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Abstract

Probabilistic quorum systems can tolerate a larger fraatibfaults than can traditional (strict)
guorum systems, while guaranteeing consistency with aitrarity high probability for a system
with enough replicas. However, they are hampered in thad,dirict quorum systems, they allow
for Byzantine-faulty servers to collude maximally to pravidcorrect values to clients. We present
a technique based amrite markersthat prevents faulty servers from colluding unless theyadire
also selected to be participants in the same update opesatide show that write markers increase
the maximum fraction of faults that can be tolerated ta n/2 from b < n/2.62, wheren is the
total number of replicas, for probabilistic masking quorsystems (compared with < n/4 for
strict masking quorum systems) and#o< n/2.62 from b < n/3.15 for probabilistic opaque
quorum systems (compared with< n/5 for strict opaque quorum systems). In addition, with
write markers, probabilistic masking quorums no longeunexwrite quorums of large or maximal
size in order to tolerate the maximum fraction of faults. Vésatibe an implementation of write
markers that is effective even if Byzantine clients colludéhvaulty servers.
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1 Introduction

Many modern Byzantine-fault-tolerant protocols rely on Bytige quorum systems [11] in order
to tolerate the arbitrary failure of a subset of their regdicsome, e.g., [12, 4, 6], rely on masking
quorum systems [11], while others, e.g., [1, 14], rely onqueaquorum systems [11]. A quo-
rum system is simply a set of quorums (sets) of servers. Redavete operations need involve
only quorums, instead of all servers. Therefore, some semay be unaware of a recently writ-
ten value. Consistency constraints dictate that all quorimessect such that enough non-faulty
servers are collectively aware of all previously writteriues to ensure that these values are not
lost or changed.

The consistency constraints limit the maximum number oft$a{s) in relation to the total
number of replicasr() that the system can tolerate. This is unfortunate becallselse being
equal, it is desirable for the system to be able to tolerasegel number of faults as such a system
is therefore more resilient to faults. In addition, due te tonstraints, the size of quorums is
typically proportional to the number of faults that can bletated—quorums can be made smaller
to an extent, but then the systems are restricted to tabgrégwer faults. This is again unfortunate,
because, all else being equal, it is desirable for the sizpiofums to be smaller, as this implies
lower communication and redundant storage/computatiguirements.

Probabilistic quorum systems (PQS) [13, 16] differ frondtt@nal (strict) quorum systems in
two essential ways. First, in PQS, a quorum for an operati@elected probabilistically, or, more
specifically, from an access set [3] that is itself selecterbeding to a probability distribution
known as araccess strategyin this paper, we utilize the access strategy that seleety @ccess
set uniformly at random [16]; if an access set is the sameaszequorum, then this implies that
guorums are selected uniformly at random (c.f., [13]). ®€¢ahe consistency constraints need
only account for the expected intersection of quorums, wpesbabilities are taken with respect to
the access strategy from which each access set is choseadmd accounting for every allowable
combination of quorums. Because of this, given the acces®gy, the consistency constraints are
met with some probability for a given system.

PQS can guarantee consistency with what we aathpelling probability i.e., with a proba-
bility that the constraints are met that can be made arbjtdaigh by considering a large enough
n, assuming that the fraction of faults/) is not too large; such a system can tolerate the same
fraction—and hence a correspondingly large number—otda(This is described more formally
in Section 3.) Application domains that could give rise tetsyns with large: include sensor
networks and edge services. Because the consistency dotssténa written for the expected case,
they can be relaxed to varying degrees compared with thosg&iof quorum systems, yielding
benefits in terms of the maximum fraction of faults and/oesinf quorums that still guarantee
consistency with compelling probability. In addition, fom access strategy in which read quorums
are selected uniformly at random, the maximum fraction oft§athat allows for consistency with
compelling probability is independent of the size of readrgms; therefore, an arbitrarily high
probability of consistency can be achieved even if read wugrare a relatively small fraction of
n.

However, the benefits of probabilistic quorum systems inBjieantine fault model [7] have
been limited since, like strict quorum systems, PQS mustvafbr Byzantine-faulty servers to
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collude maximally to provide incorrect values to clienthisigives the faulty servers and clients
an advantage over the non-faulty servers and clients, véreinot assumed to know the identities
of the other non-faulty servers or clients. One impact o$ tdlvantage is that all of the faulty
servers in a read operation may vote for the same incorretdrkiof write operations, whereas
non-faulty servers together vote for a previous write ohtheéy were all participants in that write
operation.

In this paper, we presenirite markers a way for probabilistic quorum systems to limit the
extent to which faulty servers can collude. At a high levelirde marker is a verifiable data item
that is written together with the data value and verified miyia read; it identifies the servers in
the write access set and is valid only if the choice of thiseascset follows the access strategy.
Since no servers outside of the write access set should be/@avin the write operation, write
markers can be used to prevent the faulty servers that aselemted for the write operation from
colluding with those that are. As seen in Table 1, this ersaléeto increase the maximum fraction
of faults that can be tolerated while achieving consistemvitly compelling probability. In addition,
for masking quorum systems that use an access strategy ahwiiery write quorum is chosen
uniformly at random, this also makes this maximum fractindependent of the size of write
quorums. Therefore, an arbitrarily high probability of s@mtency can be achieved with enough
replicas while tolerating a relatively large fraction otifes, despite read and write quorums that
are an arbitrarily small fraction of.

1.1 Our Results

Our primary contributions are (i) the identification and lgee of the benefits of write markers for
probabilistic quorum systems; and (ii) a proposed impletat&n of write markers that handles
the complexities of tolerating Byzantine clients. Write neskbenefit both probabilistic masking
and probabilistic opaque quorum systems by increasing themum fraction of faults that these
systems can tolerate with compelling probability. In aiddif write markers allow probabilistic
masking quorum systems to tolerate this fraction with cdtimgeprobability, even when write
guorums are an arbitrarily small fraction of

Our summary below considers upper boundsban the case where quorums are selected
uniformly at random, e.g., when quorums are the same size@ss sets (which are selected
uniformly at random due to the access strategy, which camfoeeed with our implementation of
write markers). This represents the optimal configuratawmfaximizing the fraction of faults that
can be tolerated with compelling probability. However, analysis later in the paper also more

Table 1: Upper bounds on number of faulisi terms of total replicasnq).

write markers| probabilistic| strict
Masking | n/2 [here] n/2.62[16] | n/4 [11]
Opaque| n/2.62 [here] | n/3.15[16] | n/5 [11]




generally considers cases where faulty clients have somiifigy in their choices of quorums
(i.e., when access sets are larger than quorums).

Probabilistic Masking Quorums. Strict masking quorum systems can tolerate up to n/4
faults wheng = n — b, whereq is the size of each quorum [11]. Here, we show that the use of
write markers allows probabilistic masking quorum systéolerate up td < n/2 faults with
compelling probability without restriction on the minimwsizes of quorums.

The previous best results are as follows. Malkhi et al. [I®)jvsed that probabilistic masking
quorum systems (without write markers) can tolerate ug/fofaults with compelling probability
wheng = w(y/n).t In the case where = n — b, this requiresh < n/3. Using other proof
techniques, the maximum number of faults in this case campeoved tab < n/2.62 [16].

For purposes of direct comparison with write markers, weegaize these results in this paper
to consider the sizes of read quorums; and write quorumsg,;) independently. We show that
q-q does not impact the number of faults that can be tolerateld @ampelling probability when
read quorums are selected uniformly at random, and so therlbaund on the size of quorums
pertains only to write quorums. However, this still mears thvithout write markers, probabilistic
masking quorum systems requirg = n—»bin order to toleraté < n/2.62 faults with compelling
probability. As such, the use of write markers is significeamtmasking quorum systems in that
it increases the maximum fraction of faults that can be &t with compelling probability to
b < n/2, while simultaneously removing the restriction @n in this case.

Probabilistic Opague Quorums. Strict opaque quorum systems can tolerate up ta n/5
faults wheng = n — b, whereq is the size of each quorum [11]. Here, we show that the use
of write markers allows probabilistic opaque quorum systéontolerate up té < n/2.62 faults
with compelling probability whem,; = n — b, without restriction on the minimum size of read
quorums.

The previous best result is that probabilistic opaque gquosystems (without write markers)
can tolerate up té < n/3.15 faults with compelling probability wheag,; = ¢, = n — b [16].

For purposes of direct comparison with write markers, waageae this result in this paper
and show that;,.;, need not impact the number of faults that can be tolerated eampelling
probability, so the lower bound on the size of quorums nedy partain to write quorums. As
such, the use of write markers is significant for opaque quosystems in that it increases the
maximum number of faults that can be tolerated with compelfirobability tob < n/2.62.

2 Related Work

Probabilistic quorum systems were introduced by Malkhilefl8]. Lee and Welch make use
of probabilistic quorum systems in randomized algorithorsdistributed read-write registers [8]
and shared queue data structures [9]. Previously [16], esegoted probabilistic opaque quorum

1w is the little-oh analog of?, i.e., f(n) = w(g(n)) if f(n)/g(n) — co asn — oc.



systems, as well as an access-restriction protocol to@ntbe uniform access strategy while toler-
ating Byzantine-faulty clients and servers. As we descnlibis paper, probabilistic masking [13]
and opaque [16] quorum systems can be improved with writd&enswr

Another implementation of write markers was introduced Hyid\ et al. [2] for purposes
different than ours. Whereas, with the goal of increasingntaximum fraction of faults that
the system can tolerate with compelling probability, we wsike markers to prevent some faulty
servers from colluding, Alvisi et al. use write markers il@r to increase accuracy in estimating
the number of faults present in Byzantine quorum systemsfardentifying faulty servers that
consistently return incorrect results. Because the impheatien of Alvisi et al. does not prevent
faulty servers from lying about the write quorums of whickyttare members, it cannot be used
directly for our purposes. In addition, our implementati®designed to tolerate Byzantine clients,
unlike theirs.

We adapt the access-restriction protocol of probabilgpiaque quorum systems [16] in order
to provide a write marker protocol that tolerates Byzantients. The protocol forces faulty
clients to follow the access strategy (i.e., to choose acsets uniformly at random); otherwise,
non-faulty servers reject the operation being performati@access set. As such, the protocol is
designed to prevent faulty clients from completing opersiat access sets not chosen uniformly
at random. However, because faulty servers could chooseEeptan operation even if the access
set was not chosen at random, we extend the protocol so thafanty clients can also verify
the choices of access sets (during reads)—thereby pregefatilty servers from lying about the
operations of which they were participants.

Probabilistic dissemination quorum systems [13] assurakettte authenticity of a data value
can be determined by a single instance. (As such, dissaomr@iorum systems are limited in the
types of data they can accept.) Because the faulty serverslélbpilistic dissemination quorums
cannot fabricate data values that conflict, such quorunesysare not improved by write markers.

3 Definitions and System Model

For explanatory purposes, we begin with a few definitionse 3ystem consists of a univergé)(
of n servers, and an arbitrary, but bounded, number of clieriterdis a seB C U that represents
the b faulty servers; the composition @ is known by the faulty clients and servers, but not by
the non-faulty ones. The remainimg— b servers, i.e.l/ \ B, are non-faulty. Faulty servers and
clients can behave arbitrarily (i.e., Byzantine faults [Hut, as is typical, are computationally
bound such that, e.g., they cannot subvert the cryptogeagimitives used in the implementation
of write markers. An access set is selected uniformly at@seméor each operation due to the
access strategy. (The mechanism by which this is ensurescisssed later.)

Table 2 shows a terminological classification of servershicivA,,, and A, are write access
sets, and4,, is a read access set. A write that is accepted by a servesyaeandidateat that
server. A candidate isstablishednce it is accepted by all of the non-faulty servers in somtewr
guorum. In opaque quorum systems, different non-faultyessrmay have different candidates
issued by concurrent writes at a given instant. (This mugrbeented by the protocol if a masking
quorum system is used.) Moreover, in either masking or opagorum systems, a faulty server
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may try to forge a concurrent candidate. If there are mdtgmncurrent candidates and one is
established, the others are call@ohflicting A server can try torotefor some candidate if the
server is goarticipantin voting (i.e., if the server is a member of the read accefjs stlowever
a server becomeagualifiedto vote for a particular candidate only if the server is a mends the
write access set selected for the write operation for whigbtes.

A system configurationfor a
probabilistic quorum system spec- _ o
ifies an access strategy, and func- Table 2: Dynamic Classification of Servers

tions for b, a,q, Gray, Gwi, ANA Gy

(wherea,, anda,, are the sizes of _Cass Membership
read and write access sets, respec- qua:!;!eg (:0 vo:e ]forﬁ}”t) ﬁ}”t
tively) in terms of n (and possi- quafine .(.0 vote ford;,) wt
. non-qualified (to vote foA,,;) U\ Ay
bly each other), such that is the o ; :

v f bl ing that non-qualified (to vote foA! ) U\ A,
only free variable—meaning that a . icinant A
numerical value forn results in a o0 tauity participant Ava\ B
numerical value for each parameter. ¢ty participant A.yNB
(E.g., these functions might specify  non-faulty qualified participant (Apg N At) \ B
flxed_r_atlos ofn.)_ A system instance  faulty qualified participant (AgNAy)NB
specifies a positive integer value non-faulty non-qualified participant (A4 \ Awt) \ B
and a configuration. It therefore de- faulty non-qualified participant (Arg\ Awt) N B

termines the numerical values of the
parameter, a,q, ¢rd, Gwi, Gut, aS
well as the probability that the constraints are met. €her probability, ¢, is the probability
that the constraints are not met; it is computed as a functidthe system instance. Changing the
value ofn or the configuration that comprise the system instance Wihge the error probability
in general. Intuitively, if a probabilistic quorum systewndiguration works witlcompelling prob-
ability, then we can create an instance that works with arbitrargi probability by specifying a
large enough value of. Formally, compelling probability for a configuration inngs that,

n—oo = €—0.

As we are concerned with comparisons to strict quorum systera restrict our attention to the
maximum fraction of faults that can be tolerated with coriipglprobability.

We assume that faulty clients seek to maximize the erroralitiby by following specific
strategies [16]. This is a conservative assumption; atctiannot increase—but may decrease—
the probability of error by failing to do so. At a high levehet strategies are as follows: a faulty
client, which may be completely restricted in its choiceéswhen establishing a candidate, writes
the candidate to as few non-faulty servers as possible tomaza the probability that it is observed
by a non-faulty client; and (ii) writes a conflicting candiddo as many servers as will accept it
(i.e., faulty servers plus, in the case of an opaque quorwstesy, any non-faulty server that has
not accepted the established candidate) in order to magithe probability that it is observed.



4  Analysis of Write Markers

Write markers remove the advantage enjoyed by faulty senvetsct and traditional probabilistic
masking and opaque quorum systems, where any faulty geticcan vote for any candidate—
and therefore can collude to have an incorrect, potentiallyicated candidate chosen instead of
the correct candidate. This is because, with write markausty servers must be qualified for the
same candidate in order to vote for it successfully (i.ethatt having the client discard the votes).
This aspect of write markers is summarized in Table 3, whitws the impact of write markers
in terms of the abilities of faulty and non-faulty servervtite for a given candidate.

To abstract away implementation complexities, we analykgpmthetical operational model.
We stress that this is a descriptive simplification; in Secth, we describe an implementation
with its associated complexities. In our model, a clientrsiid an operation to the network. At
this point, the network reliably chooses an access set éoogeration uniformly at random; the
clients and servers have no control over (or prior infororatbout) which access set is, or will
be, selected for a given operation. Furthermore, we pogitthte network issues a verifiable write
marker that identifies the access set it chooses for a wrigeatipn; this write marker becomes
part of the candidate and cannot be forged or modified. (As,s2ach candidate is tied to a single
access set.) The network does not deliver the candidaterterseoutside of the write access
set. A faulty client can instantaneously choose to rednietdelivery of the candidate further, so
that some servers within the write access set do not redagveandidate (though servers are not
restricted from sending the candidate to other servers).

The model guarantees the following properties:

W1. Every candidate has a write marker that identifies thessceet chosen for the write;
W2. A valid write marker implies that the access set was sedbatcording to the access strategy;

W3. Every non-faulty client can verify the validity of a writearker.

When considering a candidate, non-faulty clients and semenify its write marker. Because
of this verification, no non-faulty node will accept a vote éocandidate unless the issuing server
is qualified to vote for the candidate. Since each write acsesis chosen uniformly at random,
the faulty servers that can vote for a candidate, i.e., thigyfgualified servers, are a random subset
of the faulty servers.

Table 3: Ability of a server to vote for a given candidasgtraditional);x (write markers).

Type of server Vote | Abstain
Non-faulty qualified participant °x

Faulty qualified participant °x
Non-faulty non-qualified participant o x
Faulty non-qualified participant ° *




4.1 Consistency Constraints

In a probabilistic quorum system, there is a defined errobaidity for any number of faults.
However, to enable consistency with compelling probabflite., with an error probability that
can be made arbitrarily small by increasimgthere is an upper bound @nn terms ofn. This is
because two consistency constraints must be met in ordear@agtee that operations areserved
consistently in subsequent operations. To be more preeessay that a write operation is observed
in a read operation if it receives at least a threshaddl votes from different servers.

The constraints are as follows. First, a non-faulty cliensmmin expectation, observe the latest
established candidate if such a candidate exists. Secoomhfficting candidate (which occurs
only if there is already an established candidate for theestimestamp) is, in expectation, not
observed by any client (non-faulty or faulty). Togetheegé two requirements also trivially imply
that there is at most one established candidate at a timgat&ation. Informally, because there is
consistency in expectation, the probability of error gaesdro as we increase and so we have
compelling probability.

To ensure that an established candidate is observed intatjpecwe require the following.
Let Q.q represent a read quorum chosen uniformly at random, i.@an@m variable. (Think of
this quorum as one used by a non-faulty client.) Qgt represent a write quorum chosen by a
potentially faulty clientQ.: must be chosen fror,, an access set chosen uniformly at random.
(Think of Q¢ as a quorum used for an established candidate.) Then weeequi

E[[(QaNQw)\ B|] >r (1)

The use of write markers has no impact herefdinN Q.4 N Q) \ B|] because faulty servers are
not part of this expression. However, write markers do enablto set smaller, as the following
shows.

LetA!, andA’, represent read and write access sets, respectively, chogermly at random.
(Think of Al,, as the access set used by a faulty client for a conflictingidate] and oA\’ ; as the
access set used by a faulty client for a read operajion.

Probabilistic Masking Quorums. In a probabilistic masking quorum system, only faulty sesve

may vote for a conflicting candidate (because non-faultyessrdo not accept conflicting candi-

dates). Using write markers, we require that the faulty ifjedl|participants alone cannot produce
sufficient votes for a candidate to be observed in expectatio

r>E[[(Al NA) N B (2)

Contrast this with the consistency requirement for traddigorobabilistic masking quorum sys-
tems [13] (adapted to consider access sets), which reghaethe faulty participants (qualified or
not) cannot produce sufficient votes for a candidate to berobd in expectation:

r>E[|A,N Bl 3)

2In general, it is important for all clients to follow the assestrategy even for read access sets [16], So as to enable
higher-level protocols that employ repair phases withiaadr(e.g., [1]).
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Intuitively, we can set smaller with write markers because the right-hand side pis(Rss than
the right-hand side of (3) i,; < n.

Probabilistic Opaque Quorums. With write markers, we have the benefit, described above for
probabilistic masking quorums, in terms of the number oltjgparticipants that can vote for a can-
didate in expectation. However, opaque quorum systemsaisestonsider the maximum number
of non-faulty qualified participants that vote for the samafticting candidate in expectation. As
such,r is constrained as follows:

r>E[[(Alq NAG) N B[+ E[ (Al NAG) \ B)\ Quel] (4)
Contrast this with the consistency requirement for tradaigrobabilistic opaque quorums [16]:
r>E[A N B[+ E[ ((Ag NAG) \ B) \ Quel] (5)

Again, intuitively, we can set smaller with write markers because the right-hand side)ab(#ss
than the right-hand side of (5) ,, < n.

4.2 Implied Bounds

In this subsection, we prove that probabilistic quorum exyst with write markers can achieve
compelling probability i is not too large, and show that write markers allow probstdiiquorum
systems to tolerate a largémwith compelling probability. We also prove that the boundbois
independent of the sizes of quorums in probabilistic magkuorums systems with write markers
when access sets are no larger than quorums.

Of primary interest are Theorem 4.16 and its corollariesictvldemonstrate the benefits of
write markers for probabilistic masking quorum systems] &heorem 4.21 and its corollaries,
which demonstrate the benefits of write markers for prolstimlopaque quorum systems. They
are based on Theorem 4.5, which presents three basic remunte that together allow a proba-
bilistic quorum system to provide consistency with comipgliprobability. As a preliminary step,
Theorem 4.2 provides a general tool for proving concemmatif a random variable in terms of
asymptotic bounds.

The following theorem is a restatement of the Molloy and Reatement [18, p. 172] of the
McDiarmid Inequality that can be used to show that a randonabke computed on a series of
independent permutations is concentrated about its exfi@ct

Theorem 4.1([18]). LetZ = z(Iy, ..., ;) be a random variable that is a non-negative function
of a seriedl1, ..., I, of independent random variables, where eéthakes on a random per-
mutation (bijection)r : {1,...,|P|} — P of a finite non-empty s&?. Also, for some positive

constantsy and ., let the following conditions hold (wherelif; = 7; then themapping(z, j, m)
indicates thatr;(i) = m):

M1. Swapping the mappings of any two elements in a single pationtr; (i.e., changing
{(@, 4, m), (@', j,m") } to {(i', j, m),(i, j,m") }, wherei # i andm # m' ) changes the value
of Z by at mosb.



M2. IfZ = z(my, ..., m) = x, then there exists a set of at mgstdistinct mappingg (i1, ji, m1),
oo (luay Juw, Myg) } SUCh thatz(ry, ..., m) > « for anyn, ..., m; sharing the same set of
mappings.

If 0 < d <E[Z], then:

Pr(|Z —E(Z]| > d + 605/ iR [Z] + 1) < 4/e(#/5°kE(21)

We simplify Theorem 4.1 to create Theorem 4.2 that deals astymptotic bounds and that
additionally assumes thathas finite range.

Theorem 4.2.LetZ = z(INy,...,MN;) be a random variable that is a non-negative function with
finite range of a seriely, . . ., I, of independent random variables, where eBgliakes on a ran-
dom permutation (bijectiony : {1,...,|P|} — P of a finite non-empty sé&t. If d = w(\/E[Z]),
then,

Pr(|Z —E[Z]| > d) = 2/e“1)  asd — oo.

Proof. First, assume that there exist constantnd . that satisfy M1 and M2 in Theorem 4.1,
respectively. In this case, sinde= w(+/E [Z]), the60d+/uE [Z] + 1 term is negligible, and, for
any constan® < 1/85u and large enough value &f[Z], we have (c.f., [18, p. 81)),

Pr(|Z —E[Z]| > d) < 2/e(P4/E2)
In other words, ifd = w(y/E [Z]), then,
Pr(|Z-E[Z]| > d) =2/e“1) asd — oo.

We now show that there exist satisfactory constansd . We can satisfy M1 by setting

to be the difference between the maximum and minimum val@i¢lseorange ofz; because the
range of thez is finite, 0 can be at most this difference. Next, note that there is a&fmimber of
mappings—specifically, ifP| = s, then there arés mappings. Therefore, we can satisfy M2 by
settingu = Is. O

So that we can apply Theorem 4.2 to bounde present a method for definig,:, ALy, Awt,
Al., andQ.q (whereQ,q represents a read quorum selected by a non-faulty clietejims of inde-
pendent random variablék, 1, 3, andl,, each taking on a random permutatian. . ., |U|} —
U, whereU is the set of allh servers. Fix any set dfservers to constitut®. Then consider the
following definitions:

o DefineAy; = {MMy(1),...,Mi(aw)}-
e DefineAl, = {MNy(1),...,My(aw)}-
e DefineAl, = {M3(1),...,M3(aq)}



o DefineQ.q = {M4(1),...,My(gra)}-

Because each permutation is randomly selected (indepdynadémt), so too aré,, A, ,, A.,, and
Q.q- We defineQ,,; in accordance with Section 3. Specifically, first we choos#héh (i) such
that, (i) € Ay N B. Next, for eachj = 1..a,:, Wwe choosdl, (j) if we have not yet chosef,,
servers andl,(j) € Ay \ (AL, U B). Finally, for eachk = 1..a,:, we choosdl, (k) if we have
not yet chosen,, servers andll, (k) € Ay N (AL, \ B).

DefineMinCorrect to be a random variable for the number of non-faulty servatts thve estab-
lished value based only on the intersection, union, cometegnand difference of some number of
Qras Quts Alyy A, AL, andB. For the purposes of this pap&finCorrect = |(Qa N Qwt) \ B| as
indicated in (1).

Lemma 4.3. LetZ = MinCorrect. LetE [Z] > r andE [Z] — r = w(/E [Z]). Then,
Pr(Z <r)=2/e“W) askE[Z] —r — oo.

Proof. Z can be treated as a function of independent permutationse tdat the range of is
non-negative and finite: [&]. Let d = E [Z] — r; then, by assumption, = w(/E [Z]). We apply
Theorem 4.2, yielding,

Pr(Z <r)

—Pr(Z <E[Z] - d)

=Pr(E[Z] -Z>d)

<Pr(|Z-E[Z][ > d)

=2/eM)  asd — oo

=2/e“W) asE[Z] —r — oo. O

Define MaxConflicting to be a random variable for the number of servers with a caimigjc
response based only on the intersection, union, complemeddifference 0Q,q, Quwt, ALy, Awts
Al., andB. For example: due to (2), in masking quorums with write meskéaxConflicting =
|(Al; N AL,) N BJ; due to (3), in masking quorums without write markekéaxConflicting =
|A’, N BJ; due to (4), in opaque quorums with write markdviaxConflicting = (AL, N AL,) N
Bl + | ((AlyNnAL)\ B) \ Qut|; and, due to (5), in opaque quorums without write markers,
MaxConflicting = |Al; N B| + | (Alg N AL) \ B) \ Qut-

Lemma 4.4. LetZ' = MaxConflicting. Letr > E[Z'] andr — E [Z'] = w(\/E[Z]). Then,
Pr(Z' >r)=2/e“M) asr —E[Z] — oco.

Proof. Z' can be treated as a function of independent permutationte tNat the range of’ is
non-negative and finite: [@]. Letd = r — E [Z]; then, by assumption] = w(/E [Z/]). We

10



apply Theorem 4.2, yielding,

=2/eM) asr —E([Z] — oo. O
Theorem 4.5. A probabilistic quorum system configuration can provide sistency with com-
pelling probability if,
E [MinCorrect] — E [MaxConflicting] > 0,
E [MinCorrect] = w(1) asn — oo, and
E

E [MinCorrect] — E [MaxConflicting] = w(1/E [MinCorrect]).

Proof. Setr as follows,

. E [MinCorrect]| 4+ E [MaxConflicting]

2
Then we can apply Lemma 4.3 Ry(MinCorrect < r) because,

E [MinCorrect| > r, and
E [MinCorrect] — r = w(+/E [MinCorrect]).

Next, note that — E [MaxConflicting] = w(y/E [MinCorrect]). But, sincek [MinCorrect] is grow-
ing faster tharE [MaxConflicting], it is also the case that

r — E [MaxConflicting] = w(+/E [MaxConflicting]). Therefore, we can apply Lemma 4.4 to
Pr(MaxConflicting > r) because

r > [E [MaxConflicting] , and
r — E [MaxConflicting] = w(+/E [MaxConflicting]).

As described in Section 4.1, it is an erroMinCorrect < r or MaxConflicting > r. Therefore, the
error probability,c, goes to zero with increasingbecause,

¢ = Pr(MaxConflicting > r VV MinCorrect < )
Pr(MaxConflicting > r) + Pr(MinCorrect < r)—

Pr(MaxConflicting > A MinCorrect < r)
< Pr(MaxConflicting > r) 4+ Pr(MinCorrect < r)
< Pr(MaxConflicting > r) 4+ Pr(MinCorrect < r)
— 9/ele 1) 4 9 /e(D)

as(E [MinCorrect] — E [MaxConflicting]) /2 — oo

= 2/e@M) 1 9/e@M)  agn — co.

11



Where the second-to-last line follows because,
(E [MinCorrect] — E [MaxConflicting]) /2 = E [MinCorrect] — r = r — E [MaxConflicting] .
And the final line follows because,
(E [MinCorrect] — E [MaxConflicting]) /2 — cocasn — oo. O

The remainder of the section is focused on determining,doheype of probabilistic quorum
system, the upper bound érior which Theorem 4.5 applies.

Lemma 4.6.

a,qb
E[|Al N B = ==, (6)

Proof. A, is selected independently 8. As such|A!,N B|is a hypergeometric random variable
characterized by, , draws from a population of elements containingsuccesses. Therefore, we
use the formula for the expected value of a hypergeometnigaia variable. n

Lemma4.7.

ardawtb

E[I(Aa N Aw) N B =

- (7)
Proof. We calculatet [|(A!, N AL,) N B|] directly as follows. Consider an indicator random vari-
ablelnd,, such thatnd, = 1if u € (A,q N AL,) N B, andind, = 0 otherwise. For each € B,
we havePr[Ind, = 1] = #43»t, sinceA,; and A), are chosen independently. By linearity of
expectation:

EWAQDA%MWBH:§:Pdm%:iuzb<%§?ﬁ. 0
ueB

In the proofs of the following lemmas, we use rules of cowditil expectation (c.f., [17, Section
2.3]). In particular, the following.

Definition 4.8 ([17]). The expressiofi [X | Y] is a random variablef(Y) that takes on the value
E[X | Y =y|whenY = y.

Becausé [X | Y]is arandom variable, i.e., a function, it makes sense toidengs expectation.
Theorem 4.9([17, Theorem 2.7])

EX]=E[E[X | Y]. (8)
Lemma 4.10.

GutT — awtb

E[[Qw \ Bl = (9)

12



Proof. Let MalWrite = |A,; N B|. SinceA,, is selected uniformly at random independently3f
MalWrite is a hypergeometric random variable, characterized hylraws from a population of
elements containing successes; therefore,

Clwtb

E [MalWrite] = :
n

Recall from Section 3, that a write is established once alhefrion-faulty servers in any write
guorum inA,; have accepted it. Therefore,

E[|Qwt \ B| | MalWrite = m] = g, — m.
Applying Theorem 4.9 and linearity of expectation, we hdnag t

E[|Qu: \ Bl]
=E[E[|Quw: \ B| | MalWrite]]
= E [qu: — MalWrite]
= qu — E [MalWrite]

At b

= Quwt — .
n

Lemma 4.11.

E[|(Qua N Qi) \ BJ] = drel4ut = 0uib) (10)

n2

Proof. Q.4 is independent of),; \ B; therefore,|(Q.qa N Quwi) \ B| | |Qw: \ B|] = m is a
conditional hypergeometric random variable charactdrizg ¢, draws from a population of
elements containing: successes, and,

grdmn

Ell(QuanQu)\ Bl | [Que\ Bl =m] == —.

Applying Theorem 4.9, by linearity of expectation we havatth

E[|(Qua N Qwt) \ Bl]
=E[E[(QuaNQut)\ Bl ||Qu\ B ]

=E |7 (|Qu \ B)

QTd(TLth - awtb)
= - . ]
Lemma 4.12.
’ / o At . At é
E [|(Afa N Ab) \ BI) = aya (—n (=) (n)) . (11)
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Proof. We calculateE [|(AL; N AL,) \ BJ| directly as follows. Consider an indicator random vari-
ablelnd,, such thatnd, = 1if u € (Al;NAL,) \ B, andind,, = 0 otherwise. For each € U \ B,
we havePr[Ind, = 1] = “3»t, sinceA;, and 4, are chosen independently. By linearity of
expectation:

E[|(Aly NAL)\ Bl = > Pr(Ind, = 1)
ueU\B

e () (- () (1) :

Lemma 4.13.

B 1A 0 AL) 1 (Qui\ B 2 22 (g = 22 (32 P00 ) g

n

Proof. In calculatingE [|(A.a NAL,) N (Qwt \ B)|], because a faulty client may perfornoth a
write that becomes established and another write that ctsfiiith the first write, we cannot as-
sume thaQ, is selected independently 8f,. LetCl = A, N (Qwt \ B). Then, in particular,
as described in Section 3, such a client seeks to maxifjkaxConflicting], and therefore mini-
mizesE [|Cl|] by choosing the servers f@ \ B from Ay \ (A%, U B) first. Thus,

E[ICH] = max( 0, E[|Qu \ Bl] = E[|Aw \ (AW U B)[ 1)
> E[|Qui \ Bl = E [[Awi \ (Ayy U B)I] . (13)

We calculateE [|Ay: \ (AL, U B)|] directly as follows. For clarity, note that, \ (A, U B) =
(Awt \ AL.) \ B. Consider an indicator random variabtel,, such thaind, = 1if u € (At \
AL)\ B, andind, = 0 otherwise. For each € U \ B, we havePr[Ind, = 1] = 2% since
Al . andA, are independent. By linearity of expectation:

Bl \ (8, UB) = 3 Paind, = 1) = (1) (20200 ) i)
ucU\B

(14)

By (13), (9), and (14), we have that,

BIICH 2 (g0~ 222 ) = 20— aw)n ~8) = g — 22 (04 “= 2000 s

n

SinceA,q is independent ofl, we see thaf(A.a N AL,) N (Qwt \ B)| | |Cl| = cis a hypergeo-
metric random variable characterized &y draws from a population af elements containing
successes, and,

ardc

Ef[(Ara NAG) N (Que \ B)| | [Cl] =] =

14



Applying Theorem 4.9, by linearity of expectation we havatth

E H(Ard N Ai}vt) N (th \ B))H
=E[ (A NAL) N (Que \ B)| | [CIf]

— Qrd _ Qrq
=E e = el (16)
Therefore, by (15) and (16) we have that,
Bl (A 1AW N (Que\ B 2 22 (= 22 (4 E220ZD)

Lemma 4.14.

ay
E[| (Ala AW\ B)\ Quul] < 5 (2a0m” = ntueb — gun® — ajym + ag,b). (17)

Proof. To calculateE [| (AL, N AL,) \ B) \ Qu:|], first note that:

E [ (Al VA \ B) \ Qua]
=E[[(Aa N AW\ Bll = E[[(Alg N AL) N (Que \ Bl (18)

Combining and simplifying equations (11), (12), and (18),0kéain (17). O]

Lemma 4.15. For a probabilistic or opaque masking quorum system conéigan with or without
write markers? let the ratios ofg.q4, qui, awi, anda,q to n be fixed, and lef [MinCorrect] >
E [MaxConflicting]. Then,

E [MinCorrect] = Q(n).
E [MinCorrect] — E [MaxConflicting] = w(y/E [MinCorrect]).
Proof. First, we see from (10) that for the four types of quorums,
E [MinCorrect] = Q(n).

Next, consider thak [MinCorrect] — E [MaxConflicting] = w(1/E [MinCorrect]):

e Masking without write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Q.a N Qwt) \ B|] —E[|AL; N BJ] # 0, and
so (10) and (6) show us th&t{MinCorrect] — E [MaxConflicting] = w(1/E [MinCorrect]).

e Masking with write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Q.a N Quwt) \ B||-E[|(Al; N AL,) N B|] #
0, and so (10) and (7) show us tf&atMinCorrect] —E [MaxConflicting] = w(+/E [MinCorrect]).

3Though not shown here, Lemma 4.15 also applies triviallyissemination quorum systems.
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e Opaque without write markers:
E [MinCorrect] > E [MaxConflicting] impliesSE [|(Q.a N Qwt) \ B|] — (E[|Al; N B|]
+E[| (AlgNAL) \ B) \ Qut|]) # 0, and so (10), (6), and (17) show us tligMinCorrect]—
E [MaxConflicting] = w(1/E [MinCorrect]).

e Opaque with write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Q.a N Quwt) \ Bl|—(E[|(Al; NAL,) N B|]+
El (AL nAL)\ B)\ Qui|]) # 0, and so (10), (7), and (17) show us tigMinCorrect| —

E [MaxConflicting] = w(1/E [MinCorrect]). O

Theorem 4.16. Let the ratio of each o4, .4, Gui, awt, andb to n be fixed. Then a proba-
bilistic masking quorum system configuration employingenmtarkers provides consistency with
compelling probability if,

qrdquwtT
QrdQuwt + QrgQut

b <

Proof. By (10) and (7),
QrdqQuwt™

QrdQuwt + Qrd ot
& E[[(Qua N Que) \ Bl] > E[|(Alg NA,) N BJ]

< E [MinCorrect] > E [MaxConflicting] .

b <

Therefore, we can apply Lemma 4.15 and, thus, Theorem 4.5. n

Corollary 4.17. Let the ratio of each aof,4, a4, qu:, @i, @andb to n be fixed, and let,., = ¢, and
awt = Gut- Then a probabilistic masking quorum system configuratiopleying write markers
provides consistency with compelling probability if,

b<n/2

Note that, with write markers, the size of quorums does ngigich the the maximum fraction of
faults that can be tolerated with compelling probabilityamihquorums are selected uniformly at
random, that is, whea,; = ¢,q anda.,; = qu.

Theorem 4.18.Let the ratio of each of,4, a,4, qut, awt, @andb to n be fixed. Then a probabilistic
masking quorum system configuration without write markersiges consistency with compelling
probability if,
b < Grdquwth .
qrd Gt + Qrgh
Proof. By (10) and (6),
qrdqQuwtT
qrdQwt + Qrgh
< E[[(Qra N Qwi) \ Bl] > E[|A,; N B]

< E [MinCorrect] > E [MaxConflicting] .

b <

Therefore, we can apply Lemma 4.15 and, thus, Theorem 4.5. n
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Corollary 4.19. Let the ratio of each aof,4, a4, qu:, aw:, @andb to n be fixed, and let,., = ¢4 and
awt = Qui- Then a probabilistic masking quorum system configuratiaghout write markers can
provide consistency with compelling probability if,

GuitT

b < )
th—l_n

Corollary 4.20. Let the ratio of each of,4, a4, Gut, aw:, @andb to n be fixed, and let.,.; = ¢4
anda,; = q.,+ = n — b. Then a probabilistic masking quorum system configuratiaghout write
markers can provide consistency with compelling probapbitjt

b < n/2.62.

Theorem 4.21.Let the ratio of each of,4, a,q, Gui, awi, @andb to n be fixed. Then a proba-
bilistic opaque quorum system configuration employing writgkers provides consistency with
compelling probability if,

N(rdQut + QraQui™ + GraQut™ — 20rqQyn)

b <
&wt<ardawt + QTdn)

Proof. By (10), (7), and (17),

n(Ard@uwt + AraGutT + GraGuwiT — 20,40

Aot (Ardut + Gram)
= E[[(Qra N Qui) \ Bl > E[[(Arg VA) N B+ E [ (Alg N A) \ B) \ Quet]
< E [MinCorrect] > E [MaxConflicting] .

b <

Therefore, we can apply Lemma 4.15 and, thus, Theorem 4.5. n

Corollary 4.22. Let the ratio of each of,4, a,4, qut, awt, @andb ton be fixed, and let,, = ¢, and
awt = Qqui- Then a probabilistic opaque quorum system configuratiopleying write markers
can provide consistency with compelling probability if,

GuitT

b < )
th+n

As with traditional probabilistic opaque quorum systerhg, tnaximum fraction of faults that can
be tolerated with compelling probability is independentiaf size of read quorums when quorums
are selected uniformly at random.

Corollary 4.23. Let the ratio of each aof,4, a4, qu:, aw:, @andb to n be fixed, and let,., = ¢4 and
awt = qu = n — b. Then a probabilistic opaque quorum system configuratiopleymg write
markers can provide consistency with compelling probapbitjt

b < n/2.62.
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Theorem 4.24([16]). Let the ratio of each of,4, a,q4, qut, aw:, andb to n be fixed. Then a
probabilistic opaque quorum system configuration withouteumarkers provides consistency with
compelling probability if,

2
(a’rdetn - 2ardawtn + Q21 Qrd + QTdetn)n

b < 2 2
N=Qrg — ArdQoyt + @yt Ord + qrdQuwtT

Corollary 4.25. Let the ratio of each of,.4, a,4, qut, awt, aNdb to n be fixed, and let,.; = ¢.q
anda,; = q.:. Then a probabilistic opaque quorum system without write ex@rkan provide
consistency with compelling probability if,

2
qwtn

b < ——.
qfvt—l—nQ

Corollary 4.26. Let the ratio of each ofi.4, a4, qut, awt, @aNdb to n be fixed, and let,.; = ¢.q
anda,; = q.,. = n — b. Then a probabilistic opaque quorum system without write ®¥@rkan
provide consistency with compelling probability if,

b < n/3.15.

5 Implementation

Our implementation of write markers provides the behav&suaed in Section 4, even with
Byzantine clients, without relying on the network to issuétevmarkers. Specifically, it ensures
properties W1-W3. (Though, technically, it ensures W2 onlyraximately in the case of opaque
guorum systems, in which, as we explain below, a faulty senay be able to create a conflicting
candidate using a write marker for a stale, i.e., out-oégatcess set—but to no advantage.)

Because clients may be faulty, we cannot rely on, e.g., digitgatures issued by them to
implement write markers. Instead, we adapt mechanisms loaotess-restriction protocol for
probabilistic opaque quorum systems [16]. The accessatsh protocol is designed to ensure
that all clients follow the access strategy. It already éembon-faultyservergo verify this before
accepting a write. And, since it is the only way of which we aware for a probabilistic quorum
system to tolerate Byzantine clients when write markers Bbewefit (i.e., when the sizes of write
access sets are restricted), its mechanisms are appeopriat

The preexisting protocol works as follows [16]. From thevees, a client obtains eerifiable
recent valugVRV), the value of which is unpredictable to clients anar fewer servers prior to its
creation. This VRV is used to generate a pseudorandom seguéaccess sets. Since the validity
of a VRV can be verified using only public information, botlaitd the sequence of access sets it
induces can be verified by clients and servers. Non-fauigntd simply choose the next unused
access set for each operatibiowever, a faulty client is motivated to maximize the pralbigb
of error; if the use of the next access set in the sequencendb@saximize the probability of error

4Non-faulty clients should choose a new access set for ea@tatipn to ensure independence from the decisions
of faulty clients [16].
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given the current state of the system (i.e., the candidatespéed by the servers), such a client
may try to skip ahead some number of access sets, or, altelgato wait to use the next access

set until the state of the system changes. If allowed tovioldher strategy, such a client would

circumvent the access strategy because its choice of aseeswuld not be independent from the
state of the system.

Three mechanisms are used together to coerce a faulty itailow the access strategy. First,
the client must perform exponentially increasing work ipestation in order to use later access
sets. As such, a client requires exponentially increasimg tn expectation in order to choose a
later access set. This is implemented by requiring that liratcsolve a client puzzle [5] of the
appropriate difficulty. The solution to the puzzle is, in egfation, difficult to find but easy to
verify. Second, the VRV and sequence of access sets becoaledias the non-faulty servers
accept additional candidates, or as the system otherwigggsses (e.g., as time passes). Non-
faulty servers verify that an access set is still valid, net stale, before accepting it. Thus, system
progress forces the client to start its work anew, and, als, suakes the work solving the puzzle
for any unused access set wasted. Finally, during the tiatdhb client is working, the established
candidate propagates in the background to the non-faultgsethat are non-qualified (c.f., [10]).
This decreases the window of vulnerability in which a giveness set in the sequence is useful
for a conflicting write by making non-qualified servers awdua there is an established candidate
(so that they will not accept a conflicting candidate) and tihe state of the system has progressed
(so that they will invalidate the current VRV if appropriate

The impact of these three mechanisms is that a non-fagltyercan be confident that the
choice of write access set adheres (at least approximatelfje access strategy upon having
verified that the access set is valid, current, and is accoie@dy an appropriate puzzle solution.

For write markers, we extend the protocol so that,

. i i = as seen in Figure Iglients can also perform verifi-
Client %—% - cation. This requires that information about the puz-
So = M % - = zle solution and access set (including the VRV used to
o g \ generate it) be returned by the servers to clients. (As

9 seen in Figure 2 and explained below, this information
Sz < varies across masking and opaque quorum systems.)
Ss3 @ \. In the preexisting access-restriction protocol, this in-

g formation is verified and discarded by each server. For
Sn write markers, this information is instead stored by

each server in the verification stage as a write marker,
Figure 1: Read operation with writeand is sent along with the data value as part of the
markers: messages and stages of verffandidate to the client during any read operation. |If
cation of access set. (Changes in gray.)the server is non-faulty—a fact that a non-faulty client

cannot know—the access set used for the operation
was indeed chosen according to the access strategy bedsuserver performed verification
before accepting the operation. However, because thersmae be faulty, the client performs
verification as well; it verifies that the server is a membethef access set, and that the write
marker is valid. This allows us to guarantee points W1-W3. Ahsfaulty non-qualified servers
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are unable to vote for the candidates for which qualifiedessrgan vote.
Figures 1, 2, 3, and 4 illus-

trate relevant pieces of the pre- Masking write

existing protoCol and our modifi- a access set [3 promise |Y certificate O status
cations for write markers in the ot

context of read and write opera- Opaque write

tions in probabilistic masking and a access set b status

opaque quorum systems. (They soution

ignore details [16] irrelevant to Read

write markers such as the struc- i query il data value

ture of the VRV and how a client N

obtains one, as well as propaga-
tion of established data valuesfFigure 2: Message types. (Write marker emphasized with
The figures highlight that the adgray.)
ditions to the protocol for write
markers involve saving the write markers and returning therolients so that clients can also
verify them.

The differences in the structure of the write marker for ptabstic opaque and masking quo-
rum systems results in subtly different guarantees. Theimter of the section discusses these
details.

5.1 Probabilistic Opaque Quorums

As seen in Figure 2 (messagg, a write marker

cess set was accepted by a faulty server. Initially,

this may appear problematic because it is clear Sn
that, given sufficient time, a faulty client will
eventually be able to solve the puzzle for its preigure 3: Write operation in opaque quorum

ferred access set to use for a conflicting write-systems: messages and stages of verification of
this access set may contain all of the serversvifite marker. (Changes in gray.)

B. In addition, the faulty client can delay the use
of this access set because non-faulty clients will be untablerify whether it was already stale
when it was used.

Fortunately, because non-faulty servers will not accepale £andidate (i.e., a candidate ac-
companied by a stale access set) during a write (Figure 8)faitt that a stale access set may
be accepted by a faulty server does not impact the benefititd vmarkers for opaque quorum

for a probabilistic opaque quorum system con- , a b
sists of the write-access-set identifier (including ~ <"e™

the VRV) and the solution to the puzzle that un- So % N //f
locks the use of this access set. Unlike a non- ¢, g \ 3

faulty server that verifies the access set at the 8 ?

time of use, a non-faulty client cannot verify that S2 < g

an access set was not already stale when the ac- S % \4 <
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systems. In general, consistency requires (4), i.e.,
r>E[[(Alg NAG) N B+ E[[ (Ala NAG) \ B) \ Quel] -

However, only faulty servers will accept a stale candiddieerefore, if the candidate was stale
when written toA’,,, no non-faulty server would have accepted it. Thus, in thse¢the consis-

wt?

tency constraint is equivalent to,
r>E[[(Alq NA) N B

Even if the access set contains all of the faulty servers,B.ec A/ ., then this becomes,

wt?
r>RE[A,NB|].

However, this is (3), the constraint on probabilistic magkguorum systems without write mark-
ers. In effect, the client must either: (i) use a recent axses that is therefore chosen approxi-
mately uniformly at random, and be limited by (4); or (ii),eua stale access set and be limited
by (3). If quorums are the sizes of access sets, both inggsdtiave the same upper boundion
as seen in Corollary 4.19 and Corollary 4.22; otherwise, ayfalient is disadvantaged by using
a stale access set because (3) allows the system to tolevedefamlts and, therefore, to achieve a
lower error probability. (Compare the bounds in Theorem 4@ Theorem 4.21.)

5.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additisoahd of communication (an echo
phase, c.f., [12] or broadcast phase, c.f., [15]) duringenoperations in order to tolerate Byzan-
tine or concurrent clients. This round prevents non-faséigvers from accepting conflicting data
values, as assumed by the consistency constraints for ngagiorum systems. In order to write a
data value, a client must first obtaimaite certificate(a quorum of replies that together attest that
the non-faulty servers will accept no conflicting data valdie contrast to optimistic protocols that
use opague quorum systems, these protocols are pessimistic

This additional round al-
Y P lows us to prevent clients from

Client ‘ £ 8¢ using stale access sets. Specif-
So g M % S° M ﬁ ically, in the request to au-
S @ \ 3 g thorize a data value (message
§ ® \ g « in Figure 2 and Figure 4),
Sz < g = the client sends the access set
Ss § \ < \ 2 identifier (including the VRV),
5 5 o the solution to the puzzle en-
Sn = = abling use of this access set,

and the data value. We require

Figure 4: Write operation in masking quorum systems: messdtjat the certificate come from
and stages of verification of write marker. (Changes in gray.) servers in the access set that is

21



chosen for the write operation.
Each server verifies the VRV and that the puzzle solution lesalse of the indicated access set
before returning authorization (messagén Figure 2 and Figure 4). The servers that contribute
to the certificate all implicitly agree that the access seioisstale, for otherwise they would not
agree to the write. This certificate (sent to each server issagey in Figure 2 and Figure 4) is
stored along with the data value as a write marker. Thuskemh probabilistic opaque quorum
systems, a valid write marker in a probabilistic maskingrgnosystem implies that a stale access
set was not used. The reading client verifies the certificatarfied in message in Figure 1 and
Figure 2) before accepting a vote for a candidate. Becauséiagwlient will be unable to obtain
a certificate for a stale access set, votes for such a caadidthtoe rejected by reading clients.
Therefore, the analysis in Section 4 applies without aolditi complications.

6 Conclusion

We have presented write markers, a way to: (i) increase th&beu of faults that probabilistic
guorum systems can tolerate with compelling probabilityd &ii) allow probabilistic masking
guorum systems to tolerate this number independent of #eeofiwrite quorums. Write markers
achieve this by limiting the extent to which Byzantine-fsudervers may collude to provide incor-
rect values to clients. We have presented an implementatiorarkers that is effective even while
tolerating Byzantine-faulty clients and servers.
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