
Privacy-Preserving Distributed, Automated
Signature-Based Detection of New Internet

Worms

Hyang-Ah Kim
May 2010

CMU-CS-10-122

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David R. O’Hallaron, Co-Chair

Dawn Song, Co-Chair
Brad Karp, University College London

Vern Paxson, ICSI

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c© 2010 Hyang-Ah Kim

This work is sponsored in part by the National Science Foundation under Grants CNS-0509004 and IIS-0429334,
in part by a subcontract from the Southern California Earthquake Center’s CME Project as part of NSF ITR
EAR-01-22464, and in part by support from the Intel Corporation, and Carnegie Mellon CyLab.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of NSF, the Intel Corporation, Carnegie Mellon CyLab, or other funding
parties.

Keywords: Internet Worm Containment, Worm Signature Generation, Content Preva-
lence Analysis, Privacy-Preserving Collaboration, Distributed Monitoring

Abstract

This dissertation develops techniques, based on monitoring network traffic, that automate
signature generation for wide-spreading malicious payloads such as Internet worms. Fast
signature detection is required to achieve effective content-based filtering. The main thesis is
that content prevalence analysis in network payloads across distributed networks is a good
basis for automated signature generation for wide-spreading malicious payloads, and can
be performed without compromising the privacy of participating networks.

Content-prevalence analysis extracts unique payload patterns that are identical and in-
variant over all the flows that convey a wide-spreading malicious payload. Distributed
monitoring enables us to rapidly capture many sample payloads, thus expediting the sig-
nature generation. Extra care for privacy encourages more networks to participate in the
distributed monitoring and makes the approach practical.

The first part of this dissertation presents a system, Autograph, that generates network
payload signatures for Internet worms by utilizing the content invariance and wide-spreading
communication patterns of Internet worm traffic. Signature generation speed is improved
further by extending Autograph to share port scanner lists with distributed Autograph mon-
itors. Trace-driven simulation shows the fundamental trade-off between early generation of
signatures for novel worms and specificity of the generated signatures.

Distributed monitoring is a recognized technique in security to expedite worm detection.
However, extra care for privacy must be taken. The second part of the dissertation presents
two techniques for privacy-preserving distributed signature generation. HotItemID pro-
tects the data and owner privacy by using sampling techniques and hiding private data in
a crowd. Another technique protects privacy using privacy-preserving multiset operation
framework. The technique relies on a semantically secure homomorphic cryptosystem and
arithmetic operations over polynomial representation of sets. Both techniques protect pri-
vacy based on the assumption that a payload appearing in multiple locations should not be
private. The dissertation confirms the assumption by studying real network traffic traces,
and shows that privacy-preserving distributed worm signature detection is feasible.

v

vi

Acknowledgments

I am deeply grateful to my advisors, David R. O’Hallaron and Dawn Song. David has of-
fered advice on which classes to take, how to do research, write papers, and give talks,
interact with collegues, and hack systems. He was also my English teacher. He provided
me much more freedom than any student could ask for, but was always there to listen,
help, and encourage whenever I was lost and needed his help, and never gave up on me.
Dawn has provided many constuctive feedbacks and advices on what to read and how to
approach problems. Her enthusiasic and energetic attitute, and breadth of knowledge in
security, cryptography, and privacy, was impressive and she was one of my role models in
my graduate school life.

I would like to thank Brad Karp, who served as my unofficial advisor and later my thesis
committee member. I met Brad when I did internship in Intel Research Pittsburgh. He
was my advisor in Intel and we developed Autograph together. He guided me through the
design and implementation of the system from defining the problem, getting resources, to
writing papers, giving presentations, and releasing the code of Autograph as open-source.

I would also like to thank my thesis committee member, Vern Paxson for his feedback
and support. Much of his work in network-based intrusion detection, measurement, and
worm analysis were the foundations of my work. I deeply appreciated his detailed and
constructive comments on my thesis.

I would also like to thank professors in Carnegie Mellon, Michael Reiter, Hui Zhang,
Srinivasan Seshan, Peter Steenkiste, Satya, Mor Harchol-Balter, and Garth Gibson, for their
valuable advice which was not limited only on research. I would like to thank all of my
colleagues and coauthors, Yinglian Xie, Lea Kissner, and those who often attended network
seminars, listened to my talks, and gave many valuable comments.

I am grateful to Vern Paxon of ICSI, Sue Moon and her students of KAIST, Yong Lee and
Hyong Kim of KISA and Cylab-Korea, Casey Helfrich and James Gurganus of Intel Research
Pittsburgh, for their support that granted me the access to traces and analysis infrastructure,
and for valuable feedback on my work. Without their support, I couldn’t write this thesis.

vii

Many people made my years at Carnegie Mellon enjoyable and memorable. I’d like to
thank all of my friends and classmates, including but not limited to: Hisun Kim, Yejong
Kim, Keywon Chong, Sungwoo Park, Sehyun Yang, Mukesh Agrawal, Maverick Wu, Soy-
oung Park, Rajesh Balan, Amit Manjhi, Yiannis Koutis, Stavros Harizopoulos, Stratos Pa-
padomanolakis, Bianca Schröder, Tiankai Tu, Julio Lopez.

The Computer Science Department and Carnegie Mellon has been an excellent educa-
tional environment which supported me throughout the course of this work. I’d like to
thank all of my teachers. I would like to thank all those who made the gears run smoothly,
including Sharon Burks, Deborah Cavlovich, Catherine Copetas, and Barbara Grandillo.

I would like to thank my feline friends Kiki and Aki.
Most of all, I am grateful to my family, Mom and Dad, my sister Heejoo and brother

Kangwon, my best friend and now my husband Spiros Papadimitriou and his parents. With-
out their constant love, support, and encouragement, none of this would have been possible.

viii

Contents

1 Introduction 1
1.1 Wide-spreading Malicious Payloads . 2

1.1.1 Network Viruses and Worms . 2

1.1.2 E-mail Spams . 3

1.1.3 Link Spams . 4

1.2 Worm Defense and Challenges . 5

1.3 Technical Approaches . 8

1.4 Contributions and Dissertation Outline . 9

I Content-based Automated Signature Generation 11

2 Introduction 13
2.1 Background and Motivation . 14

2.2 Desirable Properties . 15

2.3 Outline of Part I . 18

3 Automated Worm Signature Generation using Content Prevalence Analysis 19
3.1 Autograph System Overview . 20

3.2 Selecting Suspicious Traffic . 21

3.3 Content-Based Signature Generation . 23

3.3.1 COPP: COntent-based Payload Partitioning Algorithm 23

3.3.2 Selecting Prevalent Content Blocks . 24

3.3.3 Innocuous Traffic Included in Suspicious Flow Pool 25

3.4 Evaluation: Local Signature Generation . 27

3.4.1 Offline Signature Generation on DMZ Traces 27

3.4.2 Polymorphic and Metamorphic Worms 34

ix

3.5 P2P Traffic and Signature Generation . 35

3.5.1 Empirical Results: False Positives . 36

3.5.2 P2P Application Traffic Properties . 37

3.5.3 Preventing Unspecific Signature Generation from P2P Traffic 40

3.6 Attacks and Limitations . 42

3.7 Summary . 43

4 Distributed Signature Generation with Port-Scanner List Sharing 45

4.1 Single vs. Multiple Monitors . 46

4.2 tattler: Distributed Gathering of Suspect IP Addresses 49

4.3 Bandwidth Consumption . 51

4.4 Worm Payload Accumulation Speed . 52

4.5 Online, Distributed, DMZ-Trace-Driven Evaluation 53

4.6 Discussion . 55

4.7 Summary . 57

II Privacy-Preserving Signature Generation 59

5 Introduction 61

5.1 Motivation for Distributed Payload Sharing . 61

5.1.1 Random Scanning Worm Propagation Model 62

5.1.2 Localized Scanning Worms . 64

5.1.3 Why Distributed? . 67

5.2 Privacy Consideration . 68

6 A Framework for Distributed Payload Sharing 69

6.1 Distributed Payload Sharing Framework . 69

6.1.1 Honeypot . 73

6.1.2 Analysis of GSD . 73

6.1.3 Analysis of LSD . 74

6.2 Simulation Results . 76

6.3 Legitimate Traffic . 78

6.4 Summary . 81

x

7 Preserving Privacy using HOTITEM-ID 87

7.1 Overview . 87

7.1.1 Adversary Model . 88

7.1.2 Correctness and Privacy Protection . 88

7.2 HOTITEM-ID Protocol . 89

7.2.1 Approximate Heavy-Hitter Detection 90

7.2.2 One-Show Tags . 91

7.2.3 Approximate Distinct Element Counting 93

7.2.4 Anonymous Communication . 94

7.2.5 Distributed One-Show Tag Collection 94

7.2.6 Putting HOTITEM-ID to Work . 95

7.2.7 Correctness Analysis of HOTITEM-ID 95

7.2.8 Privacy in HOTITEM-ID . 99

7.3 Distributed Worm Signature Detection . 100

7.3.1 Candidate Signature Advertisement (LSD) 103

7.3.2 Suspicious Payload Sharing (GSD) . 104

7.4 Experimental Results . 104

7.4.1 Simulation Method . 105

7.4.2 Bandwidth Consumption and Accuracy 107

7.5 Summary . 109

8 Preserving Privacy using Privacy-Preserving Multiset Operations 111

8.1 Problem Definition . 112

8.2 Preliminaries . 113

8.2.1 Threshold Homomorphic Cryptosystem 113

8.2.2 Privacy-Preserving Set Operations . 114

8.3 Protocols . 116

8.3.1 Basic Protocol . 116

8.3.2 Extended Protocol for Reducing Computational Cost 116

8.3.3 Approximate Payload Pattern Counting 118

8.4 Implementation . 118

8.5 Experimental Results . 119

8.6 Summary . 121

xi

9 Related Work 125
9.1 Automated Worm Signature Generation . 125
9.2 Distributed Monitoring . 127
9.3 Privacy-Preserving Hot Item Identification . 128

10 Conclusions 131
10.1 Desired Requirements Revisited . 131
10.2 Contributions . 133
10.3 Lessons Learned . 134

A Extended Protocol for Reducing Network Delay 137

xii

List of Figures

1.1 An invariant payload pattern appeared in CodeRed II infection payloads:
the invariant part with the destination port number is used as the signature
of CodeRedII worm by signature-based Intrusion Detection Systems. 3

2.1 Combinations of sensitivity and specificity. 16

3.1 Architecture of an Autograph Monitor: A single Autograph monitor con-
sists of 1) a suspicious flow selection stage and, 2) a content-based signature
generation stage. 20

3.2 COPP with a breakmark of Rabin f ingerprint(“0007”) 24

3.3 Prevalence histogram of content blocks, a=64 bytes, ICSI2 DMZ trace, day 3
(24 hrs): Content blocks from misclassified innocuous flows in the suspicious
flow pool form the tail of the prevalence distribution, while content blocks
from worm flows top the prevalence histogram. 26

3.4 Prevalence of Selected Content Blocks in Suspicious Flow Pool, ICSI DMZ
trace (24 hrs): Most flows are worms except for a few misclassified flows.
Autograph generates signatures for every worm in the pool. 29

3.5 Sensitivity and Efficiency of Selected Signatures, ICSI DMZ trace (24 hrs):
Sensitivity represents the fraction of true positives. Efficiency represents the
fraction of true positives to all flagged flows. 31

3.6 Number of Signatures, ICSI DMZ trace (24 hrs): For IDS efficiency, a smaller
number of signatures is preferred. 32

3.7 Content block size vs. number of signatures: Autograph finds a short sig-
nature that match all instances of a polymorphic worm if content block size
parameters (m: minimum content block size) are set to small values. 34

xiii

3.8 Unspecific Signatures Generated by Autograph: port 9493 is used by a P2P-
based file sharing system. The system uses HTTP. SIG1 belongs to the header
of messages that indicates the version of application software. SIG2 is from
a query message. Private parts are sanitized with XX. SIG3 is from a web
search crawler, and SIG4 is from HTTP ending. Except the SIG2, generating
signature blacklist for them is not difficult. 37

3.9 Ports used by P2P applications . 38

3.10 CDF of Payload Pattern Strings for Each P2P Application: there are non-negligible

fraction of frequently appearing P2P payload pattern strings. Because of multicast

search requests, more than 5% of patterns from FileGuri traffic appear more than

once. eDonkey patterns have less similarity across requests, but one of the payload

patterns in eDonkey traffic appeared 2666 times. 39

3.11 Number of external peers of P2P hosts and non-P2P hosts: CDF of internal hosts

based on the number of external peers. P2P hosts tend to communicate with many

hosts. More than 50% of P2P hosts were contacted by more than 10 external hosts for

5 minutes, while most non-P2P hosts were contacted by less than ten external hosts.

This trend could look like the address dispersion property of worm traffic. 40

3.12 Distinct source and destination counts per applications: Each dot represents the

number of distinct sources (x-axis) and destinations (y-axis) of a payload pattern that

appeared more than 10 times during a 10 minute time interval. Payload patterns

exchanged between many hosts satisfy address dispersion and content prevalence

criteria. Thus, signature generation systems that rely only on the two properties will

generate ’unspecific’ signatures based on the payload patterns. 41

4.1 Infection progress for a simulated Code-RedI-v2-like worm. 48

4.2 Payloads observed over time: single, isolated monitors. 48

4.3 Bandwidth consumed by tattler: during a Code-RedI v2 epidemic, for vary-
ing numbers of deployed monitors. The peak bandwidth required by 10%
deployment (630 monitors) is a mere 15Kbps. 51

4.4 Payloads observed over time (with Tattler): tattler among 63 distributed
monitors. 52

4.5 Background “noise” flows classified as suspicious vs. time: with varying
port-scanner thresholds; ICSI DMZ trace. 54

xiv

4.6 Early Signature Detection vs. Quality of Signature: (a) Fraction of vulner-
able hosts uninfected when worm signature detected vs. θ, number of suspi-
cious flows required to trigger signature detection. (b) Number of unspecific
signatures generated vs. θ, number of suspicious flows required to trigger sig-
nature detection. 55

5.1 Code-RedI-v2: Number of Received Worm Payloads vs. Network Size. (a)
Simulated Code-RedI-v2 propagation with scanning rate S=358 probes/minute.
(b) The actual number of received worm payloads depends on the size m of
the monitored network. 62

5.2 Slammer: Number of Received Worm Payloads vs. Network Size. (a) Sim-
ulated Slammer propagation with scanning rate S=4000 probes/minute. (b)
The actual number of received worm payloads depends on the size m of the
monitored network. 63

5.3 Spam source IP distribution: is highly non-uniform. Only 9387 /16 networks
involved in the identified spam activities. This non-uniformity in vulnerable
host distribution makes localized scanning worms propagate faster than ran-
dom scanning worms. 65

5.4 Scanning Strategies vs. Propagation Speed: the non-uniformity of vulner-
able host distribution makes LS more effective. With a high local scanning
preference value q, LS can infect most of the vulnerable hosts in the same /l
network immediately after a host is infected. 66

5.5 Monitored network size vs. Number of worm payloads: the number of ac-
cumulated worm payloads when 5% of vulnerable hosts are infected by LS
(S=6000/min, q=0.5, l=16). The monitor (MAX) close to infected hosts may
accumulate more than 105 payloads. 67

6.1 GSD Framework Overview . 70

6.2 LSD Framework Overview . 71

6.3 Content Blocks in Suspicious Flow Pool and Payload Sharing Thresholds:
Prevalence histogram generated from the suspicious flow pool for port 9493
traffic. For an hour, hundreds content blocks were generated, but only content
blocks whose f (P) exceed θG are shared in GSD. If f (P) exceeds λG , P is
reported as a candidate signature in LSD. Only a handful number of content
blocks pass the threshold conditions. 72

xv

6.4 1024 GSD Monitors: Signature Detection Probability vs. θG, λG and in-
fection rate I(t). The white cells indicate that GSD finds a signature for our
simulated Code-RedI-v2 worm with a probability of 1 when the combination
of corresponding λG and θG is used. The signature detection probability is
governed mostly by θG in random scanning worm signature detection. 75

6.5 128 GSD Monitors: Signature Detection Probability vs. θG, λG and infec-
tion rate I(t). Since the total number of monitors is only 128, the global thresh-
old λG should be selected accordingly. If we use a local threshold θG lower
than 5 and a global threshold λG lower than 38, we can detect the signature of
this example random worm before 2% of hosts are infected. 75

6.6 Random Scanning Worm Detection Time: Time is measured as the fraction
of infected hosts when the detection system completes a signature identifi-
cation. GSD with 128 213 IP address spaces detects the signature when less
than 0.1% of vulnerable hosts are infected. LSD with 128 monitors detects the
signature when less than 0.2% of hosts are infected. 78

6.7 Localized Scanning Worm Detection Time: Time is measured as the fraction
of infected hosts when the system completes a signature identification. GSD
with more than 128 213 IP address space detects about 2% of hosts are infected.
LSD outperforms a 216 IP address space monitor when the lag is lower than 1
minute. 79

6.8 Payload Pattern Sharing: HTTP port 80 traffic. Breakdown of content blocks
based on the number of networks reporting the same content block. Each
number on top of a bar shows the total number of content blocks that are
reported by the monitor. With a higher local threshold (θG = 2), most content
blocks are filtered out. For example, the monitor in net2 reported 3 content
blocks in total but none of them appeared in other networks. Those content
blocks. 83

6.9 Payload Pattern Sharing: SMTP port 25 traffic. 84

6.10 Payload Pattern Sharing: p2p port 9493 traffic. 85

xvi

7.1 Components of HOTITEM-ID protocol: HOTITEM-ID defines how to effi-
ciently compute an approximate representation of Rλ in distributed fashion.
Each monitor i (0 ≤ i < M) constructs local filters to approximately represent
his private input set Si, generates one-show tags for marked bits in filters,
and sends a subset of those one-show tags to the network using anonymous
routing. Those tags in the network are aggregated using a distributed count-
ing protocol that estimates the number of distinct elements. At the end of the
protocol, all monitors learn the global filters that approximate Rk. At the right
side of the figure we list the purpose of each component. 90

7.2 Approximate Heavy Hitter Detection: In our HOTITEM-ID protocol, each
player i constructs a set of local filters from his private input set Si (dark
bits are ‘hit’). The players then construct global filters using an approximate
counting scheme; if a bit was hit by at least λ players, then it is ‘hit’ (dark) as
well. If an element hashes to a dark bit in each of the global filters, then it is
classified as hot. 91

7.3 The degree of data privacy for an element with frequency FP is Φ(FP)
|M| . We graph

this function in (a), showing the increase in protection for items that show up in

few players’ inputs. The same function is graphed in (b) on a logarithmic scale, for

increased detail. Note that rare items are indistinguishable from a large proportion

of the domain, giving them a large degree of data-privacy. 101

7.4 Number of hosts vs. Innocuous content blocks: Number of unique hosts that
report each content block. The content blocks are generated from suspicious
flows collected for 1 hour time window. 106

7.5 Normalized bandwidth consumption per player in performing hot item
identification (λG = 100): Numbers in parentheses denote cases with false
negatives. Underlines denote cases with false positives. Numbers in bold
face fonts are the most efficient but accurate cases in each set of experiments. 108

8.1 Modified THRESHOLD-SET-UNION-HBC Protocol: secure against honest-but-
curious adversaries . 122

8.2 Running time for one THRESHOLD-SET-UNION-HBC computation: (a) The
running time increases quadratically to the number of monitors M and the
average set size E [Si]. (b) Running time vs. c (a threshold cryptosystem pa-
rameter). E [Si] = 1. M=128. 123

A.1 Components of new collection phase in the extended protocol. 139

xvii

xviii

List of Tables

3.1 Autograph’s signature generation parameters. 27
3.2 Summary of traces. 28

7.1 Traces and the number of generated content blocks 106

8.1 Speed (ms) of operations of 1024-bit threshold Paillier cryptosystem 120

xix

xx

Chapter 1

Introduction

Attacks by Internet worms, viruses, and unwanted e-mails such as spams have threatened
the Internet since its inception [118]. Although much work has been done to prevent such
attacks, the threat does not seem to diminish. Rather, the volume, intensity, and severity
of attacks has increased as modern society relies more on the Internet, and attackers find
the ways to profit from them [132, 143, 53]. A trend analysis reports that since July 2002
the number of known viruses has increased from 75,000 to more than 115,000 by December
2005 [103].

Attacks aim to reach as many computers and users as possible in a short period of time.
Internet worms and viruses expedite their propagation by using infected computers to infect
the next victims. Spammers launch million copies of advertisement messages to distributed
hosts using automated spam tools from multiple computers. Such wide-spreading malicious
payloads share some common communication patterns: 1) relying on many-to-many commu-
nication to reach multiple thousands of computers quickly, and 2) having unique byte pat-
terns that are invariant across all the payload instances.1 The byte patterns that distinguish
wide-spreading malicious payloads from other legitimate traffic are called the signatures of
the malicious payload.

Our thesis is that content prevalence analysis in network payloads across distributed networks
is a good basis for automated signature generation for wide-spreading malicious payloads, and can be
performed without compromising the privacy of participating networks.

In this dissertation, we show the validity of our thesis by applying the privacy-preserving
distributed content prevalence analysis approach to develop automated signature genera-

1It is believed that spam e-mails have varying content to avoid spam filtering. However, many of spam
e-mails still have advertisers’ URLs or similar contact information the potential clients can use to contact them,
and such information is hard to change.

1

1.1. Wide-spreading Malicious Payloads

tion systems for novel Internet worms. The approach is generally applicable to a broader
range of wide-spreading malicious payload detection such as spam messages and network
virus detection, if such malicious activities involve the transmission of unique, identical
payload patterns from multiple computers to a large number of computers.

The rest of this chapter examines the traffic patterns of wide-spreading malicious payload
transmission; gives an overview of automated worm containment based on content-based
filtering; introduces our technical approach to build the automated signature generation
system; and discusses the key contributions of this dissertation.

1.1 Wide-spreading Malicious Payloads

Modern Internet attacks attempt to infect or damage as many victims as possible before
being detected. Thus, they often employ automated propagation techniques and launch at-
tacks from multiple hosts. In this section, we survey three common Internet attacks: worms,
e-mail spams, and blog comment spams. The survey suggests that the traffic from these
attacks exhibits the following characteristics of typical wide-spreading malicious payloads:

• Content Invariance: all flows over which wide-spreading malicious payloads spread
contain an identical, invariant portion of payload if it exploits a specific vulnerability
or its goal is to advertise a certain piece of information.

• Wide-spreading Behavior: they propagate from many sources to many destinations
so that they can contact millions of destinations quickly.

1.1.1 Network Viruses and Worms

Network viruses and worms are self-replicating programs. Originally, the term virus was
used for a program that inserts a possibly evolved copy of itself into a host, including op-
erating systems, to propagate. Unlike a virus that requires a user to activate it, a worm is
self-contained and propagates without any human intervention by exploiting a software
vulnerability on remote computers [113]. Elimination of human intervention allows a care-
fully crafted worm to spread over many vulnerable hosts at high speed. Infectious programs
such as the Nimda worm [20] propagate using both virus-like and worm-like schemes so
that the distinction between viruses and worms has blurred.

After the Morris worm infected 10% of ARPANET hosts [37], worms and network viruses
have drawn much attention from the research community and the governments. However,

2

Chapter 1. Introduction

Figure 1.1: An invariant payload pattern appeared in CodeRed II infection payloads: the
invariant part with the destination port number is used as the signature of CodeRedII worm
by signature-based Intrusion Detection Systems.

the number of those viruses and worms has continued to grow relentlessly. According to the
analysis by Sophos Plc. [103], since July 2002 the number of known viruses and worms has
increased from 75,000 to more than 115,000 by December 2005. As shown by the Code-Red
worm (CRv2) and the sequence of following worms, a worm can compromise most network-
attached computers with a vulnerability in a very short time. The Code-Red worm infected
359, 000 hosts in less than 14 hours [85] and the Slammer worm infected 90% of vulnerable
hosts within 10 minutes.

Content Invariance: A worm remotely exploits a software vulnerability or a set of vul-
nerabilities on a victim host, such that the victim becomes infected, and itself begins re-
motely infecting other victims. That commonality in functionality has to date led to com-
monality in code, and thus in payload content, across worm infection payloads transmitted
by the worm. Such an invariant part in worm payloads is used as a signature of the worm
that distinguishes the worm traffic from other traffic. For instance, Figure 1.1 shows the in-
variant part in all the CodeRed II worm payloads. The part triggered a buffer overflow in
Microsoft’s Internet Information Server (IIS) and switched the program control to an arbi-
trary code included in a later part of the payload. This invariant payload string served as the
signature of the CodeRed II until all the vulnerable IIS servers in the Internet were patched.

Wide-spreading Behavior: Once infected, the newly infected hosts participate in trans-
mitting infection payloads, which results in the invariant payload patterns transferred from
many hosts to many hosts.

1.1.2 E-mail Spams

Although the focus of this thesis is on worms, it is interesting to note that different types
of spams share the same patterns of content invariance and wide-spreading behavior. For

3

1.1. Wide-spreading Malicious Payloads

example, e-mail spam has become one of the greatest threats to the use of e-mail as a form
of communication. The Messaging Anti-Abuse Working Group (MAAWG) estimates that
about 80% of incoming mail is ”abusive email”2, as of the 1st quarter of 2006, after analyzing
435.6 million mailboxes [83].

The severity of spams goes far beyond mere inconvenience. Unsolicited e-mail spams
cost average U.S. organizations 1.4% of employee productivity, or $874 per employee per
year in 2003 [98]. Note that the total cost would be much higher if we included the extra
overhead due to overloaded e-mail systems and missing important e-mails. Besides adver-
tisement, e-mail spams are also used for more malicious purposes, such as scam distribution,
personal information collection, and virus propagation.

Content Invariance: Many spam-filtering techniques work by searching for patterns in
headers or bodies of e-mail messages. In order to avoid being detected, e-mail spams obfus-
cate their message content by intentionally misspelling commonly-filtered words, inserting
HTML comments between letters, or presenting the text as an image. Note, however, that
the common purpose of spamming is to advertise products or to attract people to a fake web
site. Thus, spams often include URLs, phone numbers, or mail addresses. Obfuscating such
contact information is not impossible but requires more effort than changing other parts of
e-mail messages. Our analysis with traces from a spam honeypot (total 411K spam e-mails
during a week of Jan 2006) showed that 55% of e-mail spams contain some contact infor-
mation in the forms of URL or e-mail addresses, even though content obfuscation is widely
used in the spamming community.

Wide-spreading Behavior: Spam traffic exhibits the many-to-many communication pat-
tern. By definition, spams are sent to a large number of users. Because almost all Internet
service providers and mail service providers forbid the use of their services to send spam,
spammers make use of open relays/proxies, bots, and infected hosts distributed in the In-
ternet. Utilizing the fact that many e-mail spams hold the two properties of wide-spreading
malicious payloads, several spam filtering techniques [133] have been proposed to detect
spams.

1.1.3 Link Spams

Since mid-1990’s, link-based ranking algorithms, such as Google’s PageRank algorithm [13]
have been widely used for web search. The rise of link-based ranking algorithms has spawned

2Because the precise definition of spam differs slightly from jurisdiction to jurisdiction in accordance with
local laws, MAAWG avoids using the term ”spam” in this report. Abusive emails are communications that
seek to exploit the end user.

4

Chapter 1. Introduction

a new type of spams called link spam.
Link spam is distributed by automatically posting random comments to publicly accessi-

ble web applications that accept and display hyperlinks submitted by visitors. Blogs, public
bulletin boards, web guestbooks, forums, and wikis are good targets for link spams. Adding
hyperlinks (URL) pointing to the spammers’ intended web sites artificially increases the
sites’ ranking in web search results computed with link-based ranking algorithms. An in-
creased ranking often results in the spammer’s commercial site being listed ahead of other
sites, increasing the number of potential visitors and customers.

Even though most web applications attempt to provide various filtering methods to pre-
vent or reduce such annoying link spams, spammers have become smarter. Akismet, a blog
spam filtering service [2], reports that spam comments account for 95% out of all comments
reported to the service, and the number of link spam continues to grow.

Content Invariance: Unlike e-mail spams, link spams always contain URL information
pointing to the intended web sites. It is not impossible for spammers to create link farms [56],
with multiple web pages and make those pages point to an intended web site. However,
utilizing many host and domain names is not as simple as e-mail spam message obfuscation.
Spammers, thus, often reuse the same URLs or domain names when they post link spam
messages in open blogs and open bulletin board systems. Those URLs posted by spammers
can be used as a signature to distinguish spam messages from legitimate messages.

Wide-spreading Behavior: Like other types of spam, link spam aims to be distributed
in many web pages. In order to spread spam links on many web pages efficiently, spam-
mers use automated spamming tools running on multiple computers, possibly a group of
compromised machines or bots under attackers’ control.

Recently, these two properties have inspired collaborative spam filtering services such
as LinkSleeve [79], Akismet [2], and Eolin Anti-Spam [130] services. These techniques strip
posted message of included URLs and keywords, and count the number of blogs that re-
ceived the same URLs. If a threshold is exceeded, the message is more likely to be a spam.

1.2 Worm Defense and Challenges

Internet worms have exploited the relative lack of diversity in the software on Internet-
attached hosts, and the ease with which those hosts can communicate. A worm program is
self-replicating. It remotely exploits a software vulnerability on a victim host, such that the
victim becomes infected, and itself begins remotely infecting other victims. The severity of
the worm threat goes far beyond mere inconvenience. The total cost of the Code Red worm

5

1.2. Worm Defense and Challenges

epidemic, as measured in lost productivity owing to interruptions in computer and network
services, is estimated at $2.6 billion. Technology market researcher Computer Economics
estimated that the SQL Slammer worm cost between $750 million and $1 billion to clean up,
which seemed less costly than the Code Red worm epidemic that impacted more machines.
However, considering that the Slammer worm clogged and downed financial systems such
as banks networks and ATMs, many security experts argued that the Slammer worm was
worse than the Code Red worm [75]. A worm can install backdoors and abuse infected hosts
for Denial-of-Service attacks, spamming, and private information leakage. For example,
many worms such as the Sasser worm [33], open backdoors on infected hosts and form
a large botnet [107] through which worm writers can control compromised hosts. Worm
writers may choose to sell access to infected machines to black hats, which creates financial
incentives for writing malicious worms [114].

Because worms can spread too rapidly for humans to respond [127, 140], automation of
worm defense is a key element in preventing worms. In recent years, the research com-
munity has proposed various methods for automatically detecting and containing worms by
quarantining infected hosts or filtering worm traffic. Broadly speaking, three chief strate-
gies exist to filter worm traffic: 1) blocking all traffic destined for the ports on which worms
spread (port blocking), 2) blocking all traffic for the relevent ports from worm-infected hosts
(source-address blocking), and 3) blocking all flows that exhibit anomalous payload or commu-
nication patterns (signatures) that only a worm shows in its infection attempts (signature-
based filtering). Filtering all traffic based on destination port alone can block legitimate
Internet traffic. Moore et al. [89] compared the relative efficacy of source-address filtering
and signature-based filtering. Their results show that signature-based filtering impedes the
spreading of a worm more effectively, provided the signatures are discovered and deployed
before the worm starts its exponential growth.

We can classify the signature into two groups based on what aspects of worm’s property
it encodes:

• Network payload signatures are the unique byte patterns occurring in worm’s net-
work payloads. Signature-based filters that use network payload signatures (content-
based filtering) can block worm traffic within both networks and transport layers of
hosts. They do not need application-specific knowledge more than payload patterns.
Cisco’s nbar [28], bro [102], snort [131] are examples of content-based filters using net-
work payload signatures. Network payload signatures are simple and efficient to use.
These content-based filtering techniques are quite mature compared to techniques us-
ing different types of signatures. However, it is sometimes impossible to define net-

6

Chapter 1. Introduction

work payload signatures if a worm uses strong polymorphism or propagates over en-
crypted channels. In this thesis, we focus on the systems that generate network pay-
load signatures.

• Host payload signatures used in Shield [136], Vigilante [34], are usable by filters in-
stalled immediately above the network stack of a host. Application-specific knowl-
edge is required to generate those signatures. Because the filters operate at the ap-
plication layer, they can handle IPSec-encrypted traffic. Encrypted messages above
the transport layer are still difficult to detect, but researchers envision that appropri-
ate programmable hooks, provided by applications and libraries, can enable to define
more powerful signatures and filtering policy [136]. Also, more powerful comparisons
thansimple pattern matching is feasible because the volume of traffic one host deals
with would be much less than the aggregated volume of traffic a content-based filter
on network links has to handle. For example, one can choose a signature that tests if
the length of a GET request copied to the stack exceeds 240 bytes in order to detect
worms that exploit IIS .ida vulnerability.

• Network behavioral signatures [43] describe anomalous, spatial and temporal com-
munication patterns observed from networks during a worm infection process. For
example, a host infected by an aggressive, random-scanning worm may contact a sig-
nificant number of hosts, and we can encode this fact as a network behavioral signa-
ture. A worm that recruit participants of a botnet would make a connection to one of
the master servers that control the botnet. Then, the list of master servers would be
a signature if they are not used for legitimate communication. Behavioral signatures
can catch polymorphic and encrypted worms if the worms show obviously abnormal
communication patterns. If normal traffic pattern changes or the worms’ propagation
patterns are similar to a normal traffic pattern, the signatures can cause false posi-
tives. Compared to filters using payload signatures, filters using network behavioral
signatures require more memory and computation power because they must maintain
all the communication history useful for correlation. Some systems such as Bro [102]
can utilize behavioral signatures (policy, in bro language) but an automated system to
generate behavioral signatures is not yet available.

The basic premise when using signature-based filtering for automatic worm containment
is that signatures of a worm must be known beforehand. Unfortunately, today’s signature
detection process requires human involvement, and thus is slow. For instance, when Ben

7

1.3. Technical Approaches

Koshy3 from W3 International Media first reported the Slammer worm propagation inci-
dent to a mailing list 4, more than 5 hours had already passed since the worm was released.
The delay included the time to notice a worm outbreak via out-of-band communication (i.e.,
emails, newsgroups, phone, security companies’ help desks), capture worm traces, select
signatures based on manual analysis, and publish/deploy them. According to Moore et
al. [89], signatures should be deployed within 60 minutes of a worm’s release to contain
slow-spreading worms such as CodeRed, and within less than 5 minutes to contain fast-
spreading worms such as Slammer. Staniford et al. citeWeaverWarchol demonstrated that
a worm that is carefully designed to efficiently scan victims (hitlist, permutation-scanning,
topological scanning, and efficient threading) can infect most vulnerable hosts before any
human intervention. Automation of worm signature detection is required to achieve effec-
tive automated worm containment with content-based filtering.

An automated signature generation system must 1) generate signatures that catch all pos-
sible variants of a worm, but not block legitimate traffic and 2) generate signatures quickly
enough to prevent global infection, 3) require minimal real-time operator intervention, 4)
minimize the effect on legitimate Internet use, and 5) preserve privacy if information needs
to be exchanged among multiple monitoring points.

In this dissertation, we present the design and implementation of a distributed, auto-
mated worm signature generation system, Autograph, and evaluate the system based on the
aforementioned requirements in designing an automated signature generation system. Au-
tograph combines information from distributed monitors within an enterprise network or in
honeypots [125]. For fast and accurate signature generation, monitors from different sites in
the Internet can also exchange their observations. The signatures determined by Autograph
can then be disseminated automatically to content filters in networks and hosts before the
worm infects a significant fraction of vulnerable hosts.

1.3 Technical Approaches

As discussed in Section 1.1.1, worms have invariant parts in their payloads and their prop-
agation shows a typical many-to-many communication pattern. We solve the automated
signature generation problem by exploiting these properties:

3Ben Koshy has been credited with being one of the first persons to identify the Slammer worm.
4Archives of the NTBUGTRAQ mailing list. http://listserv.ntbugtraq.com/archives/

ntbugtraq.html

8

http://listserv.ntbugtraq.com/archives/ntbugtraq.html
http://listserv.ntbugtraq.com/archives/ntbugtraq.html

Chapter 1. Introduction

• Content-prevalence analysis: Autograph analyzes the content of network flow pay-
loads and chooses the most frequently occuring byte patterns as signatures. Two prop-
erties of worms suggest that content-prevalence analysis is fruitful. First, all flows over
which a worm spreads contain an identical, invariant portion of payload if the worm
exploits a specific vulnerability. Second, a worm generates voluminous network traffic
as it spreads, because of its self-propagating nature.

• Distributed monitoring: Autograph takes advantage of distributed monitoring. The
volume of worm traffic one monitor observes will be small at the early stage of a worm
epidemic or for slowly propagating worms. However, the aggregated volume that
multiple monitors receive will be large. Intuitively, the more monitors we deploy, the
more quickly we capture worm traffic. When a worm does not propagate randomly
or the vulnerability density across the Internet is not uniform, distributed monitoring
helps shorten the time needed to catch worm traffic. Moreover, distributed monitoring
allows Autograph to utilize many exploit detectors with different server versions and
configurations, to verify the quality of generated signatures.

• Privacy-preserving payload sharing: Autograph expedites signature detection by ag-
gregating suspicious flow payloads observed by distributed monitors. However, this
payload sharing may compromise privacy. To allow privacy-protecting payload shar-
ing, we rely on the observation that a single payload observed at many sites should not
be private, and thus may be shared as long as the payload providers are not disclosed.

1.4 Contributions and Dissertation Outline

This dissertation explores approaches for automatically and quickly generating Internet
worms. Here are the specific contributions:

1. Distributed, automated worm signature generation: We present a new system, called
Autograph, that automatically generates payload signatures for Internet worms by com-
bining suspicious flow selection heuristics and content-prevalence analysis on selected
flows (Chapter 3). We extend the system to share port scan reports among distributed
monitor instances. Using trace-driven simulation, we demonstrate the value of this
technique in speeding the generation of signature for novel worms (Chapter 4).

2. Privacy-preserving distributed, content-prevalence analysis: We present a distributed
payload sharing framework that improves automated signature detection speed, and

9

1.4. Contributions and Dissertation Outline

validate our assumption on the privacy of globally prevalent payload pattern strings
by examining real network traces (Chapter 6). In distributed payload sharing, pri-
vacy is the major concern. We present two privacy-preserving, distributed content-
prevalence analysis techniques that disclose a payload pattern only when it belongs to
worm traffic that is observed at multiple monitoring sites.

• The first technique meets the goal by applying HotItemID protocol [69], which
relies an approximate counting techniques. This technique is suitable for an en-
vironment where a large number of autonomous sites or hosts participate, and
when a worm attacks a large fraction of those participating sites.

• The second technique derives from a privacy-preserving multiset operation frame-
work that relies on a semantically secure homomorphic cryptosystem and arith-
metic operations over polynomial representation of sets [70]. Combined with
sampling, this technique can scale from tens to hundreds of participating moni-
tors. To our knowledge, this is the first work that applies Threshold-Set-Intersection
framework in practice and evaluates its performance.

This thesis consists of two parts.
In Part I, we focus on the automated signature detection technique that exploits worm’s

unique properties. Chapter 2 discusses the desired properties of automated signature gen-
eration systems. Chapter 3 presents our system Autograph that automates signature genera-
tion process by content prevalence analysis. Chapter 4 extends Autograph to use distributed
monitors for port-scanner detection.

In Part II, we explore techniques that allow information sharing beyond port-scanner IP
addresses, so allows collaborative suspicious flow accumulation. The information sharing
must preserve the privacy of participating networks. Chapter 5 motivates distributed pay-
load sharing and discusses the privacy-related issues. Chapter 6 presents our distributed
payload sharing framework and its signature detection speed. Chapter 7 explores the idea
of hiding private data in a crowd using our HOTITEM-ID protocol. Chapter 8 presents an-
other technique to build a privacy-preserving distributed signature generation system. The
system uses the theoretically proven privacy-preserving Threshold-Set-Intersection frame-
work.

Finally, we review the related work in Chapter 9 and conclude by summarizing our find-
ings and contributions in Chapter 10.

10

Part I

Content-based Automated Signature
Generation

11

Chapter 2

Introduction

Today’s Internet intrusion detection systems (IDSes) monitor edge networks’ DMZs 1 to
identify and/or filter malicious flows. While an IDS helps protect the hosts on its local
edge network from compromise and denial of service, it cannot alone effectively intervene
to halt and reverse the spreading of novel Internet worms. Generation of the worm signa-
tures required by an IDS—the byte patterns sought in monitored traffic to identify worms—
today entails non-trivial human labor, and thus significant delay: as network operators de-
tect anomalous behavior, they communicate with one another and manually study packet
traces to produce a worm signature. Yet intervention must occur early in an epidemic to
halt a worm’s spread. In this part, we introduce Autograph, a system that automatically
generates signatures for novel Internet worms that propagate by randomly scanning the IP
address space. Autograph generates signatures by analyzing the prevalence of portions of flow
payloads, and thus uses no knowledge of protocol semantics above the transport level. It is
designed to produce signatures that exhibit high sensitivity (high true positives) and high
specificity (low false positives); our evaluation of the system on real DMZ traces validates
that it achieves these goals. We extend Autograph to share port scan reports among dis-
tributed monitor instances, and using trace-driven simulation, demonstrate the value of this
technique in speeding the generation of signatures for novel worms. Our results elucidate
the fundamental trade-off between early generation of signatures for novel worms and the
specificity of these generated signatures.

1DMZ is a physical or logical subnetwork placed in between an organization’s internal network and a larger,
untrusted network such as the Internet. DMZ may contain and expose the organization’s external services.
External attackers only have access to the services and equipments in the DMZ, rather than the organization’s
internal network.

13

2.1. Background and Motivation

2.1 Background and Motivation

Motivated in large part by the costs of Internet worm epidemics, the research community
has investigated worm propagation and how to thwart it. Initial investigations focused on
case studies of the spreading of successful worms [85], and on comparatively modeling di-
verse propagation strategies future worms might use [127, 140]. More recently, attention
has turned to methods for containing the spread of a worm. Broadly speaking, three chief
strategies exist for containing worms by blocking their connections to potential victims: dis-
covering ports on which worms appear to be spreading, and filtering all traffic destined for
those ports; discovering source addresses of all traffic destined for those ports; discover-
ing source addresses of infected hosts and filtering all traffic (or perhaps traffic destined for
a few ports) from those source addresses; and discovering the payload content string that
a worm uses in its infection attempts, and filtering all flows whose payloads contain that
content string.

Detecting that a worm appears to be active on a particular port [145] is a useful first step
toward containment, but is often too blunt an instrument to be used alone; simply blocking
all traffic for port 80 at edge networks across the Internet shuts down the entire web when a
worm that targets web servers is released. Moore et al. [89] compared the relative efficacy of
source-address filtering and content-based filtering. Their results show that content-based
filtering of infection attempts slows the spreading of a worm more effectively: to confine
an epidemic within a particular target fraction of the vulnerable host population, one may
begin content-based filtering far later after the release of a worm than address-based filter-
ing. Motivated by the efficacy of content-based filtering, we seek in this thesis to answer
the complementary question unanswered in prior work: how should one obtain worm content
signatures for use in content-based filtering?

Here, a signature is a tuple (IP-proto, dst-port, byteseq), where IP-proto

is an IP protocol number, dst-port is a destination port number for that protocol, and
byteseq is a variable-length, fixed sequence of bytes.2 Content-based filtering consists of
matching network flows (possibly requiring flow reassembly) against signatures; a match
occurs when byteseq is found within the payload of a flow using the IP-proto protocol
destined for dst-port. We restrict our investigation to worms that propagate over TCP in
this work, and thus hereafter consider signatures as (dst-port, byteseq) tuples.

Today, there exist TCP-flow-matching systems that are “consumers” of these sorts of sig-

2Signatures may employ more complicated payload patterns, such as regular expressions. We restrict our
attention to fixed byte sequences.

14

Chapter 2. Introduction

natures. Intrusion detection systems (IDSes), such as Bro 3 and Snort 4, monitor all incoming
traffic at an edge network’s DMZ, perform TCP flow reassembly, and search for known
worm signatures. These systems log the occurrence of inbound worm connections they ob-
serve, and can be configured (in the case of Bro) to change access control lists in the edge
network’s router(s) to block traffic from source IP addresses that have sent known worm
payloads. Cisco’s NBAR system 5 for routers searches for signatures in flow payloads, and
blocks flows on the fly whose payloads are found to contain known worm signatures. We
limit the scope of our inquiry to the detection and generation of signatures for use by these and
future content-based filtering systems.

It is important to note that all the content-based filtering systems use databases of worm
signatures that are manually generated: as network operators detect anomalous behavior,
they communicate with one another, manually study packet traces to produce a worm signa-
ture, and publish that signature so that it may be added to IDS systems’ signature databases.
This labor-intensive, human-mediated process of signature generation is slow (on the order
of hours or longer), and renders today’s IDSes unhelpful in stemming worm epidemics—by
the time a signature has been found manually by network operators, a worm may already
have compromised a significant fraction of vulnerable hosts on the Internet.

We seek to build a system that automatically, without foreknowledge of a worm’s pay-
load or time of introduction, detects the signature of any worm that propagates by randomly
scanning IP addresses. We assume the system monitors all inbound network traffic at an
edge network’s DMZ. Autograph, our worm signature detection system, has been designed
to meet that goal. The system consists of three interconnected modules: a flow classifier, a
content-based signature generator, and tattler, a protocol through which multiple distributed
Autograph monitors may share information, in the interest of speeding detection of a signa-
ture that matches a newly released worm.

2.2 Desirable Properties

While the initial motivation of automated signature detection is to speed the signature gen-
eration by taking the human out of signature generation process, we must also ensure that
the system generates good signatures and consume reasonable amount of resources. More

3Bro Intrusion Detection System [102]. http://www.bro-ids.org
4The Snort Project. http://www.snort.org/
5More information is at http://www.cisco.com/univercd/cc/td/doc/product/software/

ios122/122newft/122t/122t8/dtnbarad.htm

15

http://www.bro-ids.org
http://www.snort.org/
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/dtnbarad.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/dtnbarad.htm

2.2. Desirable Properties

True Positive

Sensitive,
Specific

Sensitive,
Unspecific

High

Insensitive,
Specific

Low

False
Positive

Insensitive,
Unspecific

High

Low

Figure 2.1: Combinations of sensitivity and specificity.

specifically, developing and evaluating an automated signature detection system must con-
sider the following metrics:

• Signature Quality: Ideally, the quality of the signatures generated with an automated
signature detection system should be comparable to or even better than that of the
signatures human experts generate. In describing the efficacy of worm signatures in
filtering worm traffic, we adopt the parlance used in epidemiology to evaluate a diag-
nostic test:

– Sensitivity relates to the true positives generated by a signature; among all the
worm flows crossing the network, the fraction of the worm flows matched, and
thus successfully identified, by the signature. Sensitivity is reported as t ∈ [0, 1],
the fraction of true positives among worm flows. Note that another frequently
used metric, false negative rate is 1− t.

– Specificity relates to the false positives generated by a signature; in a mixed pop-
ulation, the fraction of non-worm flows matched by the signature, and thus in-
correctly identified as worms. Specificity is typically reported as (1− f) ∈ [0, 1],
where f is the fraction of false positives among non-worm flows.

Throughout this part, we classify signatures according to this terminology, as shown
in Figure 2.1. A good signature system generates sensitive and specific signatures.

In practice, there is a tension between sensitivity and specificity; one often suffers when
the other improves, because a diagnostic test (e.g., ”is this flow a worm or not?”) typ-
ically measures only a narrow set of features in its input, and thus does not perfectly
classify it. There may be cases where inputs present with identical features in the eyes
of a test, but belong in different classes.

16

Chapter 2. Introduction

• Signature quantity and length: A content-based filter maintains a list of signatures
and matches every packet (or data injected from networks) against the signatures
known for the IP protocol and port. In practice, network administrators maintain the
list as small as possible because the filter’s performance degrades linearly with the
number of signatures in the list [5]. For example, Snort [131] users use tens of sig-
natures only for active, serious attacks, even though there are more than 3000 rules
available currently. Thus, fewer signatures that cover a wide range of worms are de-
sirable.

Similarly, the cost of signature matching increases with the length of each signature.
For example, when we express the signature with a regular expression which is imple-
mented as a Deterministic Finite Automation (DFA), the matching always takes time
linear in the length of the signature regardless of the specifics of the signature. The
parallel Boyer-Moore approaches have been explored for fast signature matching of
multiple fixed strings [30, 49], and they have been adopted in Snort. However, they
present a wide range of running times – potentially sublinear but also potentially su-
perlinear in the length of the string. A different approach using Bloom filters in Field
Programmable Gate Arrays (FPGA) has been proposed to speed network packet pay-
load pattern matching [38]. This technique requires to group and store the signatures in
parallel Bloom filters based on their lengths, so limiting the lengths of signatures is still
important for its performance. Therefore, short signatures are preferable to long ones.
Note that the signature length profoundly affects specificity and sensitivity: when one
signature is a subsequence of another, the longer one is expected to match fewer flows
than the shorter one.

• Timeliness of detection: Left unchecked by patches, traffic filtering, or other means,
worms infect vulnerable hosts at an exponential rate, until the infected population
saturates. Provos [105] shows in simulation that patching of infected hosts is more ef-
fective the earlier it is begun after the initial release of a new worm, and that in practi-
cal deployment scenarios, patching must begin quickly (before 5% of vulnerable hosts
become infected) in order to have hope of stemming an epidemic such that no more
than 50% of vulnerable hosts ever become infected. Moore et al. [89] show similarly
that signature-based filtering of worm traffic stops worm propagation most effectively
when begun early.

• Automation: This metric is tightly related to the timeliness of detection. A signature
detection system must require minimal real-time operator intervention. Vetting sig-

17

2.3. Outline of Part I

natures for specificity with human eyes, e.g., is at odds with timeliness of signature
detection for novel worms.

• Efficient resource consumption: A signature detection system that monitors host state
must not affect host performance significantly, so CPU and memory usage must be
small. A signature detection system that monitors network traffic must keep up with
the large volume of aggregated traffic on fast links, so signature detection algorithms
must be simple and fast. If a signature detection system is deployed in a distributed
fashion, such that distributed monitors communicate with one another about their ob-
servations, that communication should remain scalable, even when a worm generates
tremendous network activity as it tries to spread. That is, monitor-to-monitor commu-
nication should grow slowly as worm activity increases.

• Robustness against attacks and polymorphism: A polymorphic worm changes its pay-
load in successive infection attempts. Such worms pose a particular challenge to match
with signatures, as a signature sensitive to a portion of one worm payload may not be
sensitive to any part of another worm payload. If a worm were “ideally” polymor-
phic, each of its payloads would contain no byte sequence in common with any other,
and content-based filtering is no longer effective for such worms. However, if a worm
exhibits polymorphism but does not change one or more relatively long subsequences
across its variants, an efficient signature detection system will generate signatures that
match these invariant subsequences. This will minimize the number of signatures re-
quired to mach all the worm’s variants. Also, a signature detection system must be
robust against abuse, such that an attacker forces the system to generate unspecific
signatures. Those signatures will result in Denial-of-Service attacks against networks
using automatically generated signatures.

2.3 Outline of Part I

In the remainder of Part I, we present an automated signature generation system that satis-
fies the above requirements. In Chapter 3, we design Autograph, our worm signature detec-
tion system that analyzes traffic of a single network. In Chapter 4, we extend Autograph in
a distributed monitoring setting to enable fast signature generation.

18

Chapter 3

Automated Worm Signature Generation
using Content Prevalence Analysis

In this chapter we propose a new system, Autograph, that generates worm signatures by
detecting prevalent payload pattern strings across suspicious traffic flows. The main contri-
butions of our work can be summarized as follows:

• We introduce a novel pattern-extraction-based network signature generation approach
based on the two properties of worms: content invariance and magnitude of traffic vol-
ume. These two traits of worm traffic were exploited by many other pattern-extraction-
based network signature generation systems proposed concomitantly [119, 73] and af-
ter our work [93, 139, 67, 17, 76, 94].

• We propose COPP, a payload partitioning algorithm derived from a work in the file
system domain [91]. COPP generates variable-size, non-overlapping content blocks by
determining the boundaries of each block based on payload content. COPP is resilient
against modest level of payload pattern changes.

• We show that pattern-extraction-based network signature generation approaches gen-
erally suffer from the advent of new Internet applications such as P2P file sharing
programs because their communication patterns are similar to that of worm traffic. In
order to avoid false positives caused by such benign P2P application traffic, Autograph
needs to apply better flow selection heuristics.

We provide the overview of a single Autograph monitor in Section 3.1. We then describe
the detailed workings of Autograph’s suspicious flow selection classifier and content-based

19

3.1. Autograph System Overview

Suspicious Flow Selection

Selecting Suspicious traffic
using heuristics

Signature Generation

Prevalence
Histogram

Construction
Flow

reassembly

Payload
Partitioning

(COPP)Suspicious
inbound
packets

Content blocks

Prevalence
Histogram

Non-
suspicious
inbound
packets

W
o

rm
 S

ig
n

at
u

re
s

C
ro

ss
-D

M
Z

 t
ra

ff
ic ���������	

tattler Other Autograph Monitors

Port-scanner IP addresses

Figure 3.1: Architecture of an Autograph Monitor: A single Autograph monitor consists of
1) a suspicious flow selection stage and, 2) a content-based signature generation stage.

signature generation in Section 3.2 and Section 3.3 respectively. We evaluate the quality of
the signatures Autograph finds when run on real DMZ traces from two edge networks in
Section 3.4. In Section 3.5, we study the P2P file sharing application traffic that mimics worm
traffic and explain how Autograph can cope with the noise caused by the new application.
After cataloguing limitations of Autograph and possible attacks against it in Section 3.6, we
summarize our work in Section 3.7.

3.1 Autograph System Overview

Motivated by the design goals given in the previous chapter, we now present Autograph.
We begin with a schematic overview of the system, shown in Figure 3.1. A single Autograph
monitor’s input is all traffic crossing an edge network’s DMZ, and its output is a list of worm
signatures. We defer discussion of tattler, used in distributed deployments of Autograph, to
Chapter 4. There are two main stages in a single Autograph monitor’s analysis of traffic.
First, a suspicious flow selection stage uses heuristics to classify inbound TCP flows as either
suspicious or non-suspicious.

After classification, packets for these inbound flows are stored on disk in a suspicious flow
pool and non-suspicious flow pool, respectively. For clarity, throughout this thesis, we refer to
the output of the classifier using those terms, and refer to the true nature of a flow as malicious
or innocuous. Further processing occurs only on payloads in the suspicious flow pool. Thus,
flow classification reduces the volume of traffic that must be processed subsequently. We
assume in our work that such heuristics will be far from perfectly accurate. Yet any heuristic
that generates a suspicious flow pool in which truly malicious flows are a greater fraction of

20

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

flows than in the total inbound traffic mix crossing the DMZ will likely reduce generation of
signatures that cause false positives, by focusing Autograph’s further processing on a flow
population containing a lesser fraction of innocuous traffic. Autograph performs TCP flow
reassembly for inbound payloads in the suspicious flow pool. The resulting reassembled
payloads are analyzed in Autograph’s second stage, signature generation.

We stress that Autograph segregates flows by destination port for signature generation;
in the remainder of this thesis, one should envision one separate instance of signature gen-
eration for each destination port, operating on flows in the suspicious flow pool destined
for that port. Signature generation involves analysis of the content of payloads of suspi-
cious flows to select sensitive and specific signatures. Two properties of worms suggest that
content analysis may be fruitful. First, a worm propagates by exploiting one software vul-
nerability or a set of such vulnerabilities. That commonality in functionality has to date led
to commonality in code, and thus in payload content, across worm infection payloads. In
fact, Internet worms to date have had a single, unchanging payload in most cases. Even in
those cases where multiple variants of a worm’s payload have existed (e.g., Nimda), those
variants have shared significant overlapping content.1 Second, a worm generates volumi-
nous network traffic as it spreads; this trait stems from worms’ self-propagating nature. For
port-scanning worms, the exponential growth in the population of infected hosts and atten-
dant exponential growth in infection attempt traffic are well known [85]. As also noted and
exploited by Singh et al. [119], taken together, these two traits of worm traffic—content com-
monality and magnitude of traffic volume—suggest that analyzing the frequency of payload
content should be useful in identifying worm payloads. During signature generation, Auto-
graph measures the frequency with which non-overlapping payload substrings occur across
all suspicious flow payloads, and proposes the most frequently occurring substrings as can-
didate signatures.

3.2 Selecting Suspicious Traffic

In this work, we use a simple port-scanner detection technique as a heuristic to identify ma-
licious traffic; we classify all flows from port-scanning sources as suspicious. Note that we
do not focus on the design of suspicious flow classifiers herein; Autograph can adopt any
anomaly detection technique that classifies worm flows as suspicious with high probability.
In fact, we deliberately use a port-scanning flow classifier because it is simple, computa-

1Future worms may be designed to minimize the overlap in their successive infection payloads; we consider
such worms in Section 3.4.2.

21

3.2. Selecting Suspicious Traffic

tionally efficient, and clearly imperfect; our aim is to demonstrate that Autograph generates
highly selective and specific signatures, even with a naive flow classifier. With more accurate
flow classifiers, one will only expect the quality of Autograph’s signatures to improve.

Many worms rely on scanning of the IP address space to search for vulnerable hosts
while spreading. If a worm finds another machine that runs the desired service on the tar-
get port, it sends its infectious payload. Probing a non-existent host or service, however,
results in an unsuccessful connection attempt, easily detectable by monitoring outbound
ICMP host/port unreachable messages, or identifying unanswered inbound SYN packets.
Hit-list worms [127, 88] violate this port-scanning assumption; we do not address them in
this thesis, but comment on them briefly in Section 3.6.

Autograph stores the source and destination addresses of each inbound unsuccessful
TCP connection it observes. Once an external host has made unsuccessful connection at-
tempts to more than s internal IP addresses, the flow classifier considers it to be a scanner.
All successful connections from an IP address flagged as a scanner are classified as suspi-
cious, and their inbound packets written to the suspicious flow pool, until that IP address is
removed after a timeout (24 hours in the current prototype).2 Packets held in the suspicious
flow pool are dropped from storage after a configurable interval t. Thus, the suspicious flow
pool contains all packets received from suspicious sources in the past time period t.3

Autograph reassembles all TCP flows in the suspicious flow pool, continuously examines
the suspicious flow pool that contains all the reassembled TCP flows for the last t minutes.
The signature generation process is initiated when for a single destination port, the suspi-
cious flow pool contains more than a threshold number of flows θ.

Honeypots [125] are useful sources of suspicious traffic for Autograph. Because all traffic
arriving at a honeypot is inherently suspicious, no port scan detection may be necessary; all
payloads received at a honeypot may be included in Autograph’s suspicious traffic pool.
However, remember that the incoming traffic to Honeypot still can contain innocuous con-
tents; for instance, an attacker can send a common connection request to determine whether
the destination is a honeypot or a valid server. Thus, we still need the content-based analysis
to extract sensitive and selective signatures.

2Note that an IP address may have sent traffic before being identified as a scanner; such traffic will stored in
the non-suspicious flow pool. We include only subsequently arriving traffic in the suspicious flow pool, in the
interest of simplicity, at the expense of potentially missing worm traffic sent by the scanner before our having
detected it as such.

3Worms that propagate very slowly may only accumulate in sufficient volume to be detected by Autograph
for long values of t.

22

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

3.3 Content-Based Signature Generation

After selecting suspicious flows, Autograph selects the most frequently occurring byte se-
quences across the flows in the suspicious flow pool as signatures. To do so, it divides each
suspicious flow into smaller content blocks, and counts the number of suspicious flows in
which each content block occurs. We term this count a content block’s prevalence, and rank
content blocks from most to least prevalent. As previously described, the intuition behind
this ranking is that a worm’s payload appears increasingly frequently as that worm spreads.
When all worm flows contain a common, worm-specific byte sequence, that byte sequence
will be observed in many suspicious flows, and so will be highly ranked.

3.3.1 COPP: COntent-based Payload Partitioning Algorithm

Let us first describe how Autograph divides suspicious flows’ payloads into shorter blocks.
One might naively divide payloads into fixed-size, non-overlapping blocks, and compute
the prevalence of those blocks across all suspicious flows. That approach, however, is brittle
if worms even trivially obfuscate their payloads by reordering them, or inserting or deleting
a few bytes. To see why, consider what occurs when a single byte is deleted or inserted from
a worm’s payload; all fixed-size blocks beyond the insertion or deletion will most likely
change in content. Thus, a worm author could evade accurate counting of its substrings by
trivial changes in its payload, if fixed-size, non-overlapping blocks were used to partition
payloads for counting substring prevalence.

Instead, as first done in the file system domain in LBFS [91], we divide a flow’s pay-
load into variable-length content blocks using COntent-based Payload Partitioning (COPP).
Because COPP determines the boundaries of each block based on payload content, the set of
blocks COPP generates changes little under byte insertion or deletion.

To partition a flow’s payload into content blocks, COPP computes a series of Rabin fin-
gerprints ri over a sliding k-byte window of the flow’s payload, beginning with the first k
bytes in the payload, and sliding one byte at a time toward the end of the payload. It is
efficient to compute a Rabin fingerprint over a sliding window [108]. As COPP slides its
window along the payload, it ends a content block when ri matches a predetermined break-
mark, B; when ri ≡ B (mod a). The average content block size produced by COPP, a, is
configurable; assuming random payload content, the window at any byte position within
the payload equals the breakmark B (mod a) with probability 1/a.

Figure 3.2 presents an example of COPP, using a 2-byte window, for two flows f0 and f1.

23

3.3. Content-Based Signature Generation

00 07 0f 2a 01 00 07 07 07 00 07 11 45 45 07 00 07 ae 12

08 00 07 0f 2a 01 00 07 07 07 0a 00 07 11 45 45 07 00 07

c
1

c
4

c
1

c
5

c
2

c
0 c

3

c
3

��

��

Figure 3.2: COPP with a breakmark of Rabin f ingerprint(“0007”)

Sliding a 2-byte window from the first 2 bytes to the last byte, COPP ends a content block
ci whenever it sees the breakmark equal to the Rabin fingerprint for the byte string “0007”.
Even if there exist byte insertions, deletions, or replacements between the two flows, COPP
finds identical c1 and c3 blocks in both of them.

Because COPP decides content block boundaries probabilistically, there may be cases
where COPP generates very short content blocks, or takes an entire flow’s payload as a sin-
gle content block. Very short content blocks are highly unspecific; they will generate many
false positives. Taking the whole payload is not desirable either, because long signatures
are not robust in matching worms that might vary their payloads. Thus, we impose mini-
mum and maximum content block sizes, m and M, respectively. When COPP reaches the
end of a content block and fewer than m bytes remain in the flow thereafter, it generates a
content block that contains the last m bytes of the flow’s payload. In this way, COPP avoids
generating too short a content block, and avoids ignoring the end of the payload.

3.3.2 Selecting Prevalent Content Blocks

After Autograph divides every flow in the suspicious flow pool into content blocks using
COPP, it discards content blocks that appear only in flows that originate from a single source
IP address from further consideration. We found early on when applying Autograph to
DMZ traces that such content blocks typically correspond to misconfigured or otherwise
malfunctioning sources that are not malicious; such content blocks typically occur in many
innocuous flows, and thus often lead to signatures that cause false positives. Singh et al. [119]
also had this insight—they consider flow endpoint address distributions when generating
worm signatures.

Suppose there are N distinct flows in the suspicious flow pool. Each remaining content
block matches some portion of these N flows. Autograph repeatedly selects content blocks
as signatures, until the selected set of signatures matches a configurable fraction w of the
flows in the suspicious flow pool. That is, Autograph selects a signature set that “covers” at

24

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

least wN flows in the suspicious flow pool.

We now describe how Autograph greedily selects content blocks as signatures from the
set of remaining content blocks. Initially the suspicious flow pool F contains all suspicious
flows, and the set of content blocks C contains all content blocks produced by COPP that
were found in flows originating from more than one source IP address. Autograph measures
the prevalence of each content block—the number of suspicious flows in F in which each
content block in C appears—and sorts the content blocks from greatest to least prevalence.
The content block with the greatest prevalence is chosen as the next signature. It is removed
from the set of remaining content blocks C, and the flows it matches are removed from the
suspicious flow pool, F. This entire process then repeats; the prevalence of content blocks
in C in flows in F is computed, the most prevalent content block becomes a signature, and
so on, until wN flows in the original F have been covered. This greedy algorithm attempts
to minimize the size of the set of signatures by choosing the most prevalent content block at
each step.

We incorporate a blacklisting technique into signature generation. An administrator may
configure Autograph with a blacklist of disallowed signatures, in an effort to prevent the
system from generating signatures that will cause false positives. The blacklist is simply a
set of strings. Any signature Autograph selects that is a substring of an entry in the black-
list is discarded; Autograph eliminates that content block from C without selecting it as a
signature, and continues as usual. We envision that an administrator may run Autograph
for an initial training period, and vet signatures with human eyes during that period. Sig-
natures generated during this period that match common patterns in innocuous flows (e.g.,
GET /index.html HTTP/1.0) can be added to the blacklist.

At the end of this process, Autograph reports the selected set of signatures. The current
version of the system publishes signature byte patterns in Bro’s signature format, for direct
use in Bro. Table 3.1 summarizes the parameters that control Autograph’s behavior.

3.3.3 Innocuous Traffic Included in Suspicious Flow Pool

Because the flow classifier heuristic is imperfect, innocuous flows will unavoidably be in-
cluded in the signature generation process. We expect two chief consequences of their inclu-
sion:

Prevalent signatures matching innocuous and malicious flows. One possible result is that
the probabilistic COPP process will produce content blocks that contain only protocol header

25

3.3. Content-Based Signature Generation

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

O
cc

ur
en

ce
 (

%
)

Content Blocks (sorted)

Average block size (a) = 64

from Nimda

from Code-RedII from Nimda (16 different payloads)

from WebDAV source

m = 8
m = 16
m = 32
m = 40
m = 64

Figure 3.3: Prevalence histogram of content blocks, a=64 bytes, ICSI2 DMZ trace, day 3 (24
hrs): Content blocks from misclassified innocuous flows in the suspicious flow pool form the
tail of the prevalence distribution, while content blocks from worm flows top the prevalence
histogram.

or trailer data common to nearly all flows carrying that protocol, whether innocuous or
malicious. Such blocks will top the prevalence histogram, but would clearly be abysmally
unspecific if adopted for traffic filtering. To avoid choosing such unspecific content blocks,
we can vary a and m toward longer block sizes.

Non-prevalent signatures for innocuous flows. Another possibility is that Autograph chooses
a content block common to only a few innocuous flows. Such content blocks will not be
prevalent, and will be at the tail of the prevalence histogram. Two heuristics can exclude
these signatures from publication. First, by using a smaller w value, Autograph can avoid
generation of signatures for the bottom (1−w)% of the prevalence distribution, though this
choice may have the undesirable side effect of delaying detection of worms. The second use-
ful heuristic comes from our experience with the initial COPP implementation. Figure 3.3
shows the prevalence histogram Autograph generates from a real DMZ trace. Among all
content blocks, only a few are prevalent (those from Code-RedII, Nimda, and WebDAV) and
the prevalence distribution has a noticeable tail. We can restrict Autograph to choose a con-
tent block as a signature only if more than p flows in the suspicious flow pool contain it, to
avoid publishing signatures for non-prevalent content blocks.

26

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

Symbol Description
s Port scanner detection threshold
a COPP parameter: average content block size
m COPP parameter: minimum content block size
M COPP parameter: maximum content block size
w Target percentage of suspicious flows to be represented

in generated signatures
p Minimum content block prevalence for use as signature
t Duration suspicious flows held in suspicious flow pool
θ Minimum size of suspicious flow pool to triggers

signature generation process

Table 3.1: Autograph’s signature generation parameters.

3.4 Evaluation: Local Signature Generation

We now evaluate the quality of signatures Autograph generates. In this section, we answer
the following two questions: First, how does content block size affect the the sensitivity and
specificity of the signatures Autograph generates? And second, how robust is Autograph to
worms that vary their payloads?

Our experiments demonstrate that as content block size decreases, the likelihood that
Autograph detects commonality across suspicious flows increases. As a result, as content
block size decreases, Autograph generates progressively more sensitive but less specific
signatures. They also reveal that small block sizes are more resilient to worms that vary
their content, in that they can detect smaller common parts among worm payloads. Finally,
they reveal that when run on real web traffic from a DMZ, Autograph with blacklisting
can achieve zero false positives; can detect signatures for all worms present; and can quickly
generate signatures for “established” worms with pre-existing populations of active infected
hosts.

3.4.1 Offline Signature Generation on DMZ Traces

We first investigate the effect of content block size on the quality of the signatures generated
by Autograph. In this subsection, we use a suspicious flow pool accumulated during an
interval t of 24 hours, and consider only a single invocation of signature generation on that
flow pool. No blacklisting is used in the results in this subsection, and filtering of content
blocks that appear only from one source address before signature generation is disabled. All
results we present herein are for a COPP Rabin fingerprint window of width k = 4 bytes.4

4We have since adopted a 16-byte COPP window in our implementation, to make it harder for worm au-
thors to construct payloads so as to force particular content block boundaries; results are quite similar for

27

3.4. Evaluation: Local Signature Generation

IRP ICSI ICSI2
Measurement Period Aug 1-7 Jan 26 Mar 22-29

2003 2004 2004
1 week 24 hours 1 week

Inbound HTTP packets 70K 793K 6353K
Inbound HTTP flows 26K 102K 825K
HTTP worm sources 72 351 1582

scanned 56 303 1344
not scanned 16 48 238

Nimda sources 18 57 254
CodeRed II sources 54 294 997

WebDav exploit sources - - 336
HTTP worm flows 375 1396 7127

Nimda flows 303 1022 5392
CodeRed flows 72 374 1365

WebDav exploit flows - - 370

Table 3.2: Summary of traces.

In our experiments, we feed Autograph one of three packet traces from the DMZs of
two research labs; one from Intel Research Pittsburgh (Pittsburgh, USA) and two from ICSI
(Berkeley, USA). IRP’s Internet link was a T1 at the time our trace was taken, whereas ICSI’s
is over a 100 Mbps fiber to UC Berkeley. All three traces contain the full payloads of all
packets. The ICSI and ICSI2 traces only contain inbound traffic to TCP port 80, and are IP-
source-anonymized. Both sites have address spaces of 29 IP addresses, but the ICSI traces
contain more port 80 traffic, as ICSI’s web servers are more frequently visited than IRP’s.

For comparison, we obtain the full list of HTTP worms in the traces using Bro with
well-known signatures for the Code-Red, Code-RedII, and Nimda HTTP worms, and for
an Agobot worm variant that exploits the WebDAV buffer overflow vulnerability (present
only in the ICSI2 trace). Table 3.2 summarizes the characteristics of all three traces.

Autograph’s suspicious flow classifier identifies unsuccessful connection attempts in
each trace. For the IRP trace, Autograph uses ICMP host/port unreachable messages to
compile the list of suspicious remote IP addresses. As neither ICSI trace includes outbound
ICMP packets, Autograph infers failed connection attempts in those traces by looking at
incoming TCP SYN and ACK pairs.

We run Autograph with varied scanner detection thresholds, s ∈ {1, 2, 4}. These thresh-
olds are lower than those used by Bro and Snort, in the interest of catching as many worm
payloads as possible (crucial early in an epidemic). As a result, our flow classifier misclassi-

k = 16.

28

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Selected Content Block ID

Popularity Distribution of Suspicious Flows (s=1, m=64, a=64), ICSI

CodeRedII
Nimda(1)

Nimda(16)
Misclassified(1)

Figure 3.4: Prevalence of Selected Content Blocks in Suspicious Flow Pool, ICSI DMZ
trace (24 hrs): Most flows are worms except for a few misclassified flows. Autograph gener-
ates signatures for every worm in the pool.

fies flows as suspicious more often, and more innocuous flows are submitted for signature
generation.

We also vary the minimum content block size (m) and average content block size (a)
parameters that govern COPP, but fix the maximum content block size (M) at 1024 bytes.
We vary w ∈ [10%, 100%] in our experiments. Recall that w limits the fraction of suspicious
flows that may contribute content to the signature set. COPP adds content blocks to the
signature set (most prevalent content block first, and then in order of decreasing prevalence)
until one or more content blocks in the set match w percent of flows in the suspicious flow
pool.

We first characterize the content block prevalence distribution found by Autograph with
a simple example. Figure 3.4 shows the prevalence of content blocks found by COPP when
we run COPP with m = 64, a = 64, and w = 100% over a suspicious flow pool captured
from the full 24-hour ICSI trace with s = 1. At w = 100%, COPP adds content blocks to the
signature set until all suspicious flows are matched by one or more content blocks in the set.
Here, the x axis represents the order in which COPP adds content blocks to the signature
set (most prevalent first). The y axis represents the cumulative fraction of the population
of suspicious flows containing any of the set of signatures, as the set of signatures grows.
The trace contains Code-RedII, Nimda, and WebDAV worm flows. Nimda sources send 16
different flows with every infection attempt, to search for vulnerabilities under 16 different
URLs. The first signature COPP generates matches Code-RedII; 28% of the suspicious flows
are Code-RedII instances. Next, COPP selects 16 content blocks as signatures, one for each

29

3.4. Evaluation: Local Signature Generation

of the different payloads Nimda-infected machines transmit. About 5% of the suspicious
flows are misclassified flows. We observe that commonality across those misclassified flows
is insignificant. Thus, the content blocks from those misclassified flows tend to be lowly
ranked.

To measure true positives (fraction of worm flows found), we run Bro with the standard
set of policies to detect worms (distributed with the Bro software) on a trace, and then run
Bro using the set of signatures generated by Autograph on that same trace. The true positive
rate is the fraction of the total number of worms found by Bro’s signatures (presumed to find
all worms) also found by Autograph’s signatures.

To measure false positives (fraction of non-worm flows matched by Autograph’s signa-
tures), we create a sanitized trace consisting of all non-worm traffic. To do so, we eliminate all
flows from a trace that are identified by Bro as worms. We then run Bro using Autograph’s
signatures on the sanitized trace. The false positive rate is the fraction of all flows in the
sanitized trace identified by Autograph’s signatures as worms.

Because the number of false positives is very low compared to the total number of HTTP
flows in the trace, we report our false positive results using the efficiency metric proposed
by Staniford et al. [126]. Efficiency is the ratio of the number of true positives to the total
number of positives, both false and true. Efficiency is proportional to the number of false
positives.

The graphs in Figure 3.5 show the sensitivity and the efficiency of the signatures gener-
ated by Autograph running on the full 24-hour ICSI trace for varied m. Here, we present
experimental results for s = 2, but the results for other s are similar. Note that in these ex-
periments, we apply the signatures Autograph generates from the 24-hour trace to the same
24-hour trace used to generate them.

The x axis varies w. As w increases, the set of signatures Autograph generates leads to
greater sensitivity (fewer false negatives). This result is expected; greater w values cause
Autograph to add content blocks to the signature set for an ever-greater fraction of the sus-
picious flow pool. Thus, if a worm appears rarely in the suspicious flow pool, and thus
generates non-prevalent content blocks, those blocks will eventually be included in the sig-
nature set, for sufficiently large w.

However, recall from Figure 3.4 that about 5% of the suspicious flows are innocuous
flows that are misclassified by the port-scanner heuristic as suspicious. As a result, for w >

95%, COPP risks generating a less specific signature set, as COPP begins to select content
blocks from the innocuous flows. Those content blocks are most often HTTP trailers, found
in common across misclassified innocuous flows.

30

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.9 1.0

E
ffi

ci
en

cy

Coverage (w)

a=16
a=32
a=40
a=64

a=128

 0

 0.2

 0.4

 0.6

 0.8

 1

S
en

si
tiv

ity

Minimum block size (m) = 16, (ICSI)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.9 1.0

E
ffi

ci
en

cy

Coverage (w)

a=32
a=40
a=64

a=128

 0

 0.2

 0.4

 0.6

 0.8

 1

S
en

si
tiv

ity

Minimum block size (m) = 32, (ICSI)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.9 1.0

E
ffi

ci
en

cy

Coverage (w)

a=40
a=64

a=128

 0

 0.2

 0.4

 0.6

 0.8

 1

S
en

si
tiv

ity

Minimum block size (m) = 40, (ICSI)

 0

 0.2

 0.4

 0.6

 0.8

 1

E
ffi

ci
en

cy

Coverage (w)

a=64
a=128

 0

 0.2

 0.4

 0.6

 0.8

 1

S
en

si
tiv

ity

Minimum block size (m) = 64, (ICSI)

Figure 3.5: Sensitivity and Efficiency of Selected Signatures, ICSI DMZ trace (24 hrs):
Sensitivity represents the fraction of true positives. Efficiency represents the fraction of true
positives to all flagged flows.

31

3.4. Evaluation: Local Signature Generation

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 s

ig
na

tu
re

s

Coverage (=w)

Minimum block size (m) = 16, (ICSI)

 a=16
 a=32
 a=40
 a=64

 a=128

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 s

ig
na

tu
re

s

Coverage (=w)

Minimum block size (m) = 32, (ICSI)

 a=32
 a=40
 a=64

 a=128

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 s

ig
na

tu
re

s

Coverage (=w)

Minimum block size (m) = 40, (ICSI)

 a=40
 a=64

 a=128

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 s

ig
na

tu
re

s

Coverage (=w)

Minimum block size (m) = 64, (ICSI)

 a=64
 a=128

Figure 3.6: Number of Signatures, ICSI DMZ trace (24 hrs): For IDS efficiency, a smaller
number of signatures is preferred.

32

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

For this trace, COPP with w ∈ [90%, 94.8%] produces a set of signatures that is perfect: it
causes 0 false negatives and 0 false positives. Our claim is not that this w parameter value is
valid for traces at different sites, or even at different times; on the contrary, we expect that the
range in which no false positives and no false negatives occurs is sensitive to the details of
the suspicious flow population. Note, however, that the existence of a range of w values for
which perfect sensitivity and specificity are possible serves as a very preliminary validation
of the COPP approach—if no such range existed for this trace, COPP would always be forced
to trade false negatives for false positives, or vice-versa, for any w parameter setting. Further
evaluation of COPP on a more diverse and numerous set of traffic traces is clearly required
to determine whether such a range exists for a wider range of workloads.

During examination of the false positive cases found by Autograph-generated signa-
tures when w > 94.8%, we noted with interest that Autograph’s signatures detected Nimda
sources not detected by Bro’s stock signatures. There are only three stock signatures used
by Bro to spot a Nimda source, and the Nimda sources in the ICSI trace did not transmit
those particular payloads. We removed these few cases from the count of false positives,
as Autograph’s signatures correctly identified them as worm flows, and thus we had erro-
neously flagged them as false positives by assuming that any flow not caught by Bro’s stock
signatures is not a worm.

We now turn to the effect of content block size on the specificity and the number of
signatures Autograph generates. Even in the presence of innocuous flows misclassified as
suspicious, the largest average and minimum content block sizes (such as 64 and 128 bytes)
avoid most false positives; efficiency remains close to 1. We expect this result because in-
creased block size lowers the probability of finding common content across misclassified
flows during the signature generation process. Moreover, as signature length increases, the
number of innocuous flows that match a signature decreases. Thus, choosing larger a and m
values will help Autograph avoid generating signatures that cause false positives.

Note, however, there is a trade-off between content block length and the number of sig-
natures Autograph generates, too. For large a and m, it is more difficult for COPP to detect
commonality across worm flows unless the flows are identical. So as a and m increase, COPP
must select more signatures to match any group of variants of a worm that contain some
common content. The graphs in Figure 3.6 present the size of the signature set Autograph
generates as a function of w. For smaller a and m, Autograph needs fewer content blocks to
cover w percent of the suspicious flows. In this trace, for example, COPP can select a short
byte sequence in common across different Nimda payload variants (e.g., cmd.exe?c+dir
HTTP/1.0..Host:www..Connection: close....) when we use small a and m, such

33

3.4. Evaluation: Local Signature Generation

as 16. The size of the signature set becomes a particular concern when worms aggressively
vary their content across infection attempts, as we discuss in the next section. Before contin-
uing on, we note that results obtained running Autograph on the IRP and ICSI2 traces are
quite similar to those reported above.

3.4.2 Polymorphic and Metamorphic Worms

0

2

4

6

8

10

12

14

16

18

8 24 16 32 40 48 64 128

Average Chunk Size (a)

N
um

be
r

of
 S

ig
na

tu
re

s

m=8 m=16 m=24 m=32 m=40 m=48 m=64

Figure 3.7: Content block size vs. number of signatures: Autograph finds a short signa-
ture that match all instances of a polymorphic worm if content block size parameters (m:
minimum content block size) are set to small values.

We expect short content blocks to be most robust against worms that vary their content,
such as polymorphic worms, which encrypt their content differently on each connection,
and metamorphic worms, which obfuscate their instruction sequences on each connection.
Unfortunately (fortunately?) no such Internet worm has yet been reported in the wild. To
test Autograph’s robustness against these varying worms, we generate a synthetic polymor-
phic worm based on the Code-RedII payload. A Code-RedII worm payload consists of a
regular HTTP GET header, more than 220 filler characters, a sequence of Unicode, and the
main worm executable code. The Unicode sequence causes a buffer overflow and transfers
execution flow to the subsequent worm binary. We use random values for all filler bytes, and
even for the worm code, but leave the HTTP GET command and 56-byte Unicode sequence

34

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

fixed. This degree of variation in content is more severe than that introduced by the vari-
ous obfuscation techniques discussed by Christodorescu et al. [25]. As shown in Figure 3.7,
when a relatively short, invariant string is present in a polymorphic or metamorphic worm,
Autograph can find a short signature that matches it, when run with small average and min-
imum content block sizes. However, such short content block sizes may be unspecific, and
thus yield signatures that cause false positives.

3.5 P2P Traffic and Signature Generation

Since the early 2000s, peer-to-peer (P2P) networks have been widely used in large file shar-
ing application development, and the volume of P2P application traffic continues to grow [66].
P2P applications use many-to-many connections to distribute data efficiently, which leads
to similarity between P2P application traffic and worm traffic in terms of content prevalence
and wide-spreading behavior. This similarity could introduce significant amount of noise
into Autograph.

In this section, we analyze the effect of P2P application traffic on Autograph. In particu-
lar, we are interested in answering the following three questions.

• How frequently does Autograph generate false signatures due to P2P application traf-
fic?

• How similar is P2P traffic with worm traffic? And,

• how do we reduce the false positives caused by P2P application traffic?

To answer the questions, we test Autograph with a trace collected at a gateway of a
university campus network. We will describe the details of the trace in Section 3.5.1 as we
report our observation.

Our experiments show that Autograph does generate a few unspecific signatures from
P2P file sharing application traffic. Even though the number of those unspecific signatures is
small, the use of those unspecific signatures may interrupt one of the popular applications.
Our investigation of P2P application traffic shows that traffic from many popular P2P file
sharing applications mimics the traffic characteristics of worm traffic. Moreover, it may be
difficult to avoid generating unspecific signatures from P2P traffic if automated signature
generation systems rely only on content invariance and wide-spreading behavior analysis.
Combining other worm detection heuristics such as port scanner detection helps avoid gen-
erating unspecific signatures.

35

3.5. P2P Traffic and Signature Generation

3.5.1 Empirical Results: False Positives

We first examine the quality of the signatures Autograph generates in an online setting and
the number of signatures generated from P2P application traffic. In an online deployment,
Autograph holds suspicious flows observed during the last t minutes, provided that the
number of suspicious flows accumulated exceeds θ.

The suspicious flow pool stores all suspicious flows observed during the last t minutes.
If t is too short, it is unlikely that the pool will contain enough flows to generate a signature
for a slowly propagating worm early in its propagation. Too long a t is also undesirable, as
the number of flows Autograph has to store and process will be large. Moreover, the longer
t is, the more likely the pool will include content blocks from innocuous flows from multiple
sources. We enable filtering of content blocks that originate at only one source IP address
before signature generation, as described in Section 3.3. In this experiment, we consider t =
10 minutes, which is long enough for this network to generate signatures for the CodeRedI-
v2 worm before the worm infects 5% of vulnerable hosts in the Internet.5 We set w and s to
be w = 94% and s = 2 respectively. We set the average content block size a = 64Bytes.

In our experiments, we feed Autograph an 1-hour traffic payload trace collected from
a campus network gateway in August 2005. The network has one class-B address block
and one class-C address block. The trace was captured with a DAG-4 monitor and packet
capture software [44] installed on an 1 Gbps interface at the border gateway. The gateway
has three 1 Gbps interfaces and performs load balancing. Thus, the trace capture one third
of incoming traffic toward the campus. The trace includes 376 millions of IP packets (i.e., 185
GB in byte volume). We check the trace with bro and its worm signature definitions [102],
and find none of well-known recent worms are present in the trace.

With the above parameter setting, Autograph generates four ’unspecific’ signatures: two
signatures from port 80, and two other signatures from port 9493. Figure 3.8 shows those
four payload pattern strings with the port numbers. Port 9493 is used by a P2P-based file
sharing system (FileGuri 6) popular in Asia. Port 80 is a well-known web port. Both ports
use the HTTP-based protocol, so we could easily find where this payload pattern belongs
in each flow. SIG1 specifies the application name and its version number, and they appear
in the HTTP header portion of every control message of the P2P system. SIG3 and SIG4

are from the HTTP headers of messages. Understanding the structure of the HTTP protocol,

5The measurement window length t is computed based on simulation, where every infected host scans at
the rate of 358 scans/minute and 360, 000 vulnerable hosts exist. The campus network has more than 3300
hosts with port 80 open.

6FileGuri (Korean P2P file sharing application) http://www.fileguri.com

36

http://www.fileguri.com

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

we can use signature blacklist heuristic for those three signatures. SIG2 is a data query
message. The values for each argument in the query change over time, so it is difficult to
exclude this type of signatures from Autograph with the static signature blacklist heuristic.

SIG1 (port 9493) *\/*\x0d\x0aUser-Agent: Freechal P2P\/1.0\x0d\x0aP2P-Authen

SIG2 (port 9493) GET \/?p2pmethod=search&keyword=%XX%XX%XX%XX&extension=&time
out=2000&searchdownload=1&nowaiting=0 HTTP\/1.1\x0d\x0aAccep
t: *\/*\x0d\x0aUser-Agent: Freechal P2P\/1.0\x0d\x0aP2P-Authen

SIG3 (port 80) ozilla\/5.0(compatible; Yahoo! Slurp; http:\/\/help.yahoo.com
\/help\/us\/ysearch\/s

SIG4 (port 80) lurp)\x0d\x0aAccept-Encoding: gzip, x-gzip\x0d\x0a\x0d\x0a

Figure 3.8: Unspecific Signatures Generated by Autograph: port 9493 is used by a P2P-
based file sharing system. The system uses HTTP. SIG1 belongs to the header of messages
that indicates the version of application software. SIG2 is from a query message. Private
parts are sanitized with XX. SIG3 is from a web search crawler, and SIG4 is from HTTP
ending. Except the SIG2, generating signature blacklist for them is not difficult.

Autograph generated only a few signatures in our experiment and most of them can
be excluded by signature blacklisting. However, Autograph generates signatures from P2P
traffic that are not easily suppressed with static signature blacklist entries.

3.5.2 P2P Application Traffic Properties

We examine P2P traffic in terms of content prevalence, address dispersion, and burstiness.
If those properties are strongly similar to that of a worm, it is not impossible for Autograph
to generate many signatures from P2P traffic. We extracted P2P application traffic using
the technique proposed by Karagiannis et al. [66] along with the list of well-known P2P
applications ports shown in Figure 3.9.

Content Prevalence.

Most popular P2P file sharing applications (i.e, eDonkey and FileGuri) in our traces tend
to send similar messages to peers because of their protocol design, and thus, interfere with
content prevalence measurement. To find how frequently P2P applications exchange similar
payloads, we extracted all 48-byte overlapping substrings from each packet and counted the
occurrence in 10 minute measurement interval. Because the number of substrings is huge,
we randomly sampled them with a probability 1/64. Figure 3.10 shows the cumulative

37

3.5. P2P Traffic and Signature Generation

Name Protocol Ports Name Protocol Ports
eDonkey [42] tcp 4662-4667, 4242 P2P-Radio [99] tcp 2000, 2222

udp 4662-4665, 4672 udp 2010
iMesh [62] tcp 5000 vShare [135] tcp 8404
Soribada [124] udp 7674-7675, 22321 Blubster [9] udp 41170
WinMX [144] tcp 6699 Shareshare [117] tcp 6599

udp 6257 udp 6777
BitTorrent [7] tcp 6881-6889 DirectConnect [39] tcp,udp 411-412
Kazaa [68] tcp 1214 Napster [92] tcp 6600-6699
Gnutella [29] tcp,udp 6346-6347 Clubbox [97] tcp 19101
Fileguri [48] tcp 9493 Madster(AIMster) [80] tcp 23172, 9922
HotLine [59] tcp,udp 5500–5503 GoBoogy [54] tcp,udp 5335
MP2P [90] tcp,udp 41170

Figure 3.9: Ports used by P2P applications

distribution function of payload patterns (substrings) for each P2P application traffic. There
are frequently occurring payload patterns. Because ’query’ messages are multicast to all
nodes, 7.5% of FileGuri and 20% of eDonkey payload patterns appeared more than once
during the measurement period. The values in the legend show the maximum number of
occurrences observed. Even when a P2P application is designed to avoid such common
message exchanges, popular files distributed over the P2P network can potentially result
in the file content downloaded by many hosts during their peak periods of popularity. In
particular, the file striping techniques that BitTorrent and other P2P file sharing systems
employ, worsen the situation.

Address Dispersion

P2P file sharing applications take advantage of many-to-many communication to speed file
downloading and improve availability of data. We now examine the fan-out of P2P hosts
and non-P2P hosts based on the identified connection type. Figure 3.11 compares the num-
ber of external peers of internal P2P hosts and non-P2P hosts for a 5 minute time period in
the trace.

Note that the same host can be both a P2P and non-P2P host. Not surprisingly, about 50%
of P2P hosts have more than 30 peers, while most non-P2P hosts tend to have fewer than
10 peers. A significant fraction (> 10%) of P2P hosts are contacted by thousands of external
hosts for 10 minutes. Less than 1.1% of non-P2P hosts communicate with more than 10
peers and less than 0.2% of non-P2P hosts have more than a hundred peers. Except for a
few popular web servers, game hosts, and DNS servers, those non-P2P hosts with hundreds

38

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

10
0

10
1

10
2

10
3

10
4

0.75

0.8

0.85

0.9

0.95

1
10 minutes, k2005, 232 hash space

Occurrence

F
ra

ct
io

n
of

 P
at

te
rn

Bittorrent (max 100)
Clubbox (max 15)
eDonkey (max 2666)
Fileguri (max 100)
Other (max 100)

Figure 3.10: CDF of Payload Pattern Strings for Each P2P Application: there are non-negligible
fraction of frequently appearing P2P payload pattern strings. Because of multicast search requests,
more than 5% of patterns from FileGuri traffic appear more than once. eDonkey patterns have less
similarity across requests, but one of the payload patterns in eDonkey traffic appeared 2666 times.

of peers also have well-known P2P ports open, so we assume that those connections also
belong to P2P communications.

Figure 3.12 shows the address dispersion of payload patterns from popular P2P systems.
Each dot represents a payload pattern string that appeared more than 30 times in a 10 minute
interval. The position of a dot represents the number of distinct source IPs and destination
IPs that send the corresponding payload pattern string. Based on the popularity and the
content distribution mechanism, P2P applications show different patterns in the number of
source and destination IPs. However, all four graphs show that there are payload patterns
that satisfy both content prevalence and address dispersion. The payload patterns that are
sent to hundreds of destinations by tens of sources result in false signature generation be-
cause they satisfy the address dispersion criteria even when a content-based signature gen-
eration system selects payload pattern strings exchanged between hundreds sources and
destinations.

Burstiness

When a P2P client requests a file search or a download of file segments, the client sends
out the request messages to multiple peers. During the peak periods of popular files, the
same payload patterns are sent by multiple clients within a short period of time, and those
patterns will satisfy the content prevalence and address dispersion criteria.

39

3.5. P2P Traffic and Signature Generation

10
0

10
1

10
2

10
3

10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of External Peers

F
ra

ct
io

n
of

 L
oc

al
 H

os
ts

5 minutes, 1613 P2P hosts, 57071 non−P2P hosts

P2P (max 5306 peers)
non−P2P (max 5026 peers)

Figure 3.11: Number of external peers of P2P hosts and non-P2P hosts: CDF of internal hosts based
on the number of external peers. P2P hosts tend to communicate with many hosts. More than 50%
of P2P hosts were contacted by more than 10 external hosts for 5 minutes, while most non-P2P hosts
were contacted by less than ten external hosts. This trend could look like the address dispersion
property of worm traffic.

We examine the fraction of P2P traffic in our data sets. P2P applications contribute to
more than 40% of the traffic, and this traffic is increasing over time. We compared the frac-
tion of P2P traffic measured at the same gateway. In 2004, known P2P traffic accounts for
39% of total byte volume and 31% of total packet counts. In 2006, the fraction of P2P traffic
reached 42% of byte volume and 50% of packet counts. Note that our P2P traffic identifi-
cation in this measurement may miss some P2P traffic and our result underestimates the
fraction of actual P2P applications. We observe that more applications are adopting P2P
techniques, and provide options for users to choose the communication port. As P2P com-
munication becomes more popular and more proprietary P2P protocols penetrate, pattern-
extraction-based signature generation will become more difficult because P2P traffic may
mimic worm behavior.

3.5.3 Preventing Unspecific Signature Generation from P2P Traffic

Despite many similarities between P2P and worm traffic, Autograph generates few signa-
tures. This is because Autograph combines suspicious flow classification heuristics, such as
port-scanner’s flow detection, with content prevalence and wide-spreading behavior mea-
surement. However, it is not impossible for a P2P host to behave like a port-scanner. For
example, in a BitTorrent network, a central server (called a tracker) maintains a list of clients

40

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

of distinct sources

of

 d
is

tin
ct

 d
es

tin
at

io
ns

(a) BitTorrent

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

of

 d
is

tin
ct

 d
es

tin
at

io
ns

of distinct sources

(b) Clubbox

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

of

 d
is

tin
ct

 d
es

tin
at

io
ns

of distinct sources

(c) eDonkey

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

of

 d
is

tin
ct

 d
es

tin
at

io
ns

of distinct sources

(d) FileGuri

Figure 3.12: Distinct source and destination counts per applications: Each dot represents the num-
ber of distinct sources (x-axis) and destinations (y-axis) of a payload pattern that appeared more than
10 times during a 10 minute time interval. Payload patterns exchanged between many hosts satisfy
address dispersion and content prevalence criteria. Thus, signature generation systems that rely only
on the two properties will generate ’unspecific’ signatures based on the payload patterns.

currently downloading a file, and clients who want the same file download segments of the
file from the listed clients. The list may be stale, causing some clients to contact inactive
clients. In this case, the requesting client IP addresses are classified as port scanners and
other requests from the IPs are considered to be suspicious. The common payload patterns
from BitTorrent message headers and popular file hashes meet the content prevalence and
address dispersion criteria, resulting in generated signatures. There are two heuristics Au-
tograph uses to avoid such misclassification.

Bookkeeping Active Servers: Autograph can keep track of server hosts. When a server
becomes unavailable, Autograph does not count port-scans toward the server’s IP address
for a while. However, this may result in delay in the real worm source IP address detection,
and thus cause delay in worm signature detection.

41

3.6. Attacks and Limitations

Higher Port Scanner Detection Threshold for P2P Ports: Autograph can choose a higher
threshold s for P2P traffic monitoring. For example, when we use the scanner detection
threshold s ∈ [3, 4] on the same trace, Autograph does not generate any signature from P2P
traffic. Similarly, combining better worm flow selection heuristics with content prevalence
analysis reduces the false positive rate. However, no heuristic is perfect; Heuristics can
introduce more false negatives. Thus, choosing heuristics must be done carefully.

3.6 Attacks and Limitations

We catalog a few attacks that one might mount against Autograph, and limitations of the
current system.

Overload. Autograph reassembles suspicious TCP flows. Flow reassembly is costly in
state in comparison with processing packets individually, but defeats the subterfuge of frag-
menting a worm’s payload across many small packets [102]. We note that the number of
inbound flows a monitor observes may be large, in particular after a worm spreads success-
fully. If Autograph tries to reassemble every incoming suspicious flow, it may be susceptible
to DoS attack. We note that Autograph treats all destination ports separately, and thus paral-
lelizes well across ports; a site could run multiple instances of Autograph on separate hard-
ware, and thus increase its aggregate processing power, for flow reassembly and all other
processing. Autograph may also sample suspicious flows when the number of suspicious
flows to process exceeds some threshold; we intend to investigate this heuristic in future.

Source-address-spoofed port scans. Port scans from spoofed IP source addresses are a
peril for most IDSes. The chief reason for monitoring port scans is to limit the damage
their originators can inflict, most often by filtering packets that originate from known port
scanners. Such filtering invites attackers to spoof port scans from the IP addresses of those
whose traffic they would like to block [102, 64]. Source-spoofed port scans can be used
to mount a new type of Denial-of-Service (DoS) attacks. A source-spoofing attacker could
cause a remote source’s traffic to be included by Autograph in signature generation.

Fortunately, a simple mechanism holds promise for rendering both these attacks ineffec-
tive. Autograph classifies an inbound SYN destined for an unpopulated IP address or port
with no listening process as a port scan. To identify TCP port scans from spoofed IP source
addresses, an Autograph monitor could respond to such inbound SYNs with a SYN/ACK,
provided the router and/or firewall on the monitored network can be configured not to

42

Chapter 3. Automated Worm Signature Generation using Content Prevalence Analysis

respond with an ICMP host or port unreachable. If the originator of the connection re-
sponds with an ACK with the appropriate sequence number, the source address on the SYN
could not have been spoofed. The monitor may thus safely view all source addresses that
send proper ACK responses to SYN/ACKs as port scanners. Non-ACK responses to these
SYN/ACKs (RSTs or silence) can then be ignored; i.e., the source address of the SYN is not
recorded as a port scanner. Note that while a non-source-spoofing port scanner may choose
not to respond with an ACK, any source that hopes to complete a connection and success-
fully transfer an infecting payload must respond with an ACK, and thus identify itself as a
port scanner. Jung et al. independently propose this same technique in [64].

Worms with scanning suppression techniques. If a worm employes scanning suppression
techniques, such as hit-list scanning (i.e a Warhol worm), permutation scanning (i.e. worms
that use self-coordinating scanning), topological scanning (i.e. worms that harvest the next
victims’ IP addresses from already infected victim), internal-sized hit list scanning (i.e. a flash
worm) [127], rather than randomly scans IP addresses that may or may not correspond to
listening servers, Autograph’s port-scan-based suspicious flow classifier will fail utterly to
include that worm’s payloads in signature generation. Malicious payload gathering meth-
ods such as honeypots are similarly stymied by hit-list worm propagation. Nevertherless,
any innovation in the detection of flows generated by hit-list based worms may be incorpo-
rated into Autograph, to augment or replace the naive port-scan-based heuristic used in our
prototype. For example, we envision that Autograph captures all the flows in and out of the
potential bot hosts detected by the hit-list worm detection algorithm described in Collins
and Reiter’s work [31], and applies payload analysis against all the flows to find payload-
based signatures of the worm.

3.7 Summary

We have presented Autograph, a system that automatically generates signatures for novel
Internet worms that propagate using TCP transport and perform random scanning. Auto-
graph generates signatures by analyzing the popularity of portions of flow payloads, with-
out requiring knowledge of application protocols above the TCP layer. We evaluated the
prototype of Autograph with a real DMZ trace and showed that Autograph can produce
signatures that exhibit high sensitivity and high selectivity. P2P application traffic shares
many similarities with worm traffic, which makes purely content-based signature genera-
tion difficult to produce signatures specific to worms. Combination with suspicious flow

43

3.7. Summary

selection heuristics helps reduce false positives caused by P2P application, but the choice of
such heuristics may narrow the range of detectable worms, and must be made carefully.

44

Chapter 4

Distributed Signature Generation with
Port-Scanner List Sharing

At the start of a worm’s propagation, the aggregate rate at which all infected hosts scan the
monitored IP address space is quite low. Because Autograph relies on overhearing unsuc-
cessful scans to identify suspicious source IP addresses, early in an epidemic an Autograph
monitor will be slow to accumulate suspicious addresses, and in turn slow to accumulate
worm payloads. In this chapter, we examine Autograph’s speed in detecting a signature for
a new worm after the worm’s release and utilize distributed port-scanner detection to expe-
dite Autograph’s signature detection. The main contributions of our work are summarized
as follows:

• We demonstrate that operating multiple, distributed instances of Autograph signifi-
cantly speeds up this process, compared to running a single instance of Autograph
on a single edge network. We use a combination of simulation of a worm’s propa-
gation and DMZ-trace-driven simulation to evaluate the system in the online setting;
our sense of ethics restrains us from experimentally measuring Autograph’s speed at
detecting a novel worm in vivo.

• We propose the tattler mechanism that allows distributed Autograph monitors to tattle
to one another about port scanners without overloading the network even when the
number of port scanners increases due to the worm propagation.

Measuring how quickly Autograph detects and generates a signature for a newly re-
leased worm is important because it has been shown in the literature that successfully con-
taining a worm requires early intervention. Recall that Provos’ results [105] show that re-
versing an epidemic such that fewer than 50% of vulnerable hosts ever become infected can

45

4.1. Single vs. Multiple Monitors

require intervening in the worm’s propagation before 5% of vulnerable hosts are infected.
Two delays contribute to the total delay of signature generation:

• How long must an Autograph monitor wait until it accumulates enough worm pay-
loads to generate a signature for that worm?

• Once an Autograph monitor receives sufficient worm payloads, how long will it take
to generate a signature for the worm, given the background “noise” (innocuous flows
misclassified as suspicious) in the trace?

We first compare the signature detection speed when we rely on a single Autograph
monitor and utilize multiple, distributed instances of Autograph monitors in Section 4.1.
Motivated by the analysis, we propose, in Section 4.2, an extension of Autograph that allows
distributed monitors to collaboratively identify suspicious addresses and speeds up suspi-
cious address identification. We measure the performance of the distributed Autograph in
terms of its bandwidth consumption and worm payload accumulation speed in Section 4.3
and Section 4.4, respectively. In Section 4.5, we evaluate the signature detection time when
a Code-RedI-v2-like worm propagates. Our results elucidate the fundamental trade-off be-
tween early generation of signatures for novel worms and the specificity of these generated
signature. After discussing the value of distributed monitoring in a heterogeneous network
environment and the possible attacks against distributed Autograph in Section 4.6, we sum-
marize our findings in Section 4.7.

4.1 Single vs. Multiple Monitors

The probability of observing probes from a worm-infected host is proportional to the size
of monitored network, D, and the fraction of unoccupied IP addresses in the network, r.
The probability is D·r

Ω when Ω is the size of the worm’s scanning space. For a random-
ized scanning worm with the probe rate s, we can model the number of scans as a Poisson
process. The probability that si scans hit the monitor during a time interval of length t is
Psi(t) = e−αt·(αt)si

si!
, α = s · Dr

Ω . Thus, the probability that the Autograph monitor receives
more than or equal to s scans from a worm-infected source is 1−∑s−1

si=0 Psi(t).
For example, let us assume that our Autograph monitor monitors a /16 IP address space,

90% of the IP addresse space is not occupied, and a worm-infected host scans the 232 IP
address space with the scanning rate s = 600 probes/minute. Then the probability to catch
at least 2 probes from a single host (s = 2) is only 0.44, even 3 hours after the host is infected.

46

Chapter 4. Distributed Signature Generation with Port-Scanner List Sharing

To understand the signature detection speed during a worm propagation, we simulate a
Code-RedI-v2-like worm, which is after that of Moore et al. [89]. We simulate a vulnerable
population of 338,652 hosts, the number of infected source IPs observed in [85] that are
uniquely assignable to a single Autonomous System (AS) in the BGP table data (obtained
from University of Oregon Route Views Project 1) of the 19th of July, 2001, the date of the
Code-Red outbreak. There are 6378 ASes that contain at least one such vulnerable host in
the simulation. Unlike Moore et al., we do not simulate the reachability among ASes in that
BGP table; we make the simplifying assumption that all ASes may reach all other ASes. This
assumption may cause the worm to spread somewhat faster in our simulation than in Moore
et al.’s.

We assign actual IP address ranges for real ASes from the BGP table snapshot to each
AS in the simulation, according to a truncated distribution of the per-AS IP address space
sizes from the entire BGP table snapshot. The distribution of address ranges we assign is
truncated in that we avoid assigning any address blocks larger than /16s to any AS in the
simulation. We avoid large address blocks for two reasons: first, few such monitoring points
exist, so it may be unreasonable to assume that Autograph will be deployed at one, and
second, a worm programmer may trivially code a worm to avoid scanning addresses within
a /8 known to harbor an Autograph monitor. Our avoidance of large address blocks only
lengthens the time it will take Autograph to generate a worm signature after a novel worm’s
release.

We assume 50% of the address space within the vulnerable ASes is populated with reach-
able hosts, that 25% of these reachable hosts run web servers, and we fix the 338,652 vulner-
able web servers uniformly at random among the total population of web servers in the
simulation.

Finally, the simulated worm propagates using random IP address scanning over the en-
tire routable IPv4 address space, and a probe rate of 10 probes per second. We simulate
network and processing delays, randomly chosen in [0.5, 1.5] seconds, between a victim’s
receipt of an infecting connection and its initiation of outgoing infection attempts. We begin
the epidemic by infecting 25 vulnerable hosts at time zero. Figure 4.1 shows the growth of
the epidemic within the vulnerable host population over time. After 135 minutes, the worm
infects 10% of vulnerable hosts, and after 15 minutes from then, it infects 25% of vulnerable
hosts.

In these first simulations, we place Autograph monitors at a randomly selected 1% of
the ASes that include vulnerable hosts (63 monitors). Figure 4.2 shows the maximum and

1http://www.routeviews.org

47

http://www.routeviews.org

4.1. Single vs. Multiple Monitors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250
In

fe
ct

ed
 M

ac
hi

ne
s

(%
)

Time (min)

Figure 4.1: Infection progress for a simulated Code-RedI-v2-like worm.

 1

 10

 100

 1000

 10000

 0 50 100 150 200

N
um

be
r

of
 P

ay
lo

ad
s

Time (min)

s=1 (Max)
s=4 (Max)

s=1 (Median)
s=4 (Median)

Figure 4.2: Payloads observed over time: single, isolated monitors.

median numbers of payloads detected over time across all monitors; note that the y axis is
log-scaled. First, let us consider the case where only a single site on the Internet deploys
Autograph on its network. In this case, it is the median time required by all 63 monitors to
detect a given number of flows that approximates the expected time for a singleton monitor
to do the same. When monitors identify port scanners aggressively, after a single failed
connection from a source address (s = 1), the median monitor accumulates 5 worm payloads
after over 150 minutes. Using the more conservative port-scan threshold s = 4, the median
monitor accumulates no payloads within 167 minutes. These results are not encouraging—
from Figure 4.1, we know that after 150 minutes, over 25% of vulnerable hosts have been
infected.

Now let us consider the case where 63 monitors are used. If we presume that the first
monitor to generate a signature for the worm may (nearly) instantly disseminate that signa-
ture to all who wish to filter worm traffic, by application-level multicast [18] or other means,

48

Chapter 4. Distributed Signature Generation with Port-Scanner List Sharing

the earliest Autograph can possibly find the worm’s signature is governed by the “luckiest”
monitor among the 63 monitors—the first one to accumulate the required number θ of worm
payloads. The “luckiest” monitor in this simulated distributed deployment detects 5 worm
payloads shortly before 66 minutes have elapsed. This result is far more encouraging—after
66 minutes, fewer than 1% of vulnerable hosts have been infected. Thus, provided that all
Autograph monitors disseminate the worm signatures they detect in a timely fashion, there
is immense benefit in the speed of detection of a signature for a novel worm when Auto-
graph is deployed distributedly, even at as few as 1% of ASes that contain vulnerable hosts.

Using the more conservative port-scan threshold s = 4, the monitor in the distributed
system to have accumulated the most worm payloads after 10000 seconds has still only
collected 4. Here, again, we observe that targeting increased specificity (by identifying sus-
picious flows more conservatively) comes at a cost of reduced sensitivity; in this case, sensi-
tivity may be seen as the number of worm flows matched over time.

Running multiple independent Autograph monitors clearly pays a dividend in faster
worm signature detection. A natural question that follows is whether detection speed might
be improved further if the Autograph monitors shared information with one another in
some way.

4.2 tattler: Distributed Gathering of Suspect IP Addresses

We now introduce an extension to Autograph named tattler that, as its name suggests, shares
suspicious source addresses among all monitors, toward the goal of accelerating the accu-
mulation of worm payloads.

We assume in the design of tattler that a multicast facility is available to all Autograph
monitors, and that they all join a single multicast group. While IP multicast is not a broadly
deployed service on today’s Internet, there are many viable end-system-oriented multicast
systems that could provide this functionality, such as Scribe [18]. In brief, Autograph mon-
itor instances could form a Pastry overlay, and use Scribe to multicast to the set of all mon-
itors. We further assume that users are willing to publish the IP addresses that have been
port scanning them.2

The tattler protocol is essentially an application of the RTP Control Protocol (RTCP) [115],
originally used to control multicast multimedia conferencing sessions, slightly extended for
use in the Autograph context. The chief goal of RTCP is to allow a set of senders who all sub-

2In cases where a source address owner complains that his address is advertised, the administrator of an
Autograph monitor could configure Autograph not to report addresses from the uncooperative address block.

49

4.2. tattler: Distributed Gathering of Suspect IP Addresses

scribe to the same multicast group to share a capped quantity of bandwidth fairly. In Auto-
graph, we seek to allow monitors to announce to others the (IP-addr, dst-port) pairs
they have observed port scanning themselves, to limit the total bandwidth of announce-
ments sent to the multicast group within a pre-determined cap, and to allocate announce-
ment bandwidth relatively fairly among monitors. We recount the salient features of RTCP
briefly:

• A population of senders all joins the same multicast group. Each is configured to re-
spect the same total bandwidth limit, B, for the aggregate traffic sent to the group.

• Each sender maintains an interval value I it uses between its announcements. Trans-
missions are jittered uniformly at random within [0.5, 1.5] times this timer value.

• Each sender stores a list of the unique source IP addresses from which it has received
announcement packets. By counting these, each sender learns an estimate of the total
number of senders, N. Entries in the list expire if their sources are not heard from
within a timeout interval.

• Each sender computes I = N/B. Senders keep a running average of the sizes of all
announcement packets received, and scale I according to the size of the announcement
they wish to send next.

• When too many senders join in a brief period, the aggregate sending rate may ex-
ceed C. RTCP uses a reconsideration procedure to combat this effect, whereby senders
lengthen I probabilistically.

• Senders which depart may optionally send a BYE packet in compliance with the I
inter-announcement interval, to speed other senders’ learning of the decrease in the
total group membership.

• RTCP has been shown to scale to thousands of senders.

In the tattler protocol, each announcement a monitor makes contains between one and
100 port-scanner reports of the form (src-IP, dst-port). Monitors only announce
scanners they’ve heard themselves. Hearing a report from another monitor for a scanner
suppresses announcement of that scanner for a refresh interval. After a timeout interval, a
monitor expires a scanner entry if that scanner has not directly scanned it and no other mon-
itor has announced that scanner. Announcement packets are sent in accordance with RTCP.

50

Chapter 4. Distributed Signature Generation with Port-Scanner List Sharing

 0

 5

 10

 15

 20

 0 50 100 150 200

B
an

dw
id

th
 (

kb
ps

)

Time (min)

10% deployment
1% deployment

0.1% deployment

Figure 4.3: Bandwidth consumed by tattler: during a Code-RedI v2 epidemic, for varying
numbers of deployed monitors. The peak bandwidth required by 10% deployment (630
monitors) is a mere 15Kbps.

Every time the interval I expires, a monitor sends any announcements it has accumulated
that haven’t been suppressed by other monitors’ announcements. If the monitor has no port
scans to report, it instead sends a BYE, to relinquish its share of the total report channel
bandwidth to other monitors.

4.3 Bandwidth Consumption

One of the requirements in signature detection system design is the bandwidth efficiency.
Now we turn to the estimation of required bandwidth to run tattler. We are particularly in-
terested in the bandwidth consumption during a worm epidemic episode because the num-
ber of scanners is unusually high during the time.

Figure 4.3 shows the bandwidth consumed by the tattler protocol during a simulated
Code-RedI-v2 epidemic, for three deployed monitor populations (6, 63, and 630 monitors).
We use an aggregate bandwidth cap C of 512 Kbps in this simulation. Note that the peak
bandwidth consumed across all deployments is a mere 15Kbps. Thus, sharing port scan-
ner information among monitors is quite tractable. While we’ve not yet explicitly explored
dissemination of signatures in our work thus far, we expect a similar protocol to tattler will
be useful and scalable for advertising signatures, both to Autograph monitors and to other
boxes that may wish to filter using Autograph-generated signatures.

Note well that “background” port scanning activities unrelated to the release of a new
worm are prevalent on the Internet, and tattler must tolerate the load caused by such back-

51

4.4. Worm Payload Accumulation Speed

 1

 10

 100

 1000

 10000

 0 50 100 150 200

N
um

be
r

of
 P

ay
lo

ad
s

Time (min)

s=1 (Max)
s=4 (Max)

Figure 4.4: Payloads observed over time (with Tattler): tattler among 63 distributed moni-
tors.

ground port scanning. dshield.org [41] reports daily measurements of port scanning ac-
tivities, as measured by monitors that cover approximately 219 IP addresses. The dshield.org
statistics from December 2003 and January 2004 suggest that approximately 600,000 unique
(source-IP, dst-port) pairs occur in a 24-hour period. If we conservatively dou-
ble that figure, tattler would have to deliver 1.2M reports per day. A simple back-of-the-
envelope calculation reveals that tattler would consume 570 bits/second to deliver that
report volume, assuming one announcement packet per (source-IP, dst-port) pair.
Thus, background port scanning as it exists in today’s Internet represents insignificant load
to tattler.

4.4 Worm Payload Accumulation Speed

We now measure the effect of running tattler on the time required for Autograph to accumu-
late worm flow payloads in a distributed deployment. Figure 4.4 shows the time required
to accumulate payloads in a deployment of 63 monitors that use tattler. Note that for a
port scanner detection threshold s = 1, the shortest time required to accumulate 5 payloads
across monitors has been reduced to approximately 1500 seconds, from nearly 4000 seconds
without tattler (as shown in Figure 4.2). Thus, sharing scanner address information among
monitors with tattler speeds worm signature detection in this simulated worm propagation.

In sum, running a distributed population of Autograph monitors holds promise for
speeding worm signature generation in two ways: it allows the “luckiest” monitor that first
accumulates sufficient worm payloads determine the delay until signature generation, and it

52

Chapter 4. Distributed Signature Generation with Port-Scanner List Sharing

allows monitors to chatter about port-scanning source addresses, and thus all monitors clas-
sify worm flows as suspicious earlier. Note, however, that the speed of the worm payload
accumulation in each monitor is still bounded by the size and the location of each monitored
network. In Chapter 5, we investigate the upper bound of the payload accumulation speed
in this distributed Autograph system and propose techniques to overcome the limitation.

4.5 Online, Distributed, DMZ-Trace-Driven Evaluation

The simulation results presented thus far have quantified the time required for Autograph to
accumulate worm payloads after a worm’s release. We now use DMZ-trace-driven simula-
tion on the one-day ICSI trace (that contains inbound port 80 traffic as described in Table 3.2)
to measure how long it takes Autograph to identify a newly released worm among the back-
ground noise of flows that are not worms, but have been categorized by the flow classifier as
suspicious after port scanning the monitor. We are particularly interested in the trade-off
between early signature generation (sensitivity across time, in a sense) and specificity of the
generated signatures. We measure the speed of signature generation by the fraction of vul-
nerable hosts infected when Autograph first detects the worm’s signature, and the specificity
of the generated signatures by counting the number of signatures generated that cause false
positives. We introduce this latter metric for specificity because raw specificity is difficult to
interpret: if a signature based on non-worm-flow content (from a misclassified innocuous
flow) is generated, the number of false positives it causes depends strongly on the traffic
mix at that particular site. Furthermore, an unspecific signature may be relatively straight-
forward to identify as such with “signature blacklists” (disallowed signatures that should
not be used for filtering traffic) provided by a system operator.

We simulate an online deployment of Autograph as follows. We run a single Autograph
monitor on the ICSI trace. To initialize the list of suspicious IP addresses known to the mon-
itor, we run Bro on the entire 24-hour trace using all known worm signatures, and exclude
worm flows from the trace. We then scan the entire resulting worm-free 24-hour trace for port
scan activity, and record the list of port scanners detected with thresholds of s ∈ {1, 2, 4}. To
emulate the steady-state operation of Autograph, we populate the monitor’s suspicious IP
address list with the full set of port scanners from one of these lists, so that all flows from
these sources will be classified as suspicious. We can then generate a background noise trace,
which consists of only non-worm flows from port scanners, as would be detected by a run-
ning Autograph monitor for each of s ∈ {1, 2, 4}. Figure 4.5 shows the quantity of non-worm
noise flows in Autograph’s suspicious traffic pool over the trace’s full 24 hours.

53

4.5. Online, Distributed, DMZ-Trace-Driven Evaluation

 0

 5

 10

 15

 20

6:00 12:00 18:00 24:00

B
ac

kg
ro

un
d

N
oi

se s=1

 0

 5

 10

 15

 20

6:00 12:00 18:00 24:00

B
ac

kg
ro

un
d

N
oi

se s=2

0

 5

 10

 15

 20

B
ac

kg
ro

un
d

N
oi

se s=4

Figure 4.5: Background “noise” flows classified as suspicious vs. time: with varying port-
scanner thresholds; ICSI DMZ trace.

We simulate the release of a novel worm at a time of our choosing within the 24-hour
trace as follows. In this simulation, we configure Autograph to perform the content preva-
lence analysis every 10 minutes (while we suggest performing the analysis as frequently as
possible in the real deployment, in order to generate signatures for fast propagating worms
quickly), and a holding period t for the suspicious flow pool of 30 minutes. Using the sim-
ulation results from Section 4.2, we count the number of worm flows expected to have been
accumulated by the “luckiest” monitor among the 63 deployed during each 30-minute pe-
riod, at intervals of 10 minutes. Note that the luckiest monitor differs from interval to in-
terval, and we take the count from the luckiest monitor in each interval. We then add that
number of complete Code-RedI-v2 flows (available from the pristine, unfiltered trace) to the
suspicious traffic pool from the corresponding 30-minute portion of the ICSI trace in order
to produce a realistic mix of DMZ-trace noise and the expected volume of worm traffic (as
predicted by the worm propagation simulation). In these simulations, we vary θ, the total
number of flows that must be found in the suspicious traffic pool to cause signature genera-
tion to be triggered. All simulations use w = 95%. Because the quantity of noise varies over
time, we uniformly randomly choose the time of the worm’s introduction, and take means
over ten simulations.

Figure 4.6 (a) shows the fraction of the vulnerable host population that is infected when
Autograph detects the newly released worm as a function of θ, for varying port scanner
detection sensitivities/specificities (s ∈ {1, 2, 4}). Note the log-scaling of the x axis. These

54

Chapter 4. Distributed Signature Generation with Port-Scanner List Sharing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000

F
ra

ct
io

n
of

 v
ul

ne
ra

bl
e

ho
st

s
un

in
fe

ct
ed

θ

s=1
s=2
s=4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000

N
um

be
r

of
 U

ns
pe

ci
fic

 S
ig

na
tu

re
s

θ

s=1
s=2
s=4

(a) (b)

Figure 4.6: Early Signature Detection vs. Quality of Signature: (a) Fraction of vulnerable
hosts uninfected when worm signature detected vs. θ, number of suspicious flows required
to trigger signature detection. (b) Number of unspecific signatures generated vs. θ, number
of suspicious flows required to trigger signature detection.

results demonstrate that for a very sensitive/unspecific flow classifier (s = 1), across a wide
range of θs (between 1 and 40), Autograph generates a signature for the worm before the
worm spreads to even 1% of vulnerable hosts. As the flow classifier improves in specificity
but becomes less sensitive (s = {2, 4}), Autograph’s generation of the worm’s signature is
delayed, as expected.

Figure 4.6 (b) shows the number of unspecific (false-positive-inducing) signatures gener-
ated by Autograph, as a function of θ, for different sensitivities/specificities of flow classifier.
The goal, of course, is for the system to generate zero unspecific signatures, but to generate
a worm signature before the worm spreads too far. Our results show that for s = 2 and
θ = 15, Autograph generates signatures that cause no false positives, yet generates the sig-
nature for the novel worm before 2% of vulnerable hosts become infected. Our point is not to
argue for these particular parameter values, but rather to show that there exists a region of
operation where the system meets our stated design goals. More importantly, though, these
results show that an improved flow classifier improves Autograph—as flow classifiers ben-
efit from further research and improve, Autograph can adopt these improvements to offer
faster worm signature generation with lower false positive rates.

4.6 Discussion

We briefly discuss the additional benefit of distributed monitoring in a heterogeneous envi-
ronment, and the limitation of our distributed Autograph.

55

4.6. Discussion

Distributed monitoring in a heterogeneous environment. In our evaluation, we have
assumed a homogeneous environment such that the vulnerable hosts are uniformly dis-
tributed across the 6378 ASes, and the fraction of reachable hosts in a network is uniform.
However, the IP address structure - the arrangement of active addresses in the address space
- is highly non-uniform [71], so is the vulnerable host distribution during a worm propaga-
tion [85, 87, 88]. If a network has a few reachable hosts, the Autograph monitor can identify
a worm’s scanning activities quickly because most scanning attempts fall to unused IP ad-
dresses. However, the monitor is slow in accumulating worm payloads crucial for signature
generation. For example, network telescopes [86, 101] – unallocated portions of the IP address
space - provide powerful tools for gathering worm-infected host IP addresses and modeling
worm propagation [85, 127, 87, 88]; they do not help acquire worm payload samples if a
worm sends its exploit payloads only to existent servers. In contrast, if a network has many
reachable hosts, the monitor cannot easily identify suspicious addresses. Distributed port
scanner detection allows Autograph to generate signatures even in such a heterogeneous
environment. The Autograph monitors in the densely populated area can use the scanner
lists discovered by the other monitors in sparsely populated networks.

Attacks. Fraudulent scanner IP address reports from unauthorized monitors cause a re-
mote source’s traffic to be included by all the distributed Autograph in signature gener-
ation. Only authorized Autograph monitors must be allowed to participate in the tattler
mechanism to prevent it. There are a number of available secure group communication pro-
tocols [1, 63, 109] and group signature schemes [123, 10, 11]. Even with those authorization
and group signature schemes, compromised Autotraph monitors can be used to mount the
fraudulent report attack. Requiring multiple monitors to report the same scanner can make
the tattler more robust against such an attack, but will slow the suspicious address identi-
fication. Similarly, requiring multiple monitors to generate payload signatures that match
the same set of flows may prevent fraudulent signatures from being widely deployed, but
will slow the signature generation. In Part II, we present a couple of mechanisms that utilize
multiple monitors, which reduces the probability of generating fraudulent signatures when
compromised monitors are present. Source spoofed port scans can be used to mount another
type of Denial-of-Service (DoS) attacks specific to Autograph: the tattler mechanism must
carry report traffic proportional to the number of port scanners. An attacker could attempt
to saturate tattler’s bandwidth limit with spoofed scanner source addresses, and thus ren-
der tattler useless in disseminating addresses of true port scanners. We discussed a simple
mechanism that addresses this attack in Section 3.6.

56

Chapter 4. Distributed Signature Generation with Port-Scanner List Sharing

Limitations. The distributed Autograph achieves early signature generation by improv-
ing the performance of its suspicious flow selection stage. When a worm flow enters the
network, the Autograph can classify the flow to be suspicious if the source IP address is in
the list of identified scanners. However, if the monitored network is small or has only a
few reachable hosts, the actual number of worm payloads that enter the network is low. In
our simulations of the distributed Autograph, we observed that the signature was generated
from one of the biggest networks. If such large networks (/16s) did not participate in our
Autograph network, that could prolong the time till the signature detection even in the pres-
ence of tattler. There are a few ways to speed up the payload accumulation. One approach
is to use honeypots [58, 125] and trick worm-infected hosts to send the exploit payloads.
Another approach is to share the discovered suspicious flow payloads as well as the scanner
lists. Even though the number of payloads that an individual monitor receives is small, the
aggregated number across multiple monitors would be large enough for payload extraction.
We discuss this approach in Part II.

4.7 Summary

In this chapter, we have extended Autograph to use distributed monitoring. Our simulations
of the propagation of a Code-RedI-v2-like worm demonstrate that by tattling to one another
about port scanners they overhear, distributed Autograph monitors can detect worms earlier
than isolated, individual Autograph monitors, and that the bandwidth required to achieve
this sharing of state is minimal. DMZ-trace-driven simulations of the introduction of a novel
worm show that a distributed deployment of 63 Autograph monitors, despite using a naive
flow classifier to identify suspicious traffic, can detect a newly released Code-RedI-v2-like
worm’s signature before 2% of the vulnerable host population becomes infected. Our col-
lected results illuminate the inherent tension between early generation of a worm’s signature
and generation of specific signatures.

57

4.7. Summary

58

Part II

Privacy-Preserving Signature Generation

59

Chapter 5

Introduction

The signature generation process requires multiple samples of worm flows, and the speed of
worm payload accumulation is an important factor that determines the signature generation
speed. Worm payload accumulation speed of a single monitor is determined by the size and
the location of a monitored network. Like many other network security applications [146,
27, 148], the collaboration of distributed monitors helps worm signature generation systems
to overcome the limitation of a single monitor.

In Chapter 4, we proposed a technique to expedite signature generation by sharing port-
scanner address information among distributed monitors. In this part, we explore shar-
ing information beyond port scanners’ source IP addresses. In particular, we address the
problem of sharing payload pattern strings found in distributed networks. Payload sharing
across distributed monitors introduces a new privacy issue to automated signature genera-
tion systems. In this chapter, we discuss the benefit of distributed payload sharing, and the
related privacy issue.

5.1 Motivation for Distributed Payload Sharing

The tattler mechanism, presented in Section 4.2, helps each individual monitor to classify
inbound worm flows with high probability. However, the monitor cannot accumulate more
than the actual number of worm payloads crossing the boundary of the monitored network.

We first present the limitation of a single monitor by showing its worm payload accu-
mulation speed. Our analysis shows that worm payload accumulation speed is linear to
the monitored network size, the number of IP addresses that would receive worm’s exploit
payloads, and the total number of vulnerable hosts in the Internet. For localized scanning

61

5.1. Motivation for Distributed Payload Sharing

worms, monitor location is also important. If a monitored network is small or far from in-
fected host population, the monitor would not be able to accumulate enough worm payloads
until a significant fraction of vulnerable hosts are infected. We discuss distributed monitor-
ing as one of the practical solutions to overcome the limitation of a single monitor. In this
work, we consider a random scanning worm and a localized scanning worm.

5.1.1 Random Scanning Worm Propagation Model

A random scanning worm, denoted by RS, choose targets randomly. The number of inbound
worm flows that a monitor, installed in front of a network with m IP addresses, is propor-
tional to the number of scans hitting the network and the number of IP addresses that would
receive the worm payloads with vulnerability exploit codes. Let r be the fraction of those
IP addresses in the network. If a worm requires a connection setup before transferring its
exploit payload as in the Code-RedI worm epidemic [85], r is the fraction of hosts running a
service on port 80. For UDP-based scanning worms such as Slammer [87], the worm sends
its exploit payloads to all IP addresses, so r is 1.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time (min)

F
ra

ct
io

n
of

 In
fe

ct
ed

 H
os

ts
 I(

t)

S=358 probes/minute, V=360000, V
0
=25, r=0.125

0 100 200 300 400 500
10

0

10
1

10
2

10
3

10
4

10
5

Time (min)

A
cc

um
ul

at
ed

 In
bo

un
d

W
or

m
 F

lo
w

s

m = 220

m = 216

m = 212

m = 28

5% Infected

(a) Simulated Code-RedI-v2 Worm Propagation (b) Received Worm Flows

Figure 5.1: Code-RedI-v2: Number of Received Worm Payloads vs. Network Size. (a) Sim-
ulated Code-RedI-v2 propagation with scanning rate S=358 probes/minute. (b) The actual
number of received worm payloads depends on the size m of the monitored network.

We count the number of worm payloads received by a single monitor by simulating the
Code-RedI-v2 and Slammer worms. We vary the monitored network size m ∈ {28, 212, 216, 220}.
In this simulation, we assume 50% of the address space within the monitored network is
populated with reachable hosts, and 25% of these reachable hosts run web servers. Thus,
for the simulated Code-RedI-v2 worm epidemic, the fraction of worm payloads to the total

62

Chapter 5. Introduction

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time (sec)

F
ra

ct
io

n
of

 In
fe

ct
ed

 H
os

ts
 I(

t)

S=4000 probes/second, V=75000, V
0
=25, r=1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

Time (sec)

A
cc

um
ul

at
ed

 In
bo

un
d

W
or

m
 F

lo
w

s

m = 220

m = 216

m = 212

m = 28

5% Infected

(a) Simulated Slammer Worm Propagation (b) Received Worm Flows

Figure 5.2: Slammer: Number of Received Worm Payloads vs. Network Size. (a) Simu-
lated Slammer propagation with scanning rate S=4000 probes/minute. (b) The actual num-
ber of received worm payloads depends on the size m of the monitored network.

number of probes is r = 0.5 ∗ 0.25 = 0.125. If there are fewer hosts running web servers in
the network, the parameter r becomes smaller, so the total number of inbound worm flows
would be smaller. The Slammer worm propagates with UDP and sends the worm payloads
to all the scanned IP addresses. Thus, we use r = 1 for the Slammer simulation. We assume
that none of the webservers in our monitored network is vulnerable.

Graphs in Figure 5.1 show the infection rates and the actual number of worm payloads
flowing into a network since the introduction of the simulated Code-RedI-v2. The simulated
worm propagates using a probe rate of S = 358 probes/minute [148], and the number of
initial vulnerable hosts V0 = 25. The total number of vulnerable hosts is V = 360, 000 in this
simulation. As shown in Figure 5.1 (a), the simulated worm infects 5% of vulnerable hosts
within 2.5 hours and starts its exponential growth until most vulnerable hosts are infected.
We use I(t) to indicate the fraction of infected hosts at time t.

Figure 5.1 (b) shows the actual number of worm payloads coming into the monitored
network during a simulated Slammer worm’s propagation. This result can be considered
the upper bound of the number of worm payloads in an Autograph monitor even with a
perfect suspicious flow classification heuristic. The number of accumulated inbound worm
payloads grows linearly with the number of infected hosts. The number is also linear to the
monitored IP address space. For example, when m = 216, the network would accumulate
1000 worm payloads potentially, 1 before the fraction of infected hosts reaches I(t) = 0.05.

1EarlyBird [119] requires the worm sends multiple copies of its payloads during a short time period to
trigger the address dispersion measurement. The graph shows the total number of payload patterns accumu-

63

5.1. Motivation for Distributed Payload Sharing

This number is probably large enough to generate a signature. However, the monitor in
a small network with m = 212 IP addresses, does not receive more than 3 payloads until
I(t) = 0.5 so the monitor cannot generate a signature for the worm.

Graphs in Figure 5.2 show the simulation results for Slammer worm propagation. The
Slammer worm scans the IP address space using a probe rate of 4000 probes/second [87]. 2

Such a high probe rate allows the Slammer worm to infect the most of vulnerable hosts
within 200 seconds as shown in Figure 5.2 (a). This is too fast for human to react. Fortunately,
the Slammer worm includes its exploit code in every probe packet. As a result, even when
the probe is sent to an IP address where there is no reachable webserver, automated worm
signature generation systems can use the probe payloads for their signature generation.

Figure 5.2 (b) shows the actual number of inbound worm payloads. The number grows
linearly with the size of the monitored network, and the number of infected hosts. Unlike
in the Code-RedI-v2 simulation, the monitor in small network receives enough number of
payloads to trigger signature generation before 5% of hosts are infected. We expect that the
more aggressively a worm propagates, the faster automated signature generation systems
generate a signature of the worm, because the signature generation speed is linear to the
payload accumulation speed. Signature detection for slowly propagating worm is more
challenging in payload-extraction-based signature generation systems.

5.1.2 Localized Scanning Worms

Many worms such as Code-Red-II and Nimda employ more efficient scanning mechanisms
that preferentially search for vulnerable hosts in the local address space. Consider a simpli-
fied localized scanning worm, denoted by LS, that scans the Internet as follows:

• q (0 ≤ q ≤ 1) of the scanning attempts target addresses with the same first l bits.

• 1− q of the scanning attempts target randomly chosen addresses.

The average number of probes hitting a monitored network consists of two parts: (1)
probes from infected hosts with the same /l prefix, and (2) probes from all infected hosts
in the Internet. Unlike random scanning worms, the number of worm flows caught by a
monitor varies significantly based on the location of the monitored network. It is difficult

lated for a longer period of time. Thus, the graph gives a lower bound estimation on the detection time in
EarlyBird-like systems.

2Slammer’s probe is bandwidth-limited. Some infected hosts scans more aggressively. This is the average
scanning rate reported in [87].

64

Chapter 5. Introduction

100 101 102 103 104100

101

102

103

/16 networks sorted by the number of spam sources

of

 s
pa

m
 s

ou
rc

es

Figure 5.3: Spam source IP distribution: is highly non-uniform. Only 9387 /16 networks in-
volved in the identified spam activities. This non-uniformity in vulnerable host distribution
makes localized scanning worms propagate faster than random scanning worms.

to analyze the number of worm flows without considering the vulnerability distribution in
the Internet. The IP address structure is non-uniform [71]; so is the vulnerable host distribu-
tion [85, 87, 88]. In order to understand the effect of monitored network size on the number
of caught worm payloads, we simulate LS worm propagation using a list of e-mail spam
source IP addresses. These days spammers take advantage of compromised hosts to send
spam e-mails since many network service providers prevent spamming activities using their
service. Thus, using spam sources as compromised hosts is not an unreasonable assumption.

We observed that 168, 191 IP addresses sent spam e-mails to a spam e-mail honeypot [110]
during a week of January 2006. Figure 5.3 presents the number of spam sources in each /16
prefix in a log-log plot. In log-log plots, relatively straight lines indicate that the distribu-
tions of vulnerable hosts among prefixes are far from uniform. The highly non-uniformity
of (vulnerable) Internet hosts makes localized scanning more effective for fast worm propa-
gation.

Assuming that those 168, 191 IP addresses are vulnerable hosts’ addresses, we simulated
the propagation of LS and RS works. Figure 5.4(a) shows the 95th percentile in the result
of 100 simulations of RS propagation with scanning rate S = 6000/minute. Figure 5.4(b)
plots the results of 100 simulations of the propagation of LS with the same scanning rate
and the local scanning preference q = 0.5. LS infects most of the vulnerable hosts within 30
minutes while RS takes 50 minutes to infect 50% of vulnerable hosts. Since the variability
in the infection rate is significant, we use the 95th percentile results in the remainder of this

65

5.1. Motivation for Distributed Payload Sharing

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (min)

Fr
ac

tio
n

of
 In

fe
ct

ed
 H

os
ts

 I(
t)

RS, V=168191, S=6000/min

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

Time (min)

Fr
ac

tio
n

of
 In

fe
ct

ed
 H

os
ts

 I(
t)

LS q=0.5, V=168191, S=6000/min

95th percentile
average
5th percentile

(a) RS (S=6000/minute) (b) LS q=0.5 (S=6000/minute)

Figure 5.4: Scanning Strategies vs. Propagation Speed: the non-uniformity of vulnerable
host distribution makes LS more effective. With a high local scanning preference value q, LS
can infect most of the vulnerable hosts in the same /l network immediately after a host is
infected.

work.

Assuming the vulnerable host distribution and the 95th percentile infection process ac-
quired from the previous simulation of LS worm propagation, we count the number of worm
payloads by placing a monitor in a randomly chosen network varying the monitored net-
work size m. As in our random worm simulations, we assume that there is no vulnerable
host in the monitored network but there could be vulnerable hosts with the same prefix l
bits. We use r = 1, as in the Slammer worm propagation.

Figure 5.5 shows the actual number of worm payloads crossing the monitoring point un-
til 5% of vulnerable hosts are infected. Notice the large variation in the number of received
worm payloads. A monitor located close to a large population of infected hosts receives a
huge number of worm payloads due to the localized scanning. A network located far from
the initially infected host population receives as few worm payloads as in random scanning
worm propagation with a probe rate of 1000 ∗ (1− q) probes/minute. The dotted line rep-
resents the number of payloads in the luckiest monitor case where our monitor is installed
close to the initially infected host population. As expected, if the monitored network size is
larger than the worm’s local scanning space, the monitor cannot see local scanning activities,
so the total number of payloads is small. The solid line represents the median case out of
100 simulations. In this case, there is no infected host with the same /l prefix yet. Most of
the payloads it collects are from external hosts. Thus, the location of monitors is important

66

Chapter 5. Introduction

2^8 2^10 2^12 2^14 2^16 2^18 2^20100

102

104

106

108

Max (close to infected hosts)
Med

Figure 5.5: Monitored network size vs. Number of worm payloads: the number of accumu-
lated worm payloads when 5% of vulnerable hosts are infected by LS (S=6000/min, q=0.5,
l=16). The monitor (MAX) close to infected hosts may accumulate more than 105 payloads.

in signature detection for LS.
With the assumptions that all probes contain exploit payloads, and r = 1, a monitor with

m = 212 could receive more than 50 worm payloads. However, if the worm propagates
similarly to Code-Red-II and sends payloads only to available web servers, the total number
of worm payloads a small monitor receives will be much smaller. Thus, a large monitor with
many available servers is preferred for fast signature generation. The ideal case would be to
place monitors close to vulnerable hosts in networks, so that monitors can capture the local
scanning activities. However, without knowing a future worm’s scanning strategy, placing
monitors in larger networks is the safer choice.

5.1.3 Why Distributed?

For both LS and RS worm signature generation, a monitor needs to analyze the traffic of at
least multiple 216 IP addresses. However, monitoring such a large space presents challenges:

• Many organizations do not have such a big IP address space.

• The volume of traffic observed in such a big IP address space may be too large for a
payload-extraction-based signature generation system to deal with if the IP address
space is used by legitimate Internet users.

A network telescope [86] with honeypots [125] is a useful tool to enable large IP address
space monitoring. We imagine that automated signature generation systems are installed

67

5.2. Privacy Consideration

in the network telescope for fast signature generation of random scanning worms. Because
the network telescope is not used by legitimate Internet users, the volume of traffic may be
significantly smaller, which makes traffic analysis much easier. Even when such a large IP
address space is monitored, however, if the network is not close to the initially infected host
population, the chance of catching an LS worm payload may be small. If attackers know the
location of a large telescope or, at least, know the space is not often by many Internet users,
they can design a worm to avoid scanning the address space. Hence, having many monitors
in various locations is important to generate signatures for scanning worms early.

In this part, we propose a distributed signature generation system that enables collab-
oration of many moderately-sized networks dispersed in the Internet. Once the monitors
have individually identified a possible attack or offender, each network monitor can gain
confidence in the maliciousness of the identified attacks through comparison of its findings
with the observations of other monitors. A worm signature that is flagged as being possibly
malicious by many monitors is more likely to be a truly malicious worm payload signature.
This extra degree of confidence may also prevent unspecific signatures from being published
or used to establish misguided network filtering.

5.2 Privacy Consideration

Care must be taken in the collaboration among distributed monitors. Pattern-extraction-
based signature generation algorithms require the access to the network traffic payload that
may contain private or proprietary information. If the private information in payloads are
leaked in the payload sharing process, it can negate the benefits of improved network se-
curity. We address this privacy problem assuming that the payload content that appears in
many distributed networks should not be private and can be shared as long as the source of
the payload content is not disclosed.

Then our goal is to design a system that identifies and publishes a suspicious payload
flagged by more than λG monitors. For the convenience, we call this payload a hot item. Cold
items, that are not related to global anomaly, so less than λG monitors report, must not be
disclosed because they are akin to be private or specific to a single monitor. In Chapter 7
and 8, we introduce two different techniques to protect privacy in different security models.

In order to avoid attacks from the outside of the system, we require all the participat-
ing monitors to be approved by a centralized authority and given credentials. By allowing
only approved monitors to participate, we maintain the friendly operational environment
resilient to attacks such as Sybil attacks [40] that use multiple fake identities, too.

68

Chapter 6

A Framework for Distributed Payload
Sharing

Motivated by the analysis of payload accumulation speed in a single monitor, we propose
a distributed payload sharing framework in this chapter. When a global worm starts its
propagation, the worm payloads will be observed in many distributed networks. In contrast,
we expect most innocuous flows are private, so appear in a small number of networks. Thus,
if a payload pattern string appears in many places, it is likely to belong to a global worm
activity.

We propose and analyze two different distributed signature detection frameworks: 1)
GSD (Globally Suspicious payload pattern Detection), and 2) LSD (Locally Suspicious pay-
load Detection). GSD is suitable when a worm scans monitored IP address space uniformly
and slowly. LSD is suitable when a worm scans monitored networks in a non-uniform way
as in LS.

6.1 Distributed Payload Sharing Framework

A distributed signature generation system finds wide-spreading suspicious payloads across
multiple monitors and generates signatures based on the payloads. The problem consists of
two parts: (a) suspicious payload identification and (b) detected signature publication. In
the suspicious payload identification step, the system determines a set of payload patterns
that appear in many monitoring points. In the signature publication step, local monitors
notify other monitors of a new signature found locally or from the result of preceding sus-
picious payload identification step.

69

6.1. Distributed Payload Sharing Framework

Figure 6.1: GSD Framework Overview

A naı̈ve approach to the suspicious payload identification problem is to let each monitor
report all the observed payloads to a trusted third party or all other monitors. The aggregate
volume of traffic reported from all the monitors is tremendous, but only a small fraction of
the traffic belongs to a worm’s activity in the early stage of the worm propagation.

Our approach to the problem is to have each monitor perform local content prevalence
analysis before distributed suspicious payload sharing. Only payload pattern strings that
appear to be suspicious, based on local content prevalence analysis, are shared across moni-
tors. Our system performs payload sharing in two different ways:

• GSD (Globally Suspicious payload pattern Detection): As shown in Figure 6.1, each
monitor shares only a payload pattern string P whose prevalence measurement f (P)
exceeds a threshold θG . 1 When P is reported by more than λG monitors (f (P) > λG),
the pattern P is likely to be a wide-spreading worm payload. The result of the dis-
tributed payload sharing process is a set of such globally suspicious payload patterns,
which may look innocuous to an isolated monitor. The result R is distributed to all the
monitors again. The monitors that hold the suspicious payload patterns that are in R
announce their findings to other monitors if necessary. 2 The detail of GSD implemen-
tation depends on the privacy protection requirements and the number of participat-
ing monitors. We present the details of the implementation in Chapter 7 and Chapter

1In our implementation, f (P) is a function of the number of flows that contain the payload pattern P, and
the number of hosts sent the payload pattern P.

2The result R could be hash values or encrypted values of payload patterns due to the artifact of privacy-
preserving payload sharing process. In order to generate signatures in a form usable by current content-based
filtering equipments, the actual payloads should be distributed.

70

Chapter 6. A Framework for Distributed Payload Sharing

Figure 6.2: LSD Framework Overview

8 after clarifying our privacy protection policy.

• LSD (Locally Suspicious candidate signature Detection): While GSD targets to quickly
catch worms that scan networks randomly, LSD targets to catch the worms that em-
ploy localized scanning techniques. As shown in Figure 6.2, each monitor reports only
a payload pattern string P whose prevalence measurement f (P) exceeds a threshold
θL (θL > θG). The threshold θL is high enough for a monitor to generate a signature
based on locally observed payload samples, so we call the payload pattern string P
a candidate signature. If P is reported by more than λL (λL ≤ λG) monitors, the can-
didate signature is accepted as a valid signature globally. We use Fs(P) to denote the
number of reports for a candidate signature based on P. We want to provide a secure
mechanism that allows each monitor to report candidate signatures without revealing
its identity, because some networks may not want to reveal the fact that they are under
attack. We describe the details of the LSD implementation in Chapter 7.

GSD is designed to detect worms that scan the monitored networks randomly. Because
random scanning worms contact each network uniformly and randomly, the number of
worm flows each individual network observes would be too small to trigger local signa-
ture generation. However, the aggregate number of worm flows could be large enough to
generate a signature.

LSD is appropriate when worms propagate with localized scanning and some monitors
are close to the initially infected population. The monitors close to infected hosts receive
enough worm flows to generate a signature locally. Then, the monitor chooses to verify its

71

6.1. Distributed Payload Sharing Framework

10
0

10
1

10
2

0

5

10

15

20

Content Blocks (P)

f(
P

):
 n

um
be

r
of

 s
ou

rc
e

IP
s

Generate Candidate Signature! LSD

Suspicious Payload! GSD

θ
L

θ
G

Figure 6.3: Content Blocks in Suspicious Flow Pool and Payload Sharing Thresholds:
Prevalence histogram generated from the suspicious flow pool for port 9493 traffic. For an
hour, hundreds content blocks were generated, but only content blocks whose f (P) exceed
θG are shared in GSD. If f (P) exceeds λG , P is reported as a candidate signature in LSD.
Only a handful number of content blocks pass the threshold conditions.

finding against other monitors, and distributes the discovered candidate signature to other
monitors.

By applying thresholds θG and θL , we can filter out most payload patterns that do not
belong to wide-spreading worm traffic. These thresholds need to be chosen based on the
analysis of traffic data. We use the same traces used in the analysis in Section 3.4.1. Figure 6.3
shows the prevalence histogram of content blocks accumulated in the suspicious flow pool
of an Autograph monitor in front of one of the /19 networks in the campus network. The
y-axis is the frequency of each content block. Only a small fraction of the content blocks
will be shared in GSD if we use θG = 2. A much smaller fraction of the content blocks that
appear more than θL = 5 will be announced through LSD as candidate signatures.

If θG and θL are too low, the effect of filtering becomes minimal, and almost all content
blocks that each monitor generates should be reported to the distributed payload sharing
infrastructure. There is also a trade-off between the threshold values, and the probability of
signature detection. If the threshold for filtering, θG and θL is too high, even worm payloads
cannot pass the local prevalence testing in the early worm epidemic, which reduces the
benefit from distributed monitoring. Similarly, we gain confidence in the result generated
with large λG and λL values but large λG and λL slow the detection speed.

72

Chapter 6. A Framework for Distributed Payload Sharing

6.1.1 Honeypot

The number of worm payloads a monitor captures is also proportional to the fraction r of
worm scan payloads containing the exploits. In most recent UDP worm epidemics, we ob-
served the worms’ scanning payloads also contain the exploit payloads; a vulnerable host
is infected as soon as a scanning payload reaches the host. Accumulating enough payloads
of such UDP worms may not be difficult because r = 1. It is more challenging to gener-
ate signatures for worms that propagate over TCP connections or send exploits only to the
vulnerable hosts. In these cases, r is small.

One way to boost r even for the TCP worms is to use honeypots [125, 134]. Using hon-
eypots is a well-known technology in worm detection and used by various network attack
detection systems [105, 125, 4, 36]. Network administrators can configure their networks so
that all traffic to unoccupied IP addresses or unused ports is redirected to a set of honeypots.
The honeypots respond to worms’ connection attempts so that the worms are tricked into
transferring their exploit payloads to the honeypots. By doing so, a monitor can capture all
the inbound scanning activities sent to unoccupied IP addresses and their exploit payloads.

6.1.2 Analysis of GSD

For random scanning worms, the signature generation problem under this framework is
analogous to the problem of allocating balls into a set of buckets; after throwing a large
number of balls randomly, how many buckets will have more than θG balls? The probability
a worm payload enters a network with m IP addresses is m · r/Ω where Ω is the size of
worm’s scanning address space. Let EθG denote the event where a monitor i fails to collect
θG + 1 worm payloads after a worm scans B IP addresses. Assuming the tattler mechanism
is perfect and all the worm flows entering monitored networks can be classified as to be
suspicious, the probability of EθG is:

P[monitor i collects less than θG + 1] = P[EθG]

=
j=θG

∑
j=0

lim
B→∞

(
B
j

)(mr
Ω

)j (
1− mr

Ω

)B−j

≈
j=θG

∑
j=0

γj · e−γ

j!
where γ =

mrB
Ω

73

6.1. Distributed Payload Sharing Framework

From the above equation, we derive the probability that more than λG monitors collect
more than θG payloads:

P[more than λG monitors collect more than θG worm payloads]

= 1−
λG

∑
i=0

(
M
i

)
(1−P[EθG])i(P[EθG])M−i

The total number of scans B sent to the Internet at time t is determined by the number
of infected hosts at the time. Let N(i) be the number of infected hosts at time i. When the
measurement time interval is w and the worm’s average scanning rate is s, the total number
of probes that infected hosts send to 232 IP addresses is N(t,w) = ∑t

i=t−w N(i) · S for a random
scanning worm. Assuming that infected hosts are uniformly distributed across the Internet,
the number of scans that may target one of our monitored networks is N(t,w) · (1− (m

232)2).
Figure 6.4 shows the probability of signature detection varying λG, θG, and the fraction

of infected hosts I(t) when 1024 monitors collaborate. We assume that m = 213, Ω = 232,
r = 0.2, and S = 358 scans/minute. A white cell in Figure 6.4 denotes a (λG, θG) pair for
which the system can collect more than λG payload patterns for the worm with probability
1. Conversely, a black cell denotes a (λG, θG) pair for which the system cannot collect more
than λG worm payload patterns by the time.

As expected, the lower θG and λG are, the earlier the system can identify worm payload
patterns. Our model assumes a random scanning worm and a homogeneous network, and
thus most of the monitors report the worm payload pattern even in the beginning of the
worm propagation if θG is low.

Figure 6.5 shows the probability when M = 128 monitors collaborate. If we use the same
λG as in the 1024 monitor case, the detection probability is lower than when we use 1024
monitors.

6.1.3 Analysis of LSD

Analysis of LS propagation, without considering the vulnerable host distribution and worm’s
scanning strategy, is difficult, and so is the analysis of LSD. To simplify the analysis, we as-
sume that all vulnerable hosts with the same /l prefix are infected immediately once an
internal host is infected by LS. If each monitored network space is smaller than a /l prefix
network, the monitor can see many scanning activities from the infected hosts, and the num-

74

Chapter 6. A Framework for Distributed Payload Sharing

20 40 60 80 100 120

5

10

15

20

25

30

λ

Pr[Signature is detected] when I(t) = 0.02
θ g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Cannot Detect

Detect

20 40 60 80 100 120

5

10

15

20

25

30

λ

Pr[Signature is detected] when I(t) = 0.05

θ g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Detect

Cannot Detect

Detect

I(t) = 0.02 I(t) = 0.05

Figure 6.4: 1024 GSD Monitors: Signature Detection Probability vs. θG, λG and infection
rate I(t). The white cells indicate that GSD finds a signature for our simulated Code-RedI-
v2 worm with a probability of 1 when the combination of corresponding λG and θG is used.
The signature detection probability is governed mostly by θG in random scanning worm
signature detection.

20 40 60 80 100 120

5

10

15

20

25

30

λ

Pr[Signature is detected] when I(t) = 0.02

θ g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Cannot Detect

Detect

20 40 60 80 100 120

5

10

15

20

25

30

λ

Pr[Signature is detected] when I(t) = 0.05

θ g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Cannot Detect

Detect

I(t) = 0.02 I(t) = 0.05

Figure 6.5: 128 GSD Monitors: Signature Detection Probability vs. θG, λG and infection
rate I(t). Since the total number of monitors is only 128, the global threshold λG should be
selected accordingly. If we use a local threshold θG lower than 5 and a global threshold λG
lower than 38, we can detect the signature of this example random worm before 2% of hosts
are infected.

75

6.2. Simulation Results

ber of outbound scans easily exceeds θL . There are M monitors that monitor m IP address
space each. Then, the total number of candidate signatures reported by LSD is the number
of infected /l prefix networks in the Internet. Thus, the distributed system can generate a
signature when λL monitored networks are infected.

6.2 Simulation Results

In our experiments, we simulate the detection of RS and LS worms that have a vulnerable
population V = 168, 191, and a scanning rate S = 6000 scans/min. For vulnerable hosts, we
use the source IP addresses of spams, as in Section 5.1.2. We use the 95th percentile infection
data from Section 5.1.2. The LS worm’s local scanning preference parameters are l = 16 and
q = 0.5. We test two different strategies for using LSD and GSD, varying the number of
monitors M. Throughout this work, we evaluate the signature generation speed in terms
of the fraction of infected hosts when a signature for the worm is generated, and we call it
signature detection time.

• Strategy I (Only GSD): a signature is generated and deployed when more than λG

monitors report the worm payload P during a measurement interval τ = 1 hour.

• Strategy II (Only LSD): a signature is generated and deployed when more than λL

monitors report the worm payload P as a candidate signature.

Each monitor analyzes both inbound and outbound traffic of a 213 IP address space. The
monitor has a honeypot so that it can analyze all inbound traffic to unoccupied IP addresses
or unused ports (r = 1). For outbound traffic, it is difficult to use the honeypot. Thus, the
monitor analyzes the outbound traffic successfully transferred to external hosts. We assume
that a worm finds a host in the same /l network with a probability of 0.16; it finds a host in
the Internet with a probability of 0.02.

For comparison, we use two monitors installed in a randomly chosen 216 IP address net-
work. One monitor analyzes all inbound traffic to the network, and 12.5% of the IP addresses
have the worm’s target port open. Another monitor has a honeypot that responds to all con-
nection attempts to unused IP addresses or ports. Both monitors generate a worm signature
when they observe more than θ = 15 payloads. The parameters were chosen according to
the simulation results in Section 4.5. If multiple monitors collaborate, GSD needs some more
time for correlating reported suspicious payloads and distributing detected signatures, after
λG monitors report a worm payload. We call this delay lag and test the cases where the lag

76

Chapter 6. A Framework for Distributed Payload Sharing

is {0, 1, 5}minutes. In LSD, each monitor maintains a counter for each candidate signature.
A candidate signature is accepted when the λL + 1-th report is announced. We test three
cases where the announcement delay is 0, 1, and 5 minutes respectively. Experiments with
a single monitor do not require any distributed operation so the detection time is exactly
when f (P) exceeds a threshold.

Strategy I: Only GSD. Figure 6.6 (a) and Figure 6.7 (a) show the detection time measured
in the fraction of infected hosts for a random scanning worm (RS) and a localized scanning
worm (LS) respectively. A payload pattern string is accepted as a signature if more than
λG monitors report the same string. In this experiment, we set λG = 25. Based on the
GSD analysis in Section 6.1.3, the system with this threshold should be able to generate the
worm signature before 2% of vulnerable hosts are infected. The squared regions show the
detection time when we monitor a single 216 IP address space with the signature generation
threshold θ = 15.

When a worm scans randomly, worm payloads are evenly distributed across all the mon-
itors. The detection time of GSD with 213 IP address space monitoring is much lower than
that of the monitor installed in 216 IP address space. If a honeypot is also deployed in the 216

IP address space, the monitor can detect the signature much earlier. However, multiple dis-
tributed monitors generate a signature even earlier due to the low local detection threshold
θG . For GSD, we use a small content prevalence threshold θG = 2. Because many monitors
report the same content blocks, we can accept the payload pattern as a signature with high
confidence.

For a localized scanning worm, we also observe that the larger the number of partici-
pating monitors, the faster the system can generate the worm signature. The benefit from
multiple monitors is more obvious in LS signature detection than in RS detection. This is be-
cause, with a large number of monitors, we have a higher chance of having monitors close to
infected hosts. Even when there is a lag between signature generation and signature distri-
bution, GSD with more than 256 monitors could detect the signature as early as the monitor
with a honeypot and a 216 IP address space.

Strategy II: Only LSD. Figure 6.6 (b) and Figure 6.7 (b) show the detection time when
we use LSD for RS and LS, respectively. LSD with multiple monitors must wait until more
than 10 monitors report the same candidate signature. If there are fewer than 20 monitors,
we require LSD to generate signatures when half the monitors report the same candidate
signature. The detection time is higher than the case of 216 IP address monitoring when the
number of monitors is less than 32 and the worm performs localized scanning. However,
if we have more than 128 monitors, the performance is similar to that of 216 IP address

77

6.3. Legitimate Traffic

8 16 32 64 128 256 512 10242048
0

1

2

3

4

5
x 10

−3

Number of Monitors (M)

I(
t)

 w
he

n
a

S
ig

na
tu

re
 is

 D
et

ec
te

d

RS, r=1, m=213, θ
G

=2, λ
G

=25

lag: 0min
lag: 1min
lag: 5min

m = 213 , no honeypot
θ =10

0.0095< I(t) <0.0178

m = 216, nohoneypot
θ = 15

m = 216, honeypot
θ = 15

8 16 32 64 128 256 512 10242048
0

1

2

3

4

5
x 10

−3

Number of Monitors (M)

I(
t)

 w
he

n
a

S
ig

na
tu

re
 is

 D
et

ec
te

d

RS, r=1, m=213, θ
L
=5, λ

L
=10

lag: 0min
lag: 1min
lag: 5min

m = 213 , no honeypot
θ =10

0.0095< I(t) <0.0178
m = 216, nohoneypot

θ = 15
m = 216, honeypot

θ = 15

(a) Strategy I: Only GSD (b) Strategy II: Only LSD

Figure 6.6: Random Scanning Worm Detection Time: Time is measured as the fraction of
infected hosts when the detection system completes a signature identification. GSD with
128 213 IP address spaces detects the signature when less than 0.1% of vulnerable hosts are
infected. LSD with 128 monitors detects the signature when less than 0.2% of hosts are
infected.

monitoring. This is because we could place some of our monitors close to infected hosts.

For random scanning worms, the signature detection time is higher than that of GSD
because the number of payloads received is limited by the size of the monitored network.
However, the LSD did detect the signature before 0.2% of hosts are infected.

In sum, GSD is good when a worm scans randomly, or the monitored networks are far
from the initially infected population. LSD is good for localized scanning worm signature
detection. This suggests that, by combining GSD and LSD, we can develop a system that is
suitable both for both localized scanning worms and random scanning worms.

6.3 Legitimate Traffic

The distributed framework we are proposing utilizes the characteristics of wide-spreading
malicious payloads. We assume the payload pattern belongs to worm traffic if it appears in
many locations. However, can the system avoid misclassifying legitimate traffic as worm
traffic? If it misclassifies legitimate traffic as worm traffic, will it be dangerous to publish the
identified payload patterns?

To answer these questions, we study real traffic traces. The traces contain full payloads
of smtp (port 25), http (port 80), p2p (port 9493) traffic collected at a border router of a
university campus network on Aug 25, 2006 for an hour. The details of the trace are as de-

78

Chapter 6. A Framework for Distributed Payload Sharing

8 16 32 64 128 256 512 10242048
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Monitors (M)

I(
t)

 w
he

n
a

S
ig

na
tu

re
 is

 D
et

ec
te

d

LS (S=6000/min, q=0.5), r=1, m=213, θ
G

=2, λ
G

=25

lag: 0min
lag: 1min
lag: 5min

m = 213 , no honeypot
θ =10

m = 216, nohoneypot
θ = 15

m = 216, honeypot
θ = 15

8 16 32 64 128 256 512 10242048
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Monitors (M)

I(
t)

 w
he

n
a

S
ig

na
tu

re
 is

 D
et

ec
te

d

LS (S=6000/min, q=0.5), r=1, m=213, θ
L
=5, λ

L
=10

lag: 0min
lag: 1min
lag: 5min

m = 213 , no honeypot
θ =10

m = 216, nohoneypot
θ = 15

m = 216, honeypot
θ = 15

(a) Strategy I: Only GSD (b) Strategy II: Only LSD

Figure 6.7: Localized Scanning Worm Detection Time: Time is measured as the fraction of
infected hosts when the system completes a signature identification. GSD with more than
128 213 IP address space detects about 2% of hosts are infected. LSD outperforms a 216 IP
address space monitor when the lag is lower than 1 minute.

scribed in Section 3.5. The network consists of more than 216 IP addresses that spans across
departments, offices, dormitory, and wireless networks. For our experiments, we divide the
network into 8 networks and simulate a distributed system consisting of 8 monitors. Each
network has a contiguous 213 IP address space.

All monitors perform suspicious flow classification based on the port scanner list learned
from the tattler mechanism. Then, they generate content blocks from the captured suspicious
flows and perform Autograph’s local content-prevalence analysis method. Because the port-
scanner heuristic is not perfect, there are misclassified flows in the suspicious flow pool. We
use the average content block size of 64 bytes, which is larger than the block size of 16
bytes that performed best in the experiment in Section 3.4.1. We choose 64 bytes because 16
bytes average block size results in higher false positive rates for P2P application traffic. The
average block size needs to be adjusted depending on the characteristics of traffic per port.

We assume that each monitor checks the number of source IP addresses that have sent
the flows. Content blocks sent by less than a source IP addresses are not included in the
global payload sharing process.

Figure 6.8 shows the breakdowns of content blocks from suspicious flows in port 80
(http) based on the number of networks F(P) that have generated the same content block.
The number on top of each bar indicates the total number of content blocks that are reported
by the corresponding monitor. When no local threshold θG is applied, the monitor in net0

reports 136 content blocks. However, only 11 of them are also found in other networks. Two

79

6.3. Legitimate Traffic

content blocks are common across F(P) = 5 networks. When we apply a high θG (Fig-
ure 6.8), we can filter most content blocks and reduce the required bandwidth for payload
sharing. For example, the monitor in net0 has only one content block that appears in other
two monitors’ networks.

Figure 6.9 shows the breakdowns of content blocks from port 25 (smtp). Suspicious flows
for port 25 can be long e-mail messages that contain files and many images. Thus, each
network monitor could generate thousands content blocks easily. There are many content
blocks common across 6 networks. However, after filtering out the content blocks sent by
only one or two source IP addresses, all monitors but the one in net0 have an empty set of
content blocks to be reported. Those 80 content blocks are from spam e-mails sent by two
hosts. The emails contain long MIME-encoded content and generate many content blocks.

Figure 6.10 shows a similar trend for port 9493 (p2p). The networks that have P2P clients
are contacted concurrently by a few mistakenly accused scanner IP addresses. All P2P file
search requests through the IP addresses are captured in suspicious flow pools. So, when
we use θG = 0, about half of the reported content blocks from each monitor are common.
Also, the actual number of content blocks is large because many P2P search requests are
forwarded through the IP addresses. If we apply θG = 1, each monitor needs to report only
fewer than 16 content blocks. The local threshold θG reduces the number of content blocks
significantly.

We expect, however, that the number of shared payload patterns would become larger as
more networks participate in this distributed system. Higher threshold parameters would
help reduce the probability of the false positives, but reduce the probability of catching
worms.

We examined the payload pattern substrings reported by multiple monitors. If they are
a part of private information, our distributed approach to signature generation is flawed.
Fortunately, we could not find any patterns belonging to private information. We list what
caused the frequent substrings to appear in many networks.

• HTTP: footers of HTTP messages that specify the browser types and the recognizable
applications; web crawler traffic; parts of HTML structures frequently used by popular
web message board software.

• SMTP: e-mail spams 3. Unfortunately there are a couple of prevalent substrings that
seem to belong to newsletters, sent from multiple source IP addresses. More study on
the right threshold for SMTP traffic is still needed.

3The large number of reports is due to a long spam e-mails sent from multiple senders.

80

Chapter 6. A Framework for Distributed Payload Sharing

• P2P (FileGuri): parts of control messages that specify the client software versions
and applications, and popular queries.

Since we examined traces only from a single site and only for three protocols, it is too
early for us to draw a generalized conclusion about the commonality in suspicious flows. We
need further investigation with traffic from other sites and for other ports. Note, however,
smtp, http, and p2p protocol traffic is the most frequently captured in the suspicious flow
pool, and the byte volume of web, e-mail, and p2p traffic accounts for the majority of the
network traffic in our experience with Autograph. The traffic for those ports contributes
most of false signature generation in our experience with Autograph.

Even though the content blocks commonly observed across the monitored networks are
not private, they are still problematic if we want to deploy the signatures generated by Au-
tograph in automatic content-based filtering boxes. However, the set of such false signatures
can be avoided by using a signature blacklist, and a different set of parameters depending
on the traffic mix for each port. The blacklist contains the commonly used HTTP headers
and footers, web crawlers’ signatures, and P2P application message headers. A handful of
blacklist entries would be sufficient to suppress the prevalent innocuous payload pattern
strings found in our traffic trace.

6.4 Summary

The speed of pattern-extraction-based signature generation depends on how quickly a sys-
tem can capture enough worm payload samples to trigger its content-prevalence analysis.
We have proposed a distributed signature generation framework designed for moderately-
sized networks to collaboratively generate signatures for both random scanning worms and
localized scanning worms. By using distributed monitors, we can increase the chance of
placing monitors close to vulnerable hosts, which is important for localized scanning worm
signature generation. Distributed monitors allows us to generate signatures for random
scanning worms earlier than one single monitor that monitors a large network (i.e., a 216

IP address space). A prerequisite assumption under our distributed monitoring framework
is that wide-spreading worm payloads are observed from many locations; legitimate pri-
vate traffic payloads are not observed from many locations. We examined this assumption
by studying a real traffic trace collected from a class-B IP network. From our study, we do
find that some payload patterns are commonly found from multiple monitoring points but
they are not private. More importantly, they could be suppressed with a short signature

81

6.4. Summary

blacklists.
In the next chapters, we propose two payload sharing techniques that protect the privacy

of uncommon, possibly private payload patterns under our payload sharing frameworks.

82

Chapter 6. A Framework for Distributed Payload Sharing

(a) θG = 0 (b)θG = 2

Figure 6.8: Payload Pattern Sharing: HTTP port 80 traffic. Breakdown of content blocks
based on the number of networks reporting the same content block. Each number on top of a
bar shows the total number of content blocks that are reported by the monitor. With a higher
local threshold (θG = 2), most content blocks are filtered out. For example, the monitor in
net2 reported 3 content blocks in total but none of them appeared in other networks. Those
content blocks.

83

6.4. Summary

(a) θG = 0 (b) θG = 2

Figure 6.9: Payload Pattern Sharing: SMTP port 25 traffic.

84

Chapter 6. A Framework for Distributed Payload Sharing

2

(a) θG = 0 (b) θG = 1

Figure 6.10: Payload Pattern Sharing: p2p port 9493 traffic.

85

6.4. Summary

86

Chapter 7

Preserving Privacy using HOTITEM-ID

Selecting a worm payload pattern out of a large volume of data while preserving the privacy
of thousands of participating monitors is a difficult problem. In this chapter, we develop a
technique to perform privacy-preserving suspicious payload sharing across thousands of
distributed monitors. The technique protects the owner and data privacy of participating
monitors by hiding non-popular private items in a crowd of indistinguishable elements.
An adversary cannot determine which honest network produced a content block (owner
privacy) or what private information is in reported content blocks (data privacy). False
positives will generally be rare, and thus hidden in a large crowd.

The technique is an application of the HOTITEM-ID protocol proposed by Kissner et
al. [69]. The protocols use approximate heavy-hitter detection technique, approximate dis-
tinct counting technique, anonymous routing, and a novel cryptographic tool. Section 7.2
briefly summarizes the HOTITEM-ID protocol. Section 7.3 presents the adoption of the pro-
tocols for privacy-preserving distributed signature generation. Section 7.4 presents our ex-
perimental results to show the efficiency of our technique. Detailed analysis of the privacy
protection can be found in the original paper [69].

7.1 Overview

In our problem setting, each monitor Mi (0 ≤ i < M) in the system holds a private dataset Si

of locally identified n content blocks. The monitors are connected by a peer-to-peer network.
A λ-threshold hot content block is a content block P that appears in at least λ distinct monitors’
private input datasets. Our goal is to find the content block P that appears in at least λ

distinct monitors’ private dataset. Rλ is the set of all λ-threshold hot items in the system. All

87

7.1. Overview

items not in Rλ are called cold items.

7.1.1 Adversary Model

The adversary can eavesdrop on all communication. We assume that a fraction c of the mon-
itors may maliciously and arbitrarily misbehave, while the rest of the monitors are honest-
but-curious.

Honest-but-curious Monitors. A honest-but-curious monitor will (1) follow the protocol
as specified, and (2) not collude with other monitors to gain information, though she may
try to distill information from the messages she receives. For example, a honest-but-curious
monitor casually browse all the reported content blocks and attempt to find user passwords
transferred in a clear text or interesting web content addresses.

Malicious Monitors. A malicious monitor might not follow the protocol; instead it might
behave arbitrarily. For example, malicious monitors could collude such that if cM exceeds
λ, they can make an arbitrary cold item hot by each reporting it as being in their private
input set. However, this problem is out of the scope of this work. Because any monitor
has the freedom to choose its private input set, any protocol in this setting is vulnerable to
this manipulation. We focus on the secure payload sharing when at most cM monitors are
malicious.

A malicious monitor could mount attacks on the distributed hot item identification sys-
tem claiming to have many copies of one item, and try to boost the frequency of a cold item
to be high enough to become a hot item; we call this the inflation attack. The HOTITEM-ID
protocol ensures that each monitor can only contribute to the frequency count of an item at
most once by using a novel cryptographic method called one-show tags (Section 7.2.2). Note
that the one-show tags can be applied to address our candidate signature publication problem
in LSD. We discuss the detail in Section 7.3.1.

Moreover, malicious monitors could attempt to forge cryptographic signatures, send bo-
gus reports, try to learn honest monitors’ private data, or fool other monitors. The HOTITEM-
ID protocol defends against all of these attacks.

7.1.2 Correctness and Privacy Protection

The HOTITEM-ID protocol guarantees the correctness and privacy protection defined by the
followings:

Correctness: Given the false positive rate δ+ and the false negative rate δ−:

88

Chapter 7. Preserving Privacy using HOTITEM-ID

• ∀P ∈ Si ∩ Rk, monitor Mi learns that P ∈ Rk with probability at least 1− δ−.

• ∀P ∈ Si ∩ Rk, monitor Mi learns that P 6∈ Rk with probability at least 1− δ+.

Owner Privacy: no coalition of at most cM malicious PPT (Probabilistic Polynomial
Time) adversaries can gain more than a negligible advantage in associating an item P with a
honest monitor Mi (0 ≤ i < M) such that P ∈ Si, because all monitors simply are given the
set of hot items Rk and their frequencies.

Data Privacy: The HOTITEM-ID protocol provides probabilistic privacy protection rather
than strong privacy protection discussed in many cryptography papers [70]. The degree of
the privacy of an item P describes the size of the ’crowd’ in which the content block is hid-
den. We use the size of the crowd to measure the degree of privacy in this work. A content
block P which appears in FP monitors’ private input sets has Φ(FP)-degree of data privacy
if no coalition of at most cM malicious probabilistic polynomial-time (PPT) adversaries can
distinguish the pattern P from an expected indistinguishable set of Φ(FP) content blocks. 1

Thus, for a cold item P, the larger Φ(FP) is the better protected it is in general. In other
words, with a large Φ(FP), it is less likely that P is known to other participants that do not
own P.

The HOTITEM-ID protocol is highly efficient in that it has constant per-monitor com-
munication overhead. The efficiency is important for a large scale distributed privacy-
preserving signature generation system because the system needs to generate signatures
before a fast worm widely spreads. Even when thousands of monitors participate in the
process, the HOTITEM-ID achieves its efficiency by adopting a relaxed notion of privacy
instead of cryptographically guaranteed privacy. However, the relaxed notion of privacy
provides sufficient protection for our purpose.

7.2 HOTITEM-ID Protocol

In Figure 7.1, we show an overview of the components of the efficient privacy-preserving
hot item identification protocol HOTITEM-ID . We first introduce the intuition behind each
component. The full detail of each component is described in our paper [69]. In Section 7.2.6,
we describe the full construction of HOTITEM-ID. Once all monitors learn the hot items in
their private datasets, they can distribute the signature using the mechanism described in
Section 7.3.1.

1All elements in an indistinguishable set are not distinguishable from each other with every efficient algo-
rithm.

89

7.2. HOTITEM-ID Protocol

S1 & Rl Sn & Rl

Figure 7.1: Components of HOTITEM-ID protocol: HOTITEM-ID defines how to effi-
ciently compute an approximate representation of Rλ in distributed fashion. Each monitor i
(0 ≤ i < M) constructs local filters to approximately represent his private input set Si, gen-
erates one-show tags for marked bits in filters, and sends a subset of those one-show tags
to the network using anonymous routing. Those tags in the network are aggregated using
a distributed counting protocol that estimates the number of distinct elements. At the end
of the protocol, all monitors learn the global filters that approximate Rk. At the right side of
the figure we list the purpose of each component.

7.2.1 Approximate Heavy-Hitter Detection

In our distributed signature detection system, we filter out the most content blocks by ap-
plying the local thresholds θG . However, the total number of content blocks from thousands
of monitors will be still prohibitively large if thousands of monitors participate. In order to
avoid exchanging the huge volume of data among distributed monitors, we utilize an ap-
proximate heavy-hitter identification scheme [45] instead of counting the number of monitors
holding each possible content block and determining whether that content block is hot.

In this approximate heavy-hitter identification scheme, each monitor constructs a local
filter. The monitors then combine their local filters to construct a global filter that represents
Rλ; this global filter approximately identifies hot content blocks. We illustrate this process
of local and global filter construction in Figure 7.2.

First, each player constructs a set of T local filters, which approximately represent his
private input set. Let h1, . . . , hT : {0, 1}ω → {1, . . . , b} be hash functions independent to
each other. Each local filter contains b bits and wi,q,j represents the j-th bit in q-th local filter
of monitor i. Monitor i (0 ≤ i < M) computes each bit wi,q,j := 1 ⇔ ∃P∈Sihq(P) = j. The
construction of local filters is similar to constructing a Bloom filter [8]. Indeed, we can use a
combined Bloom filter instead of using separate T filters. We describe our approach using T
filters in the interests of clarity.

90

Chapter 7. Preserving Privacy using HOTITEM-ID

filter 1

filter 2

filter 3

Player 1's local filter Global FiltersPlayer 2's local filter Player 3's local filter

Figure 7.2: Approximate Heavy Hitter Detection: In our HOTITEM-ID protocol, each player
i constructs a set of local filters from his private input set Si (dark bits are ‘hit’). The players
then construct global filters using an approximate counting scheme; if a bit was hit by at
least λ players, then it is ‘hit’ (dark) as well. If an element hashes to a dark bit in each of the
global filters, then it is classified as hot.

The monitors then collaboratively combine their local filters into a set of global filters,
using methods described below; global filters approximately represent the monitors’ com-
bined private input sets. If at least λ players set bits j of filter q to be 1, then the bit j in the
global filter q, xq,j := 1 (0 ≤ q < T, 0 ≤ j < b). Otherwise, let xq,j := 0. Given this global
filter, P is hot with high probability if x1,h1(P) = 1, . . . , xT,hT(P) = 1.

7.2.2 One-Show Tags

In order to construct the global filters, we must count how many monitors set each bit in their
local filters. In order to prevent the inflation attack while preserving the owner privacy, the
HOTITEM-ID protocol forces each monitor to ‘vote’ at most once with anonymous one-show
tags.

If a monitor has set a bit, it constructs a tag for that bit; all monitors then count the
number of valid tags for each bit to construct the global filters. We require that one-show
tags posses the following properties: (a) no PPT adversary can construct more than one
valid tag for any bit with non-negligible probability; (b) any monitor can detect tags that are
invalid, or not associated with a particular bit, with overwhelming probability; (c) for every
bit, the tags constructed by any two monitors are distinct, with overwhelming probability;
(d) no PPT adversary can distinguish the monitor that constructed it, with probability non-
negligibly different than 1

(1−c)M , where M is the number of honest monitors and c is the
fraction of malicious monitors.

The anonymous one-show tags are constructed by extending any group signature scheme.
A group signature scheme allows each member in a group to sign messages on behalf of the

91

7.2. HOTITEM-ID Protocol

group. Given these signatures, no player or coalition of members (except the trusted group
manager) can distinguish the member that produced any signature, nor can they determine
if two signatures were produced by the same group member. In our work, we extend the
group signature scheme of Boneh and Shacham [11] to construct the one-show tags. The
one-show tag is lightweight, requiring 1539 bits.

In the Boneh and Shacham group signature scheme, the group public key is pk = {g1, g2, w},
where g1 ∈ G1, g2 ∈ G2, and w = gsk

2 for sk ← Z∗p. (p can be taken to be a 170-bit prime,
and the elements of G1, G2 can be represented in 171 bits [11].) The trusted group manager
holds the group secret key sk. Each user i (1 ≤ i ≤ n) has a private key si = {Ai, xi}, where
xi ∈ Z∗p, Ai ∈ G1. Using his private key, each player may sign a message, using a variant of

the Fiat-Shamir heuristic [47], by proving knowledge of a pair {Ai, xi} such that Axi+sk
i = g1.

We modify this group signature scheme to include provably correct one-show values,
making each signature a one-show tag. Each monitor i (1 ≤ i ≤ n) constructs a one-show
tag for bucket j of filter q (1 ≤ q ≤ T, 1 ≤ j ≤ b) by: (1) signing the message q||j essentially as
in the original signature scheme; (2) computing two additional values to enable the recipient
monitor to compute the one-show value.

Each monitor generates gq,j ∈ G2 by an agreed-on scheme. We utilize the same bilinear
mapping e as in the computation of the main signature, as well as the intermediate value
v, α, rα computed as intermediate values utilized in the main signature. Monitor i computes
these additional elements for a one-show tag:

T3 = e(rαv, gq,j)

T4 = e(αv, gq,j)

The sole change to the original signature scheme is that the challenge value c is computed
as c = H(pk, q||j, r, T1, T2, T3, T4, R1, R2, R3). The recipient conducts all the validity checks
specified in the Boneh/Shacham signature scheme, as well as the following additional check,
derived from a proof of discrete logarithm equality [23]:

e(sαv, gq,j) = Tc
4 T3

We define the one-show value as e(Ai, gq,j); note that this value cannot be constructed by
any player other than i and that player i can construct exactly one such value. To compute

92

Chapter 7. Preserving Privacy using HOTITEM-ID

this value, the signature recipient computes:

(
e(−cT2sαv, gq,j)T3

) 1
c

The additional zero-knowledge proof required for the one-show tag construction is ef-
ficient, and thus our one-show tag construction and verification is nearly as efficient as the
original group signature scheme. Note that these one-show tags are unlinkable, anonymous,
and can be verified by all players who hold the group public key.

The parameter gq,j, used to construct a one-show value associated with bucket j of filter
T (1 ≤ q ≤ T, 1 ≤ j ≤ b), can be efficiently constructed in a variety of ways such that no
player knows its discrete logarithm. In this section, we briefly describe one such approach.

Let PRNG be a pseudo-random number generator with range G2 [82]. Let the `th element
output from this PRNG on seed σ be denoted σ`. If σ2

(q−1)b+(j−1) is a generator of G2, then

gq,j := σ2
(q−1)b+(j−1). If this is not the case, then if

(
h(σ(q−1)b+(j−1))

)2
is a generator of G2,

then gq,j :=
(

h(σ(q−1)b+(j−1))
)2

. If this is not the case, then repeat the process of hashing
and testing until an element is found that is a generator of G2. As a large portion of G2 are
generators, a low number of repetitions are generally needed.

Note that σ can be chosen anew each time the protocol is run to prevent reuse of one-
show tags. For example, it might be generated from a common timestamp.

7.2.3 Approximate Distinct Element Counting

We can now securely identify hot items by utilizing global filters and anonymous one-show
tags. However, exactly counting the number of valid, distinct one-show tags is inefficient.
HOTITEM-ID performs the task of approximate counting of distinct tags through an efficient
algorithm for approximate distinct element counting [6]. The HOTITEM-ID protocol provides
even more efficiency by estimating directly, through a modified use of this approximation,
whether there are more or fewer than λ tags for a bit; this is the task that must be performed
to construct the global filters.

Let H : {0, 1}∗ → {0, 1}ω be a collision-resistant cryptographic hash function. Let
v1, . . . , vt represent valid one-show tags that, when hashed withH, have the smallest values
of any tags in the set. The monitors can perform this tag collection task often without even
examining every tag. For example, any tag with value greater than t2ω

λ may be immedi-
ately discarded without affecting the approximation. We call this approximate tag counting
technique t-collection.

93

7.2. HOTITEM-ID Protocol

There may be a large gap between the frequency of worm content blocks and legitimate
traffic content blocks. Random scanning worms contact a large number of networks during
a measurement interval. Even the localized scanning worms attempt to contact a large num-
ber of IP addresses in a local network. However, content blocks from legitimate traffic are
shared among only a small number of IP addresses. Thus, to gain greater efficiency in de-
tecting bits with at least λ one-show tags, we adjust the t-collection protocol such that each
monitor attempts to collect t tags with hash values of at most (1 + γ) t2ω

λ . The γ is a constant
based on the size of the ‘gap’ between the frequency of worm content blocks and legitimate
content blocks, and this gap needs to be determined based on the analysis of traffic. We gain
efficiency by reducing t, while retaining accuracy.

7.2.4 Anonymous Communication

We now apply our tools to a network structure to complete the protocol. In order to disasso-
ciate the anonymous one-show tags from their origins in the network, each monitor anony-
mously routes its tags to ρ randomly chosen nodes. The constant ρ can be varied to achieve
greater or lesser degrees of robustness; at least one participating monitor should receive each
monitor’s tags. We require an anonymous routing scheme that allows any monitor to send
a message to a uniformly randomly selected monitor, without revealing the source to any
intermediate routing node. Simple and lightweight schemes can be used, as HOTITEM-ID
requires only that each monitor send anonymous messages to a uniformly selected destina-
tion node, without revealing who sent the message. Some previously proposed anonymous
networking schemes include [24, 22, 111, 112, 84].

7.2.5 Distributed One-Show Tag Collection

Once all the monitors have anonymously received the initial set of one-show tags, they count
the number of tags associated with each bit of the filters. The HOTITEM-ID protocol requires
each monitor send messages to each of its neighbors, who form a connected graph. For
clarity of presentation, our protocols assume synchronous communication, but this can be
easily adapted to an asynchronous model.

Each monitor maintains a set of at most t valid tags which have hash values at most
(1 + γ) t2ω

λ . Upon learning a new tag that will be added to the set, a monitor sends the
new tag to all of its neighbors. When a monitor has collected t tags with hash values of
at most (1 + γ) t2ω

λ , and sent each of these tags to its neighbors, it ends its participation

94

Chapter 7. Preserving Privacy using HOTITEM-ID

in the distributed t-collection protocol. If there do not exist t such small-hash-value tags,
the protocol must continue until it converges. This t-collection process ends after at most
logψ(M) steps if ψ is the average number of neighbors. Note that these protocols can be
executed in parallel for each bit of the global filters.

7.2.6 Putting HOTITEM-ID to Work

Each monitor has a private key allowing it to construct one-show tags. These keys are dis-
tributed by a trusted ‘group manager’.

1. Each monitor constructs T local heavy-hitter identification filters.

2. Each monitor constructs a one-show tag for each bit in the filters set to 1.

3. If the hash (H) of a tag is at most (1 + γ) t2ω

λ , the monitor anonymously sends the tag
to ρ randomly chosen nodes.

4. All monitors perform the distributed t-collection protocol.

5. If monitors collect t valid, distinct tags for a bit of a filter, they conclude that the value
of corresponding bit in the global filter is 1.

6. Using the global filter, each monitor can determine if their own payload pattern strings
are hot. The suspicious payload identification completes.

7. Each monitor generates signatures based on the result and publishes.

7.2.7 Correctness Analysis of HOTITEM-ID

In this section, we show that, given certain choices of the parameters b and T, HOTITEM-ID
identifies hot items with high probability. In analyzing this protocol, we must consider both
false positives and false negatives. Errors may be caused by inaccurate approximate distinct
element counting, a badly constructed filter, or a combination of the two.

Error from Approximate Distinct-Element Counting. Bar-Yossef et al. [6] shows that if
h(v) is the tth smallest hash value in a set S, where h : {0, 1}∗ → {0, 1}κ, then the estimate
of the set size |S| is t2κ

h(v) . By computing the median of O
(

lg 1
δ1

)
such estimates, with compu-

tationally independent hash functions, we can obtain |S|, an (ε, δ1)-approximation of the set
size.

95

7.2. HOTITEM-ID Protocol

Theorem 1. For any ε, δ1 > 0, the approximate distinct-element counting algorithm (ε, δ1)-approximates
|S|. That is,

Pr
[
|S| > (1 + ε)|S| ∨ |S| < (1− ε)|S|

]
≤ δ1

Proof. Proof is given by Bar-Yossef et al. in [6].

Our HOTITEM-ID employes the approximate distinct-element counting algorithm notic-
ing that, if there exist at least t elements with hash values at most t2κ

λ , the estimate of |S| is at
least λ.

Corollary 2. If there exist t values v1, . . . , vt ∈ S such that ∀`∈[t] h(v`) ≤ t2κ

λ , then the approximate
distinct element counting algorithm of [6] will estimate that |S| ≥ λ.

Proof. Let w = max`∈[t]{h(v`)}. The approximation algorithm specifies that |S| = t2κ

w . As
w ≤ t2κ

λ , then |S| ≥ λ.

Error from Filters. Now we consider the probability that an item a, which appears in less
than λ′ monitors’ private input sets (e.g. Fa < λ′), is identified as a λ′-threshold hot item.
We set λ′ := λ

1+ε , so as to account for the allowed inaccuracy in the approximate counting
algorithm.

Let’s say j′-th hash value of a cold item a is j (0 ≤ j < b). If the corresponding bucket j in
the j′-th filter was hit by λ′ − Fa monitors who do not hold the item a due to hash collisions,
the cold item a will be identified by the filter. Moreover, as malicious participants may claim
to hit all buckets, a minimum of λ′− Fa− cM honest monitors must hit the bucket j to cause
an error regarding a.

We assume that each honest monitor has a maximum of m items in their private input
set. Using every element of each players’ private input set, each group of λ′ − Fa − cM
honest monitors may hit at most m buckets a suficcient number of times to introduce an
error caused by collisions. There are M− Fa − cM honest monitors who do not hold a, and
thus bM−Fa−cM

λ′−Fa−cM c groups of monitors that can hit m buckets per group enough times to allow
danger of an error. Note that any group of fewer than λ′ − Fa − cM monitors cannot hit any
particular bucket a sufficient number of times to cause a total of λ′ − Fa hits; each monitor
may only hit any particular bucket at most once.

Thus, at most mbM−Fa−cM
λ′−Fa−cM c buckets of each filter can be ‘unsafe’; if a is not mapped to one

of those buckets, then there is no possibility of error from the malfunctioning of the filter.

96

Chapter 7. Preserving Privacy using HOTITEM-ID

As hj′(a) is distributed computationally indistinguishably from uniformly over [b], we may
thus bound the probability that bucket hj′(a) is erroneously designated as ‘hot’:

Pr
[
a is identified as λ′-hot by one filter

]
≤

mbM−Fa−cM
λ′−Fa−cM c

b

Combined Error. We conside the two sources of error together. There are two possible
error types: false positives in which cold items are identified as hot, and false negatives in
which hot items are not identified.

Theorem 3. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε and β,
the upper limit of the number of malicious participants cM. Let b, t, T, ρ be chosen as the following:
t := d 96

ε2 e, ρ := O
(

lg 2
δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b× T, and at the same

time, satisfy

mb M−βλ−cM
λ

1+ε
−βλ−cM

c

b + δ−
T

T

< δ+.

In the HOTITEM-ID protocol, with probability at least 1− δ+, every element a that appears in
Fa < βk players’ private input sets is not identified as a λ-threshold hot item.

In the HOTITEM-ID protocol, with probability at least 1− δ−, every element a that appears in
Fa ≥ λ

1−ε players’ private input sets is identified as a λ-threshold hot item.

Proof. The probability that an element a, which appears in Fa < λ
1−ε players’ private input

sets, is not identified as a λ-threshold hot item can be bounded as follows. Note that we
have set λ′ = λ

1+ε , to account for the allowed tolerance in approximate counting:

97

7.2. HOTITEM-ID Protocol

Pr [a is identified as λ-hot] ≤ Pr[in all filters, element a is identified as λ′-hot∨
set of size < λ′ approximated as ≥ λ]

=
T

∏
j′=1

Pr[in filter j′, element a is identified as λ′-hot∨

set of size < λ′ =
k

1 + ε
approximated as ≥ λ]

≤
T

∏
j′=1

(
mb n−Fa−cM

λ′−Fa−cMc
b

+ δ1

)

=

(
mb n−Fa−cM

λ′−Fa−cMc
b

+ δ1

)T

=

mb n−Fa−cM
λ

1+ε−Fa−cM
c

b
+ δ1

T

If an element a, which appears in Fa ≥ λ
1−ε players’ private input sets, is not identified

as a λ-threshold hot item, it is due to error in the set-counting approximation. When the
number of hits for every bucket in a filter is counted exactly, there can be no false negatives.
Thus, we may bound the probability of a false negative as follows:

Pr [a is not identified as λ-hot]

= Pr
[
in at least one filter, a set of size ≥ λ

1−ε approximated as < λ
]

≤ ∑T
j′=1 Pr

[
in filter j′, a set of size ≥ λ

1−ε approximated as < λ
]

≤ ∑T
j′=1 δ1

= δ1T

Choice of Constants. Given our analysis, we may outline how to choose the constants
δ1, t, b, T based on the parameters ε, δ−, c, M, m, δd, β.

• δ1. Recall that the probability of a false negative, for an element a which appears in at
least Fa ≥ λ

1−ε players’ private input sets, is required to be at most δ−. We may then

98

Chapter 7. Preserving Privacy using HOTITEM-ID

choose δ1 as follows:

Pr [a is not identified as λ-hot] = δ−

≤ δ1T

δ1 :=
δ−
T

• b, T. Given this assignment of δ1, we may simplify our bound on the probability of a
false positive on an element a, which appears in βλ < λ

1+ε players’ private input sets,
as follows:

Pr [a is identified as λ-hot] ≤

mb M−Fa−cM
λ

1+ε− fa−cM
c

b
+ δ1

T

≤

mb M−βλ−cM
λ

1+ε−βλ−cM
c

b
+

δ−
T

T

We choose b, T so as to minimize b× T, while satisfying the above constraint.

• t, α. In the approximate distinct element counting algorithm in [6], t := d 96
ε2 e, α :=

O
(

lg 2
δ−

)
. In practice, one may safely choose to retain t < d 96

ε2 e smallest values per
parallel execution, and run only one parallel execution, while retaining a confidence
bound of δ1. We found that t := 25 was sufficient.

Note that, when running very small examples, or with very high accuracy require-
ments, one may obtain an assignment for t that is ≥ λ. In this case, simply set t := λ,
and note that ε, δ1 = 0; each player is now collecting a sufficient number of signatures
so as to determine, without error, whether any particular bucket was hit by at least λ

distinct players.

7.2.8 Privacy in HOTITEM-ID

Theorem 4. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the HOTITEM-ID protocol, for any payload P, no coalition of at most cM malicious players can gain
more than a negligible advantage in determining if P ∈ Si, for any given honest player i (0 ≤ i < M).

99

7.3. Distributed Worm Signature Detection

When considering data privacy, we wish to prove that the non-hot items in S1 ∪ · · · ∪ Sn

remain hidden from adversaries. For example, in the HOTITEM-ID protocol, no player or
coalition of at most cM malicious players may gain more than an expected I = tmM

k lg b bits
of information about all players’ inputs

⋃n
i=1 Si, when m is the maximum possible size of Si

for 1 ≤ i ≤ M. We prove a tighter bound on the degree to which each payload is hidden in a
crowd of indistinguishable elements. Two elements are indistinguishable if an attacker cannot
distinguish which one was in players’ private input sets based on the information gained
in HOTITEM-ID. For a payload pattern P, its indistinguishable set consists of all payload
patterns indistinguishable from it. To provide data privacy, we wish for non-hot items to
have large indistinguishable sets.

Theorem 5. In the HOTITEM-ID protocol, each payload P, which appears in FP distinct players’
private input sets, has an indistinguishable set of expected size

Φ(FP) = ∑T
`=1 (T

`)
(
1− t

k
)Fa(T−`)

(
1−

(
1− t

k
)Fa
)` |M|

b` .

Proof of these theorems is given in [69]. We graph Φ(FP)
|M| in Figure 7.3 when T = 5 and

b = 2000. Note that if P appears in only a few players’ private input sets, a very large
proportion of the domain is indistinguishable from P. As FP approaches λ

t , the size of the
indistinguishable set decreases; this character ensures that truly rare items are highly pro-
tected. As t is a constant, independent of |M|, while λ will often grow with the size of the
network, we see that protection for cold items generally increases as the network increases
in size.

Note that in our correctness analysis in Section 7.2.7, we found that t ≥ 25 was sufficient
in practice. In order to prevent cold items from being disclosed by errors, we have to choose
λ to be large enough so that λ

t >> FP for most of the cold items P. In other words, our
HOTITEM-ID is a viable solution for privacy protection only when the number of partici-
pants is as large as thousands and therefore we can choose a large λ such as hundreds.

7.3 Distributed Worm Signature Detection

We now apply the HOTITEM-ID protocol to detect the signature of a worm by correlating
the content blocks discovered by individual Autograph monitors. There are two possibili-
ties in placing an Autograph monitor. First, we can install an Autograph monitor in an edge
network’s DMZ as described in Chapter 3. Second, we implement Autograph’s suspicious
flow selection and content-based signature generation stages in an end host. The end-host

100

Chapter 7. Preserving Privacy using HOTITEM-ID

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

F
P

Φ
(F

P
)

/ M
λ/t = 100
λ/t = 30
λ/t = 10
λ/t = 4

10
0

10
1

10
2

10
−20

10
−15

10
−10

10
−5

10
0

F
P

Φ
(F

P
)

/ M

λ/t = 100
λ/t = 30
λ/t = 10
λ/t = 4

(a) (b)

Figure 7.3: The degree of data privacy for an element with frequency FP is Φ(FP)
|M| . We graph this

function in (a), showing the increase in protection for items that show up in few players’ inputs. The
same function is graphed in (b) on a logarithmic scale, for increased detail. Note that rare items are
indistinguishable from a large proportion of the domain, giving them a large degree of data-privacy.

Autograph is installed in a dedicated network processor [21] or in the kernel of an end host to
minimize the risk of fraudulent reports from already-compromised applications. End-host
Autograph, thus, can perform flow reassembly similarly to the applications at the end host.
Still, Autograph’s port scanner detection must be done at the boundary of the network and
the gateway of each subnet because port scanner detection needs to monitor each unsuc-
cessful connection attempt to a non-existent host or service. This cannot be done at the end
hosts. The list of port scanners is distributed to all end-host Autograph systems using the
tattler mechanism.

The advantage of placing Autograph in an edge network’s DMZ is that the monitor can
possibly accumulate many suspicious flows and perform local content-prevalence analysis
based on locally found suspicious flows. If a single monitor accumulates enough suspicious
flows, the monitor generates a signature immediately. From a network administrator’s per-
spective, this is easier to install and maintain than end-host Autograph.

An advantage of end-host Autograph is that we can perform the flow reassembly at the
end host, and thus avoid attacks that exploit ambiguities in traffic stream as seen by the
NIDS [106]. Exploitable ambiguities can arise in two different ways in Autograph’s traffic
analysis:

1. Without detailed knowledge of the end-host’s protocol implementation, Autograph in
the DMZ may be unable to determine how the end-host will treat a given sequence of
packets if different implementations interpret the same stream of packets in different

101

7.3. Distributed Worm Signature Detection

ways. For example, when an end-host receives overlapping IP fragments that differ in
the purported data for the overlapping region, some end-hosts may favor the data first
received, others the portion of the overlapping fragment present in the lower fragment,
and others the portion in the upper fragment.

2. Without detailed knowledge of the network topology between the DMZ and the end-
host, Autograph in the DMZ may be unable to determine whether a given packet will
even be seen by the end-host. For example, a packet seen by Autograph in the DMZ
area that has a low Time-To-Live (TTL) field may or may not have sufficient hop count
remaining to make it all the way to the end-host. If the Autograph uses such packets
in its analysis, the analysis result may be incorrect.

Another advantage is that we can monitor worm activities inside a network. Many mod-
ern worms employ localized scanning to infect hosts in the same subnet quickly, but a moni-
toring system at the border of the network cannot detect such internal worm infection activi-
ties. With scanner detection at each subnet boundary, end-host Autograph can collect worm
flows even when the worm launches attacks from an internal host. Weaver et al. [141] and
Staniford [128] also discuss the importance of worm activity monitoring inside enterprise
networks.

The disadvantage of end-host Autograph is obvious. The probability of receiving mul-
tiple attack flows is so low that content analysis and signature generation is difficult. Thus,
collaboration among multiple end-host Autograph monitors is necessary in the signature
generation process.

In this work, we focus on the end-host Autograph case. Thousands of end-host Au-
tograph monitors are connected with a P2P multicast network. They receive port-scanner
information from monitors installed in their network’s DMZ, boundaries of each subnets,
and network telescopes [86]. If a monitor receives a connection attempt from one of the
blacklisted port-scanners, the monitor responds with the connection request, collects suspi-
cious packets, and performs TCP flow reassembly. The resulting reassembled payloads are
partitioned into content blocks using Autograph’s COPP algorithm. The monitor’s private
dataset consists of those content blocks collected during the last τ minutes. Finally, all mon-
itors collaboratively perform signature generation in our LSD and GSD frameworks with
their private datasets.

102

Chapter 7. Preserving Privacy using HOTITEM-ID

7.3.1 Candidate Signature Advertisement (LSD)

If a content block appears more than θL times and more than one source IP addresses has sent
the content block, the monitor advertises the content block as a candidate signature. Using a
secret key ski and a group public key distributed by a trusted group manager, each monitor
Mi constructs a one-show tag. The detail of one-show tag construction is described in [69].
The one-show tag is unlinkable, anonymous, and can be verified by all other monitors who
hold the group public key. The same one-show tag cannot be constructed by any monitor
other than Mi who holds ski.

The candidate signature with a corresponding one-show tag is sent to ρ randomly chosen
monitors using an anonymous scheme such as AP3 [84] and Crowds [112]. The message
delivery to a randomly chosen monitor is done as the followings:

1. When a monitor Mi wants to send a message to a randomly selected monitor Mj, Mi

chooses another node (say Mk) randomly, and sends the message to Mk.

2. Upon receiving the message, Mk performs a weighted coin toss to decide whether
to send the message to Mj, or to forward the message to another randomly chosen
node. The decision to forward to another random node is made with probability p f

(0.5 ≤ p f < 1), the forwarding probability.

3. After 1
(1−p f)

hops on average, the message is delivered to Mj.

The mechanism obscures the originator Mi’s identity from both the intended recipient
Mj and any malicious nodes hoping to expose the originator’s identity. Thus, the owner pri-
vacy is protected. Unlike AP3, we do not need an anonymous bi-directional communication
channel. Therefore, the implementation is simpler and more light-weight than the original
AP3 scheme.

Once one of the ρ monitors receives the message with a candidate signature, the mes-
sage is multicasted to all other monitors. Upon receiving a multicast message, each monitor
verifies the validity of the message using the group public key. Each monitor maintains a
counter for each valid, advertised candidate signature. If a monitor receives more than λL

advertisements on the same candidate signature, it accepts the candidate signature as a valid
global signature for a currently active worm.

103

7.4. Experimental Results

7.3.2 Suspicious Payload Sharing (GSD)

Once every d minutes, all monitors run the HOTITEM-ID protocol to identify content blocks
that do not appear many times in a single dataset but do appear in many datasets. If a con-
tent blocks appear in more than λG monitors’ private datasets, the content block is used to
generate a new signature. The detailed procedure is described in Section 7.2.6. All monitors
use the same set of hash functions, and t-collection parameters. Once a monitor finds one
of its content blocks appears in more than λG monitors’ data set, it generates a signature
based on the content block, and publishes it using the same anonymous communication
scheme used in the LSD implementation. Since all monitors already have the global filter,
they can check the validity of the signature with the global filter and do not have to wait
until multiple signature advertisement messages arrive.

For both GSD and LSD, we use a basic form of multicast communication in our imple-
mentation. Each monitor has ψ neighbors and they form a connected graph. When a monitor
receives a message that is not received before, it forwards the message to all ψ− 1 neighbor
monitors other than the message sender. A message can be delivered multiple times to a
node along the different paths, but there is no loop because only newly found messages are
forwarded to the neighbors. By employing a more efficient multicast protocol [60, 19] that
delivers data along a multicast tree, we could avoid the duplicate message delivery. We
leave this improvement as future work.

The signature detection speed of GSD and LSD was examined in Section 6.2. Since the
one-show tag construction and verification can be done quickly, the lag for candidate signa-
ture distribution in LSD and payload sharing in GSD is governed by communication delay.
The average path length to multicast a message is O(1

1−p f
+ logψ(M)). In order to protect

the owner privacy, the larger forwarding probability p f is preferred. However, the larger p f

we use, the longer it takes to anonymously route each message.

Even though there could be thousands of content blocks in each monitor’s private dataset,
only a small fraction of one-show tags need to be sent to the network. In the next section,
we measure the required bandwidth and the number of messages using real network traces.

7.4 Experimental Results

We now proceed to evaluate the efficiency and accuracy of GSD implemented with HOTITEM-
ID with simulations. We are interested in the number of exchanged messages and the re-
quired bandwidth. Each message containing an one-show tag has to be verified by each

104

Chapter 7. Preserving Privacy using HOTITEM-ID

monitor. Even though the time to verify one message is small in our implementation, the
total processing time would be prohibitively large if many messages need to be verified.
The message size in HOTITEM-ID is large; each one-show tag requires 1, 368 bits (171 Bytes).
Thus, the bandwidth consumed by HOTITEM-ID is another concern in building a scalable
system. Our experimental results support the efficiency and accuracy of HOTITEM-ID .

7.4.1 Simulation Method

We measure the required bandwidth, the number of messages, and the false positive/negative
rates by simulating signature generation during simulated worm propagation. We compare
our protocol to a non-private naı̈ve protocol, in which all content blocks are forwarded to all
participating 1024 monitors. To save bandwidth and give a trivial measure of privacy against
casual attacks [78], the naı̈ve protocol hashes each content block with SHA-1 and exchanges
only the hash values. When a monitor receives more than λG messages for a hash value, the
monitor knows that the corresponding content block is λG -hot. The naı̈ve protocol uses the
same network topology and the same communication model as our HOTITEM-ID protocol.

In our experiments, we assume that 1024 end-host Autograph monitors inside a B-class
network collaboratively generate a signature by performing GSD with HOTITEM-ID . The
monitors receive port-scanner lists from monitors installed at the border of the network and
each subnet. The monitor at the gateway monitors ICMP host/port unreachable messages
and unanswered inbound SYN packets. If an external host has made unsuccessful connec-
tion attempts to more than 2 internal IP addresses, the monitor advertises the IP address to
all 1024 end-host Autograph monitors. Once a flow is identified as a suspicious flow by an
end-host Autograph monitor, the flow is held in the monitor’s suspicious flow pool for τ = 1
hour. Each end-host Autograph monitor constructs its private dataset by performing COPP.
We use 64 bytes as the average content block size parameter.

Traces. In order to represent content blocks from misclassified, innocuous flows, we use
network traces captured at the gateway of a campus network in Feb 18, 2005. The network
has a class-B IP address space. The gateway has three 1 Gbps interfaces and incoming traffic
is evenly distributed to the interface using per-flow load balancing. Our traces are collected
by tapping one of the links. We split the traces based on the destination IP addresses and
feed end-host Autograph with the splitted traces and collect content blocks generated for
an hour. Most content blocks are from port 80 (HTTP) and port 25 (SMTP) traffic. Here, we
present our experimental results with traffic of only those ports. Table 7.1 summarizes the
traces used in our experiments. Misclassified SMTP flows tend to generate many content

105

7.4. Experimental Results

misclassified unique con content blocks appeared
name duration protocol flows -tent blocks in more than 1 monitor

HTTP-tr1 1 hour http 288 521 5
HTTP-tr2 312 652 6
HTTP-tr3 355 724 12
SMTP-tr1 1 hour smtp 1489 46120 1489
SMTP-tr2 1322 38210 1521
SMTP-tr3 1202 25284 1078

Table 7.1: Traces and the number of generated content blocks

 1

 10

 100

 1 10 100 1000

N
um

be
r

of
 H

os
ts

 (
pl

ay
er

s)

Content Blocks (Sorted)

Content Block Frequency (port 80)

HTTP-tr1
HTTP-tr2
HTTP-tr3

 1

 10

 100

 1 10 100 1000 10000 100000

N
um

be
r

of
 H

os
ts

 (
pl

ay
er

s)

Content Blocks (Sorted)

Content Block Frequency (port 25)

SMTP-tr1
SMTP-tr2
SMTP-tr3

(1) HTTP (port 80) (2) SMTP (port 25)

Figure 7.4: Number of hosts vs. Innocuous content blocks: Number of unique hosts that
report each content block. The content blocks are generated from suspicious flows collected
for 1 hour time window.

blocks because they often contain MIME-encoded long messages. Even though the total
number of unique content blocks is large, only a small fraction of them appear in multiple
monitors. Only 1.6% (HTTP-tr3) and 3.2% (SMTP-tr1) of content blocks appear at more
than one host.

Figure 7.4 (a) and (b) show the number of hosts who generate each content block for the
misclassified, innocuous HTTP and SMTP traffic, respectively. Through manual examina-
tion, we determined that content blocks that appeared at more than one host, belong to web
crawlers’ traffic or http header information (HTTP), or spamming activities (SMTP). We con-
sider all these content blocks to be innocuous. None of the innocuous content blocks appear
at more than 45 hosts.

Simulated Worm Flows. Once an internal host is infected, localized scanning worms
can easily penetrate the entire network. The fast scanning pattern is a prominent feature
across many worms. Assuming a localized scanning worm that targets hosts in the B-class

106

Chapter 7. Preserving Privacy using HOTITEM-ID

IP address space, we inject simulated worm traffic into the suspicious flow pools of 200 end-
host Autograph monitors. Those 200 monitors receive exactly one worm flow each, and
generate 10 content blocks from the worm flow. All 10 content blocks are invariant across
worm flows, and ideally, our system must find all those content blocks as hot content blocks.

Metrics. We evaluate the performance of our HOTITEM-ID -based GSD in terms of the
number of received messages per monitor, and required bandwidth per monitor, while
varying the t-collection parameters, t ∈ [3, 5, 10] (the number of tags to collect) and γ ∈
[0, 0.2, 0.5] (the gap factor), and the average number of neighbors ψ ∈ [5, 10]. We count the
number of received messages at each monitor and report the average. Since all messages are
delivered to every monitor, the variance in the number of messages is small. We measure
the false positives as the number of innocuous content blocks identified as to be hot. The
false negative rate is the fraction of worm content blocks that were not identified as to be
hot.

The number of filters T and the size of each filter b must be chosen based on the estimated
total number of content blocks in the system, which is measured by analyzing normal traffic.
Too small b and T cause many hash collisions in approximate heavy-hitter detection, and
thus incur many false positives. In our experiment, we utilized the parameters b := 606, T :=
5 for HTTP traces, and b := 4545, T := 5 for SMTP traces according to the guidelines in [69].
With the parameters, the false positive rate δ+ is lower than 0.01 if a content block appears in
less than 50 monitors’ private datasets in the presence of 1% · 1024 malicious monitors. The
false negative rate δ− is lower than 0.01 if a content block appears in more than λG monitors’
private datasets.

7.4.2 Bandwidth Consumption and Accuracy

We ran the HOTITEM-ID protocol to find content blocks that appear in at least 100 monitors’
private dataset (λG = 100).

False positives. In our experiments, there was no false positives except for SMTP-tr1
with the t-collection parameters, t ≤ 3 (the number of tags to be collected) and γ ≥ 0.5 (the
gap factor). We observed two innocuous content blocks mistakenly categorized as λG-hot
in the experiment using SMTP-tr1 with t ≤ 3 and γ ≥ 0.5. The false positives are due to
content blocks generated from a spam e-mail. The e-mail was sent to 44 different hosts. The
γ parameter must be chosen based on the difference between the frequency of innocuous
content blocks and the expected frequency of worm content blocks. In the SMTP-tr1 trace,
hundreds of innocuous content blocks were observed by more than 30 monitors, and ten

107

7.4. Experimental Results

HTTP-tr3 SMTP-tr1
of messages bandwidth # of messages bandwidth

t=3 t=5 t=10 t=3 t=5 t=10 t=3 t=5 t=10 t=3 t=5 t=10
ψ=5 naı̈ve 1 (11,399msgs) 1 (228KB) 1 (300,757msgs) 1 (6015KB)

γ=0 (0.044) 0.075 0.151 (0.370) 0.635 1.274 (0.026) (0.039) 0.073 (0.222) (0.326) 0.616
γ=0.2 0.048 0.081 0.162 0.408 0.685 1.366 (0.032) (0.048) 0.088 (0.274) (0.402) 0.740
γ=0.5 0.052 0.088 0.177 0.442 0.745 1.492 0.042 0.062 0.117 0.354 0.522 0.986

ψ=10 naı̈ve 1 (25,643msgs) 1 (513KB) 1 (676,612msgs) 1 (13,532KB)
γ=0 (0.038) 0.068 0.141 (0.325) 0.572 1.193 (0.017) (0.021) 0.065 (0.145) (0.178) 0.548
γ=0.2 0.042 0.071 0.146 0.353 0.596 1.230 (0.022) (0.028) 0.068 (0.187) (0.234) 0.572
γ=0.5 0.044 0.074 0.149 0.371 0.623 1.256 0.036 0.062 0.124 0.305 0.523 1.048

Figure 7.5: Normalized bandwidth consumption per player in performing hot item iden-
tification (λG = 100): Numbers in parentheses denote cases with false negatives. Underlines
denote cases with false positives. Numbers in bold face fonts are the most efficient but accu-
rate cases in each set of experiments.

payloads among them appeared in more than 40 different monitors, which is close to the
hot item identification threshold λG = 100 used in our experiments. A larger γ causes those
innocuous content blocks to be sampled more often and results in false positives. In the
HTTP-tr3 experiments, we did not experience any false positive case even with γ ≥ 0.5,
because there are only a couple of content blocks that appeared in more than 30 monitors’
private dataset.

False negatives. Unfortunately, we observed two false negative cases when γ = 0 and
t ≤ 3 in the experiments with http traces, and when γ ≤ 0.2 and t ≤ 5 in the experiments
with smtp traces. The false positive rate is higher than what we target. This is because the t
value is too small to tolerate the error from approximate distinct element counting. A higher
t value reduces the error rate.

Efficiency. Our HOTITEM-ID protocol scales better than the naı̈ve protocol. We present
our comparison of the required bandwidth and messages in Figure 7.5. For easy compar-
ison, we normalize the measured values against the results from the naı̈ve protocol. Our
HOTITEM-ID implementation, based on an efficient group signature scheme [11], requires
173 bytes per message while the naı̈ve protocol utilizes only 20 bytes per message for a SHA-
1 hash value. However, our protocol requires only a small number of message transmissions;
as a result, HOTITEM-ID used only 35% and 52% of the bandwidth used by the naı̈ve proto-
col in the HTTP-tr3 and SMTP-tr1 experiments, respectively when the appropriate γ and
t parameters are used.

In HTTP-tr3, there are only 724 unique content blocks globally while SMTP-tr1 gener-
ates 46,120 unique content blocks. As a result, monitors need to exchange more messages in
the experiments with SMTP-tr1 than with HTTP-tr3. Note that there is duplicated mes-

108

Chapter 7. Preserving Privacy using HOTITEM-ID

sage delivery because we use a basic form of multicast that floods each message to all ψ

neighbors. Thus, the number of messages each node receives is larger than the actual num-
ber of unique messages. A larger ψ supports fast message broadcast to all monitors, but
results in more duplicated messages in the basic multicast.

As expected, the number of messages increases as γ and t increase. However, there is
a trade-off between efficiency and correctness. Numbers in parentheses in Figure 7.5 de-
note cases with false negatives. Numbers with underlines denote cases with false positives.
Smaller γ and t values reduce the communication cost but may result in false negatives.
Our experiments show that to ensure correctness while retaining efficiency, we may set
γ = 0.2, t = 3 (HTTP) and γ = 0.5, t = 5 (SMTP) for the traffic pattern in our traces.
The numbers in the bold face font in Figure 7.5 represent the most efficient cases. Without
analyzing more traffic traces from other time periods and other sites, we are unable to claim
that the set of parameters is valid for traffic patterns of other protocols.

Our HOTITEM-ID protocol scales better than the naı̈ve protocol; as problems increase in
size, our protocol becomes more attractive. For example, when 10240 monitors participate in
worm signature generation and we need only 10% of them to catch worm traffic (λ = 1000),
our HOTITEM-ID protocol uses less than 6% of the bandwidth used by naı̈ve protocol.

7.5 Summary

In this chapter, we use an efficient, secure, and robust privacy-preserving distributed hot
item identification protocol (HOTITEM-ID) for suspicious payload identification across thou-
sands of monitors. The HOTITEM-ID protocol protects owner- and data-privacy by utilizing
an approximate heavy-hitter identification scheme, one-show tags, an approximate distinct
item counting scheme, and anonymous routing techniques. The protocol provides proba-
bilistic privacy to support computation across thousands of distributed nodes. However,
the probabilistic privacy is sufficient for our suspicious payload pattern identification prob-
lem. We implemented the protocol and simulated distributed suspicious payload pattern
identification process by injecting worm traffic to a real network trace. Our experimental
results support that we can efficiently perform the distributed signature generation with the
HOTITEM-ID protocol while preserving the privacy in the presence of thousands monitors
participating.

109

7.5. Summary

110

Chapter 8

Preserving Privacy using
Privacy-Preserving Multiset Operations

The privacy-preserving payload sharing technique presented in the previous chapter, en-
ables an efficient, secure, and robust privacy-preserving payload sharing. However, the
technique uses probablistic approaches so the correctness and the privacy protection de-
pends on a large number of participating monitors. Thus we expect that the technique
proposed in the previous chapter is viable only when thousands of monitors participate
in payload sharing (See Section 7.2.8). If the number of monitors is small, we cannot choose
the threshold large enough to protect the data privacy of ’cold’ content blocks while distin-
guish ’hot’ and ’cold’ content blocks accurately. The system is not able to provide sufficient
accuracy or privacy protection for our new scenario.

This chapter introduces a privacy-preserving distributed signature generation system
that works well with about a hundred of monitors. The system is based on the privacy-
preserving multiset operation framework of Kissner and Song [70]. A semantically secure,
threshold homomorphic cryptosystem allows collaboration without a trusted third-party,
while preventing disclosure of rare, non-worm payload patterns. Unfortunately, the strong
privacy guarantee comes at the cost of expensive cryptographic operations and multiple
message exchanges among participating monitors. We analyze the complexity of the ba-
sic protocol that directly applies the privacy-preserving multiset operation framework, and
then propose extended privacy-preserving signature generation protocols that use approx-
imate counting techniques to improve performance. The results of the experiment with a
prototype implementation of the extended protocols show that the system that connects 128
monitors can determine mutually observed payload patterns within 5 minutes even with

111

8.1. Problem Definition

the currently available computer hardware. Those payload patterns are used for payload
pattern based signature generation.

We formalize our signature detection problem in the next section. In Section 8.2, we
summarize the threshold homomorphic cryptosystem and the privacy-preserving multiset
operation framework that are basis of our implementation. In Section 8.3, we describe our
algorithms used in our system, including the THRESHOLD-SET-UNION-HBC protocol devel-
oped by Kissner and Song [70]. We present the implementation of our system in Section 8.4,
and examine its performance and scalability in Section 8.5.

8.1 Problem Definition

In this chapter we design a distributed payload sharing system of M monitors following the
GSD framework defined in Chapter 6. Each monitor shares a content block P with other
monitors only when its prevalence measure f (P) exceeds θG. Only the content blocks that
are shared by more than λG monitors are used as signatures.

In the system, there are at most c honest-but-curious monitors. Honest-but-curious mon-
itors act according to their prescribed action in the protocols. However, they may attempt to
gain more information other than what can be deduced from the result of the protocol.

The system protects the privacy of exchanged data and its owner monitor against those
c honest-but-curious monitors. No monitor or coalition of c honest-but-curious monitors
gains more information about other monitors’ private datasets, other than 1) the set of λG-
hot content blocks, and 2) the number of content blocks reported by each monitor.

The original protocol proposed by Kissner and Song [70] prevents honest-but-curious
adversaries even from inferring the number of items (content blocks) in the data set of each
player (monitor). The protocol protects the information by enforcing all players to report
the same number of items. To avoid the case that a player has more than the predefined
number of items, the protocol assumes a large value for the private dataset size. In practice,
however, the performance of the protocol is greatly affected by the total number of content
blocks reported by monitors. Our system aims to find signatures of worms that propagate
quickly. Thus, performance is as important as privacy protection. With the relaxed notion of
privacy, we achieve the performance required for effective worm signature detection.

Kissner and Song [70] provide another protocol that protects privacy and correctness
when malicious adversaries are present. Malicious adversaries may behave arbitrarily, in
contrast to hones-but-curious adversaries. The protocol provides such strong privacy by us-
ing commitments on datasets before proceeding with the main protocol, and by attaching

112

Chapter 8. Preserving Privacy using Privacy-Preserving Multiset Operations

a zero-knowledge proof to every exchanged message. That requires additional communi-
cation and computation. Unfortunately, this protocol is too expensive to be used for our
purposes.

8.2 Preliminaries

The privacy-preserving set operation framework proposed by Kissner and Song [70] uses
a semantically secure, additively homomorphic public-key cryptosystem. We describe the
threshold homomorphic cryptosystem and then briefly introduce the privacy-preserving set
operation framework in this section.

8.2.1 Threshold Homomorphic Cryptosystem

Let Epk(·) denote the encryption function with public key pk . The cryptosystem supports
the following operations without knowledge of the private key sk:

1. Epk(m1 + m2) = Epk(m1) +h Epk(m2).

2. Epk(c×m1) = c ∗h Epk(m1).

The +h and ∗h represent the homomorphic addition and the homomorphic multiplica-
tion operations, respectively. When such operations are performed, the resulting ciphertexts
should be re-randomized for security. In re-randomization, a ciphertext is transformed so as
to form an encryption of the same plaintext, under a different random string than the one
originally used.

The privacy-preserving multiset operation framework also requires that the private key
in the cryptosystem is shared by more than (c + 1) nodes so that any coalition of at most c
nodes cannot decrypt messages exchanged during the protocol execution. We employ the
threshold Paillier cryptosystem [50, 51] that extends the homomorphic Paillier cryptosys-
tem [100].

In the (c + 1, M)-threshold Paillier cryptosystem, where M is the number of participating
monitors in the system, and c is the maximum number of malicious monitors the system can
tolerate, messages are encrypted using a public key pk, and the corresponding private key
sk is shared by a group of M participants. At least c + 1 of these participants can efficiently
decrypt encrypted messages, while no coalition of less than c + 1 participants can learn
useful information from encrypted messages.

113

8.2. Preliminaries

Let ∆ = M!. The key generation, encryption, and decryption processes of the (c + 1, M)-
threshold Paillier cryptosystem are performed as the follows:

• Key Generation: choose two safe primes 1 p = 2p′ + 1 and q = 2q′ + 1 where p′ and
q′ are also large random prime. Set m = p′q′ and n = pq. Let g be a generator and
β ∈ Z∗n is a random element. The public key is pk = (n, g). The secret key sk = β×m
is shared using the Shamir scheme [116] modulo mn.

• Encryption: For a message P, Epk(P) = gPxn mod n2.

• Re-randomization: To re-randomize a cipher text C, multiply it by a random encryp-
tion of 0, i.e., compute Crn mod n2 for r ∈ Z∗n.

• Partial Decryption: For a cipher text C, the i-th share is computed by Ci = Decski(C) =
C2∆ski mod n2.

• Recovery: Give a set of c + 1 valid shares, compute the plain text using the Lagrange
interpolation on the exponents.

Note that, in the original scheme [50], ∆ was defined to be M! assuming (c + 1, M)-
threshold decryption so that no modular root extraction is required in the Recovery operation.
In order to avoid the prohibitively large computation overhead when many monitors are in
the system, we group all monitors into c + 1 groups, and all monitors in the same group
hold the same share of a secret key, ski, i.e., node j holds skj mod c+1. In this way, we can
limit ∆ to be (c + 1)! (c � M) while still avoiding modular root extraction. Because there
are at most c malicious nodes, malicious nodes cannot acquire all c + 1 secret keys.

8.2.2 Privacy-Preserving Set Operations

Kissner and Song [70] showed that various privacy-preserving operations on multisets can
be performed using polynomial representations and employing the mathematical properties
of polynomials.

Let Zn be a sufficiently large plaintext domain and h(·) denote a cryptographic hash func-
tion that maps an element a into a domain Z ⊂ Zn. When a 6= a′, there is only a negligible
probability that h(a) = h(a′). Given a multiset A = {aj}1≤j≤k, A can be represented with
a polynomial f ∈ Zn[x] whose roots are collision-resistant hash values of elements in the
multiset A [52, 70]:

1A safe prime is a prime number of the form 2p + 1, where p is also a prime. For example, 5, 7, and 11 are
safe primes.

114

Chapter 8. Preserving Privacy using Privacy-Preserving Multiset Operations

f (x) = ∏a∈A(x− h(a))

The polynomial representation of a multiset enables various operations on multisets
where an element a can appear multiple times in a set and f reqA(a) denotes the multiplicity
of a in the multiset A. We present an important lemma that is the basis of the THRESHOLD-
SET-UNION-HBC protocol design. The proof is provided in [70].

Lemma 1. When f and g represent sets A and B, respectively, f (d) denotes d-th derivative of the
polynomial f , and, r ∈ Zn[x] and s ∈ Zn[x] are randomly chosen polynomials:

a ∈ A ⇔ (x− h(a)) | f

a ∈ A ∪ B ⇔ (x− h(a)) | f × g

a ∈ A ∩ B ⇔ (x− h(a)) | f × r + g× s

f reqA(a) > d ⇔ (x− h(a)) | f × r + (f (1) + · · ·+ f (d))× s

f reqA(a) ≤ d ⇔ (x− a) - f × r + (f (1) + · · ·+ f (d))× s

The lemma shows that we can perform the basic operations such as membership test,
union, and intersection on the multisets represented by the polynomials. Moreover, the
polynomial representation allows to test whether the multiplicity of an element in the rep-
resented multiset is larger than a certain number or not.

The encryption of polynomial f is computed by encrypting all the coefficients of f .

Epk(f) is Epk(f [0]) ∗h xi +h · · ·+h Epk(f [deg(f)]) ∗h x0

where f [i] denotes the i-th coefficient of f .
The framework supports the following operations on the encrypted polynomials f1 and

f2 without knowing the secret key, thank to the homomorphic property of Paillier’s cryp-
tosystem. We use deg(f1) and deg(f2) to denote the degrees of f1 and f2, respectively.

• Sum of encrypted polynomials: given the encryptions of the polynomial f1 and f2, we
can efficiently compute the encryption of the polynomial g = f1 + f2, by calculating
Epk(g[i]) = Epk(f1[i]) +h Epk(f2[i]), (0 ≤ i ≤ max[deg(f1), deg(f2)]).

• Product of an unencrypted polynomial and an encrypted polynomial: given a poly-
nomial f2 and the encryption of polynomial f1, we can efficiently compute the en-
cryption of polynomial g = f1 × f2, by calculating the encryption of each coefficient
Epk(g[i]) = (f2[0] ∗h Epk(f1[i]))+h (f2[1] ∗h Epk(() f1[i− 1]))+h · · ·+h (f2[i] ∗h Epk(f1[0])),
(0 ≤ i ≤ deg(f1) + deg(f2)).

115

8.3. Protocols

• Derivative of an encrypted polynomial: given the encryption of polynomial f1, we
can efficiently compute the encryption of polynomial g = d

dx f1, by calculating the
encryption of each coefficient Epk(g[i]) = (i + 1) ∗h Epk(f1[i + 1]), (0 ≤ i ≤ deg(f1)− 1).

• Evaluation of an encrypted polynomial at an unencrypted point: given the encryp-
tion of polynomial f1, we can efficiently compute the encryption of y = f1(x), by calcu-
lating Epk(y) = (x0 ∗h Epk(f1[0]))+h (x1 ∗h Epk(f1[1]))+h · · ·+h (xdeg(f1) ∗h Epk(f1[deg(f1)])).

Utilizing the above operations on encrypted polynomials, we can securely compute re-
sults according to the multiset operations described in Lemma 1 without the trusted third
party.

8.3 Protocols

We now describe protocols used for identifying content blocks that are reported by more
than λG distributed monitors. We first present the basic protocol, an adoption of THRESHOLD-
SET-UNION-HBC protocol proposed by Kissner and Song [70]. Then, we extend the protocol
further to deal with high computational overhead when the total number of reported con-
tent blocks is large (Section 8.3.2). We use an approximate counting scheme to reduce the
overhead of the THRESHOLD-SET-UNION-HBC protocol further (Section 8.3.3).

8.3.1 Basic Protocol

Figure 8.1 describes the modified THRESHOLD-SET-UNION-HBC protocol. When a mon-
itor publishes a content block P, we use anonymous routing [24, 22, 111, 112, 84] to hide
the origin of the content block. Assuming that the additively homomorphic threshold cryp-
tosystem is semantically secure and re-randomization technique is used in the collection
phase, with overwhelming probability, any coalition of at most c probablistic polynomial
time-bounded (PPT) honest-but-curious adversaries cannot recover items that appear less
than λG times. The detailed analysis of the privacy and the overhead of this protocol is
provided by Kissner and Song [70].

8.3.2 Extended Protocol for Reducing Computational Cost

The most expensive, but most frequently performed operation in the basic protocol is the
multiplication of an encrypted polynomial and a plain polynomial. (See the Collection and

116

Chapter 8. Preserving Privacy using Privacy-Preserving Multiset Operations

the Collaborative Reduction Phases in Figure 8.1.) For two polynomials of degree d1 and
d2, the multiplication operation results in O(d1 · d2) homomorphic multiplication, which is
akin to modular exponentiation of big numbers. The degree of the final polynomial from
the collection phase is linear to the total number of content blocks reported by all monitors.
Then, we perform homomorphic multiplication operations multiple times on the polyno-
mial. Thus, the computational cost of the protocol increases quadratically to the total num-
ber of content blocks.

We reduce the overhead by using multiple low-degree polynomials rather than using a
high-degree polynomial. All monitors agree on some hash function h′ that maps payload
pattern strings into B bins; generate a polynomial for each bin. Then, they run the basic
protocol with only the polynomial from the first bin, and repeat the procedure for each bin.
After B runs of the basic protocol, the computation completes. Because every node uses the
same hash function, the correctness of the basic protocol still holds.

Assuming h′ uniformly distributes content blocks into B bins, this technique reduces the
computational overhead by a factor of B. We can achieve better performance by executing
the B runs concurrently and utilizing the computational power of monitors that are idle.
Only c + 1 nodes participate in the collaborative reduction phase and the first step of de-
cryption phase. All other monitors are idle.

However, using a large B is undesirable. The use of B reduces the size of the original
domain by a factor of B and gives adversaries more information about the values of content
blocks. For example, when the degree of a polynomial for the jth bin has increased by two
after a monitor Mi multiplies its polynomial during the collection phase, an adversary can
infer that Mi has two content blocks that fall into jth bin.

Each node may add padding to hide the (non)existence of items whose hash values fall
into the bin. But this increases the degree of the polynomials, and cancels out the perfor-
mance gain from our extended protocol. Thus, in our work, we avoid item padding, assum-
ing that the privacy protection with the B-times smaller domain is still acceptable.

Choice of the hash function h′ is important for the effectiveness of this extended protocol.
If the hash function fails to evenly distribute the content blocks, the performance benefit
from the protocol is small. Much effort has been made to develop collision-resistant hash
functions by using randomization [14, 12]. However, they are not directly applicable to
our problem because, in our problem setting, all monitors must agree on the same hash
function. The same content blocks must be hashed to the same value in order to accurately
check if the number of a content block exceeds the threshold λG . We expect that similar
problems would arise in many distributed systems. Developing hash functions suitable for

117

8.4. Implementation

this situation would be an interesting problem to be researched.

8.3.3 Approximate Payload Pattern Counting

When the frequency of a worm payload pattern across monitors is much larger than that of
non-worm content blocks, we can take an approximate counting approach. Basically, each
monitor selects a content block in its private set Si with a probability ρ and computes its
polynomial based on only those selected content blocks. This reduces the degree of the final
polynomial by a factor of ρ−1 and the number of computations by a factor of ρ−2. The new
frequency threshold then becomes λG

′ = λG · ρ. The protocol computes the content blocks
that appear in more than λG

′ monitors sets. When the actual frequency F(P) of a content

block P is y, the probability of identifying P is 1−∑
λ′G
x=0 (y

x)ρx(1− ρy−x).

8.4 Implementation

We now describe our prototype of the distributed signature generation system, which uses
the privacy-preserving THRESHOLD-SET-UNION-HBC protocol described in the previous
section. All monitors are connected with an overlay network that supports efficient multi-
cast [26, 18]. With the multicast facility, a message can be delivered to all M monitors after
log M hops in the overlay network. Autograph is extended to have a TSU (Threshold-Set-
Union) module attached to the signature generation step.

Autograph: Autograph is responsible for selecting suspicious flows from monitored traf-
fic, and performing the content-prevalence analysis to choose suspicious content blocks,
whose prevalence measure f (P) exceeds a local threshold θG . Those content blocks are
passed to the TSU module. In this work, we use θG = 2 for a monitor in the network of a
213 IP address space.

TSU module: This module takes the content blocks discovered by Autograph, and par-
ticipates in the distributed THRESHOLD-SET-UNION-HBC protocol. The TSU module main-
tains the private key sk and a public key pk, distributed by a trusted group manager. We
use the threshold Paillier cryptosystem [50] and the THRESHOLD-SET-UNION-HBC protocol
atop the cryptographic primitives included in the SFS toolkit [81].

For each measurement interval, TSU assigns each content block to one of B bins by ap-
plying a hash function agreed on with the other monitors, samples payload pattern strings
with a probability ρ, and generates B polynomials each of which represents the payload

118

Chapter 8. Preserving Privacy using Privacy-Preserving Multiset Operations

pattern strings in each bin. A TSU module participates in B THRESHOLD-SET-UNION-HBC
instances concurrently.

Forcing all monitors to participate in the collection phase, computing the product of all
the polynomials along the ring of monitors, is not efficient. In practice, many monitors
may not have content blocks to report. Their participation in the protocol does not affect
the final results but adds more overhead. In our implementation, a monitor Mi sends a
short PING message to the next monitor Mi+1 before sending the product of polynomials.
If monitor Mi+1 has content blocks to share, it replies back with a PONG YES message, and
the monitor Mi sends the product of polynomials. If monitor Mi+1 responses with a PONG
NO message, Mi contacts the next monitor Mi+2, and so on. This process continues until
the monitor Mi finds a monitor with content blocks or contacts the monitor that initiated the
collection phase.

8.5 Experimental Results

We deployed a network of TSU modules over the Emulab [142] and measured the wall-
clock time between receiving content blocks from Autograph and completing a round of
THRESHOLD-SET-UNION-HBC computation. This time To is the ’lag’ due to distributed
monitoring, mentioned in Chapter 6. If the lag is too large, the system is not useful for
worm signature detection. In the evaluation of worm signature detection time in Chapter 6,
we assumed To ≤ 5 minutes. In this section, we examine if we can complete the computation
within a reasonable time such as To ≤ 5 minutes.

TSU makes a heavy use of the threshold-homomorphic-cryptosytem operations. Ta-
ble 8.1 shows the speed of threshold Paillier operations given as the mean over 100 runs
across different keys. We vary the threshold c of the cryptosystem. We measured the speed
of operations both on computers running in 64-bit mode and 32-bit mode. The computer
running in 64-bit mode has a 3.6GHz Xeon processor. All other benchmarks and experiments
presented in this section are performed on 3GHz Intel Pentium 4 processor-based comput-
ers running in 32-bit mode. The homomorphic multiplication is expensive. The decryption
operation includes the partial decryption and the recovery operations, so the speed of the
decryption operation is linear to the threshold c. Because the decryption operation is the
most expensive operation, the extended protocol for reducing network delay (Appendix A),
that requires decryption of polynomials several times in the middle of the protocol execu-
tion, is not suitable for our problem setting. The use of 64-bit mode processors improves the
operation speed significantly. Considering the speed difference of each operation, we ex-

119

8.5. Experimental Results

3.6GHz Xeon in 64-bit mode
c=1 c=3 c=7 c=15 c=31 c=64

+h 0.014 0.015 0.014 0.015 0.015 0.015
∗h 6.2 7.2 6.5 6.2 5.8 5.1

Epk(.) 19.9 20.4 20.1 21.2 22.1 24.3
Dsk(.) 15.5 33.1 65.3 148.0 352.6 977.5

3.0GHz Pentium 4 in 32-bit mode
c=1 c=3 c=7 c=15 c=31 c=64

+h 0.038 0.036 0.038 0.038 0.038 0.038
∗h 15.7 16.6 14.8 17.9 17.4 17.5

Epk(.) 55.9 55.4 56.5 60.1 62.4 69.3
Dsk(.) 46.2 90.4 192.3 416.3 993.2 2754.6

Table 8.1: Speed (ms) of operations of 1024-bit threshold Paillier cryptosystem

pect that the use of 64-bit mode processors would reduce the To measured in the remaining
experiments by a factor of 4− 9.

We performed experiments on Emulab varying the number of monitors M, the number
of maximum attackers c, and the average number of payload pattern strings per monitor
E [|Si|]. We use 1024 bit public keys. The average link latency between monitors is 49 msec
throughout the experiments.

Figure 8.2 (a) shows the protocol running time in seconds varying the number of mon-
itors. We also vary the average number of content blocks reported by each monitor, E[Si].
It turns out the running time is O((M · E [|Si|])2) and grows quadratically as the number
of monitors increases. However, the results also shows that it is feasible to finish the com-
putation if we can manage to limit the average number of reported payload patterns to be
small. For example, 128 monitors can complete the computation within 5 minutes if the aver-
age number of payloads reported in each THRESHOLD-SET-UNION-HBC protocol is smaller
than 1.

Figure 8.2 (b) shows the ’lag’ To varying the number of honest-but-curious attackers (c).
The lag increases as the number of tolerable attackers increases. There is always a trade-off
between privacy protection and efficiency.

We then use a traffic trace from a campus network to estimate the time to deal with
content blocks generated from legitimate traffic. In our experiment, each content block is
mapped to one of 10 polynomials and each monitor participates in 10 instances of THRESHOLD-
SET-UNION-HBC computation process concurrently. With the traffic monitoring module’s
threshold θG = 2, the number of payload patterns each monitor generates from the traffic
trace for an hour long time window varies between 0 and hundreds (smtp), but mostly be-
low 10. With a sampling rate ρ = 0.3, the average number of payload patterns reported by
a monitor is 0.3 which is reasonably small. When a worm propagates, most of the monitors
will observe the worm payload patterns. With ρ = 0.3, only 3 out of 10 monitors will report

120

Chapter 8. Preserving Privacy using Privacy-Preserving Multiset Operations

the payload patterns.
From the experiments, we conclude that privacy-preserving payload sharing with the

extended THRESHOLD-SET-UNION-HBC protocol is feasible in a distributed signature gen-
eration system with a hundred monitors.

8.6 Summary

In this chapter, we presented a privacy-preserving distributed signature generation system
that is one of the first applications that apply the THRESHOLD-SET-UNION-HBC protocol.
This system provides cryptographically provable privacy protection, but is computationally
expensive and has limited scalability. The system presented in this chapter is suitable for
distributed signature generation where less than hundreds of participants collaborate. For
example, signature generation monitors from different autonomous domains can choose to
exchange locally discovered candidate signatures in order to gain reasonable confidence.

Our original protocol takes the polynomial representation of each private set, encrypts
each coefficient of the polynomial with homomorphic encryption, and computes the prod-
uct of the polynomial representations from participants. Differentiation of the polynomial
cancels out the item that does not appear in more than λ participants. The original provides
strong privacy protection. However, the operations of homomorphic multiplications and
decryption are prohibitively expensive.

In Section 8.3, we extended the protocol to reduce the computational cost and combine
an approximate counting approach to reduce the computational cost further. The extended
protocol, however, provides weak privacy-preservation compared to the original protocol,
and approximate counting may result false negatives. The experimental results with our
non-optimized implementation show that currently we can complete the global signature
generation process within 5 minutes if not more than hundreds monitors participate and an
aggressive approximate counting is employed. However, note that with 64 bit mode pro-
cessors, we could reduce the basic operation speeds significantly. The use of cryptographic
accelerators is also promising for reducing the time caused by many big number exponenti-
ation operations. More interestingly, most of the computation involved in the protocol can
be easily parallelized; with the advance in multi-core processors [32], we expect our privacy-
preserving signature generation system can scale to more than hundreds of monitors easily.

121

8.6. Summary

Protocol: modified-THRESHOLD-SET-UNION-HBC

Input: There are M ≥ 2 honest-but-curious monitors, c (< M) monitors dishonestly colluding, each with a pri-
vate input of payload pattern strings Si. The monitors share the secret key sk, to which pkis the corresponding
public key for a threshold homomorphic cryptosystem. Fj (1 ≤ j < t) are fixed polynomials of degree j which
have no common factors or roots representing any payload pattern string.
Output: Each player learns the payload patterns in Si ∩ R where R has payload pattern strings found in more
than t monitors’ private input sets.

(Initialization Phase) Each monitor Mi (0 ≤ i < M) calculates the polynomial fi representing Si.
(Collection Phase) All monitors collaboratively compute Epk(∏M−1

i=0 fi) as follows:

1. M0 sends the encryption of the polynomial λ0 = Epk(f0) to M1.

2. Each monitor Mi (i = 1, 2, ..., M− 1)

(a) receives the encryption of the polynomial λi−1 from Mi−1.

(b) computes λi = λi−1 ∗ fi.

(c) sends λi to the next monitor Mi+1 mod M.

3. M0 receives the encryption of the polynomial p = λM−1 from MM−1.

(Collaborative Reduction Phase) c + 1 monitors collaboratively compute the encryption of the polynomial
representing R.

1. M0 distributes the encryption of the polynomial p to M1, M2, .. , Mc.

2. Each monitor Mi (i = 0, 1, .., c)

(a) computes the encryption of the 1, .. , tst derivatives of p, denoted p(1), ..., pt.

(b) chooses random polynomials ri,1, ..., ri,t of the same degree as p.

(c) computes the encryption of the polynomial ∑t
j=0 p(j) ∗ Fj ∗ ri,j.

(d) sends the result to c monitors Mi (i = 0, 1, .., c).

3. c + 1 monitors Mi (i = 0, 1, .., c) compute the encryption of the polynomial Φ = ∑t
j=0 p(j) ∗ Fj ∗ (∑c

k=0 rk,j).

(Decryption Phase) All M monitors acquire the polynomial representation of R.

1. Each monitor Mi (i = 0, 1, .., c) sends the partial decryption to all M monitors.

2. All M monitors Mi (i = 0, 1, .., M− 1) perform the recovery operation based on the c + 1 partial decryp-
tion.

3. All M monitors have Φ that represents R.

(Evaluation Phase) All M monitors evaluate Φ(P) for all P ∈ Si. If Φ(P) = 0, P ∈ R ∩ Si.
(Publication Phase) All M monitors sign P s.t. P ∈ R ∩ Si with a group signature and send via anonymous
routing.
(Verification Phase) Each monitor can verify if P ∈ R by evaluating Φ(P) == 0 and checking its signature.

Figure 8.1: Modified THRESHOLD-SET-UNION-HBC Protocol: secure against honest-but-
curious adversaries

122

Chapter 8. Preserving Privacy using Privacy-Preserving Multiset Operations

(a) (b)

Figure 8.2: Running time for one THRESHOLD-SET-UNION-HBC computation: (a) The run-
ning time increases quadratically to the number of monitors M and the average set size E [Si].
(b) Running time vs. c (a threshold cryptosystem parameter). E [Si] = 1. M=128.

123

8.6. Summary

124

Chapter 9

Related Work

9.1 Automated Worm Signature Generation

Singh et al. [119] generate signatures for novel worms by measuring packet content preva-
lence and address dispersion at a single monitoring point. Their system, EarlyBird, avoids
the computational cost of flow reassembly, but is susceptible to attacks that spread worm-
specific byte patterns over a sequence of short packets. Autograph instead incurs the ex-
pense of flow reassembly, but mitigates that expense by first identifying suspicious flows,
and thereafter performing flow reassembly and content analysis only on those flows. Early-
Bird reverses these stages; it finds sub-packet content strings first, and applies techniques to
filter out innocuous content strings second. Autograph and EarlyBird both make use of Ra-
bin fingerprints, though in different ways: Autograph’s COPP technique uses them as did
LBFS, to break flow payloads into non-overlapping, variable-length chunks efficiently, based
on payload content. EarlyBird uses them to generate hashes of overlapping, fixed-length
chunks at every byte offset in a packet efficiently. Singh et al. independently describe using
a white-list to disallow signatures that cause false positives (described herein as a blacklist
for signatures, rather than a white-list for traffic), and report examples of false positives that
are prevented with such a white-list [119].

Provos [105] observes the complementary nature of honeypots and content-based sig-
nature generation; he suggests providing payloads gathered by honeyd to automated sig-
nature generation systems such as Honeycomb [73]. DACODA [35] is one example that
forwards payload information captured from honeypot to a payload analyzer where the
network payload information is correlated with control flow hijacking activities. Autograph
would similarly benefit from honeyd’s captured payloads. Furthermore, if honeyd partic-

125

9.1. Automated Worm Signature Generation

ipated in tattler, Autograph’s detection of suspicious IP addresses would be sped, with less
communication than that required to transfer complete captured payloads from instances of
honeyd to instances of Autograph.

Kreibich and Crowcroft [73] describe Honeycomb, a system that gathers suspicious traffic
using a honeypot, and searches for least common substrings in that traffic to generate worm
signatures. Honeycomb relies on the inherent suspiciousness of traffic received by a hon-
eypot to limit the traffic considered for signature generation to truly suspicious flows. This
approach to gathering suspicious traffic is complementary to that adopted in Autograph;
we need investigate acquiring suspicious flows using honeypots for signature generation
by Autograph in future. The evaluation of Honeycomb assumes all traffic received by a
honeypot is suspicious; that assumption may not always hold, in particular if attackers de-
liberately submit innocuous traffic to the system. Autograph, Honeycomb, and EarlyBird
will face that threat as knowledge of their deployment spreads. We combat the threat by
vetting candidate signatures for false positives among many distributed monitors.

Our work is the first we know to evaluate the trade-off between earliness of detection of
a novel worm and generation of signatures that cause false positives in content-based sig-
nature detection. Since Autograph, Honeycomb, and EarlyBird demonstrated their promis-
ing results of automated signature generation, much research has been published exploring
faster and more robust automated worm signature generation.

Wang et al. [139] extended their prior work [138] on payload-based network intrusion
detection to generate Internet worm signatures. Their system, PAYL, detects anomalous
packets based on the model of normal payload bytes distribution and extract the invariant
portion of packet content across similarly anomalous packets using the longest common
subsequence algorithm. We expect their heuristic to detect anomalous packets can be used to
improve our suspicious flow classifier. Karamcheti et al. [67] proposed a malicious network
traffic detection algorithm by utilizing the payload content similarity of worm traffic. They
model the legitimate traffic with the inverse distributions of substrings in a packet, and any
deviation from the model indicates on-going worm activities. However, their work does
not target to distinguish suspicious flows nor generate signature useful for current content-
based filtering.

Cai et al. [16] proposed a collaborative worm detection system, WormShield. WormShield
aggregates the statistics of payload pattern fingerprint and address dispersion in an overlay
network; detects anomalous payload pattern fingerprints based on the aggregate statistics.
Their results corroborate our analysis on the benefit of distributed monitoring. They protect
privacy by using SHA-1 hash instead of the actual payload substrings in the aggregation.

126

Chapter 9. Related Work

However, the privacy protection does not prevent dictionary attacks on private data.
Autograph is not able to handle maximally-varying polymorphic worms, but Polygraph [93]

demonstrated that it is possible to generate accurate signatures for polymorphic worms, be-
cause there are some features that must be present in worm infection attempts to successfully
exploit the target machine. Polygraph showed automatic signature-generation techniques
that extract a set of small substrings from suspicious flow pool, taking a machine-learning
approach. Hamsa [76] is another learning based automated signature generation system for
polymorphic worms. By employing more efficient data structures and an improved model
in analyzing the invariant content among suspicious flows, Hamsa achieves significant im-
provements in signature generation speed, accuracy, and attack resilience over Polygraph.
Paragraph [94] demonstrated attacks against such learning-based signature generation sys-
tems in an adversarial environment, so the pattern-extraction-based signature generation
for polymorphic worms is still a problem to be addressed.

Another approach to automate signature generation is based on application and exploit
semantic information collected from a host [95, 34, 77, 15]. This host-based approach can
provide more robust signature generation against polymorphic worms, and generate more
expressive forms of signatures than network-based pattern matching signatures generated
by Autograph. However, the network-based pattern matching signature still holds its own
value: signature matching is fast so can be deployed in the network to stop worms before
reaching hosts.

9.2 Distributed Monitoring

Distributed monitoring is not a novel concept in network security. For the last decade, much
effort has been made to take advantage of distributed monitoring to detect network intru-
sions that are difficult to detect from a single monitoring point. DIDS [120] is an early ex-
ample of distributed intrusion detection system that collects security-relevant event from a
number of monitors on hosts to track of users as they change account name moving around
the networks. Later, many systems such as EMERALD [104], AAFID [46], GrIDS [129], and
Argus [65] present various techniques to aggregate observation from a large number of dis-
tributed monitors in a more scalable and reliable fashion.

As more and more computers are connected to networks and the risk of wide-spread,
large-scale attacks grows, distributed monitoring becomes one of the important compo-
nents in Today’s intrusion detection systems. Snort [131] allows a multi-tier deployment
to provide scalability, security, and performance. The sensors interpret intrusion data gath-

127

9.3. Privacy-Preserving Hot Item Identification

ered from lower tier sensors distributed across an enterprise and forward interesting data to
higher tier sensors [72]. Bro [102] also offers the option to exchange state information with
other Bro peers to detect distributed attacks [121, 74]. While the benefit of distributed mon-
itoring is already widely accepted in network security, our contribution in this thesis is to
adopt distributed monitoring in automated worm signature generation, which is challeng-
ing because signature generation involves privacy-sensitive information exchanges across
different domains.

Yegneswaran et al. [146] corroborate the benefit of distributed monitoring, both in speed-
ing the accurate accumulation of port scanners’ source IP addresses, and in speeding the
accurate determination of port scanning volume. Their DOMINO system detects port scan-
ners using active-sinks (honeypots), both to generate source IP address blacklists for use
in address-based traffic filtering, and to detect an increase in port scanning activity on a
port with high confidence. The evaluation of DOMINO focuses on speed and accuracy in
determining port scan volume and port scanners’ IP addresses, whereas our evaluation of
Autograph focuses on speed and accuracy in generating worm signatures, as influenced by
the speed and accuracy of worm payload accumulation.

Nojiri et al. [96] describe models for peer-to-peer- based attack mitigation strategies and
investigate the efficacy of those strategies in stopping large scale Internet worms. In their
peer-to-peer based strategies, members share the observed attack reports with their coop-
erating friend members. Each member can decide whether it uses the reports from friend
members or shares with other friend members, based on its local policy. Their simulation
results show that, in general, a large number of cooperating members does better in sup-
pressing worms but is much worse in dealing with false alarms. They also show that we
need different strategies based on the propagation behavior of worms. In our work, we
proposed two different distributed payload sharing mechanisms for worms that propagate
using localized scanning strategies, and for worms that propagate using random scanning
strategies. Unlike the systems presented in their work that share only attack reports con-
firmed locally, our payload sharing network requires information to be shared before it is
not locally confirmed as part of attacks. Thus, the focus of our work is how to protect the
privacy in the shared information while enabling information sharing.

9.3 Privacy-Preserving Hot Item Identification

We adopt privacy-preserving set operations [70] to find payload patterns that appear in
multiple monitors. The protocol based on privacy-preserving set operation is secure un-

128

Chapter 9. Related Work

der a very strict notion of privacy [55], but is slow if we apply it directly to the signature
generation problem. Thus, we combined it with approximate counting in our implementa-
tion of the protocol. Our work is the first practical system that adopts the framework. The
HOTITEM-ID protocol [69] provides more efficient and flexible results by being designed to
achieve more restricted notions of privacy.

Even though many security applications have adopted the distributed monitoring ap-
proach to improve their attack detection performance, little effort has been made to address
the privacy-related issues. Most work either assumed a trusted environment, or a trusted
central server that aggregate reports from distributed monitors [41]. Lincoln et al. [78] de-
scribe privacy-breaching attacks against distributed network monitoring node. Their ap-
proach, however, still relies on a trusted central servers and avoids privacy-sensitive data
such as payload information. Wormshield [17] attempts to protect the privacy of data by
using hash values instead of payload data. However, the approach does not prevent dictio-
nary attacks. Our work that addresses the privacy issues in a distributed fashion with more
restricted notion of privacy.

Allman et al. [3] propose an architecture for using cross-organization information sharing
to understand distributed, coordinated attacks. In their framework, a small number of ”de-
tectives” systems such as honeypots leverage existing wide-scale generic traffic monitors as
”witnesses” of malicious network events the detectives are investigating. They use a private
matching mechanism to allow for detectives to question witnesses without revealing the
detail of the attacks under investigation or witnesses’ private information unrelated to the
attacks. While our work focuses on sharing payloads for faster signature generations and
does not rely on the specialized monitors to initiate information sharing, our work shares
much similarity with their proposed system. For instance, both systems utilize intelligent
intrusion detection systems such as honeypots (but in different ways), protect private infor-
mation, and prevent cheating by relying on multiple monitors reporting mutually observed
network events.

Privacy-preserving collection of statistics about computer configurations has also been
considered in previous work [137, 61]. Like the work in [78], they do not give a concrete
definition of security, but instead a technique for heuristically confusing attackers. Their
approach also relies on chains of trust between friends and the collection of statistics is gath-
ered by querying a subset of distributed nodes.

129

9.3. Privacy-Preserving Hot Item Identification

130

Chapter 10

Conclusions

In this dissertation, we developed an automated Internet worm signature generation system
and the techniques to speed its signature generation with information sharing among dis-
tributed monitors while protecting privacy. In concluding this dissertation, this chapter first
revisits the desired requirement of automated worm signature generation. Key contribu-
tions are then discussed, after which important lessons learned about automated signature
generation will be presented.

10.1 Desired Requirements Revisited

The system and techniques presented in this dissertation are designed to meet the desired
requirements of automated signature generation for signature-based worm traffic detection.

• Signature Quality: Autograph with COPP and content prevalence analysis generates
specific and selective signatures for an Internet worm as long as there are unique byte
sequences that can be used for worm’s payload signature. Signatures for polymor-
phic or metamorphic worms are difficult to generate using the current Autograph.
Polygraph [93] and many other techniques, proposed after Autograph, shed light on
more accurate automated signature generation even for polymorphic or metamorphic
worms.

• Early Signature Generation: By making multiple monitors dispersed in the Internet
collaborate, our systems generate signatures for worms that propagate by scanning
the Internet address space before they spread wild. The collaboration happens in the
three different stages of our systems. First, the distributed monitors collaborate to

131

10.1. Desired Requirements Revisited

identify the sources of suspicious flows. Second, the distributed monitors collaborate
to share the identified suspicious payload pattern strings. Third, the monitors share
generated signatures. This type of collaboration makes our system viable even when a
sigle monitor is not sufficient enough to collect enough samples required for signature
generation.

• Minimal Real-time Operator Intervention: Our systems allow all the signature gen-
eration process to be performed without human intervention.

• Robust against Attacks: Distributed payload sharing and signature generation can be
considered ‘voting’ among multiple monitors, we avoid generating false signatures
due to attacks against a small number of monitors. We preserve the owner and data
privacy of participating networks and shared data, so that any curious attackers cannot
use our distributed systems to gain private information about participating networks.

• Minimizing the Effect on Legitimate Internet Use: Our system relies on passive net-
work monitoring. If the monitors are installed at the boundary of each monitored net-
work, users in the monitored networks does not experience any additional overhead
or inconvenience such as installing software or changing the configuration of personal
computers. Generating false signatures can disrupt legitimate traffic and thus must be
avoided by all means. Our analysis with real network traces showed the false positive
rate is low, and the system generates only a handful number of signatures. We still
need more investigation with more data sets. However, considering that we observed
low false positive rates in the analysis with traces collected from multiple, independent
places at different time period, the result is still promising.

• Preserving Privacy: We provide two privacy-preserving payload sharing techniques.

While the results of our analysis showed our proposed techniques have promise in the
automated worm signature generation, we stress that it is yet too early for us to conclude
that our techniques are the perfect solution for the problem. Our experiments and analysis
are based only on a few traces, and focused only on worms that propagate by scanning IP
addresses. Further investigation with more traffic traces from different networks against a
wider variety of Internet worms is still required. We believe, however, that the techniques
and the evaluation methodology discussed in this thesis shed new light on worm detection
and prevention technology, and raise the bar in future worm design.

132

Chapter 10. Conclusions

10.2 Contributions

We catalog the contribution of this work:

• Automated Signature Generation Method. We proposed and evaluated a technique
that automates pattern-based signature generation by utilizing content prevalence anal-
ysis. This technique is effective in detecting worms that possess the following prop-
erties: 1) content invariance, 2) voluminous traffic, and 3) many-to-many communica-
tion. With our Autograph system, we presented these properties are a good basis to
distinguish such worm traffic from other legitimate traffic. Furthermore, the invari-
ant portion of worm payloads can be extracted by a simple prevalence analysis and
used as a signature for the worm. We provide the criteria to evaluate automated signa-
ture generation systems. Inspired by our early work in Autograph development and
contemporaneous work such as Honeycomb [73] and EarlyBird [119], many different
techniques for automated signature generation have been proposed from the security
research community since our work.

• Distributed Monitoring as a Mean of Fast Signature Generation. This work has pro-
vided the basis for distributed monitoring for fast signature generation for worms that
propagate in moderate speed, and thus the number of worm payload samples a sin-
gle monitor can accumulate is limited 1 The tattler mechanism provides a bandwidth-
efficient way to gossip scanners’ IP addresses and we showed the value of distributed
scanner detection in terms of signature generation speed. We provided techniques
for suspicious payload information useful in the early detection of worm signatures.
We demonstrated the efficient ways to mine a useful piece of information out of huge
amount of traffic data. We also evaluated the benefit of payload sharing in automated
signature generation qualitatively and quantitatively.

• Privacy-Preserving Information Sharing. Recognizing the privacy issues and attacks
in the concept of payload sharing, this work provides the technique to share payload
while protecting the privacy of participating monitors. Most prior work in distributed
monitoring for network security has avoided the privacy issues or has employed a
trusted, centralized system to aggregate information from distributed monitors. This
work showed that fully distributed, privacy-preserving information sharing is feasible

1When a worm propagates as fast as a Warhol worm or a flash worm [127, 140] and targets a large fraction
of hosts in the Internet, we expect that a single monitor can capture enough payload samples to generate the
signatures and deploy them locally.

133

10.3. Lessons Learned

by applying probabilistic and cryptographically proved privacy-preserving techniques
to automated signature generation problem, which requires fast information exchange.

10.3 Lessons Learned

As touched on in the contributions above, the analysis of our signature generation tech-
niques illuminated a number of important elements in automated signature generation sys-
tem development.

• Quality of Autograph-generated Signatures. The suspicious flow pool constructed
with a simple port-scanner-based suspicious flow selection is dominated by present
scanning worm flows. The content blocks of worms’ invariant portions are topped
for the prevalence histogram of content blocks from suspicious flows. (Section 3.2)
Iterative selection of prevalent content blocks with carefully chosen parameters gener-
ates a selective set of signatures that catch all present worms while generates no false
positives. There is a trade-off between content block length and the number of gen-
erated signatures, and between content block length and the specificity of signatures.
(Section 3.4.1)

• Polymorphic Worm Signatures. Autograph is not successful in finding signatures if
the invariant portion in the worm payloads is relatively short compared to the config-
ured content block size as shown in Section 3.4.2 The extreme case is for a polymorphic
or metamorphic worm. We expect that polymorphic worm signatures are not easily ex-
pressed with a single payload pattern string even when generated by a human; more
expressive forms of signatures [122, 93, 94, 147] are necessary to detect polymorphic
worms.

• P2P Application and Worm Traffic. They are similar in their communication patterns,
so it is hard to distinguish one from another if we rely only on content-prevalence
analysis as shown in Section 3.5. Content-prevalence is a good measure to select worm
traffic out of other traffic, but combination with other worm detection heuristics is
recommended to avoid generating false positives from P2P application traffic.

• Distributed Port Scanner Detection. Tattler distributes a large number of port scan-
ner IP addresses without requiring large bandwidth. It also speeds Autograph’s sus-
picious flow selection, so does the signature generation. (Section 4.3 and 4.4)

134

Chapter 10. Conclusions

• Online Signature Generation. Our trace-driven simulation results in Section 4.5 show
that there is a trade-off between early signature generation and generated signature
quality. Combined with tattler and an aggressive port-scanner detection heuristic, the
distributed version of Autograph could generate the specific signature of a random
scanning worm before it infects 2% of vulnerable hosts.

• Worm Flow Accumulation Speed. The size and location of a monitored network is a
critical factor that determines the worm flow accumulation speed, so does the signa-
ture generation speed in pattern-extraction-based signature generation systems. (Sec-
tion 5.1) Particularly, for fast detection of localized scanning worms, a monitor must
be located close to the vulnerable host population.

• Distributed Payload Sharing Strategies. Distributed monitors that share suspicious
flows and generated signatures overcome the limitation from the network size and
location of a single monitor. We expected the more monitors is the better for fast signa-
ture detection but, in the random scanning worm detection experiments (Section 6.1.2),
we did not see much speed-up by including more monitors. However, with many
monitors, we can accept the detected signature with more confidence even with a low
local threshold applied.

This is because random scanning worms probe all networks evenly. On the other hand,
the localized scanning worm detection speed improved as more monitors participate.
Considering the computational overhead that the privacy-preserving payload sharing
introduces in the system (Section 8.5), it is desirable to use a handful number of moni-
tors for GSD, and use as many monitors as possible for LSD.

• Prevalent Innocuous Traffic Our measurements in Section 6.3 showed that some pay-
load pattern strings from legitimate traffic appear common across many networks, but
can be filtered from signature generation with a signature blacklist. Moreover, we did
find none of these common payload pattern strings include private information.

• HOTITEM-ID Protocol. The HOTITEM-ID supports bandwidth efficient, privacy-preserving
payload sharing when thousand of monitors participate. From our experiments in Sec-
tion 7.4, we confirmed its bandwidth efficiency and accuracy. The experiments show
another interesting way to deploy a Autograph system. By placing the suspicious TCP
flow reassembly part close to the end hosts but enabling the collaborative content anal-
ysis on the distributed suspicious flow pool, we can avoid the problem of TCP flow
reassembly discussed by Handley et al. [57].

135

10.3. Lessons Learned

• Privacy-preserving Threshold Set Union. The original protocol is expensive (Sec-
tion 8.5). The computational costs increases quadratically to the number of monitors
and the number of payload patterns to be shared. Thus, the number of payload pat-
tern strings reported from a monitor must be kept small. Sampling and the extended
protocol (Section 8.3.2) helped us make our system practical.

In this dissertation, we focused on Internet worms. However, there are many types of
attacks that share the properties of worms. E-mail spams and Blog spams are also wide-
spreading and often contain invariant parts in their payload. Thus, we expect our techniques
of content prevalence testing and privacy-preserving distributed monitoring might be also
useful against these wide-spreading malicious payload attacks.

136

Appendix A

Extended Protocol for Reducing Network
Delay

In Section 8.3, we described a protocol that identifies content blocks that are reported by
more than λG distributed nodes. The key of the protocol is to represent the set of con-
tent blocks each node holds as an encrypted polynomial, multiply all the polinomials from
participating nodes in Collection Phase, and then find λG -th derivative of the resulting poly-
nomial. The collection phase of the protocol in Figure 8.1 presents a way to compute the
product of all polynomials by visiting every node sequentially. This is problematic when
many nodes (i.e. monitors) participate in the protocol and the average network delay be-
tween nodes is high. The delay due to the communication in the collection phase is O(M× d)
where d is the average delay between neighbors and M is the number of participating nodes.

We now discuss an improvement of THRESHOLD-SET-UNION-HBC in order to reduce
the communication cost to O(c · d · log(M)). Note that this extension requires more homo-
morphic multiplication and decryption operations, so increases the computational cost in
practice. However, this extension might be helpful in different types of applications.

We reduce the communication delay by modifying the collection phase. Multiplication
can be done concurrently along a binary tree as shown in Figure A (a), instead of passing
computed polynomials sequentially.

For convenience, we assume that the number of participating monitors, M, is a power of
two. Mi (0 ≤ i < M) refers to i-th monitor in the system and fi is the encrypted polynomial
that represents the set of content blocks Mi has observed.

New Collection Phase: i-th monitor Mi where i mod 2 6= 0 initiates the collection phase
by sending the encryption of its polynomial, fi, to Mi−1. For example, M1 sends its en-

137

crypted polynomial to M0.
Upon receiving the polynomial from the neighboring monitor Mi+1, Mi (i mod 2 = 0)

computes Epk(fi × fi+1) = fi ∗h Epk(fi+1). Then, if i mod 22 6= 0, Mi sends the encrypted
polynomial to Mi−21 as shown in Figure A.

Now nodei (i mod 22 = 0) has two encrypted polynomials, Epk(fle f t) and Epk(fright)
from its left and right subtrees. Because the multiplication of two encrypted polynomials is
not possible, Mi first sends a polynomial, Epk(fle f t) to a member of a group of c + 1 arbitrary
nodes. 1 Those c + 1 monitors compute additive shares of fle f t using ADDITIVE-SHARE-
PROTOCOL presented in Figure A (b).

Let si be the share of the i-th node in the group. Then, ∑c
i=0 si = fle f t. Mi sends Epk(fright)

to the node who holds s0. The c + 1 nodes can collaboratively compute fle f t ∗h Epk(fright) =
s0 ∗h Epk(fright) +h · · ·+ hsc+1 ∗h Epk(fright). The resulting polynomial is sent to the request-
ing node. Then, Mi sends the newly computed polynomial to Mi−22 if i mod 23 6= 0. We
keep sharing out one subtree’s encrypted polynomial and multiplying another subtree’s en-
crypted polynomial with the additive shares along the tree. After log M rounds, M0 cal-
culates Epk(∏N−1

i=0 fi) and becomes ready to proceed for the collaborative reduction phase
described in the basic protocol.

No coalition of at most c PPT honest-but-curious adversaries can decrypt the polynomial
shared with ADDITIVE-SHARE-PROTOCOL because at least c + 1 nodes are needed to
decrypt messages.

This new extended protocol offers the same level of privacy protection as the basic pro-
tocol. However, the communication cost reduction comes at the cost of more computations.
When f (x) = f1(x) · f2(x), and d1 and d2 are the degrees of f1 and f2 respectively, the num-
ber of multiplication operations to compute f (x) is O(d1 ∗ d2). The d1 ∗ d2 is maximized
when d1 = d2. In this protocol. the total number of homomorphic multiplication oper-
ations is larger than in the original ring-based protocol. Moreover, ADDITIVE-SHARE-
PROTOCOL requires each coefficient to be decrypted, so is expensive. Thus, this protocol
is useful only when the size of each Si is small and the number of adversaries c is small.

1Note that the Mi itself could be a member of the group. The members of a group could be chosen based
on the computational capacity, current load, proximity, etc.

138

Chapter A. Extended Protocol for Reducing Network Delay

(a) Multiplication tree

Protocol: ADDITIVE-SHARE-PROTOCOL
Input: There are c + 1 nodes (n0, · · · nc). One of the nodes (say n0
for convenience, receives two encrypted polynomials, Epk(f) and
Epk(g), for multiplication.
Output: Epk(f ∗ g).

• ni chooses a secret random polynomial ri of the same de-
gree as f .

• All nodes compute Epk(f + r0 + · · ·+ rc) and decrypt.

• n0 combines partial decryptions and obtain f + r0 + · · ·+
rc.

• The additive share si of ni is −ri if i 6= 0. the additive
share s0 of n0 is (f + r0 + · · ·+ rc)− r0. Thus, ∑ si = f .

• All nodes compute Epk((si ∗ g)) = si ∗ Epk(g) and n0 sums
them. The result is Epk(f ∗ g) = f ∗h Epk(g) = (∑ si) ∗h
Epk(g) = ∑ si ∗h Epk(g).

(b) Protocol for additive sharing

Figure A.1: Components of new collection phase in the extended protocol.

139

140

Bibliography

[1] K. Aguilera and R. Strom. Efficient atomic broadcast using deterministic merge. In
Proceedings of the 19th ACM PODC, 2000.

[2] Akismet. Stop comment spam and trackback spam. http://akismet.com, 2005.

[3] Mark Allman, Ethan Blanton, Vern Paxson, and Scott Shenker. Fighting coordinated
attackers with cross-organizational information sharing. In 5th Workshop on Hot Topics
in Networks (HotNets–V), November 2006.

[4] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting targeted attacks using shadow honeypots. In Proceedings of the
14th USENIX Security Symposium, 2005.

[5] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, and M. Polychronakis. Performance
analysis of content matching intrusion detection systems. In Proceedings of the Inter-
national Symposium on Applications and the Internet (SAINT’04), Tokyo, Japan, January
2004.

[6] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Proceedings of the 6th International Workshop on
Randomization and Approximation Techniques, pages 1–10, London, UK, 2002. Springer-
Verlag.

[7] Bittorrent. http://bitconjurer.org/BitTorrent/.

[8] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, July 1970.

[9] Blubster. http://www.blubster.com.

141

http://akismet.com
http://bitconjurer.org/BitTorrent/
http://www.blubster.com

Bibliography

[10] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Proceedings
of the 24th international conference on cryptology (CRYPTO), volume 3152, pages 41–55.
Springer-Verlag, August 2004.

[11] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In
Proceedings of the 11th ACM Conference on Computer and Communications Security, pages
168–177, 2004.

[12] Flavio Bonomi, Michael Mitzenmacher, Rina Panigraphy, Sushil Singh, and George
Varghese. Beyond bloom filters: From approximate membership checks to approxi-
mate state machines. In Proceedings of ACM SIGCOMM Conference, September 2006.

[13] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[14] Andrei Broder and Michael Mitzenmacher. Using multiple hash functions to improve
IP lookups. In Proceedings of IEEE INFOCOM 2001, pages 1454–1463, 2001.

[15] David Brumeley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards
automatic generation of vulnerability-based signatures. In Proceedings of the IEEE Sym-
posium on Security and Privacy, May 2006.

[16] M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen. Collaborative internet worm
containment. In Proceedings of IEEE Symposium on Security and Privacy, May/June 2005.

[17] M. Cai, R. Zhou, K. Hwang, C. Papadopoulos, and S. Song. Wormshield: Collabora-
tive worm signature detection using distributed aggregation trees. Poster on the 2nd
Symposium on Network System Design and Implementation (NSDI’05), May 2005.

[18] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. Scribe:
A Large-scale and Decentralized Application-level Multicast Infrastructure. IEEE Jour-
nal on Selected Areas in Communication (JSAC), 20(8), 2002.

[19] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron, Marvin
Theimer, Helen Wang, and Alec Wolman. An evaluation of scalable application-level
multicast built using peer-to-peer overlays. In Proceedings of the Conference on Computer
Communications (INFOCOM’03), 2003.

[20] CERT. CERT Advisory CA-2004-26 Nimda Worm. http://www.cert.org/

advisories/CA-2001-26.html, September 18, 2001.

142

http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-26.html

Bibliography

[21] P. Chandra, Raj Yavatkar, and S. Lakshmanmurthy. Intel IXP2400 Network Processor,
volume 1, chapter 13, pages 259–276. Morgan Kaufmann, October 2002.

[22] D. Chaum. The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol., 1(1):65–75, 1988.

[23] D. Chaum, J.-H. Evertse, J. Graaf, and R. Peralta. Demonstrating possession of a dis-
crete logarithm without revealing it. In Advances in Cryptology—CRYPTO ’86, pages
200– 212. Springer-Verlag, 1987.

[24] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[25] Mihai Christodorescu and Somesh Jha. Static Analysis of Executables to Detect Mali-
cious Patterns. In Proceedings of the 12th USENIX Security Symposium, 2003.

[26] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end system multicast. In
Proceedings of the ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 1–12, Santa Clara, CA, June 2000. ACM.

[27] B. Chun, J. Lee, and H. Weatherspoon. Netbait: a distributed worm detection service,
2003.

[28] Cisco Systems. Network-Based Application Recognition. http://www.cisco.com/
en/US/products/ps6616/products ios protocol group home.html.

[29] Clip2. The Gnutella Protocol Specification v.0.4, March 2001.

[30] C. Jason Coit, Stuart Staniford, and Joseph McAlerney. Towards faster string matching
for intrusion detection or exceeding the speed of snort. In 2nd DARPA Information
Survivability Conference and Exposition (DISCEX II’01), June 2001.

[31] M. Patrick Collins and Michael K. Reiter. Hit-List Worm Detection and Bot Identifica-
tion in Large Networks Using Protocol Graphs. In Proceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection, August 2007.

[32] Intel Corp. Intel’s tera-scale research prepares for tens, hundreds of cores. Technology-
Intel Magazine, http://www.intel.com/technology/magazine/computing/
tera-scale-0606.htm, 2006.

143

http://www.cisco.com/en/US/products/ps6616/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6616/products_ios_protocol_group_home.html
http://www.intel.com/technology/magazine/computing/tera-scale-0606.htm
http://www.intel.com/technology/magazine/computing/tera-scale-0606.htm

Bibliography

[33] Symantec Corporation. Symantec security response - w32.sasser.worm.
http://securityresponse.symantec.com/avcenter/venc/data/w32.

sasser.worm.html, February 24, 2005.

[34] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, and
Lintao Zhang. Vigilante: End-to-end containment of internet worms. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), October 2005.

[35] Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On deriv-
ing unknown vulnerabilities from zero-day polymorphic and metamorphic worm ex-
ploits. In Proceedings of the 12th ACM conference on Computer and communications secu-
rity, pages 235–248, New York, NY, USA, 2005. ACM.

[36] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat: Local
Worm Detection Using Honeypots. In Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID), pages 39–58, October 2004.

[37] P. J. Denning, editor. Computers Under Attack: Intruders, Worms, and Viruses. ACM
Press, Addison-Wesley, New York, 1990.

[38] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lockwood.
Deep packet inspection using parallel bloom filters. In IEEE Micro, pages 44–51, 2003.

[39] Direct connect (file sharing). http://en.wikipedia.org/wiki/Direct

Connect (file sharing).

[40] John B. Douceur. The Sybil Attack. In Proceedings of the IPTPS, Boston, March 2002.

[41] DShield.org. DShield - Distributed Intrusion Detection System. http://dshield.
org.

[42] edonkey2000. http://www.edonkey2000.com.

[43] Dan Ellis, Jack Aiken, Kira Attwood, and Scott Tenaglia. A Behavioral Approach to
Worm Detection. In Proceedings of ACM Workshop on Rapid Malcode, Fairfax, VA USA,
October 2004.

[44] Endace. http://www.endace.com, 2004.

144

http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
http://en.wikipedia.org/wiki/Direct_Connect_(file_sharing)
http://en.wikipedia.org/wiki/Direct_Connect_(file_sharing)
http://dshield.org
http://dshield.org
http://www.edonkey2000.com
http://www.endace.com

Bibliography

[45] Cristian Estan and George Varghese. New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice. ACM Transactions on Computer
Systems, August 2003.

[46] Diego Zamboni Eugene H. Spafford. Intrusion detection using autonomous agents.

[47] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings on Advances in cryptology—CRYPTO ’86, pages
186–194, London, UK, 1987. Springer-Verlag.

[48] Fileguri. http://fileguri.com.

[49] Mike Fisk and George Varghese. Fast content-based packet handling for intrusion
detection. Technical report, University of California at San Diego, La Jolla, CA, USA,
2001.

[50] P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting of
lotteries. In Proceedings of Financial Cryptography, 2000.

[51] Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure against
chosen-ciphertext attacks. In Proc. of Asiacrypt 2001, pages 573–84, 2000.

[52] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersec-
tion. In Advances in Cryptography: Proceedings of Eurocrypt, 2004.

[53] Sharon Gaudin. Storm worm botnet more powerful than top supercomput-
ers. http://www.informationweek.com/news/internet/showArticle.

jhtml?articleID=201804528, September 2007.

[54] Goboogy. http://goboogy.com.

[55] Oded Goldreich. The Foundations of Cryptography - Volume 2. Cambridge University
Press, May 2004. http://www.wisdom.weizmann.ac.il/∼oded/foc-vol2.

html.

[56] Zoltan Gyongyi, Pavel Berkhin, Hector Garcia-Molina, and Jan Pedersen. Link spam
detection based on mass estimation. In Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, September 2006.

145

http://fileguri.com
http://www.informationweek.com/news/internet/showArticle.jhtml?articleID=201804528
http://www.informationweek.com/news/internet/showArticle.jhtml?articleID=201804528
http://goboogy.com
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html

Bibliography

[57] Mark Handley, Christian Kreibich, and Vern Paxson. Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics. In Proceedings of
USENIX Security Symposium, 2001.

[58] Honeynet Project. Know Your Enemy: Honeynets. http://project.honeynet.
org/papers/honeynet/, May 2006.

[59] Hotline communications. http://en.wikipedia.org/wiki/Hotline

Connect.

[60] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling Con-
ferencing Applications on the Internet using an Overlay Multicast Architecture. In
Proceedings of the ACM SIGCOMM Conference, San Diego, CA, USA, 2001.

[61] Qiang Huang, Helen Wang, and Nikita Borisov. Privacy-preserving friends trou-
bleshooting network. In Proceedings of the Symposium on Network and Distributed Sys-
tems Security, February 2005.

[62] imesh. http://www.imesh.com.

[63] P. Judge and M. Ammar. Gothic: A group access control architecture for secure multi-
cast and anycast. In Proceedings of IEEE INFOCOM’02, 2002.

[64] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast Portscan
Detection Using Sequential Hypothesis Testing. In Proceedings of the IEEE Symposium
on Security and Privacy, 2004.

[65] Srikanth Kandula, Sankalp Singh, and Dheeraj Sanghi. Argus – A Distributed Net-
work Intrusion Detection System. In Proceedings of USENIX SANE, 2002.

[66] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. Transport layer
identification of p2p traffic. In Proceedings of Internet Measurement Workshop (IMC’04),
Oct 2004.

[67] Vijay Karamcheti, Davi Geiger, Zvi Kedem, and S. Muthukrishnan. Detecting mali-
cious network traffic using inverse distributions of packet contents. In Proceedings of
ACM SIGCOMM MineNet Workshop (MineNet’05), 2005.

[68] Kazaa. http://kazaa.com.

146

http://project.honeynet.org/papers/honeynet/
http://project.honeynet.org/papers/honeynet/
http://en.wikipedia.org/wiki/Hotline_Connect
http://en.wikipedia.org/wiki/Hotline_Connect
http://www.imesh.com
http://kazaa.com

Bibliography

[69] Lea Kissner, Hyang-Ah Kim, Dawn Song, Oren Dobzinski, and Anat Talmy. Effi-
cient, secure, and privacy-preserving hot item identification and publication. Tech-
nical Report CMU-CS-05-159, Carnegie Mellon University, August 2005. http:

//www.cs.cmu.edu/∼leak/set-tech.pdf.

[70] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Advances in Cryp-
tology - CRYPTO 2005, Lecture Notes in Computer Science. Springer Verlag, August
2005.

[71] Eddie Kohler, Jinyang Li, Vern Paxson, and Scott Shenker. Observed structure of ad-
dresses in ip traffic. In Proceedings of the SIGCOMM Internet Measurement Workshop
(IMW), 2002.

[72] Jack Koziol. Intrusion Detection With Snort. Sams Publishing, 2003.

[73] C. Kreibich and J. Crowcroft. Honeycomb—Creating Intrusion Detection Signatures
Using Honeypots. In Proceedings of the 2nd Workshop on Hot Topics in Networks (HotNets-
II), 2003.

[74] Christian Kreibich and Robin Sommer. Policy-controlled event management for dis-
tributed intrusion detection. In 4th International Workshop on Distributed Event-Based
Systems, 2005.

[75] Robert Lemos. Counting the Cost of Slammer. CNET news.com. http://news.com.
com/2100-1001-982955.html, 2003.

[76] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chzvez. Hamsa: fast
signature generation for zero-day polymorphic worms with provable attack resilience.
In Proceedings of IEEE Symposium on Security and Privacy, May 2006.

[77] Z. Liang and R. Sekar. Fast and automated generation of attack signatures: A basis for
building self-protecting servers. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, 2005.

[78] Patrick Lincoln, Phillip Porras, and Vitaly Shmatikov. Privacy-preserving sharing and
correlation of security alerts. In Proceedings of the 13th USENIX Security Symposium,
pages 239–254, August 2004.

[79] LinkSleeve. LinkSleeve: SLV : Spam Link Verification. http://www.linksleeve.
org, 2006.

147

http://www.cs.cmu.edu/~leak/set-tech.pdf
http://www.cs.cmu.edu/~leak/set-tech.pdf
http://news.com.com/2100-1001-982955.html
http://news.com.com/2100-1001-982955.html
http://www.linksleeve.org
http://www.linksleeve.org

Bibliography

[80] Madster. http://en.wikipedia.org/wiki/Madster.

[81] D. Mazı̀eres. A toolkit for user-level file systems. In Proceedings of the USENIX Annual
Technical Conference, Boston, MA, June 2001.

[82] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996.

[83] Messaging Anti-Abuse Working Group (MAAWG). Email Metrics Program: The Net-
work Operators’ Perspective. http://www.maawg.org/email metrics report,
June 2006.

[84] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel, and Dan S.
Wallach. AP3: Cooperative, decentralized anonymous communication. In 11th ACM
SIGOPS European Workshop, September 2004.

[85] D. Moore and C. Shannon. Code-Red: A Case Study on the Spread and Victims of
an Internet Worm. In Proceedings of ACM SIGCOMM Internet Measurement Workshop
(IMW’02), 2002.

[86] David Moore. Network telescope. Technical Report tr-2004-04, CAIDA, 2002.

[87] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Inside the Slammer worm. IEEE Security and Privacy, 1(4):33–39,
July 2003.

[88] David Moore and Colleen Shannon. The spread of the witty worm. IEEE Security and
Privacy, 2(4), July/August 2004.

[89] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
Quarantine: Requirements for Containing Self-Propagating Code. In Proceedings of
IEEE INFOCOM, 2003.

[90] Mp2p technologies. http://www.mp2p.net.

[91] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A Low-bandwidth Net-
work File System. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), 2001.

[92] Napster.

148

http://en.wikipedia.org/wiki/Madster
http://www.maawg.org/email_metrics_report
http://www.mp2p.net

Bibliography

[93] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatic signature gener-
ation for polymorphic worms. In Proceedings of IEEE Security and Privacy Symposium,
Oakland, CA USA, May 2005.

[94] James Newsome, Brad Karp, and Dawn Song. Thwarting signature learning by train-
ing maliciously. In Proceedings of the 9th International Symposium On Recent Advances In
Intrusion Detection (RAID’06), September 2006.

[95] James Newsome and Dawn Song. Dynamic taint analysis: Automatic detection, analy-
sis, and signature generation of exploit attacks on commodity software. In Proceedings
of Network and Distributed System Security Symposium (NDSS’05), February 2005.

[96] D. Nojiri, J. Rowe, and K. Levitt. Cooperative response strategies for large scale attack
mitigation. In Proceedings of the 3rd DARPA Information Survivability Conference and
Exposition, April 2003.

[97] Nowcom. Clubbox. http://www.clubbox.co.kr.

[98] Nucleus Research, Inc. Spam: The Silent ROI Killer, nucleus research note d59. http:
//nucleusresearch.com/research/d59.pdf, 2003.

[99] P2pradio. http://p2p-radio.sourceforge.net/.

[100] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. of Asiacrypt 2000, pages 573–84, 2000.

[101] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Petterson.
Characteristics of internet background radiation. In Proceedings of ACM Internet Mea-
surement Conference (IMC’04), October 2004.

[102] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer
Networks, 31(23-24), 1999.

[103] Sophos Plc. The growing scale of the threat problem, A Sophos white paper. http:
//www.sophos.com/security/whitepapers, February 2006.

[104] Phillip A. Porras and Peter G. Neumann. EMERALD: event monitoring enabling re-
sponses to anomalous live disturbances. In 1997 National Information Systems Security
Conference, oct 1997.

149

http://www.clubbox.co.kr
http://nucleusresearch.com/research/d59.pdf
http://nucleusresearch.com/research/d59.pdf
http://p2p-radio.sourceforge.net/
http://www.sophos.com/security/whitepapers
http://www.sophos.com/security/whitepapers

Bibliography

[105] Niels Provos. A Virtual Honeypot Framework. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

[106] T. H. Ptacek and T. N. Newsham. Insertion, evasion and denial of service: Eluding net-
work intrusion detection. Secure Networks, Inc., http://www.aciri.org/vern/
Ptacek-Newsham-Evasion-98.ps, January 1988.

[107] Ramneek Puri. Bots & Botnet: An Overview. http://www.sans.org/rr/

whitepapers/malicious/1299.php, December 2003.

[108] Michael O. Rabin. Fingerprinting by Random Polynomials. Technical Report TR-15-
81, Center for Research in Computing Technology, Harvard University, 1981.

[109] S. Rafaeli and D. Hutchison. A survey of key management for secure group commu-
nication. Journal of the ACM Computing Surveys, 35(3), 2003.

[110] Anirudh Ramachandran and Nick Feamster. Understanding the network-level behav-
ior of spammers. In Proceedings of the ACM SIGCOMM Conference, September 2006.

[111] M G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communication, Special Issue on Copyright and
Privacy Protection, 1998.

[112] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, June 1998.

[113] J. Reynolds. RFC 1135 - Helminthiasis of the Internet, December 1989.

[114] Stuart E. Schechter and Michael D. Smith. Access for sale: A new class of worm. In
Proceedings of the 1st Workshop on Rapid Malcode (WORM’03), Washington, DC, USA,
October 2003.

[115] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 1889 - RTP: A Transport
Protocol for Real-Time Applications, 1996.

[116] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[117] Shareshare. http://www.shareshare.com.

[118] John Shoch and Jon Hupp. The ”Worm” Programs - Early Experience with a Dis-
tributed Computation. Communications of the ACM, 25(3):172–180, March 1982.

150

http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps
http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps
http://www.sans.org/rr/whitepapers/malicious/1299.php
http://www.sans.org/rr/whitepapers/malicious/1299.php
http://www.shareshare.com

Bibliography

[119] Sumeet Singh, Cristian Estan, George Varghese, and Stegan Savage. Automated worm
fingerprinting. In Proceedings of 6th Symposium on Operating Systems Design and Imple-
mentation, San Francisco, CA USA, December 2004.

[120] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, L. Todd Heberlein,
Che-Lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E. Smaha, Tim Grance,
Daniel M. Teal, and Doug Mansur. DIDS (Distributed Intrusion Detection System) –
Motivation, Architecture, and An Early Prototype. In 14th National Computer Security
Conference, pages 167–176, October 1991.

[121] Robin Sommer and Vern Paxon. Exploiting independent state for network intrusion
detection. In Proceedings of ACSAC, 2005.

[122] Robin Sommer and Vern Paxson. Enhancing byte-level network intrusion detection
signatures with context. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, October 2003.

[123] Dawn Song. Practical forward secure group signature schemes. In Proceedings of the
8th ACM conference on Computer and Communication Security, November 2001.

[124] Soribada. http://www.soribada.com.

[125] Lance Spitzner. Honeypots - definitions and value of honeypots. http://www.

tracking-hackerts.com/papers/honeypots.html, May 2003.

[126] S. Staniford, J. A. Hoagland, and J. M. McAlerney. Practical Automated Detection of
Stealthy Portscans. Journal of Computer Security, 10(1-2), 2002.

[127] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare Time.
In Proceedings of the 11th USENIX Security Symposium, 2002.

[128] Stuart Staniford. Containment of scanning worms in enterprise networks. Journal of
Computer Security, 2005.

[129] S. Staniford-Chen, S. Cheung, R. Crawford, M. dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. Grids - a graph-based intrusion detection system for
large networks. In Proceedings of the 19th National Information Systems Security Confer-
ence, October 1996.

151

http://www.soribada.com
http://www.tracking-hackerts.com/papers/honeypots.html
http://www.tracking-hackerts.com/papers/honeypots.html

Bibliography

[130] Tatter & Company. EAS - Eolin Antispam Service. http://antispam.eolin.com,
2006.

[131] The Snort Project. Snort, The Open-Source Network Intrusion Detection System.
http://www.snort.org/.

[132] Robert Vamosi. Botnets for sale. http://reviews.cnet.com/4520-3513

7-6719515-1.html?part=rss&subj=edfeat&tag=Botnets+for+sale,
March 2007.

[133] Vipul Ved Prakash. Vipul’s Razor. http://razor.sourceforge.net, 1999.

[134] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren,
Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment in the
potemkin virtual honeyfarm. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles, 2005.

[135] vshare. http://www.vshare.com.

[136] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield:
vulnerability-driven network filters for preventing known vulnerability exploits. In
Proceedings of ACM SIGCOMM Conference, Portland, OR, USA, August 2004.

[137] Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, and Yi-Min Wang. Friends
troubleshooting network: Towards privacy-preserving, automatic troubleshooting. In
Proceedings of IPTPS, February 2004.

[138] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous payload-based network
intrusion detection. In Proceedings of the 7th International Symposium on Recent Advance
in Intrusion Detection, September 2004.

[139] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous payload-based worm
detection and signature generation. In Proceedings of the 8th International Symposium on
Recent Advance in Intrusion Detection, September 2005.

[140] N. C. Weaver. Warhol Worms: The Potential for Very Fast Internet Plagues. http:

//www.cs.berkeley.edu/∼nweaver/warhol.html.

[141] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast containment of scan-
ning worms. In Proceedings of the 13th Usenix Security Symposium (Security 2004), Au-
gust 2004.

152

http://antispam.eolin.com
http://www.snort.org/
http://reviews.cnet.com/4520-3513_7-6719515-1.html?part=rss&subj=edfeat&tag=Botnets+for+sale
http://reviews.cnet.com/4520-3513_7-6719515-1.html?part=rss&subj=edfeat&tag=Botnets+for+sale
http://razor.sourceforge.net
http://www.vshare.com
http://www.cs.berkeley.edu/~nweaver/warhol.html
http://www.cs.berkeley.edu/~nweaver/warhol.html

Bibliography

[142] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac New-
bold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages 255–270, Boston, MA, December
2002. USENIX Association.

[143] Davey Winder. Battle of the botnets. http://www.daniweb.com/blogs/

entry1464.html, May 2007.

[144] Winmx. http://www.winmx.com.

[145] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architecture and Algorithm
for Detecting Worms with Various Scan Techniques. In Proceedings of the Network and
Distributed System Security Symposium (NDSS’04), 2004.

[146] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global Intrusion Detection in the
DOMINO Overlay System. In Proceedings of Network and Distributed System Security
Symposium (NDSS 2004), 2004.

[147] Vinod Yegneswaran, Jonathon T. Griffin, Paul Barford, and Somesh Jha. An archi-
tecture for generating semantics-aware signatures. In Proceedings of USENIX Security
Symposium (Security’06), 2006.

[148] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for inter-
net worms. In Proceedings of the 10th ACM conference on Computer and Communication
Security, pages 190–199, 2003.

153

http://www.daniweb.com/blogs/entry1464.html
http://www.daniweb.com/blogs/entry1464.html
http://www.winmx.com

	Introduction
	Wide-spreading Malicious Payloads
	Network Viruses and Worms
	E-mail Spams
	Link Spams

	Worm Defense and Challenges
	Technical Approaches
	Contributions and Dissertation Outline

	I Content-based Automated Signature Generation
	Introduction
	Background and Motivation
	Desirable Properties
	Outline of Part I

	Automated Worm Signature Generation using Content Prevalence Analysis
	Autograph System Overview
	Selecting Suspicious Traffic
	Content-Based Signature Generation
	COPP: COntent-based Payload Partitioning Algorithm
	Selecting Prevalent Content Blocks
	Innocuous Traffic Included in Suspicious Flow Pool

	Evaluation: Local Signature Generation
	Offline Signature Generation on DMZ Traces
	Polymorphic and Metamorphic Worms

	P2P Traffic and Signature Generation
	Empirical Results: False Positives
	P2P Application Traffic Properties
	Preventing Unspecific Signature Generation from P2P Traffic

	Attacks and Limitations
	Summary

	Distributed Signature Generation with Port-Scanner List Sharing
	Single vs. Multiple Monitors
	tattler: Distributed Gathering of Suspect IP Addresses
	Bandwidth Consumption
	Worm Payload Accumulation Speed
	Online, Distributed, DMZ-Trace-Driven Evaluation
	Discussion
	Summary

	II Privacy-Preserving Signature Generation
	Introduction
	Motivation for Distributed Payload Sharing
	Random Scanning Worm Propagation Model
	Localized Scanning Worms
	Why Distributed?

	Privacy Consideration

	A Framework for Distributed Payload Sharing
	Distributed Payload Sharing Framework
	Honeypot
	Analysis of GSD
	Analysis of LSD

	Simulation Results
	Legitimate Traffic
	Summary

	Preserving Privacy using HotItem-ID
	Overview
	Adversary Model
	Correctness and Privacy Protection

	HotItem-ID Protocol
	Approximate Heavy-Hitter Detection
	One-Show Tags
	Approximate Distinct Element Counting
	Anonymous Communication
	Distributed One-Show Tag Collection
	Putting HotItem-ID to Work
	Correctness Analysis of HotItem-ID
	Privacy in HotItem-ID

	Distributed Worm Signature Detection
	Candidate Signature Advertisement (LSD)
	Suspicious Payload Sharing (GSD)

	Experimental Results
	Simulation Method
	Bandwidth Consumption and Accuracy

	Summary

	Preserving Privacy using Privacy-Preserving Multiset Operations
	Problem Definition
	Preliminaries
	Threshold Homomorphic Cryptosystem
	Privacy-Preserving Set Operations

	Protocols
	Basic Protocol
	Extended Protocol for Reducing Computational Cost
	Approximate Payload Pattern Counting

	Implementation
	Experimental Results
	Summary

	Related Work
	Automated Worm Signature Generation
	Distributed Monitoring
	Privacy-Preserving Hot Item Identification

	Conclusions
	Desired Requirements Revisited
	Contributions
	Lessons Learned

	Extended Protocol for Reducing Network Delay

