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Abstract

IP networking is a spectacular success, catalyzing the diffusion of data networking across academic insti-

tutions, governments, businesses, and homes worldwide. Yet, despite the fundamental importance of this

infrastructure, today’s networks are surprisingly fragile and increasingly difficult to configure, control, and

maintain. As our dependence on data networking grows, so do the risks of security breaches, large-scale

outages, and service disruptions.

We believe that the root of these problems lies in the complexity of the control and management planes—

the software and protocols coordinating network elements—and particularly the way the decision logic and

the distributed-systems issues are inexorably intertwined. The research community advocates a complete

refactoring of the functionality and proposes a new architecture which they call “4D,” after the architecture’s

four planes: decision, dissemination, discovery, and data. The 4D architecture pulls decision-making logic

out of the network elements to create a logically centralized decision plane, where network-level objectives

and policies are specified and enforced by direct configuration of state on individual network elements.

While the 4D vision is conceptually appealing, it has raiseda wide range of practical concerns related

to robustness, flexibility, scalability, and security. Ourthesis is that “it is actually possible to build a 4D

network that is as scalable and robust as traditional IP networks but greatly simplifies network control and

management”. To prove this thesis, we must address the following technical challenges:

1. What kind of decision-plane framework will enable the centralization and composition of multiple

network control functions for sophisticated network control?

2. How can we provide reliable connectivity to remotely manage distributed network elements without

relying on the communication services that are being managed?

3. Is there an efficient way to disseminate control messages from central decision servers to a large

number of network elements?

We believe that answering the above questions is key to the successful deployment of 4D networks.

In this dissertation, we tackle those challenges by building a 4D network control platform called Tesseract

and demonstrating that Tesseract enables both simpler protocols that do not have to embed decision-making

logic, and more powerful decision algorithms for implementing sophisticated goals. The main target of our

work is to turn the revolutionary 4D concept into a practicalworking system.
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Chapter 1

Introduction

Although IP networking has been wildly successful, there are serious problems lurking “under the hood”.

IP networks exhibit a defining characteristic of unstable complex systems – a small local event (e.g., mis-

configuration of a routing protocol on a single interface) can have severe, global impact in the form of a

cascading meltdown. In addition, individual Autonomous Systems (ASes) must devote significant resources

to “work around” the constraints imposed by today’s protocols and mechanisms to achieve their goals for

traffic engineering, survivability, security, and policy enforcement. In seeking cures, the research community

is exploring a clean slate re-design of the Internet architecture that greatly simplifies network control and

management by centralizing architectural intent and directly expressing operational constraints. While the

clean slate architecture is conceptually appealing, a substantial number of technical challenges (e.g., scala-

bility) must be addressed before the concept can be proved and widely accepted. This thesis demonstrates

that it is actually possible to build a flexible centralized control system for a single network domain that is

as scalable and robust as traditional IP networks but greatly simplifies network control and management.

1.1 Problems

The Internet architecture bundles control logic and packethandling into the individual routers distributed

throughout an AS. As a result, each router1 participates in distributed protocols that implicitlyembedthe

decision logic. For example, within an IP network domain thepath-computation logic is governed by

1We use the terms “network element”, “router”, and “switch” interchangeably throughout the thesis.

1



2 CHAPTER 1. INTRODUCTION

distributed protocols such as OSPF, IS-IS, and EIGRP. The routing protocols dictate not only how the

routers learn about the topology, but also how they select paths. Similarly, in Ethernet networks, the path-

computation logic is embedded in the Spanning Tree protocol[1]. Many of today’s data networks must

support network-level objectives and capabilities far more sophisticated than best-effort packet delivery.

These ever-evolving requirements have led to incremental changes in the control-plane protocols, as well as

complex management-plane software that tries to “coax” thecontrol plane into satisfying the network objec-

tives. The resulting complexity is responsible for the increasing fragility of IP networks and the tremendous

difficulties people face when trying to understand and manage their networks.

In data networks, the functionality that controls the network is split into three main planes: (i) thedata

planethat handles the individual data packets; (e.g., packet forwarding, packet filtering, queue management,

and link scheduling); (ii) thecontrol planethat implements the distributed routing algorithms acrossthe

network elements (e.g., routing protocols, path-computation algorithms, and logic for merging multiple

routing tables into a single forwarding table); and (iii) themanagement planethat monitors the network and

configures the data-plane mechanisms and control-plane protocols. While the original IP control plane was

designed to have asingledistributed algorithm to maintain theforwarding table in the data plane, today’s IP

data, control, and management planes are far more complex. The data plane needs to implement, in addition

to next-hop forwarding, functions such as tunneling, access control, address translation, and queuing. The

states used to implement these functions are governed by multiple entities and must be configured through

a rich set of individual, interacting commands. Even for theforwarding state, multiple routing processes

usually are running on the same router/switch.

While there are many dependencies among the states and the logic updating the states, most of the

dependencies arenot maintained automatically. For example, controlling routing and reachability today

requires complex arrangements of commands to tag routes, filter routes, and configure multiple interacting

routing processes, all while ensuring that no router is asked to handle more routes and packet filters than it

has resources to cope with. A change in any one part of the configuration can easily break other parts.

The problem is exacerbated as packet delivery cannot commence until the routing protocols create the

necessary forwarding tables, and the management plane cannot reach the control plane until the routing

protocols are configured. Resolving this Catch-22 dilemma requires installing a significant amount of con-

figuration information on IP routers before deployment.2 Studies of production networks show them requir-

ing hundreds of thousands of lines of low-level configuration commands distributed across all the routers
2This problem is so profound that, whenever possible, remoterouters are plugged into telephone modems so that the Public
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Figure 1.1: Enterprise network with two locations, each location with a front office and a data-center.

in the network [2]. These configurations and the dynamic forwarding state they generate require a myriad

of ad hoc scripts and systems in the management plane to validate, monitor, and update. The result is a

complex and failure-prone network.

We present two examples that illustrate the network fragility caused by today’s complex and unwieldy

control and management infrastructure. The examples illustrate how the lack of coordination between rout-

ing and security mechanisms can result in a fragile network,and how today’s control and management

infrastructure makes it difficult to properly coordinate the mechanisms.

Reachability Control in Enterprises Today, many enterprise networks attempt to control which hosts

and services on the network can communicate (i.e., reach each other) as part of their security strategy [2].

They implement their strategies using a combination of routing policy and packet filters, but this approach

is fraught with peril even in simple networks.

Consider the example enterprise network in Figure 1.1. The company has two locations, A and B.

Each location has a number of “front-office” computers used by the sales agents (AF1-2 and BF1-2). Each

location also has a data center where servers are kept (AD1-2and BD1-2). Initially, the two locations are

connected by a link between the front-office routers, R2 and R4, over which inter-office communications

flow. The Interior Gateway Protocol (IGP) metric for each link is shown in italics.

Switched Telephone Network provides a management communication path of last resort. Before making configuration changes to

the router over the Internet via Telnet or ssh, operators often double-check that the modem connection is still functioning, lest an

unfortunate configuration mistake leave them with no other way to contact the router, short of physical access to the console.
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The company’s security policy is for front office computers to be able to communicate with other loca-

tions’ front-office computers and the local data center’s servers, but not the data center of the other location.

Such policies are common in industries such as insurance, where the sales agents of each location are effec-

tively competing against each other even though they work for the same company.

The security policy is implemented using packet filters on the routers controlling entrance to the data

centers to drop packets that violate the policy. Interface i1.1 is configured with a packet filter that drops all

packets from the BF subnet, and interface i3.1 drops all packets from the AF subnet.

The network functions as desired, until the day when the data-center staff decides to add a new, high-

capacity dedicated link between the data centers (shown as adashed line between R1 and R3 – perhaps they

have decided to use each other as remote backup locations). It seems reasonable that with packet filters

protecting the entrances to the data centers, the new link between data centers should not compromise the

security policy. However, the new link changes the routing such that packets sent from AF to BD will travel

from R2 to R1 to R3 to BD – completely avoiding the packet filterinstalled on interface i3.1 and violating

the security policy. When the designers eventually discover the security hole, probably due to an attack

exploiting the hole, they would typically respond by copying the packet filter from i3.1 to i3.2, so that it now

also drops packets from AF. This filter design does plug the security hole, but it means that if the front-office

link from R2 to R4 fails, AF will be unable to reach BF. Even though the links from R2 to R1 to R3 to R4

are all working, the packet filter on interface i3.2 will dropthe packets from subnet AF.

In this example, the problems arise because the ability of a network to carry packets depends on the

routing protocols and the packet filters working in concert.While routing automatically adapts to topol-

ogy changes, there is no corresponding way to automaticallyadapt packet filters or other state. It could

be argued that a more “optimal” placement of packet filters, or the use of multi-dimensional packet filters

(i.e., filters that test both source and destination addressof a packet) would fix the problems shown in this

example. However, as networks grow in size and complexity from the trivial example used here for illustra-

tive purposes, finding these optimal placements and maintaining the many multi-dimensional packet filters

they generate requires developing and integrating entirely new sets of tools into the network’s management

systems. Since these tools will be separate from the protocols that control routing in real time, they will

perpetually be attempting to remain synchronized with routing protocols by trying to model and guess the

protocols’ behavior.
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AS1 AS3

AS2

br.nyc.as3

br.atl.as3
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Figure 1.2: Autonomous Systems (ASes) peering with each other via external BGP (eBGP) sessions. AS1
must place packet filters on its ingress links to prevent AS3 from sending packets to destinations for which
AS1 has not agreed to provide transit.

Peering Policies in Transit Networks Routing policy is based on the premise that a router that doesnot

announce a route to a destination to a peer will not be sent packets for that destination by that peer. However,

the routing system does nothing to prevent an unscrupulous peer from sending packets to that destination

anyway. Enforcing routing policy is nearly impossible withtoday’s control and management planes.

Figure 1.2 shows an example of three Autonomous Systems (ASes) peering with each other via three

external BGP sessions (one eBGP session along each of the links shown in the figure). Assume that AS1 is

a major transit network, and it announces a route to destination d in its eBGP session with AS2. If AS1’s

policy is to not provide AS3 with transit service ford, it does not announced in its eBGP sessions with

AS3. However, if AS3 wishes to be unscrupulous (e.g., use AS1for transit service without paying), it can

assume AS1 does know a way tod (e.g., so that AS1’s own customers can reachd). If AS3 sends packets

for d to br.nyc.as1, they will definitely be delivered, as br.nyc.as1 must have a route tod in order to handle

legitimate traffic from AS2.

Enforcing routing policy requires installing packet filters to drop packets to destinations that have not

been announced as reachable. As the announcements are received by an AS, and the AS’s own topology

changes over time, the announcements sent by the AS will change and the packet filters must be moved

correspondingly. Implementing such functionality by adding another ad hoc script to the management plane

is essentially impossible today. Even if it were possible towrite a script that snoops on the eBGP announce-

ments sent to each neighboring border router and installs packet filters on the ingress interface as appropriate,
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the script would be extremely dangerous as it would not properly order the packet filter installation/removal

with the BGP announcements. For example, it would be bad to announce to a neighbor border router a route

to a destination before removing the packet filters that dropthe packets sent to the destination.

Beyond ordering issues, transit networks handle a large number of destinations, and each packet filter

applied to an interface consumes forwarding resources and reduces the effective capacity of the interface.

It might be desirable to move packet filters into the network whenever possible, away from the ingress

interfaces, so that one packet filter can enforce the BGP policy for multiple ingress interfaces.

Enforcing routing policy requires dynamically placing packet filters to respond to the continually chang-

ing routes selected by that policy. Correctly and optimallyplacing the filters requires that the placement be

synchronized with the announcement of routing decisions and that the placement algorithms have access to

the complete routing topology of the network.

Same Problems, Many Guises There are many data networks, designed and managed by different or-

ganizations with different goals. Individual networks serve radically different purposes; in addition to the

familiar backbone networks, there are access, metro, enterprise, and data-center networks. In each of these

settings, the network administrators struggle to “program” their networks, integrating a diverse set of tech-

nologies and protocols, and artfully setting the configurable parameters that determine the network’s func-

tionality and dynamics.

While the specific context, technology, and mechanisms may change from network to network, there is

commonality among the problems. For example, while Ethernet was initially designed to run on a shared

medium, it has since evolved into a networking technology with a full package of data plane, control plane,

and management plane to rival IP. Just as IP has many routing protocols to compute the forwarding table,

Ethernet has many variations of the spanning tree protocol [3]. Just as IP networks have mechanisms such

as MPLS to control the paths that packets take, Ethernet has virtual LANs (and VLANs-in-VLANs). Just

as IP networks have needed to implement sophisticated functionality, including traffic engineering, security

policies, and fast restoration, these same needs are being required of Ethernet in many contexts, such as

enterprises, data centers [4], and metro/access networks [5]. Just as ad hoc management capabilities need

to be overlaid on top of the IP control plane, achieving advanced functionality in Ethernet networks has led

to increasingly ad hoc and complex management systems. The current architecture forces these systems to

operate outside Ethernet’s control plane, where they oftencome into conflict with it.
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1.2 Thesis

We argue that the root cause of these problems lies in the control plane running on the network elements

and the management plane that monitors and configures them. The key to solving the problems is to create

a way for the architectural intent and operational constraints governing the network to be expressed directly,

and then automatically enforced by setting data-plane states on the individual routers/switches. Until this

occurs, we expect the design and operation of robust networks to remain a difficult challenge, and the state

of the art to remain a losing battle against a trend where ever-richer and more complex state and logic are

embedded in distributed protocols or exposed through box-level interfaces.

There is an emerging trend for revisiting the division of functionality and advocating an extreme design

point that turns anetwork’s decision logicfrom distributed processes that run on individual routers into a

centralized control service.

In the envisioned control paradigm, a logically centralized entity, called the decision element, is respon-

sible for creating all the state at every router. As a result,any conflicts between the policy objectives can be

detected at the time of state creation. With today’s multiple independent and distributed mechanisms, these

conflicts often only appearin vivo after some part of the configuration state has been changed byone of the

mechanisms.

The centralized control paradigm also simplifies the routerfunctionality. Because algorithms making

control decisions are no longer run at switches, the only distributed functions to be implemented by switches

are those that discover the neighborhood status at each switch, and those that enable the control communica-

tions between the decision element and the switches. Thus, the router software can be very light-weight. Yet

sophisticated control algorithms can easily be implemented with this minimal set of distributed functions.

While the centralized control vision is conceptually appealing, providing a platform to support central-

ized network control has not been attempted, and is technically challenging. For example, it is generally

considered not scalable to compute routing tables and push them to thousands of routers in the network

from a single server; remotely configuring a network using the network being configured appears to be a

chicken-and-egg problem; and it is unclear whether shifting control logic from distributed routers to a cen-

tralized server makes the server too complex to build and operate. The natural question then is: is it actually

practical to run a network with centralized control?
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In this dissertation we answer this question affirmatively by building a centralized network control plat-

form and showing that the platform can support some of the most representative network control functional-

ity with high performance. Our thesis statement is that “it is actually possible to build a centralized control

platform that is as scalable and robust as traditional IP networks but greatly simplifies network control and

management”.

1.3 Contributions

The main contribution of this dissertation is toprovide a robust and scalable system to enable flexible

centralized network control. In particular, we build, extend, and evaluate a centralized network control

system calledTesseractto answer the following questions:

1. How to make centralized control flexible?Flexibility represents the ability of the system to support

different types of control logic and network technologies.To answer this question, we use experiments

to demonstrate that the Tesseract system can seamlessly integrate most useful control functionality,

such as shortest path routing, packet filtering, and traffic engineering. We also show that the same

control logic can operate on both IP and Ethernet networks. In particular, we apply shortest path

routing to Ethernet to increase throughput performance without compromising the Ethernet plug-and-

play feature.

2. How to make centralized control robust?Robustnessrepresents the ability of the system to survive

failures and attacks. We answer this question by simulatingnetwork failures and attacks and mea-

suring the impact on Tesseract. For example, we take down network links and measure the time it

takes the platform to re-compute routes and re-install the new routes on the affected routers. Having

realized the importance of having a robust communication channel for network control, we develop a

generic remote management communication system based on the Tesseract dissemination component.

We call it the Meta-Management System (MMS). The MMS is builtin with a recursive authentica-

tion algorithm and a variety of liveness mechanisms to ensure reachability between the centralized

network decision servers and routers in the event of networkfailures and DDoS attacks.

3. How to make centralized control scalable?Scalabilityrepresents the ability to support the increas-

ing size of networks. We develop an efficient dissemination algorithm to make dissemination load
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increase sub-linearly with the number of nodes in its control domain. We leverage an insight that

network state pushed to different routers can be similar, and we explore the similarity to significantly

improve dissemination scalability.

In answering the above three questions, we use the Emulab [6]testbed to conduct intensive experi-

ments with topologies of real production backbone and enterprise networks. We also build simple analytical

models and use theoretical analysis to derive the time complexity of centralized computation. We verify the

analytical results using experimental data. For example, in evaluating our recursive authentication algorithm

for the Meta-Management System we build a model to derive thetime it takes for a single central server to

authenticaten network nodes. We run experiments on different-sized network topologies to verify that the

experimental results agree with our theoretical analysis.

The most critical step we take to enable extensive experimental evaluation is a Linux implementation

of the Tesseract system. We present the implementation details in this dissertation and we open-source the

code in http://www.cs.cmu.edu/∼4d.

1.4 Acknowledgements

The initial idea of network-wide decision-making is proposed by Jennifer Rexford et al. [7]. The idea is

crystallized and turned into the clean slate network designconcept by Albert Greenbert et al. [8]. This thesis

work is part of the effort to develop a practical system called Tesseract[9]. The Tesseractproject is joint

work with David Maltz at Microsoft Research and T. S. Eugene Ng et al. at Rice University.

1.5 Organization

The rest of this dissertation is organized as follows:

Chapter 2 places this thesis work in the context of centralized network control and explains how 4D/Tesseract

is different from other centralized network control frameworks.

Chapter 3 describes the basic framework of our solution – theTesseract system. We use experimental

results to show the new system is comparable performance-wise with the traditional distributed network

control system while providing a variety of appealing new capabilities.
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Chapter 4 addresses the robustness problem of 4D dissemination. We design and implement a Tesseract

dissemination subsystem called the Meta-Management System. It is equipped with a recursive authentica-

tion algorithm and protective APIs for surviving severe network failures and DDoS attacks.

Chapter 5 addresses the scalability problem of 4D dissemination. We conceive an efficient dissemi-

nation algorithm to improve scalability. Experimental results show that the new algorithm reduces server

dissemination load by 97%.



Chapter 2

A Taxonomy of Centralized Network

Control

The focus of this thesis work is a centralized network control system and its dissemination component, which

is designed to also serve other network control systems. This chapter provides the context of this thesis work

by giving an overview of developments concerning network control and management, especially centralized

network control systems. As outlined in Figure 2.1, we position our system in the context of network control

and management and describe how it differs from other existing centralized network control systems. We

also compare our work on network control dissemination withprior work to show where our contribution

lies.

2.1 State-of-the-art

In a running network, control and management systems are responsible for maintaining distributed state

at switches and routers in the presence of dynamic traffic andnetwork conditions. In data networks, the

network control system includes the routing protocols and their configuration. The management system

is realized by the people and programs that track network behavior and adapt the configuration over time.

The control and management systems are where network intelligence lies, and so are fundamental to the

operation of the overall network.

11
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Network Control Systems

Centralized Distributed

RCP SANE Tesseract

Network Control Dissemination

include

support

…

Figure 2.1: A taxonomy of network control systems. This thesis implements the shadowed boxes: Tesseract
and Network Control Dissemination. Tesseract is one of the pioneering implementations of the centralized
network control architecture. Tesseract distinguishes itself from other prototypes by (i) providing a plat-
form to compose a variety of network control algorithms and to operate different types of networks (e.g.,
IP and Ethernet); (ii) providing a generic dissemination service for other centralized network control and
management systems.

2.1.1 Distributed Control and Centralized Management

There are two important distinctions between the control and management systems. First is the timescale on

which they operate. To be responsive, the IP routing protocols exchange messages, re-compute distributed

state, and take actions on a relatively fast timescale. The management system, on the other hand, usually

operates on a slower timescale. Second is how the functionality of the system is implemented. The control

system, due to the requirement for rapid response, is typically implemented in a distributed fashion, where

intelligence or control logic resides with each router and protocols are used to coordinate the actions of all

routers. The coordinations are fully automatic. In contrast, the management system is usually implemented

via a client-server architecture, where a centralized server (which can be made highly available by standard

techniques) collects information from all routers, computes and generates actions (possibly with the input

of a human operator), and sends management commands to routers.

2.1.2 Problem

Historically, IP networks were designed to provide best-effort service. Initially, support for management

was minimal, with most of the intelligence residing within the routing protocols, which were first designed
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Network Type Domain Dissemination Decision
Tesseract IP/Ethernet Intra-domain Logically Out-of-Band Programmable Platform

RCP IP Inter-domain iBGP BGP Route Selection
SANE Ethernet Enterprise Spanning Tree Security Policy Enforcement
SS7 Circuit Switching Telecommunication Physically Out-of-Band Call Management

Table 2.1: Side-by-side comparison between Tesseract and other centralized network control systems.

to provide resiliency under link and router failures. As IP networks became more mainstream, manage-

ment interfaces such as SNMP were added to routers, but in general the management system remains very

primitive. At the same time, a large number of features such as support for traffic engineering, policy rout-

ing, network maintenance, VPN, etc., have been added to IP networks, primarily by extending the control

system.

Adding features by extending the distributed control system requires enhancing the existing routing

protocols in order to (i) propagate more dynamic metrics such as link load in the case of traffic engineering;

and (ii) perform more functions, such as computing new pathsas the traffic load changes. Despite the

conceptual appeal of this approach, overloading routing protocols introduces substantial complexity and

state in the control system, which negatively affects scalability, robustness, and performance. Over time,

adding features becomes more difficult, as each new feature must interoperate with all the previous ones.

2.2 Exploration of Centralized Control

In exploring a revolutionary solution to enhance network functionality without overloading networks with

distributed control state, the researchers propose to investigate centralized network control architectures.

The Routing Control Platform (RCP) [10, 11] was the first prototype that explored centralizing network

control. The concept of lifting network control logic from distributed network elements into a logically

centralized decision element was explicitly called out andpresented as the 4D architecture [7, 8]. The main

contribution of this thesis is turning 4D into a real system called Tesseract1.

2.2.1 Prior Centralized Network Control Systems

Centralized network control systems that precede 4D include the Routing Control Platform, Signaling Sys-

tem 7 and the Intelligent Network, and policy-based networking.

1The tesseract is the 4-dimensional hypercube.
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Routing control platform (RCP): RCP is a solution for controlling inter-domain routing in IPnet-

works, and replaces today’s distributed BGP routing computations. RCP computes the BGP routes for an

Autonomous System (AS) at centralized servers to give the operators of transit networks greater control over

how BGP routing decisions are made.

Traditional telecommunications networks: The concept of centralization is heavily used in many

management paradigms for telecommunications networks, usually based on circuit-switched technology [12].

Signaling System 7 (SS7) [13, 14] keeps communication channels for management information isolated

from the paths used by user data, and takes the approach of a hard separation between management and user

data into separate links or channels. The Intelligent Network (IN) architecture [15] supports extension of

network functionality by enabling user data (call placements) to trigger Detection Points that escape out of

normal call handling and that invoke per-service code.

Management tools for a distributed control plane:Many tools have been developed to ease the config-

uration of the existing architecture for control and management, which depends on individually configured

switches/routers running a distributed control plane. Some approaches, such as those adopted by Cplane

and Orchestream, developed frameworks to solve the problems inherent in configuring large numbers of

distributed switches/routers that may use different command languages. Other tools focus on specific op-

erational tasks, such as traffic engineering or mitigation of Denial-of-Service (DoS) attacks. For example,

Cariden’s MATE [16] and OpNet’s SP Guru [17] products can tune OSPF costs or MPLS Label Switched

Paths to the prevailing traffic, and ArborNetwork’s PeakFlow DoS [18] product detects DoS attacks and

generates filters to block the offending traffic. The generalapproach of policy-based networking (PBN)

has been studied to automate provisioning and network management in applications such as QoS [19].

Network-management tools and PBN approaches usually assume the existing control-plane protocols, focus

on a small portion of the configuration state (e.g., packet filters, but not routing), and do not consider the

interactions among multiple mechanisms.

2.2.2 4D/Tesseract

4D for the first time presents a centralized network control architecture in a systematic way, and Tesseract

is a pioneering 4D implementation. Tesseract provides manycarefully designed features to achieve the

goals we set in 4D, and demonstrates that, as we will show in this thesis, it is actually practical to build a
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centralized network control system that is as responsive and robust as existing distributed network control

frameworks, while offering many new network functionalities.

4D stands for four key network planes: theData, Discovery, Dissemination, and Decision. In the

traditional network architecture, a router generally has only two planes: thedata and control planes. In

contrast to the traditional network, where each individualrouter runs complicated routing decision logic,

the 4D architecture lifts the decision logic from the individual routers’ distributed control planes to create

a logically centralized decision plane. Routers are significantly simplified; instead of making independent

routing decisions, their job is to take instructions from the centralized decision plane and forward packets

based on the centrally made decisions. The decision plane has a network-wide view of the topology and

traffic, and exerts direct control over the operation of the data plane. No decision logic is hardwired in

protocols distributed among the network elements. The output of the decision logic is communicated to

routers by the dissemination plane. By pulling all of the decision logic out of the routers, 4D enables both

simpler protocols and more sophisticated algorithms for driving the operation of the data plane. The 4D

concept outlines a clean-slate approach to data-network control and management.

4D/Tesseract distinguishes itself from prior centralizednetwork control systems in the following ways.

2.2.2.1 New Concept of Clean-Slate Design

4D advocates redesigning the control and management functions from the ground up. We believe that a

clean-slate approach based on sound principles will, at theminimum, provide an alternative perspective and

shed light on fundamental trade-offs in the design of network control and management functions. More

strongly, we believe that such an approach isnecessaryto avoid perpetuating the substantial complexity

of today’s control plane. Fortunately, we can make significant, fundamental changes in the control and

management of IP networkswithout changing the format of the data packets. This enables network evolution

and provides a key lever for substantial innovation in the Internet architecture. A good example of this

principle is the Ethernet technology, which has successfully evolved from a shared-medium network to a

switched network with new control-plane protocols based onlearning and spanning trees, all while leaving

the packet format unchanged.

Rather than exploring incremental extensions to today’s control and management planes, 4D proposes a

clean-slaterepartitioning of functionality. We believe that a green-field approach based on sound principles

is necessary to avoid perpetuating the substantial complexity in today’s design. We have developed the 4D
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architecture as anextreme design pointthat completely separates the decision logic from the underlying

protocols. We deliberately chose an extreme design as we believe that it crystallizes the issues, so that

exploring the strengths and weaknesses of this architecture will lead to important network-level abstractions

and a deeper understanding of the essential functionality needed in the underlying routers.

2.2.2.2 Sound Design Principles

The rich literature on the complexity of today’s control andmanagement planes has led us to the following

three principles that we believe are essential to dividing the responsibility for controlling and managing a

data network:

Network-level objectives:Each network should be configured via specification of the requirements and

goals for its performance. Running a robust data network depends on satisfying objectives for performance,

reliability, and policy that can (and should) be expressed separately from the network elements. For example,

a traffic-engineering objective could be stated as “keep alllinks below 70% utilization, even under single-

link failures.” A reachability policy objective could be stated as “do not allow hosts in subnet B to access

the accounting servers in subnet A.” Today’s networks require these goals to be expressed in low-level

configuration commands on the individual routers, increasing the likelihood that the objectives are violated

due to semantic mistakes in translating the network-level objectives into specific protocols and mechanisms.

Network-wide views: Our notion of a network-wide view is borrowed from the database community

and means having assembled a coherent snapshot of the state of each network component. Timely, accurate,

network-wide views of topology, traffic, and events are crucial for running a robust network. The network-

wide view must accurately reflect the current state of the data plane, including information about each device,

including its name, resource limitations, and physical attributes. Armed with the topology, traffic matrix,

state, and inventory information about a network, algorithms can be written to compute how the network

should meet its objectives. However, today’s control planewasnot designed to provide these network-wide

views, forcing substantial retro-fitting to obtain them. Instead of adding measurement support to the system

as an afterthought, we believe that providing the information necessary to construct a complete, consistent,

network-wide view should be one of the primary functions of the routers and switches.

Direct control: Direct control means that the control and management systemshould have both the

ability and the sole responsibility for setting all the state in the data plane that directs packet forwarding.

The decision logic should not be hardwired in protocols distributed among routers. Rather, only the output
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Figure 2.2: New 4D architecture with network-level objectives, network-wide views, and direct control

of the decision logic should be communicated to the network elements. Satisfying network-level objec-

tives is much easier with direct control over the configuration of the data plane. IP and Ethernet originally

embedded the path-computation logic in simple distributedprotocols that incrementally grew more compli-

cated, as discussed earlier. Because of the difficulty of extending the distributed control protocols to support

sophisticated network-level objectives such as traffic engineering or reachability control, the management

plane is typically used to implement these additional capabilities. With only indirect influence over the

network, today’s management plane must replicate the stateand logic of the control plane and perform a

complex “inversion” of the functionality. The problem would be much easier to solve if the management

plane could compute the forwarding tables and install them in the routers. For direct control to be meaning-

ful, it must be complete. If configuration commands or multiple entities can affect the state in the network

elements, then yet more entities are required for auditing (and correcting) the settings [20, 21, 22] to ensure

the network-level objectives are met.

In addition to these three principles, any design must also consider traditional systems requirements,

such as scalability, reliability, and consistency. Our three principles attempt to capture the issues specific

to the control and management of networks. By separating thenetwork-specific issues from the traditional

systems requirements, we can apply existing techniques from other areas of distributed computing research

to the traditional systems problems while exposing for closer scrutiny the network-specific ones.
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2.2.2.3 New Architecture

Although the three principles could be satisfied in many ways, we have deliberately made the 4D architecture

an extreme design point where all control and management decisions are made in a logically centralized

fashion by servers that have complete control over the network elements. The routers and switches only

have the ability to run network discovery protocols and accept explicit instructions that control the behavior

of the data plane, resulting in network devices that are auto-configurable. Our architecture has the following

four components, as illustrated in Figure 2.2:

Decision plane: The decision plane makesall decisions driving network control, including reachability,

load balancing, access control, security, and interface configuration. Replacing today’s management plane,

the decision plane operates inreal timeon a network-wide view of the topology, the traffic, and the capabil-

ities and resource limitations of the routers/switches. The decision plane uses algorithms to turn network-

level objectives (e.g., reachability matrix, load-balancing goals, and survivability requirements) directly into

the packet-handling state that must be configured into the data plane (e.g., forwarding table entries, packet

filters, queuing parameters). The algorithms in the decision plane may be customized based on knowledge

of the network structure (e.g., a network with a ring topology can use a simpler path-computation algo-

rithm than a network with a mesh topology). The decision plane consists of multiple servers called decision

elements that connect directly to the network.

Dissemination plane:The dissemination plane provides a robust and efficient communication substrate

that connects routers with decision elements. While control information may traverse the same set of phys-

ical links as the data packets, the dissemination paths are maintained separately from the data paths so they

can be operational without requiring configuration or successful establishment of paths in the data plane. In

contrast, in today’s networks, control and management dataare carried over the data paths, which need to

be established by routing protocols before use. The dissemination plane moves management information

created by the decision plane to the data plane, and state identified by the discovery plane to the decision

plane, but does not create state itself.

Discovery plane: The discovery plane is responsible for discovering the physical components in the

network and creating logical identifiers to represent them.The discovery plane defines the scope and persis-

tence of the identifiers, and carries out the automatic discovery and management of the relationships between

them. This includes box-level discovery (e.g., what interfaces are on this router? How many FIB entries

can it hold?), neighbor discovery (e.g., what other routersdoes this interface connect to?), and discovery
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of lower-layer link characteristics (e.g., what is the capacity of the interface?). The decision plane uses

the information learned from the discovery plane to construct network-wide views. In contrast, in today’s

IP networks, the only automatic mechanism is neighbor discovery between two preconfigured and adja-

cent IP interfaces; physical device discovery and associations between entities are driven by configuration

commands and external inventory databases.

Data plane: The data plane handles individual packets based on the statethat isoutput by the deci-

sion plane. This state includes the forwarding table, packet filters, link-scheduling weights, and queue-

management parameters, as well as tunnels and network address translation mappings. The data plane may

also have fine-grain support for collecting measurements [23] on behalf of the discovery plane. Although

the 4D architecture can be realized with the data plane available in today’s networks, enhancements to the

functionality in the data plane could help in simplifying the logic of the decision plane. For example, an

integrated mechanism for forwarding, filtering, and transforming packets would simplify the problem of

realizing a reachability matrix.

The 4D architecture embodies our three principles. The decision-plane logic operates on a network-wide

view of the topology and traffic, with the help of the discovery plane in collecting the measurement data, to

satisfy network-level objectives. The decision plane has direct control over the operation of the data plane,

obviating the need to model and invert the actions of the control plane. Pulling much of the control state and

logic out of the routers enables both simpler protocols thatdo not have to embed decision-making logic, and

more powerful decision algorithms for implementing sophisticated goals.

2.2.2.4 Advantages

Our 4D architecture offers several important advantages over today’s division of functionality:

Separates networking logic from distributed systems issues: The 4D architecture does not and cannot

eliminate all distributed protocols, as networks fundamentally involve routers distributed in space. Rather,

the 4D proposes separating the logic that controls the network, such as route computation, from the protocols

that move information around the network. This separation creates an architectural force opposing the box-

centric nature of protocol design and device configuration that causes so much complexity today. The 4D

tries to find the interfaces and functionality we need to manage complexity—i.e., that factor out issues not

unique to networking, and enable the use of existing distributed systems techniques and protocols to solve

these problems.
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Higher robustness: By simplifying the state and logic for network control, and ensuring the internal

consistency of the state, our architecture greatly reducesthe fragility of the network. The 4D architec-

ture raises the level of abstraction for managing the network, allowing network administrators to focus

on specifying network-level objectives rather than configuring specific protocols and mechanisms on in-

dividual routers and switches. Network-wide views providea conceptually appealing way for people and

systems to reason about the network without regard for complex protocol interactions among a group of

routers/switches. Moving the state and logic out of the network elements also facilitates the creation of new,

more sophisticated algorithms for computing the data-plane state that are easier to maintain and extend.

Improved scalability: The decision plane can introduce new levels of hierarchy that are not available in

today’s protocols. For example, the decision plane could incorporate structures such as Point-of-Presence,

geographic region, and institution that drive so much of network design, without being constrained by pro-

tocol abstractions such as area or Autonomous System.

Better security: Security objectives inherently are network-level goals. For example, the decision

plane can secure the network perimeter by installing packetfilters on all border routers. Managing network-

level objectives, rather than the configuration of individual routers, reduces the likelihood of configuration

mistakes that can compromise security.

Accommodating heterogeneity:The same 4D architecture can be applied to different networking envi-

ronments but with customized solutions. For example, in an ISP backbone with many optimization criteria

and high reliability requirements, the decision plane may consist of several high-end servers deployed in

geographically distributed locations. A data-center environment with Ethernet switches may require only

a few inexpensive PCs, yet still achieve far more sophisticated capabilities (e.g., traffic engineering with

resilience) than spanning tree or static VLAN configurationcan provide today.

Network evolution. A thin control plane could migrate much of the software responsible for controlling

a network to common server platforms. This provides a uniqueopportunity to revisit the design of network

control software with a clean slate, without requiring incremental changes in the installed base of existing

routers.

Enabling of innovation and network evolution: Separating the network control from the routers/switches

and protocols is a significant enabler for innovation and network evolution. The decision plane can incorpo-

rate new algorithms and abstractions for computing the data-plane state to satisfy a variety of network-level

objectives,without requiring a change in eitherdata packet formats orcontrol protocols(dissemination
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and discovery plane protocols in the case of 4D). In addition, moving the control functionality out of the

router software enables new players (e.g., the research community and third-party software developers) to

contribute to the creation of these algorithms.

2.2.3 Side-by-Side Comparison

Tesseract is one member of the family of centralized networkcontrol systems. The Routing Control Platform

(RCP) [10, 11] and Secure Architecture for the Networked Enterprise (SANE) [24] are the most notable

examples of control systems that share conceptual elementswith Tesseract. We next distinguish Tesseract

from its peers listed in Table 2.1.

In contrast to traditional telecommunications networks such as SS7, Tesseract focuses on packet-switching

data networks that have more complex data-plane primitives(e.g., packet forwarding based on longest-prefix

matching, access control, NAT, and tunnels) and higher network dynamics. Unlike SS7, which uses separate

management links or channels, the Tesseract architecture explores a softer logical separation appropriate for

links such as Ethernet.

Compared to the existing centralized network management tools, in Tesseract the decision elements use

network-wide views to manage all network state—it explicitly establishes the decision plane as the place in

the architecture for coordinatingall of the data-plane mechanisms and provides the decision plane with the

information it needs to operate.

RCP focuses on the control of inter-domain routing, while Tesseract focuses on control and management

within a single network. While RCP is designed to be backwardcompatible with BGP, Tesseract is designed

as a clean-slate control plane. RCP only considers BGP routes—a single part of the total state used by

the data-plane to direct packets through the network. Tesseract controls multiple data-plane forwarding

mechanisms including packet-filters. RCP assumes routers are already correctly configured with significant

amounts of state, such as IP addresses and an Interior Gateway Protocol (IGP). Tesseract addresses howzero

pre-configuration of routers/switches can be achieved. Beyond considering only IP networks, Tesseract also

addresses how a single management architecture could control different types of networks such as Ethernet.

SANE is a solution for enforcing security policies in an enterprise network. In a SANE network, com-

munications between hosts are disabled unless they are explicitly allowed by the domain controller. To

permit a data flow, the domain controller issues a certified secure source route to the end host. Switches
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only forward packets that have authentic secure source routes attached to them. The domain controller in

the SANE architecture has a role similar to the decision plane in 4D. For communications between switches

and the domain controller, SANE constructs a spanning tree rooted at the domain controller in a distributed

fashion similar to the IEEE 802.1D spanning tree. This spanning tree has a role similar to the dissemination

plane in Tesseract.

Tempest [25] proposes an alternate framework for network control, where each switch is divided into

switchlets and the functionality of each switch is exposed through a common interface called Ariel. Tempest

allows multiple control planes to operate independently, each controlling its own virtual network composed

of the switchlets, and the framework has been used on both MPLS and ATM data planes. Tesseract’s

dissemination plane provides a complete bootstrap solution, where Tempest’s implementation assumed

a pre-existing IP-over-ATM network for communication withremote switches. While both projects ab-

stract switch functionality, Tesseract does not assume that switches can be fully virtualized into independent

switchlets, but leaves resource allocation to the decisionlogic.

FIRE [26] presents a framework to ease the implementation ofdistributed routing protocols by providing

a secure flooding mechanism for link-state data, as well as hooks to which route computation algorithms can

be attached, and a separate FIB used for downloading code into the router. Tesseract eases the implementa-

tion of centralized network control algorithms by assembling a network-wide view, enabling direct control

via a robust and self-bootstrapping dissemination plane, and providing redundancy through the election of

the central control servers.

CONMan [27] reduces the need to configure network elements and end hosts by augmenting them with

protocols so that they can negotiate configuration details among themselves under high-level direction from

a network manager. CONMan also provides mechanisms by whichthe network manager can automatically

choose the best high-level directions to give network elements after discovering the features the elements

support. CONMan depends on a separate management communication channel between routers and network

managers.

Significant prior work attempted to define an open router interface analogous to OS interfaces at end-

systems [28, 29, 30]. Whereas these systems provide the elegant framework and modules needed to create

easily extensible routers, Tesseract attempts to provide an elegant framework for an easily extensible and

robust network.
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Most centralized network control systems share the design of separating the computation of routes from

the individual switches, or creating a minimal kernel of functionality implemented on each switch to be

invoked from another location [31]. Tesseract presents a complete design that realizes these goals, with

the added difference that it can automatically bootstrap itself without requiring a pre-configured lower-layer

system to route control messages between switches. Tesseract also describes how functionality beyond

routing, such as packet filters, should be controlled, and how to do this for both IP and Ethernet networks.

The idea of direct control has continued to advance since theTesseract work. In Chapter 3, we will

discuss open standards [32] and commercial products [33] that embrace the direct control concept.

2.3 Network Control Dissemination

The Tesseract system adopts an external control model wherenetwork control decisions are made by a

controller remotely connected to network elements. Such systems critically depend on a robust, secure, and

low latency communication channel between the external controller and the network elements.

Unfortunately, computer networks today lack an autonomic mechanism to support management plane

communications, and the stopgap solutions used in practicevary widely. Many commercial networks still

rely on dial-up modems to access the serial console ports of routers for control; this method has poor perfor-

mance and is clearly not self-healing or self-optimizing. Alternatively, many networks rely on an orthogonal

Ethernet network to access the special management Ethernetports of routers for control; however, Ethernet

is insecure, and not self-protecting or self-optimizing. Other networks even rely on in-band connectivity to

control routers (i.e., control communication is mixed withuser data communication and relies on the same

IP routing tables); this method is dangerous, as it risks losing remote access with no recourse if the router is

accidentally misconfigured.

Technologies such as MPLS [34] and GMPLS [35] use IP protocols such as OSPF and IS-IS to es-

tablish logically out-of-band communications paths for management. Using IP routing protocols to carry

management traffic re-introduces the circular dependency problem which we will elaborate in Section 4.1.

Much work has been done to address the scalability problem ofdistributing contents from a small num-

ber of sources to a large number of recipients. Among these solutions, the best-known are reliable multi-

cast [36] and peer-to-peer protocols such as BitTorrent [37]. Both multicast and peer-to-peer aim to solve
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the problem where all recipients receive the same data; thusthey are not directly applicable to our problem,

where different recipients may need different data.

A variation of BitTorrent called SET (Similarity Enhanced Transfer) [38] allows similar objects to be

utilized to speed up transfer. Both BitTorrent and SET use the pull model in which the data receivers try

to identify usable data sources from which to download data.We instead use a push model to globally

optimize the total dissemination cost in terms of both traffic and time. We will further compare SET with

our dissemination approach in Chapter 5.

Another category of related work provides redundancy elimination services to reduce network traffic.

It includes early LBFS (low-bandwidth network file system) work [39] as well as very recent EndRE (end-

system redundancy elimination service) projects [40]. LBFS and EndRE both treat network traffic as byte

streams and seek compression schemes that work for generic network traffic, whereas we focus on solving

the problem of distributing a specific type of payload - routing tables. Instead of attempting to develop a

new generic redundancy elimination service with a smart fingerprinting scheme, we let the application, in

this case the network decision element, decide how to compute the difference across data sent to different

receivers. As we show in Chapter 5, domain knowledge helps improve compression rate when the bytes that

carry the payload cannot be effectively fingerprinted by generic schemes such as Robin fingerprinting. An-

other difference between EndRE and our effort is that EndRE provides an “intra-host” solution to eliminate

redundancy between a client and a server, while we aim to solve an “inter-host” problem by reducing traffic

load between a server and a large number of clients. We want tocompare the performance of our system

with other “inter-host” solutions when they become publicly available.



Chapter 3

Tesseract

Previous position papers [7, 8] have laid down the conceptual framework of 4D. This chapter answers the

question of how to make 4D a flexible system that greatly simplifies network control by providing the

details of an implementation and applications of the first 4Dprototype, Tesseract. The target of Tesseract

is to enable thedirect control of a computer network that is under a single administrative domain. The

term direct control refers to a network control paradigm in which adecision elementdirectly and explicitly

creates the forwarding state at the network nodes, rather than indirectly configuring other processes that then

compute the forwarding state. This paradigm can significantly simplify network control.

In a typical IP network today, the desired control policy of an administrative domain is implemented via

the synthesis of several indirect control mechanisms. For example, load balanced best-effort forwarding may

be implemented by carefully tuning OSPF link weights to indirectly control the paths used for forwarding.

Inter-domain routing policy may be indirectly implementedby setting OSPF link weights to change the

local cost metric used in BGP calculations. The combinationof such indirect mechanisms creates subtle

dependencies. For instance, when OSPF link weights are changed to load balance the traffic in the network,

inter-domain routing policy may be impacted. The outcome ofthe synthesis of indirect control mechanisms

can be difficult to predict, and exacerbates the complexity of network control [41].

The direct control paradigm avoids these problems because it forces the dependencies between control

policies to become explicit. In direct control, a logicallycentralized entity, called the decision element, is

responsible for creating all the state at every router. As a result, any conflicts between the policy objectives

can be detected at the time of state creation. With today’s multiple independent and distributed mechanisms,

25
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these conflicts often only appearin vivo after some part of the configuration state has been changed byone

of the mechanisms.

The direct control paradigm also simplifies the router functionality. Because algorithms making control

decisions are no longer run at routers, the only distributedfunctions to be implemented by routers are

those that discover the neighborhood status at each router and those that enable the control communications

between the decision element and the routers. Thus, the router software can be very light-weight. Yet

sophisticated control algorithms can be easily implemented with this minimal set of distributed functions.

This chapter presents the design, implementation, evaluation, and demonstration of the Tesseract sys-

tem. To guide our design, we explicitly select a set of goals and devise solutions to address them. We

deploy Tesseract on Emulab [6] to evaluate its performance.We show how Tesseract can rapidly react to

link, node, and decision element failures and efficiently re-configure network routers in response. Also,

micro-benchmark experiments show that the system can easily handle the intra-domain routing control for

a thousand-node network.

We demonstrate Tesseract’s flexibility by showing its applications in joint packet forwarding and policy-

based filtering in IP networks, and in link-cost-driven Ethernet packet forwarding. Both applications are

simple to implement in the decision element of Tesseract despite the fact that the applications operate in

different data plane layers.

3.1 From Architecture to System

Tesseract is based on the general 4D architectural concepts, but these concepts admit a wide variety of design

choices. We used the following goals to guide our decisions while designing Tesseract, and these goals can

be roughly grouped into three categories. The first categoryconcerns objectives for system performance and

robustness:

Timely reaction to network changes: Planned and unplanned network changes, such as switch mainte-

nance and link failures, can cause traffic disruption. Tesseract should be optimized to react to network

changes quickly and minimize traffic disruption.

Resilient to decision plane failure:Tesseract should provide built-in support for decision plane redundancy

so that it can survive the failure of a decision element.
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Robust and secure control channels:The logical channels for control communications maintained by

Tesseract should continue to function in the presence of compromised switches, decision elements, or failed

links/nodes.

The next set of goals concerns making Tesseract easy to deploy:

Minimal switch configuration: The Tesseract software on each switch should require no manual config-

uration prior to deployment except for security keys that identify the switch. We do, however, assume that

the underlying switch allows Tesseract to discover the switch’s properties at run-time.

Backward compatibility: Tesseract should require no changes to the end host software, hardware, or pro-

tocols. Thus, Tesseract can be deployed as the network control system transparently to the end users.

The final set of goals concerns making Tesseract a flexible platform:

Support diverse decision algorithms:Tesseract should provide a friendly platform on which diverse algo-

rithms can be easily implemented to control networks.

Support multiple data planes: Tesseract should support heterogeneous data plane protocols (e.g., IP or

Ethernet). Thus, the system should not assume particular data plane protocols, and the dissemination service

should be agnostic to the semantics of the control communications.

3.2 Design and Implementation of Tesseract

In this section, we present the design and implementation ofTesseract. We first provide an overview of the

software architecture, and then discuss each component of the system in detail.

3.2.1 System Overview

The Tesseract system is composed of two applications implemented on Linux. These applications are called

theSwitch and the Decision Element (DE). Figure 3.1 illustrates the software organization of these appli-

cations.

The discovery plane implementation currently deals only with neighbor node discovery. It includes two

modules, one for discovering hosts connected to the switch and the other for discovering other switches.

The switch discovery module exchanges hello messages with neighbor switches to detect them, and creates
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Figure 3.1: High-level overview of Tesseract.

Link State Advertisements (LSAs) that contain the status ofits interfaces and the identities of the switches

connected to the interfaces. The generated LSAs are reported toDE via the dissemination plane. To avoid

requiring changes to hosts, the discovery plane identifies what hosts are connected to a switch by snooping

the MAC and IP addresses on packets received on the interfaces that are not connected to another switch.

The dissemination plane is cooperatively implemented by both Switch andDE. The dissemination

service is realized by a distributed protocol that maintains robust logical communication channels between

the switches and decision elements.

Switch leverages existing packet forwarding and filtering components to implement the data plane.

Switch interacts withDE in the decision plane through the node configuration serviceinterface. The

interface is implemented by data plane drivers, which translate generic configuration commands fromDE

into specific configurations for the packet forwarding and filtering components.

DE implements the discovery, dissemination and decision planes. The discovery and dissemination

plane functions are as outlined above. The decision plane constructs an abstract network model from the

information reported by the switches and computes switch configuration commands for all the switches
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Figure 3.2: The network model separates general-purpose algorithms from network-specific mechanisms.

based on the specific decision algorithm used. The computed switch configuration commands are sent to the

switches via the dissemination service.

3.2.2 Decision Plane: Versatility, Efficiency and Survivability

The decision plane implements a platform for the deploymentof network control algorithms. In addition, it

implements mechanisms that enable the replication of the decision logic among multiple decision elements

(DEs) so that DE failures can be tolerated.

Support diverse network control algorithms: In designing the decision plane, our focus is not to hard-

wire sophisticated network decision logics into the system. Instead, our goal is to make the decision plane

a friendly platform where any network control algorithm canbe easily integrated and used to control any

suitable network technology. Toward this end, we introducean abstract network model to separate generic

network control algorithms (e.g., shortest path computation, load balancing) from network-specific mecha-

nisms (e.g., IP, Ethernet).

Figure 3.2 illustrates the abstract network model. The model consists of node element and link interface

objects, and is constructed from information discovered and reported by switches (e.g., LSA) through the

dissemination service. Operating on this model, Tesseractcurrently implements four generic algorithms:

incremental shortest path, spanning tree, joint packet filter/routing (Section 3.4.1), and link-cost-based traffic
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engineering (Section 3.4.2). Finally, technology-specific plug-ins translate the general control decisions into

network-specific configuration commands that are sent to switches via the dissemination service. These

commands are then processed by the node configuration service at individual switches.

As an example, we implement an incremental shortest path algorithm [42] on the abstract network

model, and the same code can be used to generate either IP routing table in IP networks or Ethernet for-

warding entries in Ethernet.

Efficient network event processing:The DE must efficiently handle multiple simultaneous network changes,

which the DE will receive as events communicated over the dissemination plane. We chose a different event

processing architecture than that used in typical implementation of OSPF, where a hold-down timer is used

to delay the start of route recomputation after an event arrives to force the batching of whatever events arrive

during the hold-down window.

Instead, the Tesseract DE uses apush timer. The DE runs a decision thread that processes all queued

events to update the network-wide view, starts the push timer as a deadline for pushing out new switch

configuration commands, and then enters its computation cycle. After the computation of new forwarding

state finishes, the DE will immediately push out the new commands if the push timer has expired, if the

event queue is empty, or if the queued events do not change thenetwork-wide view used in the computation.

Otherwise, the DE will dequeue all pending events and re-compute.

We use a push timer instead of a fixed hold-down timer for two reasons. In the common case where

a single link fails, the push timer avoids unnecessary waiting. The first LSA announcing the failure starts

the route recomputation, and subsequent LSAs announcing the same failure do not change the network-

wide view and so are ignored. In the less common case of multiple failures, a push timer may result in

recomputation running more than once for the same event. However, since recomputation has latency on the

same order as typical hold-down timers, and DEs are unlikelyto be CPU-limited, it is reasonable to trade

extra computation for faster reconvergence.

The DE also records the state that has been pushed to each switch and uses delta-encoding techniques

to reduce the bandwidth required for sending configuration commands to the switches. Acknowledgments

between DE and the node configuration service on each switch ensure the delta-encoded commands are

received.

Provide decision plane resiliency: Our decision plane copes with DE failures using hot-standbys. At

any time a single master DE takes responsibility for configuring the network switches, but multiple DEs
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can be connected to the network. Each standby DE receives thesame information from the switches and

performs the same computations as the master. However, the standby DEs do not send out the results of

their computations.

The master DE is selected using a simple leader election protocol based on periodic DE heartbeats that

carry totally ordered DE priorities. Each DE has a unique priority, and at boot time it begins flooding its

priority with a heartbeat message every heartbeat period (e.g., 20 ms). Each DE listens for heartbeats from

other DEs for at least five times the heartbeat period (we assume that 5 times heartbeat period will be greater

than the maximum latency of a packet crossing the network). After this waiting period, the DE that has

the highest priority among all received heartbeats decidesto be the master and begins sending commands

to switches. When the master DE receives a heartbeat from a DEwith a higher priority than its own, it

immediately changes into a standby DE and ceases sending commands to switches. A DE also periodically

floods a path explorer message, which has the effect of triggering switches to reply with their current state.

In this way, a new DE can gather the latest switch state. Switches simply process commands from any DE.

Authentication is handled by the dissemination plane and isdiscussed next.

3.2.3 Dissemination Plane: Robustness and Security

The goal of the dissemination plane is to maintain robust andsecure communication channels between each

DE and the switches. With respect to robustness, the dissemination plane should remain operational under

link and node failure scenarios. With respect to security, the network should remain operational when a

switch or even a DE is compromised.

Observing that the traffic pattern in dissemination plane isfew-to-many (switches communicate not with

each other, but only with the DEs), we adopt an asymmetric design where the dissemination module at a DE

node implements more functionality than the disseminationmodule at a switch.

Dissemination plane design overview:Tesseract’s dissemination plane is implemented using source routes.

Each control message is segmented into dissemination frames, and each frame carries in its header the

identity of the source, destination, and the series of switches through which it must pass. We choose a

source routing solution because: (1) It requires the minimal amount of routing state and functionality in

each switch. Each switch needs only to maintain the routes tothe DEs. (2) Source routes provide very

flexible control over routing, as a different path can be specified for each destination, making it easy to take
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advantage of preferred paths suggested by the decision plane. (3) Combining source routing with the few-to-

many communication pattern enables us to design a dissemination plane with desirable security properties,

as discussed below. To protect control communications fromuser data traffic, the queuing of dissemination

frames is separate from user data traffic, and disseminationframes have higher transmission priority. To

protect the source routes from being misused by adversariesinside the network, we encrypt them at each

hop before they are forwarded.

Threat model: Tesseract is designed to cope with the following threats: (1) Adversaries can compromise

a switch, gaining full control over It, including the ability to change the way dissemination packets are

forwarded. (2) A compromised switch can piggyback data on packets to collude with other compromised

switches downstream. (3) A compromised switch can peek intodissemination plane data to try to learn the

network topology or location of critical resources. (4) Adversaries can compromise a DE and use it to install

bad forwarding state on the switches.

Bootstrapping security: The Tesseract trust model is based on anetwork certificate(i.e., a signed public

key for the network) — all the other keys and certificates are derived from the network certificate and can

be replaced while the network continues operating. Switches will accept commands from any DE holding a

DE certificate that is signed by the network certificate. The private key of the network certificate is secret-

shared [43] among the DEs, so that any quorum of DEs can cooperate to generate a new DE certificate when

needed.

When a switch is first deployed, the network certificate and a DE certificate are installed into it. This

is done by plugging a USB key containing the certificates intoeach switch, or as part of the default factory

configuration of the switch before it is deployed in the field.The switch then constructs a DeviceID, which

can be as simple as a randomly generated 128-bit number, and aprivate/public key pair. The switch stores

the network and DE certificates, its DeviceID, and its key pair into nonvolatile memory. The switch then

encrypts the information with the public key of the DE, and writes it back onto the USB key. When the

USB key is eventually inserted into a DE, the DE will have a secret channel to each device and a list of the

valid DeviceIDs. As each switch communicates with a DE for the first time, it uses ISAKMP [44] and its

private/public keys to establish a shared-secret key knownonly by that switch and the DE. All subsequent

dissemination plane operations use symmetric cryptography.

Computing dissemination plane routes:Dissemination plane routes are computed by each decision ele-

ment flooding a path explorer message through the network. Toensure fast recovery from link failures, the
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path explorer is sent periodically every 20 ms in our prototype, and can be triggered by topology updates.

Onion-encryption(or encapsulated encryption) is used in path explorers to support dissemination secu-

rity. The DE initiates the path explorer by embedding its DeviceID as the source route and flooding it over

all its ports. When a switch receives the path explorer, it (1) optionally verifies the route to the DE contained

in the path explorer; (2) records the source route; (3) encrypts the existing source route using the secret key

it shares with the DE that sent the path explorer; (4) appendsits own DeviceID to the path explorer in plain

text; and (5) floods the path explorer out to its other interfaces. Path explorers carry sequence numbers so

that switches can avoid unnecessary re-flooding.

To send data to a DE, a switch uses the encrypted source route it recorded from a path explorer sent by

that DE. When an upstream switch receives the message, it decrypts the source route using its secret key.

This reveals the ID of the next-hop switch along the path to the DE. By successive decryption of the source

route by the on-route switches, dissemination plane packets are delivered to the DE. Since the DE knows

the secret key of every switch, it can construct an onion-encrypted route to any switch it desires.

As part of the negotiation of its secret key over ISAKMP, eachswitch learns whether it is required to

perform the optional source route verification in step (1) before forwarding a path explorer. If verification is

required, the switch first checks a cache of source routes from that DE to see if the source route has already

been verified. If the source route is not known to be valid, theswitch forwards the source route to the DE in a

signed VERIFY packet. Since the DE knows the secret keys of all the switches, it can iteratively decrypt the

source route and verify that each hop corresponds to the linkit has learned about in an LSA. Once verified,

the DE sends a VERIFYOK message to the switch using the extracted source route, confirming the validity

of the route. The DE confirmation is signed with an HMAC computed using the secret key of the destination

switch to prevent it from being tampered or forged.

Security properties: The optional verification step exposes a classic trade-off between security and perfor-

mance. In Tesseract, we provide a dissemination plane with two different levels of security. The network

operator can choose the semantics desired.

The basic security property is that a compromised switch cannot order other switches to install invalid

forwarding state or forge LSAs from other switches. This is achieved by each switch having a secret key

shared only with the DE.

If path explorers arenotverified before being forwarded, a compromised switch can forge path explorers

that artificially shorten its distance to the DE and attract dissemination plane traffic from other switches (e.g.,
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so the attacker can drop or delay the traffic). Compromised switches can also communicate with each other

over the dissemination plane to coordinate attacks.

If path explorersareverified before being forwarded, a compromised switch cannot lie about its distance

to the DE. Also, compromised switches are prevented from communicating arbitrarily over the dissemina-

tion plane unless they are directly connected. This is because the DE will not validate a source route that

originates and ends at switches. A switch also cannot discover the identity or connectivity of another switch

that is two or more hops away. This prevents attackers from identifying and targeting critical resources in

the network.

The cost of the extra security benefits provided by verifyingsource routes is the extra latency during

reconvergence of the dissemination plane. If a link breaks and a switch receives path explorers over a source

route it has not previously verified, it must wait a round-trip time for the verification to succeed before the

switches downstream can learn of the new route to the DE. One approach to minimize this penalty is for the

DE to pre-populate the verified source route tables of switches with the routes that are most likely to be use

in failure scenarios. A triggered path explorer flooded by the DE in response to link failure will then quickly

inform each switch which preverified routes are currently working.

Surviving DE compromise: As a logically centralized system, if a DE were compromised,it could order

switches to install bad forwarding state and wreak havoc on the data plane. However, recovery is still

possible. Other DEs can query the forwarding state installed at each switch and compare it to the forwarding

state they would have installed, allowing a compromised or misbehaving DE to be identified. Because the

private key of the network certificate is secret-shared, as long as a quorum of DEs remain uncompromised

they can generate a new DE certificate and use the dissemination plane to remotely re-key the switches with

this new DE certificate.

Notice that while a compromised DE can Completely disrupt data plane traffic, itcannotdisrupt the

dissemination traffic between other DEs and the switches. This is one of the benefits of having control

traffic traverse a secured dissemination plane that is logically separate from paths traversed by data packets.

Once re-keyed, the switches will ignore the compromised DEs.

As a point of comparison, in today’s data networks recovering from the compromise of a manage-

ment station is difficult, as the compromised station can block the uncompromised ones from reaching the

switches. At the level of the control plane, the security of OSPF today is based on a single secret key stored

in plain text in the configuration file. If any switch is compromised, the key is compromised, and incorrect
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LSAs can be flooded through the network. The attacker could then DoS all the switches by forcing them

to continually rerun shortest path computation or draw traffic to itself by forging LSAs. Since a distributed

link-state computation depends on all-to-all communications among the switches, one alternative to using a

single shared key is for each switch to negotiate a secret keywith every other switch. Establishing thisO(n2)

mesh of keys requires every switch to know the public key of every other switch. Both key establishment

and revocation are more complex when compared to the direct control paradigm of Tesseract.

3.2.4 Discovery Plane: Minimizing Manual Configurations

The discovery plane supports three categories of activities: (1) providing the DE with information on the

state of the network; (2) interacting with external networks and informing the DE of the external world; and

(3) bootstrapping end hosts into the network.

Gathering local information: Since misconfiguration is the source of many network outages, the 4D ar-

chitecture eliminates as much manually configured state as possible. In the long term vision, the switch

hardware should self-describe its capabilities and provide run-time information such as traffic load to the

discovery plane. The current Tesseract implementation supports the discovery of physical switch neigh-

bors via periodic HELLO message exchanges. Switches are identified by the same DeviceID used in the

dissemination plane.

Interacting with external networks: The DE directs the border switches that peer with neighbor networks

to begin eBGP sessions with the neighbor switches. Through this peering, the DE discovers the destinations

available via the external networks. Rather than processing the BGP updates at the switches, the switches

simply report them to the DE via the dissemination service, and the DE implements the decision logic for

external route selection. The DE sends the appropriate eBGPreplies to the border switches, as well as

configuring external routes directly into all the switches via the dissemination service. RCP [10] has already

demonstrated that the overall approach of centralized BGP computation is feasible, although they continue

to use iBGP for backward compatibility with existing routers.

It is important to note that an internal link or switch failure in a Tesseract network does not lead to

massive updates of external routes being transmitted from the DE to the switches. The reason is that external

routes identify only the egress points. External and internal routes are maintained in two separate tables and

are combined locally at switches to generate the full routing table. This is identical to how OSPF and BGP
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computed routes are combined today. In general, an internallink or switch failure does not change external

routes and thus no update to them is necessary.

Bootstrapping end hosts:For backward compatibility, end hosts do not directly participate in Tesseract

discovery plane.

In networks running IP, the discovery plane acts as a DHCP proxy. The DE configures each switch to

tunnel DHCP requests to it via the dissemination service. Whenever a host transmits a DHCP request, the

DE learns the MAC address and the connection point of the hostin the network. The DE can then assign the

appropriate IP address and other configuration to the host.

In networks operating as a switched Ethernet LAN, the discovery plane of a switch reports the MAC

address and the connection point of a newly appeared end hostto the DE. The DE then configures the

network switches appropriately to support the new host. Section 3.4.2 describes how we use Tesseract to

control a switched Ethernet LAN and provide enhancements.

3.2.5 Data Plane: Support Heterogeneity

The data plane is configured by the decision plane via the nodeconfiguration service exposed by the

switches. Tesseract abstracts the state in the data plane ofa switch as a lookup table. The lookup table

abstraction is quite general and can support multiple technologies such as the forwarding of IPv4, IPv6, or

Ethernet packets, or the tunneling and filtering of packets,etc.

Tesseract’s data plane is implemented using existing Linuxkernel and Click components. For each

component, we provide a driver to interface the component with the Tesseract decision plane as shown in

Figure 3.1. The drivers model the components as lookup tables and expose a simpleWriteTable interface

to provide the node configuration service to the DE. For example, when the DE decides to add or delete an

IP routing or Ethernet forwarding table entry, it sends anadd table entry or delete table entry

command through theWriteTable interface, and the driver is responsible for translating the command

into component-specific configurations. This allows the algorithms plugged into the DE to implement net-

work control logic without dealing with the details of each data-plane component. We implemented three

drivers and describe their details next.

Linux IP forwarding kernel: The Linux kernel can forward packets received from one network interface

to another. To determine the outgoing network interface, the Linux kernel uses two data structures: a For-

warding Information Base (FIB) that stores all routes, and arouting cache that speeds up route search. As in
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all Tesseract data plane drivers, the driver for the Linux IPforwarding kernel implements theWriteTable

interface. The driver interprets commands from the DE, creates artentry structure with the route to add

or delete, and invokes theioctl system call to modify the FIB. To make sure that the routing cache is

flushed immediately after the FIB is modified, we setproc/sys/net/ipv4/route/min delay to

zero.

Click router: We use Click for forwarding Ethernet frames. The driver for Click includes two parts:

an implementation of theWriteTable interface, and a Click element package called the4DSwitch

that is integrated into Click. The implementation ofWriteTable parses commands and executes those

commands by exchanging control messages with the 4DSwitch element in the Click process via a TCP

channel. The4DSwitch element maintains an Ethernet forwarding table and updatesthe table according

to the received control messages. To control the data forwarding behavior of Click, the4DSwitch element

overrides the ClickElement::push function and directs incoming traffic to the outgoing port(s) specified

in the4DSwitch forwarding table.

netfilter/iptables: Tesseract uses netfilter/iptables to implement reachability control in IP networks. The

driver for netfilter/iptables translates commands into iptables rules (e.g.,-A FORWARD -s 10.1.1.0/24

-d 10.1.2.0/24 -i eth0 -j DROP) and forks an iptables process to install the rules.

3.2.6 Decision/Dissemination Interface

In designing the interface between the decision plane and the dissemination plane, there is a tension between

the conflicting goals of creating a clean abstraction with rigid separation of functionality, and the goal of

achieving high performance with the cooperation of the decision and dissemination planes.

The key consideration is that the dissemination plane must be able to function independently of the de-

cision plane. Our solution is to build into the dissemination plane a completely self-contained mechanism

for maintaining connectivity. This makes the dissemination plane API very simple, giving the basic deci-

sion plane only three interface functions:Send(buf,dst), which sends control information to a specific

switch,Flood(buf), which floods control information to all switches, andRegisterUpCall(*func()),

which identifies the decision plane function that handles incoming information.

However, to optimize the performance of the dissemination plane, we add two interface functions:

LinkFailure(link), which the DE uses to identify a known failed link to the dissemination plane
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so the dissemination plane can avoid it immediately, andPreferredRoute(dst,sourceRoute),

which the DE uses to suggest a specific source route for carrying control information to switchdst. This

solution enables a sophisticated DE to optimize the dissemination plane to its liking, but also allows the

simplest DE to fully function.

3.3 Performance Evaluation

In this section, we evaluate Tesseract to answer the following questions: How fast does a Tesseract-controlled

network converge upon various network failures? How large anetwork can Tesseract scale to, and what are

the bottlenecks? How resilient is Tesseract in the presenceof decision-element failures?

3.3.1 Methodology

We perform both emulation and simulation experiments. We use Emulab to conduct intra-domain routing

experiments using two different topologies. The first topology is an ISP backbone network (AS 3967) from

Rocketfuel [45] data that spans Japan, U.S., and Europe, with a maximum round-trip delay of 250 ms. The

other is a typical enterprise network with negligible propagation delay from our earlier study [2].

that have more than 4 interfaces are modeled by chaining together PCs to create a “supernode” (e.g., a

router with 8 interfaces will be represented by a string of 3 Emulab PCs). As a result, the backbone network

is emulated by 114 PCs with 190 links, and the enterprise network is emulated by 40 PCs with 60 links.

For each Tesseract experiment, there are 5 decision elements — these run on “pc3000” machines that have

a 3GHZ CPU and 2GB of RAM. To inject a link failure, we bring down the interface with theifconfig

down command. To inject a switch failure, we abruptly terminate all the relevant software running on a

switch.

To ensure that we evaluate the worst-case behavior of the control plane, we measure the time required for

theentirenetwork to reconverge after an event. We calculate this network convergence time as the elapsed

time between the event occurring and the last forwarding state update being applied at the last switch to be

updated. We use Emulab’s NTP (Network Time Protocol) servers to synchronize the clocks of all the nodes

to within 1 millisecond.

As a point for comparison, we present the performance of anaggressively tunedOSPF control plane

called Fast OSPF. Fast OSPF’s convergence time represents the best possible performance achievable by
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Figure 3.3: CDF of convergence times for single link failures in enterprise and backbone networks. We pick
one link to fail at a time and we enumerate all the links to get the distribution of convergence times. The
zero convergence times are caused by failures disconnecting switches at the edge of the network.

OSPF, and is determined by the time to detect a link failure and the one-way propagation delay required for

the LSA flood. Such uniform and aggressive tuning might not bepractical in a real network, as it could lead

to CPU overload on older routers, but Fast OSPF serves as a useful benchmark.

We implemented Fast OSPF by modifying Quagga 0.99.4 [46] to support millisecond timer intervals.

There are four relevant timers in Quagga: (1) the hello timerthat sets the frequency of HELLO messages;

(2) the dead timer that sets how long after the last HELLO is received the link is declared dead; (3) the delay

timer that sets the minimum delay between receiving an LSA update and beginning routing computation;

and (4) the hold-down timer that sets the minimum interval between successive routing computations. For

Fast OSPF, we use hello timer = 20 ms, dead timer = 100 ms, delaytimer = 10 ms (to ensure a received LSA

is flooded before routing computation begins), and 0 ms for the hold-down timer. Tesseract uses the same

hello and dead timer values to make direct comparison possible. There is no need for the delay timer or the

hold-down timer in Tesseract.

3.3.2 Routing Convergence

Common concerns with using a logically centralized DE to provide direct control are that reconvergence

time will suffer, or that the DE will attempt to control the network using an out-of-date network view. To
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evaluate these issues, we measure intra-domain routing convergence after single link failures, single switch

failures, regional failures (i.e., simultaneous multipleswitch failures in a geographic region), and single link

flapping.

Single link failures: Figure 3.3 shows the cumulative distribution of convergence times of Tesseract and

Fast OSPF for all single link failures in both topologies (some convergence times are 0 because the link

failure partitioned a stub switch and no forwarding state updates were required). Even though Tesseract

uses a single DE machine to compute all the routes, its performance is nearly identical to that of Fast

OSPF, thanks to the use of an efficient dynamic shortest path algorithm and the delta encoding of switch

configurations. The only observable difference is that Tesseract’s convergence time has a slightly larger

variance due to the variability of the dynamic shortest pathalgorithm on different failed links.

In the backbone network scenario, propagation delay becomes an important factor as switch-to-switch

RTT ranges from 1 ms to 250 ms. Tesseract’s convergence requires the link state update to be transmitted

to the DE, and the new switch configurations to be transmittedback to the switches. On the other hand,

Fast OSPF only requires one-way flooding of the link state update. This is why Tesseract’s convergence

time is roughly a one-way delay slower than Fast OSPF. However, in return, the direct control paradigm

enabled by Tesseract allows other control functions such aspacket filtering to be implemented together with

intra-domain routing in a simple and consistent manner.

Switch failures and regional failures: Next, we examine the convergence time under single switch failures

and regional failures. To emulate regional failures, we divide the backbone topology into 27 geographic

regions with each region containing a mean of 7 and a maximum of 26 switches, and we simultaneously fail

all switches in a region.

Figure 3.4 compares the cumulative distributions of convergence times of Tesseract and Fast OSPF on

switch and regional failures. In the enterprise network, again, the performance of Tesseract is very similar

to that of Fast OSPF. In the backbone network, the differencebetween Tesseract and Fast OSPF is still

dominated by network delay, and both are able to gracefully handle bursts of network state changes. There

are two additional points to make. First, Fast OSPF has more cases where the convergence time is zero. This

is because the 10 ms delay timer in Fast OSPF is acting as a hold-down timer. As a result, Fast OSPF does

not react immediately to individual link state updates for acompletely failed switch, and sometimes this can

avoid unnecessary configuration changes. In Tesseract, there is no hold-down timer, so it reacts to some link

state updates that are ultimately inconsequential. Second, in some cases Tesseract has faster convergence
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Figure 3.4: CDF of convergence times for single switch failures and regional failures.

time in regional failure than in single switch failure. The reason is that the large number of failed switches

in regional failure reduces the number of configuration updates Tesseract needs to send.

Link flapping: From the earliest days of routing in the Internet there has been concern that a rapidly flapping

link could overload the control plane and cause a widespreadoutage worse than the failure of that single link.

Using Emulab we conduct an experiment to show the effects of link flapping on the end-to-end behavior of

Tesseract. On the emulated backbone network, weping the Tokyo node from the Amsterdam node at an

interval of 10 ms and measure the RTT. We start to flap the link between Santa Clara and Herndon 2 seconds

into the experiment. The flapping link is up for 100 ms and thendown for 2 seconds. As the link flaps,

the route from Tokyo to Amsterdam oscillates between a 10-hop path traversing Santa Clara, Herndon,

Weehawken, and London with an average RTT of 240 ms, and a 12-hop path through San Jose and Oak

Brook with an average RTT of 246 ms, as shown in Figure 3.5.

This experiment demonstrates that a logically centralizedsystem such as Tesseract can handle continual

network changes. It is also worth mentioning that the Tesseract decision plane makes it easy to plug-in

damping algorithms in order to handle this situation in a more intelligent way.

3.3.3 Scaling Properties

An additional concern with a logically centralized system such as Tesseract is whether it can scale to the size

of today’s networks, which often contain more than 1,000 switches. Since Emulab experiments are limited
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Figure 3.5: Effects of link flapping on ICMP packets sent at a rate of 100 packets/sec.

to at most a few hundred switches, we perform several simulation experiments to evaluate Tesseract’s scaling

properties. This evaluation uses a DE running the same code and hardware as the previous evaluations, but

its dissemination plane is connected to another machine that simulates the control plane of the network.

We evaluate Tesseract’s scalability on a set of Rocketfuel topologies of varying sizes. For each topology,

we independently fail each link in the graph and measure the time for the DE to compute new forwarding

state and the size of the state updates.

DE Computation Time: Every time a failure occurs in the network, the decision element needs to recom-

pute the forwarding tables for the switches based on the new state of the network. Figure 3.6 shows the

results of DE path computation time. As shown in the figure, even in the largest network of 1347 nodes and

6244 edges, the worst-case recomputation time is 151 ms and the 99th percentile is 40 ms.

Bandwidth Overhead of Control Packets:Each time the DE computes new forwarding state for a switch,

it needs to push out the new state to the switch. Figure 3.7 plots the number of control bytes that the DE

pushes out for independent link failures with different topologies. As shown in the figure, the worst-case

bandwidth overhead is 4.4MB in the largest network of 1347 nodes and 6244 edges. This is a scenario where

90% of the switches must be updated with new state.

Notice that the bandwidth overhead reported here includes only intra-domain routes. Even when a

Tesseract network carries external BGP routes, the amount of forwarding state expected to change in re-

sponse to an internal link failure will be roughly the same. Switches use two-level routing tables, so even
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Figure 3.6: CPU time for computing incremental shortest paths for various Rocketfuel topologies in loga-
rithmic scale. The box shows the lower quartile, upper quartile, and median. The whiskers show the min
and max data values, out to 1.5 times the interquartile range, and outliers are plotted as ‘+’s.

if default-free BGP routing tables are in use, the BGP routesonly change when the egress point for traffic

changes — not when internal links fail. As has been pointed out by many [47, 10], Internet routing sta-

bility would improve if networks did not change egress points solely because the local cost changed, and

Tesseract’s framework for direct control makes it easier toimplement this logic.

3.3.4 Response to DE Failure and Partition

This section evaluates decision plane resiliency by measuring theDE failover time, defined as the time from

when the master DE is partitioned to when a standby DE takes over and becomes the new master DE. We

use the backbone network topology and perform 10 experiments in which the master and stand-by DEs are

50 ms apart.

DE failure: Failure of any DE but the master DE is harmless, since in Tesseract the other DEs are hot stand-

bys. To evaluate the effect of the failure of the master DE, weabruptly shut down the master DE. Table 3.1

shows the time required for a new DE to take control of the network after the master DE fails. As expected,

the average failover time is approximately 140 ms, which canbe derived from a simple equation that de-

scribes the expected failover time: (DEDeadT ime + PropagationDelay − HeartbeatInterval/2 =

100ms + 50ms− 10ms).
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Figure 3.7: Switch configuration traffic sent out on a single link failure for various Rocketfuel topologies in
logarithmic scale.

Min Mean Max SD
Backup DE takes over 130 ms 142 ms 155 ms 6 ms

Table 3.1: Minimum, mean, and maximum times, and standard deviation for DE failover in DE failure
experiments on the backbone network.

Network partition: We inject a large number of link failures into the backbone topology to create scenar-

ios with multiple network partitions. In the partition withthe original master DE, Tesseract responds in

essentially the same manner as in the regional-failure scenarios examined in Section 3.3.2, since the original

master DE sees the partition as a large number of link failures. In the partitions that do not contain the

original master, the convergence time is the same as when themaster DE fails.

Just as network designers can choose to build a topology thathas the right level of resistance against

network partition (e.g., a ring versus a complete graph), the designers can intelligently select locations for

placing redundant DEs to defend against network partition.

3.4 Tesseract Applications

In this section, we demonstrate two applications that take advantage of Tesseract’s direct control paradigm.
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3.4.1 Joint Control of Routing and Filtering

Today, many enterprise networks configure packet filters to control which hosts and services can reach

each other [2]. Unfortunately, errors in creating network configurations are rampant. The majority of

disruptions in network services can be traced to mis-configurations [48, 49]. The situation with packet filters

is especially painful, as routes are automatically updatedby routing protocols to accommodate topology

changes, while there is no mechanism to automatically adaptpacket filter configurations.

The Tesseract approach makes joint routing and filtering easy. The decision logic takes as input a

specification of the desired security policy, which lists the pairs of source and destination subnets that should

or should not be allowed to exchange packets. Then, in addition to computing routes, for each source-

destination subnet pair that is prohibited from communicating, the DE initially places a packet filter to

drop that traffic on the interface closest to the destination. The decision logic then further optimizes filter

placement by pulling the filters toward the source of forbidden traffic and combining them until further

pulling would require duplicating the filters.

As a concrete example, revisit the example network in Figure1.1. This company’s network is spread

across two locations, A and B. Each location has a number of front office computers used by sales agents

(AF1-2 and BF1-2) and a data center where servers are kept (AD1-2 and BD1-2). Initially, the two locations

are connected by a link between the front office routers, R2 and R4, over which inter-office communica-

tions flow. The routing metric for each link is shown in italics. Later, a dedicated link between the data

centers (shown as a dashed line between R1 and R3) is added so that the data centers can use each other as

remote backup locations. The security policy is that front-office computers can communicate with the other

location’s front office computers and with the local data center’s servers, but not the data center of the other

location. Such policies are common in industries such as insurance, where the sales agents of each location

are effectively competing against each other.

We experimentally compared the Tesseract-based solution with a conventional solution that uses OSPF

and manually placed packet filters. During the experiments we generate data traffic from AF1 to BF1

(which should be permitted) and from AF1 to BD1 (which shouldbe forbidden) at 240 packets per second

and monitor for any leaked or lost packets. In the OSPF network, the filter is manually placed on interface

i3.1 to prevent A’s front office traffic from reaching BD. After allowing the routing to stabilize, we add a

new link between the data centers (dotted line in Figure 1.1). In the OSPF network, OSPF responds to the

additional link by recomputing routes and redirects trafficfrom AF to BD over the new link, bypassing the
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Figure 3.8: Full-mesh Ethernet topology.

packet filter on interface i3.1 and creating a security hole that will have to be patched by a human operator.

In contrast, Tesseract computes both new routesand new packet filter placements appropriate for those

routesand loads into the routers simultaneously, so no forbidden traffic is leaked. Most important, once the

security policy is specified, it is automatically enforced with no human involvement required.

3.4.2 Link Cost Driven Ethernet Switching

Ethernet is a compelling layer-2 technology; large switched Ethernets are often used in enterprise, data

center, and access networks. Its key features are: (1) a widely implemented frame format; (2) support for

broadcasting frames, which makes writing LAN services suchas ARP and DHCP significantly easier; and

(3) its transparent address learning model, which means hosts can simply plug-and-play. Unfortunately,

today’s Ethernet control plane is primitive [50, 51, 52]. Based on routing frames along a spanning tree of

the switches, it makes very inefficient use of the available links. Convergence time in response to failures

can be long, as the IEEE 802.1D Rapid Spanning Tree Protocol (RSTP) is known to count to infinity in

common topologies.

We have implemented a Tesseract control plane for Ethernet that preserves all three beneficial properties,

avoids the pitfalls of a distributed spanning tree protocol, and improves performance. The DE first creates

a spanning tree from the discovered network topology and generates default forwarding entries for the

switches that follow the tree — this enables traditional tree-based broadcast. Additionally, when an end host

sends its first frame to its first-hop switch, the switch notifies the DE of the newly discovered end host via

the dissemination service. The DE then computes appropriate paths from all switches to that end host and

adds the generated forwarding entries to the switches. Fromthen on, all frames destined to the end host can

be forwarded using the specific paths (e.g., shortest paths)instead of the spanning tree.
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Figure 3.9: Aggregate network throughput, RSTP versus Tesseract. S1 fails at 60 second.

To experimentally illustrate the benefits of the Tesseract approach, we use the topology shown in Fig-

ure 3.8 on Emulab. The four switches are connected by 100 MbpsEthernet links, and each end host is

connected to one switch via a 1 Gbps Ethernet link. We runiperf [53] TCP servers on the four end hosts

and simultaneously start six TCP flows. They are H1 to H2, H1 toH3, H1 to H4, H2 to H3, H2 to H4, and

H3 to H4. In the first experiment, the network is controlled byTesseract using shortest path as the routing

policy. In the second experiment, the network is controlledby an implementation of IEEE 802.1D RSTP on

Click.

Figure 3.9 shows the aggregated throughput of the network for both experiments. With the Tesser-

act control plane, all six TCP flows are routed along the shortest paths, and the aggregate throughput is

570 Mbps. At time 60 s, switch S1 fails and H1 is cut off. The Tesseract system reacts quickly and the

aggregate throughput of the remaining 3 TCP flows stabilizesat 280 Mbps. In contrast, in a conventional

RSTP Ethernet control plane, forwarding is performed over aspanning tree with S1 as the root. This means

the capacities of the S2-S3, S2-S4, and S3-S4 links are totally unused. As a result, the aggregate throughput

of the RSTP controlled network is only 280 Mbps, a factor of two less than Tesseract. When switch S1 fails

at time 60 s, RSTP tries to reconfigure the spanning tree to useS2 as the root and begins a count-to-infinity.

The combination of frame loss when ports oscillate between forwarding/blocking state and TCP conges-

tion control back-off means the throughput does not recoverfor many seconds. When RSTP has finally

reconverged, the aggregate throughput is again substantially less than the Tesseract network.
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Figure 3.10: Typical Ethernet topology gadget.

As a second example of the value of being able to change the decision logic and the ease with which

Tesseract makes this possible, consider Figure 3.10. This topology gadget is a typical building block found

in Ethernet campus networks [54] that provides protection against any single link failure. Basic Ethernet

cannot take advantage of the capacities of the redundant links since RSTP forms a spanning tree with S1

as the root, and the S2-S6, S3-S6, and S4-S6 links only provide backup paths and are not used for data

forwarding. As a result, traffic flows from H2, H3, and H4 to R must share the capacity of link S1-S5. In

contrast, when there exist two or more equal-cost paths froma source to a destination, the Tesseract decision

logic breaks the tie by randomly picking a path. By centralizing the route computations and using even such

simple load-balancing heuristics, Tesseract is able to take advantage of the multiple paths and achieve a

substantial increase in performance. In our example, the capacities of both link S1-S5 and S1-S6 are fully

utilized for a factor-of-two improvement in aggregate throughput over RSTP.

The examples in this section illustrate the benefit of the direct control paradigm, where the only dis-

tributed functions to be implemented by network switches are those that discover the neighborhood status

at each switch and those that enable the control communications between the DE and the switches. As a

result, it becomes easy to design and change the decision logics that control the network. There is no need

to design distributed protocols that attempt to achieve thedesired control policies.
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3.5 Summary

This chapter presents the design and implementation of Tesseract, the initial 4D prototype that enables direct

control. In designing Tesseract, we paid particular attention to the robustness of the decision plane and the

dissemination plane. The security of Tesseract is enhancedby the mechanisms built into the dissemination

service. The system is designed to be easily reusable, and wedemonstrated how Tesseract can be used to

control both Ethernet and IP services. Finally, good performance is achieved by adopting efficient algorithms

such as incremental shortest path and delta encoding of switch configuration updates.

We find that Tesseract is sufficiently scalable to control intra-domain routing in networks of more than

1000 switches, and its reconvergence time after a failure isdetected is on the order of one round-trip propa-

gation delay across the network.

The most important benefit of Tesseract is that it enables direct control. Direct control means that

sophisticated control policies can be implemented in a centralized fashion, which can be much easier to

understand and deploy than a distributed protocol. Direct control also means that the software running on

each switch is simplified, with potential benefits for operators and vendors. We strongly believe that the

direct control paradigm is the right approach in the long run, as there is a clear trend toward ever more

sophisticated network control policies.

Further developments in the philosophy of direct control have emerged since the Tesseract work. The

OpenFlow Switching Consortium [32] was created in 2008 to support an open standard that allows re-

searchers to control how an Ethernet switch forwards packets via a standardized interface. An OpenFlow

switch is directly controlled by a remote control process which the consortium calls the Controller. The

Controller is similar to the Tesseract decision element that makes network decisions and sends instructions

to network elements through a robust and secure dissemination channel. Compared with Tesseract, Open-

Flow takes the further step of making a network a programmable platform on which researchers can run

experiments. While we try to use Tesseract to demonstrate that the direct control concept is practical on

both backbone and enterprise networks, OpenFlow focuses onbuilding real products for Ethernet switches;

recently the OpenFlow consortium announced 48-port gigabit switches that support the open standard for

direct network control. We hope that OpenFlow can be increasingly adopted by enterprise networks, and that

it will eventually be interconnected by OpenFlow backbone networks. If Tesseract turns the direct control

paradigm from vision to reality, we hope that the wide deployment of OpenFlow will make direct control

the de facto standard for running tomorrow’s networks.
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2009 also saw startups such as Nicira [33] that develop real-world software to decouple network control

from the underlying physical hardware. Nicira’s goal is to make data center networks more flexible and

economical. In this chapter, we show through a case study that decoupling network control from the data

plane will allow Nicira to achieve sophisticated network goals (e.g., security) with relatively simple software.



Chapter 4

Making 4D Dissemination More Robust

Chapter 3 describes the 4D Tesseract system and answers the question of how to make 4D a flexible system

that greatly simplifies network control. In Tesseract, a decision element in a single location computes

network state (e.g., routing tables) and remotely configures geographically distributed network elements.

Fundamental to this is the ability of the decision element tocommunicate securely and robustly with the

network elements being managed. This chapter focuses on howwe construct such a secure and robust

communication channel to power Tesseract and other centralized network control systems.

In practice, creating the dissemination channels and maintaining them in the face of operational realities

is a significant problem. Many network elements are in unattended locations, thus a loss of management

connectivity means that a technician will have to travel to the network element before there can be any

possibility of accessing the console to collect data or reconfigure the element. The resulting service outages

are measured in hours — we report on several of these in our case studies. Denial of Service attacks and

flash-crowds are well-known to cause management communications to fail at exactly the moment they are

most needed to recover control over the network [55]. The frequency with which networks grow or evolve,

coupled with the fact that today’s management communication channels are as subject to outages caused by

misconfiguration as the rest of the network, means that networks are in continual peril of losing the ability

to remotely reconfigure network elements.

The contributions of this chapter include defining the challenges that face management communication

channels, and presenting a system design that solves these challenges. We also demonstrate how our sys-

tem solves several common problems that arise while remotely managing networks, and we evaluate the

performance of the system to show that it is suitable for use even in large, fast networks.

51
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4.1 Case for a Robust Meta-Management System

In 4D, the decision element must reach and configure a networkelement before the network element is

configured with routing state. At the same time, the network element must communicate with the decision

element before it is configured by the decision element. The initial 4D prototype uses source routing to break

the circular dependency. In this chapter, we develop the source routing idea into a complete network solution

called the Meta-Management System (MMS) [56] in order to notonly address the circular dependency

problems, but also to leverage all available network connectivity in order to achieve maximum robustness,

while simultaneously protecting management traffic from regular data traffic. Management applications can

access the MMS service via familiar socket APIs and transport protocols. Thus, both new 4D decision logic

and existing IT management systems can run directly on the MMS.

To support remote management and configuration, we design the MMS to satisfy four key system re-

quirements: (1) Automation: the MMS uses new protocols to build “plug-and-play” management chan-

nels — using no configuration beyond device identification keys; (2) Liveness assurance: the MMS both

maintains management communication channels in the presence of failures, and provides APIs by which re-

sources on network elements can be remotely managed to ensure the liveness of critical management tools;

(3) Security assurance: The MMS automatically authenticates network elements, applying onion-encrypted

source routing [57] in new ways that prevent memory exhaustion attacks and enable decision elements to

detect and evict network elements that DoS-attack management communications; (4) Evolvability: The

MMS allows multiple MMS versions to work concurrently, enabling the MMS to safely manage itself and

to evolve seamlessly.

4.2 Requirements for a Management Communication Service

The two approaches used today for establishing management communications do a very poor job of handling

these practical issues. The first common approach isin-bandmanagement of network elements, where the

same IP stack and routing tables used to forward data throughthe network are also used to carry management

traffic to network elements. This approach has two problems.First, a remote management process cannot

reach and configure a network element before the network element can forward IP packets. At the same time,

the network element cannot forward IP packets before it is configured by the remote management process.

This circular dependency results in fragility. Second, theIP service in a network is frequently reconfigured
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to satisfy customers’ changing needs. If a service change causes a failure in the IP service, management

communications will also fail as there is fate-sharing between data and management communications.

It might seem that building a physically separate network tocarry management communications (often

referred to asout-of-bandmanagement) solves the management communications problem. Unfortunately,

building and maintaining a physically separate network forremote management all the way to devices at the

edge of a large network is costly or is simply impossible. Beyond cost, a more fundamental problem is that

the separate management network must still be configured andmanaged, and all existing software stacks to

do this suffer from the problems of in-band management.

We believe the argument between in-band and out-of-management is misplaced. Remote management

communications should be carried onlogically out-of-bandmanagement links, where these links are con-

structed from both regular data traffic links as well as whatever separate dedicated management links exist.

A logically out-of-band link is simply a logical partition (with performance guarantees) of an underlying

physical link. We emphasize that realizing logically out-of-band links isnot the primary challenge facing

management communication. Circuit technologies such as SONET/SDH have long had the capability to

create logically out-of-band links. Packet technologies such as MPLS [58], Frame Relay [59], and weighted

fair queuing can also establish logically out-of-band links.

The primary challenge is to design a logically out-of-band management channel that is not circularly

dependent on the data plane. In addition, the design must have the following features critical for management

communications:

Automation: The system should require little or no configuration and create remote management commu-

nication channels automatically in a plug-and-play fashion. A system that requires complex manual setup

only makes network management more difficult and error-prone. Modifying off-the-shelf protocol software

on routers to support automation is not trivial. Protocols such as OSPF [60] require pre-configuration before

they can discover neighbors and build routes. OSPF providesneighbor discovery between two preconfigured

and adjacent interfaces, but physical device discovery andassociations between entities require configura-

tion commands and external inventory databases. The MMS software, on the other hand, expects no state

other than a security certificate to be preconfigured in orderto bootstrap a management communication

channel to all network elements.

Liveness assurance:The system should ensure the liveness of the communication channels as well as the

liveness of critical higher layer management software tools. The latter is somewhat subtle. It is important
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for a system not only to ensure that messages can successfully cross a network, but also to ensure that

those messages can reach important software (e.g., the secure shell daemonsshd) running on a remote

device. No existing protocols help ensure the liveness of critical higher layer management software tools.

An operator may indeed be able to “ping” a router through the management channel provided by an off-

the-shelf routing protocol, but he might not be able to log into the router if the command line interpreter or

secure shell daemon is unresponsive. Further, conventional protocols might not be feasible to run on large

networks with old or under-resourced network elements, or to scale to large numbers of very inexpensive

devices. Off-the-shelf routing protocols typically require an amount of memory that scales with the network

size. The MMS requires only a small constant amount of memoryon routers that can be allocated statically,

enabling it to maintain liveness to all routers in the network. The MMS also provides ways for operators to

recover from many of the common scenarios that cause networkelements to become unresponsive.

Security assurance:The system should be resistant to DoS attacks, automatically authenticate network

devices, and be able to detect and evict a compromised deviceif it is behaving maliciously. Current routing

protocols such as OSPF and IS-IS use a single shared secret key for message authentication. If any router

is compromised, the compromised router could fake messagesfrom arbitrary routers — announcing bogus

connectivity to arbitrary routers to attract and intercepttraffic. The MMS software is resilient to such at-

tacks from single/multiple compromised switches. Moreover, even subtle collusions between compromised

switches do not affect the delivery of management traffic.

Evolvability: The system should be evolvable, and it should enable itself to be managed remotely. That is,

using the communication capability provided by the system itself, it should be possible to update the system

remotely without the risk of crippling the system, even if the updates turn out to have bugs that require them

to be rolled back. Updating the current off-the-shelf protocol software on routers remotely has inherent risk.

If the new version is erroneous or misconfigured, the remote management communication channels can be

lost. The MMS software can be seamlessly upgraded, and it canrecover from erroneous updates.

4.3 Meta-Management System (MMS) Design and Implementation

In this section, we present the design and implementation ofour remote management solution, the Meta-

Management System (MMS). The MMS software runs on network elements (NE), by which we mean

routers, switches, firewalls, and other middleboxes. The MMS also runs on decision elements (DEs), the
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network-connected servers used to manage and configure the network. The design of the MMS leverages

a key observation: most management traffic flows between a small number of DEs and the NEs. Once

the management system provides robust and configuration-free communication channels between DEs and

NEs, remote management is enabled. Any NE-to-NE communication that may be needed can be provided

through forwarding via an overlay constructed on the DEs.

4.3.1 Key Features of the MMS

Automatic creation of management channels

When a DE with a valid security certificate is attached to a network, the MMS automatically establishes

management channels between the DE and the NEs in the network. Likewise, when an NE with a valid secu-

rity certificate is attached to a network, the MMS automatically establishes management channels between it

and the DEs. The MMS logically separates management communication channels from data communication

channels so that they no longer share the same fate. There is no manual configuration beyond exchanging

security certificates at device installation time.1 The MMS integrates, and thereby enforces, best practices

— once the MMS solution is installed, the rest is automatic. The MMS exposes a datagram service to ap-

plications, so existing management applications can access the MMS management channels via a standard

socket API.

Integrated security assuranceThe MMS assumes a hostile environment in which malicious endhosts

attached to the network may launch a DoS attack at the MMS or try to compromise NEs. The MMS is robust

to such attacks and NE compromise. First, regular end hosts have no way to address DEs in the network, thus

launching a DoS attack at the DEs is not possible. The logically out-of-band MMS management channels

have priority over data traffic, and thus DoS attacks againstNEs in the data plane cannot disrupt management

traffic. If an NE is compromised, it can drop MMS traffic or generate spurious messages in a DoS attack.

However, due to the MMS’s use of onion-encrypted source routing, such NEs can easily be detected and

then quarantined by the MMS issuing new source routes that bypass the quarantined NE. Finally, the MMS

provides a mechanism to revoke a DE certificate and replace itwith a new one, which is useful, for example,

when a DE laptop computer storing the certificate is lost.

Integrated liveness assuranceMMS maintains the liveness of the management channels in an integrated

fashion. It can dynamically re-route when a loss of network connectivity occurs. It is designed to protect

1Major vendors today already install security certificates onto their network elements before shipping them to customers.
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itself against CPU resource starvation. Moreover, due to the use of source routing, MMS has very little

runtime state, and all the memory it needs can be statically allocated at boot time, thereby defending against

memory starvation. Furthermore, the MMS provides remote process management and packet filtering APIs

to ensure the liveness of critical higher-layer managementsoftware tools.

Evolvable The MMS can be used to manage and evolve the MMS itself with zero down time. The design

of MMS enables multiple parallel instances of the MMS to operate over the same network at the same time.

This allows a new MMS instance to be brought up in order to manage or replace the old instance. For

example, a new version of the MMS can be installed and broughtup through the management channels

provided by the old working version. The new version can be tested thoroughly before the old version is

removed.

Handles large networksThe protocols used in the MMS were specifically designed so that the amount

of memory and CPU computation required of network elements is independent of the size of the network.

This means that the network can grow without forcing the upgrade of all NEs. Instead, the computation and

memory requirements are placed on the decision elements. The DEs can target their resources at reaching

the specific NEs they wish to configure, and since DEs are just end hosts and comparatively few in number,

they are easy to upgrade. Management stations can be connected to the network at any port, so service

technicians in the field and operators in the network operation center can all access network elements using

the MMS — there is no need to travel to special “network management ports” to connect. After a DE is

plugged into a network, in about 30 seconds it can establish MMS secure channels to 1000 core devices (the

size of many large enterprises and ISPs [2]).

4.3.2 Isolation of MMS Frames

Because the MMS leverages the same physical links used for regular data packet transmissions, the link-

layer must logically partition the link so that the MMS module on one network element can send MMS

frames to the MMS module on a neighboring network element. This partitioning should be done so that

the logical link used by the MMS has a guaranteed minimum throughput — this prevents regular data

traffic from interfering with the delivery or processing of MMS frames. This abstraction can be realized in

a number of ways, and the exact solution may be slightly different for different link layers. For example,

SONET links might use the supervisory channel to carry MMS frames, since that channel has been built into
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SONET framing and has protected bandwidth. In a datagram network, weighted fair queueing or priority

queueing might be used to create the required logical partition.

In our implementation, the network consists of point-to-point Ethernet links, and MMS frames are sent to

a reserved multicast address and tagged with a specific protocol type. When the MMS module is activated, it

configures the OS to hand it any MMS-tagged frames going to this multicast address. To prevent user traffic

(e.g., DoS attacks) from interfering with management communication, we use the simple priority queueing

system provided by the interface driver. MMS frames are put into the highest priority queue and thus served

first by the scheduler.

4.3.3 Automatic Construction of Secure Channels

One of the most important and basic features of the MMS is the construction of a set of secure channels

for management information to flow between a DE connected to the network and the NEs that make up the

network. These channels must be authenticated, must survive DoS attacks and local link or NE failures,

and must be able to recover from an NE compromise. This section explains our design for establishing and

maintaining these management channels.

4.3.3.1 Threat Model

The MMS is designed to withstand the following threats:

Operator error: Mistakes made while altering the configuration of network elements.

Attack from an end-host: Hosts connected to the network may attempt to DoS or inject false commands

into the management channel.

Compromise of a Network Element:Attackers may compromise any network element in the system,learn

its secrets, sniff frames traversing it, and use it as a platform for launching DoS attacks against the DEs, the

MMS, or the data plane.

4.3.3.2 Minimizing State Held by Network Elements

The first step in constructing a secure channel is defining andauthenticating the endpoints of the channel.
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Estimates show that configuration errors are responsible for 60 to 70 percent of network outages to-

day [61]. Since the MMS must provide an always-available management channel, configuration errors that

prevent communication between the DE and the NEs are intolerable. We argue that the best approach to

eliminate configuration errors is to reduce the configuration state to the bare minimum needed.

In our design, each NE is configured with the following critical pieces of information prior to deploy-

ment. The first is anetwork certificatethat identifies the public key with ultimate authority over the network.

NEs will accept commands only from DEs that have aDE certificatesigned by the network certificate’s pri-

vate key. The second is a private/public key pair that uniquely identifies the NE. The NE’s public key must

be made available to the DEs before the DEs can communicate with the NE. The network certificate and the

private/public key pair should be preserved in non-volatile storage on the NE.

This basic configuration provides the toehold from which theDE will be able to authenticate and com-

municate securely with each NE. In addition to the basic configuration, each NE stores the following dynam-

ically generated soft-state for each DE with which it communicates: (a) a secret key shared only between

the NE and the DE, (b) an onion-encrypted source route by which the NE can communicate with the DE,

(c) the version number of the DE’s certificate, and (d) the time at which this per-DE state was last used. The

exact definition of these fields and the means by which they arecreated will be explained next.

4.3.3.3 Secure Routing

The MMS is completely decoupled from the regular IP data plane services and therefore has its own rout-

ing subsystem. The forwarding of messages across the MMS is controlled byonion-encrypted source

routes [62]. These are strict source routes placed in the headers ofthe MMS frames that list the series

of NEs through which the frames must pass. A source route is built like an onion, with the list of hops

remaining in the route encrypted in the secret key of the NE making the next forwarding operation. An NE

without a valid onion-encrypted source route can only transmit MMS frames to its immediate neighbors.

Since the DE knows the secret keys of all NEs, it can constructan onion-encrypted source route between

any two NEs. As the frame is forwarded across the MMS, each hopre-encrypts the portion of the route over

which the frame has already traveled.

We use onion-routing for two main reasons. First, it createsin each MMS frame a secure log of the

frame’s path that the DE can read — as described in Section 4.3.3.5, this property will be used to detect

and evict misbehaving NEs. Second, source routing ensures that the MMS on each NE does not need to
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Figure 4.1: Recursive MMS Authentication.

maintain a dynamic routing table that grows with the networksize. Thus, the MMS on an NE only needs a

small static amount of memory and will not run into memory allocation failures.

To establish the MMS onion-encrypted source routes, a DE first recursively authenticates and establishes

secret keys with the NEs in the network. During this process,the DE computes an onion-encrypted source

route for each NE to communicate with the DE, and the DE installs this route on the NE. Subsequently, the

DE learns changes in the topology of the network by collecting encrypted link state advertisements (LSAs)

from NEs. The DE reacts to topology changes by recomputing and pushing out new onion-encrypted source

routes as needed. There can be multiple DEs in the network, but each DE performs these tasks independently.

The details of the authentication process are explained next.

Recursive Authentication

The DE is responsible for authenticating the NEs and sendingthem an encrypted source route they

can use to communicate with the DE. The NEs prove their identity to the DE using a challenge-response

protocol, and the DE proves itself to the NE by sending it a verifiable signed source route.

Figure 4.1 gives an overview of the process by which a DE establishes communication to and through

the NEs in the network. The DE initiates and drives this process, enabling it to limit the set of NEs it contacts
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to the ones of interest. This will be important in very large networks with many edge NEs. The DE begins

by initiating the authentication process with the directlyconnected NEs (e.g.,A).

The DE authenticates an NE by sending it a challenge via an onion-encrypted source route. For an NE

directly connected to the DE, this source route is trivial. This challenge contains several things. The first

is a 128-bit session key that serves as a shared secret between the DE and that NE. The shared secret is

encrypted by the NE’s public key and signed by the private keyfrom the DE certificate. The second is the

public key from the DE certificate signed by the private key from the network certificate. This signed public

key is preconfigured on a DE by the administrator. It is important to note that a DE does not know the private

key of the network certificate. Thus, even if a DE is compromised, the network certificate is still safe. The

third component is an onion-encrypted source route from theNE to the DE signed by the private key from

the DE certificate.

By verifying the certificates and decrypting the session key, the NE proves its identity, verifies it is

communicating with a valid DE, and obtains an onion-encrypted source route it can use to communicate

with the DE (since it can decrypt the first layer of the route using the session key). The NE then encrypts its

current LSA by the session key, and sends it to the DE using theonion-encrypted source route. If the LSA

informs the DE of new NEs it should communicate with, the DE recursively authenticates those NEs (e.g.,

B) by sending them challenges via onion-encrypted source routes over authenticated NEs.

A DE certificate contains a version number, and NEs will only accept a DE certificate with the highest

version number they have seen. This means if a DE certificate is compromised, it can be cheaply “revoked”

by creating a new DE certificate with a higher version number and using it to authenticate all the NEs.

Authentication in Large Networks

Since the DE drives the recursive authentication process, it can easily target the authentication toward

the NEs it wants to control. This is important in large networks, even those with millions of edge NEs. As

a simple example, the DE can authenticate with all the core NEs (as identified by an inventory database),

obtaining LSAs that list the edge NEs and their attachment points. Even the largest networks have no more

than a few thousand core NEs, which the MMS can easily handle (see Section 4.5). Subsequently, the DE

can initiate authentication with only the desired edge NEs.

LSA Creation

The MMS implements a simple HELLO protocol by which an NE discovers the identities of its neigh-

bors. As part of this HELLO protocol, neighbors exchange lists of the DEs with which they were previously
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authenticated. This information need not be verified by an NE; it is advisory only. From this information, an

NE creates an encrypted LSA to send to each DE it has authenticated with. In each LSA, for each neighbor

there is a bit that indicates whether that neighbor claims tobe authenticated to that DE.

When the link state changes, the NE that detects the change sends a new LSA to each DE for which it

knows an onion-encrypted source route. Each NE limits the rate at which it sends LSAs, so that a compro-

mised NE attempting to DoS the MMS by flooding LSAs can only flood its immediate neighbors (which is

unavoidable), but not the rest of the NEs.

New LSAs are retransmitted periodically until acknowledged by the DE (the implementation uses a

period of 500 ms). If a new LSA is generated, it replaces the one currently being sent. To make the system

as simple as possible, an LSA is acknowledged by the DE by sending a hash of the LSA back to the NE.

There is no need to use sequence numbers, as there can be only one outstanding LSA at a time, and the hash

provides protection against bit-corruption in the LSA.

4.3.3.4 Response to Failures

If the connectivity between NEs changes, new LSAs are sent tothe DE, and the DE re-calculates onion-

encrypted source routes for affected NEs and sends the new routes to the NEs. Should an NE reboot or

otherwise lose soft-state for a DE, LSAs sent by this NE’s neighbors will show that this NE is unauthenti-

cated to the DE, and the DE can re-authenticate the NE if needed. Should a DE fail, all NEs will eventually

purge their soft-state for it.

The MMS is designed to survive even simultaneous failures ofmultiple links. In addition to the experi-

mental results presented in Section 4.5, we are able to provethis formally.

Convergence Property:If each NE knows the shortest path to a DE, and the DE has the initial network

topology, the above LSA propagation scheme ensures that theDE will eventually re-discover the shortest

paths to all NEs in its network partition after any period of link failure events followed by a period without

failures.

Proof. Let GDE be the network topology, including the DE itself, perceivedby the DE,Greal be the topol-

ogy after the link failure event(s),p(x) be the shortest path inGDE from any NEx to the DE,S be the set
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of NEs that have different link state inGDE andGreal. We define a pathp(x) as aworking pathif it is a

path in bothGreal andGDE .

After the failure event(s), at least one NE inS has aworking pathto the DE. This follows since there is

always at least one NEa ∈ S such thatp(a) is the shortest. Since no other NE inS is betweena and the

DE, there is no failed link alongp(a). It follows that the LSA from at least one NE inS can reach the DE,

and that NE will continue to send that LSA until it is acknowledged. After the DE receives and processes

the LSA,GDE andp are updated anda is removed fromS. The DE repeats the above procedure untilS is

empty. WhenS is empty,GDE is identical toGreal. Thus, it takes at most|S| steps to makeS empty, at

which point the network has converged.

Therefore, as long as the DE assigns each NE the shortest onion-encrypted source route, the network is

guaranteed to converge even when multiple failures occur simultaneously. In addition to the shortest route,

the DE can optionally give an NE apreferredroute which is not necessarily the shortest. An NE can use the

preferred route to send management traffic to the DE, and onlyuses the shortest route to send LSAs. The

flexibility of assigning preferred routes allows more advanced features to be implemented on the DE. One

such example is described next.

4.3.3.5 Resilience to Attacks

Under this security framework, only authenticated NEs can communicate with DEs via the MMS. When

used with traffic isolation techniques (see Section 4.3.2),data plane DoS attacks cannot disrupt management

communication. Even if an NE is compromised, the attacker cannot modify the MMS frames in transit

because they are all encrypted with the secret key of anotherNE. The compromised NE also cannot announce

bogus connectivity to non-compromised NEs in order to attract traffic to it because the DE can detect the

inconsistency in the LSAs.

A compromised NE can, however, launch a DoS attack on the MMS by dropping frames in transit or

by sending useless frames to the DE. A simple attacker that sends traffic using its own source route would

be trivially caught, since the source route identifies the sender. A sophisticated attacker could attempt to
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hide its identity by reusing a source route extracted from a frame it has forwarded, thereby making its attack

traffic appear to come from the origin of the source route.2

The use of onion-encrypted source routes, however, offers both a mechanism to identify the origin of

the DoS and a mechanism to isolate the offender once identified. Onion-encrypted routes give us strong

assurance that any malicious packet received by the DE must have been sent by an NE listed in the packet’s

source route. The techniques of Zhang et al. [63] can then be used to identify the malicious NE. Summarizing

that work, we assume that a DE can determine it is receiving malicious packets if they are sent at a rate above

some detection threshold. Over time, the DE orders NEs to change the source routes they use. This allows

identification of the attacker by forcing it to move its malicious traffic among different source routes, and the

attacking node will eventually be the only node in common among the source routes along which malicious

traffic arrived. The attacker’s only strategy is to limit thenumber of malicious packets it sends to stay below

the detection threshold, but this bounds the impact of its DoS attack. If an attacker is identified, the DE can

issue new onion routes that avoid it.

4.3.4 Assuring Liveness

To achieve liveness, beyond the ability to react to link or NEfailures as explained in Section 4.3.3.4, there

are three additional challenges.

Protecting Against CPU Starvation

A common issue on NEs is CPU starvation caused by a runaway process or a data-plane DoS attack.

However, the MMS must maintain management communication channels during these events so that an

operator can remotely diagnose the problem.

The MMS relies on the NE’s kernel scheduler to remain sufficiently live so that the MMS can send and

receive frames.3 The MMS can use any mechanism the kernel provides to protect asufficient share of CPU

cycles. To minimize the share of CPU cycles needed to run the MMS on NEs, the MMS has a centralized

design in which the most compute-intensive work, i.e., route computation, is carried out on the DE.

However, even when the core kernel services of an NE remain live, it is possible for a process running

on the NE (e.g., the OSPF or the BGP process) to consume so manyCPU cycles that critical processes (e.g.,

2Including nonce or timestamps in the source route could prevent this replay attack, but would require that NEs share keyswith

all downstream NEs, rather than just the DE. We rejected thatapproach for scalability reasons.
3The problem of surviving arbitrary failures of the NE’s kernel or operating system is intractable.
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the command shell) become unresponsive. For instance, thiscould happen when a misconfiguration causes

hundreds of thousands of inter-domain routes to be mistakenly injected into an intra-domain routing process.

If the command shell remains unresponsive, operators have no way to remotely resolve the problem.

To enable recovery from this type of situation, the MMS provides a process management API and a

packet filtering API. Using these APIs, a DE can command the MMS to return a list of the processes running

on an NE, kill a particular process, change a process priority, install an IP data plane packet filter, or reboot

the NE. We elaborate on the features of these APIs in Section 4.3.6.1. Together, these mechanisms allow an

operator to remotely restore liveness to an NE’s command shell via the MMS, investigate the cause of the

problem, and reconfigure the NE as needed to prevent a recurrence of the problem. In the extreme case, an

operator can remotely reboot an NE via the MMS.

Protecting Against Memory Outages

The MMS is designed to avoid “out of memory” errors by using static rather than dynamic memory

allocation. In this way, as long as the MMS is successfully loaded at system startup time, it is unlikely to be

impaired by memory allocation problems caused by misbehaving processes. This design requires the MMS

to limit runtime state. In particular, this led to our use of source routing in the MMS, ensuring that only DEs

need to build the complete network topology, which requiresmemory proportional to the network size. The

state stored by each NE scales only with the number of ports onthe NE, which is known at boot time, and

with the number of simultaneously active DEs communicatingwith the NE. In our implementation the soft

state maintained by an NE for each DE takes up approximately 500 B of memory. A static array of 500 KB

can, for example, support 1,000 simultaneously active DEs.

4.3.5 Evolving the MMS

Networks are constantly evolving in ways difficult to anticipate. No matter how well the MMS has been

designed and engineered, one cannot rule out the need for updating the MMS running in the field. Thus, the

MMS must provide a robust means by which the MMS itself can be remotely managed and evolved.

Our approach to robustly evolving the MMS is to allow multiple versions of the system to operate over

the same network at the same time. This allows the new versionto be brought up and thoroughly tested

before the old version is removed. Each version of the MMS operates independently and in parallel. Copies

of all MMS frames are delivered to each version. An MMS frame contains a version number in the header,

and an MMS version skips over frames marked for other versions.
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In our design, management applications can specify throughthe use of a socket option which version

of the MMS should carry its traffic. Packets sent by applications that do not specify an MMS version are

handed to every version of the MMS running on that DE or that NE. Each copy is independently routed by

its respective version of the MMS to the destination.

Management applications built on top of TCP will not see duplicated packets, as they will be discarded

by TCP. For non-TCP applications, we leave it up to the application itself to ensure that these duplicated

packets do not cause a problem. Robust UDP- and ICMP-based applications already cope with duplicated

packets, and in our experiments we did not find duplicated packets to be a problem. We choose this design

so that management applications will work unmodified over the MMS without additional configuration, and

we accept the performance cost of handling duplicated packets as a reasonable trade-off.

4.3.6 MMS APIs

The MMS provides two key APIs: one for remote recovery to address liveness issues, and another to support

existing network management applications that use TCP/IP protocols for transport.4

4.3.6.1 MMS API for Remote Recovery

After reviewing common attacks, configuration mistakes, and management failure scenarios, we designed

the APIs described in Section 4.3.4 to balance simplicity against the wide range of possible capabilities.

These two APIs should enable recovery in many situations where remote NEs are overloaded and unre-

sponsive. Via the process management API, a DE can command the MMS to return a list of the processes

running on an NE, kill a particular process, change a processpriority, start a process, or reboot the NE.

When the process management API is invoked on a DE for an NE, a special MMS frame that carries the

parameterized process management command is sent to the NE and interpreted by the MMS running on

that NE. For example, when the destination NE receives a killcommand with a process id parameter, the

MMS kernel module running on the destination NE iterates through the kernel process table and sends a kill

4Our MMS prototype provides two additional APIs: (a) domain-name resolution and dynamic registration; and (b) a proxy

service that enables management applications on NEs to communicate with each other and external networks. Implementing this

functionality requires no changes to the network elements,merely code on the decision elements where it can be easily modified or

upgraded. We have found that these APIs increase the utilityof the MMS in practice.
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signal to the intended process. While extremely simple, in practice these capabilities are the primitives that

operators and IT staff commonly use to mitigate problems andrestore service.

The MMS IP data plane packet filtering API allows packet filters to be installed directly via the MMS,

without first obtaining a shell to run a user space application (in contrast to iptables [64] invocation, for

example). Similar to the process management API, when the packet filtering API is remotely invoked, a

packet filter rule is sent from a DE to an NE. The MMS on the target NE directly communicates the rule

to the packet filtering kernel module, for example netfilter [64], without competing with any user space

applications for resources. Together with the process management API, the packet filtering API can be used

to isolate a misbehaving NE and download a new patch or image.

The security provisions of the MMS ensure that these APIs canonly be invoked by a valid DE, and the

DE software itself can validate that the DE operators have the rights to perform the tasks.

In our case studies in Section 4.4, we demonstrate the use of these APIs to restore liveness under resource

exhaustion conditions.

4.3.6.2 MMS API to Applications

A large number of existing network management tools use the Internet Protocol for transport, for example,

SNMP pollers (e.g., MRTG, Cricket), remote scripting tools(e.g., rancid, expect), and PlanetLab admin-

istration tools. To maximize backward compatibility with existing management tools, the MMS creates a

virtual “management LAN” on top.

Inside the kernel, the MMS intercepts any packets sent over the management LAN, encapsulates these

packets into MMS frames, and transports the packets via MMS routes.

4.3.7 MMS Implementation

Our MMS implementation is a Linux loadable kernel module that is introduced into the kernel network stack

of the DEs and NEs as shown in Figure 4.2. The MMS traffic is captured by a trap in the network stack and

bypasses layer 3 IP processing completely. On the DE, trafficsent by a management application is injected

into the MMS, and the traffic is forwarded by the MMS on intermediate NEs and delivered via the MMS

to the application running on the receiver NE. Other implementation variants of the MMS are possible; our

Linux implementation serves as a proof of concept.
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Figure 4.2: High-level overview of the MMS implementation.

The system consists of 21K lines of C code. Almost 17K lines ofcode are from the GNU MultiPrecision

(GMP) library used to support cryptographic mechanisms. With additional engineering work, we could strip

out the many unneeded functions from the library and reduce the code size.

4.4 Case Studies

To demonstrate the effectiveness of the MMS mechanisms, we give examples of how the MMS solves con-

crete problems that arise in network management. We implement these scenarios on Emulab [6] to illustrate

these examples. In the first example, we show how the MMS enables operators to quickly respond to and

recover from critical conditions where network devices become unresponsive due to a flood of malicious

traffic or misbehaving management applications. Next, we show how the MMS enables the remote manage-

ment and configuration of a virtualizable network infrastructure. Finally, we demonstrate the suitability of

the MMS for managing a wireless mesh network.
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Figure 4.3: Topology of the experiments in case study A.Attackersends UDP packets toVictim; DE tries to
establish anssh session withVictim over MMS.

4.4.1 Relieve Control and Management Plane Stress

A router’s control and management planes run a variety of applications: routing daemons, traffic monitors,

intrusion detection/prevention systems, and SNMP agents.Software bugs, network operation errors, and

network attacks (e.g., DoS, worms) can cause applications to consume excessive computing resources and

can even render a router unreachable or unable to respond to remote management commands. For example,

during the breakout of the Slammer worm [65], many routers and switches became unresponsive. This was

because the Slammer worm generated an enormous amount of packets with class D IP multicast addresses,

and many routers and switches processed such multicast packets using their control plane CPUs [55]. As

a result, routers’ CPUs and memories were overwhelmed, forcing operators to physically visit the affected

devices to install packet filters to block the worm traffic. This dramatically increased the time required to

get the network back under control.

In situations where the control and management planes are threatened by resource starvation, the MMS

mitigates the threat through itspacket filtering andprocess management APIs.

Using packet filtering API

Typically, an operator installs packet filters by changing router configuration files or issuing shell com-

mands such as iptables [64]. Ironically, under situations when the control/management planes are overloaded

due to abnormal traffic and the deployment of packet filters ismost desperately needed, it can be difficult

to secure enough computing resources to change and commit the configuration or to launch the shell com-

mands. The MMS APIs, however, provide a solution.

We demonstrate the benefits of the MMS using a real-world example based onSnort. Snort is an

open-source network intrusion detection/prevention system widely used in enterprise networks. When run
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in the inline mode, it holds packets in a user space queue and inspects them to make accept/drop decisions

based on a set of rules. Unfortunately, whenSnort (run in the inline debug mode) encounters bursty

UDP packets, it can consume excessive resources and starve other applications5. We conduct an Emulab

experiment to measure the impact of such starvation. We create a network of star topology as shown in

Figure 4.3, where we runSnort version 2.4.3 on theVictimnode with a 600 MHz CPU and the Linux 2.6.12

kernel and we send UDP packets from theAttackernode to theVictim node at increasing rate. Figure 4.4

shows the time it takes tossh log in to theVictim from theDE. We can see that without the MMSssh,

login becomes impossible when the UDP packet rate is merely above 350 pps becausessh is starved and

times out. In contrast, with the MMS,Snort barely impactsssh login. This is because the MMS provides

a live communication channel through which the MMS packet filtering API can be remotely invoked to

block UDP packets, and then anssh login via the MMS channel can be successfully completed. In such

critical situations, the MMS can mean the difference between maintaining remote manageability or losing it

completely.

5The problem exists on Linux kernels older than version 2.6.14.
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Using process management API

Even when there is no malicious traffic, application software bugs can cause resource exhaustion. Anec-

dotally, it is known that certain bugs in the SNMP agents running on a tier-one provider’s Alcatel 1630

switches caused severe CPU overload on the switches when they received bursty SNMP queries. The prob-

lem persisted for minutes and the switches eventually shut down. The consequence was that thousands of

customers lost their local telephone services for half an hour, and the provider had to report the incident to

the Federal Communications Commission.

We conduct an experiment to emulate the scenario in the aboveexample. We use the same network

topology as in the previous experiment (Figure 4.3). We inject a bug into an SNMP agent (snmpd) so that

it enters an infinite loop when it receives a certain SNMP query. We run this buggy SNMP agent with a high

priority on theVictim node. When the SNMP bug is triggered, we find thatssh login to the PC from the

DE becomes impossible because it times out.

The MMS process management API solves this problem. Throughthe live MMS communication chan-

nel, the MMS process management API can be remotely invoked to lower the priority of the misbehaving

snmpd process, and assh login can then be completed normally within one second. Again, in this situation

the MMS can mean the difference between maintaining remote manageability or losing it completely.

4.4.2 Management and Configuration of Virtual Networks

Network virtualization [66] is being pursued by many groups, from operators to device vendors, as a way to

make more flexible and efficient use of network resources by segmenting a physical network into multiple

logical ones. For example, a single physical router can serve as multiple virtual routers by hosting virtual

machine monitors [67]. Each virtual router operates independently of the others, and can route packets using

routing protocols of its own choice.

However, one still needs a way to remotely manage the creation, deletion, configuration, and peering of

virtual routers. There is again a circular dependency: how can the virtual routers be remotely configured

before the virtual network is functioning? The MMS solves this problem through its ability to bootstrap

itself and automatically establish secure management communication channels between a DE and the NEs.

Through the secure channels, the DE can remotely install thevirtualization software on NEs and issue

commands to set up and configure virtual routers.
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Figure 4.5: VINI virtualization system with the MMS. The solid lines indicate data links between VINI
nodes within the network, and the dotted lines show the MMS channels between the VINI Central server
and the VINI nodes.

To demonstrate the feasibility of our solution, we have experimented with a virtualizable network infras-

tructure on Emulab using VINI [68] as the virtualization software. Figure 4.5 shows the Emulab network

with 4 physical nodes connected with 100Mbps links. VINI operates by creating a virtualsliceon some or

all of the VINI nodes, and by provisioning UDP tunnels between virtual slices to form a virtual network

on which experimental protocols can be run and tested. The VINI Central server is designed to usessh

to remotely create and destroy virtual slices on the physical nodes. The MMS provides a standard socket

interface, so the VINI Central server management code runs without modification.

At deployment time, the MMS software is installed on all the VINI nodes and the VINI Central server

(which also serves as the DE). The MMS automatically establishes management channels between the VINI

Central server and each VINI node (shown as dotted lines in the figure). Subsequently, from the VINI

Central server, we are able to upload the VINI software imageto the nodes and remotely bring up and

configure the VINI software via the MMS. We find that it takes the VINI Central server 200 milliseconds to

discover and authenticate the four VINI nodes, and another 4seconds to upload the 16 MB VINI software

image to the VINI nodes via the MMS. The MMS provides the needed management communication service

in an integrated, secure, and automatic way.

4.4.3 Manage Wireless Mesh Networks

The MMS is well suited for managing wireless mesh networks. Nodes in a wireless mesh network often do

not have any wired network connectivity, and the only way to remotely manage them is via the wireless mesh

itself. The MMS provides precisely this capability. However, wireless mesh networks also pose interesting
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Figure 4.6: MMS management of an emulated wireless mesh network. The experiment shows MMS oper-
ating over lossy and asymmetric links that are common in wireless mesh networks.

challenges for the MMS due to the nature of the wireless medium. Wireless links can be asymmetric, and

links can have unpredictable packet loss rates. To show the MMS’s effectiveness in managing wireless mesh

networks, we conduct an emulated wireless mesh network experiment.

Figure 4.6 shows an emulation of a wireless mesh network using Emulab. The DE and the NEs run on

PCs with a 3GHz CPU, running the Linux 2.6.12 kernel. They arerichly connected to each other to emulate

a mesh topology. The Emulab traffic-shaping nodes are employed to induce 40 percent packet loss between

NE-1↔NE-4, and an asymmetric simplex-link is set up between DE←NE-3.

When the DE and the NEs are first brought up, the DE detects its immediate neighbor NE-3 and tries

to authenticate it using the asymmetric link, but fails. Meanwhile, the surrounding nodes of NE-3 are

authenticated to the DE and provide alternate paths that theDE can use to reach and authenticate NE-3.

Once all the NEs are authenticated, the DE has the full topology of the network and computes a source-

route for NE-3 that avoids the asymmetric link. It takes 300ms to install a route on NE-3 that avoids the

asymmetric link.
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MMS handles lossy links in a similar way. It uses link qualityestimates to detect links with high

packet loss. In our experiment, the link between NE-1 and NE-4 is induced with a 40-percent packet loss.

When the DE and the NEs are brought up, the DE may authenticateNE-4 via the lossy link or through its

other neighbors. Meanwhile, the NEs use periodic HELLO messages to track the packet loss between their

neighbors by measuring the time gap between individual HELLO messages. Once all the NEs have been

authenticated to the DE, the NEs start reporting the packet loss estimates to the DE via the LSAs. The DE

uses these estimates as link weights in its network topology. When the DE receives the LSAs from NE-1

and NE-4, it detects the poor quality of the NE-1↔NE-4 link and re-computes source routes for NE-4 to

avoid using the lossy link. In the experiment, it takes 500msto detect the lossy link and route around it.

4.5 Performance Evaluation

In this section, we evaluate the delay and throughput overhead introduced by the secure forwarding mecha-

nisms in MMS, the convergence speed of MMS routing in response to failures, and the speed of the recursive

authentication mechanism used to authenticate NEs during initial network bootstrap. The results show that

the MMS has excellent performance, and it is practical to deploy the system.

Low forwarding overhead - This experiment measures the end-to-end delay and throughput overhead

introduced by the MMS.

To measure the delay overhead, we connect nodes with 1 Gbps Ethernet links to form a linear chain

topology. The sender and receiver exchange ICMP packets. Wevary the hop count between the sender and

receiver and compare round-trip delays for ICMP packets carried by the MMS and by the regular IP data

channel. Figure 4.7 shows that the round-trip delays increase linearly with hop count, and the latency added

by the MMS is less than 0.1 milliseconds per hop.

We measure the throughput overhead of MMS using a three-nodechain topology, with a DE as the

sender, one NE as the forwarder, and a second NE as the receiver. We use iperf [53] to measure the TCP

throughput between the DE and the receiver. Using Emulab’s configuration ability, we vary the bandwidth

of the links connecting the three nodes. Figure 4.8 shows that the throughput difference between the MMS

and the regular IP data channel becomes noticeable only after link bandwidth increases to 400 Mbps, and the

best TCP throughput the MMS achieves is 800 Mbps. Investigating further, the performance degradation is
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Figure 4.7: Comparison of round-trip delay of ICMP packets using MMS channel versus using regular IP
data channel.

due to the encryption and decryption operations involved inusing onion-encrypted source routes6. If cryp-

tography is disabled, the MMS’s TCP throughput is the same asthe regular IP data channel. Nevertheless,

the overhead imposed by the encryption is not large, and we believe security assurances made possible by

onion-encrypted source routes outweigh the overhead.

Resilient routing - During network failures, NEs send LSAs to DEs, and DEs re-compute and push out

updated onion-encrypted source routes to NEs. When multiple failures occur simultaneously, some LSAs

may fail to reach the DE. To address this issue, the MMS requires NEs to keep sending LSAs until an

acknowledgement from the DE is received or the DE’s soft-state is timed out. To evaluate the ability of the

MMS to maintain working communications in the presence of network failures, we construct the scenario

as shown in Figure 4.9(a). In this scenario, two links fail atthe same time, and the failure of link R1-R3

cannot be immediately propagated to the DE since neither endof the failed link has a working route to the

DE. Table 4.1 shows a timeline of the steps taken during re-convergence. The DE first detects the failure of

link R1-DE and commands R1 to re-route using R2. When R1’s LSAreaches the DE and notifies it of the

failure of link R1-R3, the DE obtains an accurate view of the network and repairs R3’s route.

6Our implementation uses the “twofish” cipher with 128-bit keys.
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Figure 4.8: Comparison of TCP throughput using MMS channel versus using regular IP data channel.

In this case, one LSA retransmission is needed to update the DE with the accurate view of the network.

Since the LSA retransmission timeout is 500 ms, it takes about 500 ms for the MMS routes to re-converge.

We can recursively construct scenarios where more LSA retransmissions are needed. For example, two

rounds of retransmissions are needed for the scenario in Figure 4.9(b) to re-converge. In Section 4.3.3.4, we

proved that the MMS does eventually re-converge even after multiple failures.

Fast secure-channel setup- When a new DE is brought up, it first authenticates its directneighbors and

then recursively authenticates the network as described inSection 4.3.3.3. To estimate how long this process

will take in networks of different sizes, we first develop a simple model of the authentication process and

Time line Event

0 ms R1 detects link failure & sends LSA to DE via route R1-DE, but
LSA is lost

2 ms DE detects the failure of link R1-DE, re-computes paths, andin-
structs R1 to use route R1-R2-DE

500 ms R1 resends its LSA using the new route R1-R2-DE
505 ms DE ACKs R1’s LSA, re-computes paths, and instructs R3 to use

route R3-R4-R2-DE

Table 4.1: Timeline of events triggered by concurrent link failures in Figure 4.9(a).
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Figure 4.9: Topology of the resiliency experiment. In (a), R1 simultaneously loses two links, and its initial
LSAs to the DE are lost; DE detects failure of the link to R1 andinforms R1 to re-route through R2; LSA
from R1 gets through, allowing DE to re-compute and push a newroute to R3. In (b), three links fail at the
same time. The DE restores R1’s route, receives LSA from R1, restores R3’s route, receives LSA from R3,
and finally restores R5’s route.

validate the model using experimental data. We then use our model to predict the time required to establish

secure channels in large networks.

Consider Figure 4.10. Given a network ofn nodes, we divide the nodes into groups based on their

hop-count distance to the DE. We define the nodes in groupd to be the nodesd hops away from the DE

and the number of nodes in this group to bes(d). We defineD as the maximumd; H as the hop latency;

Cnode as the time for a node to answer a challenge from the DE; andCDE is the time for the DE to verify

an answer. In our model, nodes in groupd are challenged after all nodes in groupd− 1 have been verified,

and the time cost for authenticating nodes in groupd includes the DE sending challenges to the nodes, the

nodes answering the challenges, and the DE verifying the answers. Let the time when the DE is brought up

be time 0 andt(d) be the time when nodes in groupd have been verified, we have

t(d) = t(d− 1) + d×H + Cnode + d×H + s(d)× CDE

Solving fort(D)

t(D) = D × (D + 1)×H + D × Cnode + n× CDE

The importance of this equation is that it highlights that nodes with the same hop-count distance to the

DE can compute in parallel, resulting in the termD ×Cnode and implying that the time to authenticate will
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Figure 4.10: Model for computing secure channels setup time. NEs are grouped by their hop-count distances
from the DE.d stands for the hop-count distance of a group,H is hop latency,s(d) is the number of NEs in
the groupd hops away from the DE.

not be significantly affected even if network elements have slower CPUs than the DE andCnode >> CDE.

As shown in the equation,t(D), the time the DE finishes authenticating and establishing secure channels

to all nodes, is dominated by the termn × CDE which grows linearly with the number of network nodes

owing to the fact that the single DE has to verify answers fromall nodes. Andt(D) is subjected to an offset

bounded by the network diameter and average round-trip delay.

We conduct experiments to measure MMS channel setup time using three different types of topologies.

The first is the Abilene backbone topology [69]; the second isan ISP backbone topology (AS 3967) derived

from Rocketfuel [45] data; the third is a set of production enterprise network topologies used in [2]. Our

measurements show that on the 3 GHz PC acting as the DE,CDE is 27 milliseconds, and on the 800 MHz

PCs serving as NEs,Cnode is 45 milliseconds. Figure 4.11 plots the predicted and measured channel setup

time for each topology. As shown, the measured times fit our analytical result.

According to the equation which we deduced and experimentally validated, a new DE plugged into a

network with 1000 NEs will take only about 30 seconds to buildsecure channels to all NEs.
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Figure 4.11: Predicted secure channel setup times (plottedas circles), and measured setup times for real
topologies (plotted as crosses).

4.6 Summary

Providing robust remote connectivity to geographically distributed devices is a practical problem that begs

for an economical and highly reliable solution. In-band solutions, while economical, are fraught with cir-

cular dependencies. Dealing with these dependencies requires carefully constructed operation procedures,

where any small glitch or misconfiguration breaks the solution. Out-of-band solutions are also in wide

use today. For example, IP network operators often dial in over the telephone network to terminal servers

connected to routers for remote configuration. Similarly, frame relay switches, on losing frame relay con-

nectivity, can “dial around the cloud,” placing an ISDN callto a pre-configured number to replace lost

connectivity. In essence, the out-of-band solutions fall back on older technologies, which are assumed never

to fail. Therefore, these solutions bring several challenges: cost; the assumption that the telephone network

is separate from the data network; and the fragility of depending on pre-configured information such as

phone numbers.

In this chapter, we introduce the Meta Management System (MMS). The MMS takes the best from

the two existing approaches today — leveraging whatever connectivity is available, in-band or out-of-band,
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and unifying it into management communication channels with strong reliability, performance, and security

assurances. At its heart, the MMS relies on source routing. Source routing provides scalability – the state

required on each network element scales independently of the size of the network. Source routing also

provides flexibility – management traffic can be directed to avoid existing problems when the network is

overloaded or degraded. However, source routing introduces security vulnerabilities. The MMS overcomes

these by using onion routing to detect and evict bad actors. Onion routing introduces potential overhead

from cryptographic operations, but the MMS uses standard mechanisms to control these overheads. The

performance evaluation of the MMS implementation reveals these overheads are insignificant.

Finally, the MMS includes APIs that allow the network operator or automated operations systems to

recover devices and/or the network as a whole when in distress; in particular, through lightweight, general

mechanisms for remote configuration and management of routing. The MMS implementation demonstrates

the power and robustness of the solution. We argue that the MMS should be deployed ubiquitously – on

every network element.
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Chapter 5

Making 4D Dissemination More Scalable

Chapter 4 describes the management communication system — MMS. Although MMS solves the robustness

problem of 4D dissemination, a big challenge remains: how toscale dissemination to up to thousands of

routers and switches without slowing it down. This chapter describes aSimCasttechnique that we have

developed to address this challenge. WithSimCast, the dissemination time cost barely increases when the

number of target routers and switches grows from hundreds tothousands.

5.1 Dissemination Bottleneck

Since the birth of the 4D architecture, there has been an emerging trend to move decision logic from network

elements to a central server in order to make networks more manageable. Among the proposed implemen-

tations are Tesseract [9], RCP [11], Ethane [70], CONMan [27], and Maestro [71]. Despite their diversity

in application domains and ways of computing network state,centrally controlled networks share the need

for a dissemination service to distribute computed data-plane state (e.g., routing tables) from a logically

centralized server to a large number of network nodes.

Existing centrally controlled networks employ different mechanisms to disseminate data-plane state.

For example, in MMS a DE floods “path explorers” to explore paths between the DE and all the routers

in a 4D control domain and uses source routing to reach the routers. Route Control Platform (RCP) relies

on intra-domain routing protocols (e.g., OSPF) to set up routes between any two nodes within a network,

and a Route Control Server (RCS) maintains an iBGP session with every single router and uses the sessions

81
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for dissemination. Ethane creates a spanning tree rooted onthe Domain Controller (DC), and the DC

uses the tree paths to push flow tables to switches. CONMan is sufficiently flexible to accommodate any

dissemination service with an open API. Although existing dissemination systems differ in mechanisms to

establish dissemination routes, once the routes are obtained the server uses reliable unicast to push network

state to every node. This unicast-based approach does not scale well with respect to network size because

the dissemination cost in terms of both total traffic and transmission time increases in proportion to the

number of network nodes. Previous work on centrally controlled networks has not addressed this issue of

dissemination scaling.

In this chapter, we present a solution to the problem of dissemination scalability and efficiency. We

leverage the key insight that data pushed to nodes across thenetwork shares similarity when the data is

network state. Three contributions are made around the following points.

First, we conduct a similarity analysis of routing tables downloaded from routers in a tier-1 ISP back-

bone network. Our analysis shows that there is significant cross-router similarity, and the similarity can be

exploited to reduce dissemination traffic volume. An interesting outcome of the analysis is that the similar-

ity pattern discovered from our dataset is different from those identified in multimedia files with changed

header bytes [38], or documents/software across multiple versions [39]. This leads to the second contribu-

tion of this chapter: a method of leveraging the unique similarity pattern to “compress” data. The basic delta

encoding method is explored and then extended with a varietyof clustering algorithms. New methods of

exploiting similarity are applied to our dataset, and substantial benefit is observed.

Third, a system calledSimCastthat incorporates our new similarity exploitation techniques is designed

and implemented. When applied to a large backbone network topology, the SimCast system achieves a

two-orders-of-magnitude improvement in scalability and efficiency over existing unicast-based solutions.

5.2 Related Work and Case for a Better Dissemination Service

Consider a hypothetical ISP backbone network with 1000 routers1 where each router has 300K routing

table entries2. Assume further that each routing table entry translates into approximately 40 bytes of data

transferred over the wire. With unicast, the server must send each router its routing table. Thus the total

1The number of routers is based on the Rocketfuel ISP topologies study [45].
2The number of routing table entries is based on the CIDR BGP routing table report.
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Figure 5.1: Growth of BGP routing table size. Data source: CIDR Report [72].

amount of data to disseminate would be300K×1000×40 = 12000 million bytes. Assuming that we reserve

200 Mbps bandwidth for routing table dissemination, transferring this data would take 8 minutes. Another

routing table distribution scenario is described in the RCPtechnical report [73], where the estimated time

to transfer the complete route updates is about 3 minutes. The problem becomes more acute as the routing

table size continues to increase, as shown in Figure 5.1 and studied by Bu et al. [74]. In order to achieve

sub-second network convergence, we must dramatically cut the time for distributing the network state.

A similar dissemination problem was observed in network operation and brought up at a NANOG (North

American Network Operators’ Group) presentation [75]. Figure 5.2 shows the example used in the NANOG

presentation to illustrate the problem. The example describes a typical PoP (Point of Presence) with core

routers forming a full iBGP mesh and acting as route reflectors for the PoP’s access routers. Suppose one

access router loses a peering connection with UUnet (a tier-1 network) and sends withdraws to its local core

routers. Since other UUnet peerings are in different PoPs, the core routers relay the withdraws to all the

other core routers. As iBGP uses unicast, the number of withdraws that need to be pushed out is multiplied
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Access
…

Core

UUnet

50K Withdraws

Figure 5.2: When one of the access routers loses a peering with UUnet, that router sends withdraws for 50K
prefixes to its local core routers (2 million bytes of data). The core routers must send those withdraws to all
the other core routers (100-200 of them). Unicast inflates 2 million bytes into 400 million bytes. Source:
NANOG Presentation [75].

by 200. According to the presentation, propagation of the withdraws takes at least 1 minute in practice.

Using route reflectors can reduce this effect, but the route reflector still needs to unicast multiple copies of

the withdraws to its clients and/or peers.

Dissemination of either routing tables in centrally controlled networks, or route updates in traditional

networks, can be very slow as it scales linearly with the number of routers. In this chapter, we propose

a technique that exploits the characteristics of disseminated data to significantly improve scalability and

efficiency. We focus on addressing the dissemination scalability problem for centrally controlled networks.

5.2.1 Off-the-shelf Solutions

Previous approaches for delivering content from one or few source(s) to a large number of recipients include:

Reliable unicast:The source establishes a reliable connection (e.g., TCP) with each individual recipient

and sends data over the connection. The reliable connectioncan be set up on any routing infrastructure. For

example, Tesseract uses source routing, and iBGP relies on IGP to set up intra-routing tables on routers.

This approach suffers the inflation problem discussed above.

Reliable multicast: Multicast was invented to send a group of recipients the samedata, so it is not

directly applicable to our problem where different recipients might need different data.
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P2P: P2P protocols such as BitTorrent are used to distribute large files to downloaders who desire the

same content. In our case, data for recipients is not identical. SET (Similarity Enhanced Transfer) [38] is

a variation of BitTorrent that allows similar objects to be utilized to speed up transfer. Unfortunately, as

shown in Section 5.3 the similarity pattern of routing tabledata is different from that measured in SET, and

thus a new solution is needed to achieve the desired effectiveness.

BST: Poduri et al. propose replacing TCP unicast with a new BGP transport called BST (BGP Scalable

Transport) [75]. They chose to use application-level replication and flooding for multipoint transport. Their

goal was to deliver one copy of the same BGP messages to all interested routers, whereas ours is to deliver

similar routing tables.

Having demonstrated the critical role of a dissemination infrastructure, and the limitations of existing

solutions, we believe it is both an intellectual and a practical contribution to conceive a technique to provide

scalable and efficient data dissemination for centrally controlled networks.

5.3 Analyzing Similarity

We analyze and leverage similarity across BGP routing tables to explore the potential for reducing dissem-

ination load. The reason for focusing on BGP routing tables is that they dominate the data-plane state on a

router in terms of data size, and their sizes keep growing.

5.3.1 Dataset

Our dataset is a collection of BGP routing table snapshots captured from 71 routers in a tier-1 backbone

network. The network contains more than 800 routers and crosses multiple continents. The 71 routers from

which we collect data are distributed in different regions of the network, and most are route reflectors. Thus

they adequately represent the diversity of the BGP tables across the whole network.

For each prefix in the BGP routing table, we only retrieve the best route selected by the router. The reason

being that when a server in a centrally controlled network pushes out routing tables, it only disseminates the

best route for each router. We end up collecting about 276K prefix next-hop pairs from each sampled router.

We use 8 snapshots of the routing table state in our study. Each snapshot is obtained by simultaneously

downloading the BGP tables from the 71 routers at midnight onthe first day of every month from January
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to August. We primarily show the result of our similarity analysis on the latest (August) snapshot, but a

comparison study is also conducted on all the 8 snapshots to show how the result changes over time.

At the same time that we collected the BGP tables, we also tooka snapshot of the physical topology of

the network. The use of the topology is described later in Section 5.4 and Section 5.5.

5.3.2 Metrics

The basic question we want to answer is to what degree the similarity exploitation can reduce the data a

server has to push out to the network. To that end, we define acompression ratiometric to quantify the

benefit of exploiting similarity.

Let:

S = The size of a routing table entry

C = The number of routing tables

Ni = The number of entries in routing tablei

U = The number of unique routing table entries

Thecompression ratiois then the ratio of the sum of all routing table sizes over thesize of the unique

routing table entries:

Compression Ratio =

∑
C

i=1 Ni × S

U × S
=

∑
C

i=1 Ni

U

The compression ratio quantifies server dissemination loadreduction due to similarity exploitation. For

unicast, the ratio is always 1. If the data sent to every receiver were identical, the ratio would be the number

of the receivers. The higher the ratio, the more benefit similarity provides.

Although we use the compression ratio as the major metric in our analysis, we also apply another metric

to our dataset calledparallelism gain. Parallelism gainis proposed in SET [38] to quantify the number of

different sources from which a receiver can download a particular object. The metric is defined as:
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Parallelism =
C

∑
C

i=1

1

Si

(5.1)

where:

C = The number of chunks in a file

Si = The number of sources for chunki

The more similar the objects are, the higher the parallelismgain can be. High parallelism gain implies

that a receiver can potentially download data from many sources and is thus more likely to saturate the

download bandwidth. We are less concerned about parallelism gain than compression ratio because the

former does not directly tell how much server bandwidth we can save by exploiting the similarity. The

purpose of computing the parallelism gain on our dataset is to compare the result with that presented in

the SET chapter to see whether our dataset has unique similarity patterns and whether existing similarity

exploitation methodologies are effective on our dataset.

5.3.3 Similarity Patterns

Data similarity exhibits different patterns. For example,two revisions of a document or two releases of a

software program can be very similar if not many modifications to the original copy are made, in which case

the new copy can be obtained by applying the change logs to theold one. Two different MP3 music files can

share a large fraction of common data if they have the same sound content but different meta information

such as album and title. By replacing the header bytes that describe the meta information, we can transform

one MP3 file into the other. Now consider two files containing exactly the same set of data records in

different orders. If we sort the records and reorganize eachfile into two parts – a list of sorted records and

its original ordering of the records – the difference between the two files only exists in the second part.

Similarity exploitation techniques that ignore the causesand characteristics of the resemblance have the

advantage of being universally applicable. On the other hand, understanding from where the similarity arises

and what the similarity patterns are can help us much more effectively exploit the similarity under certain

circumstance. An analogy to this is audio/video compression, which is widely used and actively researched

despite the existence of many mature general-purpose compression algorithms.

In the rest of this section, we analyze the similarity pattern of routing tables. We apply two similarity

exploitation techniques to our dataset: one is the general chunk-based method, and the other incorporates
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the knowledge about the structure of the data. We compute themetrics described in Section 5.3.2 and show

the gain obtained from knowing the similarity pattern.

5.3.3.1 Chunk-based Similarity

Existing systems that exploit data similarity to speed up data transfer employ a chunking strategy. Such

systems are exemplified by SET [38], CDF [76], and Shark [77].They split files into chunks, and if files

share identical chunks, downloaders can draw chunks from multiple sources simultaneously to increase

parallelism and thus speed up data transfer. There are two ways of chunking a file: fixed block size or

variable block size. The latter is almost always preferred because it allows similarities between mis-aligned

objects to be detected. A common technique for discovering block boundaries is Rabin fingerprinting [78]

which is used in systems such as LBFS [39] and SET [38]. Ratherthan using a static block size, Rabin

fingerprinting walks through a file byte-by-byte and computes the hash of the file data covered by a sliding

window with a fixed size. After the walk,N hash codes are generated for a file of sizeN bytes. Then, for

a given expected block size, sayB, log B bits of each hash are compared to a pre-selected value, and the

place in the file where a match is found becomes a block boundary.
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Figure 5.3: Ratio of the total number of blocks to the number of unique blocks after removing duplicates.
Two chunking methods with varied chunk sizes are compared: Rabin fingerprinting and chunking with fixed
block size.
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With fixed-size chunking, adding one byte to the first block ofa file can cause the new file to have

blocks completely different from the original ones. Rabin fingerprinting solves this problem by dynamically

adjusting boundaries and preventing changes from propagating from one block to the others.

We first examine how effectively chunking routing tables canproduce identical blocks. Two existing

chunking strategies are compared: chunk with fixed size, andchunk with Rabin fingerprinting.

We first preprocess the dataset. We save routing tables as binary files, each corresponding to a router’s

BGP table with about 276K active BGP route entries. The size of each file is about 3 megabytes, and we

have 71 in total. We chunk the files into blocks and then write the blocks into a hash set so that duplicate

blocks are removed. Thecompression ratiometric is thus calculated as the total number of blocks (including

duplicates) divided by the size of the hash set that containsall the unique blocks.

Figure 5.3 shows the measured compression ratio as the chunksize increases from 1 kilobyte to 256

kilobytes. As expected, smaller chunk sizes yield better compression ratios. The chunk size used in SET

implementation is 64 kilobytes, which corresponds to a 1.5 compression ratio. Rabin fingerprinting produces

a compression ratio 30% to 50% higher than fixed-size chunking.
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Figure 5.4: Parallelism gain of chunking with Rabin fingerprinting as the expected block size is varied. The
gains over our routing table dataset are compared with the gain over the SET dataset which contains 6208
audio and video files downloaded from P2P networks.

To compare the benefit of data chunking over our dataset and other datasets, we also compute theparal-

lelism gainmetric specified in the SET chapter. We chunk the same 71 files into blocks and write the blocks



90 CHAPTER 5. MAKING 4D DISSEMINATION MORE SCALABLE

into a hash table to count how many times a unique block appears in different files. The occurrence count

for chunki in a file is denoted asSi, and then we use Equation 5.1 to calculate theparallelism gainmetric.

Figure 5.4 shows the parallelism gain on our dataset with Rabin fingerprinting under various block sizes3.

The parallelism gain reported in SET over their multimedia dataset is also incorporated into Figure 5.4 for

comparison. As shown, Rabin fingerprinting works about 10 times better on the multimedia dataset than on

our routing table dataset.

5.3.3.2 Structure-aware Similarity
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Figure 5.5: Ratio of the total number of pieces to the number of unique pieces after removing duplicates.
Two block-based chunking methods (Rabin fingerprinting andchunking with fixed block size) are compared
with a structure-based approach where data is modeled as a hash table of prefix next hop pairs. When routing
tables are modeled as hash tables, the compression ratio is 12.4.

The low compression ratio and parallelism gain from Rabin fingerprinting on our dataset are not un-

expected, if we consider the dataset collected in the SET project. When two MP3 files are similar, their

differences concentrate on a small portion of the files (e.g., the header bytes). So when using Rabin finger-

printing to chunk the files, many large (multi-kilobytes) continuous common blocks can be found. However,

when the differences between two files are spread across the files, Rabin fingerprinting becomes much less

effective. Consider the following experiment. Write 300K IP addresses (in text format, e.g., 10.3.2.1) into

a file, then randomly shuffle the IP addresses and write them into a second file. We know that if we do not

3Those are actually expected block sizes as Rabin fingerprinting generates blocks with variable sizes.
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care about ordering, the two files carry the same information. But if we chunk both files with Rabin finger-

printing, we cannot find any identical blocks shared by the two files and we thus consider them two distinct

copies of data. This experiment shows that not knowing the structure of the data can limit the effectiveness

of block-based chunking techniques.

We thus seek a new chunking technique that can take the data structure as a hint and produce a better

compression ratio than the de facto block-based techniques. Consider again the 300K IP address experiment

described above. The new chunking algorithm takes as input not only the data file but also a function

that splits the records (in this case the IP addresses). Now instead of treating the data as a block of bytes

and trying to identify the shared chunks, the algorithm firstextracts records from the data and then runs

a setdifference function to find the difference between the record sets the two copies of data represent.

Because the new chunking method leverages the structure information to exploit the data similarity, we call

the new method “structure-aware” chunking.

We apply “structure-aware” chunking to routing table compression. We give the chunking algorithm the

hint that the bytes representing a routing table can be deserialized into a key-value map where the key is the

IP address prefix and the value is the next hop for that prefix. With the hint, the chunking algorithm can

compare two serialized routing tables as two maps instead oftwo byte streams. As a result, the difference

between the routing tables becomes map entries with the samekey but different values or entries that exist

in one map but not the other, and the compression ratio is now simply the sum of the map sizes divided by

the size of the union of the maps. Figure 5.3 shows the compression ratio obtained by applying the new

chunking method. Comparing with the block-based methods, the “structure-aware” approach enjoys a five-

to six-fold improvement in compression ratio.

The similarity analysis in this section implies the potential benefit of leveraging “structure-aware” simi-

larity across routing tables to lower server disseminationload. We conclude that “structure-aware” similarity

exploitation brings out the best possible server load reduction we can achieve, and the result over the 71-

router dataset provides a valuable guideline for evaluating solutions we will arrive at in Section 5.4 to cut

dissemination load.

5.4 Leveraging Similarity

In this section, we present algorithms that leverage similarity to reduce the dissemination stress upon the

server. We use the analysis result from Section 5.3 to help usevaluate how closely our solutions approximate



92 CHAPTER 5. MAKING 4D DISSEMINATION MORE SCALABLE

the optimum.

Number of Average Original Size of Average Size New

Routing Tables Table Size Server Load the core of a delta Server Load

71 276K 20M 276K 100K 7.3M

Table 5.1: The effect of reorganizing routing tables into acore and a set ofdeltas. The table size and server

load are both in the number table entries. Server load is reduced from 20M to 7.3M prefix next-hop pairs

after the reorganization.

5.4.1 Basic Delta Encoding

The first solution we arrive at is to use delta encoding. It works as follows: find in all the routing tables the

one, denoted as thecore, that most resembles the others; for each routing table, iterate entries to find those

that differ from thecore and mark those entries asdelta; as thecore is shared by all routers, the server only

needs to send out one copy of thecore.4 Assumingdelta is smaller than the original table, the server has

less to send. An optimization to further shrink thedeltas is to use majority voting to find thecore: for each

prefix, find the most popular next-hop, and put it in thecore.

Table 5.1 shows the result of reorganizing routing tables into acore and a set ofdeltas. We notice that

the achieved compression ratio (20

7.3
= 2.7) is far below the optimal ratio12.4 shown in Figure 5.3. Thus we

continue to seek more sophisticated algorithms to attain higher compression ratio.

5.4.2 Delta Encoding with Clustering

We define thesimilarity between two routing tables as the percentage of prefix next-hop pairs they have in

common, and we define thesimilarity distanceas1.0 − similarity. We make the observation that if we

model routing tables as vertices of a graph and connect them with edges ofsimilarity distance, those vertices

tend to form clusters. This is unsurprising because routerslocated in the same area or configured with the

same routing policies tend to select the same egress points for given prefixes, causing thesimilarity distance

between their routing tables to be very short.

4This can be powered by existing one-to-many distribution technologies such as multicast and BitTorrent [37].
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Routing Table A1 Routing Table A2

Routing Table B1 Routing Table B2

Cluster A

Cluster B

similarity distance = 0.5

Routing Table B3

Without clustering:  

|delta| = 0.5+0.5 = 1.0  

server_load = 2.0

With clustering:     

|group_delta| = 0 

|root_delta| = 0.5 

server_load = 1.5

Figure 5.6: Example illustrating the benefit of clustering.The similarity distances between routing table A1

and A2 are negligible, and the same for B1, B2, and B3. The distances between A and B routing tables,

however, are as large as 0.5. With basic delta encoding, the server generates thecore to contain entries in

B routing table entries, and thus the size ofdelta (denoted in the figure as|delta|) for every A router is 0.5,

so the total server load is 2.0. With clustering, the server generates twogroup cores, one for each cluster;

as no routing table in each cluster differs from itsgroup core, the size ofgroup delta is zero, and thus the

total server load amounts to the size ofroot core plus the size ofroot delta which is no larger than 1.5.

The observation intrigues us to extend the basic delta encoding with a singlecore to a more complicated

scheme with multiplecores. The extended delta encoding has three stages. First, routing tables are clustered

into non-overlapping groups using clustering algorithms such as K-Means [79]. Second, within each group

a group core is generated using majority voting and then agroup delta is computed from thegroup core

for each group member. Finally, aroot core is produced by majority voting on all thegroup cores, and

then aroot delta is deduced from theroot core andgroup core for each group.

The intuition behind the above algorithm is illustrated by Figure 5.6. Suppose we have 5 routing tables

perfectly clustered into two groups as shown in Figure 5.6. The clustering mechanism saves the server from

sending two identicaldeltas to routers in Cluster A and thus reduces the server load from2.0 to 1.5. The

savings can be more remarkable when the cluster size is larger.

5.4.2.1 Clustering Algorithms

Two clustering algorithms are implemented to classify routing tables into non-overlapping groups.

K-Means K-Means [79] is one of the most widely used non-overlapping clustering algorithms. The input

of K-Means includes: a set of points, a distance function that computes the distance between any two points
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Figure 5.7: Compression ratio versus the number of clusters. The figure shows the load reduction benefit of
applying the K-Means algorithm.

in the set, and an integerK that specifies how many groups the points are to be classified into. The output

of K-Means is the group membership of every point.

When running K-Means over our dataset, each routing table istreated as a point, and the distance

between them is simply thesimilarity distancewe defined earlier. Given aK, K-Means initially randomly

picksK routing tables as group centers. The algorithm then walks through every routing table and assigns

it to the group to whose center it has the shortestsimilarity distance. After all routing tables have been

assigned to groups, the group centers are re-computed by majority voting of all group members. Then the

algorithm iterates all the routing tables again to re-assign routing tables according to their distances to the

new centers. The procedure repeats over and over until no routing table switches groups.

We run K-Means with differentK values and record the compression ratio (the ratio of the original

server load to the server load after delta encoding). As shown in Figure 5.7, the compression ratio reaches a

local maximum whenK increases to 8, and it performs the best when the routing tables are classified into

12 groups. The highest achieved ratio is 8.8.

Randomized Greedy Heuristics We also use a randomized greedy algorithm to cluster routingtables.

The idea is simple. We first generate a randomly ordered list of the routers. In order of its position in the

list, a router creates a group and elects itself as the group head unless the router has been selected into a
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group by a preceding router. The new group head then uses certain heuristics to drag qualified routers into

its group. After every router has either become a group head or has joined a group, we compute the resulting

compression ratio. This completes one iteration. We then generate another random ordering and repeat

the above procedure. We keep track of the best compression ratio and its corresponding group assignment.

The algorithm terminates and returns the best clustering solution when the compression ratio has reached a

satisfactory value or when an iteration limit has been reached.

The following two greedy heuristics have been experimented.

Nearest first: Intuitively, we want routers geographically close to each other to be in the same group. The

nearest first heuristic works as follows: given a distance thresholdD, when a router is randomly picked to

form a group, it drags routers withinD hops away into its group. An experiment is conducted to test this

heuristic. We varyD from 1 to 7. The program performs 100 iterations and reports the best compression

ratio. The resulting compression ratio is shown in Figure 5.8. The heuristic produces a fairly good result

only when it selects direct neighbors and neighbors 2 hops away. Figure 5.9 shows the number of groups

generated by given distance thresholds, and it gives some clue about what happens when a particular thresh-

old parameter is used. For example, whenD is 1, too many groups are created, causing the compression

rate to drop sharply. WhenD is larger than 2, it appears that routing tables clustered together are not really

similar. In summary, as shown in Figure 5.8 the best achievedcompression ratio by the greedy algorithm

with the nearest first heuristic is 6.8 when up to second-degree neighbors are selected; while K-Means, as

shown in Figure 5.7, achieves 8.8 compression ratio when it classifies routing tables into 12 groups.
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Algorithm 1 : The most similar first with distance constraintsalgorithm for clustering routers (and

thus their routing tables).

Input : set of routers and their routing tables, similarity threshold s, distance thresholdd

Output : list of groupsG

b is the currently best compression ratio;1

b = 0;2

R is the set of routers not belonging to any groups;3

while b not good enough and still have iteration quotado4

Gi is grouping solution in this iteration;5

Gi = ∅;6

R = all routers;7

L = list of randomly ordered routers;8

foreach router r ∈ L do9

if r ∈ R then10

remover from R;11

t = the routing table ofr;12

groupg = {r};13

foreach router r2 ∈ R do14

t2 = the routing table ofr2;15

if similarity(t, t2) > s and distance(r, r2) < d then16

appendr2 to g;17

end18

end19

addg to Gi;20

end21

end22

updateb;23

updateG;24

end25
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Most similar first with hop constraints: The second heuristic is more complicated. Two threshold param-

eters are given: one is hop distanceD and the other is routing table similarity metricS. When a randomly

picked router is not yet in any group, it walks through routers within distanceD and for each calculates the

similarity metric. If the calculated similarity metric is smaller thanS, it pulls the router into its own group.

The complete algorithm is shown in Algorithm 1.

As above, 100 iterations are performed for different similarity thresholds combined with hop constraints.

Figure 5.10 shows the compression ratio this heuristic yields under different parameters. Again Figure 5.11

shows the corresponding number of groups. We find that the greedy algorithm has excellent performance

when the “most similar first” heuristic is applied. It achieves the compression ratio of 10.4 when the sim-

ilarity threshold ranges from 60% to 80%. The number of clustering groups corresponding to the best

compression ratio is always 8.

Although the hop distance constraints, when set to be largerthan 2, do not affect the compression ratio,

it bounds the hop distance between the group head, and we describe the benefit of this in Section 5.5.4.

As the “most similar first” algorithm gives the best compression performance, we conduct two additional

experiments to try to understand it better. We examine the distribution of the results over a larger number of

iterations. We also run the algorithm on a dataset across months to find out how results vary over time.
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Figure 5.8: Compression ratio versus the clustering threshold (the maximal allowed distance). It shows the
load reduction benefit of applying the randomized greedy algorithm with nearest-first heuristic.
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Figure 5.9: Number of groups generated by the nearest-first algorithm as the clustering threshold (the max-
imal allowed distance) is varied.

In the first experiment, we select 3 similarity thresholds and run the algorithm over 10,000 randomly

ordered router lists. Figure 5.12 shows the cumulative distribution of compression ratio for the selected 3

thresholds. The threshold 70% is the apparent winner. Between compression ratio 8 and 10 the distribution

is approximately uniform. Also ratio 9 corresponds to 50%. This implies that after 100 iterations have been

performed, the chance that we have not seen a compression ratio higher than 9 is(1

2
)100 which is extremely

small.

In the second experiment, we run the randomized greedy algorithm with most-similar-first heuristic over

the routing table data collected over 8 months. Again 3 similarity thresholds are compared. For each routing

table snapshot captured in a given month, 100 iterations areperformed, and the best result is shown in

Figure 5.13. The 70% similarity threshold consistently yields the best results, and they are above 10.

5.4.2.2 Random Sampling

Running clustering algorithms is time-consuming, especially when the distance computation involves high

dimensional vectors. Although Figure 5.13 shows that the clustering result is stable over time, and thus the

clustering algorithm can run offline, a speed-up of clustering might be desirable and can be easily achieved.

The solution we adopt is random sampling. Rather than running the clustering algorithms over the full

routing tables, we first randomly sample a certain percentage of the route entries and use them for clustering.
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Figure 5.10: Compression ratio versus the clustering threshold (the minimal allowed similarity) under dif-
ferent hop distance constraints. It shows the load reduction benefit of applying the randomized greedy
algorithm with most-similar-first heuristic.

Figure 5.14 shows the sampling error which represents the difference between the true similarity distance

and the similarity distances computed using a randomly sampled portion of the routing tables. We find

through experiments that at 10% random sampling rate, all the clustering algorithms discussed above output

the same results as using the full routing tables.

Summarizing, we start with basic delta encoding and then extend it with various clustering algorithms.

Experiments show that delta encoding with clustering outperforms the basic delta encoding. Among the

clustering algorithms we have experimented, the randomized greedy algorithm with the “most similar first”

heuristic produces the best compression ratio over our dataset. The running times of the above clustering

algorithms are all within the range from 5 to 10 minutes depending on the sampling rate and number of

iterations. Since we run the clustering algorithms offline and the running times of the three clustering

algorithms in comparison are in the same scale, we use the produced compression ratio as the major winning

criterion and pick the randomized greedy algorithm with the“most similar first” heuristic to implement in

the system that we are to discuss in the next section.
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Figure 5.11: Number of groups generated by the most-similar-first algorithm as the clustering threshold (the
minimal allowed similarity) is varied.

5.5 SimCast System

Since our similarity exploitation deviates from existing chunk-based ones, we are unable to directly use

those off-the-shelf swarming protocols as transport. We thus designSimCast– a new dissemination system

that builds on top of the similarity exploitation techniquedescribed in Section 5.4 to provide a scalable and

efficient dissemination service for centrally controlled networks.

5.5.1 System Overview

The SimCast system is composed of a Client and a Server. Figure 5.15 illustrates the software organization

of the SimCast system.

The Server has an offline Clustering Engine which from time totime runs the “most similar first” clus-

tering algorithm described in Section 5.4. The Server interacts with the network decision server, such as 4D

Decision Element or RCP Route Control Server, through a dissemination API. When the API is invoked to

send data out, the Server encodes the data and distributes itvia a mix of flooding and gossiping protocols.

The next three sections describe those protocols.
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Figure 5.12: Cumulative distribution of compression ratio. 10,000 iterations of the randomized greedy
algorithm with most-similar-first heuristic are performedunder three different clustering thresholds.

5.5.2 Flooding

As described in Section 5.4, after “delta encoding with clustering”, a server has four types of data to dis-

tribute: root core, root delta, group core, andgroup delta. The server first uses a variation of reliable

flooding to spread theroot core together with meta information regarding each router’s group membership.

In addition to the normal flooding procedure, when a packet isflooded across the network, it keeps track of

the number of routers it traverses, and when the packet reaches the receiver it reports the hop count to the

receiver. We explain why this is useful in the next section.

5.5.3 Distance Guided Gossiping

After a group head, sayh, receives the floodedroot core, it sends a request to all its neighbors for more data.

The requests carry the information of the hop distance betweenh and the server. When that request reaches

a neighbor, the neighbor checks if itself is closer to the server thanh, and if so it forwards the requests to its

neighbors excludingh. When the request reaches the server, the server makes an offer to answer the request,

and the offer is propagated back all the way toh. Finally, h accepts the offer, and the server sends data toh

along the path that the offer and acceptance have traversed.
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Figure 5.13: Comparison of compression ratios over 8 months. 100 iterations of the randomized greedy
algorithm with most-similar-first heuristic are performedunder three different clustering thresholds.

5.5.4 Bounded Flooding

Via gossiping, the group head gets the following data from the server: root delta, group core, and

group deltas of all members in its group. The group head floodsgroup core within its group. The

distance between the group head and the group members is bounded due to the “most similar first with hop

constraints” algorithm, so the flooding stops whenever reaching the distance constraint, hence “bounded

flooding”. Finally, a group member getsgroup core and uses the same distance guided gossiping protocol

to get itsgroup delta from the group head.

5.6 Evaluation

In this section, we experimentally evaluate the scalability and efficiency properties of SimCast.

5.6.1 Methodology

We conduct experiments on our SimCast system designed and implemented for real deployment. We use

Emulab [6] as the testbed. Due to resource constraints, we are neither able to reserve enough PCs or create

an Emulab topology to match the physical topology of the tier-1 backbone network in our dataset. Instead,
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we set up experiments on Emulab with the number of Linux PCs ranging from 30 to 100, and we create

virtual interfaces on those PCs and run multiple instances of SimCast clients on each node. We use a mix

of LANs and point-to-point links to connect the Emulab nodesto ensure our implementation works with

both types of links. Application layer throttling is used toapproximate communications between SimCast

instances located on the same PC.

Since we need more routing table data to evaluate scalability, we synthesize routing tables based on

our existing dataset. As our evaluation results are most affected by the similarity characteristics of routing

tables, we try to ensure that the synthesized data resemblesthe real data in that perspective. For that, we
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Figure 5.15: High-level overview of the SimCast system.
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first discover the distribution

5.6.2 Scalability

One important goal of SimCast is to improve scalability: thesize of router data-plane state a server has to

push out should increase much slower than linearly with the number of routers in the network.

We take the existing 800-router topology and trim nodes and their incident edges to generate 17 smaller

networks, with the number of routers ranging from 271 to 808.We run experiments on the 18 network

topologies (including the original one).
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Figure 5.16: Distribution of group sizes. The routers are clustered into 22 groups. The number of routers
within each group ranges from 1 to 116.

For each network topology, we first feed the routing table data (a mix of synthetic and real data) and

network topology to the SimCast Clustering Engine to compute the clustering scheme. Figure 5.16 and

Figure 5.17 show the characteristics of the clustering scheme. 22 groups in total are generated. The number

of routers within each group ranges from 1 to 116. Within eachgroup, the distance between routers and the

group head is bound by 3. The cross-group distances roughly follow a normal distribution with a mean of 5.

We then measure the traffic volume coming out of the SimCast server, and compare it with unicast.

As shown in Figure 5.18, unicast traffic volume increases linearly with the size of the network, while the

increase rate for SimCast is much lower. To be more accurate,the slope of the former versus the latter is 6.8
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Figure 5.18: Comparison of server traffic load with SimCast and unicast as the network size increases.

versus 0.06 (megabytes/router). For the network with 831 routers, SimCast reduces server traffic load from

2.8 gigabytes to 69 megabytes.
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5.6.3 Efficiency

For centrally controlled systems such as Tesseract and RCP,for the sake of resiliency it is crucial for the

server to swiftly disseminate network state.
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Figure 5.19: Comparison of dissemination speed of SimCast and unicast as the network size increases.

As above, we use networks with 18 different sizes to test the dissemination speed of SimCast. We run

hundreds of SimCast instances on tens of Emulab nodes. A single server pushes thecores anddeltas to

all SimCast instances, and we measure the time from the push starts until all SimCast instances receive the

data. Figure 5.19 compares the speed of SimCast with the speed of unicast in which a server simplyscp

the routing table files to all receivers. As expected, SimCast outperforms unicast significantly.

As mentioned in Section 5.6.1, due to resource constraints we are unable to reproduce the real network

topology on Emulab. To compensate, we run a simulation on that topology to estimate the node traffic load

during dissemination. Forcore distribution, we use the flooding model; fordelta gossip, we assume the

traffic traverses the shortest path from the source to the destination. The simulation is also done for unicast

with a simple server-to-router shortest-path model. Figure 5.20 shows the node traffic load for unicast is

much more unevenly distributed, and a small number of nodes have sky-high load, while the node load for

SimCast is on average much lower and none of the nodes undergotraffic volume higher than 70 megabytes.

Experiments throughout this section demonstrate that SimCast greatly improves dissemination scalabil-

ity and efficiency in centrally controlled networks.
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Figure 5.20: Comparison of router traffic load with SimCast and unicast as the network size increases.

5.7 Summary

Dissemination scalability and efficiency are among the major hurdles to the deployment of emerging cen-

trally controlled networks such as RCP and Tesseract. This chapter addresses the dissemination scalability

and efficiency issues by thorough analysis and effective exploitation of similarity across the dominant-sized

data-plane state component – BGP tables. We argue for exploiting structure-based similarity, and we de-

velop an effective delta encoding and data clustering scheme to leverage routing table similarity and achieve

deep reduction of server load. We design protocols and builda prototype called SimCast to turn our findings

and algorithms into a real dissemination system. Evaluation shows that SimCast enjoys remarkable scala-

bility and efficiency improvements over existing solutions. In a tier-1 backbone topology with more than

800 routers, and in the case where routing tables need to be pushed to all routers, SimCast reduces server

traffic load from 2.8 gigabytes to 69 megabytes and dissemination time from 274 seconds to 8 seconds. As

the number of routers in the network increases, SimCast reduces the server load increase rate from 6.8 to

0.06 megabytes per router.



108 CHAPTER 5. MAKING 4D DISSEMINATION MORE SCALABLE



Chapter 6

Conclusion

In this chapter, we conclude the dissertation by (1) summarizing our contributions, (2) exposing limitations

of current solutions, and (3) proposing directions for future work.

6.1 Contributions

Today’s Internet must support objectives and capabilitiesfar more sophisticated than best-effort packet de-

livery. Retro-fitting these network objectives on today’s control-plane architecture has led to bewildering

complexity, with diverse states and logic distributed across numerous network elements and management

systems. The resulting complexity is responsible for the increasing fragility of IP networks and the tremen-

dous difficulties that confront people who are tasked with understanding and managing their networks.

The research community is attempting to address fundamental questions central to improving IP control

and management: How to transition from networks that blend decision logic with specific protocols and

mechanisms, to an architecture that abstracts and isolatesthe decision logic and admits a range of efficient

implementations. How to bridge from networks consisting ofnumerous uncoordinated, error-prone mech-

anisms, to networks where the low-level mechanisms are driven in a consistent manner by network-level

objectives. How to advance from networks where people set parameters (twist knobs), hoping to coax the

system to reach a desired state, to networks where designerscan directly express controls that automatically

steer the system toward the desired state. How to evolve fromnetworks where human administrators lever-

age network-wide views and box-level capabilities at slow timescales in decision-support systems, to where

the network itself leverages this information in real time.

109
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In the field of data networking at this point, our community has a strong understanding of what is

broken and how to create incremental solutions that only partially address the problems, at the expense of

adding more complexity to an already unwieldy system. The contribution of this thesis work is toexplore

breakthroughs in removing many of these problems altogether by providing a flexible, robust, and scalable

platform that optimizes network-wide objectives in a more systematic way.

This dissertation describes the basic centralized networkcontrol framework and presents solutions to

the following design challenges that are central to achieving flexibility, robustness, and scalability:

Practical protocol decomposition(Chapter 3) A major drawback of today’s architecture is thatit has

complicated decision logic distributed horizontally across the network elements and vertically across many

layers. Our platform must achieve the same functionality astoday’s systems, while having the flexibility to

introduce new capabilities through centralized decision computation. Using Tesseract, we have shown that

it is practical and scalable to decompose a monolithic network protocol into decision logic and dissemina-

tion/discovery primitives. And we have also demonstrated that the decomposition makes network control

more flexible.

Reachability paradox (Chapter 4) How can we provide reliable connectivity to remotely manage dis-

tributed network elements without relying on the communication services that are being managed? We have

designed a robustMeta-Management Systemto break this circular dependency.

Dissemination scalability (Chapter 5) The largest networks today have thousands of routers/switches

and tens of thousands of devices, and the default-free zone of today’s Internet handles routes with hundreds

of thousands of destination prefixes. Will the amount of management information being moved by the dis-

semination plane overwhelm the network’s ability to carry data? We have presented ascalable dissemination

technique that addresses this challenge.

Our centralized network control solution has already made an impact in the research and industrial com-

munities. Since we published the first papers [8, 9], severalnew and interesting similar systems have been

built. They include extensions to the decision server architecture [27, 71] and centralized network control

solutions on specific networks such as enterprise networks [70]. In addition, there have been industrial

efforts to build routers controlled by centralized decision planes.
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6.2 Limitations and Future Work

While in this dissertation we have shown that the centralized network control platform is sufficiently flexible

to implement different types of network functionality, andis reasonably robust and scalable, one important

question remains: What are the limitations of our solution?In the next sections, we informally answer this

question with regard to flexibility, robustness, and efficiency. We also identify several research directions

for future work.

6.2.1 Programmable Decision Plane

A flexible decision plane is highly desirable in a heterogeneous network environment with a variety of

requirements for security and quality of service policies.We have designed Tesseract so that different algo-

rithms can run over an abstract logical network view composed of nodes and links; however, the algorithms

are still tightly coupled with the Tesseract system. Addingor changing these algorithms requires non-trivial

knowledge of the system itself.

We have begun to explore a programming interface for the decision plane [80]. Rather than embedding

the control algorithms in the Tesseract system, we make themplug-ins that are interpreted by Tesseract. As

network control applications are treated as plug-ins running on the decision platform, we need a language

to define how the components are connected via their data and control interfaces, and how their network

control state outputs should be composed. The composition language needs to be flexible enough to allow

reasonably sophisticated network control compositions. The language should be capable of specifying com-

position ordering, prioritization of actions, and conflictresolution rules. For better performance, we might

need to pre-compile the plug-ins into machine code rather than interpreting them at runtime.

Different plug-ins might have very different time complexity and thus might require different scales of

running times. For example, finding the shortest paths in a network with hundreds of routers takes less than

one second, while optimizing paths to balance load can take hours. Plug-ins might also differ in priorities:

when a link fails, it is critical to change routes to bypass the failed link; but when traffic pattern changes, it is

not as urgent to update routes, as long as the traffic pattern change does not cause network congestion. The

decision platform that composes these plug-ins needs to provide interfaces for them to express their desired

runtime support and schedule the executions accordingly.
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6.2.2 Dissemination Error Handling

In MMS, if packets carrying management information throughthe dissemination plane get lost, they are

retransmitted. However, retransmission of lost packets may not be the best policy. Instead, it may be better

to notify the decision elements which packets were lost, andhave them compute additional state updates,

obviating the need for the information in the lost packets. In addition to the existing MMS system we will

evaluate this possible alternative.

Most state change ordered by decision elements involves updating state on multiple routers. We cur-

rently use weak session layer semantics where each router independently applies an update as soon as it is

received. To handle the error condition where not all routers receive the update, we will design and evaluate

stronger semantics such as network-wide commit semantics that apply all received updates at a particular

time, and full ACID distributed-commit semantics. We will also explore means of grouping related state

updates into a single session “transaction” and methods forallowing multiple decision elements to send up-

dates to overlapping sets of routers. We will evaluate the benefits of good time synchronization (e.g., through

NTP or a GPS receiver at each router or PoP) to instruct the routers to change from one configuration to

another at a specific time, resulting in infinitesimal convergence delay.

6.2.3 Redundancy Elimination in Dissemination

The SimCast algorithm scales dissemination by clustering similar state updates into groups to reduce traffic

concentration around the decision servers. Recently, a class of packet-level redundancy elimination tech-

niques has been proposed to remove redundant packets from traffic flow [81]. The basic idea of packet-level

redundancy elimination is to make the upstream router cachepackets over a period of time so that when it

receives a similar packet it can send a delta to its downstream router to decode the new packet using the

delta and its local cache.

The advantage of the packet-level redundancy elimination scheme over SimCast is that it is agnostic to

semantics of any specific applications and can be built as generic network services. Although we believe that

the knowledge of the application semantic helps us to further reduce the overlapping dissemination content

and optimize the dissemination routes, we will quantitatively compare SimCast with the generic packet-level

redundancy elimination techniques.
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6.3 Final Remarks

In this dissertation, we have presented a flexible, robust and scalable solution that simplifies the control of

networks and makes this important infrastructure more dependable. While it is difficult to predict the future

course of research in this area, we believe that our pioneer work has created a new landscape of opportunities

for networking researchers to deploy their ideas on real networks. Previously closed and proprietary control

plane protocols will be replaced by software running on conventional servers. New algorithms and logic for

network control can be developed and deployed.
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