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Abstract
DNA copy number aberrations serve as key biological markers for cancer and

many other diseases and determining their location has important applications to
cancer diagnosis, drug development, and molecular therapy. Analysis of a variety
of cancers have revealed that gains present in proto-oncogenes and losses of tumor
suppressor genes have serious impacts on growth-limiting functions, cell-death pro-
grams, and self-repair processes of cancerous regions. Methods to efficiently and
accurately detect these aberrations serve as an important step in understanding the
behavior of cancer and have significant consequences in cancer diagnosis and devel-
opment of treatments.

Array comparative genome hybridization (aCGH) provides an efficient method
for full genome analysis of DNA copy numbers, but is corrupted by serious sys-
tematic errors such as impurity of the DNA sample, heterogeneity of copy numbers
among defective cells, and measurement noise. Previous methods have shortcomings
in inference of dosage states, failing to properly annotate genomes displaying spa-
tially correlated samples and large spikes in log-ratio. A new model, the Nonlinear
Genome Imbalance Scanner (NL-GIMscan), is proposed which captures both non-
linear spatial drift of aCGH intensities and measurement noise through fitting state-
specific non-linear hidden trajectories with an overlying first-order Markov switch-
ing process. NL-GIMscan is demonstrated on two different datasets of malignant
tumors and resulted in improved performance over existing models such as hidden
Markov models (HMM). A software implementation of the model is available from
the author.
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Chapter 1

Introduction

DNA copy number aberrations serve as key biological markers for cancer and many other dis-

eases and determining their location has important applications to cancer diagnosis, drug de-

velopment, and molecular therapy. Analysis of a variety of cancers have revealed that gains

present in proto-oncogenes and losses of tumor suppressor genes have serious impacts on growth-

limiting functions, cell-death programs, and self-repair processes of cancerous regions. Methods

to efficiently and accurately detect these aberrations serve as an important step in understanding

the behavior of cancer and have significant consequences in cancer diagnosis and development

of treatments.

Array comparative genome hybridization (aCGH) provides an efficient method for full genome

analysis of DNA copy numbers of individuals [12]. In an aCGH experiment, samples of DNA

from two different populations, the “test” or tumor population and the “control” or normal pop-

ulation, are labeled with differing fluorescence and cohybridized to normal metaphase chromo-

somes. Then, an array of probes uniformly spanning the entire genome measure the ratio of the

fluoresence intensities, forming the log-ratio output. These log-ratio values measure the relative

difference in copy number between the two populations at each measured location. In theory, the

copy numbers are completely determined by this log-ratio output from the aCGH assay, but real
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measurements exhibit severe deviations due to problems such as impurity of the DNA sample,

heterogeneity of copy numbers among defective cells, and noise due to the method of measure-

ment. Thus techniques to determine the true dosage states are required to infer biologically

plausible dosage states from the data.

Early methods of dosage state annotation focused on thresholding, selection of value-windows

based on the relationship between log-ratio value and copy number, to assign dosage states to

clones. These methods tend to largely ignore the actual range of log-ratio values which may not

directly correspond to the theoretical values and fail to capture changes in signal intensity due to

factors beyond copy number aberrations. More modern approaches apply statistical techniques

to perform automatic annotation and fall into four main categories:

Mixture models: Mixture models assume the log-ratio values of the clones are independent

samples generated by a mixture of distributions, each corresponding to a dosage state. This type

of model can be learned using the EM algorithm and clones are assigned to the dosage state with

the highest probability of generating them. For example, Hodgson et al. [5] applied a mixture of

Gaussians and assigned clones to the normal state if they were within three standard deviations

of the mean of the normal state.

Regression models: Regression models aim to fit curves to noisy log-ratio values to capture

overall trend. Such curves facilitate manual annotation via visual inspection or thresholding

through smoothing. However, these types of methods are not suitable for automatic annotation

and mainly facilitate visualization and denoising.

Segmentation models: Due to biological processes, consecutive clones tend to remain in the

same dosage state and changes are typically marked by abrupt changes in log-ratio value. Thus,
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correct annotation often results in dividing the complete genome into segments which are inter-

nally uniform in copy number. Segmentation methods focus on identification of segments and

minimizing within segment variance of log-ratio values. There are many algorithms in this class

including popular methods such as GLAD [6] and DNACopy [11]. Following segmentation,

each segment must be assigned to a dosage state. Several heuristic algorithms have been devel-

oped for this purpose, however, many suffer from identification of numerous states without clear

biological meanings. Algorithms to merge these spurious states have been developed to attempt

to remedy this deficiency. More recently, Lai et al. have taken a more statistical approach to seg-

mentation models with the stochastic change-point model which provides a posterior distribution

for segmentation [8].

Spatial models: Spatial models jointly address clone sequence segmentation and dosage-state

annotation under unified models of aCGH data. Intuitively, joint estimation will likely produce

superior annotations as the quality of the solution for each subproblem directly impacts that of

the other. Fridlyand et al. [2] applied hidden Markov models (HMM) to aCGH profiles, mod-

eling log-ratio values as outputs generated by state-dependent Gaussian distributions. Through

standard HMM algorithms, the methods of Fridlyand et al. learn these emission distributions and

use the Viterbi algorithm to decode the most probable underlying dosage state sequence. Later

extensions to this model include BioHMM developed by Marioni et al. [9] which includes clone

length and position details into the inference algorithm. More recently, the GIMscan algorithm

developed by Shi et al. [15] employs a switching-state space model allowing for linear spatial

drift of state-specific distributions.

Previous computational methods for aCGH analysis remain limited in terms of accuracy and

robustness in annotation of aCGH data. Most previous methods fail to capture spatially corre-

lated samples through independence assumptions. Also, many types of random fluctuations are
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not captured through methods such as mixture and thresholding methods by ignoring the spa-

tial relationship of clones. Many of these methods provide annotations which exhibit frequent

switching between dosage states or fail to capture large spikes in log-ratio, both leading to bio-

logically implausible annotations.

The proposed model, Nonlinear Genome Imbalance Scanner (NL-GIMscan), extends the switch-

ing state-space model of Shi et al. [15] to allow for non-linear spatial drift of the state-specific

distributions and leverage chemical similarity of chromosomes across individuals. The linear

spatial drift incorporated into the GIMscan model is highly dependent on the exact log-ratio

values, allowing for varying degrees of drift based on the observed intensities of each state. NL-

GIMscan corrects these shortcomings in a robust manner and provides high-quality dosage state

annotations.
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Chapter 2

NL-GIMscan: Nonlinear Switching

State-Space Model for aCGH Analysis

NL-GIMscan uses an adaptation of a switching state-space model to describe both spatial drift

of the hybridization signals as well as transitions between dosage states. Within the state-space

model, a two-dimensional state is used to allow for non-linear drift and a parameter sharing

scheme is applied to model similarities across individuals and chromosomes. Section 2.1 de-

scribes the NL-GIMscan switching state-space model for non-linear spatial drift as well as the

aforementioned parameter sharing scheme and Section 2.2 describes the applied learning algo-

rithm.

2.1 Model Formulation

The spatial drift of the hybridization signals within each dosage state is modeled by the hidden

trajectory of a state-space model and the uncertainty in log-ratio values is modeled by zero-mean

Gaussian noise about the hidden trajectory. Each state in the state-space model corresponds to

a two-dimensional vector containing a “position” term corresponding to the spatial drift and a

“velocity” term corresponding to the per-measurement change in spatial drift. Similar to models
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used in many physical processes, an “acceleration” input term is introduced which models non-

linear spatial drift and is learned via EM as described in Section 2.2.

A hidden trajectory is assumed for each unique combination of person, dosage state, and chromo-

some. Acceleration terms are shared across trajectories for different individuals since hybridiza-

tion signals follow a generally comparable pattern across individuals for a given chromosome as

the chemical properties of a particular chromosome are similar among individuals of the same

species. However, the exact magnitude of a given dosage state varies across individuals due to

normal cell contamination. Thus, the mean initial value as well as starting variance for each

distinct dosage state trajectory is shared across chromosomes, but not across individuals, to ac-

count for this variability. Each individual’s aCGH profile corresponds to one specific laboratory

experiment so the output variance, corresponding to the variance of the log-ratio values about the

hidden trajectory, is assumed to be specific to an individual. A similar parameter sharing scheme

is applied by Shi et al. [15], however sharing of acceleration terms does not necessarily impose

linear spatial drift.

For an individual j, chromosome k, and dosage state m, the state-space model is defined by

X
(m,j)
t+1,k = AX

(m,j)
t,k +Bu

(m)
t,k + w

(m,j)
t,k A =




1 1

0 1


 , B =




1/2

1


 (2.1)

where X(m,j)
t,k is the state of the hidden trajectory at measurement t, u(m)

t,k is the acceleration input

term, and w(m,j)
t,k is the position noise. 1 Gaussian noise is assumed thus wk ∼ N(0,Σx). The

initial state X(m,j)
1,k is assumed to be distributed N(µ(m,j), σ(m,j)).

A first-order Markov process over the state-space model is applied to model the dosage state

transitions. At each clone t, the multinomial variable (S
(1,j)
t,k , ..., S

(M,j)
t,k ) predicts the dosage state

1A table of variables and common notation is provided in Appendix A.
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for the clone where the binary variable S(m,j)
t,k is one if the predicted state at position t for an

individual j on chromosome k is m and zero otherwise. The transition matrix Φ contains the

first-order transition probabilities, i.e. Φm1m2 = P
(
S

(m2,j)
t+1,k = 1|S(m1,j)

t+1,k = 1
)

. The initial state

is parameterized such that (S
(1,j)
1,k , ..., S

(M,j)
1,k ) ∼ Multinomial(1, π). The model assumes the

observed log-ratio values are generated by the dosage state and state-space model positions by

y
(j)
t,k =

M∑

m=1

CX
(m,j)
t,k S

(m,j)
t,k + z

(j)
t,k C =

[
1 0

]
(2.2)

where z(j)
t,k ∼ N(0,Σy) is the Gaussian measurement noise. This corresponds to the log-ratio

value being the position term of the state-space model selected by the dosage state at clone t plus

zero-mean Gaussian measurement noise.

The log-likelihood for each state-space model is

L(m,j)
k (θ) =− 1

2

M∑

m=1

(
X

(m,j)
1,k − µ(m,j)

1

)′
(σ(m,j))−1

(
X

(m,j)
1,k − µ(m,j)

1

)

− 1

2

M∑

m=1

T∑

t=2

(
X

(m,j)
t,k − AX(m,j)

t−1,k −Bu
(m)
t−1,k

)′ (
Σx

(m)
k

)−1 (
X

(m,j)
t,k − AX(m,j)

t−1,k −Bu
(m)
t−1,k

)

− 1

2

M∑

m=1

log |Σx
(m)
k | −

1

2

M∑

m=1

log |σ(m,j)|+ C1 (2.3)

where C1 is a constant. Combining the likelihood of the state-space models with the Markov

switching process yields a complete log-likelihood of

L(θ) =
∑

k,j,m

L(m,j)
k (θ)− 1

2

∑

k,j,m

T∑

t=1

S
(m,j)
t,k

(
y

(j)
t,k − CX

(m,j)
t,k

)′
(Σ(j)

y )−1
(
y

(j)
t,k − CX

(m,j)
t,k

)

+
∑

k,j,m

S
(m,j)
1,k log π(m) − TK

2

∑

j

log |Σ(j)
y |+

∑

k,j

T∑

t=2

M∑

m=1

M∑

n=1

S
(m,j)
t,k S

(n,j)
t−1,k log φm,n + C2

(2.4)

where C2 is a constant.
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2.2 EM Algorithm

The model can be learned efficiently using a generalization of the EM algorithm. The exact

E-step for switching state-space models in general is intractable as the hidden state variables be-

come conditionally dependent given the observation sequence as shown in Figure 2.1. Instead,

the posterior distribution P is approximated by a distribution Q(h,q) from a tractable subfam-

ily of distributions [4]. The modified EM algorithm updates the variational parameters {h,q}

to minimize the KL-divergence between the approximate and true posterior distributions. The

tractable subfamily used is a set of uncoupled state-space models with a discrete Markov chain.

The updates of the variational parameters are carried out using fixed-point equations [4] which

iteratively increase a lower-bound on the log-likelihood.
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Figure 13: (a) Graphical structure of dosage-state-specific Kalman filter for dosage state m. X
(m)
t is the hidden

variable at clone t on the trajectory, and Y
(m)
t representing the corresponding observed variable of the Kalman filter.

(b) Graphical structure of the switching Kalman filter (SKF) model. The model consists of M linear chains of Kalman
filters (X(1:M)

1:T ), a Markov chain of switching processes (S1:T ) and a series of observed variables (Y1:T ). (c) Graphical
structure of the uncoupled model which represents the tractable subfamily of distributions to approximate the posterior
distribution of the SKF model.

of tractable linear chains.

4.3 SKF formulation for aCGH analysis

Given the dosage-state-specific Kalman filter for M dosage states, a switching Kalman filter gen-

erates the LR value at each position from one of the outputs. The choices are spatial-dependent

and are determined by a discrete switching process which evolves according to Markov dynamics.

The generation of the observed LR values in SKF can be formulated as:

P (S
(m)
t = 1|S(n)

t−1 = 1) = φmn

Yt =
M∑

m=1

Y
(m)
t S

(m)
t

where St is the M -dimensional multinomial switching variables for clone t following 1×M binary

coding scheme, Yt is the observed variable representing LR value of clone t. Φ = {φmn} is the

transition matrix for the hidden Markov dynamics. The initial switching state follows a multino-

mial distribution parameterized by π: S1 ∼ Multinomial(1, π). The observation Yt is a mixture
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t is the hidden

variable at clone t on the trajectory, and Y
(m)
t representing the corresponding observed variable of the Kalman filter.

(b) Graphical structure of the switching Kalman filter (SKF) model. The model consists of M linear chains of Kalman
filters (X(1:M)

1:T ), a Markov chain of switching processes (S1:T ) and a series of observed variables (Y1:T ). (c) Graphical
structure of the uncoupled model which represents the tractable subfamily of distributions to approximate the posterior
distribution of the SKF model.
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4.3 SKF formulation for aCGH analysis

Given the dosage-state-specific Kalman filter for M dosage states, a switching Kalman filter gen-

erates the LR value at each position from one of the outputs. The choices are spatial-dependent

and are determined by a discrete switching process which evolves according to Markov dynamics.

The generation of the observed LR values in SKF can be formulated as:

P (S
(m)
t = 1|S(n)

t−1 = 1) = φmn

Yt =
M∑

m=1

Y
(m)
t S

(m)
t

where St is the M -dimensional multinomial switching variables for clone t following 1×M binary

coding scheme, Yt is the observed variable representing LR value of clone t. Φ = {φmn} is the

transition matrix for the hidden Markov dynamics. The initial switching state follows a multino-

mial distribution parameterized by π: S1 ∼ Multinomial(1, π). The observation Yt is a mixture

33

(b)

Figure 2.1: (a) Graphical structure of NL-GIMscan depicting M chains of state-space models, a

Markov chain of switching processes, and the series of observed log-ratio values for a specific

individual’s chromosome. (b) Graphical structure of the uncoupled switching state-space model

representing the tractable subfamily of distributions employed in the learning algorithm.
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In the generalized EM algorithm, the E-step iteratively updates the variational parameters to

find the best approximate posterior distribution. The M-step then maximizes the aforementioned

lower-bound on the log-likelihood. In general, the KL-divergence minimized may have multiple

minima thus deterministic annealing is applied to avoid local minima [4]. Appendix C contains

the equations necessary to compute the E-step and M-step of the algorithm.

9
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Chapter 3

Experiments and Results

3.1 Simulated Data

The learning algorithm and model were first validated on simulated “high quality” aCGH datasets

containing thirty individuals with 200 clones per chromosome. The datasets were generated us-

ing five dosage states corresponding to deletion, loss, normal, gain, and amplification and the

means of the latent trajectories were assigned to the theoretical values with a standard deviation

of 0.05. The “acceleration” terms were randomly generated from zero-mean Gaussian distribu-

tions with a standard deviation of 5 × 10−5, simulating a low degree of spatial drift. Twelve

datasets were generated according to this scheme and the model was learned on each. On av-

erage, NL-GIMscan predicted the states with 99.41% accuracy. When the same datasets were

learned using HMMs, accuracy decreased slightly to 98.06%. Although the relative difference is

small, the HMM suffers in light of a very small degree of spatial drift present in a high quality

sample. Real-world datasets display much higher drift and increased correlation between suc-

cessive clones which the HMM cannot properly annotate as shown in Sections 3.2 and 3.3.

Figure 3.1 shows the true and NL-GIMscan annotated simulated datasets for one individual. As

can be seen, there is some visual ambiguity as to the correct states on chromosomes 7, 18, and

11



19 due to drift of the log-ratio values with dosage states appearing to converge. However, the

model does not exactly infer the acceleration terms across the datasets with an average squared

error of 2.6206× 10−9 per acceleration term. Instead, NL-GIMscan learns a smoother trajectory

which, although not exactly reproducing the true hidden trajectory, still provides highly accurate

state predictions accomplishing the intended goal.
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Figure 3.1: True state annotations for a individual from a simulated “high quality” aCGH dataset

with five dosage states (top) and NL-GIMscan annotations for the individual (bottom). For each

plot, the upper portion depicts the log-ratio values color-coded by dosage state with curves de-

picting the hidden trajectories of the dosage state-space models and vertical lines denoting divi-

sions between chromosomes. The bottom portion depicts the dosage state of each clone.
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3.2 Colorectal Cancer Dataset

NL-GIMscan was learned for a dataset of aCGH profiles for 125 primary colorectal tumors hy-

bridized onto an array consisting of 2,463 clones collected by Nakao et al [10]. Nakao et al.

identified losses often occurring in 8p, 17p, 18p, and 18q and gains often occurring in 8q and

20q via thresholding methods. On average, Nakao et al. observed that 17.3% of the entire

genome was altered in the samples.

NL-GIMscan identified 29.6% of the entire genome on average as either gained or lost (13.04%

and 16.56% respectively). Figure 3.2 shows the fraction of cases gained or lost as identified

by the model as well as by Nakao el al. As can be seen, similar patterns are observed and the

aforementioned losses and gains are identified by the model although the exact percentage varies

slightly. Across the population, the model identified high occurances of gains or amplifications

in chromosome 7, 8q, 13, 20, and 23 as well as high occurances of losses or deletions in 1p, 5q,

8p, 11p, 14, 15, 17p, 18, and 21. These results concur with those of Nakao et al. [10], in addition

to identifying additional abberrations which likely were missed due to use of methods ignoring

spatial drift. The HMM identified similar patterns of aberrations as NL-GIMscan, but predicted

significantly greater occurances of aberrations.

To demonstrate the robustness of the NL-GIMscan, a small-scale study of representative chro-

mosomes containing typical spatial drift patterns demonstrating shortcomings in conventional

methods is provided. For comparison purposes, HMM methods were re-implemented according

to Fridlyand et al. [2] with parameter sharing extensions similar to our model to allow for full

genome analysis.

Pattern I: Flat-Arch. Figure 3.3 displays the flat-arch pattern present in the log-ratio measure-

ments of chromosome 4 of individual X77. This pattern is defined by elevated log-ratio values in
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Figure 3.2: Fraction of cases gained or lost as identified by NL-GIMscan (top), by Nakao et al

[10] (middle), and by HMM (bottom) for colorectal cancer dataset. Data are ordered by chromo-

somal position of the clones. Solid vertical lines denote the beginning and end of chromosomes

and dotted lines denote the location of the centromeres. Lower bars represent losses or deletions

while upper bars represent gains or amplifications.
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the central region of the chromosome surrounded by lower magnitudes at the telomere regions.

Along the chromosome, the hybridization intensities continuously evolve spatially with no clear

abrupt changes that signal dosage-state aberrations. NL-GIMscan fits this pattern well, inferring

a single non-linear trajectory to the dosage-state. However, methods with invariant state-specific

hybridization intensities fail to capture the spatial drift due to the high dispersion of log-ratio

values. The HMM may either fit the pattern as a single high-variance Gaussian distribution or

divide the pattern into two overlapping Gaussians. As shown in Figure 3.3(b), this may result in

inferior state estimation and biologically implausible results due to frequent switching between

dosage states along the chromosome.
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Figure 3.3: Log-ratio and state estimates for chromosome four of individual X77 displaying the

flat-arch pattern. Figure 3.3(a) shows state estimates under NL-GIMscan with curves showing

the trajectories of the state-space models. Figure 3.3(b) shows estimates under the HMM with

horizontal lines showing the means of the state-dependent Gaussian output distributions. Figure

3.3(c) shows estimates under the thresholding method of Nakao el al. For each plot, the upper

portion shows the log-ratio values color-coded by state prediction with a vertical dashed line at

the centromere while the lower portion shows the state prediction for each clone in the series.

Pattern II: Step. The step pattern occurs in moderately noisy log-ratio measurements in locations

where a quantum change of log-ratio magnitudes occurs between ends of a chromosome but the
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exact boundary lacks sharpness. Figure 3.4 displays the step pattern present in the log-ratio mea-

surements of chromosome 8 of individual X265. This specific sample also exhibits several local

spikes, which are potential dosage-state changes. Both NL-GIMscan and the HMM provide rea-

sonable annotations with minor errors. The HMM does not fully capture the spikes, especially in

the region surrounding clone 100. NL-GIMscan better captures the spikes present in the sample

and the state change between ends of the chromosome, but predicts too many switches between

the normal and gain states around the spike.
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Figure 3.4: Log-ratio and state estimates for chromosome eight of individual X265 displaying

the step pattern. Figure 3.4(a) shows state estimates under NL-GIMscan with curves showing

the trajectories of the state-space models. Figure 3.4(b) shows estimates under the HMM with

horizontal lines showing the means of the state-dependent Gaussian output distributions. Figure

3.4(c) shows estimates under the thresholding method of Nakao el al. For each plot, the upper

portion shows the log-ratio values color-coded by state prediction with a vertical dashed line at

the centromere while the lower portion shows the state prediction for each clone in the series.

Pattern III: Spikes. The spike pattern is characterized by short sequences of sudden increases in

log-ratio value as shown in Figure 3.5, depicting chromosome 8 of individual X318. In this sam-

ple, loss occurs in the majority of the 8p arm with spikes near clones 75, 110, and 140 on the 8q

arm. The HMM fails to properly annotate the states, assigning two overlapping Gaussians to the
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normal and gain states causing biologically implausible state-switching. However, NL-GIMscan

properly captures all the aforementioned spikes as well as the state change at the end of the 8q

arm.
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Figure 3.5: Log-ratio and state estimates for chromosome eight of individual X318 displaying

the spike pattern. Figure 3.5(a) shows state estimates under NL-GIMscan with curves showing

the trajectories of the state-space models. Figure 3.5(b) shows estimates under the HMM with

horizontal lines showing the means of the state-dependent Gaussian output distributions. Figure

3.5(c) shows estimates under the thresholding method of Nakao el al. For each plot, the upper

portion shows the log-ratio values color-coded by state prediction with a vertical dashed line at

the centromere while the lower portion shows the state prediction for each clone in the series.

When compared with both the HMM method and the thresholding approach of Nakao et al.

[10], NL-GIMscan infers smoother, more biologically plausible dosage states across the whole

genome by capturing the spatial drift present in the aforementioned patterns. Figure 3.7 shows

the whole genome results for individuals X31, X40, and X77 predicted by the model and the

thresholding methods reported in [10]. A visual inspection reveals that the thresholding method

predicts a greater degree of state switching than NL-GIMscan in segments which do not ap-

pear to correspond to actual dosage state changes. Since the thresholding method inferred five

dosage states opposed to the model which inferred three, for comparison purposes, the gain and

amplification states as well as the loss and deletion states of the thresholding method will each
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be considered single states. The thresholding method predicted 27,516 copy-number breakage

points across the 2,463 clones and 125 individuals while NL-GIMscan predicted 10,693, a reduc-

tion of 61%. The length of predicted segments by NL-GIMscan tend to be longer as compared to

the thresholding method which are more dominated by single clone segments. Figure 3.6 shows

the distribution of segment lengths for both NL-GIMscan and the thresholding method.
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Figure 3.6: Histogram of lengths of segments (in clones) as inferred by NL-GIMscan (a) and by

thresholding performed by Nakao et al [10] (b).
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Figure 3.7: Dosage state annotations by NL-GIMscan and threshold for individuals X31 (top),

X40 (middle), and X77 (bottom). For each plot, the upper portion shows the log-ratio values

color-coded by state prediction with a vertical dashed line at the centromere and solid vertical

lines at the end of each chromosome while the lower portions show the state prediction for each

clone in the series by NL-GIMscan and thresholding methods.
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3.3 Non-Small Cell Lung Cancer Dataset

NL-GIMscan was learned for a dataset of aCGH profiles for 23 non-small cell lung cancer

(NSCLC) tumors hybridized onto an array consisting of 12,625 clones collected by Dehan et

al [1]. Dehan et al. identified frequent amplifications of 3q and 8q and deletions of 3p21.31 as

well as less common amplifications of 7q22.3-31.31 and 12p11.23-13.2 and deletion of 11q12.3-

13.3. Previous studies have revealed gains of 1q21-31, 3q26-qter, 5p13-14, and 8q23-qter as well

as loss of 3p14-21, 8p21-23, and 17p12-13 are common in NSCLC samples.

NL-GIMscan identified 15.82% of the entire genome as altered. Figure 3.8 shows the fraction

of cases gained or lost as identified by the model as well as by the HMM and Dehan et al [1] .

As can be seen, NL-GIMscan predicts many short segments of gains or losses in common across

the individuals. The model does not predict nearly as many losses or deletions among the tumors

as gains or amplifications. Visual inspection of the log-ratio data does not reveal many clear

breakage points signaling a change in dosage state beyond short sequences of spikes, reflected in

the aggregate results.

To evaluate the dosage state annotations of the model on this dataset, consider two NSCLC

tumors, 2002T and 2075T, with log-ratio values typical of this dataset. The full genome anno-

tations for these tumors are below in Figure 3.9. Through AIC model selection, a model with

four dosage states was selected corresponding to loss/deletion, normal, gain, and amplification.

A visual inspection reveals that the vast majority of values appear to be clustered around zero,

the theoretical value for the normal dosage state, with a moderately high variance. A few values

appear to be slightly lower than the main cluster which are assigned to the loss state while a few

values appear slightly higher which are assigned to the gain state. There are several spikes with

values well above points assigned to the gain state which the model assigns to the amplification

state with log-ratios ranging from 1.5 to 2.5. Chromosome 5 of tumor 2002T and chromosome
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Figure 3.8: Fraction of cases gained or lost as identified by NL-GIMscan (top), by HMM (mid-

dle), and by Dehan et al. (bottom) for non-small cell lung cancer dataset [1]. Data are ordered by

chromosomal position of the clones. Solid vertical lines denote the beginning and end of chro-

mosomes and dotted lines denote the location of the centromeres. Lower bars represent losses or

deletions while upper bars represent gains or amplifications.
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Figure 3.9: Dosage state annotations for tumors 2002T (top) and 2075T (bottom) as predicted

by NL-GIMscan with curves showing the state-specific trajectories. For each plot, the upper

portion shows the log-ratio values color-coded by state prediction with a vertical dashed line at

the centromere and solid vertical lines at the end of each chromosome while the lower portion

shows the state prediction for each clone.
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4 of 2075T each contain a single point with a significantly smaller log-ratio value than the oth-

ers. If the model had adopted five states, these points likely would be assigned to the deletion

state. Unlike the colorectal tumors examined in Section 3.2, the log-ratio values exhibit few clear

segmentation points corresponding to dosage state changes beyond the aforementioned spike pat-

tern.

For comparison purposes, Figure 3.10 contains dosage state annotation for tumors 2002T and

2075T via HMM. AIC model selection chose a model with three dosage states corresponding to

loss, normal, and gain. Since the samples lack clearly defined segmentation points, the HMM

fits two highly overlapping Gaussians to the central cluster causing frequent switching between

dosage states. The spikes with intensities well above the majority of other points are correctly

assigned to the gain state. The HMM’s overlapping Gaussians do capture the trend of the main

cluster to alternate between slightly higher and slightly lower bands of log-ratio values, however,

the overall continuous flow of points does not appear to indicate a dosage state change and in-

stead likely suggests detection of some type of systematic error.

There are several genes which NL-GIMscan identifies as either gained or amplified in at least

80% of tumors analyzed and as lost in at least 55% of tumors analyzed. Table 3.1 contains a list

of these genes as well as brief descriptions of each. Five genes were identified as having high

occurances of either gains/amplifications or losses/deletions occur in areas with known copy

number polymorphisms (CNPs) which may account for the model’s detection of aberrations due

to CNPs in the control sample.

NL-GIMscan infers a somewhat different dosage state annotation from the z-score method em-

ployed by Dehan et al. The z-score method compares the measured signals of the test samples

to the measured signals of four different normal male placentas [1].
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Figure 3.10: Dosage state annotations for tumors 2002T (top) and 2075T (bottom) as predicted

by HMM with curves showing the state-specific Gaussian means. For each plot, the upper por-

tion shows the log-ratio values color-coded by state prediction with a vertical dashed line at the

centromere and solid vertical lines at the end of each chromosome while the lower portion shows

the state prediction for each clone.
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At each clone, a z-score is computed by

Z
(j)
t,k =

y
(j)
t,k − ȳ∗t,k
σ∗t,k

(3.1)

where ȳ∗t,k is the mean signal of the normal male samples at the clone and σ∗t,k is the standard

deviation of the signals of the normal male samples at the clone. A threshold for the Z values is

selected for determination of potential gains and losses. This method has the advantage of using

multiple normal samples, decreasing the impact of copy number polymorphisms and other noise

in the control samples.

Figure 3.11 contains dosage state predictions using the single-clone z-score method when com-

pared to four normal males with a threshold of |Z| > 3. A visual inspection reveals that this

method roughly corresponds to a thresholding method (with some exceptions) on the modified

log-ratio values consisting of the log-ratio of the tumor signal to the mean normal male signal.

The z-score method predicts a large degree of oscillation between dosage states while the model

predicts a smoother annotation, however, this may be due to averaging and variance across the

normal male samples. The overall pattern of each method is similar, though the model incorpo-

rates correlation between samples which the z-score method lacks, likely accounting for some

of the additional smoothness. Unlike the model, the z-score method can be used for annotation

of sequences of clones rather of single clones. This provides an advantage at determining popu-

lation aberrations of entire arms of chromosomes. The model and z-score method agree on the

dosage state of 79.25% of clones across the 23 individuals on average.
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Figure 3.11: Dosage state annotations for tumors 2002T (top) and 2075T (bottom) as predicted

by the Z-score method with |Z| > 3. For each plot, the upper portion shows the LR values

computed as the log ratio of the tumor sample to the mean of the four normal male samples

color-coded by state prediction with a vertical dashed line at the centromere and solid vertical

lines at the end of each chromosome while the lower portion shows the state prediction for each

clone.
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Table 3.1: Genes identified as gained/amplified in 80% of NSCLC tumors and genes identified

as lost/deleted in at least 55% of NSCLC tumors. Genes identified whose dosage state may

be influenced by copy number polymorphisms in the control sample according to the UCSC

Genome Browser (http://genome.ucsc.edu/index.html) [7] are denoted below.

Clone Chr Type Gene Cytoband CNP Description
250 1 Gain NFIA 1p31.3-p31.2 - nuclear factor I/A
590 1 Gain LEFTB 1q42.1 - left-right determination, factor B

1106 3 Gain ACY1 3p21.1 - aminoacylase 1
1107 3 Gain ACY1 3p21.1 - aminoacylase 1
1108 3 Gain ACY1 3p21.1 - aminoacylase 1
1109 3 Gain ACY1 3p21.1 - aminoacylase 1
1373 4 Gain PROL3 4q13.3 - proline rich 3
2221 7 Gain AASS 7q31.3 - aminoadipate-semialdehyde synthase
2434 8 Gain ADCY8 8q24 - adenylate cyclase 8 (brain)
3425 12 Gain SLC25A3 12q23 - solute carrier family 25, member 3
4197 17 Gain PIGL 17p12-p11.2 Redon [13] phosphatidylinositol glycan, class L
4517 18 Gain SCOP 18q21.32 - SCN Circadian Oscillatory Protein (SCOP)
5100 22 Gain GGT2 22q11.23 - gamma-glutamyltransferase 2

861 2 Loss MGC33864 2q23.3 Redon [13] hypothetical protein MGC33864
862 2 Loss REPRIMO 2q23.3 - candidate mediator of the p53-dependent G2 arrest
863 2 Loss GALNT5 2q24.1 Sebat [14] UDP-N-acetyl-alpha-D-galactosamine:polypeptide

N-acetylgalactosaminyltransferase 5 (GalNAc-T5)
1258 3 Loss KIAA0861 3q27.3 - KIAA0861 protein
1272 3 Loss EPHB3 3q21-qter - EphB3
1552 5 Loss BIRC1 5q13.1 Sebat [14] baculoviral IAP repeat-containing 1
1691 5 Loss TTC1 5q32-q33.2 - tetratricopeptide repeat domain 1
1692 5 Loss SLU7 5q34 - step II splicing factor SLU7
1693 5 Loss ATP10B 5q34 - ATPase, Class V, type 10B
1694 5 Loss ATP10B 5q34 - ATPase, Class V, type 10B
1736 5 Loss GFPT2 5q34-q35 - glutamine-fructose-6-phosphate transaminase 2
1737 5 Loss MGC1127 5q35.3 - hypothetical gene MGC1127
1848 6 Loss C6orf10 6p21.3 Redon [13] chromosome 6 open reading frame 10
2031 6 Loss XAP135 6q27 - PHD zinc finger protein XAP135
2032 6 Loss PSMB1 6q27 - proteasome subunit, beta type, 1
3162 11 Loss FLJ10726 11q23.2 - hypothetical protein FLJ10726
4368 17 Loss RISC 17q23.2 - likely homolog of rat and mouse

retinoid-inducible serine carboxypeptidase
4937 20 Loss GHRH 20q11.2 - growth hormone releasing hormone
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Chapter 4

Discussion

Visual inspections of the results reveal that NL-GIMscan performs well at identifying discrete

changes in copy number. However, the EM algorithm employed is highly sensitive to parameter

initialization. Choice of the initial position of the trajectory µ and output variance Σy greatly

change the quality of the annotations. However, simple human intervention can significantly

improve results. A k-means algorithm was employed to segment the observations into multiple

states to initialize the individual-specific µ values, but results were significantly improved after

manual adjustment of these means based on quick visual inspections. Given this finding, future

work will include software packages to allow users to effectively improve annotations through

adjustment of initialization parameters in an efficient manner.

The parameter-sharing scheme is crucial for the success of the model in annotating dosage states

of populations, however, it also offers some potential weaknesses which were not addressed by

the results. As presented, the model cannot be fit for a single individual as the input terms u can

be adapted to fit a single trajectory to all log-ratio values as this will represent the global maxi-

mum of the log-likelihood in this situation. Similar issues will likely result in annotating dosage

states for small populations, though the minimum acceptable size is unclear. In addition, the

parameter sharing scheme of the input terms assumes similar patterns of aberrations throughout
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the population. Although such a scheme is appropriate when examining tumors of similar types,

it remains to be seen if this scheme will produce high-quality annotations when applied to aCGH

profiles of tumors of differing types.

Future extensions of NL-GIMscan may consider the distance between adjacent clones and the

length of each clone in estimation, similar to that of BioHMM [9]. In addition, incorporating

joint estimation of copy numbers and clone-sequence segmentation within the context of the

aCGH model may improve accuracy.
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Appendix A

Notation and Variables

Symbol Size Description
Parameters/Variables

A 2× 2 State dynamics matrix
B 2× 1 State input matrix
C 1× 2 Output matrix
u

(m)
t,k 1× 1 Input at position t on chromosome k for dosage state m
σ(m,j) 1× 1 Standard deviation of initial state for dosage state m, individual j
X

(m,j)
t,k 2× 1 State vector at position t on chromosome k for dosage state m, individual j

y
(j)
t,k 2× 1 Observed LR at position t on chromosome k for individual j

Σx
(j)
k 2× 2 State noise covariance matrix on chromosome k for individual j

Dimensions

J Number of individuals
K Number of chromosomes
T Length of observation sequence
M Number of dosage states
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Appendix B

Software

The provided analyses were produced using a package developed for Java with an interface to

MATLAB. The source code and binary packages for both Java and MATLAB are available on-

line at http://www.andrew.cmu.edu/˜jsd1/Thesis. Both datasets have been made

available on this page as well as instructions for using the software packages. The Java software

package implements the EM algorithm described in Appendix C in a multi-threaded approach to

leverage multiple cores.

33

http://www.andrew.cmu.edu/~jsd1/Thesis


34



Appendix C

EM Algorithm

The equations below are required to compute the expectations in the E-step of the learning al-

gorithm as well as re-estimate the parameters in the M-step. For additional details to implement

the learning algorithm including computation of variational parameters through fixed-point equa-

tions and order of computations, refer to [4].

C.1 E-Step

Consider the states and predicted log-ratio values for a given hidden trajectory. Let xτt denote

E
[
X

(m,j)
t,k |{y(j)

1,k, ...,y
(j)
τ,k}
]

and let V τ
t = var

(
X

(m,j)
t,k |{y(j)

1,k, ...,y
(j)
τ,k}
)

. In order to calculate the

expected log-likelihood, the following expectations are necessary and computed by the Kalman

filter forward recursions [3] with the data weighted by the variational parameter h:

xt−1
t = Axt−1

t−1 +Bu
(m)
t−1,k (C.1)

V t−1
t = AV t−1

t−1 A
′ + Σx

(j) (C.2)

Kt = V t−1
t C ′

(
CV t−1

t C ′ +
Σy

(j)

ht

)−1

(C.3)

xtt = xt−1
t +Kt(y

(m)
t,k − Cxt−1

t ) (C.4)
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V t
t = V t−1

t −KtCV
t−1
t (C.5)

where x0
1 = µ(m,j) and V 0

1 = σ(m,j). In order to compute xTt , E
[
X

(m,j)
t,k X

(m,j)
t,k

′]
= V T

t +

xTt x
T
t , and E

[
X

(m,j)
t−1,kX

(m,j)
t,k

′]
= V T

t,t−1 + xTt x
T
t−1
′ where T is the total number of observations

the following Kalman filter backward recursions are required [3]:

Jt = V t
t A
′(V t

t+1)
−1 (C.6)

xTt = xtt + Jt(x
T
t+1 − Axtt) (C.7)

V T
t = V t

t + Jt(V
T
t+1 − V t

t+1)J
′
t−1 (C.8)

V T
t,t−1 = V t

t J
′
t−1 + Jt(V

T
t+1,t − AV t

t )J ′t−1, V
T
T,T−1 = (I −KTC)AV T−1

T−1 . (C.9)

Expectations for the hidden Markov model component of the switching state-space model are

computed using the forward-backward algorithm with observations weighted by q. Let α(m,j)
t,k =

P
(
y

(j)
1...t,k, S

(m,j)
t,k = 1

)
and let β(m,j)

t,k = P
(
y

(j)
t+1...T,k|S

(m,j)
t,k = 1

)
. The following formulas imple-

ment the forward-backward algorithm:

α
(m,j)
1,k = πmq

(m,j)
1,k , α

(m,j)
t,k = qm,jt,k

∑

i

αi,jt−1,kΦi,m (C.10)

β
(m,j)
T,k = 1, β

(m,j)
t,k =

∑

i

Φm,iq
i,j
t+1,kβ

i,j
t+1,k. (C.11)

The expectations E
[
S

(m,j)
t,k

]
and E

[
S

(m1,j)
t,k S

(m2,j)
t+1,k

]
can be computed using the probabilities in

Equations C.10 and C.11 as follows:

E
[
S

(m,j)
t,k

]
=

α
(m,j)
t,k β

(m,j)
t,k∑

i α
(i,j)
t,k β

(i,j)
t,k

(C.12)

E
[
S

(m1,j)
t,k S

(m2,j)
t+1,k

]
=

E
[
S

(m1,j)
t,k

]
Φm1,m2q

(m2,j)
t+1,k β

(m2,j)
t+1,k

β
(m1,j)
t,k

. (C.13)
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C.2 M-Step

Using the expectations computed in Section C.1 for each hidden trajectory, the parameters

π,Φ, µ,u,Σy are updated to maximize the expected log-likelihood. The resulting update equa-

tions are given below.

u
(m),new
t,k =

B′
∑J

j=1 Σx
(j)
k

−1
E
[
AX

(m,j)
t,k −X(m,j)

t+1,k |{y
(j)
1,k, ..., y

(j)
T,k}

]

B′
(∑J

j=1 Σx
(j)
k

−1
)
B

(C.14)

µ(m,j),new =
1

K

K∑

k=1

X
(m,j)
1,k (C.15)

πnewm =

∑
k,j E

[
S

(m,j)
1,k |{y

(j)
1,k, ..., y

(j)
T,k}

]

∑
m,k,j E

[
S

(m,j)
1,k |{y

(j)
1,k, ..., y

(j)
T,k}

] (C.16)

Φnew
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=
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∑
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t,k S
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]
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∑
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E
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Σ(j)
y

new
=

1

TK
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m,k,t

E
[
S

(m,j)
t,k

(
y

(j)
t,k

2 − 2CX
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