
Write Markers for
Probabilistic Quorum Systems

Michael G. Merideth and Michael K. Reiter
November 2007

CMU-CS-07-165

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also appears as Institute for Software Research
Technical Report CMU-ISRI-07-118

Abstract

Probabilistic quorum systems can tolerate a larger fraction of faults than can traditional (strict)
quorum systems, while guaranteeing consistency with an arbitrarily high probability for a system
with enough replicas. However, they are hampered in that, like strict quorum systems, they allow
for Byzantine-faulty servers to collude maximally to provide incorrect values to clients. We present
a technique based onwrite markersthat prevents faulty servers from colluding unless they areall
also selected to be participants in the same update operations. We show that write markers increase
the maximum fraction of faults that can be tolerated tob < n/2 from b < n/2.62, wheren is the
total number of replicas, for probabilistic masking quorumsystems (compared withb < n/4 for
strict masking quorum systems) and tob < n/2.62 from b < n/3.15 for probabilistic opaque
quorum systems (compared withb < n/5 for strict opaque quorum systems). In addition, with
write markers, probabilistic masking quorums no longer require write quorums of large or maximal
size in order to tolerate the maximum fraction of faults. We describe an implementation of write
markers that is effective even if Byzantine clients collude with faulty servers.

This work was partially supported by NSF grant CCF-0424422.

Keywords: Distributed systems, Byzantine fault tolerance, probabilistic quorum systems

1 Introduction

Many modern Byzantine-fault-tolerant protocols rely on Byzantine quorum systems [11] in order
to tolerate the arbitrary failure of a subset of their replicas; some, e.g., [12, 4, 6], rely on masking
quorum systems [11], while others, e.g., [1, 14], rely on opaque quorum systems [11]. A quo-
rum system is simply a set of quorums (sets) of servers. Read and write operations need involve
only quorums, instead of all servers. Therefore, some servers may be unaware of a recently writ-
ten value. Consistency constraints dictate that all quorumsintersect such that enough non-faulty
servers are collectively aware of all previously written values to ensure that these values are not
lost or changed.

The consistency constraints limit the maximum number of faults (b) in relation to the total
number of replicas (n) that the system can tolerate. This is unfortunate because,all else being
equal, it is desirable for the system to be able to tolerate a larger number of faults as such a system
is therefore more resilient to faults. In addition, due to the constraints, the size of quorums is
typically proportional to the number of faults that can be tolerated—quorums can be made smaller
to an extent, but then the systems are restricted to tolerating fewer faults. This is again unfortunate,
because, all else being equal, it is desirable for the size ofquorums to be smaller, as this implies
lower communication and redundant storage/computation requirements.

Probabilistic quorum systems (PQS) [13, 16] differ from traditional (strict) quorum systems in
two essential ways. First, in PQS, a quorum for an operation is selected probabilistically, or, more
specifically, from an access set [3] that is itself selected according to a probability distribution
known as anaccess strategy. In this paper, we utilize the access strategy that selects every access
set uniformly at random [16]; if an access set is the same sizeas a quorum, then this implies that
quorums are selected uniformly at random (c.f., [13]). Second, the consistency constraints need
only account for the expected intersection of quorums, where probabilities are taken with respect to
the access strategy from which each access set is chosen, instead of accounting for every allowable
combination of quorums. Because of this, given the access strategy, the consistency constraints are
met with some probability for a given system.

PQS can guarantee consistency with what we callcompelling probability, i.e., with a proba-
bility that the constraints are met that can be made arbitrarily high by considering a large enough
n, assuming that the fraction of faults (b/n) is not too large; such a system can tolerate the same
fraction—and hence a correspondingly large number—of faults. (This is described more formally
in Section 3.) Application domains that could give rise to systems with largen include sensor
networks and edge services. Because the consistency constraints are written for the expected case,
they can be relaxed to varying degrees compared with those ofstrict quorum systems, yielding
benefits in terms of the maximum fraction of faults and/or sizes of quorums that still guarantee
consistency with compelling probability. In addition, foran access strategy in which read quorums
are selected uniformly at random, the maximum fraction of faults that allows for consistency with
compelling probability is independent of the size of read quorums; therefore, an arbitrarily high
probability of consistency can be achieved even if read quorums are a relatively small fraction of
n.

However, the benefits of probabilistic quorum systems in theByzantine fault model [7] have
been limited since, like strict quorum systems, PQS must allow for Byzantine-faulty servers to

1

collude maximally to provide incorrect values to clients. This gives the faulty servers and clients
an advantage over the non-faulty servers and clients, whichare not assumed to know the identities
of the other non-faulty servers or clients. One impact of this advantage is that all of the faulty
servers in a read operation may vote for the same incorrect history of write operations, whereas
non-faulty servers together vote for a previous write only if they were all participants in that write
operation.

In this paper, we presentwrite markers, a way for probabilistic quorum systems to limit the
extent to which faulty servers can collude. At a high level, awrite marker is a verifiable data item
that is written together with the data value and verified during a read; it identifies the servers in
the write access set and is valid only if the choice of this access set follows the access strategy.
Since no servers outside of the write access set should be involved in the write operation, write
markers can be used to prevent the faulty servers that are notselected for the write operation from
colluding with those that are. As seen in Table 1, this enables us to increase the maximum fraction
of faults that can be tolerated while achieving consistencywith compelling probability. In addition,
for masking quorum systems that use an access strategy in which every write quorum is chosen
uniformly at random, this also makes this maximum fraction independent of the size of write
quorums. Therefore, an arbitrarily high probability of consistency can be achieved with enough
replicas while tolerating a relatively large fraction of faults, despite read and write quorums that
are an arbitrarily small fraction ofn.

1.1 Our Results

Our primary contributions are (i) the identification and analysis of the benefits of write markers for
probabilistic quorum systems; and (ii) a proposed implementation of write markers that handles
the complexities of tolerating Byzantine clients. Write markers benefit both probabilistic masking
and probabilistic opaque quorum systems by increasing the maximum fraction of faults that these
systems can tolerate with compelling probability. In addition, write markers allow probabilistic
masking quorum systems to tolerate this fraction with compelling probability, even when write
quorums are an arbitrarily small fraction ofn.

Our summary below considers upper bounds onb in the case where quorums are selected
uniformly at random, e.g., when quorums are the same size as access sets (which are selected
uniformly at random due to the access strategy, which can be enforced with our implementation of
write markers). This represents the optimal configuration for maximizing the fraction of faults that
can be tolerated with compelling probability. However, ouranalysis later in the paper also more

Table 1: Upper bounds on number of faults (b) in terms of total replicas (n).

write markers probabilistic strict
Masking n/2 [here] n/2.62 [16] n/4 [11]
Opaque n/2.62 [here] n/3.15 [16] n/5 [11]

2

generally considers cases where faulty clients have some flexibility in their choices of quorums
(i.e., when access sets are larger than quorums).

Probabilistic Masking Quorums. Strict masking quorum systems can tolerate up tob < n/4
faults whenq = n − b, whereq is the size of each quorum [11]. Here, we show that the use of
write markers allows probabilistic masking quorum systemsto tolerate up tob < n/2 faults with
compelling probability without restriction on the minimumsizes of quorums.

The previous best results are as follows. Malkhi et al. [13] showed that probabilistic masking
quorum systems (without write markers) can tolerate up toq/2 faults with compelling probability
when q = ω(

√
n).1 In the case whereq = n − b, this requiresb < n/3. Using other proof

techniques, the maximum number of faults in this case can be improved tob < n/2.62 [16].
For purposes of direct comparison with write markers, we generalize these results in this paper

to consider the sizes of read quorums (qrd) and write quorums (qwt) independently. We show that
qrd does not impact the number of faults that can be tolerated with compelling probability when
read quorums are selected uniformly at random, and so the lower bound on the size of quorums
pertains only to write quorums. However, this still means that, without write markers, probabilistic
masking quorum systems requireqwt = n−b in order to tolerateb < n/2.62 faults with compelling
probability. As such, the use of write markers is significantfor masking quorum systems in that
it increases the maximum fraction of faults that can be tolerated with compelling probability to
b < n/2, while simultaneously removing the restriction onqwt in this case.

Probabilistic Opaque Quorums. Strict opaque quorum systems can tolerate up tob < n/5
faults whenq = n − b, whereq is the size of each quorum [11]. Here, we show that the use
of write markers allows probabilistic opaque quorum systems to tolerate up tob < n/2.62 faults
with compelling probability whenqwt = n − b, without restriction on the minimum size of read
quorums.

The previous best result is that probabilistic opaque quorum systems (without write markers)
can tolerate up tob < n/3.15 faults with compelling probability whenqwt = qrd = n − b [16].

For purposes of direct comparison with write markers, we reanalyze this result in this paper
and show thatqrd need not impact the number of faults that can be tolerated with compelling
probability, so the lower bound on the size of quorums need only pertain to write quorums. As
such, the use of write markers is significant for opaque quorum systems in that it increases the
maximum number of faults that can be tolerated with compelling probability tob < n/2.62.

2 Related Work

Probabilistic quorum systems were introduced by Malkhi et al. [13]. Lee and Welch make use
of probabilistic quorum systems in randomized algorithms for distributed read-write registers [8]
and shared queue data structures [9]. Previously [16], we presented probabilistic opaque quorum

1ω is the little-oh analog ofΩ, i.e.,f(n) = ω(g(n)) if f(n)/g(n) → ∞ asn → ∞.

3

systems, as well as an access-restriction protocol to enforce the uniform access strategy while toler-
ating Byzantine-faulty clients and servers. As we describe in this paper, probabilistic masking [13]
and opaque [16] quorum systems can be improved with write markers.

Another implementation of write markers was introduced by Alvisi et al. [2] for purposes
different than ours. Whereas, with the goal of increasing themaximum fraction of faults that
the system can tolerate with compelling probability, we usewrite markers to prevent some faulty
servers from colluding, Alvisi et al. use write markers in order to increase accuracy in estimating
the number of faults present in Byzantine quorum systems, andfor identifying faulty servers that
consistently return incorrect results. Because the implementation of Alvisi et al. does not prevent
faulty servers from lying about the write quorums of which they are members, it cannot be used
directly for our purposes. In addition, our implementationis designed to tolerate Byzantine clients,
unlike theirs.

We adapt the access-restriction protocol of probabilisticopaque quorum systems [16] in order
to provide a write marker protocol that tolerates Byzantine clients. The protocol forces faulty
clients to follow the access strategy (i.e., to choose access sets uniformly at random); otherwise,
non-faulty servers reject the operation being performed atthe access set. As such, the protocol is
designed to prevent faulty clients from completing operations at access sets not chosen uniformly
at random. However, because faulty servers could choose to accept an operation even if the access
set was not chosen at random, we extend the protocol so that non-faulty clients can also verify
the choices of access sets (during reads)—thereby preventing faulty servers from lying about the
operations of which they were participants.

Probabilistic dissemination quorum systems [13] assume that the authenticity of a data value
can be determined by a single instance. (As such, dissemination quorum systems are limited in the
types of data they can accept.) Because the faulty servers of probabilistic dissemination quorums
cannot fabricate data values that conflict, such quorum systems are not improved by write markers.

3 Definitions and System Model

For explanatory purposes, we begin with a few definitions. The system consists of a universe (U)
of n servers, and an arbitrary, but bounded, number of clients. There is a setB ⊂ U that represents
the b faulty servers; the composition ofB is known by the faulty clients and servers, but not by
the non-faulty ones. The remainingn − b servers, i.e.,U \ B, are non-faulty. Faulty servers and
clients can behave arbitrarily (i.e., Byzantine faults [7]), but, as is typical, are computationally
bound such that, e.g., they cannot subvert the cryptographic primitives used in the implementation
of write markers. An access set is selected uniformly at random for each operation due to the
access strategy. (The mechanism by which this is ensured is discussed later.)

Table 2 shows a terminological classification of servers in whichAwt andA′
wt are write access

sets, andArd is a read access set. A write that is accepted by a server yields acandidateat that
server. A candidate isestablishedonce it is accepted by all of the non-faulty servers in some write
quorum. In opaque quorum systems, different non-faulty servers may have different candidates
issued by concurrent writes at a given instant. (This must beprevented by the protocol if a masking
quorum system is used.) Moreover, in either masking or opaque quorum systems, a faulty server

4

may try to forge a concurrent candidate. If there are multiple concurrent candidates and one is
established, the others are calledconflicting. A server can try tovote for some candidate if the
server is aparticipant in voting (i.e., if the server is a member of the read access set). However
a server becomesqualifiedto vote for a particular candidate only if the server is a member of the
write access set selected for the write operation for which it votes.

Table 2: Dynamic Classification of Servers

Class Membership
qualified (to vote forAwt) Awt

qualified (to vote forA′
wt) A′

wt

non-qualified (to vote forAwt) U \ Awt

non-qualified (to vote forA′
wt) U \ A′

wt

participant Ard

non-faulty participant Ard \ B
faulty participant Ard ∩ B
non-faulty qualified participant (Ard ∩ Awt) \ B
faulty qualified participant (Ard ∩ Awt) ∩ B
non-faulty non-qualified participant (Ard \ Awt) \ B
faulty non-qualified participant (Ard \ Awt) ∩ B

A system configurationfor a
probabilistic quorum system spec-
ifies an access strategy, and func-
tions for b, ard, qrd, awt, and qwt

(whereard andawt are the sizes of
read and write access sets, respec-
tively) in terms of n (and possi-
bly each other), such thatn is the
only free variable—meaning that a
numerical value forn results in a
numerical value for each parameter.
(E.g., these functions might specify
fixed ratios ofn.) A system instance
specifies a positive integer valuen
and a configuration. It therefore de-
termines the numerical values of the
parametersb, ard, qrd, awt, qwt, as
well as the probability that the constraints are met. Theerror probability, ǫ, is the probability
that the constraints are not met; it is computed as a functionof the system instance. Changing the
value ofn or the configuration that comprise the system instance will change the error probability
in general. Intuitively, if a probabilistic quorum system configuration works withcompelling prob-
ability, then we can create an instance that works with arbitrarily high probability by specifying a
large enough value ofn. Formally, compelling probability for a configuration implies that,

n → ∞ ⇒ ǫ → 0.

As we are concerned with comparisons to strict quorum systems, we restrict our attention to the
maximum fraction of faults that can be tolerated with compelling probability.

We assume that faulty clients seek to maximize the error probability by following specific
strategies [16]. This is a conservative assumption; a client cannot increase—but may decrease—
the probability of error by failing to do so. At a high level, the strategies are as follows: a faulty
client, which may be completely restricted in its choices: (i) when establishing a candidate, writes
the candidate to as few non-faulty servers as possible to minimize the probability that it is observed
by a non-faulty client; and (ii) writes a conflicting candidate to as many servers as will accept it
(i.e., faulty servers plus, in the case of an opaque quorum system, any non-faulty server that has
not accepted the established candidate) in order to maximize the probability that it is observed.

5

4 Analysis of Write Markers

Write markers remove the advantage enjoyed by faulty serversin strict and traditional probabilistic
masking and opaque quorum systems, where any faulty participant can vote for any candidate—
and therefore can collude to have an incorrect, potentiallyfabricated candidate chosen instead of
the correct candidate. This is because, with write markers,faulty servers must be qualified for the
same candidate in order to vote for it successfully (i.e., without having the client discard the votes).
This aspect of write markers is summarized in Table 3, which shows the impact of write markers
in terms of the abilities of faulty and non-faulty servers tovote for a given candidate.

To abstract away implementation complexities, we analyze ahypothetical operational model.
We stress that this is a descriptive simplification; in Section 5, we describe an implementation
with its associated complexities. In our model, a client submits an operation to the network. At
this point, the network reliably chooses an access set for the operation uniformly at random; the
clients and servers have no control over (or prior information about) which access set is, or will
be, selected for a given operation. Furthermore, we posit that the network issues a verifiable write
marker that identifies the access set it chooses for a write operation; this write marker becomes
part of the candidate and cannot be forged or modified. (As such, each candidate is tied to a single
access set.) The network does not deliver the candidate to servers outside of the write access
set. A faulty client can instantaneously choose to restrictthe delivery of the candidate further, so
that some servers within the write access set do not receive the candidate (though servers are not
restricted from sending the candidate to other servers).

The model guarantees the following properties:

W1. Every candidate has a write marker that identifies the access set chosen for the write;

W2. A valid write marker implies that the access set was selected according to the access strategy;

W3. Every non-faulty client can verify the validity of a writemarker.

When considering a candidate, non-faulty clients and servers verify its write marker. Because
of this verification, no non-faulty node will accept a vote for a candidate unless the issuing server
is qualified to vote for the candidate. Since each write access set is chosen uniformly at random,
the faulty servers that can vote for a candidate, i.e., the faulty qualified servers, are a random subset
of the faulty servers.

Table 3: Ability of a server to vote for a given candidate:• (traditional);⋆ (write markers).

Type of server Vote Abstain
Non-faulty qualified participant • ⋆
Faulty qualified participant • ⋆
Non-faulty non-qualified participant • ⋆
Faulty non-qualified participant • ⋆

6

4.1 Consistency Constraints

In a probabilistic quorum system, there is a defined error probability for any number of faults.
However, to enable consistency with compelling probability (i.e., with an error probability that
can be made arbitrarily small by increasingn) there is an upper bound onb in terms ofn. This is
because two consistency constraints must be met in order to guarantee that operations areobserved
consistently in subsequent operations. To be more precise,we say that a write operation is observed
in a read operation if it receives at least a thresholdr of votes from different servers.

The constraints are as follows. First, a non-faulty client must, in expectation, observe the latest
established candidate if such a candidate exists. Second, aconflicting candidate (which occurs
only if there is already an established candidate for the same timestamp) is, in expectation, not
observed by any client (non-faulty or faulty). Together, these two requirements also trivially imply
that there is at most one established candidate at a time in expectation. Informally, because there is
consistency in expectation, the probability of error goes to zero as we increasen, and so we have
compelling probability.

To ensure that an established candidate is observed in expectation we require the following.
Let Qrd represent a read quorum chosen uniformly at random, i.e., a random variable. (Think of
this quorum as one used by a non-faulty client.) LetQwt represent a write quorum chosen by a
potentially faulty client;Qwt must be chosen fromAwt, an access set chosen uniformly at random.
(Think of Qwt as a quorum used for an established candidate.) Then we require,

E [|(Qrd ∩ Qwt) \ B|] ≥ r (1)

The use of write markers has no impact here onE [|(Qrd ∩ Qwt) \ B|] because faulty servers are
not part of this expression. However, write markers do enable us to setr smaller, as the following
shows.

Let A′
rd andA′

wt represent read and write access sets, respectively, chosenuniformly at random.
(Think of A′

wt as the access set used by a faulty client for a conflicting candidate, and ofA′
rd as the

access set used by a faulty client for a read operation.2)

Probabilistic Masking Quorums. In a probabilistic masking quorum system, only faulty servers
may vote for a conflicting candidate (because non-faulty servers do not accept conflicting candi-
dates). Using write markers, we require that the faulty qualified participants alone cannot produce
sufficient votes for a candidate to be observed in expectation:

r > E [|(A′
rd ∩ A′

wt) ∩ B|] (2)

Contrast this with the consistency requirement for traditional probabilistic masking quorum sys-
tems [13] (adapted to consider access sets), which requiresthat the faulty participants (qualified or
not) cannot produce sufficient votes for a candidate to be observed in expectation:

r > E [|A′
rd ∩ B|] (3)

2In general, it is important for all clients to follow the access strategy even for read access sets [16], so as to enable
higher-level protocols that employ repair phases within a read (e.g., [1]).

7

Intuitively, we can setr smaller with write markers because the right-hand side of (2) is less than
the right-hand side of (3) ifawt < n.

Probabilistic Opaque Quorums. With write markers, we have the benefit, described above for
probabilistic masking quorums, in terms of the number of faulty participants that can vote for a can-
didate in expectation. However, opaque quorum systems mustalso consider the maximum number
of non-faulty qualified participants that vote for the same conflicting candidate in expectation. As
such,r is constrained as follows:

r > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] (4)

Contrast this with the consistency requirement for traditional probabilistic opaque quorums [16]:

r > E [|A′
rd ∩ B|] + E [| ((A′

rd ∩ A′
wt) \ B) \ Qwt|] (5)

Again, intuitively, we can setr smaller with write markers because the right-hand side of (4) is less
than the right-hand side of (5) ifawt < n.

4.2 Implied Bounds

In this subsection, we prove that probabilistic quorum systems with write markers can achieve
compelling probability ifb is not too large, and show that write markers allow probabilistic quorum
systems to tolerate a largerb with compelling probability. We also prove that the bound onb is
independent of the sizes of quorums in probabilistic masking quorums systems with write markers
when access sets are no larger than quorums.

Of primary interest are Theorem 4.16 and its corollaries, which demonstrate the benefits of
write markers for probabilistic masking quorum systems, and Theorem 4.21 and its corollaries,
which demonstrate the benefits of write markers for probabilistic opaque quorum systems. They
are based on Theorem 4.5, which presents three basic requirements that together allow a proba-
bilistic quorum system to provide consistency with compelling probability. As a preliminary step,
Theorem 4.2 provides a general tool for proving concentration of a random variable in terms of
asymptotic bounds.

The following theorem is a restatement of the Molloy and Reed statement [18, p. 172] of the
McDiarmid Inequality that can be used to show that a random variable computed on a series of
independent permutations is concentrated about its expectation.

Theorem 4.1([18]). Let Z = z(Π1, . . . , Πl) be a random variable that is a non-negative function
of a seriesΠ1, . . . , Πl of independent random variables, where eachΠi takes on a random per-
mutation (bijection)π : {1, . . . , |P |} → P of a finite non-empty setP . Also, for some positive
constantsδ andµ, let the following conditions hold (where ifΠj = πj then themapping〈i, j,m〉
indicates thatπj(i) = m):

M1. Swapping the mappings of any two elements in a single permutation πj (i.e., changing
{〈i, j,m〉,〈i′, j,m′〉} to {〈i′, j,m〉,〈i, j,m′〉}, wherei 6= i′ andm 6= m′) changes the value
of Z by at mostδ.

8

M2. If Z = z(π1, . . . , πl) = x, then there exists a set of at mostµx distinct mappings{〈i1, j1,m1〉,
. . . , 〈iµx, jµx,mµx〉} such thatz(π′

1, . . . , π
′
l) ≥ x for anyπ′

1, . . . , π
′
l sharing the same set of

mappings.

If 0 ≤ d ≤ E [Z], then:

Pr(|Z − E [Z] | ≥ d + 60δ
√

µE [Z] + 1) ≤ 4/e(d2/8δ2µE[Z]).

We simplify Theorem 4.1 to create Theorem 4.2 that deals withasymptotic bounds and that
additionally assumes thatz has finite range.

Theorem 4.2. Let Z = z(Π1, . . . , Πl) be a random variable that is a non-negative function with
finite range of a seriesΠ1, . . . , Πl of independent random variables, where eachΠi takes on a ran-
dom permutation (bijection)π : {1, . . . , |P |} → P of a finite non-empty setP . If d = ω(

√

E [Z]),
then,

Pr(|Z − E [Z] | ≥ d) = 2/e(ω(1)) asd → ∞.

Proof. First, assume that there exist constantsδ andµ that satisfy M1 and M2 in Theorem 4.1,
respectively. In this case, sinced = ω(

√

E [Z]), the60δ
√

µE [Z] + 1 term is negligible, and, for
any constantβ < 1/8δ2µ and large enough value ofE [Z], we have (c.f., [18, p. 81]),

Pr(|Z − E [Z] | ≥ d) ≤ 2/e(βd2/E[Z]).

In other words, ifd = ω(
√

E [Z]), then,

Pr(|Z − E [Z] | ≥ d) = 2/e(ω(1)) asd → ∞.

We now show that there exist satisfactory constantsδ and µ. We can satisfy M1 by settingδ
to be the difference between the maximum and minimum values of the range ofz; because the
range of thez is finite, δ can be at most this difference. Next, note that there is a finite number of
mappings—specifically, if|P | = s, then there arels mappings. Therefore, we can satisfy M2 by
settingµ = ls.

So that we can apply Theorem 4.2 to boundǫ, we present a method for definingQwt, A′
rd, Awt,

A′
wt, andQrd (whereQrd represents a read quorum selected by a non-faulty client) interms of inde-

pendent random variablesΠ1, Π2, Π3, andΠ4, each taking on a random permutation{1, . . . , |U |} →
U , whereU is the set of alln servers. Fix any set ofb servers to constituteB. Then consider the
following definitions:

• DefineAwt = {Π1(1), . . . , Π1(awt)}.

• DefineA′
wt = {Π2(1), . . . , Π2(awt)}.

• DefineA′
rd = {Π3(1), . . . , Π3(ard)}.

9

• DefineQrd = {Π4(1), . . . , Π4(qrd)}.

Because each permutation is randomly selected (independently of B), so too areAwt, A′
wt, A

′
rd, and

Qrd. We defineQwt in accordance with Section 3. Specifically, first we choose each Π1(i) such
thatΠ1(i) ∈ Awt ∩ B. Next, for eachj = 1..awt, we chooseΠ1(j) if we have not yet chosenqwt

servers andΠ1(j) ∈ Awt \ (A′
wt ∪ B). Finally, for eachk = 1..awt, we chooseΠ1(k) if we have

not yet chosenqwt servers andΠ1(k) ∈ Awt ∩ (A′
wt \ B).

DefineMinCorrect to be a random variable for the number of non-faulty servers with the estab-
lished value based only on the intersection, union, complement, and difference of some number of
Qrd, Qwt, A′

rd, Awt, A′
wt, andB. For the purposes of this paper,MinCorrect = |(Qrd ∩Qwt) \B| as

indicated in (1).

Lemma 4.3. LetZ = MinCorrect. LetE [Z] > r andE [Z] − r = ω(
√

E [Z]). Then,

Pr(Z ≤ r) = 2/e(ω(1)) asE [Z] − r → ∞.

Proof. Z can be treated as a function of independent permutations. Note that the range ofZ is
non-negative and finite: [0..n]. Let d = E [Z]− r; then, by assumption,d = ω(

√

E [Z]). We apply
Theorem 4.2, yielding,

Pr(Z ≤ r)

= Pr(Z ≤ E [Z] − d)

= Pr(E [Z] − Z ≥ d)

≤ Pr(|Z − E [Z] | ≥ d)

= 2/e(ω(1)) asd → ∞
= 2/e(ω(1)) asE [Z] − r → ∞.

DefineMaxConflicting to be a random variable for the number of servers with a conflicting
response based only on the intersection, union, complement, and difference ofQrd, Qwt, A′

rd, Awt,
A′

wt, andB. For example: due to (2), in masking quorums with write markers,MaxConflicting =
|(A′

rd ∩ A′
wt) ∩ B|; due to (3), in masking quorums without write markers,MaxConflicting =

|A′
rd ∩ B|; due to (4), in opaque quorums with write markers,MaxConflicting = |(A′

rd ∩ A′
wt) ∩

B| + | ((A′
rd ∩ A′

wt) \ B) \ Qwt|; and, due to (5), in opaque quorums without write markers,
MaxConflicting = |A′

rd ∩ B| + | ((A′
rd ∩ A′

wt) \ B) \ Qwt|.

Lemma 4.4. LetZ′ = MaxConflicting. Letr > E [Z′] andr − E [Z′] = ω(
√

E [Z′]). Then,

Pr(Z′ ≥ r) = 2/e(ω(1)) asr − E [Z′] → ∞.

Proof. Z′ can be treated as a function of independent permutations. Note that the range ofZ′ is
non-negative and finite: [0..n]. Let d = r − E [Z′]; then, by assumption,d = ω(

√

E [Z′]). We

10

apply Theorem 4.2, yielding,

Pr(Z′ ≥ r)

= Pr(Z′ ≥ d + E [Z′])

= Pr(Z′ − E [Z′] ≥ d)

≤ Pr(|Z′ − E [Z′] | ≥ d)

= 2/e(ω(1)) asd → ∞
= 2/e(ω(1)) asr − E [Z′] → ∞.

Theorem 4.5. A probabilistic quorum system configuration can provide consistency with com-
pelling probability if,

E [MinCorrect] − E [MaxConflicting] > 0,

E [MinCorrect] = ω(1) asn → ∞, and

E [MinCorrect] − E [MaxConflicting] = ω(
√

E [MinCorrect]).

Proof. Setr as follows,

r =
E [MinCorrect] + E [MaxConflicting]

2
.

Then we can apply Lemma 4.3 toPr(MinCorrect ≤ r) because,

E [MinCorrect] > r, and

E [MinCorrect] − r = ω(
√

E [MinCorrect]).

Next, note thatr−E [MaxConflicting] = ω(
√

E [MinCorrect]). But, sinceE [MinCorrect] is grow-
ing faster thanE [MaxConflicting], it is also the case that
r − E [MaxConflicting] = ω(

√

E [MaxConflicting]). Therefore, we can apply Lemma 4.4 to
Pr(MaxConflicting ≥ r) because

r > E [MaxConflicting] , and

r − E [MaxConflicting] = ω(
√

E [MaxConflicting]).

As described in Section 4.1, it is an error ifMinCorrect < r or MaxConflicting ≥ r. Therefore, the
error probability,ǫ, goes to zero with increasingn because,

ǫ = Pr(MaxConflicting ≥ r ∨ MinCorrect < r)

= Pr(MaxConflicting ≥ r) + Pr(MinCorrect < r)−
Pr(MaxConflicting ≥ r ∧ MinCorrect < r)

≤ Pr(MaxConflicting ≥ r) + Pr(MinCorrect < r)

≤ Pr(MaxConflicting ≥ r) + Pr(MinCorrect ≤ r)

= 2/e(ω(1)) + 2/e(ω(1))

as(E [MinCorrect] − E [MaxConflicting])/2 → ∞
= 2/e(ω(1)) + 2/e(ω(1)) asn → ∞.

11

Where the second-to-last line follows because,

(E [MinCorrect] − E [MaxConflicting])/2 = E [MinCorrect] − r = r − E [MaxConflicting] .

And the final line follows because,

(E [MinCorrect] − E [MaxConflicting])/2 → ∞asn → ∞.

The remainder of the section is focused on determining, for each type of probabilistic quorum
system, the upper bound onb for which Theorem 4.5 applies.

Lemma 4.6.

E [|A′
rd ∩ B|] =

ardb

n
. (6)

Proof. A′
rd is selected independently ofB. As such,|A′

rd∩B| is a hypergeometric random variable
characterized byard draws from a population ofn elements containingb successes. Therefore, we
use the formula for the expected value of a hypergeometric random variable.

Lemma 4.7.

E [|(A′
rd ∩ A′

wt) ∩ B|] =
ardawtb

n2
. (7)

Proof. We calculateE [|(A′
rd ∩ A′

wt) ∩ B|] directly as follows. Consider an indicator random vari-
ableIndu, such thatIndu = 1 if u ∈ (Ard ∩ A′

wt) ∩ B, andIndu = 0 otherwise. For eachu ∈ B,
we havePr[Indu = 1] = ardawt

n2 , sinceArd andA′
wt are chosen independently. By linearity of

expectation:

E [|(A′
rd ∩ A′

wt) ∩ B|] =
∑

u∈B

Pr(Indu = 1) = b
(ardawt

n2

)

.

In the proofs of the following lemmas, we use rules of conditional expectation (c.f., [17, Section
2.3]). In particular, the following.

Definition 4.8 ([17]). The expressionE [X | Y] is a random variablef(Y) that takes on the value
E [X | Y = y] whenY = y.

BecauseE [X | Y] is a random variable, i.e., a function, it makes sense to consider its expectation.

Theorem 4.9([17, Theorem 2.7]).

E [X] = E [E [X | Y]] . (8)

Lemma 4.10.

E [|Qwt \ B|] =
qwtn − awtb

n
. (9)

12

Proof. Let MalWrite = |Awt ∩B|. SinceAwt is selected uniformly at random independently ofB,
MalWrite is a hypergeometric random variable, characterized byawt draws from a population ofn
elements containingb successes; therefore,

E [MalWrite] =
awtb

n
.

Recall from Section 3, that a write is established once all of the non-faulty servers in any write
quorum inAwt have accepted it. Therefore,

E [|Qwt \ B| | MalWrite = m] = qwt − m.

Applying Theorem 4.9 and linearity of expectation, we have that,

E [|Qwt \ B|]
= E [E [|Qwt \ B| | MalWrite]]

= E [qwt − MalWrite]

= qwt − E [MalWrite]

= qwt −
awtb

n
.

Lemma 4.11.

E [|(Qrd ∩ Qwt) \ B|] =
qrd(nqwt − awtb)

n2
. (10)

Proof. Qrd is independent ofQwt \ B; therefore,|(Qrd ∩ Qwt) \ B| | |Qwt \ B| = m is a
conditional hypergeometric random variable characterized by qrd draws from a population ofn
elements containingm successes, and,

E [|(Qrd ∩ Qwt) \ B| | |Qwt \ B| = m] =
qrdm

n
.

Applying Theorem 4.9, by linearity of expectation we have that,

E [|(Qrd ∩ Qwt) \ B|]
= E [E [|(Qrd ∩ Qwt) \ B| | |Qwt \ B|]]

= E

[qrd

n
(|Qwt \ B|)

]

=
qrd

n
E [|Qwt \ B|]

=
qrd(nqwt − awtb)

n2
.

Lemma 4.12.

E [|(A′
rd ∩ A′

wt) \ B|] = ard

(

awt

n
−

(awt

n

)

(

b

n

))

. (11)

13

Proof. We calculateE [|(A′
rd ∩ A′

wt) \ B|] directly as follows. Consider an indicator random vari-
ableIndu, such thatIndu = 1 if u ∈ (A′

rd ∩A′
wt) \B, andIndu = 0 otherwise. For eachu ∈ U \B,

we havePr[Indu = 1] = ardawt

n2 , sinceA′
rd andA′

wt are chosen independently. By linearity of
expectation:

E [|(A′
rd ∩ A′

wt) \ B|] =
∑

u∈U\B

Pr(Indu = 1)

= (n − b)
(ardawt

n2

)

= ard

(

awt

n
−

(awt

n

)

(

b

n

))

.

Lemma 4.13.

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B)|] ≥ ard

n

(

qwt −
awt

n

(

b +
(n − awt)(n − b)

n

))

. (12)

Proof. In calculatingE [|(Ard ∩ A′
wt) ∩ (Qwt \ B)|], because a faulty client may performboth a

write that becomes established and another write that conflicts with the first write, we cannot as-
sume thatQwt is selected independently ofA′

wt. Let CI = A′
wt ∩ (Qwt \ B). Then, in particular,

as described in Section 3, such a client seeks to maximizeE [MaxConflicting], and therefore mini-
mizesE [|CI|] by choosing the servers forQwt \ B from Awt \ (A′

wt ∪ B) first. Thus,

E [|CI|] = max(0 , E [|Qwt \ B|] − E [|Awt \ (A′
wt ∪ B)|])

≥ E [|Qwt \ B|] − E [|Awt \ (A′
wt ∪ B)|] . (13)

We calculateE [|Awt \ (A′
wt ∪ B)|] directly as follows. For clarity, note thatAwt \ (A′

wt ∪ B) =
(Awt \ A′

wt) \ B. Consider an indicator random variableIndu, such thatIndu = 1 if u ∈ (Awt \
A′

wt) \ B, andIndu = 0 otherwise. For eachu ∈ U \ B, we havePr[Indu = 1] = awt(n−awt)
n2 , since

A′
wt andAwt are independent. By linearity of expectation:

E [|Awt \ (A′
wt ∪ B)|] =

∑

u∈U\B

Pr(Indu = 1) = (n − b)

(

awt(n − awt)

n2

)

=
awt

n2
(n − awt)(n − b).

(14)

By (13), (9), and (14), we have that,

E [|CI|] ≥
(

qwt −
awtb

n

)

− awt

n2
(n − awt)(n − b) = qwt −

awt

n

(

b +
(n − awt)(n − b)

n

)

. (15)

SinceArd is independent ofCI, we see that|(Ard ∩ A′
wt) ∩ (Qwt \ B)| | |CI| = c is a hypergeo-

metric random variable characterized byard draws from a population ofn elements containingc
successes, and,

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B)| | |CI| = c] =

ardc

n
.

14

Applying Theorem 4.9, by linearity of expectation we have that,

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B))|]

= E [|(Ard ∩ A′
wt) ∩ (Qwt \ B)| | |CI|]

= E

[ard

n
|CI|

]

=
ard

n
E [|CI|] . (16)

Therefore, by (15) and (16) we have that,

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B))|] ≥ ard

n

(

qwt −
awt

n

(

b +
(n − awt)(n − b)

n

))

.

Lemma 4.14.

E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] ≤
ard

n3
(2awtn

2 − nawtb − qwtn
2 − a2

wtn + a2
wtb). (17)

Proof. To calculateE [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|], first note that:

E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|]
= E [|(A′

rd ∩ A′
wt) \ B|] − E [|(A′

rd ∩ A′
wt) ∩ (Qwt \ B)|] . (18)

Combining and simplifying equations (11), (12), and (18), weobtain (17).

Lemma 4.15.For a probabilistic or opaque masking quorum system configuration with or without
write markers,3 let the ratios ofqrd, qwt, awt, and ard to n be fixed, and letE [MinCorrect] >
E [MaxConflicting]. Then,

E [MinCorrect] = Ω(n).

E [MinCorrect] − E [MaxConflicting] = ω(
√

E [MinCorrect]).

Proof. First, we see from (10) that for the four types of quorums,

E [MinCorrect] = Ω(n).

Next, consider thatE [MinCorrect] − E [MaxConflicting] = ω(
√

E [MinCorrect]):

• Masking without write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Qrd ∩ Qwt) \ B|]−E [|A′

rd ∩ B|] 6= 0, and
so (10) and (6) show us thatE [MinCorrect] − E [MaxConflicting] = ω(

√

E [MinCorrect]).

• Masking with write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Qrd ∩ Qwt) \ B|]−E [|(A′

rd ∩ A′
wt) ∩ B|] 6=

0, and so (10) and (7) show us thatE [MinCorrect]−E [MaxConflicting] = ω(
√

E [MinCorrect]).

3Though not shown here, Lemma 4.15 also applies trivially to dissemination quorum systems.

15

• Opaque without write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Qrd ∩ Qwt) \ B|] − (E [|A′

rd ∩ B|]
+E [| ((A′

rd ∩ A′
wt) \ B) \ Qwt|]) 6= 0, and so (10), (6), and (17) show us thatE [MinCorrect]−

E [MaxConflicting] = ω(
√

E [MinCorrect]).

• Opaque with write markers:
E [MinCorrect] > E [MaxConflicting] impliesE [|(Qrd ∩ Qwt) \ B|]−(E [|(A′

rd ∩ A′
wt) ∩ B|]+

E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|]) 6= 0, and so (10), (7), and (17) show us thatE [MinCorrect]−
E [MaxConflicting] = ω(

√

E [MinCorrect]).

Theorem 4.16. Let the ratio of each ofqrd, ard, qwt, awt, and b to n be fixed. Then a proba-
bilistic masking quorum system configuration employing write markers provides consistency with
compelling probability if,

b <
qrdqwtn

qrdawt + ardawt

.

Proof. By (10) and (7),

b <
qrdqwtn

qrdawt + ardawt

⇔ E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|]
⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 4.15 and, thus, Theorem 4.5.

Corollary 4.17. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd and
awt = qwt. Then a probabilistic masking quorum system configuration employing write markers
provides consistency with compelling probability if,

b < n/2.

Note that, with write markers, the size of quorums does not impact the the maximum fraction of
faults that can be tolerated with compelling probability when quorums are selected uniformly at
random, that is, whenard = qrd andawt = qwt.

Theorem 4.18.Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed. Then a probabilistic
masking quorum system configuration without write markers provides consistency with compelling
probability if,

b <
qrdqwtn

qrdawt + ardn
.

Proof. By (10) and (6),

b <
qrdqwtn

qrdawt + ardn

⇔ E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|]

⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 4.15 and, thus, Theorem 4.5.

16

Corollary 4.19. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd and
awt = qwt. Then a probabilistic masking quorum system configuration without write markers can
provide consistency with compelling probability if,

b <
qwtn

qwt + n
.

Corollary 4.20. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd

andawt = qwt = n − b. Then a probabilistic masking quorum system configuration without write
markers can provide consistency with compelling probability if,

b < n/2.62.

Theorem 4.21. Let the ratio of each ofqrd, ard, qwt, awt, and b to n be fixed. Then a proba-
bilistic opaque quorum system configuration employing writemarkers provides consistency with
compelling probability if,

b <
n(ardawt + ardqwtn + qrdqwtn − 2ardawtn)

awt(ardawt + qrdn)
.

Proof. By (10), (7), and (17),

b <
n(ardawt + ardqwtn + qrdqwtn − 2ardawtn)

awt(ardawt + qrdn)

⇒ E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|]
⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 4.15 and, thus, Theorem 4.5.

Corollary 4.22. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd and
awt = qwt. Then a probabilistic opaque quorum system configuration employing write markers
can provide consistency with compelling probability if,

b <
qwtn

qwt + n
.

As with traditional probabilistic opaque quorum systems, the maximum fraction of faults that can
be tolerated with compelling probability is independent ofthe size of read quorums when quorums
are selected uniformly at random.

Corollary 4.23. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd and
awt = qwt = n − b. Then a probabilistic opaque quorum system configuration employing write
markers can provide consistency with compelling probability if,

b < n/2.62.

17

Theorem 4.24([16]). Let the ratio of each ofqrd, ard, qwt, awt, and b to n be fixed. Then a
probabilistic opaque quorum system configuration without write markers provides consistency with
compelling probability if,

b <
(ardqwtn − 2ardawtn + a2

wtard + qrdqwtn)n

n2ard − ardawtn + a2
wtard + qrdawtn

.

Corollary 4.25. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd

and awt = qwt. Then a probabilistic opaque quorum system without write markers can provide
consistency with compelling probability if,

b <
q2
wtn

q2
wt + n2

.

Corollary 4.26. Let the ratio of each ofqrd, ard, qwt, awt, andb to n be fixed, and letard = qrd

andawt = qwt = n − b. Then a probabilistic opaque quorum system without write markers can
provide consistency with compelling probability if,

b < n/3.15.

5 Implementation

Our implementation of write markers provides the behavior assumed in Section 4, even with
Byzantine clients, without relying on the network to issue write markers. Specifically, it ensures
properties W1–W3. (Though, technically, it ensures W2 only approximately in the case of opaque
quorum systems, in which, as we explain below, a faulty server may be able to create a conflicting
candidate using a write marker for a stale, i.e., out-of-date, access set—but to no advantage.)

Because clients may be faulty, we cannot rely on, e.g., digital signatures issued by them to
implement write markers. Instead, we adapt mechanisms of our access-restriction protocol for
probabilistic opaque quorum systems [16]. The access-restriction protocol is designed to ensure
that all clients follow the access strategy. It already enables non-faultyserversto verify this before
accepting a write. And, since it is the only way of which we areaware for a probabilistic quorum
system to tolerate Byzantine clients when write markers are of benefit (i.e., when the sizes of write
access sets are restricted), its mechanisms are appropriate.

The preexisting protocol works as follows [16]. From the servers, a client obtains averifiable
recent value(VRV), the value of which is unpredictable to clients andb or fewer servers prior to its
creation. This VRV is used to generate a pseudorandom sequence of access sets. Since the validity
of a VRV can be verified using only public information, both itand the sequence of access sets it
induces can be verified by clients and servers. Non-faulty clients simply choose the next unused
access set for each operation.4 However, a faulty client is motivated to maximize the probability
of error; if the use of the next access set in the sequence doesnot maximize the probability of error

4Non-faulty clients should choose a new access set for each operation to ensure independence from the decisions
of faulty clients [16].

18

given the current state of the system (i.e., the candidates accepted by the servers), such a client
may try to skip ahead some number of access sets, or, alternatively, to wait to use the next access
set until the state of the system changes. If allowed to follow either strategy, such a client would
circumvent the access strategy because its choice of accessset would not be independent from the
state of the system.

Three mechanisms are used together to coerce a faulty clientto follow the access strategy. First,
the client must perform exponentially increasing work in expectation in order to use later access
sets. As such, a client requires exponentially increasing time in expectation in order to choose a
later access set. This is implemented by requiring that the client solve a client puzzle [5] of the
appropriate difficulty. The solution to the puzzle is, in expectation, difficult to find but easy to
verify. Second, the VRV and sequence of access sets become invalid as the non-faulty servers
accept additional candidates, or as the system otherwise progresses (e.g., as time passes). Non-
faulty servers verify that an access set is still valid, i.e., not stale, before accepting it. Thus, system
progress forces the client to start its work anew, and, as such, makes the work solving the puzzle
for any unused access set wasted. Finally, during the time that the client is working, the established
candidate propagates in the background to the non-faulty servers that are non-qualified (c.f., [10]).
This decreases the window of vulnerability in which a given access set in the sequence is useful
for a conflicting write by making non-qualified servers awarethat there is an established candidate
(so that they will not accept a conflicting candidate) and that the state of the system has progressed
(so that they will invalidate the current VRV if appropriate).

The impact of these three mechanisms is that a non-faultyservercan be confident that the
choice of write access set adheres (at least approximately)to the access strategy upon having
verified that the access set is valid, current, and is accompanied by an appropriate puzzle solution.

Client

S0

S1

S2

S3

Sn

…

i ii

V
er

ify
M

ar
ke

r

C
ho

os
e

A
cc

es
s

S
et

Figure 1: Read operation with write
markers: messages and stages of verifi-
cation of access set. (Changes in gray.)

For write markers, we extend the protocol so that,
as seen in Figure 1,clients can also perform verifi-
cation. This requires that information about the puz-
zle solution and access set (including the VRV used to
generate it) be returned by the servers to clients. (As
seen in Figure 2 and explained below, this information
varies across masking and opaque quorum systems.)
In the preexisting access-restriction protocol, this in-
formation is verified and discarded by each server. For
write markers, this information is instead stored by
each server in the verification stage as a write marker,
and is sent along with the data value as part of the
candidate to the client during any read operation. If
the server is non-faulty—a fact that a non-faulty client
cannot know—the access set used for the operation

was indeed chosen according to the access strategy because the server performed verification
before accepting the operation. However, because the server may be faulty, the client performs
verification as well; it verifies that the server is a member ofthe access set, and that the write
marker is valid. This allows us to guarantee points W1–W3. As such, faulty non-qualified servers

19

are unable to vote for the candidates for which qualified servers can vote.

data value
solution

statusδcertificateγpromiseβaccess setα

data value
solution

statusbaccess seta

(masking)
(opaque)

certificate
access set, solution

data valueiiqueryi

Masking write

Opaque write

Read

Figure 2: Message types. (Write marker emphasized with
gray.)

Figures 1, 2, 3, and 4 illus-
trate relevant pieces of the pre-
existing protocol and our modifi-
cations for write markers in the
context of read and write opera-
tions in probabilistic masking and
opaque quorum systems. (They
ignore details [16] irrelevant to
write markers such as the struc-
ture of the VRV and how a client
obtains one, as well as propaga-
tion of established data values.)
The figures highlight that the ad-
ditions to the protocol for write
markers involve saving the write markers and returning themto clients so that clients can also
verify them.

The differences in the structure of the write marker for probabilistic opaque and masking quo-
rum systems results in subtly different guarantees. The remainder of the section discusses these
details.

5.1 Probabilistic Opaque Quorums
C

ho
os

e
A

cc
es

s
S

et

Client

S0

S1

S2

S3

Sn

…

a b
V

er
ify

 A
cc

es
s

S
et

Figure 3: Write operation in opaque quorum
systems: messages and stages of verification of
write marker. (Changes in gray.)

As seen in Figure 2 (messageii), a write marker
for a probabilistic opaque quorum system con-
sists of the write-access-set identifier (including
the VRV) and the solution to the puzzle that un-
locks the use of this access set. Unlike a non-
faulty server that verifies the access set at the
time of use, a non-faulty client cannot verify that
an access set was not already stale when the ac-
cess set was accepted by a faulty server. Initially,
this may appear problematic because it is clear
that, given sufficient time, a faulty client will
eventually be able to solve the puzzle for its pre-
ferred access set to use for a conflicting write—
this access set may contain all of the servers in
B. In addition, the faulty client can delay the use
of this access set because non-faulty clients will be unableto verify whether it was already stale
when it was used.

Fortunately, because non-faulty servers will not accept a stale candidate (i.e., a candidate ac-
companied by a stale access set) during a write (Figure 3), the fact that a stale access set may
be accepted by a faulty server does not impact the benefit of write markers for opaque quorum

20

systems. In general, consistency requires (4), i.e.,

r > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] .

However, only faulty servers will accept a stale candidate.Therefore, if the candidate was stale
when written toA′

wt, no non-faulty server would have accepted it. Thus, in this case, the consis-
tency constraint is equivalent to,

r > E [|(A′
rd ∩ A′

wt) ∩ B|] .

Even if the access set contains all of the faulty servers, i.e., B ⊂ A′
wt, then this becomes,

r > E [|A′
rd ∩ B|] .

However, this is (3), the constraint on probabilistic masking quorum systems without write mark-
ers. In effect, the client must either: (i) use a recent access set that is therefore chosen approxi-
mately uniformly at random, and be limited by (4); or (ii), use a stale access set and be limited
by (3). If quorums are the sizes of access sets, both inequalities have the same upper bound onb
as seen in Corollary 4.19 and Corollary 4.22; otherwise, a faulty client is disadvantaged by using
a stale access set because (3) allows the system to tolerate more faults and, therefore, to achieve a
lower error probability. (Compare the bounds in Theorem 4.18and Theorem 4.21.)

5.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additionalround of communication (an echo
phase, c.f., [12] or broadcast phase, c.f., [15]) during write operations in order to tolerate Byzan-
tine or concurrent clients. This round prevents non-faultyservers from accepting conflicting data
values, as assumed by the consistency constraints for masking quorum systems. In order to write a
data value, a client must first obtain awrite certificate(a quorum of replies that together attest that
the non-faulty servers will accept no conflicting data value). In contrast to optimistic protocols that
use opaque quorum systems, these protocols are pessimistic.

C
ho

os
e

A
cc

es
s

S
et

V
er

ify
 A

cc
es

s
S

et

V
er

ify
 C

er
tif

ic
at

e

C
ol

le
ct

C
er

t.Client

S0

S1

S2

S3

Sn

…

α β γ δ

Figure 4: Write operation in masking quorum systems: messages
and stages of verification of write marker. (Changes in gray.)

This additional round al-
lows us to prevent clients from
using stale access sets. Specif-
ically, in the request to au-
thorize a data value (message
α in Figure 2 and Figure 4),
the client sends the access set
identifier (including the VRV),
the solution to the puzzle en-
abling use of this access set,
and the data value. We require
that the certificate come from
servers in the access set that is

21

chosen for the write operation.
Each server verifies the VRV and that the puzzle solution enables use of the indicated access set
before returning authorization (messageβ in Figure 2 and Figure 4). The servers that contribute
to the certificate all implicitly agree that the access set isnot stale, for otherwise they would not
agree to the write. This certificate (sent to each server in messageγ in Figure 2 and Figure 4) is
stored along with the data value as a write marker. Thus, unlike in probabilistic opaque quorum
systems, a valid write marker in a probabilistic masking quorum system implies that a stale access
set was not used. The reading client verifies the certificate (returned in messageii in Figure 1 and
Figure 2) before accepting a vote for a candidate. Because a writing client will be unable to obtain
a certificate for a stale access set, votes for such a candidate will be rejected by reading clients.
Therefore, the analysis in Section 4 applies without additional complications.

6 Conclusion

We have presented write markers, a way to: (i) increase the number of faults that probabilistic
quorum systems can tolerate with compelling probability; and (ii) allow probabilistic masking
quorum systems to tolerate this number independent of the size of write quorums. Write markers
achieve this by limiting the extent to which Byzantine-faulty servers may collude to provide incor-
rect values to clients. We have presented an implementationof markers that is effective even while
tolerating Byzantine-faulty clients and servers.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-scalable
Byzantine fault-tolerant services. InSymposium on Operating Systems Principles, October
2005.

[2] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzantine quorum
systems.IEEE Transactions on Parallel and Distributed Systems, 12(9):996–1007, 2001.

[3] R. A. Bazzi. Access cost for asynchronous Byzantine quorum systems.Distributed Comput-
ing, 14(1):41–48, 2001.

[4] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-tolerant
erasure-coded storage. InInternational Conference on Dependable Systems and Networks,
June 2004.

[5] A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure against connection
depletion attacks. InNetwork and Distributed Systems Security Symposium, pages 151–165,
1999.

22

[6] L. Kong, D. Manohar, A. Subbiah, M. Sun, M. Ahamad, and D. Blough. Agile store: Expe-
rience with quorum-based data replication techniques for adaptive Byzantine fault tolerance.
In IEEE Symposium on Reliable Distributed Systems, pages 143–154, 2005.

[7] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.ACM Transactions
on Programming Languages and Systems, 4(3):382–401, July 1982.

[8] H. Lee and J. L. Welch. Applications of probabilistic quorums to iterative algorithms. In
International Conference on Distributed Computing Systems, pages 21–30, April 2001.

[9] H. Lee and J. L. Welch. Randomized shared queues applied todistributed optimization algo-
rithms. InInternational Symposium on Algorithms and Computation, December 2001.

[10] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without false rumors: On propagat-
ing updates in a Byzantine environment.Theoretical Computer Science, 299(1–3):289–306,
2003.

[11] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4):203–
213, 1998.

[12] D. Malkhi and M. K. Reiter. An architecture for survivable coordination in large distributed
systems.IEEE Transactions on Knowledge and Data Engineering, 12(2):187–202, 2000.

[13] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum systems.Infor-
mation and Computation, 170(2):184–206, 2001.

[14] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.IEEE Transactions on Dependable and
Secure Computing, 3(3):202–215, 2006.

[15] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. InInternational Sympo-
sium on Distributed Computing, 2002.

[16] M. G. Merideth and M. K. Reiter. Probabilistic opaque quorum systems. InInternational
Symposium on Distributed Computing, 2007.

[17] M. Mitzenmacher and E. Upfal.Probability and Computing. Cambridge University Press,
2005.

[18] M. Molloy and B. Reed.Graph Colouring and the Probabilistic Method. Springer, 2002.

23

