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Abstract

One of the most challenging tasks for the database administrator is physically de-
signing the database (by selecting design features such as indexes, materialized views,
and partitions) to attain optimal performance for a given workload. These features,
however, impose storage and maintenance overhead on the database, thus requiring
precise selection to balance the performance and the overhead. As the space of the de-
sign features is vast, and their interactions hard to quantify, the DBAs spend enormous
amount of resources to identify the optimal set of features.

The difficulty of the problem has lead to several physical design tools to auto-
matically decide the design given the data and a representative workload. The state-
of-the-art design tools rely on the query optimizer for comparing between physical
design alternatives, and search for the optimal set of features. Although it provides an
appropriate cost model for physical design, query optimization is a computationally
expensive process. Other than affecting the performance of the design tools, the over-
head of optimization also limits the physical design tools from searching the space
thoroughly – forcing them to prune away the search space to find solutions within a
reasonable time. So far it has been impossible to remove query optimization overhead
without sacrificing cost estimation precision. Inaccuracies in query cost estimation are
detrimental to the quality of physical design algorithms, as they increase the chances
of “missing” good designs and consequently selecting sub-optimal ones. Precision
loss and the resulting reduction in solution quality is particularly undesirable and it is
the reason the query optimizer is used in the first place.

In this thesis, we claim that for the physical design problem, the costs returned
by the optimizer contain an intuitive mathematical model. By utilizing this model,
the physical design problem can be converted to a compact convex optimization prob-
lem with integer variables and solved efficiently to attain near-optimal solutions using
mature off-the-shelf solvers.

This approach eliminates the tradeoff between query cost estimation accuracy and
performance. We invoke the optimizer a small number of times, and then reuse the
results of the invocation to create an accurate model. We demonstrate the usefulness
of the model by finding near-optimal physical design for workloads containing thou-
sands of queries and thousands of candidate design alternatives. In a more complex
online workload scenario, we devise several algorithms with guaranteed competitive
bounds for the physical design problem. The proposed online algorithms provide sig-
nificant speedups while imposing reasonable overhead on the system. This thesis,
demonstrates that optimizer–the most complex component of the DBMS–can be mod-
eled in a restricted (yet important) domain. The same approach can be extended to
other domains to build accurate and efficient models for the optimization problems,
and optimal solutions can be searched in a principled manner.
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Chapter 1

Automated Physical Design

Database management systems are complex software systems containing many tuning knobs.

These knobs allow the administrator to achieve optimum performance from the database man-

agement system. Over the years, the knobs have become very complex, causing the administrator

to be overwhelmed by the number of possibilities and their implications. From recent surveys

of a DBA group, typical business spends about 60% of its resources to designing and managing

the database, compared to about 13% of acquiring it. Training and installation account for the

remaining expenses [32].

The database design process usually comprises the following steps[45]:

1. Requirement Analysis to determine the data, the relationship between the data elements, and

the queries required by the software on top of the data.

2. Logical Design to determine the conceptual model of the database from the user require-

ments and the database tables.

3. Physical Design to ensure that the queries on the database are executed efficiently.

4. Monitoring and Refinement is an iterative step, where the database is monitored for changes

1



in user requirements, or data characteristics. Once a change is detected, the logical and

physical design steps may be repeated. Typically the physical design is repeated more often

than the logical design, as the workload tends to change faster than the data characteristics.

For the logical design, the administrator finds the relationships between the data elements and

builds the relations, their attributes and their dependencies. This process requires thorough under-

standing of the data. Tools like ER diagrams help the administrator encapsulate and understand

the details of such relationship and then materialize them into the relational databases. Once the

dependencies are determined, determining the right schema is straightforward using one of the

available automated tools[72].

The physical design of the database is the physical organization of the data on the disk, which

allows the queries to run faster compared to the basic relational tables. The database administrator

(DBA) typically builds indexes, materialized views, and partitions to help the query performance.

Hence forth, we will denote such structures as design features. Although these features help im-

prove the query performance, they are numerous. For example a query using n columns from a

table can possibly use 2nn! possible indexes. Moreover, these indexes interact with each other,

since some query plans can be feasible only when two indexes are present in the system, and

not possible otherwise. Therefore, physically designing the system is expensive in both time and

money.

Automatic physical design tools alleviate this problem by helping the administrator achieve the

goals she desires from the system, by configuring the system automatically. They search through

the large set of design features, taking into account their interactions and suggesting features which

boost the performance of queries. While searching through the design space, they also consider

the constraints set by the DBA. To define the problem more formally:

Automated Physical Design Problem: Given a workload of queries W, and a set of constraints

C, the physical designer should suggest design features to achieve goals G.
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One common instance of such problem is: Given a workload containing a set of queries, the

physical designer should reduce the workload cost as much as possible, while keeping the size of

the design features less than a given constant M.

1.0.1 Challenges in Automated Physical Design

We list the main challenges in the automatic physical below.

Huge search space: The difficulty in automatic physical design lies in the huge search space

possible for the design features. As discussed earlier, the number of possible features is exponential

in the number of columns used in the workload, and the designer has to consider the possible

interaction between the design features to select them in a group – further increasing the search

space.

Workload selection: Furthermore, there is no standard way to collect the workloads. Typically

the DBAs collect the heavy hitters from the SQL log that run on the database. The workload,

however, evolves over time. And the optimized design for the heavy hitters becomes irrelevant

in the future heavy hitters as they may require different design features due to the usages of their

columns. Also, the workload often contains workflows, instead of a sequence of queries. The

workflow allows the DBA to drop certain design features after running query and later rebuild

them again.

The workload where there is no order on the queries is considered a set-based workload. The

workload where the order of the queries is known is known as a sequence-based workload. Finally,

sometimes the workload is completely unknown. In this case the user of the database system

creates ad-hoc queries and runs them on the DBMS. This type of workload is called an online

workload.

Data update: The underlying data can change. When the data changes, the indexes and ma-
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terialized views need to be updated with the new data. The bigger problem is that a data change

can also make some indexes obsolete. For example, indexes are usually beneficial when the query

condition using the index is very selective. If the data update adds lots of rows for a condition and

makes it less selective, then the index becomes less useful. It may be possible to use a new index or

discard the index altogether to build other physical design structures. This update of the selectivity

requires that the design selection is either agnostic to the update or adapt to the update efficiently.

All the factors discussed above make the physical design of databases challenging not only for

the DBA, but also for an automated design selection mechanism.

1.1 The History of Automated Physical Design

1.1.1 Early Days

In the early days of DBMS research, Yum et al. proposed selecting indices to speedup workload

[46]. The authors recognized the importance of selecting indexes, as they are generic physical

design structures. They built a mathematical model of the index usage and the index update over-

heads. Using empirical statistics to build this model, they associated an indicator function on the

following parameters: index size, frequency of update, and insertion of records, frequency of ref-

erence to the indexed column in queries, frequency of a full table scan if the column is not indexed.

When the indicator function is positive, the index is built and dropped otherwise. Hammer et al.

extended this mechanism by refining the statistics collection and workload characterization process

[61].

A related but more theoretical approach was proposed in references [42, 50, 60, 69]. In these

approaches, the workload was modeled as a collection of attributes, along with their access and

update probabilities. Then a model is built to estimate the cost of the entire workload. They built a

4



cost model using these probabilities to identify useful indexes. Finally, they selected the secondary

indices using an optimization algorithm, such as greedy selection. Comer analyzed the problem of

index selection and proved that the problem is NP-complete by reducing the satisfiability problem

into the index selection problem [23]. Note that the secondary index selection problem focused

only on selecting single-column indices. Since the natural approach to address an NP-complete

problem is to develop approximation algorithms, several researchers proposed approximation al-

gorithms to solve the problem efficiently, but with a known distance from the optimal set of indices

[6, 40]. Another way to address the complexity is to reduce the problem space by decomposing

the larger problem into an independent set of sub-problems. Several researchers tried to identify

the composability of the index selection problem by using several models for the workload charac-

teristics [7, 74]. These models try to divide the database into smaller set of relations, and find the

suitable indexes for those small sets iteratively. For example, Whang et al. [74] consider a single

relation at a time and isolate the effect of join between relations by using a “coupling factor”. The

coupling factor was accurate for the nested-loop joins mechanisms, but fails to take into account

the modern join mechanisms.

In parallel, researchers also discovered that the data organization improves the database per-

formance. Cardenas et al. proposed a cost model that uses the disk characteristics and its impact

on the data organization together to find beneficial data organizations [16]. Similarly, Babad and

Hoffer et al. proposed partitioning the data files into subcomponents, appearing to be the first at-

tempt towards doing horizontal and vertical partitioning in file systems [5] [36]. The results were

demonstrated to be useful in the files stored in the database systems as well. Babad developed a

non-convex optimization problem using a cost model for the partitions, and then solved it to find

the partitions. Solving non-linear and non-convex optimization methods to solve the physical de-

sign problem incurs a very high overhead and does not scale to workloads containing hundreds

of queries. Hoffer et al. used the clustering of the attributes in the workload instead. They first

create an attribute usage matrix, in which the rows represented the queries and the columns repre-
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sented the columns in the database. They then build an “column affinity matrix” to determine the

columns which occur together. They clustered such matrix to store the set of columns which have

high “affinity” and built vertical partitions from them. This mechanism is still useful if purely ver-

tical partitions are required, but does not take into account the interactions between the partitions

and other physical design structures such as indexes.

1.1.2 Workload-based Physical Design

In 1988 Finkelstein et al. published a paper regarding the design of System R’s database design

tool called DBDESGN [28]. The tool was later commercialized under the name of Relational

Design Tool (RDT) by IBM. In this paper, the authors made the following important contributions:

• The complexity of the queries by that time had made the earlier probabilistic counting meth-

ods irrelevant. Therefore, the cost had to be determined per query, rather than per column in

the workload.

• They also recognized that the optimizer should be used to estimate the cost of the indices.

• So far, all work on the physical design focused on selecting secondary indices, assuming that

the primary key or the clustered index has been determined by the logical design process.

In this paper, Finkelstein et al. propose to generalize all the access paths under the physical

design process.

• Finally, they built indices for multiple tables. Earlier attempts tried to suggest indexes for

queries containing multiple tables using the separability of the indices.

Dabrowski et al. proposed yet another practical approach by integrating developments in

knowledge-based decision systems to the physical design process [26]. Rozen et al. extended

the DBDESGN work to propose a general framework that divides the physical design into two
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steps. In the first step, the optimal indices for each query is determined, and then in the second

stage the indices are “combined” into multicolumn indexes to produce a good physical design [56].

Cheonni et al. proposed to combine the idea of Finkelstein et al. to generate good candidate

indices using the information achieved by the optimizer, and the idea of Dabrowski et al. that

knowledge rules can narrow the search space in finding good indices [21].

1.1.3 Physical Design in Commercial Systems

In the decade after the paper by Finkelstein et al., optimizers had developed significantly. They

supported multitudes of physical design structures, such as indexes, multi-column indexes, mate-

rialized views, and partitions. Optimizers contained many rules apart from the System R’s cost

models to select these physical design features. Therefore, earlier approach of using System R

model, used by Finkelstein et al. was even more important and adopted by all commercial sys-

tems.

Chaudhury et al. developed an API which called what-if API into the optimizer [19]. Using

these APIs the physical designer can directly invoke the optimizer on “simulated” indices and

other physical design structures. The cost reported by the optimizer is more accurate than the

cost models used in earlier approaches, as the optimizer implementation had drifted from those

simplistic models significantly. This API became very popular among the researchers, and all

research afterwards used the what-if optimizers. This paper started the commercial era of the

physical design tools. Chaudhury et al. describe all the advances made possible because of this

API in the survey paper Ref. [17]. What follows is a very brief summary of the research discussed

in the survey paper. The paper also proposed techniques for finding candidate “configurations” or

combinations of indexes, and ways of finding the cost of those configurations by using optimizer

caches.
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Microsoft followed up on the paper to build a physical design tool in both SQL Server 2000

[58], and SQL Server 2005 [2]. The latter version of the physical design tool integrates selection

of indexes, materialized views, and partitions together.

DB2 also shipped a physical design tool in 1999, called the Design Advisor [68]. This work

improved on the earlier technique by utilizing the optimizer itself to suggest the candidate indexes.

It also used a variant of the knapsack algorithm to find the indexes. Later, the tool integrated

selection of materialized views, clustered indexes, and partitions [75].

Oracle shipped a version of their physical designer tool in Oracle 10g [27], which processes

the workload traced by the system and then suggests indexes and materialized views.

Researchers have also tried to model the workload in a different manner, such as, sequences

[4], and as an online sequence of queries [13, 59, 63]. New types of physical design structures

have also been developed, requiring new cost models and physical design tuning [39, 41, 57].

Several researchers also proposed a non-traditional approach such as genetic algorithm to solve

the complexity of physical design [44]. Bruno et al. [14] extended the usefulness of the physical

design process by incorporating multitudes of constraints that the DBAs need to specify in a real-

world physical design scenario.

1.2 The Need for a new Approach

While existing commercial approaches solved the issue of divergence of the design tool’s cost

model from the optimizer – calling the optimizer as a black box can be expensive. For each call

to the optimizer, it needs to recreate the entire optimization process, starting from determining the

selectivity, selecting the appropriate design features to optimize, and then selecting the optimal join

order and methods. This process takes significant amounts of time, and from our measurements

modern physical designers spend about 90% of their time calling the optimizer.
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This not only reduces the efficiency of the physical designer, but also the quality of the solution

proposed. Since most of the algorithms focus on reducing the number of candidates and querying

the optimizer only when necessary, they need to greedily prune away the search space. At every

greedy pruning step, the search algorithm possibly sacrifices some quality in the solution.

Moreover, the greedy algorithms do not provide any feedback regarding the distance from the

optimal solution. So, the administrator does not have any idea as to how good the suggested

solution is, and if she should give the designer more time to achieve a better solution. Estimating

the distance from the optimal is critical in the presence of complex constraints. Such constraints

could make the final solution infeasible, but the greedy algorithm cannot identify the infeasibility

and so can keep on searching for a long time before giving up.

There is an alternative approach that ameliorates this situation significantly. In the area of

Operations Research, more and more problems are being posed as convex optimization problems

and then solved efficiently using mature solving techniques. The solvers are general and can handle

thousands to millions of constraints and solve them in minutes. They also provide a running

estimate of the distance of the current solution from the real optimal. This helps the DBA detect

infeasible problems and also allows her to estimate the amount of time it would take to reach the

optimal solution.

Converting a physical design problem into a convex optimization problem is not an easy task.

Since the optimizer is complex, and the search space is huge. In this thesis, we present two tech-

niques that allow the application of the convex optimization to the physical design problem.

More formally, in this thesis we claim that:

1. In the context of physical design, the costs of queries contain an intuitive mathematical

model.

2. This model can be exploited to search through the candidate design features in a principled
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manner – without heuristic pruning – to improve both the quality of the suggested features

and the efficiency of their selection.

We support this claim by discussing the cost model for the optimizer for the physical design

problem in Chapter 3. Chapter 4 uses this model to build a integer linear program to solve the

physical design problem in which the workload is predetermined. Finally, Chapter 5 solves the

physical design problem in the presence of online and evolving workloads. Before diving into the

details of our approach, Chapter 2 provides an introduction to the mathematical optimization, as

we use this optimization technique extensively in the reminder of the thesis. Finally, we conclude

in Chapter 6.
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Chapter 2

Combinatorial Optimization Programs

Recently, the optimization programs have become a tool for many disciplines of computer science,

such as networking, machine learning, VLSI design. The efficiency of the tools solving the op-

timization programs allow large scale problems to be solved reliably and efficiently. This thesis

demonstrates that even the most complex optimization problems in the database optimization can

be reduced to the combinatorial optimization programs and the existing solution mechanisms can

be leveraged to find the solutions scalably and efficiently.

In this chapter, we describe a very high level introduction to the optimization programs, and

describe the techniques used to solve them. This chapter provides background knowledge for

the combinatorial programs for database physical design in the rest of the thesis. This chapter is

strongly influenced by Steven Boyd’s excellent book titled “Convex Optimization” [10]. We highly

recommend the book for more detailed analysis of the programs and their solutions.
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2.1 Optimization Program

An optimization program is defined by an objective f0(x) on a vector of variables x=(x1,x2, . . . ,xn)

where xi ∈R or xi ∈N. The program also contains a set of constraints the xi variables must satisfy:

f j(x), j ∈ [1,m]. The full form of the optimization program can be written as:

minimize f0(x)

suchthat f j(x)≥ b j∀ j = 1...m

Note that, other forms of optimization can be converted to this form using minor variations.

For example, if the objective is to maximize a function f ′0(x) then we minimize − f ′0(x). In gen-

eral, without any knowledge about the functions f j, it is hard to solve such optimization program

efficiently. The solving process can be much more efficient, if the behavior of the functions con-

tain some properties. We now discuss these properties, and mechanisms to solve the optimization

problem using those properties.

2.2 Linear Optimization Programs

For an optimization program to be called a linear program, the function f j must be linear functions

of the xi variables. More formally, a function f is called a linear function if:

f j(αx+βy) = α f j(x)+β f j(y)

Linear programs are common in the real world engineering problems, and solving them effi-

ciently has allowed rapid adoption of the linear program solvers in many disciplines.

Let’s consider a trivial example of a linear program to get a feel about it. Assume for simplicity

that there are only two food items A and B. Further, assume that there are only two products people
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need to stay alive, p and q. Each day a person must consume at least 60 units of p and at least 70

units of q to stay alive. Let us assume that one unit of A costs $20 and contains 30 unit of p and 5

units of q, and that one unit of B costs $2 and contains 15 units of p and 10 units of q. The goal is

to find the cheapest diet which will satisfy the minimum daily requirements.

We assign variables x = (x1,x2) to the amount of food items consumed per day, then we need

to minimize the total cost:

f0(x) = 20x1 +2x2

But we also have to make sure that the minimum requirement for the day is satisfied as well

using the following constraints:

f1(x) = 30x1 +15x2 ≥ 60

f2(x) = 5x1 +10x2 ≥ 70

f3(x) = x1 ≥ 0

f4(x) = x2 ≥ 0

The functions f0, ..., f4 define a linear program, that when solved for the values of x1 and x2

provides the amount of A and B required to satisfy the daily nutrition requirements, while incurring

the minimum cost.

The most popular way to solve the linear programs is Danzig’s Simplex method [? ]. The Sim-

plex algorithm models the optimization problem in geometric terms. Each constraint specifies a

half-space in n-dimensional Euclidean space, and their intersection is a polytope – a n-dimensional

generalization of the two-dimensional polygons. To minimize the objective, the algorithm needs to
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search for the minimum point f0(x) which intersects this polytope. For linear programs f0(x) can

be written as cT x, therefore the objective function can be viewed as a hyperplane in the direction

of the vector c. Intuitively, the last hyperplane to intersect the feasible region will either just graze

a vertex of the polytope, or a whole edge or face. In the latter two cases, it is still the case that

the endpoints of the edge or face will achieve the optimum value. Thus, the optimum value will

always be achieved on (at least) one of the vertices of the polytope. The simplex algorithm applies

this insight by walking along edges of the (possibly unbounded) polytope to vertices with lower

objective function value, and terminates when it either reaches the minimum value, or it reaches

the unbounded face of the polytope (signifying that there is no optimal solution).

The simplex method’s worst-case complexity is exponential, it is very efficient in practice, gen-

erally taking 2m to 3m iterations at most. More general techniques such as interior-point methods

solve the linear programs in polynomial time in the worst-case.

2.3 Convex Optimization Programs

A more generic form of optimization program is called “convex optimization programs” if the

f j functions are “convex” in nature. A function is said to be convex if it satisfies the following

constraint:

f j(αx+βy)≤ α f j(x)+β f j(y)

Where α,β ∈ [0,1] and α+β = 1.

This is more general than the linear program, as the equality is replaced by the inequality, and

the functions can be non-linear in nature. The non-linearity of the functions allow a wider range of

real-world problems to the mapped to the convex optimization programs.

The convex optimization programs can be solved using interior-point methods. Describing the
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interior point method is beyond the scope of this chapter, but intuitively, as Simplex traversed along

the edge of the constrained area, in the interior point methods the algorithm traverses inside the

convex region to arrive at the solution. As we mention earlier, even though the interior methods

are not as efficient as the simple method in the average case, in the worst-case they can be solved

in O(max(n3,n2m,F)), where F is the cost to find the first and second derivatives for the objective

function.

2.4 Combinatorial Optimization Programs

In this type of programs, we add integrality constraint to the convex optimization programs. In

other words, we consider a subset z of the variables x, such that zk ∈N. Adding the integrality con-

dition makes the problem of solving the combinatorial optimization programs NP-hard. In practice,

there exist many heuristics to solve the the combinatorial optimization problems efficiently. These

heuristics provide solutions close to the optimal in seconds for the real-world problems contain-

ing thousands of variables and constraints. The algorithms arrive at the solution by using three

fundamental techniques: Branch-bound, Branch-cut, and Parallel solving.

Branch-bound: A branch-and-bound technique requires two sub-techniques. The first one is a

splitting procedure that, given a set S of candidates, returns two or more smaller sets {S1,S2, . . . ,Sm}

, whose union covers S. Note that the minimum of f (x) over S is minVi, where each Vi is the mini-

mum of f (x) within Si. This step is called branching, since its recursive application defines a tree

structure (the search tree) whose nodes are the subsets of S.

The bounding technique computes upper and lower bounds for the minimum value of f (x)

within a given subset S. Typically the lower bound is achieved by using LP-relaxation technique.

In LP-relaxation the integral constraints are removed to allow x ∈ R. The selection of the upper

bound is typically application dependent.
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The key idea of the branch-and-bound algorithm is: if the lower bound for some tree node (set

of candidates) Si is greater than the upper bound for some other node S j, then Si may be safely

discarded from the search. This step is called pruning, and is usually implemented by maintaining

a global variable m (shared among all nodes of the tree) that records the minimum upper bound

seen among all sub-regions examined so far. Any node whose lower bound is greater than m can

be discarded.

The recursion stops when the current candidate set S is reduced to a single element; or also

when the upper bound for set S matches the lower bound. Either way, any element of S will be a

minimum of the function within S.

Branch-cut: For branch and cut, the lower bound is again provided by the linear-programming

(LP) relaxation of the integer program. If the optimal solution to the LP is not integral, this algo-

rithm searches for a constraint which is violated by this solution, but is not violated by any optimal

integer solutions. This constraint is called a cutting plane. When this constraint is added to the

LP, the old optimal solution is no longer valid, and so the new optimal will be different, poten-

tially providing a better lower bound. Cutting planes are iteratively until either an integral solution

is found or it becomes impossible or too expensive to find another cutting plane. In the latter

case, a traditional branch operation is performed and the search for cutting planes continues on the

subproblems. This approach was pioneered by Gomory [31].

Parallel solving: Since the branch-bound process can be easily parallelizable, modern solvers

provide different branches of the tree to different processors, and then solve the problem in parallel.

In modern multi-processing architectures this method solves problems faster compared to using

one processor.
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2.5 Conclusion

In this section we provide a high level overview of the mathematical optimization programs, and

their variations. We also discuss the algorithms used to solve the optimization programs, and their

complexities. We use this background knowledge to build efficient optimization programs for the

physical design problem and solve them efficiently using these well known techniques.
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Chapter 3

Efficient Use of the Query Optimizer

3.1 Introduction

As database applications become more sophisticated and human time becomes increasingly expen-

sive, algorithms for automated design and performance tuning for databases are rapidly gaining

importance. A database design tool must select a set of design objects (e.g. indexes, materialized

views, table partitions) that minimizes the execution time for an input workload while satisfying

constraints on parameters such as available storage or update performance. Design tasks typically

translate to difficult optimization problems for which no efficient exact algorithms exist [20] and

therefore current state-of-the-art design tools employ heuristics to search the design space. Such

heuristics trade accuracy for performance by pruning possible designs early without spending time

evaluating them. Recent trends, however, dictate that application schemas are becoming richer and

workloads are becoming larger – which increases the danger of compromising too much accuracy

for the sake of performance. Automated data management cannot rely entirely on aggressive prun-

ing techniques anymore to remain efficient; we need a way to efficiently evaluate large portions of

the design space without compromising accuracy and with acceptable performance.
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Figure 3.1: Database design tool architecture.

3.1.1 Accuracy vs. efficiency

Figure 3.1 outlines the two-stage approach typically employed by database design tools [1, 19, 33,

75]. The candidate selection stage has the task of identifying a small subset of “promising” objects,

the Candidates, that are expected to provide the highest performance improvement. The enumera-

tion stage processes the candidates and selects a subset that optimizes workload performance while

satisfying given resource constraints.

Although tools differ in how they implement Figure 3.1’s architecture, they all critically rely

on the query optimizer for comparing different candidates, because it provides accurate estimates

of query execution times. The downside of relying on the optimizer is that query optimization

is extremely time-consuming. State-of-the-art tools spend most of their time optimizing queries

instead of evaluating as many of the “promising” candidates or candidate subsets as possible.

Quoting from a recent study [11]: “...we would require hundreds of optimizer’s calls per iteration,

which becomes prohibitively expensive”. Indeed, our experiments show that on average 90% of

the running time of an index selection algorithm is spent in the query optimizer.
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3.1.2 Our approach

This chapter presents the INdex Usage Model (INUM), a novel technique for deriving query cost

estimates that reconciles the seemingly contradictory goals of high performance and estimation

accuracy. INUM is based on the intuition that, although design tools consider an immense space of

different alternative designs, the number of different optimal query execution plans, and therefore

the number of different possible optimizer outputs, is much lower. Thus, it makes sense to cache

and reuse the set of plans output by the optimizer, instead of performing multiple invocations only

to compute the same plan multiple times.

Like the optimizer-based approaches, INUM takes as input a query and a physical design (a set

of indexes) and produces as output an estimate for the query cost under the input physical design.

Unlike the optimizer-based approaches, however, INUM returns the same value that would have

been returned by an equivalent optimizer invocation, without actually performing that invocation.

As a consequence of drastically decreasing the dominant overhead of query optimization, INUM

allows automated design tools to execute 1.3 to 4 times faster without sacrificing precision.

3.1.3 Contributions

This chapter’s contribution to automated index selection algorithms is as follows:

1. Faster index selection. Our experiments demonstrate that an index selection algorithm with

INUM provides three orders of magnitude faster cost estimation, after the initial calls to the

optimizer. When factoring in the precomputation phase that involves the optimizer, we mea-

sured execution time improvements of 1.3x to 4x – without implementing any of the tech-

niques proposed in the literature for optimizing the number of cost estimation calls, which

would result in even higher speedup for INUM. a wider design space than an optimizer-

based tool. From a different point of view, faster index selection by an INUM-enabled tool
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translates into the capability to evaluate a wider design space (solve a bigger problem) for a

given evaluation time than the traditional optimizer-based tool.

2. Improved accuracy. INUM allows existing search algorithms (such as greedy search [1, 19])

to examine three orders of magnitude more candidates. Evaluating more candidates benefits

solution quality because it reduces the number of “promising” candidates that are overlooked

as a result of pruning. According to our experiments, INUM evaluates a candidate set of

more than a hundred thousand indexes for a TPC-H based workload, performing the equiv-

alent of millions of optimizer invocations within four hours – a prohibitively expensive task

for existing optimizer-based tools. The solution derived from this “power” test improves the

solution given by a commercial tool by 20%-30% for “constrained” problem instances with

limited storage available for indexes.

3. 100% compatibility with existing index selection tools. INUM can be directly integrated into

existing tools and database systems, because it simply provides a cost estimation interface

without any further assumptions about the algorithm used by the tool.

4. Improved flexibility and performance for new index selection algorithms. Recent work on

index selection improves solution quality by dynamically generating candidates, based on a

set of transformations and partial enumeration results. The relaxation-based search in [11]

generates thousands of new candidates combinations, thereby making optimizer evaluation

prohibitively expensive. INUM could help by replacing the approximation logic currently

used in Ref. [11], allowing the algorithm to use exact query costs (as opposed to upper

bounds) thereby avoiding estimation errors and the corresponding quality degradation. We

propose a novel database design approach, closely integrated with INUM, in the next chapter.

5. Even faster index selection by exploiting optimizer structures. We extend INUM by using the

internal optimization structure in PostgreSQL to build a much faster cost estimation mech-

22



anism. This extension removes the overhead of INUM’s cache construction, and enables

efficient online index selection.

In this chapter we first discuss INUM in Section 3.2, then discuss the integration of INUM with

PostgreSQL in Section 3.3. Although index selection is the original motive for INUM, we discuss

how to use INUM for a different scenario – to determine the index interactions – in Section 3.4.

Finally we discuss the related work and conclude.

3.2 INUM – The Index Usage Model

We show, through an example, how the INUM accurately computes query costs while at the same

time eliminating all (but one) optimizer calls. For this section only, we make certain restrictive

assumptions on the indexes input to INUM. This section sets the stage for the complete description

of INUM in the next sections.

3.2.1 Setup: The Index Selection Session

Consider an index selection session with a tool having the architecture of Figure 3.1. The tool

takes as input a query workload W and a storage constraint, and produces an appropriate set of

indexes. We will look at the session from the perspective of a single query Q in W . For the sake

of simplicity of explanation, let Q be a select-project-join query accessing 3 tables (T1, T2, T3).

Each table has a join column ID, on which it is joined with the other tables. In addition, each table

has a set of 4 attributes (aT1 ,bT1,cT1 ,dT1 , etc.) on which Q has numerical predicates of the form

x≤ aTi ≤ y.

The automated design tool generates calls to the optimizer requesting the evaluation of Q with

respect to some index configuration C. For the remainder of this chapter we use the term “config-
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uration” to denote a set of indexes, according to the terminology in previous studies [19].

To facilitate the example presented in this section, we assume that the configurations submitted

by the tool to the optimizer contain only non-join columns. No index in any configuration contains

any of the ID columns and the database does not contain clustered indexes on ID columns. This is

an artificial restriction used to facilitate the example in this section only.

Our techniques naturally extend to index unions or intersections, however we maintain the

single access method per table throughout the chapter, for simplicity. We assume that queries use

at most one index per table. For this example, the configurations submitted on behalf of query Q

are represented as tuples (T1: IT1 , T2: IT2 , T3: IT3), where any of the ITi variables can be empty. 1.

The optimizer returns the optimal query execution plan for Q, the indexes in C utilized by the

plan and the estimated cost, along with costs and statistics for all the intermediate plan operators

(Figure 3.2 (a) shows an example optimal query plan). There will be multiple optimizer calls for

query Q, one per configuration examined by the tool. Ideally we would like to examine a large

number of configurations, to make sure that no “important” indexes are overlooked. However,

optimizer latencies in the order of hundreds of milliseconds make evaluating large numbers of

configurations prohibitively expensive.

Existing tools employ pruning heuristics or approximations (deriving upper bounds for the

query cost [11]) to reduce the number of optimizer evaluations. In the next sections we show how

to obtain accurate query cost estimates efficiently, without any query optimization overhead.
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Figure 3.2: Illustration of plan reuse. (a) The optimal plan p1 for configuration C1. (b) The cost

for C2 is computed by reusing the cached internal nodes of plan p1 and adding the costs of the new

index access operators, under the assumptions of Section 3.2.1.

Figure 3.3: (a) Cost estimation with INUM for the example of Section 3.2.1. (b) Complete INUM

architecture.
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3.2.2 Reasoning About Optimizer Output

Assume we have already performed a single optimizer call for the SPJ query Q and a configuration

C1 and obtained an optimal plan p1. We first specify the procedure for reusing the information in

plan p1, in order to compute Q’s cost for another configuration C2. The optimality of plan p1 with

respect to configuration C2 is discussed later.

To compute the cost of Q under a new configuration C2, we first compute the internal subplan

ip1 from p1. The internal subplan is the part of the plan that remains after subtracting all the

operators relevant to data access (table scans, index scans, index seeks and RID lookups). The

internal structure of the plan (e.g. join order and join operators, sort and aggregation operators)

remains unchanged.

Next, for every table Ti, we construct the appropriate data access operator (index scan or seek

with RID lookup) for the corresponding index in C2 (or a table scan operator if the index does not

exist). The data access operators are appended to ip1 in the appropriate position.

Finally, Q’s cost under C2 can be computed by adding the total cost for ip1 (which is provided

by the optimizer) to the cost of the new data access operators corresponding to the indexes in C2.

Given p1 and a new configuration C2, replacing the optimizer call by the above reuse procedure

allows for dramatically faster query cost estimation. Since we have already computed plan p1

(optimal for C1), most of the work is already done. The only additional cost is computing the costs

of the data access operators in the third step of the reuse procedure: this can be done efficiently and

precisely by invoking only the relevant optimizer cost models, without necessitating a full-blown

optimization. The reuse procedure is more efficient than an optimizer call because it avoids the

overhead of determining a new optimal plan. Figure 3.2 (b) shows how plan p1 is reused with a

new configuration C2 and the new query cost.

1Our technique only needs to characterize each index by its access cost and the ordering it provides. Both properties

can be computed for sets of indexes combined through a union or intersection operator
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We define two desirable properties of the above reuse process: “correctness” and “accuracy”.

The plan returned by the cache-reuse mechanism is “correct”, if the plan can be executed by the

DBMS query execution engine. For example, the plan cannot use an index scan for a predicate,

unless the predicate column is also in the index. Similarly, the plan should not use merge-join,

unless an index provides the order, or a descendant of the merge-join node first sorts to provide the

order. A plan is called “accurate”, if the total cost of the plan matches the optimal plan returned by

the optimizer. Since it is not always possible to identify fully accurate plans, we use the relative

difference between the costs of the optimal plan returned by the optimizer and the reused plan to

measure the accuracy.

Since our goal is to maintain accuracy, we must also consider the correctness of reusing a plan

p with some input configuration. the correctness ensures that the plan returned from the cache is

exactly as it would have been returned by the optimizer. For our example, reusing plan p1 for C2

will yield erroneous results if the subplan ip1 is not optimal for C2. In other words, before we

reuse plan p for some configuration c we must be in a position to prove that p is optimal for c and

this without invoking the optimizer! Focusing on correctness is the differentiating factor between

our approach and existing techniques based on “local plan modifications” [11, 12]. The latter do

not consider plan optimality and therefore only guarantee the computation of an upper bound for

query costs.

We now present a correctness proof, based on simple reasoning about optimizer operation.

Specifically, for the scenario of this section, we prove that there exists a single optimal subplan for

Q, regardless of the configuration C2, as long as the non-join column constraint of Section 3.2.1 is

satisfied. Since p1 is computed by the optimizer, it has to be the optimal plan and thus it can be

safely reused according to our reuse procedure.

We intuitively justify this argument by considering how the indexes in C2 affect the query plan

cost: Without the join column, there is no reason for C2 to “favor” a particular join order or join
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algorithm, other than those in p1. Since the indexes in C2 are not more “powerful” than those in

C1, there is no reason for p1 to stop being optimal. Notice that the non-join column restriction is

critical: if it is violated, the reuse procedure will yield incorrect results.

We formalize using the following theorem:

Theorem 3.2.1 For a query Q, there is a single optimal plan for all the configurations that do not

contain indexes on Q’s join attributes.

Proof We prove Theorem 3.2.1 by contradiction. Let plans p1 and p2 be optimal plans for con-

figurations C1 and C2 respectively and let p1, p2 differ in their internal nodes (different join order,

for instance). Let ip1 and ip2 be the internal subplans of p1, p2 and cip1 , cip2 their total costs, with

cip1 < cip2 .

We first show that the cost of accessing the indexes in C1 and C2 is independent of the internal

structure of the plan chosen. Since the join attributes are not indexed, any operator in ip1 and ip2

will access its corresponding index (or table) with an optional RID lookup. The cost of the scan

depends only on the columns of the index and the selectivities of relevant query predicates and is

the same regardless of the plan. Thus the index access costs for the indexes in C1 and C2 are the

same for plans p1 and p2.

Next, we show that the internal subplans ip1 and ip2 can be used with the indexes of both C1

and C2 (according to the reuse procedure) and that their costs will be the same: Since we assume

no join columns, there is no reason why ip1 cannot use the indexes in C2 and vice-versa. In

addition, since C1, C2 do not involve join orders, order-by, group-by, or differed materialization of

the columns, the only other way a data access operator can affect the internal subplan is through

the size and the cardinality of its output, which is the same regardless of the access method used.

Thus ip1 and ip2 can use the indexes in C1 and C2 interchangeably and the index access costs

and internal plan costs remain the same. Since cip1 < cip2 and the index access costs are the same,
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using ip1 for C2 is cheaper than using ip2, and thus p2 is not the optimal plan for C2, a contradiction.

Theorem 3.2.1 means that only a single call is sufficient to efficiently estimate Q′s cost for any

configuration, under the no-join column restriction. Our result can be generalized using the notion

of an interesting order:

Definition 3.2.1 An interesting order is a tuple ordering specified by the columns in a query’s join,

group-by or order-by clause [66].

Definition 3.2.2 An index covers an interesting order if it is sorted according to that interesting

order. A configuration covers an interesting order if it contains an index that covers that interesting

order.

Although we used a select-project-join query to derive Theorem 3.2.1, the same reasoning

could be applied to queries involving group-by, or order-by clauses. For a query with joins, group-

by or order-by clauses, only a single plan (and a single optimizer call!) is sufficient to estimate its

cost, for all the configurations that do not cover the query’s interesting orders.

Figure 3.3 (a) shows the cost estimation architecture for the restricted tuning session of this

section. For every query there is a setup phase, where the single optimal plan is obtained through an

optimizer call with a representative configuration. The representative configuration could contain

any set of indexes satisfying the non-join or non-interesting order column restrictions (we could

even use an empty configuration). The resulting internal subplan is saved in the INUM Space,

which is the set of optimal plans maintained by the INUM.

Whenever we need to evaluate the query cost for some input configuration C, we use the Index

Access Cost Estimation module to estimate the cost of accessing the indexes in C. The sum of the

index access costs for C is added to that of the internal subplan to obtain the final query cost.

We assume that the Index Access Cost Estimation module is implemented by interfacing to the

corresponding estimation modules of the optimizer. Computing only the individual index access
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costs is much faster than a full-blown optimizer call, and does not affect reuse efficiency. Assuming

additional optimizer interfaces does not limit INUM’s flexibility. There are other ways to obtain

index access costs, for instance through reverse-engineering the optimizer’s analytical cost models.

Our evaluation of the INUM with a commercial query optimizer uses pre-computed index access

costs, which are obtained by invoking the optimizer with simplified, “sample” queries.

3.2.3 INUM Overview

Unlike the scenario of Section 3.2.1, in a real index selection session the “no join column” restric-

tion is invalid, as we would typically consider indexes on join columns. The key difference with

the previous section is that the assumptions supporting Theorem 3.2.1 are not valid and thus there

might exist more than one optimal plan for a given query.

Caching Multiple Optimal Plans

Ignoring the applicability of multiple feasible plans (with different join orders and algorithms) as a

function of multiple index configurations results in inaccurate cost estimates. To see why, consider

the example query of Section 3.2.1 and assume a configuration C1 with indexes on T1.ID and T2.ID.

The optimal plan for C1 first joins T1 and T2 using a merge join and then joins the result with T3

using a hash join. Now assume a configuration C2, with indexes (other than T1.ID and T2.ID) on

T2 and T3. Now the merge join between T1, T2 is only feasible by inserting a sort operator on

T1. Existing approximation techniques [11, 12] will perform such insertions, ignoring the fact that

indexes on T2 and T3 may favor an alternative plan that joins T2 and T3 with a merge join, without

requiring additional sort operators.

To accommodate multiple optimal plans per query, we introduce the concept of the INUM
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Space, a set that contains, for each query, a number of alternative execution plans. Each plan

in the INUM Space is optimal for one or more possible input configurations. The INUM Space

is essentially a “cache”, containing plans that can be correctly reused to derive query costs. To

guarantee correctness, we require the two properties defined below.

Definition 3.2.3 The INUM Space for a query Q is a set of internal subplans such that:

1. Each subplan is derived from an optimal plan for some configuration.

2. The INUM Space contains all the subplans with the above property (i.e., derived from the

optimal plans).

According to Definition 3.2.3, the INUM Space will contain the optimal plan for any input

configuration. Reusing that optimal plan results in accurate cost estimates without invoking the

optimizer.

The key intuition of this chapter is that during the operation of an index design tool, the range

of different plans that could be output by the optimizer will be much smaller than the number of

configurations evaluated by the tool. In other words, we take advantage of the fact that an index

design tool might consider thousands of alternative configurations for a query, but the number

of different optimal plans for that query is much lower. For example, plans that construct huge

intermediate results will never be optimal, and thus are not included in the INUM Space.

In addition, the optimality of a plan does not change very easily by changing index configu-

rations, because it is determined by additional parameters such as intermediate result sizes. This

chapter shows that the degree of plan reuse is high enough to justify the initial effort in obtain-

ing the set of optimal plans by the huge number of optimizer calls that can be performed almost

instantly afterward.
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INUM formalizes the intuitive idea that if a plan is optimal for some configuration C1, it might

in fact remain optimal for a set of configurations that are “similar” to C1. Notice that, contrary to

previous techniques [11, 12], we use strict rules to determine the optimality of the reused plans,

in the form of a matching logic that efficiently assigns, for each configuration input to INUM, the

corresponding optimal plan.

System Architecture

Figure 3.3 (b) extends Figure 3.3 (a) with the modules required to implement the full INUM func-

tionality. INUM takes as input requests from an index selection tool consisting of a query and a

configuration for evaluation. The output is the optimal plan and cost for the query.

The INUM Space contains, for each query, the set of plans specified by Definition 3.2.3. The

Precomputation module populates the INUM Space at initialization time, by invoking the opti-

mizer in order to reveal the set of optimal plans that need to be cached per query. When invoking

the INUM, the Matching module first maps the input configuration to its corresponding optimal

plan and derives the query cost without going to the optimizer, simply by adding the cached cost

to the index access costs computed on-the-fly.

In the remainder of the chapter we develop the INUM in two steps. In the first step we exclude

from consideration query plans with nested-loop join operators, while allowing every other opera-

tor (including sort-merge and hash joins). We call such allowable plans MHJ plans. Section 3.2.6

extends our approach to include all join operators. Our two-step approach is necessary because

nested-loop join operators require special treatment.
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3.2.4 Using Cached MHJ Plans

We derive a formula for the query cost given an index configuration and use it to match an input

configuration to its corresponding optimal MHJ plan.

A Formula for Query Cost

Consider a query Q, an input configuration C containing indexes IT1 ..ITn for tables T1..Tn and an

MHJ plan p in the INUM Space, not necessarily optimal for C. The reuse procedure of Sec-

tion 3.2.2 describes how p is used with the indexes in C. Let cip be the sum of the costs of the

operators in the subplan ip and sTi be the index access cost for index ITi . The cost of a query Q

when using plan p is given by the following equation:

cp = cip +(sT1 + sT2 + ...+ sTn) (3.1)

Equation 3.1 expresses the cost of any plan p as a ’‘function” of the input configuration C.

It essentially distinguishes between the cost of the internal operators of a plan p (the internal-

subplan, not necessarily optimal) and the costs of accessing the indexes in C. This distinction is

key: An optimizer call spends most of its time computing the cip value. INUM essentially works

by correctly reusing cached cip values, which are then combined to sTi values computed on-the-fly.

The following conditions are necessary for the validity of Equation 3.1.

1. cip is independent of the sTi’s. If cip depends on some sTi , then Equation 3.1 is not linear.

2. The sTi’s must be independent of p. Otherwise, although the addition is still valid, Equa-

tion 3.1 is not a function of the sTi variables.

3. C must provide the orderings assumed by Plan p. If a plan expects a specific ordering (for

instance, to use with a merge join) but C does not contain an index to cover this ordering,

then it is incorrect to combine p with C.
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We can show that conditions (1) and (2) hold for MHJ plans through the same argument used

in the proof of Theorem 3.2.1. The indexes in C are always accessed in the same way regardless

of the plan’s internal structure2. Conversely, a plan’s internal operators will have the same costs

regardless of the access methods used (as long as condition (3) holds). Note that the last argument

does not mean that the selection of the optimal plan is independent of the access methods used.

Condition (3) is a constraint imposed for correctness. Equation 3.1 is invalid if plan p can not

use the indexes in C. We define the notion of compatibility as follows:

Definition 3.2.4 A plan is compatible with a configuration and vice-versa if plan p can use the

indexes in the configuration without requiring additional operators.

Assuming conditions (1)-(3) hold, Equation 3.1 computes query costs given a plan p and a

configuration C. Next, we use Equation 3.1 to efficiently identify the optimal plan for an input

configuration C and to efficiently populate the INUM Space.

Mapping Configurations to Optimal Plans

We examine two ways to determine which plan, among those stored in the INUM Space, is optimal

for a particular input configuration: An exhaustive algorithm and a technique based on identifying

a “region of optimality” for each plan.

Exhaustive Search Consider first the brute-force approach of finding the optimal plan for query

Q and configuration C. The exhaustive algorithm iterates over all the MHJ plans in the INUM

Space for Q that are compatible with C and uses Equation 3.1 to compute their costs. The result of

the exhaustive algorithm is the plan with the minimum cost.

2Note that, even if partitioning is required for the hash joins, the equation remains valid as the selectivity (therefore

the size of the data) remains constant during the physical design process
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Figure 3.4: The cost functions for MHJ plans form parallel hyper-surfaces. The unit in the both the

axes is the unit used by the optimizer to compare the costs of the plans. The slopes of the surfaces

are determined by Eq. 3.1 to be 1.

The problem with the above procedure is that Equation 3.1 computes the total cost of a query

plan p if all the indexes in C are used. If some indexes in C are too expensive to access (for example,

non-clustered indexes with low selectivity), the optimal plan is likely to be one that does not use

those expensive indexes. In other words, we also need to “simulate” the optimizer’s decision to

ignore an index. For this, the exhaustive algorithm needs to also search for the optimal plan for all

the configurations C′ ⊂C and return the one with the overall minimum cost. We call this iteration

over C’s subsets atomic subset enumeration.

If the INUM Space is constructed according to Definition 3.2.3, the exhaustive search with

atomic subset enumeration is guaranteed to return correct results, but has the disadvantage of

iterating over all the plans in the INUM Space and over all the subsets of C. In the next sections we

show how to avoid the performance problems of the exhaustive search by exploiting the properties

of Equation 3.1.
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Regions of Optimality Consider a query Q accessing 2 tables, T1 and T2, with attributes {ID,

a1, b1} and {ID, a2, b2}. Q joins T1 and T2 on ID and projects attribute a1 of the result.

Let C be a configuration with two indexes, IT1 and IT2 , on attributes {T1.ID, T1.a1, T1.b1} and

{T2.ID, T2.a2,T2.b2} respectively. Let p1 be a merge join plan that is the optimal MHJ plan for C.

We ignore the subset enumeration problem for this example, assuming that we have no reason not

to use IT1 and IT2 .

What happens if we change C to C1, by replacing IT1 with I′T1
: {ID, a1}? We can show that

plan p1 remains optimal and avoid a new optimizer call, using an argument similar to that of

Section 3.2.2. Assume that the optimal plan for C1 is p2 that uses a hash join. Since the index

access costs are the same for both plans, by Equation 3.1 the cip value for p2 must be lower than

that for p1 and therefore p1 cannot be optimal for C, which is a contradiction.

The intuition is that since both C and C1 are capable of “supporting” exactly the same plans

(both providing ordering on the ID columns), a plan p found to be optimal for C must be optimal

for C1 and any other configuration covering the same interesting orders. The set O of interesting

orders that is covered by both C and C1 is called the region of optimality for plan p. We formalize

the above with the following theorem.

Theorem 3.2.2 For every configuration C covering a given set of interesting orders O, there exists

a single optimal MHJ plan p such that p accesses all the indexes in C.3

Proof Let C(O) be a set of configurations covering the given interesting order O. Also, consider

the set P of all the MHJ plans that are compatible with the configurations in C(O).

For every configuration C in C(O) containing indexes on tables T1,...,Tn we can compute the

index access costs sT1 ,...,sTn independently of a specific plan. Conceptually, we map C to an n-

dimensional point (sT1,sT2, ...,sTn). The cost function cp for a plan p in P is a linear function of

3Note that, if a plan does not use one of the indexes, then it is covered by a different set of interesting orders.
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the sTi parameters and corresponds to a hypersurface in the (n+1)-dimensional space formed by the

index access cost vector and cp. To find the optimal plan for a configuration C, we need to find the

plan hypersurface that gives us the lowest cost value.

By the structure of Equation 3.1, all hypersurfaces are parallel, thus for every configuration in

C(O) there exists a single optimal plan.

Figure 3.4 shows the cost hypersurfaces for a merge and a hash join plan, joining tables T1

and T2. To avoid 2-dimensional diagrams, assume we fix the index built on T2 and only compute

the plan cost for the indexes on T1 that cover the same interesting order. The optimal plan for an

index IT1 corresponds to the hypersurface that first intersects the vertical line starting at the point

IT1 . Since the plan cost lines are parallel, the optimal plan is the same for all the indexes regardless

of their sTi values.

The INUM Space exploits Theorem 3.2.2 by storing for each plan its region of optimality.

INUM identifies the optimal plan for a configuration C by first computing the set of interesting

orders O covered by C. O is then used to find the corresponding plan in the INUM Space. By

Theorem 3.2.2 the retrieved plan will be the optimal plan that accesses all the indexes in C. As in

the case of the exhaustive algorithm, to obtain the globally optimal plan, the above procedure must

be repeated for every subset C′ of C.

Atomic Subset Enumeration To find the query cost for an input configuration C we need to

apply Theorem 3.2.2 for every subset of C and return the plan with the lowest cost. Enumerating

C’s subsets for n tables with an index for every table requires 2n iterations. Since each “evaluation”

corresponds to a fast lookup, the exponent does not hurt performance for reasonable n values. For

n = 5, subset enumeration requires merely 32 lookups.

The overhead of subset enumeration might be undesirable for queries accessing 10 or 20 tables.

For such cases we can avoid the enumeration by predicting when the optimizer will not use an index
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Figure 3.5: Modified plan comparison taking into account index I/O costs. The optimal plan for

expensive indexes (to the right of the thick line) performs a sequential scan and uses a hash join.

of the input configuration C, or equivalently use a specific subset C′. Given a set of interesting

orders, an index is not used only if it has an access cost that is too high. This can be proven by

contradiction, as there is no reason why an index which provides the same interesting order, and

has a higher access cost can be useful for a plan. If the index is not used for its interesting order,

it is considered in the “empty” interesting order subplans. By storing with each plan the ranges of

access costs for which it remains optimal, the INUM can immediately find the indexes that will

actually be used.

Figure 3.5 shows an example of how the plan curves of Figure 3.4 change to incorporate index

access costs. The hash join cost flattens after the index access cost exceeds the table scan cost

(there is no need to access that index for a hash join plan). The hash join is optimal for indexes in

the region to the right of the intersection point between the merge and hash join lines.
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3.2.5 Computing the INUM Space

Theorem 3.2.2 in Section 3.2.4 suggests a straightforward way for computing the INUM Space.

Let query Q reference tables T1, ...,Tn and let Oi be the set of interesting orders for table Ti. We

also include the “don’t care” interesting order in Oi, to account for the indexes on Ti that do not

cover an interesting order.

The set O = O1×O2× ...×On contains all the possible combinations of interesting orders that

a configuration can cover. By Theorem 3.2.2, for every member of O there exists a single optimal

MHJ plan. Thus, to compute the INUM Space it is sufficient to invoke the optimizer once for each

member o of O, using some representative configuration. The resulting internal subplan is suffi-

cient, according to Theorem 3.2.2, for computing the query cost for any configuration that covers

o. In order to obtain MHJ plans, the optimizer must be invoked with appropriate hints to pre-

vent consideration of nested-loop join algorithms. Hints have the additional benefit of simplifying

optimizer operation, because fewer plans need to be considered.

The precomputation phase requires fewer optimizer calls compared to optimizer-based tools,

as the latter deal with different combinations of indexes, even if the combinations cover the same

interesting orders. The number of MHJ plans in the INUM Space for a query accessing n tables

is |O1| × |O2| × ...× |On|. Consider a query joining n tables on the same id attribute. There are

2 possible interesting orders per table, the id order and the empty order that accounts for the rest

of the indexes. In this case the size of the INUM Space is 2n. For n = 5, 32 optimizer calls are

sufficient for estimating the query cost for any configuration without further optimizer invocation.

For larger n, for instance for queries joining 10 or 20 tables, precomputation becomes expen-

sive, as more than a thousand optimizer calls are required to fully compute the INUM Space. Large

queries are a problem for optimizer-based tools as well, unless specific measures are taken to ar-

tificially restrict the number of atomic configurations examined [19]. Fortunately, there are ways

to optimize the performance of INUM construction, so that it still outperforms optimizer-based
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approaches. The main idea is to evaluate only a subset of O without sacrificing precision. We

propose two ways to optimize precomputation, lazy evaluation and cost-based evaluation.

Lazy evaluation constructs the INUM Space incrementally, in sync with the index design tool.

Since the popular greedy search approach selects one index at a time, there is no need to consider

all the possible combinations of interesting orders for a query up-front. The only way that the full

INUM Space is needed is for the tool to evaluate an atomic configuration containing n indexes

covering various interesting orders. Existing tools avoid a large number of optimizer calls by not

generating atomic configurations of size more than k, where k is some small number (according to

[19] setting k = 2 is sufficient). With small-sized atomic configurations, the number of calls that

INUM needs is a lot smaller.

Cost-based evaluation is based on the observation that not all tables have the same contribution

to the query cost. In the common case, most of the cost is due to accessing and joining a few ex-

pensive tables. We apply this idea by “ignoring” interesting orders that are unlikely to significantly

affect query cost. For a configuration covering an “ignored” order, the INUM will simply return

a plan that will not take advantage of that order and thus have a slightly higher cost. Notice that

only the cip parameter of Equation (3.1) is affected, and not the sTi’s. If an index on an “ignored”

order has a significant I/O benefit (if for example, it is a covering index) the I/O improvement will

still correctly be reflected in the cost value returned by the INUM. Cost-based evaluation is very

effective in TPC-H style queries, where it is important to capture efficient plans for joining the fact

table with one or two large dimension tables, while the joining of smaller tables is not as important.

3.2.6 Extending the INUM

In this section we consider plans containing at least one nested-loop join operator in addition to

merge or hash join operators. We call such plans NLJ plans. We explain why plans containing

nested-loop joins require additional modeling effort, and present ways to incorporate NLJ plans in
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Figure 3.6: NLJ plan costs for a single table as a function of an index’s sNL parameter (System R

optimizer).

the INUM.

Modeling NLJ Plans

The cost of an NLJ plan cannot be described by Equation (3.1) of Section 3.2.4. Therefore we can

no longer take advantage of the linearity properties of Equation (3.1) for determining the plans that

must be stored in the INUM Space and characterizing their regions of optimality.

We present an example based on System R’s query optimizer [66] to illustrate the special

properties of NLJ plans. Note that we do not rely or use System R’s cost model in our system.

The techniques in this section are not dependent on particular cost models, rather they capture the

general behavior of NLJ plans. The System R example in this section is for illustration purposes

only.

For System R the cost of a plan using index nested-loop join is expressed by cout +N× cin,

where cout is the cost of the outer input, cin is the cost of accessing the inner relation through index

41



I and N is the number of qualifying outer tuples.

cin is given by cin = F × (Pages(I)+Card(T ))+W ×RSI, where F is the selectivity of the

relevant index expressions, Pages(I) is the index size and Card(T ) is the number of tuples in the

table. W and RSI account for the CPU costs. It is easy to see that N and RSI are not independent

of the plan, since both are determined by the number of qualifying outer tuples.

We define the nested loop access cost sNL as sNL = F × (Pages(I)+Card(T )) and set W = 0

for simplicity. The nested-loop cost becomes: cp = cout +N× sNL.

Figure 3.6 shows the cost of different plans as a function of the nested-loop access cost for a

single table. The difference with Figure 3.4 is that the hypersurfaces describing the plan costs are

no longer parallel. Therefore for indexes covering the same set of interesting orders, there can be

more than one optimal plan. In Figure 3.6, plan p2 gets better than p1 as the sNL value increases,

because it performs fewer index lookups. (lower N value and lower slope).

The System R optimizer example highlights two problems posed by the NLJ operator. First, it

is more difficult to find the entire set of optimal plans, because a single optimizer call per interesting

order combination is no longer sufficient. For the example of Figure 3.6, finding all the optimal

plans requires at least two calls, using indexes with high and low sNL values. A third call might also

be necessary to ensure there is no other optimal plan for some index with an intermediate sNL value.

The second problem is that defining regions of optimality for each plan is not as straightforward.

The optimality of an NLJ plan is now predicated on the sNL values of the indexes, in addition to

the interesting orders they cover.

In modern query optimizers, the cost of a nested-loop join operator is computed by more com-

plicated cost models compared to System R. Such models might require more parameters for an

index (as opposed to the sNL values used for System R) and might have plan hypersurfaces with

a non-linear shape. Determining the set of optimal plans and their regions of optimality requires

exact knowledge of the cost models and potentially the use of non-linear parametric query opti-
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Figure 3.7: NLJ plan cost curves for a single table and an unknown cost function of a single index

parameter sI .

mization techniques [38]. In this chapter we are interested in developing a general solution that is

as accurate as possible without making any assumptions about optimizer internals. The develop-

ment of optimizer-specific models is an interesting area for future research.

Extending INUM with NLJ Plans

In this section we develop general methods for populating the INUM Space with NLJ plans in

addition to MHJ plans, and for determining the overall optimal plan given an input configuration.

We begin with the problem of obtaining a set of optimal NLJ plans from the optimizer. We

assume that each index is modeled by a single index parameter sI (like the sNL parameter in Sec-

tion 3.2.6) that relates to the index’s properties but we do not have access to the precise definition

of sI . The formula relating the sI parameters to the plan costs is also unknown. Let Imin and Imax be

two indexes having minimum and maximum sI values respectively. We also assume that the plan’s

cost function is monotonically increasing, thus every plan has a minimum cost value for the most
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“efficient” index Imin and maximum cost for Imax.

We present our approach using a simple example with a single table and a single interesting

order. Figure 3.7 shows the plan costs for two different NLJ plans, as a function of a single index

parameter sI . Even without precise knowledge of the cost functions, we can retrieve at least two

plans. Invoking the optimizer with Imin returns plan p1, while Imax returns plan p2. There is no

way without additional information to identify intermediate plans, but p1 and p2 are a reasonable

approximation.

Identifying the Imin, Imax indexes for a query is easy: Imin provides the lowest possible cost

when accessed through a nested-loop join, thus we set it to be a covering index 4. Using the same

reasoning, we set Imax to be the index containing no attributes other than the join columns.

Performing 2 calls, one for Imin and for Imax will reveal at least one optimal NLJ plan. There

are two possible outcomes.

1. At least one call returns an NLJ plan. There might be more plans for indexes in-between

Imax and Imin. To reveal them we need more calls, with additional indexes. Finding those

intermediate plans requires additional information on optimizer operation.

2. Both calls return an MHJ plan. If neither Imin nor Imax facilitates an NLJ plan, then no other

index covering the same interesting order can facilitate an NLJ plan. In this case, the results

of the previous sections on MHJ plans are directly applicable: By Theorem 3.2.2, the two

calls will return the same MHJ plan.

For queries accessing more than one table, INUM first considers all interesting order subsets,

just like the case with MHJ plans. For a given interesting order subset, there exists an Imin and

an Imax index per interesting order. The INUM performs an optimizer call for every Imin and Imax

4There exist cases where Imin is a non-covering index, but in this case the difference in costs must be small.

Generally, the covering index is a good approximation for Imin.

44



combination. This procedure results in more optimizer calls compared to the MHJ case, which

required only a single call per interesting order combination. Multiple calls are necessary because

every individual combination of Imin and Imax indexes could theoretically generate a different opti-

mal plan.

We reduce the number of optimizer calls during NLJ plan enumeration by caching only a

single NLJ plan and ignoring the rest. Instead of performing multiple calls for every Imin, Imax

combination, INUM invokes the optimizer only once, using only the Imin indexes. If the call

returns an NLJ plan, then it gets cached. If not, then INUM assumes that no other NLJ plans exist.

The motivation for this heuristic is that a single NLJ plan with a lower cost than the corresponding

MHJ plan is sufficient to prevent INUM from overestimating query costs. If such a lower NLJ plan

exists, invoking the optimizer using the most efficient indexes (Imin) is very likely to reveal it.

Selecting the optimal plan for an input configuration when the INUM Space contains both

MHJ and NLJ plans is simple. The optimal MHJ plan is computed as before (Section 3.2.4). If the

INUM Space also contains an NLJ plan, the index access costs can be computed by the optimizer

separately (just like for an MHJ plan) and added to the cached NLJ plan cost. INUM compares the

NLJ and MHJ plans and returns the one with the lowest cost.

Modeling Update Statements

The INUM can readily be extended to estimate the cost of update statements (SQL INSERT, UP-

DATE and DELETE). An update can be modeled as two sub-statements: The “select” part is the

query identifying the rows to be modified, and the “modify” part is the actual data update. The

former is just another query and can be readily modeled by the INUM. The cost of the latter de-

pends on factors such as the number of updated rows, the row size and the number of structures

(indexes, materialized views) that must be maintained. Similarly to the individual index access

costs, obtaining the cost of an update operation is simply a matter of interfacing to the relevant
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optimizer cost modules and involves a simple, inexpensive computation.

Note that from a cost estimation perspective, handling updates is simple. The impact of up-

dates on the design algorithms themselves and on their solution quality is an extremely interesting

research topic, but beyond the scope of this chapter, that focuses only on cost estimation.

Handling Parameterized Queries

Often the query is provided to the optimizer with several values replaced by parameters. The

optimizer optimizes the parameterized query by observing the distribution of the selectivity and

finding a “robust” plan that behaves uniformly for all parameter values. Since the optimization

process settles on a unique plan, INUM is able to use the plan as the basis to build the subplans.

Therefore, presence of parameterized queries do not require special handling in INUM.

Extending to Partitions and Materialized Views

The above technique can be used to extend the algorithm for any design feature on which indexes

can be built. The partitions and the materialized views are these type of features. INUM enables

fast computation of the index reuse, but the plans corresponding to the other design features can

be reused as well. We validate this claim by extending INUM in the presence of only partitions in

chapter 5.

3.2.7 Experimental Setup

We implemented INUM using Java (JDK1.4.0) and interfaced our code to the optimizer of a com-

mercial DBMS, which we will call System1. Our implementation demonstrates the feasibility of

our approach in the context of a real commercial optimizer and workloads, and allows us to com-

pare directly with existing index selection tools. To evaluate the benefits of INUM, we built on top
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Figure 3.8: Experimental results for TPCH15. (a) Optimizer calls vs. time for an exhaustive

candidate set (b) Recommendation quality (c) Optimizer calls vs. time for a heuristic candidate set
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of it a very simple index selection tool, called eINUM. eINUM is essentially an enumerator, taking

as input a set of candidate indexes and performing a simple greedy search, similar to the one used

in [19].

We chose not to implement any candidate pruning heuristics, because one of our goals is to

demonstrate that the high scalability offered by INUM can deal with large candidate sets that have

not been pruned in any way. We “feed” eINUM with two different sets of candidate indexes. The

exhaustive candidate set is generated by building an index on every possible subset of attributes

referenced in the workload. From each subset, we generate multiple indexes, each having a differ-

ent attribute as prefix. This algorithm generates a set of indexes on all possible attribute subsets,

and with every possible attribute as key.

The second candidate set, the heuristic, emulates the behavior of existing index selection tools

with separate candidate selection modules. We obtain heuristic candidates by running commercial

tools and observing all the indexes they examine through tracing. The purpose of the heuristic can-

didate set is to approximate how INUM would perform if integrated with existing index selection

algorithms.

Besides the automated physical design tool shipping with System1, we compare eINUM with

the design tool of a second commercial DBMS, System2. We were unable to port eINUM to

System2 because it does not allow us to use index hints. Since we never actually ran eINUM

with System2’s query optimizer, we cannot report on a direct comparison, but we include System2

results for completeness. Integrating INUM with more commercial and open source database

management systems is part of our ongoing work.

We experiment with two datasets. The 1GB version of the TPC-H benchmark 5 and the NREF

5We chose a relatively small version for TPC-H to speed-up administrative tasks such as building statistics and

“real” indexes to validate our results. Dataset size affects the numerical values returned by the cost models but not the

accuracy and speed of the INUM.

48



protein database described in [24]. The NREF database consists of 6 tables and consumes 1.5

GBs of disk space. For TPC-H, we used a workload consisting of 15 out of the 22 queries, which

we call TPCH15. We were forced to omit certain queries due to limitations in our parser, but our

sample preserves the complexity of the full workload. The NREF workload consists of 235 queries

involving joins between 2 and 3 tables, nested queries, and aggregation.

We use a dual-Xeon 3.0GHz server with 4 gigabytes of RAM running Windows Server 2003

(64bit). We report both tuning running times and recommendation quality, which is computed

using optimizer estimates. Improvements are computed by:

%improvement = 1− costindexed
costnot indexed

.

3.2.8 Experimental Results

In this section we demonstrate the superior performance and recommendation quality of eINUM

compared to System1 and System2 for our TPCH15 and NREF workloads.

TPCH15 Results

Exhaustive Tuning Performance We provided eINUM with an exhaustive candidate set for

TPCH15 consisting of 117000 indexes. For the exhaustive experiment, we ran all the tools without

specifying a storage constraint. Figure 3.8 (a) shows the number of cost estimation calls performed

by the 3 systems, and the time it took to complete them. The data for the two commercial systems

come from traces of database activity. The horizontal axis corresponds to the time during which

optimization is performed: for each point in the horizontal axis, the vertical axis of the graph

shows the number of estimation calls up to that point in time. The graph focuses only on the

tuning time spent during cost estimation, and not the overall execution time, which includes the

algorithm itself, virtual index construction, and other overheads. Query cost estimation dominates
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the execution time for all cases, so we discuss this first. We report on the additional overheads

(including the time to construct the INUM model) later.

According to Figure 3.8 (a), eINUM performs the equivalent of 31 million optimizer (per query)

invocations within 12065 seconds (about 3.5 hours), or equivalently, 0.3ms per call. Although such

a high number of optimizer invocations might seem excessive for such a small workload, INUM’s

ability to support millions of evaluations within a few hours will be invaluable for larger problems.

Compare eINUM’s throughput with that of the state-of-the-art optimizer-based approaches (no-

tice that the graph is in logarithmic scale). System1 examines 188 candidates in total and performs

178 calls over 220 seconds, at an average of 1.2s per call. System2 is even more conservative,

examining 31 candidates and performing 91 calls over 7 seconds at 77ms per call. System2 is

faster because it does not use the optimizer during enumeration. However, as we see in the next

paragraph, it provides lower quality recommendations. Another way to appreciate the results is

the following: If we had interrupted eINUM after 220 seconds of optimization time (the total

optimization time of System1, it would have already performed about 2 million evaluations!

The construction of the INUM took 1243s, or about 21 minutes, spent in performing 1358

“real” optimizer calls. The number of actual optimizer calls is very small compared to the millions

of INUM cost evaluations performed during tuning. Also, note that this number corresponds to

an experiment with a huge candidate set. As we show later, we can “compress” the time spent in

INUM construction for smaller problems. System1 required 246 seconds of total tuning time: For

System1, optimization time accounted for 92% of the total tool running time. System2 needed 3

seconds of additional computation time, for a total of 10 seconds. The optimization time was 70%

of the total tuning time.

Exhaustive Tuning Quality Figure 3.8 (b) shows the recommendation quality for the three sys-

tems under varying storage constraints, where eINUM used the exhaustive candidate set. The
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percentage improvements are computed over the unindexed database (with only clustered indexes

on the primary keys). The last data point for each graph corresponds to a session with no storage

constraint. INUM’s recommendations have 8%-34% lower cost compared to those of System1.

System2’s unconstrained result was approximately 900MB, so we could not collect any data

points beyond this limit. To obtain the quality results shown in Figure 3.8 (b), we implemented

System2 recommendations in System1 and used System1’s optimizer to derive query costs. The

results obtained by this method are only indicative, since System2 is at a disadvantage: It never

had the chance to look at cost estimates from System1 during tuning. It performs slightly worse

than System1 (and is 37% worse than eINUM but the situation is reversed when we implement

System1’s recommendation in System2 (we omit those results). The only safe conclusion to draw

from System2 is that it fails to take advantage of additional index storage space.

We attribute the superior quality of eINUM’s recommendations to its larger candidate set. De-

spite the fact that eINUM is extremely simple algorithmically, it considers candidates that combine

high improvements with low storage costs, because they are useful for multiple queries. Those

indexes are missed by the commercial tools, due to their restricted candidate set.

Heuristic Enumeration In this section we demonstrate that using INUM in combination with

existing index selection algorithms can result in huge savings in tuning time without losing quality.

We use eINUM without a storage constraint, and we provide it with a candidate index set consisting

of 188 candidate indexes considered by System1. System1 was configured exactly the same way as

in the previous session.

Figure 3.8 (c) shows the timing results for eINUM compared with System1, in a logarithmic

plot. eINUM performs more query cost estimation calls (7440, compared to 178), yet cost estima-

tion requires only 1.4 seconds, compared to the 220 seconds for System1. For a fair comparison,

we must also take into account the time to compute the INUM Space. With lazy precomputa-
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tion (Section 3.2.5), INUM construction took 180.6 seconds. Overall, eINUM took 182 seconds,

compared to 246 seconds for System1. Note that eINUM does not implement any of the atomic

configuration optimizations proposed in the literature for optimizer-based tools [19]. Incorporating

additional optimizations would have reduced the precomputation overhead, since it would allow a

further reduction in the number of optimizer calls.

The quality reached by the two algorithms was the same, which makes sense given that they

consider exactly the same candidates.

INUM Accuracy INUM’s estimates do not exactly match the query optimizer’s output. Even

the optimizer itself, due to various implementation details, such as variations in statistics, provides

slightly different cost values if called for the same query and the same configurations. These slight

differences exist between the plans saved by the INUM and the ones dynamically computed by the

optimizer.

We measure the discrepancy E between the optimizer estimate for the entire workload cost copt

and the INUM estimate cINUM by E = 1− cINUM/copt . We compute E at the end of every pass

performed by eINUM over the entire candidate set and we verify that the INUM cost estimate for

the solution computed up to that point agrees with the “‘real” optimizer estimate. We never found

E to be higher than 10%, with an average value of 7%.

We argue that a 10% error in our estimate is negligible, compared to the scalability benefits

offered by the INUM. Besides, existing optimizer-based tools that use atomic configuration opti-

mizations [19] or the benefit assignment method for the knapsack formulation [33] already trade

accuracy for efficiency.
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Figure 3.9: Optimizer calls vs. time for the NREF workload

NREF Results

In this section, we present our results from applying eINUM with an exhaustive candidate index set

on the NREF workload. NREF is different from TPCH15 in that it contains more queries (235) that

are simpler in terms of the number of attributes they access: Each query accesses 2 to 3 columns

per table.

Figure 3.9 compares eINUM and System1 in terms of the time spent in query cost estimation.

eINUM performed 1.2M “calls”, that took 180s (0.2ms per call). System1 performed 952 optimizer

calls that took 2700s (or 2.9s per call). INUM construction took 494s (without any performance

optimizations whatsoever), while the total time for System1 was 2800s. Interestingly, searching

over the exhaustive candidate set with eINUM was about 6 times faster compared to System1,

despite the latter’s candidate pruning heuristics. We also compare the recommendation quality

for various storage constraints, and find that eINUM and System1 produce identical results. This

happens because NREF is easier to index: Both tools converge to similar configurations (with

single or two-column indexes) that are optimal for the majority of the queries.
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3.3 Speeding up INUM

Although caching allows for three to four orders of magnitude more configurations to be evaluated

and offers higher-quality solutions when compared to the no-caching approach, cache construction

costs limit the scalability of INUM. This overhead limits the applicability of INUM’s cost model to

online workloads, where the caches need to be constructed in the order of milliseconds per query.

Lowering the cache construction overhead also helps for offline designers, where the indexable

structures such as materialized views and partitions are created dynamically, since a new cache

must be built for every query using those structures.

We now look deeply into the plan-caching approach and discover that much of the information

generated during the optimization process, if exported to the designer, can drastically reduce the

related overhead. Indeed, while evaluating each configuration, the optimizer creates and evaluates

several intermediate plans, some of which already constitute the answer to subsequent optimizer

calls. If instead of caching only the final plan we also cache the intermediate plans, several of the

subsequent calls to the optimizer can be suppressed, minimizing the related overhead. Further-

more, the technique does not significantly compromise the technique’s portability and indepen-

dence, as most optimizers follow a similar evaluation process.

To demonstrate and evaluate the technique we used the dynamic programming-based optimiza-

tion process of the PostgreSQL open-source DBMS query optimizer. Using INUM as the caching

mechanism, we implemented PINUM, an index usage modeling technique for PostgreSQL. We

obtained intermediate plan evaluations piggy-backed to the answer to each what-if question. We

chose PostgreSQL because of its relatively mature query optimizer. We first implemented what-if

indexes, then port INUM’s cache model to enable scalable candidate space search. By adding a

small set of query optimizer hooks, we experimentally found that the additional information re-

duces INUM’s cache-building costs by a factor of 5 to 10. We then integrated the cache-based

query cost estimation with a simple index selection tool to suggest indexes that speed up simple
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Figure 3.10: The PostgreSQL optimizer’s architecture

analytical queries by factor of 10.

The rest of the section is organized as follows: We provide the necessary background Post-

greSQL query optimizer in Section 3.3.1. Section 3.3.2 analyses the inefficiencies in the current

approach, and Section 3.3.3 discusses PINUM’s extensions and their implementation on the query

optimizer. We discuss the experimental results using PINUM in Section 3.3.4.

3.3.1 The PostgreSQL Query Optimizer

In this section, we describe the query optimizer in detail and later we discuss the components we

change to implement PINUM on top of PostgreSQL [7].

Figure 3.10 shows the very high level architecture of the query optimizer. Given a query the

workflow in the components is as follows: The Query Preprocessor statically analyses the query

and identifies the opportunities to optimize it using rewriting. Then the Sub-query Planner opti-
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mizes each sub-query that cannot be merged into the top-level query individually. In this step, it

identifies the sub-queries and invokes the next component on each of them.

The Grouping Planner isolates the grouping and ordering columns. It also identifies the in-

teresting orders for the query. The Access Path Collector component iterates over the tables in

the from clause, and finds the costs of accessing those using operations such as table scans, index

scans, or seeks. It looks up the statistics of the table as well as indexes from the Catalog schema

and estimates the costs of accessing them. It also attempts to reduce the complexity of next com-

ponents by eliminating inefficient access paths. If two indexes cover the same interesting order,

then this component filters out the access path with the higher cost. This filtering process pro-

vides the best access path for each interesting order, therefore preserving the potential of using the

interesting order in subsequent steps.

The Join Planner component implements a dynamic programming algorithm to identify the join

methods and join orders. Given a query joining n relations, the join planner’s dynamic program

consists of n-1 levels. In the first level, optimal join methods are determined for every two pairs of

relations. Every subsequent level adds one more relation to the join of the previous level and finds

the optimal plan for the join. The plan is a tree of operations with the internal nodes of the tree

determining the joining method, and the leaves represent the access paths on indexes and tables.

The plan also stores the interesting order it covers. The top level provides a set of optimal plans

with different interesting order combinations.

On the return path, the grouping planner adds the grouping constructs such as group-by, order-

by, distinct etc. to the plans. If the grouping can be done using one of the interesting orders

covered by the plan then the plan is forwarded as such, otherwise sort steps are added to provide

the required ordering. The sub-query planner then combines all sub-query paths into one path.

Finally, it returns the plan to the caller.
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3.3.2 Harnessing Intermediate Plans

In this section we describe our intuition behind harnessing information from the intermediate plans

created by the optimizer towards saving future what-if questions. To illustrate the points, we

analyse the INUM plan cache when evaluating TPC-H queries; consider, for instance, the 5th

query in the TPC-H benchmark. The query joins 6 tables in the benchmark, and groups and orders

the results. Since the join, group-by, and order-by clauses contribute to the interesting orders,

and the interesting orders add up combinatorially, the query has 648 possible interesting order

combinations.

INUM needs to query the optimizer 648 times to fully build the cache; if we carefully parse

the plans, however, we find only 64 unique plans in the cache; 90% of the optimizer calls and

the cached plans are therefore redundant! Furthermore, even the optimizer call to evaluate a use-

ful interesting order combination finds plans for other interesting orders and discards them before

reporting the optimal plan. For example, if the optimizer is invoked with an index set covering

the interesting order combination (A,B,C), then the optimizer finds many of the plans providing

interesting order combinations (A,φ,φ), (φ,B,φ) etc. It prunes the plan providing (φ,B,φ), only if

it costs more than a plan providing a more specific interesting order combination, such as (A,B,?).

All non-pruned plans are collected during join optimization, only to be discarded at the final opti-

mization level before reporting the optimal plan.

We can make the INUM cache construction much more efficient by collecting the discarded

plans along with their interesting order information. Once a set of plans is collected we determine

the next best interesting order combination to send for optimization and greedily fill the entire

cache. If we have access to the optimizer code, however, we can do even better: by omitting the

pruning process mentioned above, a single call to the optimizer returns the optimal paths for all

possible interesting order combinations. (If we use INUM we need to request separate plans for

when nested-loop joins are disabled, so we need to make two calls.) To be fair, we do introduce a
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(potentially significant memory) overhead, as the optimizer builds 648 plans and transfers them to

the client. Section 3.3.3 describes a pruning technique to reduce this overhead and output only the

64 useful plans.

3.3.3 Design And Implementation

We first modify the PostgreSQL optimizer to provide the APIs that INUM’s cache requires, such

as what-if indexes, and optional disabling of nested-loop joins. It then tweaks the optimizer to

speed up the cache construction. Finally, it integrates the cache with a simple index selection tool

to automatically suggest indexes.

What-If Indexes

To determine the optimal plans in the presence of an index, the query optimizer uses two types of

statistical information - the size of the index, and histograms of the columns in the index. Since the

histogram information is associated with the table, we do not replicate or modify them. To compute

size, we use the average attribute size, the total number of rows, and the attribute alignments to find

the number of leaf pages required to store the index. We ignore the internal pages of the B-Tree

index, since they affect the relative page sizes only on very small indexes.

Porting INUM to PostgreSQL

As Section 3.2.3 describes, INUM needs the index access costs from the optimizer, along with

the optimal plans for each interesting order combination. Since INUM considers the plans with

nested-loop joins separately, the optimizer also needs to provide a way to disable nested-loop joins.

To disable the nested-loop joins, we use the global parameter ”enable nestloop” in the DBMS.

Originally, this parameter adds a very high overhead to the nested loop joins, thus discouraging its
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use. Since PINUM requires the nested-loops to be completely absent from the suggested plans, we

tweak the join planner to remove nested-loop operations if this flag is set. Getting the access cost

is the simpler of the two problems. Naively, the optimizer can be queried with a single index per

each table in the query, and the access cost can be determined by parsing the generated plan. This

process is relatively inefficient, since it re-optimizes the entire query to find the access cost for a

small set of indexes. What follows is a discussion on how to speed up this process.

Speeding up Access Cost Lookups

To speed up index access cost lookups, we modify the access path collector module in the opti-

mizer. Given a large set of what-if indexes, the access path collector finds the access paths for all

those indexes and keeps only the least expensive index access path for each interesting order. We

modify the module to keep all index access paths, instead of the least expensive one. This allows

PINUM to determine the access costs of a large set of indexes by calling the optimizer just once.

Speeding up the Cache Construction

INUM caches two optimal plans for each interesting order combination, one with nested loop joins

and one without (i.e. containing only hash and merge joins). To find these plans, it first enumerates

all combinations of the interesting orders and invokes the optimizer for each one of them with after

creating indexes covering those interesting orders. Instead of using ad-hoc pruning, we reduce

the overhead by observing that the join planner keeps at least one path for each interesting order

combination. It keeps them with the hope of using the interesting order in a merge join or in

the grouping planner. Therefore, if the optimizer is invoked with all possible interesting orders,

then the join planner maintains the optimal plans for every useful interesting order combination

until the last level. Instead of replicating INUM’s plan set inside the optimizer, we prune away

unhelpful interesting order combinations by using the following condition: If plans A and B provide
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interesting orders in set SA and SB, where SA ⊂ SB and Cost(SA)<Cost(SB), then we remove Plan

B.

In other words, if a plan requiring smaller interesting order set is more efficient than a plan

requiring large interesting order, then the inefficient plan can be safely removed. This pruning

process reduces the search space of the join planner, while preserving all useful plans. This process

is looks similar to the order reduction mechanism proposed by Simmen et al. [67]. The difference,

however, is that we try to keep the maximum number of interesting orders instead of eliminating

them to use the least number of indexes.

Query Preprocessor

Subquery Planner

Grouping Planner

Access Path 

Collector

Join Planner

Query

Catalog

Plan
Plan
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What-If 

Indexes

Plan
PlanAccess 

Costs

Figure 3.11: The modified query optimizer architecture. The dotted and dashed lines represent the

new data flow induced by PINUM’s access cost and cache construction optimizations.

Figure 3.11 shows the architecture of the query optimizer after the modifications for what-if

indexes, fast access cost lookup and fast cache construction are added. As the figure shows, the

changes to the optimizer components are minimal and require modifying only three files in the

optimizer codebase.
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3.3.4 Experimental Results

This section demonstrates the accuracy of PINUM’s cost model, and its performance advantage

over INUM’s model construction. It also shows the benefit of using PINUM on a synthetic star-

schema workload.

Experimental Setup

We implemented PINUM on PostgreSQL 8.3.7 on the Windows platform. The implementation

in its existing form does not address queries containing complex sub-queries, inheritance, and

outer joins. Therefore to investigate the performance and quality of the implementation, we use

a synthetic benchmark to study the behavior of the physical designer in the presence of varying

query complexity.

The synthetic workload consists of a 10GB star-schema database, with one large fact table, and

28 smaller dimension tables. The dimension tables themselves have other dimension tables and so

on. We select a 10GB database for this experiment to build realistically sized dimension tables after

the 1st level. The columns in the tables are numeric and uniformly distributed across all positive

integers. We use 10 queries, each joining a subset of tables using foreign keys. Other than the join

clauses, they contain randomly generated select columns, WHERE clauses with 1% selectivity, and

ORDER-BY clauses. In this experiment, PINUM generates and searches through 1093 candidate

indexes. It identifies 43 useful plans for a total of 266 interesting order combinations.

Although the current limitations in our implementation prevent us from using full-blown TPC-

H queries, we design the synthetic benchmark to preserve all possible complexity and challenge to

our method. The workload consists of a star-schema workload, a well-accepted design for analyti-

cal queries. It also favors nested-loop joins more than sort-merge and hash joins. As INUM is less

accurate when nested-loop joins are used, our benchmark is more challenging when compared to
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TPC-H in the context of a cache-based cost model.

What-If Index Accuracy

Initially, we use the query optimizer to compute the cost of a query when the indexes are explicitly

implemented in the database. Then we evaluate the cost of the same query by simulating the pres-

ence of the same indexes using what-if indexes in the optimizer. We repeat the same experiment

50 times for different set of indexes. This experiment shows that the query cost estimation does

not exactly match with the optimizer’s cost: the error in the cost estimation was on average 0.33%

and the highest observed error was 1.05%. The difference in the estimated cost and the actual cost

is a result of the way we compute the number of pages for the indexes. We compute only the sizes

of the leaf pages and we do not take into consideration the internal pages of the B-tree index, since

they affect the relative page sizes only on very small indexes.

Cost Estimation Accuracy

To study the accuracy of PINUM’s cost model, we generate 1000 random atomic configurations

for each query in the workload. We then compare the cost of the queries using PINUM’s cost

model and using what-if indexes on the optimizer. Out of ten queries, six had less than 1% error

in cost estimation. Three queries had about a 4% error, and only one query had a 9% error in

cost estimation. This demonstrates PINUM’s cache-based cost model provides higher accuracy

compared to INUM’s cache-based cost model which has a 7% error on average. For the single

poorly performing query, PINUM returns accurate plans. The errors in cost estimation stems

from our access cost generation mechanism, as it misses several access paths generated in the join

planner. In the future, we intend to investigate the addition of these access paths to improve the

model’s accuracy.
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Performance Results
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Figure 3.12: Comparison of cache construction times. Note that the time taken to build the PINUM

plan cache is close to zero for each query.

Figure 3.12 demonstrates the efficiency of PINUM while filling the plan cache and collecting

the index access costs from the optimizer. The x-axis shows the queries, and the y-axis shows

the time taken to construct the plans for different interesting order combinations and index access

costs.

PINUM is typically at least one order of magnitude faster than INUM for cache construction,

and 5 times faster for finding the index access costs. PINUM takes a few tens of milliseconds

to build the cache for each query, compared to a few seconds required by INUM. Moreover, for

queries involving more than three tables in the join clause, PINUM is two orders of magnitude

faster than INUM, so PINUM is better suited for complex queries and can scale to a much higher

number of queries in the workload. A more intelligent pruning of the unhelpful indexes can speed

up the index access cost lookup. We are currently implementing the aforementioned strategies.
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Results for the Index Selection Tool
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Figure 3.13: Workload performance improvement by using the index selection tool.

Figure 3.13 demonstrates the benefit of running the prototypical index selection tool (eINUM)

discussed in Section 3.2.7. We ran the tool using the 10 queries in the workload, and restricted the

tool to require 5GBs of space on disk for the suggested indexes. We report the original running

times of each of the queries and new running times with the suggested indexes.

Using PINUM’s suggested indexes speeds up the workload by 95% on average. PINUM re-

duces the cost of the most expensive queries by building covering indexes for them. It suggests

four covering indexes on the fact table, and three non-covering indexes on the next level dimension

tables.

Although we use a synthetic benchmark in the current form of the implementation, the experi-

mental results are indicative of the potential of the index suggestion tool on a real-world workload,

and as this benchmark is challenging for INUM, we expect even better performance when using

TPC-H.
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3.4 Applications of INUM’s Cost Model

INUM’s cost model has the obvious application for index selection problem, as we discuss in

this chapter and the next. Other than index selection, the model can be used to identify other

interesting properties of the indexes, such as their correlation. Finding the correlations between

indexes allows the DBA to determine how to materialize a set of indexes, so that they provide the

maximum benefit during their materialization. In another instance, the correlation allows the DBA

to remove indexes which negatively correlate with each other. In this section we describe how the

correlation is computed and how to speed it up using INUM’s cost model.

3.4.1 Computing Index Interactions

Definition 3.4.1 For any pair of structures Si and S j we define the symmetric correlation coeffi-

cient vi j ≡ v ji that represents the combined usage of Si and S j in executed query plans.

Requirements from the Correlation Coefficient

Proposition 3.4.1 The correlation coefficient vi j should satisfy the following requirements:

R1 vi j is negative if Si can replace S j, positive if they collaborate, and approximately zero if they

are used independent of each other in query plans.

R2 vi j can be normalized for any pair of Si and S j.

R3 vi j is easy to compute.

Justification 1 R1: We justify by example.

Example 3.4.1 In a workload with only one query, Q = select A from T where B = ’b’

and C = ’c’ , the columns B and C should have positive correlation, while the indexes IA−D =
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T (A,B,C,D) and IA−E = T (A,B,C,D,E) should have negative correlation, and an irrelevant to

the query index T (E,F) should have zero correlation . It is straightforward that the pricing scheme

requires these properties from the correlation coefficients V .

R2: Without normalization, the correlations will be skewed towards the heavy queries, and the

correlations on the light queries will be minimal.

R3: It is necessary to compute all correlation coefficients V . Materialization and selection of

the structures is performed for each query execution. Therefore, the correlation coefficients must

be computed efficiently and scalably.

With respect to these requirements, we discuss a recently proposed correlation measure and its

limitations. Then we propose a new measure that satisfies all the requirements.

Limitations of the Existing Approaches

Recently Schnaitter et al. proposed a technique that computes the correlation between indexes [64].

This section lists the limitations of this approach.

Given a set of indexes I ⊆ S and two indexes from the set, {Si,S j}, their correlation coefficient

vq
i j given a query q, is:

vq
i j = max

X⊆I,{Si,S j}\X

coq(X)− coq(Xi)− coq(X j)

coq(Xi j)
+1 (3.2)

Where, coq is a function that gives the cost of q given a set of indexes. The set X is a subset

of I that does not contain the two indexes Si and S j. Moreover, Xi ≡ X ∪{Si}, X j ≡ X ∪{S j}, and

Xi j ≡ X ∪{Si,S j}. The above measure finds the maximum benefit that an index gives compared to

another index for a given query and any subset of the set, normalized by the total cost of the query
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using both indexes. Since the query cost is monotonic, it is necessary that coq(X) > coq(Xi) >

coq(Xi j), coq(X)> coq(X j)> coq(Xi j).

Measure 3.2 does not satisfy the requirement R1: for indexes that can replace each other the

correlation is not negative. Since coq(X)> coq(Xi)≈ coq(X j)≈ coq(Xi j), the measure is positive

when the indexes are similar. It does not satisfy R2 too: the produced values do not range in a

bounded domain, therefore it is hard to perform normalization. Finally, it does not satisfy R3:

determining the coefficient requires exponentially large number of expensive optimizer calls even

for a small I.

Structure Correlation Measure

We propose correlation measures that overcomes the limitations of the above technique. For in-

dexes, we propose the measure:

vq
i j =

coq({Si})+ coq({S j})−2 · coq({Si,S j})
coq({})−min{a,b} coq({a,b})

−1 (3.3)

Measure 3.3 identifies the individual benefits that the indexes Si and S j provide, and normalizes

their sum w.r.t. the maximum benefit achievable by any pair of indexes {a,b}.

Proposition 3.4.2 Measure 3.3 satisfies the requirements R1−R3.

Justification 2 R1: We show that R1 is satisfied by proving its satisfaction for the extreme cases

of structure collaboration and competition. Case 1: If Si and S j do not co-exist in query plans,

then let us assume that Si is very beneficial to a query q, hence coq(Xi)→ 0 and S j has no effect

on it, hence coq(X j)→ coq({}). Since the cost function is monotonic [64], coq(Xi j) = coq(Xi) =

min{a,b} coq({a,b})→ 0. Hence, vi j → 0. Case 2: If Si and S j collaborate tightly in the extreme

case, coq(Xi) = coq(X j)→ coq({}), but coq(Xi j)→ 0. Then, vi j → 1. Case 3: If the indexes are

the same, then coq(X j) = coq(Xi) = coq(Xi j), implying that vi j =−1.
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R2: Since the cases discussed above are extreme, all structure correlation cases fall between them

and, therefore their value is bounded by [−1,1].

R3: Using INUM we can ensure efficient computation of the correlation coefficients.

For columns, we propose the following measure:

vq
i j =


1 if Si 6= S j and both used in q

−1 if Si = S j and used in q

0 otherwise

(3.4)

If two distinct columns appear in the same query, then they collaborate, otherwise they do not.

Self-correlation for a column is set to -1, as a column can replace itself.

For a pair of index S j and column Si, we use the following measure:

vq
i j =


1 if S j /∈ Si& both can be used in q

−1 if S j ∈ Si& both can be used in q

0 otherwise

(3.5)

The index and the column correlate if the index does not contain the column, and both are

useful to the query. If the index contains the column then the column is redundant in presence of

the index, therefore, they compete. Finally, if the above conditions are not satisfied, then they do

not collaborate, therefore the coefficient is 0.

So far, we discussed correlation of structures w.r.t. a specific query. We extend the correlation

computation for a workload. If vq
i j is the correlation of Si and S j for query q, then the coefficient

for an entire workload is:

vi j =
∑vq

i jcoq({})
∑coq({})

(3.6)

Measure 3.6 normalizes the coefficients by using the maximum cost of the query. This allows

the “heavy” queries to provide more weight to the correlation coefficient, when compared to the

“lighter” queries.
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As the section shows computing the query cost, given an index is the most expensive task for the

index interaction computation. Using INUM reduces this overhead by three orders of magnitude.

3.5 Related Work

They key elements of modern automated database design tools are introduced in [1, 19, 33]. They

strongly advocate the tight integration of database design algorithms and the query optimizer, in

order to ensure that the recommended designs do in fact reflect the “true” (at least, as perceived by

the system) query costs. The INUM, presented in this chapter, addresses the downside of relying

on query optimization: its large computational overhead and the aggressive heuristics required to

minimize it.

[20] shows that index selection is a computationally hard problem and thus efficient exact

solutions do not exist. Design tools utilize some variation of a greedy search procedure to find a

design that satisfies resource constraints and is locally-optimal. An example is the

greedy(m, k) heuristic introduced of [1, 19]. Another approach uses a knapsack formulation [33]

that greedily selects candidates based on their benefit to storage cost ratio. The knapsack-based

approach is extended by [20], where a linear programming technique is used for accurate weight

assignment. [54] applies similar greedy heuristics, along with a genetic programming algorithm,

to the design problem of table partitioning in a parallel SQL database.

The Index Merging [18] work extends the basic design framework with more sophisticated

techniques for performing candidate selection through merging candidate indexes. More recent

work [11] suggest combining candidate selection with the actual search, so that the partial search

results can be used to generate more useful candidates through various transformations. Both stud-

ies highlight the importance of effective candidate selection algorithms, that do not omit “poten-

tially interesting” design candidates. The INUM improves any algorithm for candidate selection
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(and the subsequent search) by allowing large candidate spaces to be constructed and traversed

efficiently.

Modern database design tools support additional design features such as materialized views

[1, 75], table partitions [3] and multidimensional clustering [75]. Having multiple object types

increases the complexity of design algorithms, because combining design features generates very

large joint search spaces. INUM can be extended to handle physical design features other than

indexes and we expect its performance benefits to be even more pronounced when dealing with

larger search spaces.

The work on Parametric Query Optimization (PQO) for linear, piece-wise linear and non-linear

functions [37, 38] studies the change in the optimal plan for a query under changing numerical pa-

rameters, such as predicate selectivities. The INUM has the same goal, only that now the changing

parameter is the underlying physical design, which cannot be captured solely by numerical values.

The PQO framework, however, is invaluable in dealing with complex optimizer cost functions,

especially the non-linear ones described in Section 3.2.6.

[55] presents an empirical study of the plan space generated by commercial query optimizers,

again under varying selectivities. Their results suggest that while the space of optimal plans deter-

mined by the optimizer for a query might be very large, it can be substituted by another containing

a smaller number of “core” plans without much loss in quality, an observation very similar to our

own (See Section 3.2.3). [30] presents a technique to avoid unnecessary optimizer calls, by shar-

ing the same plan for multiple similar queries. They define query similarity based on a number of

query features (such as query structure and predicates).
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3.6 Conclusion

Index selection algorithms are built around the query optimizer, however the query optimization

complexity limits their scalability. We introduced INUM, a framework that solves the problem

of expensive optimizer calls by caching and efficiently reusing a small number of key optimizer

calls. INUM provides accurate cost estimates during the index selection process, without requiring

further optimizer invocations. We evaluated INUM in the context of a real commercial query

optimizer and showed that INUM improves enumeration performance by orders of magnitude. In

addition, we demonstrated that being able to evaluate a larger number of candidate indexes through

INUM improves recommendation quality. Although this chapter focused on a greedy algorithm to

suggest the indexes, the simplicity of INUM’s cost model allows it be used it more sophisticated

index selection algorithms. In the next chapter, we discuss one such algorithm that takes full

advantage of the INUM’s cost model.
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Chapter 4

Offline Physical Design

4.1 Introduction

Automated physical design is a major challenge in building self-tuning database management sys-

tems. The complexity of physical design emanates from the requirement of searching through a

potentially huge space containing many design features, such as indexes, partitions, and material-

ized views. To make matters worse, each design feature interacts with other features to add a new

dimension to the search space. Furthermore, in the real world, the search algorithm needs to satisfy

several user-specified constraints, such as requiring the solutions to occupy less than a certain disk

budget or requiring low maintenance cost or a limited number of features per table.

Existing commercial physical design tools provide suggestions in a reasonable time by heuris-

tically pruning the solution space, and ignoring the interactions between the design features. This,

however, prevents them from satisfying two important requirements: predictability and generality.

Since the physical design problem is NP-Hard [20], finding the exact optimal solution may require

exponential time for any reasonably sized program. Therefore, the selection tool must predict the

quality of the solution, i.e., the distance of the proposed solution from the optimal, allowing the
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DBA to accept the non-optimal solution in exchange for efficiency. By using simple regression,

the DBA can even estimate the execution time required to arrive at a solution of certain quality.

This ability to predict the quality of the solution also helps detect infeasible constraints set by the

DBA. Therefore, predicting the quality of the solution is an essential requirement in the presence

of a complex workload and constraints. Existing approaches lack this quality, since they prune the

search space heuristically, thus limiting their knowledge of the solution quality with respect to the

globally optimal solution.

Similarly, physical design tools need to handle a multitude of real-life constraints. The tool

must be generic enough to handle new constraint types without a complete rewrite from the ground

up. Since the pruning mechanism of greedy algorithms needs to be redesigned to address new

constraint types, the proposed greedy algorithms are not general.

In the area of Operations Research, combinatorial optimization problem (COP) formulations

and the algorithms for their solutions have been used for efficiently and scalably solving prob-

lems in which the underlying features interact with each other. They also provide feedback on the

distance of the solution from the optimal, thereby allowing the user to terminate the optimization

process upon reaching a certain quality guarantee. Unlike the greedy algorithms, COP solvers

are generic–they solve a multitude of new constraint types without changing the code. The use-

fulness of this approach, however, depends on the “convexity” (Chapter 2) property of the COP

formulation. If the COP formulation does not satisfy this crucial property, the solvers cannot use

polynomial algorithms to solve the convex sub-problems and gradually arrive at the globally opti-

mal solution.

Modeling the physical design problem as a COP is not straightforward because of the convexity

requirement. The state-of-the-art formulations for database physical design achieve the convexity

property by enumerating all possible combinations of the candidate indexes, making it impossi-

ble to scale without heavy pruning. Any pruning before the actual search process reduces the
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predictability and efficiency, as the solver can predict and find solutions only within the pruned

sub-space. The efficiency is also affected, since before pruning away a feature combination, one

needs to evaluate its benefits.

Our Approach and Contributions: In this chapter, we discuss a COP-based tool called Co-

Phy(Combinatorial Optimization for Physical Design), which does not prune the search space

heuristically, thus allowing it to provide quality guarantees. CoPhy uses a novel COP formulation

to scale the problem size linearly with the candidate features. It then solves the problem efficiently

using mature techniques such as Lagrangian relaxation. In this chapter, we focus on indexes as the

design features, since they are the most commonly used by the DBAs and preserve the difficulty

of the complete physical design problem.

The intellectual contribution of the chapter is: there exists a compact convex COP formulation

for the physical design problem, thereby making the problem amenable to the sophisticated and

mature combinatorial optimization solvers.

From the point of view of system design, the chapter contributes: An efficient and scalable

solver for the COP, which combines the existing state-of-the-art techniques from the combinatorial

optimization area to achieve its performance goals. It also allows DBAs to reduce the execution

time at the expense of the quality of the expected solution. For example, by allowing a 1% differ-

ence from the optimal solution, it reduces the solver’s execution time by an order of magnitude.

Demonstrates the design of a portable physical designer. The system achieves its portability by

using only very thin layer of interaction between the optimizer and the physical designer. Our

experimental results demonstrate the system’s superior performance on two different commercial

DBMSs.

Organization: The rest of the chapter is organized as follows: We discuss the related work in

Section 4.2. Section 4.3 builds the COP for plan selection on a workload, and Section 4.4 adds

constraints to the COP. Section 4.8 details the architecture of CoPhy and the optimization methods.
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We discuss our experimental results in Section 4.9, and finally conclude in Section 4.10.

4.2 Related Work

Existing commercial techniques use greedy pruning algorithms to suggest a physical design [2, 33],

and use the optimizer directly, thereby reducing their efficiency and predictability (as the optimizer

is a black-box). Caprara et al. were the first to propose a COP approach to the index-selection

problem, by modeling it as an extension of the facility-location problem (FLP) [15], enabling it to

exhaustively search the features, instead of greedily searching them. Their formulation, however,

assumes that a query can use only a single index. Papadomanolakis et al. extended their formu-

lation to account for queries using more than one index and also model index update costs [51].

Kormilitsin et al. propose lagrangian relaxation techniques to solve the FLP formulation [43].

Heeren et al. describe an approximation solution based on randomized rounding, assuming a sin-

gle index per query[35]. Their solution has optimal performance but requires a bounded amount of

additional storage. Zohreh et al. extend the FLP formulation to use materialized views, and then

provide heuristics to find the optimal physical design in an OLAP setting [71]. Their algorithm is

tuned towards materializing data-cube views and small number of indexes on them. Our approach

scales to an index set two orders of magnitude larger than those reported in their work. Since

these techniques use the FLP formulation, they use heuristic pruning to reduce the problem size to

practical level, a limitation we avoid by proposing a new problem formulation.

4.3 Index Selection COP

Formulating the index selection problem to a COP allows us to use sophisticated combinatorial

optimizers. We first describe the index selection process without any constraints, and then use it to
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add complex constraints on it.

4.3.1 Index Selection for a Query

Plan selection and index selection are mutually complementary processes, as selecting the optimal

plans involve selecting the optimal indexes and visa versa. To find the COP for plan and index

selection, consider a query Q with O possible interesting order combinations. For each interesting

order combination, INUM caches multiple plans. Let Pop be the pth plan cached for the oth inter-

esting order. The plan can be used only if the atomic configuration covers the plan’s interesting

order combination. Let indexes I1, · · · , It cover these interesting orders on tables T1, · · · ,Tt . Using

the first observation of INUM, the cost for Pop is:

Cost(Pop) = IC(Pop)+
t

∑
i=1

AC(Ii) (4.1)

The internal cost function IC(Pop) represents the cost of join and aggregation etc., AC(Ii) is the

access cost function that determines the cost of accessing an index Ii.

The plan cost is the minimum cost using indexes that cover the interesting orders on the table,

hence:

Cost(Pop) = min
αi

(IC(Pop)+
t

∑
i=1

∑
Ii∈CI(Pop,Ti)

αiAC(Ii)) (4.2)

such that: ∑
Ii∈CI(Pop,Ti)

αi = 1, αi ∈ {0,1}∀i (4.3)

The covering-index function CI(Pop,Ti) finds the set of indexes that cover the interesting order

required by Pop on table Ti. The variable αi is a binary indicator associated with index Ii. If αi = 1,

then the index Ii is used in the plan. Constraints in Eq. 4.3 ensure that only one index is used in

the query plan for each table. CoPhy models the table scans as “empty” index scans, therefore,

the equation does not consider table scans as special cases. This is a convex program, since the

objective and the constraints are linear.
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The cost of the query is the minimum cost of all the plans in cached for the query. Therefore,

the cost of the query Qq can be found as:

Cost(Qq) = min
op

Cost(Pop) (4.4)

Here each instance of the minimization problem Cost(Pop) has an independent set of con-

straints. Hence, to find the minimum cost, we iterate over all plans Pop for the query and minimize

Cost(Oop).

4.3.2 Index Selection for a Workload

While index selection for a workload looks similar to index selection for a query. Using the same

formulation can lead to errors in the presence of constraints. The reason is that for a single query

the plans are independent of each other, i.e., there can be only one optimal plan selected. In a

workload, however, each query has a plan, and the costs have to be minimized simultaneously,

requiring a new formulation.

For a workload W , Eqs. 4.2 and 4.3 can be extended in a straightforward manner to select

plans for each query in the workload.

Cost(W ) = minimize ∑
Qq∈W

Cost(Qq) (4.5)

= min
αiq

∑
Qq∈W

(argmin
αiq

IC(Popq)+

t

∑
i=1

∑
Ii∈CI(Popq,Ti)

αiqAC(Ii)) (4.6)

such that: ∑
Ii∈CI(Popq,Ti)

αiq = 1 αiq ∈ {0,1}∀i (4.7)

The plan Popq is the pth plan cached for the oth interesting order for query Qq. The indicator

variable αi is changed to αiq; otherwise selecting an index for use in one query forces it to be used
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in all other queries. Since minimizing over another set of minimizations is not a convex function,

this program is not a convex program. To convert it to a convex program, we introduce a new

indicator variable popq which is set to 1 if the plan Popq is selected for query Qq. Since the second

term in the query cost does not change in the equations hence forth, it is denoted by the term CLopq

for improved readability.

CLopq =
t

∑
i=1

∑
Ii∈CI(Pop,Ti)

αiqAC(Ii) (4.8)

Cost(W ) = min
αiq,popq

∑
Qq∈W

popq(IC(Popq)+CLopq)) (4.9)

such that: ∑
p

popq = 1 and popq ∈ {0,1}∀o, p,q (4.10)

The minimization, along with the constraints, convert the plan selection problem for a workload

into a special form of convex program called a “quadratic program”, because the objective function

becomes a quadratic function involving variables popq and αiq. Although quadratic programs can

be solved efficiently in polynomial time, we improve efficiency by converting them to a linear

program, thereby removing the quadratic term popqαiq. This is achieved by adding constraints as

follows:

argmin
αiq,popq

∑
Qq∈W

(
popq IC(Popq)+CLopq

)
(4.11)

such that: ∑
Ii∈CI(Pop,Ti)

αiq = popq ∀Ti (4.12)

Eq. 4.12 ensures that the plan Popq is selected for query Qq only if at least one index covering

the interesting order requirement for each table has αiq set to 1. Eqs. 4.11 and 4.12 form a linear

program that selects plans for the entire workload and the indexes required for those plans.

Summarizing, Eq.4.11 defines the objective function for the index selection problem of a work-

load, and Eqs. 4.7, 4.10, and 4.12 define the constraints. Analyzing the size of this problem, ob-

serve that for a workload of |Q| queries and |P| cached plans, if there are |I| indexes in the candidate
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set, then the size of the generated program is O((|Q|×|I|)+ |P|). For a typical workload |P|<< |I|

(as discussed in last chapter), since the number of columns used in the workload is much larger

than the interesting orders. Also, |Q| << |I|, since every query can contribute to large number of

indexes. Therefore, the program size grows linearly with |I|. If |P| is large for a workload, CoPhy

uses approximation techniques [51] to reduce the cache size with small and bounded sacrifice in

INUM’s accuracy.

4.4 Adding Constraints

Without constraints, the plan selection and index selection problems are relatively straightforward.

The problem, however, becomes much harder when the DBA requires the tool to satisfy some

constraints upon the selected indexes. Traditionally, the index storage space has been the only

constraint for the index selection tools. We discuss the index size constraints in this section, and

provide a more complete discussion on adding other types of constraints to the COP formulation

in Section 4.5.

The size constraint (or the index storage space constraint) ensures that the final size of the

indexes does not exceed a threshold M, or similar conditions based on the index sizes. To translate

these constraints, a condition on the indicator variables αiq is not sufficient, since the same index

can be used in multiple queries. Solely using these variables causes the problem formulation to

double-count the index size.

Therefore, we derive a new variable αi which indicates the presence of the index in any of

the query plans. The αi variable is the logical-Or of all the individual αiq variables for all i. The

logical-Or operation is translated by adding the following constraint to the generated program:

αiq ≤ αi ∀i,q αi ∈ {0,1} ∀i (4.13)

To prove that these constraints actually work, we show that if an index Ii is used in any query
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Qq, then the αi variable is set to 1. Since αiq = 1, and αi > αiq, the constraint αi ∈ {0,1} forces αi

to be 1.

The size constraint is represented by using the new variable αi as:

∑
i

αisize(Ii)≤M (4.14)

Sometimes DBAs also specify constraints on the update cost of the indexes. We model this

situation by adding the update cost to the objective of the optimization algorithm. Let µi be the

update cost for the index Ii, then we add the following term to the objective in Eq.4.11.

∑
i

µiαi (4.15)

4.5 Adding More Constraints

Recently Bruno et al. propose a language to specify constraints [14]. In this section, we demon-

strate the generality of formulating the physical design problem into COP by translating Bruno et

al.’s sophisticated constraints into the COP formulation. All constraints introduced in this section

are linear in nature, hence do not violate the convexity of the COP. We group the constraints into

four categories: index constraints, configuration constraints, generators, and soft constraints, and

describe their translations.

4.5.1 Index Constraints

The DBA may restrict the selection of the indexes by specifying conditions on the size of the index,

the columns appearing in the index, or the number of columns appearing in indexes. Hence, we

sub-group these constraints into three categories: column constraints, index width constraints, and

index size constraints.
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Index Count Constraint: The DBA may restrict the number of indexes that needs to be selected

for a given table. Reducing the number of indexes in a table reduces their management overhead.

Let Ti is the table on which we restrict the number of indexes to N, and the function Indexes(Ti)

represents the set of indexes on this table. Then the following constraint in our COP represents the

constraint that the DBA wants to introduce:

∑
I∈Indexes(Ti)

αi ≤ N (4.16)

Column Constraint: This group of constraints specifies the presence or absence of a column in

the solution set. For example, one column constraint requires that at least one index built on a

table Tt contains a column Cc. This condition can be translated to COP by adding the following

constraint to the program for every such column:

∑
contains(Cc)

αiq ≥ 1 (4.17)

Reusing the notation from Eq. 4.6, we denote an index Ii being used in a query Qq as the binary

variable αiq. The function contains(Cc) finds the set of indexes which contain the column Cc.

There can be many variations of this constraint, such as: only the first column of the indexes is Cc,

or the index has a set of columns etc. All these variations are translated by changing the function

contains(Cc).

Index Width Constraint: This group of constraints limits the index search space by the number

of the columns they contain. The translation of these constraints is similar to the previous one, as

shown below:

αiqwidth(Ii)≥ N (4.18)

Where, N is the limit on the number of columns for an index, and width(Ii) determines the width

of the index Ii.
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4.5.2 Configuration Constraints

Although the DBA can specify any constraint on the configuration space, typically she constrains

only the final configuration or the result configuration by limiting the costs of the queries using it.

For example, the DBA may want to make sure that the final configuration speeds up all queries in

the workload by at least 25% compared to the initial configuration. We translate such constraints

into our COP by reusing the cost for the query in Eq. 4.2 and adding the following constraint to

our COP:

Cost(Qq)≤ 0.5 InitialCost(Qq) (4.19)

The function InitialCost(Qq) represents the cost of the query before running the index selection

tool.

4.5.3 Generators

Generators allow the DBA to specify constraints for each query, index, or table, without specifically

mentioning them. It is equivalent to for-loops in regular programming languages. For example, if

the DBA wants to restrict the final query cost, she specifies the following constraint:

FOR Qq IN W

ASSERT Cost(Qq)≤ 0.5 InitialCost(Qq)

The syntax of the constraint is self-explanatory. This constraint is translated by adding constraints

shown in Eq. 4.19 for each query in the workload. The generator can also contain Filters to limit

the scope of the constraints. For example, the following constraint limits the number of columns

for indexes only when they contain the column C3.

For All Ii WHERE Contains(Ii,C3)

ASSERT NumCols(Ii)≤ 4
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The “WHERE” condition filters the indexes using a boolean condition. NumCols(Ii) determines

the number of columns in Ii and Contains(Ii,C3) determines that the index Ii contains the column

C3. This filter is translated by generating the constraints in Eq. 4.17 and 4.18.

The constraint language also supports aggregates, such as SUM, COUNT etc. If the aggrega-

tion does not violate the convexity of the constraints, then they are added to the list of constraints

generated by the program. Many of the common aggregations such as SUM, COUNT do not

violate the convexity property and can be translated in this manner.

4.5.4 Soft Constraints

The constraints discussed so far are termed as hard constraints. The final solution proposed by

the design tool has to satisfy all hard constraints. Sometimes the DBA may want to specify a soft

constraint, which should be satisfied to the extent possible, if not completely. The description of

the soft constraints is similar to that of an objective function, hence, we convert these conditions

into objectives in our COP.

For example, the following constraint requires that the solver should try to achieve the lowest

possible cost for the workload, but a solution is still valid even when the cost is not 0. The “SOFT”

keyword indicates constraints which can be violated by the solver. SOFT ASSERT Sum(Cost(Qq)) = 0

In COP, we add the following objective for the constraint:

min ∑Cost(Qq) (4.20)

With multiple soft constraints, the optimization program becomes an instance of a multi-objective

optimization [10] program. In multi-objective optimization, the solver does not search for one

optimal point; rather, a set of points in the solution space which are un-dominated. A solution

is called un-dominated, if no other point exists in the solution space for which every objective is

smaller. The set of such points are called “pareto-optimal” or “sky-line” points.
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When all objectives are convex, the pareto-optimal solution can be determined by using the

“scalarization” method [10]: if the solver desires to optimize a vector O1,O2, · · · ,On of objectives

together, it creates a vector λ1,λ2, ...,λn with λi > 0. Using these constants the solver optimizes

the following problem:

min λ1O1 +λ2O2 + ...+λnOn

Since we assume each Oi to be convex, the scalarized-objective also remains convex. Hence, the

complexity of solving the problem does not change, in presence of soft constraints. By varying the

values of λi, the solver finds the pareto-optimal surface of the solutions and the DBA can decide

on the optimal point on the surface.

4.5.5 Extending the Constraint Language

So far, we have discussed how to translate the state-of-the-art constraint language into solvable

combinatorial optimization programs. It is possible to translate even more difficult constraints into

COP, for example, the DBA can add a constraint to restrict the index selection so that the first

columns in two indexes on a table are not the same. The existing language does not allow such

constraints, and it is difficult to implement such constraints in a greedy constraint solver, since

selection of one index depends on the presence or absence of another. This type of sophisticated

constraints is translated and solved in CoPhy by adding the following constraint:

1 = ∑
IsFirstCol(Cc)

αi ∀Cc ∈ Tt (4.21)

The function IsFirstCol(Cc) finds all indexes which have Cc as the first column.
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4.6 Workload as a Sequence

So far the workload we have considered was a set of queries. Therefore the solution is also a

set of indexes. All of the indexes should be created at the same time to achieve the performance

suggested by the design advisor. There are many instances for which converting the workload to a

sequence of queries can benefit the performance of the database.

For example, let us consider a scenario, in which long-running reporting queries run at midnight

on a large warehouse. During the daytime, most of the queries are ad hoc, very selective queries.

Let us also assume that the updates are random and occur throughout the day. Ideally, the long-

running queries will need covering indexes to perform in the most efficient way, and the selective

daytime queries can use single-column queries.

In a set-based workload, the automatic designer will probably select a relatively thin set of

indexes that keep the maintenance cost low and only partially speed up the long-running queries at

midnight. In a sequence workload, the designer can keep “thin” indexes, with only small number of

attributes, during the day and build “fat” indexes at night before running the long-running queries.

To avoid the maintenance cost of the fat indexes, one can disable/remove them during the daytime.

Therefore, extending the workload model to include sequencing information is useful, compared

to keeping them as sets.

In this section, we discuss how to extend the COP to include sequence information, and then

solving it to compare the benefit we can get by using the COP.

4.6.1 Problem Definition

We formulate the sequence over time by breaking the workload W into a sequence of s discrete

steps. Each step of the sequence contains a set of queries Si. The queries from the set Si+1 always

run after the queries in the set Si. Inside the set Si, there is no given order of running the queries.
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The task of the advisor is to suggest indexes for each step of the sequence. The advisor needs

to consider the cost of building the indexes. For simplicity, it is assumed that cost of dropping

the index is zero. This assumption is violated for the clustered indexes, but modeling the cost

of building a clustered index is beyond the scope of this thesis, therefore we focus only on the

non-clustered indexes.

For simplicity of discussion, we assume that the only constraint for the designer is the index

size constraint.

4.6.2 The COP for Sequences

We relax the sequence information by allowing multiple queries to be present at each step in the

sequence. Let step i in the workload contain query set Si. Reusing the notations from Section 4.3:

minimize
s

∑
t=1

Cost(St)+
|I|

∑
i=1

αitBi(t) (4.22)

Subject To: (4.23)

αit−αi(t−1) = 1 =⇒ Bi(t) = BuildCost(Ii) (4.24)

αit ∈ {0,1}∀i, t Bi(t)≥ 0∀i, t (4.25)

Here, BuildCost(Ii) represents the cost of building the index Ii. Cost(St) is the cost of the

queries running at step t, and αit represents the presence of the index Ii at the time step t.

The equations try to minimize the total cost of the workload which is the total query costs, plus

the cost of building any indexes. Constraint 4.24 ensures that the cost to build the index is factored

in if the index was not present in the earlier step. This is a logical constraint, instead of a linear

one. To convert it into a linear constraint, we replace it with the following one:
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Cost(Ibuild)−Bi(t)+M(αit−αi(t−1)−1)<= 0 (4.26)

Here M is a really large value. If αit −αi(t−1)− 1 < 0, then the expression on the LHS is a

large negative number, therefore Bi(t) can be made 0 without violating the constraint. Since the

objective is to minimize, the value will be set to zero always. If αit −αi(t−1)− 1 = 0, then Bi(t)

has to be at least Cost(Ibuild). Since αit are binary variables, other possibilities do not exist.

To estimate BuildCost(Ii), we approximate the cost of building the index to sorting the columns

and storing them back on disk. Hence,

BuildCost(Ii) = SortCost(Ii)+StoreCost(Ii)

If an index Ii is defined as T (A,B), then we estimate the cost of reading the table data and

sorting by asking the optimizer cost of the following query:

QIi = select A,B from T order by A,B

There is no generic way to find the cost of storing a set of pages from the optimizer. Storing the

data back, however, is a simple operation and the cost should be directly proportional to the number

of pages stored. Therefore, we run experiments on the database for different page sizes, and then

regress the data to find the linear coefficients of that regression. Putting everything together, if a,

and b are the coefficients of the storing cost equation:

BuildCost(Ii) =Cost(QIi)+a×PageCount(Ii)+b

Solving the program gives us various values of αits. If αit −αi(t−1) = 0, then we do not take

any action. If αit −αi(t−1) = −1, then we drop the index, else we build the index at that time

step. Note, that we assume that the indexes will be built before the arrival of the queries in the
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next step. We can generalize the COP formulation to add more constraints on indexes to be built

between the steps.

This is a special case for the online-algorithms, and we show the implementation and detailed

experimental results for this formulation in Chapter 5.

4.7 Using C-PQO as Cost Model

So far in this chapter, we use INUM as the cost model for the COP. While INUM is open and

flexible, it is slower and has more error than the cost model provided by C-PQO. C-PQO has

full access to the optimizer, and can provide the exact cost returned by the optimizer, instead of

providing 1-2% error, as in the case of INUM.

In this section, we describe how to build the cost model using C-PQO as the cost model. We

first give the overview of C-PQO, and then convert the C-PQO model into a INUM-like linear

model. The model can then be used to build a COP, just like the one we have described.

From a very high level, C-PQO builds a “super-plan” for each query in the workload. The

super-plan is the union of all possible optimal plans for the query. For example, consider a very

simple query Q:select sum(A) from T where B = ’value’. Figure 4.1 shows the

plan super-plan generated by C-PQO.

AGGREGATION

MIN

Table Scan
Index Scan

Figure 4.1: Example of the C-PQO plan for the

query Q.

AGGREGATION AGGREGATION

MIN

TABLE SCAN
INDEX SCAN

Figure 4.2: Example of the INUM plan for the

query Q
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Figure 4.2 shows the corresponding plans in INUM’s cache. Note that the “Min” node on the

top is an assumed minimum condition, since we do not put the condition explicitly in the cache.

As the figure shows, the super-plan from C-PQO can be easily converted into the set of plans of

INUM by traversing the C-PQO plan in post order and pushing the Min-nodes up to the root of

the tree. At each point of pushing the Min-node, the converter needs to remember the imposed

conditions on each side. For example, in Figure 4.1, the converter remembers that the RHS of the

Min-node requires an index to be viable. These conditions then get translated to the function CI in

Section 4.3’s Equation 4.2. Thus, instead of returning just the covering indexes for the interesting

orders, the function returns all the valid indexes for the plan in question.

Once the C-PQO plan is converted to the INUM’s set of plans, the COP can be directly applied

to it and solved efficiently as discussed before. Therefore the COP is generic enough to solve other

fast cost models. In fact, as long as the underlying optimization form is convex, the COP can be

used to solve such problems. Many classes of problems fall into this category, most importantly

dynamic programming optimizers. Since, most of the modern query optimizers use the dynamic

programming as the basis, the COP can be ported to them easily.

4.8 CoPhy System Design

In this section, we discuss the complete architecture for the index selection tool - CoPhy, including

the process of selecting candidate indexes and techniques to solve the COP developed in the earlier

sections.

Figure 4.3 shows the most important modules of CoPhy. All modules except the Solver are

used for building the COP. These modules decide the αiq and the popq variables and compute the

IC and the AC functions. Once the COP is constructed, the Solver is used to determine the solution.

The Candidate Selection module determines the candidate indexes used for the αiq variables,

90



Candidate
Selection

COPGen Cache

OptimizerWorkload Constraints

Solver

Solutions Bounds

Cost
Estimation

Figure 4.3: Architecture of CoPhy

using the workload’s structural properties. The COPGen module takes these candidates and the

constraints as input, and generates the COP. Cost Estimation determines the cost model for the

queries, and our tool uses INUM as the cost model. This model caches the plans, the internal

cost functions (ICs), and the access cost functions (ACs). The complete optimization problem is

consequently input to the Solver. The overall performance of the tool depends on the number of

αiq and popq variables, which control the problem size and, consequently, the solver’s execution

time.

We use a very simple Candidate Selection module, which generates indexes for every subset

of the columns referenced in a query, eventually producing a large set of candidate indexes. From

this large candidate set, the module prunes out indexes that never help in reducing query costs.

It identifies these indexes by finding the minimum access costs for all tables in the query. If the

minimum cost of the query using a given index along with the best possible indexes on all other

tables, is more than the cost of that query without that index, then that index will never be used

by the optimizer. Generally, the module produces in the order of thousands of candidate indexes.

In comparison, the commercial physical design tools consider only up to hundreds of candidate
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indexes. As we demonstrate in Chapter 3, using larger set of candidate indexes provides better

quality solutions.

Now we focus on the Solver, which is the critical part of CoPhy, as it provides the desired

efficiency and scalability.

4.8.1 Solving the COP

The Solver module of Figure 4.3 takes as input the optimization formulation corresponding to

the index selection problem, and computes the near-optimal solution. While optimization prob-

lems with integer variables are NP-hard in the worst case, mature solving techniques in practice

efficiently optimize very large problem instances. This subsection discusses the details of the algo-

rithms that enable a fast solution for such large problems. First, a fast greedy algorithm is proposed,

then the complete solution is described.

Greedy Algorithm

We extend the eINUM iterative greedy algorithm proposed in [53] as a baseline solver for the

COP. Each iteration of the greedy algorithm determines the index which decreases the workload

cost the most and adds it to the solution set. The algorithm terminates when there are no more

indexes to add or the storage constraint is violated. The eINUM algorithm however is impractical

as a physical designer, since it takes about 3.5 hours to suggest indexes. We therefore extend the

algorithm by using the structure of the INUM cache to speed it up by a factor of 300! The details

of the eINUM algorithm and the optimizations are discussed in the next section.
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Lagrangian Relaxation Algorithm

Generally the combinatorial optimization programs are solved using the branch-and-bound method.

In this method, the solver starts with an initial upper bound on the program (In our case the solution

of the greedy algorithm). For variable x in the problem, it creates two branches, one with x = 0 and

the other x = 1. Before exploring a branch, the solver tests to see if the lower-bound of the branch

is higher than current upper bound. If the lower bound is higher, then that branch is safely pruned

and the search continues in other branches. If it has pruned out all the branches or all variables are

integral variables, it backtracks to search the branches in the parent nodes.

Commercial COP solvers such as CPLEX use a linear programming (LP) relaxation to find the

lower and upper bound of the branch-bound process. In an LP relaxation, the binary constraints are

ignored and the problem is solved to find the lower bound of the objective. While LP relaxation

works well with many problem formulations, including FLP [51], in our formulation, the linear

relaxation of the αiq variables allows them to be set to very small values. This effectively estimates

the lowest possible cost for the workload without any constraint. For tight constraints, this lower-

bound is far off the desired optimum. Therefore, CPLEX, which uses only LP relaxation, runs for

hours before converging to the optimal solution for our COP. In this section, we improve the bound

computation by using Lagrangian relaxation (LR) to compute the upper bound and a randomized-

rounding method on the LP relaxation to compute the lower bound.

To understand the LR method to compute the upper or lower bounds, consider the example

problem shown below

minimize f (x)

Such that: g1(x)≤ A g2(x)≤ B

This problem has f (x) as the objective function and includes many constraints. The Lagrangian

relaxation identifies the “tough” constraint among the list of constraints and adds that to the objec-
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tive function with a multiplier. Intuitively, it punishes the solver by a factor θ, if it does not satisfy

the constraint. For example, if the first constraint is the toughest constraint in the problem, then

the relaxed problem becomes

minimize f (x)+θ(g1(x)−A)

Such that: g2(x)≤ B θ > 0

This modified problem may not satisfy the constraint g1(x)≤ A, since it has been moved to the

objective function. But from the solution found using this problem, we cascade the constraints,

similarly to the technique in [43], to find the upper bound on the original problem. By finding an

appropriate value of θ, the upper bound is made tighter and the solver converges to the solution

faster.

There is no systematic method to find the tough constraints for a specific problem, since it

depends on the problem structure. For COP, the constraint which combines the αiq variables into

αi variable (constraint in Eq. 4.13) is the toughest constraint. Removing that constraint splits the

problem into two components, each of which can be solved efficiently. The constraint, however,

makes even sophisticated solvers take considerable time to solve the problem. Hence, we use that

constraint as the “tough” constraint for the LR technique and then operate in the branch-bound

method to solve the problem.

To find the lower bound on a node, CoPhy considers the solutions to the LP relaxed problem.

If 0 < αiq = r < 1, and for a random value 0 < s < 1, we set αiq = 1 if s > r. This randomized

rounding creates a solution which uses more indexes than allowed by the constraints, but has been

shown to provide a tight lower bound on the cost function [35].

Since at each node CoPhy knows the upper and the lower bound on the objective value, it can

gain speed by trading off the accuracy of the final solution by looking at the difference between

the upper and lower bounds. This allows the DBA to terminate the optimization problem when
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the difference goes below a given percentage and accept the results from that search step as the

solution.

Furthermore, this allows the DBA to predict when a certain quality guarantee will be achieved

by using simple regression. Thereby, she can estimate the quality of the solution after an estimated

period of time, and intelligently predict when to terminate the optimization session. Since the COP

is based on INUM’s cost model, errors in INUM’s estimation can limit the solver’s knowledge of

the exact optimal value. In our experiments, INUM has about a 7% error in cost estimation, which

we argue to be reasonable for the scalability it provides. Moreover, it is an orthogonal problem to

improve INUM’s accuracy using more cached plans.

4.8.2 Greedy Algorithm

In this section, we discuss a fast greedy algorithm to find a candidate final configuration. The

greedy algorithm is fast because it always considers only one index at a time, i.e., does not consider

the index interaction effects. It still provides satisfying results, however, because it considers a

large number of candidates.

Alg. 1 shows the algorithm, which consists of two loops, each selecting a candidate solution

set. Line 4 finds the index Im such that, if added to the set of selected indexes, provides the

maximum reduction to the cost of the workload. The function Cost(W,S) determines the cost of

the workload with the index set S. The loop terminates when no new index satisfied the sizeConstr

constraint. Similarly, in the second loop, Line 11 finds the index with maximum improvement for

the objective function per unit storage cost. The candidate solution sets for the indexes are called

S1 and S2 respectively. Since S1 does not consider the storage overhead of the indexes, it generally

selects larger indexes. Selecting large indexes reduces the cardinality of the set S1 as the storage

limit will be hit sooner. The S2 set on the other hand gives more weight to the index size and holds

more indexes of smaller size each. The algorithm then returns the candidate set with the greater
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Data: I: The candidate set of indexes

O: The objective function

sizeConstr: Index size constraint

Result: S: the solution index set

1 initialization:;

2 S1 = S2 = φ;

3 while true do

4 Im = argmaxIi∈I\S1(Cost(W,S1)−Cost(W,S1∪ Ii));

5 if sizeConstr(S1∪ Im) then

6 S1 = S1∪ Im;

7 I = I− Im;

8 else

9 break;

10 end

11 end

12 Repeat 3-11 with Ims = argmaxIi∈I\S1
Cost(W,S2)−Cost(W,S2∪Ii)

Size(Ii)
;

13 return S = Max Bene f it(S1,S2);
Algorithm 1: Greedy algorithm for sub-modular index-selection problem

improvement.

This algorithm directly selects the αi variables in Eq. 4.13. By setting the dependent variables,

such as αiq, CoPhy determines the popq variables that are used in the objective function in Eq. 4.11.

Therefore, this algorithm not only solves the index selection problem, but also determines the cost

of the final objective by cascading the constraints.

Optimizing the Greedy Algorithm: In Alg. 1, finding Im and Ims dominates the execution

time of the greedy algorithm. A naive implementation, which iterates over all possible configura-
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tions to determine the benefit of the index table takes several hours for a 15 query workload [53].

We speed up the performance of this algorithm by building an in-memory lookup structure.

The structure consists of two large hash tables. The first hash table, named CostMap, contains a

mapping of the form (Popq,Tt)→MinCost. Reusing the notations in Section 4.3, Popq represents

the pth plan of the oth interesting-order combination for query Qq, and Tt is a table used in the

query. The value MinCost is the current minimum cost for accessing data for the table Tt in the

plan Popq. The hash table is initialized with MinCost = ∞ for each entry. This hash table allows

the greedy algorithm to easily find the current best solution for each cached plan. The index Ii is

of interest only if it lowers the current minimum cost of any of the plans.

The second hash table, named IntMap, contains the mapping of the form Cc→ Qq→ List <

Plans >, where Cc is a column in the table, List < Plans > is the list of plans which benefit by

using column Cc as an interesting order, and Qq is used to group all such interesting orders in query

Qq. For each new index Ii, if it covers the interesting order Cc, the greedy algorithm directly looks

up the queries and plans benefiting from that interesting order.

Since the greedy algorithm needs to find the queries which benefit from an index, and the

amount of benefit the index provides, using these two structures speeds up both the bottleneck

functions by a factor of 300 (as shown in Section 4.9).

4.9 Experimental Results

This section discusses CoPhy’s results on a TPC-H-like workload and on two mainstream com-

mercial DBMS. We first discuss the experimental setup and then study the workload in detail. We

start with the index storage constraints, and then discuss the effect of the quality guarantee on the

execution time.
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4.9.1 Experimental Setup

We implement our tool using Java (JDK1.6.0) and interface our code to the optimizer of a popular

commercial DBMS, which we call System1.

We experiment with a subset of the TPC-H benchmark containing 15 queries (our experimen-

tal parser, for the time being, does not support the following queries: 7, 8, 11, 15, 20, 21, and

22). Since experiments with larger databases show trends similar to those in a 1GB database, we

use 1GB database on all the workloads for ease and speed of result verifications. For these 15

queries, INUM caches 1305 plans and the candidate selection module generates 2325 indexes.

These cached plans enable INUM to predict the plans with 7% cost estimation error. We also show

the behavior of the system on other real-world and synthetic benchmarks in Appendix 4.9.6.

We use a dual-Xeon 3.0GHz based server with 4 gigabytes of RAM running Windows Server

2003 (64bit), but for our experimental purposes we limit the memory allocated to the database to

only 1GB. We report both selection tool execution time and quality of the recommended solutions

computed using optimizer estimates.

We compute solution quality similarly to [1, 19], by comparing the total workload cost on an

unindexed database cunindexed vs. the total workload cost on the indexes selected by the design tool

cindexed . We report percent workload speedups according to:

% workload speedup = 1− cindexed/cunindexed

We compare the quality of the indexes suggested by CoPhy against the greedy algorithm de-

scribed in Section 4.8 and Appendix 4.8.2, and the FLP-based index selection tool. Since the

solution to the problem given by Papadomanolakis et al. is within 0.2% of the optimal solution on

System1 for the pruned candidate set, we present the results from their method and identify them

as FLP. The scalability of CoPhy is demonstrated by varying the workload cardinality.
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4.9.2 Solution Quality Comparison

In this experiment, if D is the size of the database, we allocate xD space to indexes in the final solu-

tion. We increase x gradually to observe the improvement in the quality of the selected indexes. For

CoPhy, we stop the search process when the solution reaches within 5% of the optimal solution.

Figure 4.4 compares the solution quality for TPCH15 using the three INUM-based selection mech-

anism (Greedy, FLP, and CoPhy) on the commercial system System1. On the x-axis, we increase

the storage constraint x, and on the y-axis we show the workload speedup after implementing the

selected indexes.
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Figure 4.4: Results for index selection tools for TPCH15

Figure 4.4 shows that CoPhy suggests indexes with the highest workload speedup for all values

of x on System1. As the space allocated for the indexes grows, all tools converge towards selecting

indexes with similar workload speedup. CoPhy improves on Greedy by fully searching the index

combination space, instead of looking at one index at a time. Greedy prefers large indexes on

tables such as LINEITEM, and misses indexes on the smaller PART and CUSTOMER tables.

CoPhy, however, selected a more balanced set of indexes on both large and small tables to achieve
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the best solution quality. FLP needs to prune many candidate configurations to keep the problem

size under control, hence it misses some plans that CoPhy identifies.

These results demonstrate that CoPhy finds significantly is superior to the greedy algorithm

and FLP algorithm running on the same set of candidate indexes. The benefit of CoPhy is more

pronounced when less space is available for indexes.

4.9.3 Execution Time Comparison

Figure 4.5 compares the execution time of various index selection algorithms with x = 1. On the

x-axis, we vary the workload size and on the y-axis we show the execution times for different

algorithms. To observe the execution time on larger workloads, we create workloads of 250, 500,

750, and 1000 TPC-H-like queries using TPC-H’s QGen on TPCH15’s query templates, and name

them TPCH250, TPCH500, TPCH750, and TPCH1000 respectively. To scale INUM computa-

tion for these larger workloads, we use INUM approximations [51]. The approximation method
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Figure 4.5: Execution time of algorithms for varying query sizes.
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reduces the number of cached plans from 90 to 2 on average for each query, but reduces the ac-

curacy. We run the experiment with index size multiplier x = 1, and with 5% quality relaxation

for CoPhy. Since the query templates remain the same, the benefit of using the selection tool for

these larger workloads remains similar to Figure 4.4, except that the cost approximation for larger

workloads reduces the solution quality for both CoPhy and greedy algorithms by about 3%. Note

that even though TPCH15 does not use approximations, we compare the running times in the same

charts in order to save space. The time taken to build the INUM cache model for the workloads in

Figure 4.5 are 24, 2, 4, 9, and 17 minutes respectively. Using workload compression along with

INUM’s approximation reduces the INUM cache construction overhead to less than one minute

for the generated workloads.

We first focus on TPCH15. Greedy is the fastest selection tool as it benefits from the index

structure described in Appendix 4.8.2 in detail. In this experiment, building the in-memory struc-

tures for Greedy takes approximately 18 seconds, and running the greedy algorithm takes about

25 seconds. In comparison, the reported execution time for a similar greedy algorithm is about
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3.5 hours [53], hence using the index structure speeds up the algorithm by a factor of nearly 300.

CoPhy spends about 5.2 minutes to find the solutions, of which about 20 seconds were spent in

building the problem from the index variables, about 45 seconds to find the starting greedy solution,

and the remaining in solving the problem with LR. FLP spends more than 5 minutes pruning the

configurations and building the combinatorial problem. FLP, however, solves the problem faster

than CoPhy, since the pruning reduces the problem size and complexity.

Now we consider the generated workloads and observe the scaling behavior of the tools.

Greedy and FLP scale almost linearly with the problem size. CoPhy’s execution time goes up

to about 9 minutes for the largest workload, however, about 2.5 minutes are spent in the initializing

the greedy solution, hence the LR method scales well with increasing workload cardinality as well.

4.9.4 Quality Relaxation vs. Execution Time

We gradually increase the relaxation distance from the optimal value and observe the improvement

in execution time for the LR-based solver. We use System1 with the index space constraint to be

the same as the DB size. We report only the time it takes for the LR algorithm to run, as the greedy

algorithm’s execution time does not change with the relaxation values. In Figure 4.6, we vary the

distance from the optimal value on the x-axis, and on the y-axis we show the execution time of the

solver. The three different lines in the figure show the behavior on three subsets of the TPCH15

queries, containing 5, 10, and 15 queries respectively. We also compare against the 1000 TPC-H

queries generated in the previous experiment.

Figure 4.6 shows that even for a small workload with 15 queries, achieving the exact optimal

value is not feasible. Even after running the solver for more than a day, we could not converge to

the optimal solution. When relaxing the solution to be within 1% from the optimal value, the solver

converges after a long time. For the 15 query workload, a 5% relaxation provides the best balance

between proximity to optimal solution and execution time. When the workload size is reduced

102



to just 5 queries, CoPhy finds the optimal solution within a minute, this is possible because the

problem search space is small enough for the solver to explore every possible combination of

indexes. Similarly, for 10 queries, the solver converges to the optimal solution, but takes more

time. Consequently, even with small workloads, the ability to relax the targeted solution helps in

dramatically reducing the execution time of the solver.

4.9.5 Comparing Against Commercial Tools

Since the commercial designer tools lack a fast cost model like INUM, their runtime is typically

much higher than the INUM-based solutions discussed so far. Hence we only show the comparison

of the performance of their suggested indexes. We compare CoPhy against two commercial sys-

tem physical designers implemented on System1 and System2 using TPCH15. Since the indexes

suggested by the tools on these two systems cannot be directly compared, we normalize the per-

formance on each system by the performance of CoPhy’s suggested indexes. If csystem is the total

workload cost on System using the suggested indexes, and ccophy is the workload cost with CoPhy’s

suggested indexes on System, then we report the relative workload speedup: csystem/ccophy. On the

x-axis we increase the index constraint size as a multiple of the table size, and on the y-axis we

report the relative speedup.

Figure 4.7 shows that CoPhy always performs better than System1’s designer tool, and performs

better than System2’s tool when the space allocated for indexes is low. This is a direct result of

not pruning the candidate set eagerly. Therefore, we believe that the generic search method of

CoPhy helps in improving the query performance of the commercial systems, when compared to

the sophisticated and fine tuned greedy methods employed by the commercial tools.

103



0

0.5

1

1.5

2

2.5

0 1 2 3 4

A
vg

. R
es

p.
 T

im
es

 R
at

io

Index Storage Constraint/DB Size

System1

System2

Figure 4.7: Quality comparison against commercial systems

104



0

500

1000

1500

2000

0 5 10
Es

ti
m

at
ed

 C
os

t

Index Size/DB Size

TPCH15 TPCH1000

Figure 4.8: Pareto-optimal curve with the storage constraint and the workload costs as soft con-

straints

Adding Soft Constraints

So far we have discussed index selection problem with hard index storage constraints and a soft

constraint on the workload cost being zero. In this experiment, we add more soft constraints to

the problem to observe the pareto-optimal surface that CoPhy generates. We replace the hard

constraint of the index storage cost with a soft constraint which tries to minimize the storage cost.

Let s be the storage cost, and c be the cost of the workload in the new configuration. Using the

scalarization technique discussed in Section 4.5.4, CoPhy minimizes the term λ1c+λ2s. CoPhy

begins by considering the extreme points where λ1 = 0,λ2 6= 0 and the other extreme point where

λ1 6= 0,λ2 = 0. Then it considers the third point with λ1c = λ2s, and finally explores other points

in between using a binary search-like technique.

Using these two soft constraints, we run the solver with different values of λi settings to achieve

the pareto-optimal curve, as shown in Figure 4.8. The x-axis shows the storage cost of the sug-

gested indexes, and the y-axis shows the estimated cost of the workload. For each point in the

graph, the solver takes approximately 25 seconds and we show 10 different combinations of λi

values. CoPhy determines the shape of the curve using the first 3 points, hence CoPhy estimates
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Figure 4.9: Execution time of CoPhy’s solver with varying number of constraints.

the shape of the pareto-optimal curve faster than manually changing the hard constraints.

Varying the Constraint Size

In this experiment, we show that increasing the input program size does not affect the scalability of

the solver. We investigate the effect of extra constraints by separating them into three categories,

i.e., a) index constraints, b) configuration constraints, and c) storage constraints. For the first

category, we generate constraints of the form “For Index I on LINEITEM I not like

’column,%’”. We generate 10 different constraints for 10 columns of the LINEITEM table, and

add them to our program. For the second category, we add “For Query Q in Workload,

Cost(Q) < 0.9*EmptyCost(Q)” to the program for each query Q. For the final category,

we add the constraints of the form “the size of the indexes built on a subset of tables must not

exceed 90% of the total storage constraint”. For example, one of the constraints specifies that

LINEITEM’s and ORDERS’s indexes should not exceed 90% of the total storage space.

Figure 4.9 shows the execution time of the solver (since other times remains constant for all

points) for each of the constraint categories, with an increasing number of constraints. On the
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x-axis we increase the number of constraints in steps of two, and on y-axis we show the execution

time of solver for the modified problems. The presence of configuration constraints in the index

selection problem restricts us from using the greedy initialization, hence the execution time of the

solver suffers slightly when compared to earlier experiments. As we add the index and config-

uration constraints, the runtime of the solver is reduced, because adding these constraints to the

optimization problem, reduces the size of the search space, thus helping the solver to get solutions

faster.

Similarly, adding the configuration constraints reduces the search space by eliminating many

configurations that do not provide sufficient cost improvement. For example, with 10 constraints

on the configurations, the number of candidate configurations drops from approximately 55900

to about 6300. Although the search space shrinks drastically, the running time of the solver does

not go down proportionally, since the majority of the search happens in the reduced space in the

normal case as well. The storage constraints, however, add more processing to the solver, as they

are harder constraints compared to the other varieties. As more storage constraints are added, the

overhead of doing the Lagrangian relaxation increases, consequently the execution time increases

albeit almost linearly with a small slope. Note that the storage constraints we add are artificial

constraints and represent the worst case behavior for the solver. Whereas, in practice the DBA will

more likely add multiple configuration and index constraints, rather than storage constraints.

4.9.6 More Workloads

This section discusses the results for CoPhy on two more workloads. The first one–NREF–is a

real-world protein workload. It shows that for simple queries, the quality improvement of CoPhy

is on par with the commercial tools. Then we investigate further into the effect of query complexity

on the quality of CoPhy’s results by using a synthetic benchmark–SYNTH.
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Results for NREF

We now discuss the performance of CoPhy and other index selection tools for the NREF workload.

The NREF database consists of 6 tables and consumes 1.5 GBs of disk space. The NREF workload

consists of 235 queries involving joins between 2 and 3 tables, nested queries and aggregation.

Since the queries are simpler and use fewer columns, all selection algorithms converge to the same

small set of indexes. In System1, these indexes provide 28% workload speedup and on System2

the speedup is about 23%. Greedy outperforms all other algorithms by suggesting indexes in 19

seconds, and System1 completes in 5.6 minutes. Since we use an approximation method to estimate

the query costs, CoPhy uses 470 cached plans for the COP and executes in about 1.4 minutes.

Results for SYNTH

We use the synthetic benchmark to study the behavior of the physical designer in the presence

of increasing query complexity. SYNTH is a 1GB star-schema database, containing one large

fact table, and smaller dimension tables. The dimension tables themselves have other dimension

tables, and so on. The columns in the tables are numeric and uniformly distributed across all

positive integers. We use 10 queries, each joining a subset of tables using foreign keys. Other than

the join clauses, they contain randomly-generated SELECT columns, WHERE clauses with 1%

selectivity, and ORDERBY clauses. We generate 4 variants of these queries with an increasing

number of candidate indexes and interesting orders, hence with increasing complexity. Table 4.1

shows the details of the queries on the database.

Figure 4.10 shows the solution quality of the techniques on various SYNTH workloads when

the indexes occupy 25% of the space of the tables. On the x-axis, we increase the query com-

plexity, and on the y-axis we show the solution quality of the techniques on System1. When the

queries involve only 1 table, all techniques perform equally well. The quality of the greedy solu-

tions, however, reduce as the number of tables, hence the interaction between the indexes become
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Workload SYNTH1 SYNTH2 SYNTH3 SYNTH4

candidates 381 746 3277 4933

cache size 20 110 418 592

# of tables 1 4.6 4.8 10.5

Table 4.1: The details of the synthetic benchmark. The first row lists the candidate index set’s size

for the workloads, the second one lists the INUM cache sizes, and the last row shows the average

number of tables in the query.

Figure 4.10: Solution quality comparison for SYNTH workloads of increasing complexity.

important, which the greedy mechanism of System1 and Greedy do not address. FLP performs as

well as CoPhy when there are only one or two tables in the query. As the number of tables in the
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Figure 4.11: Tool execution time comparison for SYNTH workloads of increasing complexity.

table increases, FLP’s solution suffers. Without pruning, the FLP formulation creates a COP with

about 110 million variables. Solving such a large combinatorial problem is not feasible in today’s

solvers. Therefore, it prunes away a large fraction of the problem space to produce a problem of

the order of tens of thousands. This substantial pruning removes many candidate configurations

from the search space, hence reduces the solution quality drastically.

Figure 4.11 shows the tools’ execution times for the different workloads. As expected Greedy

scales the most, since the number of cached plans is relatively small. The FLP technique, scales the

worst, as it spends most of its execution time pruning away configurations. System1 scale well with

the complexity of the queries, since it uses the optimizer as a black box, the increase in complexity

does not affect its run time. CoPhy scales almost linearly with the INUM cache size, as expected
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from the formulation.

4.10 Conclusion

We demonstrate that we can exploit the cost model of INUM to formulate a reasonably sized

COP for the physical design problem. We then use the state-of-the-art solvers to solve the COP

efficiently. Unlike existing selection tools, this approach is scalable, allow interactive modification

of the problem, and most importantly allows DBAs to trade off the execution time against the

quality of the suggested solutions. So far in the thesis, we have dealt with offline workloads. In the

next chapter, we extend this formulation to online workloads in which the physical designer has to

make decisions with no knowledge of the future queries.
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Chapter 5

Online Physical Design

The optimization problems discussed so far are all off-line problems. In which the input is given

to the optimizer and the optimization solver finds the objective values that satisfy the constraints.

While this is a very important problem in practice, in many instances, the workload can change

dynamically. The DBA cannot select a set of queries, or a sequence of queries which run in the

system. Finding such a set or sequence of queries is especially hard when the user has the power

to construct the query by directly writing the SQL or building the query using a query builder. One

such example of dynamic query construction is the Sloan Digital Sky Survey (SDSS) [65]. In the

SDSS project, the telescopes scan predetermined parts of the sky regularly, and then make them

available to the public for querying. Any astronomer, from all over the world, can pose queries to

the SDSS server, by using SQL. Since there is no control over the SQL subset that the astronomer

needs, the queries typically vary in their use of tables, filters, and columns.

We solve this problem by borrowing from the algorithms community the technique of “Com-

petitive Algorithms”. These algorithms assume that an adversary is able to control the input, and

the adversary tries to make the algorithm perform as bad as possible by changing the input in re-

sponse to the decisions taken by the algorithm. The performance of the algorithm is measured
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by comparing its performance against an optimal algorithm (OPT) that has complete information

about the workload. If the optimal algorithm has a cost of O and the online algorithm has a cost

nO, then the online algorithm is considered to be n competitive.

In this chapter we discuss two such competitive algorithms. The first algorithm is suitable

for resource constrained environments in which building indexes to speed up the queries is not

feasible, and the frequency of the queries is so high that minimal resources need to be used to make

the physical design decisions. We therefore optimize the performance of the online workload using

only vertical partitions, and provide a competitive algorithm requiring very minimal computation.

The second algorithm is more general and is suitable for physical design with indexes as well

as other design features. The algorithm has higher overhead than the earlier mentioned one, but

we demonstrate that the benefit of using the indexes outweighs the overhead of optimization for

real-world workloads.

5.1 Online Algorithm for Vertical Partitions

In this section we describe–OnlinePD– an online physical design algorithm for vertical partitions.

OnlinePD builds upon algorithms for two classical online problems: (1) the on-line ski rental

problem and (2) online algorithm for the metrical task system in which transition costs are sym-

metrical. The next subsection describes these sub-problems and their known algorithms. The

subsection after that describes the algorithms for OnlinePD and proves the bound on its perfor-

mance.

5.1.1 Related Problems

On-line ski rental is a classical rent-to-buy problem. A skier, who doesn’t own skis, needs to decide

before every skiing trip that she makes whether she should rent skis for the trip or buy them. If
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she decides to buy skis, she will not have to rent for this or any future trips. Unfortunately, she

doesn’t know how many ski trips she will make in future, if any. This lack of knowledge about the

future is a defining characteristic of on-line problems [8]. A well known on-line algorithm for this

problem is rent skis as long as the total paid in rental costs does not match or exceed the purchase

cost, then buy for the next trip. Irrespective of the number of future trips, the cost incurred by this

on-line algorithm is at most twice of the cost incurred by the optimal offline algorithm.

If there were only two configurations and we assume that the cost function d(·) satisfied sym-

metry, the OnlinePD problem will be nearly identical to on-line ski rental. Staying in the current

configuration corresponds to renting skis and transitioning to another configuration corresponds to

buying skis. Since the algorithm can start a ski-rental in any of the states, it can be argued that this

leads to a 4-competitive algorithm for a given traversal over both configurations. 1

The above idea has been extended to N configurations by Borodin et al. [9].

8(N− 1)-competitive algorithm. This algorithm forms the basis for our algorithm in the next

sub-section. They consider a complete, undirected graph G(V,E) on S in which V represents the

set of all configurations, E represents the transitions, and the edge weights are the transition costs.

By fixing a minimum spanning tree (MST) on G, the algorithm performs an online ski-rental as

follows: Pick the maximum weight edge, say (u,v), in the MST and remove it from the MST. This

partitions all the configurations into two smaller components and the MST into two smaller trees:

MST1 containing u and MST2 containing v. Recursively traverse one component until the query

execution cost incurred in that component is approximately that of moving to the other component,

moving to the other component and traversing it (recursively), returning to the first component (and

completing the cycle) and so on. They show that this algorithm is 8(N−1)-competitive. We extend

1A simple 3-competitive algorithm which transitions when the penalty of staying in the current configuration is

equal to the sum of transition costs, extends the ski-rental idea to include asymmetry in transition costs. We show this

in [47]. However, this idea does not extend to N configurations as greedily transitioning to the first configuration that

satisfies the penalty leads to an inefficient algorithm.
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the above algorithm to non-symmetrical task system.

5.1.2 OnlinePD Algorithm

Let the transition cost function d in OnlinePD be represented by a complete directed graph G′ We

show how to transform this graph into an undirected graph and run Borodin’s algorithm on it in

such a way that we can bound the competitive ratio for OnlinePD .

In G′ replace every pair of directed edges (u,v) and (v,u) with an undirected edge (u,v) and

a corresponding transition cost equal to
√

d(u,v).d(v,u) irrespective of the direction. This trans-

forms G into H. If p is a path in H and p′ is the corresponding path in G′ (in any one direction),

then cost(p)√
ρ
≤ cost(p′) ≤ √ρcost(p). This allows us to bound the error introduced by using H

instead of G.

H does not correspond to an MTS because the triangle inequality constraint is violated. By

virtue of using the Borodin’s algorithm that constructs an MST, However, OnlinePD is resilient

to the triangle inequality violation.

Algorithm 2 gives the OnlinePD algorithm which uses the Algorithm 3 as a subroutine. We

next provide the bound on the algorithm.

Let the maximum rounded weight in the tree F be 2M. The following proof is inspired by the

proof in [9]

Lemma 1 Any edge in T of rounded weight 2m is traversed exactly 2M−m times in each direction.

Proof We prove by induction on the number of edges in F . For the base case, there are no edges

in F , and the lemma is trivially true. For the inductive case, let (u,v) be the maximum weight

edge in F used in traversal(·), and similarly let F1 and F2 be the trees obtained by removing (u,v).

Now the edge (u,v) is traversed exactly once in each direction as required by the lemma. By the
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Input: Directed Graph: G(V,Eo) with weights corresponding to d(·), Query Sequence: σ

Output: Vertex Sequence to process σ: u0,u1, . . .

1 Transform G to undirected graph H(V,E) s.t. ∀(u,v) ∈ E weight

dH(u,v)←
√

d(u,v) ·d(v,u);

2 Let B(V,E) be the graph H modified s.t. ∀(u,v) ∈ E weight dB(u,v)← dH(u,v) rounded to

next highest power of 2;

3 Let F be a minimum spanning tree on B;

4 T ← traversal(F);

5 u← S0;

6 while there is a query q to process do

7 c← q(u);

8 Let v be the node after u in T ;

9 while c≥ dB(u,v) do

10 c← c−dB(u,v);

11 u← v;

12 v← the node after v in T ;

13 end

14 Process q in u;

15 end
Algorithm 2: OnlinePD(G)

inductive hypothesis, each edge of F1 of rounded weight 2m is traversed exactly 2M1−m times in

each direction in the traversal T1, in which M1 is the maximum rounded weight in F1. Since T

includes exactly 2M−M1 traversals of T1, it follows that each such edge is traversed 2M−m is each

direction in T . Exactly the same reasoning applies for edges in F2.

Theorem 1 Algorithm OnlinePD is 4(N−1)(ρ+
√

ρ)-competitive for N configurations and asym-
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Input: Tree: F(V,E)

Output: Traversal for F : T

1 if E = {} then

2 T ←{};

3 else if E = {(u,v)} then

4 Return T : Start at u, traverse to v, traverse back to u;

5 else

6 Let (u,v) be a maximum weight edge in E, with weight 2M;

7 On removing (u,v) let the resulting trees be F1(V1,E1) and F2(V2,E2), where u ∈V1, and

v ∈V2;

8 Let maximum weight edges in E1 and E2 have weights 2M1 and 2M2 respectively;

T1← traversal(F1);

9 T2← traversal(F2);

10 Return T : Start at u, follow T1 2M−M1 times, traverse (u,v), follow T2 2M−M2 times,

traverse (v,u);

11 end
Algorithm 3: traversal(F)

metry constant ρ.

Proof We shall prove that during each traversal of F , the following two statements are true: (i) the

cost (ii) the cost of the offline optimal is at cost of OPDA during any single traversal is constant

with respect to the length of σ.

To prove (i), recall from Lemma 1 that any edge in T of rounded weight 2m is traversed

exactly 2M−m times in each direction. Thus the total rounded weight traversed for an edge is

2 · 2M−m · 2m = 2 · 2M. By construction of the algorithm the total processing cost incurred during

T at a node just before a traversal of this edge is 2 ·2M. The total transition cost incurred during T
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in a traversal of this edge is at most 2 · 2M√ρ, since the cost d(·) can be at most
√

ρ times larger

than the corresponding dB(·). This proves (i) as there are exactly N−1 such edges.

We prove (ii) by induction on the number of edges in F . Suppose F has at least one edge, and

(u,v), F1, and F2 are as defined in traversal(·). If during a cycle of T , OPT moves from some vertex

in F1 to some vertex in F2, then since F is a minimum spanning tree, there is no path connecting

F1 to F2 with a total weight smaller than dB(u,v)/(2
√

ρ) = 2M−1/
√

ρ. Otherwise during the cycle

of T , OPT only stays in one of F1 or F2; w.l.o.g. assume F1. If F1 consists of just one node u, and

OPT stays there throughout the cycle of T , then by definition of the algorithm, OPT incurs a cost

of at least dB(u,v) = 2M ≥ 2M−1/
√

ρ. If F1 consists of more than one node, then by the induction

hypothesis, OPT incurs a cost of at least 2M1−1/
√

ρ per cycle of T1. Since during one cycle of T

there are 2M−M1 cycles of T1, OPT incurs a cost of at least 2M−1/
√

ρ. This completes the proof.

We next describe the cost estimation modules.

5.1.3 Transition Cost Model

Given N configurations, to determine the optimal target configuration, OnlinePD needs to compute

N2 transition costs. Naively computing the transition cost by actually building each configuration

requires reorganizing at least hundreds of gigabytes of data on disk. The cost of doing so is

prohibitively high, and can take several hours to complete.

Therefore, we build a transition cost model to efficiently estimate the cost of such transitions

without actually building the target configurations. Specifically, we model the cost of transitioning

to a new configuration using the standard BulkCopy tool.

First, we describe our rationale behind selecting the BulkCopy tool. We considered two

alternative methods to transition to new configurations: BulkUpdate, and BulkCopy. To un-

derstand the difference between these two options, consider a configuration S1 which partitions
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table T1 into two partitions T11(a,b,c) and T12(a,d), column a being the primary key for

T1. We need to transition into configuration S2 with a single table T1(a,b,c,d).

In the BulkUpdate approach, we update the schema for T11 by allocating space for column

d and then use SQL update statements to copy the values of d from T12 to T11 before dropping

T12. In the BulkCopy approach, we first export the data from T11 and T12 into flat files before

deleting the partitions and then copy the data back to the table T1.

In our experiments, BulkCopy was nearly 7 times faster than BulkUpdate. The reasons be-

hind this performance difference are: 1) BulkCopy exploits sequential I/O when copying data into

a new table, 2) BulkCopy in native format incurs no type casting overhead, and 3) BulkCopy

avoids BulkUpdate’s transaction logging overhead. BulkCopy also allows us more control

over space allocation. For example, the database may delay deallocation of space when dropping

columns from existing tables, adversely impacting query performance.

To model the I/O cost of BulkCopy, we make the following two observations:

1. Copying data into a database is about 10 times more expensive than exporting the data out

of a database. Hence, we focus on the import cost in our model.

2. The cost of importing scales linearly with the amount of data being copied into the database,

due to sequential I/O.

Given these observations, we can model the cost of importing a partition P, with RP rows and

average column width WP as:

BCP(P) = cRPWP + kRP (5.1)

Where c is the cost per byte of copying data into the database and k is the cost per row of con-

structing the clustered primary key index. These constants are database dependent and can be

easily determined using regression on a few “sample” BulkCopy operations.
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We use Equation 5.1 to model the cost of moving from a configuration Si to another config-

uration S j. Let configuration Si consist of partitions {T1i,...,Tmi} and let S j consist of partitions

{T1 j,...,Tn j}. Let ∆i j be the set difference {T1 j,...,Tn j} - {T1i,...,Tmi}, which denote all tables in

S j but not in Si. The cost of transitioning from Si to S j can be computed as:

d(Si,S j) = ∑
t∈∆i j

BCP(t) (5.2)

Here we assume that the cost of dropping the partitions in Si is zero. We experimentally verified

that Equation 5.2 estimates the cost of transitions with 87% accuracy.

Finally, using Equation 5.2, we show that the asymmetry constant ρ is bounded by a constant

factor. By definition ρ = maxi j d(Si,S j)/d(S j,Si). The ratio is maximized when transitioning

between a configuration S, with all columns of a table grouped together, to a configuration S′ with

each column in a separate partition. For simplicity, let the table consist of r rows and contains y

columns, with each column sized at w bytes. Then

d(S′,S) = crwy+ kr & d(S,S′) = y(crw+ kr)

⇒ ρ≤ d(S′,S)/d(S,S′) =
y(cw+ k)
ycw+ k

5.1.4 Query Cost Estimation - QCE

In OnlinePD for every query we need to compute its cost against all N neighboring configurations.

The brute-force method is to evaluate the cost of the query against all possible configurations. For

a workload with m queries and N target configurations, this would lead to estimating mN query-

configuration pairs. The traditional approach of asking the optimizer for the cost of querying

on each configuration is well-known to be very expensive (Chapter 3). The query optimization
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overhead for each configuration largely contributes to the inefficiency and long running time of

automated physical design tools.

We make an important observation in Chapter 3: the plan of a query across several configu-

rations is invariant. Thus, instead of optimizing each query against every configuration, we can

estimate query costs by reusing optimized plans from earlier invocations of the optimizer. The

optimal plan is cached with very little space overhead. This observation has been explored when

configurations correspond to set of indices on tables. However, the table itself is unpartitioned. In

this section, we show that the same idea with a twist works even for configurations corresponding

to vertical partitions of a table. We describe our idea through an example.

Example of Plan Re-use: Consider two tables T1(a,b,c,d) and T2(e,f,g,h) with pri-

mary and join keys a and e, respectively. Let the tables in configuration S1 be vertically partitioned

into T11(a,b,c), T12(a,d), and T2(e,f,g,h). Consider the following query q on the two

tables:

q = select T1.b, T2.f from T1,

T2 where T1.a = T2.e and T1.c

> 10 and T1.d = 0

The query is optimized to have the plan shown in Figure 5.1, and having cost q(S1) in con-

figuration S1. Now suppose we have to evaluate the cost of query in two new configurations: S2,

defined as T11(a,c), T12(a,b,d), and T2(e,f,g,h), in which column T1.b moves from

one partition to the other; and S3 defined as T11(a,c,d), T12(a,b), in which column T1.d

moves from one partition to the other. Figure 5.1 also shows the optimal plans for S2 and S3.

Observe that the join order and join method of the plans remains exactly the same in S2, while

it changes completely in S3. This happens because the selection of join order and join methods

depends heavily on (1) the size of the filtered partitions, and (2) the available ordering on the parti-

tions. In the example, the distribution of columns on which individual partitions of T1 are filtered

(i.e. T1.c and T1.d) does not change between S1 and S2, the size of the filtered partition remain
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Figure 5.1: Plan graph comparison for configurations with only vertical partition changes. The

boxes represent operations, and the numbers next to them show the estimated costs for those oper-

ations. The plans remain the same for configurations S1 and S2, as they have the same distribution

of filtering columns, i.e., c and d. Configuration S3’s query plan is significantly different, since it

has a different distribution of the filtering column.
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the same. Since the partitions are always indexed on their primary keys, there is no difference in

join ordering. The join method and orders, however, changes in S3, as one of the columns involved

in WHERE-clause of the query has moved from one partition to other.

To formalize, the plan for a configuration Si can be correctly used for S j if the following con-

ditions are satisfied:

1. The number of partitions for each table does not change.

2. The distribution of filtering columns on the above partitions does not change.

3. The page size distribution of the partitions does not change drastically.

Condition 1 guarantees the same number of joins in the plan for both configurations. For

example, if Si partitions a table T1 into two partitions, and S j partitions it into three partitions, then

queries on Si only join once to reconstruct the rows of the original table, while queries on S j have

to join twice.

Condition 2 guarantees the same intermediate join results between Si and S j so that the opti-

mizer selects the same join order and join method to find the optimal plan.

To understand the need for Condition 3, consider the following example scenario. Let T3(c1,c2, . . . ,c100)

be a large table with 100 columns of equal width, and c1 and c100 are the filtering columns. Assum-

ing that Si splits the table T3 as T31(c1), T32(c2, . . . ,c100) and S j splits the table as T3′1(c1, . . . ,c50),

T3′2(c51, . . . ,c100). The page distribution for T3’s partitions in Si is highly skewed, while the one

in S j is uniform. Typically, for S j, the optimizer joins T3′1 with T3′2 first, before joining the result

with other tables. For Si, however, the optimizer takes advantage of the small page size for T31

to delay joining with T32 as long as possible. Hence reusing the plan for S j in Si will provide

inaccurate results. 2

2In our online algorithms, we typically estimate costs for many configurations which differ from each other by
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If the above three conditions are satisfied, we prove by contradiction that the plans will use the

same join order and join methods. Suppose the join method and join order for Si and S j are J1 and

J2 respectively. By our assumption, J1 and J2 are different.

Without loss of generality, suppose J1 costs less than J2 if we ignore the costs of scanning the

partitions. Since the configurations Si and S j have the same ordering (primary key order for all

partitions), and they select the same number of rows from the partitions, and the page size of the

filtered rows are similar, then J1 can still be used for S j. Since using J1 reduces the total cost for

running the query on S j, it implies that J2 must not have been the optimal plan, contradicting our

assumption that J2 was part of the optimal plan.

Since optimizers spend most of their time considering alternate join orders and join methods,

we can save a significant amount of computation while estimating the cost of S j. If we already

know the optimal plan for S j, we can memoize it for future use.

The Plan-Cache: An important issue in implementing the cache-and-reuse principle is “What

is cached?”. We cache the join methods and join orders, and replace the partition scans with place

holders. This stripped plan structure is cached using a unique key representing the query and the

configuration’s filtering column distribution among partitions. Revisiting the example of plan reuse

in Figure 5.1, we cache the structure shown in Figure 5.2 with the key [query− id,T 1((c),(d))]

from the plan returned by the optimizer in S1. The query− id component guarantees that there are

no collisions between plans of different queries, and the second component T 1((c),(d)) encodes

the distribution of the filtering columns into two partitions containing (c) and (d) respectively.

Cost Estimation Procedure: To estimate the query cost for a new configuration, we first build

the key using the query’s identity and the filtering column distribution of the configuration. We

just one attribute. Since only one attribute differs between two configurations, the page size distribution between

configurations remain similar. We intend to study this aspect in our future research to identify the maximum distance

between the page size distributions that allows plan reuse.
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Figure 5.2: The structure cached with the key [query− id,T 1((c),(d))]. Note that all scanning

nodes are place holders for the actual partitions and the costs are missing. The plan on right is the

estimated plan for the new configuration S2, with the partitions and estimated costs filled in.

look up the cached plan structure using this key. The cached structure gives us the join orders

and join methods, but does not provide the full query cost. To estimate the query cost, we have to

estimate the partition scanning costs and fill them in to the place-holders. We also need to estimate

the costs of joining. Now we describe the techniques to estimate these costs.

For full index scans, the cost of scanning the index is proportional to the size of the index,

since the DBMS has to scan all pages of the index sequentially. If s is the estimated size of the

primary key index, then the cost of scanning is αs, where α is a proportionality constant specific

to the database. For clustered index scans, we determine the fraction of the index scanned using

the cached plan. Let c be the IO cost of the scanning operation in the cached plan, and s0 is the

size of the index scanned in the cached plan. Then we compute the scanned fraction f = c/(αs0),

as αs0 be the cost of scanning the entire index. The cost of a cluster scan on the index with size

s in the new configuration is α f s. The proportionality factor α is easily precomputed using a few

“sample” partition scans.

To estimate the cost for joining partitions using the join methods from the cache, we adopt

System R’s model, developed by Selinger et al. [66]. The System-R cost model gives us an upper

bound on the actual join costs, and according to our experiments predicts the plan cost with 1.3%
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accuracy on average (Section 5.1.7).

To summarize, we first generate a key for the current combination of configuration and query,

to check against plan cache. If the plan is present, then we reuse the join order and join methods to

estimate the total cost of the plan. If the plan is not yet present in the cache, we call the optimizer

and cache the resulting plan. We show in Section 5.1.7 that using QCE for query cost estimation

reduces the cost estimation overhead significantly.

5.1.5 Candidate Configurations

We next describe a workload-based heuristic for determining the set of N configurations evaluated

in OPT. An ad hoc partitioning of tables leads to an exponential number of configurations. Fortu-

nately, astronomy workloads are template-based and can be summarized compactly through query

prototypes [73]. (Workload evolution still occurs as the set of templates change over time). A

query prototype is defined as the set of attributes a query accesses such that queries with identical

prototypes make up an equivalence class in the workload. For instance, the following queries from

an astronomy workload [65] form the same prototype:

SELECT objID, ra, dec FROM PhotoPrimary WHERE dec between 2.25 and 2.75

SELECT top 1 ra, dec FROM PhotoPrimary WHERE objID = 5877311875315

Candidate configurations are generated as new query prototypes in the workload sequence.

Given a table T1(a,b,c,d,e) (a is the primary key) and a prototype P1 = (a,c), we gener-

ate a candidate configuration for P1 corresponding to tables T2(a,c) and T3(a,b,d,e). Thus,

each candidate is optimized for the scan cost of a specific class of queries. We also merge non-

overlapping prototypes to generate new candidates. For example, given prototype P2 = (a,b),

we generate a candidate from both P1 and P2 consisting of tables T4(a,c), T5(a,b), and
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T6(a,d,e). The intuition comes from enumeration-based, offline vertical partitioning algo-

rithms [52][34] in which candidates are enumerated by coalescing groups of columns in existing

configurations in a pairwise manner. The resulting candidates gradually reduce the expected total

query execution cost for the workload. We plan to study the problem of enumerating N (the size

of the configuration space) in more detail in future works.

5.1.6 Architecture

The online physical design tool is co-located with the proxy cache of the SDSS database (Fig-

ure5.3). The proxy cache receives a sequence of queries. Ideally, given a new query, the caching

and the configuration decisions will be simultaneous. However, we implement it by first sending

the query to the OPT module, which, along with the Cost Estimation module and the Configura-

tion Manager, determines if a transition is required. The query is then presented to the cache for

execution. The cache may determine that new objects need to be loaded for executing the current

query. If data objects are loaded, the specification of the new objects is sent to the Configuration

Manager. The Configuration Manager builds up the new set of possible and relevant configurations

for the OnlinePD module to consider. The Configuration Manager instructs the cache to perform

the lowest-cost cache transition and provides the starting configuration for OnlinePD .

5.1.7 Experiments

We implemented our online-partitioning algorithms and cost estimation techniques in the proxy

cache of the Sloan Digital Sky Survey (SDSS) [65], an astronomy database. The proxy cache reside

in the mediation middle-ware of an astronomy federation in which SDSS participates. Performance

of these caches is critical to support access to large volumes of scientific data by multiple users.

Our goal is to improve the I/O performance in the proxy cache through automated, online tools. We
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Figure 5.3: Architecture for online physical design tool.
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Figure 5.4: Affinity matrix (co-access frequency) for ten selected attributes from the PhotoOb jAll

table.

describe the experimental setup in detail before presenting our main results. This includes analysis

of the workload evolution over time, the performance of various online and off-line algorithms,

and the accuracy of our cost estimation modules.

Experimental Setup

Workload Characteristics: We used a month-long trace from SDSS consisting of 1.4 million

read-only queries. These consist of both simple queries on single tables and complex queries

joining multiple tables. Despite a large number of queries, the workload is defined by a small

number of query prototypes For instance, the 1.4 million queries in the trace are characterized

by as few as 1176 prototypes. However, fewer prototypes does not indicate a lack of workload

evolution. On the contrary, there is considerable evolution in the workload in that new prototypes

are introduced continually and prior prototypes may disappear entirely from subsequent queries in

the workload sequence.

Figure 5.4 captures workload evolution for the first three weeks of the trace. It shows the

affinity matrix for ten attributes from a single table in which each grid entry corresponds to the

frequency with which a pair of attributes are accessed together (ordering of attributes are the same

along the row and column). The basic premise is that columns that occur together and have similar

frequencies should be grouped together in the same relation [49]. The results show that column
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groupings change on a weekly basis. An online physical design tool which continuously monitors

the workload can evaluate whether transitioning to a new configuration will lead to an improvement

in overall cost.

Comparison Methods: We now contrast the performance of OnlinePD with several other al-

gorithms. OnlinePD has polynomial-time complexity and finds the minimal spanning tree using

Prim’s algorithm. It is a general algorithm that makes no assumptions about the workload. How-

ever, this generality comes at a cost. Namely, given some knowledge about the characteristics of a

specific workload, we can design highly-tuned heuristic algorithms. To measure the cost of gener-

ality, we compare OnlinePD with HeuPD [47], a greedy heuristic algorithm designed specifically

for SDSS workloads. OnlinePD is a natural progression of HeuPD, which we presented earlier

[47] as a workload-dependent algorithm that is specifically tuned for SDSS. HeuPD transitions

immediately to the next best configuration by tracking the cumulative penalty of remaining in the

current configuration relative to every candidate for each incoming query. A transition is made

once HeuPD observes that the benefit of a new configurations exceeds a threshold, which is de-

fined as the square root of the product of the bi-directional transition costs between the current and

new configurations.

We also consider AutoPart, an existing, offline vertical partitioning algorithm. AutoPart

is presented with the entire workload as input during initialization. This incurs an initial overhead

to produce a physical design layout for the workload, but it can service the workload with no

further tuning. Since AutoPart is not adaptive, it does not produce the optimal physical layout.

AutoPartPD is another physical design strategy that employs the offline AutoPart algorithm.

It is online in that AutoPart is rerun on a daily basis, and it is prescient in that the workload for

each day is provided as input to the algorithm a priori. This provides a lower query response time

compared with AutoPart, in exchange for increased transition cost. NoPart serves as the base

case, in which no vertical partitioning is used on the tables.
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Performance Criteria: We measure the cost of algorithms in terms of average response time

of queries executed in SDSS. This is the measure from the time a query is submitted until the

results are returned. If a transition to a new configuration is necessary, the algorithm undergoes

a transition before executing the query. This increases the response time of the current query but

amortizes the benefit over future queries. Our results reflect average response time over the entire

workload.

Database: For I/O experiments, we executed queries against a five percent sample of the DR4

database (roughly 100GB in size). Although sampling the database is less than ideal, it is necessary

to finish I/O experiments in a reasonable time for real workloads. Given the time constraints, we

compromised database size in order to accommodate a larger workload, which captures workload

evolution over a longer period. To sample the database, we first sampled the fact table consisting of

all celestial objects (PhotoOb jAll) and then preserved the rows in the dimension table containing

the foreign keys required by the fact table.

The data is stored in a commercial DBMS (System1) on a 3GHz Pentium IV workstation with

2GB of main memory and two SATA disks (a separate disk is assigned for logging to ensure

sequential I/O). System1 does not allow for queries that join on more than 255 physical tables.

This is required in extreme cases in which the algorithm partitions each column in a logical relation

into separate tables. Hammer and Namir [34] show that between the two configurations in which

each column is stored separately or all columns are stored together, the preferred configuration is

always the latter. In practice, this configuration does not arise because the cost of joining across

255 tables is so prohibitive that our algorithm never selects this configuration. Finally, to reduce

the large number of configurations, we do not partition tables than are less than 5% of the database

size. This leads to a large reduction in the number of configurations, with negligible impact on I/O

performance benefit. Some other heuristics for reducing N are described in the technical report

[48]. The total number of configurations were about 5000.
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Figure 5.6: Response time overhead for an adversarial workload.

Results

We measured I/O performance by measuring the query response time on the proxy cache using the

sampled database. Figure 5.5 provides the division of response time among query execution, cost

estimation using the optimizer, and transitions between configurations. (The total response time is

133



averaged over all queries). It is not surprising that HeuPD, which is tuned specifically for SDSS

workloads, performs best with an average query execution time of 583 ms and a two times speedup

over NoPart overall. However, OnlinePD increases the cost by just a factor of 1.7. This overhead

is low considering that OnlinePD is general and makes no assumptions regarding workload access

patterns. In fact it improves on the performance of NoPart by a factor of 1.5. NoPart suffers due

to higher scan costs associated with reading extraneous columns from disk. Likewise, AutoPart

suffers by treating the entire workload as an unordered set of queries and providing a single, static

configuration during initialization. Surprisingly, even AutoPartPD did not improve response

time beyond the offline solution because the benefits of periodic physical design tuning is offset

by a higher transition cost. Thus, adapting offline solutions to evolving workloads is challenging

because they do not continuously monitor for workload changes nor account for transition cost in

tuning decisions.

Another interesting feature of the results is that OnlinePD incurs much lower transition costs

than HeuPD. This artifact is due to the pessimistic nature of OnlinePD . It transitions only if it

sees significant advantages in the alternative configuration. On the other hand, HeuPD responds

quicker to workload changes by transitioning to any candidate configuration perceived to benefit

I/O performance for the immediate sequence of queries. This optimism of HeuPD is tolerable

in this workload but can account for significant transition costs in workloads that change faster

than the SDSS workload. To appreciate the generality of OnlinePD over a heuristic solution, we

evaluated a synthetic SDSS workload that is adverserial with respect to HeuPD (Figure 5.6). In

particular, the workload is volatile and exhibits no stable state in the access pattern, which causes

HeuPD to make frequent, non-beneficial transitions. As a result, Figure 5.6 shows that OnlinePD

exhibits a lower query execution time and a factor of 1.4 improvement overall when compared with

HeuPD.

Figure 5.5 also shows the average response time of performing cost estimation (time spent
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querying the optimizer). For AutoPart, this is a one-time cost incurred during initialization. In

contrast, cost estimation is an incremental overhead in OnlinePD and HeuPD. HeuPD incurs a ten

folds overhead in cost estimation over OnlinePD (43 ms versus 4 ms). This is because HeuPD

incurs 93 calls to the optimizer per query. Thus HeuPD is a very slow algorithm. This make

OnlinePD very attractive for proxy caches that receive a stream of queries in which decisions have

to be made fast.

Figure 5.7 illustrates the importance of query plan reuse (note the log scale). Reuse is far more

useful in HeuPD by providing a ten-fold reduction in cost estimation (from 465 ms to 43 ms) and

avoiding 91% of the calls to the optimizer. OnlinePD also benefits significantly by QCE, which

exhibits a three times reduction in cost estimation overhead. In fact, without plan reuse, the total

average response time of HeuPD is 1150 ms, which would lag the total response time of OnlinePD

by 4 ms. Thus, QCE offsets a majority of the overhead of cost estimation.

Finally, we examine the average transition cost in Figure 5.5. AutoPart only incurs transition

costs during initialization, while NoPart incurs no transition cost. AutoPartPD incurs the

highest overhead, requiring a complete reorganization of the database on a daily basis. HeuPD
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Figure 5.8: Response time overhead on a daily basis.

makes 768 minor configuration changes, compared with 92 for OnlinePD which leads to a three

times overhead in transition cost (113 ms compared with 43 ms). This illustrates that HeuPD is

quicker at detecting and adapting to changes in the workload compared with OnlinePD because it

is specifically tuned for SDSS.

Figure 5.8 charts the average response time (both query execution and transition cost) on a

daily basis for various physical design strategies.

Figure 5.9 shows the cumulative distribution function (CDF) of the error in estimating costs

of queries using QCE instead of calling the optimizer directly. The error in cost estimation is

determined by computing

abs
(

1−
(

QCE est. query cost

Optimizer est. query cost

))
(5.3)

Consider the dashed line in the plot, which corresponds to the errors in cost estimation for all

queries. Although the average cost estimation error is only 1.3%, the plot shows that the maximum

error in cost estimation is about 46%, with about 14% of the estimations with more than 10%

error. Inspecting high error estimations reveals that the errors occur in queries with estimated costs
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Figure 5.9: The plots for error in estimating the query costs using QCE. The dashed line represents

all queries in the workload, while the solid line represents queries with higher than 5 unit cost. The

unit of the cost is same as the one used by SQL Server’s optimizer to compare the alternative plans.

below 5 optimizer cost units. We plot the CDF for errors after removing those light queries, which

reduces the workload size by 52%. The solid line in Figure 5.9 shows the cost estimation error for

these filtered set of queries. The maximum error for the filtered queries is about 11%, and about

94% of the estimations have less than 5% error.

The inaccuracies in the light queries comes from the approximations discussed in Section 5.1.4.

Since the contribution of the light queries to the total workload cost is insignificant compared to the

contribution of the heavy queries–only about 4% for our workload–the inaccuracy in estimating

their costs does not affect the configurations selected by our algorithm.

5.2 Online Tuning for Indexes

Before delving into the details of the online algorithm for indexes, we first demonstrate that the

efficient and easy-to-implement algorithm of the previous section cannot be directly applied to the

online algorithm for determining indexes. The reason is the unbounded nature of ρ. We illustrate

this by using an example scenario in which I1, and I2 are two possible indexes in the space S .
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Let S1 = {I1, I2}, S2 = {I1}. If BI2 is the cost of building the index I1, then d(S1,S2) = BI1 , and

d(S2,S1) = 0, implying that the ratio ρ = ∞. Therefore, an adversary can make the algorithm shift

between these two states and make the online algorithm perform infinitely worse than the optimal

algorithm.

Furthermore, vertical partitions require only a minimally larger footprint on the disk, when

compared to the original tables. Indexes, however, need a substantially larger footprint, as they

duplicate the data from the original table. Therefore, one needs to take into account the extra

storage overhead of the indexes.

We therefore build an online algorithm OnlineITwhich is based on the famous Work Function

Algorithm [9]. The algorithm incurs higher overhead but provides a tighter competitive ratio than

the OnlinePD algorithm. We also introduce a mechanism to take into account the cost of storing

the index on disk. We first discuss the work function algorithm, and then discuss the details of

our adaption of online physical design to the WFA, and then demonstrate the effectiveness of the

algorithm for the physical design problem.

5.2.1 Work Function Algorithm

Work functions are important part of the online algorithms, and play vital role in finding the com-

petitiveness of the algorithms. The intuition behind the algorithm is that, the online algorithm

needs to keep track of the optimal offline cost so far. This realization leads to the concept of “work

functions”, that try to follow the optimal offline algorithm with a small “regularization” term.

Remember that S is the set of all possible configurations (combination of indexes), and d de-

fines the distance of one configuration from the other. Let s0 be the initial state of the database, qi

be the ith query in the sequence, and the cost of the query at state s ∈ S be cost(qi,s). The entire

sequence of the queries can be represented as σ = q1,q2, . . . ,qn. Then the function wi defines the
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work function as follows:

wi+1(s) = min
x∈S
{wi(s)+ ri+1(x)+d(x,s)} (5.4)

w0(s) = d(s0,s) (5.5)

Clearly, the optimal algorithm for σ is minx∈S wn(x).

Using this work function, we now define the work function algorithm WFA: Suppose that the

algorithm is in state si after processing qi, then on receiving the query qi+1 the algorithm moves to

a state si+1 = argminx{wi+1(x)+d(si,x)}, and wi+1(si+1) = wi(si+1)+ ri+1.

It has been proven that the above algorithm is only 2|S|−1 competitive [62].

5.2.2 OnlineIT

We now compute the cost of answering the query query cost(qi,x). The cost of the answering the

query includes the cost of actually running the query, and the cost of the keeping the structures in

si+1 till the arrival of qi+1. Therefore the cost is

ri+1(x) = query cost(qi+1,x)+maint cost(si)

Here the query costis the cost of the query to execute in the configuration x, and the maint costis

the cost of maintaining the structure in the database. Typically the query cost is the cost of run-

ning the query in the database and measured by invoking the optimizer and retrieving the plan,

or invoking tools like INUM to reduce the cost of optimizer invocation. The maintenance cost

involves computing the rate of updates to the index structures, and the cost of storing the index on

disk. Traditionally, these metrics had been separate ones, and there was no way to directly compare

them. In the advent of cloud computing, however, allow us to compare them using the cost metrics
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imposed by the cloud providers. Section 5.2.4 discusses the details of measuring these costs and

comparing them on dollar terms.

5.2.3 Implementation

We use the architecture similar to CoPhy, we repeat it here again. We take two approach to deter-

mine the work-function: Dynamic Programming and Combinatorial Optimization Programming.

Dynamic Programming

Using the dynamic programming approach, all s ∈ S are enumerated, and for each query the work-

function for that state is computed. As one can see, the complexity of the algorithm is O(|S|× |I|)

for each step. Typically, |S| is as high as a million for typical analytical queries and |I| is in thou-

sands. To reduce the overhead, we first consider only s ∈ S(query cost(qi,s) > query cost(qi,φ).

Using INUM the costs can be determined fast, and furthermore it can be sampled to reduce the

number of configurations the algorithm needs to look at.

Combinatorial Optimization Programming

The Combinatorial Optimization Program (COP) approach removes the requirement for sampling

the states, but at the cost of adding higher overhead to the computation. Recall from Chapter 4

that the query costfunction can be represented as a linear function with variables for the indexes.

The number of such variables is linear w.r.t. to the number of indexes, therefore, does not grow

combinatorially as is the case for the dynamic programming approach.

Still, for millions of queries, the overhead of solving the problem can increase beyond manage-

able level. We address this issue by taking the following three approaches:

1. Grouping the queries into batches. Instead of solving the work function problem for each
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incoming query, we group a set of b queries into one batch to do the index tuning. This

allows us to reduce the impact of the COP solver overhead for each query. Note that, the

batching does not affect the competitiveness of the algorithm after the batches are complete.

It merely differs the competitiveness to the end of the batch.

2. A window is used to decide on the physical design by looking at only last w batches, rather

than the complete query history. If w = 1, then this resembles the greedy algorithm which

tries to optimize for only one query. For w = ∞, this is the full work function algorithm. We

experimentally show that by keeping the w value at reasonable level we get structures which

are close to the full work function algorithm, but are much faster in execution.

3. We update the COP for each new query, rather than recreate the COP for each new set of

queries. As discussed earlier in Chapter 4, the COP solvers can reuse the earlier compu-

tations to speed up the incremental updates to the problem. Using this advantage, we only

remove a batch at the beginning of the window and remove add the current batch to the

problem before solving it.

Using above three techniques we show that using the COP solver is more efficient than using

the dynamic programming for a space of the parameter space.

5.2.4 Cloud Cost Model

In this section we describe the infrastructure details of the cloud setting and we analyze the cost

for building cache structures and executing query plans.

Cloud Infrastructure

Our system is targeted towards an architecture shown in Figure 5.10. The user requests for query

execution from Internet and contacts the Coordinator node. The Coordinator node distributes the
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Figure 5.10: The Cloud DBMS Architecture

query to the appropriate CPU node, or to the back-end databases. We assume that the cloud

infrastructure provides unlimited amount of storage space, CPU nodes, and very high speed intra-

cloud networking. We also assume that the CPU nodes in the architecture are all identical to

each other. Compared to TCP bandwidth on the Internet, the inter-system bandwidth is orders of

magnitude faster and we ignore the overhead associated with it. Our storage system is based on

a clustered file system, such as, [29], where the disk blocks are replicated and stored close the

CPU nodes accessing them. With this infrastructure we can assume that the virtual disk is a shared

resource for all the CPU nodes in the cache.

Cost of Structures

To speed up the queries we also implement indexes for the queries. In the future we plan to ex-

pand the infrastructure in order to gain extra performance from cached materialized views, similar

to [73], or partial columns, similar to [70]. Moreover, additional CPUs are employed to speed

up queries. Therefore, the cache needs to decide on implementing three different types structures

to speed up the queries and maintain them, i.e., 1) CPU nodes N, 2) table columns T , and 3) in-

dexes I. As discussed in Section 4.3 the cache needs to spend money for building these structures

and maintain them. For all three structures we define the building structure BuildS, as well as the
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maintenance structure MaintS, for S ∈ {N,T, I}.

For CPU nodes, we exploit the scalability of cloud infrastructure and dynamically boot up a

system on demand. If b is the time it takes to boot a system and u is the cost of using a system per

unit time, then the cost of building the CPU node, N structure is constant:

BuildN(N) = b ·u (5.6)

and the cost of maintaining the node per unit time is also constant:

MaintN(N) = c (5.7)

For a table column, T , the building cost BuildC(T ) is the cost of transferring T from the back-end

database and combining it with the current columns in the cache. For simplicity, we ignore the cost

of integrating T into the existing table in the cache. Therefore the cost of building a table column

is primarily the cost of transferring the respective data over the network. Therefore the cloud has

to pay for the bandwidth used to transfer that data, and the CPU time taken to manage that transfer.

If fn is the fraction of CPU taken to manage transfer, and t, l are the throughput and latency of the

network, the total cost for building a column C in the cache is:

BuildT (T ) = fn · (l +
size(T )

t
)+ size(T ) · cb (5.8)

where cb is the cost of transferring a byte across the network. The maintenance cost of the table

column is just the cost of using disk space in the cloud, so if cd is the cost of disk storage in the

cloud, then the maintenance cost for T is:

MaintT (T ) = size(T ) · cd (5.9)

For indexes, the building cost involves fetching the data across the network and then building the

index on the cache. Since sorting is the most important step in building an index, we approximate

the cost of building an index to the cost of sorting the indexed columns. For example, the cost for
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building an index I(A,B,C) on table T using columns A,B, and C is approximated to the cost of

running the following query:

Q = select A, B, C from T order by A, B, C

The total cost building an index is therefore,

BuildI(I) =Ce(PQ)+ ∑
C∈I∧C/∈Cache

BuildI(I) (5.10)

where PQ is the query plan for the above query. The function Ce(PQ), is the function that determines

the cost of running a query Q in the cache based on a specific plan PQ, and is described in Section

5.2.4. We assume that the cloud databases in the current setting are static, therefore there is no

need for index updating. Hence, the maintenance cost for an index is:

MaintI(I) = size(I) · cd (5.11)

Cost for Running Queries

Since the cloud DBMS should consider many possible plans, i.e. design configurations, for running

a query, accurate and fast estimation of the cost associated with each plan is very important. The

execution time of a query Ce is estimated based on a respective query plan PQ. For the current

cloud setting, we assume that the query runs completely either in the back-end or in the cache.

In other words, we do not consider plans that run partially in the back-end and then transfer the

partially computed data to the cache in order to complete the execution.

Concerning queries that run completely in the cache, estimation of the execution cost is deter-

mined based a plan that is suitable for the cache. If the total cost of running the query is qtot , and

total I/O cost for in the execution plan is iotot , the cost of running the query is:

CeC(PQ) = lcpu · fcpu ·qtot · c+ fio · io · iotot (5.12)

where lcpu is a factor that indicates the overload of the CPU node, and, fcpu and fio are factors that

convert the numbers reported by the execution plan to actual CPU time and actual IO operations,
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respectively. If these factors are stable their values can be estimated by running a fixed set of

simple queries and plotting the actual CPU time and logical disk reads. If these factors change,

their values are determined by the actual execution plan after running the queries??.

For network queries, we estimate the cost as the total cost of running in the back-end database

and transferring the result to the cache.

CeN (Q) =CeC(Q)+ fn · (L+
S(Q)

t
)+S(Q) · cb (5.13)

The function S(Q) determines the size of the results for the query Q, and the values t, fn, cb, and l

are defined in Section 5.2.4.

5.2.5 Experimental Setup

We use the experimental setup of CoPhy to run the experiments for the above mentioned algo-

rithms.

Workload We use a work generated from 7 TPC-H query templates and containing 10000 queries.

The queries are arranged such that they mimic the evolution demonstrated by the original SDSS

workload (as shown in Figure 5.4). We use this workload, since current INUM implementation is

not mature enough to process complex query structures, and deep hierarchy of function used in the

SDSS workload.

Batch Size (b): The number of queries used for each invocation of the COP Solver. We experiment

with batch sizes of 1, 10, 50, 100 and determine that at the batch size of 50, the overhead of

invoking the COP solver is dominated by the actual cost of solving the optimization problem.

Therefore, we use b = 50 as the default value in all our experiments.

Window Size (w): The number of queries kept for computing the work function algorithm. We

experiment with window sizes of 100, 500, and 1000 and 10000 (i.e., effectively disabling the

windowing).
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Query Arrival Interval (r): We study the effect of the index maintenance cost by changing the

query arrival interval. For larger interval, the maintenance cost increases, and for smaller interval

the maintenance cost is low. We experiment with three different value of r – 10s, 30s, and 60s.

We use a dual-core Xeon machine with a commercial DBMS (System2) on a TPCH database

of size 1GB.

5.2.6 Experimental Results

We first demonstrate that using a window on the work function allows us to reduce the overhead

of its computation without sacrificing the workload performance. Then we show the effect of

maintenance cost on the online physical design problem.

Effect of Window Size

In this experiment, we compare the performance of the algorithms on various window sizes for the

COP approach. It also compares the performance of the COP approach with the dynamic program-

ming approach and the offline approach. In offline approach we optimize the entire workload only

once, and use the suggested indexes for all queries in the workload. For this experiment we ignore

the maintenance cost of the indexes.

Figure 5.11 shows the average query cost for the all the batches in the workload. The figure

shows that using an online approach is beneficial for an evolving workload, as the performance of

the offline tuning algorithm is worse than the online algorithm for most of the batches, except for

the first batch, where the online algorithm does not begin to optimize before the batch of the query

has arrived.

Figure 5.12 compares the average overhead of the tuning algorithms for each query along with

the actual execution time of the queries using the suggested indexes. In our workload, the dynamic
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Figure 5.11: The response times for the original workload, the offline algorithm, and COP algo-

rithm with w = 100.

program has to check approximately 6.2106 combinations of states and indexes for each batch.

Therefore, it incurs a very high optimization overhead, even more than using the COP without

windowing. The overhead of COP approach is about 5% for seconds for most window sizes,

which is reasonable considering that reduce the execution time of the workload by a factor of 2.5.

The overhead the COP approach goes up to 23% for w = 10000, since the COP requires about 6

minutes to solve for each batch. Thus, using the COP for a reasonable window size of 100 provides

ideal balance between the performance and overhead.
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Figure 5.13: The average cost of running the queries on the system.

Effect of Maintenance Cost

To study the effect of maintenance cost, we use the cost model in from Aamazon’s EC2 cloud

service and convert all the costs into dollars as discussed in Section 5.2.4. We then vary the arrival

rate of the queries. Since the database on which we run the experiments is relatively small, we

increase the maintenance cost by three orders of magnitude to make it comparable to a cloud-scale

maintenance cost. In this experiment, we set w to be 100.

Figure 5.13 compares the costs of different components of the algorithms for various query

arrival intervals. As the query arrival interval increases the cost of building the indexes and main-

taining them increases. Since the maintenance cost of the indexes forces the algorithm to remove

indexes, the build cost also increases with increasing arrival rates. But, they do not increase pro-

portionally to the arrival interval, as the algorithm optimizes for the total cost in this scenario.
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5.3 Related Work

As we discuss in earlier chapters, automated physical design tools can improve cache performance

by using query workload to decide which attributes to group together and output the best the

hybrid model. Early work on automated physical design [3, 25, 34, 49, 49, 52] derived affinity

measurements from a given workload as a measure for grouping columns together. Columns are

grouped by applying clustering algorithms on the affinity values. However, affinity values are

decoupled from actual I/O cost, and thus are poor predictors of the best hybrid model. Recently,

cost estimates from the optimizer or analytical cost-based models that capture the I/O of database

operations are used to evaluate attribute groupings [3, 22, 52]. For instance AutoPart[52] interfaces

with a commercial optimizer to obtain cost estimates for queries. Existing physical design solutions

are offline, i.e., they assume a priori knowledge of the entire workload stream and therefore provide

a single, static physical design for the entire workload.

Current research [13, 63] emphasizes the need for automated design tools that are always-on

and as queries arrive continuously adapt the physical design to changes in the workload [4]. Quiet

[59] describes an incremental algorithm for index selection which is not fully integrated with the

optimizer. In COLT [63], the authors present an alternative heuristic algorithm which relies heavily

on the optimizer. In addition, they do not take into account transition costs. Bruno et. al. present

a formal approach to online index selection [13]. A 3-competitive algorithm is proposed which

adapts to workload changes as well as accounts for transition costs. However, the algorithm applies

to only two physical design alternatives: creation of an index and dropping an index on a table.

For multiple indexes, similar to COLT, they present a different heuristic incremental algorithm.

In this chapter, we describe a general framework that evaluates multiple physical design alter-

natives. We are concerned with sudden changes in the workload and therefore use online algo-

rithms that provide guarantees on being able to adapt with changes in workload. To the best of

our knowledge this is the first framework that evaluated multiple physical design alternatives in a
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formal way.

5.4 Conclusion

In this chapter, we have presented a workload adaptive physical design tool that can help DBAs

who manage large database installations. This tool takes the guess work out of a DBA’s job by

running continuously and adapting to workload and database changes.

Our tool is general in that it does not depend upon the distribution properties of the incoming

workload but assumes the worst possible workload. Therefore it adapts to drastic changes in the

workload. This adaptiveness comes from the competitive online algorithm. While an adaptive

algorithm is necessary for the tool to be general it has to be efficient also. We have supported our

tool with efficient cost estimation modules. This makes our tool practical for real world database

installations such as proxy caches.

Our experimental evaluation shows that the tool not only outperforms existing offline methods,

it adapts quite close to the special methods designed specifically for a given workload. We show

that our tools do not hurt DBMS performance but maintains it.
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Chapter 6

Conclusion

In this thesis, we described a novel approach to physical design tuning. First, we propose a cost

model that can be modeled mathematically. The key insight is, instead of fully modeling the query

optimizer or treating it as a black-box, we partially model to take advantage of both the accuracy

of a black-box model and the flexibility of the full model. We reuse the query optimizer’s compu-

tations to model the dependence of the query cost on its data access costs. This approach allows

the cost model to be as accurate as the invoking the optimizer directly and build a straightforward

mathematical model to be exploited in search algorithms.

Second, we exploited this cost model to formulate the physical design problem as a compact

combinatorial optimization problem. The compactness of the formulation results in fast identifica-

tion of near optimal design features, while scaling to thousands of queries and candidate indexes.

Furthermore, the formulation enables many novel features in the physical design tool, such as

interactivity, predictability, and generality.

In this thesis, we also developed physical design algorithms for online workloads that pro-

vide competitiveness guarantees. We first developed a very low overhead algorithm using graph

traversal technique, that works on highly resource constrained environments. We then developed a
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general algorithm by extending our combinatorial optimization formulation.

The application of our approach to the diverse workload types, design features, and multitudes

of real-world constraints demonstrates that it is generic enough to be applied to other physical de-

sign scenarios as well. The approach of partially modeling the optimizer can be used to build useful

cost models in presence of selectivity variations, or scenarios in which the underlying components

are too complex to model completely. The combinatorial optimization formulation can also be

used for any scenarios in which the behavior of the query optimizer needs to optimized. For ex-

ample, it can be used to efficiently identify query and index interactions. Finally, the approach

of using principled optimization methods by converting the database optimization problem into a

mathematical optimization problem can be used for many other optimization problems inherent in

the database management systems.
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