Evaluating Predicates over Encrypted Data

Elaine Shi

CMU-CS-08-166
October, 2008

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Adrian Perrig (CMU), Chair
Dawn Song (CMU/U.C.Berkeley)
Manuel Blum (CMU)
Brent Waters (SRI/U.T.Austin)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright(C) 2008 Elaine Shi

This research was supported in part by CylLab at CarnegieoMelhder grants DAAD19-02-1-0389, grants CNS-
0347807 and CT-CS 0433540 from the National Science Foiomjat grant from General Motors through the GM-
CMU Collaborative Research Laboratory, and by a gift frons@&ua

The views and conclusions contained here are those of thermsuand should not be interpreted as necessarily rep-
resenting the official policies or endorsements, eitheresgor implied, of ARO, Bosch, CMU, GM, NSF, or the
U.S. Government or any of its agencies.

Keywords: Predicate encryption, applied cryptography, bilineaugro

Abstract

Predicate encryptiors a new encryption paradigm where the secret key owner can
perform fine-grained access control over the encrypted datparticular, the secret
key owner can generate a capability corresponding to a quenicate (e.g., whether
an encrypted email contains the keywardbICAL), and the capability allows one to
evaluate the outcome of this predicate on the encrypted data

The high-level goal of this thesis is to build predicate gption systems that are
efficient, support expressive queries and rich operati@ns. contributions are sum-
marized below:

1. We propose a predicate encryption scheme suppariing-dimensional range
queries Prior to this work, researchers have constructed scheopgog equal-
ity tests. Hence, our scheme supports more expressiveeguban before. At
the core of this construction is a technique to support autjue queries without
leaking the outcome of each individual clause.

2. We study how todelegate capabilitiesn predicate encryption schemes. To
demonstrate why delegation may be interesting, imagineAhee has a ca-
pability, and she wishes to delegate to Bob a more resteic@pability allowing
him to decrypt a subset of the information Alice can learnulibe plaintext
encrypted. We propose a security definition for delegatmal, build a scheme
supporting delegation and conjunctive queries.

3. Most prior work focuses on hiding the plaintext (encodethie ciphertext), but
does not provide guarantees about the secrecy of the g(eniesded in the ca-
pabilities). In other words, given a capability, one migbktdble to infer from it
what the query predicate is. We study hovhide the query predicateand pro-
pose a scheme supporting inner-product queries that Heeguery predicates
in addition to the plaintext.

Acknowledgments

| am indebted to my thesis committee:
the “big boss” Adrian,

e my “pseudo-advisor’” Dawn,

e my “academic uncle” Brent,

¢ and the most kind and understanding Manuel.
Without your help, this thesis would not have been possible.

Apart from my committee members, John Bethencourt, HubkanCand Emily
Shen also contributed to this thesis.

I would also like to thank the English and Greek alphabet, f@am sure the no-
tations would have become more confusing, had | used Chutesacters to denote
things.

Vi

Contents

[1__Introduction 1
[L.1__What is Predicate ENCryption?ot e 1
L2 Related Wolk 1
[1.3__Applications of predicate encryption 2
[1.4 Efficiency and expressiveniess v v oot e e e e e 4
1.5 Summary of contributiohs 4

[2__Formal Definitiond 7
2.1 _Public-key predicate encryption e 7

1.1 Security definitiohs 8
212 Selectivesecudty 8
R.1.3 Matchrevealingsecufity 9
2.2 Secret-key predicate encryphion 9
.2.1 Security definitions: Hiding both the plaintext and tuerly 10

B.1.2 Definitions o oo 14
B.1.3 Security Definitiohs 16
3.2 A First Attempt to Construct MROBED v v v v o e e e e e 17
B2.1 Trivialconstructidn 17
3.2.2 Improved MROEBconstruction based on AIBE 18
3.2.3 AIBE-Based MRQEB Constructioh 20
B.3 The Main MRQED Constructibn i 22

M1 Definitions. o 47
11 Definitioh 48
M12 Securilyo, 49
U13 Asimpleexamgle 50

4.2 Delegatable Hidden Vector Encryption (dHVE) . 51
4.2.1 Delegatable HVE overview (dHME) 51
W22 dHVEdefinitioh 53

4.3 Background on Pairings and Complexity Assumplions 54

W4 dHVE Constructidn o 56
41 Constructidn i 65
K.4.2 Security of ourconstruction 60

U5 Camrectnebs 60

6.3 Indistinguishability ofame, andGamed e i ... 69
4.6.4 Generating Type 2 delegatedtokens 70

4.6.5 Indistinguishability ofame; andGamed 71
4.6.6 _Indistinguishability ofiame; andGamed 74
istingui ility offame; andGamed 77
.................................. 80
4.8 Anonymous Hierarchical Identity-Based Encryptionhwihort Private Keys . 80
.81 CONSIUCHON . . o . vt v it e et e 18
KU.8.2 Securityof constructibn 82
I5__Query Privacy in Predicate Encryptiod 83
5.1 _Query Privacy in Predicate Encrypfion 83
5.2_Applications Of SK-BIE 85

I5.7.3 Plaintext privacy of SHEMEREAL

5.7.4 Indistinguishability of SHEMEREAI and SSHEMESYM|

5.8 Proof of Propositio@z

Chapter 1

Introduction

1.1 Whatis Predicate Encryption?

Alice loves Gmail. However, she is concerned about her pyivand she does not wish Google
to read her emails. A common approach to address such proaawerns is to use encryption.
Imagine that Alice now uses traditional public-key encrgptto protect the secrecy of her emails.
Alice generates a public-key/private-key pair. She piielssthe public-key PK, so her friends
can encrypt the emails using PK before sending them to AlN@w all emails will be stored in
encrypted format at Google, and Alice is happy about beirg taprotect her privacy.

Now Alice wishes to search for all emails whose ”"(sender =)Bad (date within [2006,
2007])". Unfortunately, Google can no longer search herilysince the emails are stored in en-
crypted format, and without the secret key, the emails atisiimguishable from random numbers
to Google. Alice can download all emails from Google, deted search them locally. But what
if there are too many emails to download? AlternativelycAlcan give away her private-key to
Google, but of course, that beats the purpose of encryption.

This problem can be solved using a new type of encryptiotea@pledicate encryptionUsing
predicate encryption, Alice can compute a capability gpomding to her query, e.g., "(sender =
Bob) and (date within [2006, 2007])". She gives this capgbtb Google, and Google can test
the capability against Alice’s encrypted emails. In this/mw@oogle is able to learn which emails
match the query; and beyond this information, Google leaontking more about the encrypted
emails. In contrast to traditional encryption, predicatergption offers the property that access to
the plaintext is no longer all-or-nothing. One can releaaig information about the encrypted
data in a controlled manner.

1.2 Related Work

In traditional public key encryption a user creates a pudiid private key pair where the private
key is used to decrypt all messages encrypted under thaicpkdyl. While this functionality

is sufficient for applications where a one-to-one assamiagixists between a particular user and
a public key, several applications will demand a finer-gedirand more expressive decryption

1

capabilities. ShamirlI’l;B] was the first to introduce fineaiged encryption systems by defining
the concept of Identity-Based Encryption (IBE). In an IBESt®m a party encrypts a message
under a particular public key and associates the ciphentiéxta given string or “identity”. A user
can obtain a private key, that is derived from a master s&esgtfor a particular identity and can
use it to decrypt any ciphertext that was encrypted undadbistity.

Since the realization of the first Identity-Based Encrypschemes by Boneh and Franklih [7]
and Cocks|ﬁ|8], there have been a number of new cryptosystehgrovided increasing func-
tionality and expressiveness of decryption capabilitigs.Attribute-Based Encryption systems
(ABE) [E E@@GZ] a user can receive a private capgghihiat represents a complex access
control policy over the attributes of an encrypted recorthedencryption systems, including key-
word search (or anonymous IBEB ﬂ]]sl__al ,m,ﬂl_—zbaﬁﬁsystems, allow for a capability
holder to evaluate a predicate on the the encrypted datbatsklearn nothing more. This type of
functionality represents a significant breakthrough ingtiese that access to the encrypted data is
no longer all-or-nothing; a user with a predicate capahilitil be able to learn partial information
about encrypted data.

1.3 Applications of predicate encryption

Apart from the private Gmail scenario described above,ipate encryption also has various other
applications.

Network audit logs. Recently, the network intrusion detection community hasl@large-scale
efforts to collect network audit logs from different sit[E’lEb]. In this application, a network
gateway or an Internet Service Provider (ISP) can submitarttraces to an audit log repository.
However, due to the presence of privacy sensitive inforomaith the network traces, the gateway
will allow only authorized parties to search their auditdogVe consider the following four types
of entities: agateway anuntrusted repositoryanauthority, and anauditor. Predicate encryption
allows the gateway to submit encrypted audit logs to theusted repository. Normally, no one
is able to decrypt these audit logs. However, when maliclmlsavior is suspected, an auditor
may ask the authority for a search capability. With this cleaapability, the auditor can decrypt
entries satisfying certain attack characteristics, egtwork flows whose destination address and
port number fall within a certain range. However, the priva€ all other flows should still be
preserved. Note that in practice, to avoid a central poirttust, we can have multiple parties to
jointly act as the authority. Only when a sufficient numbetod parities collaborate, can they
generate a valid search capability. Securely splittingat#hority into multiple parties can be
achieved through secure multi-party computation tecmicﬁh], and is outside the scope of this
thesis.

Financial audit logs. Financial audit logs contain sensitive information aboudficial transac-
tions. Predicate encryption allows financial institutiomselease audit logs in encrypted format.
When necessary, an authorized auditor can obtain a deanyipdly from a trusted authority. With

2

this decryption key, the auditor can decrypt certain tratisas that may be suspected of fraudulent
activities. However, the privacy of all other transactiepreserved.

Public health monitoring. Consider a health monitoring program. When Alice moves abou
in her daily life, a PDA or smart-phone she carries autoralificleposits her encrypted location
at a storage server. Assume that each crumb is of the formw, ¢), ct), where(z, y) represents
the location,t represents time, and is Alice’s contact information. During an outbreak of an
epidemic, Alice wishes to be alerted if she was present aeasrne with the disease during an
incubation period, i.e., ifz, y, t) falls within a certain range. However, she is also concemitu
privacy, and she does not wish to leak her trajectory if sterfea been to a site borne with the
disease.

Sharing of medical records. Medical research institutes would like to obtain patiemgdical
records for their research. However, these medical re@nesisually privacy sensitive, and it is
necessary to enforce access control, such that a carditlegillowed to access medical records
related to heart diseases, but not records on eye diseas#sg ffedicate encryption, we can
easily enforce such fine-grained access control policiegragting the cardiologist a capability
that allows her to decrypt precisely the medical recordsgleels. Furthermore, if the cardiologist
would like her assistant to check all cases that happenmitie year 2008, she can perform a
delegation operation, and generate a sub-capability flmvsathe decryption of all records on
heart diseases and within the year 2008.

Stock trading through an untrusted broker. An investor uses a broker to trade stocks. The
investor does not fully trust the broker, and wishes to resasdittle information to the broker as
possible. For example, the investor can place an order #lyat $buy x amount of stock vy if the
price falls below p today”. The broker should not be able torget this order until the current price
satisfies the conditions specified by the order. This prollambe addressed through predicate
encryption. A party trusted by the investor (e.g., the stex&hange) issues a new capability to
the broker as the stock price changes. The broker can now trge the capability to decrypt the
investor’s order. If the current price meets the conditispscified by the order, the decryption is
successful, and the order gets executed. If the order ig eseeuted, the broker learns nothing
about the contents of the order, except the fact that theittonsl specified by the order were never
met.

Untrusted remote storage. Individual users may wish to store emails and files on a remote
server, but because the storage server is untrusted, ttentomust be encrypted before it is stored
at the remote server. Emails and files can be classified wittipleuattributes. Users may wish to
perform certain types of queries and retrieve only dataghtsfy the queries.

Using biometrics in anonymous IBE. Predicate encryption can also be used in biometric-based
Anonymous ldentity-Based Encryption (AIBE). Using biomies in identity-based encryption first
appeared in the work by Sahai and Watérs [32]. In this apdicaa person’s biometric features

3

such as finger-prints, blood-type, year of birth, eye coétc,, are encoded as a poiXtin a
multi-dimensional lattice. Personal data is encrypteagisihe owner’s biometric features as the
identity, and the encryption protects both the secrecy®p#rsonal data and the owner’s biometric
identity. Due to potential noise each time a person’s bioimétatures are sampled, a user holding
the private key for biometric identiti)X should be allowed to decrypt data encrypted unsér

iff X’ andX have small distance. In particular, the SahaiWatersO4tnatsn @y] considered
theset-overlapdistance (or thélammingdistance); and their encryption scheme does not hide the
identity of the user. Our construction for multi-dimensaqueries allows a user with the private
key for identityX, to decrypt an entry encrypted und&t, iff /.. (X, X’) < e. Here/,, denotes the
(., distance betweeK andX’, and is defined asax{|x; — 24|, ..., |rp — 2}5|}. Inthis case, the
decryption region is a hyper-cube in multi-dimensionalcgraOne can also associate a different
weight to each dimension, in which case the decryption regacomes a hyper-rectangle.

1.4 Efficiency and expressiveness

One important goal in designing predicate encryption sgstes the ability to support complex
guery predicates. Meanwhile, we would like our constructtmbe efficient. To be specific about
what we mean by efficient, we consider the following perfanggemetrics: encryption time, ci-
phertext size, capability size and decryption time. Ideale would like all of these performance
metrics to be polynomial in the length of the plaintext (atmbdahe security parameter).

Previously, researchers have designed predicate emmnyptihemes that support keyword-
based searches! [E|, 6,] 39]. A keyword search is an equealty given a specially formed
capability, one can evaluate whether the ciphertext is amyption of a specific plaintext. For
example, if we use such a predicate encryption system faaltbge-mentioned network audit log
application, the auditor would be able to make queries ofdh@: “PORT= 1434". (This is the
typical port number used by the SQL Slammer worm.)

1.5 Summary of contributions

The high-level goal of this thesis is to develop predicatergntion schemes that (1) are efficient,

(2) support expressive queries and rich operations, ankda\® better security (under certain as-
sumptions). The main technical content of this thesis it around three papea[@ 85, 36],
each of which proposes a novel construction, and repreaaengsideavor at the above-mentioned
high-level goal. Tabl€ZIl1 summarizes the contributionsaxdh of these papers. The work on
multi-dimensional range query is done with J. BethencddriChan, D. Song and A. Perrig; the

work on delegation of capabilities is joint with Brent Watgand the work on query-hiding predi-

cate encryption is joint with Emily Shen and Brent Waters.

To help readers understand the development of this fieldjgosur work, and understand our
contributions, | also created Talblell.2 which lists relatedk in the area of predicate encryption.

4

Constructions Expressiveness and features Comments Contribution
SBCSP07]35]| Multi-dimensional range query Secure in the More expressive queries
match-revealing model
SWO08 [36] Conjunctive queryDelegation Richer operations (delegation)
SSWO08 [34] Inner-product query, Secret-key setting Stronger security,
Hides quenyin addition to plaintext more expressive

Table 1.1: Summary of contributions. See chaptell2 for the definition of match-revealing segurity
secret-key setting, etc.

Constructions Expressiveness and features Example query Comments
[1,6,9,13,22, 39] Equality test query SENDER= Bob a.k.a. Keyword searches
[12, 25] Conjunctive queries & extensions (SENDER= Bob) [25] reveals the outcome
A (YEAR = 2008) of individual clauses
SBCSPO§35] Multi-dimensional range query (URGENTE€ [0, 3]) Secure in the
A (YEAR € [2003, 2008])| match-revealing model
SWo0g36] Conjunctive queryDelegation (SENDER = Bob)
A (YEAR = 2008)
[28] Inner-product query (Z,7)=0
SSW0§34] Inner-product query, (Z,0) =0 Secret-key setting
Hides quenyin addition to plaintext

Table 1.2:Putting it in context with related work . This table summarizes our work in this space and
positions our work in context with related work. The higlligd constructions are the contributions of this
thesis. The table is created roughly (not strictly) in clological order. The BW06 constructioE[lZ] and
the SBCSPOdB5] construction are independent and comtumak. It is difficult to construct an intuitive
query example for inner-product queries. However, noteitireer-product is strictly more expressive than
conjunctions. See Chapfér 5 for more details on inner pitoglueries.

Outline of the thesis. Chaptei 2 presents a formal definition of predicate enaoypénd its
security. Chaptdidd]4 ad 5 will each describe the one ofdkelts shown above in Tadle1l.1.
While these three chapters are logically connected, eaaptehis self-contained and can be read
independently from others.

A note on the notations. ChaptefR gives a generic and unified definition. As the falhgw
Chapter§13d 14 arld 5 each considers a more specific scenanmillwse a more concrete instan-
tiation of the generic definition in each chapter. The résglvariation in definition and notation
across chapters is intended for notational convenienakdaas not affect the essence of generic
definition given in Chaptdr]2. These variants of definitiond aotations will be clearly stated in
each chapter to avoid ambiguity.

Chapter 2

Formal Definitions

Recall that in predicate encryption, a party who owns thetenaecret key can generate a capa-
bility (also referred to as #oken) that allows one to decrypt all data entries satisfying dacer
predicate functiorf. However, all other information about the plaintext s#hrains secret.

In this chapter, we give formal definitions for predicatergpton and its security.

2.1 Public-key predicate encryption

We now give a formal definition for public-key predicate gmtion. This definition is due to
Boneh and WaterﬂllZ].

Let X = (zy1,29,...,2¢) € {0,1}* denote a plaintext. Without loss of generality, assume that
we would like to evaluate from the ciphertext boolean fumasi (also referred to ggedicatey on
X, thatisf : {0,1}* — {0,1}. Functions that output multiple bits can be regarded asatena-
tion of boolean functions. LeF denote a family of boolean functions froffi, 1} to {0, 1}. For
example,F can be the set of all conjunctions am, z», ..., z,) € {0,1}*. A token allows one to
evalute from the ciphertext a predicgtes F.

A Public-Key Predicate Encryption (PK-PE) scheme consisthie following (possibly ran-
domized) algorithms.

Setup(1*, F). The Setup algorithm takes as input a security parametethe predicate family
F being considered; and outputs a public i/ and a master secret k&j5SK.

Encrypt(PK, X). The Encrypt algorithm takes as input a public k3K, a plaintextX =
(21, 22,...,20) € {0,1}% and outputs a ciphertekiT.

GenToken(PK,MSK, f). The GenToken algorithm takes as input a public kB¥, master secret
key MSK, and a query predicatg € F. It outputs a token for evaluating the predicdtérom a
ciphertext.

Query(PK,CT, TK;). The Query algorithm takes as input a public k&K, a tokenTK for the
predicatef, and a ciphertexfT. SupposeCT is an encryption of the plaintext’; the algorithm
outputsf (X).

2.1.1 Security definitions

To define the security for predicate encryption, we descalmuery security game between a
challenger and an adversary. This game formally capturesithion that the tokens reveal no
unintended information about the plaintext. In this garhe,ddversary asks the challenger for a
number of tokens. The adversary should not be able to dedwycerantended information from
these tokens. The game proceeds as follows:

e Setup. The challenger runs thgetup algorithm, and gives the adversary the public Ré;

e Query 1. The adversary adaptively makes a polynomial number of gaefn each query,
the adversary specifies a predicgtec F, and asks the challenger for a token for that
predicate. The challenger computes the requested tokeallbygahe Gen Token algorithm,
and returns the token to the adversary.

 Challenge. The adversary outputs two strind§;, X; € {0, 1}* subject to the constraint
that for any predicat¢ queried by the adversary in tliguery 1 stage, the following must

be true:

f(Xg) = f(X7) (2.1)
Next, the challenger flips a random cdinand encryptsX;. It returns the ciphertext to the
adversary.

e Query 2. Repeat th&uery 1 stage. All predicates queried in this stage should satisfy t
same condition as above.

e Guess.The adversary outputs a gueéssf b.
The advantage of an adversatyin the above game is defined tohev 4 = | Pr[b = b']—1/2].

Definition 2.1.1 We say that a public-key predicate encryption systeseaure if for all poly-
nomial time adversaries! attacking the system, its advanta@eév 4 is a negligible function of
A.

2.1.2 Selective security

We also define a weaker security notion caléedective securityln the selective security game,

instead of submitting two string&;, X; in the Challenge stage, the adversary first commits to
two strings at the beginning of the security game. The reth@fecurity game proceeds exactly
as before. The selective security model has appeared inugaconstructions in the literaturle [3,

|ﬂ,|I:|3E|4L_1|5|35], since it is often easier to prove securitiie selective model.

Definition 2.1.2 We say that a delegateable predicate encryption systesaléctively securef
all polynomial time adversaried have negligible advantage in the selective security game.

8

2.1.3 Match revealing security

In a recently published pape[[SS], we define another relasegdion of security callednatch-
revealingsecurity. In comparison, we call the strict version of ségifas defined in Sectidn2.1.1)
match-concealingecurity.

In match-concealingecurity, the adversary does not learn any additionalmébion about the
plaintext whether or not the output of the predicate is tiliee readers can think of this as “two-
sided” security. By contrastnatch-revealingecurity can be thought of as “one-sided” security:

e When the predicate evaluates to true, the adversary doésamotany additional information

about the plaintext encrypted,;

e When the predicate evaluates to false, we no longer card pbeserving the secrecy of the

plaintext.

Clearly match-concealing security implies match-revepkecurity. However, we are also
interested in match-revealing security, because in sosescasing the relaxed version of security
can lead to more efficient and practical constructions. Mégle, in many practical applications,
we no longer care about the secrecy of the encrypted entryn&iches the query predicate. For
example, in the above-mentioned network audit log exanglaatching entry corresponds to a
suspicious or attack flow. In this case, the audit is intedkst decrypting the entire entry and
studying it. Hence, we are not obligated to preserve theapyiwof these matching entries. Of
course, one can also conceive of other applications wheresttiict notion of security, that is,
match-concealing security, is necessary.

The formal definition of match-revealing security is almthed¢ same as match-concealing se-
curity, with the exception that Equatidn(PR.1) is now thddaling new equation:

f(Xg) = f(X7) =0

2.2 Secret-key predicate encryption

Secret-key predicate encryption can be similarly definepuddic-key predicate encryption. The
difference is that in public-key encryption, anyone camgpicusing the public-key. By contrast, in
secret-key encryption, encryption and decryption are petformed using the secret-key. Hence,
only the secret-key owner can encrypt. In both schemes,tbelgecret-key owner can decrypt.

We now define secret-key predicate encryption. More disonssn the security definitions
can be found in Chaptét 5.

A Secret-Key Predicate Encryption (SK-PE) scheme coneistise following (possibly ran-
domized) algorithms.

Definition 2.2.1 (Secret-key predicate encryption)A Secret-Key Predicate Encryption (SKPE)
system consists of the following (possibly randomizedrélgms.
Setup(1*): The Setup algorithm takes as input a security parameterand outputs a secret key
MSK.

Encrypt(MSK, x): The Encrypt algorithm takes as input a secret kBASK, a plaintextz €
{0, 1}%; and outputs a ciphertexiT.

GenToken(MSK, f): The GenToken algorithm takes as input a secret ke\bK, and a query
predicatef : {0,1}* — {0, 1}. It outputs a tokeTK; that allows one to evaluatg(x) over
an encryption of:. As mentioned above, we assume that the query predicateecamcbded
with a bitstring of lengthm.

Query(TK, CT): The Query algorithm takes as input a tokdrK, for the predicatef, and a
ciphertextCT which is an encryption of € {0, 1}, the algorithm outputg(z).

2.2.1 Security definitions: Hiding both the plaintext and the query

Public-key predicate encryption schemes guarantee theceaf the ciphertext; however, they do
not guarantee the secrecy of the tokens. In fact, for plaicpredicate encryption, it is inherently
impossible to achieve ciphertext secrecy and token sesigayitaneously. This is due to the fact
that anyone is able to encrypt using the public-key. In theaBexample, if Google would like
to know whether a token corresponds to the queryrtE = cryptography”, Google can simply
encrypt an email whose 91TLE = cryptography” using the public-key, and test the tokenragia
the resulting ciphertext.

In secret-key predicate encryption, it is possible to gote@the secrecy of both the plaintext
(encoded in a ciphertext) and that of the query (encoded @ken)). This provides even stronger
privacy guarantees in practice.

We now formally define the security for secret-key predi@teryption. As mentioned above,
our definition aims to guarantee the secrecy of the plaingesxvell as the query.

To explain the intuition behind our security definition, sader a privacy-preserving remote
storage application, where Alice stores her encrypted mecus on a remote server, and later is-
sues tokens to the server to search for matching documeuntgdal is to leak as little information
to the storage server as possible. Under our model, Aliceemalquery by submitting a token to
the server, and the server learns exactly which of her etexdygocuments match the query, and
returns the matching documents to Alice. Therefore, inftaimework, the server inevitably learns
Alice’s access patterra.k.a, which documents Alice retrieves with each query.

We would like to define security in the strongest sense plessififormally, the storage server
should learn only Alice’s access pattern, and nothing mdre particular, this implies that the
server learns nothing about Alice’s encrypted documemtahat queries she is making.

To capture the notion that the server learns only Alice’®as@attern, we need to first formally
define whaticcess pattermeans. Intuitively, the access pattern is the outcomegoédicates on
n plaintexts.

Definition 2.2.2 (Access pattern)Let X = (x1, zs, ..., z,) denote an ordered list of plaintexts,
wherex; € {0,1}*for1 < i < n. LetF = (fi, fo,..., f,) denote an ordered list of query
predicates, wherg; € {0,1}" for 1 <1i < ¢. The access pattern oki and F' is ang x n matrix:

fi(x1), filx2), ooy filzn)
fo(x1), falw2), ooy fa(zn)

fo(wr), folwa), oy foln)

ACCESPATTERN(X, F) :=

We now proceed to define the security for SKPE. Let

X = (21, 29,...,2,), X' =(2],25,...,2))

rn

denote two ordered lists of plaintexts. Let

F=(fi,fo-fe), F=L1s 0 f)

denote two ordered lists of queries predicates. Now imatfiedollowing two worlds. In World
0, the server sees encrypted documents agdokens:

(Enc(21), Enc(xs), ..., Enc(z,)), (TKy, TKy,, ..., TKy,)
In World 1, the server sees encrypted documents agdokens:
(Enc(x}), Enc(x), ..., Enc(a,)), (TKy, TKy, ..., TK)
Suppose the two worlds have the same access pattern, i.e.,
ACCESPATTERN(X, F') = ACCES®ATTERN (X', F")

Informally, the server should not be able to distinguishaeein the two worlds. The security
definition presented below describes a game between awpatiand an adversary, and is intended
to capture this notion of indistinguishability between tthese worlds. Moreover, the definition
considers an adaptive adversary: an adversary who canehdus ciphertext/token queries to
make depending on the previous interactions with the angdéle
Definition 2.2.3 (SKPE full security) We say that an SKPE scheme is fully secure, if no polynomial-
time adversaries has more than negligible advantage indgheviing game.
Setup. The challenger runs th&etup algorithm, and retains the secret K&K to itself. In ad-
dition, it flips a random coi, and keeps the bii to itself as well. Define four ordered lists,
Xo, Fo, Xy, F1, where(X,, Fy) will record plaintexts and predicates queried by the adver-
sary in Worldo, and(X, F;) will record plaintexts and predicates queried by the adargrs
in World 1. Initially, all four lists are empty.

Query. The adversary adaptively makes the following types of egserfhe adversary can make
up to a polynomial number of these queries.

e Ciphertext query. The adversary specifies two plaintextsz; € {0, 1} to the chal-
lenger. The challenger encrypts and returns the ciphertext to the adversary. Append
T to the listX,, andx; to the listX;.

e Token query. The adversary specifies two predicajgsf; € {0,1}™ to the chal-
lenger. The challenger computes a token for the predifiatand gives the resulting
token to the adversary. Apperfgto the listfy, and f; to the listF;.

All queries made in this stage should be indistinguishapladzess pattern. In other words,
at the end of the game, all queries made should satisfy tteiiolg condition:

ACCESPATTERN(X, F) = ACCESPATTERN(X, F})

Guess. The adversary outputs a gudssof the bitb. Its advantage is defined asdv 4 =
}Pr[b’ =b] — %\

11

12

Chapter 3

Multi-Dimensional Range Query over
Encrypted Data

3.1 Multi-dimensional Range Queries over Encrypted Data

In this section, we demonstrate a predicate encryptioresystipporting multi-dimensional range
gueries. This contents of this section are based on workgheal in a recent papéHsS]. Therefore,
throughout this section, we use notations consistent \Iv'ﬂsrpaperES].

The reason that we are particularly interested in multiatisional range queries is because
they are the most prevalent type of queries in current databgstems. In fact, SQL queries are
by nature multi-dimensional range queries.

3.1.1 Overview of our construction

We assume that each plaintext entries Paattributes, and the query predicates are conjunctions
of range queries over a subset of thésattributes. For example, assume that each entry has the
structure (IP, port, time), and below is a typical exampla aiulti-dimensional range query:

(IP € [128.2. % %)) A (time € {2006, 2007})

A more formal and complete definition will be given in Secti®i2.
We give a provably secure predicate encryption system fdti4gimensional range queries.
The performance of our construction can be summarized bl [&D.

Comparison with BonehWaters06. In the above table, the BonehWaters06 scheme is concur-
rent and independent work to ours. In their paper, they gigergeral definition for predicate en-
cryption, and propose a scheme called Hidden Vector EnonygitHVE) for performing conjunc-
tive equality tests. They then show how HVE can be extendedpport conjunctive subset/range
queries.

The HVE construction given by Boneh and Waters has cipheleegth and encryption time
linear with respect to the length of the plaintext. The tokexe has length linear in the number

13

Scheme Pub. Key Size| Encrypt. Cost CT Size Token Size | Decrypt. Cost| Security
BonehWaters06 [12] O(D -T) oD -T) OD-T) O(D) O(D) MC
Naive AIBE-based O(1) O((logT)P) | O((logT)P) | O((logT)P) | O((log T)P) MR
Our scheme O(D -logT) | O(D -logT) | O(D -logT) | O(D -1logT) | O((logT)P) MR

Table 3.1:Performance of different approachéds.denotes the number of dimensions anthe number of
points in each dimension. The naive AIBE-based scheme izitled in Sectioli-3.213. MC and MR refer
to thematch-concealinggndmatch-revealingsecurity models respectively.

of clauses in the conjunctive query, and so is decryptior tithe HVE construction is efficient

in the sense that all performance measures are polynomi>, linear) in the length of the

plaintext encrypted. However, to extend HVE to support irdithensional range queries, they
need to incur an exponential cost. Notice that in Tablé 3oih Ipublic key, ciphertext size and
encryption time ar®(D - T), and this is exponential in the length’Bf(i.e., number of bits needed
to encodé€!l’ distinct values).

Our constructionES] is very similar to the BonehWaterO6rkvim many ways. We also use
pairing based techniques to build our construction. Alttothe two schemes appear different
at the algebra level, (for example, the two constructioresdifferent types of bilinear groups) at
the core of both constructions is a similar idea to defendrnagdhe collusion attack (See Sec-
tion [3:3:2). In particular, although not explicitly statetie core of our construction is also an
HVE-like scheme that supports a conjunction of equalitysteand it can be proven secure in
the match-concealing security model. However, we encoedtsimilar difficulties when we en-
deavored to extend it to support multi-dimensional rangerigs, essentially, we had to incur a
significant cost which would have made the construction tqeersive in practice, and typically,
in the network audit log and similar applications.

To cope with such difficulties, we propose the relaxed sécuaotion, that is, match-revealing
security. Our multi-dimensional range query constructieas the relaxed security notion instead.
Doing this allows us to enable a better trade-off in the vaiperformance measures. As shown
by Table3.1L, our construction héX D log T') public key size, ciphertext size and encryption time.
In comparison, the BonehWaters06 construction®é®T") public key size, ciphertext size and
encryption time. On the other hand, our construction is nex@ensive in decryption time. We
needO((logT)”) decryption time while the BonehWater06 construction hageryption time
of O(D). In applications like network audit logs as described abdvean be as large a5
to encode an IP address, and typicallymay range fron2 to 4. In such scenarios whefE is
large andD is small, our construction is more practical. However, oae also conceive of other
applications wher&" is small andD is large, and in these cases, the BonehWaters06 constructio
would be more practical.

3.1.2 Definitions

In the network audit log application, a gateway encryptsvoei flows, and submits them to an
untrusted repository. When necessary, an auditor may askitority for a key that allows the
decryption of all flows whose attributes fall within a centaange; while the privacy of all irrelevant

14

flows are still preserved. There is a geometric interpratatio these multi-attribute range queries.
Suppose that we would like to allow queries on these thredsfidime-stamg, source address
a, and destination pont. The tuple(¢, a, p) can be regarded as a poiKtin multi-dimensional
space. Now suppose we query for all flows whose, p falls within some ranget € [t1, 5],

a € [ay,az] andp € [py, po]. Here the “hyper-rangelt,, ts] X [a1,as] x [p1, p2] forms a hyper-
rectangleB in space. The above range query is equivalent to testinghehatpointX falls inside
the hyper-rectanglB.

We now formally define these notions mentioned above. Asdhatean attribute can be en-
coded using discrete integer valueshrough7'. For example, an IP address can be encoded
using integerd through2*2. We use the notatiofY] to denote integers fromto 7', i.e., [T] =
{1,2,...,T}. LetS < T be integers, we usg, T'] to denote integers fron§ to 7" inclusive,
ie., [S,T] ={S,S+1,...,T}. We assume thdf’ is a power of 2, and denoteg, as simply
log. Suppose that we would like to support range querie®atifferent attributes, each of them
can take on values iff}], [T3], . . ., [Ip] respectively. We formally define &-dimensional lattice,
points and hyper-rectangles below.

Definition 3.1.1 (D-dimensional lattice, point, hyper-rectangle) LetA = (73,75, ...,Tp). La =
[T1] x [T3] x ... x [Tp] defines aD-dimensional lattice. A D-tupleX = (z1,xs,...,2p) de-
fines apoint in La, wherez,; € [T,](Vd € [D]). A hyper-rectangle B in L, is defined as
B(Sl,tl,Sg,tQ,...,SD,tD) = {(Ilj’l,l'g,...,{lj'p)}\VId c [D],Ilfd S [Sd,td]} (Vd S [D],l S Sd S
tg < Ty).

An MRQED scheme consists of four (possibly randomized) potyial-time algorithmsSetup,
Encrypt, DeriveKey and QueryDecrypt. In the network audit log example, an authority
runsSetup to generate public parameters and a master private keypwagaruns thdncrypt
algorithm to encrypt a flow. Encryption is performed on a pgaifsg, X). The messagd/lsg
is an arbitrary string, an& is a point in multi-dimensional space, representing thebaiies.
For example, suppose that we would like to support querietheriollowing three attributes of
a flow: time-stamp, source address, and destination pori. The tuple(t, a, p) then becomes
the pointX, and the entire flow summary forms the messkfigz. Whenever necessary, the au-
thority can run théDeriveKey algorithm, and compute a decryption key allowing the detoyp
of flows whose attributes fall within a certain range. Givhis tdecryption key, an auditor runs
the QueryDecrypt algorithm over the encrypted data to decrypt the relevamisflowe now
formally define MRQED.

Definition 3.1.2 (MRQED) An Multi-dimensional Range Query over Encrypted Data (MRQE
scheme consists of the following polynomial-time randech&gorithms.

1. Setup(X,LA): Takes a security paramet&rand D-dimensional latticd., and outputs
public keyPK and master private keyK.

2. Encrypt(PK, X, Msg): Takes a public keyK, a pointX, and a messagklsg from the
message spadd and outputs a cipherteXi.

3. DeriveKey(PK,SK, B): Takes a public keyPK, a master private ke$K, and a hyper-
rectangleB and outputs decryption key for hyper-rectanBle

15

4. QueryDecrypt(PK, DK, C): Takes a public kepK, a decryption keK, and a ciphertext
C and outputs either a plainteksg or 1, signaling decryption failure.

For each messagelsg € M, hyper-rectangld3 C LA, and pointX € LA, the above algo-
rithms must satisfy the following consistency constraints

Msg ifXeB

3.1
1 w.h.p.,ifX ¢ B 3-1)

QueryDecrypt(PK, DK, C) = {
whereC = Encrypt(PK, X, Msg) andDK = DeriveKey(PK, SK, B).

3.1.3 Security Definitions

Suppose that during time,, 5], there is an outbreak of a worm characteristic by the portberm
p1. Now the trusted authority issues a key for the ranhgelt,, t2] andp = p; to a research group
who has been asked to study the worm behavior. With this keytd@search group should be able
to decrypt only flows whose time-stamp and port number fatinithe given range. The privacy
of all other flows should still be preserved. Informally, pope that a computationally bounded
adversary has obtained decryption keys for regiBpsB,, . .., B,. Now given a ciphertexC =
Encrypt(PK, X, Msg) such thatX ¢ By, B,,...,B,, the adversary cannot leaX or Msg
from C. Of course, since the adversary fails to decipusing keys for region8,, B,, ..., B,,
the adversary inevitably learns that the paxhencrypted does not fall within these regions. But
apart from this fact, the adversary cannot learn more in&ion aboutX or Msg.

We now formalize this intuition into aelective securitgame for MRQED. In particular, we
will prove the security of our construction under thelective match-revealingnodel. Here, se-
lective security notion is similar to the selective-ID setufor IBE schemesﬂ3D4D5]. As
mentioned in Section2.1.1, a stronger notion of securityasch-concealing, adaptive security.

Below, we state the formal definition of security in the séle; match-revealing model. Note
that the security definitions for MRQED can be inferred frdm security definition for general
predicate encryption given in Sectibn 2]1.1. However, farity, we now state it again in the
context of multi-dimensional range queries.

Definition 3.1.3 (MR-selective security)An MRQED scheme &electively secure in the match-
revealing (MR) model if all polynomial-time adversaries have at mosegligible advantage in
the selective security game defined below.

e Init: The adversary submits two poinXs;, X; € L, where it wishes to be challenged.

e Setup The challenger runs thgetup (X, L) algorithm to generateK, SK. It givesPK
to the adversary, keepirK secret.

e Phase 1 The adversary adaptively issues decryption key querielsyiper-rectangles:
Bi,Bs,...,Bg

FurthermoreX§ andX; are not contained in any hyper-rectangles queried in tras@h.e.,
for 0 <i < qy, X§ ¢ B;, andX; ¢ B,.

16

e Challenge The adversary submits two equal length messadeg,, Msg, € M. The
challenger flips a random coib, and encrypt®VIsg, underX;. The ciphertext is passed to
the adversary.

e Phase 2 Phase 1 is repeated. The adversary adaptively issuesptiearkey queries for
hyper-rectangleB, 1, B, 12, . .., B,. As before, all hyper-rectangles queried in this stage
must not contairX andX;.

e Guess The adversary outputs a guéssf b.
1

An adversaryA’s advantage in the above game is definedas 4 (%) = |Pr[b = b'] — 1|.

3.2 A First Attempt to Construct MRQED

3.2.1 Trivial construction

We first give a trivial construction for one-dimensionalgargquery over encrypted data. We refer
to one-dimensional range query over encrypted data as MR@HBre the superscript represents
the number of dimensions.

In the trivial MRQED construction, we make use of any secure public key encnygtiheme.
We first generat®(7?) public-private key pairs, one for each ranget] C [1,T]. To encrypt a
messag@Isg under a pointr, we produce)(7?) ciphertexts, one for each ranget] C [1,T].

In particular, ifz € s, t], we encryptMsg with public keypk, ;; otherwise, we encrypt an invalid
message. with pk, ,. The decryption key for any range t] is thensk, ;, the private key fofs, t].

We now give a formal description of the above constructiarofte-dimensional range queries.
Let A = (K, &, D) denote a secure public key encryption scherkie&, D represent the key
generation, encryption and decryption algorithm respebti We build a MRQED scheme based
on A€ as below.

e During Setup, one runskC, the key generation algorithn)(7?) times to generate the fol-

lowing public and private keys:

PK = {pk, |l <s<t<T}, SK={sky|l<s<t<T}
e To encrypta paifMsg,) wherex is a point betweem andT’, first defineforl < s <t < T

Msg ifs<z<t

53 M 5 - .
+(Msg, 7) {J_ otherwise

where_L denotes the “invalid message”. Now one runs the encrypligorighm £, and for
all rangess, t| C [1, 77, one encrypts, ,(Msg, x) underpk, ,. The result of encryption is a
tuple of length7™?, denotedc; 1, c1, ..., cr 7).

e To release a decryption k&K , for rangels, t] C [1, 7], one releases the kel ;.

e To decrypt a ciphertex® = (¢ 1,¢19, - .., crr) With DK ¢, one use® K , to decrypte, ;.
Decryption either yieldd., if the pointz encrypted does not fall within the ranget|; or it
yields the messagelsg, if = falls within [s, ¢].

17

[8.7]

(a) The path from a leaf to the (b) A ciphertext and a decryption key in MRQED
root.

Figure 3.1:An MRQED' scheme. (a) Path from the leaf node representingc [T] to the root.P(z) =
{ID;,ID,,1Ds,1D,}. (b) Encryption under the point = 3 and the keys released for the range7].

Clearly, the trivial MRQED construction results i (7%) public key size,O(T?) encryption
overhead and ciphertext size(1) decryption key size an@(1) decryption cost.

One can easily extend the trivial construction into mugtigimensions. The resulting MRQED
scheme requires that one encrygt Msg, X) for all hyper-rectangleB in space. Therefore, the
trivial MRQED?” scheme ha®(T2P) public key sizeO(T?") encryption cost and ciphertext size,
O(1) decryption key size an@(1) decryption cost.

3.2.2 Improved MRQED!' construction based on AIBE

We show an improved MRQED construction based on Anonymoastity-Based Encryption
(AIBE). For clarity, we first explain the construction for @mimension. We call the scheme
MRQED' where the superscript denotes the number of dimensions. dféetimat the primitives
and notations introduced in this section will be used in oammeonstruction.

Primitives: Efficient Representation of Ranges

To represent ranges efficiently, we build a binary interkee tover integers through7'.

Definition 3.2.1 (Interval tree) Lettr(7") denote a binary interval tree over integers frdno 7.
Each node in the tree has a pre-assigned unifille For convenience, we defing1") to be the set
of all node/ Ds in the tree. Each node im(7") represents a range. Let/(/D) denote the range
represented by nodeD € tr(T). Definecv(ID) as the following: Let/ D be thei'" leaf node,
thencv(/D) = i. Otherwise, whe D is an internal node, lef D, and I D, denote its child nodes,
thencv(/D) = cv(IDy) Ucv(ID,). In other wordscv(/ D) is the set of integers that correspond
to the leaf descendants 6D.

Given the interval treer(7"), we define théP(x) of 1 Ds covering a point € [1,7], and the
setA(x) of I Ds representing a range ¢| C [1, 7.

e Set of I Ds covering a pointz. For a pointz € [1,7] and some nodéD € tr(T), we
say that/ D coversthe pointz if x € cv(/D). DefineP(z) to be the set of Ds covering
pointz. Clearly,P(z) is the collection of nodes on the path from the root to the fexrfe
representing:. As an example, in Figuie=3.1 (&)(x) = {ID;, 1Dy, D3, [Dy4}.

18

e Range as a collection off Ds. A range(s,t] C [1,7] is represented by a collection of
nodes:A(s,t) C tr(T). We defineA(s, t) to be the smallest of all subsé¥sC tr(7") such
that{J, pey cv(ID) = [s,t]. Itis not hard to see that for anfy, t] C [1, 77, A(s, t) is uniquely
defined, and its sizp\(s, t)| is at mostO(log T').

We will make use of the following properties in our AIBE-bdseonstruction: Ifx € [s,],
thenP(z) N A(s,t) # 0; in addition,P(z) andA(s, t) intersect at only one node. Otherwise, if
x ¢ [s,t], thenP(x) N A(s, t) = 0.

AIBE-Based MRQED' Scheme

AIBE encrypts a messagelsg using an identity/ D as the public key. Given the private key
for 1D, one can successfully decrypt all messages encrypted Ioyitidd D. The encryption
scheme protects both the secrecy of the mesba&ge and the identityl D in the following sense:
Given ciphertexiC, which is an encryption oMsg by identity I Dy, and given decryption keys
for identities/ Dy, 1D, ..., 1D, but not for I D,, a computationally bounded adversary cannot
learn anything abouMsg or about/ D, from the ciphertexC. Researchers have successfully
constructed secure AIBE schemﬂsﬂ, 13] witfll) cost in all respects: in public parameter size,
encryption cost, ciphertext size, decryption key size agatyption cost.

Given a secure AIBE scheme, we can construct an MRQ&IDeme based on the following
intuition. To encrypt the messa@ddsg under pointz, we encryptMsg under all/ Ds inP(z). To
release the decryption key for a ranget| C [1, 7], we release the keys for allDs in A(s,).
Now if = € [s, t], thenP(x)NA(s, t) # 0. Suppos@(z) andA(s, t) intersect at nodéD. Then we
can apply the decryption key aD to the ciphertext encrypted undép, and obtain the plaintext
messageéMsg. Otherwise, ifr ¢ [s,t], thenP(x) N A(s,t) = 0. In this case, the security of
the underlying AIBE scheme ensures that a computationallywded adversary cannot learn any
information about the messaddsg or the pointz, except for the obvious fact (since decryption
fails) thatz ¢ [s, t].

Example. In Figure[31(b), we show a ciphertegt encrypted under the point. Let L =
O(log T') denote the height of the tre€, is composed 0O (logT") components{ci, ca, ..., cL}.
On the right, we show the decryption keys for the raf3g&|. Since[3, 7] can be represented by the
setof nodes\(3,7) = {IDa, IDg, D¢}, the decryption key fof3, 7] consists of three sub-keys,
kIDA’ kIDB andk[DC.

The AIBE-based construction héX1) public key sizeO(|P(z)|) encryption cost and cipher-
text size, and (|A(s, t)|) decryption key size. Sind®(x)| = O(logT'), and|A(s, t)| = O(logT),
we getO(log T') in encryption cost, ciphertext size, and decryption keg slzater, we will show
that decryption can be done @(log T") time as well.

Stated more formally, given a secure AIBE scheme denoted:

Setup”(X), DeriveKey”*(PK,SK, ID), Encrypt*(PK, 1D, Msg), Decrypt*(PK, DK, C),

one can construct a secure MRQEfzheme as below:
e Setup(3, T) callsSetup*(X) and output$K andSK.

19

e Encrypt(PK, x, Msg) encrypts the messa@ddsg under every D € P(x). In other words,
Encrypt yieldsC = {C[D‘ID € IP’(Q:)} wherec;p = Encrypt*(PK, 1D, Msg||0™). To
check whether a decryption is valid, prior to encryption, appendn’ trailing Os denoted
0™ to messag®lsg € {0,1}™.

e DeriveKey(PK,SK, [s,t]) releases a decryption key, for each/D € A(s,t). kip is
computed ak;p, = DeriveKey*(PK,SK, D). The entire decryption key for the range
[s, 1] is then the seDK, , = {k;p | ID € A(s,t)}.

e QueryDecrypt(PK, DK, C) tries each kek;p € DK on each ciphertext;,, € C. If

ID = ID', thenDecrypt”(PK, k;p, ¢;p/) yields result of the forni\//Is\gHOm'. In this case,
we accept the result and exit thueryDecrypt algorithm. If all trials fail to yield result
of the forml\//Is\g| |0™, QueryDecrypt outputs., indicating failure to decrypt.

Note that in the AIBE-based construction, if we simply triyddcryption keys over all cipher-
texts, then decryption would requit& |P(z)|-|A(s, t)|) time; sinceP(z)| = O(log T'), |A(s, t)| =
O(logT'), decryption would requir®(log® T') time. However, observe that it is not necessary to
try k;p onc;pr, if 1D andI D’ are at different depth in the tree; since théh,and/ D’ cannot be
equal. Thus we only need to tkyp onc;p if 1D andl D’ are at the same depth in the tree, which
requires knowledge of the depth bD’ for ciphertextc; . Of course, we cannot directly release
1D’ for ciphertextc;p/, since the encryption is meant to hid®’. However, since each ciphertext
C has a portion at every depth of the tree, we can give out ththadpg D’ for eachc;p € C
without leaking any information abouit)’. In this way, we reduce the decryption costifog T")
rather tharO (log® T).

We emphasize that using AIBE as the underlying encryptidrese is crucial to ensuring
the security of the derived MRQEcheme. In particular, a non-anonymous IBE scheme is not
suitable to use as the underlying encryption scheme, sBiEehldes only the messaddsg but
not the attributer.

3.2.3 AIBE-Based MRQED"” Construction

The same idea can be applied to construct an MRQBEheme, resulting i@ (1) public key
size,O ((log T)D) encryption cost, ciphertext size, decryption key size, @actyption cost. The
details of this construction is not crucial to the underdiag of our main construction. However,
in describing this construction, we highlight a few impattaefinitions, including the notion of
a simple hyper-rectangle, and the definition\of(B). These definitions will later be used in our
main construction.

We build D binary interval trees, one for each dimension. We assigmolaadlly uniquel/ D to
each node in thé trees.

Representing a hyper-rectangle. We represent an arbitrary hyper-rectangle as a collection o
simple hyper-rectangledo illustrate this idea, we first give a formal definition asianple hyper-
rectangle, and then state how to represent an arbitraryrtigpangle as a collection of simple
hyper-rectangles. Simply put, a simple hyper-rectangéehgper-rectangl®, in space, such that

20

B, can be represented by a single node in the tree of every diomerdore specifically, a hyper-
rectangleB(sy,t1, ..., Sp,tp) in space is composed of a range along each dimension. Ifffor al
1 <d < D,|A(sq,tq)] = 1, i.e.,[sq, tq) is a simple range in thé" dimension, then we say that
the hyper-rectangl®(s;,t,...,sp,tp) is asimple hyper-rectangleA simple hyper-rectangle
can be defined by a single node from each dimension. We cagnaasinique identity to each
simple-rectangl@(sy,t1,. .., sp,tp) in space. Define

idBo = (IDl,IDQ,...,IDD),

wherel D,(1 < i < D) is the node representingy, t4] in thed" dimension.

Definition 3.2.2 (Hyper-rectangle as a collection of simplayper-rectangles) Given an hyper-

rectangleB(sy, t1,...,sp,tp), denoteA;(B) := A(sq, tq) for d € [D]. A(B) is the collection of

nodes representing rande;, t,] in thed"" dimension. The hyper-rectandican be represented
as a collectionA*(B) of simple hyper-rectangles:

A*(B) = Ai(B) x Ay(B) x ... x Ap(B)

In particular, for everyid € A*(B), id is a vector of the formdi/D;,ID,,...,1Dp), wherel D,
(d € [D]) is a node in the tree corresponding to & dimension. Therefored uniquely specifies
a simple hyper-rectanglB in space.

Clearly, [A*(B)| = O ((logT)”); in addition, A*(B) can be efficiently computed. Given the
above definitions, we briefly describe the AIBE-based MR®OEDNstruction.

Encryption. Suppose that now we would like to encrypt a messsfyg and the pointX =
(1,22, ...,2p). We encrypt the messa@dsg under all simple hyper-rectangles that contain the
point X = (zy,zs,...,zp). This is equivalent to encryptinyIsg under the cross-product @?
different paths to the root. Specifically, fdre [D], denotePy;(X) := P(z4). Py(X) is the path
from the root to the leaf node representingin thed* dimension. Define the cross-product of all
D different paths to the root:

P*(X) = P (X) x Po(X) % ... x Pp(X).

Then, to encrypMsg andX, we use AIBE to encrypMsg under evenyjd € P*(X). Since
IP*(X)| = O ((log T)?), both encryption cost and ciphertext size @é(log T)?).

Key derivation and decryption. To issue decryption keys for a hyper-rectanBle we issue

a key for everyid € A*(B). Since|A*(B)| = O ((logT)"), the decryption key has size
O ((logT)"). Now if X € B, thenP*(X) N A*(B) # 0; in addition,P*(X) and A*(B) in-
tersect at exactly one simple hyper-rectaridig, where the keys and the ciphertexts overlap. In
this case, we use the key falg, to decrypt the ciphertext fadg,. Otherwise, ifX ¢ B, then
P*(X) N A*(B) = 0. In this case, the security of the underlying AIBE schemesugss the
security of the MRQED constructions.

21

3.3 The Main MRQED Construction

In Section[3Z13, we showed an AIBE-based MRGE&bnstruction withO(1) public key size,
O ((logT)") encryption cost and ciphertext siz@,((log 7")"’) decryption key size and decryp-
tion cost. In this section, we propose a new MRGEBonstruction withO (D logT') public
key size,O (DlogT') encryption cost and ciphertext siz@,(D log T') decryption key size, and
O ((log T")") decryption cost.

Our main MRQED construction is relies on bilinear groups ofng order. Therefore, we
begin by giving some background knowledge on pairing anddalr groups.

3.3.1 Background on bilinear groups

A pairing is an efficiently computable, non-degenerate fionc e : G x G — G, satisfying
the bilinear property that(¢", 9°) = e(g,9)". G, G andG’ are all groups of prime ordery,

g ande(g,g) are generators df, G andG’ respectively. Although our MRQED scheme can be
constructed using asymmetric pairing, for simplicity, wesdribe our scheme using symmetric
pairing in the remainder of this thesis proposal, &+ G.

We name a tupl& = [p, G, G/, ¢, e] a bilinear instance, wher@ andG’ are two cyclic groups
of prime ordemp. We assume an efficient generation algorithm that on inpatsafcurity parameter
%, outputsG £ GenX) wherelog, p = O(%).

We rely on the following complexity assumptions:

Decision BDH Assumption : The Decision Bilinear DH assumption, first used by Jdﬂ,[Z?]
later used by IBE systemE [8], posits the hardness of thevitatig problem: Given

9,97, 9,9, 7] € G* x G

where exponents,, z,, z; are picked at random froth,,, decide whetheZ = e(g, g)*'*2*.

Decision Linear Assumption : The Decision Linear assumption, first proposed by Boneh,
Boyen and Shacham for group signatu}}s [5], posits the lkasdof the following problem: Given
9,97, g%, g7, g*2*+, Z] € G°, wherez, 2y, 23, 2, are picked at random froff,, decide whether

7 = 923+24_

3.3.2 Intuition

We build D interval trees over integers fromto 7', each representing a separate dimension.
Assume each tree node has a globally unigi®e In the previous section, we showed a naive
construction for MRQEDB based on AIBE. This naive construction encryptisg under the
O((log T)P) simple hyper-rectangles that contain the pdntand releases decryption keys for
the O((log T)”) simple hyper-rectangles that compose a hyper-rectadgl®©ur goal is to re-
duce the ciphertext size and decryption key siz&{® log T') instead. However, as we will soon

22

explain, naively doing this introduces thellusion attackas shown in Figure=3.2 (b). Our main
technical challenge, therefore, is to devise ways to seagaenst the collusion attack.

[kmc
kll kz2
ky1 | R1 Ry
ky2 | R3 Ry
(a) A ciphertext and a decryption key in MRQED (b) Collusion.

Figure 3.2:An MRQED? scheme. (a) Encryption under the point = (3, 5) and the keys released for the
range[2, 6] x [3,7]. (b) With decryption keyk, 1, k,1 for region Ry andk, k,» for region R, regions R,
and Rz are compromised.

Reducing the ciphertext size. In other words, rather than encryptidvisg for each simple
hyper-rectangle i?*(X) = P;(X) x ... x Pp(X), we would like to encrypiMsg for each
tree node in the the union of thegedifferent paths:

PY(X) =Py (X)U...UPpH(X).

Reducing the decryption key size. Instead of representing an arbitrary hyper-rectanglegusin
the collection of simple hyper-rectangles, we can repieaesimple hyper-rectanglB as the
collection of disjoint intervals over different dimensg&n

Definition 3.3.1 (Hyper-rectangle as a collection of nodesi® hyper-rectanglédB C L, gives a
collection of nodes corresponding to disjoint intervaleodifferent dimensions:

AY(B) = A,(B)UAy(B)U...UAp(B)

Note that for all hyper-rectanglB C La, |A”(B)| = O(DlogT); in addition, A”(B) can be
computed efficiently.

With the above definition, rather than releasing keys foheample hyper-rectangle ih* (B) =
A1 (B) x ... x Ap(B), we would like to release keys for eaé in A;(B) U... U Ap(B).

Example. Figure[3P (a) is an example in two dimensions. To encrypeutite point3,5), we
find the path from the leaf nodkto the root in the first dimension, and the path from the lealeno
5 to the root in the second dimension. We then produce a blothertiphertext corresponding
to each node on the two paths. In the first dimension, we peblacksc,, ¢, c3 andey. In the
second dimension, we produce bloekscg, c; andcg. To release decryption keys for the range

23

2,6] x [3,7], we find a collection\ (2, 6) of nodes covering the rang® 6] in the first dimension;
and a collection\(3, 7) of nodes coveringg, 7] in the second dimension. We issue a block in the
decryption key corresponding to each node\ii2,6) and inA(3,7). In the first dimension, we
create block;p,, kip,, andk;p.; and in the second dimension, we create bldcks,, k;p,,.
andeDF.

Preventing the collusion attack. Unfortunately, naively doing the above is equivalent tolgpp
ing the AIBE-based MRQEDscheme independently in each dimension. As we demonsirate i
Figure[3:2 (b), such a scheme is susceptible to the colluiack. Suppose that Figure13.2 (b),
every rectangle is a simple rectangle. Now suppose that eersaty were given the decryp-
tion keys for regionR; and Ry, then the adversary would have collected kkeys = {k,1, ky1},

krs = {ku2, ky2}. With these, the adversary would be able to reconstruct ¢ys kor R, and

R3: kry = {ku2,ky1}, krs = {ks1,k,2}. Hence, our major challenge is to find a way to se-
cure against the collusion attack without incurring adaiéil cost. We use hinding technique

to prevent the collusion attack: we use re-randomizatiotiettogether the sub-keys in different
dimensions. For example, in Figurel3.2 (b), when we relelasalécryption key for regio®,,
instead of releasingk,, k,1 }, we release ji, k.1, fi,k,1 }, wherep,, andj, are random numbers
that we pick each time we issue a decryption key. Likewiseemieleasing the key for regidgy,

we release{ /i, kqa, i, ky2 }, Whereji;, and i, are two random numbers picked independently from
f. andg,. Of course, in the real construction, andy, (/1, andyz,) also need to satisfy certain
algebraic properties (e.gi./i, = ji, /i, = SOme invariant) to preserve the internal consistency of
our scheme. In this way, components in the decryption keykfocannot be used in combination
with components in the decryption key fay,.

3.3.3 The Main Construction

We are now ready to describe our construction. Define O(log T") to represent the height of a
tree. Assume that nodeDs are picked fron¥:. We append a messaddsg < {0, 1}™ with a

series of trailing zerogy™, prior to encryption. Assume th&6, 11" C G'.

Setup(X,La) To generate public parameters and the master private keyetup algorithm

first generates a bilinear instan€e= [p, G, G, g, €| & GenY). Then, the setup algorithm does
the following.

1. Select at random the following parameters figpi " +':

/ /
W, [acp,lv Ay 2, ﬁgp,lv ﬁcp,?v 94,0,17 94,0,27 w19 9%2} p=(d,l)
€[D]x[L]

In addition, we require that the's and thei’s be forcibly non-zero. At this point, we give a
brief explanation of our notation. The varialas used to index a tuplel, () € [D] x [L],
whered denotes the dimension ahdenote the depth of a node in the corresponding tree.

24

2. PublishG and the following public parametePX € G’ x G*P~:

w
0 e(gv g))
(7] 0
Qp,1 <= UPITOL, Qg g — gree,
/ /
al,, — gl al , — gterten
b 6 9 0
b%l — gﬁ%l o1 b¢’2 «— gﬁw,2 ©.2
/ B ,19/ / Bp.20"
V1 = g7etven, b,y = g7, | o=(di)e
[DIx[L]

3. Retain a master private k6K ¢ G3PL+! comprising the following elements:

w — g“,

« o
Adp,1 < g %17 dp2 < g %27
bgp,l — gﬁ%lv bcp,? — 95%27

for [% «a [%
yg&,l «— g (p,118<p,1 (p,l’ ycp,Z «— g (p,25<p,2 (p,2’

/ o ’1,3 ’19/ !/ o ’25 _29/
S

Notice that in the public parameters and the master key, we H#dferent versions of the
same variable, e.ga, 1, a, 2, a, 1, a,,. Although they seem to be redundant, they are ac-
tually needed to provide sufficient degrees of randomneassuoproof to go through. The
reasons for having these different versions will becomarabace the reader has gone over
the detailed proof provided in Sectibn13.7.

DeriveKey(PK,SK,B) The following steps compute the decryption key for hypetargle
B, given public keyPK and master private keyK.

1. PickO(D - L) random integers frors? x Zﬁ‘AU(B”:

[ﬁd] de[D)’ [)\ID,lv)\ID72]IDEAU(B)

such thatHde[D} ity = w. The reason for having an overhead tilde for the variahlés
to associate it with the variable, since they both belong to the groh and they satisfy
the condition tha{ [, ,, la = W. We note that the randof,’s generated in this stage are
later used to re-randomize the components of the decrygggnin this way, components
in different dimensions are tied to each other; and comptsnieom one decryption key
cannot be used in combination with components from anoteerygtion key. This is how
we prevent the collusion attack as shown in Fiduré 3.2 (b).

2. Compute and release a decryption K < G°A°®)I, DK is composed of a portion
DK(ID) for each/D € A”(B). In the following definition forDK(/D), ¢ = (d,l) =
®(ID) represents the dimension and depth of néfe without risk of ambiguity, denote
A=)\ID717 Ay =)\ID,Z- DK([D) is defined below:

~ (ID.7 \M [ID.s \A2 D P SR P v
Ha(y5aye) ™ (Yphle) ™ agtts byt ags’, b

25

Observe that we release a portion of the decryption key fcin eade inA"(5), as opposed
to for each hyper-rectangle ih*(B). In this way, the size of the private key (3(DL),
instead ofO(LP). Also observe that we multiply the first elementldK (1 D) by 4. This
illustrates theébindingtechnique used to tie together components in different dgioas. In
this way, components in one decryption key cannot be useahibmation with components
in another decryption key; therefore, we successfully @néthe collusion attack.

Encrypt(PK, X, Msg) We create a block in the ciphertext for evarp € PY(X). Equiva-
lently, for each dimensiord and depth, denotep = (d,[), we create a portion of the ciphertext
corresponding to the nodg, residing in thel’" tree at deptfi, on the pattP,(X) to the root. We
now describe th&ncrypt algorithm in the following steps:

1. SeleceDL + 1 random integers: selecte p Z,, selectry 1, ry2] _ g yeipixin €7 Zo "

2. Forg = (d,1) € [D] x [L], defineZ, = Z,,(X), i.e., the node at depthin P,;(X) in thed™"
dimension. Now compute and output the following ciphert@xt G’ x G*PE+!:

(Msg|[0™) - Q7" g,
(bsovlzwb:m) o (asa,lz“oa:a,l)r_w’la

N Te,2 Lo 1 T—="p,2
(beo,Z wbgp,Q)) <a<p,2 wa<p,2) p=(d,l)e
[D]x[L]

QueryDecrypt(PK, DK, C) We first give an overview on hofueryDecrypt works. Re-
call that a decryption kepK = {DK(/D) | ID € A“(B)} is composed of a portioPK (/D)
for eachID € A”(B). We now reconstruct a decryption key for each simple hypetangle
idg, € A*(B) as below. We grab fronDK a sub-key from each dimension: for eatke [D],
grab a sub-kePpK (1 D,) from thed"" dimension, wheré D, € A,(B). The collection of sub-keys
{DK(I/D,),DK(ID,),...,DK(IDp)} can now be jointly used to decrypt a message encrypted
under the simple hyper-rectandtys, = (ID;,...,I1Dp).

We also need to find the correct blocks in the ciphertext tdyafips key foridg,. Recall
that the ciphertext is of the for@ = (c, €0, [Cp1, Cp,25 Cp 3 C<P74]<p:(d,l)e[D}><[L]>' For convenience,
denotec, := [cy1,Cp2, Cp3, Coa) TOr o = (d,1) € [D] x [L]. ¢, is the block in the ciphertext
corresponding to a node in tl€ dimension and at depthof the tree. Defin@(1D) := (d,) to
extract the dimension and depth of the ndde Now for a sub-keyYDK (1 D), definep = ®(ID),
itis not hard to see thaK (/D) should be used in combination with the blackin the ciphertext.

The following algorithm iterates through the simple hypectangles im*(B) and checks if
the ciphertext can decrypt to a valid message under eacheshyper-rectangle i * (B).

For each simple hyper-rectang\é (By) = {(ID1,ID>,...,I1Dp)} € A*(B),

(1) LetDK(IDgy) = (kip,0, kipg1: kKip,2, kip,.s. kip, 1) represent the elementInK for /D,
whered € [D].

(2) Try to decryptC underB, with the collection{DK(/D;), DK(ID,),...,DK(IDp)} of

26

sub-keys:

Ve—c H [e(co, kIDd,O)'e(CsOd,lv kIDd,l)'e(CsOd% kIDd,2)'e(C<pd,3v kIDd,3)'e(C§0d747 kIDdA)

de[D],
0a=%(IDq)

If V'is of the forml\//Is\g| 0™, then outpuﬂ\//Is\g as the decrypted plaintext and exit.
If for all simple hyper-rectangles in*(B), the previous step fails to produce the plaintext, then
output_L.

When done naively, the abo@ueryDecrypt algorithm takesD(D(log T')?) time. How-
ever, if one saves intermediate results, it can be donk (tvg T')P) time withO(D log T') storage.
The above numbers takes into account all group operatiociside multiplication, exponentiation
and bilinear pairing. However, since a pairing operatidyscally more expensive than exponen-
tiation (and far more expensive than multiplication) in Wwmobilinear groups, we are particularly
interested in reducing the number of pairings at time of ylg@on. Notice that we can precom-
pute all pairingse(co, k;p,,0) and pairingse(c,, ;, kip,:) for 1 < i < 4, and store the results in a
look-up table. Therefore, the decryption algorithm regs@® (D log T") pairings in total.

3.3.4 Consistency, Security

The following two theorems state the consistency and siyoofrour MRQED construction.

Theorem 3.3.2 (Internal consistency)The above defined MRQED construction satisfies the con-
sistency requirement posed by Equationl(3.1).

Theorem 3.3.3 (Selective security)The above defined MRQED construction is selectively secure
against polynomial-time adversaries.

Below we give an overview of the techniques used in the sgcproof. The detailed proofs
of TheorenZ3:3]2 and Theordm 313.3 are provided in SeEfldA@ prove the selective security
of our MRQED” construction, we decompose the selective MRQED game intogames: a
selective confidentiality game and a selective anonymityega By the hybrid argument, if no
polynomial-time adversary has more than negligible achgain either the confidentiality game
or the anonymity game, then no polynomial-time adversasyrhare than negligible advantage in
the combined selective MRQED game.

In the proof, we build a simulator that leverages an MRQEDeashry to solve the D-BDH
problem or the D-Linear problem. The simulator inheritsgpaeters specified by the D-BDH/D-
Linear instance, hence, it has incomplete information almumaster key. Therefore, the crux of
the proofis how to simulate the key derivation algorithmhaiit knowing the complete master key.
In comparison, the anonymity proof is more complicated ttienconfidentiality proof, because
it involves a hybrid argument containirtld) L steps. In stefdd;, [;, n;) of the hybrid argument,
Yorm @ANAY,, . (01 = (di, 11)) in the master key contain unknown parameters inherited them
D-Linear instance. Therefore, we need to condition on tlegive position betweeiX* and the
(dy,1y) in question. Our proof techniques are similar to that preeseim the AHIBE paperlﬂS].

27

3.3.5 Practical Performance

In this section, we give a detailed analysis of the perforreasf the MRQED scheme given in
SectiorE3.313 in practical scenarios. We use the conditrefease of encrypted network audit logs
as our motivating application.

Assumptions. To evaluate the scheme of Section_3.3.3 in this applicatien detail a set of
scenarios regarding the searchable fields present in tise Mg assume log entries contain the
fields listed in Tabl€=312. The 17-bit time field is sufficieatdistinguish times over a period of
about 15 years with a one hour resolution, or about three Imsatta one minute resolution. More
precise times may be stored in the non-searchable portithreahessage if desired. The protocol

Field || Abbr. | Range Distinct Values
Source IP || sip 0, Typ —1] | Tgp = 2%
Dest. IP dlp [0, Tdip —1] Tdip = 232
Port || port | [0, Tport —1] | Tpore = 26
Time time [0, ﬂime —1] ﬂime =27
Protocol || prot | [0, Tpot —1] | Tprot = 2°

Table 3.2: Fields appearing in a network audit log and their possibleesa

field corresponds to the actual bits of the corresponding fiean IP header (where, for example,

6 denotes TCP and 133 denotes Fibre Channel). Various sutifsiitese fields may be included

as searchable attributes in MRQED Other fields and any additional associated data such as a
payload may be included as the encrypted message. Regaodlleessage length, we need only
use the MRQED scheme to encrypt a single group element, which may be a nalgdyenerated
symmetric key (e.g., for AES) used to encrypt the message.

Benchmarks for the selected pairing were run on a modernstatrkn. We ran the benchmarks
twice: 1) Back in winter 2006, we used a 64-bit, 3.2 Ghz Pentiuprocessor. 2) We ran the
benchmark test then again in summer 2008, on a Intel 2.4GHe Z@rocessdr We used the
Pairing-Based Cryptography (PBC) Iibranlﬂ[ZQ], which isturn based on the GNU Multiple
Precision Arithmetic Library (GMP). Note that the benchkiag program uses a single thread.
Therefore, for the dual-core processor, only one core wed imsthe measurement. The relevant
results are given in Tab[e-3.3. It is interesting, but nopsigimg, to observe that the benchmarks
improved by a factor of approximately 2 from 2006 to 2008 (farst of the major operations).

Using these benchmark numbers, we now estimate the pemiaerat our encryption scheme
under several scenarios for the network audit log appboati

Public parameters and master key. The space required to store the public parameters and mas-
ter key is logarithmic with respect to the number of posséitabute values. Specifically, denote
the set of attributes ad = {sip, dip, port, time, prot}. Then for each attribute € A, define the

1Although the new processor has lower clock cycle than theo# it is more powerful due to improved pipeline
structure.

28

(a) Year 2006: 64bit 3.2GHz Pentium 4 (b) Year 2008: 2.40GHz Intel Core(TM)2

Operation| Time Operation| Time
pairing (no preprocessing) 5.5 ms pairing (no preprocessing) 2.6 ms
pairing (after preprocessing) 2.6 ms pairing (after preprocessing)1.1 ms
preprocess pairing 5.9 ms preprocess pairing 4.7 ms
exponentiation irG,G | 6.4 ms exponentiation irG, G | 5.3 ms
exponentiation ifc’ | 0.6 ms exponentiation irG’ | 0.3 ms
multiplication inG’ | 5.1 us multiplication inG’ | 2.4 us

Table 3.3: Group arithmetic and pairing performance benchmarks ondenmoworkstation. The table on
the left reflects benchmarks in 2006. The table on the righgats updated benchmark numbers in 2008.

height of the tree., = log, T}, + 1. For exampleLs, = 33 and L, = 9. Then the public pa-
rametersPK require atotal o8) _, L, = 880 elements ofz and one element d&’. Assuming
512-bit representatioA®f elements ofc andG’, the total size oPK is 55KB. The master key
SK contains the same number of elements, again requiring 55sBage. More space efficient
pairings than the one used in this estimate are availabtethisione was selected for speed of
evaluation.

Computation time foSetup is reasonable, given that itis only run once. Computing th#ip
and private parameters Betup requires roughlyl6) _, L, exponentiations and one pairing.
This means roughly 11.3s running time on the old process2d@®, and 9.3s on the new processor
in 2008. Time spent on multiplication in this case is negligi

Encryption. Saving the group elements of a ciphertext requirgs, _ , L, + 2 group elements,
or 28KB. Note that we normally just encrypt a session keyhsois a constant overhead beyond
the actual length of the message. Runrifwgcrypt requires about two exponentiations for each
group element, resulting in a time of about 5.6s in 2006, aid #kh 2008. While significant, this
overhead should be acceptable in most cases in the netwdithkagiexample. If auditlogs are high
volume, the best strategy may be to produce periodic sureseather than separately encrypting
each packet. The searchable attributes of such summarigdd wejlect the collection of entries
they represent, and the full contents of the entries coulthbleded as the encrypted message
without incurring additional overhead. In systems contayrna cryptographic accelerator chip
supporting ECC (such as some routers), much higher perfarens possible. For example, the
Elliptic Semiconductor CLP-17 could reduce the time of exgratiation from 6.4ms to 3G E],
resulting in a total encryption time as low as 27ms.

Key derivation and decryption. We now consider decryption keys and the running time of
the decryption algorithm, the more interesting aspectd®itheme’s computational and storage
requirements. The space required to store a decryptiornttkeyime to derive it, and the time to

2We consider a type A pairing using the singular cug¥e= x> + « for the groupsG andG with a base field size

of 512-bits. Note that all groups involved have 160-bit grauder; the storage requirements arise from the specific
representation of elements in the elliptic curves.

29

(a) Performance in 2006.

Example Query

Nsipa Ndipy Nporta Ntimer Nprot

Pairing
Time

Worst-case
Mult. Time

Worst-case
Dec. Time

sip=207.44.178.%,
dip=216.187.103.169, port=22,
time=x%, prot=TCP

(1,1,1,1,1)

65ms

< 0.1ms

65ms

sip€[207.44.178.123,207.44.182.247],
dip=x, port=22,
timee [5pm 10/31, 9am 11]5
prot € {TCP, UDP, ICMP

(10,1, 1,7, 3)

286ms

1.2ms

287ms

sip€[207.44.178.123, 207.60.177.15),
dip€[207.44.178.123,207.60.177.15),
port € [3024, 35792],
time € [10/31/2006, 10/31/2020
prot€ {TCP, UDP, ICMP

(20, 20, 15, 17, 3)

0.98s

1.64s

2.62s

(b) Performance in 2008.

Example Query

Nsipi Ndipn Nporti Ntimey Nprot

Pairing
Time

Worst-case
Mult. Time

Worst-case
Dec. Time

sip=207.44.178.%,
dip=216.187.103.169, port=22,
time=x, prot=TCP

(1,1,1,1,1)

28ms

< 0.1ms

28ms

sip€[207.44.178.123,207.44.182.247],
dip=x, port=22,
time € [5pm 10/31, 9am 11]5
prote {TCP, UDP, ICMB

(10,1,1,7,3)

121ms

0.6ms

122ms

sip€ [207.44.178.123, 207.60.177.15),
dip€[207.44.178.123, 207.60.177.15],
port €[3024, 35792],
time € [10/31/2006, 10/31/2020
prot € {TCP, UDP, ICMB

(20, 20, 15, 17, 3)

0.41s

0.77s

1.18s

Table 3.4:Decryption times (in 2006 and 2008) resulting from deciyptkeys of various sizes.

decrypt using it depend only on the ranges of attributes fackvit permits decryption. Unlike the

computational and storage requirements discussed thubémse costs do not depend on the full
range of possible values, only those associated with theTkegse costs depend on the number of
key components necessary to represent the permissible edmgg each dimension. For example,
suppose a particular decryption kB only allows decryption of entries with a destination port
in the rang€3, 7] (perhaps placing other requirements on the other attshuteferring back to
Figure[31, we see that three tree nodes are necessary totksveange, sderiveKey would
include these three for the destination port dimensiddKn Similarly, given some decryption key
DK, we denote the number of tree nodes necessary to cover thgptlen range in each of the
dimensions: € A by N, = |A,(B)| (using the notation of Sectidn"3.8.3). So in this example,
Nport = 3. Note that for any: € A, in the worst casey, = 2L, — 2.

30

Now given N, for eacha € A, we may compute the decryption costs. A decryption key
consists of5) © _, N, group elements aniDeriveKey performs8)_ _. N, exponentiations.
The number of operations necessary to decrypt using aDkéys slightly more subtle. While
QueryDecrypt isO(],.4 La) (i.e.,©((log T)")) overall, onlyO(>" . 4 La) (i.e.,O(DlogT))
pairings are required, as mentioned in Secfion B.3.3. Spalty, we only need to compute
5> .ca Na pairings to populate a lookup table containing values (@, kip,), e(cy1,kip,1),
e(cp2,kip2), €(cu3,kips), €(cpa, kipa), ande(c, 5, kips). These values are sufficient to com-
pute theQueryDecrypt algorithm. Assuming a key will normally be used to decryptadch
of ciphertexts one after another, we may further reduce tst of pairings by preprocessing
with the key. As shown in Table=3.3, preprocessing reduces#iring time by about half, at
a one time cost (per decryption kEK) equivalent to one or two decryptions. Computed naively,
the sequence of trials in step one QfieryDecrypt end up requiring a total ofA|[],., N,
multiplications inG’. This can be somewhat reduced. L%t... 5, be{N,|a € A} sorted
in ascending order:S; < S, < ...S)4. Then by saving intermediate results between trials
and ordering the dimensions appropriately, it is possibledmplete step one with a total of
St + 518 + 815285 + ... 515, - - - S|4y multiplications.

Specific scenarios. We have now computed the costs associated with the storagesage of a
decryption key in terms oW, for a € A, but we have not yet specified,. If we assume the range
for each attribute is randomly selected (uniformly), thendach: € A, the expected value af,,

is L, — 1. This results in a decryption key size of 33KB and a runningetifor DeriveKey of
5.4s in 2006, and 4.5s in 2008. The corresponding worst-aass/ption timé is 13.1s in 20086,
and 6.1s in 2008. Note that this has improved by a factor ofe2 aperiod of 1.5 years. This still
may be a major cost, and likely to be inconvenient if signiftoguantities of log entries must be
decrypted. Fortunately, queries eliciting such long dption times are not likely to be necessary
in practice. In fact, fairly elaborate queries are possiiide keeping decryption costs low.

In Table[3# we provide several examples that help demdegtigs. The first entry illustrates
the fact that specifying a single value, all values, or a eanfjvalues falling on power-of-two
boundaries (as in the case of an IP subnet) for some attrilnetgults in/V, = 1, reducing decryp-
tion time dramatically. In the next example, several atiiéls are required to be in general ranges,
or, in the case ofrot, selected from a small set. This results in larger numbekeptomponents
and slightly longer decryption times. Still, the decryptiime in this case is far below the time
with each range randomly selected. As shown by the third el@narger ranges result in larger
values ofN, and, again, somewhat larger, but still relatively low, gtion times. It is interesting
to note that the decryption time has improved by a rough faaft@ over a period of 1.5 years.

Exploiting parallelism to speed up the computation. The performance numbers in Tablel3.4
does not exploit any parallelism. In particular, even fa tiew dual-core CPU, we did not leverage
the dual-core feature, because our benchmarking prograchaisingle thread.

3In reality, the average decryption time is smaller than thisnber, since upon a successful decryption, the

QueryDecrypt algorithm exits after trying half of the combinations in expation and thus performing half the
worst-case multiplications.

31

We would like to note that most of the above computations asdyeparallelizable. For exam-
ple, if one has multiple entries to decrypt, one can easdfrithute them across multiple processors.
Even when we are decrypting a single entry, we can paraléiegQueryDecrypt algorithm in-
ternally. For example, the)_ _, N, pairing operations do not have any dependencies, and we
can assign them to different processors easily. We can &tibdte the simple hyper-rectangles
to the multiple processor: each processor will try to detagp of the (log 7')” hyper-rectangles.

In fact, if we have plenty of processors, we can distribueedbmputation such that each pro-
cessor only has to perform one pairing. After all the painesults are computed, each processor
tries to decrypt at one simple rectangle. In this case, thiéiphication time becomes negligible
compared to the pairing time. Therefore, ignoring possikerheads of parallelism, the theoretic
decryption time can be improved to roughly the time of a ®nggiring operation (1.1ms as of
2008), even in the worst-case scenario.

This is very encouraging, especially as parallel componais starting to be widely accepted
in practice. The latest consumer PCs have multiple procgsand IT companies are using large
clusters to run their computations. For example, Google'ster has an estimate of 100K nodes,
and this may well be a conservative estimate [38].

3.4 The Dual Problem and Stock Trading through a Broker

In the MRQED problem, one encrypts a messadeg under a pointX in multi-dimensional
space, and given a hyper-rectanflethe master key owner can construct a capability, allowing
an auditor to decrypt all entries satisfyidy< B. On the other hand, the privacy of the irrelevant
entries are still preserved.

Informally, the natural dual problem to MRQED is where onergpts under a hyper-rectangle
B, and given a poinKX, the master key owner can construct a capability allowinguaditor to
decrypt all entries satisfyinB > X. Like in MRQED, we require that the privacy of all irrelevant
entries be preserved. We now show an interesting applicafithe dual problem, and then show
that MRQED implies a solution for the dual problem.

An interesting application of the dual problem is for tragistocks and other securities. Sup-
pose annvestortrades stocks throughl@oker. The investor specifies a price range and a time
range, such that if the stock price falls within that rangerdya specific period of time, the broker
can buy or sell the stock on behalf of the investor. This isallgueferred to as atop order limit
order, or stop-limit order Sometimes, the investor may not fully trust the broker, @xay wish to
conceal the price and time ranges from the broker beforeder @& executed.

The dual problem can be applied in such scenarios to addregsivacy concerns of investors.
In particular, thestock exchanger any third-party with knowledge of the real-time stoclkcprcan
act as the trusted authority who owns the master key. Foretoerce, in the following description,
we assume that thetock exchanges the trusted authority. The investor first encrypts thesord
along with the desired price and time ranges, and sends tingad order to the broker. Suppose
that at a certain point of timg the stock price i®. The stock exchange constructs a decryption
key for the pair(¢, p), and hands it to the broker. With this decryption key, thekbraan decrypt
all orders whose price and time ranges match the currerdg pend the current timg and execute

32

these orders. For orders whose price and time ranges do o tha current price and time, the
broker cannot learn any additional information about tresers.

MRQED implies the dual problem. We use &-dimensional example to illustrate how MRQED
implies a solution for the dual problem.
e Dual.Setup (3, [T]?): Call MRQED.Setup (%, [T]*), and output the public kepK, and
master keybK.

e Dual.Encrypt (PK, [z, 22| X [y1,y2], Msg): To encrypt a messadelsg under the range
(21, x2] X [y1,y2] in 2 dimensions, calMRQED.Encrypt (PK, (21, 2, y1,y2), Msg). Ob-
serve that here a range,, z] x [y1,y»] in [T]* is mapped to a poir(try, z, yi, yo) in [T]%

* Dual.DeriveKey (PK,SK, (z,y)): To generate a decryption key for the pajnty) € [T,
call MRQED.DeriveKey (PK,SK, [1,z] x [z,T] x [1,y] x [y, T]).

e Dual.QueryDecrypt (PK, DK, C): To try to decrypt a ciphertext using the decryption
key DK, call MRQED.QueryDecrypt (PK, DK, C).

In essence, the above scheme maps a range,] x [yi, y»] C [T]? to a point(z, zo, y1,y2) €
[T]%, and testing if a pointz, i) is within the rangéx, , z»] x [y1, 2] is equivalent to testing whether
(1, 22,9y1,y2) € [1,2] x [x,T] x [1,y] x [y, T]. Itis easy to verify that the security of the MRQED
scheme guarantees a similar notion of security for the doragtcuction, i.e., if a decryption key
fails to decrypt a certain ciphertext entry, then a prohstol polynomial adversary cannot learn
any additional information about that entry.

3.5 Notation

We summarize the notations used throughout this chapteabtel3.b.

33

Notation Explanation | First Defined |
[s,t] integerss throught Sec[31P
[a] integersl througha Sec[31P
D number of dimensions Sec3 1P
T number of discrete values in each dimension Sec3 1P
LA multi-dimensional lattice Sec3 1P
X a point in the lattice Sec[3. 1P
B a hyper-rectangle Sec[3TP
% security parameter SecE31P
PK public key Sec[3.1P
SK master key Sec[3.1P
DK decryption key Sec[3.1P
Msg message to encrypt Sec3. 1P
M message space Sec3. 1P
G a bilinear instance Sec[331L
G bilinear group Sec[331
G’ target group Sec[331
e bilinear pairing function Sec[331
g generator ofx Secl3.all
Ly additive group of integers modular a prime Sec[331l
Zy multiplicative group of integers modular a primpe Sec[3.3B
tr(T) binary interval tree over integeiisthrough7’ Sec[32P
1D identity of a tree node Sec[32P
cv(ID) range represented by a tree ndde Sec[32P
P(x) path from the root to the leaf node representing Sec[3ZP
A(s,t) set of nodes representing the range [s, t] Secl3.2.P
Aqa(B) set of nodes representing the range specifieBbiy the d*™ dimension Sec[3.ZB
Bo simple hyper-rectangle Sec[32ZB
idB, identity vector of the simple hyper-rectandiy, Sec[32ZB
A*(B) hyper-rectangléB as a collection of simple hyper-rectangles Sec[32ZB
Py (X) path to root in thei*” dimension for the poinK Sec[3ZB
P*(X) cross-product of alD paths to root for the poinX Sec[3.2B
PY(X) union of all D paths to root for the poiriX Sec[33P
AY(B) hyper-rectangléB as a set of tree nodes Sec[3.3P
L height of interval tree Sec[3.3B
Pd(ID) a function that outputs the dimension and depth of some fdzle Sec[3.3B
= (d,l) usually used in subscripts to indicate the dimension anthdespectively | Sec[33B
Z,(X) wherep = (d, 1) | the node at depthin the path?,(X) of thed"” dimension Sec[33B

Table 3.5:Notations.

3.6 Proof of Consistency

Proof of Theorem[3:32:

LetC = <c, €05 [Cp1, Cp25 Cp 3 %A]ga:(d,z)e[mx[L]) be the encryption oMsg on pointX. Let
A*(By) = {(IDy,ID,,...,I1Dp)} € A*(B) be the current simple hyper-rectangle under de-
cryption. Letp, = ®(1Dy) (d € [D)).

If X € By, thenforalld € [D], Z,,,(X) = ID,. For simplicity, let¢(z) = e(g, g)*, and denote

34

7

Pd

=7

»,(X). Now decryption folB, proceeds as follows:

/ _ ~ A A
V =(Msgl|0™)- Q" H e (gr“ud (ygod,llDdy:od,l) IDg,1 (ygod,2IDdy</pd,2) IDd,2)
de[D]

I | —AID,, 7 / Togq.mn —AID,, 7 / T=Teq.n
¢ (a%,n @ (bipg,n 4 boyn) ‘ e (byyn @™y (Apgn” 7l Upyn)
de[D],ne(2) de[D],ne(2]

:(Mngom’) . Q—’f‘ e (gr,&) é. T- Z a@dvnﬁwdﬂ)\lden (Hﬂpdvn’[Dd + H;d’n)
de[D],
nel2]

g3 Z O‘@d,n(_/\Ide)T@dmﬁ@dm (esodmzsod + %d,n)

de[D],
nel2]

S § : ﬁ@dm(_)‘Ide) (T - rsodm) Apg,n (esodmzsod + %d,n)
de[D],
ne(2)

:(MSgHOm’) O e (97"(:)) f r. Z asodmﬁsod,n)‘fde (GwdmIDd + G;d’n)
de(D],
nel2]

SR Z a@dmﬁ@dm(_)‘fden) (eeod,nzeod + %d,n)

de[D],
ne(2)

—Msg]|[0™ .

Else ifX ¢ By, Z,,,(X) # 1Dy, d € [D]. Hence decryption yields

5 r- Z a@dfn/@@dfn)\IDd’n (H@dﬂq’[Dd + H:D(hn)
de[D],
nel2]

V = (Msg]|0™) -

5 r- Z a@dv"ﬁSde")\IDdyn (9<Pd7n1.90d + %dm)
de[D],
nel2]

= (Msg||0™) - Q"

35

where

Q = 5 Z asadvn/@@dvn)\Iden (espdvn]Dd + H:Dd,n) - Z a@dvnﬁsadvn)\lden (990d7n1.50d + Q:Ddﬂl)
de[D], de[D),

ne2] nel2]
With probability 1 — 1/p, @ # 1, and the ciphertext is distributed uniformly at randomGh
Hence the probability that is of the formMsg||0™ is less thar}, +

am’ "

3.7 Proof of Security

To prove the selective security of our MRQEDonstruction, we decompose the selective MRQED
game into two games: a selective confidentiality game andeatse anonymity game. By the
hybrid argument, if no polynomial-time adversary has mbentnegligible advantage in either the
confidentiality game or the anonymity game, then no polymaitiine adversary has more than
negligible advantage in the combined selective MRQED gaiiitee terminologyconfidentiality
andanonymitythat we use here is adopted from AIBE schemes.

Definition 3.7.1 (MRQED selective confidentiality game)The MRQED selective confidentiality
game is defined as below.

e Init: The adversaryl outputs a poinX* where it wishes to be challenged.

e Setup The challenger runs th®etup (X, La) algorithm to generateK, SK. It givesPK
to the adversary, but does not divulge.

e Phase 1 The adversary is allowed to issue decryption key queriebyper-rectangles that
do not containX*.

e Challenge The adversary submits two equal length messadeg, andMsg,. The chal-
lenger flips a random coir, and encryptdMsg, underX*. The ciphertext is passed to the
adversary.

e Phase 2 Phase 1 is repeated.
e Guess The adversary outputs a guéssf b.

Definition 3.7.2 (MRQED selective anonymity game)The MRQED selective anonymity game
is defined as below.

e Init: The adversaryd outputs two pointX, andX, where it wishes to be challenged.

e Setup The challenger runs th®etup (X, La) algorithm to generateK, SK. It givesPK
to the adversary, but does not divulge.

e Phase 1 The adversary is allowed to issue decryption key querielyper-rectangles that
do not containX, andX;.

e Challenge The adversary submits a messadeg. The challenger first flips a random coin
b, and then encryptdIsg underX,. The ciphertext is passed to the adversary.

36

e Phase 2 Phase 1 is repeated.
e Guess The adversary outputs a guéssf b.
In either game, we define the adversaty advantage as

Adv(X) = |Prb=V]— =

2

Definition 3.7.3 (IND-sID-CPA) An MRQED scheme is IND-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in dtinéidentiality game.

Definition 3.7.4 (ANON-sID-CPA) An MRQED scheme is ANON-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in tloagmity game.

Lemma 3.7.5If an MRQED scheme is both IND-sID-CPA secure and ANON-sHA-Gecure,

then the MRQED scheme is selectively secure.

Proof: By the hybrid argument. |

|

Hence, it suffices to prove our MRQED construction IND-sIPACand ANON-sID-CPA se-
cure. We say that an MRQED schemdisg, ¢) secure if any adversary makiggange queries
for decryption keys, cannot have more theadvantage within time.

Theorem 3.7.6 (Confidentiality) Supposé& satisfies thér,) D-BDH assumption, then the above
defined MRQED scheme(ig, ¢, ¢) IND-sID-CPA secure, wheré < 7 — ©(¢DlogT).

Theorem 3.7.7 (Anonymity) Supposés satisfies thér, €) D-Linear assumption, then the above
defined MRQED scheme (8, ¢, ¢’) ANON-sID-CPA secure, wheré < 7 — ©(¢DlogT), and
¢ =(2DlogT + 1)(e+ 1/p).

In particular,©(¢D log T') comes from the fact that the simulator ne€dsD log T") time to
compute the decryption key for each hyper-rectangle gderite2D log T + 1 loss factor ine
comes from the hybrid argument we use to prove anonymity,aatuitive 1 /p comes from the
probability that bad events happen in the simulation sottif@simulator has to abort.

|

3.7.1 Proof: Confidentiality

Proof of Theorem[Z76:

We reduce the semantic security of MRQED to the hardnesseoDHBDH problem. Let
l9, 91, g2, 93, Z] denote the D-BDH instance supplied to the simuldSorhereg; = ¢**, go = g2,
gs = ¢*3, the simulator’s task is to decide whether or tbot= €(g, g)***2*3. And to do this, the
simulator leverages an MRQED IND-sID-CPA adversaty,

We describe a reduction such thakif= e(g, g)*'*2*, the simulator produces a valid ciphertext;
otherwise, the first term in the ciphertext is random. Hence, if the adversary couéhbithe
confidentiality of the scheme, the simulator would be ablgdive the D-BDH problem.

Init: The adversary selects a pot € L that it wishes to attack. Fas € [D] x [L], define
T = T,(X").

37

Setup: To create public and private parameters, the simulator theefollowing:
1. Pick at random fron,"*"*:

(s Bons O 0 s O, O,

o Ooins B O] o ety metz

subject to the constraint that

n >k N’ o
[00nZ5 + 05 = 0] o=(d,))e[D]x[L],n€[2]
whereZ?; = Z,(X*). We also require that the's, ('s, 6's and@"s are forcibly non-zero.

2. Release the following public parameters to the adversary

T e U L A L
91, 92), b - (gg%nglg%n):@w,n b, - (g%’"gl%")ﬁ%n
pin ’ psn 7 dp=(d,l)e[D]x[L],ne[2]

Note that this posits that = z;z,; in addition, bothw andw are both unknown to the
simulator.

3. Compute what it can of the master key.

0., 0., atp,’!LBtp,’!L / 9 9_/) atp,’!LBtp,’!L
Yon < (g g %n) v Yom (g “ngl (p’n)

Portionw of the master key is unknown to the simulator.

[Apn gron, by — g7,

p=(d,l)€[D]x[L],nE€|2]

Phase 1: Suppose the adversary makes a decryption key query for fergctangle
B(Sb t17 52, t27 -y SD, tD)

SinceB does not contaiX*, there exists a dimensiafy € [D] such thatr) ¢ [sq,,tq,], Where
x;, is X* projected onto thé" dimension. Hence, there exists a dimensipre [D], such that
forall ID € Ay (B), ID # I}, wherep = (dy,l) = (/D). We say thaiX* does not overlap
with B in dimensiond,. The simulator now does the following:

1. Pickd, such thatX* does not overlap witlB in dimensiond,. Letny, = 1.

2. Pick the following numbers at random frcﬁf“‘AU(B)':

['ud}de[D]’ [XID,nO}IDeAdO(B)’ [)\IDv"]IDeAdO(B),n;AnO’ [)\IDv"}IDGAU(B)—AdO(B),nED}

subject to the constraint that ;. pa = 0.

3. ForallID € AY(B)— Ay, (B), letDK(ID) = (k,D,O, [k%,l, k%,l} , [kﬁ)m, k%,?}) repre-
sent the element iDK for I D, lety = (d,1) = ®(I D) whered # d,, compute and release
DK(ID) as below:

AID,n
kID,O — g#d ' 1_[[] (ygo,nIDy:pm) ")
ne|2

(a) _)‘ID,TL k(b)

—AID,
KiDn < 3pim Kipn < bon ”]

nel2]

38

4. ForallID € Ay (B), letyy = (dy, 1) = ®(ID), compute and relead@K (/D) as below:

~ Dy AID,n
kipo < wgho - [] (ygoo,n y(po,n))
ne(2)

k(a) _)‘ID,TL k(b)

—AID,
ID;n < Qpo,n Kip, b ”}

@o,n
ne(2)

where
Z9

AIDmg = MDomg — (3.2)

Aoy 0 Bp0,m0 Opo.mo

é%mo = é«?omo[D + éclpo,no 7& 0.
This ensures that; ,,, is distributed uniformly at random i#,,. Since«?so(),noI;;(L + é;o,no =
0; moreover, the simulator has picked such that/ D # 77 , we then have,, ,, # 0.
Although the simulator does not knop ,,, (Since it does not know,), it can compute
agem, NP0 andby, ,,~MPmo given g*2. Since the simulator does not knawy we now

explain how to computk;p o. The simulator rewrites the equation far, ; as

A ~ A
_ Hdy . ID ./ ID2| . ID_ ./ ID,1
kipo = [g ’ (y%0072 y<po,2) w (y%OOvl y<ﬂo,1)

)AID,2

Let U = g"0 - (yp02" YLy o ,thenk;po =V -w- (ygoo,nolDy;O’nO)AIDmo The simulator

can compute par because it possesses all necessary parameters requitedpate it.
Although the simulator cannot directly compute the value of ,,, (since it does not know
27), it is capable of computing;p o given g** andg?; since if we rewritek;p o as below,
we can see that the exponent only containand z, to the first degree. For convenience,
we omit the subscriptgo, no and/ D below by lettinga = gy ngs 3 = Biginer 0 = Oipno

Q/ - 9/ 9 - ega()ﬂloi 9/ — 9/ nO’ y - ySD(Ln()’ y/ = yc;O,nOl @ — @ga(),nos)\ -)\IDﬂlO’

__po;no’ ©0,
A = AID,ng-
212 A oz a 210 o o X—Zg/(aﬁ@)
kipo =0 - g7% - (y'Py)" = W . g% . <g B(6+=16)ID oB(6'+ 19))

_ 0. AYI=) a0 N0 a0 N0
— . 92122 g z122(6-ID+6")/© f(21,22,2,8,0,0',0,0",A,0,1D) _ - gf(zl,zg,a,ﬁ,eﬁ ,0,0' X\,0,ID)

g
wheref(z, 2, a, 3,0,0',0,0',X\,0,ID) is a polynomial where variables and z, have

maximum degree 1.

Challenge: The adversary gives the simulator two messaykg, and Msg,. The simulator
picks a random bit, and encrypt®Isg, under pointX* as below:

1. Pick random integer$, .],_ 4 yeipixyne € Zn -

2. Compute and release the following as the ciphertext.

MS 07n/ . Z_17 ’ T¢,nﬁ¢77L(6¢77LI;+9;7n)7 . Tem a(ﬂ,n(lgtanI;"‘efp,n)]
(Msgy||0™) 93; |9 (939) o=(d,l)e[D]x[L],n€[2]

39

Note that this implies that = z3; and if Z = e(g, g)*****, it is easy to verify that the ciphertext
is well-formed, due to the fact th@WI; + 0., = 0] o= (@DelD)x Lnerp ON the other hand, if

7 is a random number, then the first ternin the ciphertext is random and independent of the
remaining terms.

Phase 2: Phase 1 is repeated.

Guess: When the adversary outputs a gués®f b, the simulator outputs if & = b and0
otherwise, in answer to the D-BDH instance. |

3.7.2 Proof: Anonymity

In Definition[3.Z.2 of the selective-ID anonymity game, thalkenger flips a random coinin the
Challengephase. An equivalent definition is where the challenger tigscoinb in the Setup
phase before running ttetup (X, LA) algorithm. This new definition can be further translated
into a real-or-random version which we will use in the follogyproof of anonymity. In the real-or-
random game, the adversary commits to only one pXinin theInit phase; any of its subsequent
range queries must not contaXt; in the Challengephase, the challenger either returns a faithful
encryption ofMsg underX* or a completely random ciphertext; and the adversary’s $otw i
distinguish between these two worlds. It is easy to verigit the above real-or-random definition
implies the selective-1D anonymity definition as stated &fibition[ZZ2 [13].

The proof of anonymity is carried out 2D L steps using a hybrid argument. To do this, we
define the following games, wheraepresents a number distributed uniformly at random froen th
appropriate group.

W,.: : The challenge ciphertext (8:, Co, [05?31),17 CE?,)U,J? , [CEIB,L) o CE%) L),2]> :
W, : The challenge ciphertext (sk, co, [cgf{?l) N CET,)l),l]» , [CE%L)) CE‘BLW]) :
W11 : The challenge ciphertext(, Coy [%, %], [CE?J),W CE?)D o)y [CE%,L),W cg‘g L 2]) ;
Wi12: The challenge ciphertext (s*, Co, [*, %], [*, *], [CE?2) y 08’)2)’1], . E%)2 cgg L) 2]) :
Wp.r1: The challenge ciphertext (Svk, Co, [*, *], [*, %], .. ., [*, %], [CE?),L),Q’ CEC&L),ZD ;
Wp.ro: The challenge ciphertext(s, co, [*, %], [*, %], ..., [, %], [*,%]).

In step(d, [, n) of the hybrid argument, we show thét,, ,, is computationally indistinguish-
able from the previous world. Note that the transition fré¥,,; to W, is the standard concept
of semantic security, and has been proved in the previou®setn addition,W, ; » is computa-
tionally indistinguishable from a completely random cigbgt, hence is anonymous.

40

We reduce the anonymity of our MRQED scheme to the hardneke @-Linear problem. We
rewrite the D-Linear problem as givén, g*, g*2,Y, g*2*, g**7*] € G, wherezy, 2o, 23, 2, are
picked at random fror,,, decide whethe¥” = ¢g***3. It is easy to show that this is equivalent to
the original D-Linear problem. For convenience,det= g7, go = g%, goy = g2, g4y = g7

Without loss of generality, we show only how to prove stép [, n,) of the hybrid argument.

Lemma 3.7.8 SupposeG satisfies ther, €) D-Linear assumption, then no adversary making
decryption key queries, within time— ©(¢D logT'), can distinguish betweeW, ;, ,, and the
preceding game with more thant 1/p probability.

Proof of Lemmal3.Z8: Lety, = (di,l;). We describe a reduction such thakif= g*+,

then the simulator produces a ciphertext in which the bl[oé’fﬁh)m, ngi,ll),m] is well-formed;
otherwise, ifY is picked at random, the block is random as well. Hence, ifatieersary can
distinguish between the two scenarios, the simulator cbse $loe D-Linear problem.

Init : The adversary selects a poiit in space that it wishes to attack. Deftig = Z,,(X*).
Setup To create public and private parameters, the simulatos teefollowing:

1. Pick the following parameters at random frait"”"—2:

0

W,

n 0/ !
[a‘P’”’ﬂ@’"’@%"’e‘P’”} o=(d,))€[D]x[L],n€[2],(p,n)#(p1,n1) ’ [W“9%"]w:(dJ)E[D]X[LLNE[?]

subject to the constraint that

) * N’ -
[890’”1;0 T 890’” o 0:| e=(d,))€[D]x [L],n€[2],(p,n)#(p1,n1)

whereZ; = 7,(X*).

We require that the'’s, 3s, #’s and@”’s are forcibly non-zero. In addition, later in Equation
@E.3), we will need thav,, ,, Z; +0, , # 0. Hence, the simulator simply aborts if it
happens to pick such that,, ,,, 77, + 0, , = 0. Note that this happens with probability
1/p, and this explains why thé/p additive factor exists in the adversary’s advantage in
Lemmda37B.

2. Compute and release to the adversary the following pphliameters:

0 0 / 0! / 0!
Q—e(g,9)" ap,n — G171, by, 0y — Go LML Ay G ¢1~,n1,bwl7n1 — gglerm
Op.n . Op)P O B \Bom
A p (g% m g %em) ybpp (glem gy Oem) ™"]
/ 0! 0, e gy 0! 0 en
a — “X0) “X0) b — “R0) “X0)
o (gPomgien) b = (g er) p=(d)E[D]x L] ne[2] (p.m)#(p1,m)

This posits thatv,, ,, = 21, B4, », = 22, both of which are unknown to the simulator.
3. Compute what it can of the private key:

~ w
w<—g 7agol,n1 — g1, b<p1,n1 — 92,
anL « gOé(p,n’ pr,TL «— gﬁtﬂ,'rL’
) ap,nPBeon o')a%nﬁ%n

th,n th,n ! o, n ,n
Yo (g7 gn7) » Yo (g™ o=(dl)E[D)xL].n€[2], () £(p1,m1)

Note that the simulator does not knaw, ,, andy/, . .

41

The following lemma shows that even if we do not know the pat@msz,, 22, Yy, n, OF Y, ;5
we can still compute certain terms efficiently.

Lemma 3.7.9 In step(d,, [1, ny) of the hybrid argument, leb; = (dy,1;). Suppose we are given
(da, ly,n9) # (di,li,nq), and letyy = (ds,ls). Suppose D, and I D, are nodes such that
O(IDy) = ¢ and ®(IDy) = ¢y and I Dy # Z;,- Moreover, suppose we are given € Z,.
Then, even though the simulator does kngyv,,, it can efficiently generate the following term,
such that the its resulting distribution is the same as wheis picked uniformly at random.

TN R (e RV (3.3)

ygpl ni ycm ni ySDQ n2y992 n2
Moreover, the following two terms can also be computed effity

a 2 b2 (3.4)

©2,m27 Tp2,n2
Proof: For simplicity, leta = ag, 5y, 8 = Bpon,. FOri € 2], we use simply; to denote
0, n,, @ande’; to denote@’ . We use simply, to denote?sp2 nyy @NAE) tO denotee’ . Notice
we do not defind),, smceéﬁp1 n, @ndd/, . are not defined. Define fore 2], 0; = 9]D + 0
and defined, = 0, - 1D, + 0.
Recall that the S|mulator picked parameters such &E@j + 6, = 0. In addition, since
ID, # T* , andf, # 0,

802’

Oy =10,-1IDy+ 0, #0
First, the simulator pick uniformly at random and define

22)\1@1

Ay =N — —n0.
046@2

Observe thah, is distributed uniformly, but we cannot computg efficiently because we do
not knowz,. However, since we know?2, we can compute’? efficiently. Hence, it follows that
we can compute the two terms [0(B.4) efficiently in the foliogvway.

-\ _ A a Ao
gazilg - (g 2) 7b302 %2 - (g

It remains to show how to compute the term[In]3.3). Rewkid)@s below:

a A2)_5.

D A1
(y@l 7111 ys01 m) <y¢2 ngng n2 9

2122)\1@1—‘,-0(5(@2—}-21@2)()\—22)\1@1/a,3@2) — ga,@@g)\ . <g21>a,862)\ . (922)—>\1®1@2/@2
Y

_ _ A
Dy e = g (0a1D140]) <gaﬁ(92+2192)1D2 a5(0'2+Z19'2)> ?

=9
which can be computed efficiently givert andg*.]
Phase 1:Suppose the adversary makes a decryption query for thedngpeamgleB (s, t1, ..., sp, tp).
SinceB does not contaiiX*, there exists a dimensiofy € [D] such that}; ¢ [s4,,t4,], Where
x;, is X* projected onto thell" dimension. Hence, exactly one of the following cases must be

true:
Case 1: Forall D € Ay, (B) such that(ID) = ¢4, ID # I, (X*).

42

dz

.X* case 1 .X* case 1

.X* case 2

.X* case 1

4 9 10 d 13 4 9 10 T
(a) (b)
Figure 3.3: A 2-dimensional example: Relative positionwsetn X* and the queried hyper-
rectangle. (a) Each small rectangle shown is a simple rectangle. Along dsio d,, ranges
[3,4] and|[9, 10] correspond to nodes at levil (b) The interval tree corresponding to dimension
dy.

Case 2: There existsD € A4 (B) such thatb(/D) = ¢, andID = 7, (X*). Note that in this
case, for alllD" € A4 (B) such that!D" # ID, ID" # I1,(X*), wherey' = ®(ID');
moreover, there exists a dimensidg such that for alll D, € Ay (B), IDy # Z,,(X*),
wherepy = ®(1Dy).

Figure[3:B illustrates the above two cases with a 2-dimeasiexample. We now explain how the
simulator generates the decryption key in each of the abasesc

Case 1: (a) Pick atrandofiy] ., €r G”, such thaf [, fia = &.

(b) For eachID € A”(B) wherey := ®(ID) # ¢, pick at random\;p 1, \;p 2. Let
DK(ID) = <k1D70, [k%,l, k%,l], [k%z, k%z]) represent the element DK for I D,
compute and relead@K (/D) as below:

_ ArDon
kip,o < Ha - 1_[[] (y{o,Dny:o,n) "
ne|2

(a) —Arp,n 1, (b) —AID,n
|:kID,n < Apn 7kID,n — by

Y

i| ne(2]

(c) Foreach D € A¥(B) suchthatb(/D) = ¢4, the simulator can compute the following
DK(ID) efficiently:

Y

~ ID ./ AIDn
kID,O Hay - H (yQOL”y%Dl,n)
nel2]
—Aip,n 1, (b) b_)\ID,n

(a)
kID,n < dpin ’kID,n — Dpyn
ne(2)

Since the simulator does not knayy, ,,, or v, .., it needs to use Lemnifa=3y.9 to
generatedDK (/D). Letn’ # n;. To apply Lemma&-3.719, the simulator first picks at

43

randoml;p ,,,, and rewritesk;p o as

AID,nq) (D))‘ID,n’

o~ ID /
le,O = Hd, - (ygal,mysm,m) o1 Yor,n’

Sincel D # Z,,(X*) , the simulator can apply Lemrha31]7.9 by substitutisig />, n,)
in the lemma with(dy, I, n’), and\; with \;p ,,,; in addition, both/ D, and/ D, in the
lemma are substituted withD.

Case 2: (a) Pick atrandofg] . €r Z, suchthad .) pa = w.
(b) Foreach D € A(B)—Ag4,(B)—Ay4 (B)wherep := ®(ID) = (d,l),d # dy andd #

dl, p|Ck at randorn)\[DJ,)\ID,Z- Let DK(ID) = <k]D70, [k—(,a[))’l, k.(,l)[))71], [k—(,a[))vz, k.(,b[))vz]

represent the elementIDK for /D, compute and releadeK (/D) as below:

>\ n
kipo < gt - 1_[[] (y{pﬁy:p,n) "
ne|2

(a) —Apn y,(b) —AIDn
kID,n < Apn 7kID,n — by

i| ne(2]

(c) LetID € Ay (B) andID = Z,, (X*). There exists exactly one su¢ty. The simula-
— Ao
tor picks at random\;5 ,,, €x Z,. DefineY = (yéﬁmy;ml) T

(d) Foreach D € A, (B) wherey, = (do, 1) := ®(1D), compute and releadeK (/D):

AIDn
kipo < ghto - T - 1_[[} (ygjooD,ny:ao,n) "
nel2

i = Sl 02

ne(2)
This implies thati,;, = ¢g*% - T. Note thatY cannot be computed efficiently, as the
simulator does not knowy,, .., ory, ,,. However, sincd D # 7,,,(X*), the simulator
can apply LemmB3.17.9 by substitutiti, i, ns) in the lemma with(dy, [, 1), A; with
MBI D1 with 7D, andI D, with I D. The remaining terms iky o can be computed

efficiently.
(e) Foreach D € A, (B) wherey, = (dy,1) := ®(ID) # ¢, compute and release
DK (ID):
k — ghar . YL I1 ID 1 ADn
IDO < g b Yo nYet n
(3) _AID,’!L (b) _AID,’!L
KiDn < 3n " KD < By]ne[z}

This implies thafiy, = ¢g*4 -T~!. Note thatl ~! cannot be computed efficiently, as the
simulator does not know,, ., ory,, ,,,. However, sincd D # 7., (X*), the simulator
can apply Lemm&=37.9, by substitutiid,, [>, n») in the lemma with(dy,1,1), A\
with ~ABmyr 1 D1 with /D, andI D, with I D. The remaining terms ik;p o can be
computed efficiently.

44

(f) For ID, letn’ # n,. Pick A5, at random froniZ,. Then compute and release the
following DK(1D):

_ A5
_ pd, . Y—1 . D,/ iDn
krpo < 9" - T 1 <yw1,nym,n> '

ne(2]
“AMB.n 1.(b) AT
k2 eag i kB
ID.n #1s »“TD.n #1s nel2]

As before, hergiy, = gta - T71, k75 o €an be computed because the terms containing
Yormy @Ndy,, . cancel out, leavingrs , = g - <yfa?ny:01n>

(g) For eachID € A4 (B) such thatb(ID) = ¢, andID # 1D, compute and release
DK(ID):

ATD.n

_ AID,n
kID,O — gudl T L. H (yglpley:al,n) ")
nel2]

(a) —ArD,n 1 (b) —AID,n
|:kID,n S QApin 7kID,n — byin

:| ne(2]

Again, to be able to generakep o, Lemma3.7DP is required. However, in this case, a
slight complication is involved, since two termsk, o containy,, ,, andy:phm:

(@) — AIDn
ng) = gha YL H (yigny;hn) o
nel2]

_ oy D ~AD.ny D 7 AID,n
=9 ’ y9017n1y<,01,n1 ’ H (ySOl,"ySDLH)
ne(2)
A

. D,/ “ Dy [D Atpny \ (ID 1 A,/
- <<y<ﬂ1,n1y<ﬂ1,n1> (ysohmym,nl) (y%»"’y@lv"')

Now the simulator picks;p ,, at random fronZ;, and computes

/
Oy na 'B+ 9@1,711 _)\Slm) (3.5)
‘9%01,n1 -ID + 0, '

®1,m1

)\ID,n1 -)\ID,nl

Here we require thaf,,, ,, - ID + 0/, , # 0. Notice that/D = I . As we ex-
plained in theSetup stage, the simulator aborts if it happens to pick,, ;)'s such

thatf,, ., Z;, + ¢, ,, = 0. Hence,

®1,m1

ID)‘ID,n’

L D , 3\'ID.,nl ,
kID,O - g L (yQOhnly@l,nl) ’ (y4p17n’y4pl,n/)

And now the simulator can apply Lemia3]7.9 by substitutigl., n») in the lemma
with (dl, ll, n’), A1 with)‘IDJH’ 1D, with m, andID2 with ID.
Challenge On receiving a messa@dsg from the adversary, the simulator does the following:

45

1. Pick random integer$,.],_ 4 yeipixine € Zn -
2. Compute and release the following as the ciphertext.

+ x \Oo1,n1 L +0; , Opy mq IE. +0!
*, 934, [*7 *]7 ceey [*7 *]7 (924) o nl? Yrermta e

|:gT‘P="6‘P’"(6‘P=7LI;+BZP,TL> <gg}z . g—no,n)O“P’"(‘g%"l—;""e;,n)]
Y
(d1,l1,m1)<(d,l,n)<(D,L,2),p=(d,l)

where(d,l,n) < (d,I',n')ifand only if 1)d < d’; or 2)d = d' andl < I'; or 3) (d,1) =
(d',l") andn < n'.
Note that this implies that = 25 + 2z, andr,, ,, = 2. If Y = ¢*%, itis easy to verify that the
ciphertext is well-formed, due to the fact that

2) * n’ _
OnT + 0 = 0] (d ;) (d1 1 1), 0=(do])

If Y is a random number, then temﬁi’h)’n
the ciphertext.

Phase 2 Phase 1 is repeated.

Guess If the adversary guesses that the ciphertext is an enoryptiMsg underX*, the simulator

guesses that = ¢g**#, Else if the adversary guesses that the ciphertext is thggan under a

_is random and independent of the remaining terms of

random point, then the simulator guesses ihat picked at random frorn. |
Proof of Theorem[3.ZT: The theorem follows naturally from Lemnia_3]7.8 and the hybri
argument. -

46

Chapter 4

Delegating Capabillities in Predicate
Encryption

In this chapter, we demonstrate how to add delegation toigatdencryption systems. We first
give the formal definition for delegation in predicate emqtign, including definitions of security.
While our big goal is to support expressive query predicassn initial step towards this vision,
we shall first add delegation to predicate systems supjgpocmjunctive queries. In particular,
we add delegation to an HVE-like construction; and we calribw scheme Delegatable Hidden
Vectorﬁliincryption (dHVE). The technical contents of thipg@ahas been published in ICALP
2008 [37].

4.1 Definitions

We introduce the notion of delegation in predicate encoyptiystems and provide a formal defi-
nition of security.

In a predicate encryption system, some user, Alice, creafasblic key and a corresponding
master key. Using her master key, Alice can compute and hana tken to Bob, such that Bob
is able to evaluate some functigry, on the plaintext that has been encrypted. Meanwhile, Bob
cannot learn any more information about the plaintext, tfipam the output of the functiorf.

In this thesis, we consider the role of delegation in predi@ncryption systems. Suppose
Alice (the master key owner) has given Bob tokens to evalaaet of functionsfi, fo,..., fm
over ciphertexts. Now Bob wishes to delegate to Charles Hiléyato evaluate the functions
{f1 + fo, f3, f2} over the ciphertext. Charles should not be able to learn imdoemation about
the plaintext apart from the output of the functidn$ + f2, f3, f4}. For example, although Charles
can evaluate; + f», he should not be able to leafiy or f, separately. In general, Bob may be
interested in delegating any set of functions that is mesgrictivethan what he is able to evaluate
with his tokens. In general, a user who has a delegated dapa&hin in turn create an even more

1Although we focus on functions that are predicates in ourtsmis, we use the more general term of functions in
this discussion and our formal definitions.

a7

restricted capability. For example, after obtaining a tokem Bob for functions f; + fs, f3, f1},
Charles may now decide to delegate to his friend David a tbkewaluatefs - f5.

4.1.1 Definition

We now formally define delegation in predicate encryptiostesns that captures the above notion.

Let X = (z1,29,...,7¢) € {0,1}* denote a plaintext. Without loss of generality, assume that
we would like to evaluate from the ciphertext boolean fumusi (a.k.a. predicates) da. Functions
that output multiple bits can be regarded as concatenafibnalean functions. Lef denote the
set of all boolean functions frof, 1}* to {0, 1}, i.e., F := {f | f: {0,1}* — {0,1}}.

We define a token as a capability that allows one to evaluate the ciphertext a set of func-
tions onX. Tokens will be associated with a et= {g1, g, ..., 9} C F that can compute a
subset of all available functions. We remark that a tokerhtridg represented much more succintly
than|G|. For instance, if one had the capability to learn each iwidial bit of X one could have a
small token, but still compute a2 predicate functions on the input.

A delegatable Predicate Encryption (DPE) scheme condiite dollowing (possibly random-
ized) algorithms.

Setup(1*) The Setup algorithm takes as input a security parameteand outputs a public key
PK and a master secret k&jSK.

Encrypt(PK, X) The Encrypt algorithm takes as input a public k&K and a plaintextX =
(z1,1,...,20) € {0,1}* and outputs a ciphertexiT.

GenToken(PK,MSK, G) The GenToken algorithm takes as input a public k&K, master secret
key MSK, and a set of boolean functiogsC F. It outputs a token for evaluating the set of
functionsg from a ciphertext.

Query(PK, TKg, CT, f) The Query algorithm takes as input a public k&K, a tokenTK for
the function familyg, a functionf € G, and a ciphertextT. If CT is an encryption of the
plaintextX, then the algorithm output&(X).

Delegate(PK, TKg, G') The Delegate algorithm takes as input a public k€K, a token for the
function familyG C F, andG’ C G. It computes a token for evaluating the function family
G’ on a ciphertext.

Remark 4.1.1 We note that the above definition captures delegation inipagel encryption sys-
tems in the broadest sense. In a predicate encryption systerwould like to maximize the ex-
pressiveness of delegation; however, one should not beé@dkdegate beyond what she can learn
with her own tokens. Otherwise, the security of predicataygtion would be broken.

Since we care about being able to perform expressive deegatve can judge a system by its
expressiveness, e.g., what types of functions one canateabwer the ciphertext, and what types
of delegations one can perform. Our vision is to design aipadelencryption system that supports
arich set of queries and delegations. As an initial step estict ourselves to some special classes
of functions. At the time this research is being conductieel phost expressive predicate encryption
system (without delegation) we know of supports conjurgctjueries.[12]; we focus our efforts on
permitting delegation in such systems.

48

More recently, Katz, Sahai, and Waters proposed a noveigatedencryption system support-
ing inner product querieEIZB] and realized a more expressigtem. An interesting open direction
is to figure out what types of delegation one might realizdairtsystem.

4.1.2 Security

We now define the security for delegation in predicate ertmymsystems. We describe a query
security game between a challenger and an adversary. Tinis fysmally captures the notion that
the tokens reveal no unintended information about the f@&inThe adversary asks the challenger
for a number of tokens. For each queried token, the advegsasyto specify its path of derivation:
whether the token is directly generated by the root authasitdelegated from another token. If
the token is delegated, the adversary also gets to speoify Which token it is delegated. The
game proceeds as follows:

Setup. The challenger runs theetup algorithm and gives the adversary the public k.
Query 1. The adversary adaptively makes a polynomial number of ga@fithe following types:

e Create tokenThe adversary asks the challenger to create a token for & feetadions
G C F. The challenger creates a token §pbwithout giving it to the adversary.

e Create delegated tokefhe adversary specifies a token for function fangilyhat has
already been created, and asks the challenger to perforlagatien operation to create
a child token forGg’ C G. The challenger computes the child token without releasing
to the adversary.

e Reveal tokenThe adversary asks the challenger to reveal an alreadyedrézken for
function familygG.

Note that when token creation requests are made, the adyei®as not automatically see
the created token. The adversary sees a token only when @ésaaleveal token query.

Challenge. The adversary outputs two string§;, X; € {0, 1}¢ subject to the following con-
straint:

For any token revealed to the adversary inGheery 1 stage, let; denote the function family
corresponding to this token. For dlle G, f(X§) = f(X7).

Next, the challenger flips a random cdimnd encryptsX;. It returns the ciphertext to the
adversary.

Query 2. Repeat theQuery 1 stage. All tokens revealed in this stage must satisfy theesam
condition as above.

Guess.The adversary outputs a guéssf b. The advantage of an adversatyn the above game
is defined to bé\dv 4 = | Pr[b = '] — 1/2].

Definition 4.1.1 We say that a delegatable predicate encryption systeetigraf for all polynomial-
time adversariesd attacking the system, its advantalydv 4 is a negligible function oA.

49

Selective security

We also define a weaker security notion caléedective securityln the selective security game,
instead of submitting two string&;, X; in the Challenge stage, the adversary first commits to
two strings at the beginning of the security game. The reth@&ecurity game proceeds exactly
as before. The selective security model has been usedreathe Iiterature?&ﬂ ﬂ[hElBS].

We say that a delegatable predicate encryption systesaléstively securd all polynomial
time adversariesl have negligible advantage in the selective security game.

Remark 4.1.2 We note that our security definition is complete in the semesan the query phase,
the adversary gets to specify, for each queried token, ite paderivation: whether the token
is generated by the root authority, or from whom the token lesn delegated. In prior work
on delegation in identity-based encryption systems (Eligrarchical Identity-Based Encryption
(HIBE) [4], Anonymous Hierarchical Identity-Based Enctigm (AHIBE) Iﬂ]), the security game
was under-specified. In these definitions, the adversarndidget to specify from whom each
queried token is delegated.

One way to deal with this is to create systems where all tokemgenerated from the same
probability distribution. For instance, the AHIBﬂlS] whkuses this approach. While this allows
us to prove the security of these systems, it can be an dvadkitler our security definition, the
delegated token need not be picked from the same probathitsibution as the non-delegated
tokens. In fact, we show that the ability to capture such ©eann our security definition allows
us to construct a simpler AHIBE scheme with smaller privatedize.

4.1.3 A simple example

To help understand the above definition, we give a simple el@similar to that in the BW06
paper [12]. As shown by Figufe3.1, the poiitencrypted takes on integer values betweemd
T. Givena,b € (0,71, let f,, denote the function that decides wheth&k [a, b):

foy(X) = {1 X € [a,b]

0 o.w.

In Figure[41, we mark three disjoint segmefats as], [as, a4, [as, ag] and four pointse, y, z, u.
Alice has a token for function$f,, a,, fus.a.: fas.as }- This allows her to evaluate the following
three predicates: whethef < X < aj, a3 < X < a4, anda; < X < ag. Alice can now
distinguish between ciphertext&.crypt(PK, x) and Encrypt(PK, y), but she cannot distinguish
between ciphertext&Bncrypt(PK, y) and Encrypt(PK, z).

Alice performs a delegation and computes a child token ferftimctiong(X) = fu, 0, (X) V
fas.0s(X), @and Bob receives this delegated token from Alice. Bob casidéewhether(a; <

X < ay) V(ag < X < ay); this is a subset of information allowed by Alice’s token. vén
this new token, Bob can decide wheth¥rfalls inside these two ranges, but he cannot decide
between the cases wheth&r € [a;,as] or X € [a3,a4]. For example, Bob can distinguish
between the ciphertextBncrypt(PK, x) and Encrypt(PK,), but he cannot distinguish between
the ciphertext¥ncrypt(PK, z) and Encrypt(PK, y).

50

0

T

C‘Ll a; CL‘3 CL; ag‘) a‘6
Figure 4.1: A simple example of predicate encryption sintibethe one described in BWOEIlZ].

4.2 Delegatable Hidden Vector Encryption (dHVE)

We propose a primitive called delegatable hidden vectorygtion (dHVE), where we add dele-
gation to the HVE construction proposed in BWOS! [12]. Thiamsinteresting special case to the
general definition given in Sectién 4.11.1, and representritial step toward our bigger vision of
enabling expressive queries and delegations in predicaty@ion systems.

4.2.1 Delegatable HVE overview (dHVE)

In our dHVE system, a plaintext consists of multiple “field&bor example, a plaintext can be the
tuple (IP,PORT, TIME, LENGTH). A token corresponds to a conjunction of a subset of thekisfie
we can fix a field to a specific value, make a field “delegatalde’thoose not to include a field
in a query. For example, the queffP = ?) A (PORT = 80) A (TIME = 02/10/08) fixes the
values of theeORT andTIME fields, and makes the IP field delegatable. TE®RGTH field is not
included in the query. A party in possession of this tokenfdaim any appropriate value for the
delegatable field IP; however, she cannot change the valeixad field such agoRT or delete
them from the query, nor can she add in the missing fieldGTH to the query. We now give
formal definitions for the above notions.

Let X denote a finite alphabet and f&t L denote two special symbols notih Define¥, | :=
Y uU{?, L}. The symboP denotes a delegatable field, i.e., a field where one is alldavéiiin an
arbitrary value and perform delegation. The symbhalenotes a “don’t care” field, i.e., a field not
involved in some query. Typically, if a query predicate daes concern a specific field, we call
this field a “don’t care” field. In the aforementioned exampl® = ?) A (PORT = 80) A (TIME =
02/10/08), the IP field is delegatableENGTH is “don’t care”, and the remaining fields are fixed.

Plaintext Space. In dHVE, our plaintext is composed of a messadeg < {0, 1}* and/ fields,
denoted byX = (z1,7,...,2,) € X¢. Capabilities will be evaluated oveY, and theMsg
component is an extra message that will be divulged in casprédicate evaluates to true.

The Encrypt algorithm takes as input a public k&K, a pair(X, Msg) € {0,1}* x ¢, and
outputs a ciphertex@T.

Tokens. In dHVE, a token allows one to evaluate a special class ofdayofunctions on the
fields X € X‘. We use a vectar = (01, 09,...,0/) € (X2)" to specify a set of functions being
queried. Giverw, let (o) denote the indices of all delegatable fields&t-) denote the indices
of all “don’t care” fields, and letS(c) denote the indices of the remaining fixed fields. In the

51

following, we use the notatioft] to denote the sdfl, 2, ..., (}.

W(o) = {i|o; =7}, D(o) :={i|o; =1}
S(o) = {i|oi € B} = [(]\ W(o) UD(0))

Leto = (01,09,...,00) € (X2.1)"; o specifies the following function familg, on the point
X = (21,...,x¢) encrypted:

Cp = {(/\ (xi:ai)> /\(A (xjaj)) W’CW(U),ViEW’,aiEZ} (4.1)

iew’ j€S(0)

In other words, given a token far, the familyC, denotes the set of functions we can evaluate
from a ciphertext. For the delegatable fields, we can fill ip appropriate value, but we cannot
change or delete any of the fixed fields or add a “don’t caredi fielthe query. If any function in
C, evaluates td, one would also be able to decrypt the payload mesbége.

Remark 4.2.1 The familyC, is a set of conjunctive equality tests, where we can fill imedel-
egatable field ino with a value inX or “don’t care”. In particular, we fill in fields in W’ with
appropriate values i, and for the remaining delegatable fielt8(c) — W', we fill them with
“‘don't care”. If o has no delegatable field, then the ggtcontains a single function. This is
exactly the case considered by the original HVE constructishere each token allows one to
evaluate a single function from a ciphertext.

Delegation. IndHVE, Alice, who has a token far, can delegate to Bob a subset of the functions
she can evaluate: 1) Alice can fill in delegatable fields,(18(c)) with a value in¥ or with the
“don’t care” symboll; 2) Alice can also leave a delegatable field unchanged (WwéR symbol).

In this case, Bob will be able to perform further delegatiortimat field.

Definition 4.2.1 Leto = (01,09, ...,00),0" = (a1, 04, ...,0)) € Eff,,r We say that’ < o, if for
alli e S(o) UD(0), o} = 0;.

Note thats’ < ¢ means that fromTK, we can perform a delegation operation and compikg.

In addition, ife’ < o, thenC,. C C,, i.e., TK,. allows one to evaluate a subset of the functions
allowed byTK,.

In summary, we introduce delegatable fields to the origindEHonstruction. We use the
notationo € 25;7 |, to specify a function family. GiveiiK,, one can perform a set of conjunctive
equality tests (defined by Equatidn{4.1)) from the ciphart®ne may also fill in the delegatable
fields ino with any value in U {_L } and compute a child token for the resulting vector. The child
token allows one to evaluate a subset of the functions atldwyethe parent token.

Example. The trusted authorit§” issues tad a token foro 4 = (Z7,7,,?,?, 1L, L,...,1). This
token allowsA to evaluate the following functions from the ciphertext:

° (1’1 = Il) A\ (wg = IQ)

eV eX: (r1=T)) A (x2="T) A (z3=13)

52

o Ve X ($1 :Il)/\(l’g :Ig)/\($4:I4)
® VI3, T,€X: (1’1 = Il) VAN ($2 = IQ) AN ($3 = Ig) VAN (1’4 = 14)

Later, A delegates td the tokenop = (Z7,75,75,?, L, L,..., 1), whereZ; € ¥. Note that
this allowsB to evaluate the following functions:

° (xl = Il) VAN (1‘2 = Zg) VAN (xg = Ig)
o Ve X ($1 :Il)/\(l’g :Ig)/\(mgng)/\(m4:I4)

Clearly, a token for i releases a subset of information alloweddyy Meanwhile,B is able
to further delegate on the field.

4.2.2 dHVE definition

We now give a formal definition of dHVE.

Setup(1*). The Setup algorithm takes as input a security paraméteand outputs a public key
PK and a master secret k&J5SK.

Encrypt(PK, X, Msg). The Encrypt algorithm takes a public kefK and a pair(X, Msg) €
¢ % {0,1}*, and outputs a ciphertegt

GenToken(PK,MSK; o). The GenToken algorithm takes as input a public k€K, a master se-
cret keyMSK, and a vector € (3, |)*. It outputs a token for evaluating the set of conjunc-
tive querie, from a ciphertext.

Delegate(PK, TK,, ¢’). The Delegate algorithm takes as input a public k€YK, a tokenTK,, for
the vectorr, and another vecter < o. It outputs a delegated tokdrK, for the new vector

o'

Query(PK, TK,, CT, ¢’). The Query algorithm takes as input a public k&K, a tokenTK,, for
the vectoro, a ciphertexiCT, and a new vectos’ satisfying the following conditions: (1)
o' < o; (2) ¢’ does not contain delegatable fields, that is, sueh specifies a single con-
junctive query (denoted,) over the pointX encrypted. The algorithm outpufs (X); if
fo(X) =1, it also outputs the messadésg.

Remark 4.2.2 In comparison to the general definition given in Secfion thldHVE, we add a
payload messaghlIsg € {0,1}* to the plaintext. Meanwhile, the conjunctive queries in &HV
are functions on the attribute¥ ¢ X*, but not the payloadIsg. In addition, if a query matches
a point X encrypted, one can successfully decrypt the payload messagg the corresponding
token. It is not hard to show that the above formalizationdefVE is captured by the general
definition given in Sectidn4.1: We can regabfdsg, X) as an entire bit string, and decrypting the
payloadMsg can be regarded as evaluating a concatenation of bits frabthstring(Msg, X).
We choose to define dHVE with a payload message to be comsisterthe HVE definition in
BWO06 [12].

53

Selective security of dHVE. We will prove the selective security of our dHVE construntidVe
give the formal selective security definition below. Thd &écurity definition for dHVE can be
found in Sectiol4]7.

Init. The adversary commits to two strings;, X; € X-.
Setup. The challenger runs th&etup algorithm and gives the adversary the public k.

Query 1. The adversary adaptively makes a polynomial number of tertzken”, “create
delegated token”, or “reveal token” queries. The queriestrsatisfy the following con-
straint: For any token revealed to the adversary, (&t denote the set of conjunctive queries
corresponding to this token.

VTK, revealed Vf e€C,: f(X;)= f(X]) (4.2)

Challenge. The adversary outputs two equal-length messadsg, and Msg, subject to
the following constraint:

For any tokens revealed to the adversary in tiguery 1 stage, letC, denote the set of
conjunctive queries corresponding to this token.

vV TK, revealed if 3f € C,, f(X{) = f(X]) = 1,thenMsg, = Msg; (4.3)

The challenger flips a random cdirand returns an encryption €Msg,, X;) to the adver-
sary.

Query 2. Repeat th®uery 1 stage. All tokens revealed in this stage must satisfy caimgg
&32) and[£B).

e Guess.The adversary outputs a guéssf b.

The advantage of an adversadyin the above game is defined to Bdv 4 = | Pr[b = V'] — 1/2|.
We say that a dHVE construction selectively securd for all polynomial time adversaries, its
advantage in the above game is a negligible functiok. of

Observation 4.2.1 Anonymous Hierarchical Identity-Based Encryption (AH)BEa special case
of the above-defined dHVE scheme.

AHIBE is very similar to the dHVE definition given above. Thaly difference is that in
AHIBE, the function family queried i§,,, whereo has the special structure such tlsav) = [d]
whered € [(], W(o) = [d + 1,(], andD(o) = (. In fact, we show that the new security definition
and the techniques we use to construct dHVE can be direcpliyeapto givean AHIBE scheme
with shorter private key sizéWhile the previous AHIBE scheme by Boyen and Waters reguire
O(D?) private key size, our new construction a&D) private key size, wher® is the maximum
depth of the hierarchy. See Sectionl 4.8 for details of thetraation.

4.3 Background on Pairings and Complexity Assumptions

Our construction relies on bilinear groups of compositesord = pgr, wherep, ¢, andr are
distinct large primes. We now give a background review omédr groups of composite order.

54

Let GG be an algorithm called group generator Algorithm GG takes as input a secu-
rity parameterh € Z>°, a numberk € Z>°, and outputs a tuplép, q, 71,72, ...,7%, G, Gy, €)
wherep, q,r,12,...,7, arek + 2 distinct primes,G and G are two cyclic groups of order
n = pq Hle r;, ande is a functione : G> — G satisfying the following properties:

* (Bilinear)Vu,v € G, Va,b € Z, e(u®,v®) = e(u,v)®.

e (Non-degenerate)g € G such thak(g, g) has order in Gr.

We assume that the group operation&iandG, as well as the bilinear magare all computable
in time polynomial in\. We also assume that the descriptiorGodnd G includes generators of
G andGy respectively.

We use the notatiof,, G,, G,,,...,G,, to denote the respective subgroups of orgleg,
r1,...,r, of G. Similarly, we use the notatic@r,, Gr,, Gz, ..., Gr,, to denote the respective
subgroups of ordey, ¢, 71, ..., r; of Gr.

Our construction relies on two complexity assumptions:Bimear Diffie-Hellman assump-
tion (BDH) and the generalized composite 3-party Diffielh@n assumption (C3DHAIthough
our construction requires only bilinear groups whose oridgihe product of three primes= pqr,
we state our assumptions more generally for bilinear groofpsrder n wheren is the product of
three or more primes.

We begin by defining some notation. We use the notafiGrto denote thegroup generator
algorithm that takes as input a security paramaterZ>°, a numbet € Z>°, and outputs a tuple
(p,q,7r1,72, ..., 7%, G, Gp,) Wherep, q,r1, 79, ...,y arek + 2 distinct primesG andGr are two
cyclic groups of orden = pq Hf’:l r;, ande : G — Gy is the bilinear mapping function. We use
the notatiorG,, G,, G,,, . .., G,, to denote the respective subgroups of ordey; ry, . .., of G.
Similarly, we use the notatio@,, Gr,, Gr,,, ..., Gr,, to denote the respective subgroups of
orderp,q,r,...,r, of Gp.

The Bilinear Diffie-Hellman assumption. We review the standard Bilinear Diffie-Hellman as-
sumption, but in groups of composite order. For a given gigeneratoiGG define the following
distribution P(\):

(pyq,r1,- 7%, G,Gp,€) il GG(\, k), n<—pq Hle i

gpiGpv ginqy hl an» sy hkgGrk

a,b,c & Ly,

Z — (("I’L,G,GT,G), gqa gpa h17 h27 sy hk7 927 gg’ g]zcy)
T~ e(gp7 gp)abc

Output (Z, T)
Define algorithmA'’s advantage in solving the composite Bilinear Diffie-Hedimproblem as
cBDH Advgg a(A) := |Pr[A(Z,T) = 1] — Pr[A(Z, R) = 1]|

where(Z,T) <~ P(\) andR < Gr,. We say thalGG satisfies the composite Bilinear Diffie-
Hellman assumption (cBDH) if for any polynomial time algbrn A, cBDH Advgg 4()) is a neg-
ligible function of \.

55

The generalized composite 3-party Diffie-Hellman assumpdin. We also rely on the composite
3-party Diffie-Hellman assumption first introduced by Borzetu Waters|_[_1|2]. For a given group
generatoGG define the following distributio(\):

(p,q,Tl,...,Tk,G,GT,e) <£GG()‘?k)? anquzl T'i

gnglﬂ gngq7 hl <£(GW”N BRI hk:(iGTk

R17R27R3<£an a7baC<£Zn

7 — ((n7G7GT7e)> 9qs 9ps hla h?a SRRE) hk’> ggv 927 ggb'Rb ggbc.R2)
T — gg : Rg

Output (Z, T)

Define algorithmA'’s advantage in solving the generalized composite 3-paiffieEHellman prob-
lem for GG as C3DH Advge a(A) = |Pr[A(Z,T) = 1] — Pr[A(Z, R) = 1]|, where(Z,T) &
P(\) andR & G. We say thalGG satisfies the composite 3-party Diffie-Hellman assumption
(C3DH) if for any polynomial time algorithrd, its advantag€3DH Adveg 4(A) is a negligible
function of \.

The assumption is formed around the intuition that it is Hartest for Diffie-Hellman tuples
in the subgrouyis, if the elements have a randa), subgroup component.

Remark 4.3.1 Consider bilinear groups of ordet = pgr, wherep, ¢, andr are three distinct
primes. In the above generalized composite 3-party Difedrtan assumption, whether to call a
primep, ¢, or r is merely a nominal issue. So equivalently, we may assurhi thaard to test for
Diffie-Hellman tuples in the subgroup,, if each element is multiplied by a random element from
G, instead ofG,,.

4.4 dHVE Construction

We construct our dHVE scheme by extending the HVE constsadby Boneh and WaterﬂlZ]
(also referred to as the BW06 scheme). One of the challetgésvie must overcome is how to
add delegation in anonymous IBE systems.

Our primary challenges arise from providing delegatiorhim anonymous setting. Delegation
is easier in non-anonymous IBE systems, such as in HIBE f¥ihé HIBE constructiorﬂ4], the
public key contains an element corresponding to each atéjland the delegation algorithm can
use these elements in the public key to rerandomize the $okeanonymous systems, however, as
the encryption now has to hide the attributes as well, we batra constraints on what information
we can release in the public key. This restriction on reramdimg components is the primary
hurdle we must overcome.

4.4.1 Construction

In our construction, the public key and the ciphertext arestacted in a way similar to the BWO06
scheme. However, we use a new technique to reduce the nufigreup elements in the ciphertext

56

asymptotically by one half. Our token consists of two patdecryption key part denoté&K and
a delegation component denot®d. The decryption key paidK is similar to that in the BWO06
scheme. The delegation compon@it is more difficult to construct, since we need to make
sure that the delegation component itself does not leakemiied information about the plaintext
encrypted.

We will use¥ = Z,, for some integem. Recall that:, | := ¥ U {?, L}, where? denotes a
delegatable field, and denotes a “don’t care” field.

Setup(1*) The setup algorithm first chooses random large primes- > m and creates a bilinear
groupG of composite orden. = pqr, as specified in Sectidn 4.3. Next, it picks random
elements

(ul,hl),...,(uz,hg)eGg, gv,wweG,, g,€G, ¢ €G,

and an exponent € Z,. It keeps all these as the secret Ré§K.
It then choose8/ + 3 random blinding factors if,:

(Rwl, RhJ), e (ng, Rh,z) c Gq and Rv, Rw,ﬁw c Gq.

For the public keyPK, it publishes the description of the groGpand the values

_ _ Uy =wuRy1, Hi=hiRp
9g» G V =vR,, W =wR,, W =wR,, A=ce(g,v)",
Up =Ry, Hy=heRpy

The message spagdd is set to be a subset &f; of size less than'/*.

Encrypt(PK, X € Xf, Msg € M C Gr) Assume that: C Z,,. Let X = (zy,...,2¢) € Z,.
The encryption algorithm first chooses a random Z,, and randon¥, Z,, Z,, Z1, Zs, ..., Z; €
G,. (The algorithm picks random elements@G by raisingg, to random exponents from
Z,.) Then, the encryption algorithm outputs the ciphertext:

Ci1 = (UTH)"Z;,

Co = (U, Hy)P Zy

CT = (5 = MsgA?, C=VrZ, Co=WrZy, Cy=W"Z,

Remark 4.4.1 We note that the ciphertext size is cut down by roughly a hadihnwcompared
to the BW06 constructiOIEILZ]. Therefore, our constructionmediately implies an HVE
scheme with asymptotically half the ciphertext size as tiggnal BWO06 construction.

GenToken(PK,MSK, o € Eé,ﬁ The token generation algorithm will take as input the master
secret keyMSK and an/-tupleo = (oy,...,04) € Zé,r The token foro consists of two
parts: (1) a decryption key component dendiéd and (2) a delegation component denoted
DL.

57

e The decryption key componebK is composed in a way similar to that of the original
HVE construction|[12]. Recall thaf(c) denotes the indices of the fixed fields, i.e.,
indices;j such that; € ¥. Randomly select,7 € Z, andt; € Z, for all j € S(o).
Pick randomY,Y;. Y, € G, andY; € G, for all j € S(0). Observe that picking
random elements from the subgra@pcan be done by raising to random exponents
in Z,,. Next, output the following decryption key component:

DK = (K = 9°w W [Ljeso) (Ui b)Y, Ko=0"Yy, Ky=vYy, VjeS(o): K;= ’Ut"Yj)

e The delegation componeBL is constructed as below. Recall that(c) denotes the
set of all indices whereo; = ?. Randomly selecY; ., Y;, € G,. For each € W(0),
for eachj € S(o) U {i}, randomly selecs; ; € Z,, Y; ; € G,. For eachi € W(o),
randomly selecty,,¥;, € Z,, Y. Yiu, Yio,Yie € G,. Next, output the following
delegation componeffil; for coordinate:

Vi e W(o): DL; = (Lip = hi" w07 [[ieso)(ui hy)* Yin, Liw ="'V)

Li,O = ’U%YVZ‘,(), Li7¢ = UWY;'@, VJ c S(O’) U {Z} . Li,j = Usi’jY;J'

Remark 4.4.2 Later, if we want to delegate on thé" field by fixing it toZ € 3, we will
muItipIyLiu to Ly, 5, resulting in something similar to the decryption k& (except without
the g term). Observe that the, , terms encode all the fixed fields (i.8(¢)). This effec-
tively restricts the use of the delegation components, thahthey can only be added on
top of the fixed fields, partly ensuring that the delegatiamponents do not leak unintended
information.

Delegate(PK, o,0") Given a token folo € E‘;,L, the Delegate algorithm computes a token for
o' < o. Without loss of generality, we assume théafixes only one delegatable field of
to a symbol inX or to L. Clearly, if we have an algorithm to perform delegation om on
field, then we can perform delegation on multiple fields. Tdasis be achieved by fixing the
multiple delegatable fields one by one.

We now describe how to compuleK,. from TK,. Supposer’ fixes thek" coordinate of

o. We consider the following two types of delegation: 1) t#ffecoordinate is fixed to some

value in the alphabet, and 2) thek™" coordinate is set td., i.e., it becomes a “don’t care”

field.

Type 1: ¢’ fixes thek™ coordinate ofr to Z € ¥, and all other coordinates of remain un-

changed. In this cas&(o’) = S(o) U {k}, andW(do') = W(o)\{k}. (Recall that
S(o) denotes the set of indicgswheres; € X, and)V(o) denotes the set of delegat-
able fields ofr.)

Step 1: Let (DK, DL) denote the parent token. Pick a random expopentZ,, and reran-
domize the delegation compondbit by raising every element iDL to . Denote
the rerandomized delegation component:

| - Lin =Lty Liw=LL,,
Vie W(): DL =| ~ P) . IS .
Li,O = Li,O’ L%(b = Li,(i)’ VJ c S(U) U {'L} . Li,j = Lz,]

58

In addition, compute a partial decryption key componenhuliie £ coordinate
fixed toZ:

pDK = (T = Ei,uik,hv Ty = Ek’o, T¢ = Ek,d)u VJ c S(O’l) : ,TJ = Ek,j)

The partial decryption kepDK is formed similarly to the decryption kepK,
except thapDK does not contain the terpt.

Step 2: Compute|W(¢’)| rerandomized versions of the above. For:ia#t W (o'), ran-
domly selectr; € Z,,, and compute:

pDKZ = (FZ = Tn, Fi,O = T(;—Z, PZ@ = T(;—Z, \V/] c S(OJ) : Fi,j = ir;—l)

Step 3: Compute the decryption key componé&i’ of the child token.DK’ is computed
from two things: 1)DK, the decryption key component of the parent token and
2) pDK, the partial decryption key computed in Step 1. In particyl@K is the
partial decryption key with thé™ field fixed; however, apDK does not contain
the g term, we need to multiply appropriate components@K to those inDK.
To computeDK’, first, randomly select”, Y, Y} € G,. For allj € S(o’), ran-
domly select’;/ € G,. Now output the followingOK':

o (K= ETY' Ky = KoYy, K= KoY, Kj =T,
- \VjieSo): K,=KTyY]

Step 4: Compute the delegation componéit’ of the child token.DL’ is composed of a
portionDL; for eachi € W(o’). Moreover, eaclbL; is computed from two things:
1) [/)T_Z- as computed in Step 1 and @)K, as computed in Step 2.
Follow the steps below to compu®l’. For eachi € W(o'), randomly select
Y, Y, Yo Yl s from G,. For eachi € W(o'), for eachj € S(o) U {7, k},
pick at randont’/; from G,.. Compute the delegation compon@it’ of the child
token:
L;,h = Ei,hFiYi/,h’ L;,u = Ei,UYil,w
Vie W(o'): DL = | Ljy=LiolioY/y, Li,=LiglieY/,,
L, =LiY!;, L, =Ty, VYjieS(o): L, =Lili;Y,
Type 2: In Type 2 delegation;’ fixes thek™ coordinate ofr to L. In this caseS(o’) = S(o),
andW(o’) = W(o)\{k}. The child token is formed by removing the pait, from
the parent token:
TK, = (DK, DL\{DL})

Remark 4.4.3 It is not hard to verify that delegated tokens have the carfeam, except
that their exponents are no longer distributed indepenigeaitrandom, but are correlated

59

with the parent tokens. In the proofin Sectiod 4.6, we shawTiype 1 delegated tokens “ap-
pear” (in a computational sense) as if they were generateebdy by calling theGen Token
algorithm, that is, with exponents completely at randomis Ebnstitutes an important idea
in our security proof.

Query(PK, TK,,CT,o¢’) A token foro € E‘;,L allows one to evaluate a set of functiofis
defined by Equatiori.{4.1) from the ciphertext. két< ¢ and assume’ has no delegatable
fields. Thens' represents a single functigf). (a conjunctive equality test), and tliguery
algorithm allows us to evaluatg. over the ciphertext.

To evaluatef,. from the ciphertext using K., first call theDelegate algorithm to compute a
decryption key for’. Write this decryption key in the fordK = (K, Ko, K4,Vj € S(0’) : K;).

Furthermore, parse the ciphertext@s = (5, C, Cy, Cy, Vjel: Cj>.

Use the same algorithm as the original HVE construction téope the query. First, com-
pute
Msg « C-e(C, K)™" - e(Co, Ko)e(Cy, Ky) [e(Cy. K;) (4.4)
JES(0")
If Mssg ¢ M, output0, indicating thatf,. is not satisfied. Otherwise, outpltindicating
that f,. is satisfied and also outpMisg. We explain why th&)uery algorithm is correct in
Sectior4b.

4.4.2 Security of our construction

Theorem 4.4.1 Assuming that the Bilinear Diffie-Hellman assumption arelgkeneralized com-
posite 3-party Diffie-Hellman assumptions holdGnthen the above dHVE construction is selec-
tively secure.

We explain the main techniques used in the proof; howeverde&fer the detailed proof to
Sectio4B. In our main construction, delegated tokens kavtain correlations with their parent
tokens. As a result, the distribution of delegated tokefferdi from tokens generated freshly at
random by calling thezenToken algorithm. A major technique used in the proof‘isken in-
distinguishability™ although delegated tokens have correlations with thegrmidokens, they are
in fact computationally indistinguishable from tokensstiey generated through th@en Token
algorithm. (Strictly speaking, Type 1 delegated tokenscaraputationally indistinguishable from
freshly generated tokens.) This greatly simplifies our $ation, since now the simulator can pre-
tend that all Type 1 tokens queried by the adversary arelfrggmerated, without having to worry
about their correlation with parent tokens. Intuitivelyetabove notion of token indistinguishabil-
ity relies on the C3DH assumption: if we use a random hidimgoiafrom G, to randomize each
term in the token, then DDH becomes hard for the subgf@up

4.5 Correctness

We explain why th&)uery algorithm is correct. LefMsg, X) denote the plaintext encrypted, and
let o’ denote the conjunctive query being evaluated in@aery algorithm.

60

e |f the plaintextX satisfies the query, i.e., if,,(X) = 1, a simple calculation shows that
the Query algorithm outputs the messafddsg. The calculation relies on the fact that if
a € G, andb € G,, thene(a,b) = 1. Observe that in our construction, each term in the
ciphertext (excepf?) contains a random hiding factor from the subgréup and each term
in the token contains a random hiding factor from the subgrf@u When one performs a
pairing operation on the ciphertext and the token, the suljEsG, andG, “disappear”, and
the result of the pairing is an element®f- .

e |f the plaintextX does not satisfy the query, i.e.,fif (X) = 0, due to an argument similar
to the BWOGEZ] paper, the probabiliBr|Query ((PK, TK,, CT, ¢’) # 0] is negligible. See
Lemma 5.2 of BWOG6 for details.

4.6 Proof

We prove the security of our construction. We prove seledacurity, where the adversary com-
mits to two stringsX; and X at the beginning of the security game.

The challenge in proving security is that under our new sgcgame, the simulation needs to
reflect how tokens are delegated. In other words, delegakemhs are correlated with their parent
tokens in some way, and the simulation should reflect this fac

Our overall strategy is for the simulator to generate tok®nsalling the originalGen Token
algorithm whenever possible, even when the token is deddgdlore specifically, for all Type 1
delegation queries, the simulator generates a freshlyorarmd token by calling thé&enToken
algorithm, rather than th®eclegate algorithm. As we mentioned, this simulation does not reflect
the real security game, since the Type 1 delegated tokemodomger correlated with their parent
tokens. However, we overcome this by showing that the siimmas computationally indistin-
guishable from the real security game. Intuitively, theistidguishability property comes from
the random group element from the third subgréypthat we use to rerandomize the tokens. Our
technique is novel in the sense that in proving semanticrggaver the ciphertext, we actually
rely on “semantic security” over the tokens.

4.6.1 Sequence of games

To prove security, we define a sequence of gaiesieg, Gamey, . .., Games.
Gamey. Let Game, denote the real selective security game as defined in SEEfgh

Game;. We first modify Game, slightly into a new gamé&ame;. Game; is almost identical to
Gameg, except in the way the tokens are generatedGdme;, whenever the adversary issues a
“create delegated token” query, depending on which typestédghtion query it is, the challenger
performs the following:
e Type 1: The challenger calls th€enToken algorithm to generate a fresh token, and gives
it to the adversary.

61

e Type 2: The challenger generates the token in the normal way byngathe Delegate
algorithm.

Remark 4.6.1 The difference betweeBame, and Game, lies in the fact that in the real game
Game, child tokens are always correlated with their parent takehn gameGame;, a Type 1
delegated token is no longer correlated with its parent tipkewever, Type 2 delegated tokens are
still correlated with their parent tokens.

Intuitively, if we use theG, subgroup to randomize the tokens, no polynomially boundked a
versary is able to teltame, apart fromGame;. In other words, the advantage of the adversary in
winning Game, is almost the same as her advantage in winriage;. Therefore, it suffices to
prove security usingsame; instead ofGame,. This simplifies the proof, since iGame;, Type 1
delegated tokens are formed in the same way as non-deldgatats.

Lemma 4.6.1 Assuming that the generalized 3-party Diffie-Hellman agsgtion holds inG, then
no polynomially bounded adversary can successfully djaishGame, and Game; with more than
negligible advantage.

Gamey. Next, we modifyGame; slightly into a new gamé&ame,. Game, differs from Game;
also in the way tokens are formed. To explain hGame, differs from Game;, first observe that
any tokeno queried must satisfy one of the following two cases:
e Matching tokens.The decryption key part of K, matches both of the two selected points
Xy andX7. Inthis case, for all € W(o), X, = X7, since otherwisé K, would separate
the two selected points. In this case, we say that the tokéchmsboth selected points.

e Non-matching tokensT'he decryption key part of K, matches neither of the two selected
points X and X .

In Game, in any Type 1 delegation query, if the token requested nestdioth of the selected
points X and X7}, the challenger picks the two exponents foandw in DK not independently
at random, but in a correlated way: At the beginning of thaisgcgame, the challenger picks
a randomr € Z,, and keeps it secret from the adversary. Now if a tokeequested in a Type
1 delegation query matches both of the selected points, hhlleager picksy = ny when it
computeDK. Similarly, for alli € W(o), when the challenger computBs;, it picks¥, = 7;,
instead of picking the two exponents independently at ramdo

Lemma 4.6.2 Assume that the C3DH assumption hold€inThen for any polynomial time ad-
versary, the difference of advantage in winniegme; and Game, is negligible.

Remark 4.6.2 In Gamey, all tokens (except Type 2 tokens) are picked independanthndom.
In Game,, this is no longer true, in the sense that for certain queribe exponents ab and
w are correlated with each other. Because of the third subgr@y that we use to rerandomize
the tokens, we will show that this correlation is computaaiby hidden from the adversary. The
motivation for introducingsame; is that later the simulator will need to exploit this corréfan in

~ and? in order to successfully perform a simulation.

Gamez. We now further modifyGame, into Games. Game; is almost identical tame; exceptin
the challenge ciphertext. l@ames, if Msg, # Msg,, the first termC' in the challenge ciphertext

62

is replaced by a random element frdi-, and the rest of the ciphertext is generated as usual. If
Msg, = Msg,, the challenge ciphertext is generated correctly.

Lemma 4.6.3 Assume that the BDH and C3DH assumptions hol@.imhen no polynomial time
adversary can successfully distinguisime, and Gamez with more than negligible probability.

Gamey. Next, we modifyGames into a new gam&ame,. Games andGame, are identical except
in the challenge ciphertext. IGame,, the simulator creates the challenge ciphertext according
the following distribution:

C() = ngp_m)/Z(), C¢ = ngngb

wherey’ is picked at random frorfz,,.

Lemma 4.6.4 Assume that the C3DH assumption hold&inThen no polynomial time adversary
can successfully distinguish ganfesmes; and Game, with more than negligible probability.

Game;. Let E denote the set of indicessuch thatX;, # X7 ,, whereX; and X} are the two
committed points in the selective security game. We now definew gamé&ame;. Game; differs
from Game, in that for alli € E, the ciphertext componeny; is replaced by a random element
from G,,.

Lemma 4.6.5 Assume that the C3DH assumption hold&inThen no polynomial time adversary
can successfully distinguigkame, and Game; with more than negligible probability.

Notice that inGames, the ciphertext gives no information about the pokjt or the message
Msg, encrypted. Therefore, the adversary can @ime; with probability at most /2.

We prove the above lemmas. First, we observe that féame, to Game,, the simulation
changes in the way the tokens are generated. We show thatdhasges remain computationally
hidden from any poly-time adversary.

4.6.2 Indistinguishability of Game; and Game,

We prove LemmBAZ4.8.1 and show that gariesie, andGame; are computationally indistinguish-
able. To do this, we perform a hybrid argument on the numb@&ypé 1 “Create delegated token”
gueries issued by the adversary, henceforth referred To-dglegation queryor short.

Definition 4.6.6 Let Gamey, := Game, denote the real game. Lgtdenote the number oflT
delegation queries issued by the adversary. Define a sequafitybrid gamesame,; for all

1 < i < q. Gamey; differs fromGame, in the fact that when the adversary issues the first
T1-delegation queries, instead of generating the delegaikelrts faithfully using th@elegate al-
gorithm, the challenger calls th€en Token algorithm instead to generate these delegated tokens.
For all the remaining queries, the challenger computesnslkand responds faithfully as in the real
gameGame,. Under the above definitiohame, 4 is the same aGame;.

Claim 4.6.7 For all 0 < d < q — 1, no polynomially bounded adversary can distingutgime, ,
from Gamey 4.1 With more than negligible advantage.

63

If we can prove the above ClaimZ.b.7, then Lenima#.6.1 fallbwthe hybrid argument.

We focus on proving ClaifiZ.8.7. Intuitively, ClaimZ56.7ies on the following observation.
Pick iy, ha, . .., hy <= G,, an exponent <~ Z,, and randomizing factors, Y, ..., Ys, Z1, Zo,
.o Zo & G,. Now the tuple

(MZy,... . heZy, WIYA,. .. h7YY)
is computationally indistinguishable from
(hiZy,...,heZo, Ry, ..., Ry),

where (R4, ..., R,) are picked independently at random frdey, = G, x G,. Itis not hard
to see that this is the equivalent of the Decisional Diffidhidan (DDH) assumption for bilinear
groups of composite order. Since we can compute pairingdh guwoups, normally DDH is easy
in groupG. However, if we use subgroup, to hide subgroufi,, DDH becomes hard ifv,,. For
this reason, we can rerandomize tokens by raising all elesrterthe same exponent and the
rerandomized token is computationally indistinguishdiden a completely rerandomized token.
We formalize the above intuition into thecomposite 3-party Diffie-Hellman assumptiai (
C3DH). Lemmd4.818 proves that tlieC3DH assumption is implied by the generalized C3DH
assumption. Therefore, we are not introducing a new assamipere.
Given a group generat@gG, define the following distributiod(\):

(p, ¢, 7, G,Gr,e) <~ GG(\, 1), n « pgr,
B =Gy, g Gy, g G,
}/17}/27"'7}/(7 Z17Z27-"7ZZ£GT’
hi,hy, ... hy &G,

r & Ly,
X — ((n,G,Gr,e), gp, Ggr Grs MZ1, hoZs, ..., hyZy)
Q «— (h{Yy, h3Ys, ..., h}Y))

Output (X, Q)

For an algorithmA, defineA’s advantage in solving the above problem:
¢C3DH Advge a(A) := | PrlA(X, Q) = 1] — Pr[A(X, R) = 1]

where(X, Q) — P()), and
R=(Ri,Rs,...,R) &G,
Lemma 4.6.8 (-composite 3-party Diffie-Hellman) Assume that the generalized composite 3-

party Diffie-Hellman assumption holds @. All probabilistic polynomial time adversaries have
negligible advantage in solving tifeC3DH problem.

64

Proof: By hybrid argument. |

Proof of Claim .6 4: Recall that in gam&ame, 4, when the challenger receives the fidst
T1-delegation queries, it creates a completely randomizkeehtoWe show that no polynomially
bounded adversary has more than negligible advantagetinglisshingGame, ; from Gameg 4.

We use the following sequence of games to prove Claiml4.6.7.

Gameg,d In Step 1of the Delegate algorithm, for thel+ 11" T1-delegation query, instead of generating

DL = [[/)T—i]iew(o) faithfully by raising every element iDL to a random exponent, the

challenger pick®L to be a fresh random delegation component. We show that aquoiial
time adversary cannot distinguish between the two cases.

Gameg’,d In Step 2 instead of computing eaghDK; faithfully, the challenger picks them as fresh
random decryption keys (except without the term). We show that a polynomial time
adversary cannot distinguish between these two cases.

It is not hard to see that BL were a completely rerandomized delegation component,fahile
eachpDK, were independently rerandomized decryption keys (excépbwt theg® part), then
the delegated tokenK,, would be a truly rerandomized token, as if it were generateditectly
calling the GenToken algorithm. In other WordsGameg’,d = Gamey 441. We show below that
Gamey 4 is indistinguishable fronGame;, ; and thatGame;, , is indistinguishable fronGame ,.

|

Gamey 4 is indistinguishable from Game;, ;. We prove the abov8tepl, i.e., Game; ; is compu-
tationally indistinguishable frondame, ;. Suppose a polynomial time adversafycan success-
fully distinguish between the above two games. ggtenote the maximum number of “create
token” and “create Type 1 delegated token” queries madedgdiversary. We build a simulatBr
that leveragesi to break the followingd (¢ + 1)(¢ + 2)q0)-C3DH assumption. We use the notation
Vi, j, k to denotevi € [qo],0 < j <,k € [(4 2].

(p,q.7,G,Gr,e) & GG(\, 1), n «— pqr,

9 =Gy, 9= Gy, g, =G,

Vi, gk Yk Zijk & Gr, vigk & Gy

& Ly

X —((n,G,Gr,e), 9p, 9go Grs Vi, 5,k VijiZijk)
Q«— (Vi,j k: vl Yiix)

i?j7k

Then the challenger randomly decides to give ' = Q) or (X, Q)" = R), whereR is a random
vector drawn fron{G,,,) “+D (20,
The simulator will leverage the adversa#yto distinguish between the above two cases.

Init and Setup At the beginning of the security game, the adversary comtwitgpoints X and
X7,

65

The simulator picks < G,, and forl <i </, the simulator sets; = v, h; = v, where
x; andy; are random exponents frof),. The simulator also picke = v* andw = v*. The
remaining public parameters and secret key componentsiekedpnormally according to
the Setup algorithm.

Query 1 and 2.Recall that the adversary makes a number of queries of tlt@ioly types: 1)
create token, 2) create delegated token, 3) reveal tokemhidrsimulation, the simulator
computes and saves a token internally whenever a “cread@’tok “create delegated token”
guery is made. The simulator simply reveals the saved tolkeanever the adversary makes
a “reveal token” query.

Throughout the simulation, whenever the adversary asksithalator to create a Type 2
delegated token, the simulator generates it faithfully byiwing it from its parent token.
This correctly reflects the relation between the child toked the parent token.

From now on, we focus on how the simulator generates Typedgdedd tokens and non-
delegated tokens.

» Before the adversary issues tfie+ 1) T1-delegation query, the simulator computes
tokens using the following strategy. Whenever the advgrasks the simulator to cre-
ate a Type 1 token or non-delegated token, the simulatorpocates elements from
the (¢ + 1)(¢ + 2)qo-C3DH instance into these tokens, in a way such that all the-ex
nents are distributed uniformly at random. In particulatil(1 < i < qo) denote the
index of the current query. We note thas a counter for all “create delegated token”
or “create Type 1 delegated token” queries, @nd a counter for all “create Type 1
delegated token” queries. The simulator lets

Ky = Ui,o,z+1Zi,0,z+1, K¢ = Ui,0,£+2Zi,0,£+27 Vk € 3(0') Ky = Ui,O,kZi,O,k
For all j € W(o), the simulator lets
Ljo = vijer1Zijerr, Ljg = vVijeraZijeye, Yk €S(o)U{j}: Ljr = vijxZijk

As the simulator knows thélog of w,w, u1, ..., us, hy, ..., h, basev, the remaining
components of the token can be generated efficiently:

K=g"K;K; | [K7™ Y. wherey £G, (4.5)
JE€S(0)
Loy =LY% [7 (Lf?k”k”k) Y;
viewo): i~ Taatiobio (Thesr BET) V0 wherer;, v, £ 6,
Lj,u — Lijj}/}m
(4.6)

e The adversary makes ttig + 1) T1-delegation query. In particular, the adversary
specifies a parent token, and asks to fix a delegatable fieldne yvalueZ < ..
Assume the parent token was created inithguery,1 < i < qo. When performing

66

Step 1of the Delegate algorithm, for all; € W(o), the simulator lets

~

Lio= Qi1 Ljp=Qijure Ve €S(o)U{j}: Ljn= Qi

Here we use the notatiag; ; , to index into the vecto)’ from the((¢ + 1)(¢ + 2)qo)-

C3DH problem. As the simulator knows tkdég of w,w, uy, ..., us hy, ..., h, base
v, the remaining components of the token can be generateptficdue to Equations
@3) and[4D).

e For all the remaining queries, the simulator respondsfidithas in the real game.

Clearly, if @' = @ inthe ((¢ + 1)(¢ + 2)qo)-C3DH instance, then the above simulation is
identically distributed ag&ame, 4. Otherwise, the above simulation is identically distréalt
asGamey ;.

Challenge.The simulator generates the challenge ciphertext as normal

Guess!f the adversary hasdifference in its advantage iBame; ; andGamey, ,, it is not hard to
see that the simulator has a comparable advantage in sohan@3DH instance.

Gamey , is indistinguishable from Gameg ;. Similarly, we can show that Step 2 above is also
true, i.e., no polynomial time adversary can distinguistwieenGame;, ; and Gameg ; with non-
negligible probability. To prove this, we further define ggence of hybrid games. Suppose that
in Game; ;. where0 < ¢ < W(¢'), the firstc pDK;’s are replaced by independent random de-
cryption keys (without thg“ part). We show that a polynomial time adversary cannotraisiish
betweenGame; , . andGame; ;.. ,. Then, by the hybrid argumen&ame; , and Gameg , (which

is identically distributed a&amey 4,1) are computationally indistinguishable.

The simulator tries to solve the followingC3DH instance:

(p7Q7T7 Gv GTve) (& GG()\v 1)7 n <« pqr,
9p & Gy, 94 £ Gy, 9r & G,
Yi,Yo,...Yy, 24, Zs,.. ., 20 - G,

Ul,vg,...,wi(@p

r& 7y,

X — ((n,G,Gr,€), Gp, Ggs Gry V121, V222, ..., Ve Zy)
Q — (v]Y1, v3Ya, ..., VYD)

The simulator tries to distinguish betwegkli, ' = @) and (X, Q" = R), whereR is a random
vector fromG,,. The simulator leverages an adversaryvho can distinguish betweeﬂnameg,d,c
andGameg ;. ;.
Init and SetupAt the beginning of the game, the simulator sets up publiap&ters and a secret
key by choosing Vil G,. Forl < i </, the simulator sets; = v*, h; = v¥, wherez;
andy; are random exponents frof,. The simulator also picke = v* andw = v*. The

67

remaining public parameters and secret key componentsiédedonormally according to
the Setup algorithm.

Query 1 and 2. The adversary issues a number of queries to the simulatie hefore, the
simulator internally computes and saves a token whenevecéives a “create token” or
“create delegated token” query. The simulator simply rs/gathe adversary the previously
computed token in a “reveal token” query.

The simulator treats Type 2 tokens as a special case. Whrethevadversary asks the sim-
ulator to create a Type 2 token, the simulator computestitfidly by deriving the token
from the specified parent. This correctly reflects the retaietween the child token and its
parent. Henceforth, we focus on how the simulator compuyee T delegated tokens and
non-delegated tokens.

» Before the adversary makes thé+ 1) T1-delegation query, the simulator always
computes each Type 1 delegated token and non-delegatetftekaly at random.

e Atthe(d+1)" T1-delegation query, the adversary specifies a parent tokeireguests
to fix the k" coordinate to some valug € Y. To answer this query, the simulator first
generate®L; for all i € W(o), andpDK. Fori € W(o)\{k}, the simulator picks at
randomL, o, L; s andL; ; for all j € S(o) U {i}. The simulator lets

Ty = Lio = ver1Zes1, Ts= Ly =ver0Zepa, Vi€S(0): Tj=Ly; =17,

As the simulator knows thélog of w,w, u1, ..., us, hy, ..., h, basev, the remaining
components dt/)T_Z-’s andpDK can be generated efficiently in a way similar to Equations
#13) and[[46). The only difference is thadK does not contain thg* term, while a
decryption keyDK does.

The simulator picks the firstpDK,’s as fresh random (partial) decryption keys.

Leti be thec + 1™ index inWW(o’). ForpDK;, the simulator sets
Lio=Qu1, Tip=Que VieS(o): T'iy=0;

We use the notatio@’; to index into thej" element of the vecta®)’ from the/-C3DH
problem. Again, since the simulator knows theg of w, w, uy, ..., u, hy, ..., h,base
v, the remaining terms ipDK, can be generated efficiently.

For all the remainingDK;’s, the simulator generates them normally as in the original
Delegate algorithm.

e For all the remaining queries, the simulator generates faghfully.

Challenge.The simulator generates the challenge ciphertext as normal

Guess. Notice that if)’ = @ in the (-C3DH problem, then the above simulation is identi-
cally distributed assame 4 .; otherwise, the above simulation is identically distréulias
Gamey 4.4+1. Therefore, if a polynomial time adversary could succdbsfiistinguish be-
tweenGame 4. and Gameg 4.+1, then the simulator would be able to solve th€3DH
problem with non-negligible probability.

68

4.6.3 Indistinguishability of Game; and Game,

We prove Lemm&4.8.2.

Let g denote the maximum number of -Helegation queries for a matching token made by the
adversary. We show that if a poly-time adversary has notigiblp difference in its advantage in
Game; and Game,, we can build a simulator that leverages this adversary dakbthe modified
q(¢ + 1)-C3DH assumption. In the following, we use j to meanvi € [q],0 < j < /.

(p,q,7,G,Gr,e) < GG(\, 1), n « pgr,
9 =Gy, 93— Gy, g, =G,

Vi,j: Yij1,Yijo & G,

V1, Ug il G,

Vi, j: T <7,

Q — (v1"Yi 1, 0377Y;)9)

The modifiedq(¢ + 1)-C3DH assumption says that given randory = @) or (@' = R)
whereR is a random vector of lengi(¢ + 1) from G,,., a poly-time adversary cannot distinguish
whether’ = Q or @’ = R. The modifiedy(¢/+1)-C3DH assumption follows from the generalized
C3DH assumption by the hybrid argument. Hence, we are naidating a new assumption here.

Suppose the simulator is randomly givep = @) or (@' = R) whereR is a random vector
of lengthq(¢ + 1) from G,,.. Now the simulator tries to distinguish between the two sase

The simulator first generates public and secret keys. Thalator picksv € G, at random.
For1l < i </, the simulator setg; = v, h; = v¥, wherex; andy; are random exponents from
Z,,. The simulator also picke = v* andw = v*, wherez andz are also random exponents from
Z.,. The simulator proceeds and generates the rest of publisenrdt keys as normal.

We explain how the simulator answers the adversary’s gsieVithen the adversary makes the
i" T1-delegation query for a matching token, the simulator coegpa token by lettingd, = Qioa
andKy = Q- This fixes the exponentsand?, although the simulator does not know what
and# really are. The simulator picks the remaining parameteesl@@ as normal, and computes
the decryption key paiDK. Notice that even though the simulator does not knosr 7, DK can
be efficiently computed, since the simulator knowsdhe of w,w basev.

Similarly, for delegation componefiL; where;j € W(c), the simulator letd.;o = Q; ;.
L; s = Q; 5, picks the remaining parameters needed as normal, and ¢esijiL. By the same
reasoning, even though the simulator does not knpwr 7, DL; can be efficiently computed
since the simulator knows thBog of w,w basev.

We observe that if)’ = @, then the above simulation would be identically distrilolites
Game,. Otherwise, ifQ)" = R, the above simulation would be identically distributedGasne; .
Therefore, if a poly-time adversary has non-negligibléetlénce in its advantage in distinguishing
Game; andGame,, the simulator would be able to break the modifigé+ 1)-C3DH assumption.

69

Until now, we have shown that the simulator can change thetalesns are computed such that
these changes remain computationally hidden from the admer Now we show that if the sim-
ulator changes certain parts of the ciphertext to randono)yatpme adversary cannot distinguish
with more than negligible advantage.

In all the simulations described below, the simulator walhgoute tokens only when a “reveal
token” query is made. When the adversary makes a “createtake‘create delegated token”
guery, the simulator simply records that query without catimg the actual token created. In
particular, in some of these simulations, the simulatooisaile to compute all tokens. However,
the simulator is always able to compute a token in a “revdand query. Recall that a token
represents a set of conjunctive queries over the peimncrypted. Any tokem requested in a
“reveal token” query must satisfy the condition that for dagction f € C, (f is a conjunctive
query onX € Z%), f(X;) = f(X;). Henceforth, we use the terminologydoes not separate
the two selected point&; and X; to describe the above condition. In all the simulations Wwelo
the simulator is always able to compute a tokems long ag does not separate the two selected
points.

In the simulations described below that change certairs pdithe ciphertext, an adversary can
ask the simulator to reveal a token of the following typesadn-delegated, 2) Type 1 delegated, 3)
Type 2 delegated. Clearly, non-delegated tokens arellistid independently from other tokens.
Due to Lemm&4Z4.6l1, Type 1 tokens appear to be uncorrelatbdivair parent tokens. Therefore,
the simulator always computes non-delegated and Type hsdkeshly at random. By contrast,
Type 2 tokens are correlated with their ancestor tokens tlaunsl require special treatment. The
simulator must construct Type 2 tokens such that they reflextcorrect relationship with their
ancestors. Before explaining how the simulations are peed, we describe a general strategy the
simulator uses to generate Type 2 delegated tokens, siegadfuire special treatment different
from that for non-delegated tokens and Type 1 delegatedhtoke

4.6.4 Generating Type 2 delegated tokens

The simulator uses a “book-keeping” technique. We use th&tioo TK,. <, TK, to mean that
TK,. is derived fromTK, through a Type 2 delegation operation. Whenever the adyeasks
the simulator to reveal a Type 2 delegated token, insteadrapating a fresh token, the simulator
examines the history of queries, and finds the sequence & Z\gelegation queries that created
this token,

Tng <5 TK <9 ... =<9 TKC,1

Ok—1

whereTK,, := TK, is the currently requested token, am,, is a non-delegated token or a
Type 1 delegated token. We note that the simulator might eattite to compute all these tokens.
However, the simulator can compute a token if the token doéseparate the two selected points
X and.X7.

If a tokenTK,, (1 < i < k) in the above sequence has been computed by the simulata in th
past, the simulator simply derivd¥X, from TK,, using theDelegate algorithm, and returns it to
the adversary. In particulas, fixes some delegatable coordinatesspto 1, and the simulator
simply removes the corresponding delegation componemnits TiK,,, to form TK,. Otherwise, if

70

no token in the above sequence has been computed by the wimnol¢ghe history, the simulator
finds the earliest ancestdK,, (1 < i < k) in the above sequence, such thét,, does not separate
the two selected point&; and.X;. The simulator generatél,, freshly at random, and then it
follows the Delegate algorithm to generaté&K, from TK,. (by removing the fields set td from
the delegation components).

We now describe a sequence of simulations that replacertgptheomponents by random group
elements. In these simulations, we focus on how the simuéatio compute non-delegated and
Type 1 tokens. Type 2 tokens are always treated as a spes&lsing the algorithm described
earlier in this section.

4.6.5 Indistinguishability of Game, and Game;

In Games, if Msg, # Msg,, the challenger replaces the ciphertext compoiébly a random
group element fronts.
The proof thatGame, and Game; are indistinguishable to a poly-time adversary is simitar t
that in the original BW06 papeELllZ].
We prove this in two steps:
e Game): If Msg, # Msg,, the challenger replaces the ciphertext compofeny a random
group element fron&r,,. No poly-time adversary can distingui§ame;, from Game, with
more than negligible probability.

* Because of the subgroup decision assumption (implied byC@#eH assumption), if the
simulator replaces the ciphertext compon€riy a random group element fro@y- instead
of Gr,, the adversary cannot distinguish this case f@mey.

We first prove thaGame, is computationally indistinguishable froGame),. Suppose the sim-
ulator tries to solve the following BDH instance:

(p7 q,T, G? GT7 E) & GG<)\)7 n < pqr, 9p & G;Du Yq & Glp gr & GT
a,b,c & 7,

Z<— ((H,G,GT,G), g;lh glI7 g?"? gg7 g;gu 9;)
Q — e(gmgp)abc

The simulator is randomly givef?, Q' = Q) or (Z, Q' = R) whereR is a random element in
Gr, and it tries to distinguish between these two cases.

If there exists a poly-time adversa that has non-negligible difference in its advantage in
Game, andGames, we can build the following simulation to solve the BDH insta.

Init. The adversary commits to two selected poilifsand X;. The challenger picks a random
coin internally.

71

Setup. The simulator chooses randdifi, 1, 1), (Ruz2, Br2), - - - (Rug, Bre) € Gy Ry, Ru,
R, € G4, and randonxy, yi, ..., %, y¢ € Z,, andz, = € Z,. The simulator publishes the group
descriptiong,, g., V' = g,R,. Itlets A = e(gj, gj;) and creates

U; = (gz)ziRu,ia H; = (gf,)_zixg*igé”li’h,i

Finally, the simulator creates: o
W=g" W=g"
We observe that the parameters are distributed identitatlye real scheme.

Query 1. The simulator does not compute any token when the adversakgsricreate token” or
“create delegated token” queries. It computes tokens ohlgnwreveal token” queries are made.

Recall that in Sectioh™4.8.4, we pointed out that Type 2 tekemuire special treatment. In
addition, we gave an algorithm for the simulator to genefgfee 2 tokens such that they reflect the
correct relationship with their parent tokens. Now it s@fi¢o show that the simulator can always
compute a fresh random token, so long as the token does rariasephe two selected points;
and X7.

Whenever the adversary makes a “reveal token” query for hirag token, the simulator
simply aborts and takes a random guess. The reason is thair ldgbnition, when the adversary
asks the simulator to reveal a matching token, the challemggsaged/lsg, and Msg, must be
equal. However, in this cas€ame, andGames are identical, so there can be no difference in the
adversary’s advantage in between these two games.

Whenever the adversary asks the simulator to reveal a néching token, the simulator needs
to compute a token of the correct form. First, notice thatdakegation componenf3L can be
efficiently computed, since they do not contain any unknoarameters. However, computing
the decryption key componeftK is slightly more tricky. Recall that because of the way the
public key is formedg® = g;;b. Therefore, the decryption key compon®&¥ contains the term
ggb. Unfortunately, the simulator does not kn@gﬁ, so it has to find some way to cancel out
that term and still form a correctly distributed token. Theuition is that since the token is non-
matching, there exists a dimensiowhere X, # o; and X7, # o;. We observe that the term
ul'h; = (gb)*#g¥ contains(gb)®*, whereA; = o; — X, # 0. Therefore, the simulator can
pick ¢; at random front,, and let

ti =t —a/(Aiz)
without actually computing it. And thig is used to generate the decryption key compoigfit
If the simulator pickst; in the way specified above, it is able to complt, since all terms
containing the unknown paramet@b cancel out. In particular, in the decryption kB, K is a
product of several terms. Rewrité:

K =glww’] (u]h)5y
Jj€S(0)

= () (ww T ey

JES(0),j#i

72

The product term R
05 (7 he)" = (ufha)" - (g5) /4=

can be efficiently computed, since all terms invoIvigﬁ cancel out. It is not hard to see that
the remaining terms ik’ can be efficiently generated, since the simulator knowsathmpeters
needed. As the simulator knows, the termk’; = v’ can be efficiently computed.

Challenge. The adversary gives the simulator two messaddsg, and Msg,. If Msg, =
Msg,, the simulator aborts and takes a random guess for the reteted above.

Otherwise, the simulator chooses randen¥,, Z,, Z1, Z, . . ., Z, € G,, and outputs the fol-
lowing challenge ciphertext:

C=Msg,Q', C=(4,)Z, Co=(95)"20, Cs=1(9;)"Zs, Yi€[l]: C;=(g5)"Z
Query 2. Same as phase Query 1.

Guess. The adversary outputs a gue$s If 3 = ', the simulator guesses th@t = @. Other-
wise, the simulator guesses tligt= 1. \We observe that i)’ = @, the ciphertext componeft
is a faithful encryption ofMsg; otherwise (' is distributed at random ifv7,,. Therefore, if the
adversary has advantage in guessing the simulator also hasadvantage in solving the BDH
instance.

To show thatGame), is computationally indistinguishable froffames, we rely on the Bilin-
ear Subgroup Decision (BSD) assumption introduced by BoSahai and Waterﬁlll]. Bilinear
Subgroup Decision assumption is implied by the generalcedposite 3-party Diffie-Hellman
assumption.

The simulator gets the following BSD instance:

(p7 q,7T, G? GT7 E) & GG<)\)7 n < pqr, 9p & G;Du Yq & un gr & GT

Z « ((n,G,Gr,e), gp, 9 9r)
Q — GT,p

The simulator is also randomly give)l = Q or Q' = R whereR <~ G, . The BSD assumption
posits that no poly-time algorithm can distinguish betw#®nabove two cases with more than
negligible advantage.

The simulation proceeds as follows.

Init. The attacker gives the simulator two identiti€g, X;. The challenger then flips the caih
internally.

Setup. The simulator sets up the parameters as would the real sigtoitiam. All the simulator
needs to do this i8,, g,, g from the assumption.

73

Query 1. The simulator answers queries as the real authority wouh@. <tnall difference is that
the simulator chooses exponents fr@mninstead ofZ,. However, this does not change anything
since the both the simulator and a real authority will rarsedlements frorf, to the exponents.

Challenge. The adversary first gives the simulator messayeg,, Msg,. If Msg, = Msg;
then the simulator simply encrypts the message to the pojntOtherwise, the simulator creates
the challenge ciphertext of messagisg ; to X ; as normal with the exception th@t is multiplied

by @'.
If Q' = Q, then the simulator is playinGame),; otherwise it is playingsames.

Query 2. Same as Query Phase 1.

Guess. The adversary outputs a gugsslf g = [/, the simulator guesses th@t = @; otherwise
it guesses tha)’ = R. By our assumption the probability that the adversary geggsorrectly in
Game), has a non-negligibledifference from that of it guessing it correctly Game;. However, it
is in Gamegs if and only if the challenger gave the simulatpr= R instead of)’ = (). Therefore,
the simulator has advantagen the Bilinear Subgroup Decision game, implying that thewdator
has an advantage ein the Composite 3-Party Diffie-Hellman game.

4.6.6 Indistinguishability of Game; and Gamey

If a polynomial time adversaryl has non-negligible differencebetween its advantage (ftames
andGame,, we can build a simulatdf that breaks the C3DH assumption with probabitity
The challenger first creates a 3-Party challenge:

(p.4.7.G,Gr,e) < GG(\), n<—pg, g Gy g GCq g <G,
Ry, Ry, Ry & G,

a,b,c &7,

Z — ((n,G,Gr,e), gy g9 95r g5 T =g2 Ry, YV =gt Ry)
Q 9y R

It then randomly decides whether to giV&, Q' = Q) or (Z, Q' = R) whereR is a random
element inG,,.
We create the following simulation:

Init. The adversary commits to two poind§; and X;. The simulator flips a random coi
internally.

74

Setup. The simulator pickd” = ¢, R,, whereR, is picked at random frontz,. The simulator
also picks froni,, random exponentg, z, 7, 1;, z; for eachi € [¢], and lets

W = g T W =17
The simulator creates:
Viell]: U= (g0)" Rui Hi=(g})"*oigZRy;

whereR, ; andR;,;'s are random group elements fraiy. The simulator also chooses a random
a € Z,, and computes! = e(g,, V).

Query 1. Recall that each query defines a set of conjunctive queri@son the encrypted point
X. Whenever the adversary asks the simulator to reveal a fokety o must satisfy the condition
that for any functionf € C, (f is a conjunctive query oX € Z*), f(X{) = f(X}). Henceforth,
we use the terminology does not separate the two selected pakjfsind.X; to denote the above
condition.

We now describe how the simulator responds to the advessagyeal token” queries. The
token can be non-delegated, Type 1 delegated, or Type 2aletegType 1 delegated tokens and
non-delegated tokens should be generated freshly at rangbite Type 2 tokens should reflect
the correct relation with their parent tokens. In Seclidh4l.we gave an algorithm for generating
Type 2 tokens. Hence, it suffices to show how the simulatoicoampute fresh random tokens.

e |f the token matches both selected points, the simulatdrdicks a random- from Z,,, and
letsy = —Z7, andy = x7. Similarly, the simulator picks a random € 7, for each
i € W(0o), and letsy; = —=7;, andy, = x7,. Except for the above, the simulator follows
the GenToken algorithm and computes the token. Notice that the token eacomputed
efficiently, since the only unknown term involvirgb cancels out because of the way the
simulator chose, 7, and the way the simulator chosgand®;’s. In particular, consider the
term K in the decryption key componebK. Group the terms itk:

K = (uﬂm) (ga 11 (u;’jhj)tjy)

JES(0)

In the above, the product termw” can be efficiently computed since all terms involving
g5 cancel out:

T = g~ %TY
w'w' =g,

Similarly, for all i € W(o), the following term in the delegation componddit; can be
efficiently computed:

Yiry Vi — —ITY
w "W gp

Clearly, all remaining terms iDK or DL can be efficiently computed, since the simulator
knows all necessary parameters.

75

e |f the token matches neither selected point, there existsdomatec € S(o), such that
A, =o0.— X}, # 0. In this case, the simulator uses the following strategyotogute the
decryption key componefK. The simulator first picks random 7 € Z,. It also picks
randomt, € Z,,, and lets

a(yr +77)

A,

without actually computing.. Except for the above, the simulator follows then Token
algorithm to compute the token requested. Notice that tkertean be computed efficiently,
since all terms involving the unknown parameggbrcancel out. In particular, in the decryp-
tion key componentBK, group the terms ik’

K = (mmwgchc)%) (ga 11 (ujjhj)w)

JE€S(0),j#c

tc:%\c_

The product termv w7 (ug¢h.)' can be efficiently computed, since all terms involving the
unknown paramete;gb cancel out:

WT(uhe)'* = g8 (ug o) (gf)

where®, = W. In addition, we observe that the teriy. = v'*Y, can be computed

efficiently since the simulator knowg. Clearly, all other terms iDK can be computed
efficiently.
To generate the delegation compondits we can apply the same trick, i.e., by letting

5. =3, LT+ T
’ ’ A

for everyi € W(o). s, is picked at random frort,,.

Challenge. The adversary submits two messafdésg, andMsg, to the simulator. The simula-
tor creates the following ciphertext:

C = Q’, C(] — Q/nyZ(]v C¢> — Yde)’ Vi e [6] : Cz _ Q/ZLZZ

In addition, if Msg, = Msg,, the simulator letg = e(gp, Q). Otherwise(is replaced by a
random element frontz-. Observe that if)’ = @, the ciphertext is identically distributed as in
Games. Otherwise, ifQ)’ is a random element fror§,,,, the ciphertext is identically distributed as
in Gamey.

Query 2. Same as th®uery 1 stage.

Guess. The adversary outputs a guessof 3. By the C3DH assumption, a poly-time adversary
cannot have more than negligible difference in its advantagames; andGame,.

76

4.6.7 Indistinguishability of Game, and Game;

Let £ denote the set of indiceswhere the two committed points are not equal, ¥, # X7 ,.
Let Game, := Game,. We define a sequence of gam&sme, ;, Game, s, ..., Game, B Let

E; C E denote the first indices inE. In Game4Z (1<i< |E|) the challenger creates ciphertext
componentsC C, andC; normally for allj ¢ E;. For allj € E;, the challenger replac&s; with

a random group element fro,,. For Cy, C,, the challenger creates the following ciphertext
components like in gam@ame,:

C() = ngp_WplZ(), C¢ = ngngb

wherey’ is a random group element frof),. Recall that the simulator picks € Z, at random
prior to the game starts, ands hidden from the adversary. Whenever the adversary maipasrst
that matches both selected points, the simulator picksxperents forw andw in a correlated
way such thaty = 7, 7, = m; for all i € W(o). Itis not hard to see th&ame, 7 = Game;.

We now prove Lemm&=4.8.5, and show that a poly-time adversamnot have more than
negligible difference in its advantage Game, and Game;. Because of the hybrid argument, it
suffices to show thaGame, 4 is computationally indistinguishable froGame, .1, where0 <
d < |E].

We prove this by supposing that a poly-time adversdryas more than negligible difference
in its advantage again§ame, ; andGame, 41. Now we build a simulatoB that leveragesi to
solve the C3DH problem.

The challenger first creates a 3-Party challenge:

(0,07, G,Gr,e) < GG(\), n—pqg, g <Gy, g4 Gy g <G,
Ri, Ry, Rs & G,
a,b,c &7,
7 — ((n,G,GT,e), 9> 90 9r> Iy gf,, I'= ggb Ry, Y = gpbc R)
Q 9y R
It then randomly decides whether to git&, Q' = Q) or (Z, Q' = R) whereR is a random

element inG,,.
We create the following simulation:

Init. The adversary commits two points to the simulats, and X;. The challenger flips a
random coing internally.

Setup. Let§ denote thel + 1-th index inE.
The simulator first chooses randdifl, 1, Ry1), - - ., (Rue, Rue) € Gg’ and randomuy,y1,. . .,
ey Yo € Lo,

77

The simulator first publishes the group description and,., V' = g, R,, whereR, is a random
element from subgrou@, . It picks a random € Z,, and letsA = ¢(V, g,,)®. It creates

_PL(SX;’L;
Us = g,° Rus, Hs=gp ' Ry, 5

Next, for alli # ¢ it creates

Ui = g;;”Ru,ia H; = g;”ixg’igﬁiRh,i
Finally, the simulator picks randoi,,, R from G,, and random exponenisy,y from Z,,
and computes B B
W =g,(9,)" R, W = (9,)" R

We observe that the parameters are distributed identitatlye real scheme.
The simulator also sets= —y /7. We observe that is information theoretically hidden from
the adversary.

Query 1. Whenever the simulator receives a “reveal token” query ftloenadversary, it needs to
compute a token of the appropriate form and return it to tiveeséry. The token that the adversary
is requesting can be one of the following three cases: 1)dedegated, 2) Type 1 delegated, 3)
Type 2 delegated. Recall that the simulator generates Tygrel hon-delegated tokens freshly at
random. Meanwhile, Sectidn'4.6.4 provides an algorithngfarerating Type 2 tokens. It suffices
now to show how to generate tokens freshly at random.

Consider that the simulator has received a query from theradwy for a non-delegated token
or a Type 1 delegated token Recall thatr should not separate the two committed poikifsand
X7. Hence, exactly one of the following two cases must be tried.FLdenote the set of indices
i where the two committed points are equal, i.X;, # X;,, andE = [(]\E denote the set of
indices whereX; and X} are not equal.

Case 1.0 ¢ S(o) UW(o).

Case 2.6 € S(o) UW(o). There must exist, j € S(o), such that; # X ando; # X;. In other

words, the query does not match either of the committed identities.

Case 1.In Case 1§ ¢ S(o) UW(o). The simulator checks if the requested token matches both
selected points. If so, the simulator picks correlated egpts forw andw: 7 = 7y, andy, = 7;
for all i € W(o). (Recall that the simulator sets= —y/7.) The simulator proceeds to generate
the remaining parts of the token according to the: Token algorithm. Otherwise, if the requested
token matches neither of the selected points, the simuatgly follows theGen Token algorithm
to generate the token. It is not hard to see that the token ea&fficiently computed in this case,
since the simulator knows;, h; for all i £ 6, as well as other parameters needed.
Case 2.This is the more complicated case, since the simulator doekmow i which contains
the termggb. Also, in this case, the token queried does not match eithdreoselected points.
Therefore, the simulator will leverage andw to cancel out the unknown parameters:jn

We first describe how to generate the decryption key compddkn If 6 ¢ S(o), then it is
trivial for the simulator to generateK, since the unknown parametky does not appear iBK,

78

and the simulator knows all parameters required! & S(o) the simulator picks;,7' € Z,, at
random, and lets be the following without actually computing it.

¥ =7 —atsys/y

Now the simulator follows th&en Token algorithm to generate remaining parts of the decryption
keyDK. DK can be efficiently computed, even though the simulator doekmow¢?’, as all terms
involving g;;b cancel out irDK. In particular, consider the terdd in DK. Group the terms ir:

K = (@”’(ug‘;hcg)t‘s) (ga 1T (u?jhj)th)

7€8(0),j#6

The product termw” (u3° k)" can be efficiently computed since all terms involviyjg cancel out:
W ha)" = (g)77 g

whereA; = o5 — X3 5. Meanwhile, the terni(y, = v7Y;, can be efficiently computed since the
simulator knowgy;. Itis not hard to see that all remaining term®iK can be efficiently computed.

We show how to generate the delegation components. Theationglan use exactly the same
strategy to generateL. Basically, for alli € WW(o), the simulator picks; s,7; € Z, at random,
and letsy; be the following without actually computing it:

— — _
¥i =i — aSisYs/T

In this way, depending on wheth&e S(o) ord € W(o) the producto” (uf®hs)®+5 orwi hy"’
can be efficiently computed, since terms involv'gg@ cancel out.

Challenge. The adversary submits two messa@dsg, and Msg;. Let E denote the set of
indicesi such thatX;, # X7 ,. Let E; denote the first indices inE. The simulator picks random
P e Gy, Zo, Zy € Gy, andZz; € G, for all ¢ € [¢]. The simulator creates the following ciphertext:

C=Q, Co=Q"PZy, Cy=PVZ, Cs=Y%Zs Vi#dandi¢ E,: Ci=Q"Z

For alli € E,, the simulator picks a random element@y, for C;. In addition, if Msg, =
Msg,, the simulator computefé = e(g,, Q")*; otherwise, the simulator repIacéSNith arandom
element fromG,. Notice that ifQQ" = @, then the above simulation is identically distributed as
Game, 4. Otherwise, ifQ)’ = R, the simulation is identically distributed & me, 4.

Query 2. Same as phasguery 1.

Guess. The adversary outputs a guessof . If the adversary guesses correctly, i/&.= 3,

the simulator guesses th@t = @ in the C3DH instance. Otherwise, the simulator guesses that
@' = R. ltis not hard to see that any advantage of the adversarystinduishings translates to

the simulator’s advantage in solving the C3DH problem.

79

4.7 dHVE Full Security

We formally define the security of dHVE through the followisgcurity game between a challenger
and an adversary.

e Setup. The challenger runs thgetup algorithm, and gives the adversary the public Ré;

”

e Query 1. The adversary adaptively makes a polynomial number of terezken”, “create
delegated token”, or “reveal token” queries. The challerageswers these queries accord-
ingly.

e Challenge.The adversary outputs two paiisIsg,, Xo), (Msg,, X1) € {0, 1}*xX* subject
to the following constraints:

For any tokens revealed to the adversary in tiguery 1 stage, letC, denote the set of
conjunctive queries corresponding to this token.

1. Forallf € C,, f(Xo) = f(Xy).
2. It 3f € C,, f(Xo) = f(X7) =1, thenMsg, = Msg;,.

The challenger flips a random cdirand returns an encryption Msg,, X;) to the adver-
sary.

e Query 2. Repeat th®uery 1 stage. All tokens revealed in this stage should satisfydimees
condition as above.

e Guess.The adversary outputs a guéssf b.

As before, the advantage of an adversdry the above game is defined toAév 4, = | Pr[b =
b'] — 1/2|. We say that a dHVE construction is secure if for all polynainime adversaries, its
advantage in the above game is a negligible functiok. of

4.8 Anonymous Hierarchical Identity-Based Encryption with
Short Private Keys

In Sectiorl4.1I2, we propose a new and complete securityitiefifor delegation in these (anony-
mous) IBE systems. By contrast, previously, researcherse bhaed an under-specified security
game, where the adversary does not get to specify how eaclequeken is derived. We now
show one advantage of being able to capture such nuances seouwrity definition, by giving
an Anonymous Hierarchical Identity-Based Encryption (BH) construction with shorter private
keys than the original construction by Boyen and Walers.[13]

To achieve this, we rely on the same technique that we useuiodldVE construction: we
multiply the private keys by random group elements in thedteubgroupG,, so that the private
keys are computationally indistinguishable from beindgkpdtfreshly at random.

For consistency, we build our AHIBE scheme based on compdsiinear groups and the
C3DH assumption, rather than the Decisional Linear assomptiopted by the original BW con-
struction. One can easily build the scheme using the Detwsianear assumption as well.

80

In comparison, the original BW construction hagD?) private key size and our construction
hasO(D) private key size, wher® denotes the depth of the hierarchy. Meanwhile, we preserve
all other costs asymptotically, including ciphertext sizgecryption cost, and decryption cost.

4.8.1 Construction

Setup(1*, D): The setup algorithm takes as input a security parametethe maximum depth
D € N, and outputs public parametd?& and the corresponding master secret KMSK.
The setup algorithm first chooses random large primesr > m and creates a bilinear
groupG of composite orden = pqr, as specified in Sectidn4.3. Next, it picks a random
9,v € Gy, g, € G, g, € G,, arandom exponent € Z,, and random elements

¥n €[0,D+1],¥0 € [0,D]: upe < G,

It keeps all the above as the master secretM8K. The Setup algorithm then chooses the
following blinding factors inG,:

R,, Vn€[0,D+1],¥ € [0,D]: R,, <G,
The algorithm now publishes the following as the public ke
9g» 9rs V =vR,, A=-¢e(g,v)*, Vne[0,D+1],Vl € [0,D]: U, =uneRnys

Ezxtract(PK,MSK,Z): The Extract algorithm takes as input the public k€K, the master se-
cret keyMSK, and an ID tupleZ = (Io,Iy,...,I) € (Z5)'*", whereL € [D], and by
convention,/, = 1. The algorithm generates a private key corresponding taithaity 7.

e Pick random exponentg, ry, ..., r14+p from Z,. Pick random blinding factor¥’, Y;,
Yy, ..., Yiqp fromG,, and randonY/ ;. Y, ;. ..., Y}, fromG,.

e Compute the decryption key portion of the private key:

1+D L
DK = (K =g [T 1wk Y., Vvnelo, 1+D]: K, = wn)

n=0 ¢=0

e Compute the following delegation components of the deaoydtey:
14+D
DL = (W e[l+L,D]: J,= Hu%-Yj)
n=0

Derive(PK, Pvkz—1,Z) The Derive algorithm takes as input the public k&K, and derives a
private key forZ = (1o, I1, ..., 1) from a parentkey fof |L — 1 := (lo, [y, ..., I 1).

e First, express the parent key using the same notation aseb@fck;;,—, = (DK, DL),
whereDK = (K, Ky, K1, ..., K1, p),andDL = (Jp, Ji41,...,Jp).

81

e Next, pick a random exponente Z,, and random blinding factors, Yy, ..., Y1, p,
andY/, ;,...,Y}, fromG,.

e Compute the decryption key portion of the child key:
DK = (K'=(K-J*)Y, VYnel0,1+D]: K| =KY,)
e Compute the delegation components of the child key:
DU'=(Vte[l+L,D): J,=J]Y))
Encrypt(PK,Z, Msg) The Encrypt algorithm takes a public kefK, and encrypts a message
Msg to an identityZ = (I, I1, ..., I1). The algorithm proceeds as follows:

e Pick a random exponent € Z,. Pick random blinding factorg, Zy, 71, ..., Z1.p
from G,.

e Compute the following ciphertext:

L
=0
Decrypt(PK, Pvkz, CT) The Decrypt algorithm takes a public keyK, a private keyPvkz, and

decrypts a ciphertexT. Using the same notation for the ciphertext and the privajeds
before, decrypt the message:

e(C, K)

Msg —

4.8.2 Security of construction

Theorem 4.8.1 The above-defined A-HIBE construction is internally caesis In addition, it is
IND-sID-CPA and ANON-sID-CPA secure under the cBDH and C2BsLmptions in the bilinear
groupG.
See the original BW papelﬂlS] for detailed definitions of H$ID-CPA and ANON-sID-CPA
security.
The proof of the consistency is straightforward. Proof ausgy can be done in the following
steps:
e As we multiply all elements of the private key with a randorowgy element from the third
subgroupG,., we can show that private keys generated by/theive algorithm are compu-
tationally indistinguishable from being picked freshlyrahdom.

e Show that if private keys were really generated freshly atioen rather than by calling the
Derive algorithm, the scheme would be IND-sID-CPA and ANON-sIDACS&cure. This
part of the proof is done in a manner similar to that of the BWstouction IL—;LB]. The only
exception is that we now replace the Decisional Linear apsiomby the C3DH assumption.
However, the gist of the proof remains unchanged.

We omit the complete proof in this thesis, since it is veryi&nto the proof of our dHVE

construction.

82

Chapter 5

Query Privacy in Predicate Encryption

In this chapter, we present a predicate secret-key enorypttheme that not only hides the plain-
text encrypted, but also protects the privacy of the queedigates. Our construction supports
inner-product queries. We begin by motivating why queryay is an important problem.

5.1 Query Privacy in Predicate Encryption

The schemes described so far are in the public-key settingle\ihey guarantee the secrecy of
the plaintext encrypted, they do not provide any guaraniésscrecy on the query predicate. In
fact, if Alice sends Google a capability to search on heryted emails, Google can infer some
information about the query embedded in the capability.

Leaking information about the query predicate may also lismable in certain applications.
For example, Alice stores her encrypted documents on a eeseover, and would like to perform
searches on the encrypted data. Ideally, Alice would likeide from the remote server not only
her documents, but also her queries, as the queries carl sevesdtive information just like the
documents. Alice could make a query for documents contgithie keyword “cardiologist”, which
reveals her sensitive medical information. Unfortunatelypublic-key predicate encryption, it is
inherently impossible to guarantee the privacy of the euse(roughly in the semantic security
sense). This reason is rooted in the fact that anyone cagmnging the public key. Suppose that
the server would like to learn whether a toKEK corresponds to the querp@CUMENT contains
“cardiologist”), the server can take the public key, andrgpta document containing the keyword
“cardiologist”. Now the server can simply apply the tokEK on the resulting ciphertext to check
if they match. Due to this observation, prior work on puli&y predicate encryption addresses
only privacy of the plaintexts (henceforth referred topdaintext privacy, but not privacy of the
gueries (henceforth referred to @sery privacy.

The above observation tells gsery privacy is not possible in the public-key settihgother
words, if we would like to guarantee query privacy, we canebteveryone have the ability to
encrypt. Naturally, this raises the following question: awif we consider the secret-key setting
where only the owner of the secret key can encryfgit possible to guarantee query privacy
in addition to plaintext privacy in the secret-key settingy? this chapter, we demonstrate that

83

it is indeed possible to achieve both query privacy and painprivacy in secret-key predicate
encryption. Moreover, our construction supports expvessueries.

In this chapter, we present a secret-key predicate enorygttheme which guarantees both
plaintext privacy and query privacy. Our construction sapginner-product queries.

Why inner-product queries? An important goal in predicate encryption is the ability tgpport
complex, expressive queries. Researchers have made mdagvens towards this goal. The
earliest schemes in the public-key settiﬂgﬂﬂ 6,9, 13] supgquality test queries such asE@AR

= 2009). Later, researchers invented schemes supportimgreive queriesmﬂﬂﬂ such
as (YEAR = 2009)A (MONTH = jan). An extension of conjunctive queries is multi-dimiens|
range queries|IB5]. Recently, Katz, Sahai and Watels [28§ snother big step forward in this
direction and proposed a scheme supporting inner-prodigetes. We point out that inner-product
query is strictly more expressive than conjunctive queriesthe KSW paper|E8], the authors
explicitly show why inner-product queries imply conjurmts, disjunctions, CNF/DNF formulas,
polynomial evaluation and exact thresholds. The KSW cagstn is in the public-key setting,
and does not guarantee query privacy.

Naturally, a reasonable goal to aim for is a scheme whoseeegweness matches the most
powerful public-key predicate encryption known to date.isTis the reason why we consider
inner-product queries. Our construction is the first sekegtpredicate encryption scheme that
guarantees query privacy and supports expressive queries.

Definitional issues. One of our contributions is to rethink the definition of qugmwacy. Al-
though query privacy has previously been studied in theesé@y setting for keyword-based
gueries by Song et al. [39], and Curtmola etlall [19], the sBcdefinition adopted in these works
are not yet satisfactory, and may be strengthened. In tegghwe rethink how to formally define
the security of Secret-Key Predicate Encryption (MRQEDgallly, we would like to reveal the ab-
solutely minimal information to the storage server. We aapthis intuitive notion through the full
security definition (see Definitidn 5.3.3). As the full satudefinition is hard to work with, we
propose an alternative security definition (see Definifidh4) called Single Challenge Indistin-
guishability (SCI). This security notion resembles thepna security notion adopted by previous
identity-based encryption and predicate encryption sd@@iﬂﬂﬂﬂ We demon-
strate in Propositiof’5.3.2 that SCI security is just “asdyas” full security for inner-product
gueries. Our construction satisfies a relaxation of SClr#gcT he relaxation is similar to the se-
lective variants frequently used in prior identity-baseadrgption, attributed-based encryption and
predicate encryption schemasﬂ_—al, bﬂﬁh , 35]. We asiphthat even the relaxed security
model we use in our proofs is stronger than the security diefivs adopted by Song et al[[39],
and Curtmola et aI|I{9].

Proof techniques. Our proof techniques can be of independent interest. Werabdeat cipher-
texts and tokens argymmetricin functionality and security requirement, and we leverageh
symmetry in our proofs. More specifically, we observe thahd ciphertext and token are sym-
metrically formed, then by proving plaintext privacy, wetain query privacy for free. Therefore,

84

one possible approach is to build a KSW-like constructiomere the ciphertext and the token are
symmetrically formed, or computationally indistinguisi@from being symmetrically formed. In
this way, we can leverage a KSW-style proof to establismpgat privacy, and then rely on the
symmetry argument to establish query privacy.

5.2 Applications of SK-PE

In the privacy-preserving Gmail example mentioned at tiggriveng of this thesis, it may be more
appropriate to use public-key encryption, since anyonéh@enwvtorld should be able to use the
public-key to send an encrypted email to Alice. In this cadise public-key used for encryption is
known to the entire world.

On the other hand, secret-key encryption is more apprepnaither scenarios. Below, we list
some potential applications of secret-key predicate grticny.

Private Google Docs In private Google Docs, Alice uses her secret key to encrgptibcuments
before storing them on Google Docs. Later, when Alice wishegarch these documents, she can
use secret key to construct a token corresponding to hey,caret send the token to Google. Using
this token, Google can decide exactly which documents malicie’s search criterion, without
learning any additional information. This means that Gedgharns nothing about the encrypted
documents, and nothing about her search criterion.

Private del.icio.us del i ci ous. comis a web-service allowing users to store browsing history
and bookmarks, and share them with friends. Alice may nat elout her privacy, if she book-
marks innocuous websites suchrasvi es. yahoo. com or i ndb. com However, she may
care about her medical privacy, and if she wishes to booknh&rkvebsite of a hospital, she may
become a little concerned about leaking this informatiodetbicio.us. Such privacy concerns can
be addressed using secret-key predicate encryption. A#ineuse her secret key to encrypt her
sensitive bookmarks before storing them on del.icio.ugel.avhen she wishes to search for her
bookmarks, she can use her secret key to generate a tokedekict.us can now use this token
to perform search for Alice.

5.3 Definitions: SK-PE for General Queries

Although in this thesis, we consider a specific predicatelfanmner-product queries, we would
like to phrase the problem of secret-key predicate enaymiso in general terms. We hope that
the generic definition can inspire researchers to inverresé&ey predicate encryption schemes
that support more powerful queries than inner products -e-vérsion we propose in this thesis.
For simplicity, we consider theredicate-onlyersion. We note that it is not hard to incorporate
a payload message into the construction using techniqueesided in prior predicate encryption

schemeéﬂﬂ 5].

85

More importantly, we rethink the security definition for 3¥. Our security definition should
capture the intuition that the remote storage server leamhsAlice’s access pattern, and nothing
more. In particular, the storage server does not learn anyydbout Alice’s encrypted documents,
nor about what queries Alice is making.

We now give general definitions for Secret-Key Predicaterfgton (SK-PE) as well as its
security. A Secret-Key Predicate Encryption (SK-PE) sobeonsists of the following (possibly
randomized) algorithms.

Definition 5.3.1 (Secret-key predicate encryption)A Secret-Key Predicate Encryption (SKPE)
system consists of the following (possibly randomizedrélgms.

Setup(1*): The Setup algorithm takes as input a security parametgrand outputs a secret key
MSK.

Encrypt(MSK, x): The Encrypt algorithm takes as input a secret kEASK, a plaintextz €
{0, 1}*; and outputs a cipherteXtT .

GenToken(MSK, f): The GenToken algorithm takes as input a secret k5K, and a query
predicatef : {0,1}* — {0,1}. It outputs a tokeT K that allows one to evaluatg(x) over
an encryption of:. As mentioned above, we assume that the query predicateecamcbded
with a bitstring of lengthm.

Query(TK, CT): The Query algorithm takes as input a tokdrK, for the predicatef, and a
ciphertextCT which is an encryption of € {0, 1}, the algorithm outputg(z).

5.3.1 Full Security

Public-key predicate encryption schemes guarantee theceaf the ciphertext; however, they do
not guarantee the secrecy of the tokens. In fact, for plaicpredicate encryption, it is inherently
impossible to achieve ciphertext secrecy and token sesigayltaneously. This is due to the fact
that anyone is able to encrypt using the public-key. In theaBexample, if Google would like
to know whether a token corresponds to the queryrtE = cryptography”, Google can simply
encrypt an email whose ‘1TLE = cryptography” using the public-key, and test the tokenraia
the resulting ciphertext.

In secret-key predicate encryption, it is possible to gote@the secrecy of both the plaintext
(encoded in a ciphertext) and that of the query (encoded akeni. This provides even stronger
privacy guarantees in practice.

We now formally define the security for secret-key predi@ateryption. As mentioned above,
our definition aims to guarantee the secrecy of the plaingsxivell as the query.

To explain the intuition behind our security definition, safer a privacy-preserving remote
storage application, where Alice stores her encrypted mecus on a remote server, and later is-
sues tokens to the server to search for matching documeuntgdal is to leak as little information
to the storage server as possible. Under our model, Aliceemalquery by submitting a token to
the server, and the server learns exactly which of her etexdygocuments match the query, and
returns the matching documents to Alice. Therefore, inftimework, the server inevitably learns
Alice’s access patterm.k.a, which documents Alice retrieves with each query.

86

We would like to define security in the strongest sense plessififormally, the storage server
should learn only Alice’s access pattern, and nothing mdre particular, this implies that the
server learns nothing about Alice’s encrypted documemtehat queries she is making.

To capture the notion that the server learns only Alice’®as@attern, we need to first formally
define whaticcess pattermeans. Intuitively, the access pattern is the outcomegoédicates on
n plaintexts.

Definition 5.3.2 (Access pattern)Let X = (x1, xo, . . ., x,,) denote an ordered list of plaintexts,
wherex; € {0,1} for1 < i < n. LetF = (fy, fo,..., f,) denote an ordered list of query
predicates, wherg; € {0,1}" for 1 <1i < ¢. The access pattern oki and F' is ang x n matrix:

fi(zy), fi(za), ooy fi(wn)
fo(x1), falw2), -0y fa(zn)

fo(wr), folwa), oy folwn)

ACCESPATTERN(X, F) :=

We now proceed to define the security for SKPE. Ket (x1, 2, ..., x,), X' = (2,25, ..., 2))
denote two ordered lists of plaintexts. LEt= (f1, fo, ..., fy), F' = (f1, f2,. ., f;) denote two
ordered lists of queries predicates. Now imagine the falhgwwo worlds. In Worldo, the server
seesy encrypted document&nc(zy), Enc(z2), . . ., Enc(z,,)) andg tokens(TK;,, TKy,, ..., TKy,).
In World 1, the server sees encrypted document&nc(z}), Enc(z}), ..., Enc(z],)) andq tokens

(TKfi, TKy, ... ,TKfé). Suppose the two worlds have the same access pattern, i.e.,
ACCESPATTERN(X, F') = ACCESPATTERN (X', F")

Informally, the server should not be able to distinguishneein the two worlds. The security
definition presented below describes a game between awpatiand an adversary, and is intended
to capture this notion of indistinguishability between tthese worlds. Moreover, the definition
considers an adaptive adversary: an adversary who canehdus ciphertext/token queries to
make depending on the previous interactions with the angdle

Definition 5.3.3 (SKPE full security) We say that an SKPE scheme is fully secure, if all polynomial-
time adversaries have negligible advantage in the follgvgame.

Setup. The challenger runs th&etup algorithm, and retains the secret K&K to itself. In ad-
dition, it flips a random coi, and keeps the bii to itself as well. Define four ordered lists,
Xo, Fo, Xy, F1, where(X,, Fp) will record plaintexts and predicates queried by the adver-
sary in Worldo, and(X, F;) will record plaintexts and predicates queried by the adargrs
in World 1. Initially, all four lists are empty.

Query. The adversary adaptively makes the following types of egserfhe adversary can make
up to a polynomial number of these queries.

 Ciphertext query. The adversary specifies two plaintextsz; € {0, 1} to the chal-
lenger. The challenger encrypts and returns the ciphertext to the adversary. Append
T to the listX,, andx; to the listX;.

87

e Token query. The adversary specifies two predicajgsf; € {0,1}™ to the chal-
lenger. The challenger computes a token for the predifiatand gives the resulting
token to the adversary. Apperfglto the listFy, andf; to the listF;.

All queries made in this stage should be indistinguishapladzess pattern. In other words,
at the end of the game, all queries made should satisfy ttefiolg condition:

ACCESHPATTERN (X, Fy) = ACCESPATTERN(X, F})

Guess. The adversary outputs a gudssof the bitb. Its advantage is defined asdv 4 =
Pr(b = b] — 2.

5.3.2 Single Challenge Indistinguishability

As the full security definition is hard to work with in our prisowe define another security notion
called Single Challenge Indistinguishability (SCI) setur~or general queries, SCI security may
be considered a relaxed version of the full security definitas stated in Propositibn 5183.1. How-
ever, we show in Propositidn’5.B.2 that for the specific cdsener-product queries, SCI security
is as good as full security in some sense.

Definition 5.3.4 (Single Challenge Indistinguishability br general queries) We say that an SK-
PE scheme (for general queries) is SCl-secure if no polyabtime adversary has more than
negligible advantage in winning the following game:

Setup. The challenger runs th&etup algorithm, and retains the secret KégK to itself.
Query. The adversary adaptively makes the following types of gqseri

e Ciphertext query. The adversary specifies a plaintextc {0, 1}* to the challenger.
The challenger encryptsand returns the ciphertext to the adversary.

e Token query. The adversary specifies a predicédteo the challenger. The challenger
computes a token for the predicgteand gives the result to the adversary.

Challenge. The adversary requests a challenge. The adversary firsifispex bit 7" to the
challenger.

e If T = 0, the challenge is aiphertext challengeThe adversary then sends two plain-
texts(zo, x1) to the challenger, satisfying the following constraint:

Let f1, f2. .., fy denote previously queried predicates.
Vi<i<qo: fi(zo)= fi(x1) (5.1)

The challenger flips a random coin encryptsz,, and returns the ciphertext to the
adversary.

e If T = 1, the challenge is token challengeThe adversary then sends two predicates
(fo, f1) to the challenger, satisfying the following constraint:

88

Letzy,zs ..., 2, denote plaintexts that the adversary has asked the challémg
encrypt in previous ciphertext queries.

The challenger flips a random caincomputes a tokeK, for fi,, and returns'Ky,
to the adversary.

More queries. The adversary makes more queries as in the Query phase. dfitlegsary has
previously issued a ciphertext challenge, all token ggem@de in this state must satisfy
Equation[[B11). Otherwise, if the adversary has previogalymitted a token challenge, all
ciphertext queries made in this stage must satisfy EQu&ia}).

Guess. The adversary outputs a gudssof the bitb. Its advantage is defined asdv 4 =
}Pr b = ‘

5.3.3 Selective Single Challenge Indistinguishability

We now define a relaxed notion of security called Selectivglgi Challenge Indistinguishability,
or selective SCfor short. Selective security has been adopted widely instody of Identity-
Based Encrytion (IBE), Anonymous Identity-Based EncryptiAttribute-based Encryption, and
Public-key Predicate Encryption schemesl[d, [12,[15] 11 B, In a selective SCI game, the
adversary commits to the challenge at the very beginningesecurity game, and the rest of the
game proceeds in the same way as the SCI security game abddsorDefinition5.31.

Definition 5.3.5 (Selective SCI security)We say that an SK-PE schemeedectivelySCIl-secure
if no polynomial-time adversary has more than negligibleattage in winning the following
game:

Init. The adversary submits a challenge to the challenger. Lik@é&eghe challenge is composed
of a bit 7" indicating whether this is a ciphertext challenge or a to&eallenge; followed
by two plaintexts(zq, z1) (in the case of a ciphertext challenge), or two query predga
(fo, f1) (in the case of a token challenge).

Setup. The challenger runs th&etup algorithm, and retains the secret KégK to itself.

Query. The adversary adaptively makes either ciphertext queriésken queries, and the chal-
lenger responds to the queries accordingly. If the adwehsss previously issued a ciphertext
challenge, all token queries made in this stage must s&piation [R.1). Otherwise, if the
adversary has previously submitted a token challenge,ilectext queries made in this
stage must satisfy Equatidn(b.2).

Challenge. The challenger flips a random colin and returns either an encryption of, or a
token for the predicaté¢, depending on the type of challenge specified by the advemsary
the Init stage.

More queries. The adversary makes more queries as in the Query phase. dfitlegsary has
previously issued a ciphertext challenge, all token ggem@de in this state must satisfy
Equation[B11). Otherwise, if the adversary has previogalymitted a token challenge, all
ciphertext queries made in this stage must satisfy EQu&a).

89

Guess. The adversary outputs a gudsf the bitb; and its advantage is defined Aslv 4, =
[Prlo = b] — 1.

5.3.4 Relationship Between Security Definitions

For general queries, it is not hard to see that full secuntglies SCI security. Therefore, we
can consider SCI security as a relaxed version of the fullirsigcdefinition. Interestingly, we
are able to show that for the special case of inner-produstieg,given a scheme satisfying SCI
security for vectors of lengthn, we can construct a fully-secure scheme for vectors of kengt
We refer the readers to Propositlan 5l 3.2 for a more fornaééstent and proof of this observation.
Propositio 5.312 tells us that to construct a fully-se@®iKePE scheme on inner-product queries,
it suffices to construct a scheme satisfying SCI security.

Proposition 5.3.1 If an SK-PE scheme (for general queries) is fully-secumauist be SCI-secure.

Proof: (sketch) Notice that an SCI adversary is a special case of an adyarsthe full-security
game. In the full-security game, suppose that in all but arery; the adversary submits two equal
plaintexts (or queries), i.ery = x1 (Or &g = d1), then the adversary is in fact an SCI adversary.

In the special case of inner-product queries, SCI secigitas good as” full security, and the
following proposition explains why.

Proposition 5.3.2 Let SCHEME,,, denote an SCI-secure SK-PE scheme supporting inner-produc
gueries, where both plaintext and query vectors have leggtfi.e., plaintext and query vectors
are picked from:?"). GivenSCHEME,,, it is possible to construct a fully-secure SK-PE scheme
supporting inner-product queries, where both the plaintexd query vectors have length We
refer to the latter scheme &CHEME, .

While the detailed proof of the above proposition is prodide Sectiorf 518, we explain the intu-
ition here. In the full security game, the challenger cangs ciphertexts and tokens for different
vectors in World0 and World1. Suppose that the challenger encrypts vectors: (74,. .., Z.)

and constructs tokens for vectdrs = (v, ...,7;) in World 0; the challenger encrypts vectors
Y = (41, ..., y.) and constructs tokens for vectdis = (w, ..., w;) in World 1. Itis required that
the access pattern remains the same between these two Mioalds, ACCESPPATTERN(X, V) =
ACCESPATTERN(Y, V).

If we could define a sequence of hybrid games in between Wbddd World1, such that
only one component (one ciphertext or one token) is changeuden any two consecutive games,
then we would be able to prove full security using SCI segitis a hybrid argument. By the
definition of SCI security, a computationally-bounded adeaey is unable to distinguish between
two games where only one component differs (as long as thesetbrlds have the same access
pattern). Unfortunately, we cannot naively change any aomept alone in World), since doing
so might result in a different access pattern. For exampigpase the challenger changed from
encryptingz, to encryptingy.. in World 0, then this might cause the access pattern to change as
well. To solve this problem, we propose to encrypt the vegtwrice. More specifically, to encrypt
Z, we encrypt the lengthn vector

|7 = (x1, 29, ..., Tn, T1, Ty . .., Tp)

90

instead, using the SCI-secure constructiam8ME,,,. Similarly, to construct a token for the vector
U, we construct a token for the length vectord||v instead. In this way, we construcc8EME,

(for vectors of lengti) from an SCI-secure SHEME,,, (for vectors of lengti2n). As Sectior 518
demonstrates, this allows us to define a sequence of hybme@gahere only one component is
changed between any two consecutive games. Meanwhilectiessapattern is preserved across
all games. See Secti@nb.8 for the detailed proof of this gsiion.

A note on selective SCI security. Our construction is proven secure under the selective SCI
model. One way to interpret the strength of selective SQlsgas as follows. We have explained
that selective SCI security is a relaxation of SCI secuiganwhile, as Propositidn 5.8.2 points
out, SCI security is “as good as” full security for inner-guzt queries. Therefore, we can infor-
mally think of selective SCI security as a relaxation of &élcurity for inner-product queries. The
selective security model has frequently been adopted or [BE, ABE and predicate encryption
schemes. We emphasize that even this relaxed security nsobetter than the definitions pre-
viously adopted. In particular, we show in Sectfonl 5.9 thaéig an SK-PE scheme for vectors
of length2n satisfying selective SCI security, one can construct anP&EKscheme for vectors of
lengthn whose security is strictly stronger than the definition pyesly adopted by Curtmola
et al. [Isb]. Curtmola et al. studied SK-PE for keyword-bagadries, and proposed one possible
formalization of query privacy.

5.4 Background on Pairings and Complexity Assumptions

5.4.1 Bilinear groups of composite order

We review some background on bilinear maps and groups, iedigegroups ofcomposite order
which were first introduced by Boneh, Goh and Nis [10].

Let GG denote ajroup generatorlgorithm which takes as input a security paramaterZ>°,
a numberk € Z>°, and outputs a tuplé,, ps, . . . pr, G, Gr, e) wherepy, ps, . . . p, arek distinct
primes,G andG are two cyclic groups of order = Hle p;. The functiore : G> — G satisfies
the following properties:

e (Bilinear)Vu,v € G, Va,b € Z, e(u®,v°) = e(u, v)®,

e (Non-degenerate)g € G such that(g, g) has orden in Gr.
We assume that group operationsGrand G as well as the bilinear magpcan be computed in
time polynomial in\. We use the notatiofv,, , G,,, ..., G,, to denote the respective subgroups
of orderpy, ..., p, of G. We useG,,,,, G,,,,p, t0 denote the subgroups of ordep, andpspspy
respectively. For exampl&;,,,, = G,, x G,,.

5.4.2 Our assumptions

The predicate-only version of our construction relies aee¢hassumptions, Assumptiarin the
KSW paperlL—2|8], the generalized 3-party Diffie-Hellman asption (C3DH), and the Decisional

91

Linear (DL) assumption. All of these assumptions involvemast3 subgroups simultaneously.
In particular, Assumption involves3 subgroups, C3DH involve3 subgroups, and DL involves
1 subgroup simultaneously. We assume that these assumptibhi®ld when the relevant sub-
group(s) fall within a larger group whose order is the prddafcd distinct primes,N = pqrr.
Moreover, the naming of the subgroups is not significant inassumptions, that is, the same
assumptions still hold after renaming the subgroups.

Assumption 1 of KSW @]. Our scheme is built on top of the KSW constructionl [28]. As a
result, we inherit their complexity assumptions as well.particular, the predicate-only version
relies on Assumption 1 of the KSW construction.

We assume that this assumption holds wiignx G, x G, belongs to a larger group of order
N = pqrr; and below, we restate it in the context of the larger group.

Assumption 1 posits that any polynomial-time adversary dasegligible advantage in the
following experiment: LetN = pqr7, let g,, 9,4, 9., g» be random generators &f,, G,, G,, G»
respectively. Pick the following numbers at randafi:;, Q2, Qs € G,, R, R2, Rs € G,, a,b,s €
Z,, and a random bii. Give the adversary the description of the bilinear grodpG, Gr, e), and
the following set of values:

o 2 a a S S
Sz{gp, 9ry Gry 9eR1. G 90 9094 92°Qr, 95, 9 Qsz} (5.3)

In addition, ifb = 0, the adversary is given the value = SQSR;),; otherwise, ifb = 1, the
adversary is given the valuge = gfngRg,. The adversary outputs a guas®f the bitb, and its

advantage is defined as
1
Prlb’ =b] — =
rlb = b] - 3
Assumption 1 states that no polynomial-time adversary darthis game with more than negligi-

ble advantage. Note that this assumption implies the hasdoiefactoringV.

AdVA =

Generalized 3-party Diffie-Hellman assumption (C3DH). We also rely on the composite 3-
party Diffie-Hellman assumption first introduced by Boneld &aters [[12]. We restate the as-
sumption in the context of a bilinear group whose order isgraduct of four distinct primes
N = pgrr.

Let g,., 94, 9r, g» denote random generators from the subgroGpsG,, G, , G respectively.
Let R, R,, R3 denote random elements from the subgr@ypleta, b, c denote random exponents
from Z,. Now a challenger gives an adversary the following values:

(9> 9a» 9r» Grr 95 9hn 920 Ri. g Rs)
The challenger also flips a random cainand depending on the value lefthe challenger gives
the adversary either the valgg- i3 or a random element from the subgrd@p.. The adversary’s
task is to output a guess of the bitb, and its advantage is defined Aglv 4 = }Pr[b’ =b] — % :
The C3DH assumption posits that for any polynomial time atgm 4, its advantage in the
C3DH experiment is a negligible function. Note that thiswesption implies the hardness of
factoring V.

92

Decisional Linear assumption (DL). We also rely on the Decisional Linear assumption first
used by Boneh, Boyen and Shacham for group signaﬂres [EjwBee restate the assumption in
the context of a larger group whose order is the product af d@tinct primesN = pgrr.

Let G, denote the subgroup of ordein a bilinear grougs of order N = pqrr. The adversary
is given

Z123 Z224)

(9p> Ga> Grs G 955 9575 9525 95

wherezy, 29, 23, 24 are picked at random fro,, andg,, g, ¢,, g are random generators of the
subgroupss,, G4, G, andGy respectively. In addition, the adversary is given eitder g7,
or arandom element fro@d,,. The adversary’s task is to distinguish between these twesca

The Decisional Linear assumption posits that no polynostima¢ adversary has more than
negligible advantage in the above experiment.

5.5 Construction

In this section, we propose an SK-PE construction for inpreduct queries. A plaintext is a
vector drawn fronZ%,. A query predicate represented@ss also drawn fron¥Z},. A predicate
vectorv specifies the following predicate function:

g m {o if (Z,0) =0

1 otherwise

5.5.1 Intuition

Recall that our goal is to construct a scheme supportingripraduct queries in the secret-key
setting. Furthermore, we aim to achieve both plaintext amehygprivacy. As the KSW construc-
tion [28] already provides a solution for inner-product geg in the public-key setting, our first
attempt is to directly use the KSW construction. We can coigrgly convert the KSW construc-
tion to the secret-key setting, simply by withholding thébjictkey. This approach immediately
ensures plaintext privacy as proven in the KSW paper. Uaifately, the KSW construction does
not provide any guarantee about query privacy; in fact, apowet out in SectiofL.5l1, query pri-
vacy is not possible in the public-key setting. Therefaregems that our biggest challenge is how
to achieve query privacy. We now explain how we can rely orsghmmetry observation to address
this challenge.

Observe that the ciphertext and the token are completelyrstnic. In terms of functionality,
both the plaintext and query are vectors of lengthmeanwhile, the inner-product equation is
commutative. In terms of security definitions, the ciphersnd the token are symmetric as well.
The ciphertext needs to hide the plaintext vector, whilettiken needs to hide the query vector.
One way to interpret the symmetry is to think of the ciphergexan encryption of the plaintext
vector, and think of the token as an encryption of the quertore In fact, under the definitions
given in Sectiof 513, we can safely reverse the role of a cipkieand a token. In other words, we
can have tokens serve as ciphertexts, and ciphertextsagtokens.

93

This symmetry observation gives rise to the following ide#at if we construct a scheme
where the ciphertexts and tokens are symmetrically fornidd® can make life much simpler for
us, since if we are able to prove plaintext privacy, we willasb query privacy for free. Due to the
symmetry in formation, the same argument we use to provatghdiprivacy can be used to prove
query privacy as well. In our construction, the ciphertend ¢he token are not exactly symmetric
by formation, however, we prove that ciphertext and tokersia fact, computationally indistin-
guishable from being symmetric. In other words, a compaoitetily-bounded adversary is unable
to distinguish our scheme from another scheme (calledEMESYM in the proof) where the ci-
phertext and the token are symmetric by distribution. Wechéarth refer to this asomputational
symmetry

We now present our main construction, and then, in SeEie@bwe explain at the algebraic
level: (1) why our construction has computational symmeing (2) how to understand the differ-
ences between our construction and KSW, and why theseetiifes are important to ensure query
privacy.

5.5.2 Detailed construction

We now present our main construction.

Setup(1*): The setup algorithm first chooses random large primesr, 7, and creates a bilinear
group of composite orde¥ = pqr7. Next it picks generatorg,, g,, g., 9. from subgroups
G,, Gy, G,, G5 respectively. It then picks, ;, ho;, by, ha; from G, forall 1 <i <n.

The secret key is set to the following:
Pvk = (.gpv 9qs Grs Grs {hl,uhz,z'ﬁl,ijlz,i}?:l)

Encrypt(MSK, Z): Let ¥ = (z1,22,...,2,) € (Zy)". The encryption algorithm first picks
random exponents, ¢, o, G from Z,. Then, it chooses random hiding factdes, R, from
the subgrouf>»; and random{ R, ;, R}, fromG,.

Next, the encryption algorithm computes the following @plext:
T — Co=Ro-g;, Co=Ry-g,
{Cri = hi bl 957 R, Coy=hy R 90" Ry}

GenToken(MSK, v): Let v = (v, va, ..., v,) € (Zy)". The GenToken algorithm picks random
exponentsy, fo, {ri:,72;:};_, fromZy. Then, it chooses random hiding factdtg Ry from
the subgroufs,; and randon{ﬁl,i, 1%7@-}?:1 from G-.
Next, theGenToken algorithm computes the following token:

KO RO H hlzlzh 7‘227 KQ) R(Z) H hlz‘lzh 7"27,

TK = - v n
{Kl i = 9p qule,i, Ky = gp quMRQ,i}__l

94

Query(TKg, CTz): The Query algorithm behaves in a way similar to the KSWl[ZS] constrcti
It computes

n
2

e(6'07 KO)e(Cwu K@) : He<Cl,i7 KL@)G(Cz,i, K2,i) =1 (5-4)

i=1

and output9 iff the above is equal ta, indicating that(Z, o) = 0 mod N. (The case that
(Z,7) =0 mod ¢, but(Z, v) # 0 mod N happens with negligible probability as explained
in Sectio5.b.)

5.5.3 How to understand our construction

Computational symmetry. As mentioned in Section 5.%.1, the ciphertexts and tokersum
construction are computationally symmetric. To undeitaur computational symmetry idea, it
helps to observe the following facts when inspecting ourstmetion. (1) TheG, subgroup is
completely symmetric. In the ciphertext, tfig subgroup encodes the plaintext vector, while in
the token, the, subgroup encodes the query vector. (2) Thesubgroup and th&; subgroups
behave as mirrors of each other. Whenever an element prappears in the ciphertext, an
element fromG; appears in the corresponding term in the token, and viceavef3) TheG,
subgroup is not completely symmetric in the ciphertext &igdtdken, however, we later prove that
the G, subgroup appears to be symmetric to a computationally-dediadversary.

Comparison with the KSW construction. Since KSW already proved plaintext privacy for
inner-product queries in the public-key setting, we triedtild a construction resembling KSW,
in hope of reusing their proof (or proof techniques) on gl privacy. To aid the understanding
of our construction, we provide a review of the KSW consiarctn Sectiort 5.700.

What is more interesting to the reader might be the diffezsriietween our construction and
the KSW construction. In fact, a good way to understand obese is to compare it with the
KSW construction. We now explain the important differentesn the KSW construction that are
crucial in achieving query privacy.

¢ TheG; subgroup.The KSW construction relies ahsubgroups(,, G, andG,. We introduce
an additional subgrou@;, whose order is a large prime distinct from, ¢ andr. The most
important functionality of the subgroup- is to serve as random hiding factors for most terms
in the token. Intuitively, these random hiding factors cahelthe query vector encoded in the
token, thereby achieving query privacy. The behavior of@hesubgroup “mirrors” that of the
G, subgroup. Consequently, ke also helps to introduce symmetry into our construction.

e TheG, subgroup.In the KSW construction, all terms in the ciphertext havedame exponent
s in the G, subgroup. By contrast, we introduce an extra degree of randes represented by
the exponent. Terms in the ciphertext now rely on two degrees of randosmneamelys and
t, in theG, subgroup. Informally, this change is due to the observahantheG, subgroup is
asymmetric in the ciphertext and the token by formation. &édeer, having only one degree of
randomness (like in the KSW construction) is insufficienetsure “computational symmetry”

95

in theG,, subgroup. However, if we increase the degree of randomoéa®t then we can show
that theG, subgroup is computationally symmetric in the ciphertext tre token.

To understand why this is the case, recall that Diffie-Hefinseeasy in bilinear groups. Another
interpretation of this statement is that if we pick a veefor, go2, ..., g%, it is easy to decide
whether the exponent vectot, as, ..., a;) are picked independently at random, or picked
from a prescribed one-dimensional subspace. On the otimel, lzan informal interpretation
of the Decisional Linear assumption tells us that it is cotapanally hard to decide whether
the exponent vectafo, as, . . ., o) are picked independently at random, or picked randomly
from a prescribe@-dimensional subspace. The reason for introducing the eatrdomness

in the ciphertext is exactly to ensure that the exponentier@t, subgroup are picked from a
2-dimensional subspace, rather thandmensional subspace. This is why our construction has
computational symmetry in the, subgroup.

e TheQ elementink. The careful reader may have noticed that in the original K&Wstruction,
the first term in the toke®” has a@) € G, element. Thig) element, however, has disappeared
from the K, and Ky terms in our construction. (Notice that the analog of KSW'serm is K,
and K in our construction. The extrA; term results from introducing the extra randomness
into the ciphertext.) Thé& term seems indispensable in the KSW construction if ondudare
examines their proof. Consequently, the fact that we camverthe() term may seem counter-
intuitive at first. However, we are able to show that whethigand K terms contain an element
from theG, subgroup is computationally indistinguishable to a polyral-time adversary. It
turns out that the ability to remove tligterm is a side benefit from the introduction of tGe
subgroup into the tokens. As a result, our proof do@sndicate that it is safe to remove tlg
term from the KSW construction as well.

Moreover, the ability to remove th@ term helps to introduce symmetry to our construction.
Clearly, in the KSW construction, th@ term is one conspicuous place where the ciphertext and
the token do not mirror each other.

5.5.4 Security and proof overview

Theorem 5.5.1 Under the generalized Assumption 1 of the KSW construdﬁh fhe general-
ized C3DH assumption, and the Decisional Linear assumptionmain construction (Sectién®.5)
is selectively SCI-secure against polynomial-time aduvées.

We now give an overview of our security proof. Apart from teiction, Sectiohi’5.3.1 also
sheds light on the intuition behind our construction anfs0

In the proof, we present two variants of the main construct®tHEMESYM and SSHEMEQ.
We refer to our main construction a& SEMEREAL. We prove that SHEMEREAL is computa-
tionally indistinguishable from both6&1EMESYM and SSHEMEQ. We now explain the motivation
for having the two variantsGHEMESYM and SSHEMEQ.

SCHEME SyM. Recall that we plan to use computational symmetry in ourttaogson proof. In
particular, if ciphertexts and tokens are symmetricallyrfed in our construction, we will only

96

need to prove plaintext privacy, and we get query privacyrig. The same argument also applies
if the ciphertexts and tokens are not symmetric by distitloytbut computationally symmetric
SCHEMESYM is exactly the variant where ciphertexts and tokens are sstmcally formed by
distribution. And as our construction is computationatigistinguishable from SHEMESYM, it
means that in our construction, ciphertexts and tokensarguatationally symmetric.

ScHEME Q. Now we have proven the computational symmetry between timadtion of the
ciphertexts and tokens, it remains to prove plaintext psivdo this end, we would like to reuse
KSW'’s proof on plaintext privacy. If our construction wassk enough to the KSW construction,
we might be able to reuse their proof as a blackbox, withouingato re-invent the wheel. We
give a review of the KSW construction in Section3.10.

A big difference between our constructioi ®EMEREAL and the KSW construction is that
to ensure the symmetry property, we have removedihsubgroup from the<,, and Ky terms
(which correspond to th& term in the KSW construction) in the token. The purpose@f&SVEQ
is exactly to restore the missing elemefits Qy < G, to the K, and K, terms. By restoring these
elements, we obtain a scheme that bears sufficient reseoeblarKSW, such that we can reuse
KSW’s proof as a blackbox. Specifically, we show that if anexdary can break the plaintext
privacy of SSHEMEQ, we can leverage that adversary to break the plaintexagyiof the KSW
construction as well. In addition, as our main constructBoHEMEREAL is computationally
indistinguishable from SHEMEQ), the plaintext privacy of SHEMEQ immediately carries over to
SCHEMEREAL.

Another perspective. As mentioned above, we have three variants in the proof, @in igon-
struction SHEMEREAL, a symmetric constructionCHEMESYM, and a construction with the
Qo, Qy terms restored calledc®EMEQ. In fact, we show that all three variants are computation-
ally indistinguishable from each other. This means thatptuperties we prove on one variant
automatically carry over to the other two variants. In fadl,three variants have symmetric or
computationally symmetric ciphertexts and tokens; andhaéle variants have plaintext privacy.
As a result, all three variants have query privacy as welis @lso suggests that any of these three
schemes can be our main construction. The reason why we SapsaMEREAL to be our main
construction is merely due to the fact thatrFE=MEREAL is easier to express and slightly faster to
compute than the other two variants.

An alternative way to interpret our proof is as follows. Sape that we usedCHEMESYM as
our main construction instead. Our goal is to prove tlet SMESYM has both plaintext and query
privacy. As ciphertexts and tokens are symmetric by distidim in SCHEMESYM, it suffices to
prove plaintext privacy of SHEMESYM. And to prove the plaintext privacy ofcHEMESYM, we
show that EHEMESYM is computationally indistinguishable front8EMEQ, and that BHEMEQ
has plaintext privacy. However, to show thattf&EMESYM is computationally indistinguishable
from SCHEMEQ, we need to introduce an intermediate step: first, show SGaEMESYM is
computationally indistinguishable froncCBEMEREAL; then, show that SHEMEREAL is compu-
tationally indistinguishable from GHEMEQ.

We defer the detailed proof of Theor€m5l5.1 to Sedfioh 5.7.

97

5.6 Correctness

The correctness of the above construction relies on theviollg facts, which tells us that no
cross-subgroup interaction happens when we perform angasperation on two group elements.
Although the following facts are stated using the notati@psandG,, they also apply to general
composite-order bilinear groups.

Fact 5.6.1 Leta, € G,, b, € G, denote two elements from distinct subgroups. Tdtep b,) = 1.

From FacfR.6]1 and the bilinear property of the pairing fiomce, we can derive the following
fact.

Fact5.6.2LetG,, = G, x Gy, a,b € Gp,. a andb can be rewritten (uniquely) as = a,a,
b = byb,, wherea,, b, € G,, anda,, b, € G,. Furthermore,

e(a,b) = e(ay, by)e(ay, by)

In plain English, this means that when we perform a pairingrapon omn: andb, there is no cross-
subgroup interaction. It is equivalent to performing a ipgiinside each subgroup and multiplying
the results together.

Now we can check the correctness of theery algorithm. It is not hard to see that in Equation
&.4), operations in the subgrou@s, G,., G- all resultinl € Gr. Therefore, we only need to focus
on the subgrouf,; and the outcome of Equation(b.4) is:

e(gq, g) @1 TARED)
Therefore, if(Z, ¥) = 0 mod N, then the above evaluatesitoOtherwise, if(Z, ¥) # 0 mod N,
there are two cases: (&F,7v) = 0 mod g. This case reveals a non-trivial factor of, and
therefore, happens with negligible probability. (@)) # 0 mod ¢. In this case, except with
negligible probability,«f; + 5f2 # 0 mod ¢, and the output of Equatiofi{5.4) is not equal to
1€ Gr.

5.7 Security Proof

5.7.1 Terminology used in the proof

We now prove the selective SCI security (Definition3.3.5)oaf construction. To do this, it
suffices to provelaintext privacyandquery privacyseparately.

Definition 5.7.1 (Selective plaintext privacy) An adversary plays the security game in Defini-
tion[E:3% with a challenger. However, the adversary subugifithertext challenges only. An SK-PE
scheme has selective plaintext privacy, iff no polynortimaé adversary can win the security game
with more than negligible advantage.

Definition 5.7.2 (Selective query privacy)Selective query privacy is similarly defined as selec-
tive plaintext privacy, except that now the adversary cay snbmit token challenges in the secu-
rity game.

98

It is not hard to see that to prove selective SCI securityffices to prove that the scheme has
both selective plaintext privacy and selective query myyas stated in the following lemma.
Lemma 5.7.3 An SK-PE scheme that has both selective plaintext privadysalective query pri-
vacy is selective SCI-secure.

In the proof, we often need modifications to our main consitma¢ and show that the result-
ing encryption scheme isomputationally indistinguishablEom the original construction. To
prove that the original construction has a certain secprityerty, it suffices to prove that the new
scheme has that security property. The following definifammally states what it means for two
encryption schemes to be computationally indistinguighab

Definition 5.7.4 (Indistinguishability of encryption schanes) We say that two SK-PE encryp-
tion schemeSCHEMEA and SCHEMEB are computationally indistinguishable from each other, if
no polynomial-time adversary has more than negligible ati@ge in winning the following distin-
guishing game:

e Setup. The challenger flips a random coin If b = 1, SCHEMEA is chosen; otherwise,
ScHEMEB is chosen. Now the challenger runs the setup algorithmettiosen scheme,
and retains the secret k&j5K to itself.

e Queries. The adversary adaptively makes ciphertext queries andhtqkeries. In other
words, the adversary can request that the challenger ramesicryption of a plaintext of
its choice or request that the challenger reveal a tokew fafrits choice. The challenger
computes the requested ciphertext (token) accordingte®IEA or SCHEMEB depending
on which one has been chosen.

e Guess. At the end of the distinguishing game, the adversary guesbtésh encryption
scheme has been chosen, i.e., it outputs a ghiesisthe bitb chosen by the challenger.
The adversary’s advantage is defineddadv 4 = |Pr[b’ = b] — 1|.

The notion of computational indistinguishability betweawo encryption schemes will be use-
ful throughout our proofs, as to prove plaintext privacydqaery privacy) of 8HEMEL, it suffices
to prove plaintext privacy (or query privacy) of its couqtart SSHEME2 which is computationally
indistinguishable from SHEMEL. This is formally stated in the proposition below.
Proposition 5.7.1 Let SCHEME1 and SCHEMEZ2 denote two SK-PE schemes that are computa-
tionally indistinguishable from each other. 8CHEMEL has plaintext privacy (or query privacy),
thenSCHEME2 must have plaintext privacy (or query privacy) as well.
Proof: (sketch) Suppose for the purpose of a contradition thati&MEL has plaintext privacy, but
SCHEMEZ2 does not have plaintext privacy. This means that theréseaipolynomial-time adver-
sary.4 who can win the plaintext privacy game (o€ SEME2) with non-negligible probability.
We can now leverage this adversatyto distinguish 8HEMEL and HEME2. We build a simu-
lator B. When given an encryption schemer&EME, B can decide whetherc3EME is SCHEMEL
or SCHEME2 with probability at least/2. The simulator’s strategy is to play the plaintext privacy
game withA4, and if A wins the plaintext privacy game, our simulator outputsi8mME2; other-
wise, it outputs S8HEMEL. This contradicts with the assumption that-H&EMEL and SHEME2
are computationally indistinguishable. |

99

5.7.2 Proof overview

The proof consists of two parts.

1. We first show in Sectidn’s.7.3 that our main constructi@m@eforth referred to a<cBIEME-
REAL) guarantees selective plaintext privacy. This part of tft@pis done in two steps.
First, we show that SHEMEREAL is computationally indistinguishable from a variant scleem
called SHEMEQ. Second, we show thatcBEMEQ has selective plaintext privacy. More
specifically, EHEMEQ bears enough resemblance to the KSW construction suclt that
possible to reuse KSW'’s proof on plaintext privacy in a blawkfashion.

2. Next, we show in Sectidn 5.T.4 that our main construcsaroimputationally indistinguish-
able from an alternative scheme (referred to as ®SMESYM), where the tokens and cipher-
texts are symmetrically formed. ASCBEMESYM and SSHEMEREAL are computationally
indistinguishable, it suffices to prove the ciphertext andrg privacy in SHEMESYM.

The plaintext privacy of SHEMESYM follows from the plaintext privacy of SHEMEREAL.
Since tokens and ciphertexts are symmetrically formeddreMESYM, the tokens must be
secure as well in SHEMESYM.

5.7.3 Plaintext privacy of SSHEME REAL

Lemma 5.7.5 (Selective plaintext privacy of SHEME REAL) Assuming the generalized C3DH
assumption and Assumption3GHEMEREAL has selective plaintext privacy.

We know that the KSW construction has plaintext privacy ki@ public key setting). To prove
the plaintext privacy of our constructioncBEMEREAL, first observe the differences between our
construction and the KSW construction.

1. Our construction introduces tﬁ@,i, 71271- terms. As a result, we need one extra group element

for both the ciphertext and token: tli§ and K terms in KSW becomé€y, Cy and K, Kj
in our construction.

2. Our construction removes tife, elements from the, and K terms in the token. (To
compare, observe thgg < G, element in the term of the KSW construction.)

The intuition behind the following proof (of Lemnia 5J.5)ts show that these modifications
preserve the plaintext privacy of the KSW construction.

The proof of Lemm&X%.715 consists of two parts:

1. We first add back the random hiding factors frémto the K, and K terms in the token.
The resulting scheme is called SEMEQ. We show that SHEMEREAL and SSHEMEQ are
computationally indistinguishable.

2. We prove the plaintext privacy ofc®EMEQ. The proof is a reduction showing that if there
exists a polynomial-time adversady/that can break the plaintext privacy o€ SEMEQ, we
can then build a polynomial-time simulatBrthat leverages the adversafty and breaks the
plaintext privacy of the KSW construction.

Definition 5.7.6 (SSHEME Q) We add random hiding factors from tli&, subgroup to the terms

100

Ky and Ky in SCHEMEREAL. The resulting scheme is call&HEMEQ. Below is a formal de-
scription of SCHEMEQ.

For the readers’ convenience, in the expression for thentdkebelow, we underline the parts
where SHEMEQ and SHEMEREAL differ.

Setup(1*): Same as théetup algorithm of SHEMEREAL.
Encrypt(MSK, ¥): Same as th&ncrypt algorithm of SHEMEREAL.

GenToken(MSK, v): Let v = (v, va, ..., v,) € (Zy)". The GenToken algorithm picks random
exponentsy, fo, {ri:,72,:};_, fromZy. Then, it chooses random hiding factdtg Ry from
the subgrouyis,; random@),, @y from G,; and randon{ﬁl,i, ﬁzi}?:l from G+.

Next, theGenToken algorithm computes the following token:

—T1,7 —T2,i 17— T1,i7 — T2,
Ko = %RO ’ H?:l hl,il h2,i2 . Ky = @R@ ’ H?:l hl,il h2,i2

TK — K o 71, flviﬁ) K o T2 f2vi§ - n
10 — 9p gq 1,09 24 — 9p gq 2,1

=

Query(TKg, CTz): Same as th&)uery algorithm of SHEMEREAL.

To reiterate, the underlined parts represent the placesewB=HEMEQ and SHEMEREAL
differ.

Computational indistinguishability of SCHEME REAL and SCHEME Q

To show that 8HEMEREAL and SHEMEQ are computationally indistinguishable, we further
introduce a sequence of hybrid schemes:

restoref;

ScHEMEREAL =% ScHEMEL 2 ScHEME2 2% SCHEMES "2 ScHEMEQ

In the above, the text on top of the arrow highlights the modifon we make to the former scheme
to obtain the latter. These modifications will be explainedietail shortly when we formally
define each hybrid scheme. We show that any two consecutisrsein the above sequence are
computationally indistinguishable.

Definition 5.7.7 (SSHEME 1) We first make slight modifications & HEMEREAL and obtain a
hybrid scheme calle&cHEMEL. In SCHEMEL, instead of picking independent and fresh and in-
dependent random numbefisand f, for each token, thé&en Token algorithm picksf; at random,
and letsf, = w f1, wherew is a random number iZ ; chosen during thé&etup stage; and is kept
secret by the master key owner. More specifically, we foynugfineSCHEMEL as below:

Setup(1*): Same as th&etup algorithm of SSHEMEREAL, except that now, we pick an addi-
tional random number € Zy, and add it to the secret key. In the mathematical expression
below, we underline the parts whereiS=MEL differ from SCHEMEREAL.

Pvk = (& gpv gqa 9r, jq\ra {hl,iahQ,iaBLiaBQ,i}?:l)

101

Encrypt(MSK, ¥): Same as thé&ncrypt algorithm of SHEMEREAL.

GenToken(MSK, 7): Instead of pickingfi, fo € Zy independently at random, th&en Token
algorithm picksf € Zy atrandom, and let§, = f, andf, = wf. The rest of the&ZenToken
algorithm is the same as that o€ SEMEREAL.

KO RO H hlzlzh 7‘227 K@ R@ H hlz‘lzh 7"27,

n
{Kl,i = 9;1’1951”3171'7 Ky, = W'y wfleQZ}

TK =

Query(TKz, CTz): Same as th&uery algorithm in SSHEMEREAL.

Claim 5.7.8 (Computational indistinguishability of SCHEME REAL and SCHEME 1) Under the
generalized C3DH assumptioScHEMEL is computationally indistinguishable fro®CHEME-
REAL.

Proof: We can prove this claim based on the generalized C3DH assumgotd a hybrid argu-
ment. Intuitively, Claini5.718 relies on the following olpgation.
Observation 5.7.1 (-C3DH) Define the following distribution:

ul,u2,...,u5<£Gq,

w<£ZN,
El,...7§£7§17...7§Z7E17...7E£iG?,
Q17Q2,---,Q££Gq

Suppose an adversary is given the generators of each sutxgrou

gpagqagra/gr

Letb denote a random coin flip. = 0, the adversary is given the tuple
(ulﬁl, . ,uéﬁg, u“fﬁl, . ,u‘;ﬁg)
if b = 1, the adversary is given the tuple

(U1§1, . 7W§£, Qlﬁla s Qzﬁz)

Suppose the adversary outputs a guessf b. Denote the adversary’s advantage Aslv 4 :=
}Pr [b" =b] — 2\ Then no polynomial-time adversary can win thi€3DH game with more than
negligible advantage.
This observation can be proven through the generalized C&&dmption and a simple hybrid
argument. Shi et aIL_[_k?] also used th€3DH assumption as an intermediate assumption in their
proofs.

It is not hard to see that the above observation leads to am®. The proof can be done
through a simple reduction argument. Basically, if therstexan adversary that can distinguish

102

between S8HEMEREAL and SSHEMEL, we can leverage that adversary to build a simul&ttrat
can win the abové-C3DH game. The simulatds is randomly given one of the following two
tuples: R R B N

(ulRl, e ,Ung, U1 = u‘le, ceey Ug = UZJRg)

or
(ur Ry, ... ueRe, Uy = Q1 Ry, ..., U= QuRy)

Now the simulator tries to determine which case it is.

The simulator leverages a distinguishing adversérthat tries to distinguish SHEMEREAL
and SHEMEL. Suppose that the adversary makésken queries.

In the setup phase of the game, the simulator generatesdiet key (without theuy term) and
retains the secret key to itself. Clearly, the simulatorsaecessfully generate secret key given the
generators of the different subgroups. R

In answer to thejth token query, simulator uses the terms?; and U; from the /-C3DH
instance to build the following token:

KO _ RO) H:_L:1 hl—;l,ih;@,i’ KQ) — RQ} 3 H:_L:1 Bl—’z‘l,ihz—f?,i

TK = PP AU
{Kl,i =0gp (u;R))" Ry, Koy = 9p2’ZUjsz2,i}

i=1

Clearly, ifb = 0, then the tokens are formed as iar&EMEL; if b = 1, the tokens are formed as in
SCHEMEREAL.

If A outputs a guess ofSEMEL, the simulator outputs a guess= 0; if A outputs a guess
of SCHEMEREAL, the simulator outputs a guessigf= 1. In this way, if A hase advantage in
distinguishing 8HEMEREAL and SHEMEL, the simulator will have in winning the/-C3DH
game. |

Remark 5.7.1 To prove computational indistinguishability betwestHEMEREAL and SCHEMEL,
we rely on theG; subgroup. This means that our proof tfBtHEMEREAL is computationally in-
distinguishable fronSCHEMEQ relies on theG; subgroup. Therefore, although we are able to
computationally remove th&, subgroup from the¥, and K, terms in the token, it does NOT
imply that one can do the same thing for the KSW constructisthe KSW construction does not
have theG; subgroup. To reiterate, our proof does NOT imply that one safiely remove th&,
subgroup from thé< term in the token of the KSW construction.

Definition 5.7.9 (SSHEME 2) We further modifyfscHEMEL, and add a random eleme@, € G,
to the termK, in the token. The resulting scheme is referred tdSasiEME2, and is formally
defined as below:

Setup(1*): Same as in SHEMEL.
Encrypt(MSK, ¥): Same as in SHEMEL.

GenToken(MSK, v): The GenToken picks a randon®), € G,, and multipliest), to /,. Note
that a fresh@, is generated each tim@enToken is called. The rest of th&enToken
algorithm is the same as inCBEMEL. In the expression below, we underline the parts
where HEME2 and HEMEL differ.

103

= QoRy - [~ hlf“h r“, Ky=Ry- -] hlf“h 2

TK = - N
{Kl,i = gp fszlZ? K27, =gp" i U-)fULR2Z}

Query(TKz, CTz): Same as in SHEMEL.
Again, for clarity, we underline the places wherer&EME2 differs from HEMEL.

Claim 5.7.10 (Computational indistinguishability of SCHEME 1 and SCHEME 2) Assume that As-
sumption 1 of the KSW papE[ZS] holds in the bilinear grdiygthenSCHEMEZ2 is computationally
indistinguishable fronSCHEMEL.

To prove this lemma, we first review Assumption 1 as stated dly Kt al.. We assume that this
assumption holds whe@, x G, x G, belongs to a larger group of ordaér = pgrr. We restate
Assumption 1 in the context of the larger group.

Definition 5.7.11 (Assumption 1 of the KSW construction@&] Any polynomial-time adversary
has a negligible advantage in the following experiment:

Let N = pqr7, let g,, 9,4, 9-, 9 D€ random generators &,, G,, G,, G; respectively. Pick the
following numbers at random@,, Q2, Qs € G,, Ry, Ry, Rs € G,, a,b,s € Z,, and a random
bitb. If b =10,~ = 0; else ifb = 1, v is chosen at random froiy. Give the adversary the
description of the bilinear grou@V, G, G, e), and the following set of values. The adversary’s
task is to guess the Hit

[2 a a S S
5={gp, 9ry Grr 9eR1. 90, 90 9004 98°Q1, g, 9YQaRs, T =g g”Rs} (5.5)

The adversary outputs a guds®f the bitb; and its advantage is defined as

Adv, = |Pr[b' =b] — =

Assumption states that no polynomial-time adversary cartiwg game with more than negligible
advantage.

In fact, Claim[2 71D relies on a weaker assumption than iyggion 1. Specifically, we only
need to reveal to the adversary a suliget S.

-~ 2 a S
S’Z{gp, 9ry Grr 9eR1. 9b . 9894 g5 T = gp °d, R}

Definition 5.7.12 (Assumption W) Given the setS’, no polynomial-time adversary can decide
whethery = 0 or v <~ Zy with more than negligible advantage.

Clearly, Assumption 1 implies Assumption W, that is, AsstimpW is weaker than Assumption
1.

Proof of Claim E.Z.10: We build a simulatoB that tries to break Assumption 1. The simulator
utilizes an adversaryl that tries to distinguish &HEMEL from SCHEMEZ2. If the adversaryd has

104

advantage in distinguishing $HEMEL1 from SCHEMEZ2, then the simulatoB has advantagein
breaking Assumption W.

The simulato3 is given an instance of Assumption W, and it plays the folloywlistinguishing
game with the adversaml. The adversary makes queries for ciphertexts and tokedsinaan-
swer to these queries, the simulator computes ciphertexit$akens following a certain strategy.
The resulting ciphertexts and tokens are distributed egiceording to 8HEMEL or according
to SCHEMEZ2. In particular, if the simulator is giveli = ngng from the Assumption W in-
stance, then the encryption scheme used would be idegtdiattibuted as SHEMEL; otherwise,
if T'= gffngRg, the encryption scheme used would be identically distetats SHEME2.

e Setup. The simulator is given an instance of Assumption W, and isukes knowledge to

create the following secret key:

-~ wyi i b\—vi F. . C . ,di "
PVk:(% 9ps Gry 9r; {hu—()y hzz—gp(gz)y, hl,i—gpahli—gﬁ})

=1
wherew, {z;, y;, ¢;, d;};_, are random exponents frof. In the abovePvk, the following
elements are inherited from the Assumption W instawngey,, g., g- andgff.
Notice that the simulator does not knayy, which ought to part of the secret key. We

show that the simulator is still able to answer ciphertexdrggs and token queries from the
adversary appropriately, in spite of not knowing

e Ciphertext query. In spite of not knowingy,, the simulator is able to compute ciphertexts,
as it knowsg, R; from the Assumption W instance, and a generataf the subgrous, .

» Token query. To answer a token query, the simulator picks random vatugdrom Zy;
random hiding factorzy, Ry from the subgrougs,; and random{ R, ;, R}, from Gs.

The simulator uses the following strategy to decide theeslof {r,,;,;}; ,. First, the
simulator picks random exponents;, 71 ;, 7, };_, from Zy. The simulator then implicitly
sets the values dfry ;, 75 Z} to be the foIIowmngthout actually computing them

Vien: r,; =afvi+1s+Ty

T = afwvi + 7277; (56)

Using the above implicit values fdr ;, ro Z}Z ,» the simulator is able to compute a token as

below:
Vien: K, = Ru : (gpgq)fvl (gp)ng o (5.7)
Ky —R2z (gpgq)wfvlg !
In addition,
Ko= Ro- JIT-0 b (g Ry (5.8)
v ERANC —a wfv; To, —d;
Ky = R@H Ry) ™ (go)Tgpt) " (g7 “Ra)* i gp>) (5.9)

105

Notice that the above equations make use of the tgrii;. This can be obtained from the
termsg, R, andgy g, inherited from the Assumption W instance:

a 9o
gp T = (fz :
gpgq

It is not hard to see thatk, ;, K»;}7, as defined in Equatiol_(3.7), arfd, as defined in

Equation[B.B), are correctly formed as iclEMEL (or SCHEME2). Recall that the terms
Ky, {K,;, Ky;}}, have the same form in bothcBEMEL and SHEME2. It remains to

verify that K, as defined in Equatiof (5%.8), is distributed either as @HSVEL or as in

SCHEMEZ2, depending on the value gffrom the Assumption W instance.

Observation 5.7.21f ~ from the Assumption W instance is equabidhen K, as defined
in Equation [&B) is distributed as iSCHEMEL. Otherwise, ify <~ Zy, K, as defined in
Equation [&8) is distributed as iBCHEME2.

To see whykK|, follows the correct distribution, lek ,,, Ko 4, Ko, denote the projections of
K, into the subgroup&,, G,, G, respectively. Clearlyi, , has the correct distribution.
We now verify thatk, , and K, have the correct distribution.

It is not hard to see that

n
Kog=9," wherex = w Z YiT;
i=1

Clearly, if y = 0 in the Assumption W instance, théxy , is distributed as in SHEMEL,
i.e., K, does not contain an element from the subgr@jp We now need to show that if

v & 7y, K, , is distributed as in 8HEMEZ, that is, K, contains a random element from the
subgroupG,. To prove this, it suffices to observe thats distributed uniformly at random

n

in Zy, and is independent df ;, 5}, -
Remark 5.7.2 In fact, it suffices to pick; <~ Zy, and fixr; = 0 fori € [2, 7).

It remains to verify that/(, , has the correct distribution. The correct distribution/af,

Sh0U|d be:
Hn —Tlip —T24 n b2 i fo; . 14 . b2 .) .
1=1 hlvi h27i Hi_—l <gp Y) ! STTLE . (gp gp v) v 2

—T" —b2swy;Ti 1, T i —afwzivg 1, T 240
=i 9p Thyi g, Yihy,;

(5.10)

It is not very hard to see that th&, defined in EquatiorL{5l8) has the safigcomponent as
the above Equatiof{5.110). A crucial observation here isdthéerms invoIvingg;;b2 (which

is unknown to the simulator) cancel out. This is the reasow thile simulator can generate
the token efficiently.

e Guess.The simulatoi3 outputs the same guelssoutput by the adversary.

Clearly, if the adversaryl has advantagein distinguishing $HEMEL1 and SHEMEZ2, then
the simulator5 also has advantagein breaking Assumption W. This completes the proof of
Claim[EZ7T0. m

106

Definition 5.7.13 (SSHEME 3) We further modiffscHEMEZ, and add a random eleme@y € G,
to the termK(in the token. In the resulting scheme (referred t&GasiEME3), both the termgy,
and Ky has a random element from tfi&, subgroup.SCHEMES is formally defined as below:

Setup(1*): Same as in SHEME2.
Encrypt(MSK, Z): Same as in SHEME2.

GenToken(MSK, ¥): The GenToken picks a randon®)y, @y € G,, and multiplies, andQ to
Ky andKj respectively.GenToken algorithm is the same as icBEMEL. In the expression
below, we underline the parts wherei&=ME2 and SHEME3 differ.

—T1,47 =12 7T —T2,
Ky = QORO : H?zl h 72'1’ hz,f) K@ = @R@ : H?:1 h1,z'1 h?,i2

TK = 1. N o N n
{Kl,i = 9" gl Ry, Koy = gy ’ZQZ)fUZRz,i}

1=

Query(TKz, CTz): Same as in SHEME2.

Claim 5.7.14 (Computational indistinguishability of SCHEME 2 and SCHEME 3) Given that As-
sumption 1 of the KSW papE[28] holds in the bilinear graiyghenSCHEME3 is computationally
indistinguishable fronSCHEME2.

Proof: The proof of this claim is very similar to that of Claim_5.7.1The only difference is
that in this proof, the simulator needs to rerandomize thra €, with a random element from the
subgroupG,. = G, x G,. This can be achieved since the simulator knows the tegiRs and
g-. (In comparison, in the proof of Claim5.7]110, the simulatmandomizes the terd with an
element fromG,.).]

Recall that we are trying to show thatSEMEREAL and SSHEMEQ are computationally in-
distinguishable. We have made a sequence of modificatioBsH@MEREAL, and have obtained
ScHEME3. So far, we have shown that8EMEREAL and SSHEME3 are computationally in-
distinguishable. We now further modifycBEME3 and finally obtain SHEMEQ. In SCHEMEL,
ScHEMEZ2 and HEME3, the f; and f, exponents in the tokens satisfy the relatibn= wfi,
wherew is a pre-determined secret. We now restorefthand f, exponents as independent fresh
random numbers.

Claim 5.7.15 Assuming the generalized C3DH assumpti®oHEME3 and SCHEMEQ are com-
putationally indistinguishable.

Proof: Similar to that of Claini5.718. m

Plaintext privacy of SCHEME Q

We have shown that@GHEMEREAL is computationally indistinguishable froncBEMEQ. We now
show that 8HEMEQ has selective plaintext privacy. This implies that& MEREAL has selective
plaintext privacy as well.

107

The original KSW construction runs in a bilinear group of @& = pgr. This part of
the proof relies on the observation that if we run the KSW tmiesion in the subgroufs,,, =
G, x G, x G, residing in a larger bilinear group of ord&f = pqrr, the KSW construction still
has plaintext privacy. Fundamentally, this relies on tlot flaat Assumption 1 still holds when the
bilinear groupG,,,- in question resides in the context of a larger group.

Lemma 5.7.16 Suppose that Assumption 1 holds in the bilinear gréyphen SCHEMEQ has
selective plaintext privacy.

Proof: The proof is based on the selective plaintext privacy of tis\Kconstruction. We show
that if there exists a polynomial-time adversatythat can break the selective plaintext privacy of
SCHEMEQ, we can build a polynomial-time simulatérthat leveragesA to break the selective
plaintext privacy of the KSW construction. Recall that th8W construction uses a bilinear group
of order N = pgr. We assume that this group resides in a larger group of’éize pgrr, and that
Assumption 1 still holds in the context of this larger group.

The simulator3 acts two different roles. On one hand, it interacts with a K&véllengelC,
and tries to break the selective plaintext privacy of KSW.tlmother hand, it acts as a challenger
to the S HEMEQ adversaryA. In essence, the simulatBruses the following strategy to interact
with A: whenever4 submits a ciphertext or token query, the simuld@8@imply forwards it along
to the challenge€. In return,5 obtains a KSW ciphertext or token. Na#augments the KSW
ciphertext or token before handing the answer over to theradvy.4. For example, part of the
augmentation performed lyis to fill in the termsCy and K.

e |nit. The SSHEMEQ adversaryd commits to a ciphertext challeng@,, 7,) to the simulator

B. B forwards the same challengé&,, 7',) to C.

e Setup.C runs theSetup algorithm of KSW, and gives the following public key to thensi-
lator 5.

PK = (gp7 Gr, /g\rv Q =Yq- R07 {Hl,ia HQ,i}?:l)
In addition,B generates the following secrets:

{hl,i = g%ii, hy; = Q;i 1
where{y;, z;}*_, are random numbers frofy .

e Ciphertext query. Whenever the adversam submits a ciphertext query for the vector
¥ € (Zy)™, B computes the following ciphertext and returns it to the aslgy. Pick random
exponentss, ¢, a, 3 from Zy; random hiding factors?,, 2y from the subgrous; and
random{ R, ;, R»,;}, fromG,.

T — COI§0‘Q§, CUJ:E@'Q;
{Cri= H; bl Q" Ry, Coy = H3 hb Q7 Ry}

e Token query. Suppose that the adversafymakes a token query for the vectoe (Zy)".
The simulator ask€ to generate a KSW token for the same vecatorSuppose the KSW
token forv is formed as below:

KSW.TK = (ko, {k1., ko, }11)

108

The simulator now transforms this KSW token into@aH&MEQ token as below. The simu-
lator picks a random exponente- Z,; a random hiding factoR, from the subgroufs,
and random{ R, ;, Ry ;}1, from Gs.

Ko =ko, Kp= RpQ" H?:l kl—iykgz

TK - —~ —_~ n
{Kui= kB, Koo =kpilf

e Challenge. The adversaryd submits a ciphertext challenge for the vectoe (Zy)". The

simulator B forwards the challenge to the KSW challenger As a result,3 obtains the

following KSW challenge ciphertext frord:
KSWCT = (C(), {Cl,i7 0271'}?:1)

The simulator transforms the above KSW ciphertext to a cielie under SHEMEQ. It
pickst < Zy, Ry, Ry < G+, and computes:

Co=Ry-co, Cy=Ry- gl
T = 0 0 (i 0 0 Qf)
{Cri = crihl;, Cyi=coihh,}

i=1

e More ciphertext and token queries.Same as above.

e Guess.The simulatoi3 outputs the same guess as the adversary

It is not hard to verify that in the above simulation, the @plexts and tokens computed by
B has the correct distribution. Clearly, A hase advantage in breakingC®EMEQ, then the
simulatorB hase advantage in breaking KSW. This completes the proof of Lef&iial®. |

5.7.4 Indistinguishability of SCHEME REAL and SCHEME SyM

We now show that SHEMEREAL is computationally indistinguishable from a scheme called
SCHEMESYM, where the tokens and the ciphertexts are symmetricaltgddr The proofis carried
out in the following two steps:
1. We first define SHEMESYM, and show that SHEMEREAL is computationally indistin-
guishable from S8HEMESYM.

2. Next, we show that in GHEMESYM, the tokens and ciphertexts are symmetrically formed.

SCHEME SYMm

We make modifications toSHEMEREAL, and obtain a new scheme calledri&MESYM. In short,
we modify the way the7en Token algorithm picks the exponen{s ;,r5,}" ;. In SCHEMESYM,
the exponentgr, ;, 2}, are no longer picked completely at random fr@n Instead, these
exponents are now picked at random from a two-dimensioreEmce of the vector spaﬁ‘%".

109

Definition 5.7.17 (HEME Sym) We make the following modifications 8tHEMEREAL, and
the resulting scheme is call&&CHEMESYM.

Setup(1*): The setup algorithm first chooses a secret key asGiREMEREAL. Additionally, it
chooses the following random exponents frédp and keeps them secret.

n
{ylm 1,y Y205 Zz,z'}i:1

Encrypt(MSK, ¥): Same as thé&ncrypt algorithm of SHEMEREAL.

GenToken(MSK, v): Instead of picking{r;;, 7}, independently at random froid,, the
GenToken picks two random numbers 7 il Z,, and sets the values ¢t ;,r2,}7, as
below:

Vien]: ri=pyri+ T2
T2 = PY2,i + T2,
The rest of theZen Token proceeds as in@GHEMEREAL.

Query(TKgz, CTz): The same as th@uery algorithm in SSHEMEREAL.

One way to understand the above constructiorRSVESYM is as follows. Let/ = {y14, y2.} ;.
let 27 = {21, 22, }7-q, let 7 = {r1;,r2,;}7,. Itis not hard to see thatis chosen at random from
a 2-dimensional subspace generated;/land 2. Essentially, 8HEMESYM always chooses a 2-
dimensional subspace during the setup phase. Later, whesiragoting tokens, SHEMESYM
always picks the exponentsat random from this prescribed 2-dimensional subspace.t®thee
Decisional Linear assumption, picking the exponents fraeadamensional subspace is computa-
tionally indistinguishable from picking the exponents qetely at random from the entire vector
space]FfD”. We state this intuition in the following lemma.

So far, it may not be entirely clear why the ciphertexts akets are symmetrically formed in
SCHEMESYM. We explain why this is the case in Sectlon3.7.4.

Lemma 5.7.18 Assume that the D-Linear assumption hold&iy) SCHEMESYM is computation-
ally indistinguishable fronSCHEMEREAL.

Informally, the above Lemnia5.7]18 relies on the followirgervation.

Observation 5.7.3 (-DLinear) Let/ be an integer greater thad. Suppose a challenger picks
two random vector§ = (y1, s, ..., ye) < F,and? = (21,2,. .., 2) vl F!. The challenger
then flips a random coib, and generates a random vectgr= (71,72, ...,7) in one of the
following ways, depending on the outcome of the coirbflip
e If b = 0, the challenger picksy, 2, ..., independently at random frotd,. In other
words, the vectof is picked at random from the vector spdE&
e If b = 1, the challenger picks the vect§r= (y1,7s, ..., 7¢) from the 2-dimensional sub-
spaceé generated byj, . Letclosure(i/, 7) denote the subspace}l?ﬁ generated by and .
The following algorithm allows the challenger to pick a rama vectory from closure(, 2).
Pick s, t <~ Z,, and compute
v =sy+tz
In the unlikely event thag and z are linearly dependendim (closure(i/, z)) < 2. However, this happens with
negligible probability.

110

Define the following notation:
gf = (g;fl, 955 s g;f‘f) wherex € Ff,

Now the challenger gives an adversary the description ofythep, (N = pgrr, G, Gr, e),
generators of each subgroug,, g, g, g-, and the following tuple:

(9%, 92, g))

The adversary’s task is to guess the outcome of the coih.fMge claim that no polynomial-time
adversary is able to guess the outcome of the coirbfijgth more than negligible advantage. In
fact, we show that this problem is at least as hard as the @duiproblem.

Proof: We use a hybrid argument to show that thBLinear problem (Observatidn 5.7.3) is
at least as hard as the D-Linear problem. We first review thenear assumption. Suppose an
adversary is given a description of the grouy, = pgrr, G, Gr, e), generators of each subgroup,
9p, 94, 9r» 9r, and the following tuple:

(99 95, 90, 92, gv, Y)

wherea, b, p, 7 are random exponents ify,. The adversary tries to decide whethér= g/*™ or
whetherY is a random number ift,. The D-Linear assumption states that no polynomial-time
adversary can have more than negligible advantage in tpesrerent.

We now prove Observatidn 5.¥.3 (thdLinear assumption) through a hybrid argument. We
define the following sequence of games, wherepresents a random number from the gréyp

Game \ What the challenger gives to the adversary

7 zZ sy1+tz1 sya+tzo sys+tzs SY¢—2Ftzi—2 sYe—1Flze—1 sye+tzg
Game | (g9, g, gt govettz=, gowstts gy . 9p , gt
7 z syi+tz1 Sy2+tza sys+tzs SYe—otlzp—o sy;_1+tze—1
Gam@—l (957 9ps gpy) gpy) gpy y -+ Op » 9p) *)
7 zZ sy1+tz sy2ttz sy3+tz: SYp—ot+tz—o
Game_> | (g7, g5, g%, g2, gL gy , %, %)
p p p p p
73 zZ sy1+tz sy2+tzo
Game (90, gi, g™, gV L Ky ey kK k)

It is not hard to see that Gamis equivalent to thé-DLinear experiment wheb = 1; and Gameg
is equivalent to thé-DLinear experiment wheh = 0. Due to the hybrid argument, it suffices to
prove that no polynomial-time adversary can distinguidivieen two adjacent games.

We now show that if there exists a polynomial-time adversampat can distinguish between
two adjacent games Gagpand Gamg_; with ¢ advantage, then we can build a polynomial-time
simulatorB that utilizesA as a black box, and wins the D-Linear experiment also wétivantage.
We now explain how the simulatdt works.

Supposes is given the D-Linear instandg,, gj, gg, 9,7 ggT, Y'), and tries to decide whether

Y = glf)”” ory & G,. The simulator picks random elememts ks, ..., ka—1, Ya» Yat1s - - - Yo,
andwsg, ws, . .., Wa_1, Zdy Zd+1s - - - 2¢ from Zy, and implicitly sets:
g: (CL, k2a7 kgCL, B kd—1a7 Yd; Yd+1s -+ yf)

111

Z = (b, web, wsb, ..., wa_1b, Z4, Zas1, ---, 20)

It also implicitly sets
1

s=pyg, t=7z
where multiplicative inverses are taken modular (For our purposes, this is equivalent to taking
multiplicative inverses modular.)
Note that the simulator does not know the values,®f p, 7. It merely sets the above parame-
ters implicitly, without actually computing them.
Now the simulato3 gives the adversary the following tuple:

iy zZ a, —1 T\zq L a iyt TNwizT ! -1
A U0 L 0 KR (70 LT U K S NN
Clearly, if Y’ = g7*7, then the above experiment is identically distributed am&a Otherwise,
if Y is a random element if¥,,, then the above experiment is identically distributed am&a; .
Hence, if A can distinguish between Game and Gamg with ¢ advantage, thef¥ can win the
D-Linear experiment witls advantage as well. |

Given the/-DLinear assumption, which is implied by the Decisional éan assumption, we
proceed to prove Lemnia’5.7118, that isHEMEREAL is computationally indistinguishable from
SCHEMESYM.

Proof of LemmalB.ZI8: Let ¢ = 2n. We show that distinguishing betweect$=MEREAL
and SHEMESYM is at least as hard as theDLinear problem as stated in Observatlon3.7.3.
Our proof relies a hybrid argument on the number of tokenigeaenade by the adversary. Let
k denote the number of token queries made by the adversary. eieech sequence of games,
Game,Game,...,Game. In Gameg (0 < d < k), for the firstd tokens queried, the chal-
lenger picks the exponen{s, ;, 2}, from a pre-determined 2-dimensional subspace; and for
the remaining token querie$+ 1, ..., k, the challenger picks completely random exponents
{7’1’2‘, TQJ}?ZI from]an

More specifically, Gamg(0 < d < k) is formally defined as below.

e Setup. The challenger picks two random vectors

7= {yri, poiti, < F™
Z= {21, 2l & F2r

and keeps them secret. These two vectors determine a 2-slpnahsubspacdosure(y, 7).
Later, when the challenger answers the fitsoken queries made by the adversary, it will
pick the exponent$r; ;, 7, ;}* , at random from this subspace. The challenger now calls the
Setup algorithm to generate a secret key as CHEMEREAL.

e Ciphertext queries. The challenger answers all ciphertext queries by diredling the
Encrypt algorithm.

e Token queries.For the firstd token queries, the challenger picks expondnts, r5,;}7 , as
below. Pick two random numbegst <~ 7Z,, and sets the values 6f.= {r,;,,,}7, to be

112

the following:
Vi € [n] DT = PYti + TZ1

Toi = PY2,i + T22,
Expressed in the vector form,
r=py+717
In other wordsy”is picked at random from the 2-dimensional subspagesire(y, 2).

For the remaining token queriés+ 1, ..., k, the challenger generates tokens normally by
calling the GenToken algorithm.

It is not hard to see that Gamés identically distributed as SHEMEREAL, and Gamg is
identically distributed as &HEMESYM. Due to the hybrid argument, it suffices to show that no
polynomial-time adversary is able to distinguish betweemadjacent games Game and Gamg
(1 < d < k) with more than negligible advantage.

We now show that if there exists a polynomial-time adversahat can distinguish between
Gameg_; and Gamg (1 < d < k) with ¢ advantage, we can build a polynomial-time simulator
B that usesA as a blackbox, and breaks théLinear assumption also with advantage. We
now explain how the simulatdf works. Supposé is given the following/-DLinear instance
(9;% gf; 9;)1 wherey = {y1i, yoi}ic1, 2 = {214, 22, fi=1, @andy = {71,4,72:i}7=1- Now the sim-
ulator tries to distinguish whethér € closure(, 2), or whethery is a random vector im?f)”. To
do this, the simulator will set the exponemts= {r; ;,72,;}, in the firstd — 1 tokens to be ran-
dom vectors irtlosure(i/, Z). The simulator sets the exponenti the d" to be the vectof. For
the remaining token queries, the simulator chooses randmonentsr <- IF?D" In this way, if

7 & closure(, Z), the simulation is equivalent to Gametherwise, ify < IFfD" the simulation is
equivalent to Gamg;.
e Setup. The simulator picks the following secret key:

MSK = (gp> 9q> Grs Trs {hl,i - g;h,i7 hy; = g;&,i’ }_Ll,i _ g;”l’i, 712,2‘ _ g;um})

wherews ;, wa ;, k14, ka; are random exponents #j,.

e Ciphertext queries. The simulator answers all ciphertext queries by directlirgathe
Encrypt algorithm.

* Token queries.For all token queries, the simulator picks random expongnts from Zy;
random hiding factor®,, Ry from the subgroufi, ; and random{ R, ;, R»;}}-, from G. It
chooses the values of= {r;, 7}, in one of the following ways:

= For the firstd — 1 token queries, the challenger picks randpm from Z,, (p, T are
picked as fresh random numbers for each of thedirst token queries.) and implicitly
lets7” = {ry,, 72, }~, to be the following (without actually computing it):

r=py+717

In the above expressiof,andz” are inherited from thé-DLinear instance. Note that
the simulator does not know the valuesjand?z, it implicitly sets the vector’ without

113

computing its value. Now the simulator computes the follogvioken:

KO = Ro . HZL l(ggl Z) w1 Z(gzl Z) Tw11<gé/22> pw2,i<g;2vi>—ﬂu2,i7
TK = | Ko=Ro TIi (™) (gp"") 70 (gp™") P2 (gp™) 772,

{ o= PG ol Rus, Ko = (6205 ol R}

= For thed™ token query, the simulator will implicitly set the exponeft= 7, wherey
is adopted from thé-DLinear instance. More specifically, the simulator congstthe
following token:

Ko = Ro-TIiZ(gp™") ™ (gp™") ™%, Ky = Ry -[T_y(gp"") i (gp™")
TK - K i flUiR . K 28 f2vi§) "
1,3 =Gp’ g 1,09 24 = Jp gq 2,1

i=1

= For the remaining token querids-1, . . ., k, the simulator generates tokens by directly
calling the GenToken algorithm. In this case, the exponentss chosen as a random
vector inF2".

e Guess. If the adversary guesses that it is playing Ganke simulator guesses that<-
closure(7/, Z). Otherwise, if the adversary guesses that it is playing Gaméhe simulator
guesses that <~ F2".

Clearly, if the adversary hasadvantage in distinguishing Gagnend Gamg ; (1 < d < k), the
simulator also hasadvantage in thé-DLinear experiment.]

Symmetry of token and ciphertext in SCHEME SYwm

So far, it may not be completely obvious why the tokens anbagig@xts are symmetrically formed

in SCHEMESYM. To show why this is true, we give a different description afHEMESYM,

and call the resulting schemec8eEMESYMII. SCHEMESYMII is in fact the same scheme as
SCHEMESYM, although the description seems different on the surfaceilllbe clear from the
description of 8HEMESYM 1 that tokens and ciphertexts symmetrically formed. Wentagplain
why SCHEMESYM and SHEMESYMII are in fact the same scheme. Basically, tokens and ci-
phertexts in 8HEMESYM are identically distributed as tokens and ciphertextsGrISVESYM I
(except with negligible probability).

Before we formally define SHEMESYMII, we first explain the intuition. In SBHEMESYM,
both the ciphertext and token ha¥e+2 terms. Clearly, in SHEMESYM I, tokens and ciphertexts
are symmetric in thé&,, G,., Gr subgroups. In particular, thg, subgroup has the same form in
both the ciphertext and the token, and theandG; subgroups “mirror” each other.

However, it may not entirely obvious that tli&, subgroup is symmetric as well; and this is
what we are about to show. Let us now focus on the elementgi@ tlsubgroup in the ciphertext
and token. We represent elements in thgsubgroup in the canonical forgy, whereg, is a
generator ofG,, andz € Z,. In both the ciphertext and the token, the exponents inGhe
subgroup (basg,) form a vector ian,”“. We now show that these exponents have the following
distribution (except with negligible probability).

114

* Pick two random 2-dimensional subspaggsS, C F>*** that are orthogonal to each other,
that is,S; L.S,. The fact thatS; LS, ensures that th&, subgroup cancels out in th@uery
algorithm.

e For every ciphertext generated, pick a random veﬁteR# S1 to be the exponents in tie,
subgroup (baseg,).

e For every token generated, pick a random vecta¥ ii- S, to be the exponents in the,
subgroup (baseg,).

Definition 5.7.19 (XHEME SyM 1) We define the following encryption scheme henceforth re-
ferred to asSCHEMESYMII. From the description oSCHEMESYMII, it is clear that tokens and
ciphertexts are symmetrically formed.

Setup(1*): The setup algorithm first chooses random large primesr, 7, and creates a bilinear
group of composite ordeN = pqrr. Next, it picks generators,, ¢,, ¢, g, from sub-
groupsG,, G,, G,, G respectively. The setup algorithm also needs to pick twiogonal
subspaces fror>"*2. To do so, the setup algorithm picks the following randomaments

from Z,,:
/jl = (007 Cos {012‘, 022‘}? 1) flo = (d07 dp, {dl,ia d2,i}?:1)
(y07 Yo, {yl ir Y2 2}2 1) (205 ~Ps {Zl,ia Z2,i}?:1)
st V(i) € [2] x [2], <m> 0
For example,

(fi1, 1) »= coyo + coyp + Z (criyri + c2,iY2,i)
i=1

All of the above parameters are kept as the secret key.

Remark 5.7.3 Intuitively, by pickingii,, /i andt/;, ,, we are effectively picking two ran-
dom 2-dimensional subspaceslliiﬁ”2 that are orthogonal to each other:

closure(fiy, fio) L closure(i/, %)

In the unlikely event thai; and i, (or v; andi) are linearly dependent, the dimension of
closure(jiy, jio) (Or closure(i/, /2)) may be smaller than 2. However, this happens only with
negligible probability.

Encrypt(MSK, 7): Let ¥ = (z1,22,...,2,) € (Zy)". The encryption algorithm first picks
random exponents, ¢, «, 5 from Z,. Then, it chooses random hiding factcRg R@ from
the subgrougs;; and randon{Rle, Ry}, from G,. The encryption algorithm computes

the following ciphertext:
~ ~ 4
Co=Ro- gf;COHdOa Co= Ry - ch”“ !
CT - n
i d 1 i d i .
{Cl,i = gscl’ . aIZRl i Coy = SCQ M %Rzz}' 1
1=

115

Remark 5.7.4 In the above ciphertext, the exponents in@)esubgroup form the following
vector:

L = (sco+ tdy, scp+tdy, {sci;+tdi,, sco;+tda;}i) = sfiy + til

It is not hard to see thafi is chosen as a random vector in the 2-dimensional subspace
defined bytlosure(/i1, fis).

GenToken(MSK,v): Let v = (vy,v9,...,v,) € (Zy)". The GenToken algorithm behaves
symmetrically to theEncrypt algorithm. It first picks random exponengsr, f1, fo from
Z,. Then, it chooses random hiding factaRg, Ry from the subgroug,; and random
{Ry;, Ry;}™, from G-. The token is formed as below:

Ky = Ry - 9£y0+moa Ky = Ry - ggyﬁm@

TK= K — PYLitTZ14 o, D Ko — PY2,itTZ20 fouv; T
Li = Yp 94 Ry, Koi=gp 94 Ry

n

1=

Remark 5.7.5 In the above token, the exponents in (g subgroup form the following
vector:

7= (pyo+ 720, pyo + 720, {pYri + 214, PYo; + T2oi}r) = pih + T

It is not hard to see that’ is chosen as a random vector in the 2-dimensional subspace
defined bytlosure(t/;,).
Query(TKg, CTz): Same as thé&)uery algorithm of S HEMEREAL. Note that as the two sub-
spacesglosure(fiy, fi2) andclosure(i/;, ;) are orthogonal to each othéf;, 7) = 0. Hence,
in the Query algorithm, elements in th&, subgroup cancel out, resultingine Gr,.
Lemma 5.7.20 (Equivalence of SHEME SyM and SCHEME SyMmIl) Tokens and ciphertexts com-
puted inSCHEMESYMII are identically distributed as irSCHEMESYM (except with negligible
probability).
Proof: Let us now focus on SHEMESYM. We first show that in the ciphertext, exponents in
the G, subgroup are chosen as a random vector in a pre-determidigdeisional subspace (also
chosen at random) ifi2" .

Forl < i < n, letw;;,w,, denote the discrete log @f ;, ho; (baseg,); let k,;, ko, denote
the discrete log ok, ;, ho; (basey,). {wi;,wsi 7, and{k,,, k2, }7, are chosen independently at
random fromzZ, in the Setup algorithm.

In the Encrypt algorithm of SHEMESYM, we pick two random numberst < Z,,, and in
the ciphertext, the exponents in tBg subgroup (basg,) have the following form:

—

o= (S, t, {Swl,i + t/€17i, SWQJ; + tKQ’i};L:l) (511)
Define the following two vectors:

= (1,0, {wii,waitiny) € anw

flr
512
/_jg = (0, 1, {Kl,h Iig,i}?zl) - FZ’H_Z ()

116

Equation[[5.111) can be expressed in the following form:
f= sfiy + tfiz
|

Therefore, an equivalent way to think oESEMESYM is as follows. In theSetup algorithm,
we pick two vectorgi; and i, as in Equation[{5.32). It is not hard to see thiakure(jiy, fis)
defines a random 2-dimensional subspac&3jh (except with negligible probability). Later,
when computing ciphertexts, we always pick the exponerttsaft, subgroup as a random vector
in closure(fiy, fia).

We now examine the tokens incBEMESYM. It remains to show that in the tokens, expo-
nents in theG, subgroup are chosen as random vectors from a random 2-domahsubspace
orthogonal toclosure(fiy, fi2). It is not hard to see that in the tokens aftf&EMESYM, the expo-
nents of theG, subgroup are picked from a subspace orthogonalosure(/i;, fi2), Since in the
Query algorithm, theG, subgroup always cancels out, resulting ig G,. Now, we just need to
show that the exponents in the token form-dimensional subspace (as opposed thmension
or other number of dimensions.) To understand why this isHs®, we now present alternative
way to understand the formation of tokens ioHEMESYM. In the Setup phase, pick the vectors
Y= (Y0, Y0, Y1 Yoitizy) @NdZ = (20, 29, {214, 22,4 }7,) as below:

1. Pick2n out of the2n + 2 coordinates at random, that is, pi€l ;, y»;}~, at random from

L.

2. Given the constraints thdf, ii;) = 0, and (7, fiz) = 0, the first two coordinates,, vy
can be solved through a system of linear equations. We havditear equations with
two indeterminants. The coefficients of the linear equatiare linearly independent except
with negligible probability. This means that except witlghgible probability,y,, 1y can be
uniquely solved.

3. Pickz in exactly the same way as we did fgr

It is not hard to see that by picking the vectats= (yo, vo, {v14, y2.:}7,) andz = (2o, 2y,
{z1.1, 224 }11) in the manner specified above, we are equivalently pickirapdom subspace that
is orthogonal to the subspacesure(/iy, /is).

Later, when computing tokens, th{een Token algorithm picks the exponents in tlig, sub-
group as a random vector frottosure(7, 2).

5.8 Proof of Proposition[5.3.P

Proof of Proposition[5.3.2: Our proof is inspired by the hybrid argument used by Katz .e[@l].
We are given SHEME,,, which is SCI-secure, and our goal is to construct a fullygseconstruc-
tion SCHEME, . We give an explicit construction ofc®IEME,, below. Let? = (zq, 22, ..., 2,) €
= (2,2, ..., x)) € X" denote two vectors of lengthh Define

rrn

T = (z1, 20, .., T, Ty, Ty 1))

rn

117

to be a vector of lengtbn obtained by concatenatingand’. In particular, define
|7 = (x1, 29, ..., Tn, T1, Ty . .., Tp)

to be a vector of lengthn obtained by repeatingtwice. Informally, our construction of SHEME,,
works as follows. To encrypt a vectarof lengthn in SCHEME,,, we encrypt the vectaf?, 7) of
length2n using HEME,,,. Similarly, to construct a token for the vectomof lengthn, we use
SCHEME;,, to construct a token for the vectgf,) of length2n.

SCHEME, .Setup(1*): Call SCHEME,, .Setup(1*), and output exactly the same secret K&§K.

SCHEME, . Encrypt(MSK, ¥): Call SCHEMEy,, . Encrypt(MSK, Z||Z) and output the resulting ci-
phertext.

SCHEME, .GenToken(MSK, v): Call SCHEME,,,. Gen Token(MSK, v||v) and output the resulting
token.

SCHEME, . Query(TK, CT): Call SCHEME,,,.Query(TK, CT) and output the same outcome.
Note that the above construction is valid due to the foll@fict.
Fact 5.8.1 Let N = pgr7, wherep, ¢, » andr are distinct large (odd) primes. Let v € Z%,.. Then

(@,v) =0 iff (2|7, v]|v) =0

It remains to show that the aboveSEME, is fully-secure. To do so, let us first recall the the
security game (of full security). An adversary makes a seoiequeries to a challenger. Each
guery can be a ciphertext query or a token query. In a cipxiegteery, the adversary specifies two
vectorst, ' to the challenger, and gets back an encryption of one of thesplaintexts. In a token
guery, the adversary specifies two vectorsi to the challenger, and gets back a token for one of
these vectors. Suppose that the adversary makgshertext queries, denotéd, 1), (72, ¥2),

. (Z.,9.), andt token queries denoted, W), (s, W), ..., (¥;, ;) respectively. LetX :=
(%1, s, ..., %) andY := (41, s, - - .,) denote the ciphertext queries made by the adversary. Let
V = (U, 0s,...,0.) andW := (w, s, ..., w.) denote the token queries made by the adversary.
Recall thatX, Y, V, W must satisfy the “indistinguishability under access patteondition:

ACCESPATTERN(X, V) = ACCESPATTERN(Y, W)

The challenger has a secret randombhiand depending on its value, the challenger either con-
structs ciphertexts/tokens fof, V' (referred to as World 0), or constructs ciphertexts/tokens
Y, W (referred to as World 1). Our task is to show that the advgrsannot distinguish between
World 0 and World 1. To this end, we construct the followinge® of hybrid games.
World O : The challenger calls GHEME,,, and computes ciphertexts/tokens for:
{ 71|71, Dol|Zay ..., Zel|Ze]
01|01, Uol|Ue, ..., |V

World A : The challenger calls@GHEME,,, and computes ciphertexts/tokens for:

{9?1||6, 5|0, ..., Z||0]

171“/(717 UQH/UQ? R UtHUt

118

World B : The challenger calls@&HEME,,, and computes ciphertexts/tokens for:

10, |0, ..., Z||0]
171||u_;17 172||u_;27 ey 17t||u_jt

World M : The challenger picks random <~ Zy, calls S HEME,,, and computes ciphertexts/tokens
for the following vectors:
fl||ag17 J‘_:QHO[y_’?a) fCHagt
171||U717 172||U727 SR 17t||wt

Remark 5.8.1 Notice that in the above hybrid sequence, the access patenains the same
between all worlds except with negligible probability.

Claim 5.8.2 Assume thaSCHEME;,, is SCI-secure, then no polynomial-time adversary has more
than negligible advantage in distinguishing between agljagames.

Proof: By hybrid argument. |

Similarly, we can have a sequence of hybrid games conne@ortd 0 and World M. Due to
the hybrid argument, we conclude that no polynomial advgrsas more than negligible advan-
tage in distinguishing World and World1. []

5.9 Comparison with Previous Security Definitions

Only two prior works have considered query privacy in SK-Bie work by Song et aIlI:lBQ], and
the work by Curtmola et aIL_[i9]. In addition, both of theserksconsider simple keyword-based
gueries. Song et al. were the first ones to propose a seaearadylyption scheme, and they did not
present a formal security definition for query privacy. Quota et al. presented a formal security
definition to intuitively capture the notion that both thaipitext entries and the queries should be
hidden from the storage server. Their security definitionas satisfactory due to the following
reasons:

e The security definition by Curtmola et al. reveals the “skgattern”, that is, if a user issues
two queries for the same keyword, the storage server lehenfatt that these two queries
are equal. In our security definition, the query has the samledtive) semantic security as
the plaintext. In particular, le and A’ denote two queries with the same access patter, then
the storage server is unable to decide whether a user hastheadame queryl twice, or
whether the user queried far followed by A’ instead.

e In Curtmola’s security definition, the adversary first cortsto two sets of documents (de-
notedD,, D; in their paper|E|9]). Using our terminology, this means tit&t adversary has
to commit to all the ciphertext queries it intends to makestéad, we give the adversary
more power in our full security definition. The adversarywdde fully adaptive: it can de-
cide what ciphertext queries and token queries to make diépgon previous interactions
with the challenger.

119

e Although we did not prove the security of our constructiodenthe full security model, As
Observatiof 5,911 points out, even the relaxed securityatactually used in our proofs is
stronger than Curtmola’s definition.

Proposition 5.9.1 Given a selectively SCI-secure SK-PE construction on Hpneduct queries
for vectors of lengtin, it is possible to construct an SK-PE scheme on inner-produeries for
vectors of length, satisfying the security definition by Curtmola et al. (Digam 3.8 in their

paper [19)).
Proof: The above proposition can be proved in a similar manner gsoBition[5.3.P. n

In fact, in the above proof, when we use the scheme for vectolsngth2n to construct a
scheme for vectors of length the resulting scheme (for vectors of lengfhhas stronger security
than Curtmola’s definition, as Curtmola’s definition rewetie search pattern in addition. To
reiterate, revealing the search pattern means that tregggtserver can tell if two queries submitted
by the user are the same or not. Our security definition doesexeal the search pattern.

5.10 Review of the KSW Construction

To aid the understanding of our construction, we review th?A/\Kconstruction@S] for inner-
product queries in the public-key setting.

Setup(1*): The setup algorithm first chooses random large primesr, and creates a bilinear
group of composite ordeN = pqr. Next it picks generators,, g,, g, from subgroups
G,, G4, G, respectively. It also picks, ;, ho,; from G,, R, ;, Rs; from G, forall 1 < i < n,
and randonR?, from G,..
The public key is composed as below:

PK = (gpa gr, Q= 9q - Ry, {Hl,z' = hl,iRl,ia Hz,z' = hz,z'RQ,i ?:1)
The secret key is set to the following:
PVk - (pv q,T, gq7 {hl,ia h2,i}?:1>

Encrypt(PK, Z): LetZ¥ = (z1,x2,...,%,) € (Zy)". The encryption algorithm first picks random
exponents;, «, 3 from Zy, and it chooses randof?; ;, R4}, from G,.
Next, the encryption algorithm computes the following @plext:

C(O - gls)’
CT = | n
{Cl,z' = Hf,iQa%Rs,i, Cz,z' = HS,iQﬁle4,i}i:1
GenToken(MSK, v): Letv = (vy,vq,...,v,) € (Zn)". The GenToken algorithm picks random
exponentsf, f, {T17i,7’2,i}?:1 from Zy. Then, it chooses a random hiding fact®y from

the subgrouyis,., and randon®)s from G,,.

120

Next, theGenToken algorithm computes the following token:

n

TK = (K = RoQo T b)
{Klvi = ggl-,ig({wi’ K2,z' = g;z'ig({wi}i:l

Query(TKz, CTz): The Query algorithm computes

n
2

e(Cy, Ko) - He(Cu‘, Ki,)e(Cou, Ky) =1 (5.13)

i=1

and output9 iff the above is equal ta, indicating that(Z,) = 0 mod N. (The case that
(Z,7) =0 mod ¢, but(Z, v) # 0 mod N happens with negligible probability as explained
in Sectio5.b.)

121

122

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Predicate encryption is a new encryption paradigm enabilimetgrained access control to the
encrypted data. In predicate encryption, the secret keyeowan compute a capability which
allows one to evaluate the outcome of a predicate on the ptectylata.

An important research challenge in predicate encryptidmois to support more expressive
guery predicates and richer operations. In this thesis, agenthe following contributions to the
area of predicate encryption.

e \We propose a predicate encryption scheme supparting-dimensional range queri€€hap-
ter[3). This construction is secure in the match-revealingl@h Multi-dimensional range
gueries is particularly important in practice, especiatlydatabase applications, as SQL
gueries are by nature multi-dimensional range queries.

e We study how tadelegatecapabilities in predicate encryption, and propose a coattm
that supports delegation on conjunctive queries (Chapter 4

e \We consider the problem afuery privacyin predicate encryption. In many practical ap-
plications, it would be desirable to hide the queries endadehe capabilities, in addition
to hiding the plaintext data. We show that query privacy tseiently not possible in the
public-key setting, due to the fact that anyone can encryiht &vpublic key. However, we
demonstrate that query privacy is indeed possible in thees&ey setting. Specifically, we
provide a secret-key predicate encryption scheme thaggothe privacy of both the query

predicates and the plaintext data. Our construction supmaner-product queries (Chap-
ter3).

6.2 Future Work

The following are important questions that remain to be amed in predicate encryption:
e Almost all of the known constructions are proven secure & gblective security model,
that is, the adversary commits to a challenge identity atbtbginning of the game. In

123

the setting of bilinear groups, some progress has been neaéatly at proving adaptive
security Db]. In particular, Gentry’s constructiIZmpIies a predicate encryption
system on equality-test queries. An important open quessido how to construct more
expressive predicate encryption schemes and prove secudier the adaptive notion of
security.

Another topic worth investigating is how to build expregspredicate encryption systems
using other mathematical primitives and assumptions. ¥am@le, Boneh et al. built anony-

mous identity-based encryption based on the quadratiduesity problem modulo an RSA

composite. This implies a predicate encryption system sujpy equality-test queries. It

is an open research problem how to build more expressivagatedencryption systems

without pairings.

The most expressive predicate encryption system knownsalfly supports inner-product
gueries. A big question is how to build systems that are evereraxpressive. Based on
experience, we know that supporting disjunctions might &l fin pairing-based predicate
encryption systems. The inner-product scheme can supponided-size disjunctive queries
by converting them to polynomial evaluation queries. Hogvgguch conversions incur a
large expansion factor in the cost, making it expensive ppett large disjunctive queries.

124

Bibliography

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Ki, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Palillier, and ldabtii. Searchable encryption
revisited: Consistency properties, relation to anonymBis and extensions. ICRYPTQ

2005.1PTH 119, 322 5.1

[2] John Bethencourt, Amit Sahai, and Brent Waters. Ciphepolicy attribute-based encryp-
tion. In Proceedings of the 2007 IEEE Symposium on Security and &¢i2a@07.[T.P

[3] Dan Boneh and Xavier Boyen. Efficient selective-ID seddentity based encryption without

random oracles. IEUROCRYPT2004.2Z 1T 3118, 21 P B[, 513.3

[4] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchicaniity based encryption with
constant size ciphertext. BUROCRYPTpages 440-456, 2006_Z4N1[7]4.4

[5] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short graypasures. ICRYPTQ pages
41-55,2004331152.2

[6] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, &idseppe Persiano. Public key
encryption with keyword search. BUROCRYPTpages 506-522, 200 1[Z11LZ] L5] 5.1

[7] Dan Boneh and Matt Franklin. Identity-based encrypfimm the Weil pairing. In Joe Kilian,
editor, Proceedings of Crypto 20Q0¥olume 2139 oLNCS pages 213-29. Springer-Verlag,
2001.[T»

[8] Dan Boneh and Matthew Franklin. Identity-based endaogrpfrom the weil pairing.SIAM J.
Comput, 32(3):586-615, 2008.3.3.1

[9] Dan Boneh, Craig Gentry, and Michael Hamburg. Spaceiefit identity based encryption
without pairings. InProceedings of FOG2007.[LPTM 1%, 5.1

[10] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluatingr2-brmulas on ciphertexts. In
Joe Kilian, editorProceedings of Theory of Cryptography Conference 206kuime 3378 of
LNCS pages 325-342. Springer, 2005.5.4.1

[11] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusiesistant traitor tracing with short
ciphertexts and private keys. FHUROCRYPTpages 573-592, 2006.41.5

[12] Dan Boneh and Brent Waters. A fully collusion resistardgadcast trace and revoke system
with public traceability. INACM Conference on Computer and Communication Security
(CCS) 2006.XP(TH TZ AL ZAZ ST ALT 302 WABAP[A2]] 28 4.8 441,
A3[46b[oN 51 5.6 5383, 5K.2

125

[13] Xavier Boyen and Brent Waters. Anonymous hierarchidahtity-based encryption (without
random oracles). ICRYPTQ2006 (I P[TH 2. T1P. 322, 334 372, A2 WIDHAZ 2,
BE151538B

[14] Ran Canetti, Shai Halevi, and Jonathan Katz. A forwsedure public-key encryption
scheme. IFEUROCRYPTpages 255-271, 2008 ZNZ 313 413,[5115.3.3

[15] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosginectext security from identity-based
encryption. IEUROCRYPTpages 207-222, 200&2ZN[Z. 313 412 [ET1]15.3.3

[16] Melissa Chase. Multi-authority attribute based eption. In TCC, pages 515-534, 2007.
L3

[17] The Elliptic Semiconductor CLP-17 high performandgéic curve cryptography point mul-
tiplier core: Product brief.
http: /77 ww. el T1pticsem . conlpdf/ CLP-1/60102. pdfl B35

[18] Clifford Cocks. An identity based encryption schemadxhon quadratic residues. Rmo-
ceedings of the 8th IMA International Conference on Crympgy and Codingpages 360—
363, London, UK, 2001. Springer-Verlag11.2

[19] Reza Curtmola, Juan Garay, Seny Kamara, and Rafaib@d#ty. Searchable symmetric
encryption: improved definitions and efficient construetiolnCCS '06: Proceedings of the
13th ACM conference on Computer and communications sgc2606 515314 5.0, 59.1

[20] Symantec deepsight threat management system tegdynolo brief.
https://tns. symantec. com[L3

[21] The dshield projeciht t p: /7 www. dshi el d. or g. [L.3

[22] Craig Gentry. Practical identity-based encryptiomheut random oracles. EUROCRYPT
2006.[T.P[TH.BI2

[23] Craig Gentry and Brent Waters. Adaptive security indatcast encryption systems. Technical
report, 2008. E-print archiveBf t p: // eprint. 1 acr. or g/ 2008/ 268. pdf|. B2

[24] Oded Goldreich. Secure multi-party computation. Vo&2, Foundations of Cryptography,
1998.[1.B

[25] Philippe Golle, Jessica Staddon, and Brent R. Wateescu® conjunctive keyword search
over encrypted data. IACNS pages 31-45, 20015, 5.1

[26] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent WateAttribute-based encryption
for fine-grained access control of encrypted data.AGM Conference on Computer and
Communications Security (CGZ006.[T.P2

[27] Antoine Joux. A one round protocol for tripartite Diffiéellman. INANTS-IV: Proceedings
of the 4th International Symposium on Algorithmic Numbezdrly pages 385-394, London,
UK, 2000. Springer-Verlad—3.3.1

[28] Jonathan Katz, Amit Sahai, and Brent Waters. Predieateyption supporting disjunctions,
polynomial equations, and inner products Barocrypt '08, to appear2008.CLPTIH, 4111,
BAG3LAA S A 55 52 5151 51MT0, B BIATA[5.B 510

126

http://www.ellipticsemi.com/pdf/CLP-17_60102.pdf
https://tms.symantec.com
http://www.dshield.org
http://eprint.iacr.org/2008/268.pdf

[29] Ben Lynn. The Pairing-Based Cryptography (PBC) lilgrar
http://crypto.stanford. edu/ pbc. 335

[30] The mynetwatchman projedit t p: /7 www. nynet wat chnman. com [1.3

[31] Matthew Pirretti, Patrick Traynor, Patrick McDanielnd Brent Waters. Secure attribute-
based systems. I6@CS '06: Proceedings of the 13th ACM conference on Computdr a
communications securit2006.[T.P

[32] Amit Sahai and Brent Waters. Fuzzy identity-based yotoon. In EUROCRYPT pages
457-473, 2009 1121.3

[33] Adi Shamir. Identity-based cryptosystems and sigreatichemes. IRroceedings of Crypto
1984.[T2

[34] Emily Shen, Elaine Shi, and Brent Waters. Query-hidsegret-key predicate encryption
with inner-product queries. manuscripf]LZ] L5 1.5

[35] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawndgs@and Adrian Perrig. Multi-
dimension range query over encrypted datalHEE Symposium on Security and Privacy
May 2007 [TP[TIH, T 1P, 212 ZIL3| 8T 30T WA P[5 B 5313

[36] Elaine Shi and Brent Waters. Delegating capabilitrepiedicate encryption systems. In
ICALP, 2008.[TP[11H. 115

[37] Elaine Shi and Brent Waters. Delegating capabilities predicate encryption sys-

tems. In Proceedings of ICALP 2008. Full version can be found online at
http://sparrow. ece. cnu. edu/ ~el ai ne/ docs/ del egati on. pdfl. @, [E1,

[38] skrenta. The secret source of google’s polek. p: / / bl og. t opl X. conT ar chi ves/ 000016. ht mi
B33

[39] Dawn Song, David Wagner, and Adrian Perrig. Practieahhiques for searches on encrypted
data. InNIEEE symposium on Security and Priva2@00.CTUTH. 511 3.9

127

http://crypto.stanford.edu/pbc
http://www.mynetwatchman.com
http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf
http://blog.topix.com/archives/000016.html

	1 Introduction
	1.1 What is Predicate Encryption?
	1.2 Related Work
	1.3 Applications of predicate encryption
	1.4 Efficiency and expressiveness
	1.5 Summary of contributions

	2 Formal Definitions
	2.1 Public-key predicate encryption
	2.1.1 Security definitions
	2.1.2 Selective security
	2.1.3 Match revealing security

	2.2 Secret-key predicate encryption
	2.2.1 Security definitions: Hiding both the plaintext and the query

	3 Multi-Dimensional Range Query over Encrypted Data
	3.1 Multi-dimensional Range Queries over Encrypted Data
	3.1.1 Overview of our construction
	3.1.2 Definitions
	3.1.3 Security Definitions

	3.2 A First Attempt to Construct MRQED
	3.2.1 Trivial construction
	3.2.2 Improved MRQED1 construction based on AIBE
	3.2.3 AIBE-Based MRQEDD Construction

	3.3 The Main MRQED Construction
	3.3.1 Background on bilinear groups
	3.3.2 Intuition
	3.3.3 The Main Construction
	3.3.4 Consistency, Security
	3.3.5 Practical Performance

	3.4 The Dual Problem and Stock Trading through a Broker
	3.5 Notation
	3.6 Proof of Consistency
	3.7 Proof of Security
	3.7.1 Proof: Confidentiality
	3.7.2 Proof: Anonymity

	4 Delegating Capabilities in Predicate Encryption
	4.1 Definitions
	4.1.1 Definition
	4.1.2 Security
	4.1.3 A simple example

	4.2 Delegatable Hidden Vector Encryption (dHVE)
	4.2.1 Delegatable HVE overview (dHVE)
	4.2.2 dHVE definition

	4.3 Background on Pairings and Complexity Assumptions
	4.4 dHVE Construction
	4.4.1 Construction
	4.4.2 Security of our construction

	4.5 Correctness
	4.6 Proof
	4.6.1 Sequence of games
	4.6.2 Indistinguishability of Game0 and Game1
	4.6.3 Indistinguishability of Game1 and Game2
	4.6.4 Generating Type 2 delegated tokens
	4.6.5 Indistinguishability of Game2 and Game3
	4.6.6 Indistinguishability of Game3 and Game4
	4.6.7 Indistinguishability of Game4 and Game5

	4.7 dHVE Full Security
	4.8 Anonymous Hierarchical Identity-Based Encryption with Short Private Keys
	4.8.1 Construction
	4.8.2 Security of construction

	5 Query Privacy in Predicate Encryption
	5.1 Query Privacy in Predicate Encryption
	5.2 Applications of SK-PE
	5.3 Definitions: SK-PE for General Queries
	5.3.1 Full Security
	5.3.2 Single Challenge Indistinguishability
	5.3.3 Selective Single Challenge Indistinguishability
	5.3.4 Relationship Between Security Definitions

	5.4 Background on Pairings and Complexity Assumptions
	5.4.1 Bilinear groups of composite order
	5.4.2 Our assumptions

	5.5 Construction
	5.5.1 Intuition
	5.5.2 Detailed construction
	5.5.3 How to understand our construction
	5.5.4 Security and proof overview

	5.6 Correctness
	5.7 Security Proof
	5.7.1 Terminology used in the proof
	5.7.2 Proof overview
	5.7.3 Plaintext privacy of SchemeReal
	5.7.4 Indistinguishability of SchemeReal and SchemeSym

	5.8 Proof of Proposition 5.3.2
	5.9 Comparison with Previous Security Definitions
	5.10 Review of the KSW Construction

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

