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Abstract

In this paper, we consider the M/G/k queueing system with setup times. This particular queue-
ing model is common in manufacturing systems, where idle machines are turned off to save on
operating costs, as well as in server farms, where idle servers are turned off to conserve power.
While recent literature has analyzed the M/M/k system with exponential setup times, no closed-
form solutions were obtained. We provide the first analytical closed form expressions for the mean
response time, limiting distribution of the system states, as well as the z-transform for the number
of jobs in system for the M/M/k system with exponential setup times. In particular, we prove the
following decomposition property: the mean response time of the M/M/k system with exponential
setup times differs from the mean response time of an M/M/k system without setup times, by a
constant factor, which is the mean of the exponential setup time. Using matrix analytic methods
and simulations, we show that the above decomposition property may also hold for the M/G/k
system with exponential setup times.





1 Introduction

1.1 High-level motivation
We consider an M/G/k system, where there is a setup cost (time cost) required to turn on a server
which is currently not in use. Setup costs are common in a wide variety of systems. In manufactur-
ing systems there is often a “warmup” time needed to get a machine running, or a “transport time”
needed when calling a staff member into work. In data centers, compute servers are often left off
to save on power, but then there is a “reboot” time required to turn a server on when it is needed.

The particular model in this paper is motivated by our work on power management in data
centers, where the response time (sojourn time) of jobs is a concern, but the overall power usage is
a concern as well. In such settings, the setup cost is wasteful in two ways: (i) the setup cost creates
a time delay, increasing overall mean response time, (ii) the setup cost wastes power, since full
power is used during the duration of the setup cost, although no work is being done. It is therefore
important in power management to understand, analytically, the effect of the setup cost, first on
mean response time and then on power usage.

1.2 Specific model
Our model assumes that at any point in time, each of the k servers is in one of three states: OFF ,
ON (being used to serve a job), or SETUP (undergoing the setup cost so that it can be used to run
a job). When servers are not in use, they are immediately switched to the OFF state. We assume
that at most one server at a time can be in the SETUP state (this is common for limiting power
usage). When a new job arrives, if there is already a server in the SETUP state, then the job simply
joins the queue, otherwise the job picks an OFF server (assuming there is one) and switches it into
the SETUP state. When a job completes service at a server, j, the job at the head of the queue is
moved to server j, without the need for SETUP, since server j is already ON. Note that even if the
job at the head of the queue was already waiting on another server i in SETUP mode, the job at the
head of the queue is still directed to server j; server i is then turned off.

1.3 Results
We use the random variable I to denote the setup cost. For our M/M/k setup model, we find a
peculiar and beautiful decomposition property in the case where I is exponentially-distributed.
Letting T denote response time, we find that:

E
[
TM/M/k/setup

]
= E

[
TM/M/k

]
+ E[I] (1)

where M/M/k/setup denotes an M/M/k system, where there is a setup cost, I , for turning servers
on. That is, the mean response time in our setup model is just the mean response time for an M/M/k
without setup, plus the mean setup time. To the best of our knowledge, this result is not known.
The above result, as well as several other related results for the M/M/k, such as the transform of
the number of jobs, is derived in Section 3.
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The exponential assumptions in the above result make it analytically verifiable. In Section 4 we
attempt to examine how far this result generalizes. Using matrix analytic methods, we are able to
show that the above results extends to the case of a 2 server system, where the job size distribution
is a 2-phase hyperexponential, H2, and I is still distributed exponentially:

E
[
TM/H2/2/setup

]
= E

[
TM/H2/2

]
+ E[I]

Since the M/G/k is not analytically tractable, we resort to careful simulation experiments to
determine (i) whether the result extends to an M/G/k as well, and (ii) whether the result requires that
I be exponentially-distributed. We find that Eq. (1) extends to the M/G/k with exponential setup
costs, when the job size distribution, G, is hyper-exponential, deterministic, bounded exponential
or Bounded Pareto. However, if I is not exponentially-distributed, then Eq. (1) may not hold, not
even in the case of an M/M/1.

Finally, in Section 5, we apply our results to analytically model power usage and response times
in a server farm with setup costs. Our simple closed-form results enable us to solve for server farm
parameters which minimize a weighted sum of mean response time and mean power usage.

2 Prior Work
While there has been a great amount of work on single-server queues with setup costs, including
the M/G/1 queue with setup costs [15, 13, 5, 8, 6, 7] and the M/G/1/N finite buffer queue with setup
costs [12, 14, 10], there has been very little work on multi-server queues with setup costs [1, 3].
We describe the above papers in more detail below.

2.1 M/G/1
As early as 1964, [15] showed that the M/G/1 with setup times has the following mean response
time:

E
[
TM/G/1/setup

]
= E[S] +

λE[S2]

2(1− E[S])
+

2E[I] + λE[I2]

2(1 + λE[I])
(2)

= E
[
TM/G/1

]
+

2E[I] + λE[I2]

2(1 + λE[I])
(3)

In [13], the author considers a multi-class M/G/1 queue with setup times and a variety of queueing
disciplines including FCFS and LCFS, and derives the Laplace - Stieltjes transforms of the waiting
times for each class. In [5], the M/G/1 queue with generally distributed setup times and vacations
is analyzed for the first two moments of the queue length, among other things. The author also
considers various service disciplines that govern the vacation process, including the exhaustive
service discipline, where the server goes on a vacation only when it has no outstanding jobs waiting
in the queue. [8] consider a variant of the M/G/1 with setup times model, wherein the server is
turned on only when some N (N ≥ 1) jobs are present in the system. This particular policy of
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turning the server on only after N jobs have accumulated in the system is referred to as the N -
policy in literature. The authors analyze the queue length distribution under the N -policy, and
derive the optimal value of N which minimizes the total operation cost of the system. For the case
of a batch arrival process, [6] analyzes a Mx/M/1 queue with random setup times for the queue
size distribution. The author later extends his work in [7] to take into account a Mx/G/1 queue
with random setup times.

2.2 M/G/1/N
For the case of a single server with a finite buffer, [14] considers a M/G/1/K queue with general
service times under the N -policy. The queue length distribution and mean response time are de-
rived under various service disciplines, including the exhaustive service discipline. In [10], the
authors numerically analyze a M(n)/G/1/N queue with general setup times and state dependent
arrival rates, for the queue length distribution. For the case of a batch arrival process, [12] analyze
the queue length distribution of a single server vacation queue with both, general setup times and
close-down times and a batch Markovian arrival process.

2.3 M/M/k
For the case of multiple servers with setup times, [3] consider an M/M/k queueing system with
exponential service times. The authors solve the steady state equations for the associated Markov
chain, using a combination of difference equations and matrix analytic methods. The recursive
nature of the difference equations does not yield a closed-form solution, but can be solved numeri-
cally. The authors provide numerical results for specific instances of the waiting time, busy periods
and queue lengths.

The difference equations method used by [3] was previously used in [1], where the authors con-
sider a Markov chain similar to the M/M/k with exponential setup times. Again, the authors provide
recursive formulations for various performance measures, which are then numerically solved for
various examples.

The above approach differs from ours in that the above papers do not determine closed-form
solutions for the limiting probabilities or the mean response time. In particular, while [3] assume
a M/M/k setup model which is identical to ours, they do not derive Eq. (1), showing that the
setup time is decomposably additive, nor do they observe this decomposition property in their
graphs. They furthermore do not consider job size distributions other than the Exponential job
size distribution. In particular, they don’t look at phase-type distributions (eg. H2) or bounded
distributions.

3 M/M/k with Setup
We start, in Section 3.1, by presenting, in more detail, the M/M/k setup model that we will use
throughout the paper. Then, we consider the case of k = 1, and analyze the mean response time
for an M/M/1 with exponential setup times, in Section 3.2. We use results from [15] to show that
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the decomposition property (or Eq. (1)) holds true for the M/M/1 with exponential setup times.
Later, in Appendix A, we derive the mean response time using two different techniques: (i) A
tagged-job approach, and (ii) A Pre-emptive Last Come First Serve argument. Next, we consider
the M/M/k model with exponential setup times. In Section 3.3, we derive the steady state limiting
probabilities for this model, and in Section 3.4, we derive simple closed-form expressions for the
mean response time, E[T ], the z-transform of the number of jobs in the system, N̂(z), and other
interesting performance measures. Finally, in Section 3.5, we consider an alternative version of
the M/M/k model with setup costs, where we allow multiple servers to be in the SETUP mode
simultaneously. Interestingly, Eq. (1) no longer holds for this particular model.

3.1 Model
We consider a multi server system with k homogenous servers, each with mean service rate µ =

1
E[X]

, where X denotes the job size. Unless stated otherwise, we assume that X is exponentially
distributed. Jobs arrive into the system according to a Poisson process with rate λ. For stability, we
assume that k ·µ > λ. We define the load in the system as ρ = λ ·E[X] = λ

µ
. Note that 0 ≤ ρ < k.

Each of the k servers is in one of three states: OFF, ON (being used to serve a job), or SETUP
(undergoing the setup cost so that it can be used to run a job). When servers are not in use,
they are immediately switched to the OFF state. When a new job arrives, if there is already a
server in the SETUP state, then the job simply joins the queue, otherwise the job picks an OFF
server (assuming there is one) and switches it into the SETUP state. We use I to denote the setup
times, with E[I] = 1

α
. Unless stated otherwise, we assume that the setup times are exponentially

distributed, with rate α. When a job completes service at a server, j, the job at the head of the
queue is moved to server j, without the need for SETUP, since server j is already ON. Note that
even if the job at the head of the queue was already waiting on another server i in SETUP mode,
the job at the head of the queue is still directed to server j; server i is then turned off.

In the model just described, we allow at most one server to be turned on at any given time. In
Section 3.5, we relax this condition, and consider an alternative version of the M/M/k with setup
times, where we allow multiple servers to be in the SETUP mode simultaneously.

3.2 M/M/1
Theorem 1. For an M/M/1 with exponentially distributed setup times, I , we have:

E
[
TM/M/1/setup

]
= E

[
TM/M/1

]
+ E[I]

Proof
We use Eq. (2) from [15] to derive E

[
TM/M/1/setup

]
. Since I is Exponentially distributed, we
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have E[I2] = 2E2[I]. Thus, from Eq. (3), we have:

E
[
TM/M/1/setup

]
= E

[
TM/M/1

]
+

2E[I] + λE[I2]

2(1 + λE[I])

= E
[
TM/M/1

]
+

2E[I] + 2λE2[I]

2(1 + λE[I])

= E
[
TM/M/1

]
+ E[I]

Note that the expression for E
[
TM/M/1/setup

]
satisfies Eq. (1) with k = 1. Thus, the decom-

position property holds for an M/M/1 with exponential setup times. While in this section we have
relied on the M/G/1 result from [15], the decomposition property can also be derived directly for
the M/M/1, based on its memoryless property. Examples of two such direct proofs are provided in
Appendix A.

3.3 M/M/k: Limiting probabilities
In this section, we analyze and solve the M/M/k with exponential setup, for the limiting probabili-
ties. The method of solving the Markov chain for limiting probabilities is similar to Ivo’s technique
in [1].

Fig. 1 shows the Markov chain for our M/M/k with exponential setup costs. The states in the
Markov chain are denoted as (a, b), where a represents the number of servers that are turned on
and ready to serve (active), and b represents the number of jobs in the system. The Markov chain
consists of k + 1 rows. The first row (from the top) consists of states where we have no active
servers, the second row consists of states where we have exactly one active server, and so on. For
the setup cost, recall that only one server can be turned on at one time. Thus, the rate of going
from state (i, j) to state (i + 1, j) is α for any 0 ≤ i < k and i < j.

We’ll now solve the Markov chain shown in Fig. 1 for the limiting probabilities of being in any
state. We first find the limiting probabilities for the states in the 1st row, in terms of π0,0. Next, we
solve for the limiting probabilities of being in the states of the 2nd row, in terms of the solution for
the 1st row, which in turn is expressed in terms of π0,0. Continuing in this way, we can solve for
the limiting probabilities of all the states of the Markov chain in terms of π0,0. We’ll then solve for
π0,0 using the equation

∑
i,j

πi,j = 1. This will give us the limiting probabilities for all the states in

the Markov chain.

Theorem 2. The limiting probabilities for the M/M/k with exponential setup times (whose Markov
chain is as shown in Fig. 1) are given in terms of π0,0 by:

πi,j =
π0,0 · γi

i!
βj for 0 ≤ i < k and j > i− 1

πk,j =
π0,0γ

kkµ

k! · (kµ− (λ + α))
βj − π0,0k

k(λ + α)

k! · (kµ− (λ + α))

(ρ

k

)j

for j > k − 1
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Figure 1: Markov chain for the M/M/k with exponential setup times.
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where α = 1
E[I]

, β = λ
λ+α

and γ = λ+α
µ

.

Proof

Step 1: Solving the 1st row
The relevant balance equations for the 1st row are given by:

π0,j · (λ + α) = π0,j−1 · λ for j > 0.

=⇒ π0,j = π0,j−1 ·
(

λ

λ + α

)
for j > 0.

=⇒ π0,j = π0,j−1 · β for j > 0, and β = λ
λ+α

.

=⇒ π0,j = π0,0 · βj for j > 0. (4)

We reserve the balance equation for π0,0 for the 2nd row.

Step 2: Solving the 2nd row
The relevant balance equations for the 2nd row are given by:

π1,j · (λ + α + µ) = π1,j−1 · λ + π0,j · α + π1,j+1 · µ for j > 1. (5)

The RHS of Eq. (5) above consists of states of the 2nd row as well as states of the 1st row. Thus, this
equation is inhomogeneous, with π0,j being the inhomogeneous part. Solutions for such equations
are given by:

π1,j = A1,1x
j
1 + A1,2β

j for j > 1 , (6)

where x1 is a solution of the homogeneous equation:

x1 · (λ + α + µ) = λ + x2
1 · µ (7)

As we’ll see, A1,1 turns out to be 0, thus we thankfully don’t need to compute x1.
Plugging in Eqs. (4) and (6) into Eq. (5) for j > 2, we have:

A1,1x
j
1 · (λ + α + µ) + A1,2β

j · (λ + α + µ) = A1,1x
j−1
1 · λ + A1,2β

j−1 · λ + π0,0 · βj · α
+A1,1x

j+1
1 · µ + A1,2β

j+1 · µ
=⇒ A1,2 ·

{
β(λ + α + µ)− λ− β2µ

}
= π0,0 · β · α (from Eq. (7))

=⇒ A1,2
λµα

(λ + α)2
= π0,0 ·

λα

λ + α

=⇒ A1,2 = π0,0 ·
λ + α

µ

=⇒ A1,2 = π0,0 · γ where γ = λ+α
µ

(8)

To get A1,1, we want to use the boundary condition for the 2nd row: use the balance equation for
π1,2, which will contain π1,1. However, we first need to evaluate π1,1. This requires us to use the
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balance equation for π0,0, which we had intentionally left out in Step 1. Using the balance equation
for π0,0:

π0,0 · λ = π1,1 · µ
=⇒ π1,1 = π0,0 · ρ (9)

We now use Eqs. (4) and (6) in Eq. (5) for j = 2:

A1,1x
2
1 · (λ + α + µ) + A1,2β

2 · (λ + α + µ) = π1,1 · λ + π0,0 · β2 · α + A1,1x
3
1 · µ + A1,2β

3 · µ

=⇒ A1,1 · (. . .) = π0,0ρλ + π0,0 · β2 · α + A1,2β
2(βµ− λ− α− µ) (from Eq. (9))

=⇒ A1,1 · (. . .) = π0,0λ
2

(
1

µ
+

α

(λ + α)2

)
− A1,2β

2

(
λ2 + 2λα + α2 + αµ

λ + α

)
=⇒ A1,1 · (. . .) = π0,0

β2

µ

{
αµ + (λ + α)2

}
− π0,0β

2γ

(
λ2 + 2λα + α2 + αµ

λ + α

)
(from Eq. (8))

=⇒ A1,1 · (. . .) =
�������������

π0,0
β2

µ

{
αµ + (λ + α)2

}
−

(((((((((((((((

π0,0
β2

µ

(
λ2 + 2λα + α2 + αµ

)
=⇒ A1,1 = 0 (10)

Thus, we have from Eqs. (6), (8) and (10):

π1,j = π0,0 · βj · γ for j > 0 (11)

Note that the above equation is valid for j = 1 since β · γ = ρ.

Step 3: Solving the 3rd row
Step 3 is similar to Step 2 above since the format of the balance equations remain the same.

This is also true for Step 4, Step 5, ..., Step (k-1). For Step 3, we get:

π2,j =
π0,0 · γ2

2!
βj for j > 1 (12)

...

Step k: Solving the kth row

πk−1,j =
π0,0 · γk−1

(k − 1)!
βj for j > k − 2 (13)

Thus, we can combine the above results to say that:

πi,j =
π0,0 · γi

i!
βj for 0 ≤ i < k and j > i− 1 (14)
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Step k+1: Solving the (k+1)th row
The relevant balance equations for the (k+1)th row are given by:

πk,j · (λ + kµ) = πk,j−1 · λ + πk−1,j · α + πk,j+1 · kµ for j > k. (15)

As before, the solution for such equations is given by:

πk,j = Ak,1x
j
k + Ak,2β

j for j > k , (16)

where xk is a solution of the homogeneous equation:

xk · (λ + kµ) = λ + x2
k · kµ (17)

This time, Ak,1 will not be zero. Thus, we need to solve the above equation for xk. Solving Eq. (17)
for xk, we find xk = ρ

k
(the other solution xk = 1 is trivially discarded). Thus, we have:

πk,j = Ak,1

(ρ

k

)j

+ Ak,2β
j for j > k , (18)

Plugging in Eqs. (13) and (16) into Eq. (15) for j > k + 1, we have:

Ak,1x
j
k · (λ + kµ) + Ak,2β

j · (λ + kµ) = Ak,1x
j−1
k · λ + Ak,2β

j−1 · λ +
π0,0 · γk−1

(k − 1)!
βj · α

+Ak,1x
j+1
k · µ + Ak,2β

j+1 · µ

=⇒ Ak,2 ·
{
β(λ + kµ)− λ− β2kµ

}
=

π0,0 · γk−1

(k − 1)!
· β · α (from Eq. (17))

=⇒ Ak,2 ·
βα

λ + α
{kµ− (λ + α)} =

π0,0 · γk−1

(k − 1)!
· β · α

=⇒ Ak,2 =
π0,0 · γk−1

(k − 1)!
· λ + α

kµ− (λ + α)

=⇒ Ak,2 =
π0,0 · γk · µ

(k − 1)! · {kµ− (λ + α)}
(19)

To get Ak,1, we want to use a boundary condition for the (k+1)th row: use the balance equation for
πk,k+1, which will contain πk,k. However, we first need to evaluate πk,k. This requires us to use the
balance equation for πk−1,k−1. After a few steps of algebra, we find that:

πk,k =
π0,0 · ρk

k!
(20)

We now use Eqs. (13) and (18) in Eq. (15) for j = k + 1:

Ak,1x
k+1
k · (λ + kµ) + Ak,2β

k+1 · (λ + kµ) = πk,k · λ +
π0,0 · γk−1

(k − 1)!
βk+1 · α + Ak,1x

k+2
k · kµ

+Ak,2β
k+2 · kµ

9



=⇒ Ak,1 · (��λ + kµ−�
��xkkµ) · xk+1

k =
π0,0 · ρk

k!
λ +

π0,0 · γk−1

(k − 1)!
βk+1 · α + Ak,2β

k+1(βkµ− λ− kµ)

(from Eq. (20) and since xk = ρ
k
)

=⇒ Ak,1 · kµ · xk+1
k =

π0,0 · ρk−1

(k − 1)!
·
(

λ2

kµ
+

αλ2

(λ + α)2

)
− Ak,2β

k+1 ·
(

αkµ

λ + α
+ λ

)
(since β · γ = ρ)

=⇒ Ak,1 · kµ · xk+1
k =

π0,0 · ρk−1 · λ2

(k − 1)!
·
(

1

kµ
+

α

(λ + α)2
− αkµ + λ(λ + α)

(kµ− (λ + α))(λ + α)2

)
(from Eq. (19) and since β · γ = ρ)

=⇒ Ak,1 · kµ · xk+1
k =

π0,0 · ρk−1 · λ2

(k − 1)!
·
(

(kµ− (λ + α)) · (λ + α)2 − kµ(λ + α)2

kµ · (kµ− (λ + α)) · (λ + α)2

)

=⇒ Ak,1 · kµ · xk+1
k =

π0,0 · ρk−1 · λ2

(k − 1)!
·
(

−(λ + α)3

kµ · (kµ− (λ + α)) · (λ + α)2

)

=⇒ Ak,1 ·��k�µ ·
�

��ρk+1

kk+�1
=

π0,0 ·���ρk+1 · �µ
k!

·
(

−(λ + α)

(kµ− (λ + α))

)

=⇒ Ak,1 = − π0,0 · kk−1 · (λ + α)

((k − 1)!)(kµ− (λ + α))
(21)

Thus, we have from Eqs. (18), (19) and (21):

πk,j =
π0,0γ

kkµ

k! · (kµ− (λ + α))
βj − π0,0k

k(λ + α)

k! · (kµ− (λ + α))

(ρ

k

)j

for j > k − 1 (22)

We have now solved for the limiting probabilities of all the states of the Markov chain in terms
of π0,0. We’ll next solve for π0,0 using the equation

∑
i,j

πi,j = 1:

Theorem 3. For the M/M/k with exponential setup times,

π0,0 =

(
1− λ

λ + α

)
·

{∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (kµ− λ)

}−1

(23)

where α = 1
E[I]

.
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Proof

1 =
∑
i,j

πi,j

=⇒ 1 =
∑
i,j
i<k

πi,j +
∑

j

πk,j

=⇒ 1 =
∑
i,j
i<k

π0,0γ
i

i!
βj +

∑
j

π0,0 ·
{

γkkµ

k! · (kµ− (λ + α))
βj − kk(λ + α)

k! · (kµ− (λ + α))

(ρ

k

)j
}

=⇒ π−1
0,0 =

∑
0≤i<k

γi

i!

∑
i≤j

βj

+
γkkµ

k! · (kµ− (λ + α))

∑
k≤j

βj − kk(λ + α)
k! · (kµ− (λ + α))

∑
k≤j

(ρ

k

)j

=⇒ π−1
0,0 =

∑
0≤i<k

γi

i!
· βi

(1− β)
+

γkkµ

k! · (kµ− (λ + α))
· βk

(1− β)
− λ + α

k! · (kµ− (λ + α))
· ρk · kµ

(kµ− λ)

=⇒ π−1
0,0 =

1
1− β

∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (kµ− (λ + α))
· 1
(1− β)

− λ + α

(k − 1)! · (kµ− (λ + α))
· ρk · µ
(kµ− λ)

=⇒ π−1
0,0 =

1
1− β

∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (kµ− (λ + α))
· 1
(1− β)

− ρk · µ
(k − 1)! · (kµ− (λ + α))

· α

(kµ− λ)
· 1
1− β

=⇒ π−1
0,0 =

1
1− β

∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (1− β) · (kµ− λ)

=⇒ π0,0 = (1− λ

λ + α
) ·

 ∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (kµ− λ)


−1

(24)

Surprisingly, we have π0,0 = (1 − λ
λ+α

) · π′0, where π′0 is the limiting probability of having 0
jobs in an M/M/k system without setup.

3.4 M/M/k/setup: Performance measures
Now that we have all the limiting probabilities, we will proceed to calculate E

[
NM/M/k/setup

]
, the

mean number of jobs in the M/M/k with exponential setup costs system. This will allow us to
derive E

[
TM/M/k/setup

]
, the mean response time. We also derive N̂M/M/k/setup(z), the z-transform

of the number of jobs in the system, Var
(
NM/M/k/setup

)
, the variance of the number of jobs in

system, and E
[
K

M/M/k/setup
busy

]
, the expected number of servers ON or in SETUP.

Theorem 4. The mean number of jobs, E
[
NM/M/k/setup

]
, for an M/M/k with exponential setup

times is given by:

E
[
NM/M/k/setup

]
= ρ +

β

1− β
+

π0,0ρ
kkµλ

k!(1− β)(kµ− λ)2
(25)
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where α = 1
E[I]

, β = λ
λ+α

and π0,0 is as given by Eqn. (23).

Proof

E
[
NM/M/k/setup

]
=

∑
0≤i≤k

i≤j

j · πi,j

=⇒ E[N ] =
∑

0≤i≤k

∑
i≤j

j · πi,j


=

∑
0≤i<k

∑
i≤j

j · πi,j

+
∑
k≤j

j · πk,j

=
∑

0≤i<k

π0,0γ
i

i!
·

∑
i≤j

j · βj

+
∑
k≤j

j ·
{

π0,0γ
kkµ

k! · (kµ− (λ + α))
βj − π0,0k

k(λ + α)
k! · (kµ− (λ + α))

(ρ

k

)j
}

(from Eqs. (14) and (22))

=⇒ E[N ] =
∑

0≤i<k

π0,0γ
i

i!
·

∑
i≤j

j · βj

+
π0,0γ

kkµ

k! · (kµ− (λ + α))
·

∑
k≤j

j · βj


− π0,0k

k(λ + α)
k! · (kµ− (λ + α))

·

∑
k≤j

j ·
(ρ

k

)j

 (26)

We’ll now find a closed form expression for
∑
i≤j

j·xj , which will be useful for simplifying Eq. (26).

Z = i · xi + (i + 1) · xi+1 + (i + 2) · xi+2 + (i + 3) · xi+3 + . . .

Z · x = 0 · xi + (i + 0) · xi+1 + (i + 1) · xi+2 + (i + 2) · xi+3 + . . .

Z · (1− x) = i · xi + 1 · xi+1 + 1 · xi+2 + 1 · xi+3 + . . .

=⇒ Z =
(i− 1) · xi

1− x
+

xi

(1− x)2

=⇒
∑
i≤j

j · xj =
(i− 1) · xi

1− x
+

xi

(1− x)2
(27)

12



Thus, using Eq. (27) in Eq. (26), we have:

=
∑

0≤i<k

π0,0γ
iβi

i!
·
(

i− 1
(1− β)

+
1

(1− β)2

)
+

π0,0γ
kβkkµ

k! · (kµ− (λ + α))
·
(

k − 1
(1− β)

+
1

(1− β)2

)

− π0,0��k
k(λ + α)

k! · (kµ− (λ + α))
· ρk

��k
k
·
(

kµ · (k − 1)
(kµ− λ)

+
k2µ2

(kµ− λ)2

)

=
∑

0≤i<k

π0,0ρ
i

i!
·
(

i− 1
(1− β)

+
1

(1− β)2

)
+

π0,0ρ
kkµ

k! · (kµ− (λ + α))
·
(

k − 1
(1− β)

+
1

(1− β)2

)

− π0,0ρ
k(λ + α)

k! · (kµ− (λ + α))
·
(

kµ · (k − 1)
(kµ− λ)

+
k2µ2

(kµ− λ)2

)

=
∑

0≤i<k

π0,0ρ
i

i!
·
(

i− 1
(1− β)

+
1

(1− β)2

)
+

π0,0ρ
kkµ

k! · (kµ− (λ + α))
·
(

k − 1
(1− β)

+
1

(1− β)2

)

− π0,0ρ
k(λ + α)

k! · (kµ− (λ + α))
·
{(

k − 1
(1− β)

+
1

(1− β)2

)
−
(

k − 1
(1− β)

+
1

(1− β)2

)}

− π0,0ρ
k(λ + α)

k! · (kµ− (λ + α))
·
(

kµ · (k − 1)
(kµ− λ)

+
k2µ2

(kµ− λ)2

)

=
∑

0≤i≤k

π0,0ρ
i

i!
·
(

i− 1
(1− β)

+
1

(1− β)2

)

+
π0,0ρ

k(λ + α)
k! · (kµ− (λ + α))

·
{(

k − 1
(1− β)

+
1

(1− β)2

)
−
(

kµ · (k − 1)
(kµ− λ)

+
k2µ2

(kµ− λ)2

)}

=
∑

0≤i≤k

π0,0ρ
i

i!
·
(

i

(1− β)
+

β

(1− β)2

)

+
π0,0ρ

k(λ + α)
k! · (kµ− (λ + α))

·
{(

k − 1
(1− β)

+
1

(1− β)2

)
−
(

kµ · (k − 1)
(kµ− λ)

+
k2µ2

(kµ− λ)2

)}

=
ρ · π0,0

1− β
·
{

1− β

π0,0
− ρkµ

(k − 1)! · (kµ− λ)

}
+

βπ0,0

(1− β)2
·
{

1− β

π0,0
− ρkλ

k! · (kµ− λ)

}

+
π0,0ρ

k(λ + α)
k! · (kµ− (λ + α))

·
{(

(k − 1) · (kµβ − λ)
(1− β)(kµ− λ)

)
+
(

(kµβ − λ)(2kµ− kµβ − λ)
(1− β)2(kµ− λ)2

)}
(using Eq. (24))

= ρ +
β

1− β
− π0,0ρ

k

k!(1− β)(kµ− λ)
·
(

kµρ +
βλ

1− β

)

+
π0,0ρ

k(λ + α)
k! · (kµ− (λ + α))

· kµβ − λ

(1− β)2(kµ− λ)2
· {(k − 1)(kµ− λ)(1− β) + (2kµ− kµβ − λ)}
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=⇒ E[N ] = ρ +
β

1− β
− π0,0ρ

kλ

k!(1− β)(kµ− λ)
·
(

k +
λ

α

)

+
π0,0ρ

k(λ + α)
k!

· β

(1− β)2(kµ− λ)2
· (kα + λ)(kµ− λ) + kµα

λ + α

= − π0,0ρ
kλ

k!(1− β)2(kµ− λ)2
·
{

(kα + λ)(1− β)(kµ− λ)
α

− (kα + λ)(kµ− λ) + kµα

λ + α

}
+ρ +

β

1− β

=⇒ E
[
NM/M/k/setup

]
= ρ +

β

1− β
+

π0,0ρ
kkµλ

k!(1− β)(kµ− λ)2

Theorem 5. The mean response time, E
[
TM/M/k/setup

]
, for an M/M/k with exponential setup times

is given by:

E
[
TM/M/k/setup

]
=

1

α
+

π0,0ρ
kkµ

k!(1− β)(kµ− λ)2
+

1

µ
(28)

where α = 1
E[I]

, β = λ
λ+α

and π0,0 is as given by Eqn. (23).

Proof
We have E

[
NM/M/k/setup

]
from Thm 4. We now invoke Little’s law [11] to derive E

[
TM/M/k/setup

]
from E

[
NM/M/k/setup

]
.

E
[
TM/M/k/setup

]
=

E
[
NM/M/k/setup

]
λ

=⇒ E
[
TM/M/k/setup

]
=

1

µ
+

1

α
+

π0,0ρ
kkµ

k!(1− β)(kµ− λ)2

=⇒ E
[
TM/M/k/setup

]
=

1

α
+

π0,0ρ
kkµ

k!(1− β)(kµ− λ)2
+

1

µ

This brings us to the decomposition property.
Corollary

E
[
TM/M/k/setup

]
= E

[
TM/M/k

]
+ E[I]

Proof
Follows from the fact that E

[
TM/M/k

]
= π0,0ρkkµ

k!(1−β)(kµ−λ)2
+ 1

µ
.

We now derive the z-transform for the number of jobs in the system. The z-transform, for a
random variable X , is defined as X̂(z) = E

[
zX
]
.

14



Theorem 6. The z-transform for the number of jobs in the system, N̂M/M/k/setup(z), is given by:

N̂M/M/k/setup(z) =
π0,0 · kµρk

(k!)(kµ− (λ + α))
· zk

(1− βz)
− π0,0 · ρk(λ + α)

(k!)(kµ− (λ + α))
· zk

(1− ρz
k )

+
π0,0

1− βz

∑
0≤i<k

(ρz)i

i!

where α = 1
E[I]

, β = λ
λ+α

, γ = λ+α
µ

and π0,0 is as given by Eqn. (23).

Proof
The z-transform, for a random variable X , is defined as X̂(z) = E

[
zX
]
. We now derive

N̂M/M/k/setup(z), the z-transform of the number of jobs in the system.

N̂M/M/k/setup(z) =
k∑

i=0

Pr[N = i] · zi

=

k−1∑
i=0

∞∑
j=i

πi,jz
j

+
∞∑

j=k

πk,jz
j

=

k−1∑
i=0

∞∑
j=i

π0,0γ
iβj

i!
zj

+
∞∑

j=k

(
π0,0γ

kkµ

k! · (kµ− (λ + α))
βj − π0,0k

k(λ + α)
k! · (kµ− (λ + α))

(ρ

k

)j
)
· zj

=
π0,0

1− βz

∑
0≤i<k

(ρz)i

i!
+

π0,0 · kµρk

(k!)(kµ− (λ + α))
· zk

(1− βz)
− π0,0 · ρk(λ + α)

(k!)(kµ− (λ + α))
· zk

(1− ρz
k )

Using the z-transform from Thm. 6, we can derive Var
(
NM/M/k/setup

)
, the variance of the

number of jobs in the system.

Theorem 7. The variance of the number of jobs in the system, Var
(
NM/M/k/setup

)
, is given by:

Var
(
NM/M/k/setup

)
= Var

(
NM/M/k

)
+

β

1− β

(
1 +

β

1− β

)
+

2π0,0 · ρk+2 · β2

k · (k − ρ) · (1− β)3 · (k!)

where α = 1
E[I]

, β = λ
λ+α

and π0,0 is as given by Eqn. (23) and

Var
(
NM/M/k

)
= ρ(1 + ρ) +

kπ0,0 · ρk+1 · (k + ρ) · (1 + k − ρ)

(k!)(1− β)(k − ρ)3
−
(

ρ +
kπ0,0 · ρk+1

(k!)(1− β)(k − ρ)2

)2

Proof
We break the proof down into two steps. In Step 1, we derive the variance of the number of

jobs for an M/M/k without setup times, Var
(
NM/M/k

)
. Then, in Step 2, we use the z-transform

from Thm. 6 to derive Var
(
NM/M/k/setup

)
.

Step 1: Var
(
NM/M/k

)
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Figure 2: Markov chain for the M/M/k without setup times.

The Markov chain for an M/M/k without setup times is shown in Fig. 2. Based on the chain,
we can easily calculate the steady-state limiting probabilities of the system:

πi =

{
π0ρi

i!
if 1 < i ≤ k

πk ·
(

ρ
k

)i−k if i > k
(29)

where

π0 =

{∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (kµ− λ)

}−1

(30)

We now calculate the mean number of jobs in the M/M/k system, E
[
NM/M/k

]
:

E
[
NM/M/k

]
=

∞∑
i=1

i · πi

= π0

(
k∑

i=1

i · ρi

i!

)
+ πk

(
∞∑

i=k+1

i ·
(ρ

k

)i−k
)

(from Eq. 29)

= π0

(
ρ

k−1∑
i=0

ρi

i!

)
+ πk

(
∞∑
i=1

(k + i) ·
(ρ

k

)i
)

= ρ− π0ρ
k+1

(k!)(1− ρ
k
)

+
π0ρ

k+1

k · (k!)(1− ρ
k
)

(
k +

1

1− ρ
k

)

= ρ +
π0ρ

k+1

k · (k!) · (1− ρ
k
)2

(31)

16



In a similar manner, we can calculate E
[
N2M/M/k

]
. We find that:

E
[
N2M/M/k

]
= ρ(1 + ρ) +

kπ0 · ρk+1 · (k + ρ) · (1 + k − ρ)

(k!) · (k − ρ)3
(32)

We can now calculate Var
(
NM/M/k

)
= E

[
N2M/M/k

]
− E2

[
NM/M/k

]
from Eqs. (32) and (31):

Var
(
NM/M/k

)
= E

[
N2M/M/k

]
− E2

[
NM/M/k

]
= ρ(1 + ρ) +

kπ0 · ρk+1 · (k + ρ) · (1 + k − ρ)

(k!) · (k − ρ)3
−
(

ρ +
π0ρ

k+1

k · (k!) · (1− ρ
k
)2

)2

= ρ(1 + ρ) +
kπ0,0 · ρk+1 · (k + ρ) · (1 + k − ρ)

(k!)(1− β)(k − ρ)3

−
(

ρ +
kπ0,0 · ρk+1

(k!)(1− β)(k − ρ)2

)2

(from Eq. (24)) (33)

Step 2: Var
(
NM/M/k/setup

)
We use the z-transform from Thm. 6 to derive Var

(
NM/M/k/setup

)
. Var

(
NM/M/k/setup

)
is

defined as:

V ar(N) = E
[
N2
]
− E2[N ] (34)

From the theory of z-transforms, we know that:

d2

dz2
N̂M/M/k/setup(z)

∣∣∣
z=1

= E
[
N2M/M/k/setup

]
− E2

[
NM/M/k/setup

]
(35)

Thus, we can calculate E
[
N2M/M/k/setup

]
, since we already know E

[
NM/M/k/setup

]
from Thm. 4.

N̂M/M/k/setup(z) =
π0,0

1− βz

∑
0≤i<k

(ρz)i

i!
+

π0,0 · kµρk

(k!)(kµ− (λ + α))
· zk

(1− βz)
− π0,0 · ρk(λ + α)

(k!)(kµ− (λ + α))
· zk

(1− ρz
k )

We now differentiate N̂M/M/k/setup(z) twice, and set z = 1 to get d2

dz2 N̂
M/M/k/setup(z)

∣∣
z=1

. Due to

17



the complexity of the equations, we skip a few steps of algebra when deriving d2

dz2 N̂
M/M/k/setup (z)

∣∣
z=1

.

d2

dz2
N̂M/M/k/setup(z)

∣∣∣
z=1

=
π0,0ρ

k+1

k!

(
k · (k + ρ)

(1− β) · (k − ρ)2
+

2kβ · (k − 3ρ)
(1− β)2 · (k − ρ)3

+
2ρ · (k2 + β2ρ2 − 2k · ρ · β2)

k · (k − ρ)3 · (1− β)3

)
+
(

ρ +
β

1− β

)2

+
(

β

1− β

)2

=⇒ E
[
N2M/M/k/setup

]
=

π0,0ρ
k+1

k!

(
k · (k + ρ)

(1− β) · (k − ρ)2
+

2kβ · (k − 3ρ)
(1− β)2 · (k − ρ)3

+
2ρ · (k2 + β2ρ2 − 2k · ρ · β2)

k · (k − ρ)3 · (1− β)3

)
+
(

ρ +
β

1− β

)2

+
(

β

1− β

)2

+ρ +
β

1− β
+

k · π0,0ρ
k+1

(k!) · (1− β) · (k − ρ)2
(from Eq. (35) and Thm. 4)

=⇒ Var
(
NM/M/k/setup

)
=

π0,0ρ
k+1

k!

(
k · (k + ρ)

(1− β) · (k − ρ)2
+

2kβ · (k − 3ρ)
(1− β)2 · (k − ρ)3

+
2ρ · (k2 + β2ρ2 − 2k · ρ · β2)

k · (k − ρ)3 · (1− β)3

)

+
(

ρ +
β

1− β

)2

+
(

β

1− β

)2

+ ρ +
β

1− β
+

k · π0,0ρ
k+1

(k!) · (1− β) · (k − ρ)2

−
(

ρ +
β

1− β
+

k · π0,0ρ
k+1

(k!) · (1− β) · (k − ρ)2

)2

(from Thm. 4)

=
π0,0ρ

k+1

k!

(
k · (k + ρ + 1)

(1− β) · (k − ρ)2
+

2kβ · (k − 3ρ)
(1− β)2 · (k − ρ)3

+
2ρ · (k2 + β2ρ2 − 2k · ρ · β2)

k · (k − ρ)3 · (1− β)3

)

+Var
(
NM/M/k

)
+

β

1− β

(
1 +

β

1− β

)
− 2kβ · π0,0 · ρk+1

(k!) · (k − ρ)2 · (1− β)2

−k · π0,0 · ρk+1 · (k + ρ) · (1 + k − ρ)
(k!) · (k − ρ)3 · (1− β)

(from Eq. (33))

=
π0,0ρ

k+1

k!
(− 2kρ

(1− β) · (k − ρ)3
− 4kβ · ρ

(1− β)2 · (k − ρ)3

+
2ρ · (k2 + β2ρ2 − 2k · ρ · β2)

k · (k − ρ)3 · (1− β)3
) + V ar(N)M/M/k +

β

1− β

(
1 +

β

1− β

)

18



=
π0,0ρ

k+1

k!
· 2ρβ2

k · (1− β)3 · (k − ρ)
+ V ar(N)M/M/k +

β

1− β

(
1 +

β

1− β

)

= V ar(N)M/M/k +
β

1− β

(
1 +

β

1− β

)
+

2π0,0 · ρk+2 · β2

k · (k − ρ) · (1− β)3 · (k!)

Finally, we derive E
[
K

M/M/k/setup
busy

]
, the expected number of servers either ON or in SETUP.

Theorem 8. The expected number of servers either ON or in SETUP, is given by:

E
[
K

M/M/k/setup
busy

]
= β + ρ− π0,0ρ

kβ

k!(1− β)(1− ρ
k
)

where α = 1
E[I]

, β = λ
λ+α

and π0,0 is as given by Eqn. (23).

Proof
From Section 3.1, we know that a server can be in any of the following three states: (i) OFF, (ii)

ON or (iii) SETUP. We are interested in the expected number of servers not in the OFF state. We
can assign K

M/M/k/setup
busy values to each of the states in the M/M/k Markov chain shown in Fig 1.

For example, in state (0, 0), K
M/M/k/setup
busy (0, 0) = 0. In the state (0, 1), K

M/M/k/setup
busy (0, 1) = 1.

For states (0, j), where j > 1, K
M/M/k/setup
busy (0, j) = 1 again, since we only allow one server to be

in the SETUP mode at any time. In general, for state (i, j), we have:

K
M/M/k/setup
busy (i, j) =

{
i if i = j
i + 1 otherwise (36)

Thus, the expected number of servers either ON or in SETUP, E
[
K

M/M/k/setup
busy

]
, is given by:

E
[
K

M/M/k/setup
busy

]
=

∑
i,j

πi,j ·KM/M/k/setup
busy (i, j) (37)
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Using Eqs. (36), (14) and (22) in the above equation, we get:

E
[
K

M/M/k/setup
busy

]
=

(
k−1∑
i=0

∞∑
j=i+1

π0,0 · γi · βj

i!
· (i + 1)

)
+

(
k−1∑
i=1

π0,0 · ρi

i!
· i

)

+k ·
∞∑

i=k

(
π0,0γ

kkµ

k! · (kµ− (λ + α))
βi − π0,0k

k(λ + α)

k! · (kµ− (λ + α))

(ρ

k

)i
)

= π0,0 ·
β

1− β

k−1∑
i=0

(
ρi

(i− 1)!
+

ρi

i!

)
+ π0,0

k−1∑
i=1

(
ρi

(i− 1)!

)

+
kπ0,0ρ

k

(k!)(1− β)(1− ρ
k
)

= π0,0 ·
β

1− β

(
ρ ·
(

1− β

π0,0

− ρk−1

(k − 1)!
− ρk

(k!)(1− ρ
k
)

)
+

1− β

π0,0

− ρk

(k!)(1− ρ
k
)

)

+π0,0ρ ·
(

1− β

π0,0

− ρk−1

(k − 1)!
− ρk

(k!)(1− ρ
k
)

)
+

kπ0,0ρ
k

(k!)(1− β)(1− ρ
k
)

(by Eq. (24))

= β + ρ− π0,0ρ
kβ

k!(1− β)(1− ρ
k
)

3.5 M/M/k with multiple SETUP servers
Throughout this paper, we assume that only one server is allowed to be in the SETUP mode at a
time. However, it is interesting to ask what happens when multiple servers are allowed to be in
the SETUP mode simultaneously. While the Markov chain for the case of multiple SETUP servers
is quite similar to that for a single SETUP server, it does not lend itself to a pretty analysis. In
Appendix B, we attempt to analyze the M/M/2 where multiple servers can be in the SETUP mode
simultaneously (in this case, at most 2). The limiting probabilities are far more complex, making it
unlikely to obtain a closed-form expression for the mean response time. It is also not obvious that
any decomposition property exists.

4 M/G/k with Setup
So far we have looked at exponential job sizes and exponential setup costs. In this section, we
examine whether or not, the decomposition property (given by Eq. (1)) extends to other job size
distributions and other setup time distributions. First, in Section 4.1, we consider the M/H2/2
with exponential setup costs. This particular model can be analyzed via matrix analytic methods
(see [9] for an excellent reference on matrix analytic methods). We find that the decomposition
property holds for the M/H2/2 with exponential setup costs. Then, in Section 4.2, we consider
the M/G/k with exponential setup costs. Since this model cannot be analyzed via matrix analytic
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(a) (b)

Figure 3: Markov chain for the M/H2/2 (a) without setup times and (b) with exponential setup
times.

State Description of state
0 No jobs in the system.
11 1 job in the system, and it is of Type 1.
12 1 job in the system, and it is of Type 2.
21 2 jobs in the system, and both are of Type 1.
22 2 jobs in the system, with one of Type 1 and the other of Type 2.
23 2 jobs in the system, and both are of Type 2.
31 3 jobs in the system, and the 2 jobs at the head of the queue are both of Type 1.
32 3 jobs in the system, and the 2 jobs at the head of the queue are of Types 1 and 2 respectively.
33 3 jobs in the system, and the 2 jobs at the head of the queue are both of Type 2.

Table 1: State space description for the Markov chain in Fig. 3 (a).

methods, we resort to careful simulations to determine whether Eq. (1) holds for general job size
distributions. Surprisingly, we find that the decomposition property appears to hold for the M/G/k
with exponential setup costs. Finally, in Section 4.3, we consider the M/G/k with general setup
costs and show that Eq. (1) might not hold in this case.

4.1 M/H2/2 with Exponential setup
The M/H2/2 with exponential setup times can be analyzed numerically, via matrix analytic meth-
ods. First, consider the simple M/H2/2 without setup times. Again, the average arrival rate is λ.
The job size is denoted by X , where, with probability p, X is exponentially distributed with rate
µ1, and with probability (1 − p), X is exponentially distributed with rate µ2. Under this notation,
the Markov chain for the M/H2/2 can be represented as shown in Fig. 3 (a). A description of some
of the states in the Markov chain is given in Table 1.

Next, we analyze the M/H2/2 with exponential setup times system. Let I denote the setup times
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State Description of state
0 No jobs in the system.

11x
1 job in the system, and it is of Type 1.
1 server in setup mode.

11
1 job in the system, and it is of Type 1.
1 server active.

12x
1 job in the system, and it is of Type 2.
1 server in setup mode.

12
1 job in the system, and it is of Type 2.
1 server active.

21y
2 job in the system, and the one at the head of the queue is of Type 1.
1 server in setup mode.

21x
2 jobs in the system, and the one at the head of the queue is of Type 1.
1 server active, and serving job of Type 1. 1 server in setup mode.

21
2 jobs in the system, and both are of Type 1.
2 servers active, both serving jobs of Type 1.

22
2 jobs in the system, with one of Type 1 and the other of Type 2..
2 servers active, one serving job of Type 1, other serving job of Type 2.

23y
2 job in the system, and the one at the head of the queue is of Type 2.
1 server in setup mode.

23x
2 jobs in the system, and the one at the head of the queue is of Type 2.
1 server active, and serving job of Type 2. 1 server in setup mode.

23
2 jobs in the system, and both are of Type 2.
2 servers active, both serving jobs of Type 2.

Table 2: State space description for the Markov chain in Fig. 3 (b).

and let α = 1
E[I]

. The Markov chain for this particular model is given in Fig. 3 (b). Due to the
complexity of the state space, we only show a part of the chain. A description of some of the states
in the Markov chain is given in Table 2. While the Markov chain is complex, it is tractable via
matrix analytic methods due to its regular repeating structure.

Our results for the M/H2/2 with exponential setup costs are shown in Fig. 4. In our results,
ρ = λ · E[X], where E[X] = p

µ1
+ 1−p

µ2
is the mean job size. Also, C2 = V ar(X)

E2[X]
, denotes the

squared coefficient of variation. Thus, from Fig. 4, it appears that the M/H2/2 with exponential
setup costs satisfies Eq. (1) for different values of ρ and C2.

4.2 M/G/k with Exponential setup
In this section, we explore whether Eq. (1) extends to an M/G/k with exponential setup costs. We
use simulation results to determine the mean response time of an M/G/k system with, and without
setup times, and check whether Eq. (1) holds. The job size distributions we try out are listed in
Table 3, along with their mean (E[X]) and squared co-efficient of variation (C2).
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Figure 4: Matrix-analytic results for an M/H2/2 with exponential setup costs. Results show that
E
[
TM/H2/2/setup

]
= E

[
TM/H2/2

]
+ E[I].

Distribution E[X] (Mean) C2 (Squared co-eff. of variation)
Exponential (rate=2) 0.5 1
Hyper-exponential (µ1 = 2, µ2 = 4, p=0.5) 0.38 1.22
Uniform (0.25, 0.75) 0.5 0.08
Uniform (0.1, 1) 0.55 0.22
Bounded Exponential (min=0, max=2) 0.46 0.81
Bounded Exponential (min=0.2, max=2.2) 0.66 0.4
Deterministic (mean=0.5) 0.5 0
Bounded Pareto (min=1, max=2, α=1) 1.39 0.04
Bounded Pareto (min=1, max=10, α=1) 2.56 0.53
Bounded Pareto (min=1, max=100, α=1) 4.65 3.62
Bounded Pareto (min=1, max=1000, α=1) 6.91 19.92

Table 3: The different job size distributions used in our simulations.
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Figure 5: Simulation results for exponential (M), hyper-exponential (H2), uniform (Unif) and
Bounded Exponential (BE) job size distributions for an M/G/2 with exponential setup times. The
parameters on the BE distribution denote the min and max values respectively. Confidence inter-
vals (shown as horizontal lines) indicate good agreement with Eq. (1).
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Figure 6: Simulation results for deterministic (D) and Bounded Pareto (BP) job size distributions
for an M/G/2 with exponential setup times. The parameters on the BP distribution denote the min,
max and α values respectively. Confidence intervals (shown as horizontal lines) indicate good
agreement with Eq. (1).
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Each simulation consists of 107 arrivals, and we average our results over multiple runs for each
job size distribution. We also report the 95% confidence intervals in each case. In all simulations,
k = 2. Due to lack of space, we omit simulation results for k > 2 in this paper, however, we have
verified our results for k = 4 as well.

Figs. 5 and 6 show our simulation results for a range of job size distributions, including
Exponential (M/M/2), Hyper-exponential (M/H2/2), Uniform (M/Unif/2), Bounded Exponential
(M/BE/2), Deterministic (M/D/2) and Bounded Pareto (M/BP/2). In all cases, we see that the
M/G/k with exponential setup times appears to satisfy Eq. (1).Tight confidence intervals (shown
as horizontal lines) indicate good agreement between the simulation results and Eq. (1).

4.3 M/G/k with General setup
We now consider the case of an M/G/k with general setup times. As we will show, the decompo-
sition property is not satisfied by most setup time distributions that are not exponential. Consider,
for example, the M/G/1 with general setup time, I .

From Eq. (3), we have:

E
[
TM/G/1/setup

]
= E

[
TM/G/1

]
+

2E[I] + λE[I2]

2(1 + λE[I])

The decomposition property is satisfied if and only if:

2E[I] + λE[I2]

2(1 + λE[I])
= E[I]

=⇒ E
[
I2
]

= 2E2[I]

=⇒ C2
I =

E[I2]− E2[I]

E2[I]
= 1 (38)

where C2
I is the squared co-efficient of variation for the setup times. While Eq. (38) is clearly

satisfied by exponentially distributed I , it is also satisfied by a few other distribution, for example:

I =

{
0 with probability 1

2

1 with probability 1
2

(39)

but clearly not by most distributions considered in this paper.
In general, the mean response time for an M/M/k with non-exponentially distributed setup

times can differ significantly from the mean response time for an M/M/k with exponentially dis-
tributed setup times. For example, Fig. 7 shows our simulation results for an M/M/2 with deter-
ministic setup times. Clearly, the mean response time for an M/M/2 with deterministic setup times
does not satisfy Eq. (1).
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Figure 7: Mean response time vs. mean setup time for an M/M/2 with deterministic setup times.
Clearly, Eq. (1) is no longer valid in this case.

5 Application
As stated earlier, our M/M/k with setup costs model is motivated by the problem of power manage-
ment in server farms. Most server farm operators today are interested in minimizing both power
usage and mean response time. While minimizing mean response time points to turning on many
servers, minimizing power usage points to turning on few servers. To save on power usage, it is
customary to turn servers OFF when they are not in use. However, this means that a SETUP cost is
required every time a server needs to be turned on. This SETUP cost is both wasteful with respect
to mean response time and with respect to power usage, since power is needed during the whole
SETUP period. Since the SETUP cost can have a big effect on both power and response time, it is
important that we take it into account when optimizing the configuration of our server farm.

The performance metric we consider in this section is a weighted sum of the mean response
time, E[T ], and the mean power consumption, E

[
PowerM/M/k/setup

]
, given by

PERF = E
[
PowerM/M/k/setup

]
+ c · E

[
TM/M/k/setup

]
The weight parameter c has units of Watts/sec, and can be thought of as the price required, in
Watts, to lower the mean response time of the server farm by 1 second. A similar weighted linear
combination has previously been used in literature [2, 4, 16].

We assume the same algorithm as is assumed throughout the paper: We have a k server system.
When servers are not in use they are switched to OFF. At most one server can be in the SETUP
state. When a new job arrives, if there is already a server in the SETUP state, it will queue up;
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otherwise, it will move one of the OFF servers (assuming there is one) to the SETUP state. When
a job completes, the job at the head of the queue is moved to that server, without the need for
SETUP.

Our goal is to determine the optimal number of servers k = k∗ that should be used to minimize
PERF. The answer is not obvious. Since the servers are turned on only when needed, one might
assume that having an infinite number of servers can’t be that bad, since the servers that are turned
OFF don’t cost us power. However, by limiting the total number of servers, k, we can force the
jobs to queue up. This can help us avoid the SETUP cost of turning on a new server every time a
new job comes in. Thus a higher SETUP cost should point to a lower value of k∗, for optimizing
PERF.

In Section 5.1 we derive a closed-form expression for E
[
PowerM/M/k/setup

]
and for PERF. We

then use this expression in Section 5.2 to determine k∗ for the above problem under a variety of
load settings, SETUP costs, and values for the weight parameter, c.

5.1 E
[
PowerM/M/k/setup

]
From Section 3.1, we know that a server can be in any of the following three states: (i) OFF, (ii)
ON or (iii) SETUP. While in the OFF state, we assume that the power consumption of a server is 0.
While in the ON or SETUP states, the power consumption of the server is assumed to be a constant,
Pmax. Given this information, we see that E

[
PowerM/M/k/setup

]
= Pmax·E

[
K

M/M/k/setup
busy

]
. Thus,

using Thm. 8, we have:

Theorem 9. For an M/M/k with exponential setup times, the mean power consumption is given by:

E
[
PowerM/M/k/setup

]
= Pmax

(
β + ρ− π0,0ρ

kβ

k!(1− β)(1− ρ
k
)

)
where α = 1

E[I]
, β = λ

λ+α
and π0,0 is as given by Eqn. (23).

Proof
Follows trivially from that fact that E

[
PowerM/M/k/setup

]
= Pmax · E

[
K

M/M/k/setup
busy

]
, and

from Thm. 8.
Finally, combining Thms. 5 and 9, we have:

Theorem 10. For an M/M/k with exponential setup times, the PERF value is given by:

PERF =

(
β + ρ− π0,0ρ

kβ

k!(1− β)(1− ρ
k
)

)
· Pmax + c ·

(
1

α
+

π0,0ρ
kkµ

k!(1− β)(kµ− λ)2
+

1

µ

)
where α = 1

E[I]
, β = λ

λ+α
and π0,0 is as given by Eqn. (23).

Proof
Follows trivially from that fact that PERF = E

[
PowerM/M/k/setup

]
+ c · E

[
TM/M/k/setup

]
,

and from Thms. 5 and 9.
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Figure 9: Results showing optimal k∗ value for c = 10 Watts/sec.
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Figure 10: Results showing optimal k∗ value for c = 100 Watts/sec.
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5.2 Optimization
In this section we deduce the optimal k value, k∗, which minimizes the PERF metric, under a
variety of settings including different loads ρ, different weight-parameters c, and different SETUP
values E[I].

We start with the case of c = 0. Here the goal is simply to minimize E
[
PowerM/M/k/setup

]
.

This is done by using the lowest possible number of servers, namely k∗ = 1, regardless of ρ or
E[I]. Results are shown in Figs. 8 (a) and (b). Less trivial is the case of c = ∞. Here the goal
is simply to minimize E

[
TM/M/k/setup

]
. This should point to maximizing the number of servers

k. Observe that since power is not relevant when c = ∞, having a higher SETUP cost should not
effect the k∗ value, since as shown in Eqn. (1), the SETUP cost is additive. Figs. 8 (c) and (d) show
our results for the value of c = ∞. Notice that after the k value gets sufficiently high, the mean
response time remains constant, and hence we choose k∗ as the lowest of these k values.

Fig. 9 shows our results when the weight parameter is c = 10 Watts/sec and Fig. 10 shows
results for a weight parameter of c = 100 Watts/sec. In both figures, the (a) graph shows the case
of low load, and low SETUP cost. The (b) graph shows the case of high load, but still low SETUP
cost. Finally, the (c) graph shows the case of high load, and high SETUP cost.

The following trends are apparent: (i) As c is increased, E
[
TM/M/k/setup

]
matters more, and,

as expected k∗ increases; (ii) As ρ is increased, as expected k∗ needs to go up to keep response
times from exploding; (iii) As E[I] is increased, k∗ goes down, as expected because it is better to
leave jobs waiting in the queue and avoid the SETUP cost of turning on a new server.

6 Conclusion
In this paper, we start by considering the M/M/k queueing system with setup times. We provide
the first analytical closed form expressions for the mean response time, limiting distribution of
the number of jobs in the system, and the z-transform for the number of jobs in system for the
M/M/k system with exponential setup times. In particular, we prove the following decomposition
property: the mean response time of the M/M/k system with exponential setup times differs from
the mean response time of an M/M/k system without setup times, by an additive constant, which is
the mean of the exponential setup time. Using matrix analytic methods and simulations, we show
that the above decomposition property may also hold for the M/G/k system with exponential setup
times. The fact that the setup time is exponentially-distributed is important: in fact we prove that
the decomposition property cannot hold when the setup time distribution has squared coefficient
of variation different from 1. Finally, we present a motivating application of our work: power
management in server farms. Using our simple closed form expressions for the M/M/k with setup
costs, we derive the optimal number of servers to be used in a server farm with setup time, so as to
minimize a weighted sum of mean power and mean response time.
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A M/M/1 with exponential setup times
We are interested in analyzing mean response time in an M/M/1 with a setup costs, denoted as
E
[
TM/M/1/setup

]
. We use random variable I to denote the setup cost. We use S to denote the

service time of a job. The mean arrival rate into the system is λ. Both S and I are assumed to be
exponentially-distributed.

A.1 M/M/1 with Exponential Setup – Tagged-job approach
We’ll use a tagged-job approach to analyze the mean response time for a job in the M/M/1 with
setup costs model. Using the PASTA (Poisson Arrivals See Time Averages) property, a job coming
into the M/M/1 queue, sees NQ number of jobs in the queue. Each of these NQ jobs has size S.
Then with probability ρ = λ

µ
, our tagged job sees the excess of a job in service, which is just S

(due to Exponential job sizes), and with probability (1− ρ), he sees a setup time, I , because there
are no jobs in service.

Thus, the queueing time of the tagged job, T setup
Q , can be expressed as:

T setup
Q =

Nsetup
Q∑
i=1

Si + ρ · S + (1− ρ) · I

=⇒ E
[
T setup

Q

]
= E

[
N setup

Q

]
· E[S] + ρ · E[S] + (1− ρ) · E[I]

=⇒ E
[
T setup

Q

]
= E

[
T setup

Q

]
· ρ + ρ · E[S] + (1− ρ) · E[I]

=⇒ E
[
T setup

Q

]
=

ρ

1− ρ
E[S] + E[I]

=⇒ E
[
T setup

Q

]
= E

[
T

M/M/1
Q

]
+ E[I]

=⇒ E
[
T setup

Q

]
+ E[S] = E

[
T

M/M/1
Q

]
+ E[S] + E[I]

=⇒ E
[
T setup

Q

]
= E

[
TM/M/1

]
+ E[I]

=⇒ E
[
TM/M/1/setup

]
= E

[
TM/M/1

]
+ E[I]

The last equation above is the same as Eq. (1) with k = 1.

A.2 M/M/1 with Exponential Setup – Proof via PLCFS
Let ρ denote the load in an M/M/1 without setup costs and ρ′ denote the load an M/M/1 with setup
cost I . Likewise B denotes the length of an M/M/1 busy period, while B′ denotes the length of
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the busy period in an M/M/1 with setup cost I . Observe that ρ′ and B are independent of the
scheduling policy used, so long as the scheduling policy is work-conserving.

E[B] =
E[S]

1− ρ

E[B′] =
E[S + I]

1− ρ
(40)

ρ =
E[B]

E[B] + 1
λ

ρ′ =
E[B′]

E[B′] + 1
λ

=

E[S + I]
1−ρ

E[S + I]
1−ρ

+ 1
λ

=
E[I] + E[S]

E[I] + 1
λ

(41)

Response time in an M/M/1 will be denoted by T , while that in an M/M/1 with setup cost I will
be denoted by T setup. To derive E[T setup], we observe that E[T setup] is the same whether we use
FCFS scheduling or PLCFS (Preemptive Last Come First Served) scheduling. To see this, consider
the continuous Markov chain depicting number of jobs in the system under each scheduling policy.
The Markov chains are identical.

Thus it suffices to derive E[T setup] assuming PLCFS scheduling ,which is what we will do. To
derive E[T setup], we will condition on what the arrival sees. There are 3 possibilities:

1. Arrival sees an idle system – with probability 1− ρ′

2. Arrival sees a busy server, and the server is currently in setup mode – with probability ρ′· E[I]
E[B′]

3. Arrival sees a busy server, and the server is not in setup mode – with probability ρ′ · E[B′]−E[I]
E[B′]

What’s important here is that, if a new arrival comes in when the server is in setup mode, the
server stays in setup mode, even while the new arrival is pushed to the top of the stack. This is
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because the setup must complete in full before any new work can begin.

E
[
T setup

]
= (1− ρ′)E[B′] + ρ′ · E[I]

E[B′]
·
(

E[I + S]

1− ρ

)
+ ρ′ · E[B′]− E[I]

E[B′]
· E[S]

1− ρ

= (1− ρ′)E[B′] + ρ′E[I] + ρ′ · E[B′]− E[I]

E[B′]
· E[S]

1− ρ

= (1− ρ′)E[B′] + ρ′E[I] + ρ′ · E[B′]− E[I]

E[S + I]
· E[S] (Using Eq. (40))

=
1
λ
− E[S]

E[I] + 1
λ

· E[B′] +
E[I + S]

E[I] + 1
λ

· E[I] +
E[B′]− E[I]

E[I] + 1
λ

· E[S] (Using Eq. (41))

=
( 1

λ
− E[S]) · E[B′] + (E[I] + E[S]) · E[I] + (E[B′]− E[I]) · E[S]

E[I] + 1
λ

=
E[B′] + λ · E2[I]

λ · E[I] + 1

=

E[I + S]
1−ρ

+ λ · E2[I]

λ · E[I] + 1
(Using Eq. (40))

=
E[I] + E[S]+ρ·E[I]

1−ρ
+ λ · E2[I]

λ · E[I] + 1

=
E[S]

1− ρ
+ E[I]

= E[T ] + E[I]

=⇒ E
[
TM/M/1/setup

]
= E

[
TM/M/1

]
+ E[I]

Again, the last equation above is the same as Eq. (1) with k = 1.

B M/M/k with multiple SETUP servers
In this section, we attempt to analyze the Markov chain for the M/M/2 with exponential setup,
under a different model, wherein multiple servers can be in the SETUP mode simultaneously (in
this case, at most 2). The corresponding Markov chain is shown in Fig. 11.

We first find the limiting probabilities for the Markov chain states in the 1st row, in terms of
π0,0. Next, we solve for the limiting probabilities of being in the states of the 2nd row, in terms
of the solution for the 1st row, which in turn is expressed in terms of π0,0. At this point, we’ll see
that the limiting probabilities of the states in the 2nd row involve messy square roots. This makes
it unlikely that a simple closed-form solution for mean response time exists.
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Figure 11: Markov chain for the M/M/2 with exponential setup times, under the assumption that
multiple servers can be in the SETUP mode simultaneously.

Step 1: Solving the 1st row
The relevant balance equations for the 1st row are given by:

π0,1 · (λ + α) = π0,0 · λ
=⇒ π0,1 = π0,0 · β where β = λ

λ+α
. (42)

π0,j · (λ + 2α) = π0,j−1 · λ for j > 1.
=⇒ π0,j = π0,j−1 · β′ for j > 1, and β′ = λ

λ+2α
.

=⇒ π0,j = π0,0 · β · β′j−1 for j > 1. (43)

We reserve the balance equation for π0,0 for the 2nd row.

Step 2: Solving the 2nd row
The relevant balance equations for the 2nd row are given by:

π1,j · (λ + α + µ) = π1,j−1 · λ + π0,j · 2α + π1,j+1 · µ for j > 1. (44)

The RHS of Eq. (44) above consists of states of the 2nd row as well as states of the 1st row.
Thus, this equation is inhomogeneous, with π0,j being the inhomogeneous part. Solutions for such
equations are given by:

π1,j = A1,1x
j
1 + A1,2β

′j for j > 1 , (45)
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where x1 is a solution of the homogeneous equation:

x1 · (λ + α + µ) = λ + x2
1 · µ (46)

=⇒ x1 =
(λ + α + µ)±

√
(λ + α + µ)2 − 4λµ

2µ
(47)

Clearly, x1 has a very messy form. Thus, we hope that it’s coefficient, A1,1, turns out to be zero.
Unfortunately, we find that A1,1 is in fact, non-zero.

Substituting Eqs. (43) and (45) into Eq. (44) for j > 2, we have:

A1,1x
j
1 · (λ + α + µ) + A1,2β

′j · (λ + α + µ) = A1,1x
j−1
1 · λ + A1,2β

′j−1 · λ + π0,0 · β · β′j−1 · 2α
+A1,1x

j+1
1 · µ + A1,2β

′j+1 · µ

=⇒ A1,2 ·
{
β′(λ + α + µ)− λ− β′2µ

}
= π0,0 · β · 2α (from Eq. (46))

=⇒ A1,2
λα(2µ− 2α− λ)

(λ + 2α)2
= π0,0 ·

2λα

λ + α

=⇒ A1,2 =
2π0,0 · (λ + 2α)2

(λ + α)(2µ− 2α− λ)
(48)

To get A1,1, we want to use a boundary condition for the 2nd row: use the balance equation for
π1,2, which will contain π1,1. However, we first need to evaluate π1,1. This requires us to use the
balance equation for π0,0, which we had intentionally left out in Step 1. Using the balance equation
for π0,0:

π0,0 · λ = π1,1 · µ
=⇒ π1,1 = π0,0 · ρ (49)

We now use Eqs. (43) and (45) in Eq. (44) for j = 2:

A1,1x
2
1 · (λ + α + µ) + A1,2β

′2 · (λ + α + µ) = π1,1 · λ + π0,0ββ′ · 2α + A1,1x
3
1 · µ + A1,2β

′3 · µ

=⇒ A1,1 ·
(
x2

1 · (λ + α + µ− x1µ)
)

= π0,0ρλ + π0,0ββ′ · 2α + A1,2β
′2(β′µ− λ− α− µ) (from Eq. (49))
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=⇒ A1,1 · λ · x1 = π0,0λ
2

(
1
µ

+
2α

(λ + α)(λ + 2α)

)
−A1,2β

′2
(

λ2 + 3λα + 2α2 + 2αµ

λ + 2α

)

=⇒ A1,1 · λ · x1 = π0,0λ
2 (λ2 + 3λα + 2α2 + 2αµ)

µ(λ + α)(λ + 2α)
− (2π0,0λ

2)(λ2 + 3λα + 2α2 + 2αµ)
(λ + α)(2µ− 2α− λ)(λ + 2α)

(from Eq. (48))

=⇒ A1,1 · λ · x1 =
−π0,0λ

2
�����(λ + 2α)(λ2 + 3λα + 2α2 + 2αµ)

µ(λ + α)�����(λ + 2α)(2µ− 2α− λ)

=⇒ A1,1 · λ · x1 =
−π0,0λ

2(λ2 + 3λα + 2α2 + 2αµ)
µ(λ + α)(2µ− 2α− λ)

=⇒ A1,1 · λ · x1 6= 0

=⇒ A1,1 6= 0 (since x1 6= 0 from Eq. (47)) (50)

Thus we see that the expression for limiting probabilities, given by Eq. (45) involves an x1 term with
messy square-roots, and a non-zero coefficient, A1,1. While one can continue along these same lines to
determine the π2,j limiting probabilities, the form of the π1,j limiting probabilities suggests that it is unlikely
that we will find a simple closed-form expression for mean response time.

To better understand the mean response time for the M/M/k with multiple SETUP servers, we applied
matrix analytic methods (see [9] for an excellent reference on matrix analytic methods) to analyze the
Markov chain.

Fig. 12 shows our results for the mean response time versus mean setup time for an M/M/k system with
exponential setup times, for both, the model in Section 3.3 (shown as dots) as well as the model in this
section (shown as crosses). We consider different values of k and ρ = λ · E[X] in our results. Clearly,
the decomposition property of Eq. (1) is not satisfied by the M/M/k with multiple SETUP servers model,
however, it is not clear whether some other decomposition property might exist.
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Figure 12: Matrix-analytic results for an M/M/k with exponential setup costs, under two different
models: (i) The α model, where only one server can be in the SETUP mode at any time (represented
by dots) and (ii) The k ·α model, where multiple servers can be in the SETUP mode simultaneously
(represented by crosses). Results show that the k · α model does not satisfy the decomposition
property as expressed by Eq. (1), whereas the α model does satisfy this property.
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