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Abstract

We present a novel formulation of the modal logic CPL, a constructive logic of provability that
is closely connected to the Gödel-Löb logic of provability. Our logical formulation allows modal
operators to talk about both provability and non-provability of propositions at reachable worlds. We
are interested in the applications of CPL to logic programming; however, this report focuses on the
presentation of a minimal fragment (in the sense of minimal logic) of CPL and on the formalization
of minimal CPL and its metatheory in the Agda programming language. We present both a natural
deduction system and a sequent calculus for minimal CPL and show that the presentations are
equivalent.
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1 Motivation
Consider the following propositions (where “⊃” represents implication):

∀x. ∀y. edge(x, y) ⊃ edge(y, x)

∀x. ∀y. edge(x, y) ⊃ path(x, y)

∀x.∀y.∀z. edge(x, y) ⊃ path(y, z) ⊃ path(x, z)

One way to think of these propositions is as rules in a bottom-up logic program. This gives
them an operational meaning: given some known set of facts, a bottom-up logic program uses
rules to derive more facts. If we start with the single fact edge(a, b), we can derive edge(b, a)
by using the first rule (taking x = a and y = b), and then, using this new fact, we can derive
path(b, a) by using the second rule (taking x = b and y = a). Finally, from the original edge(a, b)
fact and the new path(b, a) fact, we can derive path(a, a) using the third rule (taking x = a,
y = b, and z = a). Once the only new facts we can derive are facts we already know, we say
we have reached saturation — this will happen in our example when we have derived edge(a, b),
edge(b, a), path(a, b), path(b, a), path(a, a), and path(b, b). Bottom-up logic programming is a
very simple and intuitive kind of reasoning, and it has also shown to be an elegant and powerful
way of declaratively specifying and efficiently solving many computational problems, especially
in the field of program analysis (see [13] for a number of references).

Next, consider the following proposition:

∀x.∀y. path(x, y) ⊃ ¬edge(x, y) ⊃ noedge(x, y)

Intuition says that this is a meaningful statement. In our example above, we can derive path(a, a),
but we can’t possibly derive edge(a, a), so we should be able to conclude noedge(a, a). A bottom-
up logic programming semantics based on stratified negation verifies this intuition. In a stratified
logic program made up of the four previous rules, we can derive all the consequences of the first
three rules until saturation is reached. At this point, we know everything there is to know about
facts of the form edge(X, Y ) and path(X, Y ). When considering the negated premise ¬edge(x, y)
in the fourth rule, we simply check the saturated database and conclude that the premise holds if
the fact does not appear in the database.

Stratified negation would, however, disallow the addition of the following rule as paradoxical
or contradictory:

∀x.∀y. path(x, y) ⊃ ¬edge(x, y) ⊃ edge(x, y)

Why is this rule problematic? Operationally, the procedure we used for stratified negation no
longer really makes sense: we reached saturation, then concluded that there was no way to prove
edge(a, a), then used that conclusion to prove edge(a, a). But we had just concluded that it wasn’t
provable! Stratified negation ensures that we never use the fact that there is no proof of A to come
up with a proof of A, either directly or indirectly. However, stratified negation is an odd property:
the program consisting of the single rule ¬prop1 ⊃ prop2 is stratified (we consider prop1 first,
and then we consider prop2), and the program consisting of the single rule ¬prop2 ⊃ prop1 is
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also stratified (we consider prop2 first, and then we consider prop1), but the two rules cannot be
combined as a single stratified logic program. This sort of problem is a large part of the reason
why a general and proof-theoretic justification for stratified negation has been elusive.

This report considers the proof theory of a logical system, constructive provability logic, that
we believe can be used to give a complete and satisfying justification for stratified negation in
logic programming. However, logic programming will be used in this report only as a motivating
example — the relationship between this logic and stratified logic programming will be left for
future work.

1.1 Foundations, formalization, and Agda
It is always the case that the proof theory of a logic needs to be formalized using some metalogic
— usually some assumed and largely informal notion of set-theory-based mathematics that ad-
mits, at minimum, induction. Any consistency results for the logic are obviously premised upon
consistency of the metalogic; worrying about consistency of the metalogic is generally filed un-
der the label “foundational issues.” However, as we will see, in constructive provability logic the
metalogic is interwoven with the proof theory in a way that is mostly foreign outside of dependent
type theories,1 making these sorts of foundational issues quite a bit more relevant. Therefore, it is
desirable to be a little more precise about what our metalogic actually is to ensure that there are no
unintentional shenanigans.

In our case, we make our foundational assumptions precise by formalizing the contents of
this report in a proof assistant, Agda [8]. This has the effect of fixing our metalogic as the logic
that Agda implements, intuitionistic type theory (unless, of course, there are bugs in Agda!).2

The code from this formalization is available online in the CMU technical report archive and at
https://bitbucket.org/robsimmons/constructive-provability-logic.

2 A judgmental introduction
We will introduce the principles of constructive provability logic in a manner consistent with Pfen-
ning and Davies’ judgmental reconstruction of modal logic [9] (itself an interpretation of Martin-
Löf’s 1983 Siena Lectures [7]). This section is not intended to be a complete introduction to the
judgmental methodology, and we refer readers to the aforementioned papers for a more complete
discussion.

The judgmental methodology carefully maintains a separation between propositions (which
we write as A, B, etc.) and judgments J . Propositions are syntactic constructs that are built up
from some set of atomic propositions (edge(a, b) is an example of an atomic proposition) using
connectives (implication A ⊃ B, conjunction A ∧B, and disjunction A ∨B are examples of con-
nectives), and judgments are things that are proved using rules of inference. In this methodology,
given a proposition A we can talk about giving a proof of the judgment A true (i.e. “proving that
A is true”), giving a proof of the judgment A false (i.e. “proving that A is false”), or even giving a

1One exception is Zeilberger et al.’s recent work on higher-order focusing [5, 14].
2There is one caveat, which we discuss in Section 2.4.
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proof of the judgment that A is true at some specific time t. It isn’t really meaningful to “prove A”
— if we say such a thing, we usually mean it as shorthand for proving that A is true.

A hypothetical judgment J1, . . . , Jn ` J (where the sequence of Ji are called the antecedents
and J is called the consequent) roughly expresses that the judgment J has a proof if we assume
that there are proofs of the assumptions J1, . . . , Jn. However, a hypothetical judgment does not
necessarily have a set meaning; rather, we define the meaning of a hypothetical judgment by defin-
ing three things: (1) a hypothesis rule, (2) a weakening principle, and a (3) a substitution principle.
These defining principles should flow from our preexisting understanding of what the hypothetical
judgment means. A rich family of logics (we call these the structural logics) obey a common set
of defining principles (we use Ψ as an abbreviation for J1, . . . , Jn):

Definition of hypothetical judgment in structural logics:
— Hypothesis rule: If J ∈ Ψ, then Ψ ` J .
— Weakening3 principle: If Ψ ⊆ Ψ′ and Ψ ` J , then Ψ′ ` J .
— Substitution principle: If Ψ ` J and Ψ, J ` J ′, then Ψ ` J ′.

These weakening and substitution principles have an interesting character. In one sense, they
are the last thing we need to consider, as once the logic is fully defined, they are theorems that we
have to prove about the logic as a whole. However, the position of the judgmental methodology is
that such defining principles are also the first thing that we need to consider. On a philosophical
level, this is because these defining principles should flow from our understanding of the meaning
of the hypothetical judgment. On a practical level, the weakening and substitution principles are
necessary to have on hand as we work through the two “sanity checks” on the meaning of logical
connectives (more on that in a moment).

The meaning of a connective is defined by two sets of rules, the introduction and elimination
rules. In the case of implicationA ⊃ B, which we will use as an example, there is one introduction
rule and one elimination rule. Introduction rules establish how we can obtain proof of a judgment
about a certain proposition — they mention the connective in the conclusion.

Ψ, A true ` B true

Ψ ` A ⊃ B true
⊃I

Elimination rules establish how we can use a proof of a judgment about that proposition — they
mention the connective in a premise.

Ψ ` A ⊃ B true Ψ ` A true

Ψ ` B true
⊃E

The two sanity checks on these rules are usually called local soundness and local completeness.
Local soundness ensures that the elimination rules are not too strong relative to the introduction

3The weakening principle actually generalizes the principle commonly called weakening (if Ψ ` J then Ψ, J ′ ` J)
as well as the principles commonly called exchange (if Ψ, J1, J2,Ψ

′ ` J then Ψ, J2, J1,Ψ
′ ` J) and contraction

(if Ψ, J ′, J ′ ` J then Ψ, J ′ ` J). According to user “thecod” at http://requestforlogic.blogspot.
com/2010/11/totally-nameless-representation.html, the presentation here is generally known as
the “presheaf approach” and represents the action of the term functor on context renamings.
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rules (or, conversely, that the introduction rules are not too weak).4 Consider a proof D of the
hypothetical judgment Ψ ` C true where the “last” rule is an elimination rule. In the running
example of implication, this means that the elimination rule is ⊃E and there are two subproofs:
one proves Ψ ` A ⊃ C true and the other proves Ψ ` A true. Call these two subproofs D1 and
D2, respectively.

D1

Ψ ` A ⊃ C true
D2

Ψ ` A true

Ψ ` C true
⊃E

As the “last” rule was an elimination rule, one of the subproofs must mention the relevant con-
nective (in this case D1). Local soundness is the property that, if the “last” rule in that premise is
an introduction rule, then both the introduction rule and the elimination rule are unnecessary —
we can reconstruct a proof of the ultimate conclusion Ψ ` C true by using the premises of the
introduction rule and any other premises of the elimination rule. In the case of implication, we can
get D′ by applying the substitution principle to the subproofs labeled D2 and D′

1 below.

D′
1

Ψ, A true ` C true

Ψ ` A ⊃ C true
⊃I D2

Ψ ` A true

Ψ ` C true
⊃E

=⇒R
D′

Ψ ` C true

Local completeness, on the other hand, ensures that the elimination rules are not too weak
relative to the introduction rules (or, conversely, that the introduction rules are not too strong).
Whereas local soundness has the form of a reduction or simplification, local completeness has
the form of an expansion: we show that, given a proof of the connective, we can obtain enough
evidence by applying elimination rules to re-apply the introduction rule and reconstruct the proof.
In the expansion below, we get D′ by applying the weakening principle to D.

D
Ψ ` A ⊃ B true

=⇒E

D′

Ψ, A true ` A ⊃ B true Ψ, A true ` A true
hyp

Ψ, A true ` B true
⊃E

Ψ ` A ⊃ B true
⊃I

2.1 Intuitionistic Kripke semantics (a.k.a. “Simpson-style” modal logic)
Modal logic is an extension of regular logic that initially sought to deal with concepts like “pos-
sibility” and “necessity.” A popular way of understanding and modeling modal logics is through
Kripke semantics, which explain the meaning of possibility and necessity in terms of some set of
worlds and some accessibility relation. An accessibility relation determines whether you can get

4Note that the fact that we call this property local soundness indicates a bias towards the introduction rules — local
soundness proves that the elimination rules are (locally) sound with respect to the introduction rules, but it also proves
the introduction rules are (locally) complete with respect to the elimination rules! Dummett labeled this bias towards
the introduction rules the verificationist perspective and the opposite bias towards the elimination rules the pragmatist
perspective [3].
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from one world to another world. Then, the judgment “A is possibly true at world w” means that,
from w, you can get to some world where A is true, and the judgment “A is necessarily true at
world w” means that, from w, everywhere you can get to is a world where A is true.

The primary contribution of Alex Simpson’s Ph.D. thesis was to show that many intuitionistic
modal logics could be given proof-theoretic treatment that strongly resembles Kripke semantics
by using a structural logic with two judgments [11]. The first judgment is A[w], which expresses
that A is true at a specific “world” w. The other judgment is w ≺ w′, which expresses that, from
world w, world w′ is accessible. In Simpson’s thesis, worlds are just syntactic things (much like
propositions). One complication is that, in order to talk about the definition of the hypothetical
judgment in Simpson-style modal logic, we must extend the form of the hypothetical judgment to
account for the fact that we have as antecedents not only judgments A[w] and w ≺ w′, but also
world variables ω.

A general introduction to hypothetical judgments parametrized by variables would lead us too
far astray; Harper has a complete discussion elsewhere [4, Chapter 4]. Specialized to our needs,
the form of the hypothetical judgment is Φ `Σ J , where Σ = ω1 . . . ωk, Φ = J1, . . . , Jn, and J
along with each of the Ji are either A[w] or w ≺ w′.

Definition of hypothetical judgment in Simpson-style modal logic:
— Hypothesis rule: If J ∈ Φ, then Φ `Σ J .
— Weakening principle: If Σ ⊆ Σ′ and Φ ⊆ Φ′ and Φ `Σ J , then Φ′ `Σ′ J .
— Variable substitution principle: If Φ `Σ,ω J , then Φ[w/ω] `Σ J [w/ω].
— Substitution principle 1: If Φ `Σ A[w] and Φ, A[w] `Σ J , then Φ ` J .
— Substitution principle 2: If Φ `Σ w ≺ w′ and Φ, w ≺ w′ `Σ J , then Φ ` J .

The hypothetical judgment is only well-formed if every world variable mentioned in Φ or J
also appears in Σ. This restricts the weakening and variable substitution principles — it isn’t
possible to weaken the hypothetical judgment A[ω1] `ω1 C[ω1] to A[ω1], ω1 ≺ ω3 `ω1,ω2 C[ω1]
because ω3 6∈ {ω1, ω2}, for instance. It is also not possible to use variable substitution to replace
A[ω2] `ω1,ω2 C[ω2] with A[ω3] `ω1 C[ω3], and for the same reason.

Now we can define the meaning of connectives and reason about their soundness and complete-
ness in the same way as we did before. The rules for implication are nearly unchanged, and the
local soundness and completeness checks behave much as they did before, so we will not repeat
them.

Φ, A[w] `Σ B[w]

Φ `Σ A ⊃ B[w]
⊃I

Φ `Σ A ⊃ B[w] Φ `Σ A[w]

Φ `Σ B[w]
⊃E

The point of this new infrastructure is that it allows us to define new connectives, such as modal
possibility, written ♦A. The intended meaning of ♦A is that it should be true at a given world if
there is some accessible world where A is true.

Φ `Σ w ≺ w′ Φ `Σ A[w′]

Φ `Σ ♦A[w]
♦I

Φ `Σ ♦A[w] Φ, w ≺ ω′′, A[ω′′] `Σ,ω′′ C[w′]

Φ `Σ C[w′]
♦E
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The introduction rule just follows our informal definition above: if a world w′ is accessible from a
worldw andA is true atw′, then ♦A is true atw. The elimination rule is slightly more complicated.
If ♦A is true at w and we are trying to prove C at some (potentially different) world w′, then it
suffices to prove C[w′] under the additional assumption that A is true at ω′′, where ω′′ is a newly
introduced world variable that represents an arbitrary world accessible from w.

Local soundness for modal possibility is straightforward, though it uses all three substitution
principles: from D3, variable substitution gives us Φ, w1 ≺ w2, A[w2] `Σ C[w3]. Then, from the
first substitution principle along with D′

2 (which is D2 after the weakening principle is used to add
the premise w1 ≺ w2), we get Φ, w1 ≺ w2 `Σ C[w3]. Finally, the second substitution principle
along with D1 gives us D′, a proof of Φ `Σ C[w3].

D1

Φ `Σ w1 ≺ w2

D2

Φ `Σ A[w2]

Φ `Σ ♦A[w1]
♦I D3

Φ, w1 ≺ ω,A[ω] `Σ,ω C[w3]

Φ `Σ C[w3]
♦E

=⇒R
D′

Φ ` C[w3]

Local completeness for modal possibility is straightforward: the two new pieces of information
provided by the ♦E rule are precisely what we need to apply the ♦I rule.

D
Φ ` ♦A[w]

=⇒E

D
Φ ` ♦A[w]

Φ, w ≺ ω′, A[ω′] `Σ,ω′ w ≺ ω′ hyp Φ, w ≺ ω′, A[ω′] `Σ,ω′ A[ω′]
hyp

Φ, w ≺ ω′, A[ω′] `Σ,ω′ ♦A[w]
♦I

Φ ` ♦A[w]
♦E

2.2 Reflection over the accessibility relation
Consider a very simple accessibility relation: there are two worlds α and β, and from α, β is
accessible (again, we write this α ≺ β). Then assume that ♦A is true at α and that A ⊃ B is true
at β. Should we be able to conclude that B is true at β?

We can represent this question by asking whether the following judgment has a proof:

α ≺ β,♦A[α], A ⊃ B[β] `α,β B[β]

At the level of a word problem, this seems plausible: ♦A is true at α, meaning that A is true at
some world accessible from α. As β is the only world accessible from α, you could argue that this
means A must be true at β, at which point the rest follows by implication elimination:

. . . , A[β], A ⊃ B[β] `α,β A ⊃ B[β]
hyp

. . . , A[β], A ⊃ B[β] `α,β A[β]
hyp

. . . , A[β], A ⊃ B[β] `α,β B[β]
⊃E

This reasoning, however, is inconsistent with the defining principles of the logic. If we can prove
the judgment α ≺ β,♦A[α], A ⊃ B[β] `α,β B[β], the weakening principle says that we must

6



also be able to prove the judgment α ≺ β, α ≺ γ,♦A[α], A ⊃ B[β] `α,β,γ B[β]. By weakening
the previous hypothetical judgment, there are are now two worlds accessible from α, both β and
γ. This no longer seems like a hypothetical judgment that should have a proof, as it might be the
case that A was true at γ but not at β. In other words, we should hope that the Simpson-style
modal logic doesn’t allow us to prove this hypothetical judgment5 — if it did, that would indicate
a problem with the weakening principle we started with!

2.2.1 Modal logic with a pre-defined accessibility relation

One of the reasons that we formalize logic in the first case is to capture and mechanize patterns
of natural reasoning. Perhaps we want to be able to formalize the informal reasoning above. It is
immediately clear that any logic that captures this argument will have defining principles that differ
from the defining principles of Simpson-style modal logic. In particular, the weakening principle
cannot apply in the same way to judgments about accessibility — if we add new worlds or new
connections in the accessibility relation, previously provable judgments may become unprovable.

The way we will deal with this is by completely separating reasoning about accessibility and
reasoning about truth-at-a-given-world; we will just assume that there is some preexisting set of
worlds w and some preexisting accessibility judgment w ≺ w′ that the logic inherits. The simple
accessibility relation that only has α ≺ β is one possible accessibility relation, and another is
represented by the following diagram, where the arrow from α to β indicates that α ≺ β:

ωβ
γα

Another accessibility relation might have two worlds and a complete accessibility relation (α ≺ β,
α ≺ α, β ≺ α, β ≺ β), and others might have an infinite number of worlds. For instance, the
“count-up” accessibility relation has countably infinite worlds arranged like this:

ω0 ω1 ω2 ω3 . . .

The “count-down” accessibility relation has countably infinite worlds arranged like this:

ω0ω1ω2ω3. . .

Yet another possibility is this “infinite options” accessibility relation, where α has countably infi-
nite successors and ω countably infinite predecessors:

α
β0

β1

β2...

...
...

ω

5It doesn’t.
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Whatever accessibility relation we use, judgments about accessibility no longer need to appear
in the hypothetical judgment, so we can once again define a structural logic. Specializing the
original definition to our current logic, we let Γ = A1[w1], . . . , An[wn].

Definition of hypothetical judgment in modal logic with a predefined accessibility relation:
— Hypothesis rule: If Ai[wi] ∈ Γ, then Γ ` Ai[wi].
— Weakening principle: If Γ ⊆ Γ′ and Γ ` A[w] then Γ′ ` A[w].
— Substitution principle: If Γ ` A[w] and Γ, A[w] ` C[w′] then Γ ` C[w′].

2.2.2 Higher-order formulations of rules

Having set out the defining principles of the logic, we can talk about connectives. As we will see,
this requires us to introduce a significant new idea: rules with premises that are “higher-order.”
Non-modal connectives (like implication) can be preserved from the Simpson-style modal logic,
but the modal operators will, unsurprisingly, need to change. A reasonable introduction rule for
modal possibility ♦A looks much like it did before, but now the first premise w ≺ w′ just refers to
the predefined accessibility relation:

w ≺ w′ Γ ` A[w′]

Γ ` ♦A[w]
♦I

The elimination rules make things a bit more complicated. Say we’re dealing with this acces-
sibility relation:

ωβ
γα

In a sense, we want our elimination rules to be specific to the world. If we have a proof of ♦A[α],
we know that at one of the two worlds accessible from α (namely β and ω), A must be true.
Therefore, if we can prove C[w′] assuming A[β], and if we can prove C[w′] assuming A[ω], then
C is true at w′. This is captured by the following elimination rule:

Γ ` ♦A[α] Γ, A[β] ` C[w′] Γ, A[ω] ` C[w′]

Γ ` C[w′]
♦Eα

Following this strategy, we need an elimination rule for proofs of ♦A at each of the other worlds:

Γ ` ♦A[β] Γ, A[ω] ` C[w′]

Γ ` C[w′]
♦Eβ

Γ ` ♦A[γ] Γ, A[ω] ` C[w′]

Γ ` C[w′]
♦Eγ

Γ ` ♦A[ω]

Γ ` C[w′]
♦Eω

For a logic defined under the accessibility relation above, the introduction rule ♦I and the four
elimination rules ♦Eα, ♦Eβ , ♦Eγ , and ♦Eω are, in fact, locally sound and complete. However, it
should be obvious that this is not a feasible or scalable way to put together a logic; for instance,
we’d need to have an infinite number of rules to handle accessibility relations with an infinite
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number of worlds! (Performing an infinite number of checks for local soundness and completeness
is nobody’s idea of a good time.)

However, the elimination rules that we wrote for ♦E can be generically represented using a
higher-order formulation. The higher-order formulation of the ♦E rule looks like this:

Γ ` ♦A[w] ∀w′. w ≺ w′ −→ Γ, A[w′] ` C[w′′]

Γ ` C[w′′]
♦E

The second premise quantifies over all worlds w′ such that w ≺ w′ and demands that a proof
of Γ, A[w′] ` C[w′′] be given for each such w′. We refer to this higher-order formulation as
reflection over proofs of another judgment — in this case, we are reflecting over the definition
of the accessibility relation. Higher-order formulations are only permissible when we can give
a complete definition of the judgment we’re reflecting over before we discuss the judgment that
uses reflection. In this case, we have already established that we can give a complete definition
of the judgment w ≺ w′ before we say anything about proofs of Γ ` A[w], so the higher-order
formulation is permissible.

If we so desire, we can imagine that the second premise of ♦E just takes a given accessibility
relation and “macro expands” into as many rules as there are worlds in the accessibility relation.
In some cases (the “infinite options” accessibility relation is an example), this means that some
rules have an infinite number of premises. In the experience of these authors, that is a difficult
concept to wrap one’s head around, and it means that even establishing simple properties like local
soundness and completeness involve dealing with infinite objects in a way that can be delicate at
best. However, it’s also not necessary: we can instead treat the arrow “−→” as “implies” and then
write down a proof of the implication. We will give an example to illustrate what we mean.

2.2.3 Example

In this example, we will use the rules defined above and the four-world accessibility relation given
in the previous section. Let Γ0 = ♦A[α], A ⊃ C[β], A ⊃ B[ω], B ⊃ C[ω]; we will prove that
Γ0 ` ♦C[α]. First, we prove the following theorem:

Theorem 1. For all w′, if α ≺ w′, then Γ0, A[w′] ` ♦C[α]

Proof. By case analysis on the accessibility relation, either w′ = β or w′ = ω. If w′ = β, we have
the following proof:

α ≺ β
axiom

Γ0, A[β] ` A ⊃ C[β]
hyp

Γ0, A[β] ` A[β]
hyp

Γ0, A[β] ` C[β]
⊃ E

Γ0, A[β] ` ♦C[α]
♦I

If w′ = ω, we have the following proof:

α ≺ ω
axiom

Γ0, A[ω] ` B ⊃ C[ω]
hyp

Γ0, A[ω] ` A ⊃ B[ω]
hyp

Γ0, A[ω] ` A[ω]
hyp

Γ0, A[ω] ` B[ω]
⊃ E

Γ0, A[ω] ` C[ω]
⊃ E

Γ0, A[ω] ` ♦C[α]
♦I
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This completes the case analysis, and hence the proof.

Having proved this theorem, we can complete the proof that Γ0 ` ♦C[α]:

Γ0 ` ♦A[α]
hyp (Theorem 1 )

∀w′. α ≺ w′ −→ Γ0, A[w′] ` ♦C[α]

Γ0 ` ♦C[α]
♦E

The most significant thing to notice here is that proofs aren’t simple tree-like structures anymore;
the second premise of ♦E in the proof tree above is satisfied not by another proof tree but by
a theorem. This particular way of understanding higher-order formulations of judgments is not
new; our use of it follows Noam Zeilberger’s. To slightly misquote Zeilberger’s “Focusing and
Higher-Order Abstract Syntax”,

“We hope to make the case that this higher-order formulation should be taken at face
value — interpreted constructively, it demands a mapping from proofs of w ≺ w′ to
proofs of Γ, A[w′] ` C[w]” (see [14, p. 361] for the original quote).

This is exactly the point that the example above tries to draw out: the way we prove that there is
a mapping from proofs of the judgment w ≺ w′ to proofs of the judgment Γ, A[w′] ` C[w] is to,
well, prove the statement “for allw′, ifw ≺ w′, then Γ, A[w′] ` C[w].” However, because we get to
prove this statement using all the familiar machinery of whatever logic we use to prove theorems,
our notion of “proof” has gone from a fairly innocent set of trees to something much more complex.
This is what we were foreshadowing in the introduction when we said “the metalogic is interwoven
with the proof theory.” Luckily, the foundation for this kind of system can be found in Martin Löf’s
theory of iterated inductive definitions [6], and these sorts of logical systems can be represented
and reasoned about straightforwardly in logical frameworks like Agda. In fact, we would claim
that many of the proofs in this paper can be expressed in Agda more naturally (and certainly more
concisely) than they can be expressed on paper.

2.3 Reflection over provability
In the previous section, we considered what it took to reflect over the accessibility relation within
a still more-or-less Simpson-style modal logic. In this section, we consider a style of reasoning
that involves reflection over provability at different worlds. Consider again the simple accessibility
relation where α ≺ β and nothing else. If Q1 and Q2 are distinct atomic propositions, then it is not
the case that we can prove (Q1 ⊃ Q2) at the world β. In other words:

Theorem 2. For distinct atomic propositions Q1 and Q2, it is not the case that · ` Q1 ⊃ Q2[β].

Proving this sort of theorem is usually facilitated by the use of a sequent calculus presentation
of logic rather than the natural deduction presentation we have considered so far; this is a topic
that we will consider later on in Section 4. The way we prove this theorem in constructive logic
is to prove that, if · ` Q1 ⊃ Q2[β], then we have a contradiction. While we will delay proving
Theorem 2 for now, we can use the theorem to prove that it is not the case that Q1[β] ` Q2[β].
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To do this, we assume Q1[β] ` Q2[β] and have to prove a contradiction; by rule ⊃I we prove
· ` Q1 ⊃ Q2[β], and then from Theorem 2 we can then prove a contradiction! We can prove
anything from a contradiction (ex falso quodlibet); so for instance, for a third distinct atomic
proposition Q3, if Q1[β] ` Q2[β], then Q1[β] ` Q3[β] – we assume Q1[β] ` Q2[β], obtain a
contradiction, and then use that contradiction to prove Q1[β] ` Q3[β].

We just showed that, if Q1[β] ` Q2[β], then Q1[β] ` Q3[β]; however, it is not the case that
Q1[β] ` Q2 ⊃ Q3[β]. The former statement is a meta-theorem, a statement about the logic (given
one statement in the logic, Q1[β] ` Q2[β], we can get another, Q1[β] ` Q3[β]). The second is
a statement within the logic (Q1[β] ` Q2 ⊃ Q3[β]). The goal of constructive provability logic
(and the goal of previous work in classical provability logic discussed in the conclusion) is to use
modal logic to allow meta-theorems (statements about the logic), to be reflected under the modal
operators as statements within the logic. In our setting, this means that we want to reflect meta-
theorems about world β as statements within the logic at world α; in particular, while we cannot
prove Q1[β] ` Q2 ⊃ Q3[β], we do want to be able to prove Q1[β] ` ♦Q2 ⊃ Q3[α].6 In fact, we
will be able to prove Q1[β] ` ♦Q2 ⊃ C[α] for any proposition C; this internalizes the notion that,
if we only have a single assumption Q1[β], it is not the case that Q2[β] is true under our current
assumptions; assuming that it is (by assuming ♦Q2[α]) is contradictory and allows us to prove
anything.

Let’s think about the judgmental principles this entails. We can prove that Q1[β] ` Q2[β] is
not the case, but we can prove the weakened hypothetical judgment Q1[β], Q2[β] ` Q2[β]. By our
discussion above, the hypothetical judgment Q1[β] ` ♦Q2 ⊃ C[α] should have a proof. On the
other hand, the “weakened” judgmentQ1[β], Q2[β] ` ♦Q2 ⊃ C[α] should not have a proof, at least
not for an arbitrary C, because if we have assumed Q1[β] and Q2[β] it is no longer contradictory to
assume that Q2 is provable at β. Weakening shouldn’t take a provable hypothetical judgment and
make it unprovable (hence the scare quotes), so weakening “at α” (that is, weakening when the
consequent is A[α] for some A) clearly cannot add new antecedents of the form A[β]. If we define
a restricted partial order on contexts Γ ⊆w Γ′ which requires that every antecedent in Γ be in Γ′

and requires that every antecedent Γ′ not of the form A[w] be in Γ, then we can state a reasonable
weakening principle in light of this observation:

— Weakening principle: If Γ ⊆w Γ′ and Γ ` A[w], then Γ′ ` A[w].

So, how can we define ♦A such that it has the meaning we desire? We can keep the rule for ♦
introduction the same as it was before, because it continues to be the case that the way we prove
♦A at world w is by picking a world w′ accessible from w and proving Γ ` A[w′] there.

w ≺ w′ Γ ` A[w′]

Γ ` ♦A[w]
♦I

It is the elimination rule for ♦ that we will want to change. Recall the definition of ♦E that
allowed us to reflect over the accessibility relation:

Γ ` ♦A[w] ∀w′. w ≺ w′ −→ Γ, A[w′] ` C[w]

Γ ` C[w]
♦E

6The unary connectives always bind the most tightly; we disambiguate ♦A ⊃ B as (♦A) ⊃ B
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If we’re going to prove Q1[β] ` ♦Q2 ⊃ C[α], the proof is going to need to look like this:

Q1[β],♦Q2[α] ` ♦Q2[α]
hyp

???

Q1[β],♦Q2[α] ` C[α]
♦E

Q1[β] ` ♦Q2 ⊃ C[α]
⊃I

Because it is not the case that Q1[β],♦Q2[α] ` Q2[β], assuming Q1[β],♦Q2[α] ` Q2[β] is contra-
dictory. Therefore, such an assumption allows us to prove anything, and in particular it allows us
to prove Q1[β],♦Q2[α] ` C[α]. In other words, for every world accessible from α, it is the case
that Q1[β],♦Q2[α] ` Q2[β] implies Q1[β],♦Q2[α] ` C[α]. We can try to use this instance as the
template for filling in those question marks, giving us the following ♦E rule:

Γ ` ♦A[w] ∀w′. w ≺ w′ −→ Γ ` A[w′] −→ Γ ` C[w′′]

Γ ` C[w′′]
♦E

Warning: this definition breaks the consistency of logic.

The above rule is, it will turn out, very nearly the one we want, but without some additional
restrictions it results in logical inconsistency, which is Very Bad. The blame falls on the use of
Γ ` A[w′] in the premise of ♦E. When we introduced the higher-order formulation of reflection
over the accessibility relation, we emphasized that we could only do so because the accessibility
relation could be completely defined before the meaning of the hypothetical judgment Γ ` A[w]
was discussed. This is therefore an illegitimate “higher-order formulation,” because we are using
logical reflection on the definition of Γ ` A[w] to define Γ ` A[w]. Within such self-reference,
contradiction frequently lurks.

To rescue the our logic from this inconsistency, we first observe that ♦E is reflecting on the
definition of Γ ` A[w′] when defining Γ ` C[w′′]. Therefore, if we can completely define “A true
at w′” before discussing the meaning of “C is true at w′′,” the ♦E rule can be again considered
sensible. This means that we will define provability at some worlds w′ before we define provability
at other worlds w, and we need some way of describing which worlds get defined first. For this,
we will use the accessibility relation.

In our previous example where α ≺ β, we wanted to prove ♦Q2 ⊃ C at world α by reflecting
over provability at β; this means that provability at β had to be defined first. In general, when we
define provability at a particular world w, we must previously and independently be able to define
provability at all the worlds w′ accessible from w′ – and to do that we must previously be able to
define provability at all the worlds accessible from one of those worlds, and so on. This obviously
means that our accessibility relation can have no cycles, but it also implies something stronger – the
accessibility relation must be converse well-founded (sometimes called upwards well-founded) –
there must be no infinite ascending chains w0 ≺ w1 ≺ w2 . . . The “count-up” accessibility relation
that we considered earlier is incompatible with the ♦E rule – it is well-founded but not converse
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well-founded. On the other hand, the “count-down” accessibility relation is not well-founded, but
it is converse well-founded, and the “infinite options” accessibility relation, as well as all of the
non-reflexive finite accessibility relations we have considered, are all converse well-founded.

Even with a converse well-founded accessibility relation, we still can’t use the ♦E rule above,
because it reflects on provability at w′ when defining Γ ` C[w′′] for some potentially unrelated
world w′′. We do, however, know that provability at world w can reflect over provability at world
w′, so our solution is to require the premise (where we use ♦A) and the conclusion (where we
prove C) to mention the same world w.7 Our new ♦E rule looks like this:

Γ ` ♦A[w] ∀w′. w ≺ w′ −→ Γ ` A[w′] −→ Γ ` C[w]

Γ ` C[w]
♦E

Now that we have restricted the accessibility relation and tethered the ♦E rule, one additional
requirement, which we express as a defining principle of the logic, ensures that rules such as ♦E
are sensible. If α ≺ β, then keeping with the idea that provability at β has to be completely defined
before provability at α is discussed, Γ ` C[β] needs to be unaffected by assumptions of the form
A[α] in Γ. We say that Γ =w Γ′ if, for every A and every w′ accessible from w in zero or more
steps, A[w′] is in Γ if and only if it is in Γ′. This allows us to state a strengthening principle which
emphasizes that only the hypotheses at current or (transitively) accessible worlds are relevant to
provability at a given world.

— Strengthening principle: If Γ =w Γ′ and Γ ` A[w], then Γ′ ` A[w].

Because Γ, A[α] =β Γ in our example above, this defining principle establishes that, if we can
prove Γ, A[α] ` C[β], then the A[α] was not necessary for the proof and we can prove Γ ` C[β].

To finish our discussion of the defining principles of constructive provability logic, we need
only to discuss the substitution principle. It is not obvious that there is any problem with the
general substitution principle that we have used so far: if Γ ` A[w] and Γ, A[w] ` C[w′] then
Γ ` C[w′]. We believe that this strong substitution principle is, in fact, true; however, we have
been unable to prove it. Therefore, we instead use a weaker “tethered” substitution principle that
is nevertheless sufficient for our purposes.

Definition of hypothetical judgment for constructive provability logic:
— Hypothesis rule: If Ai[wi] ∈ Γ, then Γ ` Ai[wi].
— Weakening principle: If Γ ⊆w Γ′ and Γ ` A[w], then Γ′ ` A[w].
— Strengthening principle: If Γ =w Γ′ and Γ ` A[w], then Γ′ ` A[w].
— Substitution principle: If Γ ` A[w] and Γ, A[w] ` C[w], then Γ ` C[w].

2.4 Agda and consistency
We said that the original ♦E rule lead to logical inconsistency if used without restrictions; we have
demonstrated this in Agda (see Inconsistency.agda). The example works like this: if Q is

7This process has been called tethering the modal logic.
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an atomic proposition and there is only one world α such that α ≺ α (obviously this means that the
accessibility relation is not converse well-founded), then we can both give a proof of ♦Q[α] ` Q[α]
and a proof that it is not the case that ♦Q[α] ` Q[α]. Since “it is not the case that” is shorthand for
“implies a contradiction,” from modus ponens we can then get a closed proof of a contradiction,
which we can use to prove anything. And note that “anything” doesn’t just mean “Γ ` J for any Γ
and any J ,” it means that 2 + 2 = 5, that every Turing machine halts, and that the harmonic series
converges. The ♦E rule makes Agda inconsistent.

Doesn’t this mean that Agda is inconsistent as a logic? No, because in order to get Agda to
accept this file, we had to turn off the “positivity check,” Agda’s way of ensuring that higher-
order formulations of rules do not create precisely the kind of catastrophic self-reference that
Inconsistency.agda demonstrates. However, we also turn off the positivity check in our
formalization of constructive provability logic! How do we know that this does not lead to the
same kind of inconsistency?

In the discussion above, we relied on the converse well-foundedness of the accessibility rela-
tion to ensure that, when w ≺ w′, we can completely define Γ ` A[w′] before discussing Γ ` A[w].
Our Agda formalization defines provability in a convenient, generic fashion, parametrized over an
arbitrary converse well-founded accessibility relation. Unfortunately, Agda’s automatic, conserva-
tive positivity checker does not have the sophistication necessary to “understand” our claim that
the converse well-founded accessibility relation makes the definition reasonable; by turning off the
positivity checker, we declare that we are striking out on our own authority.

Of course, one of the reasons for using Agda in the first place was to fix the metalogic and
thereby reduce reliance on our own authority! If we want to take this view seriously, then there are
two subsystems of constructive provability logic that can rely fully on Agda – systems with finite
accessibility relations and those with finitely branching accessibility relations. Using Agda’s mod-
ule system, it is possible to parametrize the definition of provability at a world w over provability
at all worlds w′ accessible from w. If we use this module-based definition, we can instantiate the
logic “by hand” as long as the accessibility relation is finite, so for finite accessibility relations
Agda will fully accept the definition of constructive provability logic. Similarly, if we have an
accessibility relation where only finitely many worlds are accessible from any given world, then
given a world w it is a finite and mechanical process to instantiate constructive provability logic at
w and at all the worlds accessible from w (and all the worlds accessible from those worlds . . . ).
Even though we cannot instantiate all of constructive provability logic for the “count-down” ac-
cessibility relation in this manner, we can fully instantiate constructive provability logic for any
particular world wi.

This discussion leaves infinitely branching but converse well-founded accessibility relations
(such as the “infinite options” accessibility relation) tainted with suspicion, and, as we will see in
the later discussion of the �E rule, there are other reasons to be somewhat dubious of infinitely
branching accessibility relations. A better understanding of the choices involved in the use of in-
finitely branching accessibility relations is definitely an interesting avenue for future investigation.

14



3 Natural deduction
Now that we have presented the judgmental principles and intuitions behind constructive prov-
ability logic, we will present natural deduction for minimal CPL, discussing local soundness and
completeness for each connective. The Agda formalization of the rules introduced in Section 3.1
through Section 3.4 can be found in MinimalCPL/Core.agda.

3.1 Implication
The rules for implication introduction and elimination are unsurprisingly identical to those from
the Simpson-style presentation, and the arguments for local soundness and completeness are again
unchanged.

Γ, A[w] ` B[w]

Γ ` A ⊃ B[w]
⊃I

Γ ` A ⊃ B[w] Γ ` A[w]

Γ ` B[w]
⊃E

3.2 Modal possibility ♦A
As discussed in the previous section, modal possibility ♦A is defined as follows: we can prove
♦A[w] if, for a world w′ that is accessible from w (in our predetermined accessibility relation), we
can prove A[w′]. We can make use of a proof of ♦A[w] to prove C[w] if we can produce a mapping
from worlds w′ accessible from w and proofs of A at w′ to proofs of C at w.

w ≺ w′ Γ ` A[w′]

Γ ` ♦A[w]
♦I

Γ ` ♦A[w] ∀w′. w ≺ w′ −→ Γ ` A[w′] −→ Γ ` C[w]

Γ ` C[w]
♦E

Again, this definition is only reasonable because we require that the accessibility relation to be
converse well-founded so that provability at the accessible world w′ can be defined a priori and
independently from provability at w. We will now perform our sanity checks of local soundness
and completeness. To show local soundness we present the relevant local reduction.

Dw
w ≺ w′

D1

Γ ` A[w′]

Γ ` ♦A[w]
♦I

D2

∀w′. w ≺ w′ −→ Γ ` A[w′] −→ Γ ` C[w]

Γ ` C[w]
♦E

=⇒R

(D2 Dw) D1

Γ ` C[w]

Recalling that D2 is actually a theorem in the metalogic, the local reduction is performed by meta-
level theorem application. We use a notation of function application since we view D2 as a map-
ping, therefore we need to supply a proof of w ≺ w′ (in this case Dw) and a proof of Γ ` A[w′]
(which is exactly D1) to produce the required result.

The local expansion that is evidence of local completeness might be slightly surprising:

D
Γ ` ♦A[w] =⇒E

D
Γ ` ♦A[w] ♦I

Γ ` ♦A[w]
♦E
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We expand the proof of ♦A[w] by applying ♦E to the initial derivation D and to the actual rule of
♦ introduction. The second premise for ♦E requires a higher-order mapping of proofs w ≺ w′ (for
all w′) and A[w′] to proofs of ♦A[w], but that is exactly the definition of ♦I . Put another way, the
proof of the theorem If w ≺ w′ and Γ ` A[w′] then Γ ` ♦A[w] is just “by application of the rule
♦I to the assumptions,” and we have already established that the way we satisfy a higher-order
premise is with a theorem. The notation here is admittedly problematic; it is actually somewhat
more natural in the Agda development where proofs do not have the tree-like two-dimensional
structure that we use on paper.

3.3 Modal necessity
We now proceed to modal necessity �A. Even though our examples in the previous section ex-
clusively used possibility as a motivating example, it is straightforward to define modal necessity
in Simpson-style modal logics. Whereas modal possibility usually is thought of as having an “ex-
istential character” (there exists some accessibly world where A is true), modal necessity has a
“universal character” (at every accessible world, A is true). This is reflected in the introduction
rule for modal possibility:

∀w′. w ≺ w′ −→ Γ ` A[w′]

Γ ` �A[w]
�I

If the introduction rule requires a proof ofA at every accessible world, a reasonable elimination
rule might ask that we select some accessible world w′ and assume that A is provable at that world.
A rule capturing this intuition, which resembles the �E rule in Simpson-style modal logic, looks
like this:

Γ ` �A[w] w ≺ w′ Γ ` A[w′] −→ Γ ` C[w]

Γ ` C[w]
�E ′

This rule is locally sound, as we can see from the following local reduction:
D1

∀w′. w ≺ w′ −→ Γ ` A[w′]

Γ ` �A[w]
�I

Dw
w ≺ w′

D2

Γ ` A[w′] −→ Γ ` C[w]

Γ ` C[w]
�E ′

=⇒R

D2 (D1 Dw)

Γ ` C[w]

We reduce the proof of C[w] through two meta-level theorem applications. We first apply D1 to
Dw to obtain a proof of A at w′, which we then supply to D2 to obtain the required proof of C at
w.

However, as we will now see, the elimination rule is not locally complete for an arbitrary
converse well-founded accessibility relation. If we consider our example accessibility relation:

ωβ
γα

we can always reconstruct a proof of �A[w] since there are only a finite number of successors for
each world. We need only exhaustively apply�E ′ for each possible successor of w. Let’s see how
this works at two representative worlds:
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Local completeness at ω. We have a proof D of Γ ` C[ω]. It is a simple lemma that ∀w′. ω ≺
w′ −→ Γ ` A[w′]: we perform case analysis on the accessibility relation, which is trivial because
there are no worlds w′ accessible from ω.

With this lemma, we can give the local expansion at ω:

(aforementioned lemma)
∀w′. ω ≺ w′ −→ Γ ` A[w′]

Γ ` A[ω]
�I

Note that the expansion doesn’t mention the proofD at all; this is similar to the local expansion
of the trivially true proposition >.

Local completeness at α. We have a proofD of Γ ` C[α]. It is a simple lemma that, if Γ ` A[β]
and if Γ ` A[ω], then ∀w′. α ≺ w′ −→ Γ ` A[w′]: we perform case analysis on the accessibility
relation; if w′ = β then we use the first premise and if w′ = ω then we use the second premise.

With this lemma, we can give the local expansion at ω:

D
Γ ` �A[α] α ≺ β

axiom

D
Γ ` �A[α] α ≺ ω

axiom

((aforementioned lemma) D1) D2

∀w′. α ≺ w′ −→ Γ ` A[w′]

Γ ` �A[α]
�I

Γ ` �A[α]
�E ′

D2

Γ ` �A[α]
�E ′

D1

The third premise of �E ′
D1

introduces a new scoped assumption D1 :: Γ ` A[β], and the third
premise of �E ′

D2
introduces a scoped assumption D2 :: Γ ` A[ω]. This is another instance where

the traditional two-dimensional notation for proofs comes close to breaking down; the Agda code
for both of these local expansions is in AltBoxE.agda.

The previous examples sufficed to illustrate the general structure of a local expansion with�E ′

– from the bottom to top, we use one instance of �E ′ for each of the worlds accessible from the
current world w. Having done this, we have a scoped assumption Γ ` A[w′] for each w ≺ w′,
which allows us to apply the �I rule. This works in cases when only finitely many worlds are
accessible from a given world, but breaks down if we consider the “infinite options” accessibility
relation:

α
β0

β1

β2...

...
...

ω

We have a situation where α has infinitely many successors and ω has infinitely many predecessors.
In this case, we cannot expand a proof of �A[α] using �E ′ since we would need to apply the rule
infinitely many times to obtain enough information to construct the necessary mapping to apply
�I . We fix this by adopting a different elimination rule that does not require us to select some
individual accessible world w′. Instead, we precisely capture all the information present in the
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introduction of �A[w] by assuming we have a mapping from proofs of all w′ accessible from w to
proofs of A at w′, which we can then use to prove C at w.

Γ ` �A[w] (∀w′. w ≺ w′ −→ Γ ` A[w′]) −→ Γ ` C[w]

Γ ` C[w]
�E

This is an unusual rule. It defies the intuitive “universal character” of modal necessity that we can
see in the �E ′ rule, and it is also the first third-order formulation we have used (previously we
have only used “second-order” higher-order formulations where implications were not nested to
the left of other implications). However, we can take some comfort in the fact that �E and �E ′

are actually inter-derivable as long as the accessibility relation is finitely branching – one direction
of this proof can be found in MinimalCPL/Core.agda, and the other in AltBoxE.agda.

Furthermore, as we will now see, our new definition of introduction and elimination for � is
locally sound and complete. Local soundness is witnessed by a local reduction that makes use of
the higher-order formulation by applying the mapping D2 to D1 to produce the proof of C[w]:

D1

∀w′. w ≺ w′ −→ Γ ` A[w′]

Γ ` �A[w]
�I

D2

(∀w′. w ≺ w′ −→ Γ ` A[w′]) −→ Γ ` C[w]

Γ ` C[w]
�E

=⇒R

D2 D1

Γ ` C[w]

The reason our definition of �E is strong enough is that it is precisely a mapping of proofs of
w ≺ w′ to proofs of A[w′] that is needed to introduce �A[w] to begin with. Local completeness
thus holds since the second premise to �E exactly mirrors the structure of �I , making us able to
expand a proof of �A[w] by applying �E and using �I as its second premise. This new local
expansion mirrors the local expansion for modal possibility.

D
Γ ` �A[w] =⇒E

D
Γ ` �A[w] �I

Γ ` �A[w]
�E

3.4 Not-possibility and not-necessity
In “Negation in the light of modal logic,” Dos̆en gives a classical Kripke semantics for negation;
he writes “not A” as 6♦A and says “not A holds at w if and only if A doesn’t hold at any world
accessible from w”[2]. In Dos̆en’s setting, 6♦ corresponds to regular intuitionistic negation.

Just as we rely on reflection over the accessibility relation and over provability to give meaning
to � and ♦, we can reflect over non-provability to give meaning to Dos̆en’s modal negation in
constructive provability logic. Doing so allows us to simplify the discussion in Section 2.3. In that
discussion, we reflected the fact thatQ1[β] ` Q2[β] is not the case by provingQ1[β] ` ♦Q2 ⊃ C[α]
for any C. Using the natural interpretation of Dos̆en’s modal negation in constructive provability
logic, we can instead prove Q1[β] ` 6♦Q2[α] – we say that under the assumption Q1[β], Q2 is not
possible at α.
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We use ¬(Γ ` A[w]) (“it is not the case that Γ ` A[w]”) as shorthand for Γ ` A[w] −→ 0,
where 0 is meta-level contradiction. This means that there is a mapping from proofs of Γ ` A[w]
to a proof of contradiction, which indicates that Γ ` A[w] is contradictory. Given this notation,
it is simple to define 6♦: we are thus justified in concluding 6♦A[w] if we can prove that, for any
w′ accessible from w, it is not the case that A[w′]. The way we use proofs of 6♦A[w] is similar to
the way we used proofs of �A[w], except we require that A[w′] be false instead of true (for all w′

accessible from w).
∀w′. w ≺ w′ −→ ¬(Γ ` A[w′])

Γ ` 6♦A[w]
6♦I

Γ ` 6♦A[w] (∀w′. w ≺ w′ −→ ¬(Γ ` A[w′])) −→ Γ ` C[w]

Γ ` C[w]
6♦E

The local reduction is quite similar to the reduction for modal necessity, but we now reflect over
non-provability at all accessible worlds.

D1

∀w′. w ≺ w′ −→ ¬(Γ ` A[w′])

Γ ` 6♦A[w]
6♦I D2

(∀w′. w ≺ w′ −→ ¬(Γ ` A[w′])) −→ Γ ` C[w]

Γ ` C[w]
6♦E

=⇒R

D2 D1

Γ ` C[w]

The local expansion for 6♦ is also unsurprising given the local reduction for possibility and neces-
sity:

D
Γ ` 6♦A[w] =⇒E

D
Γ ` 6♦A[w] 6♦I

Γ ` 6♦A[w]
6♦E

Dos̆en also considered a modal negation that was dual to not-possibility; we follow Dos̆en in
calling this operator 6�, and just as Dos̆en relates 6♦ to intuitionistic negation he relates 6� to its
dual, called Brouwerian negation in the literature. We are justified in concluding 6�A[w] if we can
show that A[w′] is not provable for some w′ accessible from w. We use proofs of 6�A[w] to prove
C[w] if we can produce a higher-order mapping that, given a proof that A is contradictory at w′ for
some w′ accessible from w, produces a proof of C[w].

w ≺ w′ ¬(Γ ` A[w′])

Γ ` 6�A[w]
6�I

Γ ` 6�A[w] ∀w′. w ≺ w′ −→ ¬(Γ ` A[w′]) −→ Γ ` C[w]

Γ ` C[w]
6�E

The local reduction and expansion are completely analogous to those of ♦, with the appropriate
changes to reflection over non-provability:

Dw
w ≺ w′

D1

¬(Γ ` A[w′])

Γ ` 6�A[w]
6�I D2

∀w′. w ≺ w′ −→ ¬(Γ ` A[w′]) −→ Γ ` C[w]

Γ ` C[w]
6�E

=⇒R

(D2 Dw) D1

Γ ` C[w]
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D
Γ ` 6�A[w] =⇒E

D
Γ ` 6�A[w] 6�I

Γ ` 6�A[w]
6�E

The definitions of � and 6♦ (resp. ♦ and 6�) are similar in having a universal (resp. existential)
character, but the primary logical tension is between ♦ and 6♦ (resp. � and 6�). Assuming both ♦A
and 6♦A (resp. �A and 6�A) at the same world is contradictory in the sense that they allow us to
prove any other proposition. In other words, both 6♦A ⊃ ♦A ⊃ C and 6�A ⊃ �A ⊃ C are axioms
of minimal CPL (see MinimalCPL/Axioms.agda).

3.5 Verifying the defining principles
The previous sections introduced the full natural deduction presentation of minimal CPL and dis-
cussed the local soundness and completeness of the introduction and elimination rules for impli-
cation A ⊃ B, modal possibility ♦A, modal necessity �A, modal not-possibility 6♦A, and modal
not-necessity 6�A. The local soundness and completeness of the modal connectives relied on
meta-level theorem application, but local soundness for implication, and therefore for the logic as
a whole, relied on the defining principles of constructive provability logic. To recall:

Definition of hypothetical judgment for constructive provability logic:
— Hypothesis rule: If Ai[wi] ∈ Γ, then Γ ` Ai[wi].
— Weakening principle: If Γ ⊆w Γ′ and Γ ` A[w], then Γ′ ` A[w].
— Strengthening principle: If Γ =w Γ′ and Γ ` A[w], then Γ′ ` A[w].
— Substitution principle: If Γ ` A[w] and Γ, A[w] ` C[w], then Γ ` C[w].

We did not directly rely on the strengthening principle, but it was necessary to ensure that our
higher-order formulations made sense in the first place. In this section, we will circle back around
and ensure that our definitions respect the logic’s defining principles. The Agda formalization of
the proofs in this section can be found in MinimalCPL/NatDeduction.agda.

We prove both the weakening principle and strengthening principles by proving a stronger
statement that uses a third relation on contexts Γ jw Γ′. We say that Γ jw Γ′ if:

• A[w] ∈ Γ implies A[w] ∈ Γ′, and if

• For any w′ accessible in one or more steps from w, A[w′] ∈ Γ if and only if A[w′] ∈ Γ′.8

It is straightforward to show that both Γ ⊆w Γ′ and Γ =w Γ′ imply Γ jw Γ′, so Theorem 3 below
verifies both the weakening and strengthening principles.

Theorem 3 (Weakening). If Γ jw Γ′ and Γ ` A[w], then Γ′ ` A[w], and the resulting proof has
the same shape.

Proof. By induction on the accessibility relation and on the proof of Γ ` A[w].

8For technical reasons – namely, that it is simpler to avoid proving decidability of the accessibility relation – we
use a slightly stronger version of Γ jw Γ′ in the Agda development. We show that this relation implies the definition
above in AltPartialOrder.agda.
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This is the first time we have explicitly discussed induction on the accessibility relation. We
have said that the definition of constructive provability logic is parametrized over an arbitrary
converse well-founded accessibility relation, and informally described a converse well-founded
accessibility relation as one with no infinite ascending chains (w0 ≺ w1 ≺ . . .). Another definition
of a converse well-founded accessibility relation, and the one that we use in the Agda formalization
(see Accessibility/Inductive.agda), is that an accessibility relation is converse well-
founded if it admits an induction principle. In other words, a binary relation w ≺ w′ over an
arbitrary setW is converse-well founded if, for any property P (w), we know P (w) holds for every
w if we know that, for every w, P (w) holds under the assumption of P (w′) for every w ≺ w′.

We actually prove Theorem 3 as two separate theorems in the Agda development. The first
proof is by induction over the accessibility relation, but it does not establish that the resulting proof
has the same shape. A second theorem, which relies on the first one, establishes that the resulting
proof has the same shape, but only the part of the proof that is at world w – this is what we need to
get induction for the substitution principle to work, and the proof does not require induction over
the accessibility relation. The details of the “totally nameless representation” we use to capture the
shape of the proof are outside the scope of this report, but are discussed elsewhere [10].

Theorem 4 (Substitution). If Γ ` A[w] and Γ, A[w] ` C[w], then Γ ` C[w].

Proof. We refer to the proof of the first premise, Γ ` A[w], as D and proceed by induction on the
shape of Γ, A[w] ` C[w]. We present only the cases for implication and ♦. The remaining cases
follow similar reasoning principles and are included in our Agda development.

Case:
D1

Γ, A[w], C1[w] ` C2[w]

Γ, A[w] ` C1 ⊃ C2[w]
⊃I

D′
1 :: Γ, C1[w], A[w] ` C2[w] by weakening principle on D1

F1 :: Γ, C1[w] ` C2[w] by i.h. on D and D′
1

F :: Γ ` C1 ⊃ C2[w] by ⊃I on F1

Case:
D1

Γ, A[w] ` C1 ⊃ C2[w]
D2

Γ, A[w] ` C1[w]

Γ, A[w] ` C2[w]
⊃E

F1 :: Γ ` C1 ⊃ C2[w] by i.h. on D and D1

F2 :: Γ ` C1[w] by i.h. on D and D2

F :: Γ ` C2[w] by ⊃E on F1 and F2

Case:
Dw

w ≺ w′
D1

Γ, A[w] ` C[w′]

Γ, A[w] ` ♦C[w]
♦I
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F1 :: Γ ` C[w′] by strengthening principle on D1

F :: Γ ` ♦C[w] by ♦I on Dw and F1

Case:

D1

Γ, A[w] ` ♦B[w]
D2

∀w′. w ≺ w′ −→ Γ, A[w] ` B[w′] −→ Γ, A[w] ` C[w]

Γ, A[w] ` C[w]
♦E

F1 :: Γ ` ♦B[w] by i.h. on D1

F2 :: ∀w′. w ≺ w′ −→ Γ ` B[w′] −→ Γ ` C[w]
by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′ and D0 :: Γ ` B[w′]
D′

0 :: Γ, A[w] ` B[w] by strengthening principle on D0

D′
2 :: Γ, A[w] ` C[w] by D2 on Dw and D′

0

F ′
2 :: Γ ` C[w] by i.h. on D′

2

F :: Γ ` C[w] by ♦E on F1 and F2

As we previously stated, the remaining cases can be found in the Agda development (see
MinimalCPL/NatDeduction.agda).

There are two things to note about the substitution theorem before we turn to the sequent
calculus for constructive provability logic. First, we rely critically on the fact that our induction
is on the shape of the derivation in ⊃I when we use the weakening principle to exchange the
premises A[w] and C1[w] and call the induction hypothesis on the resulting derivation. Second,
substitution at a given world w is totally independent of whether the substitution principle holds at
any of the worlds accessible from w – when we consider proofs about truth at worlds w′ accessible
from w we turn to the weakening and strengthening principles, not the induction hypothesis (the
♦I case is a particularly good example of this).

In the next section, we will see that the global soundness of the logic at any given world is
similarly independent of the soundness of the logic at any accessible world. While this is not a par-
ticularly useful property in the totally uniform presentation of constructive provability logic that
we have given here, it introduces the interesting possibility that CPL can be used non-uniformly
to reason about families of logics connected by an accessibility relation. Even if some of the
logics are poorly-behaved or even inconsistent, we can reason consistently about the (potentially
inconsistent) logics as long as the reasoning is being done at a world where we can prove con-
sistency; inconsistency at some world does not threaten the consistency of worlds that can access
(and therefore reason about) that world.

4 Sequent calculus
So far we have presented the defining principles of a natural deduction system for constructive
provability logic, introduced the connectives of minimal CPL, and shown by the sanity checks of

22



local soundness and local completeness that minimal CPL is defined in a reasonable way. How-
ever, the local checks in the previous section are insufficient to establish the global soundness of
the logic. One statement of global soundness is that we want · ` A[w] to not be true for an arbitrary
A – logics that can prove anything aren’t especially useful outside of politics.

We have already discussed one theorem that touches on global soundness: in Section 2.3 we
presented Theorem 2, which states that for distinct propositions Q1 and Q2 it is not the case that
· ` Q1 ⊃ Q2[β]. However, we said at the time that it is difficult to prove this sort of statement in
a natural deduction system. If we try to prove that · ` Q1 ⊃ Q2[β] is not the case by assuming
that we have a proof of it and proving a contradiction, essentially all we can do is case analysis
on the structure of the assumed proof. If the last rule is ⊃I , then we have a smaller proof of
Q1[β] ` Q2[β], which somehow feels like progress. However, we also have to deal with the case
where the last rule is ⊃I and we have two subproofs, one a proof of · ` A[β] and the other a proof
of · ` A ⊃ (Q1 ⊃ Q2)[β]. That new formula A can be anything, which effectively prevents us
from simply case analyzing our rules in this bottom-up fashion. A sequent calculus system, on the
other hand, obeys the sub-formula property: if we have a sequent proof of · ⇒ A[β], we know that
all the subproofs of that proof will only mention sub-formulas of A.

A sequent calculus is a proof system composed of so-called right and left rules. Right rules
show us how to prove a proposition, and are usually quite similar to the natural deduction introduc-
tion rules (which, in general, obey the sub-formula property already in a natural deduction system).
The right rule for implication, for instance, is identical to the implication introduction rule except
that we use⇒ instead of ` to represent the hypothetical judgment of the sequent calculus.

Γ, A[w]⇒ B[w]

Γ⇒ A ⊃ B[w]
⊃R

Left rules, on the other hand, show us how to use antecedents. The left rule for implication
looks quite different than modus ponens, but it expresses roughly the same thing: if we have
A ⊃ B (as an antecedent) and if we can prove A, then we can use B (by adding it as an antecedent
in the right sub-proof).

Γ, A ⊃ B[w]⇒ A[w] Γ, A ⊃ B[w], B[w]⇒ C[w]

Γ, A ⊃ B[w]⇒ C[w]
⊃L

Note that all the symbols appearing free in the premise (Γ, A, B, C, and w) are present in the
conclusion, so this rule obeys the sub-formula property. This rule, and the others we present in
Figure 1, follows the usual convention in sequent calculus presentations of playing fast and loose
with the ordering of antecedents – in the natural deduction presentation we were careful to treat
the antecedents of the hypothetical judgment as just a sequence. If we wanted to be pedantic about
the⊃L rule, we could either write the conclusion of⊃L as Γ, A ⊃ B[w],Γ′ ⇒ C[w] to clarify that
the implication can appear anywhere in the context (and alter the premises to the rule accordingly)
or else we could write the conclusion as Γ⇒ C[w] and add an additional premise A ⊃ B[w] ∈ Γ.
In the Agda development, where playing fast and loose is forbidden, we take the latter of these two
options.
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Γ, Q[w]⇒ Q[w]
init (Q is an atomic proposition)

Γ, A[w]⇒ B[w]

Γ⇒ A ⊃ B[w]
⊃R

Γ, A ⊃ B[w]⇒ A[w] Γ, A ⊃ B[w], B[w]⇒ C[w]

Γ, A ⊃ B[w]⇒ C[w]
⊃L

w ≺ w′ Γ⇒ A[w′]

Γ⇒ ♦A[w]
♦R

∀w′. w ≺ w′ −→ Γ⇒ A[w′] −→ Γ,♦A[w]⇒ C[w]

Γ,♦A[w]⇒ C[w]
♦L

∀w′. w ≺ w′ −→ Γ⇒ A[w′]

Γ⇒ �A[w]
�R

(∀w′. w ≺ w′ −→ Γ⇒ A[w′]) −→ Γ,�A[w]⇒ C[w]

Γ,�A[w]⇒ C[w]
�L

∀w′. w ≺ w′ −→ ¬(Γ⇒ A[w′])

Γ⇒ 6♦A[w]
6♦R

(∀w′. w ≺ w′ −→ ¬(Γ⇒ A[w′])) −→ Γ, 6♦A[w]⇒ C[w]

Γ, 6♦A[w]⇒ C[w]
6♦L

w ≺ w′ ¬(Γ⇒ A[w′])

Γ⇒ 6�A[w]
6�R

∀w′. w ≺ w′ −→ ¬(Γ⇒ A[w′]) −→ Γ, 6�A[w]⇒ C[w]

Γ, 6�A[w]⇒ C[w]
6�L

Figure 1: Sequent Calculus for minimal CPL

Because the rules of the sequent calculus manipulate assumptions directly, we can restrict
the hypothesis rule to atomic propositions only; the previous hypothesis rule becomes a defining
principle of the logic, the identity principle. Other than that change, the defining principles of the
sequent calculus judgment Γ ⇒ A[w] for constructive provability logic are quite similar to the
defining principles of the hypothetical judgment Γ ` A[w]:

Definition of the sequent calculus judgment for constructive provability logic:
— Hypothesis rule: If Q[wi] ∈ Γ, where Q is an atomic proposition, then Γ⇒ Q[wi].
— Identity principle: If A[wi] ∈ Γ, then Γ⇒ A[wi].
— Weakening principle: If Γ ⊆w Γ′ and Γ⇒ A[w], then Γ′ ⇒ A[w].
— Strengthening principle: If Γ =w Γ′ and Γ⇒ A[w], then Γ′ ⇒ A[w].
— Cut principle: If Γ⇒ A[w] and Γ, A[w]⇒ C[w], then Γ⇒ C[w].

The sequent calculus formulation of minimal CPL is shown in Figure 1. Our habit of playing
fast and loose with the ordering of antecedents does create a gap between our on-paper presentation
and the Agda formalization in MinimalCPL/Core.agda. For the sake of a simple presentation,
the on-paper presentation omits irrelevant premises from rules where applicable. For instance, the
premise of ♦L is ∀w′. w ≺ w′ −→ Γ ⇒ A[w′] −→ Γ,♦A[w] ⇒ C[w], but if we were going to
accurately capture the Agda representation, we would need to leave the irrelevant hypothesis in the
context, and the premise would be ∀w′. w ≺ w′ −→ Γ,♦A[w] ⇒ A[w′] −→ Γ,♦A[w] ⇒ C[w].
The strengthening principle ensures that this is a distinction that does not make a difference.
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Now that we have defined the sequent calculus, we can see how it is useful for proving that
certain logical statements are not the case by giving an analogue to Theorem 2:

Theorem 5. For distinct atomic propositions Q1 and Q2, it is not the case that · ⇒ Q1 ⊃ Q2[β].

Proof. We are given a proof D :: · ⇒ Q1 ⊃ Q2[β], and we must proof a contradiction. By case
analysis on D, we see that no left rule is possible (because the context is empty) and the only
possible right rule is ⊃R. Therefore, we now have a proof D′ :: Q1 ⇒ Q2[β]. By case analysis on
D′, we see that no left rule applies (because none of the left rules work on atomic propositions),
no right rule applies, and the initial rule does not apply because the antecedent and the consequent
are distinct, so we are done.

4.1 Verifying the defining principles
The rules in Figure 1 are close enough to the rules of our natural deduction presentation that
we will omit a detailed explanation of each rule as well as the verification of the strengthening
and weakening principles, which closely follow the discussion in the previous section. We will,
however, work through the verification of the defining principles of cut and identity.

Despite the superficial similarity of the definition of the hypothetical judgment for CPL and the
definition of the sequent calculus judgment for CPL that we just discussed, the defining principles
of a sequent calculus judgment say quite a bit more about the logic. In particular, the new identity
principle is a global completeness property, the global version of local completeness, and the cut
principle (which we called a substitution principle in the natural deduction presentation) is a global
soundness property. We will not discuss the implications of this; for our current purposes, the
sequent calculus is primarily important because it allows us to easily prove that certain sequent
calculus judgments are not the case, and the identity and cut principles are primarily important
because they allow us, in Section 5, to establish the equivalence of the natural deduction and
sequent calculus presentations of CPL.

Because some sequent calculus presentations include the cut principle as an explicit rule (like
the hypothesis rule), the verification of the cut principle, which shows that such a rule is admissible,
is traditionally called cut admissibility. The admissibility of cut shows that if we have a proof of a
proposition, we are justified in using it as an assumption in another proof. It is therefore analogous
to the substitution theorem in natural deduction systems, though the proof is more involved.

Theorem 6 (Cut admissibility). If Γ⇒ A[w] and Γ, A[w]⇒ C[w], then Γ⇒ C[w].

Proof. We refer to the proof of the first premise, Γ ⇒ A[w], as D and refer to the proof of the
second premise, Γ, A[w] ⇒ C[w], as E . We proceed by lexicographic induction, first on the
principal formula A, and then on the shapes of the two derivationsD and E (either one or both gets
smaller if the principal formula remains the same). The cases of cut admissibility are classified as
principal cuts, left commutative cuts, and right commutative cuts. We illustrate the proof technique
by presenting the cases corresponding to ⊃ and ♦.
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Case: A = A ⊃ B – Principal cut

D =

D1

Γ, A[w]⇒ B[w]

Γ⇒ A ⊃ B[w]
⊃R

E =

E1

Γ, A ⊃ B[w]⇒ A[w]
E2

Γ, A ⊃ B[w], B[w]⇒ C[w]

Γ, A ⊃ B[w]⇒ C[w]
⊃L

D′ :: Γ, B[w]⇒ A ⊃ B[w] by weakening principle on D
E ′1 :: Γ⇒ A[w] by i.h. on A ⊃ B, D and E1

E ′2 :: Γ, B[w]⇒ C[w] by i.h. on A ⊃ B, D′ and E2

F :: Γ⇒ B[w] by i.h. on A, E ′1 and D1

F ′ :: Γ⇒ C[w] by i.h. on B, F and E ′2

Case: (Γ = Γ′, B1 ⊃ B2[w]) – Left commutative cut

D =

D1

Γ′, B1 ⊃ B2[w]⇒ B1[w]
D2

Γ′, B1 ⊃ B2[w], B2[w]⇒ A[w]

Γ′, B1 ⊃ B2[w]⇒ A[w]
⊃L

E
Γ′, B1 ⊃ B2[w], A[w]⇒ C[w]

E ′ :: Γ′, B1 ⊃ B2[w], B2[w], A[w]⇒ C[w] by weakening principle on E
F2 :: Γ′, B1 ⊃ B2[w], B2[w]⇒ C[w] by i.h. on A, D2 and E ′
F :: Γ′, B1 ⊃ B2[w]⇒ C[w] by ⊃L on D1 and F2

Case: Right commutative cut, right rule
D

Γ⇒ A[w]

E =

E1

Γ, A[w], C1[w]⇒ C2[w]

Γ, A[w]⇒ C1 ⊃ C2[w]
⊃R

E ′1 :: Γ, C1[w], A[w]⇒ C2[w] by weakening principle on E1

F1 :: Γ, C1[w]⇒ C2[w] by i.h. on A , D and E ′1
F :: Γ⇒ C1 ⊃ C2[w] by ⊃R on F1

Case: (Γ = Γ′, B1 ⊃ B2[w]) – Right commutative cut, left rule

D
Γ′, B1 ⊃ B2[w]⇒ A[w]

E =

E1

Γ′, B1 ⊃ B2[w], A[w]⇒ B1[w]
E2

Γ′, B1 ⊃ B2[w], A[w], B2[w]⇒ C[w]

Γ′, B1 ⊃ B2[w], A[w]⇒ C[w]
⊃L
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E ′2 :: Γ′, B1 ⊃ B2[w], B2[w], A[w]⇒ C[w] by weakening principle on E2

F1 :: Γ′, B1 ⊃ B2[w]⇒ B1[w] by i.h. on A , D and E1

F2 :: Γ′, B1 ⊃ B2[w], B2[w]⇒ C[w] by i.h. on A , D and E ′2
F :: Γ′, B1 ⊃ B2[w]⇒ C[w] by ⊃L on F1 and F2

Case: (A = ♦A) – Principal cut

D =

Dw
w ≺ w′

D1

Γ⇒ A[w′]

Γ⇒ ♦A[w]
♦R

E =

E1

∀w′. w ≺ w′ −→ Γ⇒ A[w′] −→ Γ,♦A[w]⇒ C[w]

Γ,♦A[w]⇒ C[w]
♦L

E ′1 :: Γ,♦A[w]⇒ C[w] by E1 on Dw and D1

F :: Γ⇒ C[w] by i.h. on ♦A, D and E ′1

Case: (Γ = Γ′,♦B[w]) – Left commutative cut

D =

D1

∀w′. w ≺ w′ −→ Γ′ ⇒ B[w′] −→ Γ′,♦B[w]⇒ A[w]

Γ′,♦B[w]⇒ A[w]
♦L

E
Γ′,♦B[w], A[w]⇒ C[w]

F1 :: ∀w′. w ≺ w′ −→ Γ′ ⇒ B[w′] −→ Γ′,♦B[w]⇒ C[w]
by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′ and D0 :: Γ′ ⇒ B[w′]
D′

1 :: Γ′,♦B[w]⇒ A[w] by D1 on Dw and D0

F ′
1 :: Γ′,♦B[w]⇒ C[w] by i.h. on A, D′

1 and E
F :: Γ′,♦B[w]⇒ C[w] by ♦L on F1

Case: Right commutative cut, right rule
D

Γ⇒ A[w]

E =

Ew
w ≺ w′

E1

Γ, A[w]⇒ C[w′]

Γ, A[w]⇒ ♦C[w]
♦R

F1 :: Γ⇒ C[w′] by strengthening principle on E1

F :: Γ⇒ ♦C[w] by ♦R on Ew and F1
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Case: (Γ = Γ′,♦B[w]) – Right commutative cut, left rule

D
Γ′,♦B[w]⇒ A[w]

E =

E1

∀w′. w ≺ w′ −→ Γ′, A[w]⇒ B[w′] −→ Γ′,♦B[w], A[w]⇒ C[w]

Γ′,♦B[w], A[w]⇒ C[w]
♦L

F1 :: ∀w′. w ≺ w′ −→ Γ′ ⇒ B[w′] −→ Γ′,♦B[w]⇒ C[w]
by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′ and D0 :: Γ′ ⇒ B[w′]
D′

0 :: Γ′, A[w]⇒ B[w′] by strengthening principle on D0

E ′1 :: Γ′,♦B[w], A[w]⇒ C[w] by E1 on Dw and D′
0

F ′
1 :: Γ′,♦B[w]⇒ C[w] by i.h. on A, D and E ′1

F :: Γ′,♦B[w]⇒ C[w] by ♦L on F1

The other cases are similar (see MinimalCPL/Sequent.agda).

The identity theorem is the global analogue of local completeness. Identity shows us that the
left rules of the sequent calculus are strong enough to decompose a complex proposition down to
its atomic constituents (which can then be proved by the init rule).

Theorem 7 (Identity). For all A, it is the case that Γ, A[w]⇒ A[w].

Proof. By structural induction on A. We present here some illustrative cases:

Case: (A = Q, where Q is atomic)

F :: Γ, Q[w]⇒ Q[w] By rule init

Case: (A = A ⊃ B)

F1 :: Γ, A[w]⇒ A[w] by i.h. on A
F ′

1 :: Γ, A ⊃ B[w], A[w]⇒ A[w] by weakening principle on F1

F2 :: Γ, B[w]⇒ B[w] by i.h. on B
F ′

2 :: Γ, A ⊃ B[w], A[w], B[w]⇒ B[w] by weakening principle on F2

F ′ :: Γ, A ⊃ B[w], A[w]⇒ B[w] by ⊃L on F ′
1 and F ′

2

F :: Γ, A ⊃ B[w]⇒ A ⊃ B[w] by ⊃R on F ′

Case: (A = ♦A)

F1 :: ∀w′. w ≺ w′ −→ Γ⇒ A[w′] −→ Γ,♦A[w]⇒ ♦A[w]
by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′ and D0 :: Γ⇒ A[w′]
D1 :: Γ⇒ ♦A[w] by ♦R on D0

D′
1 :: Γ,♦A[w]⇒ ♦A[w] by weakening principle on D1

F :: Γ,♦A[w]⇒ ♦A[w] by ♦L on F1
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Case: (A = �A)

F1 :: (∀w′. w ≺ w′ −→ Γ⇒ A[w′]) −→ Γ,�A[w]⇒ �A[w]
by the following hypothetical reasoning:

Assume D0 :: ∀w′. w ≺ w′ −→ Γ⇒ A[w′]
D1 :: Γ⇒ �A[w] by �R on D0

D′
1 :: Γ,�A[w]⇒ �A[w] by weakening principle on D1

F :: Γ,�A[w]⇒ �A[w] by �L on F1

The other cases are similar (see MinimalCPL/Sequent.agda).

5 Equivalence of sequent calculus and natural deduction
In Section 3, we introduced constructive provability logic as a natural deduction system that allows
us to reflect over provability at accessible worlds, and in Section 4 we introduced a sequent calculus
formulation of CPL that allows us to more easily establish meaningful statements about provability
at accessible worlds. In this section, we tie up loose ends by showing that the natural deduction
and sequent calculus formulations of CPL are equivalent. Given the equivalence of these two
presentations of minimal CPL, it is a simple matter to use Theorem 5 (it is not the case that
· ⇒ Q1 ⊃ Q2[β]) to prove Theorem 2 (it is not the case that · ` Q1 ⊃ Q2[β]).

Proving soundness and completeness of sequent calculi is generally a fairly simple task once
the defining principles of the natural deduction and sequent calculus systems have been verified. In
our case there is one wrinkle: both directions of the proof have to be established simultaneously. If
we call “soundness” the proof that Γ⇒ A[w] implies Γ ` A[w] and call “completeness” the proof
in the other direction,9 then the soundness of ♦R relies on soundness at accessible worlds, but the
soundness of ♦L relies on completeness at accessible worlds.

Theorem 8 (Equivalence of sequent calculus and natural deduction).

(i) If Γ ` A[w] then Γ⇒ A[w]

(ii) If Γ⇒ A[w] then Γ ` A[w]

Proof. By lexicographic induction, first on the accessibility relation and second on the given
derivation. We have to assume the induction hypothesis in both directions at accessible worlds,
but we can prove the two directions independently at a given world under the assumption that both
directions hold at accessible worlds. We prove (i) in Section 5.1 and (ii) in Section 5.2. In those
sections, we write “by i.h.” when we are calling the induction hypothesis on a smaller derivation
at the same world, and we write “by i.h.(i)” or “by i.h.(ii)” when we are calling the induction
hypothesis at an accessible world.

9This is therefore the view that privileges the natural deduction system, because “soundness” is the soundness of
the sequent calculus with respect to natural deduction. It would be just as appropriate to call the “soundness” direction
the completeness of natural deduction with respect to the sequent calculus!
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We elide the cases for 6♦ and 6� since they are very similar to the cases for � and ♦. The full
proof is included in our Agda development (see MinimalCPL/Equiv.agda).

5.1 From natural deduction to sequent calculus
Case hyp:

Γ, A[w] ` A[w]
hyp

F :: Γ, A[w]⇒ A[w] by identity principle

Case ⊃I:
D1

Γ, A[w] ` B[w]

Γ ` A ⊃ B[w]
⊃I

E1 :: Γ, A[w]⇒ B[w] by i.h. on D1

F :: Γ⇒ A ⊃ B[w] by ⊃R on E1

Case ⊃E:
D1

Γ ` A ⊃ B[w]
D2

Γ ` A[w]

Γ ` B[w]
⊃E

E1 :: Γ⇒ A ⊃ B[w] by i.h. on D1

E2 :: Γ⇒ A[w] by i.h. on D2

F1 :: Γ, A ⊃ B[w]⇒ A[w] by weakening principle on E2

F2 :: Γ, A ⊃ B[w], B[w]⇒ B[w] by identity principle
F :: Γ, A ⊃ B[w]⇒ B[w] by ⊃L on F1 and F2

F ′ :: Γ⇒ B[w] by cut principle on E1 and F

Case ♦I:
Dw

w ≺ w′
D1

Γ ` A[w′]

Γ ` ♦A[w]
♦I

E1 :: Γ⇒ A[w′] by i.h.(i) on D1

F :: Γ⇒ ♦A[w] by ♦R on Dw and E1

Case ♦E:
D1

Γ ` ♦A[w]
D2

∀w′. w ≺ w′ −→ Γ ` A[w′] −→ Γ ` C[w]

Γ ` C[w]
♦E
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E1 :: Γ⇒ ♦A[w] by i.h. on D1

E2 :: ∀w′. w ≺ w′ −→ Γ⇒ A[w′] −→ Γ,♦A[w]⇒ C[w]
by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′ and E0 :: Γ⇒ A[w′]
D0 :: Γ ` A[w′] by i.h.(ii) on E0

D′
2 :: Γ ` C[w] by D2 on Dw and D0

E ′2 :: Γ⇒ C[w] by i.h. on D′
2

E ′′2 :: Γ,♦A[w]⇒ C[w] by weakening principle on E ′2
F :: Γ,♦A[w]⇒ C[w] by ♦L on E2

F ′ :: Γ⇒ C[w] by cut principle on E1 and F

Case �I:
D1

∀w′. w ≺ w′ −→ Γ ` A[w′]

Γ ` A[w]
�I

E1 :: ∀w′. w ≺ w′ −→ Γ⇒ A[w′] by the following hypothetical reasoning:
Assume that for an arbitrary w′ we have Dw :: w ≺ w′

D′
1 :: Γ ` A[w′] by D1 on Dw
E ′1 :: Γ⇒ A[w′] by i.h.(i) on D′

1

F :: Γ⇒ �A[w] by �R on E1

Case �E:
D1

Γ ` �A[w]
D2

(∀w′. w ≺ w′ −→ Γ ` A[w′]) −→ Γ ` C[w]

Γ ` C[w]
�E

E1 :: Γ⇒ �A[w] by i.h. on D1

E2 :: (∀w′. w ≺ w′ −→ Γ⇒ A[w′]) −→ Γ,�A[w]⇒ C[w]
by the following hypothetical reasoning:

Assume E0 :: ∀w′. w ≺ w′ −→ Γ⇒ A[w′]
D0 :: ∀w′. w ≺ w′ −→ Γ ` A[w′] by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′

E ′0 :: Γ⇒ A[w′] by E0 on Dw
D′

0 :: Γ ` A[w′] by i.h.(ii) on E ′0
D′

2 :: Γ ` C[w] by D2 on D0

E ′2 :: Γ⇒ C[w] by i.h. on D′
2

E ′′2 :: Γ,�A[w]⇒ C[w] by weakening principle on E ′2
F :: Γ,�A[w]⇒ C[w] by �L on E2

F ′ :: Γ⇒ C[w] by cut principle on E1 and F
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5.2 From sequent calculus to natural deduction
Case init:

Γ, Q[w]⇒ Q[w]
init

F :: Γ, Q[w] ` Q[w] by hyp

Case ⊃R:
D1

Γ, A[w]⇒ B[w]

Γ⇒ A ⊃ B[w]
⊃R

E1 :: Γ, A[w] ` B[w] by i.h. on D1

F :: Γ ` A ⊃ B[w] by ⊃I on E1

Case ⊃L:
D1

Γ, A ⊃ B[w]⇒ A[w]
D2

Γ, A ⊃ B[w], B[w]⇒ C[w]

Γ, A ⊃ B[w]⇒ C[w]
⊃L

E1 :: Γ, A ⊃ B[w] ` A[w] by i.h. on D1

E2 :: Γ, A ⊃ B[w], B[w] ` C[w] by i.h. on D2

F2 :: Γ, A ⊃ B[w] ` A ⊃ B[w] by hyp
F :: Γ, A ⊃ B[w] ` B[w] by ⊃E on E1 and F2

F ′ :: Γ, A ⊃ B[w] ` C[w] by substitution principle on F and E2

Case ♦R:
Dw

w ≺ w′
D1

Γ⇒ A[w′]

Γ⇒ ♦A[w]
♦R

E1 :: Γ ` A[w′] by i.h(ii) on D1

F :: Γ ` ♦A[w] by ♦I on Dw and E1

Case ♦L:
D1

∀w′. w ≺ w′ −→ Γ⇒ A[w′] −→ Γ,♦A[w]⇒ C[w]

Γ,♦A[w]⇒ C[w]
♦L
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E1 :: Γ,♦A[w]⇒ ♦A[w] by hyp
E2 :: ∀w′. w ≺ w′ −→ Γ,♦A[w] ` A[w′] −→ Γ,♦A[w] ` C[w]

by the following hypothetical reasoning:
Assume that for an arbitrary w′ we have Dw :: w ≺ w′ and E0 :: Γ,♦A[w] ` A[w′]
D0 :: Γ,♦A[w]⇒ A[w′] by i.h.(i) on E0

D′
0 :: Γ⇒ A[w′] by strengthening principle on D0

D′
1 :: Γ,♦A[w]⇒ C[w] by D1 on Dw and D′

0

E ′1 :: Γ,♦A[w] ` C[w] by i.h. on D′
1

F :: Γ,♦A[w]⇒ C[w] by ♦E on E1 and E2

Case �R:
D1

∀w′. w ≺ w′ −→ Γ⇒ A[w′]

Γ⇒ �A[w]
�R

E1 :: ∀w′. w ≺ w′ −→ Γ ` A[w′] by the following hypothetical reasoning:
Assume that for an arbitrary w′ we have Dw :: w ≺ w′

D′
1 :: Γ⇒ A[w′] by D1 on Dw
E ′1 :: Γ ` A[w′] by i.h.(ii) on D1

F :: Γ ` �A[w] by �I on E1

Case �L:
D1

(∀w′. w ≺ w′ −→ Γ⇒ A[w′]) −→ Γ,�A[w]⇒ C[w]

Γ,�A[w]⇒ C[w]
�L

E1 :: Γ,�A[w] ` �A[w] by hyp
E2 :: (∀w′. w ≺ w′ −→ Γ,�A[w] ` A[w′]) −→ Γ,�A[w] ` C[w]

by the following hypothetical reasoning:
Assume E0 :: ∀w′. w ≺ w′ −→ Γ,�A[w] ` A[w′]
D0 :: ∀w′. w ≺ w′ −→ Γ⇒ A[w′] by the following hypothetical reasoning:

Assume that for an arbitrary w′ we have Dw :: w ≺ w′

E ′0 :: Γ,�A[w] ` A[w′] by E0 on Dw
D′

0 :: Γ,�A[w]⇒ A[w′] by i.h.(i) on E ′0
D′′

0 :: Γ⇒ A[w′] by strengthening principle on D′
0

D′
1 :: Γ,�A[w]⇒ C[w] by D1 on D0

E ′1 :: Γ,�A[w] ` C[w] by i.h. on D′
1

F :: Γ,�A[w] ` C[w] by �E on E1 and E2

This completes the discussion of the equivalence of the sequent calculus and natural deduction
presentations of minimal CPL.
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6 Conclusion
In this report, we have discussed the judgmental principles of constructive provability logic and
given equivalent natural deduction and sequent calculus presentation for the minimal, modal frag-
ment of this logic. We will conclude by elaborating a bit on the connections between our presen-
tation of minimal CPL, minimal modal logic, and classical provability logic.

The word “minimal” used throughout this report was used in the sense of minimal logic, the
subsystem of intuitionistic logic without a proper contradiction ⊥. The lack of a proper contra-
diction was why we had to prove things like Q1[β] ` ♦Q2 ⊃ C[α] for an arbitrary C. If we had
formalized an intuitionistic logic instead of a minimal logic, we could have simply proved that
Q1[β] ` ♦Q2 ⊃ ⊥[α] and relied on the fact that Γ ` ⊥ ⊃ C[w] is universally true in intuitionistic
logic. Our formalization of minimal logic was one reason why the 6♦ and 6� connectives were
motivated – proving Γ ` 6♦A[w] does, in fact, imply that Γ ` ♦A ⊃ C[w] for any C (this is a
consequence of the axiom N♦ in MinimalCPL/Axioms.agda).

We refer to this logic as constructive provability logic to both connect and distinguish from
previous work on modal provability logics [1, 12]. The Gödel-Löb logic of provability, which
is known variously as G, L, GL, Pr, PrL, KW, and K4W, has mostly only been given Hilbert-
style and/or classical presentations. Both CPL and GL are motivated by a desire to reflect logical
provability within logic, and both CPL and the Kripke semantics for GL require a converse well-
founded accessibility relation, though GL additionally requires that the accessibility relation be
transitive. The axiomatic presentation of GL is characterized by the following axioms:

• K�: �(A ⊃ B) ⊃ �A ⊃ �B,

• 4�: �A ⊃ ��A,

• and GW : �(�A ⊃ A) ⊃ �A.

If we stipulate that CPL’s accessibility relation is transitive as well as converse well founded (and
thus matches the Kripke accessibility relation for GL), these axioms are all universally true in
minimal CPL (see MinimalCPL/Axioms.agda). We do not have a completeness result.

Acknowledgments. The help of Dan Licata and Jamie Morgenstern was invaluable for helping
both of the authors learn Agda. Christopher Richards, Vivek Nigam, Henry de Young, David
Baelde, and William Lovas gave us a number of important insights into this logic and related work
surrounding it, and Christopher Richards, in particular, gave very helpful comments on an earlier
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we know about modal logic, and André Platzer’s chance inclusion of the axiom GL on a course
midterm, in particular, could not have been more auspicious.

References
[1] Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Handbook of Philosophical Logic,

2nd ed. pp. 229–403. Kluwer (2004)

34



[2] Dos̆en, K.: Negation in the light of modal logic. In: Gabbay, D.M. (ed.) What is negation?,
pp. 77–86. Kluwer Academic Publishers (1999)

[3] Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press, Cambridge,
Massachusetts (1991)

[4] Harper, R.: Practical foundations for programming languages (2010), working draft, available
online: http://www.cs.cmu.edu/˜rwh/plbook/book.pdf

[5] Licata, D.R., Zeilberger, N., Harper, R.: Focusing on binding and computation. In: IEEE
Symposium on Logic in Computer Science (2008)
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