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Abstract

We examine a well known confidentiality requirement called noninterference and argue that many
systems do not meet this requirement despite maintaining the privacy of its users. We discuss
a weaker requirement called incident-insensitive noninterference that captures why these systems
maintain the privacy of its users while possibly not satisfying noninterference. We extend this
requirement to depend on dynamic information in a novel way. Lastly, we present a method
based on model checking to extract from program source code the dynamic incident-insensitive
noninterference policy that the given program obeys.
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1 Introduction

Given a multi-user system, a user might wonder how it protects his privacy. Such a user would
benefit from a summary of who else may use the system to access his information and under what
conditions. We hope to develop a tool that automatically produces such a summery, or dynamic
confidentiality policy, from the source code of the program controlling such a system. Before we may
describe an approach to this problem, we must first consider what it means for a user’s information
to remain confidential.

Confidentiality Requirements. What must a system keep secret to maintain the privacy of its
users? No single answer is correct for all systems: different balances of privacy and functionality
result in systems with different confidentiality guarantees.

Consider a system with a high-level user H and a low-level user L, whom H does not trust.
The user H desires that the system guarantees that the user L has no way of learning about the
inputs of H to the system. This guarantee may be formalized as a confidentiality assertion. Such
a formalization must make clear what exactly it means for the untrusted user L to learn about an
input of H. Each different formalization of this concept corresponds to a different confidentiality
requirement.

One of the most well known and earliest confidentiality requirements is noninterference as
defined by Goguen and Meseguer [7] and later extended to nondeterministic systems by McCul-
lough [20, 21]. Informally, the confidentiality assertion that the user H is noninterfering with the
user L requires that the set of possible outputs seen by L is the same regardless of any inputs
provided by H to the system. This requirement is so strong that the user L may not even know if
H has provided any inputs to the system.

Such a strong requirement is often too stringent, that is, it places so much emphasis on privacy
that it prevents some systems from achieving a reasonable level of functionality. In many realistic
systems, allowing the user L to know that the user H has entered an input into the system is accept-
able as long as L does not learn about the contents of the input. In Section 3, we provide examples
of such systems and present a weakened form of noninterference that allows L to learn that H has
provided inputs to the system while still protecting the contents of these inputs. We also formalize
a weakened confidentiality requirement based on this observation that we call incident-insensitive
noninterference since the user L is allowed to learn of the incident of the input. Likewise, we call the
original noninterference requirement of Goguen and Meseguer incident-sensitive noninterference.

Dynamic Confidentiality Assertions. The confidentiality assertions described thus far have
been static: they hold between two users regardless of their actions. Often static requirements
cannot capture the confidentiality guarantee that a system should make to its users. For example,
consider a system that stores emails for its users. The system should not allow a user to read any
of the emails unless that user provides the correct password. To formally capture such a guarantee
requires a dynamic confidentiality assertion, an assertion that some confidentiality requirement
should hold between two users unless some condition that depends on dynamic information is met
at runtime.

Along with noninterference, Goguen and Meseguer introduced a form of dynamic confidentiality
assertion [7]. A dynamic assertion of their form declares that an input from a high-level user H

should remain unknown to a low-level user L unless some predicate holds of the inputs that preceded
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the input in question. Since the dynamic assertion may only depend on the inputs that precede
the input in question, we term their formulation at-input-checking.

In the password example above, the dynamic assertion should hold unless the user L enters the
correct password, an event that might occur after the system has already received an email (from
H). Since at-input-checking assertions may depend only on inputs received before such an email
arrived, they cannot capture the needed assertion.

To fix this problem, we remove the requirement that the predicate of a dynamic assertion may
only depend on inputs that precede the input in question. Under our formulation, a dynamic
assertion will require that an input be protected until enough dynamic information is collected
to rule otherwise. This information may come at anytime as long the input in question does not
affect any outputs to the user L until it arrives. If such input never comes, the input will always
be protected. We term this formulation at-output-checking since at the time of an output, all the
inputs that have arrived may affect whether the output may depend on some previous input, rather
than just those inputs that preceded the input in question. In Section 4, we formalize this new
form of dynamic assertion.

Policy Extraction. A set of dynamic incident-insensitive noninterference (DIINI) assertions
defines a DIINI policy. Given a DIINI policy, a programmer can take two different approaches
to ensuring that a program obeys the policy. In the first approach, the programmer codes with
the policy in mind and manually inserts any dynamic checks that the program must perform to
ensure that the policy is obeyed. In the second approach, the programmer abstracts the policy
enforcement mechanism from core application logic of the program and configures the program
with an explicit representation of the policy.

While the first approach is usually easier to implement, the second approach has many advan-
tages. Firstly, an organization with an explicit policy may apply that policy to multiple programs.
Secondly, the decoupling of policy from application logic allows multiple organizations with differ-
ing confidentiality policies to use a single program since each organization may separately configure
the program to enforce its policy. Thirdly, having a centralized policy facilitates reasoning about
the policy and editing it.

To gain these advantages for legacy programs written using the first approach, the program
maintainers should convert them to use a explicit policy as in the second approach. A tool that
aggregates the manually inserted dynamic checks used to ensure that the program obeys the policy
together into an explicit representation of this policy would ease this conversion, especially for large
programs.

Many other uses for such a tool exist. A system administrator could examine the extracted
policy by hand or use tools to answer queries about the policy. Furthermore, such a tool could
verify that an extracted policy meets the requirements of a specified policy. Even in the absence of
a formal specification, change-impact analysis is possible: given application code before and after
some set of edits, one could compare the extracted policies to ensure that the program edits has
introduced no new security holes.

In Section 5, we present an approach based on model checking for this policy extraction problem.
Our approach tracks the flow of information through the program in a manner similar to type
systems that track information flow [29]. However, our approach allows the same variable to carry
both high- and low-level information without the low-level information being considered high-
level preventing an overly conservative analysis. Furthermore, our approach attempts to rule out
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infeasible paths. While these features matter little in the context of writing a program with type
analysis in mind, they become important in our primary use case of extracting policies from legacy
code.

Road Map and Contributions. The order of this paper mirrors the development of this in-
troduction: After handling some technical preliminaries in Section 2, we motivate and present
incident-insensitive noninterference in Section 3. Then we present our formulation of dynamic
confidentiality assertions in Section 4. With the notation of dynamic confidentiality policy fully
formalized, we at last return to the original motivation of this work, automated policy extraction,
in Section 5. Lastly, we cover related work.

The three main sections of this work each represent a separate contribution:

• Section 3 motives the need for incident-insensitive noninterference clarifies its relation to
the original definition of noninterference. (Since a similar confidentiality requirement has
appeared in the literature before [25], we do not consider the presentation of the requirement
to be our contribution per se.)

• Section 4 motives the need for and presents a more general notation of dynamic confidentiality
assertion, which allows for the expression of realistic policies.

• Section 5 provides an approach to automated policy extraction.

An additional contribution is that of unwinding conditions for incident-insensitive noninterference
in both its static and dynamic form. Using unwinding conditions eases proving that a system
satisfies a noninterference policy. We demonstrate their usefulness by employing them to prove the
correctness of our approach to policy extraction.

2 The System Model

Automata. The input-output behavior of a system determines what confidentiality assertions
it satisfies. Agents acting in various security domains create the inputs and receive the outputs.
Each domain is a different entity or class of entities that might interact with the system. For
example, the domains might be Top Secret, Secret, Classified, and Unclassified for modeling the flow
of information between security classes in a military system and if the actual identity of the entity
is irrelevant (only its security clearance matters). For modeling the use of different resources, the
domains might be Hard Drive, Network, and User.

These domains interact with one another by using the system. We will model such a system as
an automaton. Formally, an system automaton m consists of

• a set of inputs I,

• a set of outputs O such that I ∩ O = ∅,

• a set of domains D,

• a function dom : A → D that assigns to each action the domain that created or received it
where the set of actions A is I ∪ O,

• a set of states Q,
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• a start state q0 ∈ Q, and

• a transition relation � ⊆ Q × A × Q.

We write q1
a
� q2 if 〈q1, a, q2〉 ∈ �. We write q1

α
� q2 for α ∈ A∗ if either

• α = [] and q1 = q2, or

• α = a:α′, q1
a
� q′1, and q′1

α′

� q2

where [] is the empty sequence and a:α is the sequence formed by prepending a to α. (For example,
a:b:[] = [a, b].) Since we never have a list of lists, we abuse notation and also use : to append lists
and to add elements to their end.

The above automaton model is asynchronous and nondeterministic, which greatly complicates
proofs about them. We use asynchronous automata since programs often produce output for one
user without producing it for other users. We require nondeterminism since we have the end goal
of model checking in mind and model checking works over a nondeterministic abstraction of an
actual program.

Behaviors. Let the set of behaviors of an automaton m = 〈I,O,D, dom, Q, q0,�〉 be

behv(m) = {α ∈ A∗ | ∃q ∈ Q s.t. q0
α
� q }

Each behavior represents one way in which the system might operate. Since each domain has
control over its input actions, each domain may affect which behaviors the system can execute. Let
ι ∈ I∗ represent a sequence of inputs. If the system is subjected to the inputs of ι and no other
inputs, then the system may only execute those behaviors that include all the inputs of ι in order
and no other inputs.

To formalize this notion, let us first define the restrict function ⌊·⌋· : A∗ × 2A → A∗. The
restrict function takes a sequence α and a subset A′ of A and returns the sequence ⌊α⌋A′ which
only includes the elements of α that are in A′. Let ⌊α⌋A′ be defined as follows:

⌊[]⌋A′ = []

⌊a:α⌋A′ =

{

a:(⌊α⌋A′ ) if a ∈ A′

⌊α⌋A′ otherwise

where A′ ∈ 2A. For example, ⌊[a, c, a]⌋{a,b} = [a, a] and ⌊[c, a, b, c, a]⌋{a,b} = [a, b, a].
The set of behaviors that are possible given a sequence that provides all the inputs to the system

m is given by runs : I∗ → 2A where

runs(ι) = {α ∈ behv(m) | ⌊α⌋I = ι }

A domain d cannot observe all the actions of a system: d can only observe those actions a such
that dom(a) = d. Thus, if the system executes a behavior α, then the domain d only sees the
sequence of actions ⌊α⌋Ad where Ad = { a ∈ A | dom(a) = d }. If two behaviors α1 and α2 are such
that ⌊α1⌋Ad = ⌊α2⌋Ad , then α1 and α2 provide the domain d with the same observations and thus
look the same to domain d. In general, if a domain d sees the action sequence α, d will only be
able to tell that some behavior α′ such that ⌊α′⌋Ad = α was executed; d will not know which one.
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Let us raise ⌊·⌋· to work over sets of sequences as follows: ⌊{α1, α2, . . .}⌋A′ = {⌊α1⌋A′ , ⌊α2⌋A′ , . . .}.
Then, if for two input sequences ι1 and ι2 of a system m, ⌊runs(ι1)⌋Ad = ⌊runs(ι2)⌋Ad , then domain
d cannot tell between when ι1 or ι2 is the input sequence to m. This provides an opportunity to
prevent a domain from learning the inputs of another domain.

Adding Internal Transitions. A problem with the above automation model is that each tran-
sition either results in output or is the result of input. This limitation does not allow internal
transitions. To allow internal transitions, we allow a distinguished action τ /∈ A that represents an
action that no domain can observe. If the users may deduce the execution of an internal transition
(perhaps by timing), then this model is inappropriate.

Since users cannot observe internal transitions, they should not show up in the behaviors of
a system and we must redefine behv with this in mind. Let q

a
−→ q′ iff q

a
� q′, or both q

τ
� q′′ and

q′′
a

−→ q′ for some q′′ Let

behv(m) = {α ∈ A∗ | ∃q ∈ Q s.t. q0
α

−→ q }

where −→ is raised to sequences α in the same manner as � was.

3 Noninterference

3.1 What is Confidentiality?

Consider the following simple program:

bool in = load("secret-file.db");

print(‘x’);

The first line reads in the contents of a secret file. The second line simply prints the character ‘x’ to
the low-level user. If we model the reading of the secret file as receiving input from a high-level user,
then this program fails to meet the requirements of incident-sensitive noninterference as defined
by Goguen and Meseguer [7]. The reason is that the low-level user does not see the output ‘x’
unless the high-level user produces input, which allows the load statement to stop blocking and
terminate. Thus, the low-level user has learned that the high-level user has interacted with the
system. This violation occurs even though the low-level user clearly does not learn anything about
the contents of secret-file.db. (We formalize this example in Appendix A.1.)

We believe that in many cases allowing the low-level user to know that the high-level user is
interacting with the system is acceptable as long as the low-level user does not learn the contents
of these interactions. Consider the following realistic examples:

• “Upon startup, a web server for online banking receives financial records from a secure database
before answering any queries from users.”

This web server violates incident-sensitive noninterference since if the web server answers the
user’s queries with low-level outputs, the user will know that the server has consumed high-level
input from the database. This violation holds even if the inputs consumed from the high-level
database did not influence the server’s response to the low-level user. However, such a system
maintains an acceptable level of confidentiality since the low-level user cannot learn what inputs
the high-level database provided to the server and the low-level user learning that server has
received high-level input only tells the low-level user that system is working correctly.
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• “A student is applying for graduate school online. During the application process, both the stu-
dent and the professors recommending him must enter information into the application database.
Once the recommending professors have finished, the student receives a notice stating that the
graduate school has received his recommendations. The applicant is not allowed access to his
recommendation.”

The low-level student only receives the notice if the professors have entered their high-level
recommendations. Thus, by receiving the notice, the student learns that the system has consumed
high-level inputs. This violates incident-sensitive noninterference even if the content of the high-
level recommendation does not affect the content of the notice.

• “PhoneBook is a system produced by NS that organizes phone numbers for a law firm. While
adding a new contact, PhoneBook reaches an error state. PhoneBook offers to send a bug report
to NS stating only that the system failed to add a new contact. The law firm considers any
personally identifiable information about its contacts to be private.”

Since the error state was reached during the addition of contact information, the bug report
indicates that the system was receiving high-level contact information. Thus, even if the bug
report maintains the privacy of the contacts by not providing any information about them, the
system will still violate incident-sensitive noninterference by sending the bug report to NS, which
is low-level.

• “A physician uses a computer to record his interactions with patients. The physician enters
into the computer both the treatment rendered and the fee charged (the physician negotiates
the fee with each patient). The system should only allow the physician to access the treatment.
However, the system provides the fee to his secretary for billing.”

Since the low-level secretary receives a notice to bill a patient from the system, he knows that
the physician has entered into the system a high-level input describing the treatment. This
knowledge implies a violation of incident-sensitive noninterference even if the notice does not
reveal any information about the treatment.

From these examples, it should be clear that often simply learning that some high-level input
has taken place does not provide the low-level user with enough information to constitute a vi-
olation of the high-level user’s confidentiality. However, most confidentiality requirements (e.g.,
restrictiveness [20, 21, 22] and separability [23]) are incident sensitive: they prohibit low-level users
from learning that any high-level input has taken place.

What we desire are incident-insensitive requirements, ones that allow low-level users to learn
that high-level input has taken place while protecting the contents of these high-level inputs. Intu-
itively, a system obeys incident-insensitive noninterference if the content of inputs from a high-level
user has no effect on the outputs that a low-level user sees. To make this slightly more formal,
incident-insensitive noninterference requires that the set of possible outputs seen by a low-level user
is the same regardless of the content of the inputs from high-level users. Note that the low-level
user is, however, allowed to learn that the high-level user sent inputs to the system.

Incident-insensitive requirements have appeared in works on information-flow type systems
(Sabelfeld and Myers provide a survey [29]). O’Neill et al. have proved that these type systems
ensure that a program obeys an incident-insensitive requirement they simply call “noninterfer-
ence” [25].
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The rest of this section formalizes a slightly weaker form of O’Neill’s noninterference. We delay
describing how our formulation is weaker than O’Neill’s until Section 6.

3.2 Noninterference Formalized

First we present policies in general. Then we present the statement of incident-sensitive noninterfer-
ence as defined by McCullough for nondeterministic systems [20, 21]. After showing our definition
for incident-insensitive noninterference, we compare the two.

Policies. For a system m, a generic confidentiality policy ; is an reflexive, transitive relation on
D. We write df 6; dt iff ¬(df ; dt). If df 6; dt, then information about df should not flow to dt.
A generic policy does not specify exactly what it means for information to flow. That is, a generic
policy does not specify a confidentiality requirement.

Below, we formalize two confidentiality requirements that can give a generic policy meaning:
incident-sensitive noninterference and incident-insensitive noninterference. Since these two require-
ments may be viewed as two different interpretations that one may assign to a generic policy, we
represent policies of either type using ; as with generic policies and let the surrounding text make
clear which type of policy it is.

Incident-Sensitive Noninterference. Let ∼=
;,d
is be a relation on input sequences such that

[] ∼=
;,d
is [], and i1:ι1 ∼=

;,d
is i2:ι2 iff

• i1 = i2 and ι1 ∼=
;,d
is ι2,

• dom(i1) 6; d and ι1 ∼=
;,d
is i2:ι2, or

• dom(i2) 6; d and i1:ι1 ∼=
;,d
is ι2.

A system m obeys ; as an incident-sensitive noninterference policy iff for all d ∈ D and
ι1, ι2 ∈ I∗,

ι1 ∼=
;,d
is ι2 implies ⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

Intuitively, this definition says that if ι1 has been received by the system and d should not be able
to rule out the possibility that it was ι2 that the system received, then there must exist no behavior
of the system under ι1 that is impossible under ι2 from the perspective of d.

Incident-Insensitive Noninterference. Let ∼=
;,d
ii be a relation on input sequences such that

[] ∼=
;,d
ii [] and i1:ι1 ∼=

;,d
ii i2:ι2 iff

• dom(i1) = dom(i2),

• dom(i1) ; d implies i1 = i2, and

• ι1 ∼=
;,d
ii ι2.

A system m obeys a policy ; as an incident-insensitive noninterference policy iff for all d ∈ D
and ι1, ι2 ∈ I∗,

ι1 ∼=
;,d
ii ι2 implies ⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad
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Comparison. Note that for all d and ;, both ∼=
;,d
is and ∼=

;,d
ii are equivalence relations. They are

also alike in that if dom(i1) ; d and dom(i2) ; d, both require that i1 = i2 for i1:ι1 ∼=
;,d
ii i2:ι2 or

i1:ι1 ∼=
;,d
is i2:ι2 to hold. However, if dom(i1) 6; d, then ∼=

;,d
ii still requires that dom(i1) = dom(i2)

whereas ∼=
;,d
is makes no requirements at all and simply drops i1 from consideration. This difference

is the difference between incident-sensitive noninterference and incident-insensitive noninterference.
Since ∼=

;,d
ii places more requirements on i1 than ∼=

;,d
is , it should come as no surprise that

ι1 ∼=
;,d
ii ι2 implies ι1 ∼=

;,d
is ι2 (see Lemma 3 in Appendix A.2). A direct result of this follows:

Theorem 1. If a system obeys a generic policy ; as an incident-sensitive noninterference policy,
then it will obey ; as an incident-insensitive noninterference policy; the converse is not true.

Appendix A.2 provides a proof.
A specification may place both an incident-insensitive noninterference policy and an incident-

sensitive noninterference policy on the same system. A specification might require that some
users be incident-sensitively noninterfering with a second group of users and incident-insensitively
noninterfering with a third group. The above theorem makes clear the relationship between these
two policies.

3.3 Unwinding

Since noninterference is a global property, proving that a nontrivial system obeys a given policy is
a daunting task. Thus, Goguen and Meseguer provided a property, the existence of an unwinding
relation, to ease this task [8]. We provide such a property for incident-insensitive noninterference.

Let q
a

−→
d

q′ iff

• q
a
� q′;

• q
τ
� q′′ and q′′

a
−→

d
q′; or

• there exists o ∈ O such that dom(o) 6= d, q
o
� q′′, and q′′

a
−→

d
q′.

Informally, q
a

−→
d

q′ means that the automaton can transition from q to q′ by using only internal

transitions, transitions that produce output for a domain other than d, and finally one transition
using a.

Given a system automaton, let a view partition be a function from a domain to an equivalence

relation on states. That is, a view partition is in D → 2Q×Q. We will write q1
d
∼ q2 if for the domain

d, the states q1 and q2 are within the relation.
Let a view partitioning for a program automaton m and policy ; be called an incident-

insensitive unwinding relation if it satisfies the following unwinding conditions:

1. Local Respect: for all d ∈ D, q, q′1 ∈ Q, and i1, i2 ∈ I, if dom(i1) = dom(i2), dom(i1) 6; d and

q
i1−→
d

q′1, then there must exist q′2 ∈ Q such that q
i2−→
d

q′2 and q′1
d
∼ q′2.

2. Step Consistency: for all d ∈ D, q1, q
′
1, q2 ∈ Q, and i ∈ I, if q1

d
∼ q2 and q1

i
−→

d
q′1, then there

must exist q′2 ∈ Q such that q2
i

−→
d

q′2 and q′1
d
∼ q′2.
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3. Output Consistency: for all d ∈ D, q1, q
′
1, q2 ∈ Q, and o ∈ O, if dom(o) = d, q1

d
∼ q2, and

q1
o

−→
d

q′1, then there must exist q′2 ∈ Q such that q2
o

−→
d

q′2 and q′1
d
∼ q′2.

The above unwinding conditions are much more complex than the standard ones presented for
incident-sensitive noninterference. However, incident-insensitivity is not blame: this actually stems
from using asynchronous, nondeterministic automata for our system model instead of synchronous,
deterministic automata.

Theorem 2. If there exists an incident-insensitive unwinding relation for a incident-insensitive
noninterference policy given an automaton, then that automaton obeys the policy.

Appendix A.3 offers the proof.

4 Dynamic Policies

4.1 Motivation

Now we motivate the need for dynamic confidentiality assertions by relating in more detail the
email server example from the introduction. As described before, the server should only allow
access to the emails if the user supplies the correct password. The following program written in a
C-like language enforces this requirement:

emails = load("mbox");

real_pw = load("password");

given_pw = read();

if(given_pw == real_pw)

print(emails);

else

print("wrong");

where the file "mbox" holds the emails and "password" holds the correct password.
To model this program, let the emails be represented by the domain e, the password by the

domain p, and user by the domain u. Since the user u can gain access to the emails e by entering the
correct password, the system does not obey any policy ; such that e 6; u. However, such a static
policy fails to convey the design goal of only allowing the user access to the emails if he provides the
correct password. We desire a policy that captures how supplying the correct password at runtime
changes the allowed information flows.

To address such concerns, Goguen and Meseguer presented a dynamic version of incident-
sensitive noninterference [7]. Informally, it allows an input from a high-level domain to be treated
as insecure (accessible to the low-level domain) if the inputs that precede it satisfy some predicate.
This allows the security of an input to depend on the inputs provided before it at runtime. Since
all the information on which the security of an input may depend is present at the time that the
input enters the system, we call their formulation at-input-checking.

The inability of at-input-checking to consider information that follows the input in question
limits the expressiveness of at-input-checking. In the above example, the emails were the first
input to the system. Since no input precedes the emails and the security of an input may only
depend on those inputs that precede the input in question, the emails must either always be secure
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or always be insecure. This has the same problem as static policies: we cannot have the emails be
secure in some behaviors of the system and insecure in others.

To fix this problem, we must allow the security of an input to depend on inputs that arrive
after it. In this case, the security of the emails is undetermined until the user has entered his input.
It may seem that such information comes too late: How can information from the future be used
to determine the security of an input now? The answer is that the determination need not be
made when the input has just arrived: as long as the input is treated as though it is secure until
information becomes available indicating otherwise, this determination may be delayed.

To make use of this observation, we define a new version of dynamic policy that depends not
only on the inputs that precede the input in question, but also those inputs that follow it. At the
time of an output, whether that output may provide information about an input depends on all
the inputs that precede that output, not just those the precede the input in question. Thus, we
call our formulation at-output-checking.

4.2 Formalization

Dynamic Policies. Let a generic dynamic policy be a function from an input sequence to a
static generic policy (a relation on domains). Give the set of inputs I and domains D, the set of
possible generic dynamic policies is I∗ → 2D×D. Given a dynamic policy ; we write df ;ι dt if ι
is mapped to a policy that allows information to flow from df to dt.

At-Input-Checking. To define dynamic incident-insensitive noninterference (DIINI) using at-
input-checking, we must replace the relation ∼=ii. Since the security of an input may only depend
on the inputs that precede it, we define a new relation ∼=dii that effectively forgets the inputs that
follow the input currently in question. To achieve this, we define ∼=dii to work from the end of input
sequences to their front forgetting the inputs seen along the way.

Let ι1:i1 ∼=
;,d
dii ι2:i2 iff dom(i1) = dom(i2), dom(i1) ;ι1:i1 d implies i1 = i2, and ι1 ∼=

;,d
dii ι2. Also

let [] ∼=
;,d
dii [].

A system m obeys a DIINI policy ; using at-input-checking iff for all d ∈ D and ι1, ι2 ∈ I∗,

ι1 ∼=
;

ι1 ,d
dii ι2 implies ⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

At-Output-Checking. Since DIINI using at-output-checking does not need to forget any infor-
mation, its definition is actually simpler. We provide the dynamic policy ; with the current input
sequence ι1 to obtain the static policy ;ι1 for use with ∼=ii.

A system m obeys a DIINI policy ; using at-output-checking iff for all d ∈ D and ι1, ι2 ∈ I∗,

ι1 ∼=
;

ι1 ,d
ii ι2 implies ⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

Discussion. Although the at-output-checking formulation allows us to formalize the email server
policy, at-input-checking does have some advantages. Both use the input sequence on the left-
hand side to produce a static policy. Given this sequence, the at-output-checking formulation
selects one such static policy using the whole input sequence. The at-input-checking formulation,
however, selects a new static policy with each recursive application. This allows the at-input-
checking formulation more flexibility to treat each input of the sequence differently even if the
inputs come from the same domain.

10



A related limitation of at-output-checking is its inability to capture revocation, the removal of
a previously held access right. For example, revocation takes place if df ;[i1] dt but df 6;

[i1,i2] dt.
Under the at-input-checking formulation, this would mean that df may access the input i1 but not
the input i2. However, for a system to obey the policy under the at-output-checking formulation,
the system must not produce output influenced by i1 for df even if the output is produced before
i2 arrives. If the system did, it would lead to a violation of the policy once i2 arrives. Thus, for
a system to obey the above policy, it must actually also obey the policy where df 6;[i1] dt and
df 6;

[i1,i2] dt. For this reason, at-output-checking policies cannot express revocation.
We defined both of the above dynamic formulations to depend on input sequences and domains

but not the states of the automaton, making them input-based. We view the states of an automaton
to be implementation specific unlike the input-output behavior and domains of the system, which
are at the specification level. Since policies should be at the specification level, we avoided referring
to the states in the definition of a policy.

Henceforth, unless otherwise noted, all dynamic policies will be at-output-checking.

4.3 Dynamic Unwinding

Unlike policies that should be defined without reference to the states of an automaton, unwinding
conditions must be. Thus, we need a version of dynamic policy that depends on the states instead
of being input-based. Let a generic state-based dynamic policy  be a function from a set of states
to a relation on domains.

To give the unwinding conditions meaning with respect to an input-based policy, we must relate
the input-based policy to a state-based policy. Let the state-based dynamic policy  be a safe
approximation of a input-based dynamic policy ; iff df 6;ι dt, ⌊α⌋I = ι, and q0

α
−→ q implies

df 6 
q dt. We call  non-revoking iff for all α ∈ A∗, q

α
−→ q′ and df  

q dt implies that df  
q′ dt.

Given a system automaton, let a dynamic view partition be a function from a pair of domains
to an equivalence relation on states. That is, a view partition is in D × D → 2Q×Q. We will write

q1
dt∼
df

q2 if for the pair of domains 〈dt, df〉, the states q1 and q2 are within the relation. Intuitively,

q1
dt∼
df

q2 means that the states q1 and q2 should look the same to dt since they only differ by secret

inputs from df .
Let a dynamic view partitioning ·

·
∼
·
· for a program automaton m be called a dynamic unwind-

ing relation for a state-based dynamic policy  if ∼ satisfies the following dynamic unwinding
conditions:

1. Local Respect: for all dt, df ∈ D, q, q′1 ∈ Q, and i1, i2 ∈ I if dom(i1) = dom(i2) = df , q
i1−→
dt

q′1,

and df 6 
q′
1 dt, then there must exist q′2 ∈ Q such that q

i2−→
dt

q′2 and q′1
dt∼
df

q′2.

2. Step Consistency: for all dt, df ∈ D, q1, q
′
1, q2 ∈ Q, and i ∈ I, if q1

dt∼
df

q2, q1
i

−→
dt

q′1, and

df 6 
q′
1 dt, then there must exist q′2 ∈ Q such that q2

i
−→
dt

q′2 and q′1
dt∼
df

q′2.

3. Output Consistency: for all dt, df ∈ D, q1, q
′
1, q2 ∈ Q, and o ∈ O if dom(o) = dt, q1

dt∼
df

q2, and

q1
o

−→
dt

q′1, and df 6 
q′
1 dt, then there must exist q′2 ∈ Q such that q2

o
−→
dt

q′2 and q′1
dt∼
df

q′2.
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As with static unwinding relations, the existence of a dynamic unwinding relation implies that
the system obeys the policy:

Theorem 3. For all automata m, if  is a non-revoking safe approximation of the at-output-
checking DIINI policy ; and there exists an unwinding relation for  and m, then m obeys ;.

Appendix B provides the proof.

5 Automated Policy Extraction

Although using the dynamic unwinding conditions eases proving that a program obeys an DIINI
policy, we really desire an automatic algorithm to check for obedience. Furthermore, as motived in
the introduction, often one would like to know the most restrictive policy that a program obeys.
Thus, we describe an approach for extracting from the source code of a program an approximation
of the most restrictive policy obeyed by that program.

Our approach tracks the flow of information through the program in a manner similar to
information-flow type systems [29, 25]. However, since our approach must work for legacy code
designed without the analysis in mind, some of the limitations of these type systems render them
unacceptable. For example, type systems will consider high-level any information stored in a vari-
able that has ever stored high-level information even if the current information stored in the variable
is low-level. Furthermore, type systems make no attempt to rule out infeasible paths.

Thus, we approach the problem with model checking. For each ordered pair of domains df

and dt, we will check for the property that the static incident-insensitive noninterference assertion
df 6; dt is not violated by the program. The collection of all counterexamples to this property will
form all the executions in which dt gains access to information about df . From these, we construct
a DIINI policy that the program obeys.

Our approach differs from standard model checking in that we need all of the counterexamples
to the noninterference property, not just one. Furthermore, our approach differs in that the non-
interference property is neither a safety nor liveness property and, thus, not expressible in any of
the standard temporal logics used as property languages [23]. Like a safety property, noninterfer-
ence requires that something does not happen: noninterference is not violated. However, unlike a
safety property, to determine if noninterference is violated requires comparing two behaviors of the
program. Thus, Terauchi and Aiken calls noninterference a 2-safety property [33].

To address the first difference, we use an all-counterexample extension to standard model check-
ing [15, 30]. To address the second difference, our approach constructs a model of the program
that reifies this 2-safety property as a normal safety property. Before presenting this construction
formally, we provide an example. In the example, and most of the rest of the section, we will
only concern ourselves with extracting the dynamic conditions under which one given domain gains
access to one other given domain. We discuss extending this approach to more than two domains
in Section 5.4.

5.1 An Example

Consider the program from the email server example in Section 4.1. We would like to extract
from this program the most restrictive DIINI policy that it obeys. For simplicity, we restrict our
attention to only cases where the user (domain u) gains access to the emails (domain e). Thus, we
will model check for the property that the static policy e 6; u is obeyed.

12



The first step of our approach performs a property-reifying transformation to the program
making the 2-safety property that e 6; u is obeyed into a safety property. For each variable x, the
transformation creates a shadow variable x’ that tracks if x is independent of the value of all the
inputs produced by e. The transformed program is

emails = load("mbox");

emails’ = false;

real_pw = load("password");

real_pw’ = true;

given_pw = read();

given_pw’ = true;

if(given_pw == real_pw)

print(emails);

print’(emails’ & given_pw’ & real_pw’);

else

print("wrong");

print’(given_pw’ & real_pw’);

where & is boolean AND. The variable emails’ is the shadow variable for emails. It is set to
false because emails depends on an input from e. real_pw’, the shadow variable of real_pw, is
set to true since it is independent of e. Likewise with given_pw’.

print’ is a special function that shadows calls to print. It allows us to reify that u has gained
access to the inputs of e since whenever u does, print’ is called with the value of false.

In the then branch of the if statement, print’ is passed emails’ & given_pw’ & real_pw’.
It is passed emails since the print statement it is shadowing, which precedes it, directly depends
on the value of emails. It is passed given_pw’ and real_pw’ since by being in an if statement
whose predicate depends on these values, the print statement indirectly depends them. These
three shadow variables are conjoined since all three of them must be independent of e for the print
statement to be independent of e.

The print’ statement in the else branch only has given_pw’ & real_pw’ since the print

statement it is shadowing only depends (indirectly) on these values.
Checking for the safety property that “print’ is never passed the value of false” yields a

counterexample whenever given_pw == real_pw. This condition is only satisfied when the contents
of password is equal to the user’s input. Thus, u only gains access to the input of e if the input of
password equals the input of u. Therefore, the program obeys the policy ; where e ;ι u when the
input sequence ι has the same second (real_pw) and third input (given_pw) and e 6;ι u otherwise.

We can use the same method to extract the policy that governs access by u to the inputs of
password (the domain p) by tracking how the value of the file password flows through the system
instead of how the value of mbox does. One may see from the above transformed program, that
both print statements depend on the value of password. Thus, the user always gets access to the
input of p. Indeed, the user does learn if the password he has supplied as input is equal to value
of password or not. In practice, this small bit of information is often negligible, a concept others
have formalized [13, 18, 26], but we consider outside the scope of this paper.

Since our approach relies on the semantics of the analyzed language, we first present a simple
language before formalizing our approach for that language.
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〈Γ, x:=e〉
τ
→֒〈Γ[x 7→ Γ(e)], •〉 〈Γ, read(x, d)〉

〈i,d,n〉
→֒ 〈Γ[x 7→ n], •〉

n = Γ(e)

〈Γ, print(e, d)〉
〈o,d,n〉
→֒ 〈Γ, •〉

〈Γ, s1〉
a
→֒〈Γ′, s′1〉

〈Γ, s1;s2〉
a
→֒〈Γ′, s′1;s2〉

〈Γ, s2〉
a
→֒〈Γ′, s′2〉

〈Γ, •;s2〉
a
→֒〈Γ′, •;s′2〉

〈Γ, •;•〉
τ
→֒〈Γ, •〉

Γ(e) = 0

〈Γ, if(e){s1}{s2}〉
τ
→֒〈Γ, s2〉

Γ(e) 6= 0

〈Γ, if(e){s1}{s2}〉
τ
→֒〈Γ, s2〉

〈Γ, while(e){s1}〉
τ
→֒〈Γ, if(e){s1; while(e){s1}}else{•}〉

Table 1: Semantics of WhileIO

5.2 The Language WhileIO

WhileIO is simple language with while loops, if statements, and operators for input and output.
The syntax of WhileIO consists of statements S and expressions E:

S ::= X:=E | print(E, D) | read(X, D) | S;S

| if(E){S}else{S} | while(E){S}

E ::= E+E | X | D | N

where X ranges over variable names, D over domains, and N over numbers. Statements always
evaluate to void (written as •), and expressions always evaluate to a number. A program is just a
single statement.

Table 1 gives the semantics of WhileIO. The judgment 〈Γ, s〉
a
→֒〈Γ′, s′〉 means that the statement

s goes to s′ while performing the action a and changing the store from Γ to Γ′. The store is a
mapping from variables to numbers: Γ : X → N . Let Γ[x 7→ v] be the store such that Γ[x 7→ v](y)
is v if x = y and is Γ(y) if x 6= y. We extend stores to assign a number to expressions as follows:
let Γ(e1+e2) be Γ(e1) + Γ(e2) and Γ(n) = n for numbers n.

An action is an ordered triple: the first component is i if the action is an input and o if it is an
output, the second component is the domain of the action, and the third component is the contents
of the action. For example, 〈i, e, "Dear Bob..."〉 could be the input for the emails in the email
server above example.

A program of WhileIO defines an automaton. The inputs I are those actions with i as the first
component; the outputs O, those with o as the first component. dom projects the second component
of an action. Each pair 〈Γ, s〉 defines a state. The transitions are provided by the judgment form

→֒: 〈Γ, s〉
a
�〈Γ′, s′〉 iff 〈Γ, s〉

a
→֒〈Γ′, s′〉. The initial state is 〈Γ0, s〉 where s is the program and Γ0

is the store that assigns zero to every variable. Given a program s let autom(s) represent this
automaton.

A program s obeys a DIINI policy iff autom(s) obeys the DIINI policy as defined in Section 4.2.
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5.3 Constructing the Model

Now we show how to convert a program of WhileIO to an automaton model. Rather than preform
a source-to-source transformation as in the example of Section 5.1, we show how to reify the
noninterference property directly in the model. Thus, the model contains some features that are
unnecessary for simply modeling the behavior of the program. Strictly speaking, these extra features
mean that the model is not a system automaton as defined in Section 2.

We present the model construction algorithm for finding the conditions under which the confi-
dentiality assertion df 6; dt is violated for a fixed pair of domains df and dt such that dt 6= df . In
the next section, we discuss dealing with more than two domains.

Let model(s) = 〈I,O,D, dom, Q, q0,֌〉 be the model constructed for the program s. I, O,
D, and dom come from the definition of action found in Section 5.2. The set of states Q is
(X → N) × Ls × (X → {T,F}) where Ls is a set of labels defined below. Each state 〈Γ, ℓ, η〉 ∈ Q
consists of a store Γ, a label ℓ, and an independence predicate η.

The set of labels Ls for atomic statements s holds just two labels: pre(s) and post(s), which
represent the state right before executing s and the state right after. The set of labels for a
compound statement s (an if, while, or ; statement) results from adding pre(s) and post(s) to
the disjoint union of the sets of labels for its sub-statements.

At a state 〈Γ, ℓ, η〉, the independence predicate η, assigns to each variable x true if at that state
the value of x is independent of the value of any input from the domain df . If x does depend on
the value of an input from df or it is unclear if it does or not, then η(x) = F. Let η(e1+e2) be
η(e1) ∧ η(e2) and η(n) = F for n ∈ N .

The start state q0 is 〈Γ0, pre(s), ηT〉 where s is the program and ηT is the independence predicate
that assigns true to all variables.

֌ is a transition relation from a state to a state under both an action and a boolean. q
a
֌

T
q′

means that the model transitions from state q to state q′ during the action a without providing any

information about df to dt. q
a
֌

F
q′ means that the model transitions from q to q′ during a while

possibly providing information about df to dt.
To define ֌, we use a translation from a statement to a transition relation. We write >s>

for the translation of s. We write q
a

>s>
b

q′ if the state q transitions to q′ under the action a and

boolean b in the transition relation >s>. The value of ֌ for the program s is >s>.
The translation >s> is defined recursively on the structure of s. For each syntactic form that a

statement can take, we provide all the cases in which >s> holds: if q
a

>s>
b

q′ is not explicitly listed,

then it does not hold (is not in the relation). (All variables are universally quantified.)

1. When s has the form x:=e:

〈Γ, pre(s), η〉
τ

>s>
T

〈Γ[x 7→ Γ(e)], post(s), η[x 7→ η(e)]〉

2. When s has the form read(x, d) with dt 6= d 6= df :

〈Γ, pre(s), η〉
〈i,d,n〉
>s>

T
〈Γ[x 7→ n], post(s), η[x 7→ T]〉
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3. When s has the form read(x, d) with d = df or d = dt:

〈Γ, pre(s), η〉
〈i,d,n〉
>s>

T
〈Γ[x 7→ n], post(s), η[x 7→ F]〉

4. When s has the form print(e, d) with d 6= dt:

〈Γ, pre(s), η〉
〈o,d,Γ(e)〉
>s>

T
〈Γ, post(s), η〉

5. When s has the form print(e, dt):

〈Γ, pre(s), η〉
〈o,dt,Γ(e)〉

>s>
η(e)

〈Γ, post(s), η〉

6. When s has the form s1 ; s2:

〈Γ, pre(s), η〉
τ

>s>
T

〈Γ, pre(s1), η〉

〈Γ, post(s1), η〉
τ

>s>
T

〈Γ, pre(s2), η〉

〈Γ, post(s2), η〉
τ

>s>
T

〈Γ, post(s), η〉

q
a

>s>
b

q′ if q
a

>s1>
b

q′ or q
a

>s2>
b

q′

7. When s has the form if(e) s1 else s2:

〈Γ, pre(s), η〉
τ

>s>
η(e)∨w

〈Γ, pre(sj), η
′〉

〈Γ, post(sj), η〉
τ

>s>
T

〈Γ, post(s), η′〉

q
a

>s>
b

q′ if q
a

>sj>
b

q′

where j = 1 if Γ(e) 6= 0 and j = 2 if Γ(e) = 0, and η′(x) = η(x)∧ (η(e)∨x /∈ def(s1)∪def(s2))
where def(s) is the set containing all variables defined (on the left-hand side of a := statement
or the variable in a read statement) in s, and w is false if s1 or s2 contain a while loop, a
read statement, or a statement of the form print(e, dt).

8. When s has the form while(e)s1 with Γ(e) 6= 0:

〈Γ, pre(s), η〉
τ

>s>
η(e)

〈Γ, pre(s1), η〉

〈Γ, post(s1), η〉
τ

>s>
η(e)

〈Γ, pre(s), η〉

q
a

>s>
b

q′ if q
a

>s1>
b

q′
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9. When s has the form while(e)s1 with Γ(e) = 0:

〈Γ, pre(s), η〉
τ

>s>
η(e)

〈Γ, post(s), η〉

The transitions for while statements produce the boolean η(e) despite producing no output since
their termination or lack there of may affect the output seen by the user. while and read statements
are treated specially in if statements for the same reason.

5.4 Using the Model

Once model(s) has been constructed, our approach uses it to create an approximation of the most
restrictive DIINI policy that the program s obeys. First, our approach finds all reachable transitions

of the form q1
o
֌

F
q2. These transitions indicate that the output o might provide the low-level user

dt with information about an input of df . Second, for each such transition, our approach finds
each input sequence ι that leads to this transition. Third, for each such ι, df ;ι′ dt is added to
the policy for every ι′ that has ι as a prefix. After this process is complete, the resulting policy is
returned with df 6;

ι dt for all ι such that df ;ι dt was not added to the policy. Let policy(model(s))
represent this policy. (We define policy(model(s)) more formally in Appendix C.)

Correctness of our approach may be stated as follows:

Theorem 4. For every program s of WhileIO, autom(s) obeys the DIINI policy policy(model(s)).

We prove this theorem in Appendix C.
To convert our approach to an actual algorithm, we must select a method for finding all the

input sequences that lead to a transition of the form q1
o
֌

F
q2. Finding these sequences is equivalent

to finding all the counterexamples to the property no such transition is reachable. While standard
model checkers will stop after finding one counterexample to this property, algorithms exist for
producing all the counterexamples. Jha and Wing [15] give an algorithm using a symbolic repre-
sentation of the state space and a modified version of a standard iterative fixed-point algorithm [24].
Sheyner [30] gives another algorithm uses an explicit state representation.

For handling more than the two domains df and dt, a tool can repeat the above approach for
each ordered pair of domains. The transitive closure of the union of these policies provides a policy
that the program obeys.

6 Related Work and Discussion

Assumptions. All the systems discussed in this paper have been interactive, that is, they receive
input and produce output throughout their execution. A batch-job system only allows users to
determine the contents of its memory at the beginning of its execution and to observe any changes
at the end of its execution. Much of the work on type systems for enforcing confidentiality policies
have been for batch-job systems [29].

We have assumed that the user may observe not only the outputs from a system but also the
system consuming his inputs. Many systems actually buffer user inputs making it unclear when an
input actually affects the state of the system. McCullough discusses some issues that arise from
modeling systems that use buffers [21].
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A system is input-enabled if it will always accept any input offered by a user. While most
confidentiality requirements have been defined for input-enabled systems, we have not made this
assumption.

We have modeled systems as asynchronous automata, which can provide output to one user
without sending output to all the users. Most authors use synchronous automata, which must
produce outputs to all users at regular intervals. (See [9] for a detailed comparison.) We believe
our unwinding conditions to be the first for asynchronous automata.

We have assumed that the users cannot observe the termination of a system. This assumption
makes our incident-insensitive noninterference requirement termination-insensitive. Others have
considered program analysis for termination-sensitive confidentiality requirements [33].

Other Requirements. Incident-insensitive noninterference requires that if ι1 ∼=
;,d
ii ι2, then any

behavior of the system under ι1 must also appear possible under ι2 to the domain d. Thus, this
formulation is called possibilistic. In some contexts, a system is unacceptable if the observations of
d is likely to occur under ι1 and unlikely under ι2. Such concerns has led Gray and Syverson to
define probabilistic noninterference, which requires the observation to be equiprobable under both
ι1 and ι2 [14].

Nondeducibility on strategies requires that no matter how a high-level user interacts with a
system, a low-level user will still not be able to learn anything about the high-level user’s inputs [36].
The original formulation is incident-sensitive. O’Neill et al. created an incident-insensitive version
to characterize formally the properties that information-flow type systems enforce for interactive
systems [25]. We suspect that few if any modifications would be required to use our approach for
extracting nondeducibility policies.

Even if two automata obey the same noninterference policy, their composition might not. Mc-
Cullough has proposed requirements that ensure that the composition of two obeying automata
will also obey a policy [20, 21]. Also, removing nondeterminism from an automaton that obeys
a noninterference policy might result in one that does not. Others have studied conditions under
which such refinement will not destroy the security of an automaton [16, 19, 1].

We have required that each policy ; be transitive. Intransitive policies model channel control,
the requirement that information passes through a downgrading domain before reaching a domain
of a lower level. Rusby defined the most commonly used formulation of intransitive noninterfer-
ence [28]. However, Roscoe and Goldsmith [27] offer a competing formulation using CSP [11].

Whereas confidentiality requires that protected data does not become known to untrusted users,
integrity requires that protected data does not become tainted or corrupted by untrusted users. By
reversing the roles of the high- and low-level users of a system, integrity becomes confidentiality.
Thus, our confidentiality requirements also define an integrity requirements.

Dynamic Unwinding. Leslie has also provided a set of dynamic unwinding conditions [17].
Rather than asynchronous, nondeterministic automata, she defines her unwinding conditions for
synchronous, deterministic automata. Her conditions ensure that an intransitive incident-sensitive
noninterference policy is obeyed while ours is for transitive incident-insensitive noninterference.
Furthermore, hers is for at-input-checking dynamic policies rather than at-output-checking dynamic
policies.
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Related Tools. Although we are the first to propose using all-counterexamples model checking
for policy extraction, others have used standard model checking for verifying that a given policy is
obeyed. They observed that by composing a program with itself, one can obtain the two behaviors
necessary to check the 2-safety property of noninterference [3, 2]. Later work improved this approach
by using type theory to produce more efficient models [33, 35].

Program dependence graphs represent how inputs from different users interact [4, 5]. Thus, they
reveal if a system obeys a noninterference policy [32]. Hammer et al. have extended this approach
also to produce “witnesses” (counterexamples) in cases where the policy fails to hold [10]. These
counterexamples could form the basis of an algorithm for dynamic policy extraction.

Just as a confidentiality policy may become buried within the code of a large program, the
operating procedures of a business may also become hidden within large applications. Thus, others
have created tools to extract these business rules from source code [12, 31]. These tools use program
slicing [34] instead of model checking.

Once a policy is extracted from a program, the maintainer might want to update the program
to accept the policy as a configuration parameter. This requires refactoring the code to use a
centralized policy enforcement mechanism. Ganapathy et al. have developed tools to retrofit legacy
code for this purpose [6].

7 Summary

Firstly, we have clarified the difference between incident-sensitive and incident-insensitive noninter-
ference, two requirements often conflated as simply “noninterference”. Secondly, we have introduced
at-output-checking dynamic policies to express policies that at-input-checking dynamic policies can-
not. Thirdly, we have presented an approach based on all-counterexamples model checking for the
automated extraction of at-output-checking dynamic incident-insensitive noninterference policies
from program source code.
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A Proofs about Static Noninterference

A.1 Formalization of Example

We formalize the example found in Section 3.1. We model this program as the system exs where

• Iexs = {T,F},

• Oexs = {x, y, z},

• Dexs = {H,L},

• domexs(T) = domexs(F) = H

domexs(x) = domexs(y) = domexs(z) = L,

• Qexs = {q0, q1, q2},

• and the transition �

exs
is such that q0

T
� q1, q0

F
� q1, and q1

x
� q2

where q0 is the start state. The system only accepts input from the domain H and only produces
output for the domain L. It only has two behaviors [T, x] and [F, x]. Each consumes an input from
the domain H and then produces the output x for the domain L.

The desire of the system designer is to protect the confidentiality of the domain H from the
domain L. So let ;exp be a policy such that H 6;exp L and L ;exp H. This policy makes H a
high-level domain and L a low-level domain.

Lemma 1. The system exs fails to obey ;exp as incident-sensitive noninterference policy.

Proof. Both [] and [T] are in I∗ and [] ∼=
exp,L
is [T] since domexs(T) = H and H 6;exp L. Thus, it should

be the case that ⌊runsexs([])⌋AL = ⌊runsexs([T])⌋AL . However, ⌊runsexs([])⌋AL = ⌊{}⌋AL = {} whereas
⌊runsexs([T])⌋AL = ⌊{[T, x]}⌋AL = {[x]}.
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Lemma 2. The system exs does obey ;exp as incident-insensitive noninterference policy.

Proof. For H, ι1 ∼=
;exp,H
ii ι2 only if ι1 = ι2 for all ι1, ι2 ∈ I∗ since domexs(i) ; d for all d ∈ Dexs and

i ∈ Iexs. Thus, clearly, ι1 ∼=
;exp,H
ii ι2 implies that ⌊runsexs(ι1)⌋AH

exs
= ⌊runsexs(ι2)⌋AH

exs
.

For L, consider the following two cases:

1. ι1 ∈ {[T], [F]}. Then ι1 ∼=
;exp,L
ii ι2 if and only if ι2 ∈ {[T], [F]} since no other input sequences

of length one exists and domexs(T) = domexs(F) = H and H 6;exp L. Note

⌊runsexs([T])⌋AL
exs

= ⌊{[T, x]}⌋AL
exs

= {⌊[T, x]⌋AL
exs
} = {[x]} = {⌊[F, x]⌋AL

exs
}

= ⌊{[F, x]}⌋AL
exs

= ⌊runsexs([F])⌋AL
exs

since T and F are not in AL
exs. Thus, ⌊runsexs(ι1)⌋AL

exs
= ⌊runsexs(ι2)⌋AL

exs
if ι1 ∼=

;exp,L
ii ι2.

2. ι1 /∈ {[T], [F]}. Then, as explained above, ι2 /∈ {[T], [F]} since ι1 ∼=
;exp,L
ii ι2. Thus,

⌊runsexs(ι1)⌋AL
exs

= ⌊{}⌋AL
exs

= ⌊runsexs(ι2)⌋AL
exs

since no behavior of exs includes neither the input sequence [T] nor the input sequence [F].

A.2 Proof of Theorem 1

Lemma 3. For a system m, for all d ∈ D and α1, α2 ∈ I∗,

α1
∼=

;,d
ii α2 implies α1

∼=
;,d
is α2

Proof. Proof by induction over the length of α1. Note that if α1
∼=

;,d
ii α2, then |α1| = |α2|.

Base Case: |α1| = 0 and α1 = []. Then α2 must be []. Thus, α1
∼=

;,d
is α2 since [] ∼=

;,d
is [].

Inductive Case: |α1| = n > 0. Here we may assume that α1 = a1:α
′
1 for some a1 ∈ A and

α′
1 ∈ A∗, α2 = a2:α

′
2 for some a2 ∈ A and α′

2 ∈ A∗, and that α′
1
∼=

;,d
ii α′

2 implies that α′
1
∼=

;,d
is α′

2.

We must show that a1:α
′
1
∼=

;,d
ii a2:α

′
2 implies that a1:α

′
1
∼=

;,d
is a2:α

′
2

Assume α1
∼=

;,d
ii α2. Then dom(a1) = dom(a2), dom(a1) ; d implies that a1 = a2, and

α′
1
∼=

;,d
ii α′

2. Thus, α′
1
∼=

;,d
is α′

2. Consider the following two cases

1. dom(a1) 6; d. In this case, a2 = a1. Since α′
1
∼=

;,d
is α′

2, a1:α
′
1
∼=

;,d
is a2:α

′
2.

2. dom(a1) 6; d. In this case, dom(a2) 6; d also since dom(a1) = dom(a2). Thus, α′
1
∼=

;,d
is α′

2

implies that a1:α
′
1
∼=

;,d
is α′

2, which implies that α′
1
∼=

;,d
is α′

2 implies that a1:α
′
1
∼=

;,d
is a2:α

′
2.

Thus, either way, a1:α
′
1
∼=

;,d
is a2:α

′
2.

Now the proof of Theorem 1.

Proof. Assume that a system m obeys ; as a noninterference policy. This implies that if α1
∼=

;,d
is

α2, then ⌊runs(α1)⌋Ad
= ⌊runs(α2)⌋Ad

. By Lemma 3, if α1
∼=

;,d
ii α2, then α1

∼=
;,d
is α2. Thus,

if α1
∼=

;,d
ii α2, then ⌊runs(α1)⌋Ad

= ⌊runs(α2)⌋Ad
. This means that m obeys ; as an incident-

insensitive noninterference policy.
Lemmas 1 and 2 show that the converse is not true.
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A.3 Proof of Theorem 2

In each of the following lemmas let ·
·
∼· be an unwinding relation for the automaton

m = 〈I,O,D, dom, Q, q0,�〉

and policy ;.

Lemma 4 (Step Respect). For all d ∈ D, i1, i2 ∈ I, and q1, q
′
1, q2 ∈ Q, if dom(i1) = dom(i2),

dom(i1) 6; d, q1
d
∼ q2, and q1

i1−→
d

q′1, then there must exist q′2 ∈ Q such that q2
i2−→
d

q′2 and q′1
d
∼ q′2.

Proof. By Step Consistency, there must exist a q′′2 such that q2
i1−→
d

q′′2 and q′1
d
∼ q′′2 . By Local Respect,

there must exist a q′2 such that q2
i1−→
d

q′2 and q′′2
d
∼ q′2. By the transitivity of ·

d
∼ ·, q′1

d
∼ q′2.

Each of the next five lemmas proves almost the same statement for a more complicated set of
behaviors than the last.

Lemma 5. For all d ∈ D, o ∈ O, σ1 ∈ O∗, and q1, q
′
1, q2 ∈ Q, if dom(o) = d, ⌊σ1⌋Ad = [],

q1
d
∼ q2, and q1

σ1:o
−→ q′1, then there must exist σ2 ∈ O∗ and q′2 ∈ Q such that q2

σ2:o
−→ q′2, q′1

d
∼ q′2, and

⌊σ2⌋Ad = [].

Proof. Since ⌊σ1⌋Ad = [], q1
σ1:o
−→ q′1 implies that q1

o
−→

d
q′1. Thus, by Output Consistency, there must

exist q′2 such that q2
o

−→
d

q′2 and q′1
d
∼ q′2. q2

o
−→

d
q′2 implies that there exists σ2 such that q2

σ2:o
−→ q′2

and ⌊σ2⌋Ad = [].

Lemma 6. For all d ∈ D, i1, i2 ∈ I, σ1 ∈ O∗, and q1, q
′
1, q2 ∈ Q, if ⌊σ1⌋Ad = [], q1

d
∼ q2, q1

σ1:i1−→ q′1,
dom(i1) = dom(i2), and dom(i1) ; d implies i1 = i2, then there must exist σ2 ∈ O∗ and q′2 ∈ Q

such that q2
σ2:i2−→ q′2, q′1

d
∼ q′2, and ⌊σ2⌋Ad = [].

Proof. Since ⌊σ1⌋Ad = [], q1
σ1:i1−→ q′1 implies that q1

i1−→
d

q′1. Consider the following two cases:

• dom(i1) ; d. In this case i1 = i2. Thus, by Step Consistency, there must exist q′2 such that

q2
i1−→
d

q′2 and q′1
d
∼ q′2.

• dom(i1) 6; d. In this case, Step Respect (Lemma 4) implies the same thing.

In either case, q2
i

−→
d

q′2 implies that there exists σ2 such that q2
σ2:i
−→ q′2 and ⌊σ2⌋Ad = [].

Lemma 7. For all d ∈ D, o ∈ O, σ1, σd ∈ O∗, and q1, q
′
1, q2 ∈ Q, if dom(o) = d, q1

d
∼ q2, q1

σ1:o
−→ q′1,

and σd = ⌊σ1⌋Ad , then there must exist σ2 ∈ O∗ and q′2 ∈ Q such that q2
σ2:o
−→ q′2, q′1

d
∼ q′2, and

⌊σ2⌋Ad = σd.
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Proof. Proof by induction over the structure of σd.
Case: σd = []. The result follows directly from Lemma 5.
Case: σd = o′:σ′′

d . In this case, σ1 must have the form σ′
1:o

′:σ′′
1 where ⌊σ′

1⌋Ad = [] and ⌊σ′′
1⌋Ad =

σ′′
d . Since q1

σ1:o
−→ q′1, there must exist q′′2 such that q1

σ′

1
:o′

−→ q′′1
σ′′

1
:o

−→ q′1.

By Lemma 5, there must exist σ′
2 ∈ O∗ and q′′2 ∈ Q such that q2

σ′

2
:o′

−→ q′′2 , q′′1
d
∼ q′′2 , and ⌊σ′

2⌋Ad = [].

By the inductive hypothesis, there must exist σ′′
2 ∈ O∗ and q′2 ∈ Q such that q′′2

σ′′

2
:o

−→ q′2, q′1
d
∼ q′2, and

⌊σ′′
2⌋Ad = σ′′

d .

Let σ2 = σ′
2:o

′:σ′′
2 . q2

σ′

2
:o′

−→ q′′2 and q′′2
σ′′

2
:o

−→ q′2 implies q2
σ2:o
−→ q′2. ⌊σ′

2⌋Ad = [] and ⌊σ′′
2⌋Ad = σ′′

d

implies ⌊σ2⌋Ad = ⌊σ′
2:o

′:σ′′
2⌋Ad = o′:σ′′

d = σd.

Lemma 8. For all d ∈ D, i1, i2 ∈ I, σ1 ∈ O∗, and q1, q
′
1, q2 ∈ Q, if q1

d
∼ q2, q1

σ1:i1−→ q′1, dom(i1) =
dom(i2), and dom(i1) ; d implies i1 = i2, then there must exist σ2 ∈ O∗ and q′2 ∈ Q such that

q2
σ2:i2−→ q′2, q′1

d
∼ q′2, and ⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad .

Proof. In the case where ⌊σ1⌋Ad = [], the result follows directly from Lemma 6.
Otherwise, σ1 has the form σ′

1:o:σ
′′
1 where σ′

1, σ
′′
2 ∈ O∗, o ∈ O, dom(o) = d, and ⌊σ′′

1⌋Ad = [].

Since q1
σ1:i1−→ q′1, there must exist q′′1 ∈ Q such that q1

σ′

1
:o1

−→ q′′1
σ′′

1
:i1

−→ q′1.

By Lemma 7, there must exist σ′
2 ∈ O∗ and q′′2 ∈ Q such that q2

σ′

2
:o

−→ q′′2 , q′′1
d
∼ q′′2 , and ⌊σ′

1:o⌋Ad =

⌊σ′
2:o⌋Ad . Since q′′1

d
∼ q′′2 ,q′′1

σ′′

1
:i1

−→ q′1, and ⌊σ′′
1⌋Ad = [], Lemma 6 implies that there exists σ′′

1 ∈ O and

q′2inQ such that q′′2
σ′′

2
:i2

−→ q′2, q′1
d
∼ q′2, and ⌊σ′′

2⌋Ad = [].

Let σ2 = σ′
2:o:σ

′′
2 . Since q2

σ′

2
:o

−→ q′′2
σ′′

2
:i2

−→ q′2, q2
σ2:i2−→ q′2 where q′1

d
∼ q′2. From ⌊σ′

1:o⌋Ad = ⌊σ′
2:o⌋Ad ,

⌊σ′′
1⌋Ad = [] = ⌊σ′′

2⌋Ad , and the fact that dom(i1) = d implies i1 = i2 (; is reflexive), it follows that
⌊σ1:i1⌋Ad = ⌊σ2:i2⌋A2

.

Lemma 9. For all d ∈ D, q1, q2, q
′
1 ∈ Q, ι1, ι2 ∈ I∗, i1, i2 ∈ I, and α1 ∈ A∗, if ι1:i1 ∼=

;,d
ii ι2:i2,

⌊α1⌋I = ι1, q1
d
∼ q2, and q1

α1:i1−→ q′1, then there exists α2 ∈ A∗ and q′2 ∈ Q such that q′1
d
∼ q′2, q2

α2:i2−→ q′2,
⌊α2⌋I = ι2, and ⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad.

Proof. Proof by induction over the structure of ι1.
Case: ι1 = []. Since ι1:i1 ∼=

;,d
ii ι2:i2, ι2 must be [], dom(i1) = dom(i2), and dom(i1) ; d implies

i1 = i2. Since ⌊α1⌋I = [i1], there must exist σ1 ∈ O∗ such that α1 = σ1:i1. Thus, Lemma 8 implies

that there must exist σ2 ∈ O∗ and q′2 ∈ Q such that q2
σ2:i2−→ q′2, q′1

d
∼ q′2, and ⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad .

Since ⌊σ2⌋I = [], ⌊σ2:i2⌋I = ι2:i2. Thus, the result holds with α2 = σ2.

Case: ι1 = i′1:ι
′
1. Since ι1 ∼=

;,d
ii ι2, there must exist i′2 ∈ I and ι′2 ∈ I∗ such that ι2 = i′2:ι

′
2,

ι′1
∼=

;,d
ii ι′2, dom(i′1) = dom(i′2), and dom(i′1) ; d implies i′1 = i′2. Since ⌊α1⌋I = ι1 = i′1:ι

′
1, there

must exist σ1 ∈ O∗ and α′
1 ∈ A∗ such that α1 = σ1:i

′
1:α

′
1, ⌊α

′
1⌋I = ι′1, and q1

σ1:i′
1−→ q′′1

α′

1
:i1

−→ q′1.

Since dom(i′1) = dom(i′2), dom(i′1) ; d implies i′1 = i′2, q1
d
∼ q2, and q1

σ1:i′
1−→ q′′1 , Lemma 8 implies

that there exists q′′2 ∈ Q and σ2 ∈ O∗ such that q′′1
d
∼ q′′2 , q2

σ2:i′
2−→ q′′2 and ⌊σ1:i

′
1⌋Ad = ⌊σ2:i

′
2⌋Ad .

Since ι′1:i1
∼=

;,d
ii ι′2:i2, ⌊α

′
1⌋I = ι′1, q′′1

d
∼ q′′2 , and q′′1

α′

1
:i1

−→ q′1, the inductive hypothesis implies that

there must exist α′
2 ∈ A∗ and q′2 ∈ Q such that q′1

d
∼ q′2, q′′2

α′

2
:i2

−→ q′2, ⌊α
′
2⌋I = ι′2, and ⌊α′

1:i1⌋Ad =
⌊α′

2:i2⌋Ad .
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Let α2 = σ2:i
′
2:α

′
2. Since q2

σ2:i′
2−→ q′′2 and q′′2

α′

2
:i2

−→ q′2, q2
α2:i2−→ q′2. Since ι2 = i′2:ι

′
2 and ⌊α′

2⌋Ad =
ι′2, ⌊α2⌋Ad = ι2. Since ⌊σ1:i

′
1⌋Ad = ⌊σ2:i

′
2⌋Ad and ⌊α′

1:i1⌋Ad = ⌊α′
2:i2⌋Ad , ⌊σ1:i

′
1:α

′
1:i1⌋Ad =

⌊σ2:i
′
2:α

′
2:i2⌋Ad . That is, ⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Theorem 2 is a corollary of the next lemma.

Lemma 10. For all d ∈ D, ι1, ι2 ∈ I∗, α1 ∈ A∗, and q1 ∈ Q, if ι1 ∼=
;,d
ii ι2, q0

α1−→ q1, and ⌊α1⌋I =

ι1, then there exists α2 ∈ A∗ and q2 ∈ Q such that q0
α2−→ q2, ⌊α2⌋I = ι2, and ⌊α1⌋Ad = ⌊α2⌋Ad .

Proof. Consider the case where α1 = α′
1:i1:σ1:o:σ

′
1 with α′

1 ∈ A∗, i1 ∈ I, and σ1, σ
′
1 ∈ O∗,

o ∈ O, dom(o) = d, and ⌊σ′
1⌋Ad = []. Since q0

α1−→ q1, there must exist q′1, q
′′
1 ∈ Q such that

q0
α′

1
:i1

−→ q′1
σ1:o−→ q′′1

σ′

1−→ q1.
Since ⌊α1⌋I = ι1, it must be the case that ι1 = ι′1:i1 where ι′1 = ⌊α′

1⌋I . Furthermore, since

ι1 ∼=
;,d
ii ι2, ι′1:i1

∼=
;,d
ii ι2. This implies that ι2 must have the form ι′2:i2 where dom(i1) = dom(i2)

and dom(i1) ; d implies that i1 = i2. Thus, by Lemma 9, there must exist α′
2 ∈ A∗ and q′2 ∈ Q

such that q′1
d
∼ q′2, q0

α′

2
:i2

−→ q′2, ⌊α
′
2⌋I = ι′2, and ⌊α′

1:i1⌋Ad = ⌊α′
2:i2⌋Ad .

Since q′1
d
∼ q′2 and q′1

σ1:o
−→ q′′1 , Lemma 7 implies that there must exist σ2 ∈ O∗ and q2 ∈ Q such

that q′2
σ2:o
−→ q2, q′′1

d
∼ q2, and ⌊σ1⌋Ad = ⌊σ2⌋Ad .

Let α2 = α′
2:i2:σ2:o. Since q0

α′

2
:i2

−→ q′2 and q′2
σ2:o−→ q2, q0

α2−→ q2. ⌊α2⌋I = ⌊α′
2:i2:σ2:o⌋I = ⌊α′

2⌋I :i2 =
ι′2:i2 = ι2. Since ⌊α′

1:i1⌋Ad = ⌊α′
2:i2⌋Ad , ⌊σ1⌋Ad = ⌊σ2⌋Ad , and ⌊σ′

1⌋Ad = [], ⌊α2⌋Ad = ⌊α′
2:i2:σ2:o⌋Ad =

⌊α′
2:i2⌋Ad :⌊σ2⌋Ad :o = ⌊α′

1:i1⌋Ad :⌊σ1⌋Ad :o = ⌊α′
1:i1:σ1:o:σ

′
1⌋Ad = ⌊α1⌋Ad .

In cases where α1 is not of the form α′
1:i1:σ1:o:σ

′
1, some subset of the above arguments are

sufficient to achieve the same result.

B Proof of Theorem 3

First, we must define some new notation.

Let q1
d
∼
d′:δ

q2 for d′:δ ∈ D∗ iff q1
d
∼
d′

q3 and q3
d
∼
δ

q2. Let q
d
∼
[]

q hold for all d and q. For D′ ⊆ D, let

q1
d
∼
D′

q2 iff there exists δ ∈ (D′)∗ such that q1
d
∼
δ

q2.

For D′ ⊆ D, let D′ 6 q d mean that for all d′ ∈ D′, d′ 6 q d.

Lemma 11. For all D′ ⊆ D, α ∈ A∗, and q, q′ ∈ Q, if the the state-based dynamic policy  is a
non-revoking safe approximation of the dynamic policy ;, q

α
−→ q′, and D′ 6 q′ d, then D′ 6 q d.

Proof. Consider each d′ ∈ D′ separately, this follows from the contrapositive of the fact that  is
non-revoking.

Lemma 12. Let  be a state-based safe approximation of the dynamic policy ; for some automa-
ton m = 〈I,O,D, dom, Q, q0,�〉. For all d ∈ D, q1 ∈ Q, ι1, ι2 ∈ I∗, i1, i2 ∈ I, and α ∈ A∗, if

ι1:i1 ∼=
;

ι1:i1 ,d
ii ι2:i2, ⌊α⌋I = ι1, and q0

α:i1−→ q1, then dom(i1) 
q1 d implies i1 = i2.

Proof. Since ι1:i1 ∼=
;

ι1:i1 ,d
ii ι2:i2, dom(i1) = dom(i2) and dom(i1) ;ι1:i1 d implies i1 = i2. Since

 is a safe approximation of ; and q0
α:i1−→ q1, dom(i1) 6;ι1:i1 d implies dom(i1) 6 q1 d. Thus, by

taking the contrapositive, dom(i1) 
q1 d implies dom(i1) ;ι1:i1 d. This means that dom(i1) 

q1 d
implies i1 = i2.
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In each of the following lemmas let ·
·
∼
·
· be an dynamic unwinding relation for the automaton

m = 〈I,O,D, dom, Q, q0,�〉 and state-based dynamic policy  where  is a non-revoking safe
approximation of the dynamic policy ;.

The next two lemmas just raise up the second two unwinding conditions to work over sets.

Lemma 13 (Set Step Consisteny). For all d ∈ D, D′ ⊆ D, i ∈ I, and q1, q
′
1, q2 ∈ Q, if q1

d
∼
D′

q2,

q1
i

−→
d

q′1, and D′ 6 q′
1 d, then there must exist q′2 ∈ Q such that q2

i
−→

d
q′2 and q′1

d
∼
D′

q′2.

Proof. We will actually prove the following slightly stronger statement: For all d ∈ D, D′ ⊆ D,

δ ∈ (D′)∗, i ∈ I, and q1, q
′
1, q2 ∈ Q, if q1

d
∼
δ

q2, q1
i

−→
d

q′1, and D′ 6 q′
1 d, then there must exist q′2 ∈ Q

such that q2
i

−→
d

q′2 and q′1
d
∼
δ

q′2.

Proof by induction over the structure of δ.

Case: δ = []. In this case q1 = q2. Thus, let q′2 = q′1. Then q′1
d
∼
[]

q′2 by definition.

Case: δ = d′:δ′. In this case, q1
d
∼
d′

q3 and q3
d
∼
δ′

q2 for some d′ and q3. Since d′ ∈ D′, d′ 6 q′
1 d.

Thus, by Step Consistency, there must exist a q′3 such that q3
i

−→
d

q′3 and q′1
d
∼
d′

q′3. By the inductive

hypothesis, there must exist q′2 ∈ Q such that q2
i

−→
d

q′2 and q′3
d
∼
δ′

q′2. Thus, q′1
d
∼

d′:δ′
q′2.

Lemma 14 (Set Output Consisteny). For all d ∈ D, D′ ⊆ D, o ∈ O, and q1, q
′
1, q2 ∈ Q, if

dom(o) = d, q1
d
∼
D′

q2, q1
o

−→
d

q′1, and D′ 6 q′
1 d, then there must exist q′2 ∈ Q such that q2

o
−→

d
q′2 and

q′1
d
∼
D′

q′2.

Proof. We will actually prove the following slightly stronger statement: For all d ∈ D, D′ ⊆ D,

δ ∈ (D′)∗, o ∈ O, and q1, q
′
1, q2 ∈ Q, if dom(o) = d, q1

d
∼
δ

q2, q1
o

−→
d

q′1, and for all D′ 6 q′
1 d, then

there must exist q′2 ∈ Q such that q2
o

−→
d

q′2 and q′1
d
∼
δ

q′2.

Proof by induction over the structure of δ.

Case: δ = []. In this case q1 = q2. Thus, let q′2 = q′1. Then q′1
d
∼
[]

q′2 by definition.

Case: δ = d′:δ′. In this case, q1
d
∼
d′

q3 and q3
d
∼
δ′

q2 for some d′ and q3. Since d′ ∈ D′, d′ 6 q′
1 d.

Thus, by Output Consistency, there must exist a q′3 such that q3
o

−→
d

q′3 and q′1
d
∼
d′

q′3. By the inductive

hypothesis, there must exist q′2 ∈ Q such that q2
o

−→
d

q′2 and q′3
d
∼
δ′

q′2. Thus, q′1
d
∼

d′:δ′
q′2.

Now we raise Step Respect to work over sets.

Lemma 15 (Set Step Respect). For all dt, df ∈ D, D′ ⊆ D, i1, i2 ∈ I, and q1, q
′
1, q2 ∈ Q, if

dom(i1) = dom(i2) = df , q1
dt∼
D′

q2, q1
i1−→
dt

q′1, df ∈ D′, and D′ 6 q′
1 dt, then there must exist q′2 ∈ Q

such that q2
i2−→
dt

q′2 and q′1
dt∼
D′

q′2.
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Proof. Since q1
dt∼
D′

q2, Set Step Consistency (Lemma 13) implies that there must exist a q′′2 such that

q2
i1−→
dt

q′′2 and q′1
dt∼
D′

q′′2 . By Local Respect, there must exist a q′2 such that q2
i2−→
dt

q′2 and q′′2
dt∼
df

q′2.

Since q′1
dt∼
D′

q′′2 , there must exist δ ∈ (D′)∗ such that q′1
dt∼
δ

q′′2 . Since q′′2
dt∼
df

q′2, q′1
dt∼

δ:df

q′2. Thus, since

d′, df ∈ D′, q′1
dt∼
D′

q′2.

The next five lemmas mirror the corresponding five lemmas (Lemmas 5 to 9) of Section A.3
very closely.

Lemma 16. For all d ∈ D, D′ ⊆ D, o ∈ O, σ1 ∈ O∗, and q1, q
′
1, q2 ∈ Q, if dom(o) = d, ⌊σ1⌋Ad = [],

q1
d
∼
D′

q2, q1
σ1:o
−→ q′1, and D′ 6 q′

1 d, then there must exist σ2 ∈ O∗ and q′2 ∈ Q such that q2
σ2:o
−→ q′2,

q′1
d
∼
D′

q′2, and ⌊σ2⌋Ad = [].

Proof. Since ⌊σ1⌋Ad = [], q1
σ1:o
−→ q′1 implies that q1

o
−→

d
q′1. Thus, by Set Output Consistency

(Lemma 14), there must exist q′2 such that q2
o

−→
d

q′2 and q′1
d
∼
D′

q′2. q2
o

−→
d

q′2 implies that there

exists σ2 such that q2
σ2:o
−→ q′2 and ⌊σ2⌋Ad = [].

Lemma 17. For all d ∈ D, D′ ⊆ D, i1, i2 ∈ I, σ1 ∈ O∗, and q1, q
′
1, q2 ∈ Q, α ∈ A∗, if ⌊σ1⌋Ad

= [],

q1
d
∼
D′

q2, q1
σ1:i1−→ q′1, dom(i1) = dom(i2), dom(i1) /∈ D′ implies i1 = i2, and D′ 6 q′

1 d, then there must

exist σ2 ∈ O∗ and q′2 ∈ Q such that q2
σ2:i2−→ q′2, q′1

d
∼
D′

q′2, and ⌊σ2⌋Ad = [].

Proof. ⌊σ1⌋Ad = [], q1
σ1:i1−→ q′1 implies that q1

i1−→
d

q′1. Consider the following two cases:

• dom(i1) ∈ D′. Since D′ 6 q′
1 d, dom(i1) 6 

q′
1 d. Thus, by Set Step Respect (Lemma 15, there

must exist q′2 such that q2
i2−→
d

q′2 and q′1
d
∼
D′

q′2.

• d /∈ D′. Set Step Consistency (Lemma 13) implies the same thing in this case.

In either case, q2
i

−→
d

q′2 implies that there exists σ2 such that q2
σ2:i
−→ q′2 and ⌊σ2⌋Ad = [].

Lemma 18. For all d ∈ D, D′ ⊆ D, o ∈ O, σ1, σd ∈ O∗, and q1, q
′
1, q2 ∈ Q, if dom(o) = d,

q1
d
∼
D′

q2, q1
σ1:o
−→ q′1, σd = ⌊σ1⌋Ad , and D′ 6 q′

1 d, then there must exist σ2 ∈ O∗ and q′2 ∈ Q such that

q2
σ2:o
−→ q′2, q′1

d
∼
D′

q′2, and ⌊σ2⌋Ad = σd.

Proof. Proof by induction over the structure of σd.
Case: σd = []. The result follows directly from Lemma 16.
Case: σd = o′:σ′′

d . In this case, σ1 must have the form σ′
1:o

′:σ′′
1 where ⌊σ′

1⌋Ad = [] and ⌊σ′′
1⌋Ad =

σ′′
d . Since q1

σ1:o
−→ q′1, there must exist q′′2 such that q1

σ′

1
:o′

−→ q′′1
σ′′

1
:o

−→ q′1. By Lemma 11, q′′1
σ′′

1
:o

−→ q′1 implies
D′ 6 q′′

1 d.
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By Lemma 16, there must exist σ′
2 ∈ O∗ and q′′2 ∈ Q such that q2

σ′

2
:o′

−→ q′′2 , q′′1
d
∼
D′

q′′2 , and ⌊σ′
2⌋Ad =

[]. By the inductive hypothesis, there must exist σ′′
2 ∈ O∗ and q′2 ∈ Q such that q′′2

σ′′

2
:o

−→ q′2, q′1
d
∼
D′

q′2,

and ⌊σ′′
2⌋Ad = σ′′

d .

Let σ2 = σ′
2:o

′:σ′′
2 . q2

σ′

2
:o′

−→ q′′2 and q′′2
σ′′

2
:o

−→ q′2 implies q2
σ2:o
−→ q′2. ⌊σ′

2⌋Ad = [] and ⌊σ′′
2⌋Ad = σ′′

d

implies ⌊σ2⌋Ad = ⌊σ′
2:o

′:σ′′
2⌋Ad = o′:σ′′

d = σd.

Lemma 19. For all d ∈ D, D′ ⊆ D, i1, i2 ∈ I, σ1 ∈ O∗, and q1, q
′
1, q2 ∈ Q, if q1

d
∼
D′

q2, q1
σ1:i1−→ q′1,

dom(i1) = dom(i2), D′ 6 q′
1 d, and dom(i1) /∈ D′ implies i1 = i2, then there must exist σ2 ∈ O∗ and

q′2 ∈ Q such that q2
σ2:i2−→ q′2, q′1

d
∼
D′

q′2, and ⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad .

Proof. In the case where ⌊σ1⌋Ad = [], the result follows directly from Lemma 17.
Otherwise, σ1 has the form σ′

1:o:σ
′′
1 where σ′

1, σ
′′
2 ∈ O∗, o ∈ O, dom(o) = d, and ⌊σ′′

1⌋Adt = [].

Since q1
σ1:i1−→ q′1, there must exist q′′1 ∈ Q such that q1

σ′

1
:o1

−→ q′′1
σ′′

1
:i1

−→ q′1. By Lemma 11, q′′1
σ′′

1
:i1

−→ q′1 implies
D′ 6 q′′

1 d.

By Lemma 18, there must exist σ′
2 ∈ O∗ and q′′2 ∈ Q such that q2

σ′

2
:o

−→ q′′2 , q′′1
d
∼
D′

q′′2 , and ⌊σ′
1:o⌋Ad =

⌊σ′
2:o⌋Ad . Since q′′1

d
∼
D′

q′′2 , q′′1
σ′′

1
:i1

−→ q′1, and ⌊σ′′
1⌋Ad = [], Lemma 17 implies that there exists σ′′

1 ∈ O

and q′2 ∈ Q such that q′′2
σ′′

2
:i2

−→ q′2, q′1
d
∼
D′

q′2, and ⌊σ′′
2⌋Ad = [].

Let σ2 = σ′
2:o:σ

′′
2 . Since q2

σ′

2
:o

−→ q′′2
σ′′

2
:i2

−→ q′2, q2
σ2:i2−→ q′2 where q′1

d
∼
D′

q′2. From ⌊σ′
1:o⌋Ad = ⌊σ′

2:o⌋Ad ,

⌊σ′′
1⌋Ad = [] = ⌊σ′′

2⌋Ad , and the fact that dom(i1) = d implies i1 = i2 ( q′
1 is reflexive, so d /∈ D′),

it follows that ⌊σ1:i1⌋Ad = ⌊σ2:i2⌋A2
.

Lemma 20. For all d ∈ D, D′ ⊆ D, q1 ∈ Q, ι1, ι2 ∈ I∗, i1, i2 ∈ I, and α1 ∈ A∗, if D′ =

{ d′ ∈ D | d′ 6 q1 d }, ι1:i1 ∼=
;

ι1:i1 ,d
ii ι2:i2, ⌊α1⌋I = ι1, and q0

α1:i1−→ q1, then there exists α2 ∈ A∗ and

q2 ∈ Q such that q1
d
∼
D′

q2, q0
α2:i2−→ q2, ⌊α2⌋I = ι2, and ⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Proof. Proof by induction over the structure of ι1.

Case: ι1 = []. Since ι1:i1 ∼=
;

ι1:i1 ,d
ii ι2:i2, Lemma 12 yields that dom(i1)  

q1 d implies i1 = i2.
Also, ι2 must be []. Since D′ = { d′ ∈ D | d′ 6 q1 d }, dom(i1) /∈ D′ implies i1 = i2. Since
⌊α1⌋I = [i1], there must exist σ1 ∈ O∗ such that α1 = σ1:i1. Thus, Lemma 19 implies that there

must exist σ2 ∈ O∗ and q′2 ∈ Q such that q0
σ2:i2−→ q2, q1

d
∼
D′

q2, and ⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad . Since

⌊σ2⌋I = [], ⌊σ2:i2⌋I = ι2:i2. Thus, the result holds with α2 = σ2.

Case: ι1 = i′1:ι
′
1. Since ι1 ∼=

;
ι1:i1 ,d

ii ι2, there must exist i′2 ∈ I and ι′2 ∈ I∗ such that ι2 = i′2:ι
′
2,

ι′1
∼=

;
ι1:i1 ,d

ii ι′2, dom(i′1) = dom(i′2), and dom(i′1) ;ι1:i1 d implies i′1 = i′2. Following the same logic
as above, this allows us to conclude that dom(i′1) /∈ D′ implies i′1 = i′2.

Since ⌊α1⌋I = ι1 = i′1:ι
′
1, there must exist σ1 ∈ O∗ and α′

1 ∈ A∗ such that α1 = σ1:i
′
1:α

′
1,

⌊α′
1⌋I = ι′1, and q0

σ1:i′
1−→ q′1

α′

1
:i1

−→ q1. By Lemma 11, q′1
σ′′

1
:i1

−→ q1 implies D′ 6 q′
1 d.
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Since dom(i′1) = dom(i′2), dom(i′1)  
q′
1 d implies i′1 = i′2, q0

d
∼
D′

q0, and q0
σ1:i′

1−→ q′1, Lemma 19

implies that there exists q′2 ∈ Q and σ2 ∈ O∗ such that q′1
d
∼
D′

q′2, q0
σ2:i′2−→ q′2 and ⌊σ1:i

′
1⌋Ad = ⌊σ2:i

′
2⌋Ad .

Since ι′1:i1
∼=

;,d
ii ι′2:i2, ⌊α

′
1⌋I = ι′1, q′1

d
∼
D′

q′2, and q′1
α′

1
:i1

−→ q1, the inductive hypothesis implies that

there must exist α′
2 ∈ A∗ and q2 ∈ Q such that q1

d
∼
D′

q2, q′2
α′

2
:i2

−→ q2, ⌊α
′
2⌋I = ι′2, and ⌊α′

1:i1⌋Ad =

⌊α′
2:i2⌋Ad .

Let α2 = σ2:i
′
2:α

′
2. Since q0

σ2:i′
2−→ q′2 and q′2

α′

2
:i2

−→ q2, q0
α2:i2−→ q2. Since ι2 = i′2:ι

′
2 and ⌊α′

2⌋Ad =
ι′2, ⌊α2⌋Ad = ι2. Since ⌊σ1:i

′
1⌋Ad = ⌊σ2:i

′
2⌋Ad and ⌊α′

1:i1⌋Ad = ⌊α′
2:i2⌋Ad , ⌊σ1:i

′
1:α

′
1:i1⌋Ad =

⌊σ2:i
′
2:α

′
2:i2⌋Ad . That is, ⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Theorem 3 is a corollary of the next lemma.

Lemma 21. For all d ∈ D, ι1, ι2 ∈ I∗, α1 ∈ A∗, and q1 ∈ Q, if ι1 ∼=
;

ι1 ,d
ii ι2, q0

α1−→ q1, and ⌊α1⌋I =

ι1, then there exists α2 ∈ A∗ and q2 ∈ Q such that q0
α2−→ q2, ⌊α2⌋I = ι2, and ⌊α1⌋Ad = ⌊α2⌋Ad .

Proof. Consider the case where α1 = α′
1:i1:σ1:o:σ

′
1 with α′

1 ∈ A∗, i1 ∈ I, σ1, σ
′
1 ∈ O∗, o ∈ O,

dom(o) = d, and ⌊σ′
1⌋Adt = []. Since q0

α1−→ q1, there must exist q′1, q
′′
1 ∈ Q such that

q0
α′

1
:i1

−→ q′1
σ1:o
−→ q′′1

σ′

1−→ q1

Since ⌊α1⌋I = ι1 and α1 = α′
1:i1:σ1:o:σ

′
1, it must be the case that ι1 = ι′1:i1. Furthermore since

ι1 ∼=
;

ι1 ,d
ii ι2, ι2 must have the form ι′2:i2 for some ι′2 ∈ I∗ and i2 ∈ I. Thus, by Lemma 12, this

means that dom(i1) 
q1 d implies i1 = i2. Let D′ = { d′ ∈ D | d′ 6 q′

1 d }. By Lemma 11, q′′1
σ′

1−→ q1

implies D′ 6 q′′
1 d, and q′1

σ1:o
−→ q′′1 implies D′ 6 q′

1 d.

By Lemma 20, there must exist α′
2 ∈ A∗ and q′2 ∈ Q such that q′1

d
∼
D′

q′2, q0
α′

2
:i2

−→ q′2, ⌊α
′
2⌋I = ι′2,

and ⌊α′
1:i1⌋Ad = ⌊α′

2:i2⌋Ad .

Since q′1
d
∼
D′

q′2 and q′1
σ1:o−→ q′′1 , Lemma 18 implies that there must exist σ2 ∈ O∗ and q2 ∈ Q such

that q′2
σ2:o
−→ q2, q′′1

d
∼
D′

q2, and ⌊σ1⌋Ad = ⌊σ2⌋Ad .

Let α2 = α′
2:i2:σ2:o. Since q0

α′

2
:i2

−→ q′2 and q′2
σ2:o−→ q2, q0

α2−→ q2. ⌊α2⌋I = ⌊α′
2:i2:σ2:o⌋I = ⌊α′

2⌋I :i2 =
ι′2:i2 = ι2. Since ⌊α′

1:i1⌋Ad = ⌊α′
2:i2⌋Ad , ⌊σ1⌋Ad = ⌊σ2⌋Ad , and ⌊σ′

1⌋Ad = [],

⌊α2⌋Ad = ⌊α′
2:i2:σ2:o⌋Ad = ⌊α′

2:i2⌋Ad :⌊σ2⌋Ad :o = ⌊α′
1:i1⌋Ad :⌊σ1⌋Ad :o = ⌊α′

1:i1:σ1:o:σ
′
1⌋Ad = ⌊α1⌋Ad

In cases where α1 is not of the form α′
1:i1:σ1:o:σ

′
1, some subset of the above arguments are

sufficient to achieve the same result.

C The Correctness of Our Approach

First, we must relate model(s) and autom(s). Given the model model(s) = 〈I,O,D, dom, Q, q0,֌〉,

let ∃(model(s)) be the system automaton 〈I,O,D, dom, Q, q0,�〉 where q1
a
� q2 iff q1

a
֌

T
q2 or q1

a
֌

F
q2.

Lemma 22. For all programs s, ∃(model(s)) and autom(s) have the same set of behaviors.
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This lemma means that if we can prove that ∃(model(s)) obeys some policy, then we know that
autom(s) obeys that policy.

Now we must more formally define our approach to producing a policy from model(s).

Let q
a:α
֌֌ q′ iff

• there exists b such that either q
a
֌

b
q′′ or q

τ
֌

b
q′′, and

• q′′
α
֌ q′.

where q
[]
֌֌ q′ only if q = q′.

Let q
a:α
֌֌

b
q′ iff

• q
a
֌

b
q′′ or q

τ
֌

b
q′′, and

• q′′
α
֌

b
q′.

where q
[]
֌֌

b
q′ only if q = q′.

Let statePolicy(s) be the state-based dynamic policy  where df  
q dt iff there exists α1, α2 ∈

A∗ and a ∈ A such that q0
α1

֌֌ q′
[a]
֌֌

F
q′′

α2

֌֌ q. This means that df  
q dt for any state q such that

it is reachable from a transition that produces the boolean F and that transition is reachable.
policy(s) is statePolicy(s) lifted from working on states to input sequences. Let policy(s) be the

input-based dynamic policy ; where df ;ι dt iff there exists α1, α2 ∈ A∗, and a ∈ A, and q ∈ Q

such that q0
α1

֌֌ q′, q′
[a]
֌֌

F
q′′, q′′

α2

֌֌ q, and ι = ⌊α:a⌋I .

Lemma 23. For all programs s, statePolicy(s) is a non-revoking safe approximation of policy(s)
for ∃(model(s)).

Proof. Let policy(s) be ; and statePolicy(s) be . df ;ι dt iff there exists α ∈ A∗, and a ∈ A, and

q ∈ Q such that q0
α
֌֌

F
q′, q′

[a]
֌֌

T
q, and ι = ⌊α:a⌋I . Thus, if df 6;

ι dt, then there does not α ∈ A∗,

a ∈ A, and q ∈ Q such that q0
α
֌֌

F
q′, q′

[a]
֌֌

T
q, and ι = ⌊α:a⌋I . If q0 −→ q in ∃(model(s)), then it

must not be the case that q0
α
֌֌

F
q′ and q′

[a]
֌֌

T
q. Thus, df 6 

q dt.

It is non-revoking because of how any states reachable from a state q where df  dt has been
added to statePolicy(model(s)) also has df  dt added.

Before proving Theorem 4, we must prove that for all programs s, ∃(model(s)) obeys the DIINI
policy policy(s). Since the above lemma tells us that statePolicy(s) is a non-revoking safe approxi-
mation of policy(s) for ∃(model(s)), we may use the unwinding conditions to prove this. First, we
explain the unwinding relation we will demonstrate, and then we prove that it indeed satisfies each
of the unwinding conditions.

Recall that we have limited our construction to extracting the policy for when df flows dt. Thus,
statePolicy(s) has d1 ;q d2 for all q when d1 6= df or d2 6= dt. Thus, the unwinding conditions
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places no requirements on such d1 and d2. That is, q1
d1∼
d2

q2 must only be defined for the case where

d1 = dt and d2 = df for our unwinding condition. Thus, to streamline notation, we usually drop
the domains and just write q1 ∼ q2.

Given two stores Γ1 and Γ2, let Γ1 ≡η Γ2 iff for all x ∈ X such that η(x) = T, Γ1(x) = Γ2(x).
Let the dynamic view partition ∼ be such that 〈Γ1, ℓ1, η1〉∼ 〈Γ2, ℓ2, η2〉 iff ℓ1 = ℓ2, η1 = η2, and
Γ1 ≡η1 Γ2. We will show that ∼ is an unwinding relation.

Lemma 24. ∼ has dynamic local respect for ∃(model(s)) and statePolicy(model(s)).

Proof. Since ∃(model(s)) is constructed from model(s), the only transitions in ∃(model(s)) of the

form q
i1
� q1 come from a transition in model(s) of the form q

i1
֌

b
q1 for b = T or b = F. Since

the transitions of model(s) come from >s>, we may examine the definition of >·> to find when

transitions of the form q
i1
֌

b
q1 are possible. These are only possible when there exists a statement

s′ that is a sub-statement of s (or equal to s) such that s′ has form read(x, d). Furthermore, the
state q must have the form 〈Γ, pre(s′), η〉

By requiring dom(i1) to be df , we further limit of the form of s′ to read(x, df) and the form
of i1 to 〈i, df , n1 for some n1. Also the boolean b must be T. This implies that q1 has the form

〈Γ[x 7→ n1], post(s′), η[x 7→ F]〉. Thus, if q
i1−→
dt

q′ in ∃(model(s)), it is because q
i1
֌

T
q1 in model(s)

where i1 and q1 are of the above form.
For another input i2 to be such that dom(i2) = df , it must have the form 〈i, df , n2〉 for some

n2. Let q2 = 〈Γ[x 7→ n2], post(s), η[x 7→ F]〉. By the construction of >s>, q
i2
֌

T
q2. Thus, q

i2−→
dt

q2 in

∃(model(s)).
Since η[x 7→ F](x) = F, and Γ[x 7→ n1] and Γ[x 7→ n2] agree on all other variables, Γ[x 7→ n1] ≡

η

Γ[x 7→ n2]. Thus, q1 ∼ q2.

To prove step consistency we must strengthen the hypothesis and introduce some additional
concepts.
 1 �  2 if whenever df  

q
2 dt, df  

q
1 dt. Note that  1 may be defined for more states than

 2.  1 � 2 implies that if  2 is defined at q and df 6 
q
1 dt, then df 6 

q
2 dt.

Let q1 −→
d

q2 iff

• q1 = q2,

• q1
τ
� q′ and q′−→

d
q2, or

• q1
o
� q′ and q′−→

d
q2 where dom(o) 6= d.

First we prove a key lemma to Step Consistency and Output Consistency. One can views step
Consistency as requiring two states that are related by ∼ will transition to other related states.
Likewise, Output Consistency requires that two related states transition to two other related states
after producing an output. Under this view, the next lemma requires that two related states
transition to two other related states upon finishing the execution of a statement.

Lemma 25. For all statements s and s′ where ∃(model(s)) = 〈I,O,D, dom, Q, q0,�〉 and s′ is a
sub-statement of s, state-based dynamic policies , stores Γ′

1, independence predicates η′, q1, q
′
1, q2 ∈
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Q, if  �statePolicy(model(s)), q1 ∼ q2, q1 −→
dt

q′1, q′1 = 〈Γ′
1, post(s′), η′〉, and df 6 

q′
1 dt, then there

must exist q′2 ∈ Q such that q2 −→
dt

q′2 and q′1
dt∼
df

q′2.

Proof. Since q1 ∼ q2 we know that q1 has the form 〈Γ1, ℓ, η〉 and q2 the form 〈Γ2, ℓ, η〉 where Γ1 ≡η Γ2.
Proof by induction over the derivation of >s>.
Case: s has the form x:=e. Since q1 −→

dt

q′1, ℓ must be pre(s). Furthermore, Γ′
1 must be

Γ1[x 7→ Γ1(e)] and η′ must be η[x 7→ η(e)].
Let q′2 = 〈Γ2[x 7→ Γ2(e)], post(s), η[x 7→ η(e)]〉. q2

τ
� q′2 by the construction of model(s). If

η(e) = T, then Γ1(e) = Γ2(e) since Γ1 ≡η Γ2. If η(e) = F, then η[x 7→ η(e)](x) = F Either way,
Γ1[x 7→ Γ1(e)] ≡

η[x 7→η(e)] Γ2[x 7→ Γ2(e)]. Thus, q′1 ∼ q′2.
Case: s has the form read(x, d) with df 6= d 6= dt. In this case, q1 cannot make a transition

without consuming input. Thus, this case is trivially satisfied.
Case: s has the form read(x, d) with d = df or d = dt. Ditto.
Case: s has the form print(e, d) with d 6= dt. Since q1 −→

dt

q′1, ℓ must be pre(s). Furthermore,

Γ′
1 = Γ1 and η′ = η. Let q′2 = 〈Γ2, post(s), η〉. q2

τ
� q′2 by the construction of model(s) and q′1 ∼ q′2.

Case: s has the form print(e, dt). In this case q1 cannot make a transition without producing
output to dt. Thus, the statement is trivially satisfied.

Case: s has the form sa; sb. Since Ls is the disjoint union of Lsa , Lsb
, and {pre(s), post(s)},

one of the following cases must hold:

• q1 and q′1 are both in Qa. statePolicy(model(s))� statePolicy(model(sa)) since model(s) has at
least as many transitions under a true boolean as model(sa). The needed result follows from
the inductive hypothesis.

• q1 and q′1 are both in Qb. statePolicy(model(s))� statePolicy(model(sb)) since model(s) has at
least as many transitions under a true boolean as model(sb). The needed result follows from
the inductive hypothesis.

• q1 ∈ Qa and q′1 ∈ Qb. Since q1 −→
d

q2 and the construction of model(s), there must exist a

state q1a of the form 〈Γ1a, post(sa), η1a〉 and a state q1b of the form 〈Γ1a, pre(sb), η1a〉 such that
q1 −→

dt

q1a
τ
� q1b −→

dt

q′1.

By the inductive hypothesis, this means there exists a state q2a such that q2 −→
dt

q2a and

q1a ∼ q2a. This implies that the form of q2a is 〈Γ2a, post(sa), η1a〉. Thus, by the construction
of model(s), q2a

τ
� q2b where q2b = 〈Γ2a, pre(sb), η1a〉.

Since q1b ∼ q2b, the inductive hypothesis again applies and there must exist q′2 such that
q2b −→

dt

q′2 and q′1 ∼ q′2.

• q1 ∈ Qb and q′1 ∈ Qa. Since q1 −→
dt

q′1 cannot hold in this case, we need not consider it.

• q1 has the form 〈Γ1, pre(s), η〉 and q′1 is in Qa or Qb. Since q1 ∼ q2, q2 must have the form

〈Γ2, pre(s), η〉 where Γ1 ≡η Γ2. By the construction of ∃(model(s)), q1
τ
� q1a where q1a =

〈Γ1, pre(sa), η〉 and q2
τ
� q2a where q2a = 〈Γ2, pre(sa), η〉. Since q1a ∼ q2a and they are both in

∃(model(sa)), the proof continues as above.
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• q1 is in Qa or Qb and q′1 has the form 〈Γ′
1, post(s), η′〉. If q1 −→

dt

q′1, then q1 −→
dt

q1b where

q1b = 〈Γ′
1, post(sb), η

′〉. Thus, as argued above, there exists q2b = 〈Γ′
2, post(sb), η

′〉 such that

q1b ∼ q2b. By the construction of model(s), q1b
τ
� q′1 and q2b

τ
� q′2 where q′2 = 〈Γ′

2, post(s), η′〉.
q′1 ∼ q′2.

• q1 has the form 〈Γ1, pre(s), η〉 and q′1 has the form 〈Γ′
1, post(s), η′〉. In this case, just use the

arguments found in the two cases above.

Case: s has the form if(e)saelsesb. If η(e) = T, then Γ1(e) = Γ2(e) since Γ1 ≡η Γ2. In this
case, the result follows from using the inductive hypothesis on sa if Γ1(e) 6= 0 and on sb if Γ1(e) = 0
and the methods used above for dealing with the cases where q1 has the form 〈Γ1, pre(s), η〉 or q′1
has the form 〈Γ′

1, post(s), η′〉.
The same holds even if η(e) = F as long and Γ1(e) = Γ2(e).
If df  

q′
1 dt, then we need not prove anything since it violates a premise of the lemma. Note

that if η(e) = F and either sa or sb contained a while loop, a read statement, or a statement of
the form print(e, dt), then statePolicy(model(s)) would allow information to flow from df to dt at
q1. Since statePolicy(model(s)) is non-revoking and q1 −→

d
q′1, the same would be true at q′1. Since

 �statePolicy(model(s)), df  
q′
1 dt would be true. Thus, we have dealt with these cases.

This leaves the case where η(e) = F, Γ1(e) 6= Γ2(e), and neither sa nor sb contains a while loop,
a read statement, or a statement of the form print(e, dt). Since there are no read statements,
all the transitions in sa and sb are transitions that the automaton has control over and there is no
chance of a transition being blocked by a user not offering input. Since there are no while loops,
once sa or sb is entered, they will surely be exited. This means that there must exist q′2 such that
q2 −→

dt

q′2 and q′2 = 〈Γ′
2, post(s), η′〉 for some Γ′

2 and η′. Since Γ1 ≡d Γ2 and η′ assigns F to any

variable altered in either sa or sb, Γ′
1 ≡η′

Γ′
2. Thus, q′1 ∼ q′2.

Case: s has the form while(e)sa with Γ1(e) 6= 0. If η(e) = T, then Γ1(e) = Γ2(e) and the
inductive hypothesis may be applied to sa. If η(e) = F, then statePolicy(model(s)) would allow
information to flow from df to dt at q1. As above, this implies that df  

q′
1 dt and thus the result

is trivially true.
Case: s has the form while(e)sa with Γ1(e) = 0. The case is proved as the previous one was.

Now we prove a result slightly stronger than Step Consistency.

Lemma 26. For all statements s where ∃(model(s)) = 〈I,O,D, dom, Q, q0,�〉, state-based dynamic

policies  , q1, q
′
1, q2 ∈ Q, and i ∈ I, if  �statePolicy(model(s)), q1 ∼ q2, q1

i
−→
dt

q′1, and df 6 
q′
1 dt,

then there must exist q′2 ∈ Q such that q2
i

−→
dt

q′2 and q′1
dt∼
df

q′2.

Proof. Since q1 ∼ q2 we know that q1 has the form 〈Γ1, ℓ, η〉 and 〈Γ2, ℓ, η〉 where Γ1 ≡η Γ2. Let
q′1 = 〈Γ′

1, ℓ
′, η′〉.

Proof by induction over the derivation of >s>.
Case: s has the form x:=e. In this case q1 does not transition to any other state under an

input i in model(s). Thus, the statement is trivially satisfied.
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Case: s has the form read(x, d) with df 6= d 6= dt. In this case, for q1 to transition to q′1,
ℓ must be pre(s) and ℓ′ must be post(s). The input i must be of the form 〈i, d, n〉. Furthermore,
Γ′

1 = Γ1[x 7→ n] and η′ = η[x 7→ T]. This means that q2 has the form 〈Γ2, pre(s), η〉.
Let q′2 = 〈Γ2[x 7→ n], post(s), η[x 7→ T]〉. Since Γ1 ≡η Γ2, Γ1[x 7→ n] ≡η[x 7→T] Γ2[x 7→ n]. Thus,

q′1 ∼ q′2 and q2
i

−→
dt

q′2 in ∃(model(s)).

Case: s has the form read(x, d) with d = df or d = dt. In this case, for q1 to transition to
q′1, ℓ must be pre(s) and ℓ′ must be post(s). The input i must be of the form 〈i, d, n〉. Furthermore,
Γ′

1 = Γ1[x 7→ n] and η′ = η[x 7→ F]. This means that q2 has the form 〈Γ2, pre(s), η〉.
Let q′2 = 〈Γ2[x 7→ n], post(s), η[x 7→ F]〉. Since Γ1 ≡η Γ2, Γ1[x 7→ n] ≡η Γ2[x 7→ n]. Thus, q′1 ∼ q′2

and q2
i

−→
dt

q′2 in ∃(model(s)).

Case: s has the form print(e, d) with d 6= dt. In this case q1 does not transition to any other
state under an input i in model(s). Thus, the statement is trivially satisfied.

Case: s has the form print(e, dt). Ditto.
Case: s has the form sa; sb.
Since Ls is the disjoint union of Lsa , Lsb

, and {pre(s), post(s)}, one of the following cases must
hold:

• q1 and q′1 are both in Qa. statePolicy(model(s))� statePolicy(model(sa)) since model(s) has at
least as many transitions under a true boolean as model(sa). The needed result follows from
the inductive hypothesis.

• q1 and q′1 are both in Qb. statePolicy(model(s)) � statePolicy(model(sb)) since model(s) has
at least as many transitions under a true boolean as model(sb). . The needed result follows
from the inductive hypothesis.

• q1 ∈ Qa and q′1 ∈ Qb. Since q1
i

−→
d

q2 and the construction of model(s), there must exist a

state q1a of the form 〈Γ1a, post(sa), η1a〉 and a state q1b of the form 〈Γ1a, pre(sb), η1a〉 such that

q1 −→
dt

q1a
τ
� q1b

i
−→
dt

q′1.

By Lemma 25, this means there exists a state q2a such that q2 −→
dt

q2a and q1a ∼ q2a. This

implies that the form of q2a is 〈Γ2a, post(sa), η1a〉. Thus, by the construction of model(s),
q2a

τ
� q2b where q2b = 〈Γ2a, pre(sb), η1a〉.

Since q1b ∼ q2b, the inductive hypothesis on sb applies as above and there must exist q′2 such

that q2b
i

−→
dt

q′2 and q′1 ∼ q′2.

• q1 ∈ Qb and q′1 ∈ Qa. Since q1
i

−→
dt

q′1 cannot hold in this case, we need not consider it.

• q1 has the form 〈Γ1, pre(s), η〉 and q′1 is in Qa or Qb. Since q1 ∼ q2, q2 must have the

form 〈Γ2, pre(s), η〉 where Γ1 ≡η Γ2. By the construction of ∃model(s), q1
τ
� q1a where

q1a = 〈Γ1, pre(sa), η〉 and q2
τ
� q2a where q2a = 〈Γ2, pre(sa), η〉. Since q1a ∼ q2a and they are

both in ∃model(sa), the proof continues as above.

• q′1 has the form 〈Γ′
1, post(s), η′〉. q1

i
−→
dt

q′1 is impossible in this case, so we need not consider

it.
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Case: s has the form if(e)saelsesb. If η(e) = T, then Γ1(e) = Γ2(e) since Γ1 ≡η Γ2. In this
case, the result follows from using the inductive hypothesis on sa if Γ1(e) 6= 0 and on sb if Γ1(e) = 0
and the methods used above for dealing with the cases where q1 has the form 〈Γ1, pre(s), η〉 or q′1
has the form 〈Γ′

1, post(s), η′〉.
The same holds even if η(e) = F as long and Γ1(e) = Γ2(e).
As argued in Lemma 25, cases where η(e) = F and either sa or sb contains a while loop,

a read statement, or a statement of the form print(e, dt) are handled by the construction of

statePolicy(model(s)). However, if no read statements are in sa or sb, then clearly q1
i

−→
dt

q′1 cannot

hold. Thus, all cases have be covered.
Case: s has the form while(e)sa with Γ1(e) 6= 0. If η(e) = T, then Γ1(e) = Γ2(e) and the

inductive hypothesis may be applied to sa. If η(e) = F, then statePolicy(model(s)) would allow
information to flow from df to dt at q1. As above, this implies that df  

q′
1 dt and thus the result

is trivially true.
Case: s has the form while(e)sa with Γ1(e) = 0. Ditto.

Now to prove a statement slightly stronger than Output Consistency.

Lemma 27. For all statements s where ∃(model(s)) = 〈I,O,D, dom, Q, q0,�〉, state-based dynamic
policies  , q1, q

′
1, q2 ∈ Q, and o ∈ O, if dom(o) = dt,  �statePolicy(model(s)), q1 ∼ q2, q1

o
−→
dt

q′1,

and df 6 
q′
1 dt, then there must exist q′2 ∈ Q such that q2

o
−→
dt

q′2 and q′1
dt∼
df

q′2.

Proof. Since q1 ∼ q2 we know that q1 has the form 〈Γ1, ℓ, η〉 and 〈Γ2, ℓ, η〉 where Γ1 ≡η Γ2. Let
q′1 = 〈Γ′

1, ℓ
′, η′〉.

Proof by induction over the derivation of >s>.
Case: s has the form x:=e. In this case q1 does not transition to any other state under an

input o in model(s). Thus, the statement is trivially satisfied.
Case: s has the form read(x, d) with df 6= d 6= dt. Ditto.
Case: s has the form read(x, d) with d = df or d = dt. Ditto.
Case: s has the form print(e, d) with d 6= dt. In this case, q1 will only transition to another

state under an output o such that dom(o) 6= dt. Thus, the statement is trivially satisfied.
Case: s has the form print(e, dt). q1

o
� q′1 if o = 〈o, dt,Γ1(e)〉, Γ′

1 = Γ1, ℓ = pre(s), ℓ′ =
post(s), and η′ = η.

If η(e) = T, Γ1(e) = Γ2(e) since Γ1 ≡η Γ2. Let q′2 = 〈Γ2, post(s), η〉. q2
o
� q′2 and q′1 ∼ q′2.

If η(e) = F, then statePolicy(model(s)) would allow dt access to df at q′1. The fact that df  
q1 dt

follows from the fact that  �statePolicy(model(s)). Thus, the result is satisfied trivially.

The remaining cases are as in Lemma 26 just replacing
i

−→
dt

with
o

−→
dt

.

Theorem 4 can now be proved:

Proof. Lemmas 24, 26, and 27 show that ∼ is an unwinding relation for statePolicy(model(s)) and
∃(model(s)). Since by Lemma 23, statePolicy(model(s)) is a non-revoking safe approximation of
policy(model(s)) this means that ∃(model(s)) obeys policy(model(s)). By Lemma 22, this means
that autom(s) obeys policy(model(s)).
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