
Learning Domain-Specific Planners From
Example Plans
Elly Zoe Winner

CMU-CS-08-112

May 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuela Veloso, Chair

Avrim Blum
Reid Simmons

Leslie Kaelbling, M.I.T.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Elly Zoe Winner

This research was supported under a National Science Foundation Graduate Research Fellowship, by the
United States Air Force Grants Nos. F30602-97-2-0250, F30602-98-2-0135, and F30602-00-2-0549, and
by BBNT Solutions under subcontract no. 950008572, via prime Air Force contract no. SA-8650-06-C-
7606. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution,
the U.S. government, or any other entity.

Keywords: Planning, Learning, Domain-specific planning, Program synthesis, Loop-
ing plan learning

For Jovan and Manuela, who made me do it.

iv

Abstract

Automated problem solving involves the ability to select actions from a
specific state to reach objectives. Classical planning research has addressed
this problem in a domain-independent manner—the same algorithm generates
a complete plan for any domain specification. While this generality is in prin-
ciple desirable, it comes at a cost which domain-independent planners incur
either in high search efforts or in tedious hand-coded domain knowledge.

Previous approaches to efficient general-purpose planning have focused
on reducing the search involved in an existing general-purpose planning al-
gorithm. Others abandoned the general-purpose goal and developed special-
purpose planners highly optimized in efficiency for the specific aspects of a
particular problem solving domain. An interesting alternative is to use exam-
ple plans in a particular domain to demonstrate how to solve problems in that
domain and to use that information to solve new problems independently of a
domain-independent planner. Others have used example plans for case-based
and analogical planning, but the retrieval and adaptation mechanisms were
still domain-independent and efficiency issues were still a concern. Recently,
example plans have been used to induce decision lists, but many examples and
hours or even days of computation time were needed to learn the lists.

This thesis presents a novel way of using example plans: by analyzing
individual example plans thoroughly, our algorithms reveal the rationale and
structure underlying the plan, and use this information to rapidly learn com-
plex, looping domain-specific planners (or dsPlanners) automatically. In this
thesis, I introduce the dsPlanner language, a clear, human-readable and -write-
able programming language for describing learnable domain-specific plan-
ners; the SPRAWL algorithm for analyzing observed plans and uncovering
the rationale underlying the plan; the DISTILL algorithm for automatically
learning non-looping dsPlanners from sets of example plans; and the Loop-
DISTILL algorithm for automatically learning looping dsPlanners from exam-
ples. I show that the careful analysis of example plans can make learning so
efficient that a dsPlanner that covers large classes of arbitrarily large problems
can be learned from a single example in under a second for a wide variety
of domains. Automatically learned dsPlanners can then be used to solve new
planning problems in linear time, modulo state matching effort.

vi

Acknowledgments

I owe an enormous debt of gratitude to my husband Jovan, who joyfully took on making
the time and space for the completion of this thesis as his own personal mission; and to
my advisor, Manuela Veloso, who went far beyond the call of duty to find a way to help
me finish. I could not have continued on with this work as it stretched over months and
years without my “real life”—Jovan, Saan, and Rai, and our home overflowing with chaos,
sunlight, songs and shrieks, all manner of art works and science experiments (sometimes
on each other), and great food and junk food, and love, and laughter and yelling and
banging and wailing. And love and thanks to my parents and to my whole extended family,
who have never ceased to be my cheerleaders, sounding boards, inveterate eggers-on, and
unwavering supporters in whatever I do.

I would like to thank Mary Ellen Verona and Farnam Jahanian for landing me in grad
school in the first place, with their infectious excitement about computer science, their
support and complete confidence in me, and the self-assigned roles as my friends, mentors,
and advisors.

I very much appreciate the support and attention of my thesis committee, and wish to
thank Reid Simmons in particular for the exacting care with which he read my thesis and
for his many thoughtful comments.

Finally, many thanks to the students, staff, and faculty of Carnegie Mellon who con-
tinue to consciously create an environment that I have found to be simultaneously stimu-
lating and safe, and especially to my friends at Carnegie Mellon who made my time there
one of the most exciting (intellectually and otherwise) and happy periods of my life: Jovan
and Zoran Popovic, Andrej Bauer, Will Uther, Stavros Harizopoulos, Gal Kaminka, Pat
Riley, and Belinda Thom immediately leap to mind.

vii

viii

Contents

1 Introduction 1

2 The SPRAWL Algorithm: Extracting Rationales from Example Plans 5

2.1 Needs Analysis . 10

2.1.1 Needs Tree Structure . 10

2.1.2 Needs Analysis Algorithm . 13

2.1.3 Complexity of Needs Analysis Algorithm 15

2.1.4 An Example with Conditional Effects 16

2.1.5 An Example without Conditional Effects 18

2.2 The SPRAWL Algorithm . 19

2.2.1 Resolving Threats . 20

2.2.2 Complexity of the SPRAWL Algorithm 21

2.2.3 An Example with Conditional Effects 22

2.2.4 An Example without Conditional Effects 23

2.3 Discussion . 26

2.3.1 Different Total Orderings of the Same Steps May Produce Differ-
ent Partial Orderings . 27

2.3.2 Active Conditional Effects May Differ from Those in Totally Or-
dered Plan . 27

2.3.3 Finding Multiple Partial Orderings 28

2.4 Summary . 30

ix

3 Defining and Using dsPlanners 31

3.1 Defining DsPlanners . 31

3.2 Planning with DsPlanners . 33

3.3 Rocket Domain Example . 35

3.4 Summary . 37

4 DISTILL: Learning Non-Looping Domain-Specific Planners by Example 39

4.1 The DISTILL Algorithm: Learning Non-Looping dsPlanners 40

4.1.1 Generalizing Situations . 42

4.1.2 Converting Plans into dsPlanners 43

4.1.3 Merging dsPlanners . 44

4.2 Illustrative Results . 45

4.3 Summary . 48

5 LoopDISTILL: Learning Domain-Specific Planners from Example Plans 49

5.1 Definitions . 50

5.2 The LoopDISTILL Algorithm . 53

5.2.1 Identifying Parallel Unrolled Loops 54

5.2.2 Identifying Serial Unrolled Loops 55

5.2.3 Converting Unrolled Loops into Loops 60

5.3 Illustrative Examples . 62

5.3.1 A Parallel Multi-Step Loop Example 62

5.3.2 A Rocket Domain Example with Parallel Loops 63

5.3.3 A Rocket Domain Example with Serial Loops 66

5.4 Summary . 68

6 Learned DsPlanners for Several Domains 71

6.1 Multi-Step Parallel Loop Domain . 71

6.2 Multi-Step Serial Loop Domain . 72

6.3 Blocksworld . 73

x

6.4 Schedule . 76

6.5 Rocket . 78

6.6 Logistics . 82

6.7 Elevator . 86

6.8 Gripper . 87

6.9 Briefcase . 87

6.10 Towers of Hanoi . 88

7 Related Work 91

7.1 Plan Analysis . 91

7.1.1 Triangle Tables . 91

7.1.2 Validation Structures . 92

7.1.3 Derivational Analogy . 92

7.1.4 Operator Graphs . 93

7.1.5 Partially Ordering Totally Ordered Plans 93

7.1.6 Partial Order Planning . 93

7.2 Domain Knowledge to Reduce Planning Search 95

7.2.1 Control Rules . 95

7.2.2 Macro Operators . 95

7.2.3 Case-Based Reasoning . 96

7.2.4 Analogical Reasoning . 96

7.2.5 Hierarchical Planning . 97

7.2.6 Skeletal Planning . 97

7.2.7 Meta-Planning . 97

7.3 Automatic Program Generation . 98

7.3.1 Deductive Program Synthesis 98

7.3.2 Inductive Program Synthesis . 99

7.4 Universal Planning . 100

xi

8 Conclusions 103

8.1 Contributions . 103

8.2 Discussion . 104

8.2.1 “Best” dsPlanner . 104

8.2.2 Soundness, Correctness, and Completeness 105

8.2.3 Coverage . 105

8.3 Future Work . 106

8.3.1 Merging Looping dsPlanners and Matching non-Identical Loop It-
erations . 107

8.3.2 Nested Loops . 108

8.3.3 Uncovering Iteration Ordering Constraints and Expressing Recur-
sive Definitions . 108

8.4 Summary . 110

A Sprinkler Domain 111

B Rocket Domain 113

C Blocksworld Domain 115

D Gripper Domain 117

E Dishwashing Domain 119

F Multi-Step Parallel Loop Domain 121

G Multi-Step Serial Loop Domain 123

H Schedule Domain 125

I Logistics Domain 131

J Elevator Domain 133

xii

K Briefcase Domain 135

Bibliography 137

xiii

xiv

List of Figures

1.1 A pictoral guide to this work. First, the SPRAWL algorithm reveals the ra-
tionale behind observed example plans. The DISTILL and LoopDISTILL

algorithms are two approaches towards using the SPRAWL analysis of ob-
served plans to generate a dsPlanner. Finally, dsPlanners are used to plan
by example. 3

2.1 Three totally ordered plans that illustrate the three possible ways of treat-
ing a conditional effect in an ordering: using it to achieve a goal, prevent-
ing it in order to achieve a goal, or ignoring its effect. 7

2.2 The annotated partial orderings generated by SPRAWL for the three totally
ordered plans shown in Figure 2.1. 9

2.3 The step sprinkle front-yard. 11

2.4 Expanding the need wet shoe (shown as wet sh in the figure) in the step
sprinkle front-yard (shown as sprinkle fy in the figure). The term wet
shoe may be satisfied in either of two ways; this is represented by an OR
operator. 12

2.5 A term may be true after a particular step if a non-conditional effect of the
previous step accomplishes it. We indicate this with a double circle around
the term. 13

2.6 The existence needs of a need at a particular step n are calculated by find-
ing all possible ways it can be generated in the previous step and ensuring
that at least one of these occurs. The protection needs are calculated by
finding all possible ways it can be deleted in the previous step and ensuring
that none of these occurs. 15

2.7 A totally ordered plan in the sprinkler domain and its complete needs tree. 17

xv

2.8 A totally ordered plan in the Rocket domain and its complete needs tree.
All links in the needs tree between steps and needs are labelled as precon-
dition needs. All links in between needs are create maintain needs; they
are not labelled to help preserve the readability of the figure. The needs
of the START state are all labelled unsatisfiable (surrounded by a dashed
line) because there is no way to achieve these needs before the execution
of the START step. 19

2.9 A totally ordered plan in the Sprinkler domain and its trimmed needs tree.
Unsatisfiable needs are surrounded by dotted circles. Satisfied needs are
surrounded by double circles. 23

2.10 The totally ordered plan in the Sprinkler domain shown in Figure 2.7 along
with the annotated ordering constraints that make up the full minimal an-
notated consistent partial ordering found by SPRAWL. 24

2.11 A totally ordered plan in the Rocket domain and its trimmed needs tree.
Unsatisfiable needs are surrounded by dotted circles. Satisfied needs are
surrounded by double circles. 25

2.12 The totally ordered plan in the Rocket domain shown in Figure 2.8 along
with the preliminary partial ordering found by SPRAWL. This includes all
dependencies but does not include threat orderings. 26

2.13 The totally ordered plan in the Rocket domain shown in Figure 2.8 along
with the annotated ordering constraints that make up the full minimal an-
notated consistent partial ordering found by SPRAWL. 26

2.14 An example plan with multiple possible partial orderings (Bäckström 93),
and the needs tree created if the algorithm does not terminate branches
when they are accomplished. Note that the term q is accomplished by
two different steps: a and b. SPRAWL can find both of the two possible
partial orderings: one in which step a provides q to step c, and one in
which b does. If branches are terminated as they are accomplished, the
accomplished need marked q*, which represents step a providing q to step
c, would not be found. 28

2.15 The partial ordering of the plan shown in Figure 2.14 if branches are ter-
minated as the needs they fulfill are accomplished. 29

2.16 Another partial ordering of the example plan shown in Figure 2.14. This
ordering can also be discovered by SPRAWL if branches of the needs tree
are not terminated as the needs they fulfill are accomplished. 29

xvi

4.1 An example plan. The preconditions (pre) are listed, as are the effects,
which are represented as conditional effects a→ b, i.e., if a then add b. A
non-conditional effect that adds a literal b is then represented as {} → b.
Delete effects are represented as negated terms (e.g., {a} → NOT b). . . 44

4.2 Combining two if statements when the body of one is a sub-plan of the
body of the other. 46

4.3 Combining two if statements when their bodies are overlapping. 46

5.1 An example plan in a painting and transport domain is shown. In the given
plan, some objects need to be painted and some need to be loaded into a
truck. Painting must be done before loading. Three different subplans
are surrounded by dotted lines. There are other possible subplans, but the
steps paint(obj1) and paint(obj3) are not a subplan, since they are not a
connected component within the partial ordering. 51

5.2 Three parallel subplans are surrounded by dotted lines. 52

5.3 Two parallel matching subplans of length 1 are surrounded by dotted lines
and represent an unrolled loop. 52

5.4 The painting and transport problem after the load loop is identified. The
loop is surrounded by dotted lines. The loop variable is written as ?1, and
ranges over all values that meet the conditions of the loop (in this case,
obj1 and obj2). Conditions for the loop are shown above the loop. 53

5.5 An example annotated partially ordered plan in the rocket domain that
includes a serial loop. 54

5.6 An example problem in a dishwashing domain demonstrating a serial loop
in which the first iteration has a goal footprint that is a superset of that the
second iteration. 59

5.7 An example problem in the Blocksworld domain demonstrating a serial
loop in which the first two iterations have identical goal footprints but the
third iteration has a goal footprint that is a subset of these. 60

5.8 An example problem in the Rocket domain demonstrating a serial loop
(the “pick up” loop) in which all iterations have identical goal footprints—
the entire goal. 60

xvii

5.9 An example annotated partially ordered plan in an artificial domain that
includes a multi-step loop consisting of the steps op1, op2, and op3. The
original totally ordered plan could have been any topological sort of this
partial ordering. 62

5.10 The example plan shown in Figure 5.9 after the loop has been identified.
The loop is surrounded by dotted lines. The loop variable is written as lv,
and ranges over all values that meet the conditions of the loop (in this case,
x and y). The conditions of the loop are shown above it. 62

5.11 Timing results of several general-purpose planners and of the learned ds-
Planner shown in DsPlanner 10 on large-scale multi-step loop domain
problems. We also tested the MIPS planner, but it wasn’t able to solve
enough large-scale problems to appear on the graph. 64

5.12 An example annotated partially ordered plan in the rocket domain that
involves moving objects o1, o2, and o3 from location s to location d using
rocket r. The minimal annotated partial ordering of the plan is shown in (a).
The plan after loops are identified is shown in (b). Loops are surrounded
by dotted lines. The loop variables are written as lv1 and lv2, and range
over all values that meet the conditions of the loops (in these cases, o1,
o2, and o3). Conditions for the loops are shown above them. 65

5.13 Timing results of several general-purpose planners and of the learned ds-
Planner shown in DsPlanner 12 on large-scale rocket-domain delivery prob-
lems. We also tested VHPOP and LPG but they were not able to solve
enough large-scale problems to be appear on this graph. 67

5.14 An example annotated partially ordered plan in the rocket domain that
includes a serial loop. 68

5.15 The example plan shown in Figure 5.14 with two causally linked matching
steps identified. 68

5.16 The example plan shown in Figure 5.14 after the loop has been identified.
The loop variables are shown with question marks in front of them. All
parameters of the steps in the loop are variables. 69

6.1 An example plan in an artificial domain demonstrating a serial loop with
complex causal structure. 72

6.2 An example annotated partially ordered plan in the Blocksworld domain
in which the goal is to unstack all blocks. 73

xviii

6.3 An example annotated partially ordered plan in the Blocksworld domain
in which the goal is to build a tower. 74

6.4 An example annotated partially ordered plan in the Blocksworld domain
in which the goal is to unstack the blocks and build a new tower. 75

6.5 An example plan in the Schedule domain. 78

6.6 An example annotated partially ordered plan in the rocket domain that
includes a serial loop. 79

6.7 An example annotated partially ordered plan in the rocket domain in which
multiple rockets are used to deliver the packages. 80

6.8 An example annotated partially ordered plan in the rocket domain in which
packages are first all picked up from their initial locations and then they
are all dropped off at their goal locations. 81

6.9 An example annotated partially ordered plan in the rocket domain in which
multiple rockets are used to deliver the packages. 83

6.10 An example plan in the Logistics domain that demonstrates a looping so-
lution algorithm for delivery problems. 86

6.11 An example plan in the Briefcase domain. 88

7.1 This partial ordering, found by Graphplan, contains many irrelevant order-
ing constraints. 94

7.2 This partial ordering, found by SPRAWL, contains only necessary ordering
constraints. 94

xix

List of Algorithms

1 The Needs Analysis algorithm. 14

2 The SPRAWL algorithm. 20

3 The DISTILL algorithm: learning a non-looping dsPlanner from exam-
ple plans. .

41

4 Procedures that support the DISTILL algorithm. 42

5 The LoopDISTILL algorithm for identifying non-nested parallel loops
in an example plan. .

55

6 LargestCommonSubplan: the LoopDISTILL algorithm for identifying
the largest parallel matching subplans of an observed plan common to
at least two of the given parallel matching subplans.

56

7 The LoopDISTILL algorithm for identifying non-nested serial loops in
an example plan. .

57

8 ConnectSerialLoop: the LoopDISTILL algorithm for searching for two
serial matching subplans rooted at two given serial matching steps. . . .

58

9 FindOtherSerialIterations: the LoopDISTILL algorithm for searching
for additional iterations of the serial loop represented by the given serial
matching subplans. .

59

xx

10 MakeLoop: the LoopDISTILL algorithm for creating the loop described
by a given unrolled loop. .

61

xxi

List of DsPlanners

1 A hand-written dsPlanner that solves all BlocksWorld-domain prob-
lems. .

33

2 A hand-written dsPlanner that solves all gripper-domain problems in-
volving moving balls from one room to another. .

33

3 A hand-written dsPlanner that solves all rocket-domain problems with-
out negated goals. .

34

4 The dsPlanner the DISTILL algorithm creates to represent the plan
shown in Figure 4.1. .

43

5 A dsPlanner learned from 6 example plans by the DISTILL algorithm
which solves all two-block blocks-world problems.

46

6 A dsPlanner learned by the DISTILL algorithm from 5 example plans
that solves all gripper-domain problems involving one ball, two rooms,
and one robot with one gripper arm. .

47

7 The unstacking dsPlanner loop learned by LoopDISTILL from the
Blocksworld example shown in Figure 5.7. .

59

8 The overly specific dsPlanner pickup loop that could be learned from
the Rocket domain example shown in Figure 5.8 if we don’t account
for adjusting the size of the goal footprint to those conditions that are
relevant to each iteration. .

61

xxii

9 The dsPlanner pickup loop learned by LoopDISTILL from the Rocket
domain example shown in Figure 5.8. LoopDISTILL adjusts which
elements of the goal footprint are represented in the conditions for the
loop to those that are relevant to each iteration. .

61

10 The looping dsPlanner learned by LoopDISTILL from the multi-step
loop domain problem shown in Figures 5.9 and 5.10.

63

12 The looping dsPlanner learned by LoopDISTILL from the rocket-
domain example shown in Figures 5.14 and 5.16.

69

13 The looping dsPlanner learned by LoopDISTILL from the multi-step
parallel loop domain problem shown in Figures 5.9 and 5.10.

72

14 The looping dsPlanner learned by LoopDISTILL from the multi-step
serial loop domain problem shown in Figures 6.1.

73

15 The looping dsPlanner learned by LoopDISTILL from the blocksworld-
domain example shown in Figure 6.2. This dsPlanner solves unstacking
problems with a serial loop that repeatedly unstacks the top block of the
tower. .

74

16 The looping dsPlanner learned by LoopDISTILL from the blocksworld-
domain example shown in Figure 6.3. This dsPlanner solves stacking
problems, but does not capture the ordering in which the stacking must
be done. .

75

17 The looping dsPlanner learned by LoopDISTILL from the blocksworld-
domain example shown in Figure 6.4. This dsPlanner unstacks blocks
not in their goal orders and solves stacking problems, but does not cap-
ture the ordering in which the stacking must be done.

75

xxiii

18 The looping Schedule domain dsPlanner learned by LoopDISTILL from
the example shown in Figure 6.5. .

77

19 The looping dsPlanner learned by LoopDISTILL from the rocket-
domain example shown in Figures 5.14 and 5.16. This dsPlanner uses
one rocket and attends to each package separately, flying to, picking up,
and dropping off each package in turn. .

79

20 The looping dsPlanner learned by LoopDISTILL from the rocket-
domain example shown in Figures 6.7. This dsPlanner also solves the
rocket problem one package at a time—flying to, picking up, and drop-
ping off each in turn—but allows the use of multiple rockets.

81

21 The looping dsPlanner learned by LoopDISTILL from the rocket-
domain example shown in Figures 5.8. This dsPlanner solves rocket
domain problems with one rocket by sending the rocket to pick up all
the packages that are not at their goal destination, and then by dispatch-
ing it to deliver each of those packages to their goal destination.

82

22 The looping dsPlanner LoopDISTILL could learn from the rocket-
domain example shown in Figure 6.9 if it were modified to allow the
discovery of nested loops. This dsPlanner solves rocket domain prob-
lems with one rocket by sending the rocket to pick up each misplaced
item, and then sending it to drop off all the packages inside it to their
goal destinations, picking up and dropping off packages as appropriate
at each stop along the way. .

84

23 The looping logistics-domain dsPlanner learned by LoopDISTILL from
the example shown in Figure 6.10. .

85

24 The looping dsPlanner learned by LoopDISTILL from the briefcase-
domain example shown in Figure 6.11. This dsPlanner is complete and
optimal. .

89

xxiv

25 Hand-written rocket-domain dsPlanner with nested loops. 109

xxv

xxvi

Chapter 1

Introduction

Classical planning is the gold standard for action selection, as the suggested actions are
guaranteed to be on a valid and complete path to the goal. The traditional approach to
planning, general purpose planning, aims to solve any problem in any planning domain.
But this capability comes at a high cost in terms of solution speed. General-purpose plan-
ners are not, in practice, able to solve large-scale problems, nor are they easily able to
solve problems for real-time applications.

Researchers have explored creating special-purpose planners that can be carefully
crafted to suit a particular domain and arrive at solutions quickly, but that must be tediously
hand written. Others have used domain-independent learning to learn domain-specific
rules from example plans or domain analysis to speed up planning search by extracting
heuristics and by learning control rules to guide search, inferring grammars of appropriate
solutions, and using example plans as cases on which new solutions can be modeled. All
of these approaches rely on an underlying general-purpose planner.

However, for many planning domains, there are simple strategies that can find possibly
suboptimal solutions to large classes of problems. Our work is on exploiting this fact to au-
tomatically learn free-standing domain-specific planning programs from observed exam-
ple plans. Other researchers have also worked towards learning domain-specific planners
from examples and have created algorithms that are able to develop planners with broad
coverage, but they require dozens of examples and hours or even days of computation time
to generate the planning program, as they aim at complete coverage of the domain.

Our hypothesis is that a single example, when analyzed, can be used to generate a
domain-specific planner (dsPlanner) that covers a subset of problems in the domain. This
thesis focuses on domains in which simple non-searching strategies can solve classes of

1

problems and on using examples which demonstrate repetition to capture the repetative
structure of solutions in those domains. Clearly, there are some domains and classes of
problems that this approach cannot address gracefully. In the worst case, each example is
converted to a dsPlanner that solves only that one problem. We show that in many domains
a single well-chosen example can demonstrate the solution for a large class of problems
and discuss the limits of our approach and its applicability to various domains.

Our approach assumes a known complete action specification and then carefully ana-
lyzes each example plan to reveal the underlying rationale behind each step in the plan.
This analysis uncovers the structure of the solution—particularly the sequencing of ac-
tions, conditions for those actions, and looping structures—which we capture in learned
dsPlanners. We show that our algorithms can learn a dsPlanner with broad coverage from
a single example in under a second for many common domains. These learned dsPlanners
can then be used on their own—without an underlying general-purpose planner—to solve
new arbitrarily large problems in linear time, thus bringing the guarantees of planning to
large problems and real-time applications automatically, without having to hand-craft a
new planner for each new domain.

The applications of this work are much broader than rapid action selection. Agents
operate in a world populated by many other agents, both human and machine. A funda-
mental task of these intelligent systems is to reason about the behavior of the agents around
them so they can interact appropriately. Work on extracting algorithmic models of behav-
ior from observed executions could allow computers to be programmed by demonstration,
allowing anyone, not just trained professionals, to program computers to perform complex
tasks. It could help create general-purpose robots that could be trained to do a new task
simply by watching it be done. It could facilitate the cooperation of heterogeneous agents
by allowing them to quickly build models of each others’ behavior, or could allow agents
to predict and avoid the troublesome behavior of adversarial or non-cooperative agents. It
could allow software to predict accurately and pre-execute commands for users, or even
to automatically complete tasks like planning travel and scheduling meetings based on
observations of the user’s preferences.

This thesis presents our work towards the goal of automatically learned scalable and
real-time planners. Figure 1.1 shows a pictoral guide to this work. Chapter 2 presents
the SPRAWL algorithm for analyzing example plans to reveal the rationale behind action
choice and ordering the underlying structure of the example, which is the foundation of
our approach. In Chapter 3, we detail our novel dsPlanner programming language, which
is well-defined and in addition to being learnable, results in compact, human-readable and
-writable planners. Chapter 4 describes the DISTILL algorithm for learning a non-looping
dsPlanner from sets of example plans supplemented by their rationales as identified by

2

plans +
rationale

domain
descriptionplans

example new
problem

new
solution
plan

planner

planning
by
example

reveal
rationale

extract
planner

Figure 1.1: A pictoral guide to this work. First, the SPRAWL algorithm reveals the rationale
behind observed example plans. The DISTILL and LoopDISTILL algorithms are two
approaches towards using the SPRAWL analysis of observed plans to generate a dsPlanner.
Finally, dsPlanners are used to plan by example.

SPRAWL. In Chapter 5, we present the LoopDISTILL algorithm for learning a looping
dsPlanner from an example plan supplemented with its rationale. Chapter 6 explores the
classes of problems that LoopDISTILL can and cannot create dsPlanners to solve by pre-
senting example plans and learned dsPlanners in a variety of planning domains. In Chap-
ter 7, we discuss in detail previous research related to plan analysis, learning from example
plans, and program generation. Finally, in Chapter 8, we discuss the limitations and con-
tributions of this work and explore directions for future work. We include Appedices with
the domains as used in this thesis.

3

4

Chapter 2

The SPRAWL Algorithm: Extracting
Rationales from Example Plans

Analyzing example plans and executions is crucial for plan adaptation and reuse, e.g.,
(Fikes 72), and could be useful for plan recognition and agent modeling, e.g., (Kautz 86).
An example plan, represented as an initial state and goal state and a total ordering of in-
stantiated actions, captures an execution sequence. We assume the plan steps are included
in this sequence for a reason. We show that the producer/consumer relationships of pre-
conditions and effects capture the rationale underlying the example. In Chapter 4, we show
that these rationales can explain how to solve new problems in the form of a non-looping
dsPlanner. In Chapter 5, we show that rationales reveal the structure underlying the ob-
served plan, and show how to use this structure to create complex, looping dsPlanners.

A common approach to plan analysis is to create an annotated ordering, e.g., (Fikes 72;
Regnier 91; Kambhampati 89; Kambhampati 92; Veloso 94b), in which an ordered exam-
ple plan is supplemented with a rationale for the ordering constraints. Annotated orderings
allow systems not only to reuse more flexibly portions of the plans they have observed, but
also to reuse the reasoning that created those plans in order to solve new problems.

In recent years, the focus of the planning and agent modeling community has shifted
from the simple STRIPS domain-specification language (Fikes 71) toward richer languages
like ADL (Pednault 86) and PDDL that capture the conditional effects of real-world ac-
tions. Despite the success of the annotated ordering approach for simple domain-specifi-
cation languages, it has not been applied to plans with conditional effects.

In this chapter, we introduce the SPRAWL algorithm for finding the rationale behind an
observed totally ordered plan, represented as a list of instantiated actions, with or without

5

conditional effects. The rationale behind the plan explains the purpose for which each
step is used in the plan and the reason behind each of the ordering constraints. We store
this information in a structure we call a minimal annotated consistent partial ordering. A
consistent partial ordering P of a totally ordered plan T is one in which all relevant effects
(those which affect the fulfillment of the goal) active in P are also active in T . We call
the partial orderings found by SPRAWL minimal because they do not include extraneous
ordering constraints; each constraint either:

• provides a term1 upon which a relevant effect depends, or

• prevents a threat to such a term.

Finally, SPRAWL annotates each ordering constraint with the term the constraint provides
or protects.

We assume that we are given or that we observe a plan as a sequence of instantiated
actions that is valid, i.e., all preconditions of the steps are satisfied, and, when executed,
the plan produces the goal state. SPRAWL links the steps of the plan through the literals or
terms that they support. Partial orderings are capable of representing these dependencies. 2

In addition, partial orderings can isolate independent sub-plans that can be reused or rec-
ognized separately, can identify steps that do not contribute to the goals, and can identify
potential parallelism.

We assume that the observed execution sequence is a totally-ordered sequence of in-
stantiated actions. We analyze this sequence using the full domain description to relax
the total ordering and understand the rationale behind the observed sequence. The anno-
tations on the ordering constraints should explain the rationale behind the plans and allow
portions of them easily to be matched, removed, and used independently.

Conditional effects make the task more difficult because they cause the effects of a
given step to change depending on what steps come before it, thus making step behavior
difficult to predict as the ordering constraints are relaxed. In fact, any ordering must treat
each conditional effect in the plan in one of three ways:

• Use: make sure the effect occurs;

• Prevent: make sure the effect does not occur;
1A term is defined as an instantiated predicate or a negated instantiated predicate
2A partial order is a precedence relation � with the following three properties 1) reflexivity: a � a; 2)

asymmetric (no cycles): if a � b then not b � a, unless a = b; and 3) transitivity: if a � b and b � c, then
a � c. The relation is a “partial” order because there may be incomparable elements: i.e., elements a, b such
that neither a � b nor b � a. Note that a DAG is a partial order if we define a � b as a path from a to b.

6

pre:
{}

effects:
{} −> b

START
pre:
a
c
d

effects:
{}

FINISH

pre:
{}

effects:
{} −> b

START

pre:
{}

effects:
{} −> b

START

pre:
{}

effects:
{} −> a
b −> c

pre:
{}

effects:
{} −> d
{} −> NOT b

pre:
{}

effects:
{} −> a
b −> c

pre:
{}

effects:
{} −> d
{} −> NOT b

pre:
{}

effects:
{} −> a
b −> c

pre:
{}

effects:
{} −> d
{} −> NOT b

effects:
{}

effects:
{}

pre:
a

d
NOT c

pre:
a
d

op1 op2

op1op2

op1 op2 FINISH

FINISH

use:

prevent:

ignore:

Figure 2.1: Three totally ordered plans that illustrate the three possible ways of treating
a conditional effect in an ordering: using it to achieve a goal, preventing it in order to
achieve a goal, or ignoring its effect.

• Ignore: don’t care whether the effect occurs or not.

Figure 2.1 illustrates three totally ordered plans that demonstrate these cases. Note that all
three plans have the same initial state and the same operators. We are able to demonstrate
all three cases by changing only the goals and, in one case, the ordering of the operators.
Each plan begins with a START operator with unconditional effects that produce the initial
state conditions. Each plan ends with a FINISH operator with the goal state terms as
preconditions. The preconditions (pre) are listed, as are the effects, which are represented
as conditional effects {a} → b, i.e., if a then add b. A non-conditional effect that adds
a literal b is then represented as {} → b. Delete effects are represented as negated terms

7

(e.g., {a} → NOTb). The body of each of the three plans consists of the same two actions,
op1 and op2, but in each plan they are used differently. The conditional effect in op1 is
used to create the goal conditions in the first plan; in the second plan the conditional effect
is prevented from executing so it does not interfere with the goal; and it is ignored in the
third plan, as whether it executes does not affect the achievement of the goal. In the first
plan, the conditional effect of op1 is used to generate the goal term c. In the second plan,
it is prevented from generating the term c, and in the third plan, the effect is irrelevant, so
it is ignored.

Figure 2.2 shows the annotated partial orderings generated by SPRAWL for each of
these cases. The ordering constraints are annotated with a rationale explaining why they
are necessary. Although the plans for these three cases are composed of the same steps,
SPRAWL reveals that the partial orderings are very different. In the “use” case, SPRAWL

identifies that op2 threatens the goal term c (a precondition of the FINISH step), which
is created by op1, and enforces the ordering op1 → op2 to protect c. In the “prevent”
case, SPRAWL surmises that the step op1 must not be able to execute the conditional
effect that adds the term c, and so ensures that the condition of this effect, the term b, is
not true before the step executes. In this way, SPRAWL discovers the ordering constraint
op2 NOTb→ op1. It also notes that the START step, since it adds b, is a threat to this link,
and must therefore come before op2. Finally, SPRAWL identifies that, in the “ignore” case,
the conditional effect is irrelevant, so op1 and op2 may run in parallel.

We perform needs analysis on the totally ordered plan to discover which conditional
effects are relevant. Needs analysis allows us to ignore incidental conditional effects in the
totally ordered plan.

Instead of looking for the optimal (according to some metric) partially ordered plan to
solve a problem, we chose to focus on finding partial orderings consistent with the given
totally ordered plan, or those in which all relevant effects were also active in the total or-
dering. There are two reasons for this. The first is that the totally ordered plan contains a
wealth of valuable information about how to solve the problem, including which operators
to use and which conditional effects are relevant. The second is that for many applica-
tions, including plan modification and reuse and agent modeling, it is important to be able
to analyze an observed or previously generated plan (for example, to find characteristic
patterns of behavior or to identify unnecessary steps).

However, since our purpose is to reveal underlying structure, we do have some require-
ments on the form of the resulting partial ordering; we allow only ordering constraints that
affect the fulfillment of the goal terms—those that provide for or protect relevant effects.
SPRAWL achieves this via a two-phased approach. It first uses needs analysis to identify

8

op1START op2 FINISH

threat to: cb d

a, c

op2START op1 FINISH

threat to: NOT b NOT b

NOT c

a

d

START FINISH

op1

op2

a

d

prevent:

use:

ignore:

Figure 2.2: The annotated partial orderings generated by SPRAWL for the three totally
ordered plans shown in Figure 2.1.

the relevant effects of each operator and the needs of each operator (which terms must
be true before the operator executes in order to ensure that the relevant effects occur).
SPRAWL is able to use this to find the annotated partial order by treating the operators as if
they have no conditional effects—using the needs as preconditions and the relevant effects
as non-conditional effects.

The remainder of this chapter is organized as follows. We introduce the needs analysis
technique, illustrate its behavior and discuss its complexity. Next, we explain how the

9

SPRAWL algorithm uses needs analysis to find a partial ordering and discuss the complex-
ity of the entire algorithm. We then discuss the limitations and capabilities of the algorithm
and present our conclusions.

2.1 Needs Analysis

Needs analysis, the first step of the SPRAWL algorithm, computes a tree of needs for the
totally ordered plan. We first create a goal step called FINISH with the terms of the goal
state as preconditions. Needs analysis calculates which terms need to be true before the
last step in the plan in order for the preconditions of FINISH to be true afterward. Then
it calculates which need to be true before the second-to-last plan step in order for those
terms to be true. This calculation is executed for each step of the plan, starting from the
last step and finishing at the START step, creating a tree of “needs.” This needs tree allows
us to identify the relevant effects of a given step and most of the dependencies in the plan.
However, not all threats are identified in Needs Analysis; SPRAWL uses the needs tree to
calculate the remaining threats.

2.1.1 Needs Tree Structure

In this section, we discuss the needs that compose the needs tree as well as the structure of
the tree. The needs tree consists of three kinds of needs:

1. Precondition Needs: the preconditions of a step are called precondition needs of the
step—they must be true for the step to be executable. For example, the precondition
needs of the FINISH step are the goals of the plan.

2. Existence Needs: terms that must be true before a step n in order for n to create a
particular term or to maintain a previously existing term are called existence needs
of the term at the step n. In the “use” example in Figure 2.2, one existence need of
the term c at the step op1 is b, since op1 generates c if b is true before it executes.

3. Protection Needs: terms that must be true before step n in order for n not to delete a
particular term are called protection needs of the term at the step n. In the “prevent”
example in Figure 2.2, one protection need of the term NOT c at the step op1
is NOT b, since if NOT b is not true before step op1, then op1 adds c (thereby
deleting NOT c). Protection needs are only necessary in domains with conditional
effects.

10

For the sake of simplicity, instead of abstract plan steps, we illustrate the three kinds of
needs using plan steps from a domain in which we have a sprinkler that, if on, can wet the
yard as well as any object that may be in the yard. Figure 2.3 shows the operator sprinkle
front-yard. The term on sprinkler is a precondition need of the step sprinkle front-yard.

pre:
on sprinkler

effects:
{} −> wet front−yard
at ?obj front−yard −> wet ?obj

sprinkle front−yard

Figure 2.3: The step sprinkle front-yard.

To illustrate existence needs, let us assume that, after executing the step sprinkle front-
yard, wet shoe must be true, where shoe is an instantiation of the variable ?obj. This
could be accomplished in two ways:

• by ensuring that at shoe front-yard was true before sprinkle front-yard executed;

• by ensuring that wet shoe was already true before sprinkle front-yard executed, as
shown in Figure 2.4. 3

These two terms are called existence needs of wet shoe at the step sprinkle front-yard,
since they provide ways for the term wet shoe to be true after the step sprinkle front-
yard.

We must also make a distinction between maintain existence needs and create exis-
tence needs. 4 As mentioned above, there are two ways to ensure that wet shoe is true
after the execution of the step sprinkle front-yard, both illustrated in Figure 2.4. One
way is for wet shoe to have been true previously. We call this a maintain existence need
since the step does not generate the term, but simply maintains a term that was previously
true. However, the step sprinkle front-yard could generate the term wet shoe if at shoe
front-yard were true before the step executed. We call this a create existence need, since
we have introduced a new need in order to satisfy another. Create existence needs are only
needed in domains with conditional effects.

3In the remainder of the sprinkler examples, we abbreviate the literals sprinkler as sp, front-yard as fy,
back-yard as by, and shoe as sh.

4Precondition needs and protection needs are always create needs.

11

effects:
{} −> wet fy
at ?obj fy −> wet ?obj

pre:
on sp

needs

OR
create

wet sh

wet sh

at sh fy

sprinkle fy next step

maintain

add

Figure 2.4: Expanding the need wet shoe (shown as wet sh in the figure) in the step
sprinkle front-yard (shown as sprinkle fy in the figure). The term wet shoe may be
satisfied in either of two ways; this is represented by an OR operator.

Note that, because there may be multiple ways to ensure the existence of a term, the
description of needs must include the OR logical operator, as shown in Figure 2.4. It must
also include the AND logical operator, since we allow a conditional effect to have multiple
conditions, and in order to guarantee that the effect occurs, we must be able to specify that
all must be true.

To illustrate protection needs, assume that, after executing the step sprinkle front-
yard, the term NOT wet shoe must be true. In order to protect the term NOT wet shoe,
we must ensure that NOT at shoe front-yard is true before sprinkle front-yard executes.
This is called a protection need because it protects the term from being deleted (i.e., pre-
vents wet shoe from being added). Protection needs are only necessary in domains with
conditional effects.

It is not always necessary to generate new needs to satisfy a need term; it may also be
satisfied if a non-conditional effect of the step satisfies it, as illustrated in Figure 2.5. We
call such needs accomplished, and indicate this in our diagrams with a double circle.

12

effects:
{} −> wet fy
at ?obj fy −> wet ?obj

pre:
on sp

precondition

wet fy

sprinkle fy next step

Figure 2.5: A term may be true after a particular step if a non-conditional effect of the
previous step accomplishes it. We indicate this with a double circle around the term.

2.1.2 Needs Analysis Algorithm

The needs analysis algorithm is shown in Algorithm 1. We now describe in detail how
needs analysis generates the needs of an individual term. Each needed term t must be
created and protected from deletion; we represent this as two branches of needs: existence
needs and protection needs.5 As explained previously, t’s existence needs at a particular
step n are terms that must be true before step n to ensure that t is true after step n. There
are two possibilities for existence needs: either t may have been true before step n, or a
conditional effect of step n may generate t. 6 The protection needs of t at step n are terms
that must be true before step n to ensure that step n does not delete t. Prevention needs are
therefore negated conditions of any conditional effects of step n that delete t. 7 Figure 2.6
illustrates the needs tree created to satisfy each needed term.

5In domains with no conditional effects, there is just one branch of needs: maintain existence needs, as
there are no effects that can either create the need (create existence needs) or delete it (protection needs) that
have conditions—or needs—of their own.

6Non-conditional effects of step n that add t do not add needs—nothing needs to be true before step n in
order for them to occur, which is why create existence needs aren’t needed in domains without conditional
effects.

7If t is deleted by a non-conditional effect of step n, then we call it unsatisfiable and end its branch of the
needs tree.

13

Algorithm 1 Needs Analysis.
Input: Totally ordered plan T = S1, S2, . . . , Sn, the START operator S0 with add effects set to the initial

state, and the FINISH operator Sn+1 with preconditions set to the goal state.
Output: Needs tree N .

procedure Needs Analysis(T , S0, Sn+1)
for all i← n + 1 down-to 1 do

for all preconditions p of Si do
Expand Term(i, p)

end for
end for

end procedure

procedure Expand Term(i, c)
Find Existence(i, c)
Find Protection(i, c)

end procedure

procedure Find Existence(i, c)
Add Maintain Existence Need(c, c)
for all conditional effects e of Si do

if e unconditionally adds c then
c.accomplished← true

else if e conditionally adds c then
Add Conditions To Existence Needs(e, c)
for all conditions of e, ce do

Expand Term(i− 1, ce)
end for

end if
end for

end procedure

procedure Find Protection(i, c)
for all conditional effects e of Si do

if e unconditionally deletes c then
c.impossible← true
return

else if e conditionally deletes c then
Add Conditions To Protection Needs(e, c)
for all conditions of e, ce do

Expand Term(i− 1, ce)
end for

end if
end for

end procedure

14

AND

OR

AND OR OR

NOT c_1 NOT d_q

AND

t

conditions of a CE of n
that deletes term

NOT d_1

that deletes term
conditions of a CE of n

NOT c_p

that adds term
conditions of a CE of n

that adds term
conditions of a CE of n

t a_1 a_m b_1 b_n

createcreate create create

maintain

create create create create

protectionexistence

Figure 2.6: The existence needs of a need at a particular step n are calculated by finding
all possible ways it can be generated in the previous step and ensuring that at least one of
these occurs. The protection needs are calculated by finding all possible ways it can be
deleted in the previous step and ensuring that none of these occurs.

2.1.3 Complexity of Needs Analysis Algorithm

Additions of needs are the unit of work in the algorithm. The steps of the algorithm
fall into two classes: those with conditional effects and those without conditional effects.
Define m to be the number of steps without conditional effects and n to be the number
with conditional effects. We can estimate the complexity of performing needs analysis on
a plan of m + n steps by assuming the worst case: that the steps with conditional effects
all happen after the steps without conditional effects.

This produces two recurrences: R, which calculates the number of need additions for
the steps without conditional effects; and F , which calculates the number of need additions
for the remaining steps (which have conditional effects). In these recurrences, G is the
number of goal terms, P is the bound on the number of preconditions, E is the bound on
the number of conditional effects in each step that has conditional effects, and C is the
bound on the number of conditions per conditional effect. Recall that m is the number of
steps without conditional effects and n is the number with conditional effects.

15

R(0) = G

R(m) = P + R(m− 1)

R(m) = G + mP

F (0, m) = R(m) = G + mP

F (n, m) = P + F (n− 1, m) ∗ EC

F (n, m) = (G + mP)(EC)n +
P (EC)n − P

−1 + EC

The complexity of the algorithm is O(mP (EC)n). Also note that the complexity of
needs analysis on a plan with no conditional effects in linear: O(mP).

2.1.4 An Example with Conditional Effects

We use the totally ordered plan from the sprinkler domain shown in Figure 2.7 to illustrate
the behavior of the needs analysis algorithm in domains with conditional effects. First, the
algorithm analyzes the last plan step (sprinkle front-yard), which has one precondition
need (on sprinkler), to determine how to satisfy the needs of the subsequent step FINISH
(wet shoe and wet front-yard). As previously discussed, there are two ways for the step
sprinkle front-yard to satisfy wet shoe: either wet shoe could be true before this step
executes, or at shoe front-yard must be true before this step executes. So the existence
needs of the term wet shoe are maintain wet shoe OR create at shoe front-yard. As
for wet front-yard, the other precondition need of the FINISH step, it is accomplished
by the step sprinkle front-yard since it is a non-conditional effect of the step. However,
the algorithm continues to look for other ways to accomplish the term. Since there are
no conditional effects of sprinkle front-yard that either generate or delete wet front-yard,
the algorithm just adds the maintain existence need, maintain wet front-yard. Neither wet
shoe nor wet front-yard have any protection needs as there are no conditional effects that
could delete them.

Next, the algorithm moves back to the previous plan step, move shoe back-yard
front-yard, which has the precondition need at shoe back-yard. The needs carried over
from previous steps are maintain wet shoe OR create at shoe front-yard, the existence
needs of wet shoe from the FINISH step; maintain wet front-yard, the existence need of
wet front-yard from the FINISH step; and on sprinkler, the precondition need of the step
sprinkle front-yard. The term at shoe front-yard is a non-conditional effect of this step,
so it is accomplished, but, as with wet fy in the previous step, the algorithm adds a maintain

16

FINISH

pre: wet sh
wet fy

eff: {}

sprinkle fy

pre: on sp

eff:
{} -> wet fy
at ?obj fy -> wet ?obj

move sh by fy

pre: at sh by

eff:
{} -> at sh fy
{} -> not at sh by

START

pre: {}

eff:
{} -> at sh by
{} -> on sp

at sh by

on sp

at sh fy

wet sh

wet fy

at sh by

on sp

at sh fy

wet sh

wet fy

on sp

at sh fy

wet sh

wet fy

wet sh

wet fy

or

precondition precondition precondition precondition

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

existence
create

maintain

maintain
existence

Figure 2.7: A totally ordered plan in the sprinkler domain and its complete needs tree.

existence need (maintain at shoe front-yard) in order to find other ways to accomplish
the term. The terms maintain wet shoe, maintain wet front-yard, and on sprinkler
cannot be prevented or created by this step, so each is satisfied by a maintain existence
need (maintain wet shoe, maintain wet front-yard, and maintain on sprinkler).

Finally, the algorithm reaches the initial state, or START step, and is able to determine
which branches of the needs tree can be accomplished and which can not. The remaining
branches of the tree are at shoe back-yard, maintain at shoe front-yard, maintain wet
shoe, maintain wet front-yard, and maintain on sprinkler. Two of the needs, at shoe

17

back-yard and maintain on sprinkler are accomplished by the START step. However,
all of the other remaining needs are not accomplished by the START step. We call these
needs unsatisfiable and indicate this in our diagrams with a dashed circle.

2.1.5 An Example without Conditional Effects

Clearly, the Needs Analysis algorithm is also able to analyze plans without conditional
effects, as this is a base case of the general algorithm. We illustrate needs analysis for
the totally ordered plan from the Rocket domain shown in Figure 2.8. First, the needs
analysis algorithm adds a precondition need for the FINISH step: at item bos. It then
analyzes the last plan step (unload item bos) to determine how to satisfy that need. The
step unload item bos has two preconditions: atRocket bos and inRocket item, so these
are added to the needs tree. The need at item bos of the FINISH step is pushed back as
a maintain existence need. Then the needs analysis algorithm moves on to the previous
step, fly lax bos. This step has one precondition: atRocket lax, which is added as a
precondition need of the step. All needs of the subsequent step are propagated backwards
as maintain existence needs. The needs analysis algorithm moves onto the previous step:
load item lax. This step has two preconditions: atRocket lax and at item lax, so these are
added as precondition needs. All needs of the subsequent step are propagated backwards
as maintain existence needs. Finally, the algorithm comes to the START step, which has
no preconditions. All needs of the first plan step are propagated forwards as maintain
existence needs, and the needs tree is completed.

The needs analysis algorithm is now able to determine which branches of the needs tree
are accomplished and which are unsatisfiable. It begins with the needs of the START step.
None of these are satisfiable, as there is no previous step to supply them. It then moves
forward to the needs of the next step load item lax. The needs atRocket lax and at item
lax are satisfied by the previous step (START), so are marked as satisfied. All other needs
of this step (at item bos, atRocket bos, inRocket item) are marked unsatisfiable. Next
the algorithm proceeds to the next step fly lax bos. The need atRocket lax is satisfied
because it is satisfied in the previous step and nothing deletes it. The need inRocket item
is satisfied by the previous step. Those two needs are marked satisfied. All other needs
of this step (atRocket bos and at item bos) are marked unsatisfiable. Next, the needs
analysis algorithm moves to the next plan step, unload item bos. The precondition need
atRocket bos is satisfied by the previous step, and is marked satisfied. The precondition
need inRocket item is satisfied in the previous step and is not deleted by that step, so
is marked satisfied. The need at item bos is marked unsatisfiable. Finally, the needs
analysis algorithm reaches the FINISH step. Its precondition, at item bos, is satisfied by

18

FINISH

pre: at item bos

eff: {}

unload item bos

pre: atRocket bos
inRocket item

eff: at item bos
not inRocket item

fly lax bos

pre: atRocket lax

eff: atRocket bos
not atRocket lax

load item lax

pre: atRocket lax
at item lax

eff: inRocket item
not at item lax

START

pre: {}

eff: atRocket lax
at item lax

at item bos

atRocket bos

atRocket lax

at item lax

inRocket item

at item bos

atRocket bos

atRocket lax

at item lax

inRocket item

at item bos

atRocket bos

atRocket lax

inRocket item

at item bos

atRocket bos

inRocket item

at item bos

precondition preconditionpreconditionprecondition

Figure 2.8: A totally ordered plan in the Rocket domain and its complete needs tree. All
links in the needs tree between steps and needs are labelled as precondition needs. All
links in between needs are create maintain needs; they are not labelled to help preserve
the readability of the figure. The needs of the START state are all labelled unsatisfiable
(surrounded by a dashed line) because there is no way to achieve these needs before the
execution of the START step.

the previous step, and so is marked satisfied.

2.2 The SPRAWL Algorithm

Algorithm 2 shows the SPRAWL partial ordering algorithm. SPRAWL performs needs
analysis, then walks backwards along the needs tree and adds causal links in the partial
ordering between steps that need terms and the steps that generate them.

19

Algorithm 2 The SPRAWL algorithm.
Input: Totally ordered plan T = S1, S2, . . . , Sn, the START operator S0 with add effects set to the initial

state, and the FINISH operator Sn+1 with preconditions set to the goal state.
Output: A minimal annotated consistent partially ordered plan shown as a directed graph P .

procedure Find Partial Order(T , S0, Sn+1)
tree← Needs Analysis(T , S0, Sn+1)
tree← Trim Unsatisfiable Need Tree Branches(tree)
for all i← n + 1 down-to 1 do

for all preconditions p of Si do
Recurse Need(i, p,P)

end for
end for
Handle Threats(tree, P)

end procedure

procedure Recurse Need(i, p,P)
Add Causal Link(choose one way to provide for p, Sc, P)
Recurse Need(i− 1, p.existence, P)
Recurse Need(i− 1, p.protection, P)

end procedure

procedure Handle Threats(tree, P)
for all causal links Si → Sj do

for all c← 1 up-to i− 1 do
if Threatens(Sc, Si → Sj) then

DEMOTE: Add Causal Link(Sc, Si,P)
end if

end for
for all c← j + 1 up-to n do

if Threatens(Sc, Si → Sj) then
PROMOTE: Add Causal Link(Sj , Sc,P)

end if
end for

end for
end procedure

2.2.1 Resolving Threats

We rely heavily on the totally ordered plan to help us resolve threats. There are three ways
to resolve threats in a plan with conditional effects (Weld 94):8

8Only promotion and demotion may be used in plans without conditional effects, as confrontation relies
on preventing a conditional effect from occuring or ensuring that it occurs by adding preconditions to the
threatening operator.

20

1. Promotion moves the threatened operators before the threatening operator;

2. Demotion moves the threatened operator after the threatening operator;

3. Confrontation may take place when the threatening effect is conditional. It adds
preconditions to the threatening operator to prevent the effect causing the threat
from occurring.

To find all possible partial orderings, all these possibilities should be explored. However,
since we are provided the totally ordered plan, we do not need to search at all to find a
feasible way to resolve the threat; we can simply resolve it in the same way it was resolved
in the totally ordered plan. In fact, if threats are resolved in a different way, then the
resulting partial ordering would not be consistent with the totally ordered plan.

If, in the totally ordered plan, the threatening operator occurs before the threatened
operators, then promotion should be used to resolve the threat in the partial ordering.
Similarly, if it occurs after the threatened operators, demotion should be used to resolve
the threat in the partial ordering. If the threatening operator occurs between the threatened
operators in the totally ordered plan, then we know that confrontation must have been used
in the totally ordered plan to prevent the threatening conditional effect from occurring.
Needs analysis takes care of confrontation with protection needs, shown in Figure 2.6,
which ensure that steps that occur between a needed term’s creation and use in the totally
ordered plan do not delete the term.

2.2.2 Complexity of the SPRAWL Algorithm

The complexity analysis of the Needs Analysis algorithm is very useful in discussing the
complexity of partial ordering using needs analysis; the complexity bound of the needs
analysis algorithm is also the bound on the size of the needs tree since we used need
additions as the unit of work in our analysis.

The complexities of the first two steps in the partial ordering algorithm shown in Al-
gorithm 2 are the same as the complexity of needs analysis. The first step of the SPRAWL

algorithm is Needs Analysis and the next two steps traverse the needs tree; since the size of
the needs tree is bounded by the complexity of the Needs Analysis algorithm, as discussed
above, the complexity of traversing the tree is also the same as the complexity of the needs
analysis algorhthm. The maximum number of causal links is ((m + n) + 2)2, since there
could be a causal link between any two steps, including the START and FINISH steps.
Therefore, the complexity of threat resolution is as most ((m + n) + 2)2 ∗ (m + n) ∗ A,

21

where A is a bound on the number of adds and deletes per step. The complexity of remov-
ing transitive edges fromt eh partial order is at most ((m + n) + 2)3, since each of the at
most ((m + n) + 2)2 causal links is checked against at most (m + n) + 2 other links. The
complexity of the entire partial ordering algorithm is then:

3 ∗O(mP (EC)n) + ((m + n) + 2)2 ∗ (m + n) ∗ A + ((m + n) + 2)3 =

O(mP (EC)n + A ∗ (m + n + 2)3)

2.2.3 An Example with Conditional Effects

We illustrate how SPRAWL solves problems in domains with conditional effects by step-
ping through its execution on the sprinkler domain problem shown in Figure 2.7. The first
step of the SPRAWL algorithm is to generate the full needs tree, as shown in Figure 2.7.
Then SPRAWL trims the needs tree by propagating forward unsatisfiable markings until
it reaches a satisfied need, and by propagating forwards satisfied markings as well. This
results in the needs tree shown in Figure 2.9.

Now SPRAWL begins to search for the dependencies in the plan. It begins with the
final step and moves backwards. The precondition need of the FINISH step wet sh is
satisfied by the previous step, sprinkle fy, so a link is added to the partial ordering from
sprinkle fy to FINISH labelled with wet sh. The precondition need wet fy is also satisfied
by sprinkle fy, so the link from sprinkle fy to FINISH is also labelled with wet fy.

Next SPRAWL moves back to the step sprinkle fy. It has one precondition need, on
sp, which is satisfied by the step START, so a link is added to the partial ordering from
START to sprinkle fy labelled with on sp. The create existence need at sh fy is satisfied
by move sh by fy, so a link is added to the partial ordering from move sh by fy to
sprinkle fy labelled with at sh fy.

Then SPRAWL moves on to the step move sh by fy. Its precondition need at sh by is
satisfied by START, so a link is added to the partial ordering from START to move sh by
fy labelled with at sh by.

Finally, SPRAWL moves to the START step and determines that none of the needs
are satisfiable. The preliminary partial ordering has now been found, and is shown in
Figure 2.10.

Finally, SPRAWL looks through all links in the plan to find and resolve any threats.
There are no threats in this plan, so the minimal annotated consistent partial ordering is
found, and is shown in Figure 2.10.

22

FINISH

pre: wet sh
wet fy

eff: {}

sprinkle fy

pre: on sp

eff:
{} -> wet fy
at ?obj fy -> wet ?obj

move sh by fy

pre: at sh by

eff:
{} -> at sh fy
{} -> not at sh by

START

pre: {}

eff:
{} -> at sh by
{} -> on sp

at sh by

on sp

at sh fy

wet sh

wet fy

at sh by

on sp

at sh fy

wet sh

wet fy

on sp

at sh fy

wet sh

wet fy

wet sh

wet fy

or

precondition precondition precondition precondition

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

maintain
existence

existence
create

maintain

maintain
existence

Figure 2.9: A totally ordered plan in the Sprinkler domain and its trimmed needs tree.
Unsatisfiable needs are surrounded by dotted circles. Satisfied needs are surrounded by
double circles.

2.2.4 An Example without Conditional Effects

We illustrate the execution of SPRAWL in domains with no conditional effects with the
Rocket domain example shown in Figure 2.8. The first step in the SPRAWL algorithm is to
generate the complete needs tree for the observed plan, as shown in Figure 2.8. The second
step is to trim the unsatisfiable branches of the needs tree by propagating unsatisfiable
markings backwards until they reach a need that is satisfied, and by propagating satisfied

23

FINISH

pre: wet sh
wet fy

eff: {}

sprinkle fy

pre: on sp

eff:
{} -> wet fy
at ?obj fy -> wet ?obj

move sh by fy

pre: at sh by

eff:
{} -> at sh fy
{} -> not at sh by

START

pre: {}

eff:
{} -> at sh by
{} -> on sp

at sh by
on sp

at sh fy wet sh
wet fy

Figure 2.10: The totally ordered plan in the Sprinkler domain shown in Figure 2.7 along
with the annotated ordering constraints that make up the full minimal annotated consistent
partial ordering found by SPRAWL.

markings backwards as well. The results of this on the Rocket domain example are shown
in Figure 2.11.

SPRAWL then begins to build the partial ordering by stepping backwards through the
needs tree and determining what steps provide for the needs in the tree. It first examines
the FINISH step and determines that the precondition need at item bos is satisfied by the
previous step, unload item bos. A link is added to the partial ordering from unload item
bos to FINISH, labelled with at item bos.

Next, SPRAWL steps back to the step unload item bos to determine how to provide for
its needs. Its precondition need atRocket bos is satisfied by the previous step fly lax bos,
so a link is added to the partial ordering from fly lax bos to unload item bos, labelled
with atRocket bos. The precondition need inRocket item is satisfied by the step load
item lax, so a link is added to the partial ordering between load item lax and unload item
bos labelled with inRocket item.

Then SPRAWL moves backwards to the step fly lax bos. Its precondition need at-
Rocket lax is satisfied by the START step, so a link is added to the partial ordering from
START to fly lax bos, labelled with atRocket lax. Its maintain existence need inRocket
item has already been accounted for, as a link was added from its producer to its consumer.

SPRAWL steps backwards to the step load item lax. Its precondition need atRocket
lax is satisfied by the START state, so a link is added to the partial ordering from START

24

FINISH

pre: at item bos

eff: {}

unload item bos

pre: atRocket bos
inRocket item

eff: at item bos
not inRocket item

fly lax bos

pre: atRocket lax

eff: atRocket bos
not atRocket lax

load item lax

pre: atRocket lax
at item lax

eff: inRocket item
not at item lax

START

pre: {}

eff: atRocket lax
at item lax

at item bos

atRocket bos

atRocket lax

at item lax

inRocket item

at item bos

atRocket bos

atRocket lax

at item lax

inRocket item

at item bos

atRocket bos

atRocket lax

inRocket item

at item bos

atRocket bos

inRocket item

at item bos

precondition preconditionpreconditionprecondition

Figure 2.11: A totally ordered plan in the Rocket domain and its trimmed needs tree.
Unsatisfiable needs are surrounded by dotted circles. Satisfied needs are surrounded by
double circles.

to load item lax, labelled with atRocket lax. Its precondition need at item lax is also
satisfied by the START state, so the link between START and load item lax is given
another label: at item lax.

Finally, SPRAWL moves back to the initial state and finds that it has no satisfiable
needs. The initial partial ordering has been created. It is shown in Figure 2.12. Note that
this is a true partial ordering—at this point, the load and fly operators are unordered.

Now SPRAWL searches for threats. It goes one link at a time and determines whether
the link is threatened by any plan step. In this example, one link is threatened. The
atRocket lax link between START and load item lax is threatened by fly lax bos, since
there is no ordering between load item lax and fly lax bos. SPRAWL uses the threat
resolution method seen in the total ordering and places a threat link in the partial ordering
between load item lax and fly lax bos, as shown in Figure 2.13. The minimal annotated
consistent partial ordering (MACPO) of the observed totally ordered plan has now been
found.

25

FINISH

pre: at item bos

eff: {}

unload item bos

pre: atRocket bos
inRocket item

eff: at item bos
not inRocket item

fly lax bos

pre: atRocket lax

eff: atRocket bos
not atRocket lax

load item lax

pre: atRocket lax
at item lax

eff: inRocket item
not at item lax

START

pre: {}

eff: atRocket lax
at item lax

atRocket lax
at item lax

atRocket lax

atRocket lax inRocket item
atRocket bos at item bos

Figure 2.12: The totally ordered plan in the Rocket domain shown in Figure 2.8 along
with the preliminary partial ordering found by SPRAWL. This includes all dependencies
but does not include threat orderings.

FINISH

pre: at item bos

eff: {}

unload item bos

pre: atRocket bos
inRocket item

eff: at item bos
not inRocket item

fly lax bos

pre: atRocket lax

eff: atRocket bos
not atRocket lax

load item lax

pre: atRocket lax
at item lax

eff: inRocket item
not at item lax

START

pre: {}

eff: atRocket lax
at item lax

atRocket lax
at item lax

atRocket lax

atRocket lax inRocket item
atRocket bos at item bos

threat to: atRocket lax

Figure 2.13: The totally ordered plan in the Rocket domain shown in Figure 2.8 along
with the annotated ordering constraints that make up the full minimal annotated consistent
partial ordering found by SPRAWL.

2.3 Discussion

Because the purpose of the SPRAWL algorithm is to reveal the structure underlying the ob-
served plan, we restrict SPRAWL to minimal partial orderings. We define minimal partial

26

orderings not to have ordering constraints unnecessary to achieving the goals of the prob-
lem, as discussed at the beginning of the chapter. As each ordering constraint is guaranteed
to be necessary to achieve the goals, we are able to annotate each ordering constraint with
the reason it is necessary—the term provided or protected by the ordering.

The SPRAWL algorithm does not create a partially ordered plan from scratch; its pur-
pose is to create an annotated partial ordering of the steps of an observed totally ordered
execution to aid in our understanding of the structure of the observed plan. Because of
this, we restrict SPRAWL to partial orderings consistent with the totally ordered plan.

However, frequently there are many partial orderings consistent with the totally or-
dered plan. Here, we discuss the space of possibilities explored by SPRAWL as we have
described it, and how that space can be extended to include all possible minimal partial
orderings consistent with the totally ordered plan.

2.3.1 Different Total Orderings of the Same Steps May Produce Dif-
ferent Partial Orderings

In some cases, a different total ordering of the same plan steps would produce a different
partial ordering, but these are cases in which the relevant effects differ. For example, the
use and prevent cases shown in Figure 2.1 consist of the same initial states and the same
operators. However, because the total orderings and goal states differ, the relevant effects
also differ. SPRAWL would never produce the same partial ordering for both of them;
the partial orderings would each preserve the same relevant effects as are active in the
respective totally ordered plans. The minimal annotated consistent partial orderings found
by SPRAWL are shown in Figure 2.2.

2.3.2 Active Conditional Effects May Differ from Those in Totally
Ordered Plan

Though SPRAWL is restricted to partial orderings consistent with the totally ordered plan
it is given, this does not mean that all conditional effects active in the totally ordered
plan must be active in the partial ordering, or vice versa. There are sometimes irrelevant
conditional effects in the totally ordered plan or in the partial ordering, and SPRAWL does
not seek to maintain or prevent these irrelevant effects. The ignore case shown as a totally
ordered plan in Figure 2.1 demonstrates this. In this problem, one of the active conditional
effects in the totally ordered plan is the effect b→ c from step op1. However, this effect
does not affect the fulfillment of the goal state, and so is not a relevant effect. In fact, as

27

is shown in Figure 2.2, SPRAWL would enforce no ordering constraints between the two
steps in its partial ordering. Though the different orderings produce different final states,
the goal terms are true in each of these final states, so it doesn’t matter which occurs.

2.3.3 Finding Multiple Partial Orderings

Although, as we discussed, SPRAWL is restricted to partial orderings with no relevant
effects not active in the given totally ordered plan, this does not mean that all relevant
effects in the totally ordered plan must be relevant effects in the partial ordering. Thus,
there could be several possible minimal annotated consistent partial orderings.

effects:
{} −> p
{} −> q

effects:
{}

effects:
{} −> q
{} −> r

effects:
{} −> s

q

r

s

r

pp

q

r

s

r

s

q

r

ss

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

p

pre:
{}

pre:
{}

pre:
p

pre:
q

pre:
r
s

effects:
{}

precondition
precondition

precondition precondition

q *

FINISHcbaSTART

Figure 2.14: An example plan with multiple possible partial orderings (Bäckström 93),
and the needs tree created if the algorithm does not terminate branches when they are
accomplished. Note that the term q is accomplished by two different steps: a and b.
SPRAWL can find both of the two possible partial orderings: one in which step a provides
q to step c, and one in which b does. If branches are terminated as they are accomplished,
the accomplished need marked q*, which represents step a providing q to step c, would
not be found.

Sometimes, there are several relevant effects in the totally ordered plan that achieve the

28

same aim. Figure 2.14 illustrates an example that neatly illustrates this (Bäckström 93).
The totally ordered plan is shown with its needs tree. In this plan, two different relevant
effects provide the term q to step c—both step a and step b generate q. Choosing a dif-
ferent relevant effect to generate q creates a different partial order. The two partial orders
representing each of the two relevant effect choices are shown in Figures 2.15 and 2.16.

ba c
p q

Figure 2.15: The partial ordering of the
plan shown in Figure 2.14 if branches are
terminated as the needs they fulfill are ac-
complished.

a

c

bp

q

Figure 2.16: Another partial ordering of
the example plan shown in Figure 2.14.
This ordering can also be discovered by
SPRAWL if branches of the needs tree are
not terminated as the needs they fulfill are
accomplished.

In the interest of efficiency, SPRAWL finds exactly one minimal annotated consistent
partial ordering and does not search through different choices to find a “better” one accord-
ing to any measure. The needs analysis algorithm shown in Table 1 produces a needs tree
that encompasses all possible partial orderings consistent with the totally ordered plan, but
the version of SPRAWL shown in Table 2 arbitrarily chooses one possible partial ordering
from those represented by the needs tree. SPRAWL can be modified to search through
more possible partial orderings, however, finding the best partial ordering according to
any measure is NP-complete (Bäckström 93). It is our conjecture that the chosen partial
ordering affects how an example plan can be reused.

When an OR logical operator is encountered in the needs tree, SPRAWL arbitrarily
chooses which of its branches to follow and ignores the others (Algorithm 2). Instead, we
could search through the possibilities to find the branch that contributes to the best partial
ordering.

Similarly, there is sometimes more than one way to accomplish a need, as with the need
q in Figure 2.14. SPRAWL arbitrarily chooses one of these ways to be the need’s creator
in the partial ordering (Algorithm 2). Again, we could search through all possibilities
instead, and choose the one that contributes to the best partial ordering.

29

Finally, SPRAWL resolves threats in the same way they were resolved in the totally
ordered plan. It is possible instead to search over all three ways (promotion, demotion and
confrontation) to resolve each. However, the partial ordering is only consistent with the
totally ordered plan if threats are resolved in the same way.

2.4 Summary

In this chapter, we have presented the SPRAWL algorithm for uncovering the rationale
behind observed totally ordered executions in the form of minimal annotated consistent
partial orderings. We first presented our novel Needs Analysis approach to finding the rel-
evant effects and needs of each operator, presented the needs analysis algorithm in detail,
discussed its complexity, and illustrated its behavior with examples. We then presented
and explained the complete SPRAWL algorithm for finding minimal annotated partial or-
derings, discussed its complexity, and illustrated its behavior with examples. Finally, we
discussed the limitations of the algorithm and some techniques which can extend its capa-
bilities.

30

Chapter 3

Defining and Using dsPlanners

In this section, we introduce our representation for automatically learned domain-specific
planners, or dsPlanners, and explain how they are used for planning.

3.1 Defining DsPlanners

A dsPlanner is a domain-specific planning program that, given a planning problem (ini-
tial and goal states), either returns a plan that solves the problem or returns failure, if it
cannot do so. The dsPlanner is a novel method of representing planning knowledge. It is
expressive and compact and does not rely on an underlying general-purpose planner.

DsPlanners are composed of the following programming constructs and planning-
specific operators:

• while loops and endwhile statements;

• if , else , and endif statements;

• logical structures (and , or , not);

• inGoalState and inCurState boolean predicates;

• numbered and typed variables;

• the “v” variant indicator for while loops, indicating which parameters may vary
across loop iterations;

• instantiated plan predicates; and

• instantiated plan operators.

31

As it is a principled language devised to enable learning of programmatic structures, the
conditions and constructs of the language range over a well-defined set.

Variables are introduced in if-statement and while-loop conditions. Any objects in
the problem that match the conditions may be assigned to the variables. Assignments
hold throughout the conditions and body of the if-statement or while-loop. While-loop
variable assignments hold for all iterations of the loop unless the variable is labelled “v”
for variant, in which case it may be reassigned at each iteration. Multiple variables within
the conditions of an if-statement or while-loop may not map to the same object, as this can
lead to incorrect plans.

In order for dsPlanners to capture repeated sequences in while loops and to determine
that the same sequence of operators in two different plans has the same conditions, they
must update a current state as they execute by simulating the effects of the operators they
add to the plan. Without this capability, we would be unable to use such statements as:
while (condition holds) do (body). Therefore, in order to use a dsPlanner, it must be
possible to simulate the execution of the plan. However, since dsPlanner learning requires
full models of the planning operators, this is not an additional problem.

DsPlanners are programs; therefore when an if-statement or while-loop is encountered,
if the conditions do not match the current state, the program moves on to the next state-
ment. In this sense, a dsPlanner can trivially solve problems that are simplifications of the
original example used for learning.

The dsPlanner language is rich enough to allow compact planners for many difficult
problems. We demonstrate this by presenting three short hand-written dsPlanners that
solve all problems in well-known domains.

DsPlanner 1 shows a simple but suboptimal hand-written dsPlanner that solves all
BlocksWorld-domain (Winograd 72) problems that involve building towers of blocks. The
dsPlanner is composed of three while loops: first, all blocks should be unstacked; then,
the second-to-bottom block of every tower should be stacked onto the bottom block; then,
for each block that is stacked on a second block in the goal state, if the second block is
already stacked on a third, then go ahead and stack the first block on the second.

DsPlanner 2 solves all gripper-domain problems involving moving balls between rooms.
The dsPlanner is composed of one while loop: while there is a ball that is not at its goal
location, move to the ball (if necessary), pick up the ball, move to goal location of the ball,
and drop the ball.

DsPlanner3 shows a hand-written dsPlanner that solves all Rocket-domain (Veloso 94a)
problems. The dsPlanner is composed of two while loops: while there is some package
that is not at its goal location, execute the following loop: while there is some package in

32

DsPlanner 1 A dsPlanner that solves all BlocksWorld-domain problems.
while inCurState (on-block(v?1:block v?2:block)) and inCurState (clear(v?1:block)) do

move-block-to-table(?1 ?2)
end while
while inGoalState (on-block(v?1:block v?2:block)) and not (inGoalState (on-block(v?2:block
v?3:block))) and inCurState (clear(v?1:block)) and inCurState (clear(v?2:block)) do

move-table-to-block(?1 ?2)
end while
while inGoalState (on-block(v?1:block v?2:block)) and inCurState (on-table(v?1:block)) and in-
CurState (on-block(v?2:block v?3:block)) do

move-table-to-block(?1 ?2)
end while

DsPlanner 2 A dsPlanner that solves all gripper-domain problems involving moving balls
from one room to another.

while inCurState (at(v?1:ball v?2:room)) and inGoalState (at(v?1:ball v?3:room)) do
if inCurState (at-robby(?5:room)) then

move(?5 ?2)
end if
if inCurState (at-robby(?3:room)) then

move(?3 ?2)
end if
pick(?1 ?2)
move(?2 ?3)
drop(?1 ?3)

end while

the rocket that should arrive at a goal destination, unload all packages in the rocket that
should end up in the rocket’s current city, load all packages in the rocket’s current city that
should go elsewhere, then fly the rocket to the goal destination of the package inside it that
should be delivered to a goal destination. Once the rocket contains no more packages that
should be delivered to goal destinations, fly the rocket to the location of the original mis-
placed package, load it into the rocket, and begin the rocket-emptying loop again. Once
all the packages are correctly placed, fly each rocket to its goal location.

3.2 Planning with DsPlanners

When executing the dsPlanner, we must keep track of a current state and of the current
solution plan. The current state is initialized to the initial state and the solution plan is
initialized to the empty plan. Executing the dsPlanner is the same as executing a program:

33

DsPlanner 3 A dsPlanner that solves all rocket-domain problems.
while inGoalState (at(v?1:pkg v?2:city)) and not (inCurState (at(v?1:pkg v?2:city))) do

while inCurState (inside(v?3:pkg v?4:rocket)) and inGoalState (at(v?3:pkg v?5:city)) do
while inCurState (inside(v?6:pkg ?4:rocket)) and inCurState (at(?4:rocket v?7:city)) and in-
GoalState (at(v?6:pkg v?7:city)) do

unload(?6 ?4 ?7)
end while
while inCurState (at(?4:rocket v?6:city)) and inCurState (at(v?7:pkg v?6:city)) and inGoal-
State (at(v?7:pkg v?8:city)) do

load(?7 ?4 ?6)
end while
if inCurState (at(?4:rocket ?6:city)) and inGoalState (at(?1:pkg ?7:city)) and not (inCurState
(at(?1:pkg ?7:city))) then

fly(?4 ?6 ?5)
end if

end while
if inCurState (at(?1:pkg ?3:city)) and inCurState (at(?4:rocket ?5:city)) and inGoalState
(at(?1:pkg ?6:city)) then

fly(?4 ?5 ?3)
end if
if inCurState (at(?1:pkg ?3:city)) and inCurState (at(?4:rocket ?3:city)) and inGoalState
(at(?1:pkg ?5:city)) then

load(?1 ?4 ?3)
end if

end while
while inCurState (at(v?1:rocket v?2:city)) and inGoalState (at(v?1:rocket v?3:city)) do

fly(?1 ?2 ?3)
end while

it consists of applying each of the statements to the current state. Each statement in the
dsPlanner is either a plan step (e.g., unload, load, fly, etc.), an if statement, or a while
loop. If the current statement is a plan step, append it to the solution plan and apply it to
the current state. If the current statement is an if statement, check to see whether it applies
to the current state. If it does, apply each of the statements in its body; if not, go on to the
next statement. If the current statement is a while loop, check to see whether it applies to
the current state. If it does, apply each of the statements in its body until the conditions
of the loop no longer apply. Then go on to the next statement. Once execution of the
dsPlanner is finished, the final state must be checked to ensure that it satisfies the goals. If
it does, the generated plan is returned. Otherwise, the dsPlanner must return failure.

Sometimes there may be many ways to apply an if statement or a while loop to the
current state. For example, there may be several possible variable assignments for a given
statement. One of our primary assumptions is that any valid variable binding may be

34

Initial State Goal State
at pkg1 city1 at pkg3 city2
inside pkg2 rocket at pkg1 city2
inside pkg3 rocket
at rocket city2

Table 3.1: An example problem in the Rocket domain

chosen.

3.3 Rocket Domain Example

As an example, consider executing the dsPlanner shown in DsPlanner 3 on the Rocket
domain problem shown in Table 3.3. The first while loop could match either pkg3 and
city2 or pkg1 and city2—at the beginning of execution, neither package is at its goal
destination. Let’s assume it matches pkg3 and city2. The second while loop can find only
one match: pkg3, rocket, and city2. While pkg2 is also in rocket, the goal state does
not specify its destination, and therefore the inGoalState component of the while loop
conditions does not match. The third while loop also finds a match: pkg3, rocket, and
city2, so the plan step contained within it is added to the result plan: unload(pkg3 rocket
city2), and its execution is simulated to update the current state within the dsPlanner.

The third while loop finds no more matches (there are no more packages inside the
rocket that have the rocket’s current location as their goal destinations), so it completes
execution. The fourth while loop cannot find a match—it is looking for a package in the
same city as the rocket that has a different destination location, and there is none, so it
is skipped. The if statement that follows is checking whether the rocket needs to move
to unload the package inside it (matched in the second while loop). In this case, it does
not—the package has already been unloaded—so it is skipped as well. The end of the
first iteration of the second while loop has now been reached. The dsPlanner reevaluates
whether it can match the conditions of the second loop—are there any objects inside the
rocket that have a city as their goal destinations? There are not, so the while loop completes
execution, and the dsPlanner moves on to the if statement below.

Recall that the dsPlanner is still executing the first while loop, in which it matched
pkg3 and city2. The next if statement checks whether pkg3 is in a different city than
rocket and needs to move. This is not true, so the if statement is skipped. The next if
statement checks whether pkg3 is in the same city as rocket and needs to move. This is

35

not true, so the if statement is skipped.

The dsPlanner has now completed the first iteration of the first while loop, and is ready
to try to match the conditions again. The conditions now have exactly one match: pkg1
and city2. The second while loop no longer has a match, as there are no packages inside
the rocket that need to be delivered anywhere, so the second while loop is skipped. The
next if statement does have a match: pkg1, city1, rocket, and city2, so the plan step
fly(rocket city2 city1) is added to the result plan and its execution is simulated to update
the current state within the dsPlanner.

When the next if statement is evaluated, rocket has been moved, so it is now in the
same city as pkg1, and the conditions of the if statement match. The plan step in the body
of the if statement, load(pkg1 rocket city1), is added to the result plan and its execution
is simulated to update the current state within the dsPlanner.

The first while loop has completed its second iteration and is now evaluated again to
determine whether its conditions can be matched. They can, again to pkg1 and city2. This
time, the second while loop matches—pkg1, rocket, city2. The third while loop does not
match, as rocket is not at the goal destination of pkg1, so it is skipped. The fourth while
loop also does not match—there are no packages at rocket’s current location that need to
be moved, so it is skipped as well. The next if statement does match, however, and the
plan step in the body of the if statement, fly(rocket city1 city2) is added to the result plan
and its execution is simulated to update the current state within the dsPlanner.

The second while loop has finished its iteration and its conditions are now reevaluated
to find a match. There is a match: pkg1, rocket, and city2. The third while loop now has
a match as well: pkg1, rocket, and city2, so the step in its body, unload(pkg1 rocket
city2), is added to the result plan and its execution is simulated to update the current state
within the dsPlanner.

The third while loop does not match again, as there are no more packages inside the
rocket that need to go anywhere. The fourth while loop also doesn’t match, as there are no
packages that need to go anywhere (all are properly delivered). The following if statement
doesn’t match, as all packages are properly delivered. The second while loop does not
match again, since there are no packages inside the rocket that need to be delivered. The
following two if statements also do not match, as all packages are properly delivered. The
first while loop has now finished its third iteration, and its conditions cannot be matched
again, as all packages are in their goal destinations. The last while loop also cannot be
matched, as there is no goal destination for rocket.

The dsPlanner has completed its execution and has found a correct solution plan to the
problem shown in Table 3.3. The solution plan is shown in Table 3.3.

36

Solution plan
unload(pkg3 rocket city2)
fly(rocket city2 city1)
load(pkg1 rocket city1)
fly(rocket city1 city2)
unload(pkg1 rocket city2)

Table 3.2: The solution plan found by dsPlanner 3 for the Rocket domain problem shown
in Table 3.3.

3.4 Summary

In this chapter, we contribute a principled formalism for automatically-generated domain-
specific planning programs (dsPlanners), demonstrate how this dsPlanner language can be
used to express planning algorithms, and discuss how to use dsPlanners for planning.

37

38

Chapter 4

DISTILL: Learning Non-Looping
Domain-Specific Planners by Example

Intelligent agents must develop and execute autonomously a strategy for achieving their
goals in a complex environment, and must adapt that strategy quickly to deal with unex-
pected changes. Solving complex problems with classical domain-independent planning
techniques has required prohibitively high search efforts or tedious hand-coded domain
knowledge, while universal planning and action-selection techniques have proven difficult
to extend to complex environments.

Researchers have focused on making general-purpose planning more efficient by us-
ing either learned or hand-coded control knowledge to reduce search and thereby speed up
the planning process. Machine learning approaches have relied on automatically extract-
ing control information from domain and example plan analysis, with relative success in
simple domains. Hand-coded control knowledge (or hand-written domain-specific plan-
ners) has proved more useful for more complex domains. However, it frequently requires
great specific knowledge of the details of the underlying domain-independent planner for
humans to formalize useful rules.

We presented the SPRAWL algorithm for finding the rationale underlying observed
example plans in Chapter 2 (Winner 02). The SPRAWL algorithm proves that example
plans can reveal more than control information: they can also reveal the process behind
their generation.

In this chapter, we describe the DISTILL algorithm, which automatically extracts com-
plete non-looping domain-specific planners, or dsPlanners, from sets of example plans
supplemented with their rationales. The learning techniques used in the DISTILL algo-

39

rithm allow problem solving that avoids the cost of generative planning and of maintain-
ing exhaustive databases of observed behavior by compiling observed plans into compact
dsPlanners. These dsPlanners are able to duplicate the behavior shown in the example
plans and to solve problems based on that behavior. Other planning methods have expo-
nential time complexity, but dsPlanners return a solution plan or failure with complexity
that is linear in the size of the planners and the size of the solution, modulo state matching
effort. The DISTILL algorithm learns non-looping dsPlanners from example plans supple-
mented with their rationales. We show that these dsPlanners succeed in compactly captur-
ing observed behavior and in solving many new problems. In fact, dsPlanners extracted
from only a few example plans are able to solve all problems in limited domains.

Due to the complexity of finding optimal solutions in planning, dsPlanners learned
automatically from a finite number of example plans cannot be guaranteed to find optimal
plans. Our goal is to extend the solvability horizon for planning by reducing planning times
and allowing much larger problem instances to be solved. We believe that post-processing
plans can help improve plan quality.

Our work on the DISTILL algorithm for learning dsPlanners focuses on using the ratio-
nales uncovered by SPRAWL to convert new example plans into dsPlanners in if-statement
form and merge them, where possible. Our results show that merging dsPlanners produces
a dramatic reduction in space usage compared to case-based or analogical plan libraries.
We also show that by constructing and combining the if statements appropriately, we can
achieve automatic situational generalization, which allows dsPlanners to solve problems
that have not been encountered before without resorting to generative planning or requiring
adaptation.

We first present the DISTILL algorithm and illustrate its execution. Then we present
the results of using DISTILL on size-limited domains.

4.1 The DISTILL Algorithm: Learning Non-Looping ds-
Planners

The DISTILL algorithm, shown in Algorithms 3 and 4, learns complete, non-repeating
dsPlanners from sequences of example plans supplemented with their rationales, incre-
mentally adapting the dsPlanner with each new plan. We describe the two main portions
of the DISTILL algorithm (converting example plans into dsPlanners and merging dsPlan-
ners) in detail in the rest of this section. We use online learning in DISTILL because it
allows a learner with access to a planner to acquire dsPlanners on the fly as it encounters

40

gaps in its knowledge in the course of its regular activity. Because dsPlanners are learned
from example plans, they reflect the style of those plans, thus making them suitable not
only for planning, but also for agent modeling.

Algorithm 3 The DISTILL algorithm: learning a dsPlanner from example plans.
Input: Minimal annotated consistent partial ordering P , current dsPlanner dsPi.
Output: New dsPlanner dsPi+1, updated with P

procedure DISTILL(P , dsPi)
A ← Find Variable Assignment(P , dsPi.variables, ∅)
repeat

if A = ∅ then
can’t match← true

else
N ←Make New If Statement(Assign(P , A))
match← Is A Match(N , dsPi)

end if
if not (can’t match) and not (match) then
A ← Find Variable Assignment(P , dsPi.variables, A)

end if
until match or can’t match
if can’t match then
A ← Find Variable Assignment(P , dsPi.variables, ∅)
N ←Make New If Statement(Assign(P , A))

end if
dsPi+1 ← Add To dsPlanner(N , dsPi)

end procedure

DISTILL can handle domains with conditional effects, but we assume that it has access
to a complete STRIPS-style model of the operators and to a minimal annotated consistent
partial ordering of the observed total order plan. Previous work has shown that STRIPS-
style operator models are learnable through examples and experimentation (Carbonell 90);
we show in Chapter 2 how to find minimal annotated consistent partial orderings of totally-
ordered plans given a model of the operators (Winner 02).

The DISTILL algorithm converts observed plans into dsPlanners, described in Sec-
tion 4.1.2, and merges them by finding dsPlanners with overlapping solutions and com-
bining them, described in Section 4.1.3. In essence, this builds a highly compressed case
library. However, another key benefit comes from merging dsPlanners with overlapping
solutions: this allows the dsPlanner to find situational generalizations for individual sec-
tions of the plan, thus allowing it to reuse those sections when the same situation is en-
countered again, even in a completely different planning problem.

41

Algorithm 4 Procedures that support the DISTILL algorithm.

procedure Make New If Statement(PA)
N ← empty if statement
for all terms tm in initial state of PA do

if plan body of PA contains a step that needs tm or goal state of PA needs tm then
Add To Conditions(N , inCurState (tm))

end if
end for
for all terms tm in goal state of PA do

if plan body of PA contains a step that tm relies on then
Add To Conditions(N , inGoalState (tm))

end if
end for
for all steps sn in plan body of PA do

Add To Body(N , sn)
end for
return N

end procedure

procedure Is A Match(N , dsPi)
for all if-statements In in dsPi do

if N matches In then
return true

end if
end for

end procedure

procedure Add To dsPlanner(N , dsPi)
for all if-statements In in dsPi do

if N matches In then
In ← Combine(In, N)
return

end if
end for
if N is unmatched then

Add To End(N , dsPi)
end if

end procedure

4.1.1 Generalizing Situations

We make several assumptions about what makes one planning situation different than
another, and about how the observed planner solves problems. We assume that two objects

42

of the same type are treated the same by the planner. Thus, two situations are equivalent
if they contain the same number and types of objects in the same relationships. We also
assume that the planner responds to equivalent situations with the same plan. This allows
the DISTILL algorithm to identify common situations that occur in the solutions of several
planning problems, and to extract their solutions for independent use in other problems.

4.1.2 Converting Plans into dsPlanners

The first step of incorporating an example plan into the dsPlanner is converting it into a
parameterized if statement. First, the entire plan is parameterized. DISTILL chooses the
first parameterization that allows part of the solution plan to match that of a previously-
saved dsPlanner. If no such parameterization exists, it randomly assigns variable names
to the objects in the problem. Two discrete objects in a plan are not allowed to map onto
the same variable, as this can lead to invalid plans (Fikes 72). We also do not allow the
same object to be mapped to different variables. Our goal is to model the problem-solving
process that is demonstrated.

Next, the parameterized plan is converted into a dsPlanner, as formalized in the proce-
dure Make New If Statement in Algorithm 4. The conditions of the new if statement are
the initial- and goal-state terms that are relevant to the plan. Relevant initial-state terms are
those that are needed for the plan to run correctly and achieve the goals (Veloso 94a). Rel-
evant goal-state terms are those that the plan accomplishes. We use a minimal annotated
consistent partial ordering (Winner 02) of the observed plan to compute which initial- and
goal-state terms are relevant. The steps of the example plan compose the body of the new
if statement. We store the minimal annotated consistent partial ordering information for
use in merging the dsPlanner into the previously-acquired knowledge base.

DsPlanner 4 The dsPlanner DISTILL creates to represent the plan shown in Figure 4.1.
if inCurState (f(?0:type1)) and inCurState (g(?1:type2)) and inGoalState (a(?:type1)) and inGoal-
State (d(?1:type2)) then

op1
op2

end if

Figure 4.1 shows an example minimal annotated consistent partially ordered plan with
conditional effects. DsPlanner 4 is created by DISTILL to represent that plan. Note that
the conditions on the generated if statement do not include all terms in the initial and goal
states of the plan. For example, the dsPlanner does not require that e(z) be in the initial and
goal states of the example plan. This is because the plan steps do not generate e(z), nor

43

pre:
{}

effects:
g(y:type2) −> d(y:type2)
f(x:type1) −> NOT b(x:type1)

op2

pre:
{}

effects:
f(x:type1) −> a(x:type1)
b(x:type1) −> c(x:type1)

op1

b(x:type1)
f(x:type1)
g(y:type2)
e(z:type3)

INITIAL GOAL

a(x:type1)
d(y:type2)
e(z:type3)

a(x:type1)

d(y:type2)

e(z:type3)

f(x:type1)

g(y:type2)

Figure 4.1: An example plan. The preconditions (pre) are listed, as are the effects, which
are represented as conditional effects a→ b, i.e., if a then add b. A non-conditional effect
that adds a literal b is then represented as {} → b. Delete effects are represented as negated
terms (e.g., {a} → NOT b).

do they need it to achieve the goals. Similarly, b(x) and the conditional effects that could
generate the term c(x) or prevent its generation are also ignored, since it is not relevant to
achieving the goals.

4.1.3 Merging dsPlanners

The merging process is formalized in the procedure Add To dsPlanner in Algorithm 4.
The dsPlanners learned by the DISTILL algorithm are sequences of non-nested if state-
ments. To merge a new dsPlanner into its knowledge base, DISTILL searches through
each of the if statements already in the dsPlanner to find one whose body (the solution
plan for that problem) matches that of the new problem. We consider two plans to match
if:

• one is a sub-plan of the other, or

• they overlap: the steps that end one begin the other.

If such a match is found, the two if statements are combined. If no match is found, the
new if statement is simply added to the end of the dsPlanner.

44

We now describe how to combine two if statement dsPlanners, if1= if x then abc and
if2= if y then b, when the body of if2 is a sub-plan of that of if1. This process is illustrated
in Figure 4.2. For any set of conditions C and any step s applicable in the situation C,
we define Cs to be the set of conditions that hold after step s is executed in the situation
C. We also define a new function, Relevant(C, s), which, for any set of conditions C and
any plan step s, returns the conditions in C that are relevant to the step s.

As shown in Figure 4.2, merging if1 and if2 results in three new if statements. We label
them if3, if4, and if5. The body of if3 is set to a and its conditions are Relevant(x, a). The
body of if4 is b and its conditions are Relevant(xa, b) or Relevant(y, b). 1 Finally, the
body of if5 is c and its conditions are Relevant(xab, c). Whichever of if1 or if2 is already a
member of the dsPlanner is removed and replaced by the three new if statements.

Combining two if statements with overlapping bodies is similar, and is illustrated in
Figure 4.3. Merging the two if statements if1= if x then ab and if2= if y then bc results
in three new if statements, labelled if3, if4, and if5. The body of if3 is set to a and its
conditions are Relevant(x, a). The body of if4 is b, and its conditions are Relevant(xa, b)
or Relevant(y, b). Finally, the body of if5 is c and its conditions are Relevant(yb, c).
Again, whichever of if1 or if2 is already a member of the dsPlanner is removed and replaced
by the three new if statements.

4.2 Illustrative Results

We present results of applying DISTILL to limited domains since the DISTILL algorithm
does not learn looping dsPlanners from observed plans. Our results show that, even with-
out the ability to represent loops, the dsPlanners learned by DISTILL are able to capture
complete domains from few examples and to store these complete solutions very com-
pactly.

A dsPlanner learned by the DISTILL algorithm that solves all problems in a Blocks-
world (Winograd 72) domain with two blocks is shown in DsPlanner 5. There are 2112
such problems, 2 but the dsPlanner stores only two plan steps, and it is possible for DIS-
TILL to learn the dsPlanner from only 6 example plans. These six example plans were
chosen to cover the domain; more examples could be required for the complete dsPlan-
ner to be learned if the examples were randomly selected. If more examples were given,

1Note that Relevant(x, a) ⊆ x and Relevant(y, b) = y.
2Though the initial state must be fully-specified in a problem, the goal state need only be partially speci-

fied. There are only three valid fully specified states in the Blocksworld domain with two blocks (block1 on
block2, block2 on block1, or both on the table), but there are 704 valid partially specified goal states.

45

a
b
c

b

if (x) then

if (y) then

b

a

c

if (Relevant(x, a)) then

ab

aif (Relevant(x , b) or y) then

if (Relevant(x)) then

Figure 4.2: Combining two if statements
when the body of one is a sub-plan of the
body of the other.

a
if (Relevant(x, a)) then

if (Relevant(x , b) or

if (Relevant(y , c) then

Relevant(y, b) then
b

c

a

b

a
b

b
c

if (x) then

if (y) then

Figure 4.3: Combining two if statements
when their bodies are overlapping.

the dsPlanner would not continue to grow. As this is a complete dsPlanner, the examples
would be found to match existing if-statements and their conditions.

DsPlanner 5 A dsPlanner learned from 6 example plans by the DISTILL algorithm which
solves all two-block blocks-world problems.

if inCurState (clear(?1:block)) and inCurState (on(?1:block ?2:block)) and (inGoalState
(on(?2:block ?1:block)) or inGoalState (on-table(?1:block)) or inGoalState (clear(?2:block)) or
inGoalState (¬on(?1:block ?2:block)) or inGoalState (¬clear(?1:block)) or inGoalState (¬on-
table(?2:block))) then

move-from-block-to-table(?1 ?2)
end if
if inCurState (clear(?1:block)) and inCurState (clear(?2:block)) and inCurState (on-
table(?2:block)) and (inGoalState (on(?2:block ?1:block)) or inGoalState (¬clear(?1:block))
or inGoalState (¬on-table(?2:block))) then

move-from-table-to-block(?2 ?1)
end if

A dsPlanner learned by the DISTILL algorithm that solves all gripper-domain problems
with one ball, two rooms, and one robot with one gripper arm is shown in DsPlanner 6.

46

Although there are 1722 such problems, 3 it is possible for the DISTILL algorithm to learn
the dsPlanner from only six example plans. Also note that only five plan steps (the length
of the longest plan) are stored in the dsPlanner.

DsPlanner 6 A dsPlanner learned by the DISTILL algorithm from 5 example plans that
solves all gripper-domain problems involving one ball, two rooms, and one robot with one
gripper arm.

if inCurState (at(?3:ball ?2:room)) and inCurState (at-robby(?1:room)) and (inGoalState
(at(?3:ball ?1:room)) and inGoalState (¬at(?3:ball ?2:room)) or inGoalState (holding(?3:ball)) or
inGoalState (¬free-arm)) then

move(?1 ?2)
end if
if inCurState (at(?3:ball ?2:room)) and inCurState (at-robby(?2:room)) and (inGoalState
(at(?3:ball ?1:room)) or inGoalState (¬at(?3:ball ?2:room)) or inGoalState (holding(?3:ball)) or
inGoalState (¬free-arm)) then

pick(?3 ?2)
end if
if inCurState (holding(?3:ball)) and inCurState (at-robby(?2:room)) and (inGoalState (at(?3:ball
?1:room)) or inGoalState (¬at(?3:ball ?2:room)) and ingoal(¬holding(?3:ball)) or inGoalState
(free-arm)) then

move(?2 ?1)
end if
if inCurState (holding(?3:ball)) and inCurState (at-robby(?1:room)) and (inGoalState (at(?3:ball
?1:room)) or inGoalState (¬holding(?3:ball)) or inGoalState (free-arm)) then

drop(?3 ?1)
end if
if inCurState (at-robby(?1:room)) and (inGoalState (at-robby(?2:room)) or inGoalState (¬at-
robby(?1:room))) then

move(?1 ?2)
end if

Our results show that dsPlanners achieve a significant reduction in space usage com-
pared to case-based or analogical plan libraries, as they store only the number of plan steps
in the longest plan. In addition, dsPlanners are also able to situationally generalize known
problems to solve problems that have not been seen; each of the learned planners we have
presented are complete, despite being learned from just a few problems, and are able to
solve all of the remaining problems in the domain.

3As previously mentioned, each problem consists of one fully-specified initial state (in this case, there
are 6 valid fully-specified initial states: the ball and robby are both in room1, and robby is not holding the
ball, both are in room2 and robby is not holding the ball, both are in room1 and robby is holding the ball,
both are in room2 and robby is holding the ball, robby is in room1 and the ball is in room2, and the ball is in
room1 and robby is in room2), and one partially-specified goal state (in this case, there are 287).

47

4.3 Summary

In this chapter, we present the DISTILL algorithm, which automatically learns non-looping
dsPlanners from example plans. The DISTILL algorithm first converts an observed plan
into a dsPlanner and then combines it with previously-generated dsPlanners. Our results
show that dsPlanners learned by the DISTILL algorithm require much less space than do
case libraries. dsPlanners learned by DISTILL also support situational generalization, ex-
tracting commonly-solved situations and their solutions from stored dsPlanners. This al-
lows dsPlanners to reuse previous planning experience to solve different problems.

48

Chapter 5

LoopDISTILL: Learning
Domain-Specific Planners from
Example Plans

General-purpose planners have traditionally had difficulty with large-scale planning prob-
lems, although many large-scale problems have a repetitive structure, because they do
not capture or reason about such repetition. Instead, to solve large-scale problems, pro-
grammers have had to hand write special-purpose planners that may precisely encode the
repeated structure. However, example plans are often available, and can demonstrate this
structure.

Examples have previously been used to learn domain-specific knowledge that may re-
duce planning search, and to learn policies not guaranteed to be complete or correct. We
observe that example plans can precisely reveal the process behind their creation. We
have shown in Chapter 2 how to use domain descriptions and problem specifications to
find the rationale behind example plans, in the form of a minimal annotated consistent
partial ordering (Winner 02), introduced the concept of automatically-generated domain-
specific planning programs (or dsPlanners) in Chapter 3, and, in Chapter 4 have shown
how to use rationales to learn non-looping dsPlanners, which can solve problems of lim-
ited size (Winner 03). Here, we present the LoopDISTILL algorithm for automatically
identifying the repeated structure of example plans to learn looping dsPlanners. DsPlan-
ners execute independently of a general-purpose planning program, perform no search,
and return a solution plan in time that is linear in the size of the dsPlanner and of the
problem and solution, modulo state-matching effort.

49

Identifying loops in observed plans allows the plans to be reused to solve quickly
arbitrarily large similar problem instances. Our research focuses on compressing looping
plans into compact domain-specific planning programs that can solve larger and more
complex problems than can current general-purpose planning techniques. However, loop
identification could also be used for other purposes, such as improving the performance of
case-based or analogical planning methods or identifying promising candidates for macro
learning.

Finding optimal solutions to general planning problems is NP-complete. Therefore,
dsPlanners learned automatically from a finite number of example plans cannot be guar-
anteed to find optimal plans. Instead, the plans they find reflect the style of the example
plans used to generate the dsPlanner. Our goal is to extend the solvability horizon for
planning by reducing planning times and allowing much larger problem instances to be
solved, even if not necessarily optimally. We believe that post-processing of plans can
help improve plan quality, if needed, and that dsPlanners that model observed solutions
can be used not only for planning but also for prediction and agent modelling.

We first present definitions and discuss classes of loops. Then we present the Loop-
DISTILL algorithm for automatically identifying loops in observed plans, and illustrate its
behavior with examples. We then present the results of using learned looping dsPlanners
and discuss extensions and limitations of the LoopDISTILL algorithm. Finally, we draw
conclusions

5.1 Definitions

Subplans are connected components within a partially-ordered plan when the initial and
goal states are excluded (otherwise every set of steps would be a connected component).
Three subplans of a painting and transport domain problem are illustrated in Figure 5.1.

Matching Subplans satisfy the following criteria:

• they are non-overlapping,

• they consist of the same operators,

• the operators in each subplan are causally linked to each other in the same way,

• they have the same conditions and effects in the plan,

• they unify.

50

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 5.1: An example plan in a painting and transport domain is shown. In the given
plan, some objects need to be painted and some need to be loaded into a truck. Painting
must be done before loading. Three different subplans are surrounded by dotted lines.
There are other possible subplans, but the steps paint(obj1) and paint(obj3) are not a
subplan, since they are not a connected component within the partial ordering.

We also use the term “matching steps” as a special case of matching subplans (in which
the subplans are of length one). The two load operators in Figure 5.1 are matching steps,
as are the two paint operators.

Parallel Subplans are causally- and threat-independent of each other. Figure 5.2 shows
three parallel subplans.

Serial Subplans are causally linked to each other and are connected in the partial order-
ing (there are no plan steps which rely on one subplan and precede the next). In Figure 5.1,
the paint and load operators for obj1 are serial subplans of length 1.

An Unrolled Loop is a set of matching subplans. There are two unrolled loops in the
example shown Figure 5.1; the two load operators make up an unrolled loop, and the paint
operators make up the other. One of two unrolled loops is circled in Figure 5.3.

A Loop replaces an unrolled loop in the plan. The body of the loop consists of the com-
mon subplan, but with the differing variables converted into loop variables. The conditions
on its execution are: that the goal state contains all goal terms that are supported by steps

51

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 5.2: Three parallel subplans are surrounded by dotted lines.

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 5.3: Two parallel matching subplans of length 1 are surrounded by dotted lines and
represent an unrolled loop.

within the unrolled loop, and that the current state when the loop is executed contains all
the conditions for the steps within the unrolled loop to execute correctly and support the
goals of the plan. The loop represented by the two load operators in Figure 5.1 is shown
in Figure 5.4.

A Parallel Loop is a loop in which each iteration of the loop is causally independent
from the others. The loop shown in Figure 5.4 is a parallel loop. A loop may also have a

52

Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

paint(obj1)

load(?1, truck, loc1)

LOOP

conditions:
cur: at(?1, loc1)
cur: at(truck, loc1)
goal: inside(?1, truck)

at(obj1, loc1)
at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

at(paint, loc1)
at(obj3, loc1)

inside(obj1, truck)
inside(obj2, truck)

paint(obj3)

painted(obj1)

painted(obj3)

threat

Figure 5.4: The painting and transport problem after the load loop is identified. The loop
is surrounded by dotted lines. The loop variable is written as ?1, and ranges over all values
that meet the conditions of the loop (in this case, obj1 and obj2). Conditions for the loop
are shown above the loop.

multi-step body with complex causal structure; it may even include other loops.1 Loop-
DISTILL identifies non-nested parallel loops in observed plans.

A Serial Loop is a loop in which each iteration of the loop is causally linked to the
others—there is a specific order in which the iterations must be executed. For example,
in the Rocket domain (Veloso 94a), one loop may describe the rocket individually picking
up and dropping off packages, as shown in Figure 5.5. Each iteration of the loop consists
of the rocket flying to the package, loading it, flying to its destination, and unloading it.
These iterations must be executed in a specific order since the fly operations are causally
linked. LoopDISTILL identifies non-nested serial loops in observed plans.

5.2 The LoopDISTILL Algorithm

The LoopDISTILL algorithm can handle domains with conditional effects, but we assume
that it has access to a minimal annotated consistent partial ordering of the observed total
order plan. We discuss in Chapter 2 how to find minimal annotated consistent partial

1Note that an observed total-order execution of a multi-step parallel loop need not present the steps of
the loop in a specific order—it could be any topological sort of the loop—and that other non-loop causally
independent steps could appear throughout the trace of the loop’s execution.

53

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, home, boston)

load(obj1, jet, boston)

fly(jet, boston, seattle)

unload(obj1, jet, seattle)

fly(jet, seattle, NYC)

load(obj2, jet, NYC)

fly(jet, NYC, chicago)

unload(obj2, jet, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet, home)

at(obj1, boston)

at-rocket(jet, boston)

threat
at-rocket(jet, boston)

at-rocket(jet, seattle)
in-rocket(obj1, jet)

threat

at-rocket(jet, seattle)

threat

at-rocket(jet, NYC)

at-rocket(jet, chicago)

at-rocket(jet, NYC)

in-rocket(obj2, jet)

at(obj1, seattle)

at(obj2, chicago)

Figure 5.5: An example annotated partially ordered plan in the rocket domain that includes
a serial loop.

orderings of totally-ordered plans given a model of the operators (Winner 02) and other
work has shown that STRIPS-style operator models are learnable through examples and
experimentation (Carbonell 90), so this assumption is not excessively restrictive.

The LoopDISTILL algorithm has two components, formalized in Algorithm 5 and Al-
gorithm 7. The first extracts all non-nested identical parallel loops from the observed plan
and the second extracts all non-nested identical serial loops. Both begin by identifying an
unrolled loop (described in the Section “Identifying Unrolled Loops”) and then converting
it into a loop (described in the Section “Converting Unrolled Loops into Loops”). The
unrolled loop is then removed from the plan and replaced by the loop.

5.2.1 Identifying Parallel Unrolled Loops

A parallel unrolled loop is a set of parallel matching subplans within the observed plan.
The process of finding a parallel unrolled loop begins with the identification of a set of
parallel matching steps, as described in Algorithm 5. Next, LoopDISTILL expands these
matching steps into a set of parallel matching subplans. There may be many ways to
do this, and it is impossible to know which will lead to the “best” (according to some
measure) representation of the plan without trying to process the rest of the plan fully for
each possible loop, so our current algorithm searches for the longest possible loops—the
largest parallel matching subplan common to at least two of the steps.

54

Algorithm 5 The LoopDISTILL algorithm for identifying non-nested parallel loops in an
observed plan.
Input: Minimal annotated partially ordered plan P .
Output: P with all non-nested parallel loops identified.

for all steps i in P do
Mi ← all parallel matching steps with i in P
if Mi 6= ∅ then
C ← LargestCommonSubplan(Mi + i, P)
L ←MakeLoop(C)
P ← P − C
P ← P + L

end if
end for

The procedure LargestCommonSubplan, formalized in Algorithm 6, recursively tries
every possible expansion of the existing subplans and returns the one with the most steps
per parallel track. First, it identifies the sets of steps that supply conditions to the steps
in each parallel track of the existing subplan (StepBack) and the set of steps that rely on
effects of the steps in each parallel track of the existing subplan (StepAhead). The initial
and goal states are not considered as steps ahead or back. Then, it explores each of thse
steps as a possible way to expand the subplan. For each step in StepBack or StepAhead for
each track, it finds which other tracks also have a matching step in StepBack or StepAhead.
If there is at least one other track, the current subplans with the new steps added are
recorded as a new unrolled loop. At the end of this process, there is a set of new unrolled
loops. LargestCommonSubplan is then recursively applied to each of these to further
expand them. The largest resulting candidate is then returned by the algorithm as the final
unrolled loop.

5.2.2 Identifying Serial Unrolled Loops

The process of finding a serial unrolled loop—a set of serial matching subplans within
the observed plan—begins, as shown in Algorithm 7, by stepping through the plan and,
for each step, searching for a causally linked matching step. The steps need not be linked
directly in the partial ordering, but do need to be ordered with respect to each other (linked
directly in the transitive closure of the partial ordering).

Once a pair of causally linked matching steps is found, LoopDISTILL tries to expand
the two matching steps into serial matching subplans in the procedure ConnectSerialLoop,
shown in Algorithm 8, by matching all the steps that come causally after the first iteration

55

Algorithm 6 LargestCommonSubplan: Identify largest parallel matching subplans of an
observed plan common to at least two of the given parallel matching subplans.
Input: set A of parallel matching subplans S1..Sm, minimal annotated partially ordered plan P .
Output: Set of largest parallel matching subplans of plan P common to at least two of S1..Sm.

for all Si in S1..Sm do
StepAheadSi

← steps causally linked from Si

StepBackSi ← steps causally linked to Si

end for
UnrolledLoops← A
for i = 1 to m do

for NewSteps← first StepAheadSi
, then StepBackSi

do
for all s in NewStepsSi do

NewExpLoop← {Si + s}
for all j 6= i do

if ∃ parallel matching step s′ in NewStepsSj
then

NewExpLoop← NewExpLoop + {Sj + s′}
NewStepsSj

← NewStepsSj
− s′

end if
end for
if |NewExpLoop| > 1 then

UnrolledLoops← UnrolledLoops + NewExpLoop
NewStepsSi

← NewStepsSi
− s

end if
end for

end for
end for
for all sets N 6= A in UnrolledLoops do
N ← LargestCommonSubplan(N ,P)

end for
return set N in UnrolledLoops with the largest subplan

and before the second to steps that come causally after the second iteration. If the subplans
cannot be connected, LoopDISTILL continues searching for causally linked steps that
match the original step. If they can be connected, then LoopDISTILL has identified two
iterations of a serial loop, and proceeds to search for further iterations in the procedure
FindOtherSerialIterations, shown in Algorithm 9. This procedure searches through the
steps that are directly causally linked from the last iteration of the loop to find a set of
steps that match the first step of each iteration. Each of these steps is then explored as a
possible first step of the next iteration as LoopDISTILL tries to match the rest of the steps
in the iteration. If a new iteration is found, it is added to the loop and the search for new
iterations continues.

The iterations of a serial loop must be fully causally connected—there may not be any

56

Algorithm 7 The LoopDISTILL algorithm for identifying non-nested serial loops in an
observed plan.
Input: Minimal annotated partially ordered plan P .
Output: P with all non-nested serial loops identified.

for all steps i in P do
for all steps j in P causally linked from i do
C ← ConnectSerialLoop(i, j, P)
if C 6= then
C ← FindOtherSerialIterations(C, P)
L ←MakeLoop(C)
P ← P − C
P ← P + L
goto next i

end if
end for

end for

steps not included in the loop that are causally linked from one iteration and to a later
iteration. Otherwise, the loop would not be able to execute independently. Similarly, there
may not be any steps not included in a particular iteration that are causally linked from
and to steps in that iteration.

Matching Serial Loop Iteration Conditions

Matching the conditions for a set of steps for a serial loop is sometimes different than
matching them with parallel loops in that some sets of matching iterations have different
goal footprints (Veloso 94a). This happens because early iterations of a serial loop support
later iterations, and therefore include the goals the later iterations support in their own
footprints, so early iterations can have larger goal footprints than later iterations. Consider
the example shown in Figure 5.6. The loop is a repetition of the steps resoap and wash
for each dish, but the iteration for dish1 contains in its goal footprint that dish2 is clean
because it is causally connected to the second iteration.

In some serial loops, early iterations can have identical goal footprints, while subse-
quent iterations’ goal footprints are subsets of this. In the example shown in Figure 5.7,
the move-block-table steps constitute a loop. However, the steps move-block-table(4,
3) and move-block-table(3, 2) have identical goal footprints: on(1, 2), on(2, 3), and
on(3, 4). The last iteration of the loop—the step move-block-table(2, 1)—has a goal
footprint that is a subset of these, though: on(1, 2) and on(2, 3). We handle this by using
the smallest matching goal footprint as the basis of the learned loop. The unstacking loop

57

Algorithm 8 ConnectSerialLoop: Search for two serial matching subplans rooted at given
two causally linked matching steps.
Input: i and j, causally linked matching steps; minimal annotated partially ordered plan P .
Output: Set of two serial matching subplans rooted at i and j, or , if there are none.

Iteration1← i
Iteration2← j
BetweenSteps← steps causally linked from Iteration1 and causally linked to Iteration2
for all s in BetweenSteps do

if ∃s′ in P causally linked from Iteration2 and matching s then
Iteration1← s
Iteration2← s′

BetweenSteps← steps causally linked from Iteration1 and causally linked to Iteration2
else

return
end if

end for
InsideSteps← steps not in Iteration1 and causally linked from and to steps in Iteration1
for all s in InsideSteps do

if ∃s′ in P not in Iteration2, causally linked from and to steps in Iteration2, and matching s then
Iteration1← s
Iteration2← s′

InsideSteps← steps not in Iteration1 and causally linked from and to steps in Iteration1
else

return
end if

end for
if ∃s′ not in Iteration2 and causally linked from and to steps in Iteration2 then

return
end if
return {Iteration1, Iteration2}

learned from the example in Figure 5.7 is shown in DsPlanner 7. In some domains, and
for some problem classes, more iterations of a particular loop may be required in order
to learn the most general version of the loop; otherwise the learned loop may be overly
specific to the observed example.

Also, sometimes in serial loops, each iteration has the same goal footprint, as each
supports the entire eventual goal. For example, in the Rocket domain, if the Rocket picks
all packages up and then drops them all off, as shown in Figure 5.8, each iteration of
the pickup loop supports all packages’ arrival at their goal destinations. But if the entire
goal footprint were then included in the dsPlanner, as it would be for a parallel loop,
the loop would be overly specific to the given example, as shown in DsPlanner 8. To
find the more general loop we’d like, when we encounter goal footprints that consist of

58

Algorithm 9 FindOtherSerialIterations: Search for additional iterations of the serial loop
represented by the given serial matching subplans.
Input: C set of m serial matching subplans S1..Sm, minimal annotated partially ordered plan P .
Output: Largest set of serial matching subplans that includes C

while We keep finding loops do
NextSteps← steps causally linked from last subplan Sn

for all steps i in NextSteps do
if i matches the first steps of S1..Sn then
C ← ConnectNewIteration(C, i, 1, P)
NextSteps← steps causally linked from new last subplan Sn+1

break out of for statement
end if

end for
end while

wash(dish1, sponge)

resoap(sponge)

wash(dish2, sponge)

resoap(sponge)

INITIAL:
dirty(dish1)
dirty(dish2)

GOAL:
clean(dish1)
clean(dish2)

clean(dish1)

clean(dish2)

soapy(sponge)
soapy(sponge)

dirty(dish1)

dirty(dish2)

NOT soapy(sponge)

NOT soapy(sponge)

Figure 5.6: An example problem in a dishwashing domain demonstrating a serial loop in
which the first iteration has a goal footprint that is a superset of that the second iteration.

DsPlanner 7 The unstacking dsPlanner loop learned by LoopDISTILL from the
Blocksworld example shown in Figure 5.7.

while inCurState (clear(?v1:block)) and inCurState (on(?v1:block ?v2:block)) and inGoalState
(on(?v2:block ?v1:block)) do

move-block-table(?v1 ?v2)
end while

repeated matching conditions in a serial loop, we trim the goal footprint to be reflected in
the conditions of the dsPlanner to only those matching conditions relevant to each iteration,
leading to a loop that is more general, as shown in DsPlanner 9.

59

move-block-
table(4, 3)

INITIAL:
on(4, 3)
on(3, 2)
on(2, 1)

on-table(1)
free(4)

move-block-
table(3, 2)

move-block-
table(2, 1)

move-table-
block(3, 4)

move-table-
block(2, 3)

move-table-
block(1, 2)

GOAL:
on(1, 2)
on(2, 3)
on(3, 4)

free(4)
on(4. 3)

on(3, 2)

free(3)

free(2)

on(2, 1)

free(3)

free(4)

on-table(3)
free(3)

threat

threat

free(2)

free(2)

free(1)

on-table(2)

on-table(1)

on(3, 4)

on(2, 3)

on(1, 2)

Figure 5.7: An example problem in the Blocksworld domain demonstrating a serial loop
in which the first two iterations have identical goal footprints but the third iteration has a
goal footprint that is a subset of these.

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, home, boston)

load(obj1, jet, boston)

fly(jet, boston, NYC)

load(obj2, jet, NYC)

fly(jet, NYC, seattle)

unload(obj1, jet, seattle)

fly(jet, seattle, chicago)

unload(obj2, jet, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet, home)

at(obj1, boston)

at-rocket(jet, boston)

threat
at-rocket(jet, boston)

at-rocket(jet, NYC)

in-rocket(obj1, jet)

threat

at-rocket(jet, NYC)

threat

at-rocket(jet, seattle)

at-rocket(jet, chicago)

at-rocket(jet, seattle)

in-rocket(obj2, jet)

at(obj1, seattle)

at(obj2, chicago)

Figure 5.8: An example problem in the Rocket domain demonstrating a serial loop (the
“pick up” loop) in which all iterations have identical goal footprints—the entire goal.

5.2.3 Converting Unrolled Loops into Loops

Once an unrolled loop is identified, it must be converted into a loop. As previously defined,
an unrolled loop is a set of matching subplans. The body of the loop is the subplan—with a

60

DsPlanner 8 The overly specific dsPlanner pickup loop that could be learned from the
Rocket domain example shown in Figure 5.8 if we don’t account for adjusting the size of
the goal footprint to those conditions that are relevant to each iteration.

while inCurState (at-rocket(?v1:rocket ?v2:loc)) and inCurState (at(?v3:obj ?v4:loc)) and inGoal-
State (at(?v3:obj ?v5:loc)) and inGoalState (at(?v6:obj ?v7:loc)) do

fly(?v1 ?v2 ?v4)
load(?v3 ?v1 ?v4)

end while

DsPlanner 9 The dsPlanner pickup loop learned by LoopDISTILL from the Rocket do-
main example shown in Figure 5.8. LoopDISTILL adjusts which elements of the goal
footprint are represented in the conditions for the loop to those that are relevant to each
iteration.

while inCurState (at-rocket(?v1:rocket ?v2:loc)) and inCurState (at(?v3:obj ?v4:loc)) and inGoal-
State (at(?v3:obj ?v5:loc)) do

fly(?v1 ?v2 ?v4)
load(?v3 ?v1 ?v4)

end while

new loop variable replacing the differing variable. The conditions for the loop’s execution
are requirements on the goal state and on the current state while the loop is executing. The
unrolled loop subplans are then removed from the plan and replaced by the new loop.

Algorithm 10 MakeLoop: Create the loop described by the given unrolled loop.
Input: Unrolled loop: set of matching subplans S1..Sm, minimal annotated partially ordered plan P .
Output: The loop described by S1..Sm.

let vi,j be the jth variable in Si that ∀k is not in Sk

let vloop,j be the jth loop variable
Loop.body ← S1 with vloop,j replacing v1,j ∀j
Loop.conditions← ∅
for all steps s in Loop.body do

for all conditions c of s not satisfied by steps in Loop.body do
Loop.conditions← Loop.conditions + CurrentStateContains(c)

end for
for all goal terms g dependent on s do

Loop.conditions← Loop.conditions + GoalStateContains(c)
end for

end for

61

5.3 Illustrative Examples

We now illustrate the operation of the LoopDISTILL algorithm on simple example plans.
First we show the discovery of a parallel loop, and then the discovery of a serial loop.

5.3.1 A Parallel Multi-Step Loop Example

We now illustrate the operation of the LoopDISTILL algorithm on a simple example plan
from an artificial domain, illustrated in Figure 5.9. First, LoopDISTILL searches for a
set of parallel matching steps. It finds the steps op1(x) and op1(y), which differ only
in the values x and y. These two one-step parallel matching subplans are then sent to
LargestCommonSubplan, which searches for a larger subplan common to both of them.

Initial:
s(x)
s(y)

Goal:
g(x)
g(y)

a1(x)

a1(y)

a2(x)

a2(y)

s(x)

s(y)

s(y)

s(x)

g(x)

g(y)

op1(x)

op2(x)

op1(y)

op2(y)

op3(y)

op3(x)

Figure 5.9: An example annotated partially
ordered plan in an artificial domain that in-
cludes a multi-step loop consisting of the
steps op1, op2, and op3. The original
totally ordered plan could have been any
topological sort of this partial ordering.

op1(lv)

op2(lv)

Initial:
s(x)
s(y)

op3(lv)

s(x)
s(y)

s(x)
s(y)

Goal:
g(x)
g(y)

g(x)
g(y)

cur: s(lv)
goal: g(lv)

conditions:

a1(lv)

a2(lv)

Figure 5.10: The example plan shown in
Figure 5.9 after the loop has been iden-
tified. The loop is surrounded by dotted
lines. The loop variable is written as lv, and
ranges over all values that meet the condi-
tions of the loop (in this case, x and y). The
conditions of the loop are shown above it.

LargestCommonSubplan begins by finding the steps causally linked directly to and
from the set of matching subplans. There is one such step for each track: op3(x) and
op3(y), respectively. Because adding these steps preserves the parallelism and matching
of op1(x) and op1(y), they can be added to the subplans. This is the only way to expand
the original subplans, and so is the only element in the list of unrolled loops.

LargestCommonSubplan is then executed recursively on this new set of subplans.
There is one step causally linked directly to or from each of the two parallel subplans:
op2(x) and op2(y), on which op3(x) and op3(y) depend. Adding these steps also pre-

62

serves the parallelism and matching of the existing subplans, so they are added as well.
Again, this is the only way to expand the given subplan. LargestCommonSubplan is exe-
cuted one last time on this new loop expansion and is unable to find any more steps linked
to or from the parallel subplans, so this loop expansion is returned.

A new loop is then created to represent the common branching three-step subplan. The
loop body is assigned to the common subplan, with a new loop variable, lv, replacing the
differing values, x and y. The conditions of the loop are that the current state satisfies the
conditions of the steps within it (s(lv)) and that the goal state contains the goals supported
by the steps in the loop body (g(lv)). The resulting plan is shown in Figure 5.10.

The learned dsPlanner is shown in DsPlanner 10. We designed this domain to demon-
strate that LoopDISTILL can capture loops with complex causal structure. The problems
we used to test the planners vary in the number of objects but consist of the same initial
and goal states: for all objects obj in the problem, the initial state contains s(obj) and
the goal state contains g(obj). Figure 5.11 shows the results of executing several differ-
ent general-purpose planners and the learned dsPlanner on large-scale problems of this
form. Run times for the dsPlanner do not include the time required to learn the dsPlanner,
though this is negligible. 2 The learned dsPlanner is able to solve problems with as many
as 40,000 objects in under a minute.

DsPlanner 10 The looping dsPlanner learned by LoopDISTILL from the multi-step loop
domain problem shown in Figures 5.9 and 5.10.

while inCurState (s(?v1:type1) and inGoalState (g(?v1:type1))) do
op1(?1)
op2(?1)
op3(?1)

end while

5.3.2 A Rocket Domain Example with Parallel Loops

We now describe the operation of the LoopDISTILL algorithm on a simple example plan
from the rocket domain, illustrated in Figure 5.12. First, LoopDISTILL searches for sets
of parallel matching steps. It finds the steps load(o1, r, s), load(o2, r, s), and load(o3, r,
s), which differ only in one variable, which ranges over the values o1, o2, and o3.3 These
three one-step parallel matching subplans are then sent to LargestCommonSubplan, which
searches for a larger subplan common to at least two of them.

2It takes less than a second to learn the dsPlanner for the multi-step loop domain example we used.
3It could also have identified the unload loop first.

63

� ����� ����� ����� 	����
���� �������
������ �������� 	�������
�
���
���
���
	��

��
� �
� �
� �
� �
�����
����

����� ���������! #"%$'&(&)"+*,&)-/.��10

2!3�4�5 671718�9:�:<;1=�> ?@BA�4CD4E;�?1> FG14HI;JK> =�> J

LNMPORQDS TVUXW�Y Z�T\[P]^O`_EOVQ�a�T`b�cdW�e

f gh i
jk gl
jk m
no p
nqgl
r ps

Figure 5.11: Timing results of several general-purpose planners and of the learned ds-
Planner shown in DsPlanner 10 on large-scale multi-step loop domain problems. We also
tested the MIPS planner, but it wasn’t able to solve enough large-scale problems to appear
on the graph.

LargestCommonSubplan begins by finding the StepAhead set for each parallel track.
There is one step in StepAhead for each track: the corresponding unload operator. The
step fly(r, s, d) is not a possible step ahead since it is not causally linked to the load
operators (it is threat linked). LargestCommonSubplan also finds the StepBack set for
each track. It is empty; since these are the first three steps in the plan and are parallel
to each other, they do not depend on any other plan steps. The unload steps cannot be
added to the subplans, although they are matching, since they are not threat-independent.
LargestCommonSubplan thus returns the original one-step subplan.

A new loop is then created to represent the common one-step subplan. The loop body
is created by replacing the differing values (o1, o2, and o3) with the new loop variable,
lv1: load(lv1, r, s). The conditions of the loop are that the current state satisfies the
conditions of the steps within it (at(lv1, s) and at(r, s)) and that the goal state contains the
goals supported by the steps in the loop body (at(lv1, d)).

64

at(o2, s)
at(r, s)

at(o1, s)
at(r, s)

at(o3, s)
at(r, s)

at(o1, d)

at(o2, d)

at(o3, d)

Goal:
at(o1, d)
at(o2, d)
at(o3, d)

at(r, s)

Initial:
at(s, o1)
at(s, o2)
at(s, o3)
at(s, r)

load(o1, r, s)

load(o2, r, s)

load(o3, r, s)

in(o1, r)

in(o3, r)

at(r, d)

at(r, d)

at(r, d)

in(o2, r)

threat

threat

fly(r, s, d)
threat

unload(o1, r, d)

unload(o2, r, d)

unload(o3, r, d)

(a)

Initial:
at(o1, s)
at(o2, s)
at(o3, s)
at(r, s)

at(o1, s)
at(o2, s)
at(o3, s)
at(r, s)

in(o1, r)
in(o2, r)
in(o3, r)

at(o1, d)
at(o2, d)
at(o3, d)

Goal:
at(o1, d)
at(o2, d)
at(o3, d)fly(r, s, d)

threat

at(r, s)

at(r, d)
load(lv1, r, s) unload(lv2, r, d)

conditions:

cur: at(r, s)

conditions:

cur: at(r, d)
cur: at(lv1, s)

goal: at(lv1, d)

cur: in(lv2, r)

goal: at(lv2, d)

(b)

Figure 5.12: An example annotated partially ordered plan in the rocket domain that in-
volves moving objects o1, o2, and o3 from location s to location d using rocket r. The
minimal annotated partial ordering of the plan is shown in (a). The plan after loops are
identified is shown in (b). Loops are surrounded by dotted lines. The loop variables are
written as lv1 and lv2, and range over all values that meet the conditions of the loops (in
these cases, o1, o2, and o3). Conditions for the loops are shown above them.

This process repeats to uncover the unload loop, and the resulting plan is shown in
Figure 5.12(b).

The dsPlanner learned from the rocket-domain example shown in Figure 5.12 is shown
in DsPlanner 11. Figure 5.13 shows the results of executing several different general-
purpose planners and the learned dsPlanner on large-scale Rocket-domain problems. The
problems on which we tested the planners vary in the number of objects to transport, but
have a single rocket and two locations and consist of the same initial and goal states: the
initial state consists of at(rocket, source), and for all objects obj in the problem, the
initial state contains at(obj, source) and the goal state contains at(obj, destination). Run

65

times do not include the time required to learn the dsPlanner, though this is negligible at
under a second. The learned dsPlanner is able to solve problems with more than 60,000
objects in under a minute.

DsPlanner 11 dsPlanner based on the rocket domain problem shown in Figure 5.12. The
variable in each loop is indicated by a “v” preceeding its name.

while inCurState (at(?v1:object, ?2:location)) and inCurState (at(?3:rocket,
?2:location)) and inGoalState (at(?v1:object, ?4:location)) do

load(?v1:object ?3:rocket ?2:location)
end while
if inCurState (at(?1:rocket ?2:location)) and inCurState (in(?3:object ?1:rocket))
and inGoalState (at(?3:object ?4:location)) then

fly(?1:rocket ?2:location ?4:location)
end if
while inCurState (in(?v1:object, ?2:rocket)) and inCurState (at(?2:rocket ?3:lo-
cation)) and inGoalState (at(?v1:object, ?3:location)) do

unload(?v1:object ?2:rocket ?3:location)
end while

5.3.3 A Rocket Domain Example with Serial Loops

We now look at an example from the Rocket domain, shown in Figure 5.14, which contains
a serial loop. First LoopDISTILL searches for a pair of causally linked matching steps in
the plan. It finds the steps fly(home, boston) and fly(boston, seattle). The procedure
ConnectSerialLoop is then called to try to make a connected serial loop from the two
steps. It finds the set of steps that come causally after the first subplan and before the
second. There is one such step: load(obj1, boston). It then searches for a step causally
linked from the second subplan that matches. No such step exists, so this set of matching
subplans is abandoned—it cannot be fully connected into a serial loop.

Next, LoopDISTILL searches for another set of causally linked matching steps and
finds the pair fly(home, boston) and fly(seattle, new york), as shown in Figure 5.15. The
procedure ConnectSerialLoop finds the set of steps that come causally after the first sub-
plan and before the second: load(obj1, boston), fly(boston, seattle), and unload(obj1,
seattle). ConnectSerialLoop then finds a match for each of these steps causally linked
from the second subplan: load(obj2, new york), fly(new york, chicago), and unload-
(obj2, chicago). The two serial subplans are now connected and represent two iterations
of a serial loop.

66

��������� 	�
��� ��	�������� ������	�� ��� �� ��� ����
! "$#%! "$#&"'! "$#&"$("$#&"$(

)�"�" "$#*(!�#+)�,)�#%!.-
/ "�" "$#10 / 2 #103(!�03#%!.-
-�"�" "$#+4�() 2 #+)�- (�-�#&"'!
2 "�" "$#+4 2 -�(�# /�/
!5"�"�" !�#%!�(
!5"�"�"�" (�# 2 (
,�"�"�"�" !.-�#+)�,
-�"�"�"�" ,�03# 2 !

!.)603#+-7! !�,�03#+) 2
/)�-�#*,�(!�0 2 # /�/
!5"�"�03# 2 !) /)�#*(/

8 9;:<: =>:<: ?;:<: @;:<: 8A:<:<: 8A:<:<:<: BC:<:<:<: ?;:<:<:<:
:
D
8A:
8 D
9;:
9 D
BC:
B D
=>:
= D
D :
DED
?;:
? D
F :

GIHKJMLONQPSRTHVUXWZY\[

]_^a`>b cCdedefCghaij�k lA^

m�n*o6p�q r6sut�v w�rVxzy{o}|6o6pE~ar�����t5�

� �� �
�� ��
�� �
�� �
����
� ��

Figure 5.13: Timing results of several general-purpose planners and of the learned ds-
Planner shown in DsPlanner 12 on large-scale rocket-domain delivery problems. We also
tested VHPOP and LPG but they were not able to solve enough large-scale problems to be
appear on this graph.

The procedure FindOtherSerialIterations is called to try to find further iterations of the
loop, but, as there are no more steps in the plan, this does not succeed. A new loop is
then created to capture the common four-step subplan. The loop body is assigned to the
common subplan, and a set of four new loop variables replaces the differing values. The
conditions of the loop are that the current state satisfies the conditions of the steps within
it, and that the goal state contains the goals supported by the steps in the loop body. The
resulting plan is shown in Figure 5.16.

The dsPlanner learned from this Rocket-domain problem is shown in DsPlanner 12.
This planner, learned from the single example shown in Figure 5.14, can solve all Rocket-
domain problems with goals requiring that objects be at particular destination locations.
It does not do so optimally, but models the problem solving process demonstrated in the
example from which it was learned, and it enables the solving of a large set of scaled-up
problems in the domain.

67

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, home, boston)

load(obj1, jet, boston)

fly(jet, boston, seattle)

unload(obj1, jet, seattle)

fly(jet, seattle, NYC)

load(obj2, jet, NYC)

fly(jet, NYC, chicago)

unload(obj2, jet, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet, home)

at(obj1, boston)

at-rocket(jet, boston)

threat
at-rocket(jet, boston)

at-rocket(jet, seattle)
in-rocket(obj1, jet)

threat

at-rocket(jet, seattle)

threat

at-rocket(jet, NYC)

at-rocket(jet, chicago)

at-rocket(jet, NYC)

in-rocket(obj2, jet)

at(obj1, seattle)

at(obj2, chicago)

Figure 5.14: An example annotated partially ordered plan in the rocket domain that in-
cludes a serial loop.

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, home, boston)

load(obj1, jet, boston)

fly(jet, boston, seattle)

unload(obj1, jet, seattle)

fly(jet, seattle, NYC)

load(obj2, jet, NYC)

fly(jet, NYC, chicago)

unload(obj2, jet, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet, home)

at(obj1, boston)

at-rocket(jet, boston)

threat
at-rocket(jet, boston)

at-rocket(jet, seattle)
in-rocket(obj1, jet)

threat

at-rocket(jet, seattle)

threat

at-rocket(jet, NYC)

at-rocket(jet, chicago)

at-rocket(jet, NYC)

in-rocket(obj2, jet)

at(obj1, seattle)

at(obj2, chicago)

Figure 5.15: The example plan shown in Figure 5.14 with two causally linked matching
steps identified.

5.4 Summary

In this chapter, we contribute the LoopDISTILL algorithm for automatically identifying
repeated structures in observed plans, determining the body and conditions of the loops

68

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, ?v1, ?v2)

load(?v3, jet, ?v2)

fly(jet, ?v2, ?v4)

unload(?v3, jet, ?v4)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC) at-rocket(jet, ?v2)

threat
at-rocket(jet, ?v2)

at-rocket(jet, ?v4)
in-rocket(?v3, jet)

at(obj1, seattle)
at(obj2, chicago)

conditions:
cur: at-rocket(jet, ?v1)
cur: at(?v3, ?v2)
goal: at(?v3, ?v4)

Figure 5.16: The example plan shown in Figure 5.14 after the loop has been identified.
The loop variables are shown with question marks in front of them. All parameters of the
steps in the loop are variables.

DsPlanner 12 The looping dsPlanner learned by LoopDISTILL from on the rocket-
domain example shown in Figures 5.14 and 5.16.

while inCurState (at(?v1:object ?v2:loc)) and inCurState (at-rocket(?v3:loc)) and inGoalState
(at(?v1:object ?v4:loc)) do

fly(?v3 ?v2)
load(?v1 ?v2)
fly(?v2 ?v4)
unload(?v1 ?v4)

end while

they represent, and converting looping plans into learned looping domain-specific planning
programs (dsPlanners). The LoopDISTILL algorithm identifies all identical non-nested
loops in an example plan by identifying sets of matching subplans and then converting
each set into a loop. Our results show that LoopDISTILL can learn looping dsPlanners
with broad coverage very quickly from a single example.

69

70

Chapter 6

Learned DsPlanners for Several
Domains

The LoopDISTILL algorithm is able to find all identical non-nested loops in an observed
plan and to convert that plan into a dsPlanner. We show that looping dsPlanners learned
from a single plan compactly capture the structure of the example and can apply this
knowledge very efficiently to solving much larger problems. In this work, we do not
address the problem of learning looping dsPlanners from multiple examples or of merging
looping dsPlanners. A learned dsPlanner is not guaranteed to be complete, since it is
learned from an example which may not cover the entire domain.

In this chapter, we discuss the classes of problems that LoopDISTILL can and cannot
create dsPlanners to solve by presenting example plans and learned dsPlanners in a wide
variety of planning domains. Example plans are observed as total orderings, and are then
analyzed by SPRAWL, which reveals the rationale underlying the plan, in the form of a
minimal annotated consistent partial ordering. This is the basis for the learning algorithms
in LoopDISTILL, and we illustrate the example plans in this chapter in the minimal anno-
tated consistent partial ordering format where space permits. Longer plans we present as
total orderings.

6.1 Multi-Step Parallel Loop Domain

The dsPlanner learned from an artificial multi-step parallel loop domain example, shown in
Figures 5.9 and 5.10, is shown in DsPlanner 13. We designed this domain to demonstrate
that LoopDISTILL can capture parallel loops with complex causal structure. Loop-

71

DISTILL can learn a dsPlanner that covers the domain from a single example with two
iterations of the loop, and the solutions found by the dsPlanner are optimal.

DsPlanner 13 The looping dsPlanner learned by LoopDISTILL from the multi-step par-
allel loop domain problem shown in Figures 5.9 and 5.10.

while inCurState (s(?v1:type1) and inGoalState (g(?v1:type1))) do
op1(?1)
op2(?1)
op3(?1)

end while

6.2 Multi-Step Serial Loop Domain

The dsPlanner learned from an artificial multi-step serial loop domain example, shown in
Figure 6.1, is shown in DsPlanner 14. We designed this domain to demonstrate that Loop-
DISTILL can capture serial loops with complex causal structure. LoopDISTILL can learn
a dsPlanner that covers this domain from a single example with two iterations of the loop;
the solutions found by this dsPlanner are optimal.

op1(x, z)
INITIAL:
s(x)
s(y)
b1(z)
b2(z)

op2(x, z)

op3(x, z)

s(x)
b1(z)

s(x)
b2(z)

a1(x)
¬b1(z)

a2(x)
¬b2(z)

op1(y, z)

op2(y, z)

op3(y, z)

b1(z)

b2(z)

a1(y)

a2(x)

s(y)

s(y)

GOAL:
g(x)
g(y)

g(y)

g(x)

Figure 6.1: An example plan in an artificial domain demonstrating a serial loop with com-
plex causal structure.

72

DsPlanner 14 The looping dsPlanner learned by LoopDISTILL from the multi-step serial
loop domain problem shown in Figures 6.1.

while inCurState (s(?v1) and inCurState (b1(z)) and inCurState (b2(z)) and inGoalState (g(?v1)))
do

op1(?1, z)
op2(?1, z)
op3(?1, z)

end while

6.3 Blocksworld

The Blocksworld domain (Winograd 72) allows for many problem classes that would re-
quire solution algorithms to use recursive definitions (such as which blocks are “above” or
“below” others in a stack) that are not part of the description of the classical Blocksworld
domain. LoopDISTILL cannot generate such recursive definitions on its own at present.
However, there are many classes of problems within this domain that LoopDISTILL can
ably attack.

One simple problem class is “unstack all” problems. One example problem of this
type is shown in Figure 6.2. The dsPlanner learned by LoopDISTILL from this example
is shown in DsPlanner 15. The solutions generated by this dsPlanner are optimal.

INITIAL:
on(b1, b2)
on(b2, b3)

on-table(b3)
free(b1)

move-block-table(b1, b2)

move-block-table(b2, b3)

GOAL:
on-table(b1)
on-table(b2)
on-table(b3)

on(b1, b2)
free(b1) on-table(b1)

on-table(b3)

on(b1, b2)

free(b2) on-table(b2)

Figure 6.2: An example annotated partially ordered plan in the Blocksworld domain in
which the goal is to unstack all blocks.

LoopDISTILL can also learn a dsPlanner that builds a specific tower. It cannot capture

73

DsPlanner 15 The looping dsPlanner learned by LoopDISTILL from the blocksworld-
domain example shown in Figure 6.2. This dsPlanner solves unstacking problems with a
serial loop that repeatedly unstacks the top block of the tower.

while inCurState (on(?v1:block ?v2:block)) and inCurState (free(?v1:block)) and inGoalState (on-
table(?v1:block)) do

move-block-table(?v2 ?v1)
end while

the ordering of the serial loop iterations (expressed in runtime as state matching) because
the ordering is based on threat links, which are not mined for information in the current
LoopDISTILL algorithm. However, it does capture the underlying process. A plan that
demonstrates this algorithm is shown in Figure 6.3, and the dsPlanner learned by Loop-
DISTILL from this plan is shown in DsPlanner 16. Though the dsPlanner does not capture
the ordering of the iterations, it is optimal.

INITIAL:
on-table(a)
on-table(b)
on-table(c)
on-table(d)
free(a)
free(b)
free(c)
free(d)

move-table-block(c, d)

move-table-block(b, c)

move-table-block(a, b)

GOAL:
on(a, b)
on(b, c)
on(c, d)

on-table(c)
free(c)
free(d)

on-table(b)
free(b)
free(c)

threat

threat
on-table(a)

free(a)
free(b)

on(c, d)

on(b, c)

on(a, b)

Figure 6.3: An example annotated partially ordered plan in the Blocksworld domain in
which the goal is to build a tower.

LoopDISTILL can learn a dsPlanner composed of those two subtasks: unstack the
blocks, and then build a specific tower. An example plan of this form is shown in Fig-
ure 6.4, and the learned dsPlanner is shown in DsPlanner 17. This dsPlanner is not optimal,
as it moves blocks to the table, even if it would be more efficient to move them directly to
their destination block. However, it does not unstack blocks that are stacked correctly, so
in the worst case it produces a plan with twice the number of steps as the shortest plan—

74

DsPlanner 16 The looping dsPlanner learned by LoopDISTILL from the blocksworld-
domain example shown in Figure 6.3. This dsPlanner solves stacking problems, but does
not capture the ordering in which the stacking must be done.

while inCurState (on-table(?v1:block)) and inCurState (free(?v2:block)) and inCurState
(free(?v1:block)) and inGoalState (on(?v1:block ?v2:block)) do

move-table-block(?v1 ?v2)
end while

one step for moving the block to the table and one for moving it to its destination block,
rather than simply one for moving it to its destination block.

INITIAL:
on(d, c)
on(c, b)
on(b, a)
free(d)
on-table(a)

move-table-block(c, d)

move-table-block(b, c)

move-table-block(a, b)

GOAL:
on(a, b)
on(b, c)
on(c, d)

threat

threat

on(c, d)

on(b, c)

on(a, b)

move-block-table(d, c)

move-block-table(c, b)

move-block-table(b, a)

free(c)

free(b)

free(a)

on(d, c)
free(d)

free(c)

free(b)

on(c, b)

on(b, a)

on-table(c)

free(d)

on-table(b)

on-table(a)

free(b)

free(c)

Figure 6.4: An example annotated partially ordered plan in the Blocksworld domain in
which the goal is to unstack the blocks and build a new tower.

DsPlanner 17 The looping dsPlanner learned by LoopDISTILL from the blocksworld-
domain example shown in Figure 6.4. This dsPlanner unstacks blocks not in their goal
orders and solves stacking problems, but does not capture the ordering in which the stack-
ing must be done.

while inCurState (on(?v1:block ?v2:block)) and inCurState (free(?v1:block)) and inGoalState
(on(?v1:block ?v3:block)) do

move-block-table(?v1 ?v2)
end while
while inCurState (on-table(?v1:block)) and inCurState (free(?v2:block)) and inGoalState
(on(?v1:block ?v2:block)) do

move-table-block(?v1 ?v2)
end while

75

Because dsPlanners cannot capture recursive definitions or the ordering of iterations,
LoopDISTILL would be unable to learn a dsPlanner that could achieve, for example, a
block unstacking goal (for example “Make block A free”) if there were a series of blocks
not relevant to the goal on top of the block that was needed; there is no way of capturing in
the current dsPlanner that those blocks should be moved, since there is no way of referring
to objects that are not in some direct relationship to objects relevant to the goals. Capturing
recursive definitions would require the discovery and formalization of new predicates such
as “above” in the blocksworld case. I believe that the rationales found by SPRAWL are rich
enough to be mined for this sort of information, and discuss it more in Section 8.3.3.

LoopDISTILL cannot learn a dsPlanner that covers the entire Blocksworld domain, but
we have shown that it can learn dsPlanners that cover large classes of problems within that
domain.

6.4 Schedule

The Schedule domain (Hoffman 03) involves scheduling several machines to do work on
parts. The actions schedule a machine to work on a particular part. The doTimeStep
operator executes all scheduled operations and frees all machines and parts to be sched-
uled again. The operations need to be done in a particular order, as some of them undo the
work of others (latheing a part removes its paint and makes its surface rough, for example).
This domain also permits parallelism by allowing several operations to be scheduled si-
multaneously (as long as they’re on different machines and involve different parts) before
executing a time step.

LoopDISTILL has no trouble capturing the appropriate ordering for the operations, as
this is demonstrated by example. An example plan in this domain is shown in Figure 6.5,
and the learned dsPlanner is shown in DsPlanner 18. The learned dsPlanner covers all
problems in this domain, is learned from a single example, and, while not optimal, contains
at most twice as many steps as the shortest plan, since doTimeStep is repeated after each
operation in the learned dsPlanner and may not be needed that often. Because Loop-
DISTILL does not match non-identical iterations, the learned dsPlanner does not attempt
to schedule as many operations in parallel as possible; the solutions it finds contain at
most 8 times as many time steps as the optimal solution, since 8 is the largest number of
operations that can occur simultaneously in this domain.

76

DsPlanner 18 The looping Schedule domain dsPlanner learned by LoopDISTILL from
the example shown in Figure 6.5.

while not inCurState (scheduled(?v1:part)) and not inCurState (busy(Lathe)) and not inCurState
(isCyllindrical(?v1:part)) and inGoalState (isCyllindrical(?v1:part)) do

doLathe(?v1:part)
doTimeStep

end while
while not inCurState (scheduled(?v2:part)) and not inCurState (busy(drillPress)) and inCurState
(hasBit(drillPress ?v3:width)) and inCurState (canOrient(drillPress ?v4:orient)) and not in-
CurState (hasHole(?v2 ?v3 ?v4)) and inGoalState (hasHole(?v2 ?v3 ?v4)) do

doDrillPress(?v2 ?v3 ?v4)
doTimeStep

end while
while not inCurState (scheduled(?v5:part)) and not inCurState (busy(punch)) and inCurState
(hasBit(punch ?v6:width)) and inCurState (canOrient(punch ?v7:orient)) and inCurState (tem-
perature(?v5:part cold)) and not inCurState (hasHole(?v5 ?v6 ?v7)) and inGoalState (has-
Hole(?v5 ?v6 ?v7)) do

doPunch(?v5 ?v6 ?v7)
doTimeStep

end while
while not inCurState (scheduled(?v8:part)) and not inCurState (busy(grinder)) and not in-
CurState (surfaceCondition(?v8:part smooth)) and inGoalState (surfaceCondition(?v8:part
smooth)) do

doGrind(?v8)
doTimeStep

end while
while not inCurState (scheduled(?v9:part)) and not inCurState (busy(sprayPainter)) and in-
CurState (hasPaint(sprayPainter ?v10:paint)) and inCurState (painted(?v9:part ?v11:paint)) and
inGoalState (painted(?v9:part ?v10:paint)) do

doSprayPaint(?v9 ?v10)
doTimeStep

end while
while not inCurState (scheduled(?v12:part)) and not inCurState (busy(immersionPainter))
and inCurState (hasPaint(immersionPainter ?v13:paint)) and inCurState (painted(?v12:part
?v14:paint)) and inGoalState (painted(?v12:part ?v13:paint)) do

doImmersionPaint(?v12 ?v13)
doTimeStep

end while
while not inCurState (scheduled(?v15:part)) and not inCurState (busy(polisher)) and inCurState
(temperature(?v15:part cold)) and not inCurState (surfaceCondition(?v15:part polished)) and in-
GoalState (surfaceCondition(?v15:part polished)) do

doPolish(?v15)
doTimeStep

end while

77

INITIAL:
temperature(part1, cold)
temperature(part2, cold)
temperature(part3, cold)
temperature(part4, cold)
isPainted(part1, nocolor)
isPainted(part2, nocolor)
isPainted(part3, nocolor)
isPainted(part4, nocolor)
hasPaint(sprayPainter, red)
hasPaint(sprayPainter, blue)
hasPaint(immersionPainter, yellow)
hasPaint(immersionPainter, green)
hasBit(drillPress, 1in)
hasBit(drillPress, 2in)
canOrient(drillPress, thirty)
canOrient(drillPress, ninety)
hasBit(punch, 1in)
hasBit(punch, 2in)
canOrient(punch, oneeighty)
canOrient(punch, sixty)
surfaceCondition(part1, rough)
surfaceCondition(part2, rough)
surfaceCondition(part3, rough)
surfaceCondition(part4, rough)

PLAN:
doLathe(part1)
doTimeStep
doLathe(part2)
doTimeStep
doDrillPress(part3, 1in, thirty)
doTimeStep
doDrillPress(part2, 2in, ninety)
doTimeStep
doPunch(part4, 2in, sixty)
doTimeStep
doPunch(part3, 1in, oneeighty)
doTimeStep
doGrind(part3)
doTimeStep
doGrind(part4)
doTimeStep
doSprayPaint(part1, red, nocolor)
doTimeStep
doSprayPaint(part2, blue, nocolor)
doTimeStep
doImmersionPaint(part3, yellow, nocolor)
doTimeStep
doImmersionPaint(part4, green, nocolor)
doTimeStep
doPolish(part1)
doTimeStep
doPolish(part2)
doTimeStep

GOAL:
isCyllindrical(part1)
isCyllindrical(part2)
hasHole(part3, 1in, thirty)
hasHole(part4, 2in, sixty)
hasHole(part2, 1in, ninety)
hasHole(part4, 1in, oneeighty)
isPolished(part1)
isPolished(part2)
isSmooth(part3)
isSmooth(part4)
isPainted(part1, red)
isPainted(part2, blue)
isPainted(part3, yellow)
isPainted(part4, green)

Figure 6.5: An example plan in the Schedule domain.

LoopDISTILL would also be able to capture the possibility of parallelism in this do-
main if it were able to match non-identical iterations as a loop. This would allow Loop-
DISTILL to learn a dsPlanner that schedules as many operations at once as possible and
then executes a time step from an example demonstrating such parallelism.

6.5 Rocket

The dsPlanner learned from a rocket-domain (Veloso 94a) example is shown in DsPlan-
ner 19. This planner, learned from the single example shown in Figure 6.6, can solve
all rocket-domain problems with goals requiring that objects be at particular destina-
tion locations. It does not do so optimally, but models the problem solving process

78

demonstrated in the example from which it was learned. The solution plans are at most
4∗nummisplacedobjs in length, since, for each object, four steps are executed: the rocket
is flown to the object, the object is loaded into the rocket, the rocket is flown to the des-
tination location of the object, and the object is unloaded. The shortest possible solution
plans are 2 ∗ nummisplacedobjs in length, as in the best case they are all in the same
original locaiton and all need to go to the same destination location, and in this case, the
rocket must be flown to them, they must all be loaded, the rocket must be flown to the
goal destination, and they must all be unloaded. So the solutions found by the learned
dsPlanner are at worst twice as long as the shortest possible solutions.

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, home, boston)

load(obj1, jet, boston)

fly(jet, boston, seattle)

unload(obj1, jet, seattle)

fly(jet, seattle, NYC)

load(obj2, jet, NYC)

fly(jet, NYC, chicago)

unload(obj2, jet, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet, home)

at(obj1, boston)

at-rocket(jet, boston)

threat
at-rocket(jet, boston)

at-rocket(jet, seattle)
in-rocket(obj1, jet)

threat

at-rocket(jet, seattle)

threat

at-rocket(jet, NYC)

at-rocket(jet, chicago)

at-rocket(jet, NYC)

in-rocket(obj2, jet)

at(obj1, seattle)

at(obj2, chicago)

Figure 6.6: An example annotated partially ordered plan in the rocket domain that includes
a serial loop.

DsPlanner 19 The looping dsPlanner learned by LoopDISTILL from the rocket-domain
example shown in Figures 5.14 and 5.16. This dsPlanner uses one rocket and attends to
each package separately, flying to, picking up, and dropping off each package in turn.

while inCurState (at(?v1:object ?v2:loc)) and inCurState (at-rocket(?3:rocket ?v4:loc)) and in-
GoalState (at(?v1:object ?v5:loc)) do

fly(?3 ?v4 ?v2)
load(?v1 ?3 ?v2)
fly(?3 ?v2 ?v5)
unload(?v1 ?3 ?v5)

end while

Instead of solving rocket-domain problems with only one rocket, we could use differ-

79

ent rockets for each package, as shown in the example plan in Figure 6.7. LoopDISTILL

captures this difference in the dsPlanner it learns from the example, shown in DsPlan-
ner 20. Note that in the dsPlanner learned from the rocket example in which only one
rocket was used (DsPlanner 12), the rocket parameter of the loop is not a variable. This
captures that the same rocket is used in each iteration of the loop. In the dsPlanner learned
from this new example, in which a different rocket is used each time, the rocket param-
eter of the loop is a variable—it may be assigned to a different rocket each time. The
solution plan lengths are the same for this algorithm and the previous, but this algorithm
can produce plans with steps that can execute in parallel. In the worst case, this algo-
rithm, like the previous one, produces solution plans that require 4 ∗ nummisplacedobjs
time steps. In the best case (using all rockets to achieve maximal parallelism), this algo-
rithm produces solution plans that require 4 ∗ (nummisplacedobjs/numrockets) time
steps to execute. In the best case, an optimal plan with multiple rockets would require
2 ∗ (nummisplacedobjs/numrockets) time steps to execute.

INITIAL:
at-rocket(jet1, home)
at-rocket(jet2, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet1, home, boston)

load(obj1, jet1, boston)

fly(jet1, boston, seattle)

unload(obj1, jet1, seattle)

fly(jet2, home, NYC)

load(obj2, jet2, NYC)

fly(jet2, NYC, chicago)

unload(obj2, jet2, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet1, home)

at(obj1, boston)

at-rocket(jet1, boston)

threat
at-rocket(jet1, boston)

at-rocket(jet1, seattle)
in-rocket(obj1, jet1)

threat

threat

at-rocket(jet2, NYC)

at-rocket(jet2, chicago)

at-rocket(jet2, NYC)

in-rocket(obj2, jet2)

at(obj1, seattle)

at(obj2, chicago)

at-rocket(jet2, home)

Figure 6.7: An example annotated partially ordered plan in the rocket domain in which
multiple rockets are used to deliver the packages.

The same class of problems can also be solved using a different algorithm altogether.
Instead of picking up and dropping off each item separately, all the pickups could be done
first and then all the drop offs done afterwards. This algorithm is demonstrated in the
example plan shown in Figure 6.8. LoopDISTILL captures this algorithm as well. The
learned dsPlanner is shown in DsPlanner 21. This planner generates solution plans of
length 4 ∗ nummisplacedobjs, so at worst twice the length of the shortest possible plans.

80

DsPlanner 20 The looping dsPlanner learned by LoopDISTILL from the rocket-domain
example shown in Figures 6.7. This dsPlanner also solves the rocket problem one package
at a time—flying to, picking up, and dropping off each in turn—but allows the use of
multiple rockets.

while inCurState (at(?v1:object ?v2:loc)) and inCurState (at(?v3:rocket ?v4:loc)) and inGoalState
(at(?v1:object ?v5:loc)) do

fly(?v3 ?v4 ?v2)
load(?v1 ?v3 ?v2)
fly(?v3 ?v2 ?v5)
unload(?v1 ?v3 ?v5)

end while

INITIAL:
at-rocket(jet, home)
at(obj1, boston)
at(obj2, NYC)

fly(jet, home, boston)

load(obj1, jet, boston)

fly(jet, boston, NYC)

load(obj2, jet, NYC)

fly(jet, NYC, seattle)

unload(obj1, jet, seattle)

fly(jet, seattle, chicago)

unload(obj2, jet, chicago)

GOAL:
at(obj1, seattle)
at(obj2, chicago)

at(obj2, NYC)

at-rocket(jet, home)

at(obj1, boston)

at-rocket(jet, boston)

threat
at-rocket(jet, boston)

at-rocket(jet, NYC)

in-rocket(obj1, jet)

threat

at-rocket(jet, NYC)

threat

at-rocket(jet, seattle)

at-rocket(jet, chicago)

at-rocket(jet, seattle)

in-rocket(obj2, jet)

at(obj1, seattle)

at(obj2, chicago)

Figure 6.8: An example annotated partially ordered plan in the rocket domain in which
packages are first all picked up from their initial locations and then they are all dropped
off at their goal locations.

The approach of picking up all the packages and then dropping them off could be
modified to use multiple rockets, but then the dsPlanner learned would be identical to that
learned when multiple rockets are used to pick up and drop off each package in turn. The
minimal annotated consistent partial ordering of those two plans would be identical, since
the steps for each package/rocket could be executed in parallel.

If LoopDISTILL were modified to allow nested loops, it would learn the dsPlanner
shown in DsPlanner 22 from the rocket-domain example shown in Figure 6.9.

In some sense, if extended to allow nested loops, LoopDISTILL could learn a dsPlan-
ner to solve one-rocket rocket domain problems optimally—the one shown in DsPlan-
ner 22. The catch is that making the solution optimal depends on the order in which the

81

DsPlanner 21 The looping dsPlanner learned by LoopDISTILL from the rocket-domain
example shown in Figures 5.8. This dsPlanner solves rocket domain problems with one
rocket by sending the rocket to pick up all the packages that are not at their goal destina-
tion, and then by dispatching it to deliver each of those packages to their goal destination.

while inCurState (at(?v1:object ?v2:loc)) and inCurState (at-rocket(?3:rocket ?v4:loc)) and in-
GoalState (at(?v1:object ?v5loc)) do

fly(?3 ?v4 ?v2)
load(?v1 ?3 ?v2)

end while
while inCurState (in-rocket(?3:rocket ?v1:object)) and inCurState (at-rocket(?3:rocket ?v2:loc))
and inGoalState (at(?v1:object ?v4:loc)) do

fly(?3 ?v2 ?v4)
unload(?v1 ?3 ?v4)

end while

locations are visited—a choice that cannot be captured in the dsPlanner language, as we
assume that all objects that match the conditions for an if statement or while loop are
treated the same—any may be chosen and there is no preference given to one over the
other.

6.6 Logistics

The Logistics domain (Veloso 94a) is very similar to the Rocket domain in many ways, as
it is composed of cities and packages and delivery vehicles, but is more complex, as cities
can be composed of several locations, trucks can operate only within a city, and airplanes
can fly between cities, but cannot visit places within a city other than the airport. There are
many subproblems in the logistics domain that are isomorphic to rocket-domain problems
previously discussed in Section 6.5. For example, using one or multiple trucks to deliver
packages within a particular city or using one or multiple airplanes to deliver packages
(located at the airports) between cities.

LoopDISTILL can also learn a dsPlanner that is composed of solutions to these problem
types, and thus attack a more complex set of problems. One example, shown in DsPlan-
ner 6.10 uses one loop to send trucks to pick up all objects not in goal destinations, and
another two to deliver them either to the airport (for those packages with goal destinations
not within the same city) or to their goal destinations within the same city. In the next
loop, airplanes fly between the airports, picking up objects not in their goal cities. The
next loop sends the airplanes to deliver the objects they are carrying. Finally, trucks carry

82

INITIAL:
at-rocket(rocket, locA)
at(obj1, locA)
at(obj2, locA)
in-rocket(obj3, rocket)
in-rocket(obj4, rocket)
at(obj5, locB)
at(obj6, locB)
at(obj7, locB)
at(obj8, locB)
at(obj9, locC)
at(obj10, locC)
at(obj11, locC)
at(obj12, locC)

PLAN:
load(obj1, rocket, locA)
load(obj2, rocket, locA)
unload(obj3, rocket, locA)
unload(obj4, rocket, locA)
fly(rocket, locA, locB)
load(obj5, rocket, locB)
load(obj6, rocket, locB)
load(obj7, rocket, locB)
load(obj8, rocket, locB)
unload(obj1, rocket, locB)
unload(obj2, rocket, locB)
fly(rocket, locB, locC)
load(obj9, rocket, locC)
load(obj10, rocket, locC)
load(obj11, rocket, locC)
load(obj12, rocket, locC)
unload(obj5, rocket, locC)
unload(obj6, rocket, locC)
fly(rocket, locC, locD)
unload(obj7, rocket, locD)
unload(obj8, rocket, locD)
unload(obj9, rocket, locD)
fly(rocket, locD, locE)
unload(obj10, rocket, locE)
unload(obj11, rocket, locE)
unload(obj12, rocket, locE)

GOAL:
at(obj1, locB)
at(obj2, locB)
at(obj3, locA)
at(obj4, locA)
at(obj5, locC)
at(obj6, locC)
at(obj7, locD)
at(obj8, locD)
at(obj9, locD)
at(obj10, locE)
at(obj11, locE)
at(obj12, locE)

Figure 6.9: An example annotated partially ordered plan in the rocket domain in which
multiple rockets are used to deliver the packages.

the objects from the airports to their goal destinations within each city.

LoopDISTILL is able to learn this dsPlanner, which solves all object-moving prob-
lems in the logistics domain, from the single example shown in Figure 6.10. Solution
plans generated by this dsPlanner are on the order of 12∗ the number of misplaced objects
(nummisplacedobjs) steps long. Without nested loops, each object may be separately
picked up and dropped off by a truck (4 steps), picked up and dropped off by an airplane
(4 steps), and then picked up and dropped off by a truck again (4 steps). The best case
for an optimal plan would be for all the packages to be in the same initial location and for
all to be going to the same destination location. All would still need to be picked up by
a truck (1 load each), dropped off at the airport (1 unload each), picked up by an airplane
(1 load each), dropped off at their goal city (1 unload each), picked up by a truck (1 load
each), and dropped at their goal destination within the city (1 unload each), so the solution

83

DsPlanner 22 The looping dsPlanner LoopDISTILL could learn from the rocket-domain
example shown in Figure 6.9 if it were modified to allow the discovery of nested loops.
This dsPlanner solves rocket domain problems with one rocket by sending the rocket to
pick up each misplaced item, and then sending it to drop off all the packages inside it to
their goal destinations, picking up and dropping off packages as appropriate at each stop
along the way.

while inCurState (at(?v1:object ?v2:loc)) and inCurState (at-rocket(?3:rocket ?v4:loc)) and in-
GoalState (at(?v1:object ?v5loc)) do

while inCurState (at(?v6:object ?v4:loc)) and inGoalState (at(?v6:object ?v7:loc)) do
load(?v6 ?3 ?v4)

end while
while inCurState (in-rocket(?v7:object, ?3:rocket)) and inGoalState (at(?v7:object ?v4:loc)) do

unload(?v7 ?3 ?v4)
end while
fly(?3 ?v4 ?v2)
load(?v1 ?3 ?v2)

end while
while inCurState (at-rocket(?8:rocket ?v9:loc)) and inCurState (at(?v10:object ?v9:loc)) and in-
GoalState (at(?v10:object ?v11:loc)) do

load(?v10 ?8 ?v9)
end while
while inCurState (at-rocket(?11:rocket ?v12:loc)) and inCurState (in-rocket(?v13:object
?11:rocket)) and inGoalState (at(?v13:object ?v12:loc)) do

unload(?v13 ?11 ?v12)
end while
while inCurState (in-rocket(?v14:object ?15:rocket)) and inCurState (at-rocket(?15:rocket
?v16:loc)) and inGoalState (at(?v14:object ?v17:loc)) do

fly(?15 ?v16 ?v17)
while inCurState (in-rocket(?15:rocket ?v18:object)) and inCurState (at-rocket(?15:rocket
?v17:loc)) and inGoalState (at(?v18:object ?v17:loc)) do

unload(?v18 ?15 ?v17)
end while
unload(?v14 ?15 ?v17)

end while

plan would be on the order of 6 ∗ nummisplacedobjs steps long. The learned dsPlanner
finds solutions that are, at worst, twice as long as the shortest possible solution plans.

84

DsPlanner 23 The looping logistics-domain dsPlanner learned by LoopDISTILL from the
example shown in Figure 6.10.

while inCurState (at(?v1:obj ?v2:loc)) and inCurState (in-city(?v2:loc ?v3:city)) and inCurState
(at(?v4:truck ?v5:loc)) and inCurState (in-city(?v5:loc ?v3:city)) and inGoalState (at(?v1:obj
?v6:loc)) do

drive-truck(?v4 ?v5 ?v2)
load(?v1 ?v4 ?v2)

end while
while inCurState (in(?v7:obj ?v8:truck)) and inCurState (at(?v8:truck ?v9:loc)) and inCurState
(in-city(?v9:loc ?v10:city)) and inGoalState (at(?v7:obj ?v11:loc)) and inCurState (in-city(?v11:loc
?v10:city)) do

drive-truck(?v8 ?v9 ?v11)
unload(?v7 ?v8 ?v11)

end while
while inCurState (in(?v12:obj ?v13:truck)) and inCurState (at(?v13:truck ?v14:loc)) and in-
CurState (in-city(?v14:loc ?v15:city)) and inCurState (in-city(?v16:airport ?v15:city)) and inGoal-
State (at(?v12:obj ?v17:loc)) and inCurState (in-city(?v17:loc ?v18:city)) do

drive-truck(?v13 ?v14 ?v16)
unload(?v12 ?v13 ?v16)

end while
while inCurState (at(?v19:obj ?v20:airport)) and inCurState (at(?v21:airplane ?v22:airport))
and inCurState (in-city(?v20:airport ?v23:city)) and inGoalState (at(?v19:obj ?v24:loc)) and in-
CurState (in-city(?v24:loc ?v25:city)) do

fly-airplane(?v21 ?v22 ?v20)
load(?v19 ?v21 ?v20)

end while
while inCurState (in(?v26:obj ?v27:airplane)) and inCurState (at(?v27:airplane ?v28:airport))
and inGoalState (at(?v26:obj ?v29:loc)) and inCurState (in-city(?v29:loc ?v30:city)) and in-
CurState (in-city(?v31:airport ?v30:city)) do

fly-airplane(?v27 ?v28 ?v31)
unload(?v26 ?v27 ?v31)

end while
while inCurState (at(?v32:obj ?v33:loc)) and inCurState (at(?v34:truck ?v35:loc)) and (in-
city(?v33:loc ?v36:city)) and inCurState (in-city(?v35:loc ?v36:city)) and inGoalState (at(?v32:obj
?v37:loc)) and inCurState (in-city(?v37:loc ?v36:city)) do

drive-truck(?v34 ?v35 ?v33)
load(?v32 ?v34 ?v33)

end while
while inCurState (in(?v38:obj ?v39:truck)) and inCurState (at(?v39:truck ?v40:loc)) and in-
CurState (in-city(?v40:loc ?v41:city)) and inGoalState (at(?v38:obj ?v42:loc)) and inCurState (in-
city(?v42:loc ?v41:city)) do

drive-truck(?v39 ?v40 ?v42)
unload(?v38 ?v39 ?v42)

end while

85

INITIAL:
in-city(LGA, NYC)
in-city(Brooklyn, NYC)
in-city(Harlem, NYC)
in-city(SEA, Seattle)
in-city(Fremont, Seattle)
in-city(Greenlake, Seattle)
in-city(DCA, DC)
in-city(WhiteHouse, DC)
in-city(Capitol, DC)
in-city(PIT, Pittsburgh)
in-city(CMU, Pittsburgh)
in-city(TheO, Pittsburgh)
at(jet1, LGA)
at(jet2, DCA)
at(NYtruck, LGA)
at(Seatruck, Greenlake)
at(DCtruck, DCA)
at(Pghtruck, TheO)
at(pkg1, Harlem)
at(pkg2, Fremont)
at(pkg3, CMU)
at(pkg4, Capitol)

PLAN:
drive-truck(NYtruck, LGA, Harlem)
load(pkg1, Harlem)
drive-truck(Seatruck, Greenlake, Fremont)
load(pkg2, Fremont)
drive-truck(Pghtruck, TheO, CMU)
load(pkg3, CMU)
drive-truck(DCtruck, DCA, Capitol)
load(pkg4, Capitol)
drive-truck(NYtruck, Harlem, Brooklyn)
unload(pkg1, Brooklyn)
drive-truck(DCtruck, Capitol, WhiteHouse)
unload(pkg2, WhiteHouse)
drive-truck(Seatruck, Fremont, SEA)
unload(pkg3, SEA)
drive-truck(PghTruck, CMU, PIT)
unload(pkg3, PIT)
fly(jet1, LGA, SEA)
load(pkg3, jet1, SEA)
fly(jet2, DCA, PIT)
load(pkg4, jet2, PIT)
fly(jet1, SEA, LGA)
unload(pkg3, jet1, LGA)
fly(jet2, PIT, DCA)
unload(pkg4, jet2, DCA)
drive-truck(NYtruck, Brooklyn, LGA)
load(pkg3, NYtruck, LGA)
drive-truck(DCtruck, WhiteHouse, DCA)
load(pkg4, DCtruck, DCA)
drive-truck(NYtruck, LGA, Harlem)
unload(pkg3, NYtruck, Harlem)
drive-truck(DCtruck, DCA, Capitol)
unload(pkg4, DCtruck, Capitol)

GOAL:
at(pkg1, Brooklyn)
at(pkg2,
WhiteHouse)
at(pkg3, Harlem)
at(pkg4, Capitol)

Figure 6.10: An example plan in the Logistics domain that demonstrates a looping solution
algorithm for delivery problems.

6.7 Elevator

The Elevator domain (Hoffman 03) models an elevator moving up and down to differ-
ent floors to pick up and drop off passengers. If we remove the directionality, using the
operator move(originFloor, destFloor) to move the elevator rather than up(originFloor,

86

destFloor) and down(originFloor, destFloor), then the Elevator domain is isomorphic to
the rocket domain with only one rocket, and LoopDISTILL can learn a compact dsPlanner
that covers large subsets of the domain, as illustrated in Section 6.5.

If LoopDISTILL were extended to match non-identical iterations of a loop, it could
learn a compact dsPlanner with directional move operators, as the choice to move up or
down could be captured in an if-statement within the loop.

6.8 Gripper

The Gripper domain (McDermott 00) is also very similar to the Rocket domain. There is a
robot with some number of gripper arms whose task is to move balls between rooms. All
rooms are connected in one step (there is not a map problem embedded). If the robot has
an unlimited number of arms, the gripper domain is isomorphic to the Rocket domain with
one rocket, and LoopDISTILL can learn a compact dsPlanner that covers large subsets of
the domain, as discussed in Section 6.5.

In the general Gripper domain, the robot has some constant number of gripper arms,
each of which can carry a ball. Because the Gripper’s arms can be full, we cannot simply
pick up all the balls and then drop them all off as we could in the Rocket domain. Without
nested loops, there isn’t a way to capture that when the gripper’s arms are full, it must drop
off some balls before picking up more. However, we can apply another Rocket domain
solution, shown in DsPlanner 19: to have the Robot move the balls one at a time.

6.9 Briefcase

The Briefcase domain (Pednault 88) is also very similar to the Rocket domain. It is iso-
morphic to the Rocket domain with one rocket (the briefcase) and two locations (home and
work). LoopDISTILL is able to generate a compact and complete dsPlanner that provides
optimal solutions in terms of number of steps in the solution plan. An example plan is
shown in Figure 6.11, and the learned dsPlanner is shown in DsPlanner 24.

87

INITIAL:
at-briefcase(home)
in-briefcase(watch)
in-briefcase(book)
at(paper, home)
at(pen, home)
at(notebook, work)
at(camera, work)

PLAN:
take-out(watch, home)
take-out(book, home)
put-in(paper, home)
put-in(pen, home)
move-briefcase(home, work)
take-out(paper, work)
take-out(pen, work)
put-in(notebook, work)
put-in(camera, work)
move-briefcase(work, home)
take-out(notebook, home)
take-out(camera, home)
move-briefcase(home, work)

GOAL:
at-briefcase(work)
at(watch, home)
at(book, home)
at(paper, work)
at(pen, work)
at(notebook, home)
at(camera, home)

Figure 6.11: An example plan in the Briefcase domain.

6.10 Towers of Hanoi

Towers of Hanoi1 is a well-known puzzle that lends itself to recursive solution algorithms.
If there were no pegs, it would be equivalent to blocksworld—unstacking blocks and
restacking them in a particular order. The difficulty with this domain arises with the pegs
and capturing concepts such as “above” or “below” and of moving one disk away from its
current location to a non-goal location. Perhaps future work will mine the rationales found
by SPRAWL for recursive concepts and definitions.

1The Towers of Hanoi puzzle was invented by the French mathematician Édouard Lucas in 1883.

88

DsPlanner 24 The looping dsPlanner learned by LoopDISTILL from the briefcase-domain
example shown in Figure 6.11. This dsPlanner is complete and optimal.

while inCurState (in-briefcase(?v1:obj)) and inCurState (at-briefcase(?2:loc)) and inGoalState
(at(?v1:obj ?2:loc)) do

take-out(?v1)
end while
while inCurState (at-briefcase(?3:loc)) and inCurState (at(?v4:obj ?3:loc)) and inGoalState
(at(?v4:obj ?5:loc)) do

put-in(?v4)
end while
if inCurState (at-briefcase(?6:loc)) and inCurState (in-briefcase(?7:obj)) and inGoalState
(at(?7:obj ?8:loc)) then

move-briefcase(?6 ?8)
end if
while inCurState (in-briefcase(?v9:obj)) and inCurState (at-briefcase(?10:loc)) and inGoalState
(at(?v9:obj ?10:loc)) do

take-out(?v9)
end while
while inCurState (at-briefcase(?11:loc)) and inCurState (at(?v12:obj ?11:loc)) and inGoalState
(at(?v12:obj ?13:loc)) do

put-in(?v12)
end while
if inCurState (at-briefcase(?14:loc)) and inCurState (in-briefcase(?15:obj)) and inGoalState
(at(?15:obj ?16:loc)) then

move-briefcase(?14 ?16)
end if
while inCurState (in-briefcase(?v17:obj)) and inCurState (at-briefcase(?18:loc)) and inGoalState
(at(?v17:obj ?18:loc)) do

take-out(?v17)
end while
if inCurState (at-briefcase(?19:loc)) and inGoalState (at-briefcase(?20:loc)) then

move-briefcase(?19 ?20)
end if

89

90

Chapter 7

Related Work

The work in this thesis touches on three main areas of research: analyzing plans, learning
from example plans, and program generation.

7.1 Plan Analysis

Many researchers have addressed the problems of annotating orderings and of finding
partially ordered plans. We discuss a selection of the research investigating annotation and
partial ordering.

7.1.1 Triangle Tables

Triangle tables are one of the earliest forms of annotation (Fikes 72). In this approach,
totally ordered plans are expanded into triangle tables that display which add-effects of
each operator remain after the execution of each subsequent operator. From this, it is easy
to compute which operators supply preconditions to other operators, and thus to identify
the relevant effects of each operator and why they are needed in the plan. Fikes, Hart,
and Nilsson used triangle tables for plan reuse and modification. The annotations help to
identify which sub-plans are useful for solving the new problem and which operators in
these sub-plans are not relevant or applicable in the new situation.

Regnier and Fade alter the calculation of the triangle table by finding which add-effects
of each operator are needed by subsequent operators (instead of which add-effects remain
after the execution of subsequent operators) (Regnier 91). They use the dependencies

91

computed in this modified triangle table to create a partial ordering of the totally ordered
plan.

The triangle table approach has been applied only to plans without conditional effects.
When conditional effects are introduced, it is no longer obvious what conditions each
operator “needs” in order for the plan to work correctly. Although we do not use the
triangle table structure, our needs analysis approach can be seen as an extension of the
triangle table approach to handle conditional effects.

7.1.2 Validation Structures

Another powerful approach to annotation is the validation structure (Kambhampati 89;
Kambhampati 92; Kambhampati 94). This structure is an annotated partial order cre-
ated during the planning process. Each partial order link is a 4-tuple called a validation:
< e, t′, c, t >, where the effect e of step t′ satisfies the condition C of the step t. The
validation structure acts as a proof of correctness of the plan, and allows plan modification
to be cast as fixing inconsistencies in the proof. This approach is shown to be effective for
plan reuse and modification (Kambhampati 92) and for explanation-based generalization
of partially ordered and partially instantiated plans (Kambhampati 94). The approach has
not been applied to plans with conditional effects. Although (Kambhampati 89) presents
an algorithm for using the validation structures of plans with conditional effects to enable
modification and reuse, no method is presented for finding these structures. And since
the structures are created during the planning process, no method is presented for finding
validation structures of any observed plans, even those without conditional effects.

7.1.3 Derivational Analogy

Derivational analogy (Veloso 94b) is another interesting approach to and use of annotation.
In this approach, decisions made during the planning process are explicitly recorded along
with the justifications for making them and unexplored alternate decisions. This approach
has been shown to be effective for reusing not only previous plans, but also previous
lines of reasoning. The approach can handle conditional effects, but, like the validation
structure approach, is applicable only to plans that have been created and annotated by the
underlying planner.

92

7.1.4 Operator Graphs

The final approach to annotation that we will discuss is the operator graph (Smith 93;
Smith 96). This approach does not analyze plans, but rather interactions between opera-
tors relevant to a problem. The operator graph includes one node per operator, and one
node per precondition of each operator. A link is made between each node representing
a precondition of an operator and the operator node, and between the node of each oper-
ator which satisfies a particular precondition and the node representing that precondition.
A threat link is also added between the node of each operator which deletes a particu-
lar precondition and the node representing that precondition. Smith and Peot use these
operator graphs before the planning process to discover when threat resolution may be
postponed (Smith 93) and to analyze potential recursion (Smith 96). Operator graphs do
not apply to domains with conditional effects, and are less applicable to plan reuse and
behavior modeling than other approaches, since they analyze operator interactions, not
plans.

7.1.5 Partially Ordering Totally Ordered Plans

There has been some previous work on finding partial orderings of totally ordered plans.
As previously mentioned, Regnier and Fade (Regnier 91) used triangle tables to do this
for plans without conditional effects. Veloso et al also presented a polynomial-time al-
gorithm for finding a partial ordering of a totally ordered plan without conditional ef-
fects (Veloso 90). The algorithm adds links between each operator precondition and the
most recent previous operator to add the condition. It then resolves threats and eliminates
transitive edges. However, Bäckström shows that this method is not guaranteed to find
the most parallel partial ordering, and that, in fact, finding the optimal partial ordering
according to any metric is NP-complete (Bäckström 93).

7.1.6 Partial Order Planning

There has been a great deal of research into generating partially ordered plans from scratch.
UCPOP (Penberthy 92) is one of the most prominent partial-order planners that can handle
conditional effects. One of the strengths of UCPOP is its non-determinism; it is able to
find all partially ordered plans that solve a particular problem. However, it is difficult to
use the same technique to partially order a given totally ordered plan. The total order
contains valuable information about dependencies and orderings, but the UCPOP method
would discard this information and analyze the orderings from scratch. Not only is this

93

inefficient, but it may result in a partial ordering of the totally ordered steps that is not
consistent with the total order.

Graphplan (Blum 97), another well-known planner, is also able to find partially ordered
plans in domains with conditional effects (Anderson 98). However, it produces suboptimal
and non-minimal (overconstrained) partial orderings, which does not suit our purpose.
Consider the plan in which the steps op a 1 . . . op a n may run in parallel with the steps
op b 1 . . . op b n. Graphplan would find the partial ordering shown in Figure 7.1 because
it only finds parallelism within an individual time step. In the first time step, op a 1 and
op b 1 may run in parallel, but there is no other operator that may run in parallel with
them, so Graphplan moves to the second time step (in which op a 2 and op b 2 may run in
parallel). Graphplan constrains the ordering so that no operators from one time step may
run in parallel with operators from another. None of the ordering constraints between op a
steps and op b steps help achieve the goal, so they are not included in the partial ordering
created by SPRAWL, shown in Figure 7.2. SPRAWL reveals the independence of the two
sets of operators.

op_a_1

op_b_1 op_b_2

op_a_2

START

op_a_n

FINISH

op_b_n

Figure 7.1: This partial ordering, found by Graphplan, contains many irrelevant ordering
constraints.

op_a_1

op_b_1 op_b_2

op_a_2

START

op_a_n

FINISH

op_b_n

Figure 7.2: This partial ordering, found by SPRAWL, contains only necessary ordering
constraints.

94

7.2 Domain Knowledge to Reduce Planning Search

A large body of work has focussed on acquiring and using domain knowledge to reduce
planning search. Our work seeks to avoid this search altogether by generating a domain-
specific planning algorithm.

7.2.1 Control Rules

Much of the work on learning domain knowledge for planning is focused on learning con-
trol rules (Minton 88a; Katukam 94; Etzioni 93), which act as a search heuristic during
the planning process by “recommending” at certain points which branch of the planning
tree the planner should explore first. They do not reduce the complexity of the planning
task, since they cannot eliminate branches of the search tree. They also capture only very
local information (preference choices at specific branches of the planning search tree), ig-
noring common sequences of actions or repeated structures in example plans. However,
they have been shown to reduce dramatically the planning time required for certain prob-
lems. Learning and managing control rules are the two biggest difficulties in using them.
It is difficult for people to write good control rules, in part because one must know the
problem-solving architecture of the planner in order to provide useful advice about how it
should make choices (Minton 88b), and computer-learned control rules are often ineffec-
tive (Minton 88b). Also, using control rules introduces a new problem for planners: when
to create and save a new rule. Unrestricted learning creates a utility problem, in which
learning more information can actually be counterproductive: it can take longer to search
through a library of rules to find the ones that would help to solve a planning problem than
to find the solution to the problem by planning from scratch (Minton 88b).

7.2.2 Macro Operators

Another common type of learned control knowledge for planning is the macro opera-
tor (Fikes 72; Korf 85), which combines a frequently-occurring sequence of operations
into one combined operator. A macro can then be applied by the planner in one step,
thus eliminating the search required to find the entire sequence again. Macros have been
shown to be very effective for reducing search in hierarchically decomposable domains,
such as towers of Hanoi and sliding n-puzzle, because they can capture the common re-
peated sequences that make up almost every solution in these domains. However, Macros,
like control rules, suffer from the utility problem: it is difficult to determine when to add a
new macro operator, since adding too many can slow down the planning process. Each new

95

macro operator adds a new branch to the planning tree at every search node. Although they
can decrease the search depth, the added breadth can make planning searches slower, so, as
with control rules, it is difficult to determine when to add a new macro operator. Some re-
search has studied the problem of how to learn only the most useful macros (Minton 85),
but the efficacy of macros has, in general, been limited to hierarchically decomposable
domains.

7.2.3 Case-Based Reasoning

Another approach to learning planning knowledge, case-based reasoning, attempts to avoid
generative planning for many problems (Hammond 96; Kambhampati 92; Leake 96). En-
tire plans are stored and indexed as cases for later retrieval. When a new problem is
presented, the case-based reasoner searches through its case library for similar problems.
If an exact match is found, the previous plan may be returned with no changes. Other-
wise, the reasoner must either try to modify a previous case to solve the new problem or to
plan from scratch. Utility is also a problem for case-based planners; many handle libraries
of tens of thousands of cases (Veloso 94a), but, as with control rules, as the libraries get
larger, the search times for relevant cases can exceed the time required to plan from scratch
for a new case. Other difficulties with case-based planning include finding an appropriate
similarity metric between problems, determining how to modify an existing plan to solve a
new problem, and determining when it would be faster simply to plan for the new problem
from scratch. However, case-based planners have succeeded in solving larger problems
than can be solved by generative planning alone, and, in general, find solutions faster than
generative planners (Hammond 96).

7.2.4 Analogical Reasoning

A variant of case-based reasoning that deserves mention is analogical reasoning, which
also stores case libraries and modifies previous cases to solve new problems (Veloso 94a;
Veloso 94b). However, in addition to storing the problem and the plan, analogical reason-
ers also store the problem-solving rationale behind each plan step. This makes it easier to
modify previous cases to solve new problems. However, deciding when to abandon mod-
ification and plan from scratch is still a problem, as are retrieving cases from the library
and determining whether to save new cases.

96

7.2.5 Hierarchical Planning

Domain knowledge is also used to hierarchically divide planning domains (Sacerdoti 74;
Knoblock 90; Knoblock 94). This allows the planner to simplify the problem by reasoning
about it at a higher level of abstraction. The planner must then use the abstracted solution
to find a solution to the full problem. The greatest difficulty with hierarchical planning is
identifying a good abstraction hierarchy. Such a hierarchy will abstract away enough de-
tails that problem solving is easy at the highest level, but will not abstract away important
details; the abstract solution must be easily transformable into a solution at lower levels
of abstraction. Information about how to hierarchically divide planning problems may be
user-supplied (Sacerdoti 74) or may be discovered automatically through an analysis of
the planning domain (Sacerdoti 74; Knoblock 90; Knoblock 94).

7.2.6 Skeletal Planning

Skeletal planning combines hierarchical planning and case-based reasoning by storing pre-
viously generated plans and selectively abstracting them to reduce the size of the case li-
brary. The theory behind skeletal planning is that plans in a particular domain are divided
into a limited number of plan classes and that a single abstract skeletal plan can represent
the solutions for all plans in a given class (Friedland 85). Skeletal planning work does
not assume that these classes are given to the problem solver. Instead, problem instances
are encountered and stored in the case library. When several similar plans are encoun-
tered, they are generalized into a skeletal plan that is an abstracted version of all of them.
Most skeletal planning work has relied on human users to do this generalization, but some
work has been done on applying explanation-based learning to the automatic acquisition
of skeletal plans (Bergmann 92).

7.2.7 Meta-Planning

Work in meta-planning seeks to allow planners to reason about the planning process as
well as about the problem they are solving. Meta-planning is used both to reason explic-
itly about which planning steps to take next (such as working on a particular goal, re-
fining an operator, or propagating a constraint) (Stefik 81), to plan how to resolve goal
conflicts or other problems in planning (Wilensky 81), or to explicitly formulate con-
straints about the kind of plan that should be found (one which uses the fewest resources,
achieves the most goals, maximizes the value of the goals achieved, or avoids impossible
goals) (Wilensky 81).

97

7.3 Automatic Program Generation

Work in many fields has addressed the problem of automatically generating programs.
This work can be divided into two main classes: deductive program synthesis, in which
programs are generated from specifications; and inductive program synthesis, in which,
as in our work, programs are generated from example executions. Descriptions of work
applying inductive program synthesis to planning and action selection follow a brief sum-
mary of general deductive and inductive program synthesis.

7.3.1 Deductive Program Synthesis

Deductive program synthesis is the automatic generation of programs from specifications.
Researchers have identified many different approaches to attacking this problem. Manna
and Waldinger (Manna 92) approach this task as theorem proving: a user describes the
input and the desired output of the algorithm and the program synthesis system uses a
constructive proof of the algorithm’s existence to identify the algorithm. Smith’s KIDS
system (Smith 91) solves program synthesis in a transformative way: after specifing types
and basic functions over those types, the user writes program specifications in a formal
language. The KIDS system then applies correctness-preserving transformations to those
specifications to create an algorithm that fulfills them. Williams describes the TA sys-
tem (Williams 88), which learns to generate programs that satisfy specifications by exam-
ining and modifying other programs.

There are many difficulties with deductive program synthesis (Rich 92). For exam-
ple, although many claim that deductive program synthesis will become feasible for end
users who are not familiar with programming, program synthesis systems require exten-
sive domain knowledge in the form of types and functions over those types. Generating
this domain knowledge requires familiarity with programming methods. Also, these sys-
tems depend on program specifications written by their users, so the specifications must be
complete and correct in every situation for the resulting program to be correct. But writing
complete and correct specifications is a difficult task, and Rich and Waters argue that user-
written specifications actually cannot be complete; not only would completeness require
that the user specified how the system should act in every possible situation, but it would
also require the user to specify fuzzy requirements for efficiency and hard-to-formulate
tradeoffs between different aspects of the generated system’s performance.

98

7.3.2 Inductive Program Synthesis

In part to sidestep the excessive demands of completely and correctly describing a desired
system, many researchers have investigated inductive program synthesis, or the automatic
generation of an algorithm from examples of its desired execution (either example traces
of the execution or example input-output pairs). Programs generated inductively cannot
be guaranteed to be correct or complete, but input-output pairs (or traces) are often easier
to generate than complete and correct specifications, and the generated programs usually
cover the “common cases” (the problems like those they are induced from).

Our work on extracting algorithmic models of behavior from observed executions falls
within the category of inductive program synthesis (IPS). However, previously developed
approaches to IPS are not immediately applicable to our problem. Some IPS algorithms
induce programs from input-output pairs (Muggleton 91; Muggleton 94). In planning, this
corresponds to inducing an algorithm from example initial and goal states, a formidable
task. The problem is made easier in general IPS systems because they are also given a
good deal of background information about programming techniques and methods to apply
to a problem. This corresponds to background knowledge about how to solve different
planning problems in a particular domain. We have chosen not to provide such knowledge.

Some approaches to IPS use program traces as input (Bauer 79; Lau 01), as does our
work. However, the traces are annotated to mark the beginnings and ends of loops, to
specify loop invariants and stopping conditions, to mark conditionals, etc. This kind of
labelling cannot be obtained automatically from observed executions, so we do not allow
it in our work.

Finally, whereas many approaches to IPS must attempt to induce the purpose of the
steps from many examples (Lau 01), in our planning-based approach, the purpose of each
step is automatically deduced via plan analysis. This information is critical to rapidly and
correctly identifying the conditions for executing a sequence of steps or for terminating a
loop.

Iterative and Recursive Macro Operators

Inductive program synthesis has been used to generate iterative and recursive macro op-
erators (Schmid 01; Schmid 00; Shell 89; Shavlik 90). These macros capture repetitive
behavior and can drastically reduce planning search by encapsulating an arbitrarily long
string of operators. However, this technique does not attempt to replace the generative
planner, and so does not eliminate planning search.

99

Decision Lists for Planning

Some work has focussed on analyzing example plans to reveal a strategy for planning in a
particular domain in the form of a decision list (Khardon 99), or a list of condition-action
pairs. Conditions consist of lists of predicates true in the current state and in the goal state
and are of limited length. The decision list is created by transforming the example plans
into a set of state-action pairs, enumerating all possible condition-action pairs, evaluating
each based on coverage and accuracy on the state-action pairs extracted from the exam-
ple plans, and adding the best pair (according to some quality criterion) to the decision
list, eliminating covered state-action examples, until all examples are covered. Planning
with the decision list consists of repeatedly checking the condition-action rules against the
current state and goal. When a rule applies, the action is attempted, and matching begins
again from the beginning of the decision list.

The decision list algorithm can find a strategy even when the plans it is given cannot
be described by a simple strategy (e.g., they are optimal solutions to NP-hard problems).
However, it is able to solve fewer than 50% of 20-block Blocksworld problems, and re-
quires over a thousand state-action pairs to achieve that coverage (Khardon 99). Enumer-
ating all possible conditions and evaluating them against every observed state-action pair
may become prohibitively slow for more complex domains than Blocksworld.

More recent approaches have eliminated the need for background information and have
achieved comparable coverage to domain-independent planners on most domains in the
International Planning Competition (Fern 06). However, many examples (either provided
or generated) and hours (or even days) of computation time were required to achieve that
coverage. The decision list approach requires many examples and so much computation
in part because by breaking up example plans into state-action pairs, it disposes of much
of the information contained in the plans, such as sequencing and looping behaviors. By
preserving this information, we have shown we can rapidly achieve broad coverage from
as few as one example.

7.4 Universal Planning

Some researchers have sought to avoid the planning search problem by aquiring and us-
ing “universal plans,” or pre-computed functions that map state and goal combinations to
actions. Our work can be seen as a new method of storing and acquiring universal plans.

The simplest form of a universal plan is a table with an entry for every possible sit-
uation (state and goal) that specifies the action to take in that situation, as in general so-

100

lutions to Markov decision processes, or the Q tables of standard reinforcement learn-
ing (Mitchell 97). In complex domains, the size of these tables is prohibitively large, as is
the cost of acquiring them. Many methods have been developed to store this information
more compactly.

Many researchers have used reinforcement learning to acquire compact Q functions
rather than the prohibitively large Q tables. One common form of Q function is a neu-
ral network (Anderson 87). Q functions may also be represented as decision trees. This
format has been found to be very expressive, frequently outperforming neural network rep-
resentations (Pyeatt 98), however, the decision tree format is less compressed than neural
networks. Some work has been done on generating more compressed decision tree Q
functions by avoiding the repetition of common substructures within the tree (Uther 00).
Relational reinforcement learning provides a method for learning a Q function represented
as a logical regression tree over parameterized operators and predicates (Džeroski 98;
Driessens 01). This allows a solution to one problem to be used to solve another simi-
lar problem. However, Q functions learned in this way from small problems cannot be
applied to larger or more complex problems, and it is unclear whether the size of the
learned regression tree is prohibitive for interesting problems in complex domains.

Decision trees have also been used in a purely planning context. Schoppers suggests
decision trees splitting on state and goal predicates (Schoppers 87), but finds these trees
by conducting a breadth-first search for solutions—a method which is too time-consuming
for most domains.

Other researchers have used Ordered Binary Decision Diagrams (OBDDs) to represent
universal plans (Cimatti 98a; Cimatti 98b; Jensen 00). OBDDs provide an effective way
to compress a universal plan without losing precision, however are currently generated via
blind backwards search from goal states, a method that is impractical in complex domains.

101

102

Chapter 8

Conclusions

We first present the contributions of this work. We then explore possible future directions
for this work, and finally revisit the contributions of the thesis.

8.1 Contributions

There are five main contributions of this thesis.

The dsPlanner language We introduced a compact, readable, and powerful language
for describing domain-specific planners. We have shown that compact planners written in
this language either can completely cover or can cover large portions of known domains.
Planners written in this language execute in linear time modulo state matching effort. We
also introduced the concept of learning complete planning programs—rather than control
rules, macros, libraries of past examples, or decision lists—from examples.

The SPRAWL algorithm We developed the SPRAWL algorithm for finding the rationale
behind an observed plan, in the form of a minimal annotated consistent partial ordering
of the observed actions. SPRAWL is able to analyze plans with conditional effects, un-
like previous approaches, and is able to execute in polynomial time in domains without
conditional effects.

The DISTILL algorithm With the DISTILL algorithm, we showed how to learn a non-
looping dsPlanner from an observed plan, and how to merge two non-looping dsPlanners
to achieve situational generalization as well as significant space savings over a case library.

The LoopDISTILL algorithm We introduced the LoopDISTILL algorithm for learn-
ing a looping dsPlanner from an example plan. Loops allow a learned planner to cover

103

problems of arbitrary size. Our approach is based on a SPRAWL analysis of the observed
plan, and we show the startling power of this explicit analysis; we are able to learn dsPlan-
ners with broad coverage from a single example in under a second. Other approaches
require dozens, or even hundreds, of examples and hours of computation time.

A thorough empirical evaluation of this approach In this thesis, we not only have
contributed algorithms to solve problems, but we have tested our approach on a wide
variety of well-known planning domains and carefully explored the kinds of problems this
approach can attack well, and the kinds it cannot.

8.2 Discussion

8.2.1 “Best” dsPlanner

While the algorithms presented are guaranteed to lead to a dsPlanner that solves at least
the problem it was learned from, they don’t necessarily lead to a dsPlanner that’s “best”
according to any metric—compactness, solution length, solution parallelism, breadth of
coverage, etc. Instead, the learned planner is faithful to the example presented. It is well-
known that defining what makes one program better than another is a difficult problem in
and of itself . Our goal was, in part, for the learning of the dsPlanner to be fast enough
for it to be used online. Searching through and evaluating according to some unknown
metric all possible dsPlanners that could be learned from a given example would make
that impossible.

To begin with, a single totally ordered example plan may represent multiple consistent
and minimal partial orderings, and the dsPlanner learned by LoopDISTILL is derived from
the single annotated partial ordering that is its input. In order to determine which partial
ordering of many would lead to the “best” dsPlanner, all would have to be tried.

The order of loop discovery can also affect the eventual dsPlanner, as discovering
and separating some loops can prevent others from being discovered. The current Loop-
DISTILL algorithm first finds all possible parallel loops (starting its search from the be-
ginning of the plan) and then finds all possible serial loops (starting its search from the
beginning of the plan). But in order to find some “best” dsPlanner, we would have to un-
dertake an exhaustive search through dsPlanners created by separating each possible loop
in every possible order.

In identifying parallel loops, we use a greedy algorithm that prefers matches with more
steps per parallel iteration. One could also prefer matches with more parallel iterations,

104

or some combined function of the two. Regardless of the metric that is used, though, as
mentioned above, the order of loop discovery can affect future loop discovery, so to find
some “best” dsPlanner, we would have to undertake an exhaustive search through dsPlan-
ners created by separating every possible subset of iterations into a loop and proceeding
with loop discovery in each dsPlanner.

Searching through all possible dsPlanners that could be learned from a given exam-
ple would be very time-intensive. Instead, we have focussed on learning the dsPlanners
quickly, and our results show that useful dsPlanners with broad coverage can be learned
very quickly for many domains.

8.2.2 Soundness, Correctness, and Completeness

Sound planners do not output solution plans that don’t solve the given problem. Cor-
rect planners do not suggest solution steps that are not executable. Complete planners
solve all problems in a particular domain. The dsPlanners generated by LoopDISTILL

are both sound and correct, but, as for any learned knowledge, are not necessarily com-
plete. DsPlanners are guaranteed to be sound—to return only plans that solve the given
problem—by construction, because they simulate the execution of the plan as they gen-
erate it; it is clear by the end of the execution of the dsPlanner whether the plan gen-
erated can solve the problem or not, so the dsPlanner can simply not return unsuccess-
ful plans. DsPlanners are also guaranteed to be correct—not to suggest non-executable
steps—because each plan step in the dsPlanner is contained within either an if statement
or a while loop whose conditions guarantee that the preconditions of the step are always
met before it is suggested by the dsPlanner.

Even when dsPlanners are not able to find a solution plan, the partial solutions they
find could be used as guidance for a generative planner.

8.2.3 Coverage

Conjecture If there exists a dsPlanner representation of a class of problems within a
domain and an example that illustrates the structure of that domain, then LoopDISTILL

could learn the dsPlanner.

105

Exceptions

Hidden Iteration Ordering Constraints As we discuss in section 8.3.3, for some loops,
LoopDISTILL can capture the structure of the loop, but cannot detect that the iterations
must execute in a particular order because the ordering is represented in the partial order-
ing found by SPRAWL as threat links between the iterations. The current LoopDISTILL

algorithm does not mine threat links for information on how to build the dsPlanner, but we
believe that these links could provide information that could illuminate these hidden order-
ing constraints, and that thorough analysis may allow the automatic discovery of recursive
definitions like “above” or “below” in Blocksworld.

Nested Loops The LoopDISTILL code does not identify nested loops or allow for if-
statements within other if-statements, or within loops, so it could not discover a dsPlanner
with these structures.

8.3 Future Work

Our work opens the door to many avenues of future work and exploration. The most direct
is to extend the LoopDISTILL algorithm to allow it to extract more from each example
plan and model more complex programs, for example by merging looping dsPlanners,
capturing nested loops and hidden ordering constraints, and matching non-identical itera-
tions. Another interesting direction for future research would be to explore how to learn
dsPlanners from examples that don’t come from a benevolent teacher, or that don’t reflect
an underlying program.

One of the most enticing avenues opened by LoopDISTILL is that of real-time de-
liberation. With a fast, flexible, learning planning paradigm, real-time agents in complex
environments need not be only hand-coded or reactive. True deliberation and explicit rea-
soning about actions have not been available for time-sensitive applications, as they have
simply taken too long. With LoopDISTILL, it is possible for a sound planner with broad
coverage to be learned in under a second from a single observed example. With the addi-
tion of merging looping dsPlanners, it is easy to imagine a learner deploying with access
to a teacher, learning a true planner online in real time which it could then use to solve
new problems in linear time.

LoopDISTILL is also naturally suited to agent modelling, as the learned dsPlanner is
a model of the observed behavior of the teacher. For our current algorithms to apply, we
would need to know the goals of the observed agent in order to analyze their execution.

106

We would also need to observe a complete sequence of actions (which achieve the agent’s
goals) and could only model algorithms that can be described by the dsPlanner language.
It would be interesting to work towards extracting planners from partial executions (so that
an “interrupted” trace could also be mined), and to further explore extensions to the dsPlan-
ner language and learning from examples that do not demonstrate a dsPlanner-describable
algorithm.

We now describe in detail some of the next steps that could be taken to extend the
capabilities of LoopDISTILL .

8.3.1 Merging Looping dsPlanners and Matching non-Identical Loop
Iterations

Merging complex plans, in which there are multiple threads of execution, many of which
may affect each other in a variety of ways, and some of which have loops, is very chal-
lenging. There are several challenges involved. One is in deciding which subplans should
be considered to be matching. Another is determining how to combine dsPlanners while
preserving as much flexibility and expressivity as possible in the resulting dsPlanner to
robustly and appropriately match subsequent plans as well. Finally, it’s important to de-
termine whether any guarantees can be made about the merged dsPlanner solving at least
as many problems as the two original dsPlanners combined—that incorporating new plans
into a dsPlanner allows us to monotonically increase the number of problems we’re able
to solve.

It is not clear how aggressively to match non-identical subplans. Trivially, identical
subplans can be matched, but subplans supporting different or larger goals, subplans that
differ in some of their component steps, subplans differently connected within their “par-
ent” plans, may also be matched. The same issues are involved in matching non-identical
iterations of a single loop; it isn’t clear how far to take the matching. In this work, we
have considered only identical subplans to be matching, but there is much to be gained
from merging non-identical subplans. Obviously, two 42-step subplans that differ in a sin-
gle initial step and a single current state condition, for example, should be considered to
match, and the differing step can be contained in an if-statement within the new loop—but
it’s less clear what to do with two subplans that differ in a larger portion of their steps or
conditions.

Merging dsPlanners into one combined dsPlanner involves making choices about how
to order unmatched segments of the planner, and to which potentially (or partially) match-
ing portion of one dsPlanner to match a segment of the other. Deciding which portions of

107

the planners to match would be difficult to revisit or reason about later without undertak-
ing an exhaustive search either through all separately recorded component dsPlanners as
the combined dsPlanner is progressively updated, or through all possible combinations of
the component dsPlanners. Both approaches would likely be infeasible in a time-sensitive
application.

However, it is relatively easy to delay commitment about the ordering of unmatched
segments of the dsPlanner. I believe that the best way to store dsPlanners as they are
being learned and refined is in annotated partial orderings like those created by SPRAWL.
Any merged sections of component dsPlanners would be merged in the partially ordered
combined dsPlanner, with links coming into and out of the merged section from and to
non-merged sections of the component dsPlanners. Any ordering constraints imposed by
the partial ordering would be necessary given which sections were merged, and all other
ordering decisions could be deferred until the dsPlanner needed to be executed. But even at
that point, the dsPlanner, while it must be executed as a total ordering, could be maintained
for future updating or reordering in a partial ordering.

8.3.2 Nested Loops

The current LoopDISTILL code does not identify nested loops, but it is not difficult, in
principle, to do so. A loop may be treated like any other plan step. For two loops to match,
not only would there need to exist a variable substitution that would allow their steps to
match, but they would both need to have the same varying parameters—for example, in
a rocket domain problem, a loop that cycles over locations would not match a loop that
cycles over objects, even if they were otherwise the same—or a new loop could be created
that varies over both parameters. The current LoopDISTILL algorithm can identify nested
loops with an appropriate refinement of its step matching process. In DsPlanner 25, we
show one possible rocket domain dsPlanner that such a modified LoopDISTILL algorithm
could identify.

8.3.3 Uncovering Iteration Ordering Constraints and Expressing Re-
cursive Definitions

For some serial loops, LoopDISTILL can capture the steps of the loops but not the ordering
between the iterations. For example, in the Blocksworld domain, the ordering of the steps
in a block-stacking loop intended to build a particular tower are explained in the plan
rationale found by SPRAWL as threat links in the partial ordering—the bottom blocks need

108

DsPlanner 25 Hand-written rocket-domain dsPlanner with nested loops.
while inCurState (at(?v1:object ?v2:loc)) and inCurState (at-rocket(?v3:loc)) and inGoalState
(at(?v1:object ?v4:loc)) do

while inCurState (in-rocket(?v5:object)) and inGoalState (at(?v5:object ?v3)) do
unload(?v5 ?v3)

end while
fly(?v3 ?v2)
while inCurState (at(?v6:object ?v2)) and inGoalState (at(?v6:object ?v7:location)) do

load(?v6 ?v2)
end while
fly(?v2 ?v4)
while inCurState (in-rocket(?v8:object)) and inGoalState (at(?v8:object ?v4)) do

unload(?v8 ?v4)
end while

end while
while inCurState (in-rocket(?v9:object)) and inCurState (at-rocket(?v10:loc)) and inGoalState
(at(?v9:object ?v11:location)) do

fly(?v10 ?v11)
while inCurState (in-rocket(?v12:object)) and inCurState (at-rocket(?v?11)) and inGoalState
(at(?v12:object ?v11)) do

unload(?v12 ?v11)
end while

end while

to be stacked before the top blocks because otherwise blocks that need to be moved are free
to do so. The current LoopDISTILL algorithm does not mine threat links for information
on how to build the dsPlanner 1, but it would be interesting to investigate doing so, and
how such ordering constraints could be represented in the dsPlanner language.

Similarly, the current dsPlanner language has no way to describe a dsPlanner to clear
a particular block when an arbitrary stack of blocks not part of the solution are on top of
that block. I believe relationships such as this can be captured from the annotated partial
orderings generated by SPRAWL and exploited to expand the expressive capacity of the
dsPlanner language and of the dsPlanners learned by LoopDISTILL.

1LoopDISTILL does take threat links into account when determining how to order operators, but pro-
tected terms on a threat link are not included in the conditions for executing an if-statement or while loop.

109

8.4 Summary

This dissertation contributes a clear, expressive, human-readable and -writeable program-
ming language for domain-specific planners, or dsPlanners; the SPRAWL algorithm for
discovering the rationale underlying observed plans; the DISTILL algorithm for learning
non-looping dsPlanners from a set of observed examples supplemented with their ratio-
nales; and the LoopDISTILL algorithm for learning a looping dsPlanner from an example
plan and its rationale. We show that by thoroughly analyzing observed example plans,
our algorithms are able to learn a dsPlanner with broad coverage in many domains from a
single example in under a second, and that such dsPlanners can then be used to solve arbi-
trarily large problems in linear time, modulo state-matching effort. The core contribution
of this thesis is a new planning paradigm in which domain-specific planners are learned
by example.

110

Appendix A

Sprinkler Domain

(define (domain sprinkler-adl)
(:types location - object
thing - object)
(:predicates (at ?x - thing ?l - location)

(wet ?x - object))

(:action sprinkle
:parameters (?l - location)
:effect (and (wet ?l)

(forall (?x - thing)
(when (and (at ?x ?l)

(not (wet ?x)))
(wet ?x)))))

(:action move
:parameters (?x - thing ?from ?to - location)
:precondition (and (at ?x ?from))
:effect (and (at ?x ?to)

(not (at ?x ?from))))
)

111

112

Appendix B

Rocket Domain

(define (domain rocket-adl)
(:types location - object
thing - object
item - thing
rocket - thing)
(:predicates (at ?x - thing ?l - location)

(inside ?i - item ?r - rocket))
(:action load
:parameters (?i - item ?r - rocket ?l - location)
:precondition (and (at ?i ?l)

(at ?r ?l))
:effect (and (inside ?i ?r)

(not (at ?i ?l)))
)

(:action unload
:parameters (?i - item ?l - location ?r - rocket)
:precondition (and (at ?r ?l)

(inside ?i ?r))
:effect (and (at ?i ?l)

(not (inside ?i ?r)))
)

(:action move
:parameters (?r - rocket ?from - location ?to - location)
:precondition (and (at ?r ?from))
:effect (and (not (at ?r ?from))

(at ?r ?to))
)

113

)

114

Appendix C

Blocksworld Domain

(define (domain blocksworld-2-adl)
(:types block - object)
(:predicates (on-block ?x - block ?b - block)

(on-table ?x - block)
(clear ?x - block))

(:action move-b-b
:parameters (?x ?from ?to - block)
:precondition (and (on-block ?x ?from)

(clear ?to)
(clear ?x))

:effect (and (on-block ?x ?to)
(not (on-block ?x ?from))
(clear ?from)
(not (clear ?to)))

)

(:action move-b-t
:parameters (?x ?from -block)
:precondition (and (on-block ?x ?from)

(clear ?x))
:effect (and (on-table ?x)

(not (on-block ?x ?from))
(clear ?from))

)

(:action move-t-b
:parameters (?x - block ?to - block)
:precondition (and (on-table ?x)

115

(clear ?to)
(clear ?x))

:effect (and (on-block ?x ?to)
(not (on-table ?x))
(not (clear ?to)))

)
)

116

Appendix D

Gripper Domain

(define (domain gripper2)
(:types room - object

ball - object)
(:predicates (at-robby ?r - room)

(at ?b - ball ?r - room)
(free-arm)
(holding ?o - ball)
)

(:action move
:parameters (?from ?to - room)
:precondition (at-robby ?from)
:effect (and (at-robby ?to)

(not (at-robby ?from)))
)

(:action pick
:parameters (?obj - ball ?room - room)
:precondition (and (at ?obj ?room)

(at-robby ?room)
(free-arm))

:effect (and (holding ?obj)
(not (at ?obj ?room))
(not (free-arm)))
)
(:action drop

:parameters (?obj - ball ?room - room)
:precondition (and (holding ?obj)

(at-robby ?room))
:effect (and (free-arm)

(at ?obj ?room))

117

(not (holding ?obj))
)

)

118

Appendix E

Dishwashing Domain

(define (domain dishes)
(:types dish - object
sponge - object)
(:predicates (dirty ?x - dish)

(clean ?x - dish)
(soapy ?x - sponge)
(havesoap)
)

(:action wash
:parameters (?x - dish ?y - sponge)
:precondition (and (dirty ?x)

(soapy ?y))
:effect (and (clean ?x)

(not (soapy ?y))
(not (dirty ?x)))

)
(:action soap
:parameters (?x - sponge)
:precondition (havesoap)
:effect (and (soapy ?x))

)
)

119

120

Appendix F

Multi-Step Parallel Loop Domain

(define (domain multistepparallelloop)
(:types type1 - object)
(:predicates (s ?x - type1)

(g ?x - type1))
(:action op1
:parameters (?x - type1)
:precondition (s ?x)
:effect (and (a1 ?x))
)
(:action op2
:parameters (?x - type1)
:precondition (s ?x)
:effect (and (a2 ?x))
)
(:action op3
:parameters (?x - type1)
:precondition (and (a1 ?x)

(a2 ?x))
:effect (and (g ?x))
)

)

121

122

Appendix G

Multi-Step Serial Loop Domain

(define (domain multistepserialloop)
(:types type1 - object

type2 - object)
(:predicates (s ?x - type1)

(g ?x - type1)
(a1 ?x - type1)
(a2 ?x - type1)
(b1 ?z - type2)
(b2 ?z - type2))

(:action op1
:parameters (?x - type1 ?z - type2)
:precondition (and (s ?x)

(b1 ?z))
:effect (and (a1 ?x)

(not (b1 ?z)))
)
(:action op2
:parameters (?x - type1 ?z - type2)
:precondition (and (s ?x)

(b2 ?z))
:effect (and (a2 ?x)

(not (b2 ?z)))
)
(:action op3
:parameters (?x - type1 ?z - type2)
:precondition (and (a1 ?x)

(a2 ?x))
:effect (and (g ?x)

(b1 ?z)

123

(b2 ?z))
)

)

124

Appendix H

Schedule Domain

(define (domain schedule)
(:types part - object
color - object
width - object
orientation - object)
(:predicates (isHot ?x - part)

(isCold ?x - part)
(isCyllindrical ?x - part)
(hasHole ?x - part ?y - width ?z - orientation)
(punchHasBit ?y - width)
(drillPressHasBit ?y - width)
(punchCanOrient ?z - orientation)
(drillPressCanOrient ?z - orientation)
(sprayerHasPaint ?x - color)
(immerserHasPaint ?x - color)
(isPainted ?x - part ?y - color)
(isUnpainted ?x - part)
(busyPolisher)
(idlePolisher)
(busyRoller)
(idleRoller)
(busyLathe)
(idleLathe)
(busyGrinder)
(idleGrinder)
(busyPuncher)
(idlePuncher)
(busyDrillPress)
(idleDrillPress)

125

(busySprayer)
(idleSprayer)
(busyImmerser)
(idleImmerser)
(scheduledPolisher ?x - part)
(scheduledRoller ?x - part)
(scheduledLathe ?x - part)
(scheduledGrinder ?x - part)
(scheduledPuncher ?x - part)
(scheduledDrillPress ?x - part)
(scheduledSprayer ?x - part)
(scheduledImmerser ?x - part)
(unscheduled ?x - part)
(isSmooth ?x - part)
(isPolished ?x - part)
(isRough ?x - part)
)

(:action doPolish
:parameters (?x - part)

:precondition (and (unscheduled ?x)
(idlePolisher)

(isCold ?x))
:effect (and (busyPolisher)

(not (idlePolisher))
(scheduledPolisher ?x)
(not (unscheduled ?x))
(isPolished ?x)
(not (isRough ?x))
(not (isSmooth ?x)))

)
(:action doRoll
:parameters (?x - part)
:precondition (and (unscheduled ?x)

(idleRoller))
:effect (and (busyRoller)

(not (idleRoller))
(scheduledRoller ?x)
(not (unscheduled ?x))
(isUnpainted ?x)
(isRough ?x)
(not (isSmooth ?x))
(not (isPolished ?x))
(isHot ?x)
(not (isCold ?x))
(isCyllindrical ?x))

)

126

(:action doLathe
:parameters (?x - part)
:precondition (and (unscheduled ?x)

(idleLathe))
:effect (and (busyLathe)

(not (idleLathe))
(scheduledLathe ?x)
(not (unscheduled ?x))
(isRough ?x)
(not (isSmooth ?x))
(not (isPolished ?x))
(isCyllindrical ?x)
(isUnpainted ?x))

)
(:action doGrind
:parameters (?x - part)
:precondition (and (unscheduled ?x)

(idleGrinder))
:effect (and (busyGrinder)

(not (idleGrinder))
(scheduledGrinder ?x)
(not (unscheduled ?x))
(isSmooth ?x)
(not (isPolished ?x))
(not (isRough ?x))
(isUnpainted ?x))
)
(:action doPunch
:parameters (?x - part ?y - width ?z -orientation)
:precondition (and (unscheduled ?x)

(idlePuncher)
(isCold ?x)
(punchHasBit ?y)
(punchCanOrient ?z))
:effect (and (busyPuncher)

(not (idlePuncher))
(scheduledPuncher ?x)
(not (unscheduled ?x))
(hasHole ?x ?y ?z)
(isRough ?x)
(not (isPolished ?x))
(not (isSmooth ?x)))

)
(:action doDrillPress
:parameters (?x - part ?y - width ?z - orientation)
:precondition (and (unscheduled ?x)

127

(idleDrillPress)
(drillPressHasBit ?y)
(drillPressCanOrient ?z)
(isCold ?x))
:effect (and (busyDrillPress)

(not (idleDrillPress))
(scheduledDrillPress ?x)
(not (unscheduled ?x))
(hasHole ?x ?y ?z))

)
(:action doSprayPaint
:parameters (?x - part ?y - color ?z - color)
:precondition (and (unscheduled ?x)

(idleSprayer)
(isPainted ?x ?z)
(isCold ?x))
:effect (and (scheduledSprayer ?x)

(not (unscheduled ?x))
(busySprayer)
(not (idleSprayer))
(not (isSmooth ?x))
(not (isRough ?x))
(not (isPolished ?x))
(not (isPainted ?x ?z))
(not (isUnpainted ?x))
(isPainted ?x ?y))

)
(:action doImmersionPaint
:parameters (?x - part ?y - color ?z - color)
:precondition (and (unscheduled ?x)

(idleImmerser)
(immerserHasPaint ?y)
(isPainted ?x ?z))
:effect (and (busyImmerser)

(not (idleImmerser))
(scheduledImmerser ?x)
(not (unscheduled ?x))
(isPainted ?x ?y)
(not (isUnpainted ?x))
(not (isPainted ?x ?z)))

)
(:action doTimeStepPolisher
:parameters (?x - part)
:precondition (scheduledPolisher ?x)
:effect (and (not (scheduledPolisher ?x))

(unscheduled ?x)

128

(idlePolisher)
(not (busyPolisher)))

)
(:action doTimeStepRoller
:parameters (?x - part)
:precondition (scheduledRoller ?x)
:effect (and (not (scheduledRoller ?x))

(unscheduled ?x)
(idleRoller)
(not (busyRoller)))

)
(:action doTimeStepLathe
:parameters (?x - part)
:precondition (scheduledLathe ?x)
:effect (and (not (scheduledLathe ?x))

(unscheduled ?x)
(idleLathe)
(not (busyLathe)))

)
(:action doTimeStepGrinder
:parameters (?x - part)
:precondition (scheduledGrinder ?x)
:effect (and (not (scheduledGrinder ?x))

(unscheduled ?x)
(idleGrinder)
(not (busyGrinder)))

)
(:action doTimeStepPuncher
:parameters (?x - part)
:precondition (scheduledPuncher ?x)
:effect (and (not (scheduledPuncher ?x))

(unscheduled ?x)
(idlePuncher)
(not (busyPuncher)))

)
(:action doTimeStepDrillPress
:parameters (?x - part)
:precondition (scheduledDrillPress ?x)
:effect (and (not (scheduledDrillPress ?x))

(unscheduled ?x)
(idleDrillPress)
(not (busyDrillPress)))

)
(:action doTimeStepSprayer
:parameters (?x - part)
:precondition (scheduledSprayer ?x)

129

:effect (and (not (scheduledSprayer ?x))
(unscheduled ?x)

(idleSprayer)
(not (busySprayer)))

)
(:action doTimeStepImmerser
:parameters (?x - part)
:precondition (scheduledImmerser ?x)
:effect (and (not (scheduledImmerser ?x))

(unscheduled ?x)
(idleImmerser)
(not (busyImmerser)))

)
)

130

Appendix I

Logistics Domain

(define (domain logistics-adl)
(:types physobj - object
obj - physobj
vehicle - physobj
truck -vehicle
airplane - vehicle
location - object
city - object
airport - location)
(:predicates (at ?x - physobj ?l - location)

(in ?x - obj ?t - vehicle)
(in-city ?l - location ?c - city))

(:action load
:parameters (?obj - obj ?veh - vehicle ?loc - location)
:precondition (and (at ?obj ?loc)

(at ?veh ?loc))
:effect (and (in ?obj ?veh)

(not (at ?obj ?loc)))
)

(:action unload
:parameters (?obj - obj ?veh - vehicle ?loc - location)
:precondition (and (in ?obj ?veh) (at ?veh ?loc))
:effect (and (not (in ?obj ?veh))

(at ?obj ?loc))
)

(:action drive-truck
:parameters (?truck - truck ?from - location ?to - location

?city - city)
:precondition (and (at ?truck ?from)

131

(in-city ?from ?city)
(in-city ?to ?city))

:effect (and (at ?truck ?to)
(not (at ?truck ?from)))

)
(:action fly-airplane
:parameters (?plane - airplane ?from - airport ?to - airport)
:precondition (and (at ?plane ?from))
:effect (and (at ?plane ?to)

(not (at ?plane ?from)))
)
)

132

Appendix J

Elevator Domain

(define (domain elevator)
(:types passenger - object
floor - object)
(:predicates (at ?x - passenger ?y - floor)

(atLift ?x - floor)
(inLift ?x - passenger)
)
(:action board
:parameters (?x - passenger ?y - floor)
:precondition (and (at ?x ?y)

(atLift ?y))
:effect (and (not (at ?x ?y))

(inLift ?x))
)
(:action depart
:parameters (?x - passenger ?y - floor)
:precondition (and (atLift ?y)

(inLift ?x))
:effect (and (at ?x ?y)

(not (inLift ?x)))
)
(:action moveLift
:parameters (?x - floor ?y - floor)
:precondition (atLift ?x)
:effect (and (atLift ?y)

(not (atLift ?x)))
)
)

133

134

Appendix K

Briefcase Domain

(define (domain briefcase)
(:types obj - object

loc - object)
(:predicates (atBriefcase ?x - loc)

(at ?x - obj ?y -loc)
(inCase ?x - obj)

)
(:action putIn
:parameters (?x - obj ?y - loc)
:precondition (and (at ?x ?y)

(atBriefcase ?y))
:effect (and (not (at ?x ?y))

(inCase ?x))
)
(:action moveBriefcase
:parameters (?x - loc ?y - loc)
:precondition (atBriefcase ?x)
:effect (and (not (atBriefcase ?x))

(atBriefcase ?y))
)
(:action takeOut
:parameters (?x - obj ?y - loc)
:precondition (and (atBriefcase ?y)

(inCase ?x))
:effect (and (at ?x ?y)

(not (inCase ?x)))
)
)

135

136

Bibliography

[Anderson 87] Charles W. Anderson. Strategy Learning with Multilayer Connection-
ist Representations. In Proceedings of the Fourth International Work-
shop on Machine Learning, pages 103–114, Irvine, California, 1987.
Morgan Kaufmann.

[Anderson 98] Corin R. Anderson, David E. Smith & Daniel S. Weld. Conditional
Effects in Graphplan. In Reid Simmons, Manuela Veloso & Steven
Smith, editeurs, Proceedings of the fourth international conference
on Artificial Intelligence Planning Systems (AIPS-98), pages 44–53,
Pittsburgh, PA, June 1998. AAAI Press.

[Bäckström 93] Christer Bäckström. Finding Least Constrained Plans and Optimal
Parallel Executions is Harder than We thought. In Christer Bäckström
& Erik Sandewall, editeurs, Current Trends in AI Planning: Second
European Workshop on Planning (EWSP-93), Frontiers in AI and Ap-
plications, pages 46–59, Vadstena, Sweden, Dec 1993. IOS Press.

[Bauer 79] M. Bauer. Programming by Examples. Artificial Intelligence, vol. 12,
pages 1–21, 1979.

[Bergmann 92] Ralph Bergmann. Knowledge Acquisition by Generating Skeletal
Plans from Real World Cases. In F. Schmalhofer, G. Strube & T. Wet-
ter, editeurs, Contemporary Knowledge Engineering and Cognition,
pages 125–133, 1992.

[Blum 97] Avrim Blum & Merrick Furst. Fast planning through planning graph
analysis. Artificial Intelligence, vol. 90, pages 281–300, 1997.

[Carbonell 90] Jaime G. Carbonell & Yolanda Gil. Learning by Experimentation:
The Operator Refinement Method. In R. S. Michalski & Y. Kodratoff,

137

editeurs, Machine Learning: An Artificial Intelligence Approach, Vol-
ume III, pages 191–213. Morgan Kaufmann, Palo Alto, CA, 1990.

[Cimatti 98a] A. Cimatti, M. Roveri & P. Traverso. Automatic OBDD-based Gen-
eration of Universal Plans in Non-Deterministic Domains. In Pro-
ceedings of the 15th National Conference on Artificial Intelligence
(AAAI’98), pages 875–881. AAAI Press, 1998.

[Cimatti 98b] A. Cimatti, M. Roveri & P. Traverso. Strong planning in Non-
Deterministic Domains via Model Checking. In Proceedings of the
4th International Conference on Artificial Intelligence Planning Sys-
tem (AIPS’98), pages 36–43. AAAI Press, 1998.

[Driessens 01] Kurt Driessens. Relational Reinforcement Learning. In Michael Luck,
Vladimı́r Marı́k, Olga Stepánková & Robert Trappl, editeurs, Multi-
Agent Systems and Applications, 9th ECCAI Advanced Course ACAI
2001 and Agent Link’s 3rd European Agent Systems Summer School
(EASSS 2001), volume 2086 of Lecture Notes in Computer Science,
pages 271–280, Prague, Czech Republic, July 2001. Springer.

[Džeroski 98] Sašo Džeroski, Luc De Raedt & Hendrik Blockeel. Relational Rein-
forcement Learning. In Proceedings of the International Workshop on
Inductive Logic Programming, pages 11–22, 1998.

[Etzioni 93] Oren Etzioni. Acquiring search-control knowledge via static analysis.
Artificial Intelligence, vol. 62, no. 2, pages 255–302, August 1993.

[Fern 06] Alan Fern, Sungwook Yoon & Robert Givan. Approximate Policy It-
eration with a Policy Language Bias: Solving Relational Markov De-
cision Processes. Journal of Artificial Intelligence Research, vol. 25,
pages 75–118, January 2006.

[Fikes 71] Richard Fikes & Nils J. Nilsson. STRIPS: a new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence,
vol. 2, no. 3-4, pages 189–208, 1971.

[Fikes 72] Richard E. Fikes, Peter E. Hart & Nils J. Nilsson. Learning and Exe-
cuting Generalized Robot Plans. Artificial Intelligence, vol. 3, no. 4,
pages 251–288, 1972.

138

[Friedland 85] Peter E. Friedland & Yumi Iwasaki. The Concept and Implementation
of Skeletal Plans. Journal of Automated Reasoning, vol. 1, no. 2,
pages 161–208, 1985.

[Hammond 96] Kristian J. Hammond. CHEF: A Model of Case-Based Planning. In
Proceedings of the Thirteenth National Conference on Artificial Intel-
ligence (AAAI-96), pages 261–271. American Association for Artifi-
cial Intelligence, 1996.

[Hoffman 03] Jorg Hoffman. Utilizing problem structure in planning, volume
2854/2003 of Lecture Notes in Computer Science, chapitre Chap-
ter 6: The AIPS-2000 Competition, pages 107–112. Springer
Berlin/Heidelberg, 2003.

[Jensen 00] R. M. Jensen & M. M. Veloso. OBDD-based Universal Planning
for Synchronized Agents in Non-Deterministic Domains. Journal of
Artificial Intelligence Research, vol. 13, pages 189–226, 2000.

[Kambhampati 89] Subbarao Kambhampati. Flexible Reuse and Modification in Hierar-
chical Planning: A Validation Structure Based Approach. PhD thesis,
University of Maryland, College Park, MD, October 1989.

[Kambhampati 92] Subbarao Kambhampati & James A. Hendler. A validation-structure-
based theory of plan modification and reuse. Artificial Intelligence,
vol. 55, no. 2-3, pages 193–258, June 1992.

[Kambhampati 94] Subbarao Kambhampati & Smadar Kedar. A unified framework for
explanation-based generalization of partially ordered and partially
instantiated plans. Artificial Intelligence, vol. 67, no. 1, pages 29–70,
1994.

[Katukam 94] Suresh Katukam & Subbarao Kambhampati. Learning Explanation-
Based Search Control Rules for Partial Order Planning. In Proceed-
ings of the Eleventh National Conference on Artificial Intelligence
(AAAI-94), volume 1, pages 582–587, 1994.

[Kautz 86] Henry A. Kautz & James F. Allen. Generalized Plan Recognition.
In Proceedings of the fifth National Conference on Artificial Intel-
ligence (AAAI-86), pages 32–37, Philadelphia, PA, August 1986.
AAAI press, Menlo Park, CA.

139

[Khardon 99] Roni Khardon. Learning Action Strategies for Planning Domains.
Artificial Intelligence, vol. 113, no. 1-2, pages 125–148, 1999.

[Knoblock 90] Craig A. Knoblock. Learning Abstraction Hierarchies for Problem
Solving. In Thomas Dietterich & William Swartout, editeurs, Pro-
ceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90), Menlo Park, California, 1990. AAAI Press.

[Knoblock 94] Craig A. Knoblock. Automatically Generating Abstractions for Plan-
ning. Artificial Intelligence, vol. 68, no. 2, pages 243–302, 1994.

[Korf 85] Richard E. Korf. Macro-Operators: A Weak Method for Learning.
Artificial Intelligence, vol. 26, no. 1, pages 35–78, April 1985.

[Lau 01] Tessa Lau. Programming by Demonstration: a Machine Learning
Approach. PhD thesis, University of Washington, Seattle, 2001.

[Leake 96] David B. Leake, editeur. Case-based reasoning: experiences, lessons,
and future directions. AAAI Press/The MIT Press, May 1996.

[Manna 92] Zohar Manna & Richard Waldinger. Fundamentals of Deductive
Program Synthesis. IEEE Transactions on Software Engeineering,
vol. 18, no. 8, pages 674–704, August 1992.

[McDermott 00] Drew McDermott. The 1998 AI Planning Systems Competition. AI
Magazine, vol. 21, no. 2, pages 35–55, Summer 2000.

[Minton 85] Steven Minton. Selectively Generalizing Plans for Problem-Solving.
In Proceedings of the Ninth International Joint Conference on Artifi-
cial Intelligence (IJCAI-85), pages 596–599, Los Angeles, CA, 1985.
Morgan Kaufmann.

[Minton 88a] Steven Minton. Learning effective search control knowledge: An
explanation-based approach. Kluwer Academic Publishers, Boston,
MA, 1988.

[Minton 88b] Steven Minton. Learning Effective Search Control Knowledge: An
Explanation-Based Approach. PhD thesis, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, March 1988.

[Mitchell 97] Tom Mitchell. Machine learning. McGraw Hill, 1997.

140

[Muggleton 91] Stephen Muggleton. Inductive Logic Programming. New Generation
Computing, vol. 8, pages 295–318, 1991.

[Muggleton 94] Stephen Muggleton & Luc De Raedt. Inductive Logic Programming:
Theory and Methods. Journal of Logic Programming, vol. 19/20,
pages 629–679, 1994.

[Pednault 86] Edwin Pednault. Formulating multiagent, dynamic-world problems in
the classical planning framework. In Michael Georgeoff & Amy Lan-
sky, editeurs, Reasoning about actions and plans: Proceedings of the
1986 workshop, pages 47–82, Los Altos, California, 1986. Morgan
Kaufmann.

[Pednault 88] Edwin Pednault. Synthesizing plans that contain actions with context-
dependent effects. Computational Intelligence, vol. 4, no. 4, pages
356–372, 1988.

[Penberthy 92] J. Scott Penberthy & Daniel Weld. UCPOP: A sound, complete,
partial-order planner for ADL. In Bernhard Nebel, Charles Rich &
William Swartout, editeurs, proceedings of the third international con-
ference on knowledge representation and reasoning (KR-92), pages
103–114, Cambridge, MA, October 1992. Morgan Kaufmann.

[Pyeatt 98] Larry D. Pyeatt & Adele E. Howe. Decision Tree Function Approx-
imation in Reinforcement Learning. Rapport technique CS-98-112,
Colorado State University, Fort Collins, Colorado, 1998.

[Regnier 91] Pierre Regnier & Bernard Fade. Complete determination of paral-
lel actions and temporal optimization in linear plans of action. In
Joachim Hertzberg, editeur, European Workshop on Planning, vol-
ume 522 of Lecture Notes in Artificial Intelligence, pages 100–111.
Springer-Verlag, Sankt Augustin, Germany, March 1991.

[Rich 92] Charles Rich & Richard C. Waters. Approaches to Automatic Pro-
gramming. Rapport technique 92-04, Mitsubishi Electric Research
Laboratories Cambridge Research Center, Cambridge, Massachusetts,
July 1992.

[Sacerdoti 74] Earl D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence, vol. 5, no. 2, pages 115–135, 1974.

141

[Schmid 00] Ute Schmid & Fritz Wysotzki. Applying Inductive Program Synthesis
to Macro Learning. In Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning and Scheduling (AIPS-2000),
pages 371–378, Breckenridge, Colorado, April 2000.

[Schmid 01] Ute Schmid. Inductive Synthesis of Functional Programs. PhD thesis,
Technische Universität Berlin, Berlin, Germany, May 2001.

[Schoppers 87] Marcel J. Schoppers. Universal Plans for Reactive Robots in Un-
predictable Environments. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence (IJCAI-1987), pages 1039–
1046, Milan, Italy, 1987.

[Shavlik 90] Jude W. Shavlik. Acquiring recursive and iterative concepts with
explanation-based learning. Machine Learning, vol. 5, pages 39–50,
1990.

[Shell 89] P. Shell & Jaime Carbonell. Towards a general framework for com-
posing disjunctive and iterative macro-operators. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), Detroit, MI, 1989.

[Smith 91] D. R. Smith. KIDS: A knowledge-based software development system.
In M. R. Lowry & R. D. McCartney, editeurs, Automating Software
Design. AAAI press, 1991.

[Smith 93] David E. Smith & Mark A. Peot. Postponing Threats in Partial-Order
Planning. In Proceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI-93), pages 500–507, Washington, D.C.,
1993. AAAI Press/MIT Press.

[Smith 96] David E. Smith & Mark A. Peot. Suspending Recursion in Causal-
Link Planning. In B. Drabble, editeur, Proceedings of the third
international conference on Artificial Intelligence Planning Systems
(AIPS-96, pages 182–190, Edinburgh, Scotland, May 1996.

[Stefik 81] Mark Stefik. Planning and Metaplanning. In Nils J. Nilsson & Bon-
nie Lynn Webber, editeurs, Readings in Artificial Intelligence, pages
272–286. Tioga Publishing, Palo Alto, CA, 1981.

142

[Uther 00] William T. B. Uther & Manuela Veloso. The Lumberjack Algorithm
for Learning Linked Decision Forests. In Symposium on Abstraction,
Reformulation and Approximation (SARA-2000), Lecture Notes on
Artificial Intelligence, pages 219–232. Springer Verlag, 2000.

[Veloso 90] Manuela Veloso, Alicia Pérez & Jaime Carbonell. Nonlinear plan-
ning with parallel resource allocation. In Proceedings of the DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and
Control, pages 207–212, San Diego, CA, November 1990. Morgan
Kaufmann.

[Veloso 94a] Manuela M. Veloso. Planning and learning by analogical reasoning.
Springer Verlag, December 1994.

[Veloso 94b] Manuela M. Veloso. PRODIGY/ANALOGY: Analogical Reasoning in
General Problem Solving. In S. Wess, K.-D. Althoff & M. Richter,
editeurs, Topics on Case-Based Reasoning, pages 33–50. Springer
Verlag, 1994.

[Weld 94] Daniel Weld. An Introduction to Least Commitment Planning. AI
Magazine, vol. 15, no. 4, pages 27–61, Winter 1994.

[Wilensky 81] Robert Wilensky. A model for planning in complex situations. Cogni-
tion and Brain Theory, vol. IV, no. 4, Fall 1981.

[Williams 88] Robert S. Williams. Learning to program by examining and mod-
ifying cases. In John Laird, editeur, Proceedings of the fifth inter-
national conference on machine learning (ICML-88). Morgan Kauf-
mann, 1988.

[Winner 02] Elly Winner & Manuela Veloso. Analyzing Plans with Conditional
Effects. In Proceedings of the Sixth International Conference on Ar-
tificial Intelligence Planning and Scheduling (AIPS-02), pages 271 –
280, Toulouse, France, April 2002.

[Winner 03] Elly Winner & Manuela Veloso. DISTILL: Learning Domain-Specific
Planners by Example. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003), Washington, D.C.,
August 2003.

[Winograd 72] Terry Winograd. Understanding natural language. Academic Press,
1972.

143

