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Abstract

Measurement of security has been a long standing challenge to the re-
search community. Practical security measurements and metrics are critical to
the improvement of software security. Hence the need for security metrics has
recently become more pressing.

In this thesis, we introduce the measure of a software system’s attack sur-
face as an indicator of the system’s security. The larger the attack surface,
the more insecure the system. We formalize the notion of a system’s attack
surface using an I/O automata model of the system and introduce an attack
surface metric to measure the attack surface in a systematic manner.

Our attack surface measurement method is agnostic to a software system’s
implementation language and is applicable to systems of all sizes. In this the-
sis, we measure the attack surfaces of software implemented in C and Java.
We also demonstrate that the method scales to enterprise-scale software by
measuring the attack surfaces of complex SAP business applications.

Validation of security metrics is challenging and is a relatively unexplored
territory. In this thesis, we conduct three exploratory empirical studies to val-
idate our measurement method and measurements results: an expert user sur-
vey, a statistical analysis of Microsoft Security Bulletins, and an analysis of
security vulnerability patches of popular open source software.

Both software developers and software consumers can use the attack sur-
face metric. We demonstrate the use of the metric in software consumers’ de-
cision making process by comparing the attack surface measurements of two
IMAP servers and two FTP daemons. Our collaboration with SAP demon-
strates the use of the metric in the software development process.
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Chapter 1

Introduction

Measurement of security, both qualitatively and quantitatively, has been a long standing
challenge to the research community and is of practical import to software industry to-
day [37, 21, 62, 97]. There is a growing demand for secure software as we are increas-
ingly depending on software in our day-to-day life. Software industry has responded to
the demands by increasing effort for creating “more secure” products and services (e.g.,
Microsoft’s Trustworthy Computing Initiative and SAP’s Software LifeCycle Security ef-
forts). How can industry determine whether this effort is paying off and how can con-
sumers determine whether industry’s effort has made a difference? We need security met-
rics and measurements to gauge progress with respect to security; software developers can
use metrics to quantify the improvement in security from one version of their software
to another and software consumers can use metrics to compare alternative software that
provide the same functionality.

In this thesis, we formalize the notion of a system’s attack surface and use the measure
of a system’s attack surface as an indicator of the system’s security. Intuitively, a system’s
attack surface is the set of ways in which an adversary can enter the system and potentially
cause damage. Hence the larger the attack surface, the more insecure the system. We also
introduce an attack surface metric to measure a system’s attack surface in a systematic
manner.
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Our metric does not preclude future use of the attack surface notion to define other
security metrics and measurements. In this thesis, we use the attack surface metric in a
relative manner, i.e., given two systems, we compare their attack surface measurements to
indicate whether one is more secure than another with respect to the attack surface metric.
Also, we use the attack surface metric to compare only similar systems, i.e., different
versions of the same system (e.g., different versions of the Windows operating system)
or different systems with similar functionality (e.g., different File Transfer Protocol (FTP)
servers). We leave other contexts of use for both notions—attack surface and attack surface
metric—as future work.

1.1 Motivation

Our attack surface metric is useful to both software developers and software consumers.

Software vendors have traditionally focused on improving code quality for improving
software security and quality. The code quality improvement effort aims toward reducing
the number of design and coding errors in software. An error causes software to behave
differently from the intended behavior as defined by the software’s specification; a vul-
nerability is an error that can be exploited by an attacker. In principle, we can use formal
correctness proof techniques to identify and remove all errors in software with respect
to a given specification and hence remove all its vulnerabilities. In practice, however,
building large and complex software devoid of errors, and hence security vulnerabilities,
remains a very difficult task. First, specifications, in particular explicit assumptions, can
change over time so something that was not an error can become an error later. Second,
formal specifications are rarely written in practice. Third, formal verification tools used
in practice to find and fix errors, including specific security vulnerabilities such as buffer
overruns, usually trade soundness for completeness or vice versa. Fourth, we do not know
the vulnerabilities of the future, i.e., the errors present in software for which exploits will
be developed in the future.

Software vendors have to embrace the hard fact that their software will ship with both
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known and future vulnerabilities in them and many of those vulnerabilities will be discov-
ered and exploited. They can, however, minimize the risk associated with the exploitation
of these vulnerabilities. One way to minimize the risk is by reducing the attack surfaces
of their software. A smaller attack surface makes the exploitation of the vulnerabilities
harder and lowers the damage of exploitation and hence mitigates the security risk. As
shown in Figure 1.1, the code quality effort and the attack surface reduction approach are
complementary; a complete risk mitigation strategy requires a combination of both. Hence
software developers can use our metric as a tool in the software development process to
reduce their software’s attack surfaces.

Figure 1.1: Attack Surface Reduction and Code Quality Improvement are complementary
approaches for mitigating security risk and improving software security.

Software consumers often face the task of choosing one software product from a set
of competing and alternative products that provide similar functionality. For example,
system administrators often make a choice between different available operating systems,
web servers, database servers, and FTP servers for their organization. Several factors
such as ease of installation, maintenance, and use, and interoperability with existing enter-
prise software are relevant to software selection; security, however, is a quality that many
consumers care about today and will use in choosing one software system over another.
Hence software consumers can use our metric to measure the attack surfaces of alternative
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software and use the measurements as a guide in their decision making process.

1.2 Attack Surface Metric

We know from the past that many attacks, e.g., exploiting a buffer overflow error, on a sys-
tem take place by sending data from the system’s operating environment into the system.
Similarly, many other attacks, e.g., symlink attacks, on a system take place because the
system sends data into its environment. In both these types of attacks, an attacker connects
to a system using the system’s channels (e.g., sockets), invokes the system’s methods (e.g.,
API), and sends data items (e.g., input strings) into the system or receives data items from
the system. An attacker can also send data indirectly into a system by using data items that
are persistent (e.g., files). An attacker can send data into a system by writing to a file that
the system later reads. Similarly, an attacker can receive data indirectly from the system by
using shared persistent data items. Hence an attacker uses a system’s methods, channels,
and data items present in the system’s environment to attack the system. We collectively
refer to a system’s methods, channels, and data items as the system’s resources and thus
define a system’s attack surface in terms of the system’s resources (Figure 1.2).

Figure 1.2: Intuitively, a system’s attack surface is the subset of the system’s resources
(methods, channels, and data) used in attacks on the system.
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Not all resources, however, are part of the attack surface and not all resources con-
tribute equally to the attack surface measurement. In order to measure a system’s attack
surface, we need to identify the relevant resources that are part of the system’s attack
surface and to determine the contribution of each such resource to the system’s attack
surface measurement. A resource is part of the attack surface if an attacker can use the
resource in attacks on the system; we introduce an entry point and exit point framework to
identify these relevant resources. A resource’s contribution to the attack surface measure-
ment reflects the likelihood of the resource being used in attacks. For example, a method
running with root privilege is more likely to be used in attacks than a method running
with non-root privilege. We introduce the notion of a damage potential-effort ratio to
estimate a resource’s contribution to the attack surface measurement. A system’s attack
surface measurement is the total contribution of the resources along the methods, chan-
nels, and data dimensions; the measurement indicates the level of damage an attacker can
potentially cause to the system and the effort required for the attacker to cause such dam-
age. Given two systems, we compare their attack surface measurements to indicate, along
each of the three dimensions, whether one is more secure than the other with respect to the
attack surface metric.

A system’s attack surface measurement does not represent the system’s code quality;
hence a large attack surface measurement does not imply that the system has many vulner-
abilities and having few vulnerabilities in a system does not imply a small attack surface
measurement. Instead, a larger attack surface measurement indicates that an attacker is
likely to exploit the vulnerabilities present in the system with less effort and cause more
damage to the system. Since a system’s code is likely to contain vulnerabilities, it is pru-
dent for software developers to reduce their software’s attack surfaces and for software
consumers to choose software with smaller attack surfaces to mitigate security risk.

1.3 Contributions and Roadmap

We make the following key contributions in this thesis.
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1. We formalize the notion of a system’s attack surface in terms of our entry point and
exit point framework and introduce the notion of the damage potential-effort ratio to
estimate a resource’s contribution to the attack surface measurement.

2. We define an abstract but systematic method to measure the attack surface. We also
introduce two concrete methods to measure the attack surfaces of software imple-
mented in C and Java.

3. We demonstrate the use of our metric in software consumers’ decision making pro-
cess by measuring and comparing the attack surfaces of systems routinely used in
the real world. We also demonstrate the use of our metric in the software develop-
ment process in our collaboration with SAP [2].

4. We demonstrate that our method scales to enterprise-scale systems by measuring the
attack surfaces of complex SAP business applications.

5. We conduct three empirical studies to validate the attack surface metric. Our studies
are inspired by the general validation approach used by the research community for
validating software metrics.

The rest of the thesis is organized as follows. We discuss the inspiration behind this
thesis research in Chapter 2. In Chapter 3, we formalize the notion of a system’s attack
surface using an I/O automata model of a system and its environment; we also introduce an
abstract method for measuring the attack surface. In Chapter 4, we introduce a method for
measuring the attack surfaces of systems implemented in C and apply our method to two
popular open source FTP daemons and two open source IMAP servers. We discuss three
empirical studies for validation of the attack surface metric in Chapter 5. In Chapter 6,
we introduce a method for measuring the attack surfaces of SAP systems implemented in
Java and apply the method to three versions of a key SAP software system. We compare
our work with related work in Chapter 7. We conclude with a summary of our contribu-
tions and a discussion of possible avenues of future work in Chapter 8.
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Chapter 2

Motivation

2.1 Introduction

Our thesis research on attack surface measurement is inspired by Michael Howard’s Rela-
tive Attack Surface Quotient (RASQ) measurements [45]. Michael Howard of Microsoft
informally introduced the notion of attack surface for the Windows operating system and
Pincus and Wing further elaborated on Howard’s informal notion [44]. In this chapter, we
generalize Howard’s measurement method and apply our method to four different versions
of the Linux operating system.

We had two goals behind the Linux measurement process: (1) to understand the chal-
lenges of applying Howard’s measurement method to real world software systems and
(2) to demonstrate that the attack surface measurement method holds promise in spite of
its drawbacks. Our subsequent work on formalizing the notion of the attack surface and
defining a systematic attack surface measurement method is motivated by the preliminary
results of the Linux measurement process.
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2.2 Howard’s Measurement Method

In this section, we describe Howard’s attack surface measurement method and report the
results applying the method to seven different versions of the Windows operating system.

The first step in his measurement method is the identification of the attack vectors of
Windows, i.e., the features of Windows often used in attacks on Windows. Examples of
such features are services running on Windows, open sockets, dynamic web pages, and
enabled guest accounts. Not all features, however, are equally likely to be used in attacks
on Windows. For example, a service running as SYSTEM is more likely to be attacked
than a service running as an ordinary user. Hence the second step in Howard’s method
is the assignment of weights to the attack vectors to reflect their attackability, i.e., the
likelihood of a feature being used in attacks on Windows. The weight assigned to an attack
vector is the attack vector’s contribution to the attack surface. The final step in Howard’s
method is the estimation of the total attack surface by adding the weighted counts of the
attack vectors; for each instance of an attack vector, the attack vector’s weight is added to
the total attack surface.

Howard, Pincus, and Wing applied Howard’s measurement method to seven versions
of the Windows operating system [44]. They identified twenty attack vectors for Windows
based on the history of attacks on Windows and then assigned weights to the attack vec-
tors based on their expert knowledge of Windows. The measurement method was adhoc
in nature and was based on intuition; the measurement results, however, confirmed per-
ceived belief about the relative security of the seven versions of Windows. For example,
Windows 2000 was perceived to have improved security compared to Windows NT [103].
The measurement results showed that Windows 2000 has a smaller attack surface than
Windows NT; hence the measurements reflected the general perception. Similarly, the
measurements showed that Windows Server 2003 has the smallest attack surface among
the seven versions. The measurement is consistent with observed behavior in several ways,
e.g., the relative susceptibility of the versions to worms such as Code Red and Nimda.
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2.3 Linux Measurement Method

We applied Howard’s measurement method to Linux to understand the challenges in ap-
plying the method and then to define an improved measurement method. In this section,
we describe the process of applying the attack surface measurement method to four differ-
ent versions of the Linux operating system.

The first step in the measurement method was the identification of the attack vectors
of Linux. Howard’s method did not have a formal definition of a system’s attack vector.
Hence there was no systematic way to identify the attack vectors of Linux. We used the
history of attacks on Linux to identify fourteen attack vectors. We identified the features
of Linux appearing in public vulnerability bulletins such MITRE Common Vulnerability
and Exposures (CVE), Computer Emergency Response Team (CERT) Advisories, Debian
Security Advisories, and Red Hat Security Advisories [71, 15, 82, 48]; these features are
often used in attacks on Linux. We categorized these features into fourteen attack vectors.
We show the attack vectors in Figure 2.1 and describe them in Section 2.3.1.

The second step in the measurement method was the assignment of weights to the
attack vectors. Howard, Pincus, and Wing used their intuition and expertise of Windows
security to assign weights in the Windows measurements. Their method, however, did not
include any suggestions on how to assign weights to the attack vectors of other software
systems. We could not determine a systematic way to assign weights to Linux’s attack
vectors. Hence we did not assign explicit numeric weights to the fourteen attack vectors
identified in the first step; we assumed that each attack vector has the same weight.

The third step in the measurement method was the estimation of the attack surface
measurement by adding the weighted counts of the attack vectors. Since we did not assign
any weights to the attack vectors of Linux, we compared the four versions of Linux with
respect to their attack vectors. We counted the number of instances of each attack vector
for the four versions of Linux and compared the numbers to get a relative measure of the
attack surfaces of the four versions. We describe our measurement results in Section 2.3.2
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Figure 2.1: Linux Attack Vectors: the rectangular boxes represent the attack vectors.
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2.3.1 Linux Attack Vectors

In this section, we describe the fourteen attack vectors of Linux. For each attack vector,
we also give an example of an attack on systems running Linux using the attack vector.

open TCP/UDP socket: The services running on a Linux system open TCP/UDP
sockets and listen for client requests on them. Multiple sockets can be opened by a ser-
vice and multiple services can share the same socket. Many attacks on Linux use open
TCP/UDP sockets. For example, CVE-2001-0309 describes an attack involving open
sockets. The inetd daemon does not properly close sockets for internal services such
as daytime and echo; hence an attacker can cause a denial-of-service attack by open-
ing a series of connections to these services.

open remote procedure call (RPC) endpoint: The RPC servers running on a Linux
system register remotely accessible handlers for RPC. An attacker can invoke these RPC
end points remotely and execute code on the system. For example, as described in CVE-
2002-0391, a remote attacker can exploit an integer overflow vulnerability in the SunRPC
xdr array function to execute arbitrary code on a system.

service running as root: Many daemons run as background processes on a typical
Linux system to provide services to the users. The daemons run with both root and
non-root privilege. Examples of daemons running with root privilege are crond
and telnetd. Many attacks on Linux target the daemons running with root privilege.
For example, CVE-1999-0192 describes a buffer overflow vulnerability in the telnetd
daemon that a remote attacker can exploit to gain root privilege on a system.

service running as non-root: Examples of services running with non-root privi-
lege are portpmap and rpc.statd. CVE-2000-0666 describes a format string vulner-
ability in rpc.statd that a remote attacker can exploit to execute arbitrary code on a
system.

setuid (setgid) root program: Setuid root programs are executables on a Linux system
that are owned by root and execute with the root privilege instead of the privilege
of the user who invokes the executables. Setuid root programs are popular targets of
attacks because of their elevated privilege. For example, CVE-2000-0949 describes a
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heap overflow vulnerability in the traceroute setuid root program that local users can
exploit to execute arbitrary commands on a system.

enabled local user account: A typical Linux system has many local user accounts on
it. Many attacks on Linux systems can be carried out only by local users. Hence a remote
attacker obtains local user privileges on a system and then uses the privilege as a stepping
stone to launch further attacks on the system. For example, CVE-1999-0130 describes a
coding error in Sendmail that local users can exploit to gain root privilege on a system.

user id=root or group id=root account: Many user accounts on a Linux system have
their user id or group id set to root (0). These accounts are popular targets of
attacks on Linux systems due to their enhanced privilege. For example, CVE-2002-0875
describes a vulnerability in the way the fam daemon handles primary groups. Unprivi-
leged users can exploit the vulnerability to discover a list of files accessible only by the
root group.

unpassworded account: An unpassworded account is an user account on a Linux sys-
tem that has its password set to blank. A remote attacker can easily obtain local user
privilege on a system by using an unpassworded account. CVE-1999-0502 describes the
presence of an user account on a system with default, null, blank, or a missing password
as a vulnerability in the system.

nobody account: Nobody is a special user account on a Linux system created for
running daemons on the system. Not all Linux systems, however, have a nobody account.
CVE-2002-0424 describes a vulnerability in efingerd daemon running as nobody that
local users can exploit to obtain nobody privilege on a system.

weak file permission: Many attacks on a Linux system use files on the system that
grant full access rights to all users on the system. For example, CVE-2001-1322 describes
a vulnerability in the xinted daemon that runs with a default umask (0). Local users
can exploit the vulnerability to read and modify files created by the applications that run
under xinted and do not set their safe umask.

script enabled: Many applications running on a Linux system are enabled to execute
scripts on the system. For example, browsers are enabled to execute downloaded scripts
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and email clients are enabled to execute scripts in email attachments. Many attacks on
Linux target the applications that can execute scripts. For example, CVE-2001-0745 de-
scribes a vulnerability in the Netscape browser that a remote attacker can exploit to
obtain sensitive user information via Javascript.

symbolic link: A symbolic link (symlink) is a special file type on a Linux
system that contains a reference to another file on the system. If an application running
as root creates files in the /tmp directory without checking for a symlink, then an
attacker can create a symlink in /tmp before the application starts and hence can write
to sensitive files. For example, CVE-2000-0728 describes a symlink vulnerability in the
xpdf PDF viewer that local users can exploit to overwrite arbitrary files.

httpd module: An httpd module is a component that extends the functionality of
a web server running on a Linux system. Examples of httpd modules of the pop-
ular apache web server are mod auth, mod access, and mod perl. The httpd
modules are the targets of many attacks on Linux. For example, CVE-2003-0789 de-
scribes a vulnerability in the handling of Common Gateway Interface (CGI) redirect paths
in the mod cgid module of apache. An attacker can exploit the vulnerability to view
sensitive information.

dynamic web page: The contents of dynamic web pages change in response to differ-
ent client requests, and under different contexts and conditions. Examples of dynamic web
pages served by a web server running on a Linux system are dynamic HTML (DHTML)
files, perl scripts, PHP scripts, and Java Server Pages (JSP). The dynamic web pages are
popular targets of attacks on Linux systems. For example, CVE-1999-0058 describes a
buffer overflow vulnerability in the php.cgi dynamic web page that an attacker can
exploit to obtain shell access on a system.

2.3.2 Results

We measured the attack surfaces of the following four versions of the Linux operating
system and compared their attack surface measurements.
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• Debian is a Debian GNU/Linux 3.0r1 distribution obtained from Debian’s web site
[26].

• RH Default is a Red Hat 9.0 distribution obtained from RedHat’s web site [49].

• RH Facilities is a customized Red Hat 9.0 Linux distribution installed by the Com-
puting Facilities of the School of Computer Science at Carnegie Mellon University
[96].

• RH Used is an instance of RH Facilities after three months of use by a graduate
student.

We measured the attack surfaces of Debian, RH Default, and RH Facilities the very day
each system was installed. We did not modify any of the systems in any manner after their
installation. We measured the attack surface of RH Used after three months of use. We
counted the number of instances of each attack vector for the four versions and compared
the number of instances. The results of our measurements are shown in Table 2.1.

We did not install any web server on the system running Debian and RH Default since
the system running RH Facilities did not have a web server installed. Hence we did not
count the numbers of instances of the httpd module and dynamic web page attack vectors
(Rows 13 and 14 of Table 2.1). We also did not count the number of instances of the
symbolic link attack vector as it is impractical to determine whether the programs running
as root check for symlinks before opening temporary files (Row 12 of Table 2.1).

Our measurements enable us to compare the security of the four versions of Linux in
three different ways.

• Default comparison: We compared the attack surfaces of Debian and RH Default to
measure the relative security of different versions of Linux.

• Customized usage-based comparison: We compared the attack surfaces of RH De-

fault and RH Facilities to observe the change in Linux’s security level due to cus-
tomization.
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Attack Class Debian RHD RHF RHU

open TCP/UDP socket 15 12 40 41

open remote procedure call(RPC) endpoint 3 3 3 3

service running as root 21 26 29 30

service running as non-root 3 6 8 8

setuid(setgid) root program 54 54 72 72

enabled local user account 21 25 33 34

user id=root or group id=root account 0 4 3 3

unpassworded account 0 0 2 2

nobody account 1 1 1 1

weak file permission 7 7 21 37

script enabled 1 2 2 2

symbolic link * * * *

httpd module - - - -

dynamic web page - - - -

Table 2.1: Attack surface measurement results (RHD = RH Default, RHF= RH Facilities,
RHU = RH Used).

• Time-based comparison: We compared the attack surfaces of RH Facilities and RH

Used to monitor the change in Linux’s security level over time.

Debian vs. RH Default

As shown in Table 2.1, RH Default has higher counts in each of five attack vectors, Debian

has a higher count in one attack vector, and both have the same counts in each of five attack
vectors. Hence the attack surface exposure of Red Hat is greater than that of Debian. We
believe that even though both versions provide similar functionality, design choices play
an important role in making Debian’s attack surface smaller than Red Hat’s. Debian is
perceived to be a more secure operating system and the perception is reflected in our
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measurement.

RH Default vs. RH Facilities

As shown in Table 2.1, RH Facilities has higher counts in each of seven attack vectors, RH

Default has higher counts in one attack vector, and both have the same counts in each of
three attack vectors. The attack surface exposure of the facilities distribution is more than
that of the default distribution.

The facilities distribution is customized to make it more useful than the default distri-
bution. For example, the facilities distribution has the AFS file system installed; it also
has lclaadmd, kopshell, and terad services installed for remote management
and network backup. These features increase the counts of the open TCP/UDP socket,
service running as root, and enabled local user account attack vectors. Our results show
that the attack surface exposure has increased with customization.

RH Facilities vs. RH Used

As shown in Table 2.1, RH Used has higher counts in each of four attack vectors and
both have the same counts in each of seven attack vectors. The used version’s attack
surface exposure is greater than the initially installed version. The three-month use of
the system increased the counts of the open TCP/UDP socket, service running as root,
enabled local user account, and weak file permission attack vectors. Our results show
that the attack surface exposure has increased over time and usage.

2.4 Discussion

The results of both the Windows and the Linux measurements confirm perceived beliefs
about the relative security of the different versions. The measurement method, however,
has several shortcomings.
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1. The measurement method does not have formal definitions of a system’s attack sur-
face and attack vectors; hence there is no systematic method to identify the attack
vectors. Also, there is no systematic way to assign weights to the attack vectors.

2. The attack vectors of both Windows and Linux were identified based on the history
of attacks on Windows and Linux, respectively. The identification process was done
manually. Hence we cannot determine whether we identified all the attack vectors
and whether the attack vectors were mutually exclusive.

3. The measurement method requires a security expert (e.g., Mike Howard for Win-
dows) to assign weights to the attack vectors. Non-experts can not use the method
easily.

4. The measurement method is focused on measuring the attack surfaces of operating
systems and cannot be generalized to measure the attack surfaces of other software
systems such as web servers, IMAP servers, and software applications.

Our thesis research on defining a systematic attack surface measurement method is
motivated by the shortcomings in Howard’s measurement method. In the thesis, we use
the entry point and exit point framework to identify the relevant resources that contribute
to a system’s attack surface and we use the notion of the damage potential-effort ratio
to estimate the weights of each such resource. Our attack surface measurement method
entirely avoids the need to identify a system’s attack vectors.

Our measurement method does not require a security expert; hence it can be used by
software developers and software consumers without any security expertise. Furthermore,
our method does not focus on operating systems and can be applied to a wide verity of
software systems. We also have automated as many steps of our method as possible. For
example, the identification of the relevant resources that contribute to the attack surface is
completely automated. We provide detailed guidelines to the users to carry out the manual
steps in our method in a systematic manner.
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Chapter 3

A Formal Model for a System’s Attack
Surface

3.1 Introduction

In this chapter, we formalize the notion of a system’s attack surface using an I/O automata
model of the system and its environment [58]. We introduce the entry point and exit point

framework based on the I/O automata model and define a system’s attack surface in terms
of the framework (3.2). We also introduce the notions of damage potential and effort to
estimate a resource’s contribution to the measure of a system’s attack surface (3.3). We
define a qualitative measure and a quantitative measure of the attack surface and introduce
an abstract method to quantify the attack surface (3.4).

3.2 I/O Automata Model

In this section, we introduce the entry point and exit point framework and use the frame-
work to define a system’s attack surface. Informally, entry points of a system are the ways
through which data “enters” into the system from its environment and exit points are the
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ways through which data “exits” from the system to its environment. Many attacks on
software systems require an attacker either to send data into a system or to receive data
from a system; hence the entry points and the exit points of a system act as the basis for
attacks on the system.

3.2.1 I/O Automaton

We model a system and the entities present in its environment as I/O automata [58]. We
chose I/O automata as our model for two reasons. First, our notion of entry points and
exit points map naturally to the input actions and output actions of an I/O automation.
Second, the composition property of I/O automata allows us to easily reason about the
attack surface of a system in a given environment.

An I/O automaton, A = 〈sig(A), states(A), start(A), steps(A)〉, is a four tuple
consisting of an action signature, sig(A), that partitions a set, acts(A), of actions into
three disjoint sets, in(A), out(A), and int(A), of input, output and internal actions, re-
spectively, a set, states(A), of states, a non-empty set, start(A) ⊆ states(A), of start

states, and a transition relation, steps(A) ⊆ states(A) × acts(A) × states(A). An I/O
automaton’s environment generates input and transmits the input to the automaton using
input actions. In contrast, the automaton generates output actions and internal actions au-
tonomously and transmits output to its environment. Our model does not require an I/O
automation to be input-enabled, i.e., unlike a standard I/O automation, input actions are
not always enabled in our model. Instead, we assume that every action of an automaton is
enabled in at least one reachable state of the automaton.

We construct an I/O automaton modeling a complex system by composing the I/O au-
tomata modeling simpler components of the system. When we compose a set of automata,
we identify same-named actions of different automata; we identify an output action, m,
of an automaton with the input action m of each automaton having m as an input action.
When an automaton having m as an output action performs m, all automata having m
as an input action perform m simultaneously. The composition of a set of I/O automata
results in an I/O automaton.
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3.2.2 Model

Consider a set, S, of systems, a user, U , and a data store, D. For a given system, s ∈ S,
we define its environment, Es = 〈U, D, T 〉, to be a three-tuple where T = S \ {s} is
the set of systems excluding s. The system s interacts with its environment Es; hence we
define the entry points and exit points of s with respect to Es. Figure 3.1 shows a system,
s, and its environment, Es = 〈U, D, {s1, s2, }〉. For example, s could be a web server
and s1 and s2 could be an application server and a directory server, respectively.

Figure 3.1: A system, s, and its environment, Es.

We model every system s ∈ S as an I/O automaton, 〈sig(s), states(s), start(s),
steps(s)〉. We model the methods in the codebase of the system s as actions of the I/O
automaton. We specify the actions using pre and post conditions: for an action, m, m.pre
and m.post are the pre and post conditions of m, respectively. A state, s ∈ states(s),
of s is a mapping of the state variables to their values: s: V ar → V al. An action’s pre
and post conditions are first order predicates on the state variables. A state transition, 〈s,
m, s′〉 ∈ steps(s), is the invocation of an action m in state s resulting in state s′. An
execution of s is an alternating sequence of actions and states beginning with a start state
and a schedule of an execution is a subsequence of the execution consisting only of the
actions appearing in the execution.

Every system has a set of communication channels. The channels of a system, s, are
the means by which the user U or any system s1 ∈ T communicates with s. Specific
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examples of channels are TCP/UDP sockets and named pipes. We model each channel of
a system as a special state variable of the system.

We also model the user U and the data store D as I/O automata. The user U and the
data store D are global with respect to the systems in S. For simplicity, we assume only
one user U present in the environment. U represents the adversary who attacks the systems
in S.

We model the data store D as a separate entity to allow sharing of data among the
systems in S. The data store D is a set of typed data items. Specific examples of data
items are strings, URLs, files, and cookies. For every data item, d ∈ D, D has an output
action, readd, and an input action, writed. A system, s, or the user U reads d from the data
store through the invocation of readd and writes d to the data store through the invocation
of writed. To model global sharing of the data items, corresponding to each data item
d ∈ D, we add a state variable, d, to every system, s ∈ S, and the user U . When the
system s (or U ) reads the data item d from the data store, the value of the data item is
written to the state variable d of s (or U ). Similarly, when s (or U ) writes the data item d

to the data store, the value of the state variable d of s (or U ) is written to the data item d

of the data store.

3.2.3 Entry Points

The methods in a system’s codebase that receive data from the system’s environment are
the system’s entry points. A method of a system can receive data directly or indirectly
from the environment. A method, m, of a system, s, receives data items directly if either
(i.) the user U (Figure 3.2.a) or a system, s′, (Figure 3.2.b) in the environment invokes
m and passes data items as input to m, or (ii.) m reads data items from the data store
(Figure 3.2.c), or (iii.) m invokes a method of a system, s′, in the environment and receives
data items as results returned (Figure 3.2.d). A method is a direct entry point if it receives
data items directly from the environment. Examples of the direct entry points of a web
server are the methods in the API of the web server, the methods of the web server that
read configuration files, and the methods of the web server that invoke the API of an
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application server.

Figure 3.2: Direct Entry Point. Figure 3.3: Indirect Entry Point.

In the I/O automata model, a system, s, can receive data from the environment if s
has an input action, m, and an entity in the environment has a same-named output action,
m. When the entity performs the output action m, s performs the input action m and data
is transmitted from the entity to s. We formalize the scenarios when a system, s′ ∈ T ,
invokes m (Figure 3.2.b) or when m invokes a method of s′ (Figure 3.2.d) the same way,
i.e., s has an input action, m, and s′ has an output action, m.

Definition 1. A direct entry point of the system s is an input action,m, of s such that either

(i.) the user U has the output action m (Figure 3.2.a), or (ii.) a system, s′ ∈ T , has the

output action m (Figure 3.2.b and Figure 3.2.d), or (iii.) the data store D has the output

action m (Figure 3.2.c).

A method, m, of s receives data items indirectly if either (i.) a method, m1, of s
receives a data item, d, directly, and either m1 passes d as input to m (Figure 3.3.a) or m
receives d as result returned from m1 (Figure 3.3.b), or (ii.) a method, m2, of s receives a
data item, d, indirectly, and either m2 passes d as input to m (Figure 3.3.c) or m receives d
as result returned from m2 (Figure 3.3.d). A method is an indirect entry point if it receives
data items indirectly from the environment. For example, a method in the API of the web
server that receives login information from a user might pass the information to another
method in the authentication module; the method in the API is a direct entry point and the
method in the authentication module is an indirect entry point.
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In the I/O automata model, a system’s internal actions are not visible to other systems
in the environment. Hence we use an I/O automaton’s internal actions to formalize the
system’s indirect entry points. We formalize data transmission using the pre and post
conditions of a system’s actions. If an input action, m, of a system, s, receives a data item,
d, directly from the environment, then the subsequent behavior of the system s depends on
the value of d; hence d appears in the post condition of m and we write d ∈ Res(m.post)
where Res : predicate → 2V ar is a function such that for each post condition (or pre
condition), p, Res(p) is the set of resources appearing in p. Similarly, if an action, m, of s
receives a data item d from another action, m1, of s, then d appears in the post condition
of m1 and in the pre condition of m. Similar to the direct entry points, we formalize the
scenarios Figure 3.3.a and Figure 3.3.b the same way and the scenarios Figure 3.3.c and
Figure 3.3.d the same way. We define indirect entry points recursively.

Definition 2. An indirect entry point of the system s is an internal action, m, of s such that

either (i.) ∃ direct entry point, m1, of s such that m1.post ⇒ m.pre and ∃ a data item, d,

such that d ∈ Res(m1.post) ∧ d ∈ Res(m.pre) (Figure 3.3.a and Figure 3.3.b), or (ii.) ∃
indirect entry point, m2, of s such that m2.post ⇒ m.pre and ∃ data item, d, such that

d ∈ Res(m2.post) ∧ d ∈ Res(m.pre) (Figure 3.3.c and Figure 3.3.d).

The set of entry points of s is the union of the set of direct entry points and the set of
indirect entry points of s.

3.2.4 Exit Points

The methods of a system that send data to the system’s environment are the system’s exit
points. For example, a method that writes into a log file is an exit point. A method of
a system can send data directly or indirectly into the environment. A method, m, of a
system, s, sends data items directly if either (i.) the user U (Figure 3.4.a) or a system, s′,
(Figure 3.4.b) in the environment invokes m and receives data items as results returned
from m, or (ii.) m writes data items to the data store (Figure 3.4.c), or (iii.) m invokes a
method of a system, s′, in the environment and passes data items as input (Figure 3.4.d).
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Figure 3.4: Direct Exit Point. Figure 3.5: Indirect Exit Point.

In the I/O automata model, a system, s, can send data to the environment if s has an
output action, m, and an entity in the environment has a same-named input action, m.
When s performs the output action m, the entity performs the input action m and data is
transmitted from s to the entity.

Definition 3. A direct exit point of the system s is an output action, m, of s such that either

(i.) the user U has the input action m (Figure 3.4.a), or (ii.) a system, s′ ∈ T , has the

input action m (Figure 3.4.b and Figure 3.4.d) , or (iii.) the data store D has the input

action m (Figure 3.4.c).

A method, m, of s sends data items indirectly to the environment if either (i.) m passes
a data item, d, as input to a direct exit point, m1 (Figure 3.5.a), or m1 receives a data item,
d, as result returned from m (Figure 3.5.b), and m1 sends d directly to the environment,
or (ii.) m passes a data item, d, as input to an indirect exit point, m2 (Figure 3.5.c),
or m2 receives a data item, d, as result returned from m (Figure 3.5.d), and m2 sends d
indirectly to the environment. A method m of s is an indirect exit point if m sends data
items indirectly to the environment.

Similar to indirect entry points, we formalize indirect exit points of a system using
an I/O automaton’s internal actions. If an output action, m, sends a data item, d, to the
environment, then the subsequent behavior of the environment depends on the value of
d. Hence d appears in the pre condition of m and in the post condition of the same-
named input action m of an entity in the environment. Again we define indirect exit points
recursively.
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Definition 4. An indirect exit point of the system s is an internal action, m, of s such that

either (i.) ∃ a direct exit point, m1, of s such that m.post ⇒ m1.pre and ∃ a data item,

d, such that d ∈ Res(m.post)∧ d ∈ Res(m1.pre) (Figure 3.5.a and Figure 3.5.b), or (ii.)

∃ an indirect exit point, m2, of s such that m.post ⇒ m2.pre and ∃ a data item, d, such

that d ∈ Res(m.post) ∧ d ∈ Res(m2.pre) (Figure 3.5.c and Figure 3.5.d).

The set of exit points of s is the union of the set of direct exit points and the set of
indirect exit points of s.

3.2.5 Channels

An attacker uses a system’s channels to connect to the system and invoke a system’s meth-
ods. Hence a system’s channels act as another basis for attacks on the system. An entity
in the environment can invoke a method, m, of a system, s, by using a channel, c, of s;
hence in our I/O automata model, c appears in the pre condition of a direct entry point (or
exit point), m, i.e., c ∈ Res(m.pre). In our model, every channel of s must appear in the
pre condition of at least one direct entry point (or exit point) of s. Similarly, at least one
channel must appear in the pre condition of every direct entry point (or direct exit point).

3.2.6 Untrusted Data Items

The data store D is a collection of persistent and transient data items. The data items that
are visible to both a system, s, and the user U across different executions of s are the
persistent data items of s. Specific examples of persistent data items are files, cookies,
database records, and registry entries. The persistent data items are shared between s and
U , hence U can use the persistent data items to send (receive) data indirectly into (from)
s. For example, s might read a file from the data store after U writes the file to the data
store. Hence the persistent data items act as another basis for attacks on s. An untrusted

data item of a system s is a persistent data item d such that a direct entry point of s reads
d from the data store or a direct exit point of s writes d to the data store.
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Definition 5. An untrusted data item of a system, s, is a persistent data item, d, such that

either (i.) ∃ a direct entry point, m, of s such that d ∈ Res(m.post), or (ii.) ∃ a direct exit

point, m, of s such that d ∈ Res(m.pre).

Notice that an attacker sends (receives) the transient data items directly into (from) s
by invoking s’s direct entry points (direct exit points). Since the direct entry points (direct
exit points) of s act as a basis for attacks on s, we do not consider the transient data items
as a different basis for attacks on s. The transient data items are untrusted data items;
they are, however, already ”counted” in our definition of direct entry points and direct exit
points.

3.2.7 Attack Surface Definition

A system’s attack surface is the subset of the system’s resources that an attacker can use
to attack the system. An attacker can use a system’s entry points and exit points, channels,
and untrusted data items to send (receive) data into (from) the system to attack the system.
Hence the set of entry points and exit points, the set of channels, and the set of untrusted
data items are the relevant subset of resources that are part of the attack surface.

Definition 6. Given a system, s, and its environment, Es, s’s attack surface is the triple,

〈MEs , CEs , IEs〉, where MEs is the set of entry points and exit points, CEs is the set of

channels, and IEs is the set of untrusted data items of s.

Notice that we define s’s entry points and exit points, channels, and data items with
respect to the given environment Es. Hence s’s attack surface, 〈MEs , CEs , IEs〉, is with
respect to the environment Es. We compare the attack surfaces of two similar systems
(i.e., different versions of the same software or different software that provide similar
functionality) along the methods, channels, and data dimensions with respect to the same
environment to determine if one has a larger attack surface than another.

Definition 7. Given an environment, E = 〈U, D, T 〉, the attack surface, 〈ME
A , C

E
A , I

E
A 〉,

of a system, A, is larger than the attack surface, 〈ME
B , C

E
B , I

E
B 〉, of a system, B iff either
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(i.) ME
A ⊃ ME

B ∧ CE
A ⊇ CE

B ∧ IE
A ⊇ IE

B , or (ii.) ME
A ⊇ ME

B ∧ CE
A ⊃ CE

B ∧ IE
A ⊇ IE

B ,

or (iii.) ME
A ⊇ME

B ∧ CE
A ⊇ CE

B ∧ IE
A ⊃ IE

B .

3.2.8 Relation between Attack Surface and Potential Attacks

Consider a system, A, and its environment, EA = 〈U, D, T 〉. We model the interaction
of the systemAwith the entities present in its environment as parallel composition,A||EA.
Notice that an attacker can send data into A by invoking A’s input actions and the attacker
can receive data from A when A executes its output actions. Since an attacker attacks a
system either by sending data into the system or by receiving data from the system, any
schedule of the composition of A and EA that contains an input action or an output action
of A is a potential attack on A. We denote the set of potential attacks on s as attacks(A).

Definition 8. Given a system, s, and its environment, Es = 〈U, D, T 〉, a potential attack
on s is a schedule, β, of the composition, P = s ||U ||D || (||t∈T t), such that an input

action (or output action), m, of s appears in β.

Note that s’s schedules may contain internal actions, but in order for a schedule to be
an attack, the schedule must contain at least one input action or output action.

We model an attacker by a set of attacks in our I/O automata model. In other models
of security, e.g., for cryptography, an attacker is modeled not just by a set of attacks but
also by its power and privilege [36]. Examples of an attacker’s power and privilege are
the attacker’s skill level (e.g., script kiddies, experts, and government agencies) and the
attacker’s resources (e.g., computing power, storage, and tools). We, however, do not
model the attacker’s power and privilege in our I/O automata model. Hence our notion of
attack surface is independent of the attacker’s power and privilege and is dependent only
on a system’s design and inherent properties.

We show that with respect to the same attacker and operating environment, if a system,
A, has a larger attack surface compared to a similar system,B, then the number of potential
attacks on A is larger than B. Since A and B are similar systems, we assume both A and
B have the same set of state variables and the same sets of resources except the ones
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appearing in the attack surfaces.

Theorem 1. Given an environment, E = 〈U, D, T 〉, if the attack surface, 〈ME
A , C

E
A , I

E
A 〉,

of a system, A, is larger than the attack surface, 〈ME
B , C

E
B , I

E
B 〉, of a system, B, then the

rest of the resources of A and B being equal attacks(A) ⊃ attacks(B).

Proof. (Sketch)

• Case i: ME
A ⊃ME

B ∧ CE
A ⊇ CE

B ∧ IE
A ⊇ IE

B

Without loss of generality, we assume that ME
A \ME

B = {m}. Consider the compo-
sitions PA = A ||U ||D || (||t∈T t) and PB = B ||U ||D || (||t∈T t). Any method,
m ∈ ME

B , that is enabled in a state, sB, of B is also enabled in the corresponding
state sA ofA and for any transition, 〈sB,m, s

′
B〉, of PB, there is a corresponding tran-

sition, 〈sA,m, s
′
A〉, of PA. Hence for any schedule β ∈ attacks(B), β ∈ attacks(A)

and attacks(A) ⊇ attacks(B).

– Case a: m is a direct entry point (or exit point) of A.
Sincem is a direct entry point (or exit point), there is an output (or input) action
m of either U , D, or a system, t ∈ T . Hence there is at least one schedule,
β, of PA containing m. Moreover, β is not a schedule of PB as m /∈ ME

B .
Since β is a potential attack on A, β ∈ attacks(A) ∧ β /∈ attacks(B). Hence
attacks(A) ⊃ attacks(B).

– Case b: m is an indirect entry point (or exit point) of A.
Since m is an indirect entry point (or exit point) of A, there is a direct entry
point (or exit point), mA, of A such that mA.post ⇒ m.pre (or m.post ⇒
mA.pre). Hence there is at least one schedule, β, of PA such that m follows
mA (ormA followsm) in β. Moreover, β is not an schedule of PB asm /∈ME

B .
Since β is a potential attack on A, β ∈ attacks(A) ∧ β /∈ attacks(B). Hence
attacks(A) ⊃ attacks(B).

• Case ii: ME
A ⊇ME

B ∧ CE
A ⊃ CE

B ∧ IE
A ⊇ IE

B

Without loss of generality, we assume that CE
A\CE

B = {c}. We know that c appears
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in the pre condition of a direct entry point (or exit point), m ∈ ME
A . But c /∈ CE

B ,
hence m is never enabled in any state of B and m /∈ ME

B . Hence ME
A ⊃ ME

B and
from Case i, attacks(A) ⊃ attacks(B).

• Case iii: ME
A ⊇ME

B ∧ CE
A ⊇ CE

B ∧ IE
A ⊃ IE

B

The proof is similar to case ii.

Theorem 1 has practical significance in the software development process. The the-
orem shows that if we create a newer version of a software system by adding more re-
sources to an older version, then assuming all resources are counted equally (see Secion
3.3), the newer version has a larger attack surface and hence a larger number of potential
attacks. Software developers should ideally strive towards reducing the attack surface of
their software from one version to another or if adding resources to the software (e.g.,
adding methods to an API), then knowingly increase the attack surface.

3.3 Damage Potential and Effort

Not all resources contribute equally to the measure of a system’s attack surface because
not all resources are equally likely to be used by an attacker. A resource’s contribution
to a system’s attack surface depends on the resource’s damage potential, i.e., the level of
harm the attacker can cause to the system in using the resource in an attack and the effort

the attacker spends to acquire the necessary access rights in order to be able to use the
resource in an attack. The higher the damage potential or the lower the effort, the higher
the contribution to the attack surface. In this section, we use our I/O automata model to
formalize the notions of damage potential and effort. We model the damage potential and
effort of a resource, r, of a system, s, as the state variables r.dp and r.ef , respectively.

In practice, we estimate a resource’s damage potential and effort in terms of the re-
source’s attributes. Examples of attributes are method privilege, access rights, channel
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protocol, and data item type. Our estimation method is a specific instantiation of our gen-
eral measurement framework. Our estimation of damage potential includes only technical
impact (e.g., privilege elevation) and not business impact (e.g., monetary loss) though our
framework does not preclude this generality. We do not make any assumptions about the
attacker’s capabilities or resources in estimating damage potential or effort.

We estimate a method’s damage potential in terms of the method’s privilege. An at-
tacker gains the privilege of a method by using the method in an attack. For example,
the attacker gains root privilege by exploiting a buffer overflow in a method running as
root. The attacker can cause damage to the system after gaining root privilege. The
attacker uses a system’s channels to connect to a system and send (receive) data to (from)
a system. A channel’s protocol imposes restrictions on the data exchange allowed using
the channel, e.g., a TCP socket allows raw bytes to be exchanged whereas an RPC

endpoint does not. Hence we estimate a channel’s damage potential in terms of the
channel’s protocol. The attacker uses persistent data items to send (receive) data indirectly
into (from) a system. A persistent data item’s type imposes restrictions on the data ex-
change, e.g., a file can contain executable code whereas a registry entry can not.
The attacker can send executable code into the system by using a file in an attack, but
the attacker can not do the same using a registry entry. Hence we estimate a data
item’s damage potential in terms of the data item’s type. The attacker can use a resource
in an attack if the attacker has the required access rights. The attacker spends effort to
acquire these access rights. Hence for the three kinds of resources, i.e., method, channel,
and data, we estimate the effort the attacker needs to spend to use a resource in an attack
in terms of the resource’s access rights.

We assume that we have a total ordering, �, among the values of each of the six
attributes, i.e., method privilege and access rights, channel protocol and access rights,
and data item type and access rights. In practice, we impose these total orderings using
our knowledge of a system and its environment. For example, an attacker can cause more
damage to a system by using a method running with root privilege than a method running
with non-root privilege; hence root � non-root. We use these total orderings to
compare the contributions of resources to the attack surface. Abusing notation, we write
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r1 � r2 to express that a resource, r1, makes a larger contribution to the attack surface
than a resource, r2.

Definition 9. Given two resources, r1 and r2, of a system, A, r1 � r2 iff either (i.) r1.dp �
r2.dp ∧ r2.ef � r1.ef , or (ii.) r1.dp = r2.dp ∧ r2.ef � r1.ef , or (iii.) r1.dp �
r2.dp ∧ r2.ef = r1.ef .

Definition 10. Given two resources, r1 and r2, of a system,A, r1 � r2 iff either (i.) r1 � r2

or (ii.) r1.dp = r2.dp ∧ r2.ef = r1.ef .

3.3.1 Modeling Damage Potential and Effort

In our I/O automata model, we use an action’s pre and post conditions to formalize effort
and damage potential, respectively. We present a parametric definition of an action,m, of a
system, s, below. For simplicity, we assume that the entities in the environment connect to
s using only one channel, c, to invokem andm either reads or writes only one data item, d.

m(MA,CA,DA,MB,CB,DB)

pre : Ppre ∧ MA � m.ef ∧ CA � c.ef ∧ DA � d.ef

post : Ppost ∧ MB � m.dp ∧ CB � c.dp ∧ DB � d.dp

The parametersMA, CA, andDA represent the highest method access rights, channel
access rights, and data access rights acquired by an attacker so far, respectively. Similarly,
the parametersMB, CB, andDB represent the benefit to the attacker in using the method
m, the channel c, and the data item d in an attack, respectively. Rpre is the part of m’s
pre condition that does not involve access rights. The clause, MA � m.ef , captures the
condition that the attacker has the required access rights to invokem; the other two clauses
in the pre condition are analogous. Similarly, Rpost is the part of m’s post condition that
does not involve benefit. The clause, MB � m.dp, captures the condition that the attacker
gets the expected benefit after the execution of m; the rest of the clauses are analogous.

We use the total orderings � among the values of the attributes to define the notion of
weaker (and stronger) pre conditions and post conditions. We first introduce a predicate,
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〈m1, c1, d1〉 �at 〈m2, c2, d2〉, to compare the values of an attribute, at ∈ {dp, ef}, of the
two triples, 〈m1, c1, d1〉 and 〈m2, c2, d2〉. We later use the predicate to compare pre and
post conditions.

Definition 11. Given two methods, m1 and m2, two channels, c1 and c2, two data items,

d1 and d2, and an attribute, at ∈ {dp, ef}, 〈m1, c1, d1〉 �at 〈m2, c2, d2〉 iff either (i.)

m1.at � m2.at ∧ c1.at � c2.at ∧ d1.at � d2.at, or (ii.) m1.at � m2.at ∧ c1.at �
c2.at ∧ d1.at � d2.at or (iii.) m1.at � m2.at ∧ c1.at � c2.at ∧ d1.at � d2.at.

Consider two methods, m1 and m2. We say that m1 has a weaker pre condition than
m2 iff (m1.Rpre = m2.Rpre) ∧ (m2.pre⇒ m1.pre). We only compare the parts of the pre
conditions involving the access rights and assume that the rest of the pre conditions are
the same for both m1 and m2. Notice that if m1 has a lower access rights level than m2,
i.e., m2.ef � m1.ef , then for all access rights levels MA, (MA � m2.ef) ⇒ (MA �
m1.ef); the rest of the clauses in the pre conditions are analogous. Hence we define the
notion of weaker pre condition as follows.

Definition 12. Given the pre condition, m1.pre = (Rpre ∧MA�m1.ef ∧CA� c1.ef ∧
DA� d1.ef), of a method, m1, and the pre condition, m2.pre = (Rpre ∧MA � m2.ef ∧
CA � c2.ef ∧DA � d2.ef), of a method, m2, m2.pre ⇒ m1.pre if 〈m2, c2, d2〉 �ef

〈m1, c1, d1〉.

We say that m1 has a weaker post condition than m2 iff (m1.Rpost = m2.Rpost) ∧
(m1.post⇒ m2.post).

Definition 13. Given the post condition, m1.post =(Rpost ∧ MB � m1.dp∧CB �
c1.dp ∧ DB � d1.dp), of a method, m1 and the post condition, m2.post =(Rpost ∧MB

�m2.dp∧CB � c2.dp∧DB � d2.dp), of a method,m2,m1.post⇒ m2.post if 〈m1, c1, d1〉
�dp 〈m2, c2, d2〉.

3.3.2 Attack Surface Measurement

Given two systems, A and B, if A has a larger attack surface than B (Definition 7), then
everything else being equal, it is easy to see thatA has a larger attack surface measurement
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than B. It is also possible that even though A and B both have the same attack surface,
if a resource, A.r, belonging to A’a attack surface makes a larger contribution than the
same-named resource, B.r, belonging to B’s attack surface, then everything else being
equal A has a larger attack surface measurement than B.

Given the attack surface, 〈ME
A , C

E
A , I

E
A 〉, of a system, A, we denote the set of resources

belonging to A’s attack surface as RA = ME
A ∪ CE

A ∪ IE
A . Note that from Definition 7, if

A has a larger attack surface than B, then RA ⊃ RB.

Definition 14. Given an environment, E = 〈U, D, T 〉, the attack surface, 〈ME
A , C

E
A , I

E
A 〉,

of a system,A, and the attack surface, 〈ME
B , C

E
B , I

E
B 〉, of a system,B,A has a larger attack

surface measurement than B (A� B) iff either

1. A has a larger attack surface than B (i.e., RA ⊃ RB) and ∀r ∈ RB. A.r � B.r, or

2. ME
A = ME

B ∧ CE
A = CE

B ∧ IE
A = IE

B (i.e., RA = RB) and there is a nonempty

set, RAB ⊆ RB, of resources such that ∀r ∈ RAB. A.r � B.r and ∀r ∈ (RB \
RAB). A.r = B.r.

From Definitions 7 and 14, � is transitive. For example, given three systems, A, B,
and C, if A has a larger attack surface measurement than B and B has a larger attack
surface measurement than C, then A has a larger attack surface measurement than C.

Theorem 2. Given an environment, E = 〈U, D, T 〉, the attack surface, RA, of a system,

A, the attack surface, RB, of a system, B, and the attack surface, C, of a system, RC , if

A� B and B � C, then A� C.

Proof. (Sketch) From Definition 14, A’s attack surface measurement can be larger than
B’s in two different ways. Similarly, B’s attack surface measurement can be larger than
C’s in two different ways. Hence we consider four different cases in proving the theorem.

• Case 1: RA ⊃ RB and ∀r ∈ RB. A.r � B.r.
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– Case 1.1: RB ⊃ RC and ∀r ∈ RC . B.r � C.r.
Since RA ⊃ RB and RB ⊃ RC , RA ⊃ RC . Also, since RB ⊃ RC and
∀r ∈ RB. A.r � B.r, ∀r ∈ RC . A.r � B.r. From the assumptions of Case
1.1, ∀r ∈ RC . B.r � C.r. Hence ∀r ∈ RC . A.r � B.r � C.r. Hence A� C.

– Case 1.2: RB = RC and there is a nonempty set,RBC ⊆ RC , of resources such
that ∀r ∈ RBC. B.r � C.r and ∀r ∈ (RC \ RBC). B.r = C.r.
Since RA ⊃ RB and RB = RC , RA ⊃ RC . Consider a resource, r ∈ RC .
From the assumptions of Case 1.2, if r ∈ RBC , then B.r � C.r, and if r ∈
(RC \ RBC), then B.r = C.r. Hence ∀r ∈ RC . B.r � C.r. Also, from
the assumptions of Case 1, ∀r ∈ RB. A.r � B.r. Since RB = RC , ∀r ∈
RC . A.r � B.r � C.r. Hence A� C.

• Case 2: RA = RB and there is a nonempty set, RAB ⊆ RB, of resources such that
∀r ∈ RAB. A.r � B.r and ∀r ∈ (RB \ RAB). A.r = B.r.

– Case 2.1: RB ⊃ RC and ∀r ∈ RC . B.r � C.r.
The proof is similar to Case 1.2.

– Case 2.2: RB = RC and there is a nonempty set,RBC ⊆ RC , of resources such
that ∀r ∈ RBC. B.r � C.r and ∀r ∈ (RC \ RBC). B.r = C.r.
Since RA = RB and RB = RC , RA = RC . Consider the set, RAC = RAB ∪
RBC , of resources. We shall prove that ∀r ∈ RAC. A.r � C.r. Consider a
resource, r ∈ RAC . If r ∈ RAB ∩ RBC , then A.r � B.r � C.r. If r ∈
RAB \ RBC , then A.r � B.r = C.r. Similarly, if r ∈ RBC \ RAB, then
A.r = B.r � C.r. Hence ∀r ∈ RAC. A.r � C.r. Also, from the assumptions
of Case 2 and Case 2.2, ∀r ∈ RC \ RAC. A.r = C.r. Hence A� C.

The transitivity of � has practical implications for attack surface reduction; while
reducing A’s attack surface measurement compared to C’s, software developers should
focus on the setRAC of resources instead of either the setRAB or the setRBC .
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3.3.3 Relation Between Attack Surface Measurement and Potential
Attacks

We show that with respect to the same attacker and operating environment, if a system,
A, has a larger attack surface measurement compared to a system, B, then the number of
potential attacks on A is larger than B.

Theorem 3. Given an environment, E = 〈U, D, T 〉, if the attack surface of a system A

is the triple 〈ME
A , C

E
A , I

E
A 〉, the attack surface of of a system, B, is the triple 〈ME

B ,C
E
B ,I

E
B 〉,

and A has a larger attack surface measurement than B, then attacks(A) ⊇ attacks(B).

Proof. (Sketch)

• Case 1: This is a corollary of Theorem 1.

• Case 2: ME
A = ME

B ∧ CE
A = CE

B ∧ IE
A = IE

B

Without loss of generality, we assume that R = {r} and A.r � B.r.

Case i: (B.r).ef � (A.r).ef ∧ (A.r).dp � (B.r).dp

From definitions 12 and 13, there is an action, mA ∈ ME
A , that has a weaker pre-

condition and a stronger post condition than the same-named action, mB ∈ ME
B ,

i.e.,
(mB.pre⇒ mA.pre) ∧ (mA.post⇒ mB.post). (3.1)

Notice that any schedule of the composition PB (as defined in the proof sketch of
Theorem 1) that does not contain mB is also a schedule of the composition PA.
Now consider a schedule, β, of PB that contains mB and the following sequence of
actions that appear in β:..m1mBm2... Hence,

(m1.post⇒ mB.pre) ∧ (mB.post⇒ m2.pre). (3.2)

From equations (1) and (2), (m1.post ⇒ mB.pre ⇒ mA.pre)∧ (mA.post ⇒
mB.post⇒ m2.pre). Hence, (m1.post⇒ mA.pre)∧ (mA.post⇒ m2.pre).

That is, we can replace the occurrences of mB in β with mA. Hence β is also a
schedule of the composition PA and attacks(A) ⊇ attacks(B).
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Case ii and Case iii: The proof is similar to Case i.

Theorem 3 also has practical significance in the software development process. The
theorem shows that if software developers modify the values of a resource’s attributes
and hence modify the resource’s damage potential and effort in the newer version of their
software, then all else being the same between the two versions, the attack surface mea-
surement of the newer version becomes larger and the number of potential attacks on the
software increases.

3.4 A Quantitative Metric

In the previous section, we introduced a qualitative measure of a system’s attack surface
(Definition 14). The qualitative measure is an ordinal scale [30]; given two systems, we
can only determine if one system has a relatively larger attack surface measurement than
another. We, however, can not quantify the difference in the measurements.

We need a quantitative measure of the attack surface to quantify the difference in the
attack surface measurements. We can also measure the absolute attack surface using the
quantitative measure. In this section, we introduce a quantitative measure of the attack
surface; the measure is a ratio scale. We quantify a resource’s contribution to the attack
surface in terms of a damage potential-effort ratio.

3.4.1 Damage Potential-Effort Ratio

In the previous section, in estimating a resource’s contribution to the attack surface, we
consider the resource’s damage potential and effort in isolation. From an attacker’s point
of view, however, damage potential and effort are related; if the attacker gains higher
privilege by using a method in an attack, then the attacker also gains the access rights
of a larger set of methods. For example, the attacker can access only the methods with
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authenticated user access rights by gaining authenticated privilege, whereas
the attacker can access methods with authenticated user and root access rights by
gaining root privilege. The attacker might be willing to spend more effort to gain a
higher privilege level that then enables the attacker to cause damage as well as gain more
access rights. Hence we consider a resource’s damage potential and effort in tandem and
quantify a resource’s contribution to the attack surface as a damage potential-effort ratio.
The damage potential-effort ratio is similar to a cost-benefit ratio; the damage potential is
the benefit to the attacker in using a resource in an attack and the effort is the cost to the
attacker in using the resource.

We assume a function, derm: method → Q, that maps each method to its damage
potential-effort ratio belonging to the set, Q, of rational numbers. Similarly, we assume
a function, derc: channel → Q, for the channels and a function, derd: data item → Q,
for the data items. In practice, however, we compute a resource’s damage potential-effort
ratio by assigning numeric values to the resource’s attributes. For example, we compute a
method’s damage potential-effort ratio from the numeric values assigned to the method’s
privilege and access rights. We assign the numeric values based on our knowledge of a
system and its environment; we discuss a specific method of assigning numeric values in
Section 4.2.2.

In terms of our formal I/O automata model, the damage potential of a method, m,
determines how strong the post condition of m is. m’s damage potential determines the
potential number of methods that m can call and hence the potential number of methods
that can follow m in a schedule. The higher the damage potential, the larger the number
of methods that can follow m. Similarly, m’s effort determines the potential number of
methods that m can follow in a schedule. The lower the effort, the larger the number
of methods that m can follow. Hence the damage potential-effort ratio, derm(m), of m
determines the potential number of schedules in which m can appear. Given two methods,
m1 and m2, if derm(m1) > derm(m2) then m1 can potentially appear in more schedules
(and hence more potential attacks) than m2. Similarly, if a channel, c, (or a data item, d)
appears in the pre condition of a method, m, then the damage potential-effort ratio of c
(or d) determines the potential number of schedules in which m can appear. Hence we
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estimate a resource’s contribution to the attack surface as the resource’s damage potential-
effort ratio.

3.4.2 Quantitative Attack Surface Measurement Method

We quantify a system’s attack surface measurement along three dimensions: methods,
channels, and data. We estimate the total contribution of the methods, the total contribution
of the channels, and the total contribution of the data items to the attack surface.

Definition 15. Given the attack surface, 〈ME, CE, IE〉, of a system, A, the attack surface

measurement of A is the triple 〈
∑

m∈ME

derm(m),
∑

c∈CE

derc(c),
∑

d∈IE

derd(d)〉.

We quantitatively measure a system’s attack surface in the following three steps.

1. Given a system, s, and its environment, Es, we identify a set, MEs , of entry points
and exit points, a set, CEs , of channels, and a set, IEs , of untrusted data items of s.

2. We estimate the damage potential-effort ratio, derm(m), of each method m ∈MEs ,
the damage potential-effort ratio, derc(c), of each channel c ∈ CEs , and the damage
potential-effort ratio, derd(d), of each data item d ∈ IEs .

3. The measure of s’s attack surface is the triple 〈
∑

m∈MEs

derm(m),
∑

c∈CEs

derc(c),∑
d∈ IEs

derd(d)〉.

Our attack surface measurement method is analogous to the risk estimation method
used in risk modeling [41]. A system’s attack surface measurement is an indication of the
system’s risk from attacks on the system. In risk modeling, the risk associated with a set,
E, of events is

∑
e∈E p(e)C(e) where p(e) is the probability of occurrence of an event,

e, and C(e) is the consequences of e. The events in risk modeling are analogous to a
system’s resources in our measurement method. The probability of occurrence of an event
is analogous to the probability of a successful attack on the system using a resource; if the
attack is not successful, then the attacker does not benefit from the attack. For example, a
buffer overrun attack using a method, m, will be successful only if m has an exploitable
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buffer overrun vulnerability. Hence the probability, p(m), associated with a method, m,
is the probability that m has an exploitable vulnerability. Similarly, the probability, p(c),
associated with a channel, c, is the probability that the method that receives (or sends)
data from (to) c has an exploitable vulnerability and the probability, p(d), associated with
a data item, d, is the probability that the method that reads or writes d has an exploitable
vulnerability. The consequence of an event is analogous to a resource’s damage potential-
effort ratio. The pay-off to the attacker in using a resource in an attack is proportional to
the resource’s damage potential-effort ratio; hence the damage potential-effort ratio is the
consequence of a resource being used in an attack. The risk along the three dimensions of
the systemA is the triple, 〈

∑
m∈MEs

p(m)derm(m),
∑

c∈CEs

p(c)derc(c),
∑

d∈ IEs

p(d) derd(d)〉,

which is also the measure of A’s attack surface.

In practice, however, it is difficult to predict defects in software [29] and to estimate
the likelihood of vulnerabilities in software [38]. Hence we take a conservative approach
in our attack surface measurement method and assume that p(m) = 1 for all methods, i.e.,
every method has an exploitable vulnerability. We assume that even if a method does not
have a known vulnerability now, it might have a future vulnerability not discovered so far.
We similarly assume that p(c) = 1 for all channels and p(d) = 1 for all data items. With
our conservative approach, the measure of a system’s attack surface is the triple
〈

∑
m∈MEs

derm(m),
∑

c∈CEs

derc(c),
∑

d∈ IEs

derd(d)〉.

Given two similar systems, A and B, we compare their attack surface measurements
along each of the three dimensions to determine if one system is more secure than another
along that dimension. There is, however, a seeming contradiction in our measurement
method with our intuitive notion of security. For example, consider a system, A, that has
1000 entry points each with a damage potential-effort ratio of 1 and a system, B, that has
only one entry point with a damage potential-effort ratio of 999. A has a larger attack
surface measurement whereas A is intuitively more secure. This contradiction is due to
the presence of extreme events, i.e., events that have a significantly higher consequence
compared to other events [41]. An entry point with a damage potential-effort ratio of 999
is analogous to an extreme event. In the presence of extreme events, the shortcomings of
the risk estimation method used in the previous paragraph is well understood and the parti-
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tioned multiobjective risk method is recommended [9]. In our attack surface measurement
method, however, we compare the attack surface measurements of similar systems, i.e.,
systems with comparable sets of resources and comparable damage potential-effort ratios
of the resources; hence we do not expect extreme events such as the example shown to
arise in practice.
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Chapter 4

Empirical Attack Surface Measurement
Results

4.1 Introduction

In the previous chapter, we introduced an abstract method to measure a system’s attack
surface. In this chapter, we instantiate the abstract method and obtain a new method to
measure the attack surfaces of systems implemented in C. We demonstrate the use of our
method by measuring the attack surfaces of two popular open source Internet Message
Access Protocol (IMAP) servers (4.3) and two File Transfer Protocol (FTP) daemons (4.4).
We also perform a parameter sensitivity analysis of our method to provide guidelines to
users of our method (4.5).

4.2 Measurement Method for Systems Implemented in C

In this section, we describe our attack surface measurement method for systems imple-
mented in C. Figure 4.1 shows the steps followed in our attack surface measurement
method. The dotted boxes show the steps done manually and the solid boxes show the
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steps done programmatically. The dotted lines represent manual inputs required for mea-
suring the attack surface. We automated as many steps as possible in our measurement
method and minimized the number of manual inputs required by the method.

Two keys steps in our attack surface measurement method are the identification of
relevant resources that are part of the attack surface and the estimation of the damage
potential-effort ratio of each such resource. We describe the steps in Section 4.2.1 and
Section 4.2.2, respectively.

4.2.1 Identification of Relevant Resources

In Step 1 of the attack surface measurement method, we identify a system’s entry points
and exit points, channels, and untrusted data items. We also determine the privilege levels
of the entry points and the exit points, the protocols of the channels, the types of the
untrusted data items, and the access rights levels of all the resources.

Entry Points and Exit Points

A direct entry point of a system is a method that receives data items directly from the
system’s environment. As proposed by DaCosta et al. [25], we assume that a method
of a system can receive data items from the system’s environment by invoking specific C
library methods. Hence a method is a direct entry point if the method contains a call to
one of the specific C library methods. For example, a method is a direct entry point if it
contains a call to the read method defined in unistd.h. We identify a set, Input, of
C library methods that a method must invoke to receive data items from the environment.
We determine a system’s methods that contain a call to a method in Input as the system’s
direct entry points.

A direct exit point of a system is a method that sends data items directly to the system’s
environment. We assume that a method can send data items to the system’s environment
by invoking specific C library methods. We identify a set, Output, of C library methods
that a method must invoke to send data items to the environment. We determine a system’s
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Figure 4.1: Steps of our attack surface measurement method for C.
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methods that contained a call to a method in Output as the system’s direct exit points.
Please see Appendix A for the Input and Output sets of methods.

An indirect entry point of a system is a method that receives data items from a direct
entry point. An indirect exit point of a system is a method that sends data items to a direct
exit point. We can not determine the indirect entry points (exit points) in an automated
manner as there is no source code analysis tool that enables us to determine whether a
direct entry pointm1 receives a data item d from the environment and a methodm receives
the data item d from m1, or whether a method m passes a data item d to a direct exit point
m2 and m2 sends the data item d to the environment. We manually determined the indirect
entry points (exit points) in case of the IMAP servers; we did not determine any indirect
entry points (exit points) in case of the FTP daemons.

We could not find a source code analysis tool that enables us to determine whether a
direct entry pointm1 receives a data item d from the environment and a methodm receives
the data item d from m1, or whether a method m passes a data item d to a direct exit point
m2 and m2 sends the data item d to the environment; hence we do not identify the indirect
entry points or the indirect exit points in an automated manner. We leave the identification
of indirect entry points (indirect exit points) as future work.

We also determine the privilege and the access rights level for each entry point and
exit point. On a UNIX system, a process changes its privilege through a set of uid-setting

system calls such as setuid [17]. If a process changes its privilege level from p1 to p2 by
invoking a uid-setting system call, su, then we assume that all methods invoked before su
run with privilege p1 and all methods invoked after su run with privilege p2. For example,
if a process starts with root privilege and then drops privilege by calling setuid, then
all methods that are invoked before setuid have root privilege and all methods that are
invoked after setuid have non-root privilege.

In order to determine the access rights levels, we identify the code locations where
authentication is performed in a system’s codebase. We assume that any method that is
invoked before user authentication takes place has unauthenticated access rights and any
method that is invoked after successful authentication has authenticated access rights.
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We annotate a system’s codebase to indicate the code location where privilege levels
and access rights levels change. We generate the call graph from the annotated code using
cflow [81]. From the call graph, we determine the methods that contain a call to a method
in Input or a method in Output and the privilege and access rights of each such method.
These methods are the direct entry points and direct exit points, respectively. Notice that a
method may run with different privilege levels during different executions of the method.
Similarly, a method may be accessible with multiple access rights levels. We identify such
a method as a direct entry point (direct exit point) multiple times, once per each pair of
privilege level and access rights level.

Channels

We monitor the run time behavior of a system to identify the channels opened by the
systems and to determine the protocol and access rights level of each such channel.

Untrusted Data Items

We also monitor the run time behavior of a system to identify the untrusted data items
accessed by the system and to determine the type and access rights level of each untrusted
data item.

4.2.2 Estimation of a Resource’s Damage Potential-Effort Ratio

In Step 2 of the attack surface measurement method, we quantify the damage potential-
effort ratios of the resources that are part of a system’s attack surface. We assign numeric
values to the six attributes introduced in Section 3.3 to estimate numeric damage potential-
effort ratios.

We impose a total ordering among the privilege levels such that a method running with
a higher privilege level in the total ordering has a higher damage potential. We assign
numeric values to the privilege levels in accordance to the total ordering, i.e., if a privilege
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level, p1, is greater than a privilege level, p2, in the total ordering, then we assign a higher
number to p1 compared to p2. For example, we assume a method running as root has a
higher damage potential than a method running as authenticated user; hence root
> authenticated user in the total ordering and we assigned a higher number to
root than authenticated user. The exact choice of the numeric values is sub-
jective and depends on a system and its environment. In practice, the users of our attack
surface measurement method will assign the numeric values based on their knowledge and
experience of a system and its environment.

Similarly, we assign numeric values to channel protocols, data item types, and access
rights levels. We estimate a resource’s damage potential-effort ratio from the numeric
values assigned to the resource’s damage potential and effort. For example, we estimate a
method’s damage potential-effort ratio from the numeric values assigned to the method’s
privilege and access rights level.

4.3 IMAP Measurement Results

In this section, we demonstrate the use of our attack surface metric by measuring and
comparing the attack surfaces of two popular open source IMAP servers. IMAP provides
a mechanism for email stored on a remote server to be accessed over a network [22].
Users can connect to an IMAP server, authenticate themselves, and perform actions such
as reading and deleting email. IMAP’s ability to let the users access email from more
than one computer has increased IMAP’s popularity. Today open source IMAP servers
are widely used; hence we chose to measure the attack surfaces of two open source IMAP
servers: Courier-IMAP 4.0.1 and Cyrus 2.2.10.

Courier-IMAP server is the IMAP server included in the Courier mail server [47].
Courier-IMAP server is also configurable as a standalone IMAP server. The server uses
the custom Maildir mailbox format for scalability and fast access to mailboxes. The
Courier code base contains 140K lines of code that implements the IMAP daemon, an
authentication library called courier-authlib, and a number of helper libraries and
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tools.

The Cyrus IMAP server was implemented and is maintained by Project Cyrus [23]. It
is designed to be a fast and scalable IMAP server to be used by small to large enterprise
environments. The server uses custom mailbox formats for efficiency, scalability, and ease
of administration. The Cyrus codebase contains 160K lines of code that implements the
IMAP daemon, a set of authentication libraries called the SASL library, and a number
of libraries and auxiliary tools.

We considered only the code specific to the IMAP daemon in our measurements. The
Courier code base contains nearly 33K lines of code specific to the IMAP daemon and the
Cyrus code base contains nearly 34K lines of code specific to the IMAP daemon.

4.3.1 Entry Points and Exit Points

We identified the entry points and exit points of the IMAP servers from their code bases.
We only identified the indirect entry points reachable from the mainmethod in both IMAP
codebases. Hence our measurements are under-approximations of the measure of the at-
tack surfaces.

All the methods in the Cyrus codebase run with a special UNIX user, cyrus, privilege.
The methods are accessible with admin, authenticated user, unauthenticated
user, and anonymous user access rights. The methods in the Courier codebase run
with root and authenticated user privileges. The methods are accessible with
authenticated user and unauthenticated user access rights. The Courier code-
base does not support admin user and anonymous user access rights. We show the
number of direct entry points (DEP), direct exit points (DExP), and indirect entry points
(IEP) for each privilege level and access rights level pair in Table 4.1.

4.3.2 Channels

We observed the run time behavior of the default installations of both IMAP servers to
identify the channels. Both IMAP daemons open a TCP channel on port 143 and an
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Courier

Privilege Access Rights DEP DExP IEP

root unauthenticated 28 17 11
root authenticated 21 10 0
authenticated authenticated 113 28 1

Cyrus

Privilege Access Rights DEP DExP IEP

cyrus unauthenticated 16 17 7
cyrus authenticated 12 21 2
cyrus admin 13 22 2
cyrus anonymous 12 21 2

Table 4.1: The number of entry points and exit points of the IMAP servers (DEP = Direct
Entry Point, DExP = Direct Exit Point, IEP = Indirect Entry Point).

SSL channel on port 993 to listen to user requests. In addition, the Cyrus daemon opens
a TCP channel on port 2000 for users to edit their sieve filters. These channels are
accessible with remote unauthenticated user access rights. The Courier IMAP
daemon opens a local UNIX socket channel to communicate with the authentication
daemon. The Cyrus IMAP daemon opens a local UNIX socket channel to communicate
with the Local Mail Transfer Protocol (LMTP) daemon. These channels are accessible
with local authenticated user access rights. We show the number of channels for
each channel type and access rights pair in Table 4.2.

4.3.3 Untrusted Data Items

Similar to channels, we observed the run time behavior of the default installations of both
IMAP servers to identify the untrusted data items. Both IMAP daemons read or write
persistent data items of file type; both daemons used configuration files, authentication
files, executable files, libraries, lock files, user mail files, and mail metadata files. The files
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Courier

Type Access Rights Count

TCP remote unauthenticated 1
SSL remote unauthenticated 1
UNIX socket local authenticated 1

Cyrus

Type Access Rights Count

TCP remote unauthenticated 2
SSL remote unauthenticated 1
UNIX socket local authenticated 1

Table 4.2: The number of channels opened by the IMAP servers.

Courier Cyrus

Type Access Rights Count Type Access Rights Count

file root 74 file root 50
file authenticated 13 file cyrus 26
file world 53 file world 50

Table 4.3: The number of untrusted data items accessed by the IMAP servers.

of the Courier IMAP daemon can be accessed with root, authenticated user, and
world access rights. The files of the Cyrus IMAP daemon can be accessed with root,
cyrus, and world access rights. Recall that an attacker can use an untrusted data item
in an attack by reading or writing the data item. Hence we identified the read and the write
access rights levels of a file separately; we counted each file twice, once for the read access
rights level and once for the write access rights level. We show the number of untrusted
data items for each data item type and access rights pair in Table 4.3.
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4.3.4 Estimation of the Damage Potential-Effort Ratio

We assigned the following total ordering among the set of privilege levels: root >

cyrus > authenticated > unauthenticated. A method running with cyrus
privilege in the Cyrus IMAP daemon has access to every user’s email files; hence we
assumed a method running as cyrus has higher damage potential than a method run-
ning as authenticated user. We assigned the following total ordering among the set
of access rights levels of the methods: admin > authenticated > anonymous =

unauthenticated. admin users are special users in Cyrus; hence we assumed the at-
tacker spends higher effort to acquire admin access rights compared to authenticated
access rights.

We assigned the following total ordering among the channel types: TCP = SSL =

UNIX socket, i.e., we assumed that each channel has the same damage potential. We
assigned the following total ordering among the access rights levels of the channels:
local authenticated > remote unauthenticated.

Both IMAP daemons have untrusted data items of file type only, hence assigning
a total ordering was trivial. We assigned the following total ordering among the access
rights levels of the data items: root > cyrus > authenticated > world. The
cyrus user is a special user; hence we assumed the attacker spends more effort to acquire
cyrus access rights compared to authenticated access rights.

We assigned the numeric values to the attributes based on our knowledge of the IMAP
servers and UNIX security. We show the numeric values in Table 4.4.

4.3.5 Attack Surface Measurements

In Step 3 of the attack surface measurement method, we estimated the total contribution
of the methods, the total contribution of the channels, and the total contribution of the data
items to the attack surfaces of both IMAP daemons. From Table 4.1 and Table 4.4, the total
contribution of the methods of Courier is ( 56 × (5

1
) + 30 × (5

3
) + 142 × (3

3
)) = 522.00.

From Table 4.2 and Table 4.4, the total contribution of the channels of Courier is (1× (1
1
) +
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Method Privilege Numeric Value Access Rights Numeric Value

root 5 admin 4

cyrus 4 authenticated 3

authenticated 3 anonymous 1

unauthenticated 1 unauthenticated 1

Channel Type Numeric Value Access Rights Numeric Value

TCP 1 local authenticated 4

SSL 1 remote unauthenticated 1

UNIX socket 1

Data Item Type Numeric Value Access Rights Numeric Value

file 1 root 5

cyrus 4

authenticated 3

world 1

Table 4.4: Numeric values assigned to the values of the attributes.

1 × (1
1
) + 1 × (1

4
) ) = 2.25. From Table 4.3 and Table 4.4, the total contribution of the data

items of Courier is (74 × (1
5
) + 13 × (1

3
) + 53 × (1

1
) ) = 72.13. Hence the measure of the

Courier IMAP daemon’s attack surface is the triple 〈522.00, 2.25, 72.13〉. Similarly, the
measure of the Cyrus IMAP daemon’s attack surface is the triple 〈383.60, 3.25, 66.50〉.
We show the measurement results in Figure 4.2.

The attack surface metric tells us that the Cyrus IMAP daemon is more secure along
the method dimension and data dimension whereas the Courier IMAP daemon is more
secure along the channel dimension. The measurement of the attack surface along three
dimensions offers a design choice to the users of our metric. For example, keeping the
attack surface measurement separated along three different dimensions, rather than coa-
lescing the numbers into one, lets system administrators choose a dimension appropriate
for their need.

In order to choose one IMAP daemon over another, we first determine the dimension
of the attack surface that presents more risk using our knowledge of the IMAP daemons
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Figure 4.2: Attack surface measurements of the IMAP servers.

and the operating environment; we then choose the IMAP daemon that is more secure
along that dimension. For example, if we were concerned about privilege elevation on the
host running the IMAP daemon, then the method dimension presents more risk and the
attack surface metric suggests that we would choose the Cyrus daemon over the Courier
daemon. Similarly, if we were concerned about the number of open channels on the host
running the IMAP daemon, then the channel dimension presents more risk and we would
choose the Courier daemon. If we were concerned about the safety of email files, then the
data dimension presents more risk and we would choose the Cyrus daemon.

4.4 FTP Measurement Results

We also measured and compared the attack surfaces of two open source FTP daemons:
ProFTPD 1.2.10 and Wu-FTPD 2.6.2. Our choice of the FTP daemons was guided by
two factors: popularity and availability of source code. ProFTPD was implemented and
is maintained by the ProFTPD project group [84]. Wu-FTPD was implemented and is
maintained at the University of Washington [40]. The ProFTP codebase contains 28K lines
of C code and the Wu-FTP codebase contains 26K lines of C code; we only considered
code specific to the FTP daemon.
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4.4.1 Entry Points and Exit Points

The methods in the ProFTP codebase run with root and a special UNIX user, proftpd,
privilege. The methods are accessible with root, authenticated user, unauth-
enticated user, and anonymous user access rights. The methods in the Wu-FTP
codebase run with root and authenticated user privilege. The methods are acces-
sible with authenticated user, anonymous user, and guest user access rights. We
show the number of direct entry points (DEP) and direct exit points (DExP) for each priv-
ilege level and access rights level pair in Table 4.5. We did not identify any indirect entry
points (exit points) due to the lack of an adequate source code analysis tool. Hence our
measurements are under-approximations of the measure of the attack surfaces.

ProFTPD

Privilege Access Rights DEP DExP

root root 8 8
root authenticated 12 13
root unauthenticated 13 14
proftpd authenticated 6 4
proftpd unauthenticated 13 6
proftpd anonymous 6 4

Wu-FTPD

Privilege Access Rights DEP DExP

root authenticated 9 2
root unauthenticated 30 9
authenticated authenticated 11 3
authenticated anonymous 11 3
authenticated guest 27 14

Table 4.5: The number of entry points and exit points of the FTP daemons (DEP = Direct
Entry Point, DExP = Direct Exit Point).
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4.4.2 Channels

We monitored the run time behavior of the default installations of both FTP daemons to
identify the channels. Both FTP daemons open a TCP channel so that FTP clients can
communicate with the daemons. These channels are accessible with remote unauth-
enticated user access rights. We show the number of channels for each protocol and
access rights pair in Table 4.6.

ProFTPD

Protocol Access Rights Count

TCP remote unauthenticated 1

Wu-FTPD

Protocol Access Rights Count

TCP remote unauthenticated 1

Table 4.6: The number of channels opened by the FTP daemons.

4.4.3 Untrusted Data Items

We also monitored the run time behavior of the default installations of both FTP dae-
mons to identify the untrusted data items. Both FTP daemons read or write persistent
data items of file type; both daemons used configuration files, authentication files, ex-
ecutable files, libraries, and log files. The files of ProFTPD can be accessed with root,
proftpd user, and world access rights. The files of Wu-FTPD can be accessed with
root, authenticated user, and world access rights. We show the number of un-
trusted data items for each data item type and access rights pair in Table 4.7.

4.4.4 Estimation of the Damage Potential-Effort Ratio

We assigned the following total ordering among the set of privilege levels: root >

proftpd> authenticated. A method running with proftpd privilege in ProFTPD
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ProFTPD Wu-FTPD

Type Access Rights Count Type Access Rights Count

file root 12 file root 23
file proftpd 18 file auth 12
file world 12 file world 9

Table 4.7: The number of untrusted data items accessed by the FTP daemons.

has access to all the files on the FTP server; hence we assumed a method running as
proftpd user has higher damage potential than a method running as authenticated
user. We assigned the following total ordering among the set of access rights levels of
the methods: root > authenticated > anonymous = unauthenticated =

guest.

Both FTP daemons have channels with only TCP as the protocol and remote unauth-
enticated access rights; hence assigning a total ordering was trivial. Also, both FTP
daemons have untrusted data items of file type only and hence assigning a total ordering
was trivial.

We assigned the following total ordering among the access rights levels of the data
items: root > proftpd > authenticated > world. The proftpd user is a spe-
cial user, hence we assumed the attacker spends more effort to acquire proftpd access
rights compared to authenticated access rights.

We assigned the numeric values to the attributes based on our knowledge of the FTP
daemons and UNIX security. We show the numeric values in Table 4.8.

4.4.5 Attack Surface Measurements

In Step 3 of the attack surface measurement method, we estimated the total contribution
of the methods, the total contribution of the channels, and the total contribution of the data
items to the attack surfaces of both FTP daemons. From Table 4.5 and Table 4.8, the total
contribution of the methods of ProFTPD is (16 × (5

5
) + 25 × (5

3
) + 10 × (4

3
) + 19 × (4

1
)
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Method Privilege Value Access Rights Value

root 5 root 5
proftpd 4 authenticated 3
authenticated 3 anonymous 1

unauthenticated 1
guest 1

Channel Protocol Value Access Rights Value

TCP 1 remote unauth 1

Data Item Type Value Access Rights Value

file 1 root 5
proftpd 4
authenticated 3
world 1

Table 4.8: Numeric values assigned to the values of the attributes.

+ 10 × (4
1
)) = 321.9. From Table 4.6 and Table 4.8, the total contribution of the channels

of ProFTPD is 1× (1
1
) = 1. From Table 4.7 and Table 4.8, the total contribution of the

data items of ProFTPD is (12 × (1
5
) + 18 × (1

4
) + 12 × (1

1
)) = 18.9. Hence the measure

of ProFTPD’s attack surface is the triple 〈312.99, 1.00, 18.90〉. Similarly, the measure of
Wu-FTPD’s attack surface is the triple 〈392.33, 1.00, 17.60〉. We show the attack surface
measurements in Figure 4.3.

The attack surface metric tells us that ProFTPD is more secure along the method di-
mension, ProFTPD is as secure as Wu-FTPD along the channel dimension, and Wu-FTPD
is more secure along the data dimension. Similar to the IMAP servers, in order to choose
one FTP daemon over another, we first determine the dimension of the attack surface that
presents more risk using our knowledge of the FTP daemons and the operating environ-
ment and then choose the FTP daemon that is more secure along that dimension.
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Figure 4.3: Attack surface measurements of the FTP daemons.

4.5 Parameter Sensitivity Analysis

A key step in our attack surface measurement method is the estimation of the damage
potential-effort ratio. In our current method, we rely on the the users of our metric to
estimate a resource’s damage potential-effort ratio; we assume that the users use their
knowledge of a system and its environment to impose a total ordering among the values
of an attribute and then to assign numeric values according to the total ordering. Since nu-
meric value assignment is dependent on domain knowledge, we used parameter sensitivity
analysis to provide guidelines to the users for choosing appropriate numeric values [86].

In our analysis, we assumed that the users already have imposed total orderings among
the values of the attributes. We leave the provision of guidelines for imposing a total
ordering as future work; we discuss this in details in Chapter 8.

4.5.1 Method

The attack surface measurement along the method dimension depends on the following
three parameters: the number of entry points and exit points, the numeric values assigned
to the privilege levels, and the numeric values assigned to the access rights levels. Given
two systems, either both systems have comparable numbers of entry points and exit points
(e.g., ProFTPD = 107 and Wu-FTPD = 109) or the number of entry points and exit points
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of one system differs significantly from the other system (e.g., Cyrus = 147 and Courier =
239). For both these cases, we analyzed the effects of the privilege numeric values and the
access rights numeric values on the attack surface measurement.

We studied the effects on the measurement as we increase the difference in the nu-
meric values assigned to the attributes. To keep our analysis simple, we assumed that
the difference, diff, in the numeric values assigned to successive privilege and access
rights levels is uniform. For example, the difference in the numeric values assigned to
authenticated and proftpd is the same as the difference in the numeric values
assigned to proftpd and root. We assigned a fixed numeric value, 3, to the lowest
privilege level authenticated. We then assigned the numeric value (3 + diff) to
proftpd and the numeric value (3 + 2 * diff) to root. We similarly assigned a fixed
numeric value, 1, to the lowest access rights level unauthenticated and then assign
numeric values to the rest of the access rights levels. We observed the effects of changing
the value of diff from a low value of 1 to a high value of 20.

FTP Measurements Analysis

We show the effects of changing the value of diff on the attack surface measurements
of the FTP daemons in Figure 4.41. For example, when the privilege difference is 2 and
the access rights difference is 17, ProFTPD’s attack surface measurement is 349.7 and
Wu-FTPD’s attack surface measurement is 444.6. Hence Wu-FTPD has a larger attack
surface measurement than ProFTPD. Similarly, when the privilege difference is 17 and
the access rights difference is 6, ProFTPD’s attack surface measurement is 1785.3 and
Wu-FTPD’s attack surface measurement is 1672.1. Hence Wu-FTPD has a smaller attack
surface measurement than ProFTPD.

We show the attack surface measurements as a projection onto a two dimensional plane
in Figure 4.5. In the projection, we only see the FTP daemon that has a larger attack
surface measurement. For example, when the privilege difference is 2 and the access

1We expect the measurements to form a three dimensional plane; Figure 4.4, however, shows the mea-
surements to form a curved surface. This is an artifact of Gnuplot’s rendering.
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Figure 4.4: Attack surface measurements of the FTP daemons along the method dimen-
sion.

rights difference is 17, Wu-FTPD has a larger attack surface than ProFTPD and hence we
see Wu-FTPD in the projection. Similarly, when the privilege difference is 17 and the
access rights difference is 6, we see ProFTPD in the projection.

From Figure 4.5, when the privilege difference is low (1-2), Wu-FTPD has a larger
attack surface measurement for all possible values of the access rights difference. When
the privilege difference is low, the access rights values do not matter; the number of entry
points and exit points is the dominating parameter. Since Wu-FTPD has a larger number
of entry points and exit points, it has a larger attack surface measurement irrespective of
the access rights difference.

When the privilege difference is high (15-20), ProFTPD has a larger attack surface
measurement for all possible values of the access rights difference. The proftpd privi-
lege level contributes more in case of ProFTPD compared to the authenticated priv-
ilege level of Wu-FTPD. The access rights values do not matter; the privilege values are
the dominating parameter.

61



’ProFTPD’
’Wu-FTPD’

 0  5  10  15  20
Privilege Difference

 0

 5

 10

 15

 20

Access 
Rights

 Difference

Figure 4.5: Projection of the measurements of the FTP daemons.

When the privilege difference is medium (3-14), the access rights values do matter.
ProFTPD has a larger number of methods accessible with authenticated access rights
than the number of methods accessible with unauthenticated access rights. Wu-
FTPD has a smaller number of methods accessible with authenticated access rights
than the number of methods accessible with unauthenticated access rights. Hence
with increasing access rights difference, the methods of ProFTPD make smaller contri-
bution to the attack surface compared to the methods of Wu-FTPD. Hence ProFTPD has
a larger measurement for lower access rights difference and Wu-FTPD has a larger mea-
surement for higher access rights difference.

IMAP Measurements Analysis

We show the attack surface measurements of the IMAP servers as a projection onto a two
dimensional plane in Figure 4.6. In the projection, we only see the IMAP server that has a
larger attack surface measurement.

From Figure 4.6, Courier has a larger attack surface measurement for almost all pos-
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Figure 4.6: Projection of the measurements of the IMAP servers.

sible privilege difference and access rights difference. The privilege values and access
rights values do not matter; the number of entry points and exit points is the dominating
parameter. Courier has a significantly larger number of entry points and exit points than
Cyrus; hence Courier has a larger attack surface measurement.

Observations

Our choice of the numeric values should be such that both the privilege values and the
access rights values affect the outcome of the attack surface measurements comparison.
The FTP measurements analysis shows that if both systems have comparable numbers of
entry points and exit points, then the access rights values do not affect the measurements
if the privilege difference is low or high. Hence we should choose a medium difference
for the privilege values. The IMAP measurement analysis shows that if one system has a
significantly larger number of entry points and exit points than the other, then no choice of
the privilege difference or the access rights difference affects the measurement. Also, if we
choose a medium or a high difference for the privilege values, then we should not choose

63



a low difference for the access rights values; otherwise the privilege values will dominate
the access rights values in the damage potential-effort ratio. Hence these two observations
combined suggest that the users of our metric should choose a medium difference for the
privilege values and either a medium or a high difference for access rights values.

4.5.2 Channel

We performed a similar analysis for the measurements along the channel dimension by
changing the difference in the numeric values assigned to the protocols and the access
rights levels. ProFTPD and Wu-FTPD open the same set of channels; hence ProFTPD and
Wu-FTPD have the same measurements for all possible differences in the protocol values
and the access rights values. The set of channels opened by Courier is a subset of the
channels opened by Cyrus; hence Cyrus has a larger attack measurement than Courier for
all possible differences in the protocol values and the access rights values.

Both the FTP measurements and the IMAP measurements show that similar systems
open comparable sets of channels, i.e., either they open the same set of channels or the set
of channels opened by one system is a subset of the other. Thus we do not need to impose
a total ordering and assign numeric values to the attributes; we can determine whether
one system has a larger attack surface along the method dimension from the number of
channels opened by the systems. If the channels opened by the system, however, are not
comparable, then we should follow the suggestions for the method dimension (discussed
in Section 4.5.1) to assign numeric values to the protocols and the access rights levels.

4.5.3 Data

We performed a similar analysis for the measurements along the data dimension by chang-
ing the difference in the numeric values assigned to the data types and the access rights
levels. ProFTPD has a larger attack surface measurement than Wu-FTPD for all possible
differences in the numeric values assigned to the data types and the access rights levels.
The number of files accessed by ProFTPD (42) is comparable to the number of files ac-
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cessed by Wu-FTPD (44). Wu-FTPD, however, has a smaller attack surface measurement
because it has a large number of files accessible with the root access rights. An attacker
spends the maximum effort to obtain the root access rights level; hence we assign the
highest numeric value to the root access rights level. Thus the files accessible with the
root access rights level have the lowest damage potential-effort ratio and make the least
contribution to the attack surface measurement.

Courier has a larger attack surface measurement than Cyrus for all possible differences
in the numeric values assigned to the data types and the access rights levels. Cyrus and
Courier access comparable numbers of files. The larger attack surface measurement of
Courier, however, is due to a larger number of files accessible with the unauthentica-
ted access rights. An attacker spends the least effort to obtain the unauthenticated
access rights level; hence we assign the lowest numeric value to the unauthenticated
access rights level. Thus the files accessible with the unauthenticated access rights
level have the highest damage potential-effort ratio and make the highest contribution to
the attack surface measurement.

Both the FTP and the IMAP measurements show that the systems access data items of
only file type. Hence assigning numeric values to the data types is trivial. If a system,
however, accesses data items of other type, then we should follow the suggestions for the
method dimension (discussed in Section 4.5.1) to assign numeric values to the data types.
We should also follow the same suggestions for assigning numeric values to the access
rights levels.
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Chapter 5

Empirical Studies for Validation

5.1 Introduction

A key challenge in security metrics research is the validation of a metric. Validating a
software attribute’s measure is hard in general [51]; also, there is no consensus in the
community on a validation framework [89, 66, 12, 104, 107, 51, 74, 52]. Security is
a software attribute that is hard to measure; hence validating a security measure is even
harder. There is not much prior work on validating security measurements and metrics. In
this chapter, we conduct three empirical studies to validate our attack surface metric. Our
studies are exploratory in nature and open up avenues for future work, which we discuss
in Chapter 8.

Our empirical studies are inspired by the software engineering research community’s
approaches of validating software metrics [30, 12]. In practice, validation approaches are
based on distinguishing measures from prediction systems; measures are used to numer-
ically characterize software attributes whereas prediction systems are used to predict the
values of software attributes. For example, lines of code (LOC) is a measure of software
“length”; the measure becomes a prediction system if we use LOC to predict software
“complexity.” A software measure is validated by establishing that the measure is a proper
numerical characterization of an attribute; Kitchenham, Pfleeger, and Fenton introduce
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concepts needed for validating a software measure and recommend the use of both the-
oretical and empirical approaches for validation [51]. Similarly, prediction systems are
validated by establishing their accuracy via empirical means.

Our attack surface metric plays a dual role: the metric is a measure of a software
attribute, i.e., the attack surface and also a prediction system to indicate the security risk
of software. Hence we took a two-step approach for validation. First, we validated the
measure by validating our attack surface measurement method. Second, we validated the
prediction system by validating attack surface measurements. In general, any software
security metric is likely to have two components: a software measure and a prediction
system. Hence we recommend the two-step validation approach for software security
metrics.

5.1.1 Validating a Software Measure

We conducted two empirical studies to validate our measurement method: a statistical
analysis of data collected from Microsoft Security Bulletins (MSB) (Section 5.2) and an
expert user survey (Section 5.3). Our approach is motivated by the notion of convergent

evidence in Psychology 1 [14, 42]; since each study has its own strengths and weaknesses,
the convergence in the studies’ findings enhances our belief that the findings are valid
and not methodological artifacts [95]. Also, the statistical analysis is with respect to Mi-
crosoft Windows whereas the expert survey is with respect to Linux. Hence our validation
approach is agnostic to operating system and system software.

Our validation approach conforms to Kitchenham et al.’s validation concepts. Kitchen-
ham et al. suggest that we confirm the following to establish the validity of a measure: (1)
attribute validity, i.e., the attributes we are interested in are exhibited by software, (2) unit

validity, i.e., the measurement unit is appropriate for an attribute, (3) instrument validity,
i.e., the model underlying a measurement instrument is valid, and (4) protocol validity,

1Convergent evidence is used when there is no single line of strong evidence supporting a claim; if there
are several lines of weak or indirect evidence that support the claim and trend in the same direction, then all
combined they support the claim more than any single line of evidence.
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i.e., an appropriate measurement protocol is used.

In case of the attack surface metric, establishing attribute validity is akin to showing
that the three dimensions of the attack surface and the six attributes used for estimating
damage potential and effort are appropriate. We established theoretical attribute validity in
our I/O automata model and empirical validity using both our empirical studies. We do not
use explicit units in attack surface measurements; the attack surface measurement’s unit,
however, is the same as the damage potential-effort ratio’s unit. Hence establishing unit
validity is akin to showing that a resource’s damage potential-effort ratio is the resource’s
contribution to the attack surface measurement. We used the expert survey to establish
unit validity. Our attack surface measurement method is based on our formal I/O automata
model; the formal model establishes instrument validity. Hence instrument validity is in-
herent in our measurement method. Kitchenham et al. suggest that a valid measurement
protocol must be unambiguous and self-consistent and prevent problems such as double
counting; any protocol that satisfies the criteria is validated through peer acceptance rather
than any theoretical or empirical approach. Our measurement method satisfies Kitchen-
ham et al.’s criteria of a valid measurement protocol; hence protocol validity is inherent in
our measurement method.

Table 5.1.1 summarizes our validation approaches and shows the mapping of our ap-
proaches to Kitchenham et al.’s validation framework.

Step Validity Theoretical Empirical

Software Measure

Attribute Validity IO Automata Model
Expert Survey, MSB
Analysis

Unit Validity Expert Survey
Instrument Validity IO Automata Model

Protocol Validity

Prediction System Prediction Validity IO Automata Model
Patch Analysis, Anec-
dotal Evidence

Table 5.1: Summary of our validation approaches.
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5.1.2 Validating a Prediction System

We took two different approaches to validate the prediction system of the attack surface
metric. First, we formally showed that a larger attack surface leads to a larger number
of potential attacks on software in our I/O automata model (Chapter 3). Second, we
established a correlation between attack surface measurements and patches of security
vulnerabilities in software. A patch of a software system improves the system’s secu-
rity by removing an exploitable vulnerability from the system; hence we expect the patch
to reduce the system’s attack surface measurement. We demonstrated that a majority of
patches in open source software reduce the attack surface measurement (Section 5.4). We
also present anecdotal evidence from software industry illustrating the effectiveness of at-
tack surface reduction in mitigating security risk of software (Section 5.5). Table 5.1.1
summarizes our approaches for validating the attack surface metric’s prediction system.

5.1.3 Liu and Traore’s Independent Validation Framework

Liu and Traore introduce a theoretical validation framework for security measures and
metrics [56, 57]. Their validation framework is based on software security design princi-
ples accepted by the community and is independent of the two-step validation approach
introduced earlier. Liu and Traore introduce a set of measurement properties of a valid
security metric and demonstrate that the attack surface metric possesses the properties;
hence the attack surface metric is a valid metric in their framework. Liu and Traore’s the-
oretical validation complements our two-step validation of the attack surface metric. We
discuss Liu and Traore’s theoretical validation of the attack surface metric in Section 5.6.

5.2 Statistical Analysis of Microsoft Security Bulletins

Our attack surface measurement method is based on the following three key hypotheses;
hence we validated the three hypotheses in order to validate the method.

1. Methods, channels, and data are the dimensions of a system’s attack surface.
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2. The six resource attributes (a method’s privilege and access rights, a channel’s pro-
tocol and access rights, and a data item’s type and access rights) are indicators of
damage potential and effort.

3. A resource’s damage potential-effort ratio is an indicator of how likely the resource
is going to be used in attacks.

In our first empirical study, we used a statistical analysis of data collected from Mi-
crosoft Security Bulletins to validate the hypotheses. An MSB describes an exploitable
vulnerability present in a Microsoft software product [19]. The bulletin mentions the soft-
ware’s code (methods in our framework) that contains the vulnerability and the resources
(communication channels, data items, or a combination of both) that an attacker has to
use to exploit the vulnerability. Hence to validate hypothesis 1, we used the data collected
from MSBs to show that a software system’s methods, channels, and data items are used
in attacks on the system.

Microsoft assigns a severity rating to each bulletin based on their assessment of the
impact of the vulnerability’s exploitation on the software’s users and the difficulty of ex-
ploitation [20]. There are four levels of severity ratings: Critical, Important, Moderate, and
Low. The impact of exploitation is equivalent to damage potential in our framework and
the difficulty of exploitation is equivalent to attacker effort. Each bulletin also mentions
the six resource attributes that we use to estimate damage potential and attacker effort
in our framework. Hence to validate hypothesis 2, we used the data collected from the
MSBs to establish statistically significant correlations between the severity rating and the
six attributes.

The bulletins did not have any data that are relevant to a resource’s likelihood of being
used in attacks. Hence we could not use the MSBs to validate hypothesis 3. We used an
expert survey described in Section 5.3 to validate hypothesis 3.
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5.2.1 Data Collection

We collected data from 110 bulletins published over a period of two years from January
2004 to February 2006. Our data collection was a manual process based on our interpre-
tation of a bulletin’s description and hence is subject to human error. From the description
contained in each bulletin, we identified the resources (methods, channels, and data items)
that the attacker has to use to exploit the vulnerability described in the bulletin. For each
such resource, we also identified the values of the resource’s attributes that indicate the
resource’s damage potential and effort; we identified the methods’ privilege levels and
access rights levels, the channels’ protocols and access rights levels, and the data items’
types and access rights levels. We also identified each bulletin’s severity rating. Many bul-
letins contained multiple vulnerabilities and many vulnerabilities were assigned different
ratings for different versions of the Windows operating system. Hence the 110 bulletins
resulted in 202 observations.

5.2.2 Hypothesis 1

Out of the 202 observations, 202 observations mention methods, 170 observations men-
tion channels, and 108 observations mention data items as the resources used in exploiting
the vulnerabilities reported in Microsoft security bulletins (Table 5.2). These findings sug-
gest that methods, channels, and data items are the resources used in attacks on software
systems and hence are the dimensions of a system’s attack surface.

Resource Count

Methods 202
Channels 170
Data 108

Table 5.2: Number of observations that mention methods, channels, and data.

The data does not rule out the existence of other dimensions of the attack surface. We,
however, did not find any other resource types mentioned in the bulletins. We could assign
one of the three types to all resources mentioned in the bulletins.
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5.2.3 Hypothesis 2

A bulletin’s severity rating depends on Microsoft’s assessment of the impact of exploiting
the vulnerability described in the bulletin and the difficulty of exploitation. The higher the
impact, the higher the rating; the lower the difficulty, the higher the rating. The impact and
the difficulty of exploitation are equivalent to the damage potential and the attacker effort
in our measurement method, respectively. Hence we expect the severity rating to depend
on the six attributes that are indicators of damage potential and attacker effort; we also
expect the severity rating to increase with an increase in the value of an attribute that is an
indicator of damage potential, e.g., method privilege, and to decrease with an increase in
the value of an attribute that is an indicator of attacker effort, e.g., method access rights.
In other words, we expect an indicator of damage potential to be a significant predictor of
the severity rating and to be positively correlated with the severity rating. Similarly, we
expect an indicator of attacker effort to be a significant predictor of the severity rating and
to be negatively correlated with the severity rating.

We used ordered logistic regression analysis to test for the significance of the attributes
in explaining the severity rating [106]. Logistic regression uses maximum likelihood es-
timates (MLE) to compute the regression coefficients; MLE seeks to maximize the like-
lihood of the observed values of the dependent variable, i.e., the severity rating, being
predicted from the observed values of the independents variables, i.e., the resource at-
tributes. A positive coefficient indicates a positive correlation between an attribute and
the severity rating, and a negative coefficient indicates a negative correlation. We used
ordered logistic regression because the dependent variable, i.e., the severity rating, is an
ordinal variable, i.e., the values assigned to the severity rating can be ordered as Critical
> Important > Medium > Low.

We used a two sided z-test’s p-value to determine if an attribute is a significant predic-
tor of the severity rating. The z-test is used to test the null hypothesis that an attribute’s
regression coefficient is zero and hence the attribute is not a significant predictor of the
severity rating. We used a two sided z-test because the regression coefficients can be ei-
ther positive or negative. A p-value of less than 0.05 indicates statistical significance and
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thus that an attribute is a significant predictor of the severity rating.

We below summarize our findings that suggest that the six attributes are indicators of
damage potential and effort.

1. A method’s privilege is a significant predictor of the severity rating and is positively
correlated with the rating (Table 5.3).

2. A channel’s protocol (Table 5.4) and a data item’s type (Table 5.5) are significant
predictors of the severity rating. We could not determine the correlation between
these two attributes and the severity rating.

3. A method’s access rights (Table 5.3, row 2), a channel’s access rights (Table 5.4,
row 4), and a data item’s access rights (Table 5.5, row 6) are significant predictors
of the severity rating and are negatively correlated with the severity rating.

We assigned numeric values to the six attributes and the severity rating to generate a
data set for performing ordered logistic regression. We imposed total orderings among the
method access rights levels, channel access rights levels, data item access rights levels,
and the severity ratings and we assigned numeric values according to the total ordering;
we assigned numeric values on an ordinal scale. We, however, could not impose a total
ordering among channel protocols. Hence we assigned numeric values on a nominal scale,
i.e., the values are useful only for classification and not for ordering [30]. Assignment of
nominal values implies that we considered each protocol to be an attribute on its own
instead of considering channel protocol as one attribute corresponding to all protocols.
Since nominal values are not ordered, we cannot increase or decrease them; hence we
cannot determine a positive or a negative correlation with the severity rating.

In case of the data items, 108 observations mentioned data items of only the file
type. Since all these observations have the same numeric value for the data type attribute,
our initial logistic regression analysis did not include the data type attribute in the analysis.
Hence we identified each data item’s file format (e.g., doc and html) and assigned numeric
values to the file formats on a nominal scale. We considered each file format to be an
attribute on its own instead of considering data item type as one attribute.
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Methods

Attribute Coefficient Standard Error p-value

Privilege 0.948 0.236 p < 0.001
Access Rights -0.584 0.110 p < 0.001

Table 5.3: Significance of the method privilege and access rights.

Channels

Attribute Coefficient Standard Error p-value

SMTP 2.535 0.504 p < 0.001
TCP 0.957 0.466 p = 0.040
Pipe 0.948 0.574 p = 0.099
Access Rights -0.312 0.109 p = 0.004

Table 5.4: Significance of the channel protocol and access rights.

Data Items

Attribute Coefficient Standard Error p-value

HTML -0.651 0.263 p = 0.013
DHTML -0.589 0.437 p = 0.177
ActiveX 1.522 0.480 p = 0.002
WMF 46.314 2.58e+09 p = 1.000
Doc -1.123 0.462 p = 0.015
Access Rights -0.310 0.078 p < 0.001

Table 5.5: Significance of the data item type and access rights.
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From Table 5.3, the privilege attribute’s positive coefficient shows that privilege is pos-
itively correlated with the severity rating. The p-value shows that privilege is a significant
predictor of the severity rating. Similarly, access rights is negatively correlated with the
severity rating and is a significant predictor of the severity rating.

We identified the top three frequently mentioned protocols in the data set and tested
for the significance of the three protocols with respect to other protocols in explaining
the severity rating. We show the results in Table 5.4. The p-values show that both SMTP
and TCP are significant and pipe is insignificant in explaining the severity rating. Since
two of the three protocols are significant, the finding suggests that channel protocol is a
significant predictor of the severity rating. Note that the signs of the regression coefficients
do not imply any correlation with the severity rating as we assigned nominal values to
channel protocols. Table 5.4 also shows that similar to method access rights, channel
access rights is negatively correlated with the severity rating and is a significant predictor
of the severity rating.

We identified the top five frequently mentioned file formats in the data set and tested
for the significance of the five formats with respect to the other formats in explaining
the severity rating. We show the results in Table 5.5. The p-values show that HTML,
ActiveX, and Doc are significant and DHTML and WMF are insignificant in explaining the
severity rating. The findings suggest that file format is a significant predictor of the severity
rating and hence data item type is a significant predictor of the severity rating. Similar to
channel protocols, the signs of the regression coefficients do not imply any correlation
with the severity rating. Table 5.5 also shows that similar to method access rights and
channel access rights, data access rights is negatively correlated with the severity rating
and is a significant predictor of the severity rating.

5.3 Expert User Survey

Statistical survey is a widely used technique in social and decision sciences [92, 85, 31].
A survey is an efficient way to collect a wide range of information from a large number of
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participants; we can measure the participants’ perception, attitude, beliefs, and behaviors
using surveys.

Use of surveys and user studies for empirical validation is not new in software en-
gineering research [73, 50, 16, 67]. We conducted an expert user survey as our second
empirical study for two reasons. First, we wanted to find out the perception of potential
users of our metric. The knowledge would help us identify improvements to the metric
to make the metric more useful and widely accepted in practice. Second, as discussed in
the previous section, we did not find an existing data set that is relevant to a resource’s
likelihood of being used in attacks. Hence we collected relevant data from the survey to
validate hypothesis 3. We also validated the other two hypotheses using the survey data.

Software developers and software consumers are two potential user groups of our met-
ric. System administrators are examples of software consumers; they can use attack sur-
face measurements to compare competing and alternative software. Hence we conducted
an email survey of expert Linux system administrators to know their perception of the
metric. We also collaborated with software developers and and got their feedback on im-
proving the metric; we discuss the collaboration in Chapter 6.

5.3.1 Subjects

We identified twenty system administrators as the subjects of our survey. We chose the
subjects from diverse backgrounds to avoid any bias: fifteen of them work in ten uni-
versities, four of them work in four corporations, and one works in a government agency.
Nineteen of the subjects are geographically distributed over the US and one is based in Eu-
rope. We also chose experienced system administrators who were knowledgeable about
software security in order to obtain reliable responses. Six of the subjects have 2-5 years of
full time experience of managing Linux systems; eleven, 5-10 years of experience, and the
remaining three, more than 10 years of experience. The subjects have installed and main-
tained software such as web servers, IMAP servers, and database servers on Linux. The
subjects either have implemented or possess the knowledge to implement software attacks
such as buffer overflow exploitation, format string exploitation, and cross-site scripting
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attacks.

5.3.2 Questionnaire

The survey questionnaire consisted of six explanatory questions. We designed the ques-
tions to measure the subjects’ attitude about the steps in our attack surface measurement
method. The first five questions asked the subjects to indicate their degree of agreement
or disagreement with the steps in our measurement method. We also asked the subjects to
explain the reasons behind their choices and to suggest alternative ways to carry out the
steps in our method.

We used the last question to collect information about the experience and expertise
of our subjects. We used the information to avoid self-selection bias, i.e., the subjects
incorrectly consider themselves expert system administrators without relevant experience
or expertise. We analyzed the responses from only those system administrators who had at
least two years of experience in system administration, had installed and maintained many
software applications, and were knowledgable about attacks on Linux software.

The subjects indicated their attitude toward the steps of our measurement method on
a five-point Likert scale [54]. The Likert scale is the most commonly used psychometric
response scale in survey research [85]. A five-point Likert scale has five categories for
indicating the degree of agreement: strongly agree, agree, neither agree or disagree, dis-
agree, and strongly disagree. The bipolar scaling nature of the Likert scale allows us to
measure both positive and negative responses.

We conducted six rounds of pretesting the questionnaire to identify and remove leading
questions, ambiguous terms, and overall confusing questions from the questionnaire [92].
After each round of pretesting, we interviewed the participant and refined our questions
based on the participants’ feedback. Please see Appendix B for the questionnaire.
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5.3.3 Data Collection and Analysis

We cannot assume that the subjects of our survey consider all pairs of adjacent categories
on the Likert scale to be equidistant. Hence the data collected from the subjects’ responses
are ordinal data. Ordinal data is analyzed using descriptive techniques such as collecting
summary statistics in the form of median, mode, percentile, and frequency and collating
the data into summary graphical tools such as frequency tables, bar charts, and pie charts.

Likert scale responses may suffer from central tendency bias, i.e., subjects may avoid
using extreme response categories such as “strongly agree”. Hence for each question, we
combined the “strongly agree” and the “agree” responses to an “agree (strongly or other-
wise)” category and the “strongly disagree” and the “disagree” responses to a “disagree
(strongly or otherwise)” category. We computed the proportion of the subjects who agree
(strongly or otherwise), disagree (strongly or otherwise), and are neutral with the steps in
our measurement method.

We performed one sample t-tests to determine the statistical significance of the survey
responses. We used the one sample t-test to test the null hypothesis that the mean of a
survey question’s Likert scale responses is “neutral”. The one sample t-test computes the
mean of the Likert scale responses obtained from the subjects and compares the mean with
the mean given in the null hypothesis. We chose a p-value of 0.05 as the threshold; hence
responses with p-values less than 0.05 are statistically significant.

5.3.4 Results and Discussion

We below summarize the findings of the survey.

1. Methods, channels, and data are the dimensions of a system’s attack surface (Table
5.6).

2. A resource’s damage potential-effort ratio is an indicator of the likelihood of the
resource being used in attacks (Table 5.7).
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3. A method’s privilege is an indicator of damage potential (Table 5.8, row 1) and a
method’s access rights (Table 5.8, row 4), a channel’s access rights (Table 5.8, row
5) , and a data item’s access rights (Table 5.8, row 6) are indicators of attacker effort.

4. The findings are not conclusive with respect to channel protocol (Table 5.8, row 2)
and data item type (Table 5.8, row 3) as being indicators of damage potential.

Our first set of questions probed the subjects about their perception of our choice of
methods, channels, and data as the dimensions of the attack surface. We asked the subjects
whether a system’s methods, channels, and data can be used in attacks on the system. We
show the percentage of the subjects who agree, disagree, and neither agree or disagree with
our choice in Table 5.6. The findings show that a majority of the subjects agree with our
choice of the dimensions; the p-values show that the findings are statistically significant.
The findings do not rule out the existence of other dimensions. None of the subjects,
however, suggested a different dimension of the attack surface.

Dimension Agree Disagree Neutral p-value

Methods 95% 0% 5% p < 0.0001
Channels 95% 0% 5% p < 0.0001
Data 85% 0% 15% p < 0.0001

Table 5.6: A majority of the subjects agree with our choice of the dimensions.

Our second set of questions asked subjects whether a resource’s damage potential-
effort ratio is an indicator of the resource’s likelihood of being used in attacks. We show
the responses in Table 5.7. A majority of the subjects agree with our choice of the damage
potential-effort ratio and the finding is statistically significant. Also, none of the subjects
suggested any other indicator or measure of the likelihood. We conclude that a resource’s
damage potential-effort ratio is an indicator of the resource’s likelihood of being used in
attacks.

Our third set of questions probed the subjects about their perception of our choice of
the six resource attributes as indicators of damage potential and attacker effort. We show
the percentage of the subjects who agree, disagree, and neither agree or disagree with
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Agree Disagree Neutral p-value

Damage Potential-Effort Ratio 70% 20% 10% p = 0.0141

Table 5.7: A majority of the subjects agree with our notion of the damage potential-effort
ratio.

Attribute Agree Disagree Neutral p-value

Damage Potential
Method Privilege 90% 0% 10% p < 0.0001
Channel Protocol 45% 25% 30% p = 0.2967
Data Item Type 45% 5% 50% p = 0.8252

Attacker Effort
Method Access rights 70% 5% 25% p = 0.0001
Channel Access Rights 75% 5% 20% p < 0.0001
Data Item Access Rights 85% 10% 5% p < 0.0001

Table 5.8: Perception of the subjects about the choice of our attributes.

our choice of the attributes in Table 5.8. A majority of the subjects agree that a method’s
privilege is an indicator of the method’s damage potential and that a method’s access rights,
a channel’s access rights, and a data item’s access rights are indicators of attacker effort.
The p-values show that the findings are statistically significant. We conclude that these
four attributes are indicators of damage potential and effort.

Though a majority of the subjects agree that a channel’s protocol is an indicator of the
channel’s damage potential, the p-value shows that the result is not statistically significant.
Similarly, though a majority of the subjects are neutral with respect to a data item’s type
being an indicator of damage potential, the finding is not statistically significant. Hence
the findings of the survey are not conclusive with respect to our choice of a channel’s
protocol and a data item’s type as indicators of damage potential.

The subjects who disagreed with our choice were of the opinion that a channel’s or
a data item’s damage potential is dependent on a system’s methods that process the data
received from the channel or the data item; hence they concluded that a TCP socket and
an RPC end point are equally attractive to an attacker irrespective of their protocol.
Similarly, a file and a cookie are equally attractive irrespective of their type. These

81



findings suggest that we should assign the same damage potential, i.e., 1, to all channels
and data items. In that case, we do not have to perform the difficult step of assigning total
orderings among the channel protocols and the data item types.

5.4 Correlation between Patches and Attack Surface Mea-
surement

In this section, we demonstrate that patches of security vulnerabilities in open source soft-
ware reduce software’s attack surface measurements.

Not all patches, however, are relevant to a system’s attack surface measurement. In-
tuitively, a patch is relevant if we expect the patch to affect the attack surface’s three
dimensions or the six resource attributes. For example, we expect a patch that resolves
authentication issues to affect the access rights levels of resources; hence the patch is rel-
evant. We, however, do not expect the patches for buffer overruns, integer overflows, and
dangling pointer references to affect the attack surface measurement; hence the patches
are not relevant.

Moreover, not all “relevant” patches reduce a system’s attack surface measurement.
We can patch a vulnerability in different ways. For example, we can patch a format string
vulnerability by either parsing the input or by appending a %s to the vulnerable line of
code. The first patch reduces the attack surface, but the second does not.

5.4.1 Patches Relevant to Attack Surface Measurement

In this section, we present an informal definition of relevant patches. We also introduce a
set of heuristics to decide whether a vulnerability’s patch is relevant to a system’s attack
surface measurement.
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Informal Definition of a Relevant Patch

A patch is relevant to a system’s attack surface measurement if we expect the patch to
remove a vulnerability by modifying the number of resources that are part of the system’s
attack surface or by modifying the damage potential-effort ratios of such resources. In our
analysis, we focus on patches written in the C and C++ programming languages. A patch
implemented in C or C++ is relevant if we expect the patch to make one or more of the
following changes to a system.

1. Modification of the number of entry points, exit points, channels, and untrusted
data items: The patch either (a) adds (removes) methods, channels, and untrusted
data items to (from) the system, or (b) restricts the flow of data from the system’s
environment into the system or vice versa.

2. Modification of the damage potential-effort ratio of an entry point or an exit point:
The patch modifies the privilege or access rights of some parts of a system’s source
code.

3. Modification of the damage potential-effort ratio of a channel: The patch modifies a
channel’s protocol or access rights.

4. Modification of the damage potential-effort ratio of an untrusted data item: The
patch modifies an untrusted data item’s type or access rights.

Heuristics to Identify Relevant Patches

We use a vulnerability’s National Vulnerability Database (NVD) bulletin to decide whether
the vulnerability’s patch is relevant [78]. The NVD is the U.S. government repository of
software vulnerability data; the repository contains bulletins for security vulnerabilities
discovered in both open source and commercial software. Each bulletin contains a tech-
nical description of the vulnerability, a list of affected software, metrics on the impact of
the vulnerability’s exploitation, and links to external advisories, patches, and tools for the
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vulnerability. Each bulletin also contains a type for the vulnerability described in the bul-
letin; the type is assigned using the Common Weakness Enumeration (CWE) developed at
MITRE [72]. Please see Appendix C for a complete list of vulnerability types included in
the CWE.

The CWE definitions of vulnerability types provide information on how to find vulner-
abilities in software and how to deal with discovered vulnerabilities [76]. Hence we use
a vulnerability’s type to decide whether we expect the vulnerability’s patch to make the
changes mentioned in the previous section and hence whether the patch is relevant to the
attack surface measurement. We identify the following types to be relevant to the attack
surface measurement: Authentication Issues, Permissions, Privileges, and Access Control,
Cross-Site Scripting (XSS), Format String Vulnerability, SQL Injection, Operation System
(OS) Command Injection, Information Disclosure.

Unfortunately, type information is absent in a large percentage of the NVD bulletins.
In the absence of type information, we infer the type from the vulnerability’s description
included in its NVD bulletin. If a vulnerability belongs to one of the last five types, we
can unambiguously determine the vulnerability’s type from its description. It is, however,
difficult to infer whether a vulnerability has one of the first two types from its description.
In such cases, we use the Authentication and Impact Type information in an NVD bulletin
to infer type information; we look for the occurrence of the words privilege, access rights,

and authentication in the bulletin. The occurrences of these words indicate that the vul-
nerability described in the bulletin has one of the first two types. Our inference process is
manual and hence is subject to human error.

Not all relevant patches reduce the attack surface measurement. If a vulnerability has
one of the first two types, we expect the vulnerability’s patch definitely to reduce the attack
surface. The vulnerabilities belonging to the last five types can be patched in different
ways; hence the patches may not always reduce the attack surface.
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5.4.2 Results and Discussion

In our experiment, we analyzed the source code of a patch to measure the change in the at-
tack surface due to the patch. We followed the measurement method introduced in Chapter
4. We considered the effect of a patch in isolation from the rest of the system.

We analyzed all the patches released by the Mozilla Foundation for their Firefox 2.0
web browser [33]. We also analyzed the patches of all vulnerabilities found in the NVD for
all versions of the ProFTP server [84]. Our results indicate that in case of Firefox 2.0, 67%
of the relevant patches reduced Firefox’s attack surface measurement. Similarly, in case of
the ProFTP server, 70% of the relevant patches reduced the ProFTP server’s attack surface
measurement. The p-values of t-tests indicate that our results are statistically significant
(Confidence Interval = 95%, p < 0.05).

Both in case of Firefox and ProFTP, we had to infer many vulnerabilities’ missing
type information. The inference process is subject to human error. Hence we repeated our
experiment by analyzing only those patches that have a type assigned in the NVD. Our
results show that 76.9% of the relevant patches reduced the attack surface measurement.
The p-values of t-tests indicate that our results are statistically significant (Confidence
Interval = 95%, p < 0.05). Hence we conclude that a majority of the relevant patches
reduce a system’s attack surface measurement.

Firefox

Our primary source of data for Firefox 2.0 was the Mozilla Foundation Security Advi-
sories published by the Mozilla Foundation [35]. Each advisory describes one or more
vulnerabilities in Firefox and contains links to the NVD bulletins for the vulnerabilities.
We used type information in the NVD bulletins to decide whether the patches of the vul-
nerabilities were relevant to the attack surface measurement. The advisory also contains
links to the Firefox Bugzilla database entries for the vulnerabilities [32]. A vulnerability’s
Bugzilla database entry contains the source code of the vulnerability’s patch; we analyzed
the code to measure the change in the attack surface due to the patch. Figure 5.1 shows
our data collection process.
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Figure 5.1: Data collection process for Firefox.

We collected data from the Mozilla Foundation Security Advisories published for Fire-
fox versions 2.0.0.1 to 2.0.0.8. There are forty-five advisories published over a period of
eleven months from December 2006 to October 2007. These advisories contain links to
fifty-three NVD bulletins describing fifty-three unique vulnerabilities. Four out of the
fifty-three are JavaScript vulnerabilities; also, the patch source code of one is not publicly
available. Hence we did not consider these five vulnerabilities in our analysis.

A majority of the forty-eight NVD bulletins for the remaining forty-eight vulnerabili-
ties did not have any type information. We obtained a dataset from MITRE that comple-
mented type information of NVD bulletins [18]. This dataset, however, was incomplete
and we could not obtain type information for all the Firefox NVD bulletins; hence we
inferred the types from the description of the bulletins. We followed the process described
in Section 5.4.1 and used the explicit and inferred type information to identify the patches
relevant to the attack surface measurement.

We identified twelve out of the forty-eight patches to be relevant to Firefox’s attack
surface measurement. Eight out of these twelve patches reduced Firefox’s attack surface
measurement; the remaining four did not change the attack surface measurement. Three
out of the four patches that did not reduce the attack surface are patches of three XSS
vulnerabilities. We do not expect the patches of XSS vulnerabilities to always reduce the
attack surface.
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Figure 5.2: Data collection process for ProFTP.

ProFTP

The ProFTPD project group maintains the ProFTP server [84]. Unlike the Mozilla Foun-
dation, the group does not publish any public security advisories for the ProFTP server.
Hence we collected the vulnerability list for the ProFTP server from the NVD. We obtained
twenty five NVD bulletins by searching for the phrase ”ProFTP” in the NVD. Three out
of these twenty-five bulletins were not ProFTP vulnerabilities.

The remaining twenty-two NVD bulletins describe twenty-two vulnerabilities in the
ProFTP server. We searched the ProFTP Bugzilla database for the patches of these vul-
nerabilities [83]. We could locate the patches for twenty-one of these vulnerabilities; we
could not locate the patch for one. Figure 5.2 shows our data collection process.

A majority of the twenty-one NVD bulletins for the twenty-one vulnerabilities did
not have any type information. The dataset that we obtained from MITRE also did not
have type information for all the twenty-one bulletins. Hence we inferred the types from
the description of the bulletins as described in Section 5.4.1 and identified the patches
relevant to ProFTP’s attack surface measurement.

We identified ten out of the twenty-one patches to be relevant to ProFTP’s attack sur-
face measurement. Seven out these ten patches reduced ProFTP’s attack surface mea-
surement. The three patches that did not reduce the attack surface are patches of three
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Figure 5.3: Data collection process for NVD bulletins that have a type assigned.

format string vulnerabilities. We do not expect the patches of format string vulnerabilities
to always reduce the attack surface.

Analysis of Patches that have a Type Assigned

In this section, we report the results of analyzing only those patches that have a type as-
signed in NVD. An NVD bulletin contains hyperlinks to the patches of the vulnerability
described in the bulletin; these hyperlinks are labeled as patch information in the bulletin.
We require a patch’s source code in our analysis; hence we identified the NVD bulletins
that have a type assigned and that contain one or more hyperlinks labeled as patch infor-
mation. Figure 5.3 shows our data collection process.

The NVD contains 25,000 bulletins; only 363 bulletins, however, have a type assigned
to them and contain one or more hyperlinks to their patches. We identified 113 bulletins
out of the 363 bulletins to be relevant to the attack surface measurement based on their
types. Out of the 113 bulletins, seventy-three bulletins describe vulnerabilities in software
implemented in C, C++, and Java; the remaining forty bulletins describe vulnerabili-
ties in software implemented in other languages such as PHP, Perl, and Ruby. Hence
we did not include these forty bulletins in our analysis.

We could, however, obtain the source code of the patches of only thirteen out of

88



seventy-three bulletins by following the hyperlinks labeled as patch information. In the
case of the remaining sixty bulletins, the hyperlinks labeled as patch information point to
downloadable patches in binary format; the source code of the patches are not publicly
available (e.g., in the case of patches of commercial software).

We measured the change in the attack surface due to the thirteen patches. Ten out of
these thirteen patches reduced the attack surface. One of the three patches that did not
reduce the attack surface is a patch for a format string vulnerability. We do not expect the
patches of format string vulnerabilities to always reduce the attack surface. The other two
patches used cryptographic techniques to remove the vulnerability in the code and hence
did not reduce the attack surface.

Discussion

In this section, we make three qualifying remarks on our analysis.

First, a few steps in our analysis are subject to human error. For example, MITRE’s
analysts could have introduced errors either by assigning wrong types to vulnerabilities
or by not assigning types that should have been. We could have inferred the wrong types
for the NVD bulletins missing type information. Hence we could have wrongly classified
some patches as relevant and could have excluded some relevant patches from the analysis.

Second, the Firefox and ProFTP results obtained after type inference is similar to the
result obtained from analyzing only those patches that have a type assigned. Hence our
type inference process produces similar results as MITRE’s type assignment process.

Third, the relevant patches that reduce a system’s attack surface remove vulnerabilities
that pose significant security risk. Each NVD bulletin contains a severity rating for the
vulnerability described in the bulletin. Three different ratings, High, Medium, and Low,
are assigned based on the vulnerability’s Common Vulnerability Scoring System (CVSS)
score [77]; the higher the rating, the higher the security risk. In the case of Firefox,
the eight patches that reduced the attack surface removed vulnerabilities with High and
Medium ratings. Similarly, the seven patches that reduced ProFTP’s attack surface also
removed vulnerabilities with High and Medium ratings. Finally, in the case of patches that
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have a type assigned, nine out of the ten patches that reduced the attack surface removed
vulnerabilities with High and Medium ratings.

5.5 Anecdotal Evidence

In this section, we present anecdotal evidence from the software industry to demonstrate
that reduction in a software system’s attack surface mitigates the system’s security risk.
We describe three examples from Microsoft and one from Firefox to illustrate the benefit
of attack surface reduction.

The Sasser worm is a computer worm that affected computers running vulnerable ver-
sions of the Microsoft Windows operating system [105]. The worm exploited a buffer
overflow vulnerability present in the Local Security Authority Subsystem Service (LSASS)
of the Microsoft Windows operating system [69]. The entry point to exploit the vulnera-
bility is an RPC interface that is accessible by everyone in Windows 2000 and Windows
XP; the interface, however, is accessible only by local administrators in Windows Server
2003 due to the attack surface reduction process [46]. The worm could easily spread to a
vulnerable host running Windows 2000 or Windows XP, but it could not spread to a host
running Windows Server 2003 because of the higher access rights level of the entry point.
Hence the worm did not affect Windows Server 2003 due to the smaller attack surface of
Windows Server 2003.

Similarly, the Zotob worm exploited a buffer overflow vulnerability present in the Plug
and Play (PnP) service of the Microsoft Windows operating system [70]. The entry point
to exploit the vulnerability is an RPC interface that is accessible by everyone in Windows
2000. The interface is accessible only by remote authenticated users in Windows XP SP1
and local authenticated users and remote administrators in Windows XP SP2 and Windows
Server 2003 due to the attack surface reduction process [46]. The worm could easily spread
to a vulnerable host running Windows 2000, but no other versions of Windows because
of the higher access rights level of the entry point. Hence the Zotob worm affected only
Windows 2000; no other version of Windows was affected due to a smaller attack surface.
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One of the vulnerabilities exploited by the Nachi worm is a buffer overflow vulner-
ability present in the core component ntdll.dll of the Microsoft Windows operating
system [68]. The vulnerability can be exploited by sending an ill-formed Web-based Dis-
tributed Authoring and Versioning (WebDAV) request to an Internet Information Server
(IIS). The entry point to exploit the vulnerability is the IIS service in Windows 2000 and
the w3wp.exe process (World Wide Web Worker Process) in Windows Server 2003. The
IIS service runs with administrative privilege whereas the w3wp.exe process runs with
the restrictive network-service privilege as part of the attack surface reduction process
[46]. Windows Server 2003 does not have the buffer overflow vulnerability; but even if it
had the vulnerability, the potential scope for damage would have been limited due to its
smaller attack surface.

Both Firefox 2.0 and Firefox 1.5 contained a buffer overflow vulnerability in the
Mozilla Network Security Services (NSS) code for processing the SSL 2 protocol [34]. As
part of the attack surface reduction process, SSL 2 protocol was turned off in the default
configuration of Firefox 2.0 [61]. The attack surface reduction process removed the entry
point required to exploit the vulnerability in Firefox 2.0. Hence Firefox 2.0 is immune to
attacks that exploit the buffer overflow vulnerability, whereas Firefox 1.5 is not.

5.6 Theoretical Validation By Liu and Traore

In this section, we briefly describe Liu and Traore’s theoretical validation of the attack sur-
face metric [56, 57]. Liu and Traore introduce a set of measurement properties for software
security metrics and verify that the attack surface metric possesses the set of properties.
Hence the attack surface metric is a valid measure of security in their framework.

Liu and Traore identify four internal software attributes that are related to software
security. A software system’s internal attributes are those that can be measured purely in
terms of the software [30]. They derive the four attributes from the collective security de-
sign principles accepted by the community, e.g., Saltzer and Schroeder’s design principles
for protection mechanisms [87]. They introduce a service-oriented model of software and
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represent a software system as a collection of services working in concert. They identify
the following four internal attributes that are related to security in their model:

1. service complexity: represents the level of complexity in software;

2. service coupling: represents the level of dependency between the services of soft-
ware;

3. excess privilege: represents the excess privilege granted to the services; and

4. mechanisms strength: represents the combined strength of security mechanisms pro-
tecting the services.

They also identify the relationship between software security and the four attributes
using their intuitive understanding of the security design principles. They expect software
security to decrease as service complexity increases, service coupling increases, excess
privilege increases, and mechanisms strength decreases.

For each of the four internal attributes, they identify a set of measurement properties
that any valid measure of the attribute must possess. The set of properties are sound
but not complete. They identify the properties from the security design principles and
the relationship between software security and the attributes. For example, two of the
measurement properties for service complexity state that a service’s complexity is non-
negative and a software system’s complexity is no less than the complexity of any of the
system’s services. They identify similar properties for service coupling, excess privilege,
and mechanism strength.

They also show that our attack surface metric can be easily expressed in their service-
oriented model and derive three measures of service complexity, service coupling, and
excess privilege from the attack surface metric. They demonstrate that the three measures
possess the necessary measurement properties; hence the measures derived from the attack
surface metric are valid measures. They also demonstrate the validity of a measure of
mechanisms strength derived from Dacier et. al’s Mean-Time-To-Failure metric [24].
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Chapter 6

Attack Surface Measurement of SAP
Business Applications

6.1 Introduction

In Chapter 4, we applied our attack surface measurement method to small software systems
such as FTP servers and IMAP servers. These systems are small in their code size and
simple in their architectural design. In this chapter, we study the applicability of our
measurement method to large and complex enterprise-scale software systems.

We collaborated with SAP to measure the attack surfaces of SAP’s enterprise soft-
ware applications. SAP is the world’s largest enterprise software company with more than
46,100 customers worldwide [3]. SAP provides a comprehensive range of enterprise soft-
ware and business applications covering all aspects of the customers’ businesses [4]. The
business applications have a varied customer base of small, medium, and large enterprises
and support a wide range of business functionalities; hence the applications are large in
size and complex in their design.

Our motivation behind this collaboration was two fold. First, we demonstrated that our
measurement method scales to enterprise-scale software. Second, we had the opportunity
to interact closely with SAP’s software developers and architects and get their feedback on
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our measurement process. Based on their feedback, we identified a set of improvements
to our measurement process to make the process more useful in practice. We discuss these
future steps in Section 6.6.

SAP also had two goals behind this collaboration. The short-term goal was to mea-
sure an enterprise software system’s attack surface and to identify possible ways to reduce
the attack surface. The long-term goal was to evaluate the possibility of integrating our
measurement process with SAP’s software development process to improve business ap-
plication security. SAP has been focusing on code quality improvement to make their
software more secure [7]; we, however, believe that a complete security risk mitigation
approach requires a combination of the code quality effort and the attack surface reduction
approach. Hence it is crucial to integrate the attack surface measurement process with the
software development process.

The rest of this chapter is organized as follows. In Section 6.2, we describe our choice
of the enterprise software system used in the collaboration. We introduce a method to mea-
sure the attack surfaces of SAP systems in Section 6.3. We describe the implementation
of a tool to measure the attack surface in Section 6.4. We discuss the measurement results
in Section 6.5. In Section 6.6, we discuss various lessons learned from the collaboration
and conclude with a discussion of future work.

6.2 Choice of an Enterprise Software System

Choosing an appropriate software system was a vital step in our collaboration with SAP.
The choice of a system was guided by three requirements. First, the chosen system should
be a heavily used system so that reduction in its attack surface benefits a large number
of SAP customers by reducing their security risk. Second, the chosen system should be
representative of SAP’s software systems; measuring the system’s attack surface will guide
us in measuring the attack surfaces of other SAP systems. Third, the product development
group in charge of the system should be committed to the collaboration.

We had discussions with six different SAP product development groups before making
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our choice. We identified a component of the SAP NetWeaver platform as the enterprise
software system to be used in our collaboration [5]. SAP NetWeaver is the common tech-
nology platform for SAP business applications; the platform provides the run time environ-
ment for all SAP applications. The platform enables development, life cycle management,
composition, and integration of SAP business applications [6]. Our chosen component is
a core building block of the NetWeaver platform and provides a critical service inside the
platform. Henceforth, we refer to the chosen component as the service.

We chose to measure the attack surface of the service due to the following three rea-
sons. First, the service is used by many SAP customers as it is a core part of the NetWeaver
platform. Second, the architectural design of the service is also very similar to other SAP
applications. Third, the product development team in charge of the service committed the
necessary resources to collaborate with us.

6.3 Measurement Method for SAP Software Systems

In this section, we introduce a method to measure the attack surfaces of SAP software sys-
tems. A majority of SAP systems are implemented in Java, JavaScript, and ABAP (a
proprietary SAP language). In this collaboration, we measure the attack surfaces of sys-
tems implemented in Java. We leave the measurement methods for systems implemented
in JavaScript and ABAP for future work.

In Chapter 3, we introduced an abstract attack surface measurement method based on
our formal I/O automata model. Here, we instantiate the abstract method and obtain a
new method to measure the attack surface of SAP systems implemented in Java. Our
new method has the same steps as the C measurement method introduced in Section 4.2.
The implementations of the steps, however, are different for the method dimension; the
channel dimension and the data dimension remain unchanged.

Recall that the two key steps in measuring the attack surface along the method di-
mension are (1) the identification of the entry points and the exit points (Section 6.3.1),
and (2) the estimation of the damage potential-effort ratio of the entry points and the exit
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points (Section 6.3.2). We describe these two steps of our new method in the following
paragraphs.

6.3.1 Identification of Entry Points and Exit Points

A direct entry point of a system is a method that receives data items directly from the
system’s environment. A method, m, of a system, s, implemented in Java can receive
data items in three different ways: (a) m is a method in s’s public interface and receives
data items as input, (b) m invokes a method in the interface of a system, s′, in the environ-
ment and receives data items as result, and (c) m invokes a Java I/O library method.
For example, a method, m, is a direct entry point if m invokes the read method of the
java.io.DataInputStream class.

A direct exit point of a system is a method that sends data items directly to the sys-
tem’s environment. A method, m, of a system, s, implemented in Java can send data
items in three different ways: (a) m is a method in s’s public interface and sends data
items as result, (b) m invokes a method in the interface of a system, s′, in the environ-
ment and sends data items as input, and (c) m invokes a Java I/O library method.
For example, a method, m, is a direct exit point if m invokes the write method of the
java.io.DataOutputStream class.

Given a system, s, we generate s’s call graph starting from the methods in s’s public
interface. From the call graph, we identify all methods of s that invoke either a method in
the interface of a system, s′, in s’s environment or a Java I/O library method. These
methods are s’s direct entry points and direct exit points.

We implemented a tool, described in Section 6.4, to measure the attack surfaces of SAP
systems in an automated manner. The tool identifies only direct entry points and direct
exit points of a system. As discussed in Section 4.2.2, we leave the identification of the
indirect entry points and the indirect exit points as future work. Hence our measurement
is an under-approximation of the measure of the attack surface.
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6.3.2 Estimation of the Damage Potential-Effort Ratio

In the previous chapter, we estimated a method’s damage potential using the method’s
privilege and the attacker effort using the method’s access rights. In case of the SAP
systems, however, a method’s privilege is not a useful estimate of the method’s damage
potential. The entire code base of the NetWeaver platform runs with the same privilege,
i.e., the privilege of the application server hosting the platform. If we were to estimate
the damage potential using the privilege, we could not make any meaningful suggestion
to reduce the attack surface. Hence we do not use a method’s privilege in estimating the
method’s damage potential. Instead, we estimate a method’s damage potential using the
method’s sources of input data (destinations of output data). A method can receive (send)
data items from (to) three sources: an input parameter, the data store, and other systems
present in the environment. For example, a method receives data items from an attacker as
an input parameter in case of SQL injection attacks and Cross Site Scripting (XSS) attacks
whereas the method receives data items from the data store in case of File Existence Check
attacks. Methods in SAP systems can have three different sources of input: parameter,
data store, and other systems.

Similar to systems implemented in C, we use a method’s access rights level to esti-
mate the attacker effort. A typical SAP system has two different types of interfaces: (1)
public interfaces that can be accessed by all entities belonging to any NetWeaver role and
(2) internal interfaces that can be accessed by only other components of the NetWeaver
platform. Hence the methods in SAP systems can be accessed with two different access
rights levels: public access rights level for methods in public interfaces and internal
access rights level for methods in internal interfaces.

In the case of an SAP system, we annotate the system’s code base to indicate the access
rights levels of the system’s interfaces. We generate the call graph of the annotated code
base and determine the sources of input and the access rights levels of the methods from
the call graph. Notice that a method may have multiple sources of input. Similarly, a
method may be accessible with multiple access rights levels. We identify such a method
as a direct entry point (direct exit point) multiple times.
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Similar to systems implemented in C, we impose total orderings among the sources of
input and the access rights levels and assign numeric values to the sources of input and
access rights levels in accordance to the total orderings. The exact choice of the numeric
values is subjective and depends on a system and its environment. We discuss a specific
way of assigning the numeric values in case of the service in Section 6.4.3. We estimate a
method’s damage potential-effort ratio from the numeric values assigned to the method’s
source of input and access rights level.

6.4 Implementation of a Measurement Tool

In this section, we describe a tool we implemented to measure the attack surfaces of SAP
systems implemented in Java. There are two key objectives that guided the implementa-
tion of the tool: (1) the tool should be an integral part of the software development process,
and (2) the software developers and architects can use the tool easily and frequently with-
out spending too much time and effort. The software developers and architects at SAP are
already under time pressure; hence it is crucial for the adoption of the tool that we do not
burden them with more work and we do not require them to go out of their normal routine
to use the tool.

SAP’s software developers use a customized version of the Eclipse Integrated Develop-
ment Environment (IDE) for their software development activities [27]. We implemented
our tool as a plugin for the Eclipse IDE so that the developers can use the tool inside their
software development environment. We show a screen shot of our tool in Figure 6.1 and
describe the tool in details in the following paragraphs.

6.4.1 Call Graph Generation

A key component of our tool is the generation of a system’s call graph from the sys-
tem’s source code. We use two different techniques to generate the call graph to provide a
precision-scalability tradeoff to the software developers: the TACLE Eclipse plugin devel-
oped at the Ohio State University, which gives a very precise call graph, but does not scale
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Figure 6.1: Screenshot of the Attack Surface Measurement tool implemented as an Eclipse
plugin.
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well to large programs [39]; and an Eclipse API, which gives a less precise call graph, but
scales [28].

The TACLE plugin provides us an off-the-shelf implementation of the Rapid Type

Analysis (RTA) algorithm to perform type analysis and construct call graphs [10]. The
plugin performs the operations on a Java project inside a Java Development Tools (JDT)

environment. The plugin implements the RTA algorithm using Abstract Syntax Tree (AST)

analysis [93]; for each Java class included in the source code, the algorithm constructs
and stores the AST of the class in main memory. Hence the algorithm does not scale well
to large software systems that contain a large number of Java classes. Moreover, to con-
struct a complete call graph, the plugin requires the source code of all the Java libraries
and Java Archives (JAR) used for the compilation of the code base. In practice, we
do not expect the software developers to possess the source code of the libraries required
by their software. For example, the service requires 23 SAP JARs for its compilation. It
is unrealistic to expect the developers of the service to include the source code of these 23
JARs in their Java development project.

The Eclipse IDE has an internal API for the construction of call graphs from Java

source code. The API is included in the org.eclipse.jdt.internal.corext.
callhierarchy package of the IDE [28]. The API does not require the source code
of the libraries and JARs used by a system’s code base; hence scales well to large code
bases. The constructed call graph, however, is less precise than the call graph generated
by the TACLE plugin. For example, the API does not resolve an interface method to a
class method that implements the interface method. We extended the API by finding all
class methods that implement an interface method and then including the implementing
methods in the call graph. The resulting call graph, however, is an over-approximation
of the actual call graph as only one of the class methods will be invoked in place of the
interface method. Hence our measurement is an over-approximation of the measure of the
attack surface.
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6.4.2 Entry Points and Exit Points Identification

Our tool identifies a system’s entry points and exit points from the system’s call graph.
A method of a system is an entry point (exit point) if the method invokes a method in
the public interface of another system present in the environment or a Java I/O library
method. Hence our tool needs the list of interface methods of other systems and the list
of Java I/O library methods. We provide the list of methods to the tool through two
configuration files: osmethods.txt and dsmethods.txt.

The service invokes the methods of many SAP systems included in the NetWeaver plat-
form. Invocation of an interface method, however, is only relevant to the attack surface
measurement if the invocation results in data transfer from the service to other systems in
its environment or vice versa. We used the javadoc description of the interfaces and inter-
face methods included in the 23 SAP JAR libraries needed by the service and identified 25
interfaces and 126 interface methods to be relevant to the attack surface measurement. We
discussed the methods with the developers of the service to avoid any error and included
the methods in the osmethods.txt configuration file of our tool.

The service does not read or write any untrusted data items from the data store. Hence
there were no Java I/O library methods to identify as relevant. But in general, we
should provide the list of relevant methods through the dsmethods.txt configuration
file.

6.4.3 Numeric Value Assignment

Another key component of our tool is the estimation of the numeric damage potential-
effort ratios of a system’s entry points and exit points. We estimate the damage potential
and the attacker effort in terms of the sources of input and the access rights level, re-
spectively. The tool determines the sources of input and the access rights levels from the
system’s call graph; the tool, however, requires the numeric values assigned to the different
sources of input and the access rights levels to estimate numeric damage potential-effort
ratios. We provide these numeric values through a configuration file, weights.txt.
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The methods of the service have three different sources of input: parameter, data
store, and other system. As discussed in Section 6.3.2, different types of attacks
on the service require the methods to have different sources of input. We assign numeric
values to the sources of input by correlating the sources with possible attacks on the ser-
vice.

SAP conducted a threat modeling process for the service. The process identified pos-
sible attacks on the service and assigned severity ratings to the attacks. We correlated the
sources of inputs with the possible attacks identified by the threat modeling process. For
each source of input, we computed the average severity rating of the attacks that require
the source of the input. We show the sources of input in the first column and the average
severity ratings in the second column of Table 6.1.

We assigned numeric values to the sources of input in proportion to the average sever-
ity ratings. The parameter sensitivity analysis of Section 4.5 suggests that the difference
between the numeric values assigned to successive damage potential levels should be in
the range of 3-14. Hence we chose the midpoint, 8.5, of the range as the difference. For
example, we assigned 1 to the source other system, and 1+ (3− 1)× 8.5 = 18 to the
source data store. We show the numeric values in third column of Table 6.1.

Source of Input Average Severity Rating Numeric Value

other system 1 1

data store 3 18

parameter 5 35

Table 6.1: Numeric values assigned to the sources of input.

The methods of the service can be accessed by two different access rights level: publ-
ic and internal. We imposed the following total ordering among the access rights
level: internal > public. The parameter sensitivity analysis of Section 4.5 suggests
that the difference between the numeric values assigned to successive access rights level
should be high (15-20). Hence we chose a difference of 17. We show the numeric values
assigned to the access rights level in Table 6.2.
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Access Rights Level Numeric Value

public 1

internal 18

Table 6.2: Numeric values assigned to the access rights levels.

We use the numeric values shown in Table 6.1 and Table 6.2 to compute the numeric
damage potential-effort ratios. For example, consider an entry point, m, of a system,
s. m is a method in s’s public interface and has two input parameters; m also invokes
three interface methods of a system, s′, in the environment. Then m’s damage potential
is 2 × 35 + 3 × 1 = 73. If m is accessible with the public access rights level, then
m’s damage potential-effort ratio is 73/1 = 73. Similarly, if m is accessible with the
internal access rights level, then m’s damage potential-effort ratio is 73/18 = 4.05.

6.4.4 Usage of the Tool

The software developers can use our tool to generate a system’s call graph rooted at any
method of the system and to compute the attack surface measurement from the call graph.
The developers can choose the method in the Outline view window of the Eclipse IDE.
Figure 6.1 shows the two options for measuring the attack surface in the right context
menu of the Outline window; the developers can choose the option appropriate for their
scalability and precision requirements.

SAP’s software systems have multiple interfaces and each interface typically contains
multiple methods. To compute the attack surface of an SAP system, we create a new Java

class with only a main method. The main method invokes all the methods included in
the interfaces of the system. We generate a call graph rooted at the main method and
compute the attack surface of the system.

The tool generates its output in the form of a text file, containing (1) the system’s attack
surface measurement, (2) a list of the system’s entry points and exit points, and (3) for each
entry point (exit point), a list of input sources, the access rights level, and its contribution
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to the attack surface measurement. The software developers can use the detailed output as
a guide in reducing the attack surfaces of their software. For example, they can focus on
the top x% of the entry points and the exit points to reduce the attack surface. They can
also focus on the top contributing interfaces and components instead of considering the
entire code base of the system.

Our tool allows the developers to perform incremental measurements. They can mea-
sure the increase in the attack surface due to the addition of a new interface method by
generating a call graph rooted at the method; they do not have to measure the attack sur-
face of the entire system. They can also measure the potential reduction in the attack
surface due to the removal of an interface method.

The tool also allows the developers to consider many what-if scenarios during software
development. For example, the developers can easily determine the effect of adding a new
feature to the system on the system’s attack surface. Similarly, while reducing the attack
surface, they can consider the removal of different features and the effect of the removal
on the attack surface measurement. They can use the incremental measurements to make
an informed decision.

6.5 Results and Discussion

We measured the attack surfaces of three different of the service included in three different
versions of the NetWeaver platform. We identify the three versions of the service as S1,
S2, and S3. The S1 version is the first released version of the service, followed by S2

and S3 versions, respectively.

We only considered the method dimension of the attack surface in our measurement.
The three versions of the service do not use any persistent data items and open only one
channel, i.e., a TCP socket. Hence we did not measure the attack surface along the channel
dimension and the data dimension.

The S3 version of the service implements 8 public interfaces and 2 internal interfaces.
The S2 and S1 versions implement 9 and 8 public interfaces, respectively, and no internal
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interfaces. We show the number of entry points and exit points of the three versions for
each access rights level in Table 6.3.

Version
Count

Public Internal

S3 71 4
S2 67 0
S1 63 0

Table 6.3: The number of entry points and exit points of the three versions of the service
for each access rights level.

We estimated the damage potential-effort ratio of each entry point (exit point) as de-
scribed in Section 6.4.3; the ratio is the contribution of the entry point to the attack surface.
We summed up the contributions of the entry points and the exit points to obtain the attack
surface measurement along the method dimension. We show the attack surface measure-
ments in Table 6.4. The measurements indicate that the S3 version has the highest security
risk along the method dimension followed by S2 and S1.

Version Attack Surface Measurement

S3 5298.44

S2 4687.00

S1 4649.00

Table 6.4: Attack surface measurements of the three versions of the service.

The S1 version is the first version of the service released to the customers. The S2
version is backward compatible with S1 for the convenience of the customers. Moreover,
S2 added new features to S1 resulting in an increase in the number of public interfaces.
Hence the set of methods of S2 is a superset of the set of methods of S1 and as shown in
Table 6.4, the attack surface measurement of S2 is greater than S1.

The S3 version is the latest version of the service released to the customers. The S3
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version differs from the S2 version in two significant ways: (1) S3 converted a public
interface of S2 to an internal interface to mitigate security risk, and (2) S3 added new fea-
tures to the service resulting in an increase in the number of public interfaces and internal
interfaces. If no new features were added, the attack surface measurement of S3 would
have been smaller than S2 due to the conversion of a public interface to an internal inter-
face. The increase in the number of total interfaces due to the addition of new features,
however, increases the attack surface measurement of S3. Hence as shown in Table 6.4,
the attack surface measurement of S3 is greater than S2.

Notice that S3’s attack surface measurement would have been greater than its current
measurement if all its interfaces were public; the presence of internal interfaces results in
a minimal attack surface measurement. Hence the addition of the internal interfaces was
a good design decision that reduced the attack surface measurement and hence mitigated
the security risk of the service.

6.6 Lessons Learned and Future Work

The collaboration with SAP was a valuable experience for us. We received positive feed-
back from the product development team on the utility of the attack surface measurement
process. The team found the tool’s detailed output to be useful in reducing the attack sur-
face. They also found it useful to have two options for measuring the attack surface and
the ability to perform incremental measurements.

We also learned important lessons on how to improve our measurement method and
our measurement tool to make the measurement process more useful in practice. For
example, our tool’s output guides the developers to focus on the relevant parts of a system
to reduce the attack surface; the output, however, does not help in deciding when to stop the
reduction process. A possible direction of future work to address this issue is to develop
a method to estimate the minimum and maximum possible attack surface measurement of
a system given the system’s functionality. We discuss a possible method of estimating the
minimum and maximum measurements in Chapter 8.
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Software developers and architects can use the minimum and maximum estimation
method for prioritizing software testing effort. For example, if a system’s attack surface
measurement is closer to the maximum, then they should invest more in testing efforts; if
the measurement is closer to the minimum, they can reduce their testing effort. We discuss
the use of the attack surface measurement in prioritizing software testing effort in Chapter
8.

We also identified further improvements to our tool based on the feedback received and
the lessons learned from this collaboration. There are four possible extensions of our tool
to make it more useful for the software developers: (1) extension of the tool to identify a
system’s indirect entry points and indirect exit points, (2) presentation of the measurement
results in a graphical window inside the Eclipse IDE, (3) implementation of a Graphical
User Interface (GUI) to update the configuration information, and (4) extension of the tool
to measure the attack surfaces of systems implemented in JavaScript and ABAP.
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Chapter 7

Related Work

In this chapter, we compare our work with prior work on attack surface measurement in
Section 7.1 and with previous work on quantitative assessment of software security in
Section 7.2. We also discuss prior work on network security measurements and metrics in
Section 7.3.

7.1 Attack Surface Measurement

Michael Howard of Microsoft informally introduced the notion of attack surface for the
Windows operating system [45]. Pincus and Wing further elaborated Howard’s Relative
Attack Surface Quotient (RASQ) measurement method [44]. Their attack surface mea-
surement method, however, was based on intuition and was ad-hoc in nature. In this the-
sis, we formalize the notion of a system’s attack surface and propose a systematic method
for measuring a system’s attack surface. Please see Chapter 2 for a detailed discussion of
previous work on attack surface measurement.
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7.2 Other Software Security Measurements and Metrics

Our attack surface metric differs from prior work in three key aspects. First, our attack
surface measurement is based on a system’s inherent properties and is independent of any
vulnerabilities present in the system. Previous work assumes the knowledge of the known
vulnerabilities present in the system [8, 98, 79, 90, 64, 53]. In contrast, our identification
of all entry points and exit points encompasses all known vulnerabilities as well as poten-
tial vulnerabilities not yet discovered or exploited. Moreover, a system’s attack surface
measurement indicates the security risk of the exploitation of the system’s vulnerabilities;
hence our metric is complementary to previous work and can be used in conjunction with
previous work.

Second, prior research on measurement of security has taken an attacker-centric ap-

proach [79, 90, 64, 53]. In contrast, we take a system-centric approach. The attacker-
centric approach makes assumptions about attacker capabilities and resources whereas the
system-centric approach assesses a system’s security without reference to or assumptions
about attacker capabilities [75]. Our attack surface measurement is based on a system’s
design and is independent of the attacker’s capabilities and behavior; hence our metric can
be used as a tool in the software design and development process.

Third, many of the prior works on quantification of security are conceptual in nature
and haven’t been applied to real software systems [8, 55, 53, 59, 88]. In contrast, we
demonstrate the applicability of our metric to real systems by measuring the attack surfaces
of two FTP servers, two IMAP servers, and three versions of an SAP software system.

Alves-Foss et al. use the System Vulnerability Index (SVI) as a measure of a system’s
vulnerability to common intrusion methods [8]. A system’s SVI is obtained by evaluating
factors grouped into three problem areas: system characteristics, potentially neglectful
acts, and potentially malevolent acts. Alves-Foss et al., however, identify only the relevant
factors of operating systems; their focus is on operating systems and not individual or
generic software applications. Moreover, they assume that they can quantify all the factors
that determine a system’s SVI. In contrast, we assume that we can quantify a resource’s
damage potential and effort.
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Littlewood et al. explore the use of probabilistic methods used in traditional relia-
bility analysis in assessing the operational security of a system [55]. In their conceptual
framework, they propose to use the effort made by an attacker to breach a system as an
appropriate measure of the system’s security. They conjecture that effort in security plays
the same role as time in reliability. They, however, do not propose a concrete method to
estimate the attacker effort.

Voas et al. propose a relative security metric based on a fault injection technique
[98]. They simulate different threat classes of a system by mutating program variables
during the execution of the system and then observe the impact of the threat classes on
the behavior of the executing system in terms of successful intrusions. They propose a
Minimum-Time-To-Intrusion (MTTI) metric based on the predicted period of time before
any simulated intrusion can take place. The higher the MTTI value, the more secure the
system. The MTTI value, however, depends on the threat classes simulated and the intru-
sion classes observed. In contrast, the attack surface metric does not depend on any threat
class. Moreover, the MTTI computation assumes the knowledge of system vulnerabilities.

Ortalo et al. model a system’s known vulnerabilities as a privilege graph [24] and
combine assumptions about the attacker’s behavior with the privilege graphs to obtain at-
tack state graphs [79]. They analyze the attack state graphs using Markov techniques to
estimate the effort an attacker might spend to exploit the vulnerabilities; the estimated
effort is a measure of the system’s security. Their technique, however, assumes the knowl-
edge of the vulnerabilities present in the system and the attacker’s behavior. Moreover,
their approach focuses on assessing the operational security of operating systems and not
individual software applications.

Schneier uses attack trees to model the different ways in which a system can be at-
tacked [90]. Given an attacker goal, Schneier constructs an attack tree to identify the
different ways in which the goal can be satisfied and to determine the cost to the attacker
in satisfying the goal. The estimated cost is a measure of the system’s security. Con-
struction of an attack tree, however, assumes the knowledge of the following three factors:
system vulnerabilities, possible attacker goals, and the attacker behavior.

McQueen et al. use an estimate of a system’s expected time-to-compromise as an
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indicator of the system’s security risk [64, 65]. The time-to-compromise (TTC) is the time
needed by an attacker to gain a privilege level in a system; TTC depends on the nature
of the vulnerabilities present in the system and the attacker’s skill level. They model the
process of compromising a system as a random process and estimate the expected time
to compromise the system. They, however, assume the knowledge of the vulnerabilities
present in a system and the capabilities of differing attacker skill levels.

Leversage and Byers use a state space model to estimate the mean time-to-compromise
(MTTC) a system [53]. Their model requires the estimation of the attack paths and the
state times to calculate the MTTC. They use a modified version of McQueen et al.’s algo-
rithm to estimate the state times. Hence the state space model assumes the knowledge of
the vulnerabilities present in a system and the differing attacker skill levels. The model
also focuses on attacks launched remotely from the Internet.

Madan et al. use stochastic modeling techniques to quantify the security attributes
of intrusion tolerant systems [59, 60]. They model attacker behavior and a system’s re-
sponse to intrusions as semi-Markov processes (SMP) and then quantify measures such as
a system’s steady-state availability and the mean time to security failure. They, however,
assume the knowledge of the SMP model’s parameters. Moreover, their work focuses on
intrusion tolerant systems such as the SITAR system [99] and is useful studying different
intrusion tolerance strategies.

Schechter introduces an economic approach to measure the security strength of soft-
ware in units of dollars [88]. A system’s security strength is the cost of breaching the
system’s security. He proposes to use the market price of a new vulnerability in a system
as the system’s security strength. Schechter’s approach uses market means to quantify a
system’s security strength. In contrast, our attack surface metric uses a system’s inherent
attributes to quantify the system’s security.
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7.3 Network Security Measurements and Metrics

In this thesis, we use the notion of a system’s attack surface as a software security met-
ric. A recent line of work introduces four conceptual network security metrics to measure
a network’s security [80, 101, 102, 100]. Unlike the attack surface metric, the four net-
work security metrics haven’t been applied to any real systems. A network’s security is
dependent on its configuration in all the four metrics. Similarly, a system’s attack surface
measurement is dependent on the system’s configuration. The metrics use a network’s at-
tack graph to estimate the network’s security. The construction of an attack graph assumes
the knowledge of the vulnerabilities present in the network’s hosts. Also, the use of attack
graphs is suitable for analyzing the security of networks and not of software. Hence the
proposed metrics are not suitable for measuring software security. We, however, believe
that our attack surface metric can be used to measure network security because of the com-
position property of the I/O automata; we can model a network as a composition of the
I/O automata modeling the hosts in the network and hence measure the network’s attack
surface in a given configuration. Moreover, our metric does not assume the knowledge of
the vulnerabilities present in the hosts; hence a network’s attack surface measurement is
complementary to the four proposed metrics.

Pamula et al. introduce the weakest-adversary metric to quantify the security of a
network in a given configuration in terms of the strength of the weakest adversary that
can penetrate the network [80]. Given a network configuration, a set of known exploits,
an attacker goal, and an attacker class, they construct an attack graph and identify the
minimal set of attributes needed by the adversary to reach the goal. They define a network
configuration, C1, to be less secure than a configuration, C2, ifC1 is vulnerable to a set, S1,
of adversary attributes, C2 is vulnerable to a set, S2, of adversary attributes, and S1 ⊂ S2.

Wang et al. introduce an attack resistance metric to measure and compare the security
of different network configurations [101]. Given a network configuration and a set of
known exploits, they assume the knowledge of the individual resistance of each exploit.
An exploit’s resistance reflects the time and effort required to carry out the exploit. They
construct an attack graph of the given network configuration and compute the resistance
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of the configuration from the attack graph using the individual resistance of the exploits.
They also show that Pamula et al.’s metric is a special case of their attack resistance metric
under ceratin conditions. Wang et al. later generalize the attack resistance metric to a
framework for measuring other aspects of network security such as the potential damage
caused by attacks and the cost of reconfiguring a network using various possible network
hardening operations [102].

Wang et al. also introduce an attack graph based probabilistic metric to measure the se-
curity of network configurations [100]. In their attack graph, they model a system’s states
as security conditions and the exploit of a vulnerability as a transition between system
states. They assume the knowledge of the probabilities of the exploits being executed and
the conditions being satisfied. Given an attacker goal and a network configuration, they
compute the probability that an attacker will reach the goal from the probabilities of the
exploits and conditions; they propose to use the probability as an indicator of the network
configuration’s security.

114



Chapter 8

Summary and Future Work

In this chapter, we summarize the contributions of this thesis and discuss possible avenues
of future work.

8.1 Summary of Contributions

Our research on attack surface measurement is inspired by Michael Howard’s informal
RASQ measurements. We applied Howard’s method to four different versions of Linux to
identify the shortcomings in his method. We addressed the shortcomings in this thesis and
proposed a systematic attack surface measurement method.

The key contribution of this thesis is the formal definition of a system’s attack surface.
We introduced an I/O automata model of a system and its environment to formalize the
notion of the attack surface. We introduced the entry point and exit point framework to
identify the resources that are part of the attack surface. We also introduced the notions
of damage potential and effort to estimate a resource’s contribution to the attack surface.
We defined an abstract method to measure a system’s attack surface and showed that the
method is analogous to risk modeling. In our formal model, we showed that a larger attack
surface leads to a larger number of potential attacks on a system.
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We then introduced a concrete method to measure the attack surfaces of systems im-
plemented in C. We applied our method to two popular open source IMAP servers and
two FTP daemons. We demonstrated the use of our attack surface metric in the decision
making process by comparing the attack surfaces of the IMAP servers and those of the
FTP daemons. We also performed a parameter sensitivity analysis to provide guidelines
to the users of our metric.

A key challenge in our research was the validation of the attack surface metric. We
conducted three empirical studies for validation; these studies are based on the general ap-
proach to validating software metrics. We validated the steps in our measurement method
by conducting an expert user survey and by statistically analyzing the data collected from
Microsoft security bulletins. We validated attack surface measurements by demonstrating
a correlation between attack surface measurements and patches of security vulnerabilities
in software.

We demonstrated the applicability of our measurement method to enterprise-scale soft-
ware by measuring the attack surfaces of SAP business applications. We introduced a
method to measures the attack surfaces of business applications implemented in Java and
implemented a tool to automatically measure the attack surface from a business applica-
tion’s source code. We demonstrated the utility of our metric in the software development
process by collaborating with a Product Development Group of SAP.

8.2 Future Work

In this section, we discuss several possible directions of future work.

8.2.1 Usage of the Entry Point and Exit Point Framework

A possible direction of future work is to explore the use of the entry point and exit point
framework in the threat modeling process [94]. Threat modeling is a systematic way of
identifying and ranking the threats that are most likely to affect a system. By identifying
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and ranking threats, system designers can take appropriate countermeasures to mitigate
the system’s security risk. The identification of entry points and exit points is an important
step in the threat modeling process. The process, however, lacks a systematic way of
performing this step. The users of the threat modeling process rely on their expertise and
knowledge of a system to correctly identify the entry points and exit points. We can use the
entry point and exit point framework to formalize this step in the threat modeling process.

8.2.2 Extensions of the Formal Model

We do not make any assumptions about an attacker’s resources, capabilities, and behavior
in our I/O automata model. In terms of an attacker profile used in cryptography, we do not
characterize an attacker’s power and privilege. A useful extension of our work would be
to include an attacker’s power and privilege in our formal I/O automata model.

Our I/O automata model is not expressive enough to include attacks such as side chan-
nel attacks, covert channel attacks, and attacks where one user of a software system can
affect other users (e.g., fork bombs). We could extend the current formal model by extend-
ing our formalization of damage potential and attacker effort to include such attacks.

8.2.3 Extensions of the Measurement Method

Our attack surface measurement method requires a system’s source code in order to iden-
tify the system’s entry points and exit. It may not, however, be always feasible to obtain the
source code of a system (e.g., commercial software). Moreover, the size of the codebase
may be prohibitively large (e.g., the codebase of a Linux distribution). A useful extension
of the measurement method would be to define a systematic way to approximate a system’s
attack surface measurement in the absence of the source code. In the absence of source
code, we can define a system’s entry points and exit points in terms of the system’s compo-

nents. A component in the context of the attack surface measurement can be thought of as
a unit of executable code that can be added to or removed from the system. Few examples
of components are libraries, executable files, installed daemons, and web server modules.
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We can extend the current method by proposing a systematic way to identify a system’s
components and to estimate the damage potential-effort ratio of each such component.

A key challenge in our attack surface measurement method is the estimation of the
damage potential-effort ratio. Recall that in order to estimate the damage potential-effort
ratio of a resource, we have to impose total orderings among the values of the attributes
of the resource. For example, we impose total orderings among the privilege levels and
the access rights levels of the methods, the protocols and the access rights levels of the
channels, and the types and the access rights levels of the data items. Natural total order-
ings exist for four out of these six attributes; it is easy to impose total orderings among the
privilege levels of the methods, the access rights levels of the methods, the access rights
levels of the channels, and the access rights levels of the data items. For example, the total
ordering among the access rights levels of the methods is root > authenticated

> unauthenticated. No such natural orderings, however, exist for the protocols of
the channels and the data types of the data items. We need domain knowledge to decide
whether the damage potential of TCP is greater than that of UDP or whether the damage
potential of cookies is greater than that of database records. A useful extension
of the measurement method would be to provide a set of guidelines to the users so that they
can impose appropriate total orderings among the values of these two attributes using their
domain knowledge. For example, we can guide the user to identify attributes of protocols
such as the data exchange format and the number of steps in connection establishment that
will help the user impose a total ordering among the protocols.

Currently there are no source code analysis tools that enable us to identify a system’s
indirect entry points (exit points). Hence in both our C and Java measurements, we could
not identify the indirect entry points (exit points) in an automated manner. A possible di-
rection of future work would be to explore code analysis techniques to identify a system’s
indirect entry points and indirect exit points.
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8.2.4 Validation Approaches

In this thesis, we conducted three empirical studies for validating the attack surface metric.
These studies were exploratory in nature. Another possible validation approach would be
to correlate a system’s attack surface measurement with the number of observed attacks
on the system. Honeypots are dedicated hosts on the Internet that can simulate vulnerable
software systems to an attacker. The honeypots act as devices that monitor attack activities;
hence we can analyze honeypot data to estimate the number of real attacks on a software
system. If a system,A, has a larger attack surface compared to a system,B, then we would
expect to see a larger number of attacks on A compared to B.

Another validation approach would be to integrate the attack surface measurement and
reduction process with the software development process and then observe the benefits
of attack surface reduction after the release of software. If the newer version of a sys-
tem undergoes attack surface reduction, then we would expect to see fewer exploitable
vulnerabilities in the newer version than the older versions over similar time periods.

Another validation approach would be to use Cadar et al.’s approach of automatically
generating inputs that crash a software system [13]. Cadar et al. use symbolic execution to
generate the relevant inputs and to identify the code locations where crashes occur. A sys-
tem’s method that contains a crash location receives data from the system’s environment;
hence in terms of our I/O model, the method is an entry point of the system. Intuitively,
if we identify a set, E, of a system’s entry points and also use Cadar et al.’s approach to
identify a set, C, of methods that contain crash locations, then we would expect to see that
C is a subset of E.

8.2.5 Improvements of the Measurement Tool

We implemented a tool as an Eclipse plug-in to measure the attack surfaces of SAP busi-
ness applications. Based on the feedback received from the SAP product development
group, we have identified three possible extensions of the tool to make it more useful for
software developers. First, the tool currently outputs its result in the form of a text file. We
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could improve the tool by presenting the results in a graphical window inside the Eclipse
IDE so that the developers can access the measurement results within the IDE. Second, we
could improve the usability of the tool by implementing a Graphical User Interface (GUI)
to update the configuration information required by the tool. Third, the tool currently
measures the attack surfaces of systems implemented in Java. The tool would be more
useful in practice if we were to extend the tool to measure the attack surfaces of software
implemented in other languages such as JavaScript and ABAP [1].

8.2.6 Attack Surface Range Analysis

The result of our attack surface measurement method guides the software developers to
focus on a system’s relevant parts to reduce the system’s attack surface. For example,
the developers can analyze the top contributing entry points and exit points instead of
the entire code base to reduce the attack surface. The result, however, does not help in
deciding when to stop the reduction process. In order to address this issue, a possible
extension of our work is to develop a method to estimate the minimum and the maximum
possible attack surface measurements of a system given the system’s functionality. We
briefly describe such a method in the following paragraph.

In order to estimate the minimum and the maximum attack surface measurements,
we need to estimate an entry point’s (exit point) minimum and maximum contributions
to the attack surface, i.e., we need to estimate the minimum and the maximum damage
potential-effort ratios. We can estimate the minimum and the maximum damage potential-
effort ratios from the range of numeric values assigned to damage potential and effort. We
also need to estimate the appropriate number of entry points and exit points required to
implement the system’s functionality. In the absence of such an estimate, we can simplify
our analysis by assuming that the appropriate number is the same as the observed number
of entry points and exit points. Hence we can estimate the minimum and the maximum
attack surface measurements by multiplying the number of entry points and exit points
with the minimum and the maximum damage potential-effort ratios, respectively.
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8.2.7 Usage of Attack Surface Measurements

A system’s attack surface measurement can be used in other contexts besides the obvious,
i.e., as an indication of the system’s security risk. We describe four possibilities here;
a useful direction of future work would be to explore other usage of the attack surface
measurement.

First, software developers and architects can use the minimum and the maximum at-
tack surface measurement estimates to prioritize software testing effort. For example, if
a system’s attack surface measurement is closer to the maximum, then they should invest
more in testing efforts; if the measurement is closer to the minimum, they can reduce their
testing effort.

Second, software developers can use attack surface measurements as a guide while
implementing patches of security vulnerabilities in their software systems. A good patch
should not only remove a vulnerability from a system, but also should not increase the
system’s attack surface. Software developers can use our measurement method to ensure
that their patches do not increase the attack surface.

Third, we can use attack surface measurements to provide guidelines for “safe” soft-
ware composition. We consider a composition of two systems, A and B, to be safe iff
the attack surface measurement of the composition is not greater than the sum of the at-
tack surface measurements of A and B. A possible direction of future work would be to
identify the conditions under which the composition of two given systems is safe.

Fourth, software consumers often have to make a choice between several possible con-
figurations of software. For example, SAP business applications can be configured in
many different ways; SAP customers choose the configuration best for them. Configur-
ing large enterprise-scale software is a complex process; hence choosing an appropriate
configuration is a non-trivial and error-prone task. We could use a system’s attack sur-
face measurement as a guide in choosing an appropriate configuration. Since a system’s
attack surface measurement is dependent on the system’s configuration, we would choose
a configuration that results in a smaller attack surface exposure.
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8.3 Final Word

The research community has acknowledged that security metrics and measurements is a
very challenging area in security research [37, 21, 11, 63]. There is, however, a pressing
need for practical security metrics and measurements today. This thesis research is a
first step in the grander challenge of security metrics. We have formalized the pragmatic
approach of attack surface measurements; our metric is useful to both software industry
and software consumers.

Howard’s measurement method is already used in a regular basis as part of Microsoft’s
Security Development Lifecycle [43]. Mu Security’s Mu-4000 Security Analyzer uses our
attack surface measurement framework for security analysis [91]. SAP is also planning to
implement a tool based on the prototype discussed in Chapter 6 to be used as part of their
software quality improvement process.

We, however, believe that no single security metric or measurement will be able to
fulfill our requirements. We certainly need multiple metrics and measurements to quantify
different aspects of security. We hope that our work will rekindle interest in security
metric research. We also believe that our understanding over time would lead us to more
meaningful and useful quantitative security metrics.
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Appendix A

Input and Output Methods

In this section, we below list the Input and Output sets of library methods required by our
C measurement method.

Input = {canonicalize file name, catgets, confstr, ctermid, ctermid, cuserid, dgettext,
dngettext, fgetc, fgetc unlocked, fgets, fgets unlocked, fpathconf, fread, fread unlocked,
fscanf, getc, getchar, getchar unlocked, getc unlocked, get current dir name, getcwd, get-
delim, getdelim, getdelim, getdents, getenv, gethostbyaddr, gethostbyname, gethostby-
name2, gethostent, gethostid, getline, getline, getlogin, getlogin r, getmsg, getopt, getopt
internal, getopt long, getopt long only, getpass, getpmsg, gets, gettext, getw, getwd, nget-
text, pathconf, pread, pread64, ptsname, ptsname r, read, readdir, readlink, readv, realpath,
recv, recv from, recvmesg, scanf, secure getenv, signal, sysconf, ttyname, ttyname r, vf-
scanf, vscanf}

Output = {dprintf, fprintf, fputc, fputchar unlocked, fputc unlocked, fputs, fputs
unlocked, fwrite, fwrite unlocked, perror, printf, psignal, putc, putchar, putc unlocked,
putenv, putmsg, putpmsg, puts, putw, pwrite, pwrite64, send, sendmsg, sendto, setenv,
sethostid, setlogin, ungetc, vdprintf, vfprintf, vsyslog, write, writev}
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Appendix B

Survey Questionnaire

In this section, we reproduce the survey questionnaire sent to the survey participants.

Attack Surface Measurement Survey

The attack surface measurement project at Carnegie Mellon University aims to find a systematic

method to measure a software product’s attack surface . Intuitively, a software product’s attack

surface is the set of ways in which the product can be attacked. We propose to use a software

product’s attack surface measurement as an indicator of the product’s security. Your expertise as

a Linux system administrator will help us in defining a systematic attack surface measurement

method.

This survey contains 6 questions and takes less than 30 minutes to fill out. If you have any ques-

tions, please email Pratyusa Manadhata (pratyus@cs.cmu.edu).

For each question, unless otherwise stated, please indicate your choice by putting an X between

the parentheses to the left of your choice.

1. Software products running on Linux are attacked using the product’s resources . Examples

of software products are web servers, database servers, and IMAP servers. The resources of a

product can be broadly categorized into three types: methods in the source code of the product,
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communication channels opened by the product, and data accessed by the product. The following

are few examples of the three types of resources.

-method: the APIs/interfaces of daemons, libraries, and reusable components

-channel: sockets and pipes

-data: configuration files, scripts, and database records

An attacker might attack a product using a combination of the product’s resources. For example,

in a buffer overrun attack, an attacker connects to the product using a communication channel and

invokes the method of the product that has the buffer overrun vulnerability.

Consider a web application server running on Linux that serves both static and dynamic content.

Please rate your degree of agreement or disagreement with the following statements.

(a) The web server’s methods (possibly in combination with other resources) that take input from

the server’s clients can be used in attacks on the web server.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(b) The communication channels (possibly in combination with other resources) opened by the

web server can be used in attacks on the web server.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(c) The data (possibly in combination with other resources) accessed by the web server can be used

in attacks on the web server.
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( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(d) Please explain the reasons behind each of your answers in 1-2 sentences in the space below.

What other resources of the web server are used to attack the web server?

2. We define a resource’s damage potential-effort ratio as the ratio of the resource’s damage

potential to attacker effort where

damage potential is the damage (technical impact (e.g., root elevation) and not business impact

(e.g., monetary loss)) the attacker can cause to the product in using the resource in an attack, and

effort is the effort the attacker spends to use the resource in an attack.

The higher the damage potential or the lower the effort, the higher the damage potential-effort ratio.

(a) Please rate your degree of agreement or disagreement with the following statement.

The damage potential-effort ratio of a resource is an indicator of how likely the resource is going

to be used in an attack.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree
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(b) Please explain the reasons behind your answer in 1-2 sentences in the space below. List any

other indicators of how likely the resource is going to be used in an attack.

In the following three questions (Questions 3-5), the definitions of damage potential and effort

are as given in Question 2. We estimate a resource’s damage potential-effort ratio in terms of

the resource’s properties and not the attacker’s capabilities. We do not assume a specific attacker

profile and consider the entire range of profiles from script kiddies to organized crime.

3. Consider the methods in the source code of the web server.

The privilege of the method is the Linux privilege (either root or non-root user) with which the

method runs. If the attacker exploits a vulnerability present in the method, the attacker gains the

privilege of the method.

Please rate your degree of agreement or disagreement with the following statement.

(a) The privilege of the method is an indicator of the method’s damage potential.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(b) Please explain the reasons behind your answer in 1-2 sentences in the space below. What other

properties of the method might be indicators of damage potential?
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The access rights of the method determines who can access the method (e.g., unauthenticated

users, authenticated users, admin user, and root). For example, anyone can access the methods

of the httpd daemon whereas only admin users can access the methods in the interface of the

administrative module of a web server. The attacker spends effort to acquire necessary access

rights in order to be able to use a method in an attack.

(c) Please rate your degree of agreement or disagreement with the following statement.

The access rights of the method is an indicator of the attacker effort.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(d) Please explain the reasons behind your answer in 1-2 sentences in the space below. What other

properties of the method might be indicators of attacker effort?

4. Consider the communication channels opened by the web server.

The protocol (e.g., TCP, UDP, and RPC) of a channel defines the rules of communication and

the format of the data exchanged over the channel. For example, TCP allows raw streams of

data whereas RPC allows only well formatted data to be exchanged. Hence the attacker can send

arbitrary data using a TCP socket whereas the attacker can send only well formatted data using an

RPC end point.

(a) Please rate your degree of agreement or disagreement with the following statement.

The protocol of the channel is an indicator of the channel’s damage potential.
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( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(b) Please explain the reasons behind your answer in 1-2 sentences in the space below. What other

properties of the channel might be indicators of damage potential?

The access rights of a channel determines who can access the channel (e.g., accessible by users

on the same computer, accessible by users on the same subnet, and accessible by users on the

Internet). For example, TCP sockets are accessible by users on the Internet whereas UNIX pipes

are accessible by users on the same computer.

(c) Please rate your degree of agreement or disagreement with the following statement.

The access rights of the channel is an indicator of the attacker effort.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(d) Please explain the reasons behind your answer in 1-2 sentences in the space below. What other

properties of the channel might be indicators of attacker effort?
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5. Consider the data accessed by the web server.

The type of the data (e.g., cookies, database records, and files) determines the format of the

data. For example, files can contain arbitrary data whereas cookies have well defined format. The

attacker can indirectly send arbitrary data to the web server using a file whereas the attacker can

send only well formatted data using a cookie. For example, if the attacker can write to a file that is

later read by the web server, the attacker can indirectly send arbitrary data to the web server.

(a) Please rate your degree of agreement or disagreement with the following statement.

The type of the data is an indicator of the data’s damage potential.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree

( ) Strongly disagree

(b) Please explain the reasons behind your answer in 1-2 sentences in the space below. What other

properties of the data might be indicators of damage potential?

The access rights of the data determines who can read and write the data (e.g., UNIX rwxrwxrwx

access rights determine the access rights for owner, group, and world).

(c) Please rate your degree of agreement or disagreement with the following statement.

The access rights of the data is an indicator of the attacker effort.

( ) Strongly agree

( ) Agree

( ) Neither agree or disagree

( ) Disagree
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( ) Strongly disagree

(d) Please explain the reasons behind your answer in 1-2 sentences in the space below. What other

properties of the data might be indicators of attacker effort?

6. Background Information

(a) What is your affiliation?

( ) University

( ) Corporate

( ) Government

( ) Other:

(b) How many years of full-time Linux administration experience do you have?

( ) Less than 2

( ) 2-5

( ) 6-10

( ) More than 10

(c) Please indicate which Linux software you have installed or maintained.

( ) Web server

( ) IMAP server

( ) Database server

( ) Others:
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(d) Does your job involve making software purchase decisions? (e.g., deciding which web server

product to buy).

( ) Yes

( ) No

(e) If so, please rank the factors that guide your decision.

(1 = most important, 5 = least important)

( ) Ease of administration

( ) Ease of installation

( ) Feature set

( ) Open source

( ) Security

(f) How familiar are you with the following types of software attacks?

(

1=I haven’t heard about the attack,

2=I have heard about the attack but not really understand what it is

3=I have heard about the attack and understand the steps involved in it

4=I know how to implement the attack

)

Buffer Overrun ( ) 1, ( ) 2, ( ) 3, ( ) 4

Format String ( ) 1, ( ) 2, ( ) 3, ( ) 4

Cross Site Scripting ( ) 1, ( ) 2, ( ) 3, ( ) 4

DoS/DDoS ( ) 1, ( ) 2, ( ) 3, ( ) 4

Thank you for filling out our survey!
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Appendix C

Common Weakness Enumeration
(CWE) Definitions

In this section, we list the 23 CWE definitions used by NVD bulletins. We obtained the
definitions from NIST’s website [76].

Name CWE-ID Description

Authentication
Issues

CWE-287 Failure to properly authenticate users.

Credentials
Management

CWE-255 Failure to properly create, store, transmit, or protect passwords
and other credentials.

Permissions,
Privileges,
and Access
Control

CWE-264 Failure to enforce permissions or other access restrictions for
resources, or a privilege management problem.
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Name CWE-ID Description

Buffer Errors CWE-119 Buffer overflows and other buffer boundary errors in which a
program attempts to put more data in a buffer than the buffer
can hold, or when a program attempts to put data in a memory
area outside of the boundaries of the buffer.

Cross-Site
Request
Forgery
(CSRF)

CWE-352 Failure to verify that the sender of a web request actually in-
tended to do so. CSRF attacks can be launched by sending a
formatted request to a victim, then tricking the victim into load-
ing the request (often automatically), which makes it appear
that the request came from the victim. CSRF is often associ-
ated with XSS, but it is a distinct issue.

Cross-Site
Scripting
(XSS)

CWE-79 Failure of a site to validate, filter, or encode user input before
returning it to another users web client.

Cryptographic
Issues

CWE-310 An insecure algorithm or the inappropriate use of one; an in-
correct implementation of an algorithm that reduces security;
the lack of encryption (plaintext); also, weak key or certificate
management, key disclosure, random number generator prob-
lems.

Path Traver-
sal

CWE-22 When user-supplied input can contain .. or similar characters
that are passed through to file access APIs, causing access to
files outside of an intended subdirectory.

Code Injec-
tion

CWE-94 Causing a system to read an attacker-controlled file and execute
arbitrary code within that file. Includes PHP remote file inclu-
sion, uploading of files with executable extensions, insertion of
code into executable files, and others.

Format
String Vul-
nerability

CWE-134 The use of attacker-controlled input as the format string param-
eter in certain functions.

Configuration CWE-16 A general configuration problem that is not associated with
passwords or permissions.

Information
Leak /
Disclosure

CWE-200 Exposure of system information, sensitive or private informa-
tion, fingerprinting, etc.136



Name CWE-ID Description

Input Valida-
tion

CWE-20 Failure to ensure that input contains well-formed, valid data
that conforms to the applications specifications. Note: this
overlaps other categories like XSS, Numeric Errors, and SQL
Injection.

Numeric Er-
rors

CWE-189 Integer overflow, signedness, truncation, underflow, and other
errors that can occur when handling numbers.

OS Com-
mand Injec-
tions

CWE-78 Allowing user-controlled input to be injected into command
lines that are created to invoke other programs, using system()
or similar functions.

Race Condi-
tions

CWE-362 The state of a resource can change between the time the re-
source is checked to when it is accessed.

Resource
Management
Errors

CWE-399 The software allows attackers to consume excess resources,
such as memory exhaustion from memory leaks, CPU con-
sumption from infinite loops, disk space consumption, etc.

SQL Injec-
tion

CWE-89 When user input can be embedded into SQL statements with-
out proper filtering or quoting, leading to modification of query
logic or execution of SQL commands.

Link Follow-
ing

CWE-59 Failure to protect against the use of symbolic or hard links that
can point to files that are not intended to be accessed by the
application.

Other No Mapping NVD is only using a subset of CWE for mapping instead of
the entire CWE, and the weakness type is not covered by that
subset.

Not in CWE No Mapping The weakness type is not covered in the version of CWE that
was used for mapping.

Insufficient
Information

No Mapping There is insufficient information about the issue to classify it;
details are unkown or unspecified.

Design Error No Mapping A vulnerability is characterized as a Design error if there exists
no errors in the implementation or configuration of a system,
but the initial design causes a vulnerability to exist.
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