
Evaluating Predicates over Encrypted Data

Elaine Shi

CMU-CS-08-166

October, 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Adrian Perrig (CMU), Chair

Dawn Song (CMU/U.C.Berkeley)
Manuel Blum (CMU)

Brent Waters (SRI/U.T.Austin)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Elaine Shi

This research was supported in part by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389, grants CNS-
0347807 and CT-CS 0433540 from the National Science Foundation, a grant from General Motors through the GM-
CMU Collaborative Research Laboratory, and by a gift from Bosch.

The views and conclusions contained here are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either express or implied, of ARO, Bosch, CMU, GM, NSF, or the
U.S. Government or any of its agencies.

Keywords: Predicate encryption, applied cryptography, bilinear group

Abstract
Predicate encryptionis a new encryption paradigm where the secret key owner can

perform fine-grained access control over the encrypted data. In particular, the secret
key owner can generate a capability corresponding to a querypredicate (e.g., whether
an encrypted email contains the keywordMEDICAL), and the capability allows one to
evaluate the outcome of this predicate on the encrypted data.

The high-level goal of this thesis is to build predicate encryption systems that are
efficient, support expressive queries and rich operations.Our contributions are sum-
marized below:

1. We propose a predicate encryption scheme supportingmulti-dimensional range
queries. Prior to this work, researchers have constructed schemes support equal-
ity tests. Hence, our scheme supports more expressive queries than before. At
the core of this construction is a technique to support conjunctive queries without
leaking the outcome of each individual clause.

2. We study how todelegate capabilitiesin predicate encryption schemes. To
demonstrate why delegation may be interesting, imagine that Alice has a ca-
pability, and she wishes to delegate to Bob a more restrictive capability allowing
him to decrypt a subset of the information Alice can learn about the plaintext
encrypted. We propose a security definition for delegation,and build a scheme
supporting delegation and conjunctive queries.

3. Most prior work focuses on hiding the plaintext (encoded in the ciphertext), but
does not provide guarantees about the secrecy of the queries(encoded in the ca-
pabilities). In other words, given a capability, one might be able to infer from it
what the query predicate is. We study how tohide the query predicates, and pro-
pose a scheme supporting inner-product queries that hides the query predicates
in addition to the plaintext.

iv

Acknowledgments
I am indebted to my thesis committee:
• the “big boss” Adrian,
• my “pseudo-advisor” Dawn,
• my “academic uncle” Brent,
• and the most kind and understanding Manuel.

Without your help, this thesis would not have been possible.
Apart from my committee members, John Bethencourt, Hubert Chan and Emily

Shen also contributed to this thesis.
I would also like to thank the English and Greek alphabet, forI am sure the no-

tations would have become more confusing, had I used Chinesecharacters to denote
things.

vi

Contents

1 Introduction 1
1.1 What is Predicate Encryption? 1
1.2 Related Work .1
1.3 Applications of predicate encryption 2
1.4 Efficiency and expressiveness 4
1.5 Summary of contributions 4

2 Formal Definitions 7
2.1 Public-key predicate encryption 7

2.1.1 Security definitions .. . 8
2.1.2 Selective security .. . 8
2.1.3 Match revealing security 9

2.2 Secret-key predicate encryption 9
2.2.1 Security definitions: Hiding both the plaintext and the query 10

3 Multi-Dimensional Range Query over Encrypted Data 13
3.1 Multi-dimensional Range Queries over Encrypted Data 13

3.1.1 Overview of our construction 13
3.1.2 Definitions . 14
3.1.3 Security Definitions .. 16

3.2 A First Attempt to Construct MRQED 17
3.2.1 Trivial construction 17
3.2.2 Improved MRQED1 construction based on AIBE 18
3.2.3 AIBE-Based MRQEDD Construction . 20

3.3 The Main MRQED Construction 22
3.3.1 Background on bilinear groups 22
3.3.2 Intuition . 22
3.3.3 The Main Construction .. 24
3.3.4 Consistency, Security 27
3.3.5 Practical Performance .. . 28

3.4 The Dual Problem and Stock Trading through a Broker 32
3.5 Notation .33
3.6 Proof of Consistency 34

vii

3.7 Proof of Security .. . 36
3.7.1 Proof: Confidentiality .. . 37
3.7.2 Proof: Anonymity . 40

4 Delegating Capabilities in Predicate Encryption 47
4.1 Definitions .. 47

4.1.1 Definition . 48
4.1.2 Security . 49
4.1.3 A simple example . 50

4.2 Delegatable Hidden Vector Encryption (dHVE) 51
4.2.1 Delegatable HVE overview (dHVE) 51
4.2.2 dHVE definition . 53

4.3 Background on Pairings and Complexity Assumptions 54
4.4 dHVE Construction .. . 56

4.4.1 Construction . 56
4.4.2 Security of our construction 60

4.5 Correctness .. 60
4.6 Proof . 61

4.6.1 Sequence of games . 61
4.6.2 Indistinguishability ofGame0 andGame1 63
4.6.3 Indistinguishability ofGame1 andGame2 69
4.6.4 Generating Type 2 delegated tokens 70
4.6.5 Indistinguishability ofGame2 andGame3 71
4.6.6 Indistinguishability ofGame3 andGame4 74
4.6.7 Indistinguishability ofGame4 andGame5 77

4.7 dHVE Full Security .. . 80
4.8 Anonymous Hierarchical Identity-Based Encryption with Short Private Keys 80

4.8.1 Construction . 81
4.8.2 Security of construction 82

5 Query Privacy in Predicate Encryption 83
5.1 Query Privacy in Predicate Encryption 83
5.2 Applications of SK-PE 85
5.3 Definitions: SK-PE for General Queries 85

5.3.1 Full Security . 86
5.3.2 Single Challenge Indistinguishability 88
5.3.3 Selective Single Challenge Indistinguishability 89
5.3.4 Relationship Between Security Definitions 90

5.4 Background on Pairings and Complexity Assumptions 91
5.4.1 Bilinear groups of composite order 91
5.4.2 Our assumptions . 91

5.5 Construction .. . 93
5.5.1 Intuition . 93

viii

5.5.2 Detailed construction 94
5.5.3 How to understand our construction 95
5.5.4 Security and proof overview 96

5.6 Correctness .. 98
5.7 Security Proof .. . 98

5.7.1 Terminology used in the proof 98
5.7.2 Proof overview . 100
5.7.3 Plaintext privacy of SCHEMEREAL . 100
5.7.4 Indistinguishability of SCHEMEREAL and SCHEMESYM 109

5.8 Proof of Proposition 5.3.2 117
5.9 Comparison with Previous Security Definitions 119
5.10 Review of the KSW Construction 120

6 Conclusion and Future Work 123
6.1 Conclusion .123
6.2 Future Work .123

Bibliography 125

ix

x

Chapter 1

Introduction

1.1 What is Predicate Encryption?

Alice loves Gmail. However, she is concerned about her privacy, and she does not wish Google
to read her emails. A common approach to address such privacyconcerns is to use encryption.
Imagine that Alice now uses traditional public-key encryption to protect the secrecy of her emails.
Alice generates a public-key/private-key pair. She publishes the public-key PK, so her friends
can encrypt the emails using PK before sending them to Alice.Now all emails will be stored in
encrypted format at Google, and Alice is happy about being able to protect her privacy.

Now Alice wishes to search for all emails whose ”(sender = Bob) and (date within [2006,
2007])”. Unfortunately, Google can no longer search her emails, since the emails are stored in en-
crypted format, and without the secret key, the emails are indistinguishable from random numbers
to Google. Alice can download all emails from Google, decrypt and search them locally. But what
if there are too many emails to download? Alternatively, Alice can give away her private-key to
Google, but of course, that beats the purpose of encryption.

This problem can be solved using a new type of encryption, calledpredicate encryption. Using
predicate encryption, Alice can compute a capability corresponding to her query, e.g., ”(sender =
Bob) and (date within [2006, 2007])”. She gives this capability to Google, and Google can test
the capability against Alice’s encrypted emails. In this way, Google is able to learn which emails
match the query; and beyond this information, Google learnsnothing more about the encrypted
emails. In contrast to traditional encryption, predicate encryption offers the property that access to
the plaintext is no longer all-or-nothing. One can release partial information about the encrypted
data in a controlled manner.

1.2 Related Work

In traditional public key encryption a user creates a publicand private key pair where the private
key is used to decrypt all messages encrypted under that public key. While this functionality
is sufficient for applications where a one-to-one association exists between a particular user and
a public key, several applications will demand a finer-grained and more expressive decryption

1

capabilities. Shamir [33] was the first to introduce finer-grained encryption systems by defining
the concept of Identity-Based Encryption (IBE). In an IBE system a party encrypts a message
under a particular public key and associates the ciphertextwith a given string or “identity”. A user
can obtain a private key, that is derived from a master secretkey, for a particular identity and can
use it to decrypt any ciphertext that was encrypted under hisidentity.

Since the realization of the first Identity-Based Encryption schemes by Boneh and Franklin [7]
and Cocks [18], there have been a number of new cryptosystemsthat provided increasing func-
tionality and expressiveness of decryption capabilities.In Attribute-Based Encryption systems
(ABE) [2, 16, 26, 31, 32] a user can receive a private capability that represents a complex access
control policy over the attributes of an encrypted record. Other encryption systems, including key-
word search (or anonymous IBE) [1, 6, 9, 12, 13, 22, 28, 34, 35,36] systems, allow for a capability
holder to evaluate a predicate on the the encrypted data itself and learn nothing more. This type of
functionality represents a significant breakthrough in thesense that access to the encrypted data is
no longer all-or-nothing; a user with a predicate capability will be able to learn partial information
about encrypted data.

1.3 Applications of predicate encryption

Apart from the private Gmail scenario described above, predicate encryption also has various other
applications.

Network audit logs. Recently, the network intrusion detection community has made large-scale
efforts to collect network audit logs from different sites [20, 21, 30]. In this application, a network
gateway or an Internet Service Provider (ISP) can submit network traces to an audit log repository.
However, due to the presence of privacy sensitive information in the network traces, the gateway
will allow only authorized parties to search their audit logs. We consider the following four types
of entities: agateway, anuntrusted repository, anauthority, and anauditor. Predicate encryption
allows the gateway to submit encrypted audit logs to the untrusted repository. Normally, no one
is able to decrypt these audit logs. However, when maliciousbehavior is suspected, an auditor
may ask the authority for a search capability. With this search capability, the auditor can decrypt
entries satisfying certain attack characteristics, e.g.,network flows whose destination address and
port number fall within a certain range. However, the privacy of all other flows should still be
preserved. Note that in practice, to avoid a central point oftrust, we can have multiple parties to
jointly act as the authority. Only when a sufficient number ofthe parities collaborate, can they
generate a valid search capability. Securely splitting theauthority into multiple parties can be
achieved through secure multi-party computation techniques [24], and is outside the scope of this
thesis.

Financial audit logs. Financial audit logs contain sensitive information about financial transac-
tions. Predicate encryption allows financial institutionsto release audit logs in encrypted format.
When necessary, an authorized auditor can obtain a decryption key from a trusted authority. With

2

this decryption key, the auditor can decrypt certain transactions that may be suspected of fraudulent
activities. However, the privacy of all other transactionsis preserved.

Public health monitoring. Consider a health monitoring program. When Alice moves about
in her daily life, a PDA or smart-phone she carries automatically deposits her encrypted location
at a storage server. Assume that each crumb is of the form((x, y, t), ct), where(x, y) represents
the location,t represents time, andct is Alice’s contact information. During an outbreak of an
epidemic, Alice wishes to be alerted if she was present at a site borne with the disease during an
incubation period, i.e., if(x, y, t) falls within a certain range. However, she is also concernedwith
privacy, and she does not wish to leak her trajectory if she has not been to a site borne with the
disease.

Sharing of medical records. Medical research institutes would like to obtain patients’medical
records for their research. However, these medical recordsare usually privacy sensitive, and it is
necessary to enforce access control, such that a cardiologist is allowed to access medical records
related to heart diseases, but not records on eye diseases. Using predicate encryption, we can
easily enforce such fine-grained access control policies bygranting the cardiologist a capability
that allows her to decrypt precisely the medical records sheneeds. Furthermore, if the cardiologist
would like her assistant to check all cases that happen within the year 2008, she can perform a
delegation operation, and generate a sub-capability that allows the decryption of all records on
heart diseases and within the year 2008.

Stock trading through an untrusted broker. An investor uses a broker to trade stocks. The
investor does not fully trust the broker, and wishes to reveal as little information to the broker as
possible. For example, the investor can place an order that says, “buy x amount of stock y if the
price falls below p today”. The broker should not be able to decrypt this order until the current price
satisfies the conditions specified by the order. This problemcan be addressed through predicate
encryption. A party trusted by the investor (e.g., the stockexchange) issues a new capability to
the broker as the stock price changes. The broker can now try to use the capability to decrypt the
investor’s order. If the current price meets the conditionsspecified by the order, the decryption is
successful, and the order gets executed. If the order is never executed, the broker learns nothing
about the contents of the order, except the fact that the conditions specified by the order were never
met.

Untrusted remote storage. Individual users may wish to store emails and files on a remote
server, but because the storage server is untrusted, the content must be encrypted before it is stored
at the remote server. Emails and files can be classified with multiple attributes. Users may wish to
perform certain types of queries and retrieve only data thatsatisfy the queries.

Using biometrics in anonymous IBE. Predicate encryption can also be used in biometric-based
Anonymous Identity-Based Encryption (AIBE). Using biometrics in identity-based encryption first
appeared in the work by Sahai and Waters [32]. In this application, a person’s biometric features

3

such as finger-prints, blood-type, year of birth, eye color,etc., are encoded as a pointX in a
multi-dimensional lattice. Personal data is encrypted using the owner’s biometric features as the
identity, and the encryption protects both the secrecy of the personal data and the owner’s biometric
identity. Due to potential noise each time a person’s biometric features are sampled, a user holding
the private key for biometric identityX should be allowed to decrypt data encrypted underX′,
iff X′ andX have small distance. In particular, the SahaiWaters04 construction [32] considered
theset-overlapdistance (or theHammingdistance); and their encryption scheme does not hide the
identity of the user. Our construction for multi-dimensional queries allows a user with the private
key for identityX, to decrypt an entry encrypted underX′, iff ℓ∞(X,X′) ≤ ǫ. Hereℓ∞ denotes the
ℓ∞ distance betweenX andX′, and is defined asmax{|x1 − x′

1| , . . . , |xD − x′
D|}. In this case, the

decryption region is a hyper-cube in multi-dimensional space. One can also associate a different
weight to each dimension, in which case the decryption region becomes a hyper-rectangle.

1.4 Efficiency and expressiveness

One important goal in designing predicate encryption systems is the ability to support complex
query predicates. Meanwhile, we would like our construction to be efficient. To be specific about
what we mean by efficient, we consider the following performance metrics: encryption time, ci-
phertext size, capability size and decryption time. Ideally, we would like all of these performance
metrics to be polynomial in the length of the plaintext (and also the security parameter).

Previously, researchers have designed predicate encryption schemes that support keyword-
based searches [1, 6, 9, 39]. A keyword search is an equality test: given a specially formed
capability, one can evaluate whether the ciphertext is an encryption of a specific plaintext. For
example, if we use such a predicate encryption system for theabove-mentioned network audit log
application, the auditor would be able to make queries of theform: “PORT= 1434”. (This is the
typical port number used by the SQL Slammer worm.)

1.5 Summary of contributions

The high-level goal of this thesis is to develop predicate encryption schemes that (1) are efficient,
(2) support expressive queries and rich operations, and (3)have better security (under certain as-
sumptions). The main technical content of this thesis is formed around three papers [34, 35, 36],
each of which proposes a novel construction, and representsan endeavor at the above-mentioned
high-level goal. Table 1.1 summarizes the contributions ofeach of these papers. The work on
multi-dimensional range query is done with J. Bethencourt,H. Chan, D. Song and A. Perrig; the
work on delegation of capabilities is joint with Brent Waters; and the work on query-hiding predi-
cate encryption is joint with Emily Shen and Brent Waters.

To help readers understand the development of this field, position our work, and understand our
contributions, I also created Table 1.2 which lists relatedwork in the area of predicate encryption.

4

Constructions Expressiveness and features Comments Contribution

SBCSP07 [35] Multi-dimensional range query Secure in the More expressive queries
match-revealing model

SW08 [36] Conjunctive query,Delegation Richer operations (delegation)
SSW08 [34] Inner-product query, Secret-key setting Stronger security,

Hides queryin addition to plaintext more expressive

Table 1.1:Summary of contributions. See chapter 2 for the definition of match-revealing security,
secret-key setting, etc.

Constructions Expressiveness and features Example query Comments

[1, 6, 9, 13, 22, 39] Equality test query SENDER = Bob a.k.a. Keyword searches
[12, 25] Conjunctive queries & extensions (SENDER = Bob) [25] reveals the outcome

∧ (YEAR = 2008) of individual clauses
SBCSP06[35] Multi-dimensional range query (URGENT∈ [0, 3]) Secure in the

∧ (YEAR ∈ [2003, 2008]) match-revealing model
SW08[36] Conjunctive query,Delegation (SENDER = Bob)

∧ (YEAR = 2008)
[28] Inner-product query (~x,~v) = 0

SSW08[34] Inner-product query, (~x,~v) = 0 Secret-key setting
Hides queryin addition to plaintext

Table 1.2:Putting it in context with related work . This table summarizes our work in this space and
positions our work in context with related work. The highlighted constructions are the contributions of this
thesis. The table is created roughly (not strictly) in chronological order. The BW06 construction [12] and
the SBCSP06 [35] construction are independent and concurrent work. It is difficult to construct an intuitive
query example for inner-product queries. However, note that inner-product is strictly more expressive than
conjunctions. See Chapter 5 for more details on inner product queries.

Outline of the thesis. Chapter 2 presents a formal definition of predicate encryption and its
security. Chapter 3, 4 and 5 will each describe the one of the results shown above in Table 1.1.
While these three chapters are logically connected, each chapter is self-contained and can be read
independently from others.

A note on the notations. Chapter 2 gives a generic and unified definition. As the following
Chapters 3, 4 and 5 each considers a more specific scenario, wewill use a more concrete instan-
tiation of the generic definition in each chapter. The resulting variation in definition and notation
across chapters is intended for notational convenience, and does not affect the essence of generic
definition given in Chapter 2. These variants of definitions and notations will be clearly stated in
each chapter to avoid ambiguity.

5

6

Chapter 2

Formal Definitions

Recall that in predicate encryption, a party who owns the master secret key can generate a capa-
bility (also referred to as atoken) that allows one to decrypt all data entries satisfying a certain
predicate functionf . However, all other information about the plaintext still remains secret.

In this chapter, we give formal definitions for predicate encryption and its security.

2.1 Public-key predicate encryption

We now give a formal definition for public-key predicate encryption. This definition is due to
Boneh and Waters [12].

Let X = (x1, x2, . . . , xℓ) ∈ {0, 1}
ℓ denote a plaintext. Without loss of generality, assume that

we would like to evaluate from the ciphertext boolean functions (also referred to aspredicates) on
X, that isf : {0, 1}ℓ → {0, 1}. Functions that output multiple bits can be regarded as concatena-
tion of boolean functions. LetF denote a family of boolean functions from{0, 1}ℓ to {0, 1}. For
example,F can be the set of all conjunctions on(x1, x2, . . . , xℓ) ∈ {0, 1}

ℓ. A token allows one to
evalute from the ciphertext a predicatef ∈ F .

A Public-Key Predicate Encryption (PK-PE) scheme consistsof the following (possibly ran-
domized) algorithms.

Setup(1λ,F). TheSetup algorithm takes as input a security parameter1λ the predicate family
F being considered; and outputs a public keyPK and a master secret keyMSK.

Encrypt(PK, X). The Encrypt algorithm takes as input a public keyPK, a plaintextX =
(x1, x2, . . . , xℓ) ∈ {0, 1}

ℓ; and outputs a ciphertextCT.

GenToken(PK, MSK, f). TheGenToken algorithm takes as input a public keyPK, master secret
key MSK, and a query predicatef ∈ F . It outputs a token for evaluating the predicatef from a
ciphertext.

7

Query(PK, CT, TKf). TheQuery algorithm takes as input a public keyPK, a tokenTKf for the
predicatef , and a ciphertextCT. SupposeCT is an encryption of the plaintextX; the algorithm
outputsf(X).

2.1.1 Security definitions

To define the security for predicate encryption, we describea query security game between a
challenger and an adversary. This game formally captures the notion that the tokens reveal no
unintended information about the plaintext. In this game, the adversary asks the challenger for a
number of tokens. The adversary should not be able to deduce any unintended information from
these tokens. The game proceeds as follows:

• Setup.The challenger runs theSetup algorithm, and gives the adversary the public keyPK.

• Query 1. The adversary adaptively makes a polynomial number of queries. In each query,
the adversary specifies a predicatef ∈ F , and asks the challenger for a token for that
predicate. The challenger computes the requested token by calling theGenToken algorithm,
and returns the token to the adversary.

• Challenge. The adversary outputs two stringsX∗
0 , X

∗
1 ∈ {0, 1}

ℓ subject to the constraint
that for any predicatef queried by the adversary in theQuery 1 stage, the following must
be true:

f(X∗
0) = f(X∗

1) (2.1)

Next, the challenger flips a random coinb, and encryptsX∗
b . It returns the ciphertext to the

adversary.

• Query 2. Repeat theQuery 1 stage. All predicates queried in this stage should satisfy the
same condition as above.

• Guess.The adversary outputs a guessb′ of b.

The advantage of an adversaryA in the above game is defined to beAdvA = |Pr[b = b′]−1/2|.

Definition 2.1.1 We say that a public-key predicate encryption system issecure, if for all poly-
nomial time adversariesA attacking the system, its advantageAdvA is a negligible function of
λ.

2.1.2 Selective security

We also define a weaker security notion calledselective security. In the selective security game,
instead of submitting two stringsX∗

0 , X
∗
1 in the Challengestage, the adversary first commits to

two strings at the beginning of the security game. The rest ofthe security game proceeds exactly
as before. The selective security model has appeared in various constructions in the literature [3,
12, 13, 14, 15, 35], since it is often easier to prove securityin the selective model.

Definition 2.1.2 We say that a delegateable predicate encryption system isselectively secure, if
all polynomial time adversariesA have negligible advantage in the selective security game.

8

2.1.3 Match revealing security

In a recently published paper [35], we define another relaxedversion of security calledmatch-
revealingsecurity. In comparison, we call the strict version of security (as defined in Section 2.1.1)
match-concealingsecurity.

In match-concealingsecurity, the adversary does not learn any additional information about the
plaintext whether or not the output of the predicate is true.The readers can think of this as “two-
sided” security. By contrast,match-revealingsecurity can be thought of as “one-sided” security:
• When the predicate evaluates to true, the adversary does notlearn any additional information

about the plaintext encrypted;

• When the predicate evaluates to false, we no longer care about preserving the secrecy of the
plaintext.

Clearly match-concealing security implies match-revealing security. However, we are also
interested in match-revealing security, because in some cases, using the relaxed version of security
can lead to more efficient and practical constructions. Meanwhile, in many practical applications,
we no longer care about the secrecy of the encrypted entry if it matches the query predicate. For
example, in the above-mentioned network audit log example,a matching entry corresponds to a
suspicious or attack flow. In this case, the audit is interested in decrypting the entire entry and
studying it. Hence, we are not obligated to preserve the privacy of these matching entries. Of
course, one can also conceive of other applications where the strict notion of security, that is,
match-concealing security, is necessary.

The formal definition of match-revealing security is almostthe same as match-concealing se-
curity, with the exception that Equation (2.1) is now the following new equation:

f(X∗
0) = f(X∗

1) = 0

2.2 Secret-key predicate encryption

Secret-key predicate encryption can be similarly defined aspublic-key predicate encryption. The
difference is that in public-key encryption, anyone can encrypt using the public-key. By contrast, in
secret-key encryption, encryption and decryption are bothperformed using the secret-key. Hence,
only the secret-key owner can encrypt. In both schemes, onlythe secret-key owner can decrypt.

We now define secret-key predicate encryption. More discussion on the security definitions
can be found in Chapter 5.

A Secret-Key Predicate Encryption (SK-PE) scheme consistsof the following (possibly ran-
domized) algorithms.

Definition 2.2.1 (Secret-key predicate encryption)A Secret-Key Predicate Encryption (SKPE)
system consists of the following (possibly randomized) algorithms.

Setup(1λ): TheSetup algorithm takes as input a security parameter1λ, and outputs a secret key
MSK.

Encrypt(MSK, x): The Encrypt algorithm takes as input a secret keyMSK, a plaintextx ∈
{0, 1}ℓ; and outputs a ciphertextCT.

9

GenToken(MSK, f): The GenToken algorithm takes as input a secret keyMSK, and a query
predicatef : {0, 1}ℓ → {0, 1}. It outputs a tokenTKf that allows one to evaluatef(x) over
an encryption ofx. As mentioned above, we assume that the query predicate can be encoded
with a bitstring of lengthm.

Query(TKf , CT): The Query algorithm takes as input a tokenTKf for the predicatef , and a
ciphertextCT which is an encryption ofx ∈ {0, 1}ℓ, the algorithm outputsf(x).

2.2.1 Security definitions: Hiding both the plaintext and the query

Public-key predicate encryption schemes guarantee the secrecy of the ciphertext; however, they do
not guarantee the secrecy of the tokens. In fact, for public-key predicate encryption, it is inherently
impossible to achieve ciphertext secrecy and token secrecysimultaneously. This is due to the fact
that anyone is able to encrypt using the public-key. In the Gmail example, if Google would like
to know whether a token corresponds to the query “TITLE = cryptography”, Google can simply
encrypt an email whose “TITLE = cryptography” using the public-key, and test the token against
the resulting ciphertext.

In secret-key predicate encryption, it is possible to guarantee the secrecy of both the plaintext
(encoded in a ciphertext) and that of the query (encoded in a token). This provides even stronger
privacy guarantees in practice.

We now formally define the security for secret-key predicateencryption. As mentioned above,
our definition aims to guarantee the secrecy of the plaintext, as well as the query.

To explain the intuition behind our security definition, consider a privacy-preserving remote
storage application, where Alice stores her encrypted documents on a remote server, and later is-
sues tokens to the server to search for matching documents. Our goal is to leak as little information
to the storage server as possible. Under our model, Alice makes a query by submitting a token to
the server, and the server learns exactly which of her encrypted documents match the query, and
returns the matching documents to Alice. Therefore, in thisframework, the server inevitably learns
Alice’s access pattern, a.k.a, which documents Alice retrieves with each query.

We would like to define security in the strongest sense possible: informally, the storage server
should learn only Alice’s access pattern, and nothing more. In particular, this implies that the
server learns nothing about Alice’s encrypted documents, or what queries she is making.

To capture the notion that the server learns only Alice’s access pattern, we need to first formally
define whataccess patternmeans. Intuitively, the access pattern is the outcomes ofq predicates on
n plaintexts.

Definition 2.2.2 (Access pattern)LetX = (x1, x2, . . . , xn) denote an ordered list ofn plaintexts,
wherexi ∈ {0, 1}

ℓ for 1 ≤ i ≤ n. Let F = (f1, f2, . . . , fq) denote an ordered list ofq query
predicates, wherefi ∈ {0, 1}

m for 1 ≤ i ≤ q. The access pattern onX andF is anq × n matrix:

ACCESSPATTERN(X, F) :=




f1(x1), f1(x2), . . . , f1(xn)
f2(x1), f2(x2), . . . , f2(xn)
. . . , . . .
fq(x1), fq(x2), . . . , fq(xn)




10

We now proceed to define the security for SKPE. Let

X = (x1, x2, . . . , xn), X ′ = (x′
1, x

′
2, . . . , x

′
n)

denote two ordered lists of plaintexts. Let

F = (f1, f2, . . . , fq), F ′ = (f ′
1, f

′
2, . . . , f

′
q)

denote two ordered lists of queries predicates. Now imaginethe following two worlds. In World
0, the server seesn encrypted documents andq tokens:

(Enc(x1), Enc(x2), . . . , Enc(xn)) ,
(
TKf1

, TKf2
, . . . , TKfq

)

In World 1, the server seesn encrypted documents andq tokens:

(Enc(x′
1), Enc(x′

2), . . . , Enc(x′
n)) ,

(
TKf ′

1
, TKf ′

2
, . . . , TKf ′

q

)

Suppose the two worlds have the same access pattern, i.e.,

ACCESSPATTERN(X, F) = ACCESSPATTERN(X ′, F ′)

Informally, the server should not be able to distinguish between the two worlds. The security
definition presented below describes a game between a challenger and an adversary, and is intended
to capture this notion of indistinguishability between twothese worlds. Moreover, the definition
considers an adaptive adversary: an adversary who can choose what ciphertext/token queries to
make depending on the previous interactions with the challenger.

Definition 2.2.3 (SKPE full security) We say that an SKPE scheme is fully secure, if no polynomial-
time adversaries has more than negligible advantage in the following game.

Setup. The challenger runs theSetup algorithm, and retains the secret keyMSK to itself. In ad-
dition, it flips a random coinb, and keeps the bitb to itself as well. Define four ordered lists,
X0, F0, X1, F1, where(X0, F0) will record plaintexts and predicates queried by the adver-
sary in World0, and(X1, F1) will record plaintexts and predicates queried by the adversary
in World 1. Initially, all four lists are empty.

Query. The adversary adaptively makes the following types of queries. The adversary can make
up to a polynomial number of these queries.

• Ciphertext query. The adversary specifies two plaintextsx0, x1 ∈ {0, 1}
ℓ to the chal-

lenger. The challenger encryptsxb and returns the ciphertext to the adversary. Append
x0 to the listX0, andx1 to the listX1.

• Token query. The adversary specifies two predicatesf0, f1 ∈ {0, 1}
m to the chal-

lenger. The challenger computes a token for the predicatefb, and gives the resulting
token to the adversary. Appendf0 to the listF0, andf1 to the listF1.

All queries made in this stage should be indistinguishable by access pattern. In other words,
at the end of the game, all queries made should satisfy the following condition:

ACCESSPATTERN(X0, F0) = ACCESSPATTERN(X1, F1)

Guess. The adversary outputs a guessb′ of the bit b. Its advantage is defined asAdvA =∣∣Pr[b′ = b]− 1
2

∣∣.

11

12

Chapter 3

Multi-Dimensional Range Query over
Encrypted Data

3.1 Multi-dimensional Range Queries over Encrypted Data

In this section, we demonstrate a predicate encryption system supporting multi-dimensional range
queries. This contents of this section are based on work published in a recent paper [35]. Therefore,
throughout this section, we use notations consistent with the paper [35].

The reason that we are particularly interested in multi-dimensional range queries is because
they are the most prevalent type of queries in current database systems. In fact, SQL queries are
by nature multi-dimensional range queries.

3.1.1 Overview of our construction

We assume that each plaintext entries hasD attributes, and the query predicates are conjunctions
of range queries over a subset of theseD attributes. For example, assume that each entry has the
structure (IP, port, time), and below is a typical example ofa multi-dimensional range query:

(IP ∈ [128.2. ∗ .∗]) ∧ (time∈ {2006, 2007})

A more formal and complete definition will be given in Section3.1.2.
We give a provably secure predicate encryption system for multi-dimensional range queries.

The performance of our construction can be summarized by Table 3.1.

Comparison with BonehWaters06. In the above table, the BonehWaters06 scheme is concur-
rent and independent work to ours. In their paper, they give ageneral definition for predicate en-
cryption, and propose a scheme called Hidden Vector Encryption (HVE) for performing conjunc-
tive equality tests. They then show how HVE can be extended tosupport conjunctive subset/range
queries.

The HVE construction given by Boneh and Waters has ciphertext length and encryption time
linear with respect to the length of the plaintext. The tokensize has length linear in the number

13

Scheme Pub. Key Size Encrypt. Cost CT Size Token Size Decrypt. Cost Security

BonehWaters06 [12] O(D · T) O(D · T) O(D · T) O(D) O(D) MC
Naive AIBE-based O(1) O((log T)D) O((log T)D) O((log T)D) O((log T)D) MR

Our scheme O(D · log T) O(D · log T) O(D · log T) O(D · log T) O((log T)D) MR

Table 3.1:Performance of different approaches.D denotes the number of dimensions andT the number of
points in each dimension. The naive AIBE-based scheme is described in Section 3.2.3. MC and MR refer
to thematch-concealingandmatch-revealingsecurity models respectively.

of clauses in the conjunctive query, and so is decryption time. The HVE construction is efficient
in the sense that all performance measures are polynomial (in fact, linear) in the length of the
plaintext encrypted. However, to extend HVE to support multi-dimensional range queries, they
need to incur an exponential cost. Notice that in Table 3.1, both public key, ciphertext size and
encryption time areO(D ·T), and this is exponential in the length ofT (i.e., number of bits needed
to encodeT distinct values).

Our construction [35] is very similar to the BonehWater06 work in many ways. We also use
pairing based techniques to build our construction. Although the two schemes appear different
at the algebra level, (for example, the two constructions use different types of bilinear groups) at
the core of both constructions is a similar idea to defend against the collusion attack (See Sec-
tion 3.3.2). In particular, although not explicitly stated, the core of our construction is also an
HVE-like scheme that supports a conjunction of equality tests, and it can be proven secure in
the match-concealing security model. However, we encountered similar difficulties when we en-
deavored to extend it to support multi-dimensional range queries, essentially, we had to incur a
significant cost which would have made the construction too expensive in practice, and typically,
in the network audit log and similar applications.

To cope with such difficulties, we propose the relaxed security notion, that is, match-revealing
security. Our multi-dimensional range query constructionuses the relaxed security notion instead.
Doing this allows us to enable a better trade-off in the various performance measures. As shown
by Table 3.1, our construction hasO(D log T) public key size, ciphertext size and encryption time.
In comparison, the BonehWaters06 construction hasO(DT) public key size, ciphertext size and
encryption time. On the other hand, our construction is moreexpensive in decryption time. We
needO((logT)D) decryption time while the BonehWater06 construction has a decryption time
of O(D). In applications like network audit logs as described above, T can be as large as232

to encode an IP address, and typically,D may range from2 to 4. In such scenarios whereT is
large andD is small, our construction is more practical. However, one can also conceive of other
applications whereT is small andD is large, and in these cases, the BonehWaters06 construction
would be more practical.

3.1.2 Definitions

In the network audit log application, a gateway encrypts network flows, and submits them to an
untrusted repository. When necessary, an auditor may ask anauthority for a key that allows the
decryption of all flows whose attributes fall within a certain range; while the privacy of all irrelevant

14

flows are still preserved. There is a geometric interpretation to these multi-attribute range queries.
Suppose that we would like to allow queries on these three fields: time-stampt, source address
a, and destination portp. The tuple(t, a, p) can be regarded as a pointX in multi-dimensional
space. Now suppose we query for all flows whoset, a, p falls within some range:t ∈ [t1, t2],
a ∈ [a1, a2] andp ∈ [p1, p2]. Here the “hyper-range”[t1, t2] × [a1, a2] × [p1, p2] forms a hyper-
rectangleB in space. The above range query is equivalent to testing whether a pointX falls inside
the hyper-rectangleB.

We now formally define these notions mentioned above. Assumethat an attribute can be en-
coded using discrete integer values1 throughT . For example, an IP address can be encoded
using integers1 through232. We use the notation[T] to denote integers from1 to T , i.e., [T] =
{1, 2, . . . , T}. Let S ≤ T be integers, we use[S, T] to denote integers fromS to T inclusive,
i.e., [S, T] = {S, S + 1, . . . , T}. We assume thatT is a power of 2, and denotelog2 as simply
log. Suppose that we would like to support range queries onD different attributes, each of them
can take on values in[T1], [T2], . . . , [TD] respectively. We formally define aD-dimensional lattice,
points and hyper-rectangles below.

Definition 3.1.1 (D-dimensional lattice, point, hyper-rectangle) Let∆ = (T1, T2, . . . , TD). L∆ =
[T1] × [T2] × . . . × [TD] defines aD-dimensional lattice. A D-tupleX = (x1, x2, . . . , xD) de-
fines apoint in L∆, wherexd ∈ [Td](∀d ∈ [D]). A hyper-rectangle B in L∆ is defined as
B(s1, t1, s2, t2, . . . , sD, tD) = {(x1, x2, . . . , xD)

∣∣∀d ∈ [D], xd ∈ [sd, td]} (∀d ∈ [D], 1 ≤ sd ≤
td ≤ Td).

An MRQED scheme consists of four (possibly randomized) polynomial-time algorithms:Setup,
Encrypt, DeriveKey andQueryDecrypt. In the network audit log example, an authority
runsSetup to generate public parameters and a master private key; a gateway runs theEncrypt

algorithm to encrypt a flow. Encryption is performed on a pair(Msg,X). The messageMsg

is an arbitrary string, andX is a point in multi-dimensional space, representing the attributes.
For example, suppose that we would like to support queries onthe following three attributes of
a flow: time-stampt, source addressa, and destination portp. The tuple(t, a, p) then becomes
the pointX, and the entire flow summary forms the messageMsg. Whenever necessary, the au-
thority can run theDeriveKey algorithm, and compute a decryption key allowing the decryption
of flows whose attributes fall within a certain range. Given this decryption key, an auditor runs
the QueryDecrypt algorithm over the encrypted data to decrypt the relevant flows. We now
formally define MRQED.

Definition 3.1.2 (MRQED) An Multi-dimensional Range Query over Encrypted Data (MRQED)
scheme consists of the following polynomial-time randomized algorithms.

1. Setup(Σ, L∆): Takes a security parameterΣ andD-dimensional latticeL∆ and outputs
public keyPK and master private keySK.

2. Encrypt(PK,X,Msg): Takes a public keyPK, a pointX, and a messageMsg from the
message spaceM and outputs a ciphertextC.

3. DeriveKey(PK, SK,B): Takes a public keyPK, a master private keySK, and a hyper-
rectangleB and outputs decryption key for hyper-rectangleB.

15

4. QueryDecrypt(PK, DK,C): Takes a public keyPK, a decryption keyDK, and a ciphertext
C and outputs either a plaintextMsg or⊥, signaling decryption failure.

For each messageMsg ∈ M, hyper-rectangleB ⊆ L∆, and pointX ∈ L∆, the above algo-
rithms must satisfy the following consistency constraints:

QueryDecrypt(PK, DK,C) =

{
Msg if X ∈ B

⊥ w.h.p., ifX /∈ B
(3.1)

whereC = Encrypt(PK,X,Msg) andDK = DeriveKey(PK, SK,B).

3.1.3 Security Definitions

Suppose that during time[t1, t2], there is an outbreak of a worm characteristic by the port number
p1. Now the trusted authority issues a key for the ranget ∈ [t1, t2] andp = p1 to a research group
who has been asked to study the worm behavior. With this key, the research group should be able
to decrypt only flows whose time-stamp and port number fall within the given range. The privacy
of all other flows should still be preserved. Informally, suppose that a computationally bounded
adversary has obtained decryption keys for regionsB0,B1, . . . ,Bq. Now given a ciphertextC =
Encrypt(PK,X,Msg) such thatX /∈ B0,B1, . . . ,Bq, the adversary cannot learnX or Msg

from C. Of course, since the adversary fails to decryptC using keys for regionsB0,B1, . . . ,Bq,
the adversary inevitably learns that the pointX encrypted does not fall within these regions. But
apart from this fact, the adversary cannot learn more information aboutX or Msg.

We now formalize this intuition into aselective securitygame for MRQED. In particular, we
will prove the security of our construction under theselective, match-revealingmodel. Here, se-
lective security notion is similar to the selective-ID security for IBE schemes [3, 14, 15]. As
mentioned in Section 2.1.1, a stronger notion of security ismatch-concealing, adaptive security.

Below, we state the formal definition of security in the selective, match-revealing model. Note
that the security definitions for MRQED can be inferred from the security definition for general
predicate encryption given in Section 2.1.1. However, for clarity, we now state it again in the
context of multi-dimensional range queries.

Definition 3.1.3 (MR-selective security)An MRQED scheme isselectively secure in thematch-
revealing (MR) model if all polynomial-time adversaries have at most anegligible advantage in
the selective security game defined below.

• Init : The adversary submits two pointsX∗
0,X

∗
1 ∈ L∆ where it wishes to be challenged.

• Setup: The challenger runs theSetup(Σ, L∆) algorithm to generatePK, SK. It givesPK

to the adversary, keepingSK secret.

• Phase 1: The adversary adaptively issues decryption key queries for hyper-rectangles:

B1,B2, . . . ,Bq0

Furthermore,X∗
0 andX∗

1 are not contained in any hyper-rectangles queried in this phase, i.e.,
for 0 < i ≤ q0, X∗

0 /∈ Bi, andX∗
1 /∈ Bi.

16

• Challenge: The adversary submits two equal length messagesMsg0,Msg1 ∈ M. The
challenger flips a random coin,b, and encryptsMsgb underX∗

b . The ciphertext is passed to
the adversary.

• Phase 2: Phase 1 is repeated. The adversary adaptively issues decryption key queries for
hyper-rectanglesBq0+1,Bq0+2, . . . ,Bq. As before, all hyper-rectangles queried in this stage
must not containX∗

0 andX∗
1.

• Guess: The adversary outputs a guessb′ of b.

An adversaryA’s advantage in the above game is defined asAdvA(Σ) =
∣∣Pr[b = b′]− 1

2

∣∣.

3.2 A First Attempt to Construct MRQED

3.2.1 Trivial construction

We first give a trivial construction for one-dimensional range query over encrypted data. We refer
to one-dimensional range query over encrypted data as MRQED1 where the superscript represents
the number of dimensions.

In the trivial MRQED1 construction, we make use of any secure public key encryption scheme.
We first generateO(T 2) public-private key pairs, one for each range[s, t] ⊆ [1, T]. To encrypt a
messageMsg under a pointx, we produceO(T 2) ciphertexts, one for each range[s, t] ⊆ [1, T].
In particular, ifx ∈ [s, t], we encryptMsg with public keypks,t; otherwise, we encrypt an invalid
message⊥ with pks,t. The decryption key for any range[s, t] is thensks,t, the private key for[s, t].

We now give a formal description of the above construction for one-dimensional range queries.
Let AE = (K, E ,D) denote a secure public key encryption scheme.K, E ,D represent the key
generation, encryption and decryption algorithm respectively. We build a MRQED1 scheme based
onAE as below.
• DuringSetup, one runsK, the key generation algorithm,O(T 2) times to generate the fol-

lowing public and private keys:

PK =
{
pks,t

∣∣1 ≤ s ≤ t ≤ T
}

, SK =
{
sks,t

∣∣1 ≤ s ≤ t ≤ T
}

• To encrypt a pair(Msg, x) wherex is a point between1 andT , first define for1 ≤ s ≤ t ≤ T

δs,t(Msg, x) =

{
Msg if s ≤ x ≤ t

⊥ otherwise

where⊥ denotes the “invalid message”. Now one runs the encryption algorithm E , and for
all ranges[s, t] ⊆ [1, T], one encryptsδs,t(Msg, x) underpks,t. The result of encryption is a
tuple of lengthT 2, denoted(c1,1, c1,2, . . . , cT,T).

• To release a decryption keyDKs,t for range[s, t] ⊆ [1, T], one releases the keysks,t.

• To decrypt a ciphertextC = (c1,1, c1,2, . . . , cT,T) with DKs,t, one usesDKs,t to decryptcs,t.
Decryption either yields⊥, if the pointx encrypted does not fall within the range[s, t]; or it
yields the messageMsg, if x falls within [s, t].

17

x T1

replacements

ID4

ID3

ID2

ID1

(a) The path from a leaf to the
root.

c4

c3

2c

c1

IDBIDA

IDC

x T1 . . . 1 T3.

[3,7]

. . . 7

k

k k

(b) A ciphertext and a decryption key in MRQED1.

Figure 3.1:An MRQED1 scheme. (a) Path from the leaf node representingx ∈ [T] to the root.P(x) =
{ID1, ID2, ID3, ID4}. (b) Encryption under the pointx = 3 and the keys released for the range[3, 7].

Clearly, the trivial MRQED1 construction results inO(T 2) public key size,O(T 2) encryption
overhead and ciphertext size,O(1) decryption key size andO(1) decryption cost.

One can easily extend the trivial construction into multiple dimensions. The resulting MRQEDD

scheme requires that one encryptδB(Msg,X) for all hyper-rectanglesB in space. Therefore, the
trivial MRQEDD scheme hasO(T 2D) public key size,O(T 2D) encryption cost and ciphertext size,
O(1) decryption key size andO(1) decryption cost.

3.2.2 Improved MRQED1 construction based on AIBE

We show an improved MRQED construction based on Anonymous Identity-Based Encryption
(AIBE). For clarity, we first explain the construction for one dimension. We call the scheme
MRQED1 where the superscript denotes the number of dimensions. We note that the primitives
and notations introduced in this section will be used in our main construction.

Primitives: Efficient Representation of Ranges

To represent ranges efficiently, we build a binary interval tree over integers1 throughT .

Definition 3.2.1 (Interval tree) Let tr(T) denote a binary interval tree over integers from1 to T .
Each node in the tree has a pre-assigned uniqueID. For convenience, we definetr(T) to be the set
of all nodeIDs in the tree. Each node intr(T) represents a range. Letcv(ID) denote the range
represented by nodeID ∈ tr(T). Definecv(ID) as the following: LetID be theith leaf node,
thencv(ID) = i. Otherwise, whenID is an internal node, letID1 andID2 denote its child nodes,
thencv(ID) = cv(ID1) ∪ cv(ID2). In other words,cv(ID) is the set of integers that correspond
to the leaf descendants ofID.

Given the interval treetr(T), we define theP(x) of IDs covering a pointx ∈ [1, T], and the
setΛ(x) of IDs representing a range[s, t] ⊆ [1, T].

• Set of IDs covering a pointx. For a pointx ∈ [1, T] and some nodeID ∈ tr(T), we
say thatID coversthe pointx if x ∈ cv(ID). DefineP(x) to be the set ofIDs covering
point x. Clearly,P(x) is the collection of nodes on the path from the root to the leafnode
representingx. As an example, in Figure 3.1 (a),P(x) = {ID1, ID2, ID3, ID4}.

18

• Range as a collection ofIDs. A range [s, t] ⊆ [1, T] is represented by a collection of
nodes:Λ(s, t) ⊆ tr(T). We defineΛ(s, t) to be the smallest of all subsetsV ⊆ tr(T) such
that

⋃
ID∈V

cv(ID) = [s, t]. It is not hard to see that for any[s, t] ⊆ [1, T], Λ(s, t) is uniquely
defined, and its size|Λ(s, t)| is at mostO(log T).

We will make use of the following properties in our AIBE-based construction: Ifx ∈ [s, t],
thenP(x) ∩ Λ(s, t) 6= ∅; in addition,P(x) andΛ(s, t) intersect at only one node. Otherwise, if
x /∈ [s, t], thenP(x) ∩ Λ(s, t) = ∅.

AIBE-Based MRQED1 Scheme

AIBE encrypts a messageMsg using an identityID as the public key. Given the private key
for ID, one can successfully decrypt all messages encrypted by identity ID. The encryption
scheme protects both the secrecy of the messageMsg and the identityID in the following sense:
Given ciphertextC, which is an encryption ofMsg by identity ID0, and given decryption keys
for identitiesID1, ID2, . . . , IDq but not for ID0, a computationally bounded adversary cannot
learn anything aboutMsg or aboutID0 from the ciphertextC. Researchers have successfully
constructed secure AIBE schemes [1, 13] withO(1) cost in all respects: in public parameter size,
encryption cost, ciphertext size, decryption key size and decryption cost.

Given a secure AIBE scheme, we can construct an MRQED1 scheme based on the following
intuition. To encrypt the messageMsg under pointx, we encryptMsg under allIDs inP(x). To
release the decryption key for a range[s, t] ⊆ [1, T], we release the keys for allIDs in Λ(s, t).
Now if x ∈ [s, t], thenP(x)∩Λ(s, t) 6= ∅. SupposeP(x) andΛ(s, t) intersect at nodeID. Then we
can apply the decryption key atID to the ciphertext encrypted underID, and obtain the plaintext
messageMsg. Otherwise, ifx /∈ [s, t], thenP(x) ∩ Λ(s, t) = ∅. In this case, the security of
the underlying AIBE scheme ensures that a computationally bounded adversary cannot learn any
information about the messageMsg or the pointx, except for the obvious fact (since decryption
fails) thatx /∈ [s, t].

Example. In Figure 3.1(b), we show a ciphertextC encrypted under the pointx. Let L =
O(log T) denote the height of the tree,C is composed ofO(logT) components:{c1, c2, . . . , cL}.
On the right, we show the decryption keys for the range[3, 7]. Since[3, 7] can be represented by the
set of nodesΛ(3, 7) = {IDA, IDB, IDC}, the decryption key for[3, 7] consists of three sub-keys,
kIDA

, kIDB
andkIDC

.
The AIBE-based construction hasO(1) public key size,O(|P(x)|) encryption cost and cipher-

text size, andO(|Λ(s, t)|) decryption key size. Since|P(x)| = O(log T), and|Λ(s, t)| = O(logT),
we getO(log T) in encryption cost, ciphertext size, and decryption key size. Later, we will show
that decryption can be done inO(log T) time as well.

Stated more formally, given a secure AIBE scheme denoted:

Setup∗(Σ), DeriveKey∗(PK, SK, ID), Encrypt∗(PK, ID,Msg), Decrypt∗(PK,DK,C),

one can construct a secure MRQED1 scheme as below:
• Setup(Σ,T) callsSetup∗(Σ) and outputsPK andSK.

19

• Encrypt(PK,x,Msg) encrypts the messageMsg under everyID ∈ P(x). In other words,
Encrypt yieldsC =

{
cID

∣∣ID ∈ P(x)
}

, wherecID = Encrypt∗(PK, ID,Msg||0m′

). To
check whether a decryption is valid, prior to encryption, weappendm′ trailing 0s denoted
0m′

to messageMsg ∈ {0, 1}m.

• DeriveKey(PK, SK, [s, t]) releases a decryption keykID for eachID ∈ Λ(s, t). kID is
computed askID = DeriveKey∗(PK, SK, ID). The entire decryption key for the range
[s, t] is then the setDKs,t =

{
kID

∣∣ ID ∈ Λ(s, t)
}

.

• QueryDecrypt(PK,DK,C) tries each keykID ∈ DKs,t on each ciphertextcID′ ∈ C. If

ID = ID′, thenDecrypt∗(PK, kID, cID′) yields result of the form̂Msg||0m′

. In this case,
we accept the result and exit theQueryDecrypt algorithm. If all trials fail to yield result
of the formM̂sg||0m′

, QueryDecrypt outputs⊥, indicating failure to decrypt.
Note that in the AIBE-based construction, if we simply try all decryption keys over all cipher-

texts, then decryption would requireO(|P(x)|·|Λ(s, t)|) time; since|P(x)| = O(log T), |Λ(s, t)| =
O(log T), decryption would requireO(log2 T) time. However, observe that it is not necessary to
try kID on cID′, if ID andID′ are at different depth in the tree; since then,ID andID′ cannot be
equal. Thus we only need to trykID oncID′ if ID andID′ are at the same depth in the tree, which
requires knowledge of the depth ofID′ for ciphertextcID′. Of course, we cannot directly release
ID′ for ciphertextcID′, since the encryption is meant to hideID′. However, since each ciphertext
C has a portion at every depth of the tree, we can give out the depth of ID′ for eachcID′ ∈ C

without leaking any information aboutID′. In this way, we reduce the decryption cost toO(logT)
rather thanO(log2 T).

We emphasize that using AIBE as the underlying encryption scheme is crucial to ensuring
the security of the derived MRQED1 scheme. In particular, a non-anonymous IBE scheme is not
suitable to use as the underlying encryption scheme, since IBE hides only the messageMsg but
not the attributex.

3.2.3 AIBE-Based MRQEDD Construction

The same idea can be applied to construct an MRQEDD scheme, resulting inO(1) public key
size,O

(
(log T)D

)
encryption cost, ciphertext size, decryption key size, anddecryption cost. The

details of this construction is not crucial to the understanding of our main construction. However,
in describing this construction, we highlight a few important definitions, including the notion of
a simple hyper-rectangle, and the definition ofΛ×(B). These definitions will later be used in our
main construction.

We buildD binary interval trees, one for each dimension. We assign a globally uniqueID to
each node in theD trees.

Representing a hyper-rectangle. We represent an arbitrary hyper-rectangle as a collection of
simple hyper-rectangles. To illustrate this idea, we first give a formal definition of asimple hyper-
rectangle, and then state how to represent an arbitrary hyper-rectangle as a collection of simple
hyper-rectangles. Simply put, a simple hyper-rectangle isa hyper-rectangleB0 in space, such that

20

B0 can be represented by a single node in the tree of every dimension. More specifically, a hyper-
rectangleB(s1, t1, . . . , sD, tD) in space is composed of a range along each dimension. If for all
1 ≤ d ≤ D, |Λ(sd, td)| = 1, i.e., [sd, td] is a simple range in thedth dimension, then we say that
the hyper-rectangleB(s1, t1, . . . , sD, tD) is a simple hyper-rectangle. A simple hyper-rectangle
can be defined by a single node from each dimension. We can assign a unique identity to each
simple-rectangleB0(s1, t1, . . . , sD, tD) in space. Define

idB0
= (ID1, ID2, . . . , IDD) ,

whereIDd(1 ≤ i ≤ D) is the node representing[sd, td] in thedth dimension.

Definition 3.2.2 (Hyper-rectangle as a collection of simplehyper-rectangles) Given an hyper-
rectangleB(s1, t1, . . . , sD, tD), denoteΛd(B) := Λ(sd, td) for d ∈ [D]. Λ(B) is the collection of
nodes representing range[sd, td] in thedth dimension. The hyper-rectangleB can be represented
as a collectionΛ×(B) of simple hyper-rectangles:

Λ×(B) = Λ1(B)× Λ2(B)× . . .× ΛD(B)

In particular, for everyid ∈ Λ×(B), id is a vector of the form(ID1, ID2, . . . , IDD), whereIDd

(d ∈ [D]) is a node in the tree corresponding to thedth dimension. Therefore,id uniquely specifies
a simple hyper-rectangleB0 in space.

Clearly, |Λ×(B)| = O
(
(log T)D

)
; in addition,Λ×(B) can be efficiently computed. Given the

above definitions, we briefly describe the AIBE-based MRQEDD construction.

Encryption. Suppose that now we would like to encrypt a messageMsg and the pointX =
(x1, x2, . . . , xD). We encrypt the messageMsg under all simple hyper-rectangles that contain the
point X = (x1, x2, . . . , xD). This is equivalent to encryptingMsg under the cross-product ofD
different paths to the root. Specifically, ford ∈ [D], denotePd(X) := P(xd). Pd(X) is the path
from the root to the leaf node representingxd in thedth dimension. Define the cross-product of all
D different paths to the root:

P×(X) = P1(X)× P2(X)× . . .× PD(X).

Then, to encryptMsg andX, we use AIBE to encryptMsg under everyid ∈ P×(X). Since
|P×(X)| = O

(
(log T)D

)
, both encryption cost and ciphertext size areO

(
(log T)D

)
.

Key derivation and decryption. To issue decryption keys for a hyper-rectangleB, we issue
a key for everyid ∈ Λ×(B). Since |Λ×(B)| = O

(
(log T)D

)
, the decryption key has size

O
(
(log T)D

)
. Now if X ∈ B, thenP×(X) ∩ Λ×(B) 6= ∅; in addition,P×(X) andΛ×(B) in-

tersect at exactly one simple hyper-rectangleidB0
, where the keys and the ciphertexts overlap. In

this case, we use the key foridB0
to decrypt the ciphertext foridB0

. Otherwise, ifX /∈ B, then
P×(X) ∩ Λ×(B) = ∅. In this case, the security of the underlying AIBE schemes ensures the
security of the MRQEDD constructions.

21

3.3 The Main MRQED Construction

In Section 3.2.3, we showed an AIBE-based MRQEDD construction withO(1) public key size,
O
(
(log T)D

)
encryption cost and ciphertext size,O

(
(log T)D

)
decryption key size and decryp-

tion cost. In this section, we propose a new MRQEDD construction withO (D log T) public
key size,O (D log T) encryption cost and ciphertext size,O (D log T) decryption key size, and
O
(
(log T)D

)
decryption cost.

Our main MRQED construction is relies on bilinear groups of prime order. Therefore, we
begin by giving some background knowledge on pairing and bilinear groups.

3.3.1 Background on bilinear groups

A pairing is an efficiently computable, non-degenerate function, e : G × Ĝ → G′, satisfying
the bilinear property thate(gr, ĝs) = e(g, ĝ)rs. G, Ĝ andG′ are all groups of prime order.g,
ĝ ande(g, ĝ) are generators ofG, Ĝ andG′ respectively. Although our MRQED scheme can be
constructed using asymmetric pairing, for simplicity, we describe our scheme using symmetric
pairing in the remainder of this thesis proposal, i.e.,G = Ĝ.

We name a tupleG = [p, G, G′, g, e] a bilinear instance, whereG andG′ are two cyclic groups
of prime orderp. We assume an efficient generation algorithm that on input ofa security parameter

Σ, outputsG
R
← Gen(Σ) wherelog2 p = Θ(Σ).

We rely on the following complexity assumptions:

Decision BDH Assumption : The Decision Bilinear DH assumption, first used by Joux [27],
later used by IBE systems [8], posits the hardness of the following problem: Given

[g, gz1, gz2, gz3, Z] ∈ G4 ×G′

where exponentsz1, z2, z3 are picked at random fromZp, decide whetherZ = e(g, g)z1z2z3.

Decision Linear Assumption : The Decision Linear assumption, first proposed by Boneh,
Boyen and Shacham for group signatures [5], posits the hardness of the following problem: Given
[g, gz1, gz2, gz1z3, gz2z4, Z] ∈ G6, wherez1, z2, z3, z4 are picked at random fromZp, decide whether
Z = gz3+z4.

3.3.2 Intuition

We build D interval trees over integers from1 to T , each representing a separate dimension.
Assume each tree node has a globally uniqueID. In the previous section, we showed a naive
construction for MRQEDD based on AIBE. This naive construction encryptsMsg under the
O((log T)D) simple hyper-rectangles that contain the pointX; and releases decryption keys for
the O((log T)D) simple hyper-rectangles that compose a hyper-rectangleB. Our goal is to re-
duce the ciphertext size and decryption key size toO(D log T) instead. However, as we will soon

22

explain, naively doing this introduces thecollusion attackas shown in Figure 3.2 (b). Our main
technical challenge, therefore, is to devise ways to secureagainst the collusion attack.c1

c5

c6

c7

c8

c4

c3

c2

1

5

T

. .
 .

. .
 .

IDA

IDB IDC

IDF

IDE

IDD

1 3. . . T. . . 1 T2 . . . 6 . . .

1

T

7

3

. .
 .

. .
 .

x

k

k

k

kk

k

(a) A ciphertext and a decryption key in MRQED2.

R1 R2

R3 R4

kx1 kx2

ky1

ky2

(b) Collusion.

Figure 3.2:An MRQED2 scheme.(a) Encryption under the pointx = (3, 5) and the keys released for the
range[2, 6] × [3, 7]. (b) With decryption keyskx1, ky1 for regionR1 andkx2, ky2 for regionR4, regionsR2

andR3 are compromised.

Reducing the ciphertext size. In other words, rather than encryptionMsg for each simple
hyper-rectangle inP×(X) = P1(X) × . . . × PD(X), we would like to encryptMsg for each
tree node in the the union of theseD different paths:

P∪(X) = P1(X) ∪ . . . ∪ PD(X).

Reducing the decryption key size. Instead of representing an arbitrary hyper-rectangle using
the collection of simple hyper-rectangles, we can represent a simple hyper-rectangleB as the
collection of disjoint intervals over different dimensions:
Definition 3.3.1 (Hyper-rectangle as a collection of nodes)A hyper-rectangleB ⊆ L∆ gives a
collection of nodes corresponding to disjoint intervals over different dimensions:

Λ∪(B) = Λ1(B) ∪ Λ2(B) ∪ . . . ∪ ΛD(B)

Note that for all hyper-rectangleB ⊆ L∆, |Λ∪(B)| = O(D log T); in addition,Λ∪(B) can be
computed efficiently.

With the above definition, rather than releasing keys for each simple hyper-rectangle inΛ×(B) =
Λ1(B)× . . .× ΛD(B), we would like to release keys for eachID in Λ1(B) ∪ . . . ∪ ΛD(B).

Example. Figure 3.2 (a) is an example in two dimensions. To encrypt under the point(3, 5), we
find the path from the leaf node3 to the root in the first dimension, and the path from the leaf node
5 to the root in the second dimension. We then produce a block inthe ciphertext corresponding
to each node on the two paths. In the first dimension, we produce blocksc1, c2, c3 andc4. In the
second dimension, we produce blocksc5, c6, c7 andc8. To release decryption keys for the range

23

[2, 6]× [3, 7], we find a collectionΛ(2, 6) of nodes covering the range[2, 6] in the first dimension;
and a collectionΛ(3, 7) of nodes covering[3, 7] in the second dimension. We issue a block in the
decryption key corresponding to each node inΛ(2, 6) and inΛ(3, 7). In the first dimension, we
create blockskIDA

, kIDB
, andkIDC

; and in the second dimension, we create blockskIDD
, kIDE

,
andkIDF

.

Preventing the collusion attack. Unfortunately, naively doing the above is equivalent to apply-
ing the AIBE-based MRQED1 scheme independently in each dimension. As we demonstrate in
Figure 3.2 (b), such a scheme is susceptible to the collusionattack. Suppose that Figure 3.2 (b),
every rectangle is a simple rectangle. Now suppose that an adversary were given the decryp-
tion keys for regionR1 andR4, then the adversary would have collected keyskR1 = {kx1, ky1},
kR4 = {kx2, ky2}. With these, the adversary would be able to reconstruct the keys forR2 and
R3: kR2 = {kx2, ky1}, kR3 = {kx1, ky2}. Hence, our major challenge is to find a way to se-
cure against the collusion attack without incurring additional cost. We use abinding technique
to prevent the collusion attack: we use re-randomization totie together the sub-keys in different
dimensions. For example, in Figure 3.2 (b), when we release the decryption key for regionR1,
instead of releasing{kx1, ky1}, we release{µ̃xkx1, µ̃yky1}, whereµ̃x andµ̃y are random numbers
that we pick each time we issue a decryption key. Likewise, when releasing the key for regionR4,
we release{µ̃′

xkx2, µ̃
′
yky2}, whereµ̃′

x andµ̃′
y are two random numbers picked independently from

µ̃x andµ̃y. Of course, in the real construction,µ̃x andµ̃y (µ̃′
x andµ̃′

y) also need to satisfy certain
algebraic properties (e.g.,̃µxµ̃y = µ̃′

xµ̃
′
y = some invariant) to preserve the internal consistency of

our scheme. In this way, components in the decryption key forR1 cannot be used in combination
with components in the decryption key forR4.

3.3.3 The Main Construction

We are now ready to describe our construction. DefineL = O(log T) to represent the height of a
tree. Assume that nodeIDs are picked fromZ∗

p. We append a messageMsg ∈ {0, 1}m with a
series of trailing zeros,0m′

, prior to encryption. Assume that{0, 1}m+m′

⊆ G′.

Setup(Σ, L∆) To generate public parameters and the master private key, the setup algorithm

first generates a bilinear instanceG = [p, G, G′, g, e]
R
← Gen(Σ). Then, the setup algorithm does

the following.
1. Select at random the following parameters fromZ8DL+1

p :

ω,
[
αϕ,1, αϕ,2, βϕ,1, βϕ,2, θϕ,1, θϕ,2, θ

′
ϕ,1, θ

′
ϕ,2

]
ϕ=(d,l)
∈[D]×[L]

In addition, we require that theα’s and theβ’s be forcibly non-zero. At this point, we give a
brief explanation of our notation. The variableϕ is used to index a tuple(d, l) ∈ [D]× [L],
whered denotes the dimension andl denote the depth of a node in the corresponding tree.

24

2. PublishG and the following public parametersPK ∈ G′ ×G8DL:

Ω← e(g, g)ω,


aϕ,1 ← gαϕ,1θϕ,1 , aϕ,2 ← gαϕ,2θϕ,2 ,

a′
ϕ,1 ← gαϕ,1θ′ϕ,1 , a′

ϕ,2 ← gαϕ,2θ′ϕ,2 ,
bϕ,1 ← gβϕ,1θϕ,1 , bϕ,2 ← gβϕ,2θϕ,2 ,

b′ϕ,1 ← gβϕ,1θ′ϕ,1 , b′ϕ,2 ← gβϕ,2θ′ϕ,2 ,




ϕ=(d,l)∈
[D]×[L]

3. Retain a master private keySK ∈ G8DL+1 comprising the following elements:

ω̃ ← gω,


aϕ,1 ← gαϕ,1 , aϕ,2 ← gαϕ,2 ,
bϕ,1 ← gβϕ,1, bϕ,2 ← gβϕ,2,
yϕ,1 ← gαϕ,1βϕ,1θϕ,1 , yϕ,2 ← gαϕ,2βϕ,2θϕ,2 ,

y′
ϕ,1 ← gαϕ,1βϕ,1θ′ϕ,1 , y′

ϕ,2 ← gαϕ,2βϕ,2θ′ϕ,2




ϕ=(d,l)
∈[D]×[L]

Notice that in the public parameters and the master key, we have different versions of the
same variable, e.g.,aϕ,1, aϕ,2, a

′
ϕ,1, a

′
ϕ,2. Although they seem to be redundant, they are ac-

tually needed to provide sufficient degrees of randomness for our proof to go through. The
reasons for having these different versions will become clear once the reader has gone over
the detailed proof provided in Section 3.7.

DeriveKey(PK, SK,B) The following steps compute the decryption key for hyper-rectangle
B, given public keyPK and master private keySK.

1. PickO(D · L) random integers fromGD × Z
2|Λ∪(B)|
p :

[
µ̃d

]
d∈[D]

, [λID,1, λID,2]ID∈Λ∪(B)

such that
∏

d∈[D] µ̃d = ω̃. The reason for having an overhead tilde for the variableµ̃d is
to associate it with the variablẽω, since they both belong to the groupG, and they satisfy
the condition that

∏
d∈[D] µ̃d = ω̃. We note that the random̃µd’s generated in this stage are

later used to re-randomize the components of the decryptionkey. In this way, components
in different dimensions are tied to each other; and components from one decryption key
cannot be used in combination with components from another decryption key. This is how
we prevent the collusion attack as shown in Figure 3.2 (b).

2. Compute and release a decryption keyDK ∈ G5|Λ∪(B)|. DK is composed of a portion
DK(ID) for eachID ∈ Λ∪(B). In the following definition forDK(ID), ϕ = (d, l) =
Φ(ID) represents the dimension and depth of nodeID; without risk of ambiguity, denote
λ1 = λID,1, λ2 = λID,2. DK(ID) is defined below:

µ̃d

(
yID

ϕ,1y
′
ϕ,1

)λ1
(
yID

ϕ,2y
′
ϕ,2

)λ2

, a−λ1

ϕ,1 , b−λ1

ϕ,1 , a−λ2

ϕ,2 , b−λ2

ϕ,2

25

Observe that we release a portion of the decryption key for each node inΛ∪(B), as opposed
to for each hyper-rectangle inΛ×(B). In this way, the size of the private key isO(DL),
instead ofO(LD). Also observe that we multiply the first element ofDK(ID) by µ̃d. This
illustrates thebindingtechnique used to tie together components in different dimensions. In
this way, components in one decryption key cannot be used in combination with components
in another decryption key; therefore, we successfully prevent the collusion attack.

Encrypt(PK,X,Msg) We create a block in the ciphertext for everyID ∈ P∪(X). Equiva-
lently, for each dimensiond and depthl, denoteϕ = (d, l), we create a portion of the ciphertext
corresponding to the nodeIϕ, residing in thedth tree at depthl, on the pathPd(X) to the root. We
now describe theEncrypt algorithm in the following steps:

1. Select2DL + 1 random integers: selectr ∈R Zp, select[rϕ,1, rϕ,2]ϕ=(d,l)∈[D]×[L] ∈R Z2DL
p .

2. Forϕ = (d, l) ∈ [D]× [L], defineIϕ = Iϕ(X), i.e., the node at depthl in Pd(X) in thedth

dimension. Now compute and output the following ciphertextC ∈ G′ ×G4DL+1:

(Msg||0m′

) · Ω−r, gr,[
(bϕ,1

Iϕb′ϕ,1)
rϕ,1

, (aϕ,1
Iϕa′

ϕ,1)
r−rϕ,1 ,

(bϕ,2
Iϕb′ϕ,2)

rϕ,2
, (aϕ,2

Iϕa′
ϕ,2)

r−rϕ,2

]

ϕ=(d,l)∈
[D]×[L]

QueryDecrypt(PK,DK,C) We first give an overview on howQueryDecrypt works. Re-
call that a decryption keyDK =

{
DK(ID)

∣∣ ID ∈ Λ∪(B)
}

is composed of a portionDK(ID)
for eachID ∈ Λ∪(B). We now reconstruct a decryption key for each simple hyper-rectangle
idB0

∈ Λ×(B) as below. We grab fromDK a sub-key from each dimension: for eachd ∈ [D],
grab a sub-keyDK(IDd) from thedth dimension, whereIDd ∈ Λd(B). The collection of sub-keys
{DK(ID1),DK(ID2), . . . ,DK(IDD)} can now be jointly used to decrypt a message encrypted
under the simple hyper-rectangleidB0

= (ID1, . . . , IDD).
We also need to find the correct blocks in the ciphertext to apply this key for idB0

. Recall

that the ciphertext is of the formC =
(
c, c0, [cϕ,1, cϕ,2, cϕ,3, cϕ,4]ϕ=(d,l)∈[D]×[L]

)
. For convenience,

denotecϕ := [cϕ,1, cϕ,2, cϕ,3, cϕ,4] for ϕ = (d, l) ∈ [D] × [L]. cϕ is the block in the ciphertext
corresponding to a node in thedth dimension and at depthl of the tree. DefineΦ(ID) := (d, l) to
extract the dimension and depth of the nodeID. Now for a sub-keyDK(ID), defineϕ = Φ(ID),
it is not hard to see thatDK(ID) should be used in combination with the blockcϕ in the ciphertext.

The following algorithm iterates through the simple hyper-rectangles inΛ×(B) and checks if
the ciphertext can decrypt to a valid message under each simple hyper-rectangle inΛ×(B).

For each simple hyper-rectangleΛ×(B0) = {(ID1, ID2, . . . , IDD)} ⊆ Λ×(B),

(1) LetDK(IDd) = (kIDd,0, kIDd,1, kIDd,2, kIDd,3, kIDd,4) represent the element inDK for IDd,
whered ∈ [D].

(2) Try to decryptC underB0 with the collection{DK(ID1),DK(ID2), . . . ,DK(IDD)} of

26

sub-keys:

V ← c·
∏

d∈[D],
ϕd=Φ(IDd)

[
e(c0, kIDd,0)·e(cϕd ,1, kIDd,1)·e(cϕd ,2, kIDd,2)·e(cϕd ,3, kIDd,3)·e(cϕd ,4, kIDd,4)

]

If V is of the formM̂sg||0m′

, then output̂Msg as the decrypted plaintext and exit.
If for all simple hyper-rectangles inΛ×(B), the previous step fails to produce the plaintext, then
output⊥.

When done naively, the aboveQueryDecrypt algorithm takesO(D(logT)D) time. How-
ever, if one saves intermediate results, it can be done inO((log T)D) time withO(D log T) storage.
The above numbers takes into account all group operations, include multiplication, exponentiation
and bilinear pairing. However, since a pairing operation istypically more expensive than exponen-
tiation (and far more expensive than multiplication) in known bilinear groups, we are particularly
interested in reducing the number of pairings at time of decryption. Notice that we can precom-
pute all pairingse(c0, kIDd,0) and pairingse(cϕd,i, kIDd,i) for 1 ≤ i ≤ 4, and store the results in a
look-up table. Therefore, the decryption algorithm requiresO(D log T) pairings in total.

3.3.4 Consistency, Security

The following two theorems state the consistency and security of our MRQED construction.

Theorem 3.3.2 (Internal consistency)The above defined MRQED construction satisfies the con-
sistency requirement posed by Equation (3.1).

Theorem 3.3.3 (Selective security)The above defined MRQED construction is selectively secure
against polynomial-time adversaries.

Below we give an overview of the techniques used in the security proof. The detailed proofs
of Theorem 3.3.2 and Theorem 3.3.3 are provided in Section 3.7 To prove the selective security
of our MRQEDD construction, we decompose the selective MRQED game into two games: a
selective confidentiality game and a selective anonymity game. By the hybrid argument, if no
polynomial-time adversary has more than negligible advantage in either the confidentiality game
or the anonymity game, then no polynomial-time adversary has more than negligible advantage in
the combined selective MRQED game.

In the proof, we build a simulator that leverages an MRQED adversary to solve the D-BDH
problem or the D-Linear problem. The simulator inherits parameters specified by the D-BDH/D-
Linear instance, hence, it has incomplete information about the master key. Therefore, the crux of
the proof is how to simulate the key derivation algorithm without knowing the complete master key.
In comparison, the anonymity proof is more complicated thanthe confidentiality proof, because
it involves a hybrid argument containing2DL steps. In step(d1, l1, n1) of the hybrid argument,
yϕ1,n1

andy′
ϕ1,n1

(ϕ1 = (d1, l1)) in the master key contain unknown parameters inherited fromthe
D-Linear instance. Therefore, we need to condition on the relative position betweenX∗ and the
(d1, l1) in question. Our proof techniques are similar to that presented in the AHIBE paper [13].

27

3.3.5 Practical Performance

In this section, we give a detailed analysis of the performance of the MRQEDD scheme given in
Section 3.3.3 in practical scenarios. We use the conditional release of encrypted network audit logs
as our motivating application.

Assumptions. To evaluate the scheme of Section 3.3.3 in this application,we detail a set of
scenarios regarding the searchable fields present in the logs. We assume log entries contain the
fields listed in Table 3.2. The 17-bit time field is sufficient to distinguish times over a period of
about 15 years with a one hour resolution, or about three months at a one minute resolution. More
precise times may be stored in the non-searchable portion ofthe message if desired. The protocol

Field Abbr. Range Distinct Values
Source IP sip [0, Tsip −1] Tsip = 232

Dest. IP dip [0, Tdip −1] Tdip = 232

Port port [0, Tport −1] Tport = 216

Time time [0, Ttime −1] Ttime = 217

Protocol prot [0, Tprot −1] Tprot = 28

Table 3.2: Fields appearing in a network audit log and their possible values.

field corresponds to the actual bits of the corresponding field in an IP header (where, for example,
6 denotes TCP and 133 denotes Fibre Channel). Various subsets of these fields may be included
as searchable attributes in MRQEDD. Other fields and any additional associated data such as a
payload may be included as the encrypted message. Regardless of message length, we need only
use the MRQEDD scheme to encrypt a single group element, which may be a randomly generated
symmetric key (e.g., for AES) used to encrypt the message.

Benchmarks for the selected pairing were run on a modern workstation. We ran the benchmarks
twice: 1) Back in winter 2006, we used a 64-bit, 3.2 Ghz Pentium 4 processor. 2) We ran the
benchmark test then again in summer 2008, on a Intel 2.4GHz Core 2 processor1. We used the
Pairing-Based Cryptography (PBC) library [29], which is inturn based on the GNU Multiple
Precision Arithmetic Library (GMP). Note that the benchmarking program uses a single thread.
Therefore, for the dual-core processor, only one core was used in the measurement. The relevant
results are given in Table 3.3. It is interesting, but not surprising, to observe that the benchmarks
improved by a factor of approximately 2 from 2006 to 2008 (formost of the major operations).

Using these benchmark numbers, we now estimate the performance of our encryption scheme
under several scenarios for the network audit log application.

Public parameters and master key. The space required to store the public parameters and mas-
ter key is logarithmic with respect to the number of possibleattribute values. Specifically, denote
the set of attributes asA = {sip, dip, port, time, prot}. Then for each attributea ∈ A, define the

1Although the new processor has lower clock cycle than the oldone, it is more powerful due to improved pipeline
structure.

28

(a) Year 2006: 64bit 3.2GHz Pentium 4

Operation Time
pairing (no preprocessing) 5.5 ms

pairing (after preprocessing)2.6 ms
preprocess pairing 5.9 ms

exponentiation inG, Ĝ 6.4 ms
exponentiation inG′ 0.6 ms
multiplication inG′ 5.1µs

(b) Year 2008: 2.40GHz Intel Core(TM)2

Operation Time
pairing (no preprocessing) 2.6 ms

pairing (after preprocessing)1.1 ms
preprocess pairing 4.7 ms

exponentiation inG, Ĝ 5.3 ms
exponentiation inG′ 0.3 ms
multiplication inG′ 2.4µs

Table 3.3: Group arithmetic and pairing performance benchmarks on a modern workstation. The table on
the left reflects benchmarks in 2006. The table on the right reflects updated benchmark numbers in 2008.

height of the treeLa = log2 Ta + 1. For example,Lsip = 33 andLprot = 9. Then the public pa-
rametersPK require a total of8

∑
a∈A La = 880 elements ofG and one element ofG′. Assuming

512-bit representations2 of elements ofG andG′, the total size ofPK is 55KB. The master key
SK contains the same number of elements, again requiring 55KB of storage. More space efficient
pairings than the one used in this estimate are available, but this one was selected for speed of
evaluation.

Computation time forSetup is reasonable, given that it is only run once. Computing the public
and private parameters inSetup requires roughly16

∑
a∈A La exponentiations and one pairing.

This means roughly 11.3s running time on the old processor in2006, and 9.3s on the new processor
in 2008. Time spent on multiplication in this case is negligible.

Encryption. Saving the group elements of a ciphertext requires4
∑

a∈A La + 2 group elements,
or 28KB. Note that we normally just encrypt a session key, so this is a constant overhead beyond
the actual length of the message. RunningEncrypt requires about two exponentiations for each
group element, resulting in a time of about 5.6s in 2006, and 4.7s in 2008. While significant, this
overhead should be acceptable in most cases in the network audit log example. If audit logs are high
volume, the best strategy may be to produce periodic summaries rather than separately encrypting
each packet. The searchable attributes of such summaries would reflect the collection of entries
they represent, and the full contents of the entries could beincluded as the encrypted message
without incurring additional overhead. In systems containing a cryptographic accelerator chip
supporting ECC (such as some routers), much higher performance is possible. For example, the
Elliptic Semiconductor CLP-17 could reduce the time of exponentiation from 6.4ms to 30µs [17],
resulting in a total encryption time as low as 27ms.

Key derivation and decryption. We now consider decryption keys and the running time of
the decryption algorithm, the more interesting aspects of the scheme’s computational and storage
requirements. The space required to store a decryption key,the time to derive it, and the time to

2We consider a type A pairing using the singular curvey2 = x3 + x for the groupsG andĜ with a base field size
of 512-bits. Note that all groups involved have 160-bit group order; the storage requirements arise from the specific
representation of elements in the elliptic curves.

29

(a) Performance in 2006.

Pairing Worst-case Worst-case
Example Query Nsip, Ndip, Nport, Ntime, Nprot Time Mult. Time Dec. Time

sip=207.44.178.∗,
dip=216.187.103.169, port=22,

time=∗, prot=TCP

(1, 1, 1, 1, 1) 65ms < 0.1ms 65ms

sip∈ [207.44.178.123, 207.44.182.247],
dip=∗, port=22,

time∈ [5pm 10/31, 9am 11/5],
prot∈{TCP, UDP, ICMP}

(10, 1, 1, 7, 3) 286ms 1.2ms 287ms

sip∈ [207.44.178.123, 207.60.177.15],
dip∈ [207.44.178.123, 207.60.177.15],

port∈ [3024, 35792],
time∈ [10/31/2006, 10/31/2020],

prot∈{TCP, UDP, ICMP}

(20, 20, 15, 17, 3) 0.98s 1.64s 2.62s

(b) Performance in 2008.

Pairing Worst-case Worst-case
Example Query Nsip, Ndip, Nport, Ntime, Nprot Time Mult. Time Dec. Time

sip=207.44.178.∗,
dip=216.187.103.169, port=22,

time=∗, prot=TCP

(1, 1, 1, 1, 1) 28ms < 0.1ms 28ms

sip∈ [207.44.178.123, 207.44.182.247],
dip=∗, port=22,

time∈ [5pm 10/31, 9am 11/5],
prot∈{TCP, UDP, ICMP}

(10, 1, 1, 7, 3) 121ms 0.6ms 122ms

sip∈ [207.44.178.123, 207.60.177.15],
dip∈ [207.44.178.123, 207.60.177.15],

port∈ [3024, 35792],
time∈ [10/31/2006, 10/31/2020],

prot∈{TCP, UDP, ICMP}

(20, 20, 15, 17, 3) 0.41s 0.77s 1.18s

Table 3.4:Decryption times (in 2006 and 2008) resulting from decryption keys of various sizes.

decrypt using it depend only on the ranges of attributes for which it permits decryption. Unlike the
computational and storage requirements discussed thus far, these costs do not depend on the full
range of possible values, only those associated with the key. These costs depend on the number of
key components necessary to represent the permissible range along each dimension. For example,
suppose a particular decryption keyDK only allows decryption of entries with a destination port
in the range[3, 7] (perhaps placing other requirements on the other attributes). Referring back to
Figure 3.1, we see that three tree nodes are necessary to cover this range, soDeriveKey would
include these three for the destination port dimension inDK. Similarly, given some decryption key
DK, we denote the number of tree nodes necessary to cover the decryption range in each of the
dimensionsa ∈ A by Na = |Λa(B)| (using the notation of Section 3.3.3). So in this example,
Nport = 3. Note that for anya ∈ A, in the worst case,Na = 2La − 2.

30

Now givenNa for eacha ∈ A, we may compute the decryption costs. A decryption key
consists of5

∑
a∈A Na group elements andDeriveKey performs8

∑
a∈A Na exponentiations.

The number of operations necessary to decrypt using a keyDK is slightly more subtle. While
QueryDecrypt is Θ(

∏
a∈A La) (i.e.,Θ((log T)D)) overall, onlyO(

∑
a∈A La) (i.e.,O(D log T))

pairings are required, as mentioned in Section 3.3.3. Specifically, we only need to compute
5
∑

a∈A Na pairings to populate a lookup table containing values ofe(c0, kID,0), e(cϕ,1, kID,1),
e(cϕ,2, kID,2), e(cϕ,3, kID,3), e(cϕ,4, kID,4), ande(cϕ,5, kID,5). These values are sufficient to com-
pute theQueryDecrypt algorithm. Assuming a key will normally be used to decrypt a batch
of ciphertexts one after another, we may further reduce the cost of pairings by preprocessing
with the key. As shown in Table 3.3, preprocessing reduces the pairing time by about half, at
a one time cost (per decryption keyDK) equivalent to one or two decryptions. Computed naively,
the sequence of trials in step one ofQueryDecrypt end up requiring a total of|A|

∏
a∈A Na

multiplications inG′. This can be somewhat reduced. LetS1, . . . S|A| be {Na | a ∈ A } sorted
in ascending order:S1 ≤ S2 ≤ . . . S|A|. Then by saving intermediate results between trials
and ordering the dimensions appropriately, it is possible to complete step one with a total of
S1 + S1S2 + S1S2S3 + . . . S1S2 · · ·S|A| multiplications.

Specific scenarios. We have now computed the costs associated with the storage and usage of a
decryption key in terms ofNa for a ∈ A, but we have not yet specifiedNa. If we assume the range
for each attribute is randomly selected (uniformly), then for eacha ∈ A, the expected value ofNa

is La − 1. This results in a decryption key size of 33KB and a running time forDeriveKey of
5.4s in 2006, and 4.5s in 2008. The corresponding worst-casedecryption time3 is 13.1s in 2006,
and 6.1s in 2008. Note that this has improved by a factor of 2 over a period of 1.5 years. This still
may be a major cost, and likely to be inconvenient if significant quantities of log entries must be
decrypted. Fortunately, queries eliciting such long decryption times are not likely to be necessary
in practice. In fact, fairly elaborate queries are possiblewhile keeping decryption costs low.

In Table 3.4 we provide several examples that help demonstrate this. The first entry illustrates
the fact that specifying a single value, all values, or a range of values falling on power-of-two
boundaries (as in the case of an IP subnet) for some attributea results inNa = 1, reducing decryp-
tion time dramatically. In the next example, several attributes are required to be in general ranges,
or, in the case ofprot, selected from a small set. This results in larger numbers ofkey components
and slightly longer decryption times. Still, the decryption time in this case is far below the time
with each range randomly selected. As shown by the third example, larger ranges result in larger
values ofNa and, again, somewhat larger, but still relatively low, decryption times. It is interesting
to note that the decryption time has improved by a rough factor of 2 over a period of 1.5 years.

Exploiting parallelism to speed up the computation. The performance numbers in Table 3.4
does not exploit any parallelism. In particular, even for the new dual-core CPU, we did not leverage
the dual-core feature, because our benchmarking program used a single thread.

3In reality, the average decryption time is smaller than thisnumber, since upon a successful decryption, the
QueryDecrypt algorithm exits after trying half of the combinations in expectation and thus performing half the
worst-case multiplications.

31

We would like to note that most of the above computations are easily parallelizable. For exam-
ple, if one has multiple entries to decrypt, one can easily distribute them across multiple processors.
Even when we are decrypting a single entry, we can parallelize theQueryDecrypt algorithm in-
ternally. For example, the5

∑
a∈A Na pairing operations do not have any dependencies, and we

can assign them to different processors easily. We can also distribute the simple hyper-rectangles
to the multiple processor: each processor will try to decrypt atk of the(log T)D hyper-rectangles.

In fact, if we have plenty of processors, we can distribute the computation such that each pro-
cessor only has to perform one pairing. After all the pairingresults are computed, each processor
tries to decrypt at one simple rectangle. In this case, the multiplication time becomes negligible
compared to the pairing time. Therefore, ignoring possibleoverheads of parallelism, the theoretic
decryption time can be improved to roughly the time of a single pairing operation (1.1ms as of
2008), even in the worst-case scenario.

This is very encouraging, especially as parallel computation is starting to be widely accepted
in practice. The latest consumer PCs have multiple processors, and IT companies are using large
clusters to run their computations. For example, Google’s cluster has an estimate of 100K nodes,
and this may well be a conservative estimate [38].

3.4 The Dual Problem and Stock Trading through a Broker

In the MRQED problem, one encrypts a messageMsg under a pointX in multi-dimensional
space, and given a hyper-rectangleB, the master key owner can construct a capability, allowing
an auditor to decrypt all entries satisfyingX ∈ B. On the other hand, the privacy of the irrelevant
entries are still preserved.

Informally, the natural dual problem to MRQED is where one encrypts under a hyper-rectangle
B, and given a pointX, the master key owner can construct a capability allowing anauditor to
decrypt all entries satisfyingB ∋ X. Like in MRQED, we require that the privacy of all irrelevant
entries be preserved. We now show an interesting application of the dual problem, and then show
that MRQED implies a solution for the dual problem.

An interesting application of the dual problem is for trading stocks and other securities. Sup-
pose aninvestortrades stocks through abroker. The investor specifies a price range and a time
range, such that if the stock price falls within that range during a specific period of time, the broker
can buy or sell the stock on behalf of the investor. This is usually referred to as astop order, limit
order, or stop-limit order. Sometimes, the investor may not fully trust the broker, andmay wish to
conceal the price and time ranges from the broker before an order is executed.

The dual problem can be applied in such scenarios to address the privacy concerns of investors.
In particular, thestock exchange, or any third-party with knowledge of the real-time stock price can
act as the trusted authority who owns the master key. For convenience, in the following description,
we assume that thestock exchangeis the trusted authority. The investor first encrypts the order
along with the desired price and time ranges, and sends the encrypted order to the broker. Suppose
that at a certain point of timet, the stock price isp. The stock exchange constructs a decryption
key for the pair(t, p), and hands it to the broker. With this decryption key, the broker can decrypt
all orders whose price and time ranges match the current pricep and the current timet, and execute

32

these orders. For orders whose price and time ranges do not match the current price and time, the
broker cannot learn any additional information about theseorders.

MRQED implies the dual problem. We use a2-dimensional example to illustrate how MRQED
implies a solution for the dual problem.
• Dual.Setup (Σ, [T]2): Call MRQED.Setup (Σ, [T]4), and output the public keyPK, and

master keySK.

• Dual.Encrypt (PK, [x1, x2] × [y1, y2],Msg): To encrypt a messageMsg under the range
[x1, x2] × [y1, y2] in 2 dimensions, callMRQED.Encrypt (PK, (x1, x2, y1, y2),Msg). Ob-
serve that here a range[x1, x2]× [y1, y2] in [T]2 is mapped to a point(x1, x2, y1, y2) in [T]4.

• Dual.DeriveKey (PK, SK, (x, y)): To generate a decryption key for the point(x, y) ∈ [T]2,
call MRQED.DeriveKey (PK, SK, [1, x]× [x, T]× [1, y]× [y, T]).

• Dual.QueryDecrypt (PK,DK,C): To try to decrypt a ciphertextC using the decryption
keyDK, call MRQED.QueryDecrypt (PK,DK,C).

In essence, the above scheme maps a range[x1, x2]× [y1, y2] ⊆ [T]2 to a point(x1, x2, y1, y2) ∈
[T]4, and testing if a point(x, y) is within the range[x1, x2]×[y1, y2] is equivalent to testing whether
(x1, x2, y1, y2) ∈ [1, x]× [x, T]× [1, y]× [y, T]. It is easy to verify that the security of the MRQED
scheme guarantees a similar notion of security for the dual construction, i.e., if a decryption key
fails to decrypt a certain ciphertext entry, then a probabilistic polynomial adversary cannot learn
any additional information about that entry.

3.5 Notation

We summarize the notations used throughout this chapter in Table 3.5.

33

Notation Explanation First Defined

[s, t] integerss throught Sec. 3.1.2
[a] integers1 througha Sec. 3.1.2
D number of dimensions Sec. 3.1.2
T number of discrete values in each dimension Sec. 3.1.2

L∆ multi-dimensional lattice Sec. 3.1.2
X a point in the lattice Sec. 3.1.2
B a hyper-rectangle Sec. 3.1.2
Σ security parameter Sec. 3.1.2
PK public key Sec. 3.1.2
SK master key Sec. 3.1.2
DK decryption key Sec. 3.1.2
Msg message to encrypt Sec. 3.1.2

M message space Sec. 3.1.2
G a bilinear instance Sec. 3.3.1
G bilinear group Sec. 3.3.1
G′ target group Sec. 3.3.1
e bilinear pairing function Sec. 3.3.1
g generator ofG Sec. 3.3.1

Zp additive group of integers modular a primep Sec. 3.3.1
Z∗

p multiplicative group of integers modular a primep Sec. 3.3.3
tr(T) binary interval tree over integers1 throughT Sec. 3.2.2
ID identity of a tree node Sec. 3.2.2

cv(ID) range represented by a tree nodeID Sec. 3.2.2
P(x) path from the root to the leaf node representingx Sec. 3.2.2

Λ(s, t) set of nodes representing the range [s, t] Sec. 3.2.2
Λd(B) set of nodes representing the range specified byB in thedth dimension Sec. 3.2.3
B0 simple hyper-rectangle Sec. 3.2.3
idB0

identity vector of the simple hyper-rectangleB0 Sec. 3.2.3
Λ×(B) hyper-rectangleB as a collection of simple hyper-rectangles Sec. 3.2.3
Pd(X) path to root in thedth dimension for the pointX Sec. 3.2.3
P×(X) cross-product of allD paths to root for the pointX Sec. 3.2.3
P∪(X) union of allD paths to root for the pointX Sec. 3.3.2
Λ∪(B) hyper-rectangleB as a set of tree nodes Sec. 3.3.2

L height of interval tree Sec. 3.3.3
Φ(ID) a function that outputs the dimension and depth of some nodeID Sec. 3.3.3

ϕ = (d, l) usually used in subscripts to indicate the dimension and depth respectively Sec. 3.3.3

Iϕ(X) whereϕ = (d, l) the node at depthl in the pathPd(X) of thedth dimension Sec. 3.3.3

Table 3.5:Notations.

3.6 Proof of Consistency

Proof of Theorem 3.3.2:

Let C =
(
c, c0, [cϕ,1, cϕ,2, cϕ,3, cϕ,4]ϕ=(d,l)∈[D]×[L]

)
be the encryption ofMsg on pointX. Let

Λ×(B0) = {(ID1, ID2, . . . , IDD)} ⊆ Λ×(B) be the current simple hyper-rectangle under de-
cryption. Letϕd = Φ(IDd) (d ∈ [D]).

If X ∈ B0, then for alld ∈ [D], Iϕd
(X) = IDd. For simplicity, letξ(x) = e(g, g)x, and denote

34

Iϕd
= Iϕd

(X). Now decryption forB0 proceeds as follows:

V =(Msg||0m′

) · Ω−r ·
∏

d∈[D]

e
(
gr, µ̃d

(
yϕd,1

IDdy′ϕd,1

)λIDd,1
(
yϕd,2

IDdy′ϕd,2

)λIDd,2
)

·
∏

d∈[D],n∈[2]

e
(
aϕd,n

−λIDd,n , (bϕd,n
Iϕd b′ϕd,n)

rϕd,n
)
·

∏

d∈[D],n∈[2]

e
(
bϕd,n

−λIDd,n , (aϕd,n
Iϕd a′ϕd,n)

r−rϕd,n
)

=(Msg||0m′

) · Ω−r · e (gr, ω̃) · ξ


r ·

∑

d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)



· ξ



∑

d∈[D],
n∈[2]

αϕd,n(−λIDd,n)rϕd,nβϕd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)



· ξ



∑

d∈[D],
n∈[2]

βϕd,n(−λIDd,n) (r − rϕd,n)αϕd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)



=(Msg||0m′

) · Ω−r · e (gr, ω̃) · ξ


r ·

∑

d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)



· ξ


r ·

∑

d∈[D],
n∈[2]

αϕd,nβϕd,n(−λIDd,n)
(
θϕd,nIϕd

+ θ′ϕd,n

)



=Msg||0m′

.

Else ifX /∈ B0, Iϕd
(X) 6= IDd, d ∈ [D]. Hence decryption yields

V = (Msg||0m′

) ·

ξ


r ·

∑
d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)



ξ


r ·

∑
d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)



= (Msg||0m′

) ·Qr

35

where

Q = ξ



∑

d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIDd + θ′ϕd,n

)
−
∑

d∈[D],
n∈[2]

αϕd,nβϕd,nλIDd,n

(
θϕd,nIϕd

+ θ′ϕd,n

)



With probability 1 − 1/p, Q 6= 1, and the ciphertext is distributed uniformly at random inG′.
Hence the probability thatV is of the formM̂sg||0m′

is less than1
p

+ 1
2m′ .

3.7 Proof of Security

To prove the selective security of our MRQEDD construction, we decompose the selective MRQED
game into two games: a selective confidentiality game and a selective anonymity game. By the
hybrid argument, if no polynomial-time adversary has more than negligible advantage in either the
confidentiality game or the anonymity game, then no polynomial-time adversary has more than
negligible advantage in the combined selective MRQED game.The terminologyconfidentiality
andanonymitythat we use here is adopted from AIBE schemes.

Definition 3.7.1 (MRQED selective confidentiality game)The MRQED selective confidentiality
game is defined as below.

• Init : The adversaryA outputs a pointX∗ where it wishes to be challenged.

• Setup: The challenger runs theSetup(Σ, L∆) algorithm to generatePK, SK. It givesPK

to the adversary, but does not divulgeSK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles that
do not containX∗.

• Challenge: The adversary submits two equal length messagesMsg0 andMsg1. The chal-
lenger flips a random coin,b, and encryptsMsgb underX∗. The ciphertext is passed to the
adversary.

• Phase 2: Phase 1 is repeated.

• Guess: The adversary outputs a guessb′ of b.

Definition 3.7.2 (MRQED selective anonymity game)The MRQED selective anonymity game
is defined as below.

• Init : The adversaryA outputs two pointsX0 andX1, where it wishes to be challenged.

• Setup: The challenger runs theSetup(Σ, L∆) algorithm to generatePK, SK. It givesPK

to the adversary, but does not divulgeSK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles that
do not containX0 andX1.

• Challenge: The adversary submits a messageMsg. The challenger first flips a random coin
b, and then encryptsMsg underXb. The ciphertext is passed to the adversary.

36

• Phase 2: Phase 1 is repeated.

• Guess: The adversary outputs a guessb′ of b.

In either game, we define the adversaryA’s advantage as

AdvA(Σ) =

∣∣∣∣Pr[b = b′]−
1

2

∣∣∣∣

Definition 3.7.3 (IND-sID-CPA) An MRQED scheme is IND-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in the confidentiality game.

Definition 3.7.4 (ANON-sID-CPA) An MRQED scheme is ANON-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in the anonymity game.

Lemma 3.7.5 If an MRQED scheme is both IND-sID-CPA secure and ANON-sID-CPA secure,
then the MRQED scheme is selectively secure.

Proof: By the hybrid argument.

Hence, it suffices to prove our MRQED construction IND-sID-CPA and ANON-sID-CPA se-
cure. We say that an MRQED scheme is(τ, q, ǫ) secure if any adversary makingq range queries
for decryption keys, cannot have more thanǫ advantage within timeτ .

Theorem 3.7.6 (Confidentiality) SupposeG satisfies the(τ, ǫ) D-BDH assumption, then the above
defined MRQED scheme is(τ ′, q, ǫ) IND-sID-CPA secure, whereτ ′ < τ −Θ(qD log T).

Theorem 3.7.7 (Anonymity) SupposeG satisfies the(τ, ǫ) D-Linear assumption, then the above
defined MRQED scheme is(τ ′, q, ǫ′) ANON-sID-CPA secure, whereτ ′ < τ − Θ(qD log T), and
ǫ′ = (2D log T + 1)(ǫ + 1/p).

In particular,Θ(qD log T) comes from the fact that the simulator needsO(D log T) time to
compute the decryption key for each hyper-rectangle queried. The2D log T + 1 loss factor inǫ′

comes from the hybrid argument we use to prove anonymity, andadditive1/p comes from the
probability that bad events happen in the simulation so thatthe simulator has to abort.

3.7.1 Proof: Confidentiality

Proof of Theorem 3.7.6:
We reduce the semantic security of MRQED to the hardness of the D-BDH problem. Let

[g, g1, g2, g3, Z] denote the D-BDH instance supplied to the simulator,B, whereg1 = gz1, g2 = gz2,
g3 = gz3, the simulator’s task is to decide whether or notZ = e(g, g)z1z2z3 . And to do this, the
simulator leverages an MRQED IND-sID-CPA adversary,A.

We describe a reduction such that ifZ = e(g, g)z1z2z3 , the simulator produces a valid ciphertext;
otherwise, the first termc in the ciphertext is random. Hence, if the adversary could break the
confidentiality of the scheme, the simulator would be able tosolve the D-BDH problem.

Init: The adversary selects a pointX∗ ∈ L∆ that it wishes to attack. Forϕ ∈ [D] × [L], define
I∗ϕ = Iϕ(X∗).

37

Setup: To create public and private parameters, the simulator doesthe following:
1. Pick at random fromZp

12DL:
[
αϕ,n, βϕ,n, θϕ,n, θ

′
ϕ,n, θ̄ϕ,n, θ̄′ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2]

subject to the constraint that
[
θ̄ϕ,nI

∗
ϕ + θ̄′ϕ,n = 0

]
ϕ=(d,l)∈[D]×[L],n∈[2]

whereI∗ϕ = Iϕ(X∗). We also require that theα’s, β’s, θ̄’s andθ̄′’s are forcibly non-zero.

2. Release the following public parameters to the adversary.

Ω← e(g1, g2),

[
aϕ,n ← (gθϕ,ng1

θ̄ϕ,n)
αϕ,n

, a′
ϕ,n ← (gθ′ϕ,ng1

θ̄′ϕ,n)
αϕ,n

,

bϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

βϕ,n
, b′ϕ,n ← (gθ′ϕ,ng1

θ̄′ϕ,n)
βϕ,n

,

]

ϕ=(d,l)∈[D]×[L],n∈[2]

Note that this posits thatω = z1z2; in addition, bothω and ω̃ are both unknown to the
simulator.

3. Compute what it can of the master key.
[

aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n,

yϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

αϕ,nβϕ,n
, y′

ϕ,n ← (gθ′ϕ,ng1
θ̄′ϕ,n)

αϕ,nβϕ,n

]

ϕ=(d,l)∈[D]×[L],n∈[2]

Portionω̃ of the master key is unknown to the simulator.

Phase 1: Suppose the adversary makes a decryption key query for the hyper-rectangle

B(s1, t1, s2, t2, . . . , sD, tD)

SinceB does not containX∗, there exists a dimensiond0 ∈ [D] such thatx∗
d0

/∈ [sd0
, td0

], where
x∗

d0
is X∗ projected onto thedth

0 dimension. Hence, there exists a dimensiond0 ∈ [D], such that
for all ID ∈ Λd0

(B), ID 6= I∗ϕ, whereϕ = (d0, l) = Φ(ID). We say thatX∗ does not overlap
with B in dimensiond0. The simulator now does the following:

1. Pickd0 such thatX∗ does not overlap withB in dimensiond0. Let n0 = 1.

2. Pick the following numbers at random fromZD+2|Λ∪(B)|
p :

[
µd

]
d∈[D]

,
[
λ̃ID,n0

]
ID∈Λd0

(B)
,
[
λID,n

]
ID∈Λd0

(B),n 6=n0

,
[
λID,n

]
ID∈Λ∪(B)−Λd0

(B),n∈[2]

subject to the constraint that
∑

d∈[D] µd = 0.

3. For allID ∈ Λ∪(B)−Λd0
(B), letDK(ID) =

(
kID,0,

[
k
(a)
ID,1, k

(b)
ID,1

]
,
[
k
(a)
ID,2, k

(b)
ID,2

])
repre-

sent the element inDK for ID, let ϕ = (d, l) = Φ(ID) whered 6= d0, compute and release
DK(ID) as below:

kID,0 ← gµd ·
∏

n∈[2]

(
yϕ,n

IDy′
ϕ,n

)λID,n,
[
k
(a)
ID,n ← aϕ,n

−λID,n, k
(b)
ID,n ← bϕ,n

−λID,n

]
n∈[2]

38

4. For allID ∈ Λd0
(B), let ϕ0 = (d0, l) = Φ(ID), compute and releaseDK(ID) as below:

kID,0 ← ω̃gµd0 ·
∏

n∈[2]

(
yϕ0,n

IDy′
ϕ0,n

)λID,n,
[
k
(a)
ID,n ← aϕ0,n

−λID,n, k
(b)
ID,n ← bϕ0,n

−λID,n

]
n∈[2]

where
λID,n0

= λ̃ID,n0
−

z2

αϕ0,n0
βϕ0,n0

Θ̄ϕ0,n0

(3.2)

Θ̄ϕ0,n0
= θ̄ϕ0,n0

ID + θ̄′ϕ0,n0
6= 0.

This ensures thatλID,n0
is distributed uniformly at random inZp. Sinceθ̄ϕ0,n0

I∗ϕ0
+ θ̄′ϕ0,n0

=
0; moreover, the simulator has pickedd0 such thatID 6= I∗ϕ0

, we then havēΘϕ0,n0
6= 0.

Although the simulator does not knowλID,n0
(since it does not knowz2), it can compute

aϕ0,n0

−λID,n0 andbϕ0,n0

−λID,n0 given gz2. Since the simulator does not know̃ω, we now
explain how to computekID,0. The simulator rewrites the equation forkID,0 as

kID,0 =
[
gµd0 ·

(
yϕ0,2

IDy′
ϕ0,2

)λID,2

]
· ω̃ ·

(
yϕ0,1

IDy′
ϕ0,1

)λID,1

Let Ψ = gµd0 ·
(
yϕ0,2

IDy′
ϕ0,2

)λID,2, thenkID,0 = Ψ · ω̃ ·
(
yϕ0,n0

IDy′
ϕ0,n0

)λID,n0 The simulator
can compute partΨ because it possesses all necessary parameters required to compute it.

Although the simulator cannot directly compute the value ofλID,n0
(since it does not know

z2), it is capable of computingkID,0 givengz1 andgz2; since if we rewritekID,0 as below,
we can see that the exponent only containsz1 andz2 to the first degree. For convenience,
we omit the subscriptsϕ0, n0 andID below by lettingα = αϕ0,n0

, β = βϕ0,n0
, θ = θϕ0,n0

,
θ′ = θ′ϕ0,n0

, θ̄ = θ̄ϕ0,n0
, θ̄′ = θ̄′ϕ0,n0

, y = yϕ0,n0
, y′ = y′

ϕ0,n0
, Θ = Θϕ0,n0

, λ = λID,n0
,

λ̃ = λ̃ID,n0
.

kID,0 =Ψ · gz1z2 ·
(
yIDy′

)λ
= Ψ · gz1z2 ·

(
gαβ(θ+z1θ̄)IDgαβ(θ′+z1θ̄′)

)eλ−z2/(αβΘ)

= Ψ · gz1z2 · g−z1z2(θ̄·ID+θ̄′)/Θ · gf(z1,z2,α,β,θ,θ′,θ̄,θ̄′,eλ,Θ,ID) = Ψ · gf(z1,z2,α,β,θ,θ′,θ̄,θ̄′,eλ,Θ,ID)

where f(z1, z2, α, β, θ, θ′, θ̄, θ̄′, λ̃, Θ, ID) is a polynomial where variablesz1 and z2 have
maximum degree 1.

Challenge: The adversary gives the simulator two messagesMsg0 andMsg1. The simulator
picks a random bitb, and encryptsMsgb under pointX∗ as below:

1. Pick random integers[rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .

2. Compute and release the following as the ciphertext.

(Msgb||0
m′

) · Z−1, g3,
[
grϕ,nβϕ,n(θϕ,nI∗

ϕ+θ′ϕ,n), (g3 · g
−rϕ,n)

αϕ,n(θϕ,nI∗
ϕ+θ′ϕ,n)

]
ϕ=(d,l)∈[D]×[L],n∈[2]

39

Note that this implies thatr = z3; and if Z = e(g, g)z1z2z3 , it is easy to verify that the ciphertext
is well-formed, due to the fact that

[
θ̄ϕ,nI

∗
ϕ + θ̄′ϕ,n = 0

]
ϕ=(d,l)∈[D]×[L],n∈[2]

. On the other hand, if
Z is a random number, then the first termc in the ciphertext is random and independent of the
remaining terms.

Phase 2: Phase 1 is repeated.

Guess: When the adversary outputs a guessb′ of b, the simulator outputs1 if b′ = b and 0
otherwise, in answer to the D-BDH instance.

3.7.2 Proof: Anonymity

In Definition 3.7.2 of the selective-ID anonymity game, the challenger flips a random coinb in the
Challengephase. An equivalent definition is where the challenger flipsthe coinb in the Setup
phase before running theSetup(Σ, L∆) algorithm. This new definition can be further translated
into a real-or-random version which we will use in the following proof of anonymity. In the real-or-
random game, the adversary commits to only one pointX∗ in theInit phase; any of its subsequent
range queries must not containX∗; in theChallengephase, the challenger either returns a faithful
encryption ofMsg underX∗ or a completely random ciphertext; and the adversary’s job is to
distinguish between these two worlds. It is easy to verify that the above real-or-random definition
implies the selective-ID anonymity definition as stated in Definition 3.7.2 [13].

The proof of anonymity is carried out in2DL steps using a hybrid argument. To do this, we
define the following games, where∗ represents a number distributed uniformly at random from the
appropriate group.

Wreal : The challenge ciphertext is
(
c, c0, [c

(b)
(1,1),1, c

(a)
(1,1),1], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

W0 : The challenge ciphertext is
(
∗, c0, [c

(b)
(1,1),1, c

(a)
(1,1),1], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

W1,1,1 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [c

(b)
(1,1),2, c

(a)
(1,1),2], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

W1,1,2 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [∗, ∗], [c

(b)
(1,2),1, c

(a)
(1,2),1], . . . , [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

. . .

WD,L,1 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [∗, ∗], . . . , [∗, ∗], [c

(b)
(D,L),2, c

(a)
(D,L),2]

)
;

WD,L,2 : The challenge ciphertext is(∗, c0, [∗, ∗], [∗, ∗], . . . , [∗, ∗], [∗, ∗]) .

In step(d, l, n) of the hybrid argument, we show thatWd,l,n is computationally indistinguish-
able from the previous world. Note that the transition fromWreal to W0 is the standard concept
of semantic security, and has been proved in the previous section. In addition,WD,L,2 is computa-
tionally indistinguishable from a completely random ciphertext, hence is anonymous.

40

We reduce the anonymity of our MRQED scheme to the hardness ofthe D-Linear problem. We
rewrite the D-Linear problem as given[g, gz1, gz2, Y, gz2z4, gz3+z4] ∈ G6, wherez1, z2, z3, z4 are
picked at random fromZp, decide whetherY = gz1+z3 . It is easy to show that this is equivalent to
the original D-Linear problem. For convenience, letg1 = gz1, g2 = gz2, g×

24 = gz2z4 , g+
34 = gz3+z4 .

Without loss of generality, we show only how to prove step(d1, l1, n1) of the hybrid argument.

Lemma 3.7.8 SupposeG satisfies the(τ, ǫ) D-Linear assumption, then no adversary makingq
decryption key queries, within timeτ − Θ(qD log T), can distinguish betweenWd1,l1,n1

and the
preceding game with more thanǫ + 1/p probability.

Proof of Lemma 3.7.8: Let ϕ1 = (d1, l1). We describe a reduction such that ifY = gz1+z3,
then the simulator produces a ciphertext in which the block[c

(b)
(d1,l1),n1

, c
(a)
(d1,l1),n1

] is well-formed;
otherwise, ifY is picked at random, the block is random as well. Hence, if theadversary can
distinguish between the two scenarios, the simulator can solve the D-Linear problem.
Init : The adversary selects a pointX∗ in space that it wishes to attack. DefineI∗ϕ = Iϕ(X∗).
Setup: To create public and private parameters, the simulator does the following:

1. Pick the following parameters at random fromZ12DL−3
p :

ω,
[
αϕ,n, βϕ,n, θ̄ϕ,n, θ̄

′
ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)

,
[
θϕ,n, θ′ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2]

subject to the constraint that
[
θ̄ϕ,nI

∗
ϕ + θ̄′ϕ,n = 0

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)

whereI∗ϕ = Iϕ(X∗).

We require that theα’s, βs, θ̄’s andθ̄′’s are forcibly non-zero. In addition, later in Equation
(3.5), we will need thatθϕ1,n1

I∗ϕ1
+ θ′ϕ1,n1

6= 0. Hence, the simulator simply aborts if it
happens to pickθ such thatθϕ1,n1

I∗ϕ1
+ θ′ϕ1,n1

= 0. Note that this happens with probability
1/p, and this explains why the1/p additive factor exists in the adversary’s advantage in
Lemma 3.7.8.

2. Compute and release to the adversary the following publicparameters:

Ω← e(g, g)ω, aϕ1,n1
← g1

θϕ1,n1 , bϕ1,n1
← g2

θϕ1,n1 , a′
ϕ1,n1

← g1
θ′ϕ1,n1 , b′ϕ1,n1

← g2
θ′ϕ1,n1 ,[

aϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

αϕ,n
, bϕ,n ← (gθϕ,ng1

θ̄ϕ,n)
βϕ,n

,

a′
ϕ,n ← (gθ′ϕ,ng1

θ̄′ϕ,n)
αϕ,n

, b′ϕ,n ← (gθ′ϕ,ng1
θ̄′ϕ,n)

βϕ,n

]

ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)

This posits thatαϕ1,n1
= z1, βϕ1,n1

= z2, both of which are unknown to the simulator.

3. Compute what it can of the private key:

ω̃ ← gω, aϕ1,n1
← g1, bϕ1,n1

← g2,[
aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n,

yϕ,n ← (gθϕ,ng1
θ̄ϕ,n)

αϕ,nβϕ,n
, y′

ϕ,n ← (gθ′ϕ,ng1
θ̄′ϕ,n)

αϕ,nβϕ,n

]

ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)

Note that the simulator does not knowyϕ1,n1
andy′

ϕ1,n1
.

41

The following lemma shows that even if we do not know the parametersz1, z2, yϕ1,n1
or y′

ϕ1,n1
,

we can still compute certain terms efficiently.

Lemma 3.7.9 In step(d1, l1, n1) of the hybrid argument, letϕ1 = (d1, l1). Suppose we are given
(d2, l2, n2) 6= (d1, l1, n1), and letϕ2 = (d2, l2). SupposeID1 and ID2 are nodes such that
Φ(ID1) = ϕ1 and Φ(ID2) = ϕ2 and ID2 6= I

∗
ϕ2

. Moreover, suppose we are givenλ1 ∈ Zp.
Then, even though the simulator does knowyϕ1,n1

, it can efficiently generate the following term,
such that the its resulting distribution is the same as whenλ2 is picked uniformly at random.

(yID1

ϕ1,n1
y′

ϕ1,n1
)
λ1

· (yID2

ϕ2,n2
y′

ϕ2,n2
)
λ2 (3.3)

Moreover, the following two terms can also be computed efficiently

a−λ2

ϕ2,n2
, b−λ2

ϕ2,n2
. (3.4)

Proof: For simplicity, letα = αϕ2,n2
, β = βϕ2,n2

. For i ∈ [2], we use simplyθi to denote
θϕi,ni

, andθ′i to denoteθ′ϕi,n1
. We use simplȳθ2 to denotēθϕ2,n2

, andθ̄′2 to denotēθ′ϕ2,n2
. Notice

we do not definēθ1, sinceθ̄ϕ1,n1
andθ̄′ϕ1,n1

are not defined. Define fori ∈ [2], Θi = θi · IDi + θ′i
and defineΘ2 = θ̄2 · ID2 + θ̄′2.

Recall that the simulator picked parameters such thatθ̄2I
∗
ϕ2

+ θ̄′2 = 0. In addition, since
ID2 6= I

∗
ϕ2

, andθ̄2 6= 0,
Θ2 = θ̄2 · ID2 + θ̄′2 6= 0

First, the simulator pickλ uniformly at random and define

λ2 = λ−
z2λ1Θ1

αβΘ2

.

Observe thatλ2 is distributed uniformly, but we cannot computeλ2 efficiently because we do
not knowz2. However, since we knowgz2, we can computegλ2 efficiently. Hence, it follows that
we can compute the two terms in (3.4) efficiently in the following way.

a−λ2

ϕ2,n2
= (gλ2)−α, b−λ2

ϕ2,n2
= (gλ2)−β.

It remains to show how to compute the term in (3.3). Rewrite (3.3) as below:

(yID1

ϕ1,n1
y′

ϕ1,n1
)
λ1

· (yID2

ϕ2,n2
y′

ϕ2,n2
)
λ2

= gz1z2λ1(θ1ID1+θ′
1) ·

(
gαβ(θ2+z1θ̄2)ID2gαβ(θ′

2
+z1θ̄′

2
)
)λ2

=gz1z2λ1Θ1+αβ(Θ2+z1Θ2)(λ−z2λ1Θ1/αβΘ2) = gαβΘ2λ · (gz1)αβΘ2λ · (gz2)−λ1Θ1Θ2/Θ2,

which can be computed efficiently givengz1 andgz2.

Phase 1:Suppose the adversary makes a decryption query for the hyper-rectangleB(s1, t1, . . . , sD, tD).
SinceB does not containX∗, there exists a dimensiond0 ∈ [D] such thatx∗

d0
/∈ [sd0

, td0
], where

x∗
d0

is X∗ projected onto thedth
0 dimension. Hence, exactly one of the following cases must be

true:
Case 1: For allID ∈ Λd1

(B) such thatΦ(ID) = ϕ1, ID 6= Iϕ1
(X∗).

42

(a) (b)

Figure 3.3: A 2-dimensional example: Relative position betweenX∗ and the queried hyper-
rectangle. (a) Each small rectangle shown is a simple rectangle. Along dimensiond1, ranges
[3, 4] and [9, 10] correspond to nodes at levell1. (b) The interval tree corresponding to dimension
d1.

Case 2: There existsID ∈ Λd1
(B) such thatΦ(ID) = ϕ1 andID = Iϕ1

(X∗). Note that in this
case, for allID′ ∈ Λd1

(B) such thatID′ 6= ID, ID′ 6= Iϕ′(X∗), whereϕ′ = Φ(ID′);
moreover, there exists a dimensiond0, such that for allID0 ∈ Λd0

(B), ID0 6= Iϕ0
(X∗),

whereϕ0 = Φ(ID0).
Figure 3.3 illustrates the above two cases with a 2-dimensional example. We now explain how the
simulator generates the decryption key in each of the above cases.

Case 1: (a) Pick at random[µ̃d]d∈[D] ∈R GD, such that
∏

d∈[D] µ̃d = ω̃.

(b) For eachID ∈ Λ∪(B) whereϕ := Φ(ID) 6= ϕ1, pick at randomλID,1, λID,2. Let

DK(ID) =
(
kID,0, [k

(a)
ID,1, k

(b)
ID,1], [k

(a)
ID,2, k

(b)
ID,2]

)
represent the element inDK for ID,

compute and releaseDK(ID) as below:

kID,0 ← µ̃d ·
∏

n∈[2]

(
yID

ϕ,ny
′
ϕ,n

)λID,n,
[
k
(a)
ID,n ← a

−λID,n
ϕ,n , k

(b)
ID,n ← b

−λID,n
ϕ,n

]
n∈[2]

(c) For eachID ∈ Λ∪(B) such thatΦ(ID) = ϕ1, the simulator can compute the following
DK(ID) efficiently:

kID,0 ← µ̃d1
·
∏

n∈[2]

(
yID

ϕ1,ny
′
ϕ1,n

)λID,n,
[
k
(a)
ID,n ← a

−λID,n
ϕ1,n , k

(b)
ID,n ← b

−λID,n
ϕ1,n

]

n∈[2]

Since the simulator does not knowyϕ1,n1
or y′

ϕ1,n1
, it needs to use Lemma 3.7.9 to

generateDK(ID). Let n′ 6= n1. To apply Lemma 3.7.9, the simulator first picks at

43

randomλID,n1
, and rewriteskID,0 as

kID,0 = µ̃d1
·
(
yID

ϕ1,n1
y′

ϕ1,n1

)λID,n1 ·
(
yID

ϕ1,n′y′
ϕ1,n′

)λID,n′

SinceID 6= Iϕ1
(X∗) , the simulator can apply Lemma 3.7.9 by substituting(d2, l2, n2)

in the lemma with(d1, l1, n
′), andλ1 with λID,n1

; in addition, bothID1 andID2 in the
lemma are substituted withID.

Case 2: (a) Pick at random[µd]d∈[D] ∈R Zp such that
∑

d∈[D] µd = ω.

(b) For eachID ∈ Λ∪(B)−Λd0
(B)−Λd1

(B) whereϕ := Φ(ID) = (d, l), d 6= d0 andd 6=

d1, pick at randomλID,1, λID,2. Let DK(ID) =
(
kID,0, [k

(a)
ID,1, k

(b)
ID,1], [k

(a)
ID,2, k

(b)
ID,2]

)

represent the element inDK for ID, compute and releaseDK(ID) as below:

kID,0 ← gµd ·
∏

n∈[2]

(
yID

ϕ,ny
′
ϕ,n

)λID,n

[
k
(a)
ID,n ← a

−λID,n
ϕ,n , k

(b)
ID,n ← b

−λID,n
ϕ,n

]
n∈[2]

(c) Let ID ∈ Λd1
(B) andID = Iϕ1

(X∗). There exists exactly one suchID. The simula-

tor picks at randomλID,n1
∈R Zp. DefineΥ =

(
yID

ϕ1,n1
y′

ϕ1,n1

)λID,n1 .

(d) For eachID ∈ Λd0
(B) whereϕ0 = (d0, l) := Φ(ID), compute and releaseDK(ID):

kID,0 ← gµd0 ·Υ ·
∏

n∈[2]

(
yID

ϕ0,ny′
ϕ0,n

)λID,n

[
k
(a)
ID,n ← a

−λID,n
ϕ0,n , k

(b)
ID,n ← b

−λID,n
ϕ0,n

]

n∈[2]

This implies that̃µd0
= gµd0 · Υ. Note thatΥ cannot be computed efficiently, as the

simulator does not knowyϕ1,n1
or y′

ϕ1,n1
. However, sinceID 6= Iϕ0

(X∗), the simulator
can apply Lemma 3.7.9 by substituting(d2, l2, n2) in the lemma with(d0, l, 1), λ1 with
λID,n1

, ID1 with ID, andID2 with ID. The remaining terms inkID,0 can be computed
efficiently.

(e) For eachID ∈ Λd1
(B) whereϕ′

1 = (d1, l) := Φ(ID) 6= ϕ1, compute and release
DK(ID):

kID,0 ← gµd1 ·Υ−1 ·
∏

n∈[2]

(
yID

ϕ′
1
,ny

′
ϕ′

1
,n

)λID,n

[
k
(a)
ID,n ← a

−λID,n

ϕ′
1
,n , k

(b)
ID,n ← b

−λID,n

ϕ′
1
,n

]
n∈[2]

This implies that̃µd1
= gµd1 ·Υ−1. Note thatΥ−1 cannot be computed efficiently, as the

simulator does not knowyϕ1,n1
or y′

ϕ1,n1
. However, sinceID 6= Iϕ′

1
(X∗), the simulator

can apply Lemma 3.7.9, by substituting(d2, l2, n2) in the lemma with(d1, l, 1), λ1

with −λID,n1
, ID1 with ID, andID2 with ID. The remaining terms inkID,0 can be

computed efficiently.

44

(f) For ID, let n′ 6= n1. Pick λID,n′ at random fromZp. Then compute and release the
following DK(ID):

kID,0 ← gµd1 ·Υ−1 ·
∏

n∈[2]

(
yID

ϕ1,ny′
ϕ1,n

)λ
ID,n

,
[
k
(a)

ID,n
← a

−λID,n
ϕ1,n , k

(b)

ID,n
← b

−λID,n
ϕ1,n

]
n∈[2]

As before, herẽµd1
= gµd1 ·Υ−1. kID,0 can be computed because the terms containing

yϕ1,n1
andy′

ϕ1,n1
cancel out, leavingkID,0 = gµd1 ·

(
yID

ϕ1,n′y′
ϕ1,n′

)λ
ID,n′

.

(g) For eachID ∈ Λd1
(B) such thatΦ(ID) = ϕ1 andID 6= ID, compute and release

DK(ID):
kID,0 ← gµd1 ·Υ−1 ·

∏
n∈[2]

(
yID

ϕ1,ny′
ϕ1,n

)λID,n ,
[
k
(a)
ID,n ← a

−λID,n
ϕ1,n , k

(b)
ID,n ← b

−λID,n
ϕ1,n

]
n∈[2]

Again, to be able to generatekID,0, Lemma 3.7.9 is required. However, in this case, a
slight complication is involved, since two terms inkID,0 containyϕ1,n1

andy′
ϕ1,n1

:

k
(O)
ID = gµd1 ·Υ−1 ·

∏

n∈[2]

(
yID

ϕ1,ny′
ϕ1,n

)λID,n

= gµd1 ·
(
yID

ϕ1,n1
y′

ϕ1,n1

)−λ
ID,n1 ·

∏

n∈[2]

(
yID

ϕ1,ny′
ϕ1,n

)λID,n

= gµd1 ·

((
yID

ϕ1,n1
y′

ϕ1,n1

)−λID,n1 ·
(
yID

ϕ1,n1
y′

ϕ1,n1

)λID,n1

)
·
(
yID

ϕ1,n′y′
ϕ1,n′

)λID,n′

Now the simulator picksλID,n1
at random fromZ∗

p, and computes

λ̃ID,n1
= λID,n1

θϕ1,n1
· ID + θ′ϕ1,n1

θϕ1,n1
· ID + θ′ϕ1,n1

− λ(ID)
n1

(3.5)

Here we require thatθϕ1,n1
· ID + θ′ϕ1,n1

6= 0. Notice thatID = I∗ϕ1
. As we ex-

plained in theSetup stage, the simulator aborts if it happens to pickθϕ1,(n1,j)’s such
thatθϕ1,n1

I∗ϕ1
+ θ′ϕ1,n1

= 0. Hence,

kID,0 = gµd1 ·
(
yID

ϕ1,n1
y′

ϕ1,n1

)eλID,n1

·
(
yID

ϕ1,n′y′
ϕ1,n′

)λID,n′

And now the simulator can apply Lemma 3.7.9 by substituting(d2, l2, n2) in the lemma
with (d1, l1, n

′), λ1 with λ̃ID,n1
, ID1 with ID, andID2 with ID.

Challenge: On receiving a messageMsg from the adversary, the simulator does the following:

45

1. Pick random integers[rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .

2. Compute and release the following as the ciphertext.

∗, g+
34, [∗, ∗], . . . , [∗, ∗], (g×

24)
θϕ1,n1

I∗
ϕ1

+θ′ϕ1,n1 , Y θϕ1,n1
I∗

ϕ1
+θ′ϕ1,n1 ,[

grϕ,nβϕ,n(θϕ,nI∗
ϕ+θ′ϕ,n), (g+

34 · g
−rϕ,n)

αϕ,n(θϕ,nI∗
ϕ+θ′ϕ,n)

]
(d1,l1,n1)<(d,l,n)<(D,L,2),ϕ=(d,l)

where(d, l, n) < (d′, l′, n′) if and only if 1) d < d′; or 2) d = d′ andl < l′; or 3) (d, l) =
(d′, l′) andn < n′.

Note that this implies thatr = z3 + z4 andrϕ1,n1
= z4. If Y = gz1z3 , it is easy to verify that the

ciphertext is well-formed, due to the fact that

[
θ̄ϕ,nI

∗
ϕ + θ̄′ϕ,n = 0

]
(d,l,n)6=(d1,l1,n1),ϕ=(d,l)

If Y is a random number, then termc(a)
(d1,l1),n1

is random and independent of the remaining terms of
the ciphertext.
Phase 2: Phase 1 is repeated.
Guess: If the adversary guesses that the ciphertext is an encryption ofMsg underX∗, the simulator
guesses thatY = gz3+z4 . Else if the adversary guesses that the ciphertext is the encryption under a
random point, then the simulator guesses thatY is picked at random fromG.

Proof of Theorem 3.7.7: The theorem follows naturally from Lemma 3.7.8 and the hybrid
argument.

46

Chapter 4

Delegating Capabilities in Predicate
Encryption

In this chapter, we demonstrate how to add delegation to predicate encryption systems. We first
give the formal definition for delegation in predicate encryption, including definitions of security.
While our big goal is to support expressive query predicates, as an initial step towards this vision,
we shall first add delegation to predicate systems supporting conjunctive queries. In particular,
we add delegation to an HVE-like construction; and we call the new scheme Delegatable Hidden
Vector Encryption (dHVE). The technical contents of this paper has been published in ICALP
2008 [37].

4.1 Definitions

We introduce the notion of delegation in predicate encryption systems and provide a formal defi-
nition of security.

In a predicate encryption system, some user, Alice, createsa public key and a corresponding
master key. Using her master key, Alice can compute and hand out a token to Bob, such that Bob
is able to evaluate some function1, f , on the plaintext that has been encrypted. Meanwhile, Bob
cannot learn any more information about the plaintext, apart from the output of the functionf .

In this thesis, we consider the role of delegation in predicate encryption systems. Suppose
Alice (the master key owner) has given Bob tokens to evaluatea set of functionsf1, f2, . . . , fm

over ciphertexts. Now Bob wishes to delegate to Charles the ability to evaluate the functions
{f1 + f2, f3, f4} over the ciphertext. Charles should not be able to learn moreinformation about
the plaintext apart from the output of the functions{f1+f2, f3, f4}. For example, although Charles
can evaluatef1 + f2, he should not be able to learnf1 or f2 separately. In general, Bob may be
interested in delegating any set of functions that is morerestrictivethan what he is able to evaluate
with his tokens. In general, a user who has a delegated capability can in turn create an even more

1Although we focus on functions that are predicates in our solutions, we use the more general term of functions in
this discussion and our formal definitions.

47

restricted capability. For example, after obtaining a token from Bob for functions{f1 + f2, f3, f4},
Charles may now decide to delegate to his friend David a tokento evaluatef3 · f4.

4.1.1 Definition

We now formally define delegation in predicate encryption systems that captures the above notion.
Let X = (x1, x2, . . . , xℓ) ∈ {0, 1}

ℓ denote a plaintext. Without loss of generality, assume that
we would like to evaluate from the ciphertext boolean functions (a.k.a. predicates) onX. Functions
that output multiple bits can be regarded as concatenation of boolean functions. LetF denote the
set of all boolean functions from{0, 1}ℓ to {0, 1}, i.e.,F := {f

∣∣ f : {0, 1}ℓ → {0, 1}}.
We define a token as a capability that allows one to evaluate from the ciphertext a set of func-

tions onX. Tokens will be associated with a setG = {g1, g2, . . . , gm} ⊆ F that can compute a
subset of all available functions. We remark that a token might be represented much more succintly
than|G|. For instance, if one had the capability to learn each individual bit ofX one could have a
small token, but still compute all22ℓ

predicate functions on the input.
A delegatable Predicate Encryption (DPE) scheme consists of the following (possibly random-

ized) algorithms.
Setup(1λ) TheSetup algorithm takes as input a security parameter1λ and outputs a public key

PK and a master secret keyMSK.

Encrypt(PK, X) The Encrypt algorithm takes as input a public keyPK and a plaintextX =
(x1, x2, . . . , xℓ) ∈ {0, 1}

ℓ and outputs a ciphertextCT.

GenToken(PK, MSK,G) TheGenToken algorithm takes as input a public keyPK, master secret
keyMSK, and a set of boolean functionsG ⊆ F . It outputs a token for evaluating the set of
functionsG from a ciphertext.

Query(PK, TKG, CT, f) TheQuery algorithm takes as input a public keyPK, a tokenTKG for
the function familyG, a functionf ∈ G, and a ciphertextCT. If CT is an encryption of the
plaintextX, then the algorithm outputsf(X).

Delegate(PK, TKG,G′) The Delegate algorithm takes as input a public keyPK, a token for the
function familyG ⊆ F , andG′ ⊆ G. It computes a token for evaluating the function family
G′ on a ciphertext.

Remark 4.1.1 We note that the above definition captures delegation in predicate encryption sys-
tems in the broadest sense. In a predicate encryption system, we would like to maximize the ex-
pressiveness of delegation; however, one should not be ableto delegate beyond what she can learn
with her own tokens. Otherwise, the security of predicate encryption would be broken.

Since we care about being able to perform expressive delegations, we can judge a system by its
expressiveness, e.g., what types of functions one can evaluate over the ciphertext, and what types
of delegations one can perform. Our vision is to design a predicate encryption system that supports
a rich set of queries and delegations. As an initial step, we restrict ourselves to some special classes
of functions. At the time this research is being conducted, the most expressive predicate encryption
system (without delegation) we know of supports conjunctive queries [12]; we focus our efforts on
permitting delegation in such systems.

48

More recently, Katz, Sahai, and Waters proposed a novel predicate encryption system support-
ing inner product queries [28] and realized a more expressive system. An interesting open direction
is to figure out what types of delegation one might realize in their system.

4.1.2 Security

We now define the security for delegation in predicate encryption systems. We describe a query
security game between a challenger and an adversary. This game formally captures the notion that
the tokens reveal no unintended information about the plaintext. The adversary asks the challenger
for a number of tokens. For each queried token, the adversarygets to specify its path of derivation:
whether the token is directly generated by the root authority, or delegated from another token. If
the token is delegated, the adversary also gets to specify from which token it is delegated. The
game proceeds as follows:

Setup.The challenger runs theSetup algorithm and gives the adversary the public keyPK.

Query 1. The adversary adaptively makes a polynomial number of queries of the following types:

• Create token.The adversary asks the challenger to create a token for a set of functions
G ⊆ F . The challenger creates a token forG without giving it to the adversary.

• Create delegated token.The adversary specifies a token for function familyG that has
already been created, and asks the challenger to perform a delegation operation to create
a child token forG′ ⊆ G. The challenger computes the child token without releasingit
to the adversary.

• Reveal token.The adversary asks the challenger to reveal an already-created token for
function familyG.

Note that when token creation requests are made, the adversary does not automatically see
the created token. The adversary sees a token only when it makes a reveal token query.

Challenge. The adversary outputs two stringsX∗
0 , X

∗
1 ∈ {0, 1}

ℓ subject to the following con-
straint:

For any token revealed to the adversary in theQuery 1stage, letG denote the function family
corresponding to this token. For allf ∈ G, f(X∗

0) = f(X∗
1).

Next, the challenger flips a random coinb and encryptsX∗
b . It returns the ciphertext to the

adversary.

Query 2. Repeat theQuery 1 stage. All tokens revealed in this stage must satisfy the same
condition as above.

Guess.The adversary outputs a guessb′ of b. The advantage of an adversaryA in the above game
is defined to beAdvA = |Pr[b = b′]− 1/2|.

Definition 4.1.1 We say that a delegatable predicate encryption system issecureif for all polynomial-
time adversariesA attacking the system, its advantageAdvA is a negligible function ofλ.

49

Selective security

We also define a weaker security notion calledselective security. In the selective security game,
instead of submitting two stringsX∗

0 , X
∗
1 in the Challengestage, the adversary first commits to

two strings at the beginning of the security game. The rest ofthe security game proceeds exactly
as before. The selective security model has been used earlier in the literature [3, 12, 13, 14, 15, 35].

We say that a delegatable predicate encryption system isselectively secureif all polynomial
time adversariesA have negligible advantage in the selective security game.

Remark 4.1.2 We note that our security definition is complete in the sense that in the query phase,
the adversary gets to specify, for each queried token, its path of derivation: whether the token
is generated by the root authority, or from whom the token hasbeen delegated. In prior work
on delegation in identity-based encryption systems (e.g.,Hierarchical Identity-Based Encryption
(HIBE) [4], Anonymous Hierarchical Identity-Based Encryption (AHIBE) [13]), the security game
was under-specified. In these definitions, the adversary didnot get to specify from whom each
queried token is delegated.

One way to deal with this is to create systems where all tokensare generated from the same
probability distribution. For instance, the AHIBE [13] work uses this approach. While this allows
us to prove the security of these systems, it can be an overkill. Under our security definition, the
delegated token need not be picked from the same probabilitydistribution as the non-delegated
tokens. In fact, we show that the ability to capture such nuances in our security definition allows
us to construct a simpler AHIBE scheme with smaller private key size.

4.1.3 A simple example

To help understand the above definition, we give a simple example similar to that in the BW06
paper [12]. As shown by Figure 4.1, the pointX encrypted takes on integer values between0 and
T . Givena, b ∈ [0, T], let fa,b denote the function that decides whetherX ∈ [a, b]:

fa,b(X) =

{
1 X ∈ [a, b]

0 o.w.

In Figure 4.1, we mark three disjoint segments[a1, a2], [a3, a4], [a5, a6] and four pointsx, y, z, u.
Alice has a token for functions{fa1,a2

, fa3,a4
, fa5,a6

}. This allows her to evaluate the following
three predicates: whethera1 ≤ X ≤ a2, a3 ≤ X ≤ a4, anda5 ≤ X ≤ a6. Alice can now
distinguish between ciphertextsEncrypt(PK, x) andEncrypt(PK, y), but she cannot distinguish
between ciphertextsEncrypt(PK, y) andEncrypt(PK, z).

Alice performs a delegation and computes a child token for the functiong(X) = fa1,a2
(X) ∨

fa3,a4
(X), and Bob receives this delegated token from Alice. Bob can decide whether(a1 ≤

X ≤ a2) ∨ (a3 ≤ X ≤ a4); this is a subset of information allowed by Alice’s token. Given
this new token, Bob can decide whetherX falls inside these two ranges, but he cannot decide
between the cases whetherX ∈ [a1, a2] or X ∈ [a3, a4]. For example, Bob can distinguish
between the ciphertextsEncrypt(PK, x) andEncrypt(PK, u), but he cannot distinguish between
the ciphertextsEncrypt(PK, x) andEncrypt(PK, y).

50

u

zyx

T0 a1 a2 a3 a4 a5 a6

Figure 4.1: A simple example of predicate encryption similar to the one described in BW06 [12].

4.2 Delegatable Hidden Vector Encryption (dHVE)

We propose a primitive called delegatable hidden vector encryption (dHVE), where we add dele-
gation to the HVE construction proposed in BW06 [12]. This isan interesting special case to the
general definition given in Section 4.1.1, and represents aninitial step toward our bigger vision of
enabling expressive queries and delegations in predicate encryption systems.

4.2.1 Delegatable HVE overview (dHVE)

In our dHVE system, a plaintext consists of multiple “fields”. For example, a plaintext can be the
tuple (IP,PORT, TIME , LENGTH). A token corresponds to a conjunction of a subset of these fields:
we can fix a field to a specific value, make a field “delegatable”,or choose not to include a field
in a query. For example, the query(IP = ?) ∧ (PORT = 80) ∧ (TIME = 02/10/08) fixes the
values of thePORT andTIME fields, and makes the IP field delegatable. TheLENGTH field is not
included in the query. A party in possession of this token canfill in any appropriate value for the
delegatable field IP; however, she cannot change the values of a fixed field such asPORT or delete
them from the query, nor can she add in the missing fieldLENGTH to the query. We now give
formal definitions for the above notions.

Let Σ denote a finite alphabet and let?,⊥ denote two special symbols not inΣ. DefineΣ?,⊥ :=
Σ∪{?,⊥}. The symbol? denotes a delegatable field, i.e., a field where one is allowedto fill in an
arbitrary value and perform delegation. The symbol⊥ denotes a “don’t care” field, i.e., a field not
involved in some query. Typically, if a query predicate doesnot concern a specific field, we call
this field a “don’t care” field. In the aforementioned example, (IP = ?)∧ (PORT = 80)∧ (TIME =
02/10/08), the IP field is delegatable,LENGTH is “don’t care”, and the remaining fields are fixed.

Plaintext Space. In dHVE, our plaintext is composed of a messageMsg ∈ {0, 1}∗ andℓ fields,
denoted byX = (x1, x2, . . . , xℓ) ∈ Σℓ. Capabilities will be evaluated overX, and theMsg

component is an extra message that will be divulged in case the predicate evaluates to true.
TheEncrypt algorithm takes as input a public keyPK, a pair(X,Msg) ∈ {0, 1}∗ × Σℓ, and

outputs a ciphertextCT.

Tokens. In dHVE, a token allows one to evaluate a special class of boolean functions on the
fieldsX ∈ Σℓ. We use a vectorσ = (σ1, σ2, . . . , σℓ) ∈ (Σ?,⊥)ℓ to specify a set of functions being
queried. Givenσ, letW(σ) denote the indices of all delegatable fields, letD(σ) denote the indices
of all “don’t care” fields, and letS(σ) denote the indices of the remaining fixed fields. In the

51

following, we use the notation[ℓ] to denote the set{1, 2, . . . , ℓ}.

W(σ) := {i
∣∣ σi = ?}, D(σ) := {i

∣∣ σi = ⊥}

S(σ) := {i
∣∣ σi ∈ Σ} = [ℓ]\ (W(σ) ∪ D(σ))

Let σ = (σ1, σ2, . . . , σℓ) ∈ (Σ?,⊥)ℓ; σ specifies the following function familyCσ on the point
X = (x1, . . . , xℓ) encrypted:

Cσ :=





(
∧

i∈W ′

(xi = ai)

)
∧



∧

j∈S(σ)

(xj = σj)


 ∣∣W ′ ⊆ W(σ),∀i ∈W ′, ai ∈ Σ



 (4.1)

In other words, given a token forσ, the familyCσ denotes the set of functions we can evaluate
from a ciphertext. For the delegatable fields, we can fill in any appropriate value, but we cannot
change or delete any of the fixed fields or add a “don’t care” field to the query. If any function in
Cσ evaluates to1, one would also be able to decrypt the payload messageMsg.

Remark 4.2.1 The familyCσ is a set of conjunctive equality tests, where we can fill in every del-
egatable field inσ with a value inΣ or “don’t care”. In particular, we fill in fields in W ′ with
appropriate values inσ, and for the remaining delegatable fieldsW(σ) −W ′, we fill them with
“don’t care”. If σ has no delegatable field, then the setCσ contains a single function. This is
exactly the case considered by the original HVE construction, where each token allows one to
evaluate a single function from a ciphertext.

Delegation. In dHVE, Alice, who has a token forσ, can delegate to Bob a subset of the functions
she can evaluate: 1) Alice can fill in delegatable fields (i.e.,W(σ)) with a value inΣ or with the
“don’t care” symbol⊥; 2) Alice can also leave a delegatable field unchanged (with the? symbol).
In this case, Bob will be able to perform further delegation on that field.

Definition 4.2.1 Letσ = (σ1, σ2, . . . , σℓ), σ
′ = (σ′

1, σ
′
2, . . . , σ

′
ℓ) ∈ Σℓ

?,⊥. We say thatσ′ ≺ σ, if for
all i ∈ S(σ) ∪ D(σ), σ′

i = σi.

Note thatσ′ ≺ σ means that fromTKσ we can perform a delegation operation and computeTKσ′ .
In addition, if σ′ ≺ σ, thenCσ′ ⊆ Cσ, i.e.,TKσ′ allows one to evaluate a subset of the functions
allowed byTKσ.

In summary, we introduce delegatable fields to the original HVE construction. We use the
notationσ ∈ Σℓ

?,⊥ to specify a function family. GivenTKσ, one can perform a set of conjunctive
equality tests (defined by Equation (4.1)) from the ciphertext. One may also fill in the delegatable
fields inσ with any value inΣ∪ {⊥} and compute a child token for the resulting vector. The child
token allows one to evaluate a subset of the functions allowed by the parent token.

Example. The trusted authorityT issues toA a token forσA = (I1, I2,?,?,⊥,⊥, . . . ,⊥). This
token allowsA to evaluate the following functions from the ciphertext:

• (x1 = I1) ∧ (x2 = I2)

• ∀I3 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)

52

• ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x4 = I4)

• ∀I3,I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

Later,A delegates toB the tokenσB = (I1, I2, I3,?,⊥,⊥, . . . ,⊥), whereI3 ∈ Σ. Note that
this allowsB to evaluate the following functions:

• (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)

• ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

Clearly, a token forσB releases a subset of information allowed byσA. Meanwhile,B is able
to further delegate on thex4 field.

4.2.2 dHVE definition

We now give a formal definition of dHVE.

Setup(1λ). TheSetup algorithm takes as input a security parameter1λ and outputs a public key
PK and a master secret keyMSK.

Encrypt(PK, X,Msg). The Encrypt algorithm takes a public keyPK and a pair(X,Msg) ∈
Σℓ × {0, 1}∗, and outputs a ciphertextC.

GenToken(PK, MSK, σ). TheGenToken algorithm takes as input a public keyPK, a master se-
cret keyMSK, and a vectorσ ∈ (Σ?,⊥)ℓ. It outputs a token for evaluating the set of conjunc-
tive queriesCσ from a ciphertext.

Delegate(PK, TKσ, σ′). TheDelegate algorithm takes as input a public keyPK, a tokenTKσ for
the vectorσ, and another vectorσ′ ≺ σ. It outputs a delegated tokenTKσ′ for the new vector
σ′.

Query(PK, TKσ, CT, σ′). TheQuery algorithm takes as input a public keyPK, a tokenTKσ for
the vectorσ, a ciphertextCT, and a new vectorσ′ satisfying the following conditions: (1)
σ′ ≺ σ; (2) σ′ does not contain delegatable fields, that is, such aσ′ specifies a single con-
junctive query (denotedfσ′) over the pointX encrypted. The algorithm outputsfσ′(X); if
fσ′(X) = 1, it also outputs the messageMsg.

Remark 4.2.2 In comparison to the general definition given in Section 4.1,in dHVE, we add a
payload messageMsg ∈ {0, 1}∗ to the plaintext. Meanwhile, the conjunctive queries in dHVE
are functions on the attributesX ∈ Σℓ, but not the payloadMsg. In addition, if a query matches
a pointX encrypted, one can successfully decrypt the payload message using the corresponding
token. It is not hard to show that the above formalization fordHVE is captured by the general
definition given in Section 4.1: We can regard(Msg, X) as an entire bit string, and decrypting the
payloadMsg can be regarded as evaluating a concatenation of bits from the bit string(Msg, X).
We choose to define dHVE with a payload message to be consistent with the HVE definition in
BW06 [12].

53

Selective security of dHVE. We will prove the selective security of our dHVE construction. We
give the formal selective security definition below. The full security definition for dHVE can be
found in Section 4.7.

• Init. The adversary commits to two stringsX∗
0 , X

∗
1 ∈ Σℓ.

• Setup.The challenger runs theSetup algorithm and gives the adversary the public keyPK.

• Query 1. The adversary adaptively makes a polynomial number of “create token”, “create
delegated token”, or “reveal token” queries. The queries must satisfy the following con-
straint: For any tokenσ revealed to the adversary, letCσ denote the set of conjunctive queries
corresponding to this token.

∀ TKσ revealed, ∀f ∈ Cσ : f(X∗
0) = f(X∗

1) (4.2)

• Challenge. The adversary outputs two equal-length messagesMsg0 andMsg1 subject to
the following constraint:

For any tokenσ revealed to the adversary in theQuery 1 stage, letCσ denote the set of
conjunctive queries corresponding to this token.

∀ TKσ revealed: if ∃f ∈ Cσ, f(X∗
0) = f(X∗

1) = 1, thenMsg0 = Msg1 (4.3)

The challenger flips a random coinb and returns an encryption of(Msgb, Xb) to the adver-
sary.

• Query 2. Repeat theQuery 1 stage. All tokens revealed in this stage must satisfy constraints
(4.2) and (4.3).

• Guess.The adversary outputs a guessb′ of b.

The advantage of an adversaryA in the above game is defined to beAdvA = |Pr[b = b′] − 1/2|.
We say that a dHVE construction isselectively secureif for all polynomial time adversaries, its
advantage in the above game is a negligible function ofλ.

Observation 4.2.1 Anonymous Hierarchical Identity-Based Encryption (AHIBE) is a special case
of the above-defined dHVE scheme.

AHIBE is very similar to the dHVE definition given above. The only difference is that in
AHIBE, the function family queried isCσ, whereσ has the special structure such thatS(σ) = [d]
whered ∈ [ℓ],W(σ) = [d + 1, ℓ], andD(σ) = ∅. In fact, we show that the new security definition
and the techniques we use to construct dHVE can be directly applied to givean AHIBE scheme
with shorter private key size. While the previous AHIBE scheme by Boyen and Waters requires
O(D2) private key size, our new construction hasO(D) private key size, whereD is the maximum
depth of the hierarchy. See Section 4.8 for details of the construction.

4.3 Background on Pairings and Complexity Assumptions

Our construction relies on bilinear groups of composite order n = pqr, wherep, q, andr are
distinct large primes. We now give a background review on bilinear groups of composite order.

54

Let GG be an algorithm called agroup generator. Algorithm GG takes as input a secu-
rity parameterλ ∈ Z>0, a numberk ∈ Z>0, and outputs a tuple(p, q, r1, r2, . . . , rk, G, GT , e)
wherep, q, r1, r2, . . . , rk are k + 2 distinct primes,G and GT are two cyclic groups of order
n = pq

∏k
i=1 ri, ande is a functione : G2 → GT satisfying the following properties:

• (Bilinear)∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• (Non-degenerate)∃g ∈ G such thate(g, g) has ordern in GT .
We assume that the group operations inG andGT as well as the bilinear mape are all computable
in time polynomial inλ. We also assume that the description ofG andGT includes generators of
G andGT respectively.

We use the notationGp, Gq, Gr1
, . . . , Grk

to denote the respective subgroups of orderp, q,
r1, . . . , rk of G. Similarly, we use the notationGT,p, GT,q, GT,r1

, . . . , GT,rk
to denote the respective

subgroups of orderp, q, r1, . . . , rk of GT .
Our construction relies on two complexity assumptions: theBilinear Diffie-Hellman assump-

tion (BDH) and the generalized composite 3-party Diffie-Hellman assumption (C3DH).Although
our construction requires only bilinear groups whose orderis the product of three primesn = pqr,
we state our assumptions more generally for bilinear groupsof ordern wheren is the product of
three or more primes.

We begin by defining some notation. We use the notationGG to denote thegroup generator
algorithm that takes as input a security parameterλ ∈ Z>0, a numberk ∈ Z>0, and outputs a tuple
(p, q, r1, r2, . . . , rk, G, GT , e) wherep, q, r1, r2, . . . , rk arek +2 distinct primes,G andGT are two
cyclic groups of ordern = pq

∏k
i=1 ri, ande : G2 → GT is the bilinear mapping function. We use

the notationGp, Gq, Gr1
, . . . , Grk

to denote the respective subgroups of orderp, q, r1, . . . , rk of G.
Similarly, we use the notationGT,p, GT,q, GT,r1

, . . . , GT,rk
to denote the respective subgroups of

orderp, q, r1, . . . , rk of GT .

The Bilinear Diffie-Hellman assumption. We review the standard Bilinear Diffie-Hellman as-
sumption, but in groups of composite order. For a given groupgeneratorGG define the following
distributionP (λ):

(p, q, r1, . . . , rk, G, GT , e)
R
← GG(λ, k), n← pq

∏k
i=1 ri,

gp
R
← Gp, gq

R
← Gq, h1

R
← Gr1

, . . . , hk
R
← Grk

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, h1, h2, . . . , hk, ga

p , gb
p, gc

p

)

T ← e(gp, gp)
abc

Output (Z̄, T)

Define algorithmA’s advantage in solving the composite Bilinear Diffie-Hellman problem as

cBDH AdvGG,A(λ) :=
∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]

∣∣

where(Z̄, T)
R
← P (λ) andR

R
← GT,p. We say thatGG satisfies the composite Bilinear Diffie-

Hellman assumption (cBDH) if for any polynomial time algorithmA, cBDH AdvGG,A(λ) is a neg-
ligible function ofλ.

55

The generalized composite 3-party Diffie-Hellman assumption. We also rely on the composite
3-party Diffie-Hellman assumption first introduced by Bonehand Waters [12]. For a given group
generatorGG define the following distributionP (λ):

(p, q, r1, . . . , rk, G, GT , e)
R
← GG(λ, k), n← pq

∏k
i=1 ri,

gp
R
← Gp, gq

R
← Gq, h1

R
← Gr1

, . . . , hk
R
← Grk

R1, R2, R3
R
← Gq, a, b, c

R
← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, h1, h2, . . . , hk, ga

p , gb
p, gab

p · R1, gabc
p ·R2

)

T ← gc
p ·R3

Output (Z̄, T)

Define algorithmA’s advantage in solving the generalized composite 3-party Diffie-Hellman prob-
lem for GG as C3DH AdvGG,A(λ) :=

∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]
∣∣, where(Z̄, T)

R
←

P (λ) andR
R
← G. We say thatGG satisfies the composite 3-party Diffie-Hellman assumption

(C3DH) if for any polynomial time algorithmA, its advantageC3DH AdvGG,A(λ) is a negligible
function ofλ.

The assumption is formed around the intuition that it is hardto test for Diffie-Hellman tuples
in the subgroupGp if the elements have a randomGq subgroup component.

Remark 4.3.1 Consider bilinear groups of ordern = pqr, wherep, q, andr are three distinct
primes. In the above generalized composite 3-party Diffie-Hellman assumption, whether to call a
primep, q, or r is merely a nominal issue. So equivalently, we may assume that it is hard to test for
Diffie-Hellman tuples in the subgroupGp, if each element is multiplied by a random element from
Gr instead ofGq.

4.4 dHVE Construction

We construct our dHVE scheme by extending the HVE construction by Boneh and Waters [12]
(also referred to as the BW06 scheme). One of the challenges that we must overcome is how to
add delegation in anonymous IBE systems.

Our primary challenges arise from providing delegation in the anonymous setting. Delegation
is easier in non-anonymous IBE systems, such as in HIBE [4]. In the HIBE construction [4], the
public key contains an element corresponding to each attribute, and the delegation algorithm can
use these elements in the public key to rerandomize the tokens. In anonymous systems, however, as
the encryption now has to hide the attributes as well, we haveextra constraints on what information
we can release in the public key. This restriction on rerandomizing components is the primary
hurdle we must overcome.

4.4.1 Construction

In our construction, the public key and the ciphertext are constructed in a way similar to the BW06
scheme. However, we use a new technique to reduce the number of group elements in the ciphertext

56

asymptotically by one half. Our token consists of two parts,a decryption key part denotedDK and
a delegation component denotedDL. The decryption key partDK is similar to that in the BW06
scheme. The delegation componentDL is more difficult to construct, since we need to make
sure that the delegation component itself does not leak unintended information about the plaintext
encrypted.

We will useΣ = Zm for some integerm. Recall thatΣ?,⊥ := Σ ∪ {?,⊥}, where? denotes a
delegatable field, and⊥ denotes a “don’t care” field.

Setup(1λ) The setup algorithm first chooses random large primesp, q, r > m and creates a bilinear
groupG of composite ordern = pqr, as specified in Section 4.3. Next, it picks random
elements

(u1, h1), . . . , (uℓ, hℓ) ∈ G2
p , g, v, w, w ∈ Gp , gq ∈ Gq, gr ∈ Gr

and an exponentα ∈ Zp. It keeps all these as the secret keyMSK.

It then chooses2ℓ + 3 random blinding factors inGq:

(Ru,1, Rh,1), . . . , (Ru,ℓ, Rh,ℓ) ∈ Gq and Rv, Rw, Rw ∈ Gq.

For the public key,PK, it publishes the description of the groupG and the values

gq, gr, V = vRv, W = wRw, W = wRw, A = e(g, v)α,




U1 = u1Ru,1, H1 = h1Rh,1

. . .
Uℓ = uℓRu,ℓ, Hℓ = hℓRh,ℓ





The message spaceM is set to be a subset ofGT of size less thann1/4.

Encrypt(PK, X ∈ Σℓ, Msg ∈M ⊆ GT) Assume thatΣ ⊆ Zm. Let X = (x1, . . . , xℓ) ∈ Zℓ
m.

The encryption algorithm first chooses a randomρ ∈ Zn and randomZ, Z0, Zφ, Z1, Z2, . . . , Zℓ ∈
Gq. (The algorithm picks random elements inGq by raisinggq to random exponents from
Zn.) Then, the encryption algorithm outputs the ciphertext:

CT =

(
C̃ = MsgAρ, C = V ρZ, C0 = W ρZ0, Cφ = W

ρ
Zφ,




C1 = (Ux1

1 H1)
ρZ1,

C2 = (Ux2

2 H2)
ρZ2,

.

Cℓ = (Uxℓ

ℓ Hℓ)
ρZℓ




)

Remark 4.4.1 We note that the ciphertext size is cut down by roughly a half when compared
to the BW06 construction [12]. Therefore, our constructionimmediately implies an HVE
scheme with asymptotically half the ciphertext size as the original BW06 construction.

GenToken(PK, MSK, σ ∈ Σℓ
?,⊥) The token generation algorithm will take as input the master

secret keyMSK and anℓ-tupleσ = (σ1, . . . , σℓ) ∈ Σℓ
?,⊥. The token forσ consists of two

parts: (1) a decryption key component denotedDK, and (2) a delegation component denoted
DL.

57

• The decryption key componentDK is composed in a way similar to that of the original
HVE construction [12]. Recall thatS(σ) denotes the indices of the fixed fields, i.e.,
indicesj such thatσj ∈ Σ. Randomly selectγ, γ ∈ Zp andtj ∈ Zp for all j ∈ S(σ).
Pick randomY, Y0, Yφ ∈ Gr andYj ∈ Gr for all j ∈ S(σ). Observe that picking
random elements from the subgroupGr can be done by raisinggr to random exponents
in Zn. Next, output the following decryption key component:

DK =
(
K = gαwγwγ

∏
j∈S(σ)(u

σj

j hj)
tj Y, K0 = vγY0, Kφ = vγYφ, ∀j ∈ S(σ) : Kj = vtjYj

)

• The delegation componentDL is constructed as below. Recall thatW(σ) denotes the
set of all indicesi whereσi = ?. Randomly selectYi,u, Yi,h ∈ Gr. For eachi ∈ W(σ),
for eachj ∈ S(σ) ∪ {i}, randomly selectsi,j ∈ Zp, Yi,j ∈ Gr. For eachi ∈ W(σ),
randomly selectγi, γi ∈ Zp, Yi,h, Yi,u, Yi,0, Yi,φ ∈ Gr. Next, output the following
delegation componentDLi for coordinatei:

∀i ∈ W(σ) : DLi =

(
Li,h = h

si,i

i wγiwγi
∏

j∈S(σ)(u
σj

j hj)
si,jYi,h, Li,u = u

si,i

i Yi,u

Li,0 = vγiYi,0, Li,φ = vγiYi,φ, ∀j ∈ S(σ) ∪ {i} : Li,j = vsi,jYi,j

)

Remark 4.4.2 Later, if we want to delegate on thekth field by fixing it toI ∈ Σ, we will
multiplyLI

k,u toLk,h, resulting in something similar to the decryption keyDK (except without
thegα term). Observe that theLi,h terms encode all the fixed fields (i.e.,S(σ)). This effec-
tively restricts the use of the delegation components, suchthat they can only be added on
top of the fixed fields, partly ensuring that the delegation components do not leak unintended
information.

Delegate(PK, σ, σ′) Given a token forσ ∈ Σℓ
?,⊥, theDelegate algorithm computes a token for

σ′ ≺ σ. Without loss of generality, we assume thatσ′ fixes only one delegatable field ofσ
to a symbol inΣ or to⊥. Clearly, if we have an algorithm to perform delegation on one
field, then we can perform delegation on multiple fields. Thiscan be achieved by fixing the
multiple delegatable fields one by one.

We now describe how to computeTKσ′ from TKσ. Supposeσ′ fixes thekth coordinate of
σ. We consider the following two types of delegation: 1) thekth coordinate is fixed to some
value in the alphabetΣ, and 2) thekth coordinate is set to⊥, i.e., it becomes a “don’t care”
field.

Type 1: σ′ fixes thekth coordinate ofσ to I ∈ Σ, and all other coordinates ofσ remain un-
changed. In this case,S(σ′) = S(σ) ∪ {k}, andW(σ′) = W(σ)\{k}. (Recall that
S(σ) denotes the set of indicesj whereσj ∈ Σ, andW(σ) denotes the set of delegat-
able fields ofσ.)

Step 1: Let (DK, DL) denote the parent token. Pick a random exponentµ ∈ Zn and reran-
domize the delegation componentDL by raising every element inDL to µ. Denote
the rerandomized delegation component:

∀i ∈ W(σ) : D̂Li =

(
L̂i,h = Lµ

i,h, L̂i,u = Lµ
i,u,

L̂i,0 = Lµ
i,0, L̂i,φ = Lµ

i,φ, ∀j ∈ S(σ) ∪ {i} : L̂i,j = Lµ
i,j

)

58

In addition, compute a partial decryption key component with thekth coordinate
fixed toI:

pDK =
(
T = L̂I

k,uL̂k,h, T0 = L̂k,0, Tφ = L̂k,φ, ∀j ∈ S(σ′) : Tj = L̂k,j

)

The partial decryption keypDK is formed similarly to the decryption keyDK,
except thatpDK does not contain the termgα.

Step 2: Compute|W(σ′)| rerandomized versions of the above. For alli ∈ W(σ′), ran-
domly selectτi ∈ Zn, and compute:

pDKi =
(
Γi = T τi, Γi,0 = T τi

0 , Γi,φ = T τi

φ , ∀j ∈ S(σ′) : Γi,j = T τi

j

)

Step 3: Compute the decryption key componentDK′ of the child token.DK′ is computed
from two things: 1)DK, the decryption key component of the parent token and
2) pDK, the partial decryption key computed in Step 1. In particular, pDK is the
partial decryption key with thekth field fixed; however, aspDK does not contain
thegα term, we need to multiply appropriate components ofpDK to those inDK.

To computeDK′, first, randomly selectY ′, Y ′
0 , Y

′
φ ∈ Gr. For all j ∈ S(σ′), ran-

domly selectY ′
j ∈ Gr. Now output the followingDK′:

DK′ =

(
K ′ = KTY ′, K ′

0 = K0T0Y
′
0 , K ′

φ = KφTφY
′
φ, K ′

k = TkY
′
k,

∀j ∈ S(σ) : K ′
j = KjTjY

′
j

)

Step 4: Compute the delegation componentDL′ of the child token.DL′ is composed of a
portionDL′

i for eachi ∈ W(σ′). Moreover, eachDL′
i is computed from two things:

1) D̂Li as computed in Step 1 and 2)pDKi as computed in Step 2.
Follow the steps below to computeDL′. For eachi ∈ W(σ′), randomly select
Y ′

i,h, Y
′
i,u, Y

′
i,0, Y

′
i,φ from Gr. For eachi ∈ W(σ′), for eachj ∈ S(σ) ∪ {i, k},

pick at randomY ′
i,j from Gr. Compute the delegation componentDL′ of the child

token:

∀i ∈ W(σ′) : DL′i =




L′
i,h = L̂i,hΓiY

′
i,h, L′

i,u = L̂i,uY ′
i,u,

L′
i,0 = L̂i,0Γi,0Y

′
i,0, L′

i,φ = L̂i,φΓi,φY ′
i,φ,

L′
i,i = L̂i,iY

′
i,i, L′

i,k = Γi,kY
′
i,k, ∀j ∈ S(σ) : L′

i,j = L̂i,jΓi,jY
′
i,j




Type 2: In Type 2 delegation,σ′ fixes thekth coordinate ofσ to⊥. In this case,S(σ′) = S(σ),
andW(σ′) = W(σ)\{k}. The child token is formed by removing the partDLk from
the parent token:

TKσ′ = (DK, DL\{DLk})

Remark 4.4.3 It is not hard to verify that delegated tokens have the correct form, except
that their exponents are no longer distributed independently at random, but are correlated

59

with the parent tokens. In the proof in Section 4.6, we show that Type 1 delegated tokens “ap-
pear” (in a computational sense) as if they were generated directly by calling theGenToken

algorithm, that is, with exponents completely at random. This constitutes an important idea
in our security proof.

Query(PK, TKσ, CT, σ′) A token for σ ∈ Σℓ
?,⊥ allows one to evaluate a set of functionsCσ

defined by Equation (4.1) from the ciphertext. Letσ′ ≺ σ and assumeσ′ has no delegatable
fields. Thenσ′ represents a single functionfσ′ (a conjunctive equality test), and theQuery

algorithm allows us to evaluatefσ′ over the ciphertext.

To evaluatefσ′ from the ciphertext usingTKσ, first call theDelegate algorithm to compute a
decryption key forσ′. Write this decryption key in the formDK = (K,K0,Kφ,∀j ∈ S(σ′) : Kj).

Furthermore, parse the ciphertext asCT =
(
C̃, C, C0, Cφ, ∀j ∈ ℓ : Cj

)
.

Use the same algorithm as the original HVE construction to perform the query. First, com-
pute

Msg ← C̃ · e(C, K)−1 · e(C0, K0)e(Cφ, Kφ)
∏

j∈S(σ′)

e(Cj , Kj) (4.4)

If Msg 6∈ M, output0, indicating thatfσ′ is not satisfied. Otherwise, output1, indicating
thatfσ′ is satisfied and also outputMsg. We explain why theQuery algorithm is correct in
Section 4.5.

4.4.2 Security of our construction

Theorem 4.4.1 Assuming that the Bilinear Diffie-Hellman assumption and the generalized com-
posite 3-party Diffie-Hellman assumptions hold inG, then the above dHVE construction is selec-
tively secure.

We explain the main techniques used in the proof; however, wedefer the detailed proof to
Section 4.6. In our main construction, delegated tokens have certain correlations with their parent
tokens. As a result, the distribution of delegated tokens differs from tokens generated freshly at
random by calling theGenToken algorithm. A major technique used in the proof is“token in-
distinguishability”: although delegated tokens have correlations with their parent tokens, they are
in fact computationally indistinguishable from tokens freshly generated through theGenToken

algorithm. (Strictly speaking, Type 1 delegated tokens arecomputationally indistinguishable from
freshly generated tokens.) This greatly simplifies our simulation, since now the simulator can pre-
tend that all Type 1 tokens queried by the adversary are freshly generated, without having to worry
about their correlation with parent tokens. Intuitively, the above notion of token indistinguishabil-
ity relies on the C3DH assumption: if we use a random hiding factor fromGr to randomize each
term in the token, then DDH becomes hard for the subgroupGp.

4.5 Correctness

We explain why theQuery algorithm is correct. Let(Msg, X) denote the plaintext encrypted, and
let σ′ denote the conjunctive query being evaluated in theQuery algorithm.

60

• If the plaintextX satisfies the query, i.e., iffσ′(X) = 1, a simple calculation shows that
the Query algorithm outputs the messageMsg. The calculation relies on the fact that if
a ∈ Gq andb ∈ Gr, thene(a, b) = 1. Observe that in our construction, each term in the
ciphertext (except̃C) contains a random hiding factor from the subgroupGq, and each term
in the token contains a random hiding factor from the subgroup Gr. When one performs a
pairing operation on the ciphertext and the token, the subgroupsGq andGr “disappear”, and
the result of the pairing is an element ofGT,p.

• If the plaintextX does not satisfy the query, i.e., iffσ′(X) = 0, due to an argument similar
to the BW06 [12] paper, the probabilityPr[Query((PK, TKσ, CT, σ′) 6= 0] is negligible. See
Lemma 5.2 of BW06 for details.

4.6 Proof

We prove the security of our construction. We prove selective security, where the adversary com-
mits to two stringsX∗

0 andX∗
1 at the beginning of the security game.

The challenge in proving security is that under our new security game, the simulation needs to
reflect how tokens are delegated. In other words, delegated tokens are correlated with their parent
tokens in some way, and the simulation should reflect this fact.

Our overall strategy is for the simulator to generate tokensby calling the originalGenToken

algorithm whenever possible, even when the token is delegated. More specifically, for all Type 1
delegation queries, the simulator generates a freshly randomized token by calling theGenToken

algorithm, rather than theDelegate algorithm. As we mentioned, this simulation does not reflect
the real security game, since the Type 1 delegated tokens areno longer correlated with their parent
tokens. However, we overcome this by showing that the simulation is computationally indistin-
guishable from the real security game. Intuitively, the indistinguishability property comes from
the random group element from the third subgroupGr that we use to rerandomize the tokens. Our
technique is novel in the sense that in proving semantic security over the ciphertext, we actually
rely on “semantic security” over the tokens.

4.6.1 Sequence of games

To prove security, we define a sequence of games,Game0, Game1, . . . , Game5.

Game0. Let Game0 denote the real selective security game as defined in Section4.1.2.

Game1. We first modifyGame0 slightly into a new gameGame1. Game1 is almost identical to
Game0, except in the way the tokens are generated. InGame1, whenever the adversary issues a
“create delegated token” query, depending on which type of delegation query it is, the challenger
performs the following:
• Type 1: The challenger calls theGenToken algorithm to generate a fresh token, and gives

it to the adversary.

61

• Type 2: The challenger generates the token in the normal way by calling theDelegate

algorithm.

Remark 4.6.1 The difference betweenGame0 and Game1 lies in the fact that in the real game
Game0, child tokens are always correlated with their parent tokens. In gameGame1, a Type 1
delegated token is no longer correlated with its parent token; however, Type 2 delegated tokens are
still correlated with their parent tokens.

Intuitively, if we use theGr subgroup to randomize the tokens, no polynomially bounded ad-
versary is able to tellGame0 apart fromGame1. In other words, the advantage of the adversary in
winning Game0 is almost the same as her advantage in winningGame1. Therefore, it suffices to
prove security usingGame1 instead ofGame0. This simplifies the proof, since inGame1, Type 1
delegated tokens are formed in the same way as non-delegatedtokens.

Lemma 4.6.1 Assuming that the generalized 3-party Diffie-Hellman assumption holds inG, then
no polynomially bounded adversary can successfully distinguishGame0 andGame1 with more than
negligible advantage.

Game2. Next, we modifyGame1 slightly into a new gameGame2. Game2 differs from Game1

also in the way tokens are formed. To explain howGame2 differs fromGame1, first observe that
any tokenσ queried must satisfy one of the following two cases:
• Matching tokens.The decryption key part ofTKσ matches both of the two selected points

X∗
0 andX∗

1 . In this case, for alli ∈ W(σ), X∗
0,i = X∗

1,i, since otherwiseTKσ would separate
the two selected points. In this case, we say that the token matches both selected points.

• Non-matching tokens.The decryption key part ofTKσ matches neither of the two selected
pointsX∗

0 andX∗
1 .

In Game2, in any Type 1 delegation query, if the token requested matches both of the selected
pointsX∗

0 andX∗
1 , the challenger picks the two exponents forw andw in DK not independently

at random, but in a correlated way: At the beginning of the security game, the challenger picks
a randomπ ∈ Zp, and keeps it secret from the adversary. Now if a tokenσ requested in a Type
1 delegation query matches both of the selected points, the challenger picksγ = πγ when it
computesDK. Similarly, for all i ∈ W(σ), when the challenger computesDLi, it picksγi = πγi,
instead of picking the two exponents independently at random.

Lemma 4.6.2 Assume that the C3DH assumption holds inG, Then for any polynomial time ad-
versary, the difference of advantage in winningGame1 andGame2 is negligible.

Remark 4.6.2 In Game1, all tokens (except Type 2 tokens) are picked independentlyat random.
In Game2, this is no longer true, in the sense that for certain queries, the exponents ofw and
w are correlated with each other. Because of the third subgroup Gr that we use to rerandomize
the tokens, we will show that this correlation is computationally hidden from the adversary. The
motivation for introducingGame2 is that later the simulator will need to exploit this correlation in
γ andγ in order to successfully perform a simulation.

Game3. We now further modifyGame2 intoGame3. Game3 is almost identical toGame2 except in
the challenge ciphertext. InGame3, if Msg0 6= Msg1, the first termC̃ in the challenge ciphertext

62

is replaced by a random element fromGT , and the rest of the ciphertext is generated as usual. If
Msg0 = Msg1, the challenge ciphertext is generated correctly.

Lemma 4.6.3 Assume that the BDH and C3DH assumptions hold inG. Then no polynomial time
adversary can successfully distinguishGame2 andGame3 with more than negligible probability.

Game4. Next, we modifyGame3 into a new gameGame4. Game3 andGame4 are identical except
in the challenge ciphertext. InGame4, the simulator creates the challenge ciphertext accordingto
the following distribution:

C0 = W ρg−πρ′

p Z0, Cφ = W
ρ
gρ′

p Zφ

whereρ′ is picked at random fromZp.

Lemma 4.6.4 Assume that the C3DH assumption holds inG, Then no polynomial time adversary
can successfully distinguish gamesGame3 andGame4 with more than negligible probability.

Game5. Let E denote the set of indicesi such thatX∗
0,i 6= X∗

1,i, whereX∗
0 andX∗

1 are the two
committed points in the selective security game. We now define a new gameGame5. Game5 differs
from Game4 in that for all i ∈ E, the ciphertext componentCi is replaced by a random element
from Gpq.

Lemma 4.6.5 Assume that the C3DH assumption holds inG, Then no polynomial time adversary
can successfully distinguishGame4 andGame5 with more than negligible probability.

Notice that inGame5, the ciphertext gives no information about the pointX∗
b or the message

Msgb encrypted. Therefore, the adversary can winGame5 with probability at most1/2.
We prove the above lemmas. First, we observe that fromGame0 to Game2, the simulation

changes in the way the tokens are generated. We show that these changes remain computationally
hidden from any poly-time adversary.

4.6.2 Indistinguishability of Game0 and Game1

We prove Lemma 4.6.1 and show that gamesGame0 andGame1 are computationally indistinguish-
able. To do this, we perform a hybrid argument on the number ofType 1 “Create delegated token”
queries issued by the adversary, henceforth referred to asT1-delegation queryfor short.

Definition 4.6.6 Let Game0,0 := Game0 denote the real game. Letq denote the number of T1-
delegation queries issued by the adversary. Define a sequence of hybrid gamesGame0,i for all
1 ≤ i ≤ q. Game0,i differs fromGame0 in the fact that when the adversary issues the firsti
T1-delegation queries, instead of generating the delegated tokens faithfully using theDelegate al-
gorithm, the challenger calls theGenToken algorithm instead to generate these delegated tokens.
For all the remaining queries, the challenger computes tokens and responds faithfully as in the real
gameGame0. Under the above definition,Game0,q is the same asGame1.

Claim 4.6.7 For all 0 ≤ d ≤ q− 1, no polynomially bounded adversary can distinguishGame0,d

fromGame0,d+1 with more than negligible advantage.

63

If we can prove the above Claim 4.6.7, then Lemma 4.6.1 follows by the hybrid argument.
We focus on proving Claim 4.6.7. Intuitively, Claim 4.6.7 relies on the following observation.

Pick h1, h2, . . . , hℓ
R
← Gp, an exponentτ

R
← Zp, and randomizing factorsY1, Y2, . . ., Yℓ, Z1, Z2,

. . ., Zℓ
R
← Gr. Now the tuple

(h1Z1, . . . , hℓZℓ, hτ
1Y1, . . . , h

τ
ℓ Yℓ)

is computationally indistinguishable from

(h1Z1, . . . , hℓZℓ, R1, . . . , Rℓ),

where(R1, . . . , Rℓ) are picked independently at random fromGpr = Gp × Gr. It is not hard
to see that this is the equivalent of the Decisional Diffie-Hellman (DDH) assumption for bilinear
groups of composite order. Since we can compute pairing in such groups, normally DDH is easy
in groupG. However, if we use subgroupGr to hide subgroupGp, DDH becomes hard inGp. For
this reason, we can rerandomize tokens by raising all elements to the same exponentτ , and the
rerandomized token is computationally indistinguishablefrom a completely rerandomized token.

We formalize the above intuition into theℓ-composite 3-party Diffie-Hellman assumption (ℓ-
C3DH). Lemma 4.6.8 proves that theℓ-C3DH assumption is implied by the generalized C3DH
assumption. Therefore, we are not introducing a new assumption here.

Given a group generatorGG, define the following distributionP (λ):

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

Y1, Y2, . . . , Yℓ, Z1, Z2, . . . , Zℓ
R
← Gr

h1, h2, . . . , hℓ
R
← Gp

τ
R
← Zp

X ← ((n, G, GT , e), gp, gq, gr, h1Z1, h2Z2, . . . , hℓZℓ)

Q← (hτ
1Y1, hτ

2Y2, . . . , hτ
ℓ Yℓ)

Output (X, Q)

For an algorithmA, defineA’s advantage in solving the above problem:

ℓC3DH AdvGG,A(λ) :=

∣∣∣∣Pr[A(X, Q) = 1]− Pr[A(X, R) = 1]

∣∣∣∣

where(X, Q)← P (λ), and
R = (R1, R2, . . . , Rℓ)

R
← Gℓ

pr

Lemma 4.6.8 (ℓ-composite 3-party Diffie-Hellman) Assume that the generalized composite 3-
party Diffie-Hellman assumption holds inG. All probabilistic polynomial time adversaries have
negligible advantage in solving theℓ-C3DH problem.

64

Proof: By hybrid argument.

Proof of Claim 4.6.7: Recall that in gameGame0,d, when the challenger receives the firstd
T1-delegation queries, it creates a completely randomized token. We show that no polynomially
bounded adversary has more than negligible advantage in distinguishingGame0,d from Game0,d+1.

We use the following sequence of games to prove Claim 4.6.7.
Game′0,d In Step 1of theDelegate algorithm, for thed+1th T1-delegation query, instead of generating

D̂L = [D̂Li]i∈W(σ) faithfully by raising every element inDL to a random exponentµ, the

challenger pickŝDL to be a fresh random delegation component. We show that a polynomial
time adversary cannot distinguish between the two cases.

Game′′0,d In Step 2, instead of computing eachpDKi faithfully, the challenger picks them as fresh
random decryption keys (except without thegα term). We show that a polynomial time
adversary cannot distinguish between these two cases.

It is not hard to see that if̂DL were a completely rerandomized delegation component forσ, while
eachpDKi were independently rerandomized decryption keys (except without thegα part), then
the delegated tokenTKσ′ would be a truly rerandomized token, as if it were generated by directly
calling theGenToken algorithm. In other words,Game′′0,d = Game0,d+1. We show below that
Game0,d is indistinguishable fromGame′0,d and thatGame′0,d is indistinguishable fromGame′′0,d.

Game0,d is indistinguishable from Game′0,d. We prove the aboveStep1, i.e.,Game′0,d is compu-
tationally indistinguishable fromGame0,d. Suppose a polynomial time adversaryA can success-
fully distinguish between the above two games. Letq0 denote the maximum number of “create
token” and “create Type 1 delegated token” queries made by the adversary. We build a simulatorB
that leveragesA to break the following((ℓ + 1)(ℓ + 2)q0)-C3DH assumption. We use the notation
∀i, j, k to denote∀i ∈ [q0], 0 ≤ j ≤ ℓ, k ∈ [ℓ + 2].

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

∀i, j, k : Yi,j,k, Zi,j,k
R
← Gr, vi,j,k

R
← Gp

τ
R
← Zp

X ← ((n, G, GT , e), gp, gq, gr, ∀i, j, k : vi,j,kZi,j,k)

Q←
(
∀i, j, k : vτ

i,j,kYi,j,k

)

Then the challenger randomly decides to give(X, Q′ = Q) or (X, Q′ = R), whereR is a random
vector drawn from(Gpr)

(ℓ+1)(ℓ+2)q0 .
The simulator will leverage the adversaryA to distinguish between the above two cases.

Init and Setup.At the beginning of the security game, the adversary commitstwo pointsX∗
0 and

X∗
1 .

65

The simulator picksv
R
← Gp, and for1 ≤ i ≤ ℓ, the simulator setsui = vxi, hi = vyi, where

xi andyi are random exponents fromZn. The simulator also picksw = vz andw = vz. The
remaining public parameters and secret key components are picked normally according to
theSetup algorithm.

Query 1 and 2.Recall that the adversary makes a number of queries of the following types: 1)
create token, 2) create delegated token, 3) reveal token. Inthis simulation, the simulator
computes and saves a token internally whenever a “create token” or “create delegated token”
query is made. The simulator simply reveals the saved token whenever the adversary makes
a “reveal token” query.

Throughout the simulation, whenever the adversary asks thesimulator to create a Type 2
delegated token, the simulator generates it faithfully by deriving it from its parent token.
This correctly reflects the relation between the child tokenand the parent token.

From now on, we focus on how the simulator generates Type 1 delegated tokens and non-
delegated tokens.

• Before the adversary issues the(d + 1)th T1-delegation query, the simulator computes
tokens using the following strategy. Whenever the adversary asks the simulator to cre-
ate a Type 1 token or non-delegated token, the simulator incorporates elements from
the(ℓ + 1)(ℓ + 2)q0-C3DH instance into these tokens, in a way such that all the expo-
nents are distributed uniformly at random. In particular, let i (1 ≤ i ≤ q0) denote the
index of the current query. We note thati is a counter for all “create delegated token”
or “create Type 1 delegated token” queries, andd is a counter for all “create Type 1
delegated token” queries. The simulator lets

K0 = vi,0,ℓ+1Zi,0,ℓ+1, Kφ = vi,0,ℓ+2Zi,0,ℓ+2, ∀k ∈ S(σ) : Kk = vi,0,kZi,0,k

For all j ∈ W(σ), the simulator lets

Lj,0 = vi,j,ℓ+1Zi,j,ℓ+1, Lj,φ = vi,j,ℓ+2Zi,j,ℓ+2, ∀k ∈ S(σ) ∪ {j} : Lj,k = vi,j,kZi,j,k

As the simulator knows thedlog of w, w, u1, . . . , uℓ, h1, . . . , hℓ basev, the remaining
components of the token can be generated efficiently:

K = gαKz
0K

z
φ



∏

j∈S(σ)

K
xjσj+yj

j


Y, whereY

R
← Gr (4.5)

∀j ∈ W(σ) :
Lj,h = L

yj

j,jL
z
j,0L

z
j,φ

(∏
k∈S(σ) Lxkσk+yk

j,k

)
Yj,h

Lj,u = L
xj

j,jYj,u

whereYj,h, Yj,u
R
← Gr

(4.6)

• The adversary makes the(d + 1)th T1-delegation query. In particular, the adversary
specifies a parent token, and asks to fix a delegatable field to some valueI ∈ Σ.
Assume the parent token was created in theith query,1 ≤ i ≤ q0. When performing

66

Step 1of theDelegate algorithm, for allj ∈ W(σ), the simulator lets

L̂j,0 = Q′
i,j,ℓ+1, L̂j,φ = Q′

i,j,ℓ+2, ∀k ∈ S(σ) ∪ {j} : L̂j,k = Q′
i,j,k

Here we use the notationQ′
i,j,k to index into the vectorQ′ from the((ℓ + 1)(ℓ + 2)q0)-

C3DH problem. As the simulator knows thedlog of w, w, u1, . . . , uℓ, h1, . . . , hℓ base
v, the remaining components of the token can be generated efficiently due to Equations
(4.5) and (4.6).

• For all the remaining queries, the simulator responds faithfully as in the real game.

Clearly, if Q′ = Q in the ((ℓ + 1)(ℓ + 2)q0)-C3DH instance, then the above simulation is
identically distributed asGame0,d. Otherwise, the above simulation is identically distributed
asGame′0,d.

Challenge.The simulator generates the challenge ciphertext as normal.

Guess.If the adversary hasǫ difference in its advantage inGame0,d andGame′0,d, it is not hard to
see that the simulator has a comparable advantage in solvingthe C3DH instance.

Game′0,d is indistinguishable from Game′′0,d. Similarly, we can show that Step 2 above is also
true, i.e., no polynomial time adversary can distinguish betweenGame′0,d andGame′′0,d with non-
negligible probability. To prove this, we further define a sequence of hybrid games. Suppose that
in Game′0,d,c where0 ≤ c ≤ W(σ′), the firstc pDKi’s are replaced by independent random de-
cryption keys (without thegα part). We show that a polynomial time adversary cannot distinguish
betweenGame′0,d,c andGame′0,d,c+1. Then, by the hybrid argument,Game′0,d andGame′′0,d (which
is identically distributed asGame0,d+1) are computationally indistinguishable.

The simulator tries to solve the followingℓ-C3DH instance:

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

Y1, Y2, . . . , Yℓ, Z1, Z2, . . . , Zℓ
R
← Gr

v1, v2, . . . , vℓ
R
← Gp

τ
R
← Zp

X ← ((n, G, GT , e), gp, gq, gr, v1Z1, v2Z2, . . . , vℓZℓ)

Q← (vτ
1Y1, vτ

2Y2, . . . , vτ
ℓ Yℓ)

The simulator tries to distinguish between(X, Q′ = Q) and(X, Q′ = R), whereR is a random
vector fromGpr. The simulator leverages an adversaryA who can distinguish betweenGame′0,d,c

andGame′0,d,c+1.
Init and Setup.At the beginning of the game, the simulator sets up public parameters and a secret

key by choosingv
R
← Gp. For 1 ≤ i ≤ ℓ, the simulator setsui = vxi, hi = vyi , wherexi

andyi are random exponents fromZn. The simulator also picksw = vz andw = vz. The

67

remaining public parameters and secret key components are picked normally according to
theSetup algorithm.

Query 1 and 2.The adversary issues a number of queries to the simulator. Like before, the
simulator internally computes and saves a token whenever itreceives a “create token” or
“create delegated token” query. The simulator simply reveals to the adversary the previously
computed token in a “reveal token” query.

The simulator treats Type 2 tokens as a special case. Whenever the adversary asks the sim-
ulator to create a Type 2 token, the simulator computes it faithfully by deriving the token
from the specified parent. This correctly reflects the relation between the child token and its
parent. Henceforth, we focus on how the simulator computes Type 1 delegated tokens and
non-delegated tokens.

• Before the adversary makes the(d + 1)th T1-delegation query, the simulator always
computes each Type 1 delegated token and non-delegated token freshly at random.

• At the(d+1)th T1-delegation query, the adversary specifies a parent token, and requests
to fix thekth coordinate to some valueI ∈ Σ. To answer this query, the simulator first
generateŝDLi for all i ∈ W(σ), andpDK. For i ∈ W(σ)\{k}, the simulator picks at
randomL̂i,0, L̂i,φ andL̂i,j for all j ∈ S(σ) ∪ {i}. The simulator lets

T0 = L̂k,0 = vℓ+1Zℓ+1, Tφ = L̂k,φ = vℓ+2Zℓ+2, ∀j ∈ S(σ′) : Tj = L̂k,j = vjZj

As the simulator knows thedlog of w, w, u1, . . . , uℓ, h1, . . . , hℓ basev, the remaining
components of̂DLi’s andpDK can be generated efficiently in a way similar to Equations
(4.5) and (4.6). The only difference is thatpDK does not contain thegα term, while a
decryption keyDK does.

The simulator picks the firstc pDKi’s as fresh random (partial) decryption keys.

Let i be thec + 1th index inW(σ′). ForpDKi, the simulator sets

Γi,0 = Q′
ℓ+1, Γi,φ = Q′

ℓ+2 ∀j ∈ S(σ′) : Γi,j = Q′
j

We use the notationQ′
j to index into thej th element of the vectorQ′ from theℓ-C3DH

problem. Again, since the simulator knows thedlog of w, w, u1, . . . , uℓ, h1, . . . , hℓ base
v, the remaining terms inpDKi can be generated efficiently.

For all the remainingpDKi’s, the simulator generates them normally as in the original
Delegate algorithm.

• For all the remaining queries, the simulator generates themfaithfully.

Challenge.The simulator generates the challenge ciphertext as normal.

Guess. Notice that if Q′ = Q in the ℓ-C3DH problem, then the above simulation is identi-
cally distributed asGame0,d,c; otherwise, the above simulation is identically distributed as
Game0,d,c+1. Therefore, if a polynomial time adversary could successfully distinguish be-
tweenGame0,d,c andGame0,d,c+1, then the simulator would be able to solve theℓ-C3DH
problem with non-negligible probability.

68

4.6.3 Indistinguishability of Game1 and Game2

We prove Lemma 4.6.2.
Let q denote the maximum number of T1-delegation queries for a matching token made by the

adversary. We show that if a poly-time adversary has non-negligible difference in its advantage in
Game1 andGame2, we can build a simulator that leverages this adversary to break the modified
q(ℓ + 1)-C3DH assumption. In the following, we use∀i, j to mean∀i ∈ [q], 0 ≤ j ≤ ℓ.

(p, q, r, G, GT , e)
R
← GG(λ, 1), n← pqr,

gp
R
← Gp, gq

R
← Gp, gr

R
← Gr

∀i, j : Yi,j,1, Yi,j,2
R
← Gr

v1, v2
R
← Gp

∀i, j : τi,j
R
← Zp

Q←
(
v

τi,j

1 Yi,j,1, v
τi,j

2 Yi,j,2

)

The modifiedq(ℓ + 1)-C3DH assumption says that given randomly(Q′ = Q) or (Q′ = R)
whereR is a random vector of lengthq(ℓ + 1) from Gpr, a poly-time adversary cannot distinguish
whetherQ′ = Q orQ′ = R. The modifiedq(ℓ+1)-C3DH assumption follows from the generalized
C3DH assumption by the hybrid argument. Hence, we are not introducing a new assumption here.

Suppose the simulator is randomly given(Q′ = Q) or (Q′ = R) whereR is a random vector
of lengthq(ℓ + 1) from Gpr. Now the simulator tries to distinguish between the two cases.

The simulator first generates public and secret keys. The simulator picksv ∈ Gp at random.
For 1 ≤ i ≤ ℓ, the simulator setsui = vxi, hi = vyi, wherexi andyi are random exponents from
Zn. The simulator also picksw = vz andw = vz, wherez andz are also random exponents from
Zn. The simulator proceeds and generates the rest of public andsecret keys as normal.

We explain how the simulator answers the adversary’s queries. When the adversary makes the
ith T1-delegation query for a matching token, the simulator computes a token by lettingK0 = Q′

i,0,1

andKφ = Q′
i,0,2. This fixes the exponentsγ andγ, although the simulator does not know whatγ

andγ really are. The simulator picks the remaining parameters needed as normal, and computes
the decryption key partDK. Notice that even though the simulator does not knowγ or γ, DK can
be efficiently computed, since the simulator knows thedlog of w, w basev.

Similarly, for delegation componentDLj wherej ∈ W(σ), the simulator letsLi,0 = Q′
i,j,1,

Li,φ = Q′
i,j,2, picks the remaining parameters needed as normal, and computesDLj. By the same

reasoning, even though the simulator does not knowγj or γj , DLj can be efficiently computed
since the simulator knows thedlog of w, w basev.

We observe that ifQ′ = Q, then the above simulation would be identically distributed as
Game2. Otherwise, ifQ′ = R, the above simulation would be identically distributed asGame1.
Therefore, if a poly-time adversary has non-negligible difference in its advantage in distinguishing
Game1 andGame2, the simulator would be able to break the modifiedq(ℓ + 1)-C3DH assumption.

69

Until now, we have shown that the simulator can change the waytokens are computed such that
these changes remain computationally hidden from the adversary. Now we show that if the sim-
ulator changes certain parts of the ciphertext to random, a poly-time adversary cannot distinguish
with more than negligible advantage.

In all the simulations described below, the simulator will compute tokens only when a “reveal
token” query is made. When the adversary makes a “create token” or “create delegated token”
query, the simulator simply records that query without computing the actual token created. In
particular, in some of these simulations, the simulator is not able to compute all tokens. However,
the simulator is always able to compute a token in a “reveal token” query. Recall that a tokenσ
represents a set of conjunctive queries over the pointX encrypted. Any tokenσ requested in a
“reveal token” query must satisfy the condition that for anyfunctionf ∈ Cσ (f is a conjunctive
query onX ∈ Zℓ

m), f(X∗
0) = f(X∗

1). Henceforth, we use the terminologyσ does not separate
the two selected pointsX∗

0 andX∗
1 to describe the above condition. In all the simulations below,

the simulator is always able to compute a tokenσ, as long asσ does not separate the two selected
points.

In the simulations described below that change certain parts of the ciphertext, an adversary can
ask the simulator to reveal a token of the following types: 1)non-delegated, 2) Type 1 delegated, 3)
Type 2 delegated. Clearly, non-delegated tokens are distributed independently from other tokens.
Due to Lemma 4.6.1, Type 1 tokens appear to be uncorrelated with their parent tokens. Therefore,
the simulator always computes non-delegated and Type 1 tokens freshly at random. By contrast,
Type 2 tokens are correlated with their ancestor tokens, andthus require special treatment. The
simulator must construct Type 2 tokens such that they reflectthe correct relationship with their
ancestors. Before explaining how the simulations are performed, we describe a general strategy the
simulator uses to generate Type 2 delegated tokens, since they require special treatment different
from that for non-delegated tokens and Type 1 delegated tokens.

4.6.4 Generating Type 2 delegated tokens

The simulator uses a “book-keeping” technique. We use the notationTKσ′ ≺2 TKσ to mean that
TKσ′ is derived fromTKσ through a Type 2 delegation operation. Whenever the adversary asks
the simulator to reveal a Type 2 delegated token, instead of computing a fresh token, the simulator
examines the history of queries, and finds the sequence of Type 2 delegation queries that created
this token,

TKσk
≺2 TKσk−1

≺2 . . . ≺2 TKσ1

whereTKσk
:= TKσ is the currently requested token, andTKσ1

is a non-delegated token or a
Type 1 delegated token. We note that the simulator might not be able to compute all these tokens.
However, the simulator can compute a token if the token does not separate the two selected points
X∗

0 andX∗
1 .

If a tokenTKσi
(1 ≤ i ≤ k) in the above sequence has been computed by the simulator in the

past, the simulator simply derivesTKσ from TKσi
using theDelegate algorithm, and returns it to

the adversary. In particular,σ fixes some delegatable coordinates ofσi to ⊥, and the simulator
simply removes the corresponding delegation components from TKσi

to form TKσ. Otherwise, if

70

no token in the above sequence has been computed by the simulator in the history, the simulator
finds the earliest ancestorTKσi

(1 ≤ i ≤ k) in the above sequence, such thatTKσi
does not separate

the two selected pointsX∗
0 andX∗

1 . The simulator generatesTKσi
freshly at random, and then it

follows theDelegate algorithm to generateTKσ from TKσi
(by removing the fields set to⊥ from

the delegation components).

We now describe a sequence of simulations that replace ciphertext components by random group
elements. In these simulations, we focus on how the simulator can compute non-delegated and
Type 1 tokens. Type 2 tokens are always treated as a special case using the algorithm described
earlier in this section.

4.6.5 Indistinguishability of Game2 and Game3

In Game3, if Msg0 6= Msg1, the challenger replaces the ciphertext componentC̃ by a random
group element fromGT .

The proof thatGame2 andGame3 are indistinguishable to a poly-time adversary is similar to
that in the original BW06 paper [12].

We prove this in two steps:
• Game′2: If Msg0 6= Msg1, the challenger replaces the ciphertext componentC̃ by a random

group element fromGT,p. No poly-time adversary can distinguishGame′2 from Game2 with
more than negligible probability.

• Because of the subgroup decision assumption (implied by theC3DH assumption), if the
simulator replaces the ciphertext componentC̃ by a random group element fromGT instead
of GT,p, the adversary cannot distinguish this case fromGame′2.

We first prove thatGame2 is computationally indistinguishable fromGame′2. Suppose the sim-
ulator tries to solve the following BDH instance:

(p, q, r, G, GT , e)
R
← GG(λ), n← pqr, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gp, gq, gr, ga

p , gb
p, gc

p

)

Q← e(gp, gp)
abc

The simulator is randomly given(Z̄, Q′ = Q) or (Z̄, Q′ = R) whereR is a random element in
GT , and it tries to distinguish between these two cases.

If there exists a poly-time adversaryA that has non-negligible difference in its advantage in
Game2 andGame3, we can build the following simulation to solve the BDH instance.

Init. The adversary commits to two selected pointsX∗
0 andX∗

1 . The challenger picks a random
coinβ internally.

71

Setup. The simulator chooses random(Ru,1, Rh,1), (Ru,2, Rh,2), . . . , (Ru,ℓ, Rh,ℓ) ∈ Gq, Rv, Rw,
Rw ∈ Gq, and randomz1, y1, . . . , tℓ, yℓ ∈ Zn, andx, x ∈ Zn. The simulator publishes the group
descriptiongq, gr, V = gpRv. It letsA = e(ga

p , g
b
p) and creates

Ui = (gb
p)

ziRu,i, Hi = (gb
p)

−ziX∗
β,igyi

p Rh,i

Finally, the simulator creates:
W = gx, W = gx

We observe that the parameters are distributed identicallyto the real scheme.

Query 1. The simulator does not compute any token when the adversary makes “create token” or
“create delegated token” queries. It computes tokens only when “reveal token” queries are made.

Recall that in Section 4.6.4, we pointed out that Type 2 tokens require special treatment. In
addition, we gave an algorithm for the simulator to generateType 2 tokens such that they reflect the
correct relationship with their parent tokens. Now it suffices to show that the simulator can always
compute a fresh random token, so long as the token does not separate the two selected pointsX∗

0

andX∗
1 .

Whenever the adversary makes a “reveal token” query for a matching token, the simulator
simply aborts and takes a random guess. The reason is that by our definition, when the adversary
asks the simulator to reveal a matching token, the challengemessagesMsg0 andMsg1 must be
equal. However, in this case,Game2 andGame3 are identical, so there can be no difference in the
adversary’s advantage in between these two games.

Whenever the adversary asks the simulator to reveal a non-matching token, the simulator needs
to compute a token of the correct form. First, notice that thedelegation componentsDL can be
efficiently computed, since they do not contain any unknown parameters. However, computing
the decryption key componentDK is slightly more tricky. Recall that because of the way the
public key is formed,gα = gab

p . Therefore, the decryption key componentDK contains the term
gab

p . Unfortunately, the simulator does not knowgab
p , so it has to find some way to cancel out

that term and still form a correctly distributed token. The intuition is that since the token is non-
matching, there exists a dimensioni whereX∗

0,i 6= σi andX∗
1,i 6= σi. We observe that the term

uσi

i hi = (gb
p)

∆izigyi
p contains(gb

p)
∆izi, where∆i = σi − X∗

β,i 6= 0. Therefore, the simulator can
pick t̂i at random fromZn, and let

ti = t̂i − a/(∆izi)

without actually computing it. And thisti is used to generate the decryption key componentDK.
If the simulator picksti in the way specified above, it is able to computeDK, since all terms
containing the unknown parametergab

p cancel out. In particular, in the decryption keyDK, K is a
product of several terms. RewriteK:

K = gab
p wγwγ

∏

j∈S(σ)

(u
σj

j hj)
tjY

=

(
gab

p (uσi

i hi)
ti

)
·



wγwγ
∏

j∈S(σ),j 6=i

(u
σj

j hj)
tjY





72

The product term
gab

p (uσi

i hi)
ti = (uσi

i hi)
bti · (ga

p)
−yi/(∆izi)

can be efficiently computed, since all terms involvinggab
p cancel out. It is not hard to see that

the remaining terms inK can be efficiently generated, since the simulator knows all parameters
needed. As the simulator knowsga

p , the termKi = vti can be efficiently computed.

Challenge. The adversary gives the simulator two messages,Msg0 andMsg1. If Msg0 =
Msg1, the simulator aborts and takes a random guess for the reasonstated above.

Otherwise, the simulator chooses randomZ, Z0, Zφ, Z1, Z2, . . . , Zℓ ∈ Gq, and outputs the fol-
lowing challenge ciphertext:

C̃ = MsgβQ′, C = (gc
p)Z, C0 = (gc

p)
xZ0, Cφ = (gc

p)
xZφ, ∀i ∈ [ℓ] : Ci = (gc

p)
yiZi

Query 2. Same as phase Query 1.

Guess. The adversary outputs a guessβ ′. If β = β ′, the simulator guesses thatQ′ = Q. Other-
wise, the simulator guesses thatQ′ = R. We observe that ifQ′ = Q, the ciphertext component̃C
is a faithful encryption ofMsgβ; otherwise,C̃ is distributed at random inGT,p. Therefore, if the
adversary hasǫ advantage in guessingβ, the simulator also hasǫ advantage in solving the BDH
instance.

To show thatGame′2 is computationally indistinguishable fromGame3, we rely on the Bilin-
ear Subgroup Decision (BSD) assumption introduced by Boneh, Sahai and Waters [11]. Bilinear
Subgroup Decision assumption is implied by the generalizedcomposite 3-party Diffie-Hellman
assumption.

The simulator gets the following BSD instance:

(p, q, r, G, GT , e)
R
← GG(λ), n← pqr, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

Z̄ ← ((n, G, GT , e), gp, gq, gr)

Q← GT,p

The simulator is also randomly givenQ′ = Q or Q′ = R whereR
R
← GT . The BSD assumption

posits that no poly-time algorithm can distinguish betweenthe above two cases with more than
negligible advantage.

The simulation proceeds as follows.

Init. The attacker gives the simulator two identitiesX∗
0 , X

∗
1 . The challenger then flips the coinβ

internally.

Setup. The simulator sets up the parameters as would the real setup algorithm. All the simulator
needs to do this isgp, gq, gr from the assumption.

73

Query 1. The simulator answers queries as the real authority would. One small difference is that
the simulator chooses exponents fromZn instead ofZp. However, this does not change anything
since the both the simulator and a real authority will raise the elements fromGp to the exponents.

Challenge. The adversary first gives the simulator messagesMsg0,Msg1. If Msg0 = Msg1

then the simulator simply encrypts the message to the pointX∗
β . Otherwise, the simulator creates

the challenge ciphertext of messageMsgβ toX∗
β as normal with the exception thatC ′ is multiplied

by Q′.
If Q′ = Q, then the simulator is playingGame′2; otherwise it is playingGame3.

Query 2. Same as Query Phase 1.

Guess. The adversary outputs a guessβ ′. If β = β ′, the simulator guesses thatQ′ = Q; otherwise
it guesses thatQ′ = R. By our assumption the probability that the adversary guessesβ correctly in
Game′2 has a non-negligibleǫ difference from that of it guessing it correctly inGame3. However, it
is in Game3 if and only if the challenger gave the simulatorQ′ = R instead ofQ′ = Q. Therefore,
the simulator has advantageǫ in the Bilinear Subgroup Decision game, implying that the simulator
has an advantage ofǫ in the Composite 3-Party Diffie-Hellman game.

4.6.6 Indistinguishability of Game3 and Game4

If a polynomial time adversaryA has non-negligible differenceǫ between its advantage inGame3

andGame4, we can build a simulatorB that breaks the C3DH assumption with probabilityǫ.
The challenger first creates a 3-Party challenge:

(p, q, r, G, GT , e)
R
← GG(λ), n← pq, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

R1, R2, R3
R
← Gq

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gp, gq, gr, ga

p , gb
p, Γ = gab

p · R1, Y = gabc
p · R2

)

Q← gc
p · R3

It then randomly decides whether to give(Z̄, Q′ = Q) or (Z̄, Q′ = R) whereR is a random
element inGpq.

We create the following simulation:

Init. The adversary commits to two pointsX∗
0 andX∗

1 . The simulator flips a random coinβ
internally.

74

Setup. The simulator picksV = gpRv, whereRv is picked at random fromGq. The simulator
also picks fromZn random exponentsy, x, x, µi, zi for eachi ∈ [ℓ], and lets

W = gy
p · Γ

x, W = Γx

The simulator creates:

∀i ∈ [ℓ] : Ui = (gb
p)

µiRu,i, Hi = (gb
p)

−µiX∗
β,igzi

p Rh,i

whereRu,i andRh,i’s are random group elements fromGq. The simulator also chooses a random
α ∈ Zn, and computesA = e(gp, V)α.

Query 1. Recall that each queryσ defines a set of conjunctive queriesCσ on the encrypted point
X. Whenever the adversary asks the simulator to reveal a tokenfor σ, σ must satisfy the condition
that for any functionf ∈ Cσ (f is a conjunctive query onX ∈ Zℓ

m), f(X∗
0) = f(X∗

1). Henceforth,
we use the terminologyσ does not separate the two selected pointsX∗

0 andX∗
1 to denote the above

condition.
We now describe how the simulator responds to the adversary’s “reveal token” queries. The

token can be non-delegated, Type 1 delegated, or Type 2 delegated. Type 1 delegated tokens and
non-delegated tokens should be generated freshly at random, while Type 2 tokens should reflect
the correct relation with their parent tokens. In Section 4.6.4, we gave an algorithm for generating
Type 2 tokens. Hence, it suffices to show how the simulator cancompute fresh random tokens.

• If the token matches both selected points, the simulator first picks a randomτ from Zn, and
lets γ = −xτ , andγ = xτ . Similarly, the simulator picks a randomτi ∈ Zn for each
i ∈ W(σ), and letsγi = −xτi, andγi = xτi. Except for the above, the simulator follows
theGenToken algorithm and computes the token. Notice that the token can be computed
efficiently, since the only unknown term involvinggab

p cancels out because of the way the
simulator choseγ, γ, and the way the simulator choseγi andγi’s. In particular, consider the
termK in the decryption key componentDK. Group the terms inK:

K =

(
wγwγ

)(
gα

∏

j∈S(σ)

(u
σj

j hj)
tjY

)

In the above, the product termwγwγ can be efficiently computed since all terms involving
gab

p cancel out:

wγwγ = g−xτy
p

Similarly, for all i ∈ W(σ), the following term in the delegation componentDLi can be
efficiently computed:

wγiwγi = g−xτiy
p

Clearly, all remaining terms inDK or DL can be efficiently computed, since the simulator
knows all necessary parameters.

75

• If the token matches neither selected point, there exists coordinatec ∈ S(σ), such that
∆c = σc −X∗

β,c 6= 0. In this case, the simulator uses the following strategy to compute the
decryption key componentDK. The simulator first picks randomγ, γ ∈ Zn. It also picks
randomt̂c ∈ Zn, and lets

tc = t̂c −
a(γx + γx)

µc∆c

without actually computingtc. Except for the above, the simulator follows theGenToken

algorithm to compute the token requested. Notice that the token can be computed efficiently,
since all terms involving the unknown parametergab

p cancel out. In particular, in the decryp-
tion key componentsDK, group the terms inK:

K =

(
wγwγ(uσc

c hc)
tc

)(
gα

∏

j∈S(σ),j 6=c

(u
σj

j hj)
tjY

)

The product termwγwγ(uσc
c hc)

tc can be efficiently computed, since all terms involving the
unknown parametergab

p cancel out:

wγwγ(uσc
c hc)

tc = gyγ
p (uσc

c hc)
btc(ga

p)
−zcΘc

whereΘc = (γx+γx)
µc∆c

. In addition, we observe that the termKc = vtcYc can be computed
efficiently since the simulator knowsga

p . Clearly, all other terms inDK can be computed
efficiently.

To generate the delegation componentsDL, we can apply the same trick, i.e., by letting

si,c = ŝi,c −
a(γix + γix)

µc∆c

for everyi ∈ W(σ). ŝi,c is picked at random fromZn.

Challenge. The adversary submits two messagesMsg0 andMsg1 to the simulator. The simula-
tor creates the following ciphertext:

C = Q′, C0 = Q′yY xZ0, Cφ = Y xZφ, ∀i ∈ [ℓ] : Ci = Q′ziZi

In addition, ifMsg0 = Msg1, the simulator lets̃C = e(gp, Q
′)α. Otherwise,C̃ is replaced by a

random element fromGT . Observe that ifQ′ = Q, the ciphertext is identically distributed as in
Game3. Otherwise, ifQ′ is a random element fromGpq, the ciphertext is identically distributed as
in Game4.

Query 2. Same as theQuery 1 stage.

Guess. The adversary outputs a guessβ ′ of β. By the C3DH assumption, a poly-time adversary
cannot have more than negligible difference in its advantage inGame3 andGame4.

76

4.6.7 Indistinguishability of Game4 and Game5

Let E denote the set of indicesi where the two committed points are not equal, i.e.,X∗
0,i 6= X∗

1,i.
Let Game4,0 := Game4. We define a sequence of gamesGame4,1, Game4,2, . . . , Game4,|E|. Let

Ẽi ⊆ E denote the firsti indices inE. In Game4,i (1 ≤ i ≤ |E|), the challenger creates ciphertext
components̃C, C, andCj normally for allj /∈ Ẽi. For allj ∈ Ẽi, the challenger replacesCj with
a random group element fromGpq. For C0, Cφ, the challenger creates the following ciphertext
components like in gameGame4:

C0 = W ρg−πρ′

p Z0, Cφ = W
ρ
gρ′

p Zφ

whereρ′ is a random group element fromZp. Recall that the simulator picksπ ∈ Zp at random
prior to the game starts, andπ is hidden from the adversary. Whenever the adversary makes aquery
that matches both selected points, the simulator picks the exponents forw andw in a correlated
way such thatγ = πγ, γi = πγi for all i ∈ W(σ). It is not hard to see thatGame4,|E| = Game5.

We now prove Lemma 4.6.5, and show that a poly-time adversarycannot have more than
negligible difference in its advantage inGame4 andGame5. Because of the hybrid argument, it
suffices to show thatGame4,d is computationally indistinguishable fromGame4,d+1, where0 ≤
d < |E|.

We prove this by supposing that a poly-time adversaryA has more than negligible difference
in its advantage againstGame4,d andGame4,d+1. Now we build a simulatorB that leveragesA to
solve the C3DH problem.

The challenger first creates a 3-Party challenge:

(p, q, r, G, GT , e)
R
← GG(λ), n← pq, gp

R
← Gp, gq

R
← Gq, gr

R
← Gr

R1, R2, R3
R
← Gq

a, b, c
R
← Zn

Z̄ ←
(
(n, G, GT , e), gp, gq, gr, ga

p , gb
p, Γ = gab

p · R1, Y = gabc
p · R2

)

Q← gc
p · R3

It then randomly decides whether to give(Z̄, Q′ = Q) or (Z̄, Q′ = R) whereR is a random
element inGpq.

We create the following simulation:

Init. The adversary commits two points to the simulator,X∗
0 andX∗

1 . The challenger flips a
random coinβ internally.

Setup. Let δ denote thed + 1-th index inE.
The simulator first chooses random(Ru,1, Rh,1), . . . , (Ru,ℓ, Rh,ℓ) ∈ G3

q and randomµ1,y1,. . .,
µℓ, yℓ ∈ Zn.

77

The simulator first publishes the group description andgq, gr, V = gpRv, whereRv is a random
element from subgroupGr. It picks a randomα ∈ Zn and letsA = e(V, gp)

α. It creates

Uδ = gµδ
p Ru,δ, Hδ = g

−µδX∗
β,δ

p ΓyδRh,δ

Next, for all i 6= δ it creates

Ui = gµi
p Ru,i, Hi = g

−µiX∗
β,i

p gyi
p Rh,i

Finally, the simulator picks randomRw, Rw from Gq, and random exponentsx, y, y from Zn,
and computes

W = gx
p (gb

p)
yRw, W = (gb

p)
yRw

We observe that the parameters are distributed identicallyto the real scheme.
The simulator also setsπ = −y/y. We observe thatπ is information theoretically hidden from

the adversary.

Query 1. Whenever the simulator receives a “reveal token” query fromthe adversary, it needs to
compute a token of the appropriate form and return it to the adversary. The token that the adversary
is requesting can be one of the following three cases: 1) non-delegated, 2) Type 1 delegated, 3)
Type 2 delegated. Recall that the simulator generates Type 1and non-delegated tokens freshly at
random. Meanwhile, Section 4.6.4 provides an algorithm forgenerating Type 2 tokens. It suffices
now to show how to generate tokens freshly at random.

Consider that the simulator has received a query from the adversary for a non-delegated token
or a Type 1 delegated tokenσ. Recall thatσ should not separate the two committed pointsX∗

0 and
X∗

1 . Hence, exactly one of the following two cases must be true. Let E denote the set of indices
i where the two committed points are equal, i.e.,X∗

0,i 6= X∗
1,i, andE = [ℓ]\E denote the set of

indices whereX∗
0 andX∗

1 are not equal.
Case 1.δ /∈ S(σ) ∪W(σ).

Case 2.δ ∈ S(σ) ∪W(σ). There must existi, j ∈ S(σ), such thatσi 6= X∗
0 andσj 6= X∗

1 . In other
words, the queryσ does not match either of the committed identities.

Case 1.In Case 1,δ /∈ S(σ) ∪W(σ). The simulator checks if the requested token matches both
selected points. If so, the simulator picks correlated exponents forw andw: γ = πγ, andγi = πγi

for all i ∈ W(σ). (Recall that the simulator setsπ = −y/y.) The simulator proceeds to generate
the remaining parts of the token according to theGenToken algorithm. Otherwise, if the requested
token matches neither of the selected points, the simulatorsimply follows theGenToken algorithm
to generate the token. It is not hard to see that the token can be efficiently computed in this case,
since the simulator knowsui, hi for all i 6= δ, as well as other parameters needed.
Case 2.This is the more complicated case, since the simulator does not knowhδ which contains
the termgab

p . Also, in this case, the token queried does not match either of the selected points.
Therefore, the simulator will leveragew andw to cancel out the unknown parameters inhδ.

We first describe how to generate the decryption key component DK. If δ /∈ S(σ), then it is
trivial for the simulator to generateDK, since the unknown parameterhδ does not appear inDK,

78

and the simulator knows all parameters required. Ifδ ∈ S(σ) the simulator pickstδ, γ′ ∈ Zn at
random, and letsγ be the following without actually computing it.

γ = γ′ − atδyδ/y

Now the simulator follows theGenToken algorithm to generate remaining parts of the decryption
keyDK. DK can be efficiently computed, even though the simulator does not knowgab

p , as all terms
involving gab

p cancel out inDK. In particular, consider the termK in DK. Group the terms inK:

K =

(
wγ(uσδ

δ hδ)
tδ

)(
gα

∏

j∈S(σ),j 6=δ

(u
σj

j hj)
tj Y

)

The product termwγ(uσδ

δ hδ)
tδ can be efficiently computed since all terms involvinggab

p cancel out:

wγ(uσδ

δ hδ)
tδ = (gb

p)
yγ′

gµδ∆δtδ
p

where∆δ = σδ − X∗
β,δ. Meanwhile, the termKφ = vγYφ can be efficiently computed since the

simulator knowsga
p . It is not hard to see that all remaining terms inDK can be efficiently computed.

We show how to generate the delegation components. The simulator can use exactly the same
strategy to generateDL. Basically, for alli ∈ W(σ), the simulator pickssi,δ, γ

′
i ∈ Zn at random,

and letsγi be the following without actually computing it:

γi = γ′
i − asi,δyδ/y

In this way, depending on whetherδ ∈ S(σ) or δ ∈ W(σ) the productwγi(uσδ

δ hδ)
si,δ or wγih

si,δ

δ

can be efficiently computed, since terms involvinggab
p cancel out.

Challenge. The adversary submits two messagesMsg0 andMsg1. Let E denote the set of
indicesi such thatX∗

0,i 6= X∗
1,i. Let Ẽd denote the firstd indices inE. The simulator picks random

P ∈ Gpq, Z0, Zφ ∈ Gq, andZi ∈ Gq for all i ∈ [ℓ]. The simulator creates the following ciphertext:

C = Q′, C0 = Q′xP yZ0, Cφ = P yZφ, Cδ = Y yδZδ, ∀i 6= δ andi /∈ Ẽd : Ci = Q′yiZi

For all i ∈ Ẽd, the simulator picks a random element inGpq for Ci. In addition, if Msg0 =

Msg1, the simulator computes̃C = e(gp, Q
′)α; otherwise, the simulator replaces̃C with a random

element fromGT . Notice that ifQ′ = Q, then the above simulation is identically distributed as
Game4,d. Otherwise, ifQ′ = R, the simulation is identically distributed asGame4,d+1.

Query 2. Same as phaseQuery 1.

Guess. The adversary outputs a guessβ ′ of β. If the adversary guesses correctly, i.e.,β ′ = β,
the simulator guesses thatQ′ = Q in the C3DH instance. Otherwise, the simulator guesses that
Q′ = R. It is not hard to see that any advantage of the adversary in distinguishingβ translates to
the simulator’s advantage in solving the C3DH problem.

79

4.7 dHVE Full Security

We formally define the security of dHVE through the followingsecurity game between a challenger
and an adversary.

• Setup.The challenger runs theSetup algorithm, and gives the adversary the public keyPK.

• Query 1. The adversary adaptively makes a polynomial number of “create token”, “create
delegated token”, or “reveal token” queries. The challenger answers these queries accord-
ingly.

• Challenge.The adversary outputs two pairs(Msg0, X0), (Msg1, X1) ∈ {0, 1}
∗×Σℓ subject

to the following constraints:

For any tokenσ revealed to the adversary in theQuery 1 stage, letCσ denote the set of
conjunctive queries corresponding to this token.

1. For allf ∈ Cσ, f(X0) = f(X1).

2. If ∃f ∈ Cσ, f(X0) = f(X1) = 1, thenMsg0 = Msg1.

The challenger flips a random coinb and returns an encryption of(Msgb, Xb) to the adver-
sary.

• Query 2. Repeat theQuery 1 stage. All tokens revealed in this stage should satisfy the same
condition as above.

• Guess.The adversary outputs a guessb′ of b.

As before, the advantage of an adversaryA in the above game is defined to beAdvA = |Pr[b =
b′] − 1/2|. We say that a dHVE construction is secure if for all polynomial time adversaries, its
advantage in the above game is a negligible function ofλ.

4.8 Anonymous Hierarchical Identity-Based Encryption with
Short Private Keys

In Section 4.1.2, we propose a new and complete security definition for delegation in these (anony-
mous) IBE systems. By contrast, previously, researchers have used an under-specified security
game, where the adversary does not get to specify how each queried token is derived. We now
show one advantage of being able to capture such nuances in our security definition, by giving
an Anonymous Hierarchical Identity-Based Encryption (AHIBE) construction with shorter private
keys than the original construction by Boyen and Waters [13].

To achieve this, we rely on the same technique that we use for our dHVE construction: we
multiply the private keys by random group elements in the third subgroupGr, so that the private
keys are computationally indistinguishable from being picked freshly at random.

For consistency, we build our AHIBE scheme based on composite bilinear groups and the
C3DH assumption, rather than the Decisional Linear assumption adopted by the original BW con-
struction. One can easily build the scheme using the Decisional Linear assumption as well.

80

In comparison, the original BW construction hasO(D2) private key size and our construction
hasO(D) private key size, whereD denotes the depth of the hierarchy. Meanwhile, we preserve
all other costs asymptotically, including ciphertext size, encryption cost, and decryption cost.

4.8.1 Construction

Setup(1λ, D): The setup algorithm takes as input a security parameteraλ, the maximum depth
D ∈ N, and outputs public parametersPK and the corresponding master secret keyMSK.
The setup algorithm first chooses random large primesp, q, r > m and creates a bilinear
groupG of composite ordern = pqr, as specified in Section 4.3. Next, it picks a random
g, v ∈ Gp, gq ∈ Gq, gr ∈ Gr, a random exponentα ∈ Zp, and random elements

∀n ∈ [0, D + 1], ∀ℓ ∈ [0, D] : un,ℓ
R
← Gp

It keeps all the above as the master secret keyMSK. TheSetup algorithm then chooses the
following blinding factors inGq:

Rv, ∀n ∈ [0, D + 1], ∀ℓ ∈ [0, D] : Rn,ℓ
R
← Gq

The algorithm now publishes the following as the public keyPK.

gq, gr, V = vRv, A = e(g, v)α, ∀n ∈ [0, D + 1], ∀ℓ ∈ [0, D] : Un,ℓ = un,ℓRn,ℓ

Extract(PK, MSK, I): TheExtract algorithm takes as input the public keyPK, the master se-
cret keyMSK, and an ID tupleI = (I0, I1, . . . , IL) ∈ (Z×

p)1+L, whereL ∈ [D], and by
convention,I0 = 1. The algorithm generates a private key corresponding to theidentityI.

• Pick random exponentsr0, r1, . . . , r1+D from Zp. Pick random blinding factorsY , Y0,
Y1, . . ., Y1+D from Gr, and randomY ′

1+L, Y ′
2+L, . . . , Y ′

D from Gr.

• Compute the decryption key portion of the private key:

DK =

(
K = gα

1+D∏

n=0

L∏

ℓ=0

(uIn

n,ℓ)
rn · Y, ∀n ∈ [0, 1 + D] : Kn = vrnYn

)

• Compute the following delegation components of the decryption key:

DL =

(
∀ℓ ∈ [1 + L, D] : Jℓ =

1+D∏

n=0

urn

n,ℓ · Y
′
ℓ

)

Derive(PK, PvkI|L−1, I) TheDerive algorithm takes as input the public keyPK, and derives a
private key forI = (I0, I1, . . . , IL) from a parent key forI|L− 1 := (I0, I1, . . . , IL−1).

• First, express the parent key using the same notation as before: PvkI|L−1 = (DK, DL),
whereDK = (K, K0, K1, . . . , K1+D), andDL = (JL, J1+L, . . . , JD).

81

• Next, pick a random exponentτ ∈ Zn, and random blinding factorsY, Y0, . . . , Y1+D,
andY ′

1+L, . . . , Y ′
D from Gr.

• Compute the decryption key portion of the child key:

DK′ =
(
K ′ = (K · JIL

L)τY, ∀n ∈ [0, 1 + D] : K ′
n = Kτ

nYn

)

• Compute the delegation components of the child key:

DL′ = (∀ℓ ∈ [1 + L, D] : J ′
ℓ = Jτ

ℓ Y ′
ℓ)

Encrypt(PK, I,Msg) The Encrypt algorithm takes a public keyPK, and encrypts a message
Msg to an identityI = (I0, I1, . . . , IL). The algorithm proceeds as follows:

• Pick a random exponents ∈ Zn. Pick random blinding factorsZ, Z0, Z1, . . . , Z1+D

from Gq.

• Compute the following ciphertext:

CT =

(
C̃ = MsgAs, C = V sZ, ∀n ∈ [0, 1 + D] : Cn = (

L∏

ℓ=0

U Iℓ

n,ℓ)
sZn

)

Decrypt(PK, PvkI , CT) TheDecrypt algorithm takes a public keyPK, a private keyPvkI, and
decrypts a ciphertextCT. Using the same notation for the ciphertext and the private key as
before, decrypt the message:

M̂sg ←
C̃ ·
∏1+D

n=0 e(Cn, Kn)

e(C, K)

4.8.2 Security of construction

Theorem 4.8.1 The above-defined A-HIBE construction is internally consistent. In addition, it is
IND-sID-CPA and ANON-sID-CPA secure under the cBDH and C3DHassumptions in the bilinear
groupG.

See the original BW paper [13] for detailed definitions of IND-sID-CPA and ANON-sID-CPA
security.

The proof of the consistency is straightforward. Proof of security can be done in the following
steps:
• As we multiply all elements of the private key with a random group element from the third

subgroupGr, we can show that private keys generated by theDerive algorithm are compu-
tationally indistinguishable from being picked freshly atrandom.

• Show that if private keys were really generated freshly at random rather than by calling the
Derive algorithm, the scheme would be IND-sID-CPA and ANON-sID-CPA secure. This
part of the proof is done in a manner similar to that of the BW construction [13]. The only
exception is that we now replace the Decisional Linear assumption by the C3DH assumption.
However, the gist of the proof remains unchanged.

We omit the complete proof in this thesis, since it is very similar to the proof of our dHVE
construction.

82

Chapter 5

Query Privacy in Predicate Encryption

In this chapter, we present a predicate secret-key encryption scheme that not only hides the plain-
text encrypted, but also protects the privacy of the query predicates. Our construction supports
inner-product queries. We begin by motivating why query privacy is an important problem.

5.1 Query Privacy in Predicate Encryption

The schemes described so far are in the public-key setting. While they guarantee the secrecy of
the plaintext encrypted, they do not provide any guaranteesof secrecy on the query predicate. In
fact, if Alice sends Google a capability to search on her encrypted emails, Google can infer some
information about the query embedded in the capability.

Leaking information about the query predicate may also be undesirable in certain applications.
For example, Alice stores her encrypted documents on a remote server, and would like to perform
searches on the encrypted data. Ideally, Alice would like tohide from the remote server not only
her documents, but also her queries, as the queries can reveal sensitive information just like the
documents. Alice could make a query for documents containing the keyword “cardiologist”, which
reveals her sensitive medical information. Unfortunately, in public-key predicate encryption, it is
inherently impossible to guarantee the privacy of the queries (roughly in the semantic security
sense). This reason is rooted in the fact that anyone can encrypt using the public key. Suppose that
the server would like to learn whether a tokenTK corresponds to the query (DOCUMENT contains
“cardiologist”), the server can take the public key, and encrypt a document containing the keyword
“cardiologist”. Now the server can simply apply the tokenTK on the resulting ciphertext to check
if they match. Due to this observation, prior work on public-key predicate encryption addresses
only privacy of the plaintexts (henceforth referred to asplaintext privacy), but not privacy of the
queries (henceforth referred to asquery privacy).

The above observation tells usquery privacy is not possible in the public-key setting. In other
words, if we would like to guarantee query privacy, we cannotlet everyone have the ability to
encrypt. Naturally, this raises the following question: what if we consider the secret-key setting
where only the owner of the secret key can encrypt?Is it possible to guarantee query privacy
in addition to plaintext privacy in the secret-key setting?In this chapter, we demonstrate that

83

it is indeed possible to achieve both query privacy and plaintext privacy in secret-key predicate
encryption. Moreover, our construction supports expressive queries.

In this chapter, we present a secret-key predicate encryption scheme which guarantees both
plaintext privacy and query privacy. Our construction supports inner-product queries.

Why inner-product queries? An important goal in predicate encryption is the ability to support
complex, expressive queries. Researchers have made many endeavors towards this goal. The
earliest schemes in the public-key setting [1, 6, 9, 13] support equality test queries such as (YEAR

= 2009). Later, researchers invented schemes supporting conjunctive queries [12, 25, 37] such
as (YEAR = 2009)∧ (MONTH = jan). An extension of conjunctive queries is multi-dimensional
range queries [35]. Recently, Katz, Sahai and Waters [28] took another big step forward in this
direction and proposed a scheme supporting inner-product queries. We point out that inner-product
query is strictly more expressive than conjunctive queries. In the KSW paper [28], the authors
explicitly show why inner-product queries imply conjunctions, disjunctions, CNF/DNF formulas,
polynomial evaluation and exact thresholds. The KSW construction is in the public-key setting,
and does not guarantee query privacy.

Naturally, a reasonable goal to aim for is a scheme whose expressiveness matches the most
powerful public-key predicate encryption known to date. This is the reason why we consider
inner-product queries. Our construction is the first secret-key predicate encryption scheme that
guarantees query privacy and supports expressive queries.

Definitional issues. One of our contributions is to rethink the definition of queryprivacy. Al-
though query privacy has previously been studied in the secret-key setting for keyword-based
queries by Song et al. [39], and Curtmola et al. [19], the security definition adopted in these works
are not yet satisfactory, and may be strengthened. In this thesis, we rethink how to formally define
the security of Secret-Key Predicate Encryption (MRQED). Ideally, we would like to reveal the ab-
solutely minimal information to the storage server. We capture this intuitive notion through the full
security definition (see Definition 5.3.3). As the full security definition is hard to work with, we
propose an alternative security definition (see Definition 5.3.4) called Single Challenge Indistin-
guishability (SCI). This security notion resembles the adaptive security notion adopted by previous
identity-based encryption and predicate encryption schemes [3, 12, 13, 14, 15, 35]. We demon-
strate in Proposition 5.3.2 that SCI security is just “as good as” full security for inner-product
queries. Our construction satisfies a relaxation of SCI security. The relaxation is similar to the se-
lective variants frequently used in prior identity-based encryption, attributed-based encryption and
predicate encryption schemes [3, 12, 13, 14, 15, 35]. We emphasize that even the relaxed security
model we use in our proofs is stronger than the security definitions adopted by Song et al. [39],
and Curtmola et al. [19].

Proof techniques. Our proof techniques can be of independent interest. We observe that cipher-
texts and tokens aresymmetricin functionality and security requirement, and we leveragesuch
symmetry in our proofs. More specifically, we observe that ifthe ciphertext and token are sym-
metrically formed, then by proving plaintext privacy, we obtain query privacy for free. Therefore,

84

one possible approach is to build a KSW-like construction, where the ciphertext and the token are
symmetrically formed, or computationally indistinguishable from being symmetrically formed. In
this way, we can leverage a KSW-style proof to establish plaintext privacy, and then rely on the
symmetry argument to establish query privacy.

5.2 Applications of SK-PE

In the privacy-preserving Gmail example mentioned at the beginning of this thesis, it may be more
appropriate to use public-key encryption, since anyone in the world should be able to use the
public-key to send an encrypted email to Alice. In this case,the public-key used for encryption is
known to the entire world.

On the other hand, secret-key encryption is more appropriate in other scenarios. Below, we list
some potential applications of secret-key predicate encryption.

Private Google Docs In private Google Docs, Alice uses her secret key to encrypt her documents
before storing them on Google Docs. Later, when Alice wishesto search these documents, she can
use secret key to construct a token corresponding to her query, and send the token to Google. Using
this token, Google can decide exactly which documents matchAlice’s search criterion, without
learning any additional information. This means that Google learns nothing about the encrypted
documents, and nothing about her search criterion.

Private del.icio.us delicious.com is a web-service allowing users to store browsing history
and bookmarks, and share them with friends. Alice may not care about her privacy, if she book-
marks innocuous websites such asmovies.yahoo.com, or imdb.com. However, she may
care about her medical privacy, and if she wishes to bookmarkthe website of a hospital, she may
become a little concerned about leaking this information todel.icio.us. Such privacy concerns can
be addressed using secret-key predicate encryption. Alicecan use her secret key to encrypt her
sensitive bookmarks before storing them on del.icio.us. Later, when she wishes to search for her
bookmarks, she can use her secret key to generate a token, anddel.icio.us can now use this token
to perform search for Alice.

5.3 Definitions: SK-PE for General Queries

Although in this thesis, we consider a specific predicate family, inner-product queries, we would
like to phrase the problem of secret-key predicate encryption also in general terms. We hope that
the generic definition can inspire researchers to invent secret-key predicate encryption schemes
that support more powerful queries than inner products —- the version we propose in this thesis.

For simplicity, we consider thepredicate-onlyversion. We note that it is not hard to incorporate
a payload message into the construction using techniques described in prior predicate encryption
schemes [12, 28, 35].

85

More importantly, we rethink the security definition for SK-PE. Our security definition should
capture the intuition that the remote storage server learnsonly Alice’s access pattern, and nothing
more. In particular, the storage server does not learn anything about Alice’s encrypted documents,
nor about what queries Alice is making.

We now give general definitions for Secret-Key Predicate Encryption (SK-PE) as well as its
security. A Secret-Key Predicate Encryption (SK-PE) scheme consists of the following (possibly
randomized) algorithms.

Definition 5.3.1 (Secret-key predicate encryption)A Secret-Key Predicate Encryption (SKPE)
system consists of the following (possibly randomized) algorithms.

Setup(1λ): TheSetup algorithm takes as input a security parameter1λ, and outputs a secret key
MSK.

Encrypt(MSK, x): The Encrypt algorithm takes as input a secret keyMSK, a plaintextx ∈
{0, 1}ℓ; and outputs a ciphertextCT.

GenToken(MSK, f): The GenToken algorithm takes as input a secret keyMSK, and a query
predicatef : {0, 1}ℓ → {0, 1}. It outputs a tokenTKf that allows one to evaluatef(x) over
an encryption ofx. As mentioned above, we assume that the query predicate can be encoded
with a bitstring of lengthm.

Query(TKf , CT): The Query algorithm takes as input a tokenTKf for the predicatef , and a
ciphertextCT which is an encryption ofx ∈ {0, 1}ℓ, the algorithm outputsf(x).

5.3.1 Full Security

Public-key predicate encryption schemes guarantee the secrecy of the ciphertext; however, they do
not guarantee the secrecy of the tokens. In fact, for public-key predicate encryption, it is inherently
impossible to achieve ciphertext secrecy and token secrecysimultaneously. This is due to the fact
that anyone is able to encrypt using the public-key. In the Gmail example, if Google would like
to know whether a token corresponds to the query “TITLE = cryptography”, Google can simply
encrypt an email whose “TITLE = cryptography” using the public-key, and test the token against
the resulting ciphertext.

In secret-key predicate encryption, it is possible to guarantee the secrecy of both the plaintext
(encoded in a ciphertext) and that of the query (encoded in a token). This provides even stronger
privacy guarantees in practice.

We now formally define the security for secret-key predicateencryption. As mentioned above,
our definition aims to guarantee the secrecy of the plaintext, as well as the query.

To explain the intuition behind our security definition, consider a privacy-preserving remote
storage application, where Alice stores her encrypted documents on a remote server, and later is-
sues tokens to the server to search for matching documents. Our goal is to leak as little information
to the storage server as possible. Under our model, Alice makes a query by submitting a token to
the server, and the server learns exactly which of her encrypted documents match the query, and
returns the matching documents to Alice. Therefore, in thisframework, the server inevitably learns
Alice’s access pattern, a.k.a, which documents Alice retrieves with each query.

86

We would like to define security in the strongest sense possible: informally, the storage server
should learn only Alice’s access pattern, and nothing more. In particular, this implies that the
server learns nothing about Alice’s encrypted documents, or what queries she is making.

To capture the notion that the server learns only Alice’s access pattern, we need to first formally
define whataccess patternmeans. Intuitively, the access pattern is the outcomes ofq predicates on
n plaintexts.

Definition 5.3.2 (Access pattern)LetX = (x1, x2, . . . , xn) denote an ordered list ofn plaintexts,
wherexi ∈ {0, 1}

ℓ for 1 ≤ i ≤ n. Let F = (f1, f2, . . . , fq) denote an ordered list ofq query
predicates, wherefi ∈ {0, 1}

m for 1 ≤ i ≤ q. The access pattern onX andF is anq × n matrix:

ACCESSPATTERN(X, F) :=




f1(x1), f1(x2), . . . , f1(xn)
f2(x1), f2(x2), . . . , f2(xn)
. . . , . . .
fq(x1), fq(x2), . . . , fq(xn)




We now proceed to define the security for SKPE. LetX = (x1, x2, . . . , xn), X ′ = (x′
1, x

′
2, . . . , x

′
n)

denote two ordered lists of plaintexts. LetF = (f1, f2, . . . , fq), F ′ = (f ′
1, f

′
2, . . . , f

′
q) denote two

ordered lists of queries predicates. Now imagine the following two worlds. In World0, the server
seesn encrypted documents(Enc(x1), Enc(x2), . . . , Enc(xn)) andq tokens

(
TKf1

, TKf2
, . . . , TKfq

)
.

In World 1, the server seesn encrypted documents(Enc(x′
1), Enc(x′

2), . . . , Enc(x′
n)) andq tokens(

TKf ′
1
, TKf ′

2
, . . . , TKf ′

q

)
. Suppose the two worlds have the same access pattern, i.e.,

ACCESSPATTERN(X, F) = ACCESSPATTERN(X ′, F ′)

Informally, the server should not be able to distinguish between the two worlds. The security
definition presented below describes a game between a challenger and an adversary, and is intended
to capture this notion of indistinguishability between twothese worlds. Moreover, the definition
considers an adaptive adversary: an adversary who can choose what ciphertext/token queries to
make depending on the previous interactions with the challenger.

Definition 5.3.3 (SKPE full security) We say that an SKPE scheme is fully secure, if all polynomial-
time adversaries have negligible advantage in the following game.

Setup. The challenger runs theSetup algorithm, and retains the secret keyMSK to itself. In ad-
dition, it flips a random coinb, and keeps the bitb to itself as well. Define four ordered lists,
X0, F0, X1, F1, where(X0, F0) will record plaintexts and predicates queried by the adver-
sary in World0, and(X1, F1) will record plaintexts and predicates queried by the adversary
in World 1. Initially, all four lists are empty.

Query. The adversary adaptively makes the following types of queries. The adversary can make
up to a polynomial number of these queries.

• Ciphertext query. The adversary specifies two plaintextsx0, x1 ∈ {0, 1}
ℓ to the chal-

lenger. The challenger encryptsxb and returns the ciphertext to the adversary. Append
x0 to the listX0, andx1 to the listX1.

87

• Token query. The adversary specifies two predicatesf0, f1 ∈ {0, 1}
m to the chal-

lenger. The challenger computes a token for the predicatefb, and gives the resulting
token to the adversary. Appendf0 to the listF0, andf1 to the listF1.

All queries made in this stage should be indistinguishable by access pattern. In other words,
at the end of the game, all queries made should satisfy the following condition:

ACCESSPATTERN(X0, F0) = ACCESSPATTERN(X1, F1)

Guess. The adversary outputs a guessb′ of the bit b. Its advantage is defined asAdvA =∣∣Pr[b′ = b]− 1
2

∣∣.

5.3.2 Single Challenge Indistinguishability

As the full security definition is hard to work with in our proofs, we define another security notion
called Single Challenge Indistinguishability (SCI) security. For general queries, SCI security may
be considered a relaxed version of the full security definition, as stated in Proposition 5.3.1. How-
ever, we show in Proposition 5.3.2 that for the specific case of inner-product queries, SCI security
is as good as full security in some sense.

Definition 5.3.4 (Single Challenge Indistinguishability for general queries) We say that an SK-
PE scheme (for general queries) is SCI-secure if no polynomial-time adversary has more than
negligible advantage in winning the following game:

Setup.The challenger runs theSetup algorithm, and retains the secret keyMSK to itself.

Query. The adversary adaptively makes the following types of queries:

• Ciphertext query. The adversary specifies a plaintextx ∈ {0, 1}ℓ to the challenger.
The challenger encryptsx and returns the ciphertext to the adversary.

• Token query. The adversary specifies a predicatef to the challenger. The challenger
computes a token for the predicatef , and gives the result to the adversary.

Challenge. The adversary requests a challenge. The adversary first specifies a bit T to the
challenger.

• If T = 0, the challenge is aciphertext challenge. The adversary then sends two plain-
texts(x0, x1) to the challenger, satisfying the following constraint:

Let f1, f2 . . . , fq0
denote previously queried predicates.

∀1 ≤ i ≤ q0 : fi(x0) = fi(x1) (5.1)

The challenger flips a random coinb, encryptsxb, and returns the ciphertext to the
adversary.

• If T = 1, the challenge is atoken challenge. The adversary then sends two predicates
(f0, f1) to the challenger, satisfying the following constraint:

88

Let x1, x2 . . . , xq1
denote plaintexts that the adversary has asked the challenger to

encrypt in previous ciphertext queries.

∀1 ≤ i ≤ q1 : f0(xi) = f1(xi) (5.2)

The challenger flips a random coinb, computes a tokenTKfb
for fb, and returnsTKfb

to the adversary.

More queries. The adversary makes more queries as in the Query phase. If theadversary has
previously issued a ciphertext challenge, all token queries made in this state must satisfy
Equation (5.1). Otherwise, if the adversary has previouslysubmitted a token challenge, all
ciphertext queries made in this stage must satisfy Equation(5.2).

Guess. The adversary outputs a guessb′ of the bit b. Its advantage is defined asAdvA =∣∣Pr[b′ = b]− 1
2

∣∣.

5.3.3 Selective Single Challenge Indistinguishability

We now define a relaxed notion of security called Selective Single Challenge Indistinguishability,
or selective SCIfor short. Selective security has been adopted widely in thestudy of Identity-
Based Encrytion (IBE), Anonymous Identity-Based Encryption, Attribute-based Encryption, and
Public-key Predicate Encryption schemes [3, 12, 13, 14, 15,35]. In a selective SCI game, the
adversary commits to the challenge at the very beginning of the security game, and the rest of the
game proceeds in the same way as the SCI security game as described in Definition 5.3.4.

Definition 5.3.5 (Selective SCI security)We say that an SK-PE scheme isselectivelySCI-secure
if no polynomial-time adversary has more than negligible advantage in winning the following
game:

Init. The adversary submits a challenge to the challenger. Like before, the challenge is composed
of a bit T indicating whether this is a ciphertext challenge or a tokenchallenge; followed
by two plaintexts(x0, x1) (in the case of a ciphertext challenge), or two query predicates
(f0, f1) (in the case of a token challenge).

Setup.The challenger runs theSetup algorithm, and retains the secret keyMSK to itself.

Query. The adversary adaptively makes either ciphertext queries or token queries, and the chal-
lenger responds to the queries accordingly. If the adversary has previously issued a ciphertext
challenge, all token queries made in this stage must satisfyEquation (5.1). Otherwise, if the
adversary has previously submitted a token challenge, all ciphertext queries made in this
stage must satisfy Equation (5.2).

Challenge. The challenger flips a random coinb, and returns either an encryption ofxb, or a
token for the predicatefb depending on the type of challenge specified by the adversaryin
the Init stage.

More queries. The adversary makes more queries as in the Query phase. If theadversary has
previously issued a ciphertext challenge, all token queries made in this state must satisfy
Equation (5.1). Otherwise, if the adversary has previouslysubmitted a token challenge, all
ciphertext queries made in this stage must satisfy Equation(5.2).

89

Guess.The adversary outputs a guessb′ of the bitb; and its advantage is defined asAdvA =∣∣Pr[b′ = b]− 1
2

∣∣.

5.3.4 Relationship Between Security Definitions

For general queries, it is not hard to see that full security implies SCI security. Therefore, we
can consider SCI security as a relaxed version of the full security definition. Interestingly, we
are able to show that for the special case of inner-product queries,given a scheme satisfying SCI
security for vectors of length2n, we can construct a fully-secure scheme for vectors of length n.
We refer the readers to Proposition 5.3.2 for a more formal statement and proof of this observation.
Proposition 5.3.2 tells us that to construct a fully-secureSK-PE scheme on inner-product queries,
it suffices to construct a scheme satisfying SCI security.

Proposition 5.3.1 If an SK-PE scheme (for general queries) is fully-secure, itmust be SCI-secure.

Proof: (sketch.) Notice that an SCI adversary is a special case of an adversary in the full-security
game. In the full-security game, suppose that in all but one query, the adversary submits two equal
plaintexts (or queries), i.e.,x0 = x1 (or δ0 = δ1), then the adversary is in fact an SCI adversary.

In the special case of inner-product queries, SCI security is “as good as” full security, and the
following proposition explains why.
Proposition 5.3.2 Let SCHEME2n denote an SCI-secure SK-PE scheme supporting inner-product
queries, where both plaintext and query vectors have length2n (i.e., plaintext and query vectors
are picked fromΣ2n). GivenSCHEME2n , it is possible to construct a fully-secure SK-PE scheme
supporting inner-product queries, where both the plaintext and query vectors have lengthn. We
refer to the latter scheme asSCHEMEn .
While the detailed proof of the above proposition is provided in Section 5.8, we explain the intu-
ition here. In the full security game, the challenger constructs ciphertexts and tokens for different
vectors in World0 and World1. Suppose that the challenger encrypts vectorsX = (~x1, . . . , ~xc)
and constructs tokens for vectorsV = (~v1, . . . , ~vt) in World 0; the challenger encrypts vectors
Y = (~y1, . . . , ~yc) and constructs tokens for vectorsW = (~w1, . . . , ~wt) in World1. It is required that
the access pattern remains the same between these two worlds, that is, ACCESSPATTERN(X, V) =
ACCESSPATTERN(Y, W).

If we could define a sequence of hybrid games in between World0 and World1, such that
only one component (one ciphertext or one token) is changed between any two consecutive games,
then we would be able to prove full security using SCI security plus a hybrid argument. By the
definition of SCI security, a computationally-bounded adversary is unable to distinguish between
two games where only one component differs (as long as these two worlds have the same access
pattern). Unfortunately, we cannot naively change any component alone in World0, since doing
so might result in a different access pattern. For example, suppose the challenger changed from
encrypting~xc to encrypting~yc in World 0, then this might cause the access pattern to change as
well. To solve this problem, we propose to encrypt the vector~x twice. More specifically, to encrypt
~x, we encrypt the length2n vector

~x||~x := (x1, x2, . . . , xn, x1, x2, . . . , xn)

90

instead, using the SCI-secure construction SCHEME2n . Similarly, to construct a token for the vector
~v, we construct a token for the length2n vector~v||~v instead. In this way, we construct SCHEMEn

(for vectors of lengthn) from an SCI-secure SCHEME2n (for vectors of length2n). As Section 5.8
demonstrates, this allows us to define a sequence of hybrid games where only one component is
changed between any two consecutive games. Meanwhile, the access pattern is preserved across
all games. See Section 5.8 for the detailed proof of this proposition.

A note on selective SCI security. Our construction is proven secure under the selective SCI
model. One way to interpret the strength of selective SCI security is as follows. We have explained
that selective SCI security is a relaxation of SCI security.Meanwhile, as Proposition 5.3.2 points
out, SCI security is “as good as” full security for inner-product queries. Therefore, we can infor-
mally think of selective SCI security as a relaxation of fullsecurity for inner-product queries. The
selective security model has frequently been adopted in prior IBE, ABE and predicate encryption
schemes. We emphasize that even this relaxed security modelis better than the definitions pre-
viously adopted. In particular, we show in Section 5.9 that given an SK-PE scheme for vectors
of length2n satisfying selective SCI security, one can construct an SK-PE scheme for vectors of
lengthn whose security is strictly stronger than the definition previously adopted by Curtmola
et al. [19]. Curtmola et al. studied SK-PE for keyword-basedqueries, and proposed one possible
formalization of query privacy.

5.4 Background on Pairings and Complexity Assumptions

5.4.1 Bilinear groups of composite order

We review some background on bilinear maps and groups, especially groups ofcomposite order,
which were first introduced by Boneh, Goh and Nissim [10].

Let GG denote agroup generatoralgorithm which takes as input a security parameterλ ∈ Z>0,
a numberk ∈ Z>0, and outputs a tuple(p1, p2, . . . pk, G, GT , e) wherep1, p2, . . . pk arek distinct
primes,G andGT are two cyclic groups of ordern =

∏k
i=1 pi. The functione : G2 → GT satisfies

the following properties:
• (Bilinear)∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• (Non-degenerate)∃g ∈ G such thate(g, g) has ordern in GT .
We assume that group operations inG andGT as well as the bilinear mape can be computed in
time polynomial inλ. We use the notationGp1

, Gp2
, . . . , Gpk

to denote the respective subgroups
of orderp1, . . . , pk of G. We useGp1p2

, Gp2p5pk
to denote the subgroups of orderp1p2 andp2p5pk

respectively. For example,Gp1p2
= Gp1

×Gp2
.

5.4.2 Our assumptions

The predicate-only version of our construction relies on three assumptions, Assumption1 in the
KSW paper [28], the generalized 3-party Diffie-Hellman assumption (C3DH), and the Decisional

91

Linear (DL) assumption. All of these assumptions involves at most3 subgroups simultaneously.
In particular, Assumption1 involves3 subgroups, C3DH involves2 subgroups, and DL involves
1 subgroup simultaneously. We assume that these assumptionsstill hold when the relevant sub-
group(s) fall within a larger group whose order is the product of 4 distinct primes,N = pqrr̂.
Moreover, the naming of the subgroups is not significant in our assumptions, that is, the same
assumptions still hold after renaming the subgroups.

Assumption 1 of KSW [28]. Our scheme is built on top of the KSW construction [28]. As a
result, we inherit their complexity assumptions as well. Inparticular, the predicate-only version
relies on Assumption 1 of the KSW construction.

We assume that this assumption holds whenGp × Gq × Gr belongs to a larger group of order
N = pqrr̂; and below, we restate it in the context of the larger group.

Assumption 1 posits that any polynomial-time adversary hasa negligible advantage in the
following experiment: LetN = pqrr̂, let gp, gq, gr, ĝr be random generators ofGp, Gq, Gr, Gbr

respectively. Pick the following numbers at random:Q1, Q2, Q3 ∈ Gq, R1, R2, R3 ∈ Gr, a, b, s ∈
Zp, and a random bitb. Give the adversary the description of the bilinear group(N, G, GT , e), and
the following set of values:

S =
{

gp, gr, ĝr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2

}
(5.3)

In addition, if b = 0, the adversary is given the valueT = gb2s
p R3; otherwise, ifb = 1, the

adversary is given the valueT = gb2s
p Q3R3. The adversary outputs a guessb′ of the bitb, and its

advantage is defined as

AdvA =

∣∣∣∣Pr[b′ = b]−
1

2

∣∣∣∣
Assumption 1 states that no polynomial-time adversary can win this game with more than negligi-
ble advantage. Note that this assumption implies the hardness of factoringN .

Generalized 3-party Diffie-Hellman assumption (C3DH). We also rely on the composite 3-
party Diffie-Hellman assumption first introduced by Boneh and Waters [12]. We restate the as-
sumption in the context of a bilinear group whose order is theproduct of four distinct primes
N = pqrr̂.

Let gp, gq, gr, ĝr denote random generators from the subgroupsGp, Gq, Gr, Gbr respectively.
Let R1, R2, R3 denote random elements from the subgroupGr, leta, b, c denote random exponents
from ZN . Now a challenger gives an adversary the following values:

(
gp, gq, gr, ĝr, ga

p , gb
p, gab

p · R1, gabc
p · R2

)

The challenger also flips a random coinb, and depending on the value ofb, the challenger gives
the adversary either the valuegc

p ·R3 or a random element from the subgroupGpr. The adversary’s
task is to output a guessb′ of the bitb, and its advantage is defined asAdvA =

∣∣Pr[b′ = b]− 1
2

∣∣.
The C3DH assumption posits that for any polynomial time algorithm A, its advantage in the

C3DH experiment is a negligible function. Note that this assumption implies the hardness of
factoringN .

92

Decisional Linear assumption (DL). We also rely on the Decisional Linear assumption first
used by Boneh, Boyen and Shacham for group signatures [5]. Below we restate the assumption in
the context of a larger group whose order is the product of four distinct primesN = pqrr̂.

Let Gp denote the subgroup of orderp in a bilinear groupG of orderN = pqrr̂. The adversary
is given

(gp, gq, gr, ĝr, g
z1

p , gz2

p , gz1z3

p , gz2z4

p)

wherez1, z2, z3, z4 are picked at random fromZp, andgp, gq, gr, ĝr are random generators of the
subgroupsGp, Gq, Gr andGbr respectively. In addition, the adversary is given eitherZ = gz3+z4

p ,
or a random element fromGp. The adversary’s task is to distinguish between these two cases.

The Decisional Linear assumption posits that no polynomial-time adversary has more than
negligible advantage in the above experiment.

5.5 Construction

In this section, we propose an SK-PE construction for inner-product queries. A plaintext~x is a
vector drawn fromZn

N . A query predicate represented as~v is also drawn fromZn
N . A predicate

vector~v specifies the following predicate function:

f~v =

{
0 if 〈~x,~v〉 = 0

1 otherwise

5.5.1 Intuition

Recall that our goal is to construct a scheme supporting inner-product queries in the secret-key
setting. Furthermore, we aim to achieve both plaintext and query privacy. As the KSW construc-
tion [28] already provides a solution for inner-product queries in the public-key setting, our first
attempt is to directly use the KSW construction. We can conveniently convert the KSW construc-
tion to the secret-key setting, simply by withholding the public-key. This approach immediately
ensures plaintext privacy as proven in the KSW paper. Unfortunately, the KSW construction does
not provide any guarantee about query privacy; in fact, as wepoint out in Section 5.1, query pri-
vacy is not possible in the public-key setting. Therefore, it seems that our biggest challenge is how
to achieve query privacy. We now explain how we can rely on thesymmetry observation to address
this challenge.

Observe that the ciphertext and the token are completely symmetric. In terms of functionality,
both the plaintext and query are vectors of lengthn; meanwhile, the inner-product equation is
commutative. In terms of security definitions, the ciphertext and the token are symmetric as well.
The ciphertext needs to hide the plaintext vector, while thetoken needs to hide the query vector.
One way to interpret the symmetry is to think of the ciphertext as an encryption of the plaintext
vector, and think of the token as an encryption of the query vector. In fact, under the definitions
given in Section 5.3, we can safely reverse the role of a ciphertext and a token. In other words, we
can have tokens serve as ciphertexts, and ciphertexts serveas tokens.

93

This symmetry observation gives rise to the following idea:what if we construct a scheme
where the ciphertexts and tokens are symmetrically formed?This can make life much simpler for
us, since if we are able to prove plaintext privacy, we will obtain query privacy for free. Due to the
symmetry in formation, the same argument we use to prove plaintext privacy can be used to prove
query privacy as well. In our construction, the ciphertext and the token are not exactly symmetric
by formation, however, we prove that ciphertext and tokens are, in fact, computationally indistin-
guishable from being symmetric. In other words, a computationally-bounded adversary is unable
to distinguish our scheme from another scheme (called SCHEMESYM in the proof) where the ci-
phertext and the token are symmetric by distribution. We henceforth refer to this ascomputational
symmetry.

We now present our main construction, and then, in Section 5.5.3, we explain at the algebraic
level: (1) why our construction has computational symmetry, and (2) how to understand the differ-
ences between our construction and KSW, and why these differences are important to ensure query
privacy.

5.5.2 Detailed construction

We now present our main construction.

Setup(1λ): The setup algorithm first chooses random large primesp, q, r, r̂, and creates a bilinear
group of composite orderN = pqrr̂. Next it picks generatorsgp, gq, gr, ĝr from subgroups
Gp, Gq, Gr, Gbr respectively. It then picksh1,i, h2,i, h̄1,i, h̄2,i from Gp, for all 1 ≤ i ≤ n.

The secret key is set to the following:

Pvk =
(
gp, gq, gr, ĝr,

{
h1,i, h2,i, h̄1,i, h̄2,i

}n

i=1

)

Encrypt(MSK, ~x): Let ~x = (x1, x2, . . . , xn) ∈ (ZN)n. The encryption algorithm first picks
random exponentss, t, α, β from ZN . Then, it chooses random hiding factorsR̂0, R̂∅ from
the subgroupGbr; and random{R1,i, R2,i}

n
i=1 from Gr.

Next, the encryption algorithm computes the following ciphertext:

CT =

(
C0 = R̂0 · g

s
p, C∅ = R̂∅ · g

t
p{

C1,i = hs
1,ih̄

t
1,ig

αxi
q R1,i, C2,i = hs

2,ih̄
t
2,ig

βxi
q R2,i

}n

i=1

)

GenToken(MSK, ~v): Let ~v = (v1, v2, . . . , vn) ∈ (ZN)n. TheGenToken algorithm picks random
exponentsf1, f2, {r1,i, r2,i}

n
i=1 from ZN . Then, it chooses random hiding factorsR0, R∅ from

the subgroupGr; and random{R̂1,i, R̂2,i}
n
i=1 from Gbr.

Next, theGenToken algorithm computes the following token:

TK =




K0 = R0 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K∅ = R∅ ·
∏n

i=1 h̄
−r1,i

1,i h̄
−r2,i

2,i{
K1,i = g

r1,i
p gf1vi

q R̂1,i, K2,i = g
r2,i
p gf2vi

q R̂2,i

}n

i=1




94

Query(TK~v, CT~x): TheQuery algorithm behaves in a way similar to the KSW [28] construction.
It computes

e(C0, K0)e(C∅, K∅) ·
n∏

i=1

e(C1,i, K1,i)e(C2,i, K2,i)
?
= 1 (5.4)

and outputs0 iff the above is equal to1, indicating that〈~x,~v〉 = 0 mod N . (The case that
〈~x,~v〉 = 0 mod q, but〈~x,~v〉 6= 0 mod N happens with negligible probability as explained
in Section 5.6.)

5.5.3 How to understand our construction

Computational symmetry. As mentioned in Section 5.5.1, the ciphertexts and tokens inour
construction are computationally symmetric. To understand our computational symmetry idea, it
helps to observe the following facts when inspecting our construction. (1) TheGq subgroup is
completely symmetric. In the ciphertext, theGq subgroup encodes the plaintext vector, while in
the token, theGq subgroup encodes the query vector. (2) TheGr subgroup and theGbr subgroups
behave as mirrors of each other. Whenever an element fromGr appears in the ciphertext, an
element fromGbr appears in the corresponding term in the token, and vice versa. (3) TheGp

subgroup is not completely symmetric in the ciphertext and the token, however, we later prove that
theGp subgroup appears to be symmetric to a computationally-bounded adversary.

Comparison with the KSW construction. Since KSW already proved plaintext privacy for
inner-product queries in the public-key setting, we tried to build a construction resembling KSW,
in hope of reusing their proof (or proof techniques) on plaintext privacy. To aid the understanding
of our construction, we provide a review of the KSW construction in Section 5.10.

What is more interesting to the reader might be the differences between our construction and
the KSW construction. In fact, a good way to understand our scheme is to compare it with the
KSW construction. We now explain the important differencesfrom the KSW construction that are
crucial in achieving query privacy.

• TheGbr subgroup.The KSW construction relies on3 subgroups,Gp, Gq andGr. We introduce
an additional subgroupGbr, whose order̂r is a large prime distinct fromp, q andr. The most
important functionality of the subgroupGbr is to serve as random hiding factors for most terms
in the token. Intuitively, these random hiding factors can hide the query vector encoded in the
token, thereby achieving query privacy. The behavior of theGbr subgroup “mirrors” that of the
Gr subgroup. Consequently, theGbr also helps to introduce symmetry into our construction.

• TheGp subgroup.In the KSW construction, all terms in the ciphertext have thesame exponent
s in theGp subgroup. By contrast, we introduce an extra degree of randomness represented by
the exponentt. Terms in the ciphertext now rely on two degrees of randomness, namely,s and
t, in theGp subgroup. Informally, this change is due to the observationthat theGp subgroup is
asymmetric in the ciphertext and the token by formation. Moreover, having only one degree of
randomness (like in the KSW construction) is insufficient toensure “computational symmetry”

95

in theGp subgroup. However, if we increase the degree of randomness to two, then we can show
that theGp subgroup is computationally symmetric in the ciphertext and the token.

To understand why this is the case, recall that Diffie-Hellman is easy in bilinear groups. Another
interpretation of this statement is that if we pick a vectorgα1

p , gα2

p , . . . , gαk
p , it is easy to decide

whether the exponent vector(α1, α2, . . . , αk) are picked independently at random, or picked
from a prescribed one-dimensional subspace. On the other hand, an informal interpretation
of the Decisional Linear assumption tells us that it is computationally hard to decide whether
the exponent vector(α1, α2, . . . , αk) are picked independently at random, or picked randomly
from a prescribed2-dimensional subspace. The reason for introducing the extra randomnesst
in the ciphertext is exactly to ensure that the exponents in theGp subgroup are picked from a
2-dimensional subspace, rather than a1-dimensional subspace. This is why our construction has
computational symmetry in theGp subgroup.

• TheQ element inK. The careful reader may have noticed that in the original KSW construction,
the first term in the tokenK has aQ ∈ Gq element. ThisQ element, however, has disappeared
from theK0 andK∅ terms in our construction. (Notice that the analog of KSW’sK term isK0

andK∅ in our construction. The extraK∅ term results from introducing the extra randomnesst
into the ciphertext.) TheQ term seems indispensable in the KSW construction if one carefully
examines their proof. Consequently, the fact that we can remove theQ term may seem counter-
intuitive at first. However, we are able to show that whetherK0 andK∅ terms contain an element
from theGq subgroup is computationally indistinguishable to a polynomial-time adversary. It
turns out that the ability to remove theQ term is a side benefit from the introduction of theGbr

subgroup into the tokens. As a result, our proof doesnot indicate that it is safe to remove theQ
term from the KSW construction as well.

Moreover, the ability to remove theQ term helps to introduce symmetry to our construction.
Clearly, in the KSW construction, theQ term is one conspicuous place where the ciphertext and
the token do not mirror each other.

5.5.4 Security and proof overview

Theorem 5.5.1 Under the generalized Assumption 1 of the KSW construction [28], the general-
ized C3DH assumption, and the Decisional Linear assumption, our main construction (Section 5.5)
is selectively SCI-secure against polynomial-time adversaries.

We now give an overview of our security proof. Apart from thissection, Section 5.5.1 also
sheds light on the intuition behind our construction and proofs.

In the proof, we present two variants of the main construction, SCHEMESYM and SCHEMEQ.
We refer to our main construction as SCHEMEREAL. We prove that SCHEMEREAL is computa-
tionally indistinguishable from both SCHEMESYM and SCHEMEQ. We now explain the motivation
for having the two variants SCHEMESYM and SCHEMEQ.

SCHEME SYM . Recall that we plan to use computational symmetry in our construction proof. In
particular, if ciphertexts and tokens are symmetrically formed in our construction, we will only

96

need to prove plaintext privacy, and we get query privacy forfree. The same argument also applies
if the ciphertexts and tokens are not symmetric by distribution, but computationally symmetric.
SCHEMESYM is exactly the variant where ciphertexts and tokens are symmetrically formed by
distribution. And as our construction is computationally indistinguishable from SCHEMESYM , it
means that in our construction, ciphertexts and tokens are computationally symmetric.

SCHEME Q. Now we have proven the computational symmetry between the formation of the
ciphertexts and tokens, it remains to prove plaintext privacy. To this end, we would like to reuse
KSW’s proof on plaintext privacy. If our construction was close enough to the KSW construction,
we might be able to reuse their proof as a blackbox, without having to re-invent the wheel. We
give a review of the KSW construction in Section 5.10.

A big difference between our construction SCHEMEREAL and the KSW construction is that
to ensure the symmetry property, we have removed theGq subgroup from theK0 andK∅ terms
(which correspond to theK term in the KSW construction) in the token. The purpose of SCHEMEQ
is exactly to restore the missing elementsQ0, Q∅

R
← Gq to theK0 andK∅ terms. By restoring these

elements, we obtain a scheme that bears sufficient resemblance to KSW, such that we can reuse
KSW’s proof as a blackbox. Specifically, we show that if an adversary can break the plaintext
privacy of SCHEMEQ, we can leverage that adversary to break the plaintext privacy of the KSW
construction as well. In addition, as our main constructionSCHEMEREAL is computationally
indistinguishable from SCHEMEQ, the plaintext privacy of SCHEMEQ immediately carries over to
SCHEMEREAL.

Another perspective. As mentioned above, we have three variants in the proof, our main con-
struction SCHEMEREAL, a symmetric construction SCHEMESYM , and a construction with the
Q0, Q∅ terms restored called SCHEMEQ. In fact, we show that all three variants are computation-
ally indistinguishable from each other. This means that theproperties we prove on one variant
automatically carry over to the other two variants. In fact,all three variants have symmetric or
computationally symmetric ciphertexts and tokens; and allthree variants have plaintext privacy.
As a result, all three variants have query privacy as well. This also suggests that any of these three
schemes can be our main construction. The reason why we choseSCHEMEREAL to be our main
construction is merely due to the fact that SCHEMEREAL is easier to express and slightly faster to
compute than the other two variants.

An alternative way to interpret our proof is as follows. Suppose that we used SCHEMESYM as
our main construction instead. Our goal is to prove that SCHEMESYM has both plaintext and query
privacy. As ciphertexts and tokens are symmetric by distribution in SCHEMESYM , it suffices to
prove plaintext privacy of SCHEMESYM . And to prove the plaintext privacy of SCHEMESYM , we
show that SCHEMESYM is computationally indistinguishable from SCHEMEQ, and that SCHEMEQ
has plaintext privacy. However, to show that SCHEMESYM is computationally indistinguishable
from SCHEMEQ, we need to introduce an intermediate step: first, show thatSCHEMESYM is
computationally indistinguishable from SCHEMEREAL; then, show that SCHEMEREAL is compu-
tationally indistinguishable from SCHEMEQ.

We defer the detailed proof of Theorem 5.5.1 to Section 5.7.

97

5.6 Correctness

The correctness of the above construction relies on the following facts, which tells us that no
cross-subgroup interaction happens when we perform a pairing operation on two group elements.
Although the following facts are stated using the notationsGp andGq, they also apply to general
composite-order bilinear groups.

Fact 5.6.1 Letap ∈ Gp, bq ∈ Gq denote two elements from distinct subgroups. Thene(ap, bq) = 1.

From Fact 5.6.1 and the bilinear property of the pairing function e, we can derive the following
fact.

Fact 5.6.2 Let Gpq = Gp × Gq, a, b ∈ Gpq. a and b can be rewritten (uniquely) asa = apaq,
b = bpbq, whereap, bq ∈ Gp, andaq, bq ∈ Gq. Furthermore,

e(a, b) = e(ap, bp)e(aq, bq)

In plain English, this means that when we perform a pairing operation ona andb, there is no cross-
subgroup interaction. It is equivalent to performing a pairing inside each subgroup and multiplying
the results together.

Now we can check the correctness of theQuery algorithm. It is not hard to see that in Equation
(5.4), operations in the subgroupsGp, Gr, Gbr all result in1 ∈ GT . Therefore, we only need to focus
on the subgroupGq; and the outcome of Equation (5.4) is:

e(gq, gq)
(αf1+βf2)〈~x,~v〉

Therefore, if〈~x,~v〉 = 0 mod N , then the above evaluates to1. Otherwise, if〈~x,~v〉 6= 0 mod N ,
there are two cases: (a)〈~x,~v〉 = 0 mod q. This case reveals a non-trivial factor ofN , and
therefore, happens with negligible probability. (b)〈~x,~v〉 6= 0 mod q. In this case, except with
negligible probability,αf1 + βf2 6= 0 mod q, and the output of Equation (5.4) is not equal to
1 ∈ GT .

5.7 Security Proof

5.7.1 Terminology used in the proof

We now prove the selective SCI security (Definition 5.3.5) ofour construction. To do this, it
suffices to proveplaintext privacyandquery privacyseparately.

Definition 5.7.1 (Selective plaintext privacy)An adversary plays the security game in Defini-
tion 5.3.5 with a challenger. However, the adversary submits ciphertext challenges only. An SK-PE
scheme has selective plaintext privacy, iff no polynomial-time adversary can win the security game
with more than negligible advantage.

Definition 5.7.2 (Selective query privacy)Selective query privacy is similarly defined as selec-
tive plaintext privacy, except that now the adversary can only submit token challenges in the secu-
rity game.

98

It is not hard to see that to prove selective SCI security, it suffices to prove that the scheme has
both selective plaintext privacy and selective query privacy, as stated in the following lemma.
Lemma 5.7.3 An SK-PE scheme that has both selective plaintext privacy and selective query pri-
vacy is selective SCI-secure.

In the proof, we often need modifications to our main construction, and show that the result-
ing encryption scheme iscomputationally indistinguishablefrom the original construction. To
prove that the original construction has a certain securityproperty, it suffices to prove that the new
scheme has that security property. The following definitionformally states what it means for two
encryption schemes to be computationally indistinguishable.

Definition 5.7.4 (Indistinguishability of encryption schemes) We say that two SK-PE encryp-
tion schemesSCHEMEA andSCHEMEB are computationally indistinguishable from each other, if
no polynomial-time adversary has more than negligible advantage in winning the following distin-
guishing game:

• Setup. The challenger flips a random coinb. If b = 1, SCHEMEA is chosen; otherwise,
SCHEMEB is chosen. Now the challenger runs the setup algorithm of the chosen scheme,
and retains the secret keyMSK to itself.

• Queries. The adversary adaptively makes ciphertext queries and token queries. In other
words, the adversary can request that the challenger revealan encryption of a plaintext~x of
its choice or request that the challenger reveal a token for~v of its choice. The challenger
computes the requested ciphertext (token) according to SCHEMEA or SCHEMEB depending
on which one has been chosen.

• Guess. At the end of the distinguishing game, the adversary guesseswhich encryption
scheme has been chosen, i.e., it outputs a guessb′ of the bit b chosen by the challenger.
The adversary’s advantage is defined asAdvA =

∣∣Pr[b′ = b]− 1
2

∣∣.
The notion of computational indistinguishability betweentwo encryption schemes will be use-

ful throughout our proofs, as to prove plaintext privacy (orquery privacy) of SCHEME1, it suffices
to prove plaintext privacy (or query privacy) of its counterpart SCHEME2 which is computationally
indistinguishable from SCHEME1. This is formally stated in the proposition below.
Proposition 5.7.1 Let SCHEME1 and SCHEME2 denote two SK-PE schemes that are computa-
tionally indistinguishable from each other. IfSCHEME1 has plaintext privacy (or query privacy),
thenSCHEME2 must have plaintext privacy (or query privacy) as well.
Proof: (sketch.) Suppose for the purpose of a contradition that SCHEME1 has plaintext privacy, but
SCHEME2 does not have plaintext privacy. This means that there exists a polynomial-time adver-
saryA who can win the plaintext privacy game (of SCHEME2) with non-negligible probabilityǫ.
We can now leverage this adversaryA to distinguish SCHEME1 and SCHEME2. We build a simu-
latorB. When given an encryption scheme SCHEME, B can decide whether SCHEME is SCHEME1
or SCHEME2 with probability at leastǫ/2. The simulator’s strategy is to play the plaintext privacy
game withA, and ifA wins the plaintext privacy game, our simulator outputs SCHEME2; other-
wise, it outputs SCHEME1. This contradicts with the assumption that SCHEME1 and SCHEME2
are computationally indistinguishable.

99

5.7.2 Proof overview

The proof consists of two parts.
1. We first show in Section 5.7.3 that our main construction (henceforth referred to as SCHEME-

REAL) guarantees selective plaintext privacy. This part of the proof is done in two steps.
First, we show that SCHEMEREAL is computationally indistinguishable from a variant scheme
called SCHEMEQ. Second, we show that SCHEMEQ has selective plaintext privacy. More
specifically, SCHEMEQ bears enough resemblance to the KSW construction such thatit is
possible to reuse KSW’s proof on plaintext privacy in a blackbox fashion.

2. Next, we show in Section 5.7.4 that our main construction is computationally indistinguish-
able from an alternative scheme (referred to as SCHEMESYM), where the tokens and cipher-
texts are symmetrically formed. As SCHEMESYM and SCHEMEREAL are computationally
indistinguishable, it suffices to prove the ciphertext and query privacy in SCHEMESYM .

The plaintext privacy of SCHEMESYM follows from the plaintext privacy of SCHEMEREAL.
Since tokens and ciphertexts are symmetrically formed in SCHEMESYM , the tokens must be
secure as well in SCHEMESYM .

5.7.3 Plaintext privacy of SCHEME REAL

Lemma 5.7.5 (Selective plaintext privacy of SCHEME REAL) Assuming the generalized C3DH
assumption and Assumption 1,SCHEMEREAL has selective plaintext privacy.

We know that the KSW construction has plaintext privacy (in the public key setting). To prove
the plaintext privacy of our construction, SCHEMEREAL, first observe the differences between our
construction and the KSW construction.

1. Our construction introduces theh̄1,i, h̄2,i terms. As a result, we need one extra group element
for both the ciphertext and token: theC0 andK terms in KSW becomeC0, C∅ andK0, K∅

in our construction.

2. Our construction removes theGq elements from theK0 andK∅ terms in the token. (To
compare, observe theQ6

R
← Gq element in theK term of the KSW construction.)

The intuition behind the following proof (of Lemma 5.7.5) isto show that these modifications
preserve the plaintext privacy of the KSW construction.

The proof of Lemma 5.7.5 consists of two parts:
1. We first add back the random hiding factors fromGq to theK0 andK∅ terms in the token.

The resulting scheme is called SCHEMEQ. We show that SCHEMEREAL and SCHEMEQ are
computationally indistinguishable.

2. We prove the plaintext privacy of SCHEMEQ. The proof is a reduction showing that if there
exists a polynomial-time adversaryA that can break the plaintext privacy of SCHEMEQ, we
can then build a polynomial-time simulatorB that leverages the adversaryA, and breaks the
plaintext privacy of the KSW construction.

Definition 5.7.6 (SCHEME Q) We add random hiding factors from theGq subgroup to the terms

100

K0 andK∅ in SCHEMEREAL. The resulting scheme is calledSCHEMEQ. Below is a formal de-
scription of SCHEMEQ.

For the readers’ convenience, in the expression for the token TK below, we underline the parts
where SCHEMEQ and SCHEMEREAL differ.

Setup(1λ): Same as theSetup algorithm of SCHEMEREAL.

Encrypt(MSK, ~x): Same as theEncrypt algorithm of SCHEMEREAL.

GenToken(MSK, ~v): Let ~v = (v1, v2, . . . , vn) ∈ (ZN)n. TheGenToken algorithm picks random
exponentsf1, f2, {r1,i, r2,i}

n
i=1 from ZN . Then, it chooses random hiding factorsR0, R∅ from

the subgroupGr; randomQ0, Q∅ from Gq; and random{R̂1,i, R̂2,i}
n
i=1 from Gbr.

Next, theGenToken algorithm computes the following token:

TK =




K0 = Q0R0 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K∅ = Q∅R∅ ·
∏n

i=1 h̄
−r1,i

1,i h̄
−r2,i

2,i{
K1,i = g

r1,i
p gf1vi

q R̂1,i, K2,i = g
r2,i
p gf2vi

q R̂2,i

}n

i=1




Query(TK~v, CT~x): Same as theQuery algorithm of SCHEMEREAL.

To reiterate, the underlined parts represent the places where SCHEMEQ and SCHEMEREAL

differ.

Computational indistinguishability of SCHEME REAL and SCHEME Q

To show that SCHEMEREAL and SCHEMEQ are computationally indistinguishable, we further
introduce a sequence of hybrid schemes:

SCHEMEREAL
f2=ωf1

=⇒ SCHEME1
Q0

=⇒ SCHEME2
Q∅

=⇒ SCHEME3
restoref1,f2

=⇒ SCHEMEQ

In the above, the text on top of the arrow highlights the modification we make to the former scheme
to obtain the latter. These modifications will be explained in detail shortly when we formally
define each hybrid scheme. We show that any two consecutive scheme in the above sequence are
computationally indistinguishable.

Definition 5.7.7 (SCHEME 1) We first make slight modifications toSCHEMEREAL and obtain a
hybrid scheme calledSCHEME1. In SCHEME1, instead of picking independent and fresh and in-
dependent random numbersf1 andf2 for each token, theGenToken algorithm picksf1 at random,
and letsf2 = ωf1, whereω is a random number inZN chosen during theSetup stage; and is kept
secret by the master key owner. More specifically, we formally defineSCHEME1 as below:

Setup(1λ): Same as theSetup algorithm of SCHEMEREAL, except that now, we pick an addi-
tional random numberω ∈ ZN , and add it to the secret key. In the mathematical expressions
below, we underline the parts where SCHEME1 differ from SCHEMEREAL.

Pvk =
(

ω, gp, gq, gr, ĝr,
{
h1,i, h2,i, h̄1,i, h̄2,i

}n

i=1

)

101

Encrypt(MSK, ~x): Same as theEncrypt algorithm of SCHEMEREAL.

GenToken(MSK, ~v): Instead of pickingf1, f2 ∈ ZN independently at random, theGenToken

algorithm picksf ∈ ZN at random, and letsf1 = f , andf2 = ωf . The rest of theGenToken

algorithm is the same as that of SCHEMEREAL.

TK =




K0 = R0 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K∅ = R∅ ·
∏n

i=1 h̄
−r1,i

1,i h̄
−r2,i

2,i{
K1,i = g

r1,i
p gfvi

q R̂1,i, K2,i = g
r2,i
p gωfvi

q R̂2,i

}n

i=1




Query(TK~v, CT~x): Same as theQuery algorithm in SCHEMEREAL.

Claim 5.7.8 (Computational indistinguishability of SCHEME REAL and SCHEME 1) Under the
generalized C3DH assumption,SCHEME1 is computationally indistinguishable fromSCHEME-
REAL.

Proof: We can prove this claim based on the generalized C3DH assumption and a hybrid argu-
ment. Intuitively, Claim 5.7.8 relies on the following observation.
Observation 5.7.1 (ℓ-C3DH) Define the following distribution:

u1, u2, . . . , uℓ
R
← Gq,

ω
R
← ZN ,

R̂1, . . . , R̂ℓ, R̃1, . . . , R̃ℓ, R1, . . . , Rℓ
R
← Gbr,

Q1, Q2, . . . , Qℓ
R
← Gq

Suppose an adversary is given the generators of each subgroup:

gp, gq, gr, ĝr

Letb denote a random coin flip. Ifb = 0, the adversary is given the tuple

(u1R̂1, . . . , uℓR̂ℓ, uω
1 R̃1, . . . , u

ω
ℓ R̃ℓ)

if b = 1, the adversary is given the tuple

(u1R̂1, . . . , uℓR̂ℓ, Q1R1, . . . , QℓRℓ)

Suppose the adversary outputs a guessb′ of b. Denote the adversary’s advantage asAdvA :=∣∣Pr[b′ = b]− 1
2

∣∣. Then no polynomial-time adversary can win thisℓ-C3DH game with more than
negligible advantage.
This observation can be proven through the generalized C3DHassumption and a simple hybrid
argument. Shi et al. [37] also used theℓ-C3DH assumption as an intermediate assumption in their
proofs.

It is not hard to see that the above observation leads to Claim5.7.8. The proof can be done
through a simple reduction argument. Basically, if there exists an adversary that can distinguish

102

between SCHEMEREAL and SCHEME1, we can leverage that adversary to build a simulatorB that
can win the aboveℓ-C3DH game. The simulatorB is randomly given one of the following two
tuples:

(u1R̂1, . . . , uℓR̂ℓ, U1 = uω
1 R̃1, . . . , Uℓ = uω

ℓ R̃ℓ)

or
(u1R̂1, . . . , uℓR̂ℓ, U1 = Q1R1, . . . , Uℓ = QℓRℓ)

Now the simulator tries to determine which case it is.
The simulator leverages a distinguishing adversaryA that tries to distinguish SCHEMEREAL

and SCHEME1. Suppose that the adversary makesℓ token queries.
In the setup phase of the game, the simulator generates the secret key (without theω term) and

retains the secret key to itself. Clearly, the simulator cansuccessfully generate secret key given the
generators of the different subgroups.

In answer to thejth token query, simulator uses the termsujR̂j and Uj from the ℓ-C3DH
instance to build the following token:

TK =




K0 = R0 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K∅ = R∅ ·
∏n

i=1 h̄
−r1,i

1,i h̄
−r2,i

2,i{
K1,i = g

r1,i
p (ujR̂j)

viR̂1,i, K2,i = g
r2,i
p Uvi

j R̂2,i

}n

i=1




Clearly, if b = 0, then the tokens are formed as in SCHEME1; if b = 1, the tokens are formed as in
SCHEMEREAL.

If A outputs a guess of SCHEME1, the simulator outputs a guessb′ = 0; if A outputs a guess
of SCHEMEREAL, the simulator outputs a guess ofb′ = 1. In this way, ifA hasǫ advantage in
distinguishing SCHEMEREAL and SCHEME1, the simulator will haveǫ in winning theℓ-C3DH
game.

Remark 5.7.1 To prove computational indistinguishability betweenSCHEMEREAL andSCHEME1,
we rely on theGbr subgroup. This means that our proof thatSCHEMEREAL is computationally in-
distinguishable fromSCHEMEQ relies on theGbr subgroup. Therefore, although we are able to
computationally remove theGq subgroup from theK0 and K∅ terms in the token, it does NOT
imply that one can do the same thing for the KSW construction,as the KSW construction does not
have theGbr subgroup. To reiterate, our proof does NOT imply that one cansafely remove theGq

subgroup from theK term in the token of the KSW construction.

Definition 5.7.9 (SCHEME 2) We further modifySCHEME1, and add a random elementQ0 ∈ Gq

to the termK0 in the token. The resulting scheme is referred to asSCHEME2, and is formally
defined as below:

Setup(1λ): Same as in SCHEME1.

Encrypt(MSK, ~x): Same as in SCHEME1.

GenToken(MSK, ~v): TheGenToken picks a randomQ0 ∈ Gq, and multipliesQ0 to K0. Note
that a freshQ0 is generated each timeGenToken is called. The rest of theGenToken

algorithm is the same as in SCHEME1. In the expression below, we underline the parts
where SCHEME2 and SCHEME1 differ.

103

TK =




K0 = Q0R0 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K∅ = R∅ ·
∏n

i=1 h̄
−r1,i

1,i h̄
−r2,i

2,i{
K1,i = g

r1,i
p gfvi

q R̂1,i, K2,i = g
r2,i
p gωfvi

q R̂2,i

}n

i=1




Query(TK~v, CT~x): Same as in SCHEME1.

Again, for clarity, we underline the places where SCHEME2 differs from SCHEME1.

Claim 5.7.10 (Computational indistinguishability of SCHEME 1 and SCHEME 2) Assume that As-
sumption 1 of the KSW paper [28] holds in the bilinear groupG, thenSCHEME2 is computationally
indistinguishable fromSCHEME1.

To prove this lemma, we first review Assumption 1 as stated by Katz et al.. We assume that this
assumption holds whenGp × Gq × Gr belongs to a larger group of orderN = pqrr̂. We restate
Assumption 1 in the context of the larger group.

Definition 5.7.11 (Assumption 1 of the KSW construction [28]) Any polynomial-time adversary
has a negligible advantage in the following experiment:

Let N = pqrr̂, let gp, gq, gr, ĝr be random generators ofGp, Gq, Gr, Gbr respectively. Pick the
following numbers at random:Q1, Q2, Q3 ∈ Gq, R1, R2, R3 ∈ Gr, a, b, s ∈ Zp, and a random
bit b. If b = 0, γ = 0; else if b = 1, γ is chosen at random fromZN . Give the adversary the
description of the bilinear group(N, G, GT , e), and the following set of values. The adversary’s
task is to guess the bitb.

S =
{
gp, gr, ĝr, gqR1, gb

p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2, T = gb2s
p gγ

q R3

}
(5.5)

The adversary outputs a guessb′ of the bitb; and its advantage is defined as

AdvA =

∣∣∣∣Pr[b′ = b]−
1

2

∣∣∣∣

Assumption states that no polynomial-time adversary can win this game with more than negligible
advantage.

In fact, Claim 5.7.10 relies on a weaker assumption than Assumption 1. Specifically, we only
need to reveal to the adversary a subsetS ′ ⊂ S.

S ′ =
{
gp, gr, ĝr, gqR1, gb2

p , ga
pgq, gs

p, T = gb2s
p gγ

q R3

}

Definition 5.7.12 (Assumption W) Given the setS ′, no polynomial-time adversary can decide
whetherγ = 0 or γ

R
← ZN with more than negligible advantage.

Clearly, Assumption 1 implies Assumption W, that is, Assumption W is weaker than Assumption
1.

Proof of Claim 5.7.10: We build a simulatorB that tries to break Assumption 1. The simulator
utilizes an adversaryA that tries to distinguish SCHEME1 from SCHEME2. If the adversaryA has

104

advantageǫ in distinguishing SCHEME1 from SCHEME2, then the simulatorB has advantageǫ in
breaking Assumption W.

The simulatorB is given an instance of Assumption W, and it plays the following distinguishing
game with the adversaryA. The adversary makes queries for ciphertexts and tokens, and in an-
swer to these queries, the simulator computes ciphertexts and tokens following a certain strategy.
The resulting ciphertexts and tokens are distributed either according to SCHEME1 or according
to SCHEME2. In particular, if the simulator is givenT = gb2s

p R3 from the Assumption W in-
stance, then the encryption scheme used would be identically distributed as SCHEME1; otherwise,
if T = gb2s

p Q3R3, the encryption scheme used would be identically distributed as SCHEME2.
• Setup. The simulator is given an instance of Assumption W, and it uses this knowledge to

create the following secret key:

Pvk =
(
ω, gp, gr, ĝr,

{
h1,i = (gb2

p)ωyi, h2,i = gzi
p (gb2

p)−yi, h̄1,i = gci
p , h̄2,i = gdi

p

}n

i=1

)

whereω, {zi, yi, ci, di}
n
i=1 are random exponents fromZN . In the abovePvk, the following

elements are inherited from the Assumption W instance:gp, gq, gr, ĝr andgb2

p .

Notice that the simulator does not knowgq, which ought to part of the secret key. We
show that the simulator is still able to answer ciphertext queries and token queries from the
adversary appropriately, in spite of not knowinggq.

• Ciphertext query. In spite of not knowinggq, the simulator is able to compute ciphertexts,
as it knowsgqR1 from the Assumption W instance, and a generatorgr of the subgroupGr.

• Token query. To answer a token query, the simulator picks random valuesr, f from ZN ;
random hiding factorR0, R∅ from the subgroupGr; and random{R̂1,i, R̂2,i}

n
i=1 from Gbr.

The simulator uses the following strategy to decide the values of{r1,i, r2,i}
n
i=1. First, the

simulator picks random exponents{τi, r1,i, r2,i}
n
i=1 from ZN . The simulator then implicitly

sets the values of{r1,i, r2,i}
n
i=1 to be the following,without actually computing them:

∀i ∈ [n] : r1,i = afvi + τis + r1,i

r2,i = afωvi + r2,i
(5.6)

Using the above implicit values for{r1,i, r2,i}
n
i=1, the simulator is able to compute a token as

below:

∀i ∈ [n] : K1,i = R̂1,i · (g
a
pgq)

fvi(gs
p)

τig
r1,i
p

K2,i = R̂2,i · (g
a
pgq)

ωfvig
r2,i
p

(5.7)

In addition,

K0 = R0 ·
n∏

i=1

T−ωyiτi · h
−r1,i

1,i · (g−a
p R1)

fωzivi · h
−r2,i

2,i (5.8)

K∅ = R∅ ·
n∏

i=1

(
(g−a

p R1)
−fvi(gs

p)
τigr1,i

p

)−ci
(
(g−a

q R1)
ωfvigr2,i

p

)−di (5.9)

105

Notice that the above equations make use of the termg−a
p R1. This can be obtained from the

termsgqR1 andga
pgq inherited from the Assumption W instance:

g−a
p R1 =

gqR1

ga
pgq

It is not hard to see that{K1,i, K2,i}
n
i=1 as defined in Equation (5.7), andK∅ as defined in

Equation (5.9), are correctly formed as in SCHEME1 (or SCHEME2). Recall that the terms
K∅, {K1,i, K2,i}

n
i=1 have the same form in both SCHEME1 and SCHEME2. It remains to

verify that K0, as defined in Equation (5.8), is distributed either as in SCHEME1 or as in
SCHEME2, depending on the value ofγ from the Assumption W instance.

Observation 5.7.2 If γ from the Assumption W instance is equal to0, thenK0 as defined
in Equation (5.8) is distributed as inSCHEME1. Otherwise, ifγ

R
← ZN , K0 as defined in

Equation (5.8) is distributed as inSCHEME2.

To see whyK0 follows the correct distribution, letK0,p, K0,q, K0,r denote the projections of
K0 into the subgroupsGp, Gq, Gr respectively. Clearly,K0,r has the correct distribution.

We now verify thatK0,q andK0,p have the correct distribution.

It is not hard to see that

K0,q = g−γκ
q whereκ = ω

n∑

i=1

yiτi

Clearly, if γ = 0 in the Assumption W instance, thenK0,q is distributed as in SCHEME1,
i.e., K0 does not contain an element from the subgroupGq. We now need to show that if
γ

R
← ZN , K0,q is distributed as in SCHEME2, that is,K0 contains a random element from the

subgroupGq. To prove this, it suffices to observe thatκ is distributed uniformly at random
in ZN , and is independent of{r1,i, r2,i}

n
i=1.

Remark 5.7.2 In fact, it suffices to pickτ1
R
← ZN , and fixτi = 0 for i ∈ [2, n].

It remains to verify thatK0,p has the correct distribution. The correct distribution ofK0,p

should be:
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i =
∏n

i=1(g
−b2ωyi
p)afvi+τis+r1,i · (g−zi

p gb2yi
p)afωvi+r2,i

=
∏n

i=1 g−b2sωyiτi
p h

−r1,i

1,i g−afωzivi
p h

−r2,i

2,i

(5.10)

It is not very hard to see that theK0 defined in Equation (5.8) has the sameGp component as
the above Equation (5.10). A crucial observation here is that all terms involvinggab2

p (which
is unknown to the simulator) cancel out. This is the reason why the simulator can generate
the token efficiently.

• Guess.The simulatorB outputs the same guessb′ output by the adversaryA.
Clearly, if the adversaryA has advantageǫ in distinguishing SCHEME1 and SCHEME2, then

the simulatorB also has advantageǫ in breaking Assumption W. This completes the proof of
Claim 5.7.10.

106

Definition 5.7.13 (SCHEME 3) We further modifySCHEME2, and add a random elementQ∅ ∈ Gq

to the termK∅ in the token. In the resulting scheme (referred to asSCHEME3), both the termsK0

andK∅ has a random element from theGq subgroup.SCHEME3 is formally defined as below:

Setup(1λ): Same as in SCHEME2.

Encrypt(MSK, ~x): Same as in SCHEME2.

GenToken(MSK, ~v): TheGenToken picks a randomQ0, Q∅ ∈ Gq, and multipliesQ0 andQ∅ to
K0 andK∅ respectively.GenToken algorithm is the same as in SCHEME1. In the expression
below, we underline the parts where SCHEME2 and SCHEME3 differ.

TK =




K0 = Q0R0 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , K∅ = Q∅R∅ ·
∏n

i=1 h̄
−r1,i

1,i h̄
−r2,i

2,i{
K1,i = g

r1,i
p gfvi

q R̂1,i, K2,i = g
r2,i
p gωfvi

q R̂2,i

}n

i=1




Query(TK~v, CT~x): Same as in SCHEME2.

Claim 5.7.14 (Computational indistinguishability of SCHEME 2 and SCHEME 3) Given that As-
sumption 1 of the KSW paper [28] holds in the bilinear groupG, thenSCHEME3 is computationally
indistinguishable fromSCHEME2.

Proof: The proof of this claim is very similar to that of Claim 5.7.10. The only difference is
that in this proof, the simulator needs to rerandomize the term K0 with a random element from the
subgroupGqr = Gq × Gr. This can be achieved since the simulator knows the termsgqR1 and
gr. (In comparison, in the proof of Claim 5.7.10, the simulatorrerandomizes the termK∅ with an
element fromGr).

Recall that we are trying to show that SCHEMEREAL and SCHEMEQ are computationally in-
distinguishable. We have made a sequence of modifications toSCHEMEREAL, and have obtained
SCHEME3. So far, we have shown that SCHEMEREAL and SCHEME3 are computationally in-
distinguishable. We now further modify SCHEME3 and finally obtain SCHEMEQ. In SCHEME1,
SCHEME2 and SCHEME3, thef1 andf2 exponents in the tokens satisfy the relationf2 = ωf1,
whereω is a pre-determined secret. We now restore thef1 andf2 exponents as independent fresh
random numbers.

Claim 5.7.15 Assuming the generalized C3DH assumption,SCHEME3 and SCHEMEQ are com-
putationally indistinguishable.

Proof: Similar to that of Claim 5.7.8.

Plaintext privacy of SCHEME Q

We have shown that SCHEMEREAL is computationally indistinguishable from SCHEMEQ. We now
show that SCHEMEQ has selective plaintext privacy. This implies that SCHEMEREAL has selective
plaintext privacy as well.

107

The original KSW construction runs in a bilinear group of order N = pqr. This part of
the proof relies on the observation that if we run the KSW construction in the subgroupGpqr =
Gp × Gq × Gr residing in a larger bilinear group of orderN = pqrr̂, the KSW construction still
has plaintext privacy. Fundamentally, this relies on the fact that Assumption 1 still holds when the
bilinear groupGpqr in question resides in the context of a larger group.

Lemma 5.7.16 Suppose that Assumption 1 holds in the bilinear groupG, thenSCHEMEQ has
selective plaintext privacy.

Proof: The proof is based on the selective plaintext privacy of the KSW construction. We show
that if there exists a polynomial-time adversaryA that can break the selective plaintext privacy of
SCHEMEQ, we can build a polynomial-time simulatorB that leveragesA to break the selective
plaintext privacy of the KSW construction. Recall that the KSW construction uses a bilinear group
of orderN = pqr. We assume that this group resides in a larger group of sizeN = pqrr̂, and that
Assumption 1 still holds in the context of this larger group.

The simulatorB acts two different roles. On one hand, it interacts with a KSWchallengerC,
and tries to break the selective plaintext privacy of KSW. Onthe other hand, it acts as a challenger
to the SCHEMEQ adversaryA. In essence, the simulatorB uses the following strategy to interact
withA: wheneverA submits a ciphertext or token query, the simulatorB simply forwards it along
to the challengerC. In return,B obtains a KSW ciphertext or token. NowB augments the KSW
ciphertext or token before handing the answer over to the adversaryA. For example, part of the
augmentation performed byB is to fill in the termsC∅ andK∅.
• Init. The SCHEMEQ adversaryA commits to a ciphertext challenge(~x0, ~x1) to the simulator
B. B forwards the same challenge(~x0, ~x1) to C.

• Setup.C runs theSetup algorithm of KSW, and gives the following public key to the simu-
latorB.

PK = (gp, gr, ĝr, Q = gq · R0, {H1,i, H2,i}
n
i=1)

In addition,B generates the following secrets:

{h̄1,i = gyi
p , h̄1,i = gzi

p }
n
i=1

where{yi, zi}
n
i=1 are random numbers fromZN .

• Ciphertext query. Whenever the adversaryA submits a ciphertext query for the vector
~x ∈ (ZN)n,B computes the following ciphertext and returns it to the adversary. Pick random
exponentss, t, α, β from ZN ; random hiding factorŝR0, R̂∅ from the subgroupGbr; and
random{R1,i, R2,i}

n
i=1 from Gr.

CT =

(
C0 = R̂0 · g

s
p, C∅ = R̂∅ · g

t
p{

C1,i = Hs
1,ih̄

t
1,iQ

αxiR1,i, C2,i = Hs
2,ih̄

t
2,iQ

βxiR2,i

}n

i=1

)

• Token query. Suppose that the adversaryA makes a token query for the vector~v ∈ (ZN)n.
The simulator asksC to generate a KSW token for the same vector~v. Suppose the KSW
token for~v is formed as below:

KSW.TK = (k0, {k1,i, k2i
}ni=1)

108

The simulator now transforms this KSW token into a SCHEMEQ token as below. The simu-
lator picks a random exponentr

R
← ZN ; a random hiding factorR∅ from the subgroupGr;

and random{R̂1,i, R̂2,i}
n
i=1 from Gbr.

TK =




K0 = k0, K∅ = R∅Q
r
∏n

i=1 k−yi

1,i k−zi

2i{
K1,i = k1,iR̂1,i, K2,i = k2,iR̂2,i

}n

i=1




• Challenge.The adversaryA submits a ciphertext challenge for the vector~x ∈ (ZN)n. The
simulatorB forwards the challenge to the KSW challengerC. As a result,B obtains the
following KSW challenge ciphertext fromC:

KSW.CT = (c0, {c1,i, c2,i}
n
i=1)

The simulator transforms the above KSW ciphertext to a ciphertext under SCHEMEQ. It
pickst

R
← ZN , R̂0, R̂∅

R
← Gbr, and computes:

CT =

(
C0 = R̂0 · c0, C∅ = R̂∅ · g

t
p{

C1,i = c1,ih̄
t
1,i, C2,i = c2,ih̄

t
2,i

}n

i=1

)

• More ciphertext and token queries.Same as above.

• Guess.The simulatorB outputs the same guess as the adversaryA.
It is not hard to verify that in the above simulation, the ciphertexts and tokens computed by

B has the correct distribution. Clearly, ifA hasǫ advantage in breaking SCHEMEQ, then the
simulatorB hasǫ advantage in breaking KSW. This completes the proof of Lemma5.7.16.

5.7.4 Indistinguishability of SCHEME REAL and SCHEME SYM

We now show that SCHEMEREAL is computationally indistinguishable from a scheme called
SCHEMESYM , where the tokens and the ciphertexts are symmetrically formed. The proof is carried
out in the following two steps:

1. We first define SCHEMESYM , and show that SCHEMEREAL is computationally indistin-
guishable from SCHEMESYM .

2. Next, we show that in SCHEMESYM , the tokens and ciphertexts are symmetrically formed.

SCHEME SYM

We make modifications to SCHEMEREAL, and obtain a new scheme called SCHEMESYM . In short,
we modify the way theGenToken algorithm picks the exponents{r1,i, r2,i}

n
i=1. In SCHEMESYM ,

the exponents{r1,i, r2,i}
n
i=1 are no longer picked completely at random fromZp. Instead, these

exponents are now picked at random from a two-dimensional subspace of the vector spaceF2n
p .

109

Definition 5.7.17 (SCHEME SYM) We make the following modifications toSCHEMEREAL, and
the resulting scheme is calledSCHEMESYM .

Setup(1λ): The setup algorithm first chooses a secret key as in SCHEMEREAL. Additionally, it
chooses the following random exponents fromZp, and keeps them secret.

{y1,i, z1,i, y2,i, z2,i}
n
i=1

Encrypt(MSK, ~x): Same as theEncrypt algorithm of SCHEMEREAL.

GenToken(MSK, ~v): Instead of picking{r1,i, r2,i}
n
i=1 independently at random fromZp, the

GenToken picks two random numbersρ, τ
R
← Zp, and sets the values of{r1,i, r2,i}

n
i=1 as

below:
∀i ∈ [n] : r1,i = ρy1,i + τz1,i

r2,i = ρy2,i + τz2,i

The rest of theGenToken proceeds as in SCHEMEREAL.

Query(TK~v, CT~x): The same as theQuery algorithm in SCHEMEREAL.

One way to understand the above construction SCHEMESYM is as follows. Let~y = {y1,i, y2,i}
n
i=1,

let ~z = {z1,i, z2,i}
n
i=1, let ~r = {r1,i, r2,i}

n
i=1. It is not hard to see that~r is chosen at random from

a 2-dimensional subspace generated by~y and~z. Essentially, SCHEMESYM always chooses a 2-
dimensional subspace during the setup phase. Later, when constructing tokens, SCHEMESYM

always picks the exponents~r at random from this prescribed 2-dimensional subspace. Dueto the
Decisional Linear assumption, picking the exponents from a2-dimensional subspace is computa-
tionally indistinguishable from picking the exponents completely at random from the entire vector
spaceF2n

p . We state this intuition in the following lemma.
So far, it may not be entirely clear why the ciphertexts and tokens are symmetrically formed in

SCHEMESYM . We explain why this is the case in Section 5.7.4.

Lemma 5.7.18 Assume that the D-Linear assumption holds inGp, SCHEMESYM is computation-
ally indistinguishable fromSCHEMEREAL.

Informally, the above Lemma 5.7.18 relies on the following observation.

Observation 5.7.3 (ℓ-DLinear) Let ℓ be an integer greater than2. Suppose a challenger picks
two random vectors~y = (y1, y2, . . . , yℓ)

R
← Fℓ

p, and~z = (z1, z2, . . . , zℓ)
R
← Fℓ

p. The challenger
then flips a random coinb, and generates a random vector~γ = (γ1, γ2, . . . , γℓ) in one of the
following ways, depending on the outcome of the coin flipb:
• If b = 0, the challenger picksγ1, γ2, . . . , γℓ independently at random fromZp. In other

words, the vector~γ is picked at random from the vector spaceFℓ
p.

• If b = 1, the challenger picks the vector~γ = (γ1, γ2, . . . , γℓ) from the 2-dimensional sub-
space1 generated by~y, ~z. Let closure(~y, ~z) denote the subspace inFℓ

p generated by~y and~z.
The following algorithm allows the challenger to pick a random vector~γ from closure(~y, ~z).
Picks, t

R
← Zp, and compute

~γ = s~y + t~z

1In the unlikely event that~y and~z are linearly dependent,dim(closure(~y, ~z)) < 2. However, this happens with
negligible probability.

110

Define the following notation:

g~x
p :=

(
gx1

p , gx2

p , . . . , gxℓ
p

)
where~x ∈ Fℓ

p

Now the challenger gives an adversary the description of thegroup,(N = pqrr̂, G, GT , e),
generators of each subgroup,gp, gq, gr, ĝr, and the following tuple:

(
g~y

p , g~z
p , g~γ

p

)

The adversary’s task is to guess the outcome of the coin flipb. We claim that no polynomial-time
adversary is able to guess the outcome of the coin flipb with more than negligible advantage. In
fact, we show that this problem is at least as hard as the D-Linear problem.

Proof: We use a hybrid argument to show that theℓ-DLinear problem (Observation 5.7.3) is
at least as hard as the D-Linear problem. We first review the D-Linear assumption. Suppose an
adversary is given a description of the group,(N = pqrr̂, G, GT , e), generators of each subgroup,
gp, gq, gr, ĝr, and the following tuple:

(
gp, ga

p , gb
p, gaρ

p , gbτ
p , Y

)

wherea, b, ρ, τ are random exponents inZp. The adversary tries to decide whetherY = gρ+τ
p or

whetherY is a random number inGp. The D-Linear assumption states that no polynomial-time
adversary can have more than negligible advantage in this experiment.

We now prove Observation 5.7.3 (theℓ-DLinear assumption) through a hybrid argument. We
define the following sequence of games, where∗ represents a random number from the groupGp.

Game What the challenger gives to the adversary

Gameℓ (g~y
p , g~z

p, gsy1+tz1

p , gsy2+tz2

p , gsy3+tz3

p , . . . , g
syℓ−2+tzℓ−2

p , g
syℓ−1+tzℓ−1

p , gsyℓ+tzℓ
p)

Gameℓ−1 (g~y
p , g~z

p, gsy1+tz1

p , gsy2+tz2

p , gsy3+tz3

p , . . . , g
syℓ−2+tzℓ−2

p , g
syℓ−1+tzℓ−1

p , ∗)

Gameℓ−2 (g~y
p , g~z

p, gsy1+tz1

p , gsy2+tz2

p , gsy3+tz3

p , . . . , g
syℓ−2+tzℓ−2

p , ∗, ∗)
.
Game2 (g~y

p , g~z
p, gsy1+tz1

p , gsy2+tz2

p , ∗, . . . , ∗, ∗, ∗)

It is not hard to see that Gameℓ is equivalent to theℓ-DLinear experiment whenb = 1; and Game2
is equivalent to theℓ-DLinear experiment whenb = 0. Due to the hybrid argument, it suffices to
prove that no polynomial-time adversary can distinguish between two adjacent games.

We now show that if there exists a polynomial-time adversaryA that can distinguish between
two adjacent games Gamed and Gamed−1 with ǫ advantage, then we can build a polynomial-time
simulatorB that utilizesA as a black box, and wins the D-Linear experiment also withǫ advantage.
We now explain how the simulatorB works.

SupposeB is given the D-Linear instance(gp, ga
p , gb

p, gaρ
p , gbτ

p , Y), and tries to decide whether

Y = gρ+τ
p or Y

R
← Gp. The simulator picks random elementsk2, k3, . . ., kd−1, yd, yd+1, . . ., yℓ,

andw2, w3, . . ., wd−1, zd, zd+1, . . ., zℓ from ZN , and implicitly sets:

~y = (a, k2a, k3a, . . . , kd−1a, yd, yd+1, . . . , yℓ)

111

~z = (b, w2b, w3b, . . . , wd−1b, zd, zd+1, . . . , zℓ)

It also implicitly sets
s = ρy−1

d , t = τz−1
d

where multiplicative inverses are taken modularN . (For our purposes, this is equivalent to taking
multiplicative inverses modularp.)

Note that the simulator does not know the values ofa, b, ρ, τ . It merely sets the above parame-
ters implicitly, without actually computing them.

Now the simulatorB gives the adversaryA the following tuple:

g~y
p , g~z

p, (gaρ
p)y−1

d (gbτ
p)zd

−1

,
{

(gaρ
p)kiy

−1

d (gbτ
p)wiz

−1

d

}d−1

i=2
, Y, ∗, ∗, . . . , ∗

Clearly, if Y = gρ+τ
p , then the above experiment is identically distributed as Gamed. Otherwise,

if Y is a random element inGp, then the above experiment is identically distributed as Gamed−1.
Hence, ifA can distinguish between Gamed−1 and Gamed with ǫ advantage, thenB can win the
D-Linear experiment withǫ advantage as well.

Given theℓ-DLinear assumption, which is implied by the Decisional Linear assumption, we
proceed to prove Lemma 5.7.18, that is, SCHEMEREAL is computationally indistinguishable from
SCHEMESYM .

Proof of Lemma 5.7.18: Let ℓ = 2n. We show that distinguishing between SCHEMEREAL

and SCHEMESYM is at least as hard as theℓ-DLinear problem as stated in Observation 5.7.3.
Our proof relies a hybrid argument on the number of token queries made by the adversary. Let
k denote the number of token queries made by the adversary. We define a sequence of games,
Game0, Game1, . . . , Gamek. In Gamed (0 ≤ d ≤ k), for the firstd tokens queried, the chal-
lenger picks the exponents{r1,i, r2,i}

n
i=1 from a pre-determined 2-dimensional subspace; and for

the remaining token queriesd + 1, . . . , k, the challenger picks completely random exponents
{r1,i, r2,i}

n
i=1 from F2n

p .
More specifically, Gamed (0 ≤ d ≤ k) is formally defined as below.
• Setup.The challenger picks two random vectors

~y = {y1,i, y2,i}
n
i=1

R
← F2n

p

~z = {z1,i, z2,i}
n
i=1

R
← F2n

p

and keeps them secret. These two vectors determine a 2-dimensional subspaceclosure(~y, ~z).
Later, when the challenger answers the firstd token queries made by the adversary, it will
pick the exponents{r1,i, r2,i}

n
i=1 at random from this subspace. The challenger now calls the

Setup algorithm to generate a secret key as in SCHEMEREAL.

• Ciphertext queries. The challenger answers all ciphertext queries by directly calling the
Encrypt algorithm.

• Token queries.For the firstd token queries, the challenger picks exponents{r1,i, r2,i}
n
i=1 as

below. Pick two random numbersρ, τ
R
← Zp, and sets the values of~r := {r1,i, r2,i}

n
i=1 to be

112

the following:
∀i ∈ [n] : r1,i = ρy1,i + τz1,i

r2,i = ρy2,i + τz2,i

Expressed in the vector form,
~r = ρ~y + τ~z

In other words,~r is picked at random from the 2-dimensional subspaceclosure(~y, ~z).

For the remaining token queriesd + 1, . . . , k, the challenger generates tokens normally by
calling theGenToken algorithm.

It is not hard to see that Game0 is identically distributed as SCHEMEREAL, and Gamek is
identically distributed as SCHEMESYM . Due to the hybrid argument, it suffices to show that no
polynomial-time adversary is able to distinguish between two adjacent games Gamed−1 and Gamed
(1 ≤ d ≤ k) with more than negligible advantage.

We now show that if there exists a polynomial-time adversaryA that can distinguish between
Gamed−1 and Gamed (1 ≤ d ≤ k) with ǫ advantage, we can build a polynomial-time simulator
B that usesA as a blackbox, and breaks theℓ-DLinear assumption also withǫ advantage. We
now explain how the simulatorB works. SupposeB is given the followingℓ-DLinear instance
(g~y

p , g
~z
p, g

~γ
p), where~y = {y1,i, y2,i}

n
i=1, ~z = {z1,i, z2,i}

n
i=1, and~γ = {γ1,i, γ2,i}

n
i=1. Now the sim-

ulator tries to distinguish whether~γ ∈ closure(~y, ~z), or whether~γ is a random vector inF2n
p . To

do this, the simulator will set the exponents~r = {r1,i, r2,i}
n
i=1 in the firstd − 1 tokens to be ran-

dom vectors inclosure(~y, ~z). The simulator sets the exponents~r in thedth to be the vector~γ. For
the remaining token queries, the simulator chooses random exponents~r

R
← F2n

p . In this way, if

~γ
R
← closure(~y, ~z), the simulation is equivalent to Gamed; otherwise, if~γ

R
← F2n

p , the simulation is
equivalent to Gamed−1.
• Setup.The simulator picks the following secret key:

MSK = (gp, gq, gr, ĝr,
{
h1,i = gω1,i

p , h2,i = gω2,i
p , h̄1,i = gκ1,i

p , h̄2,i = gκ2,i
p

}
)

whereω1,i, ω2,i, κ1,i, κ2,i are random exponents inZp.

• Ciphertext queries. The simulator answers all ciphertext queries by directly calling the
Encrypt algorithm.

• Token queries.For all token queries, the simulator picks random exponentsf1, f2 from ZN ;
random hiding factorsR0, R∅ from the subgroupGr; and random{R̂1,i, R̂2,i}

n
i=1 from Gbr. It

chooses the values of~r = {r1,i, r2,i}
n
i=1 in one of the following ways:

For the firstd − 1 token queries, the challenger picks randomρ, τ from Zp, (ρ, τ are
picked as fresh random numbers for each of the firstd−1 token queries.) and implicitly
lets~r = {r1,i, r2,i}

n
i=1 to be the following (without actually computing it):

~r = ρ~y + τ~z

In the above expression,~y and~z are inherited from theℓ-DLinear instance. Note that
the simulator does not know the values of~y and~z, it implicitly sets the vector~r without

113

computing its value. Now the simulator computes the following token:

TK =




K0 = R0 ·
∏n

i=1(g
y1,i
p)−ρω1,i(g

z1,i
p)−τω1,i(g

y2,i
p)−ρω2,i(g

z2,i
p)−τω2,i,

K∅ = R∅ ·
∏n

i=1(g
y1,i
p)−ρκ1,i(g

z1,i
p)−τκ1,i(g

y2,i
p)−ρκ2,i(g

z2,i
p)−τκ2,i ,

{
K1,i = (g

y1,i
p)ρ(g

z1,i
p)τgf1vi

q R̂1,i, K2,i = (g
y2,i
p)ρ(g

z2,i
p)τgf2vi

q R̂2,i

}n

i=1




For thedth token query, the simulator will implicitly set the exponents~r = ~γ, where~γ
is adopted from theℓ-DLinear instance. More specifically, the simulator computes the
following token:

TK =




K0 = R0 ·
∏n

i=1(g
γ1,i
p)−ω1,i(g

γ2,i
p)−ω2,i , K∅ = R∅ ·

∏n
i=1(g

γ1,i
p)−κ1,i(g

γ2,i
p)−κ2,i

{
K1,i = g

γ1,i
p gf1vi

q R̂1,i, K2,i = g
γ2,i
p gf2vi

q R̂2,i

}n

i=1




For the remaining token queriesd+1, . . . , k, the simulator generates tokens by directly
calling theGenToken algorithm. In this case, the exponents~r is chosen as a random
vector inF2n

p .

• Guess. If the adversary guesses that it is playing Gamed, the simulator guesses that~γ
R
←

closure(~y, ~z). Otherwise, if the adversary guesses that it is playing Gamed−1, the simulator
guesses that~γ

R
← F2n

p .
Clearly, if the adversary hasǫ advantage in distinguishing Gamed and Gamed−1 (1 ≤ d ≤ k), the
simulator also hasǫ advantage in theℓ-DLinear experiment.

Symmetry of token and ciphertext in SCHEME SYM

So far, it may not be completely obvious why the tokens and ciphertexts are symmetrically formed
in SCHEMESYM . To show why this is true, we give a different description of SCHEMESYM ,
and call the resulting scheme SCHEMESYM II. SCHEMESYM II is in fact the same scheme as
SCHEMESYM , although the description seems different on the surface. It will be clear from the
description of SCHEMESYM II that tokens and ciphertexts symmetrically formed. We then explain
why SCHEMESYM and SCHEMESYM II are in fact the same scheme. Basically, tokens and ci-
phertexts in SCHEMESYM are identically distributed as tokens and ciphertexts in SCHEMESYM II
(except with negligible probability).

Before we formally define SCHEMESYM II, we first explain the intuition. In SCHEMESYM ,
both the ciphertext and token have2n+2 terms. Clearly, in SCHEMESYM II, tokens and ciphertexts
are symmetric in theGq, Gr, Gbr subgroups. In particular, theGq subgroup has the same form in
both the ciphertext and the token, and theGr andGbr subgroups “mirror” each other.

However, it may not entirely obvious that theGp subgroup is symmetric as well; and this is
what we are about to show. Let us now focus on the elements in theGp subgroup in the ciphertext
and token. We represent elements in theGp subgroup in the canonical formgx

p , wheregp is a
generator ofGp, andx ∈ Zp. In both the ciphertext and the token, the exponents in theGp

subgroup (basegp) form a vector inF2n+2
p . We now show that these exponents have the following

distribution (except with negligible probability).

114

• Pick two random 2-dimensional subspacesS1, S2 ⊂ F2n+2
p that are orthogonal to each other,

that is,S1⊥S2. The fact thatS1⊥S2 ensures that theGp subgroup cancels out in theQuery

algorithm.

• For every ciphertext generated, pick a random vector~µ
R
← S1 to be the exponents in theGp

subgroup (basegp).

• For every token generated, pick a random vector in~ν
R
← S2 to be the exponents in theGp

subgroup (basegp).

Definition 5.7.19 (SCHEME SYM II) We define the following encryption scheme henceforth re-
ferred to asSCHEMESYM II . From the description ofSCHEMESYM II , it is clear that tokens and
ciphertexts are symmetrically formed.

Setup(1λ): The setup algorithm first chooses random large primesp, q, r, r̂, and creates a bilinear
group of composite orderN = pqrr̂. Next, it picks generatorsgp, gq, gr, ĝr from sub-
groupsGp, Gq, Gr, Gbr respectively. The setup algorithm also needs to pick two orthogonal
subspaces fromF2n+2

p . To do so, the setup algorithm picks the following random exponents
from Zp:

~µ1 =
(
c0, c∅, {c1,i, c2,i}

n
i=1

)
, ~µ2 =

(
d0, d∅, {d1,i, d2,i}

n
i=1

)

~ν1 =
(
y0, y∅, {y1,i, y2,i}

n
i=1

)
, ~ν2 =

(
z0, z∅, {z1,i, z2,i}

n
i=1

)

s.t. ∀(i, j) ∈ [2]× [2], 〈~µi, ~νj〉 = 0

For example,

〈~µ1, ~ν1〉 := c0y0 + c∅y∅ +

n∑

i=1

(c1,iy1,i + c2,iy2,i)

All of the above parameters are kept as the secret key.

Remark 5.7.3 Intuitively, by picking~µ1, ~µ2 and~ν1, ~ν2, we are effectively picking two ran-
dom 2-dimensional subspaces inF2n+2

p that are orthogonal to each other:

closure(~µ1, ~µ2) ⊥ closure(~ν1, ~ν2)

In the unlikely event that~µ1 and~µ2 (or ~ν1 and~ν2) are linearly dependent, the dimension of
closure(~µ1, ~µ2) (or closure(~ν1, ~ν2)) may be smaller than 2. However, this happens only with
negligible probability.

Encrypt(MSK, ~x): Let ~x = (x1, x2, . . . , xn) ∈ (ZN)n. The encryption algorithm first picks
random exponentss, t, α, β from Zp. Then, it chooses random hiding factorsR̂0, R̂∅ from
the subgroupGbr; and random{R1,i, R2,i}

n
i=1 from Gr. The encryption algorithm computes

the following ciphertext:

CT =




C0 = R̂0 · g

sc0+td0

p , C∅ = R̂∅ · g
sc∅+td∅
p

{
C1,i = g

sc1,i+td1,i
p gαxi

q R1,i, C2,i = g
sc2,i+td2,i
p gβxi

q R2,i

}n

i=1





115

Remark 5.7.4 In the above ciphertext, the exponents in theGp subgroup form the following
vector:

~µ =
(
sc0 + td0, sc∅ + td∅, {sc1,i + td1,i, sc2,i + td2,i}

n
i=1

)
= s~µ1 + t~µ2

It is not hard to see that~µ is chosen as a random vector in the 2-dimensional subspace
defined byclosure(~µ1, ~µ2).

GenToken(MSK, ~v): Let ~v = (v1, v2, . . . , vn) ∈ (ZN)n. The GenToken algorithm behaves
symmetrically to theEncrypt algorithm. It first picks random exponentsρ, τ, f1, f2 from
Zp. Then, it chooses random hiding factorsR0, R∅ from the subgroupGr; and random
{R̂1,i, R̂2,i}

n
i=1 from Gbr. The token is formed as below:

TK =




K0 = R0 · g
ρy0+τz0

p , K∅ = R∅ · g
ρy∅+τz∅
p

{
K1,i = g

ρy1,i+τz1,i
p gf1vi

q R̂1,i, K2,i = g
ρy2,i+τz2,i
p gf2vi

q R̂2,i

}n

i=1




Remark 5.7.5 In the above token, the exponents in theGp subgroup form the following
vector:

~ν =
(
ρy0 + τz0, ρy∅ + τz∅, {ρy1,i + τz1,i, ρy2,i + τz2,i}

n
i=1

)
= ρ~ν1 + τ~ν2

It is not hard to see that~ν is chosen as a random vector in the 2-dimensional subspace
defined byclosure(~ν1, ~ν2).

Query(TK~v, CT~x): Same as theQuery algorithm of SCHEMEREAL. Note that as the two sub-
spacesclosure(~µ1, ~µ2) andclosure(~ν1, ~ν2) are orthogonal to each other,〈~µ, ~ν〉 = 0. Hence,
in theQuery algorithm, elements in theGp subgroup cancel out, resulting in1 ∈ GT,p.

Lemma 5.7.20 (Equivalence of SCHEME SYM and SCHEME SYM II) Tokens and ciphertexts com-
puted inSCHEMESYM II are identically distributed as inSCHEMESYM (except with negligible
probability).

Proof: Let us now focus on SCHEMESYM . We first show that in the ciphertext, exponents in
theGp subgroup are chosen as a random vector in a pre-determined 2-dimensional subspace (also
chosen at random) inF2n+2

p .
For 1 ≤ i ≤ n, let ω1,i, ω2,i denote the discrete log ofh1,i, h2,i (basegp); let κ1,i, κ2,i denote

the discrete log of̄h1,i, h̄2,i (basegp). {ω1,i, ω2,i}
n
i=1 and{κ1,i, κ2,i}

n
i=1 are chosen independently at

random fromZp in theSetup algorithm.
In theEncrypt algorithm of SCHEMESYM , we pick two random numberss, t

R
← Zp, and in

the ciphertext, the exponents in theGp subgroup (basegp) have the following form:

~µ :=
(
s, t, {sω1,i + tκ1,i, sω2,i + tκ2,i}

n
i=1

)
(5.11)

Define the following two vectors:

~µ1 := (1, 0, {ω1,i, ω2,i}
n
i=1) ∈ F2n+2

p

~µ2 := (0, 1, {κ1,i, κ2,i}
n
i=1) ∈ F2n+2

p

(5.12)

116

Equation (5.11) can be expressed in the following form:

~µ = s~µ1 + t~µ2

Therefore, an equivalent way to think of SCHEMESYM is as follows. In theSetup algorithm,
we pick two vectors~µ1 and~µ2 as in Equation (5.12). It is not hard to see thatclosure(~µ1, ~µ2)
defines a random 2-dimensional subspace inF2n+2

p (except with negligible probability). Later,
when computing ciphertexts, we always pick the exponents intheGp subgroup as a random vector
in closure(~µ1, ~µ2).

We now examine the tokens in SCHEMESYM . It remains to show that in the tokens, expo-
nents in theGp subgroup are chosen as random vectors from a random 2-dimensional subspace
orthogonal toclosure(~µ1, ~µ2). It is not hard to see that in the tokens of SCHEMESYM , the expo-
nents of theGp subgroup are picked from a subspace orthogonal toclosure(~µ1, ~µ2), since in the
Query algorithm, theGp subgroup always cancels out, resulting in1 ∈ Gp. Now, we just need to
show that the exponents in the token form a2-dimensional subspace (as opposed to1 dimension
or other number of dimensions.) To understand why this is thecase, we now present alternative
way to understand the formation of tokens in SCHEMESYM . In theSetup phase, pick the vectors
~y = (y0, y∅, {y1,i, y2,i}

n
i=1) and~z = (z0, z∅, {z1,i, z2,i}

n
i=1) as below:

1. Pick2n out of the2n + 2 coordinates at random, that is, pick{y1,i, y2,i}
n
i=1 at random from

Zp.

2. Given the constraints that〈~y, ~µ1〉 = 0, and 〈~y, ~µ2〉 = 0, the first two coordinatesy0, y∅
can be solved through a system of linear equations. We have two linear equations with
two indeterminants. The coefficients of the linear equations are linearly independent except
with negligible probability. This means that except with negligible probability,y0, y∅ can be
uniquely solved.

3. Pick~z in exactly the same way as we did for~y.
It is not hard to see that by picking the vectors~y = (y0, y∅, {y1,i, y2,i}

n
i=1) and~z = (z0, z∅,

{z1,i, z2,i}
n
i=1) in the manner specified above, we are equivalently picking a random subspace that

is orthogonal to the subspaceclosure(~µ1, ~µ2).
Later, when computing tokens, theGenToken algorithm picks the exponents in theGp sub-

group as a random vector fromclosure(~y, ~z).

5.8 Proof of Proposition 5.3.2

Proof of Proposition 5.3.2: Our proof is inspired by the hybrid argument used by Katz et al. [28].
We are given SCHEME2n which is SCI-secure, and our goal is to construct a fully-secure construc-
tion SCHEMEn . We give an explicit construction of SCHEMEn below. Let~x = (x1, x2, . . . , xn) ∈
Σn, ~x′ = (x′

1, x
′
2, . . . , x

′
n) ∈ Σn denote two vectors of lengthn. Define

~x||~x′ := (x1, x2, . . . , xn, x
′
1, x

′
2, . . . , x

′
n)

117

to be a vector of length2n obtained by concatenating~x and~x′. In particular, define

~x||~x := (x1, x2, . . . , xn, x1, x2, . . . , xn)

to be a vector of length2n obtained by repeating~x twice. Informally, our construction of SCHEMEn

works as follows. To encrypt a vector~x of lengthn in SCHEMEn , we encrypt the vector(~x, ~x) of
length2n using SCHEME2n . Similarly, to construct a token for the vector~v of lengthn, we use
SCHEME2n to construct a token for the vector(~v,~v) of length2n.
SCHEMEn .Setup(1λ): Call SCHEME2n .Setup(1λ), and output exactly the same secret keyMSK.

SCHEMEn .Encrypt(MSK, ~x): Call SCHEME2n .Encrypt(MSK, ~x||~x) and output the resulting ci-
phertext.

SCHEMEn .GenToken(MSK, ~v): Call SCHEME2n .GenToken(MSK, ~v||~v) and output the resulting
token.

SCHEMEn .Query(TK, CT): Call SCHEME2n .Query(TK, CT) and output the same outcome.
Note that the above construction is valid due to the following fact.
Fact 5.8.1 LetN = pqrr̂, wherep, q, r andr̂ are distinct large (odd) primes. Let~x,~v ∈ Zn

N . Then

〈~x,~v〉 = 0 iff 〈~x||~x, ~v||~v〉 = 0

It remains to show that the above SCHEMEn is fully-secure. To do so, let us first recall the the
security game (of full security). An adversary makes a series of queries to a challenger. Each
query can be a ciphertext query or a token query. In a ciphertext query, the adversary specifies two
vectors~x, ~y to the challenger, and gets back an encryption of one of thesetwo plaintexts. In a token
query, the adversary specifies two vectors~v, ~w to the challenger, and gets back a token for one of
these vectors. Suppose that the adversary makesc ciphertext queries, denoted(~x1, ~y1), (~x2, ~y2),
. . ., (~xc, ~yc), andt token queries denoted(~v1, ~w1), (~v2, ~w2), . . ., (~vt, ~wt) respectively. LetX :=
(~x1, ~x2, . . . , ~xc) andY := (~y1, ~y2, . . . , ~yc) denote the ciphertext queries made by the adversary. Let
V := (~v1, ~v2, . . . , ~vc) andW := (~w1, ~w2, . . . , ~wc) denote the token queries made by the adversary.
Recall thatX, Y, V, W must satisfy the “indistinguishability under access pattern” condition:

ACCESSPATTERN(X, V) = ACCESSPATTERN(Y, W)

The challenger has a secret random bitb, and depending on its value, the challenger either con-
structs ciphertexts/tokens forX, V (referred to as World 0), or constructs ciphertexts/tokensfor
Y, W (referred to as World 1). Our task is to show that the adversary cannot distinguish between
World 0 and World 1. To this end, we construct the following series of hybrid games.

World 0 : The challenger calls SCHEME2n and computes ciphertexts/tokens for:
[

~x1||~x1, ~x2||~x2, . . . , ~xc||~xc

~v1||~v1, ~v2||~v2, . . . , ~vt||~vt

]

World A : The challenger calls SCHEME2n and computes ciphertexts/tokens for:
[

~x1||~0, ~x2||~0, . . . , ~xc||~0
~v1||~v1, ~v2||~v2, . . . , ~vt||~vt

]

118

World B : The challenger calls SCHEME2n and computes ciphertexts/tokens for:
[

~x1||~0, ~x2||~0, . . . , ~xc||~0
~v1||~w1, ~v2||~w2, . . . , ~vt||~wt

]

World M : The challenger picks randomα
R
← ZN , calls SCHEME2n and computes ciphertexts/tokens

for the following vectors:
[

~x1||α~y1, ~x2||α~y2, . . . , ~xc||α~yt

~v1||~w1, ~v2||~w2, . . . , ~vt||~wt

]

Remark 5.8.1 Notice that in the above hybrid sequence, the access patternremains the same
between all worlds except with negligible probability.

Claim 5.8.2 Assume thatSCHEME2n is SCI-secure, then no polynomial-time adversary has more
than negligible advantage in distinguishing between adjacent games.

Proof: By hybrid argument.

Similarly, we can have a sequence of hybrid games connectingWorld 0 and World M. Due to
the hybrid argument, we conclude that no polynomial adversary has more than negligible advan-
tage in distinguishing World0 and World1.

5.9 Comparison with Previous Security Definitions

Only two prior works have considered query privacy in SK-PE:the work by Song et al. [39], and
the work by Curtmola et al. [19]. In addition, both of these works consider simple keyword-based
queries. Song et al. were the first ones to propose a searchable encryption scheme, and they did not
present a formal security definition for query privacy. Curtmola et al. presented a formal security
definition to intuitively capture the notion that both the plaintext entries and the queries should be
hidden from the storage server. Their security definition isnot satisfactory due to the following
reasons:
• The security definition by Curtmola et al. reveals the “search pattern”, that is, if a user issues

two queries for the same keyword, the storage server learns the fact that these two queries
are equal. In our security definition, the query has the same (selective) semantic security as
the plaintext. In particular, letA andA′ denote two queries with the same access patter, then
the storage server is unable to decide whether a user has madethe same queryA twice, or
whether the user queried forA followed byA′ instead.

• In Curtmola’s security definition, the adversary first commits to two sets of documents (de-
notedD0,D1 in their paper [19]). Using our terminology, this means thatthe adversary has
to commit to all the ciphertext queries it intends to make. Instead, we give the adversary
more power in our full security definition. The adversary should be fully adaptive: it can de-
cide what ciphertext queries and token queries to make depending on previous interactions
with the challenger.

119

• Although we did not prove the security of our construction under the full security model, As
Observation 5.9.1 points out, even the relaxed security model actually used in our proofs is
stronger than Curtmola’s definition.

Proposition 5.9.1 Given a selectively SCI-secure SK-PE construction on inner-product queries
for vectors of length2n, it is possible to construct an SK-PE scheme on inner-product queries for
vectors of lengthn, satisfying the security definition by Curtmola et al. (Definition 3.8 in their
paper [19]).

Proof: The above proposition can be proved in a similar manner as Proposition 5.3.2.

In fact, in the above proof, when we use the scheme for vectorsof length2n to construct a
scheme for vectors of lengthn, the resulting scheme (for vectors of lengthn) has stronger security
than Curtmola’s definition, as Curtmola’s definition reveals the search pattern in addition. To
reiterate, revealing the search pattern means that the storage server can tell if two queries submitted
by the user are the same or not. Our security definition does not reveal the search pattern.

5.10 Review of the KSW Construction

To aid the understanding of our construction, we review the KSW construction [28] for inner-
product queries in the public-key setting.

Setup(1λ): The setup algorithm first chooses random large primesp, q, r, and creates a bilinear
group of composite orderN = pqr. Next it picks generatorsgp, gq, gr from subgroups
Gp, Gq, Gr respectively. It also picksh1,i, h2,i from Gp, R1,i, R2,i from Gr for all 1 ≤ i ≤ n,
and randomR0 from Gr.

The public key is composed as below:

PK = (gp, gr, Q = gq ·R0, {H1,i = h1,iR1,i, H2,i = h2,iR2,i}
n
i=1)

The secret key is set to the following:

Pvk =
(
p, q, r, gq, {h1,i, h2,i}

n
i=1

)

Encrypt(PK, ~x): Let~x = (x1, x2, . . . , xn) ∈ (ZN)n. The encryption algorithm first picks random
exponentss, α, β from ZN , and it chooses random{R3,i, R4,i}

n
i=1 from Gr.

Next, the encryption algorithm computes the following ciphertext:

CT =

(
C0 = gs

p,{
C1,i = Hs

1,iQ
αxiR3,i, C2,i = Hs

2,iQ
βxiR4,i

}n

i=1

)

GenToken(MSK, ~v): Let ~v = (v1, v2, . . . , vn) ∈ (ZN)n. TheGenToken algorithm picks random
exponentsf1, f2, {r1,i, r2,i}

n
i=1 from ZN . Then, it chooses a random hiding factorR5 from

the subgroupGr, and randomQ6 from Gq.

120

Next, theGenToken algorithm computes the following token:

TK =

(
K = R5Q6 ·

∏n
i=1 h

−r1,i

1,i h
−r2,i

2,i ,
{
K1,i = g

r1,i
p gf1vi

q , K2,i = g
r2,i
p gf2vi

q

}n

i=1

)

Query(TK~v, CT~x): TheQuery algorithm computes

e(C0, K0) ·
n∏

i=1

e(C1,i, K1,i)e(C2,i, K2,i)
?
= 1 (5.13)

and outputs0 iff the above is equal to1, indicating that〈~x,~v〉 = 0 mod N . (The case that
〈~x,~v〉 = 0 mod q, but〈~x,~v〉 6= 0 mod N happens with negligible probability as explained
in Section 5.6.)

121

122

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Predicate encryption is a new encryption paradigm enablingfine-grained access control to the
encrypted data. In predicate encryption, the secret key owner can compute a capability which
allows one to evaluate the outcome of a predicate on the encrypted data.

An important research challenge in predicate encryption ishow to support more expressive
query predicates and richer operations. In this thesis, we made the following contributions to the
area of predicate encryption.

• We propose a predicate encryption scheme supportingmulti-dimensional range queries(Chap-
ter 3). This construction is secure in the match-revealing model. Multi-dimensional range
queries is particularly important in practice, especiallyin database applications, as SQL
queries are by nature multi-dimensional range queries.

• We study how todelegatecapabilities in predicate encryption, and propose a construction
that supports delegation on conjunctive queries (Chapter 4).

• We consider the problem ofquery privacyin predicate encryption. In many practical ap-
plications, it would be desirable to hide the queries encoded in the capabilities, in addition
to hiding the plaintext data. We show that query privacy is inherently not possible in the
public-key setting, due to the fact that anyone can encrypt with a public key. However, we
demonstrate that query privacy is indeed possible in the secret-key setting. Specifically, we
provide a secret-key predicate encryption scheme that protects the privacy of both the query
predicates and the plaintext data. Our construction supports inner-product queries (Chap-
ter 5).

6.2 Future Work

The following are important questions that remain to be answered in predicate encryption:
• Almost all of the known constructions are proven secure in the selective security model,

that is, the adversary commits to a challenge identity at thebeginning of the game. In

123

the setting of bilinear groups, some progress has been made recently at proving adaptive
security [22, 23]. In particular, Gentry’s construction [22] implies a predicate encryption
system on equality-test queries. An important open question is to how to construct more
expressive predicate encryption schemes and prove security under the adaptive notion of
security.

• Another topic worth investigating is how to build expressive predicate encryption systems
using other mathematical primitives and assumptions. For example, Boneh et al. built anony-
mous identity-based encryption based on the quadratic residuosity problem modulo an RSA
composite. This implies a predicate encryption system supporting equality-test queries. It
is an open research problem how to build more expressive predicate encryption systems
without pairings.

• The most expressive predicate encryption system known to this day supports inner-product
queries. A big question is how to build systems that are even more expressive. Based on
experience, we know that supporting disjunctions might be hard in pairing-based predicate
encryption systems. The inner-product scheme can support bounded-size disjunctive queries
by converting them to polynomial evaluation queries. However, such conversions incur a
large expansion factor in the cost, making it expensive to support large disjunctive queries.

124

Bibliography

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymousIBE, and extensions. InCRYPTO,
2005. 1.2, 1.4, 1.5, 3.2.2, 5.1

[2] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, 2007. 1.2

[3] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. InEUROCRYPT, 2004. 2.1.2, 3.1.3, 4.1.2, 5.1, 5.3.3

[4] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. InEUROCRYPT, pages 440–456, 2005. 4.1.2, 4.4

[5] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. InCRYPTO, pages
41–55, 2004. 3.3.1, 5.4.2

[6] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, andGiuseppe Persiano. Public key
encryption with keyword search. InEUROCRYPT, pages 506–522, 2004. 1.2, 1.4, 1.5, 5.1

[7] Dan Boneh and Matt Franklin. Identity-based encryptionfrom the Weil pairing. In Joe Kilian,
editor,Proceedings of Crypto 2001, volume 2139 ofLNCS, pages 213–29. Springer-Verlag,
2001. 1.2

[8] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing.SIAM J.
Comput., 32(3):586–615, 2003. 3.3.1

[9] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption
without pairings. InProceedings of FOCS, 2007. 1.2, 1.4, 1.5, 5.1

[10] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In
Joe Kilian, editor,Proceedings of Theory of Cryptography Conference 2005, volume 3378 of
LNCS, pages 325–342. Springer, 2005. 5.4.1

[11] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. InEUROCRYPT, pages 573–592, 2006. 4.6.5

[12] Dan Boneh and Brent Waters. A fully collusion resistantbroadcast trace and revoke system
with public traceability. InACM Conference on Computer and Communication Security
(CCS), 2006. 1.2, 1.5, 1.2, 2.1, 2.1.2, 3.1.1, 4.1.1, 4.1.2, 4.1.3, 4.1, 4.2, 4.2.2, 4.3, 4.4, 4.4.1,
4.5, 4.6.5, 5.1, 5.1, 5.3, 5.3.3, 5.4.2

125

[13] Xavier Boyen and Brent Waters. Anonymous hierarchicalidentity-based encryption (without
random oracles). InCRYPTO, 2006. 1.2, 1.5, 2.1.2, 3.2.2, 3.3.4, 3.7.2, 4.1.2, 4.1.2, 4.8, 4.8.2,
5.1, 5.1, 5.3.3

[14] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. InEUROCRYPT, pages 255–271, 2003. 2.1.2, 3.1.3, 4.1.2, 5.1, 5.3.3

[15] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. InEUROCRYPT, pages 207–222, 2004. 2.1.2, 3.1.3, 4.1.2, 5.1, 5.3.3

[16] Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515–534, 2007.
1.2

[17] The Elliptic Semiconductor CLP-17 high performance elliptic curve cryptography point mul-
tiplier core: Product brief.
http://www.ellipticsemi.com/pdf/CLP-17 60102.pdf. 3.3.5

[18] Clifford Cocks. An identity based encryption scheme based on quadratic residues. InPro-
ceedings of the 8th IMA International Conference on Cryptography and Coding, pages 360–
363, London, UK, 2001. Springer-Verlag. 1.2

[19] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. InCCS ’06: Proceedings of the
13th ACM conference on Computer and communications security, 2006. 5.1, 5.3.4, 5.9, 5.9.1

[20] Symantec deepsight threat management system technology brief.
https://tms.symantec.com. 1.3

[21] The dshield project.http://www.dshield.org. 1.3

[22] Craig Gentry. Practical identity-based encryption without random oracles. InEUROCRYPT,
2006. 1.2, 1.5, 6.2

[23] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems. Technical
report, 2008. E-print archives,http://eprint.iacr.org/2008/268.pdf. 6.2

[24] Oded Goldreich. Secure multi-party computation. Volume 2, Foundations of Cryptography,
1998. 1.3

[25] Philippe Golle, Jessica Staddon, and Brent R. Waters. Secure conjunctive keyword search
over encrypted data. InACNS, pages 31–45, 2004. 1.5, 5.1

[26] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. InACM Conference on Computer and
Communications Security (CCS), 2006. 1.2

[27] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. InANTS-IV: Proceedings
of the 4th International Symposium on Algorithmic Number Theory, pages 385–394, London,
UK, 2000. Springer-Verlag. 3.3.1

[28] Jonathan Katz, Amit Sahai, and Brent Waters. Predicateencryption supporting disjunctions,
polynomial equations, and inner products. InEurocrypt ’08, to appear, 2008. 1.2, 1.5, 4.1.1,
5.1, 5.3, 5.4.2, 5.4.2, 5.5.1, 5.5.2, 5.5.1, 5.7.10, 5.7.11, 5.7.14, 5.8, 5.10

126

http://www.ellipticsemi.com/pdf/CLP-17_60102.pdf
https://tms.symantec.com
http://www.dshield.org
http://eprint.iacr.org/2008/268.pdf

[29] Ben Lynn. The Pairing-Based Cryptography (PBC) library.
http://crypto.stanford.edu/pbc. 3.3.5

[30] The mynetwatchman project.http://www.mynetwatchman.com. 1.3

[31] Matthew Pirretti, Patrick Traynor, Patrick McDaniel,and Brent Waters. Secure attribute-
based systems. InCCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security, 2006. 1.2

[32] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005. 1.2, 1.3

[33] Adi Shamir. Identity-based cryptosystems and signature schemes. InProceedings of Crypto,
1984. 1.2

[34] Emily Shen, Elaine Shi, and Brent Waters. Query-hidingsecret-key predicate encryption
with inner-product queries. manuscript. 1.2, 1.5, 1.5

[35] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig. Multi-
dimension range query over encrypted data. InIEEE Symposium on Security and Privacy,
May 2007. 1.2, 1.5, 1.5, 1.2, 2.1.2, 2.1.3, 3.1, 3.1.1, 4.1.2, 5.1, 5.1, 5.3, 5.3.3

[36] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In
ICALP, 2008. 1.2, 1.5, 1.5

[37] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption sys-
tems. In Proceedings of ICALP, 2008. Full version can be found online at
http://sparrow.ece.cmu.edu/∼elaine/docs/delegation.pdf. 4, 5.1,
5.7.3

[38] skrenta. The secret source of google’s power.http://blog.topix.com/archives/000016.html.
3.3.5

[39] Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. InIEEE symposium on Security and Privacy, 2000. 1.4, 1.5, 5.1, 5.9

127

http://crypto.stanford.edu/pbc
http://www.mynetwatchman.com
http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf
http://blog.topix.com/archives/000016.html

	1 Introduction
	1.1 What is Predicate Encryption?
	1.2 Related Work
	1.3 Applications of predicate encryption
	1.4 Efficiency and expressiveness
	1.5 Summary of contributions

	2 Formal Definitions
	2.1 Public-key predicate encryption
	2.1.1 Security definitions
	2.1.2 Selective security
	2.1.3 Match revealing security

	2.2 Secret-key predicate encryption
	2.2.1 Security definitions: Hiding both the plaintext and the query

	3 Multi-Dimensional Range Query over Encrypted Data
	3.1 Multi-dimensional Range Queries over Encrypted Data
	3.1.1 Overview of our construction
	3.1.2 Definitions
	3.1.3 Security Definitions

	3.2 A First Attempt to Construct MRQED
	3.2.1 Trivial construction
	3.2.2 Improved MRQED1 construction based on AIBE
	3.2.3 AIBE-Based MRQEDD Construction

	3.3 The Main MRQED Construction
	3.3.1 Background on bilinear groups
	3.3.2 Intuition
	3.3.3 The Main Construction
	3.3.4 Consistency, Security
	3.3.5 Practical Performance

	3.4 The Dual Problem and Stock Trading through a Broker
	3.5 Notation
	3.6 Proof of Consistency
	3.7 Proof of Security
	3.7.1 Proof: Confidentiality
	3.7.2 Proof: Anonymity

	4 Delegating Capabilities in Predicate Encryption
	4.1 Definitions
	4.1.1 Definition
	4.1.2 Security
	4.1.3 A simple example

	4.2 Delegatable Hidden Vector Encryption (dHVE)
	4.2.1 Delegatable HVE overview (dHVE)
	4.2.2 dHVE definition

	4.3 Background on Pairings and Complexity Assumptions
	4.4 dHVE Construction
	4.4.1 Construction
	4.4.2 Security of our construction

	4.5 Correctness
	4.6 Proof
	4.6.1 Sequence of games
	4.6.2 Indistinguishability of Game0 and Game1
	4.6.3 Indistinguishability of Game1 and Game2
	4.6.4 Generating Type 2 delegated tokens
	4.6.5 Indistinguishability of Game2 and Game3
	4.6.6 Indistinguishability of Game3 and Game4
	4.6.7 Indistinguishability of Game4 and Game5

	4.7 dHVE Full Security
	4.8 Anonymous Hierarchical Identity-Based Encryption with Short Private Keys
	4.8.1 Construction
	4.8.2 Security of construction

	5 Query Privacy in Predicate Encryption
	5.1 Query Privacy in Predicate Encryption
	5.2 Applications of SK-PE
	5.3 Definitions: SK-PE for General Queries
	5.3.1 Full Security
	5.3.2 Single Challenge Indistinguishability
	5.3.3 Selective Single Challenge Indistinguishability
	5.3.4 Relationship Between Security Definitions

	5.4 Background on Pairings and Complexity Assumptions
	5.4.1 Bilinear groups of composite order
	5.4.2 Our assumptions

	5.5 Construction
	5.5.1 Intuition
	5.5.2 Detailed construction
	5.5.3 How to understand our construction
	5.5.4 Security and proof overview

	5.6 Correctness
	5.7 Security Proof
	5.7.1 Terminology used in the proof
	5.7.2 Proof overview
	5.7.3 Plaintext privacy of SchemeReal
	5.7.4 Indistinguishability of SchemeReal and SchemeSym

	5.8 Proof of Proposition 5.3.2
	5.9 Comparison with Previous Security Definitions
	5.10 Review of the KSW Construction

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

