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Abstract

Correlations in traffic patterns are an important facet of the workloads faced by real systems, and
one that has far-reaching consequences on the performance and optimization of the systems involved.
While there has been considerable amount of work on understanding the effect of correlations be-
tween successive interarrival times, there is very little analytical work in understanding the effect
of correlations between successive service requirements (job sizes). All the prior work on analyzing
the effects of correlated job sizes is limited to First-Come-First-Served scheduling. This leaves open
fundamental questions such as: How do various scheduling policies interact with correlated job sizes?
Can scheduling be used to mitigate the harmful effects of correlations?
In this paper we take the first step towards answering these questions. We assume a simple and
intuitive model for job size correlations and present the first asymptotic analysis of various common
size-independent scheduling policies when the job size sequence exhibits high correlation. Our analy-
sis reveals that the characteristics of various scheduling policies, as well as their performance relative
to each other, are markedly different under the assumption of i.i.d. job sizes versus correlated job
sizes. Further, among the class of size-independent scheduling policies, there is no single scheduling
policy that is optimal for all degrees of correlations and thus any optimal policy must learn the
correlations. We support the asymptotic analysis with numerical algorithms for exact performance
analysis under an arbitrary degree of correlation, with simulations, and finally verify the lessons from
our correlation model on real world traces.





1 Introduction

Motivation

The M/G/1 single-server queue has been used as a guiding model for performance analysis of widely
varying systems, such as buffers for network switches, web server downlinks, and the CPU scheduler.
There is a considerable body of analytical work surrounding the M/G/1 queue, including analysis
of different scheduling policies and their effects on response times of jobs (defined to be the time
from the arrival to the completion of a job) [5]. However, almost all of the exact analysis has been
performed under the assumptions of (i) Poisson arrival process and (ii) independent and identically
distributed (i.i.d.) job sizes.

Long ago, the need was recognized to relax these assumptions, as real systems workloads exhibit
significant correlation patterns and these patterns tend to greatly affect the accuracy of the traditional
results [8, 19]. Primarily, there are three kinds of correlations that exist in real workloads [10]: (i)
correlations between consecutive interarrival times, (ii) correlations between interarrival times and
the subsequent service requirements, and (iii) correlations between consecutive service requirements
(job sizes). Examples of correlation in interarrival processes include [10] (network traffic), and [7, 12,
24] (web servers). Examples of correlation in interarrival time and job sizes include [4, 10, 12, 13].
Examples of correlation in sequential job sizes include [10], [15, 9, 23] (supercomputing), and [18]
(disk request sizes). In this paper we focus on studying the effects of correlations of type (iii).

While there has been a lot of analytical work studying the effect of all three types of correlation on
mean response time in single server queues, all of this work has assumed First-Come-First-Served
(FCFS) queues only. Fendick et al.[10] examine all three types of correlation via a Brownian ap-
proximation and propose a stationary workload approximation based on heavy traffic limits. Adan
and Kulkarni [2] also use analysis to study autocorrelation and cross-correlation of interarrival and
service times in a MAP/G/1/FCFS queue. Riska et al. [21] use matrix-analytic methods to model
correlated arrival streams in a MAP/PH/1 queue, and to numerically calculate mean response time
under FCFS. Ghosh and Squillante [12] propose a refinement to the Fendick et al. [10] approximation
for FCFS queues, and propose approximations for a multi-class priority system with FCFS scheduling
within each class. Cidon et al. [4] derive the Laplace transform of the workload using the theory of
linear functional equations in a queue with an Interrupted Poisson arrival process and where the size
of a job is positively correlated with the interarrival time preceding the job.

The effect of correlation has also been carefully studied via simulation, see for example [16, 17, 22, 26].
In all except [17], FCFS scheduling was assumed. In [17] the authors examine an approximation of
Shortest-Job-First (SJF) scheduling, which the authors call SWAP, and compare it against FCFS
scheduling via simulation. In [18], the authors propose and evaluate a scheme that predicts the
future service requirements based on the auto-correlation function, and drops large jobs to improve
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performance of an FCFS server.

In summary, while there has been a lot of prior work dealing with correlations in successive job
sizes, it has almost exclusively dealt with FCFS scheduling. Important questions have remained
unanswered: How do different scheduling policies react to correlations in job sizes? Can scheduling
be used to allay the detrimental effect of correlated job sizes on the system performance?

In this paper, we take an important first step by analyzing the mean response time under various
scheduling policies in the presence of correlated job sizes. We restrict ourselves to the class of size-
independent policies. That is, we will look at policies which know the generative correlation model,
but not the actual realizations of the sizes (or the size-class) of jobs. In most applications, including
CPU scheduling, IP flow scheduling, scheduling of database queries etc., the job sizes are often not
known a priori, and hence size-independent policies are more realistic. Further, if the job sizes are
known to the scheduler, then SRPT (Shortest Remaining Processing Time first) is already known to
minimize mean response time irrespective of the arrival pattern (hence also under correlated arrivals).
We will consider the question of how does the optimality of size-independent policies is affected by
the presence or absence of correlation in the job sizes.
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Figure 1: An example of the effect of job-size correlation on scheduling policies: (a) mean response time
versus α for low to medium correlation; (b) mean response time versus α for medium to high correlation;
(c) mean response time of the “little” (L) jobs versus α. Here ρ = 0.97 and C2 ≈ 1.08. Note that the
E[T ] ordering changes from FCFS=ROS=LCFS>PS=P-LCFS>LAS>OPT at α = ∞ (i.i.d. job sizes) to
FCFS≈ROS>PS>LAS>LCFS=P-LCFS=OPT as α→ 0 (high correlation).

The MMAP Correlation Model

We assume the following simple Markov Modulated Arrival Process (MMAP) model for job-size
correlations: jobs belong to one of two classes called little (L) and huge (H), where jobs of class
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L (respectively H) are Exponentially distributed with mean 1
µL

(respectively 1
µH

> 1
µL

) 1. Therefore,
our jobs belong to a 2-phase hyperexponential (H2) distribution. Further, the system operates under
a 2-state Markovian environment process with states L and H: while the environment process is in
state L all arrivals are of class L, and while in state H all arrivals are of class H. The time spent in
state L during each visit are i.i.d. Exponentially distributed with mean 1

αL
, and those in state H are

i.i.d. Exponentially distributed with mean 1
αH

. Denote α = αL+αH , and p = αH
α
. The arrivals occur

according to a Poisson process with rate λ independent of the environment process. Thus if we look
at a random arrival, it is of class L with probability p, and of class H with probability 1− p. We will
use ρ = λ ·

(
p
µL

+ 1−p
µH

)
to denote the long run fraction of time the system is busy. If we fix the job

size distribution and arrival rate (i.e. µL, µH , p, λ) and set α = ∞, then the job sizes form an i.i.d.
stream. However, as we decrease α and thereby increase the mean residence time per sojourn of L
and H states, we increase the correlation among successive job sizes, since the probability that a class
L job is followed by another class L job (pL,L = p+ λ(1−p)

λ+α ) increases. An alternate approximate way
to view the MMAP correlation is the following: The arrivals occur according to a Poisson process
independent of the job size sequence. With probability q, the class of a job is the same as the class
of the immediately preceding job, and with probability 1 − q it is an independent sample dictated
by the H2 job size distribution, where q = λ

λ+α . While more intuitive, this alternate way is only
an approximation of the MMAP model in that under the MMAP model an interarrival time is not
Exp(λ) if we condition on the classes of the jobs that arrive immediately before and immediately
after it.

Let · · · , X−2, X−1, X0, X1, X2 · · · represent the sequence of job sizes. An appealing property of the
above correlation model is the simple closed-form autocorrelation function (acf). In particular, the
lag n correlation is given by:

cor(Xm, Xm+n) = E[XmXm+n]− E[Xm]E[Xm+n]√
var(Xm)

√
var(Xm+n)

= 1
2

(
C2 − 1
C2

)(
λ

λ+ α

)n
. . . n ≥ 1

where C2 = var(X0)
E[X0]2 > 1 denotes the squared coefficient of variation (SCV) of the H2 job size distri-

bution.

Scope of the MMAP correlation model: The MMAP correlation model that we analyze in
this paper is similar to the model used in [2].In particular, richer MMAP models (with more than 2
phases), see [18] for example, are more useful for modeling more general auto-correlation functions.
However, the goal of this paper is to explore qualitative behavior of different scheduling policies in
the presence of correlated job sizes, and to gain insights for these behaviors and the effect of various
system parameters on the performance via an analytically tractable correlation model. We believe

1Note that the mean sizes of the two classes can in fact be close. We have chosen the names of the classes to map
to low (L) and high (H) load, respectively, in Section 2.

3



Scheduling Policy Description
First-Come-First-Served (FCFS) Jobs are served in the order of arrival.
Last-Come-First-Served (LCFS) Whenever a job completes service, the next job to be served is

the one that arrived last.
Preemptive LCFS with Resume
(P-LCFS)

New arrivals immediately begin service by preempting the job
at the server. On a service completion, the next job to resume
service is the one that arrived last.

Least-Attained-Service (LAS) The job with the least amount of received service (age) gets to
serve.

Threshold-Age-Based-Priority
(LAS-a)

Jobs with age > a serve FCFS in low priority queue. Jobs with
age < a serve FCFS in high priority queue with preemptive pri-
ority over low priority (older than a) jobs.

Processor Sharing (PS) If there are n jobs in the system, each job gets 1
nth of the server’s

capacity.
Random-Order-of-Service (ROS) Whenever a job completes service, the next job to be served is

picked uniformly at random from amongst the jobs currently in
the queue.

Optimal Omniscient (OPT) A hypothetical optimal scheduling scheme that knows the class
of all jobs, and gives preemptive priority to class L jobs.

Table 1: A glossary of scheduling policies analyzed in this paper.

our analysis is a critical first step towards understanding the effect of correlations. For example, while
a lot of prior work on modeling correlations has focused on matching the autocorrelation function, we
will later see that our MMAP model dispels the common wisdom that the autocorrelation function
is the only important factor determining the performance of a system. That is, we will see that the
performance of various scheduling policies will depend critically on all the system parameters, µL,
µH , p and α, and not just α, ρ and C2. We believe that the behavior of scheduling policies under
correlated job sizes discovered in this paper would extend to more general correlation structures, and
we partially test this via real-world traces in Section 4, but we leave it as a topic for future research.

Summary of Contributions

Given the above correlation model, we proceed to analyze a wide range of size-independent scheduling
policies (see Table 1 for a list of scheduling policies analyzed in this paper). We now summarize some
of our findings:

Most of our results look at the effect of the parameter α on mean response time, E[T ]. We prove
that, although all scheduling policies we consider are hurt by increasing the correlation, the degree to
which correlation affects different policies varies widely. We consider two regimes: (i) µL > µH > λ,
where the server is never in overload, and (ii) µL > λ > µH , where the system is in overload,
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during bursts of H jobs, although it is still stable on average. For the no-overload regime, we prove
that, as α decreases (correlation increases), all size-independent scheduling policies become the same
with respect to mean response time. For the transient-overload regime, we prove that as correlation
decreases, there can be a large (up to a factor of µL

µH
) difference in E[T ] between the policies. Also,

the ordering of policies from “best” to “worst” mean response time changes a lot under correlation.
An example is shown in Figure 1(a). Some particularly interesting findings include:

• While LAS has provably the best mean response time (among size-independent policies) when
α → ∞ for an H2 job size distribution due to its decreasing failure rate [20], it is provably
sub-optimal when α→ 0.

• LCFS, which is worst (along with FCFS and ROS) when α =∞ is provably best when α→ 0.

• P-LCFS is also provably best when α→ 0, which is interesting because at α→∞ (i.i.d. case)
LCFS and P-LCFS can be far apart for high variability job size distributions.

• P-LCFS and PS are provably equal at α →∞, but PS can be arbitrarily worse than P-LCFS
as α→ 0.

The effect of correlation on the mean response time of the L jobs, E[TL], is even more pronounced.
In particular, we prove that:

• While E[TL] increases for most policies, as α decreases (correlation increases), E[TL] always
decreases for PLCFS and for LCFS. An example is shown in Figure 1(b).

• LAS performs poorly for E[TL] and even worse for E[T 2
L].

The above findings are important because they reverse our intuition for which policies are best under
no correlation (α → ∞). In particular, while LAS is designed to help the little jobs, by biasing
towards jobs with least attained service, it fails to do this under correlation, and policies like LCFS
which are entirely oblivious to job size distribution can actually help the little jobs.

The above results are primarily obtained by using fluid analysis and looking at asymptotic behavior
of response time as α → 0, see Section 2. However, the effect of correlation under moderate α
is also interesting. To study the moderate α regime, we derive numerical algorithms to analyze
LCFS, OPT, PLCFS, and FCFS, see Section 3. For the other policies, we resort to simulations,
see Section 4. These numerical and simulation results are useful for understanding the behavior of
scheduling policies for intermediate α values and for getting a feel for how quickly scheduling policies
converge to their asymptotically-limiting (α→ 0) behavior. Figure 3 shows this well, illustrating that
LAS is particularly slow to converge to its asymptotic behavior, compared with the other scheduling
policies. All the above findings assume a Poisson arrival process and correlations between successive
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job sizes, as specified by our model. To see how our messages carry through to real-world scenarios,
we end Section 4 with some trace-driven simulation studies, the first involving packets at a router,
and the second involving supercomputing jobs.

Outline

The paper is structured as follows: We have already described our correlation model in Section 1.
Section 2 presents the asymptotic analysis of all the scheduling policies described in Table 1 in the
limit α→ 0. Section 3 presents our algorithms for exact numerical analysis of some of the scheduling
policies for general values of the correlation parameter q. Section 4 provides simulation results, where
the theoretical asymptotic results (α → 0) are juxtaposed with simulations and numerical results.
Finally, we conclude in Section 5.

Notation Meaning Notation Meaning

E[TπL ],E[TπH ],E[Tπ] mean response time of a class {L,
H, avg} job under policy π

E[Dπ
L],E[Dπ

H ],
E[Dπ]

mean delay of a class {L, H,
avg} job under scheduling pol-
icy π

E[TπL (x)],E[TπH(x)] mean response time of a class L, H
job of size x under scheduling policy
π

WL,WH stationary workload condi-
tioned on being in state L,
H

rL = 1− λ
µL

rL(x) = 1− λsL(x)
rH = 1− λ

µH
rH(x) = 1− λsH(x)

ρ = λ (p/µL + (1− p)/µH) ρ(x) = λ(psL(x) + (1− p)sH(x))
sL(x) = E[min{Exp(µL), x}] = 1−e−µLx

µL

W ∗L,W
∗
H

stationary fluid workload in a
system with flow rates rL and
rH , conditioned on being in state
L, H

sH(x) = E[min{Exp(µH), x}] = 1−e−µHx
µH

g(x) = Θ(h(x)) as x→ x0 0 < lim inf
x→x0

g(x)
h(x) ≤ lim sup

x→x0

g(x)
h(x) <∞ W ∗L(x),W ∗H(x) stationary fluid workloads in a

system with flow rates rL(x),
rH(x)

g(x) = o(h(x)) as x→ x0 limx→x0
g(x)
h(x) = 0 X̃(s) = E

[
e−sX

]
Laplace transform of r.v. X

Table 2: Notation used in Section 2.

2 Asymptotic Analysis Of Scheduling Policies as α→ 0

Our goal in this section is to obtain an understanding of the “first-order effect” of correlations in the
job sizes by considering the limiting case where the correlation approaches its maximum value under
our model, that is, α → 0.2 While this extremal case implies arbitrarily long consecutive streaks of
only L and only H arrivals, an understanding of the behavior of the various scheduling policies under

2The analysis of the asymptote α→ 0 should be seen analogously to heavy traffic analysis where the traffic intensity
ρ is allowed to approach 1 to observe “first order” effect of system parameters (variance, cross-correlations) on the
system performance.
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this asymptote gives us insights into why different scheduling policies react differently to correlation
in job sizes, and will guide us in design of policies which are robust to the correlations.

As pointed out above, the asymptote α→ 0 implies that we have arbitrarily long streaks of L only and
H only jobs. Depending on whether µH > λ or not (note we are guaranteed µL > λ by definition), we
will have a system that is either stable or under transient overload during the H states. We consider
the two cases separately.

In Section 2.1, we present the asymptotic results for the simpler case µH > λ. The remainder of
the section is devoted to the non-trivial case of µH < λ. We will start the analysis of this case in
Section 2.2 by analyzing the stationary workload in the system and providing intuition for the goal
of asymptotic analysis. The remaining sections 2.3-2.8 will present the results for asymptotic mean
response time for various scheduling policies for the case µH < λ. A large number of scheduling
policies that we will analyze will involve asymptotic analysis of busy periods. We have chosen to
present the main results on busy period analysis in Appendix A and focus on the messages in the
main body. For ready reference, we have summarized the notation used in this section in Table 2.

Note on scaling and asymptotic notation: We perform the asymptotic analysis of the schedul-
ing policies by considering a sequence of systems, indexed by the parameter α. The system with
index α is obtained by setting the switching rates of the environment process as αH = p · α and
αL = (1 − p)α, where p, µL, µH and λ are held constant. We are interested in seeing the behavior
of the scheduling policies in the asymptote α → 0, and hence the expressions for mean response
times presented in this section will be written in the asymptotic notation: We say that a function
g(α) is of a ‘smaller order’ than h(α) (and make the limit α→ 0 implicit), denoted g(α) = o(h(α)),
when g(α)

h(α) → 0 when α → 0 (see Table 2). When we write the expressions for the mean response
time under the αth system, we only identify the dominant term in the expression, expressing the
remaining terms which become negligible in comparison as α→ 0 as of being smaller order than the
dominant term. Similarly, we say g(α) is of ‘the same order’ as h(α) (again with the limit α → 0
implicit), denoted g(α) = Θ(h(α)) when intuitively g(α)

h(α) is eventually bounded between two strictly
positive constants. Thus, for example, a Θ(1) function is eventually bounded between two strictly
positive constants as α → 0. In proving theorems about response time, it will often suffice to just
argue about the asymptotic order of busy period durations, probabilities and related quantities.

2.1 Analysis for case µH > λ

Let T πL and T πH denote the random variables for response time of class L and class H jobs, respectively,
under scheduling policy π (see Table 2). When µH > λ, the system is stable during both L and H
states, and we have the following intuitive result.
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Theorem 1 Let π be any work-conserving, size-independent policy. When µH > λ,

lim
α→0

E[T πL ] = 1
µL − λ

; lim
α→0

E[T πH ] = 1
µH − λ

.

Proof: The basic intuition behind the theorem is that since the system is stable under both L and
H states, the workload that is present when the environment switches state is uniformly bounded in
q (this is not true when µH < λ and the H state is in overload). Thus, asymptotically as q → 1 and
the residence time in an environment state during each visit increases as 1

1−q , during each sojourn in
state L (or H), the system converges to the stationary distribution of an M/M/1 queue with service
rate µL (or µH) as q → 1.

More formally, whenever the environment switches state from H to L or L to H, there is some time
until the system first empties out. Because we have assumed a work conserving policy, this time can
be stochastically upper bounded by the equilibrium distribution of the busy period duration in an
M/M/1 with only class H jobs (we omit the proof due to space). Until the system switches again, it
goes through i.i.d. busy periods of an M/M/1 with only L or only H jobs depending on the current
environment state. As q → 1, the contribution of these i.i.d. busy periods washes away the initial
transient effect, and, asymptotically, the system behaves as a probabilistic mixture of two separate
M/M/1 queues.
Remark 1: Theorem 1 says that as job sizes become more and more correlated, the behavior of
all work-conserving, size-independent scheduling policies will tend to become the same, provided
µH > λ. Since LAS is optimal (among size-independent policies) at each extreme, we intuitively
expect LAS to be near-optimal through the entire range of α, and thus for all levels of correlation.
We verify that this is indeed true in Section 4, Figure 2.

2.2 Preliminaries: Workload analysis via Fluid model for the case µH < λ

We begin our study of the case µH < λ by finding the distribution of stationary workload during the
L and H states, respectively. To do this, we first introduce the fluid model of our MMAP correlation
model.

Definition 1 Under the fluid model, we assume that the workload increases at a constant rate of
−rH during the H states (see Table 2), and decreases at a constant rate of rL during the L states as
long as the workload is positive.

We now present the expression for the stationary workload under the fluid model for our system,
deferring the proof to the end of the section.

Lemma 1 Let W ∗
L and W ∗

H denote the random variables for the stationary workload during L and
H states under the fluid model, respectively (we will superscript random variables by ∗ when referring
to the fluid model). Let W̃ ∗

L(s) = E
[
e−sW

∗
L

]
and W̃ ∗

H(s) = E
[
e−sW

∗
H

]
denote their Laplace transforms.
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Then,

W̃ ∗
H(s) = γH − γL

s+ (γH − γL)
(1)

W̃ ∗
L(s) =

(
1− γL

γH

)
+ γL
γH
· γH − γL
s+ (γH − γL)

(2)

where γL = αL
rL

and γH = −αH
rH

.
Thus the workload during the H states, W ∗

H , is distributed as an Exp(γH − γL) random variable, and
the workload during the L states, W ∗

L, is a mixture of an Exp (γH − γL) random variable and an atom
at 0. Further, the mean of W ∗

L and W ∗
H are of the order Θ

(
1
α

)
. Thus, as α→ 0 , the fluid workload

diverges at a rate of 1
α
.

Lemma 2

WL
d= W ∗

L + o(α−1) ; WH
d= W ∗

H + o(α−1)

Remark 2: Lemma 2 says that, asymptotically as α → 0, the workload of the stochastic system
converges in distribution to the workload under the fluid model.

Proof of Lemma 1: We first note that by conditional PASTA [25], W ∗
L and W ∗

H are equal in
distribution to the stationary workload at the end of L and H states respectively. Let TL and TH

be Exponentially distributed random variables with mean 1
αL

and 1
αH

, respectively. We have the
following stochastic fixed point equations:

W ∗
H

d= W ∗
L − rHTH ; W ∗

L
d= max {W ∗

H − rLTL, 0}

Taking Laplace transforms of the above equations, we get the following fixed point equations:

W̃ ∗
H(s) = W̃ ∗

L(s) · αH/rH
αH/rH − s

; W̃ ∗
L(s) = sW̃ ∗

H(αL/rL)− (αL/rL)W̃ ∗
H(s)

s− αL/rL

which yield the expressions in Lemma 1.
Proof of Lemma 2: The lemma is proven by starting with Theorem 9 which gives the exact
expressions for the Laplace transforms of WL and WH . The transforms of WL and WH can be
recognized as mixtures of a point mass at zero, and two Exponential distributions. We consider the
case of WL here. According to Theorem 9:

W̃L(s) = (1− ρ)αmLmH − smLgHπL(0)
αLgHmL + αHgLmH − sgLgH

(3)
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where,

mL = µL + s ; mH = µH + s

gL = µL − λ+ s ; gH = µH − λ+ s

πL(0) = (1− ρ)α(µH + ξ)
ξ(µH − λ+ ξ)

and ξ denotes the unique root of the denominator of (3) (viewed as a cubic in s) in the interval
(0,+∞). The quantity πL(0) denotes the long run fraction of time that the system is empty condi-
tioned on being in state L. Taking the limit α→ 0, we get

ξ ∼ (λ− µH) + pαλ

λ− µH
+ Θ(α2)

and thus,

πL(0) = (1− ρ)α(µH + ξ)
ξ(µH − λ+ ξ)

∼ (1− ρ)α(λ+ Θ(α))
(λ− µH + Θ(α))

(
pαλ
λ−µH

+ Θ(α2)
)

∼ 1− ρ
p

+ Θ(α)

Note that the above is not in disagreement with the result Pr[W ∗
L = 0] =

(
1− γL

γH

)
as the latter is

only equivalent to Pr
[
WL = o

(
1
α

)]
. The other roots of the denominator of (3) in the limit α → 0

are given by:

χ ∼ (λ− µL)−
pαλ

µL − λ
+ Θ(α2)

η ∼ − αµLµH(1− ρ)
(µL − λ)(λ− µH) + Θ(α2)

Canceling the common factor (s− ξ), and noting that αµLµH(1−ρ)
(µL−λ)(λ−µH) = (γH − γL), we can rewrite:

W̃L(s) = πL(0) +K1
−χ
s− χ

+K2
−η
s− η

= 1− ρ
p

+K1
µL − λ+ Θ(α)

s+ (µL − λ+ Θ(α)) +K2
γH − γL

s+ (γH − γL)

Matching the coefficients of s, we getK1 = rL
1−rL

(
1−ρ
p

)
+Θ(α) andK2 = 1− 1−ρ

p(1−rL)+Θ(α) = γL
γH

+Θ(α).
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Thus we have proved that, as α → 0, WL is a mixture of an Exponential distribution with mean
1

γH−γL
with probability ∼ γL

γH
, and with the remaining probability the stationary distribution of an

M/M/1 with arrival rate λ and service rate µL.

Goals of asymptotic analysis Since we are interested in analyzing work-conserving policies, the
stationary workload, W , is the same across policies. What differs from one policy to another is what
types of jobs make up that workload. Since we restrict ourselves to size-independent policies, we can
bound the mean remaining size of any job under our H2 job size distribution between 1

µL
and 1

µH
. This

gives bounds on E[Nπ] – the mean number of jobs in the system for any work-conserving policy π – as
µHE[W ] ≤ E[Nπ] ≤ µLE[W ]. Finally, by applying Little’s law, we get µH

λ
E[W ] ≤ E[T π] ≤ µL

λ
E[W ].

Since E[W ] diverges as 1
α
as α→ 0, we have the following.

Lemma 3 When µH < λ in the MMAP model, the mean response time of any work-conserving size-
independent scheduling policy π grows as E[T π] = Kπ

α
+ o( 1

α
), for some constant Kπ which depends

only on the scheduling policy and the parameters µH , µL, p and λ.

Our goal is to identify the Kπ for different policies. Note again the analog to heavy traffic analysis,
where space (response time, number of jobs in system, etc.) is scaled by (1− ρ) and analyzed in the
limit ρ→ 1.

2.3 FCFS

Theorem 2 In the regime µH < λ,

E
[
DFCFS
L

]
= (1− p)
p(1− ρ)

(
λ

µH
− 1

)2 1
α

+ o
( 1
α

)

E
[
DFCFS
H

]
= 1

(1− ρ)

(
1− λ

µL

)(
λ

µH
− 1

)
1
α

+ o
( 1
α

)

Proof: By conditional PASTA, the delay of class L jobs is distributed as WL, and that of class H
as WH . Applying Lemmas 2 and 1, the result is immediate.
Remark 3: We already see a divergence in the behavior of scheduling policies when job sizes become
correlated. When α = ∞ (i.i.d. case), and under a Poisson arrival process, the mean delay under
FCFS depends only on the first two moments of the job size distribution. However, as α → 0, it
depends on all the parameters of the H2 job size distribution.

2.4 P-LCFS, LCFS and OPT

While it is hard to characterize the optimal size-independent policy when job sizes are correlated
since the optimal policy might (and will) exploit the correlation structure to predict classes of future
jobs based on observed history of job sizes, we can obtain a trivial lower bound by considering an
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omniscient scheduler – that is, a scheduler that knows the class of each job in the system, but not
the exact size, and gives preemptive priority to class L jobs. We call this policy OPT.

Theorem 3 When µH < λ, we have for each policy π ∈ {LCFS, P-LCFS, OPT}:

E[Dπ
L] = Θ(1)

E[Dπ
H ] =

[
µH

λ(1− p)

]
(1− p)λ
(1− ρ)

(
1
µH
− 1
µL

)(
λ

µH
− 1

)
1
α

+ o
( 1
α

)

Corollary 1 For π ∈ {LCFS, P-LCFS, OPT}, when µH < λ: limα→0
E
[
TFCFS

]
E[Tπ ] = λ

µH
.

Proof of Theorem 3: We first consider class L jobs. Under OPT, class L jobs get priority, and
hence their response time is stochastically upper bounded by that of an M/M/1 with arrival rate
λ and service rate µL, and is Θ(1). Under P-LCFS, the response time of class L jobs is the busy
period started by Exp(µL) work in state L. By Theorem 11, Case 2 (see Appendix A), this is Θ(1).
Under LCFS, the delay of class L jobs is a busy period started either by Exp(µL), Exp(µH) or 0
work. Again, by Theorem 11, Case 2, this is Θ(1).
To understand the delay of class H jobs, note that the above implies that the mean number of class
L jobs in the system, and hence their contribution to the total workload is Θ(1). However, the
stationary average workload is Θ(α−1), and hence this must be composed (aside from a Θ(1) term)
of class H jobs alone. Since, all scheduling policies are size-independent, the mean residual size of
these class H jobs is 1

µH
, yielding the mean number of class H jobs of pE[WL]+(1−p)E[WH ]

1/µH . By Little’s
law, we obtain the mean delay of class H jobs as pE[WL]+(1−p)E[WH ]

λ(1−p)/µH .
Remark 4: The above proof does not extend to other policies in Table 1 as their E[TL] is not Θ(1).
Remark 5: For the metric of mean response time, all three policies – LCFS, P-LCFS and OPT – are
asymptotically optimal. However, the mean response times of class L jobs under the three policies
are different, although always Θ(1), and given by the following lemma, whose proof we omit.

Lemma 4 When µH < λ, the class L mean response time under OPT, LCFS and P-LCFS are given
by:

E
[
TOPTL

]
= 1
µL − λ

+ o(1)

E
[
T P−LCFSL

]
= E

[
BL
L

]
+ o(1) = 1− ρH

µL(1− ρ)
+ o(1)

E
[
TLCFSL

]
= θH(1− λ

µL
)E
[
BH
L

]
+ λ

µL
E
[
BL
L

]
+ 1
µL

+ o(1)

where θH = (1−p)(λ−µH)
(1−p)λ+(p−ρ)µH , and expressions for E

[
BL
L

]
and E

[
BH
L

]
are given in Corollary 3 (see

Appendix A).
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Remark 6: Comparing with E
[
T P−LCFSL |α =∞

]
= 1

µL
· 1

1−ρ , we see that the extreme correlated
E[TL] for P-LCFS is always lower than the uncorrelated E[TL]. We can also prove a similar result
for LCFS.
Remark 7: A further difference between the three policies emerges if one looks at higher order
metrics, such as E[(T πL )2]. As a byproduct of the proof of Theorem 11 (Case 2), we can see that
E
[
(T P−LCFSL )2

]
= Ω

(
1
α

)
, while it is Θ(1) for OPT. Thus, while simple policies such as P-LCFS and

LCFS are asymptotically optimal, there still are benefits in investing in a learning-based scheduling
policy when one cares about more fine-grained metrics than just the mean response time.

2.5 LAS

The asymptotic analysis of LAS presented below builds on the analysis under i.i.d. arrivals given in
[6]. In short, to analyze the response time of a tagged arrival of size x, we consider a modified system
where jobs of original size s are truncated to size min {s, x} when they enter the system. Under LAS,
the response time of the tagged arrival is given by the busy period generated by the work it sees on
arrival in this modified system. The expressions for the mean response time of class L and H jobs of
size x are given by:
Theorem 4 When µH < λ, the mean response time of a job of size x under the LAS scheduling
policy is given by: Case λsH(x) > 1:

E
[
TLASL (x)

]
= E[W ∗

L(x)]
1− ρ(x) + o

( 1
α

)

E
[
TLASH (x)

]
= 1
αH

+
E[W ∗

H(x)] + λsH(x)−1
αH

1− ρ(x) + o
( 1
α

)

Case λsH(x) < 1:

E
[
TLASL (x)

]
= E

[
T
M/M/1/LAS
L (x)

]
+ o(1)

E
[
TLASH (x)

]
= E

[
T
M/M/1/LAS
H (x)

]
+ o(1)

where E
[
T
M/M/1/LAS
L (x)

]
and E

[
T
M/M/1/LAS
H (x)

]
denote the mean response time of a job of size x

under LAS scheduling in M/M/1 queues with arrival rate λ, and job size distribution exp(µL) and
exp(µH), respectively.

Proof: Case λsH(x) > 1: In this case, the modified system with truncated job sizes is in transient
overload during the H states. Theorem 11, Case 1 (see Appendix A), gives us the expression for the
required mean busy period.
Case λsH(x) < 1: In this case, the modified system with truncated job sizes is stable during the H
states. As α→ 0, the system looks like a mixture of two independent stable M/G/1 queues with the
modified job size distributions (similar to Theorem 1). The mean response time of a type L job of
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size x in this modified system thus converges to the mean response time of a job of size x under an
M/M/1/LAS system with arrival rate λ and job sizes i.i.d. Exp (µL). A similar argument applies to
type H jobs of size x.
Remark 8: Under i.i.d. H2 job sizes, LAS is the optimal size-independent scheduling policy and in
particular better than LCFS and P-LCFS for minimizing the mean response time because it isolates
the class L jobs from class H jobs. Intuitively we expect this behavior to carry over when correlations
are introduced, but this is not the case. Not only does LAS perform suboptimally, but the mean
response time of L jobs under LAS grows as Θ

(
1
α

)
, while it is Θ(1) under LCFS and P-LCFS. The

reason for this counter-intuitive behavior lies in the fraction of L jobs that do not get isolation and
hence experience Θ

(
1
α

)
mean response time. Under LCFS and P-LCFS, this fraction is Θ(α) with a

net effect of Θ(1). Under LAS, however, all L jobs with a size bigger than 1
µH

log
(

µH
λ−µH

)
, which is a

Θ(1) fraction, experience Θ
(

1
α

)
mean response time.

2.6 LAS-a

Recall that under the LAS-a scheduling policy with parameter a, jobs of age less than a get preemptive
priority over jobs of age larger than a. Within the same priority class, the jobs are served in FCFS
order.

Theorem 5 When µH < λ, the mean response time of a job of size x under the LAS-a scheduling
policy with threshold a is given by:
Case λsH(a) > 1:
Subcase x < a :

E
[
TLAS−aL (x)

]
= E[W ∗

L(a)] + o(1/(1− q))

E
[
TLAS−aH (x)

]
= E[W ∗

H(a)] + o(1/(1− q))

Subcase x > a :

E
[
TLAS−aL (x)

]
= E[WL]

1− ρ(a) + o

(
1

1− q

)

E
[
TLAS−aH (x)

]
= 1
αH

+
E[WH ]− rH(a)

αH

1− ρ(a) + o

(
1

1− q

)

Case λsH(a) < 1:
Subcase x < a :

E
[
TLAS−aL (x)

]
= E

[
T
M/M/1/LAS−a
L (x)

]
+ o(1)

E
[
TLAS−aH (x)

]
= E

[
T
M/M/1/LAS−a
H (x)

]
+ o(1)
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where E
[
T
M/M/1/LAS−a
L (x)

]
and E

[
T
M/M/1/LAS−a
H (x)

]
are the mean response time of a job of size x

under LAS-a scheduling in M/M/1 queues with arrival rate λ, and job size distribution Exp(µL)
and Exp(µH), respectively. These, in turn are given by the response time of a job of size x < a in
M/G/1/FCFS queues with arrival rate λ and job size distributions min{ExpµL, a} and min{ExpµH , a},
respectively.
Subcase x > a :

E
[
TLAS−aL (x)

]
= E[WL]

1− ρ(a)(1− u
L
α) + E[WL]

rL(a)
uLα

E
[
TLAS−aH (x)

]
= E[WH ]

1− ρ(a)(1− u
H
α ) + E[WH ]

rH(a) u
H
α

where uLα =
1− W̃L

(
αL
rL(a) + αH

rH(a)

)
E[WL]

(
αL
rL(a) + αH

rH(a)

)


and uHα =
1− W̃H

(
αL
rL(a) + αH

rH(a)

)
E[WH ]

(
αL
rL(a) + αH

rH(a)

)


Proof: Case: λsH(a) > 1
Subcase x < a : When a job of size x < a arrives, its delay is precisely the amount of workload
in the high priority queue it sees on arrival. Since the high priority queue is in transient overload
during H states, these workloads are asymptotically given by the stationary fluid level in the high
priority queue W ∗

L(a) and W ∗
H(a).

Subcase x > a : When a job of size x > a arrives, its delay is given by the busy period generated
by all the workload it sees on arrival, and the new arrivals into the high priority queue. Since the
workload it sees is Θ( 1

1−q ) = Θ(α−1), and the high priority queue is in transient overload during H
states, the expression for the mean busy period is obtained by application of Theorem 11, Case 1.
Case: λsH(a) < 1
Subcase x < a : This case is similar to λsH(x) < 1 case under LAS scheduling.
Subcase x > a : When a job of size x > a arrives into the system, all the work in the high priority
queue, as well as the low priority queue needs to be processed before this tagged job can depart. This
workload is WL or WH depending on the class of the arriving job. Further, while the work ahead of
the tagged user and the work associated with the tagged user is being processed, new arrivals into
the high priority queue also delay the tagged user. However, the workload ahead of the tagged user is
decreasing during both the L and the H states. Thus the mean busy period is given by an application
of Theorem 12, Case 2.
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2.7 PS

Analysis of PS requires a totally different approach than what we have used thus far. To analyze PS,
we will approximate the evolution of number of class L and class H jobs in the system via mean field
ordinary differential equations (ODEs). We then solve these ODEs to obtain closed-form dynamics
of the number of L and H jobs conditioned on the state. While in this section we will only work with
the solutions of these ODEs, we would like to point out that the number of jobs in the corresponding
stochastic system are within o

(
1
α

)
(in fact, Θ

(
1

α0.5

)
using the framework of Kurtz[14]) of the solution

of the mean field ODEs. We have so far been unable to obtain the stationary distributions for the
number of class L and H jobs from our analysis, but are still able to draw useful conclusions about
the behavior of the system. Further, in Section 4, we use our analysis to efficiently obtain the mean
response time under the asymptotic regime α→ 0 via numerical simulation. (See remarks at the end
of this section.)

To analyze PS, let xL(t) and xH(t) denote the number of class L and class H jobs in the system at
time t under the mean field approximation, and f(t) = xL(t)

xH(t) . Let w(t) = xL(t)
µL

+ xH(t)
µH

denote the
workload in the system at time t. We can approximate the (stochastic) dynamics of the system under
PS during L states (deterministically) as:

dxL
dt

= λ− xL
xL + xH

µL ; dxH
dt

= − xH
xL + xH

µH

and during H states as:

dxL
dt

= − xL
xL + xH

µL ; dxH
dt

= λ− xH
xL + xH

µH

The above ODEs are justified because as α→ 0, xL and xH are of the order 1
α
. Thus the ratio xL

xL+xH
changes on a much slower time scale than the mean interarrival or interdeparture times.

Theorem 6 The dynamics of the number of class L and H jobs during the L states under the mean
field approximation and PS scheduling satisfies:

f(t) + µL
µH

f(0) + µL
µH

= (w(0)− rLt)+

w(0)

 f(t) + λ
λ+µH−µL

f(0) + λ
λ+µH−µL


µH

λ+µH−µL

(4)

and during H states satisfies:

1
f(t) + µH

µL
1

f(0) + µH
µL

= w(0)− rHt
w(0)

 1
f(t) + λ

λ+µL−µH
1

f(0) + λ
λ+µL−µH


µL

λ+µL−µH

. (5)

Proof: We will prove the dynamics for L states. The dynamics for H states is obtained by flipping
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the L’s and the H’s. Recall f = xL
xH

and w = x+L
µL

+ xH
µH

. We first write the ode for f :

df

dt
=
d
(
xL
xH

)
dt

= 1
xH

dxL
dt
− xL
x2
H

dxH
dt

=
xH

(
λ− xL

xL+xH µL
)
− xL

(
− xH
xL+xH µH

)
x2
H

=
xHλ− (µL − µH) xLxH

xL+xH
x2
H

Since xL = fxH , we have xH = w 1
f
µL

+ 1
µH

and xL = w f
f
µL

+ 1
µH

, which gives:

df

dt
= λ

w

(
f

µL
+ 1
µH

)
− (µL − µH) f

w(1 + f)

(
f

µL
+ 1
µH

)

= 1
w

(
f

µL
+ 1
µH

)(
λ(1 + f)− (µL − µH)f

1 + f

)

or,

f + 1(
f + µL

µH

) (
f + λ

λ+µH−µL

)df = λ+ µH − µL
µL

dt

w

or,

f + 1(
f + µL

µH

) (
f + λ

λ+µH−µL

)df = λ+ µH − µL
−µL

(
1− λ

µL

) dw
w

Now noting that
a−1
a−b
f+a +

1−b
a−b
f+b = f+1

(f+a)(f+b) , where a = µL
µH

and b = λ
λ+µH−µL ,

(a− 1)d log (f + a) + (1− b)d log (f + b) = (a− b) λ+ µH − µL
−µL

(
1− λ

µL

)d logw

Substituting back a and b,(
µL − µH
µH

)
d log

(
f + µL

µH

)
−
(

µL − µH
λ+ µH − µL

)
d log

(
f + λ

λ+ µH − µL

)
= (µL − µH)

µH
d logw

or,

d log
(
f + µL

µH

)
= d logw +

(
µH

λ+ µH − µL

)
d log

(
f + λ

λ+ µH − µL

)

17



finally giving,

f(t) + µL
µH

f(0) + µL
µH

= (w(0)− rLt)+

w(0)

 f(t) + λ
λ+µH−µL

f(0) + λ
λ+µH−µL


µH

λ+µH−µL

. (6)

Remark 9: We use Theorem 6 to simulate the limit α→ 0 in Section 4 as follows: Given the number
of L and H jobs at the moment system switches environment, we obtain the number of L and H jobs
at the next environment switch by first sampling the duration until the next switch. We then use
Theorem 6 to obtain the number of L and H jobs at this next switch, and repeat. By conditional
PASTA, we note that the distribution of L and H jobs at the switching epochs suffices to obtain the
stationary distribution of L and H jobs in the system, and hence the mean response time.
Remark 10: During the H states, the system workload diverges. Theorem 6 shows that under
PS, this divergence happens along f(t) → 0 (or xL = 0), and further f(t) → 0 as approximately

f(t) ∼
(
w(t)
w(0)

)−λ+µL−µH
λ−µH . To see why this is true, note that w(t)

w(0) increases, and the exponent of f(t)
on LHS of (5) is −1 and on the RHS is −µL

λ+µL−µH , for an effective exponent of −(λ−µH)
λ+µL−µH on the LHS.

Thus f(t) increases as approximately
(
w(t)
w(0)

)−λ+µL−µH
λ−µH when t is sufficiently large.

Remark 11: During the L states, the system workload approaches 0. However, under PS there is
an interesting dichotomy. When µL < λ + µH , the workload goes to 0 along the line f(t) → ∞

(or xH = 0), and further f(t) → ∞ as approximately f(t) ∼
(
w(t)
w(0)

)−λ+µH−µL
µL−λ . The explanation for

this case is similar to that for H states: w(t)
w(0) goes to 0, and since

f(t)+ λ
λ+µH−µL

f(0)+ λ
λ+µH−µL

is bounded below
by a positive constant (f(t) is positive and increasing during L states), we must have f(t) → ∞.
However, when µL > λ + µH , the workload goes to 0 along the line f(t) → λ

µL−λ−µH
, and further

f(t) ∼ λ
µL−λ−µH

− C ·
(
w(t)
w(0)

)µL−λ−µH
µH . Therefore, when µL > λ+ µH , we have xL(t)

xH(t) <
λ

µL−λ−µH
for all

t under the mean field approximation.

The last remark entails the following:

Corollary 2 When µL > λ+ µH , we have the following bound on the mean response time under PS
(as α→ 0):

E
[
T PS

]
≤ µLµH
λ(µL − λ)E[W ].

Recall that the mean response time of OPT is given by µH
λ
E[W ]. Thus, PS mean response time is

within a factor µL
µL−λ

of OPT. Further, when λ
µL

+ µH
λ
< 1, it follows E

[
T PS

]
< E

[
T FCFS

]
.

Proof: When µL > λ + µH , then we necessarily have f(t) = xL(t)
xH(t) ≤

λ
µL−λ−µH

for all t. This is
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because during L states, f(t) increases asymptoting to λ
µL−λ−µH

, while during H states f(t) decreases
asymptoting to 0 (when µL < λ + µH , f(t) can increase arbitrarily during L states). We can
thus obtain an upper bound by assuming E

[
NPS
L

]
E
[
NPS
H

] = λ
µL−λ−µH

. Combining this with the relations
E
[
NPS
L

]
µL

+ E
[
NPS
H

]
µH

= E[W ], and E
[
T PS

]
= 1

λ
(E
[
NPS
L

]
+ E

[
NPS
H

]
) gives the bound in the corollary.

Noting that E
[
T FCFS

]
= E[W ], the final observation of the corollary follows.

2.8 ROS

Analysis of ROS parallels that of PS. Let xL(t) and xH(t) denote the number of class L and class
H jobs in the system at time t under the mean field approximation. Let w(t) = xL(t)

µL
+ xH(t)

µH
denote

the workload in the system at time t. We can approximate the dynamics of the system under ROS
during L states as:

dxL
dt

= λ− xL
xL
µL

+ xH
µH

; dxH
dt

= − xH
xL
µL

+ xH
µH

and during H states as:

dxL
dt

= − xL
xL
µL

+ xH
µH

; dxH
dt

= λ− xH
xL
µL

+ xH
µH

We now give intuition for the above equations. Consider a period of time where there are n total
departures, but during which the ratio xL

xH
remains constant. Under ROS, of these n departures,

an expected xL
xL+xH n are of class L, and xH

xL+xH n are of class H. The duration of this period is in

expectation
xL
µL

+ xH
µH

xL+xH · n. Therefore, the departure rate of type L jobs is num departures
total duration = xL

xL
µL

+ xH
µH

.
Solving the above set of ODEs, we obtain the following:

Theorem 7 The dynamics of the number of class L and H jobs during the L states under the mean
field approximation and ROS scheduling satisfies:

xH(t) = xH(0)
(

(w(0)− rLt)+

w(0)

) 1
1− λ

µL

xL(t) = µL(w(0)− rLt)+ − xH(0)µL
µH

(
(w(0)− rLt)+

w(0)

) 1
1− λ

µL
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and during H states satisfies:

xL(t) = xL(0)
(
w(0)− rHt

w(0)

) −1
λ
µH
−1

xH(t) = µH(w(0)− rHt)− xL(0)µH
µL

(
w(0)− rHt

w(0)

) −1
λ
µH
−1
.

The following theorem compares ROS and PS under the mean field regime.

Theorem 8 Under the mean field approximation, the number of jobs in the system under ROS is
stochastically larger than the number of jobs in the system under PS.

Proof: We first couple the environment processes (and hence also the workload processes) of the
ROS and PS systems. We will now show that

nPS(t) = xPSL (t) + xPSH (t) ≤ xROSL (t) + xROSH (t) = nROS(t), ∀t.

To prove the above, we will use the fact that if for some function h(t), h(0) = 0 and dh(t)
dt

> 0
whenever h(t) < 0, then h(t) ≥ 0, ∀t ≥ 0. We will consider h(t) = nROS(t) − nPS(t). Let w(t) =
xPSL
µL

+ xPSH
µH

= xROSL

µL
+ xROSH

µH
.

d

dt
(nROS − nPS) = xPSL µL + xPSH µH

xPSL + xPSH
− xROSL + xROSH

w

=
xPSL µL + µH

(
µHw − µH

µL
xPSL

)
xPSL + µHw − µH

µL
xPSL

−
xROSL +

(
µHw − µH

µL
xROSL

)
w

=
wµL−µH

µL
(xPSL µL − xROSL µH)− xPSL xROSL

(µL−µH)2

µ2
L

w(xPSL + xPSH )

= (µL − µH)
µ2
L

· wµL(x
PS
L µL − xROSL µH)− xPSL xROSL (µL − µH)

w(xPSL + xPSH )

For a fixed w, xROSL , the above is an increasing function of xPSL in the interval [0, wµL) (in fact in [0,∞),
if we consider an extended definition), and the value at xPSL = xROSL (and hence at nPS = nROS) is
given by (µL−µH)2

µ2
L
· (wµL−xPSL )xPSL

w(xLPS+xPSH ) > 0. Therefore, d
dt

(nROS − nPS) > 0, whenever nROS ≤ nPS, proving
the theorem.

We in fact conjecture that FCFS has a larger mean response time than ROS, and thus under correlated
job sizes FCFS>ROS>LCFS while all three are equal when job sizes are i.i.d.. We do see this ordering
in our simulations, even for the case when µH > λ and hence system is always stable, but are so far
unable to prove a comparison result for FCFS and ROS. Additionally, this would imply FCFS>PS,
which currently we only prove to be true when λ

µL
+ µH

λ
< 1.
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3 Exact Numerical Analysis of FCFS, OPT, P-LCFS and
LCFS for 0 < q < 1

In this section we present numerical algorithms for exact analysis of a few scheduling policies for
general values of the parameter α, and for general settings of the parameters µL, µH , λ and p.

3.1 FCFS

We begin by noting that the delay of a class L job, by conditional PASTA [25], is given by the
stationary workload conditioned on the system being in state L (similarly for class H job). The
next theorem provides the expressions for the Laplace transforms of these random variables. The
mean stationary workloads during L and H states (and hence the mean delay of class L and H jobs,
respectively) can be obtained by differentiating the transforms at s = 0.

Theorem 9 Let W̃L(s) and W̃H(s) denote the transform for the stationary workloads during the L
and H states respectively. The expressions for W̃L(s) is given by:

W̃L(s) = (1− ρ)αmLmH − smLgHπL(0)
αLgHmL + αHgLmH − sgLgH

(7)

where,

mL = µL + s ; mH = µH + s

gL = µL − λ+ s ; gH = µH − λ+ s

πL(0) = (1− ρ)α(µH + ξ)
ξ(µH − λ+ ξ)

and ξ denotes the unique root of the denominator of (7) in the interval (0,+∞). The quantity πL(0)
denotes the long run fraction of time that the system is empty conditioned on being in state L. The
expression for W̃H(s) is obtained by flipping µH and µL, and αL and αH .

Proof: As the first step, we need to consider the transient workload in an M/G/1. Consider
an M/G/1 with arrival rate λ, i.i.d. job sizes X1, X2, . . . with Laplace transform of the job size
distribution given by E

[
e−sX1

]
= X̃(s). We can write the following equation for the evolution of the

workload W (t) in this M/G/1:

W (t+ δt) = W (t)− δt1W (t)>0 +
∑
n

Xn1
nth arrival in (t,t+δt)
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Let W̃t(s) = E
[
e−sW (t)

]
. Taking Laplace transforms in the above equation, and then letting δt→ 0,

d

dt
W̃t(s) = W̃t(s)

(
s− λ(1− X̃(s))

)
− sPr[Wt = 0]

Let T be an Exp(ν) random variable and W̃T (s) = E
[
e−sW (T )

]
. Using integration by parts, we get:

W̃T (s) ≡
∫ ∞
u=0

W̃u(s)νe−νudu

=
[
W̃u(s)νe−νu
−ν

]∞
u=0

+
∫ ∞
u=0

dW̃u(s)
du

e−νudu

= W̃0(s) + 1
ν

∫ ∞
u=0

(
W̃u(s)

[
s− λ(1− X̃(s))

]
− sPr[Wu = 0]

)
νe−νudu

= W̃0(s) + 1
ν

(
W̃T (s)[s− λ(1− X̃(s))]− sPr[W (T ) = 0]

)
Specializing to our problem, we obtain the following two equations by applying the above equation
during L and H states, and noting that by PASTA W̃L(s) and W̃H(s) also denote the stationary
workloads at the ends of L and H states, respectively:

W̃L(s) = W̃H(s) + s

αL

[
W̃L(s)

(
1− λ

µL + s

)
− πL(0)

]

W̃H(s) = W̃L(s) + s

αH

[
W̃H(s)

(
1− λ

µH + s

)
− πH(0)

]

Eliminating W̃H(s), and πH(0) by using the fact πL(0)
αL

+ πH(0)
αH

= (1 − ρ)
(

1
αL

+ 1
αH

)
, we obtain the

expression for W̃L(s) shown in the Lemma. It now remains to determine the unknown πL(0). To
obtain this, we note that the polynomial in the denominator of W̃L(s) is a cubic in s which approaches
−∞ as s → ∞. Further, the denominator is positive at s = 0 but negative at s = λ − µL < 0.
Therefore there is exactly one root of the denominator in the interval (0,+∞), which we denote by ξ,
at which there is a degeneracy in the denominator. Since the transform must converge in Re(s) > 0,
the numerator must share this root, and this gives us the unknown πL(0).

Finally, we obtain the response time of class L and class H jobs, respectively, as:

E
[
T FCFSL

]
= E[WL] + 1

µL

E
[
T FCFSH

]
= E[WH ] + 1

µH

Remark 12: As noted in the proof, the complexity of solving the mean response time (and indeed
higher moments) conditioned on the job class via the above method is the same as that of finding
the roots of a cubic polynomial.
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3.2 OPT

Recall that since we are looking at policies which are size-independent but might still exploit the
correlation structure, we can lower bound the response time of any policy in this class of scheduling
policies by a hypothetical policy OPT that perfectly knows the class of each job. Under OPT, class
L mean delay is obtained as the mean workload during the L states but with µH = ∞. Let this
quantity be denoted by E

[
DOPT
L

]
, which can be obtained by the results in Section 3.1. However,

since OPT is a work conserving policy, if we denote the mean delay of class H jobs under OPT by
E
[
DOPT
H

]
, then via Little’s law we get:

λp

µL

(
1
µL

+ E
[
DOPT
L

])
+ λ(1− p)

µH

(
1
µH

+ E
[
DOPT
H

])
= pE[WL] + (1− p)E[WH ] (8)

where E[WL] and E[WH ] denote the stationary mean workload during L and H states, respectively,
and are independent of the scheduling policy. Finally,

E
[
DOPT

]
= pE

[
DOPT
L

]
+ (1− p)E

[
DOPT
H

]
.

3.3 P-LCFS

The analysis of Preemptive Last-Come-First-Served requires a different approach than FCFS – that
of busy period recurrences.
Consider a tagged class L arrival. The response time of the tagged job is the duration of the busy
period started by the tagged job on its arrival, only including all subsequent arriving work. We call
this a class L busy period started in state L, and denote it by BL

L . The superscript signifies that a
job of class L starts the busy period, and the subscript signifies that the busy period starts in state
L, because the tagged job’s arrival necessarily occurs in state L. In general, Bc

s denotes the random
variable for the busy period started by a class c job in state s. While the response time of a class L
job under P-LCFS is given by BL

L (and likewise for a class H job, BH
H ), we will later see that BL

H and
BH
L will be needed in the analysis. The next theorem presents expressions for the expected values of

these busy periods.

Theorem 10 Let Bc
s (c, s ∈ {L,H}) denote the random variable for the busy period started by a

class c job in state s. We use c/s to denote the complementary class/state of c/s. The following set
of recurrences solve for the expected values of the four kinds of busy periods:

E[Bc
s] = 1

αs + λ+ µc
+ αs
αs + λ+ µs

E[Bc
s] + λ

αs + λ+ µc
[E[Bs

s ] +Xc
s ] (9)
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where Xc
s = pH|ssE[Bc

H ] + pL|ssE[Bc
L]

Here ps1,c2 (s1, c2 ∈ {L,H}) denote the probabilities that given the system is currently in state s1, the
next arrival is of class c2 and are given by:

pL,H = 1− pL,L = α

α + λ
(1− p)

pH,L = 1− pH,H = α

α + λ
p

Also, ps2|
c1
s1

denote the probabilities that a busy period started by a job of class c1 in state s1 ends in
state s2, and are obtained by solving the following set of recurrences:

ps|cs = µc
αs + λ+ µc

+ αs
αs + λ+ µc

ps|c
s
+ λ

αs + λ+ µc

[
pL|ssps|cL + pH|ssps|cH

]
(10)

Proof: We will first show how recurrences denoted by (9) are obtained by considering the example
of BL

H , the busy period started by a class L job in state H. For this setting, (9) becomes:

E
[
BL
H

]
= 1

αH + λ+ µL
+
(

αH
αH + λ+ µL

E
[
BL
L

]
+ λ

αH + λ+ µL

[
E
[
BH
H

]
+XH

L

])
(11)

where X = pH|HHE
[
BL
H

]
+ pL|HHE

[
BL
L

]
The first term in (11) denotes the mean time until one of the following events happens: the class L job
completes service, an external arrival occurs, or the environment switches state. With probability

µL
αH+λ+µL , the class L job completes service and the busy period ends, otherwise the busy period
increases by the term in brackets. With probability αH

αH+λ+µL , the environment switches state to L
and the remaining busy period will be given by BL

L . With the remaining probability, an external
arrival occurs which increases the busy period in the last parentheses.
The external arrival must necessarily be of class H since it occurred during an H state. We will refer
to this external arrival as the new H job. The new H job creates its own busy period, of type BH

H .
This busy period created by the new H job completes in some state s, where s = H with probability
pH|HH and s = L with probability pL|HH . Only after that busy period completes, can we resume the
original L job, which (by memorylessness) has remaining size L and thus generates a busy period of
type BL

s , since the system state is now s. This explains the XL
H term above.

The proof of (10) is completely analogous to the proof of (9), by conditioning on the first event
following the start of the busy period, and also conditioning on the state in which the busy period
of the new arrival (if it is the first event to occur) ends.
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Finally:

E
[
T P−LCFSL

]
= E

[
BL
L

]
; E

[
T P−LCFSH

]
= E

[
BH
H

]
.

Remark 13: The system of equations (9) is a linear system once we have all the coefficients. The
system (10) to obtain those coefficients is not a linear system, and the complexity of solving (10) boils
down to finding the roots of a cubic polynomial. Note that similar to (9), we could also have written
recurrence relations for the Laplace transforms for the busy periods to obtain higher moments of the
response time. We omit them here for lack of space.

3.4 LCFS

Under the LCFS scheduling discipline, suppose that a tagged arrival sees a job, j, in service with
remaining service requirement, je. Then the tagged arrival doesn’t get to serve until the completion
of a busy period started by je. Translating to our model, if a class L (respectively, H) job on arrival
finds the server empty, then its time in queue is zero. However if it finds a class c job at the server,
then its time in queue is distributed as Bc

L (respectively Bc
H), whose mean is given by Theorem 10. To

complete the analysis of LCFS, we therefore only need to find the fraction of jobs of either class that
(i) find the server idle, (ii) find the server busy with a class L job, or (iii) find the server busy with
a class H job. Let f idleL , fLL and fHL denote the above fractions, for class L arrivals, where a subscript
of H would be used for class H arrivals. Below we give a step-by-step method for determining these
fractions.

Step 1: Let N c
s (L) denote the mean number of class L arrivals during the (non-preemptive) service

of a class c job started in state s, and N c
s (H) similarly denote the mean number of class H arrivals.

The first step is to determine the N c
s (L) and N c

s (H) for s, c ∈ {L,H}. We illustrate the recurrences
that solve these by showing the case c = L.

NL
L (L) = λ

αL + λ+ µL

(
1 +NL

L (L)
)

+ αL
αL + λ+ µL

NL
H(L)

NL
H(L) = λ

αH + λ+ µL
NL
H(L) + αH

αH + λ+ µL
NL
L (L)

Step 2: Let bL denote the fraction of idle periods that end with a class L arrival (equivalently the
fraction of busy periods for the server that begin in state L). By writing a 2-state Markov chain (with
states L and H) to track the class of the arrival at the beginning of busy periods, we have:

(
pH|LLpH,H + pL|LLpL,H

)
bL =

(
pL|HHpL,L + pH|HHpH,L

)
(1− bL)

where we we transition from state L to state H if the busy period started by the class L job in state
L ends in state H and the next arrival is of class H, and analogously for transitions from state H to
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state L.
Step 3: For any non-preemptive scheduling policy, we consider 3 kinds of events: idle periods, service
of a class L job, and service of a class H job. Let eidle, eL and eH denote the fraction of each of the
above event types, respectively. By observing that the mean duration of each occurrence of the above
event types is 1

λ
, 1
µL

and 1
µH

respectively, and the total fraction of time spent in each of the event
types is (1− ρ), λ

µL
and λ

µH
, respectively, we can obtain eidle, eL and eH by solving:

λp

µL
=

eL

µL
eidle

λ
+ eL

µL
+ eH

µH

; λ(1− p)
µH

=
eH

µH
eidle

λ
+ eL

µL
+ eH

µH

; 1− ρ =
eidle

λ
eidle

λ
+ eL

µL
+ eH

µH

Step 4: Finally we obtain f idleL , fLL and fHL as follows. For succinctness, define the auxiliary variables:

gLL = f idleL + fLL pL|LL + fHL pL|HL

gHH = f idleH + fLHpH|LH + fHH pH|HH

and gLH = 1 − gLL, gHL = 1 − gHH . Here gcs denotes the probability that under LCFS, a class c arrival
begins service in state s, and is obtained by conditioning on the state on arrival. Now we can write
the following set of equations to solve for the desired f idleL , fLL and fHL :

f idleL = eidlebL
N total(L) ; fLL = eL[gLLNL

L (L) + gLHN
L
H(L)]

N total(L) ; fHL = eH [gHLNH
L (L) + gHHN

H
H (L)]

N total(L)

where

N total(L) = eidlebL + eL[gLLNL
L (L) + gLHN

L
H(L)] + eH [gHLNH

L (L) + gHHN
H
H (L)]

Similarly, there are three more equations with f
(·)
H on the LHS. In the above equations, N total(L)

denotes the expected number of class L arrivals during a random (average) event. The numerator
of fHL , for example, denotes the contribution to N total(L) only due to the arrivals during events
corresponding to service of class H jobs. Thus, fHL denotes the fraction of all class L arrivals that
occur while the server is busy with a class H job.
Finally,

E
[
TLCFSL

]
= 1
µL

+ fLLE
[
BL
L

]
+ fHL E

[
BH
L

]
E
[
TLCFSH

]
= 1
µH

+ fLHE
[
BL
H

]
+ fHHE

[
BH
H

]
.
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4 Evaluation via Simulations

While Section 2 provided fluid asymptotics as α→ 0 for a wide range of size-independent scheduling
policies, we are only able to perform exact analysis of the case 0 < α < ∞ for a smaller subset
(FCFS, OPT, LCFS, P-LCFS), via algorithms proposed in Section 3. This section studies the full
range of policies via simulation for all α. We start with simulation and numerical results for our
MMAP model and then present results for trace-based simulations.
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Figure 2: Effect of job size correlation when µH > λ. The parameters chosen were µL = 50.73, µH =
1.0055, p = 0.5073, λ = 1 (ρ = 0.5, C2 ≈ 2.9).

MMAP under No transient overload: In Figure 2, we see the effect of correlation on scheduling
policies when µH > λ, so that there is no transient overload in H states. We see that for moderate α,
the mean response times of the different scheduling policies range from E[T ] = 1 to about E[T ] = 1.5,
with FCFS being the worst and LAS being the best. As α decreases, we see that the relative
performance difference between scheduling policies begin to vanish (E[T ] ranges from 6.9 to 7.5 for
α ≈ 0.01). This behavior as α → 0 is consistent with Theorem 1. Observe also that while FCFS,
ROS and LCFS are equal at the two extremes (α =∞ and α→ 0), for 0 < α <∞ they are ordered
as FCFS>ROS>LCFS with respect to E[T ].

MMAP under Transient overload: Figure 3 shows the effect of correlation in the more interesting
case of µH < λ, implying that there is transient overload during the H states. Figure 3(a) shows
the E[T ] vs. α curves for the different scheduling policies. The x-axis shows α on a log-scale so
as to clearly illuminate both low and high α values. We see that FCFS is the worst policy and
LAS is optimal or close to optimal throughout the range of α shown. On the other hand, P-LCFS
starts out equal to PS when α = ∞ and is clearly suboptimal; yet for low α (high correlation), P-
LCFS approaches and even overtakes LAS, and becomes optimal. This is consistent with Theorem 3.
Similarly, LCFS starts out equal to FCFS when α = ∞ and is worst in performance, but becomes
optimal as α→ 0, again confirming Theorem 3.
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(b) The fluid asymptote
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(c) E[TL] vs. α

Figure 3: Effect of job size correlation when µH < λ. The parameters chosen were µL = 10, µH = 1, p =
0.95, λ = 6 (ρ = 0.87, C2 ≈ 4.66).

A major difference between Figure 3(a) (transient overload) and Figure 2 (no overload) is that the
policies clearly do not converge to each other in Figure 3 as α → 0, whereas they do in Figure 2.
Furthermore, for each policy π in Figure 3(a), the E[T ] curve asymptotes to a line on the plotted scale,
which corresponds to E[T π] ∼ Kπ

α
as in Lemma 3. Thus the mean response times grow unboundedly

as α→ 0, unlike in Figure 2.

Figure 3(b) verifies the expressions forKπ obtained from our asymptotic analysis by showing
(

α
1+α

)
E[T ]

as a function of 1
1+α . We choose to scale E[T ] by α

1+α (instead of α) to show the results for α = ∞
asymptote and the α→ 0 asymptote in the same plot. In the former case, limα→∞

α
1+αE[T π] = E[T π]

and in the latter case limα→0
α

1+αE[T π] = limα→0 αE[T π] = Kπ. The x-axis shows 1
1+α which is

bounded between 0 and 1 (unlike α). The αE[T π] curves clearly converge to the analytically ob-
tained values of Kπ which are marked with a small x. In the limit α → 0, E[T ] for the different
policies follows the order LCFS = P-LCFS < LAS < PS < ROS < FCFS. Note the difference between
LAS and LCFS = P-LCFS as α→ 0 is very slight; this contrasts with the results in Figure 1 where
the difference between LAS and P-LCFS was significant.

Figure 3(c) shows mean response time for “little” (class L) jobs, denoted E[TL], versus α. For the
L jobs, there is a wide range (several orders of magnitude difference) in performance across policies.
Several policies (FCFS, ROS, PS, LAS) show increases in E[TL] proportional to 1

α
(though this is less

obvious in the case of LAS, since convergence is slower for this policy); however, other policies (LCFS,
P-LCFS) show a decrease in E[TL] as α decreases, as pointed out in Remark 6. Under the first group
of polices, E[TL] suffers from increased correlation, because L jobs are affected by H jobs. For LCFS
and P-LCFS, this is not the case, since an L job is only affected by H jobs if the H job arrives during
the L job’s busy period. This happens with probability proportional to α, which becomes zero as
α→ 0.
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(c) Results for arrivals from trace
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(d) Results for Poisson arrivals

Figure 4: Trace-based experiments: Simulation results for the Bellcore trace. The top-left plot shows the autocor-
relation function for the sequence of job sizes; the top-right plot shows the cdf of the job size distribution; the center
row plots show the performance (as the ratio of E[T ] to E

[
TSRPT

]
, and of E[TL] to E

[
TSRPTL

]
, respectively) when

the interarrival times are taken from the trace; the two bottom row plots show the performance obtained by creating
a synthetic Poisson arrival process.
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(d) Results for Poisson arrivals

Figure 5: Trace-based experiments: Simulation results for the SHARCNET trace. The top-left plot shows the
autocorrelation function for the sequence of job sizes; the top-right plot shows the cdf of the job size distribution; the
center row plots show the performance (as the ratio of E[T ] to E

[
TSRPT

]
, and of E[TL] to E

[
TSRPTL

]
, respectively)

when the interarrival times are taken from the trace; the two bottom row plots show the performance obtained by
creating a synthetic Poisson arrival process.
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Trace-based experiments: While we garnered useful intuition by analyzing the MMAP correlation
model, it is not obvious to what extent our results would extend to real-world applications. To
investigate this, we consider two very different traces, one involving packets sizes (Bellcore) and
a second involving supercomputing job sizes (SHARCNET). We have simulated FCFS, ROS, PS,
LCFS and P-LCFS. In addition, we simulate PRIO-P, which gives preemptive priority to class L
jobs and hence is similar to the OPT policy, but is not necessarily the optimal size-independent
policy because class L and H jobs are no longer Exponentially distributed. We also simulate SRPT
(Shortest Remaining Processing Time) policy, and our plots show the mean response time under the
simulated policies normalized by the mean response time under SRPT scheduling.

Figure 4 shows the results of our experiments with a trace of packet sizes seen on the Bellcore
Ethernet [11]. The autocorrelation function of packet sizes (Figure 4(a)) shows significant sequential
job size correlation – the lag-1 correlation is approximately 0.45 with correlation persisting even
at lags of up to 100 (unlike MMAP model where the correlation decreases exponentially in lag).
Figure 4(b) shows the job size distribution which is almost a trimodal distribution. To perform
the simulations, we modify the base trace as follows: In the first set of experiments (Figure 4(c)),
we scale the interarrival times from the trace to vary the ‘load’. In the second set of experiments
(Figure 4(d)), we keep the same sequence of job sizes as the original trace, but create a new Poisson
arrival process to eliminate the effect of correlations in the arrival process (the arrival process is
bursty) and eliminate correlations between interarrival times and job sizes (the correlations between
a job size and immediately following interarrival time is −0.15). We see that with respect to E[T ],
the ordering of the policies largely obeys FCFS≈ROS ≈PS>LCFS≈P-LCFS>PRIO-P>SRPT. This
is consistent with the ordering we obtained via analysis using the MMAP correlation model. We also
see that E

[
T FCFS

]
is up to 1.8 times worse than E

[
TLCFS

]
which contrasts with the uncorrelated

case where they are equal. We also investigate the effect of scheduling on the little jobs by defining
“little” to be packets of size less than 400 bytes. Under our criterion, the L jobs make up 70% of
the packets, and 25% of the total bytes. We find that E

[
T FCFSL

]
is up to 3 to 4 times worse than

E
[
TLCFSL

]
and almost 10 times worse than E

[
T P−LCFSL

]
. We also see that PS outperforms LCFS

but not P-LCFS in terms of E[TL]. This can be explained by the fact that under the uncorrelated
case PS and P-LCFS have identical performance and outperform LCFS which suffers due to job size
variability. Under moderate correlation, we see a behavior that is the mixture of uncorrelated and
high-correlation cases: job size variability is still hurting class L jobs under LCFS and thus gives
them worse performance than PS, however due to correlation P-LCFS is able to perform better than
PS. The same observations hold under a Poisson arrival process, but the gains are more moderate.
This suggests that in the presence of cross-correlations and bursty arrivals, the effect of scheduling
will be even more pronounced.

Figure 5 shows the results for the SHARCNET trace [1], which is a supercomputing workload. Here
job size is defined as the run time of jobs submitted to the server, and there is very high autocor-
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relation in the sequence of job sizes (lag-1 autocorrelation is over .7, and even lag-100 correlation is
over .4). The ordering of policies with respect to E[T ] largely obeys FCFS>ROS>PRIO-P>PS≈P-
LCFS≈LCFS>SRPT. The gains of utilizing LCFS instead of FCFS for the SHARCNET trace are
even more significant, as the ratio of E

[
T FCFS

]
to E

[
TLCFS

]
can be over 2. For the SHARCNET

trace, we defined “little” jobs as those smaller than 54000 seconds ( 86% jobs, 25% of total load).
There is again a significant difference between E

[
T FCFSL

]
and E

[
TLCFSL

]
, up to 4X when scaling the

original interarrival times, and 15X to 20X when the arrival process has been converted to a Pois-
son process. Comparing E[TL] for LCFS, PS and P-LCFS, we see that PS does better than LCFS
which can be explained by the presence of job size variability (our MMAP simulation results also
suggest that for moderate correlations, PS still outperforms LCFS). However the ordering of PS and
P-LCFS under arrival times from the SHARCNET trace switches when a Poisson arrival process is
considered. While under a Poisson arrival process, PS performs worse than P-LCFS as predicted
by our analysis of the MMAP correlation model, under the arrival sequence from the SHARCNET
trace, PS outperforms P-LCFS. This suggests that the correlation between the arrival times (the
SHARCNET arrival sequence has extremely bursty and variable interarrival times compared to the
Bellcore trace) is also an important aspect to consider to fully understand the the effect of scheduling
under correlated traffic pattern.

5 Conclusions

To the best of our knowledge, this is the first paper to study analytically how common scheduling
policies, like PS, LAS, ROS, PLCFS, LCFS, etc. are affected by correlation among consecutive job
sizes. We find the ranking of scheduling policies, from highest to lowest mean response time (E[T ]),
changes dramatically under correlation: LCFS which performs poorly under no correlation becomes
optimal among size-independent policies under high correlation; the optimal size-independent policy
for i.i.d. job sizes, LAS, becomes sub-optimal under high correlation; the mean response times of
policies which are insensitive to job-size variability when job sizes are i.i.d., like PS and P-LCFS, now
depend on the entire job-size distribution; to cite a few examples. When examining the mean response
time of “little” jobs only (E[TL]), the change in ranking is even more dramatic, with correlation
actually making some policies like LCFS and P-LCFS perform better, and making other policies like
LAS perform far worse.

We have only scratched the surface of how correlation in job sizes affects performance. First, our
correlation model is very simple, chosen specifically for analytical tractability and to gain insights;
extending the results presented here to richer models is left for future work. Second, while this paper
shows that LCFS performs optimally among size-independent policies under very high correlation, the
paper does not answer the question of which scheduling policy is best under moderate correlation.
Furthermore, we have not even explored policies which might exploit the correlation structure to
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improve performance. Third, our model only captures correlations in consecutive job sizes, but we
believe that the techniques introduced herein can be applied to understanding the effect of all three
types of correlation on the performance of scheduling policies.

References
[1] http://www.cs.huji.ac.il/labs/parallel/workload/.

[2] I. J. B. F. Adan and V. G. Kulkarni. Single-server queue with Markov-dependent inter-arrival
and service times. QUESTA, 45:113–134, 2003.

[3] G. L. Choudhury, A. Mandelbaum, M. I. Reiman, and W. Whitt. Fluid and diffusion limits for
queues in slowly changing environments. Stoch. Mod., 13:121–146, 1997.

[4] I. Cidon, R. Guérin, A. Khamisy, and M. Sidi. Analysis of a correlated queue in a communication
system. In INFOCOM’93, pages 209–216, 1993.

[5] J. Cohen. The single server queue. North Holland, 1969.

[6] R. Conway, W. Maxwell, and M. Miller. Theory of Scheduling. Addision-Wesley, 1967.

[7] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: Evidence and
possible causes. In ACM SIGMETRICS’96, pages 160–169, May 1996.

[8] A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing analysis with long-range
dependent packet traffic. IEEE/ACM Trans. on Networking, 4:209–223, 1996.

[9] D. G. Feitelson. Packing schemes for gang scheduling. In IPPS ’96, pages 89–110, London, UK,
1996. Springer-Verlag.

[10] K. Fendick, V. Saksena, and W. Whitt. Dependence in packet queues. IEEE Trans. Commun.,
37:1173–1183, 1989.

[11] H. J. Fowler, W. E. Leland, and B. Bellcore. Local area network traffic characteristics, with
implications for broadband network congestion management. IEEE Journal on Selected Areas
in Communications, 9:1139–1149, 1991.

[12] S. Ghosh and M. Squillante. Analysis and control of correlated web server queues. Computer
Communications, 27(18):1771–1785, 2004.

[13] L. Kleinrock. Communication nets; stochastic message flow and delay. Dover Publications,
Incorporated, 1972.

[14] T. Kurtz. Approximation of Population Processes. SIAM Press, 1981.

33

http://www.cs.huji.ac.il/labs/parallel/workload/


[15] H. Li, D. Groep, and L. Wolters. Workload characteristics of a multi-cluster supercomputer.
pages 176–193. Springer Verlag, 2004.

[16] M. Livny, B. Melamed, and A. K. Tsiolis. The impact of autocorrelation on queuing systems.
Manage. Sci., 39(3):322–339, 1993.

[17] N. Mi, G. Casale, and E. Smirni. Scheduling for performance and availability in systems with
temporal dependent workloads. In DSN’08, pages 336–345, 2008.

[18] N. Mi, G. Casale, Q. Zhang, A. Riska, and E. Smirni. Autocorrelation-driven load control in
distributed systems. In MASCOTS’09, 2009.

[19] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226–244, 1995.

[20] R. Righter, J. G. Shanthikumar, and G. Yamazaki. On extremal service disciplines in single-stage
queueing systems. J. Appl. Probab., 27(2):409–416, 1990.

[21] A. Riska, M. Squillante, S.-Z. Yu, Z. Liu, and L. Zhang. Matrix-analytic analysis of a
MAP/PH/1 queue fitted to web server data. Matrix-Analytic Methods: Theory and Appli-
cations, pages 335–356, 2002.

[22] E. Smirni, Q. Zhang, N. Mi, A. Riska, and G. Casale. New results on the performance effects
of autocorrelated flows in systems. In IEEE IPDPS’07, pages 1–6, 2007.

[23] B. Song, C. Ernemann, and R. Yahyapour. Parallel computer workload modeling with markov
chains. In Proc. of the 10th Job Scheduling Strategies for Parallel Processing (JSSPP), pages
47–62. Springer, 2004.

[24] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic: periodicity, tail behavior, and
performance implications. System performance evaluation: methodologies and applications, pages
23–37, 2000.

[25] E. van Doorn and J. Regterschot. Conditional PASTA. Oper. Res. Lett., 7:229–232, 1988.

[26] Q. Zhang, N. Mi, A. Riska, and E. Smirni. Load unbalancing to improve performance under
autocorrelated traffic. In ICDCS’06, Lisboa, Portugal, 2006.

A Asymptotic Expressions for Mean Busy Periods

Busy periods form the core of the analysis for scheduling policies, and therefore we deal with the
problem of finding busy periods in as much generality as possible.
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We consider a system with an environment controlled by a 2 state Markov chain with states L and
H. The time spent in state L during each visit is Exp (αL) and time spent in state H is Exp (αH).
Let α = αL + αH , p = αH

α
. The arrivals occur at a rate λ in each state. The arrivals during an L

state have i.i.d. general job sizes and we use SL to denote such a generic random variable. Similarly,
the arrivals during an H state have i.i.d. general job sizes distributed with the same distribution as
a random variable SH . We will assume E[SL] < E[SH ]. We index this system by α.

The scaling: We consider a sequence of systems, indexed by α, obtained by setting the switching
rates as αL + αH = α, while fixing p = αH

α
. We start the αth system in a prescribed state with

initial workload (a random variable) denoted by Wα. We will say that the workload sequence Wα

is Θ(g(α)) if the sequence
{
Wα

g(α)

}
is uniformly integrable and limα→0

Wα

g(α)
d→ W , where W is some

non-degenerate random variable. Similarly, we say Wα = o(h(α)) or ω(h(α)) if Wα = Θ(g(α)), and
limα→0

g(α)
h(α) = 0, or limα→0

h(α)
g(α) = 0, respectively.

Goal: Let BL(Wα) and BH(Wα) denote the random variables for the busy periods started by work
Wα in states L and H, respectively, in the αth system. We will be interested in obtaining the mean
busy period in the asymptotic regime α → 0. That is, we are interested in obtaining the dominant
term in E[BL(Wα)] or E[BH(Wα)], as the switching rate α→ 0.

Notation: S̃L(s) = E
[
e−sSL

]
; S̃H(s) = E

[
e−sSH

]
rL = 1− λE[SL] ; rH = 1− λE[SH ]
ρ = λ(pE[SL]+(1− p)E[SH ])

We first present the theorems on asymptotic expressions for the mean busy periods. After presenting
the theorems, we present a brief proof sketch to elucidate how the theorems were derived, and then
present detailed proofs. Theorem 11 considers the case λE[SH ] > 1, and Theorem 12 considers the
case λE[SH ] < 1.

Theorem 11 Let rH < 0. That is, the system is under temporary overload during H states.
Case 1: Wα = ω(1), Pr

[
W = 0

]
= 0:

E[BL(Wα)] = E[Wα]
1− ρ + o(Wα)

E[BH(Wα)] =
E[Wα] + 1−ρ−rH

αH

1− ρ + o(max
{
Wα, α

−1
}
)
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Case 2: Wα = Θ(1):

E[BL(Wα)] =
E
[
W
]

rL
+ pswitch · (1−Qf )

1− ρ− rH
αH(1− ρ) + o(1)

E[BH(Wα)] = (1− Pf ) ·
E
[
W
]
+ 1−ρ−rH

αH

1− ρ +O(1)

where, pswitch denotes the probability that the environment state switches to H before the busy period
started by W in state L ends. We call this event a ‘switch’. The expression for pswitch is given by
pswitch = E

[
W
]
αL

rL
+ o(α). The quantity Qf denotes the probability that, given a ‘switch’ occurs, the

residual busy period is finite if the H state were to last indefinitely from then on:

Qf = Ṽ (λ(1− pf )) + o(1)

where Ṽ (·) is given by 3: Ṽ (s) = rL· 1−W̃ (s)
E[W ]

s−λ(1−S̃L(s))
, and pf ∈ (0, 1) solves the fixed point equation4:

pf = S̃H(λ(1− pf )).
The quantity Pf denotes the probability that the busy period started by W during an H state is finite
if the H state were to last indefinitely and is given by Pf = W̃ (λ(1− pf )).

Corollary 3 Consider the case SL ∼ Exp (µL) and SH ∼ Exp (µH), µL > λ > µH . Let Bc
s (c, s ∈

{L,H}) denote the busy period duration started by a class c job in environment state s. Then,

E
[
BL
L

]
= 1
µL − λ

1 + 1− p
p
· λ− µH
µL − µH

·
λ
µH
− ρ

1− ρ

+ o(1)

E
[
BH
L

]
= µL
µH(µL − λ)

1 + 1− p
p

(1−QfH )
λ
µH
− ρ

1− ρ

+ o(1)

and:

E
[
BH
H

]
=
(
1− µH

λ

)
·

λ
µH
− ρ

αH(1− ρ) + o(α−1)

E
[
BL
H

]
=
(

1− µL
µL + λ− µH

)
·

λ
µH
− ρ

αH(1− ρ) + o(α−1).

3 The function Ṽ (s) denotes the Laplace transform of the workload in the system just before the ‘switch’ event
occurs. Ṽ (s) is obtained as the Laplace transform of the stationary workload conditioned on server being busy in an
M/G/1 with repeated vacations, with service distribution SL and i.i.d. vacations distributed as W

4The quantity pf denotes the probability that a busy period started by an H job in an H state is finite if the H
state were to last indefinitely.
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In the above, 1−QfH = 1− ṼH(λ(1− φf ))

where φf = µH
λ

; ṼH(s) =

(
1− λ

µL

) (
µH
µH+s

)
1− λ

µL

(
µL
µL+s

) .

Theorem 12 Let rH > 0. That is, the system is stable during H states.
Case 1: Wα = ω(α−1)

E[BL(Wα)] = E[Wα]
1− ρ + o(Wα)

E[BH(Wα)] = E[Wα]
1− ρ + o(Wα)

Case 2: Wα = Θ(α−1)

E[BL(Wα)] = E[Wα]
1− ρ (1− uα) + E[Wα]

rL
uα + o(α−1)

E[BH(Wα)] = E[Wα]
1− ρ (1− uα) + E[Wα]

rH
uα + o(α−1)

where uα ≡

1− W̃α

(
αL
rL

+ αH
rH

)
E[Wα]

(
αL
rL

+ αH
rH

)
 , 0 < uα < 1

and lim
α→0

uα = u =

1− W̃
(

1−p
rL

+ p
rH

)
E
[
W
] (

1−p
rL

+ p
rH

)


and recall W = limα→0 αWα.
Case 3: Wα = o(α−1)

E[BL(Wα)] = E[Wα]
rL

+ o(Wα)

E[BH(Wα)] = E[Wα]
rH

+ o(Wα)

Proof Sketch: Recall our fluid model, in which the workload decreases at deterministic rates rL
during the L states, and increases at rate −rH during the H states. We would like to believe
that given an initial workload Wα, asymptotically the busy period started by it is the same as the
duration of the busy period started byWα under the fluid model. However, this is only partially true.
When Wα = Θ(α−1), this asymptotic equivalence is justified by [3, Theorem 1(b)] which proves the
convergence of sample paths of the stochastic and fluid systems (although one needs to do a bit more
work to convert it to convergence of busy periods). For the remaining cases, we must consider the
tree of events that may occur until each leaf corresponds to an empty system, or one with workload
that is Θ(α−1) so that we can apply [3, Theorem 1(b)]. We describe this below.
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Case: Wα = ω(α−1): In this case, the initial workload is of a higher order than the scale at which
the system switches. Thus, asymptotically, the number of times the system switches states before
Wα drains goes to∞ as α→ 0, and the workload sees the “average system” during its sojourn. Thus
the mean busy period is E[Wα]

1−ρ + o(Wα).

Case: Wα = Θ(α−1): As noted above, in this case from [3, Theorem 1(b)] asymptotically the mean
busy period is given by the busy period under the fluid model. The expressions in the theorems are
obtained by setting up and solving recurrences for the mean busy period under the fluid model.
Remark 14: When rH > 0, the mean busy period started in state s is a convex combination of the
busy period if the state s were to last indefinitely, and the busy period of the “average system”, with
the coefficient being a function of the Laplace transform of the workload. This contrasts sharply with
the case rH < 0.

Case: Wα = o(α−1), rH > 0: In this case, the system is stable in both states. Consider a busy period
starting in state L. If the L state were to last forever, the busy period would exactly be E[Wα]

rL
. However,

since we may switch at rate Θ(α), there is a o(1) probability that the system switches to state H
before the busy period finishes. If this switch were to happen, the remaining busy period would be
stochastically bounded by a Θ(Wα) random variable, as the system is always stable, thus giving a
o(Wα) contribution to the overall busy period after multiplying by the probability of switching. Thus
asymptotically, the mean busy period started by Wα workload in state L would be E[Wα]

rL
+ o(Wα).

Case: Wα = Θ(1), rH < 0: This case is the most non-trivial of all, and clearly explains the failure
of fluid modeling of busy periods. First, consider a busy period started in state H by Wα = Θ(1)
work. The fluid model would imply that the workload keeps increasing at rate −rH until the system
switches to L. At this point we have Θ(α−1) workload built up, and we could apply [3, Theorem 1(b)].
However, given that we start with Θ(1) workload in state H (which is in transient overload), there
is still a constant probability that the stochastic busy period started by the Θ(1) workload is finite!
This probability is given by Pf in the statement of Theorem 11, and given that this event does not
happen, we can use the fluid busy period expressions, which is how we arrive at Theorem 11. Next,
consider a busy period started in state L by Wα = Θ(1) work. In this case, with Θ(α) probability
(given by pswitch), there is a class H arrival before the busy period ends. We are now in state H with
Θ(1) workload (whose transform is given by L̃(s) · S̃H(s)). Given that a class H arrival happens,
the residual busy period (from our argument above) is Θ(α−1). After multiplying it with pswitch, we
see that the contribution of this term to the overall busy period is Θ(1), and hence is of the same
asymptotic order as the duration of the busy period started in state L conditioned on it ending in
state L (= E[Wα]

rL
+ o(1)). Therefore, we need to be precise with each of the terms involved, and

applying the fluid method does not yield the correct expressions.

Proof of Theorem 11:
Case 1: Wα = ω(1), Pr

[
W = 0

]
= 0: We first show that under the fluid regime, the expressions for
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the busy periods are as given in the theorem. Then we will argue that when Wα = ω(1), the fluid
approximation for the busy period is within a small additive term of the stochastic busy period.

Let Wα be deterministic x. Then we can write the following recurrence relation for the fluid busy
period started in L or H state by workload x.

E[BH(x)] = 1
αH

+ E
[
BL

(
x− rH

αH

)]
E[BL(x)] = E

[
min

{
x

rL
, TL

}]
+ E

[
BH

(
x− rL min

{
x

rL
, TL

})
· 1{x>rL·TL}

]

where TL ∼ Exp (αL).

Now we assume E[BL(x)] = bLx and E[BH(x)] = aH + bHx for some constants bL, aH , bH , and then
verify that these forms are indeed correct by identifying the unknown constants. Under the assumed
forms for fluid busy periods, the recurrences reduce to:

aH + bHx = 1
αH

+ bLx− bL
rH
αH

bLx = 1− e−
αL
rL
x

αL
+ aH(1− e−

αL
rL
x) + bHx− bHrL

1− e−
αL
rL
x

αL

Since the above equations should be satisfied for all x, we get:

bL = bH

aH = 1
αH

(1− bLrH)

aH = 1
αL

(bHrL − 1)

which gives:

bL = bH = 1
1− ρ ; aH = 1− ρ− rH

αH(1− ρ)

yielding the expressions in the theorem statement.

Now we verify that when Wα = ω(1), the fluid busy period expressions are asymptotically correct.
In the simple case Wα = ω(α−1), the system switches on a faster time-scale (Θ(α−1)) than the initial
amount of work (ω(α−1)). Thus this workload sees the “average” system (rather than the transient
system) and its busy period is simply E[Wα]

1−ρ + o(Wα).

When the workload is Θ(α−1), then using [3], the sample paths of the stochastic system (scaled by
α) converge as α→ 0 to the fluid sample path in the space D[0,∞). Thus, the mean busy period of
the stochastic system is within o(α−1) of the mean busy period of the fluid system, asymptotically.
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Now consider the caseWα = Θ(g(α)) where g(α) = ω(1), but g(α) = o(α−1) (for example g(α) = 1√
α
).

Subcase 1: Busy period beginning in state H: We will show that even though the initial workload
is o(α−1), since it is ω(1), with overwhelming probability, the sample paths will follow the fluid
trajectory. Let the Laplace transform of Wα be given by W̃α(s) = E

[
e−sWα

]
. Since reordering the

jobs served in a busy period does not change the busy period duration, consider the case where the
initial workloadWα is served first. If the H state were to last forever, the z−transform for the number
of arrivals of class H jobs while workload Wα is served is given by W̃α(λ(1 − z)). The main idea is
to show that since the H state is in overload, with probability tending to 1, at least one of the class
H job will start a busy period that lasts until the end of the H state, whereby by the Strong Law of
Large Numbers the accumulated workload will be Θ(α−1). Consider the busy period that one class
H job starts, provided the H state continues forever. The Laplace transform of the busy period in an
M/G/1 with only class H jobs, denoted by B̃H(s), satisfies:

B̃H(s) = S̃H(s+ λ(1− B̃H(s))).

Since the M/G/1 is in overload, there is a constant probability that the busy period is infinite. The
probability that the busy period is finite is obtained as

pf = lim
s→0

B̃H(s).

Taking limit in the expression for B̃H(s), we obtain:

pf = S̃H(λ(1− pf ))

The busy period started byWα, given the H phase lasts forever, is finite if and only if the busy period
started by each H arrival while Wα was served is finite. This probability, then is given by

Pr[busy period started by Wα during H is finite] =
∞∑
i=0

Pr[i arrivals during Wα] · pif

= W̃α(λ(1− pf ))→ 0

The last fact is true since Wα

g(α) → W , W̃α(s) → W̃ (s · g(α)) → 0 as α → 0 (W̃ (s) is a decreasing
function from 1 to 0, and g(α) = ω(1)). The fact that lims→∞ W̃ (s) = 0 follows from the assumption
Pr
[
W = 0

]
= 0.

Therefore, with probability approaching 1, the busy period started by Wα in phase H (under the
assumption that the H phase lasts forever) is not finite. In other words, during the H phase, the
workload increases asymptotically along the fluid trajectory, and then the system switches to the
L phase. Since the work built up during the H state is Θ(α−1), the workload follows the fluid

40



trajectory after switching to the L state. Therefore, the expression for the mean busy period started
in H phase by ω(1) work is indeed given by the mean busy period under the fluid regime within a
o(max {Wα, α

−1}) term.

Subcase 2: Busy period beginning in state L: Now we consider the case where the busy period starts
in the L phase. If the L phase were to last forever, the workload in the system, scaled by g(α), would
follow the fluid trajectory, and hence the mean busy period would be the mean busy period under
the fluid regime within a o(Wα) term. However, with probability Θ(α · g(α)) the system switches
to H state before the fluid workload reaches 0. Conditioned on switching to the H state before the
period ends, the workload at the beginning of the H state is again Θ(g(α)). We have already argued
above that subsequently the workload follows the fluid trajectory – and the residual busy period will
be Θ(α−1) within an o(α−1) term. Therefore, the mean busy period started in L phase will be the
mean busy period under the fluid regime, within a o(Wα) term.

Case 2: Wα = Θ(1): We first consider the case where the busy period begins in the H state by
workloadW with Laplace transform W̃ (s). As we have argued above, since the H state is in overload,
there is a constant probability that the busy period does not end before the system switches to the
L state. This probability is given by 1− Pf where,

Pf = W̃ (λ(1− pf ))

and pf is the solution to the fixed point equation

pf = S̃H(λ(1− pf )).

Pf denotes the probability that a busy period started by work W in the M/G/1 under overload is
finite, and pf is the probability that a busy period started by a single class H job is finite.

Given that the busy period does not end before the system switches, the amount of workload that
builds up in the system is given by TH( λ

µH
− 1) + o(α−1) where TH denotes the duration of the H

state and is Θ(α−1). We can thus apply the previous case and conclude that the mean busy period in
this case, that is with probability 1−Pf , is given by 1

αH
− rH

αH(1−ρ) . In simpler terms, we are starting
the busy period with Θ(1) work in the H state. With Θ(1) probability, the busy period does not end
in the H phase, in which case, we start the subsequent L state with Θ(α−1) work, with an overall
contribution to the mean busy period of Θ(α). If however, the original busy period ends in the H
state itself, then this event contributes a Θ(1) term and hence is asymptotically negligible compared
to the contribution of the event where the busy period does not end in the H state.

Now we consider the case where the busy period begins in an L state. Again, we have two cases
– either the busy period ends in the L state itself, or the system switches to an H state before the
busy period ends. If the busy period ends in the L state, an event which happens with probability
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1−Θ(α), then the mean busy period conditioned on this event is given by E[W ]
rL

. However, the system
can switch with probability Θ(α), and the contribution of the residual busy period conditioned on
this event can be Θ(α−1) (from the previous subcase). Therefore, this event also contributes a Θ(1)
term to the mean busy period, and we handle this event next.

Consider an M/G/1 busy period started by work W . We let this M/G/1 evolve in the L state, and
consider an independent Poisson(αL) marking process. Our aim is to find the workload in theM/G/1
when the first mark arrives during the busy period. The probability that no mark arrives is given by
1− E[W ]αL

rL
, which we denote by 1− pswitch in the theorem statement. Thus, with probability pswitch,

at least one mark arrives, or equivalently, the environment processes switches before the busy period
ends and hence the busy period now evolves in the H state.

The subsequent busy period (that which evolves after the system switches to H) is given by the the
busy period that starts in H state with workload Ṽ (s), where Ṽ (s) denotes the transform of the
workload that is seen by the Poisson(αL) marking process conditioned on being the first mark of a
busy period. We will now argue that this is asymptotically given by the stationary workload in an
M/G/1 conditioned on the server being busy, with exceptional service distribution for the job that
starts the busy period given by W , and service distribution SL. We first note that if we have such
an M/G/1 where we consider the distribution of workload seen by all marks, then this is indeed
the stationary workload conditioned on server being busy, and hence given by stationary delay in
the M/G/1 system with special first service seen by arrivals finding the server busy (this expression,

Ṽ (s) =
rL· 1−W̃ (s)

E
[
W
]

s−λ(1−S̃L(s))
, is given in the theorem statement and derived in Appendix B). However, we

are interested in the workload that the first mark sees in a busy period, call this W1. We will
argue that as the probability of marking goes to 0, the workload seen by the first mark converges
in distribution to the stationary workload conditioned on the server being busy (and that as the
probability of marking goes to 0, this sequence of random variables remains uniformly integrable so
that the Laplace transforms converge). We first note that the workload seen by the first mark is
stochastically bounded above by the supremum of the workload in a busy period started by work W ,
denote this by W ∗

1 . Further, conditioned on a second marked arrival, we can upper bound the work
that this mark sees by the supremum of the workload in the busy period started by W ∗

1 (which is
an upper bound on the workload after the arrival of the first mark), denote this by W ∗

2 . Similarly,
we can obtain an upper bound on the workload seen by the nth marked arrival in a busy period.
We also have the trivial lower bound of 0 on the workload seen by the nth marked arrival in a busy
period. Note that both these upper and lower bounds are independent of the marking probability.
Let pi denote the probability that there are i marked arrivals in a busy period. We can thus sandwich
the stationary workload of the M/G/1 conditioned on it being busy by p1·W1∑∞

i=1 pi
and p1·W1+

∑∞
i=2 p2·W ∗i∑∞

i=1 pi
.

However, as the marking probability (Θ(α)) goes to 0, pi ∼ Θ(αi). Therefore, W1 converges to the
stationary workload in the M/G/1 with special service, conditioned on server being busy.
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Proof of Theorem 12:
Recall that in the workload is decreasing during both the L and H states. There is a negative drift
of rL = 1− λ

µL
during the L phase and a negative drift of rH = 1− λ

µH
during the H phase.

Case 1: Wα = ω(α−1): As in the proof of Theorem 11, since the system switches at a faster time
scale (Θ(α−1)) than the initial workload (ω(α−1)), the workload during its sojourn sees an average
system, and hence the busy period is E[Wα]

1−ρ + o(Wα).

Case 2: W = Θ(α−1): We begin by noting that since the initial workload is Θ(α−1), the workload
trajectory of the stochastic system, scaled by α, converges to the fluid trajectory. Hence the busy
period of the stochastic system is given by the fluid busy period and an additional o(α−1) term.

We now set up the recurrences for busy periods started by deterministic work x during the H and L
phases under the fluid regime:

E[BH(x)] = E
[
min

{
x

rH
, TH

}]
+ E

[
BL

(
x− rH min

{
x

rH
, TH

})
· 1{x>rH ·TH}

]
E[BL(x)] = E

[
min

{
x

rL
, TL

}]
+ E

[
BH

(
x− rL min

{
x

rL
, TL

})
· 1{x>rL·TL}

]

where TH is an Exp (αH) random variable and TL is an Exp (αL) random variable.

We now guess and verify that E[BH(x)] and E[BL(x)] have the following function form:

Bi(x) = ai + bix+ cie
−
(
αL
rL

+αH
rH

)
x

where ai, bi and ci, i ∈ {L,H}, are constants to be determined.5

5 The above ‘guess’ is in fact an educated attempt arrived at by looking at an alternate discrete system but which
is similar on fluid scale to the system we want to analyze. This is achieved by looking at a system where arrival rate
is 0, but server capacity (rate) switches between rL and rH . If we then denote the expected length of the busy period
started by n jobs in state L as BL(n) (similarly BH(n) denotes the expected length of the busy period started by n
jobs in state H), and define

B̂L(z) =
∞∑
z=0

znBL(n); B̂H(z) =
∞∑
z=0

znBH(n),

we can set up the following recurrences,

B̂L(z)((αL + rL)− rLz) = z

1− z
+ αLB̂H(z)

B̂H(z)((αH + rH)− rHz) = z

1− z
+ αHB̂L(z)

which solve for,

B̂L(z)rLrH(1− z)
[(

1 + αL
rL

+ αH
rH

)
− z
]

= z

1− z
(α+ rH(1− z))

The above transform gives the following form for BL(n): BL(n) = aL + bLn+ cLr
n for some constants aL, bL, cL and
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Since Bi(0) = 0, we have ai = −ci. Since the Laplace transform for x− ri min
{
x
ri
, Ti
}
is

E
[
e
−s
(
x−min

{
x
ri
,Ti

})]
=
se
−αi
ri
x − αi

ri
e−sx

s− αi
ri

and E
[
min

{
x
ri
, Ti
}]

= 1−e−
αi
ri
x

αi
, our recurrences become:

aL + bLx+ cLe
−
(
αL
rL

+αH
rH

)
x = 1− e−

αL
rL
x

αL
+ aH + bH

x− 1− e−
αL
rL
x

αL
rL



+ cH


(
αL
rL

+ αH
rH

)
e
−αL
rL
x − αL

rL
e
−
(
αL
rL

+αH
rH

)
x

αH
rH


aH + bHx+ cHe

−
(
αL
rL

+αH
rH

)
x = 1− e−

αH
rH

x

αH
+ aL + bL

x− 1− e−
αH
rH

x

αH
rH



+ cL


(
αL
rL

+ αH
rH

)
e
−αH
rH

x − αH
rH
e
−
(
αL
rL

+αH
rH

)
x

αL
rL



Since the above equalities hold for all x, we have the following relations:

bL = bH

aL = 1
αL

+ aH −
bH
αL
rL

aH = 1
αH

+ aL −
bL
αH
rH

0 = − 1
αL

+ bH
αL
rL

+ cH

αL
rL

+ αH
rH

αH
rH

0 = − 1
αH

+ bL
αH
rH

+ cL

αL
rL

+ αH
rH

αL
rL

0 = cL
αH
rH

+ cH
αL
rL

r =
(
1 + αL

rL
+ αH

rH

)−1
.
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which together with ai = −ci finally yield:

bL = bH =
 rL

αL
+ rH

αH
1
αL

+ 1
αH

−1

= 1
1− ρ

cL
αH
rH

=
1
rH
− 1

rL(
αL
rL

+ αH
rH

) (
rL
αL

+ rH
αH

)
cH
αL
rL

=
1
rL
− 1

rH(
αL
rL

+ αH
rH

) (
rL
αL

+ rH
αH

)
equivalently

cL = rL − rH
αLαH

(
rL
αL

+ rH
αH

)2 ·
rH
αH

cH = − rL − rH
αLαH

(
rL
αL

+ rH
αH

)2 ·
rL
αL

and,

aL = −cL
aH = −cH

Therefore the expected busy period started by a workload of size x during L and H phases, respec-
tively, are given by

E[BL(x)] = x

1− ρ −
rL − rH

αLαH
(
rL
αL

+ rH
αH

)2 ·
rH
αH
·
(

1− e−
(
αL
rL

+αH
rH

)
x
)

(12)

E[BH(x)] = x

1− ρ + rL − rH
αLαH

(
rL
αL

+ rH
αH

)2 ·
rL
αL
·
(

1− e−
(
αL
rL

+αH
rH

)
x
)

(13)

We can express E[BL(x)] and E[BH(x)] in the following more convenient/intuitive form:
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E[BL(x)] = x

1− ρ −
(

x

1− ρ −
x

rL

)
·

1− e−
(
αL
rL

+αH
rH

)
x(

αL
rL

+ αH
rH

)
x

 (14)

E[BH(x)] = x

1− ρ −
(

x

1− ρ −
x

rH

)
·

1− e−
(
αL
rL

+αH
rH

)
x(

αL
rL

+ αH
rH

)
x

 (15)

which show that E[BL(x)] and E[BH(x)] are a weighted averages of the busy periods of the α = 0
and α→∞ cases.

Now taking the expectation over x (which is distributed as Wα), we obtain the expressions given in
the theorem.

Case 3: Wα = o(α−1) : Since the system is stable during both the L and H states, the busy
period is Θ(Wα) (being upper bounded by the busy period started by Wα in an M/G/1 with service
distribution SH). Suppose the busy period starts in the L state. If the L state were to last forever,
the busy period would indeed be E[Wα]

rL
. Now either the system switches to the H state before this

busy period ends, and this event happens with probability 1 − o(1). In this case, the length of the
busy period conditioned on it being smaller than Exp(αL) will be E[Wα]

rL
+ o(Wα) since Wα = o(α−1).

However, if the system switches before the busy period ends, which happens with probability o(1),
the residual busy period is still Θ(Wα). The overall contribution of the second event to the mean
busy period started by Wα is o(Wα). By law of total probability, the mean busy started in L phase
is E[Wα]

rL
+ o(Wα).

The proof for busy periods started during H phases is identical.

B Analysis of M/G/1 busy period with special first service

We consider a busy period started by work W in anM/G/1 with arrival rate λ, and a general service
distribution. The Laplace transform ofW is given by W̃ (s), and of the service distribution is given by
S̃(s). We want to find the transform of the workload seen by an arbitrary arrival that arrives during
the busy period. This workload is given by the stationary workload in an M/G/1 with special first
service (note that this is not just a set-up time, but the distribution of the job that starts the busy
period is W ), given the system is busy. The stationary workload is in turn given by the stationary
delay in this special M/G/1 conditioned on the job finding the server busy.

Replicating the analysis forM/G/1, let N̂(z) denote the z-transform of the number of jobs left behind
by a departure. Let Q̂W (z) = W̃ (λ(1 − z)) be the transform of the number of Poisson(λ) arrivals
during W , and Q̂S(z) = S̃(λ(1− z)). Then,
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N̂(z) = p0
zQ̂W (z)− Q̂S(z)

z − Q̂S(z)
(16)

where,

p0 = 1− ρ
1 + λE[W ]− ρ (17)

is the idle probability.

The Laplace transform of the customer average response time is given by

R̃(s) = N̂
(
1− s

λ

)
(18)

= 1− ρ
1 + λE[W ]− ρ ·

(λ− s)W̃ (s)− λS̃(s)
(λ− s)− λS̃(s)

(19)

= p0W̃ (s) + p0S̃(s) 1− W̃ (s)
s− λ(1− S̃(s))

(20)

= p0W̃ (s) + (1− p0)S̃(s)
(1− ρ)1−W̃ (s)

E[W ]

s− λ(1− S̃(s))
(21)

Thus, the transform of the workload, given that the server is busy is given by

C̃(s) =
(1− ρ)1−W̃ (s)

E[W ]

s− λ(1− S̃(s))
. (22)
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