst case scenario having expected binding energy

of 2 kcal/mol. Our model is therefore able to accurately predict that Saquinavir is prone to

drug resistance. In addition it predicts that no combination of any known mutations around
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Figure 9.1: Equilibrium Strategy profile under worst-case scenarios with Drug player al-
lowed to choose a cocktail of all three drugs. The first 10 columns correspond to HIV po-
sitions around the active site while the last player corresponds to the Drug. In each column
of the HIV player, the dark blue color corresponds to the wildtype – the rest are mutants.

the active site of HIV can successfully destabilize the interaction if a three drug cocktail

with Saquinavir, Amprenavir and Darunavir is used.

9.3 PDZ

The PDZ domain is a family of small, evolutionarily well represented protein binding mo-

tifs. The domain is most commonly found in signaling proteins and helps to anchor trans-

membrane proteins to the cytoskeleton and hold together signaling complexes. Due to its

frequent occurrence in protein-protein interactions, it is a very well studied domain. Since

some of these interactions are affected in cancerous cells, members of this family are being

studied as targets for anti-cancer drugs.

In our game, these peptides are the drugs and the binding affinities are the utilities.
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Figure 9.2: The graphical game describing the pdz-drug game is shown overlaid on a protein
structure. The players are labeled with spheres (pdz in blue, drug in red) and the edges of
the game are shown with dashed lines. The game has 21 players and 38 edges.

Along with Prof. Bailey Kellog’s lab at Dartmouth, we have developed a sparse linear

model that accurately predicts the binding affinity of PDZ domains to short peptides. The

utilitiies (Fig. 9.2) were learnt using block sparse linear regression from experimental data

and consists of thirty eight blocks (corresponding to edges here) and twenty one variable

positions (corresponding to sixteen ‘protein’ players and five ‘drug’ players). Each protein

player has five actions corresponding to the wild-type and the four other most likely amino

acid positions at this position, as observed in nature. This restricts the game to mutations

that are energetically viable.
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(A)

(B)

Figure 9.3: (A) The marginal profile of each player for the worst-case equilibrium scenario.
The 16 positions corresponding to the PDZ and the 5 positions corresponding to drug are
shown in separate groups. (B) The expected binding energy for each edge in. By choosing
mutations that maximize disruption to binding, PDZ is able to shut off interactions on all but
eleven edges. However, these eleven edges together ensure that the overall binding energy
is negative indicating that the cocktail is successful.
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The maximum degree of this graph was 10; neither exact computation of the CE nor the

LOCAL∆ approximation had sufficient memory to complete this computation on a standard

desktop machine with 4GB RAM. We therefore only report the results of LOCAL2+Cycle.

In the drug-design game, a CE encodes a distribution over drugs (known as a drug

cocktail) and a distribution over PDZ sequences. The distribution over PDZ mutations can

be interpreted as the set of mutations that are likely to arise in response to the cocktail.

The key question is whether the expected binding energy of the cocktail and the PDZs is

negative (i.e., favorable) or positive (i.e., unfavorable). If positive, then the PDZ is resistant

to the cocktail. Thus, it is sufficient to determine whether the expected binding energy

is guaranteed to be negative. Therefore, we computed the (approximate) CE that would

maximize the binding energy (i.e a “pessimistic” CE) and obtained an upper bound on the

maximum binding energy. Naturally, if this upper bound is negative then the true worst-

case expected binding energy is also negative which, in turn, implies that the cocktail is

successful at any CE of the game.

The expected binding energy was negative (-5.83 kcal/mol) indicating that this cocktail-

drug is predicted to successfully bind to all viable mutants of the PDZ. Fig. 9.3-A shows

the marginal profile for each position across its five actions. It is interesting to note that

compared to the PDZ, the profile of the drug is limited to a few actions per position, possibly

due to the pessimistic nature of our prediction.

Fig. 9.3-B shows the breakdown of this total binding energy across the 38 edges. Only

eleven of the 38 edges had a non-zero contribution to the binding energy. In contrast, the

“optimistic” CE of this game (obtained by minimizing binding energy) had 20 edges that

had non-zero contribution to the binding energy.
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Chapter 10

Conclusions and Future Work

In Ch. 4, we presented a Bayesian alternative to traditional methods for evaluating the qual-

ity of predicted protein structures. Our experimental results show that this Bayesian ap-

proach significantly out performs MAP estimates of quality assessment. Additionally, we

presented a practical algorithm for learning to rank using partition functions by optimizing

a list-wise loss function over training data. We compared two loss functions, the negative

log-likelihood and the cross entropy, and found that optimizing the cross-entropy objective

function improves on the unoptimized hyper-parameters.

Protein structure prediction is an important, and unsolved problem in Biology, and we

believe that our method might be able to improve the accuracy of existing techniques. There

are a number of areas for future improvement, the most important being incorporating

Bayesian Model Averaging by modeling a limited amount of backbone flexibility.

Ch. 5 made three primary contributions (i) the first graphical model for protein-protein

complexes; (ii) the first graphical model for simultaneously modeling backbone and side-

chain flexibility; and (iii) a novel algorithm for optimizing force fields by minimizing differ-
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ences in free energies. Our method is efficient and accurate on the task of computing the free

energy of protein-protein complexes. In particular, our method outperformed ROSETTA

and FOLDX on a benchmark set of more than 700 mutants.

Our results indicate that an explicit incorporation of backbone and side-chain flexibility

is feasible. Interestingly, backbone flexibility did not substantially improve our results rela-

tive to the fixed-backbone case on our benchmark set. There are two likely reasons for this.

First, our chosen benchmark set contained relatively rigid complexes. That is, the backbones

are largely stable in vivo, as previously suggested in Lu et al. [2001]. Second, our backrub-

generated backbones generally have high internal energies and therefore do not contribute

substantially to the total free energy. Addressing these problem requires improved methods

for generating realistic backbone conformations, an important problem for future research.

We extended GOBLIN to model protein-ligand interactions. GOBLIN-Ligand is a fast

method of incorporating entropic contributions in computing protein-ligand interaction free

energies. Despite using similar force-fields, GOBLIN-Ligand can improve upon AutoDock’s

accuracy. It thus strikes a balance between rigor of Molecular Dynamics and the speed

of enthalpic approaches. While accounting for entropic contributions, GOBLIN -Ligand

currently keeps the core of the ligand fixed. The accuracy of the entropic estimates might

be improved in the future by accounting for the flexibility of the core, by including other

binding poses of the complex.

Ch. 7 proposed a new algorithm for discovering and modeling the statistical patterns

contained in a given MSA. By employing sound probabilistic modeling and convex struc-

ture (and parameter) learning, we are able to find a good balance between structural sparsity

(simplicity) and goodness of fit. One of the key advantages of a graphical model approach

is that the graph reveals the direct and indirect constraints that can further our understanding
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of protein function and regulation. MRFs are generative models, and can therefore be used

design new protein sequences via sampling and inference. However, we expect that the util-

ity of our model in the context of protein design could be greatly enhanced by incorporating

structure based information which explicitly models the physical constraints of the protein.

As shown in Kamisetty et al. [2009], it is possible to construct MRFs that integrate both

sequence and structure information. We believe an interesting direction for future work is

to apply structure learning to MSAs enhanced with physical constraints (e.g., interactions

energies) in the form of informative priors or as edge features. The learning algorithm

would then select the type of constraint (i.e., sequence vs structure) that best explains the

covariation in the MSA.

We note that there are a number of other ways to incorporate phylogenetic information

directly into our model. For example, given a phylogenetic clustering of sequences, we can

incorporate a single additional node in the graphical model reflecting the cluster to which

the sequence belongs. This would allow us to distinguish functional coupling from coupling

caused due to phylogenetic variations.

Together, GREMLIN and GOBLIN provide a powerful framework for the modeling of

proteins and their interactions with other molecules. In Ch. 8, we demonstrated an approach

to approximate the properties of a CE in graphical games. Our approach, based on outer

relaxations to the marginal polytope computes these approximations efficiently. On a large

set of games with different types of utilities, we demonstrated that these relaxations are also

remarkably accurate, often giving the exact solution. In addition, our approach bounds the

objective function. When used with the social utility for example, our approach can be used

to bound the price of anarchy of the game Koutsoupias and Papadimitriou [2009].

In our application of game-theory to a biological problem in Ch. 9, we follow a rich
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body of prior work that model evolutionary behavior in this manner, starting with the pio-

neering work of Hamilton [1964a,b] and Smith and Price [1973]. Indeed, it can be argued

that the process of evolution is best modeled in such a strategic manner: organisms adapt to

the behavior of other organisms and the environment to maximize their chances of survival.

While these adaptations by themselves are not the output of strategic behavior, the combi-

nation of random mutations with non-random selective pressures can, and is often modeled

as such.

By modeling the smallest unit of evolutionary change (the mutation of an amino acid)

this chapter considers strategic behaviors at a much higher-resolution than previous appli-

cations of game-theory to the study of evolution. In the future, we hope to extend this

promising approach to learning the structure and utilities of graphical games from data and

in applying such models to the design of new drugs.
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