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Abstract

The von Mises distribution is a continuous probability distribution on the circle used in directional
statistics. In this paper, we introduce the undirected von Mises Graphical model and present an
algorithm for structure learning using L1 regularization. We show that the learning algorithm is
both consistent and efficient. We also introduce a simple inference algorithm based on Gibbs sam-
pling. We compare and contrast the von Mises Graphical Model (VGM) with a Gaussian Graphical
Model (GGM) on both synthetic data and on data from protein structures and demonstrate that the
VGM achieves higher accuracy than the GGM.





1 Introduction
The von Mises distribution is used in directional statistics to model angles and other circularly-
distributed variables [3]. It closely approximates the wrapped normal distribution, but has the
advantage that it is more tractable, mathematically [9]. Additionally, the von Mises distribution
can be generalized to distributions over the (p − 1)-dimensional sphere in Rp, where it is known
as the von Mises-Fisher distribution.

The goals of this paper are to introduce an undirected graphical model for the Mises-Fisher dis-
tribution, and an algorithm for learning the structure and parameters of the model in a regularized
fashion. We note that the von Mises distribution has been used previously in the context of directed
graphical models. In particular, Harder and co-workers recently introduced a Dynamic Bayesian
Network where each output variable follows a bivariate von Mises distribution[4]. Our model, in
contrast, is undirected and isn’t limited to modeling sequential data. Moreover, to the best of our
knowledge, the challenge of learning the structure and parameters of probabilistic graphical mod-
els over von Mises distributed variables has only been examined in the contex of Neural Networks
and Boltzmann Machines[14][15], in which unrestricted Boltzmann machines have been trained
with univariate Von Mises distributions for the individual nodes. In contrast to these work we learn
an L1-regularized graphical model of the form of a multivariate Von Mises distribution, such that
the couplings are also modeled as directional variables.

The rest of the paper is organized as follows. In Section 2 we introduce the univariate and
bivariate von Mises distributions. In Section 3 we present the multivariate von Mises distribution
as an undirected graphical model. We then define a Gibbs sampler for the model in Section 4,
which we use later for drawing samples and performing inference on such models. Section 5
presents our structure learning algorithm which employs L1 regularization to learn the dependency
relationships between the variables. We then compare and contrast the von Mises graphical model
(VGM ) to another popular graphical model, the Gaussian graphical model (GGM), in Section 6
on both synthetic circular, and real protein torsion angle data. We show that the VGM achieves
higher accuracy than the GGM when each variable has high marginal variance.

2 Background
The wrapped normal distribution for angle θ ∈ [0, 2π] is defined as an infinite sum of the wrappings
of a normal distribution around the unit circle:

fWN(θ;µ, σ) =
1

σ
√

2π

∞∑
k=−∞

exp

[
−(θ − µ+ 2πk)2

2σ2

]
,

where µ and σ are the mean and standard deviation of the unwrapped distribution, respectively.
The von Mises distribution, which is also known as the circular normal distribution, has a more
compact representation given by:

fVM(θ;µ, κ) =
exp {κ cos(θ − µ)}

2πI0(κ)
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where I0(κ) is the modified Bessel function of order 0, and the parameters µ and 1/κ are analogous
to µ and σ2 (the mean and variance) in the normal distribution. We note that κ is known as the
concentration of the variable, and so high concentration implies low variance.

Unlike the wrapped normal distribution, the von Mises distribution belongs to the exponential
family and can be extended to higher dimension. The bivariate von Mises distribution [8] over θ1

and θ2, for example, can be defined as:

f(θ1, θ2) =
exp {

[∑2
i=1 κi cos(θi − µi)

]
+ ~K1M ~KT

2 }
Zc(µ1, µ2, κ1, κ2,M)

,

where µ1 and µ2 are the means of θ1 and θ2, respectively, κ1 and κ2 are their corresponding con-
centrations, ~K1 = [cos(θ1 − µ1), sin(θ1 − µ1)], ~K2 = [cos(θ2 − µ2), sin(θ2 − µ2)], M is a 2 × 2
matrix corresponding to their correlation, and Zc(·) is the normalization constant.

The bivariate von Mises probability density can also be defined as:

f(θ1, θ2) =
exp {

[∑2
i=1 κi cos(θi − µi)

]
+ λg(θ1, θ2)}

Zs(µ1, µ2, κ1, κ2, λ)
,

where µ1, µ2, κ1, and κ2 are as previously defined, g(θ1, θ2) = sin (θ1 − µ1) sin (θ2 − µ2), and λ
is a measure of the dependence between θ1 and θ2. This formulation, known as the sine variant, is
generally preferred because it only requires five parameters and is easily expandable to more than
2 variables, as will be demonstrated in the next section.

3 The von Mises Graphical Model (VGM)
Let Θ = (θ1, θ2, ..., θp), where θi ∈ [−π, π). The multivariate von Mises distribution [8] with
parameters ~µ,~κ, and Λ is given by:

f(Θ) =
exp {~κT ~C + 1

2
~SΛ~ST}

Z(~µ,~κ,Λ)
,

where ~µ = [µ1, µ2, · · · , µp], ~κ = [κ1, κ2, · · · , κp], ~C = [cos(θ1 − µ1), cos(θ2 − µ2), · · · , cos(θp −
µp)], ~S = [sin(θ1 − µ1), sin(θ2 − µ2), · · · , sin(θp − µp)], Λ is a p × p matrix such that Λii = 0,
Λij = λij = λji, and Z(~µ,~κ,Λ) is the normalization constant.

It is known that the multivariate von Mises distribution can be closely approximated with a
multivariate Gaussian distribution — provided that each of the variables has low variance (i.e.,
for large values of κ) [5]. This is significant because learning and inference can be performed
analytically for multivariate Gaussian distributions. However, we will show in Section 6 that the
Gaussian approximation introduces significant error when the variance is high (i.e., for small values
of κi). We address this problem by encoding the multivariate von Mises distribution as a graphical
model over von Mises-distributed random variables. Figure 1 shows the factor graph representation
of the graphical mode for four variables. Under this representation the node factors are defined as
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Figure 1: Factor Graph Representation for multivariate von Mises distribution. Each circular node
is a variable, and the square nodes are factors.

fi = κicos(θi− µi) and the edge factors are defined as fij = λijsin(θi− µi)sin(θj − µj). Like all
factor graphs, the model encodes the joint distribution as the normalized product of all factors:

P (Θ = θ) =
1

Z

∏
a∈A

fa(θne(a)),

where A is the set of factors and θne(a) are the neighbors of fa (factor a ) in the factor graph.

4 Sampling
The evaluation of the joint von Mises distribution requires the calculations of the normalization
constant, Z. Unfortunately, Z does not have a closed form solution and must therefore be cal-
culated by inference. We note that it is possible to perform inference in the VGM using an
Expectation-Propagation style algorithm, which we will present in a future publication due to
space considerations. In this paper, we will instead use a Gibbs sampler to perform approximate
inference.

Gibbs sampling assumes that it is easy to sample from the univariate conditionals. Fortunately,
as shown in [5] the univariate von Mises conditionals are univariate von Mises distributions
themselves, and this makes Gibbs sampling a feasible option. In particular

f(θp|θ1, θ2, . . . θp−1) ∝

exp {κpcos(θp − µp) +

p−1∑
j=1

λjpsin(θj − µj)sin(θp − µp)}

= exp {κ∗cos(θp − µ∗)},

where
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κ∗ =

√√√√κ2
p + (

p−1∑
j=1

λjpsin(θj − µj))2 (1)

µ∗ = µp + arctan(
1

κp

p−1∑
j=1

λjpsin(θj − µj)) (2)

This univariate conditional is sufficient for implementing a Gibbs sampler to generate samples
from the VGM and perform inference.

5 Learning
We next consider the problem of learning the parameters of the model from data. Let (~µ,~κ,Λ)
be the parameters of the VGM, as defined in Section 3. Given a set of i.i.d. training samples,
D = {Θ1,Θ2, · · ·Θn}, the likelihood function is:

L(D|~µ,~κ,Λ) =
n∏
i=1

e~κ
~Ci(Θ,~µ)+ 1

2
~Si(Θ,~µ)T Λ ~Si(Θ,~µ)

Zp(~µ,~κ,Λ)

where ~C(Θi, ~µ) = [cos(θi,1−µ1), · · · cos(θi,n−µp)], and ~S(Θi, ~µ) = [sin(θi,1−µ1), · · · sin(θi,n−
µp)].

In theory, a maximum likelihood estimate MLE for the parameters can be obtained by maxi-
mizing the likelihood of the data. Unfortunately, computing the normalization constant is NP-hard,
so computing a MLE estimate for the VGM is intractable. We will therefore maximize the full
pseudo-likelihood instead.

5.1 Full pseudo-likelihood for von Mises Graphical Model
The full pseudo likelihood for the multivariate von Mises is defined as follows:

PL(Θ|~µ,~κ,Λ) =

(2π)−pn
n∏
i=1

p∏
j=1

Pvm(θi,j|θi,1, ..., θi,j−1, θi,j+1...θi,p)

As discussed in section 4, each univariate conditional term for the VGM is itself a univariate von
Mises distribution. Thus, the full pseudo likelihood can be re-written as:

PL(Θ|~µ,~κ,Λ) =

(2π)−pn
p∏
j=1

n∏
i=1

[I0(κ
(i)
\ )]−1eκ

(i)
\ cos(θi,j−µ

(i)
\ ),
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where

µ
(i)
\ = µj + tan−1

(∑
l 6=j λj,lsin(θi,l − µl)

κj

)
, and

κ
(i)
\ =

√
κ2
j + (

∑
l 6=j

λj,lsin(θi,l − µl))2.

5.2 Consistency of the pseudo likelihood estimator
Dillon and Lebanon show that a maximum pseudo likelihood estimator is consistent provided that
the mapping between conditional probabilities and joint probability is injective, i.e. the joint
probability can be uniquely specified by the set of conditionals [2]. This property does hold true
for von Mises.

Proof sketch: Consider two conditionals which have different parameters (~κ∗1 and ~κ∗2, and ~µ∗1
and ~µ∗2), but have the same joint distribution. Then, by taking the derivative of the two conditionals
based on Θ, and equating the two derivatives, it can be shown that ~κ∗1=~κ∗2, and ~µ∗1=~µ∗2. From the
equality of the ~κ∗ and ~µ∗, we can then form a system of equations using the definitions (1) and (2).
The system has a single solution in which the VGM parameters ~κ and ~µ are equal. Thus, based on
the theorem discussed in [2], the Full Pseudo Likelihood is a consistent estimator for the VGM.

5.3 Structure learning for VGM

When the topology of the graph is not given or known, we must also learn the structure of the
model, as well as the parameters. The study of the so-called structure learning problem has re-
ceived considerable attention recently (e.g., [13, 7, 6, 11]). Structure learning algorithms based on
L1 regularization are particularly interesting because they exhibit consistency and high statistical
efficiency (see [12] for a review). We use an algorithm introduced by Schmidt et.al [11] that solves
the L1-regularized maximum likelihood estimation optimization problem using gradient projec-
tion. Their algorithm can be applied to any twice-differentiable continuous loss function, without
any specific functional forms assumed. In particular, for x = (x1, x2, ..., xn) and loss function L,
their algorithm minimizes functions of the form:

minxf(x) ≡ L(x) + ρ‖x‖1

where ‖x‖1 =
n∑
i=1

|xi|

Here, ρ corresponds to regularization parameter. The L1-Projection method reformulates this prob-
lem as a constrained optimization problem. Schmidt et. al. [11] rewrite the absolute value as a
differentiable function:

|x| ≈ 1

α
[log(1 + e−αx) + log(1 + eαx)]
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As α goes to infinity, the approximation error goes to zero.
In the rest of this section, the notation x+ refers to max(x, 0) and x− refers to −min(0, x).

Having defined a differentiable approximation for absolute values, the learning problem can be
re-written as finding the optimal solution to:

minx+,x−L(x+ − x−) + ρ
n∑
i=1

[x+
i − x−i ]

s.t.∀ i, x+
i ≥ 0, and x−i ≥ 0

This objective can be minimized using projected gradients. Briefly, projected gradients optimize
variables with inactive constraints. If x∗ = [x+

i x
−
i ]T , the set of active constraints is defined as:

{i|x∗i = 0,∇L(x+
i − x−i ) + λ > 0}. The algorithm takes gradient descent steps of the form

x∗ := [x∗ − t∇L(x+
i − x−i )]+ where t represents the step size. We note that methods based on

projected gradients are guaranteed to converge to a stationary point [1].
We use this method to learn the structure and parameters of the VGM . We define the loss

function L as the negative log of full pseudo likelihood, as defined in Section 5.1:

L(Θ|~µ,~κ,Λ) = −log(PL(Θ|~µ,~κ,Λ))

where

log(PL(Θ|~µ,~κ,Λ)) = −(np)log(2π)

+

p∑
j=1

n∑
i=1

−log(I0(κ
(i)
\j )) + κ

(i)
\j cos(θi,j − µ

(i)
\j ).

The sub-gradients of the loss function are calculated as follows. For each element of ~κ, κR we
have:

∂log(PL(Θ|~µ,~κ,Λ))

∂κR
=

κR

n∑
i=1

(
cos(θi,R − µ(i)

\R)− A0(κ
(i)
\R)

κ
(i)
\R

+

sin(θi,R − µ(i)
\R) ∗

∑
l 6=R λR,lsin(θi,l − µl)

κ
(i)
\R

)

Here, A0(κ) is defined as I1(κ)
I0(κ)

as described in [8].
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Taking derivative of the pseudo likelihood with respect to each element of Λ matrix, λR,S , is
also as follows:

∂log(PL(Θ|~µ,~κ,Λ))

∂λR,S
=

p∑
j=1

n∑
i=1

(
∂κ

(i)
\j

∂λR,S
[−A0(κ

(i)
\j ) + cos(θi,j − µ(i)

\j ]

+
∂µ

(i)
\j

∂λR,S
κ

(i)
\j sin(θi,j − µ(i)

\j )

)

such that

∂κ
(i)
\j

∂λR,S
=

δ(R, J) ∗
∑

l 6=j λj,lsin(θi,l − µl) ∗ sin(θi,s − µs)

κ
(i)
\j

and

∂µ
(i)
\j

∂λR,S
=

δ(R, J) ∗ sin(θi,s − µs)
κj ∗ (1 + [

∑
l 6=j λj,l∗sin(θi,l−µl)

κj
]2)

These gradients are then used in the projected gradient method to solve the maximum pseudo
likelihood estimation for the parameters of the von Mises graphical model.

6 Experiments
We have implemented the Gibbs sampler and structure learning algorithm for the VGM and used
them to perform experiments using both synthetic and real data. The synthetic data were gener-
ated using our Gibbs sampler on randomly generated VGM models. The accuracy of our structure
learning algorithm was evaluated by comparing to ground truth and to the structures learned using
an algorithm for learning Gaussian Graphical Models (GGM). The real data come from a molec-
ular dynamics (MD) simulation of the protein ubiquitin. A MD simulation involves integrating
Newton’s laws of motion for a set of atoms (in our case, those of the protein and the surrounding
water molecules). The result is a time-series of conformational snapshots of the protein. The goal
is to learn a model of the joint distribution over the protein’s backbone torsion angles (which col-
lectively determine the three dimensional structure of the molecule). The accuracy of our learning
algorithm was evaluated on the MD data using cross-validation and compared to the GGM learning
algorithm.
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6.1 Parameter Learning on Synthetic Data
We generated random VGM graphs for different parameter configurations by systematically vary-
ing the followings: (a) the number of nodes of graph from 8 to 128; (b) the density of edges of
the graph from 0.1% to 100%; and (c) the von Mises parameters ~κ and Λ. For each parameter
configuration, we generated 50 VGMs by randomly generating the elements of ~κ using a uniform
distribution on [0, Sκ]. Here, Sκ ranged from 10−2 to 102. Elements of the Λ matrix were drawn
from a Gaussian distribution N (0, SΛ) where SΛ ranged from 10−2 to 102. In these synthetic
datasets, the mean values for the marginal distributions, ~µ, were held fixed at zero.

We then used our Gibbs sampler (Sec. 4) to randomly generate 50 data sets from each of the
randomly generated VGM configurations. Each dataset contained 3000 fully observed samples.
Next, we used our structure learning algorithm (Sec 5) to learn a VGM from each data set. For
comparison, we also used the structure learning algorithm presented in [10] to learn a GGM from
the same data.

Evaluation Metrics We used two metrics to compare the results of the two structure learning
algorithms. First, the average F1-score was computed for each randomly generated VGMs, where
the average is taken over the 50 data sets. The F1-score quantifies the ability of each learning
algorithm to identify the true correlations in the data. It is defined as 2.precision∗recall

precision+recall
.

The second metric was the cosine of the angle between the true and estimated model param-
eters (~κ and Λ). The cosine of angle between vectors A and B is defined as ATB

‖A‖2‖B‖2 and values
closer to one indicate higher similarity. We used this metric as an indicator of the quality of algo-
rithm in learning not only the structure, but the strength of the links in the graph. The Λ matrix
was first reshaped to be a vector, and the kappa values were also appended to this vector to create
one single vector of parameters. Then the cosine of the angle between this vector and the true
parameter vector was computed.

Model Selection The structure learning algorithm has one free parameter — the regularization
penalty for adding edges. We selected the optimal value for this parameter by first randomly
shuffling each column of the samples (columns correspond to variables), to remove all effects of
correlation between the variables. Then we learned a VGM for many values of regularization
penalty on this shuffled data, and selected the lowest penalty that did not capture any dependencies
on the data. This regularization penalty was then used on the actual samples for the learning. The
same procedure was used to find the penatly for the GGM.

Results Figures 2 through 4 present surface plots depicting the cosine angles between the true
and learned parameters for varying edge densities. In each figure, the x and y axes correspond to
the log of Sκ and SΛ (defined above), while the z axis and the color is the average cosine angle
between the true and learned parameters, averaged over the 50 data sets of that configuration.

At very low edge density (Fig. 2), the variables are mostly independent and the algorithm
successfully learns the ~κ values over all combinations of the true values of ~κ and Λ. At 50% and
100% edge density (Figs. 3 and 4), the effect of the magnitude of the κ and Λ values becomes
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Figure 2: Cosine angles between true and learnt parameters at 0.1% edge density (i.e. mostly
independent variables). Standard error bars are shown as black bars.

Figure 3: Cosine angles between true and learnt parameters at 50% edge density.

Figure 4: Cosine angles between true and learnt parameters at 100% edge density (i.e., fully con-
nected). 9



evident. In particular, accuracy is positively correlated with the magnitude of the κ’s and inversely
correlated with the magnitude of the λ’s. Recall that κ is inversely related to the marginal variances,
and that the elements of the Λ matrix correspond to the strength of the coupling/correlation between
variables. Thus, accuracy of the learning algorithm decreases under high variance, and/or strong
couplings.

Comparison to Gaussian Graphical Model As previously mentioned (Sec. 3), a VGM can
be well-approximated with a GGM when the variables have low variance (i.e., high values of κ).
Using the definition of the multivariate von Mises model:

fVMM(~µ,~κ,Λ) ∝ exp {~κT ~C + 1
2
~SΛ~ST}

where ~C = [cos(θ1 − µ1), cos(θ2 − µ2), · · · , cos(θp − µp)] and ~S = [sin(θ1 − µ1), sin(θ2 −
µ2), · · · , sin(θp− µp)], we can use the Taylor expansion for cos(x− µ) and sin(x− µ) as follows:

cos(x− µ) =
inf∑
n=0

(−1)n

(2n)!
(x− µ)2n

and

sinx =
inf∑
n=0

(−1)n

(2n+ 1)!
(x− µ)2n+1

When (x− µ) is close to zero, these series can be approximated with:

cos(x− µ) ∝ 1− (x− µ)2

2

and
sin(x− µ) ∝ x− µ

Thus, under the condition where (x − µ) approaches zero (i.e., when the marginal variance
of each variable is sufficiently small), a VGM can be approximated with a multivariate Gaussian
distribution, as follows:

fVMM(~µ,~κ,Λ) ∝ fGGM(µ,Σ),
where (Σ−1)ii = κi and (Σ−1)ij = −Λij .
We ran the GGM regularized learning algorithm [10] to determine if it has lower accuracy than

the VGM when the variance of the variables is higher.

Figure 5 shows the average difference in the performance of the two learning algorithms for
different parameter combinations (Sκ and SΛ) at a fixed density of 50%. Each point in the plot is
calculated by computing the cosine of the angle between the true and estimated model parameters
obtained using the VGM algorithm minus the same quantity for the GGM algorithm. Thus, the
peak in the contour plot corresponds to parameter combinations where VGM outperforms the
GGM the most.

Interestingly, the surface in Figure 5 is not monotonic. In the lower right corner, where the
concentration is high (i.e., low variance) and the coupling between variables is low, the GGM’s
performance is essentially the same as the VGM. This is expected. However, in the upper right
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Figure 5: Performance of the VGM learning algorithm versus the GGM learning algorithm for
different parameter combinations. See text for details.

corner, we see that the VGM can outperform the GGM when variance is low, provided that the
average coupling is high. The peak in the plot occurs at approximately the point where logSκ is
zero and logSΛ is one. Thus, the relative performance of the VGM increases as variance increases.
But this is only true up to a point. At very low concentrations (i.e., high variances) the performance
of both algorithms is about the same (left-most edge). Note that the GGM outperforms the VGM at
approximately the point where logSκ is zero and logSΛ is negative one, but that the depth of the
trough (≈ −0.03) isn’t as deep as the hight of the peak (≈ 0.06). Thus, we conclude that the
VGM performs as well, or better than the GMM over the majority of the parameter combinations
we considered.

We also compared the accuracy of the two algorithms according to the F1-score, to determine
if either does a better job at learning the structure of the model. We did not discover any specific
pattern in the F1-scores. Thus, there is no evidence that the VGM algorithm outperforms GGM
algorithm on in terms of learning the structure of the graph.

6.2 Parameter Learning Cross Validation on Protein Torsion Angle Data
A protein is a linear chain of smaller molecules known as amino acids. The three dimensional
structure of a protein can be defined in terms of the Cartesian coordinates of the constituent atoms
or, equivalently (and with fewer parameters) in terms of a series of dihedral (aka torsion) angles.
For example, Figure 6 depicts a toy protein consisting of two amino acids (real proteins have
dozens to thousands of amino acids). The dihedral angles in this figure are denoted using the con-
ventional names used in biochemistry: φ, ψ, ω, χ1, χ2, χ3, and χ4. Unlike the figure, a protein’s
structure isn’t static. Rather, each protein samples from an underlying distribution over configu-
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Figure 6: Backbone and side-chain dihedral angles of a di-peptide Lys-Ala protein.

rations (known as the Boltzmann distribution) according to the laws of physics. Characterizing
these distributions is very important for understanding the biological function of these complex
molecules. Thus, a VGM is a suitable choice for modeling a protein’s structure.

We applied our von Mises graphical model learning algorithm to learn a model of the joint
distribution over a subset of the dihedral angles in the protein ubiquitin, which has 76 amino acids.
The data set consisted of 15000 observations obtained via molecular dynamics simulation. Each
observation consists of a vector of dihedral angles defining the structure of the protein. We learned
a VGM of these data using our structure learning algorithm. Model selection for selecting the
regularization penalty was performed as described in Section 6.1.

To learn the data, we performed a 5-fold cross validation, each time learning the VGM model on
12000 samples, and computing the probability of the remaining 3000 structures given the existing
model. Since the full joint probability calculation requires inference, we compared the probability
of each variable conditioned on the rest of the observations, given the learned parameters. This
conditional probability was calculated using the formula derived in section 4.

We also learned a Gaussian Graphical Model on the same protein data, using the algorithm
described in [10] and we performed the same cross validation procedure as with the VGM .

Figure 7 shows the log probability of each dihedral angle in Test set under the model learned
on the Training set. Each dot in the plot corresponds to one dihedral angle log probability. For
a large number of dihedral angles, the log likelihood of the test set under vMM is higher than
their likelihood under GGM. There is also a large number of positions where both models perform
comparably – these correspond to positions in the protein that are fairly constrained and do not
fluctuate significantly. This echoes the intuition that when the angles are relatively constrained
(i.e. have low variance), both von Mises and Gaussians have similar behavior. This result also
demonstrates that overall the vMM is a better fit of directional data than the GMM with significant
benefits when the variables have high variance.

Figure 8 shows the analog of the precision matrix of the model discovered using the VGM learn-
ing algorithm. Figure 9 overlays these edges on the the a depiction of the structure of ubiquitin.
Notice that there are many edges between distant parts of the protein. While beyond the scope of
this paper, we note that such long-range dependencies are consistent with the biological function
of the protein which binds to other molecules via a gripping motion.

Apart from its utility as a generative model, the parameters of the VGM model provide a suc-
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Figure 7: The log conditional probability of each variable under the vGM and GGM estimated
model

Figure 8: The network of couplings discovered by the vGM algorithm between Ubiquitin residues
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Figure 9: The dependency links between the torsion angles of the Ubiquitin Protein backbone.

cinct summary of the relations between the various angular fluctuations observed in the simulation,
and this can then be used as a starting point by biologists to gain insights into the working of the
protein.

7 Conclusion and Future Work
In this paper we presented the first multivariate von Mises graphical model and introduced al-
gorithms for sampling and structure learning. Von Mises Graphical models provide a unified
framework to model a network of circular variables but due to previously unsolved theoretical
challenges, imposed by the particular form of the probability formula, these models had not yet
been used, despite being a better fit for the circular data. We used a gradient based algorithm to
estimate the parameters of such graphical models from data, and we showed the consistency of the
maximum full pseudo likelihood estimator for Von Mises models.

We tested the quality of our estimator on a set of synthetic data created by the Von Mises
sampler, and compared our estimator to the regularized Gaussian Graphical Model estimator. Here
we used two measures: F1 to evalute the accuracy of the estimator to learn the structure of the
graph (i.e. the dependency network), and the Cosine of the angle between parameter vectors, to
evaluate the parameter values. Von Mises model did not outperform the Gaussian model under
F1 measure. However in the parameter estimation, we observed that the Von Mises model has a
better accuracy compared to Gaussian Graphical Models across a fairly large range of parameter
combinations.

We also applied our model to the dihedral angles of the protein ubiquitin. We computed the
conditional probabilities of each variable conditioned on the rest of the angles of each sample in
the the test set, after learning the parameters of VGM and GGM from the training set. We observed
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that Von Mises is a better fit for the data, and can recover long distance dependencies between the
movements of residues.

Finally, we note that we have recently derived the update equations for an Expectation-Propagation
style inference algorithm for the VGM. It was not presented here due to space limitations. We in-
tend to present that algorithm in a future publication.
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