Peekaboom: A Case Study in Human Computation

Roy Liu

August 2006

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Luis von Ahn, Chair
Manuel Blum

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

© 2006 Roy Liu

Keywords: object recognition, image segmentation, interactive systems, human computation, Peeka-

boom

Thesis Committee

Luis von Ahn (Chair)

Computer Science Department
Carnegie Mellon University

Manuel Blum
Computer Science Department

Carnegie Mellon University

Abstract

We present Peekaboom, a web-based game that harnesses human cycles to produce training examples for
computer vision algorithms. From an original motivation for the game, we go on to discuss the rationales
for the design decisions behind it.

Although the primary focus will be on Peekaboom, our game is one instance of human computation, a
class of algorithms that utilizes the human mind as computing module. Along with other so-called ‘games
with a purpose’, we propose a set of features desirable for any system intended to solicit feedback from
humans. Thus, in addition to addressing the specific problem of locating objects in images, we show how
the ideas behind our work generalize to a broader approach for tackling hard artificial intelligence problems.

Finally, we give experimental results confirming the intuition that Peekaboom improves the discrimina-

tiveness of object recognition methods, and propose future uses for the accumulated data.

iii

Table of Contents

Table of Contents

1 Human Computation

Tl MOUVALON & 5 « s s s 5w & s 8 s @ m @ § 5 5§ & 6 8 8 @ B 5 8 S @© € 855 $9m 5 &
1.2 Organizationof the Thesis ittt
1.3 Previous Work o L e e e e e
1.4 Proposing GamesasaSolution L oo

2 Peekaboom

2.1 Understanding IMAZES = = iz = s 5 5 ¢ 5 s s s s 8 s s mm 5 8 5 5@ £ 8 8 6885 5 8 &
22 GameFeatures e e e e e e e
2.2.1 BasicGameplay J
222 BlObS : : s s amews s cmn s 55 B Eme 2 AL S BEHS S ABSE P B E S
223 PINgs . . .o e e e e e e e e
224 HINS . . . o o e e e e e e e e e e e e e e
225 IChEAtNG = s mw v 3 s s 8@ ¢ 5 5 BB 8 4 35 HBE 555 HEE S5 HuNEEE § 556
2.2.6 Peekabots e e e e e
227 HighScores o e e e e
23 VSHGESEALSHES « v o mm ¢ ¢ ¢ e s s 5 S @H ¢ 5 5 G M § 1 5 GEEEF GRS RE 5§ 5@

3 Design Patterns for Human Computation

3.1 ThePeekaboom Dataset e
' 3.1.1 Properties Guaranteed by Game Features
3.1.2 Displaying the Data—Peekasearch,
3.2 Peekaboom as Human Computationot
3.3 CommonThemes i i i e e e e e e e
331 Double POrposCFeatutes « : : s nsw s ¢ smmuw s s s smw s s s swmums s s @m 3
3.3.2 Approachesto Game Design L L oo

vii

viii TABLE OF CONTENTS

4 Experiments 21
41 VSEESHHIES v s nw : s s smam s s @ mm £ 65 ¢ S5EEEE £ 5 8 S S H% 5 s B@©E 855 21
4.1.1 Evaluationof BoundingBoxes Lo e 21

4.1.2 Evaluationof Pings L e e 22

4.2 Validation Through Computer Vision i 23
4.2.1 The ObjectInferenceStepo oo 24

4.2.2 The Object Classification Step v 30

5 Concluding Thoughts 33
5.1 Promise and Limitations L e e e e 33
52 NewDItectionS - : ¢ s s s v s s s 95 5 s s ¥ s G HEE ¢ 5 3 9888 ¢ 5 V@ w85 o 34
5.2.1 Making More Use of Limited Information 34

5.2.2 Improving the State of Computer Vision 35
Appendix 37
A 39

Bibliography 46

CHAPTER 1

Human Computation

1.1 Motivation

Without much deliberation or difficulty, humans are able to perform tasks that computers cannot. We dis-
tinguish objects from each other without great difficulty; computers have a hard time telling cats from dogs.
We think and reason; computers ‘think’ in a loose sense, but what they really do is run algorithms that deal
with problems on a case by case basis.

One may safely say that, from the perspective of everyday life, computers are not very smart. They
may be great at face detection, but that’s because such algorithms [16] are specific to faces and result from
years of research. A natural question arises: How to make computers smarter? One approach would be
to teach them examples from our world. Gathering computer-friendly training examples, however, is time
consuming. Current approaches in computer vision such as [22] and [9] are limited to a few hundred,
hand-labeled examples each.

Machine learning algorithms, or those that improve their performance over time from feedback, stand
to benefit greatly from increased training set size. Researchers attribute the success of face detectors, for
example, to the thousands of images in databases devoted exclusively to faces. Ideally, we would like to have
classes of a few thousand instances each for common things like cars, dogs, and people. How do we go about
collecting them? To address the question, von Ahn [17] introduces the concept of human computation,
where humans, as part of a larger system, carry out the hard computational tasks that computers currently do
not know how to perform. More specifically, von Ahn proposes games as a way to carry these computations.
The purpose is to get humans to participate, and, whether they intend it or not, produce desirable output. We

summarize the three properties for a human computation algorithm first laid out in [17]:

2 CHAPTER 1: HUMAN COMPUTATION

1. Incorporates the input-output behavior of humans.

2. Ensures, by its construction, that its human participants exhibit desired input-output
behavior. One should assume that the parties involved are self-interested and, in the
absence of an rewards structure, unwilling to cooperate.

3. Has a means to detect and discount the contributions of malicious participants.

Figure 1.1: The three properties of human computation.

1.2 Organization of the Thesis

In what follows, we show how existing systems with a human interaction component are not well suited
to collecting large, high quality sets of training examples meant for use by computers. We then present
Peekaboom, a web-based computer game that incorporates human computation in an effort to collect training
examples for computer vision algorithms.

We first identify the problem Peekaboom is intended to solve; then, we propose a solution in the form
of a game; finally, we enumerate Peekabom’s features and point out how they help the game fulfill its
intended purpose of locating objects in images. After laying out Peekaboom’s internal details, we discuss
the similarities and differences among Peekaboom and three other examples of using games to collect useful
information. Consequently, we derive a set of principles useful for future, similarly themed projects.

In the final chapters, we qualitatively and quantitatively evaluate the accumulated Peekaboom repository.
First, we run user studies scoring the object bounding boxes derived from player actions. Then, we build and
evaluate an object recognition algorithm trained on images augmented with extra information provided by
the game. Thus, we lay the groundwork for a fully automated system for training computer vision algorithms

— from collection to analysis to the goal of image understanding.

1.3 Previous Work

There are many examples of computer systems built prior to and shortly after the collection of games sur-

veyed in this thesis. They include, but are not limited, to:
» The Flickr Photo Sharing Service [1] and Facebook [2] — Allows do-it-yourself annotations of photos
with bounding boxes around objects and faces.

» The Open Mind Initiative [14] — Solicits users for common sense facts. Asks fill-in-the-blank ques-
tions like “Milk is a kind of _”.

1.4: PROPOSING GAMES AS A SOLUTION 3

» LabelMe [12] — Asks the user to hand label ground truth training sets of images and the object cate-

gories contained in them.

» Wikipedia [21] — An extensive online encyclopedia compiled and maintained by a large base of dedi-
cated volunteers.

When considering the appropriateness of the examples collected for training machine learning algorithms,
each of the above approaches is insufficient. For example, Open Mind and LabelMe produce computer
readable training examples under ideal circumstances — there are no safeguards or incentives for participants
to enter faulty information. Wikipedia, on the other hand, has enormous amounts knowledge created and
dutifully maintained by volunteers. Unfortunately, machine learning researchers don’t have control over
Wikipedia’s output, which consists of articles written in natural language. A new system would be timely:
one that combines the specialized know-how contributed by LabelMe participahts with the large scale and
self-managing properties of Wikipedia.

1.4 Proposing Games as a Solution

In a study done in 2000 [3], 35% of all Americans identified computer and video games as the source
of greatest fun, over surfing the internet, reading books, and even watching television. Multiplying that
percentage by the number of Americans and projecting into the present, one estimates that a game system
could reach a potential audience of 95, 000, 000.

Games are a natural fit for carrying out human computation. By design, they are fun and engaging, two
qualities that work to the system designer’s advantage. We summarize the key points from [18]:

B> Players interact with the system’s subroutines and produce valuable output; from their point of view,
they’re just playing a game.

» People don’t play the game out of their desire to help — they do it because of the exhiliration of the
gameplay and the accumulation of points. Of course, we structure the gameplay in a way that players’

actions tell us information about images or abstract concepts.

» The problem of detecting and dealing with malicious participants in games reduces to the issue of
cheating. We draw upon existing wisdom on the subject and develop our own ways of weeding out
dishonest players and/or bots.

Since Peekaboom builds upon, and is built upon by, a body of work consisting of other games (ESP [18],
Phetch [19], Verbosity [20]), we give a brief summary of each in Table 1.1. In the following chapter, we
discuss the design specifications of Peekaboom specifically.

CHAPTER 1: HUMAN COMPUTATION

|| what it does |

Peekaboom collects information about the location of
objects in images

The ESP Game || attaches descriptive labels to images

Phetch attaches descriptive sentences to images,
when just a label is ambiguous
Verbosity collects common sense facts

Table 1.1: A one sentence overview of each game.

CHAPTER 2

Peekaboom

2.1 Understanding Images

We designed Peekaboom to answer questions left open by the ESP Game [18]. Before discussing the former,
however, some explanation is needed for the latter. The ESP Game does its job of annotating images very
well. If thought of as a black box, the game takes images harvested by a web crawler, and for each image
it outputs a set of annotations, or labels. A label, as we define it, is some word pertaining to its associated
image in some way. Figure 2.1 shows a picture with some labels.

» men
» football
» victory

» celebrate

Figure 2.1: A picture with many possible labels.

Since its release in 2004, the ESP Game has collected 15 million labels (# images x # average number
of labels per image) over 57,000 images, which have been shown to be quite accurate in user studies.
Although the ESP Game addresses the problem of attaching words to images, it does not, for example, tell

5

6 CHAPTER 2: PEEKABOOM

us the locations of the objects being labeled. If one of the labels to an image is ‘dog’, then we expect a dog
to be in the image; however, the ESP Game just collects player responses in the form of words, and does not
give us a clue as to where the dog actually is.

Having location information would be very useful to computer vision researchers. Whereas annotations
probably suffice for content-based image retrieval systems like [4], local descriptor approaches like [11]
would greatly benefit from knowing the regions contained in the object being labeled. One could, in prin-
ciple, adapt the ESP Game to collect location information by cleverly showing pairs of players different
sections of the same image, aggregating the kinds of responses for each part, and inferring the locations of
the referred to objects. Such an approach, however, would be cumbersome — ESP is a game of words played
on images, and we would like to design a game where the images are manipulated directly. The former game
will still be of use to us; namely, it provides us with an annotated dataset to work off of. It also encourages
us to formulate a new idea similar to the realization that a word two players have agreed upon is a good
descriptor for the image.

We call our new idea Peekaboom, and we use it to locate objects in images that the ESP Game says are
there, but cannot find. For its input, Peekaboom “bootstraps” off of ESP’s output, presenting images with
labels to players and monitoring the actions over those image-label pairs. While ESP depends on agreement
between players as a way to ensure the quality of collected data, Peekaboom uses a completely different

idea:

» Players cooperate with each other.

» One person, call him Boom, starts out seeing an image and a label. The other person, call her Peek,

starts out seeing no image and no label.

» Boom has no means of communication with Peek, other than the ability to show her, piecemeal, parts

of the image. Boom’s objective is to get Peek to guess his label.

Clearly, to increase his own score and his partner’s, Boom has an incentive to show Peek parts of the image
relevant to the label. If the label corresponds to an object, he is effectively highlighting the regions pertaining
to the object, which is what we designed Peekaboom to capture. Thus, the game works on the insight that
we can gather valuable machine vision training examples by monitoring dissemination of information from
one player to another. In the next section, we discuss the design and implementation of the game in much
greater detail. Before that, however, we refer the reader to Figure 2.2 as an example of how our game
can annotate scenes deemed difficult for computer vision techniques. Finally, to help the reader avoid later
confusion, we include a definition of terms in the appendix.

2.2: GAME FEATURES 7

Figure 2.2: George Seurat, A Sunday on La Grande Jatte. Humans have little trouble in picking out the
target objects, but object recognition algorithms become confused by a combination of occlusion (objects
partially covering up other objects); texture (Seurat used a dot painting technique); and clutter (lots and
lots of objects).

2.2 Game Features

In this section, we go over the features of Peekaboom, which have a utilitarian and an aesthetic aspect. On
the utilitarian side, the players’ use of the game’s functions give us useful information about images; on the
aesthetic side, these features actually make the game more fun. The realization that the gaming aspect need
not be compromised by building in collection mechanisms generalizes to the design of three other games,
for which we defer discussion to a later part.

2.2.1 Basic Gameplay
A game of Peekaboom is played cooperatively between two people as follows:

» The roles of Peek and Boom are assigned randomly among the two players for the first image.

» For each image in succession, Boom starts out seeing the image and its label, while Peek starts out
seeing nothing. Boom shows Peek parts of the image by clicking on it. Every click reveals to Peek
the region centered on that click. See Figure 2.3 for an illustration of the two players’ perspectives.

» Peek can enter guesses. Once she enters a guess that matches Boom’s label, the players get points and
switch roles — Peek now plays the Boom role, and vice versa.

8 CHAPTER 2: PEEKABOOM

» The game ends when either of the players fill up the score meter (Peek guesses 12 images correctly),
or time runs out. Players can also pass, or opt out on, images, if both agree by hitting the ‘pass’ button.
Passing does not make the game end sooner; it goes on until the former conditions are met.

Figure 2.3: Shown are two pairs of Peek and Boom players. The left is Boom, and the right is Peek. The
parts where the image is negated are the places that Boom clicked. The corresponding regions are visible to
Peek. Pings are demonstrated on the car image.

As a further reference, we provide screenshots for the Peek and Boom interfaces in figures 2.4 and 2.5,

respectively.

2.2.2 Blobs

Gaussian blobs, or just ‘blobs’, are the building blocks for the regions of the image revealed by Boom, as
well as those regions seen by Peek. If the reader looks at Figure 2.3 closely, he will notice that the revealed

2.2: GAME FEATURES 9

" 00
 peek.

TYPE WHAT YOU
YR

Figure 2.4: Peek’s interface — notice the guess entry tab and the list of guesses sent to Boom.

regions look blurry on their boundaries. This is the blob effect, where, technically speaking, one image is
composited onto another using Porter Duff rules with a varying compositing « value g(z, y) for each point
(x,y), where g(z,y) is a Gaussian distribution with the blob center as its mean and the identity matrix as
its covariance. Technicalities aside, blobs encode uncertainty — the closer a point is to the actual blob center
that Boom clicked, the more prominently it appears on Peek’s screen. Thus, we want to encourage the Boom
player to make every click count through precise actions.

A final fact to note about blobs is that the regions clicked by Boom become negated on his screen. We
chose such a marking scheme over darkening parts of the image for the reason that the played on image
might be a dimly lit scene.

2.2.3 Pings

Pings give Boom a way to help Peek distinguish the target object from its context. For example, take a look
at the ‘wheel’” image in Figure 2.3. We say that the Boom player is pinging, or pointing, to the wheel when
he right clicks on a point to create purple ripples that propagate out from it. Pings are useful when the target

10 CHAPTER 2: PEEKABOOM

GUESSES |

Figure 2.5: Boom’s interface — notice the hints tab and the list of guesses made by Peek.

object can be identified more accurately with knowledge of its surrounding context than not — the wheel is
part of the car, and seeing it along with other sections of the car helps Peek guess ‘wheel’. When Boom
shows the wheel along with its context to Peek, however, ambiguity arises as to which is the correct label:
car, headlight, antique, or wheel? Pings help alleviate the Peek player’s possible confusion by giving the
Boom player an unambiguous way to specify which object he is referring to.

2.2.4 Hints

Similar in function to pings, hints, shown in Figure 2.5, are another tool that Boom can use to help Peek
disambiguate among many possibly correct labels. Whereas pings pinpoint the target object, hints say how
the label assigned to Boom appears — ‘noun’ when the label refers to a physical object in the image; ‘verb’
when it’s an action of some sort; ‘text’ if it appears as actual text; and ‘noun related’ if it pertains to the
image in some superficial way. For example, in Figure 2.1, Boom could hint to Peek ‘noun’ if his label was
‘men’, ‘verb’ if his label was ‘celebrate’, and ‘noun related’ if his label was ‘victory’. The set of hint buttons

is shown in Figure 2.6 for the reader’s reference.

2.2: GAME FEATURES 11

Another feature meant for Boom to help Peek guess correctly is the use of hot/cold hints. For every
guess entry Boom sees, he or she can signal to Peek whether it is hot (close to the label) or cold (unrelated
to the label).

RELFATED
- houn

Figure 2.6: The set of hint buttons.

2.2.5 Cheating

The prevention and detection of cheating is crucial if we intend to derive correct data from Peckaboom. We
assume, in the worst case, that malicious parties will try to maximize their points with complete disregard
for possibly corrupted data derived from their actions. One can imagine, for example, two colluders who
have some alternate channel of communication, like instant messaging.

We deal with undesirable behavior using a combination of in-game deterence and out-of-game detection.
We give a list of the game features that deal with cheating:

> Player pool — When players hit the ‘start playing’ button, they are not immediately matched to an
available partner, and instead inserted into a pool of players waiting to start a game of Peekaboom. A
timer counts down on 10 second intervals, and once it reaches 0, all players in the pool are randomly
paired. We intend such a measure to prevent colluders from cleverly timing their game start requests
and getting each other as partners.

» Seed images — Since Peekaboom is web-based, we not only have to contend with malicious human
users, but also bots (web capable programs). To detect automated agents, we introduce seed images
into the system; in other words, images alread annotated by a trusted source. By occasionally observ-
ing the actions of a suspect player on a seed image, we can tell if he/she/it is honestly playing the
game. If their behavior is not satisfactory, then we throw out all existing actions generated by that
player and merely ignore all of his/her/its future contributions.

» Limited scope of player actions — In a passive way, the design of Peekaboom limits the amount
of cheating that can happen. The Boom player cannot communicate words to the Peek player, and
the Peek player may type single words back. Still, one could imagine that, even in this regimented
setting, players exchange e-mail addresses or instant messages for the purpose of future collusion.
We’ve found that the contrived scenario does not happen in practice, however, and even if it did, we
have plenty of other anti-cheating mechanisms at our disposal.

12 CHAPTER 2: PEEKABOOM

> Aggregation of data across multiple players — If the data corruption rate is as high as 1/n on the
same image-label pair, taking into account all n pieces of data, for sufficiently large n, will mitigate
the outlier.

» IP address checks — By validating players’ IP addresses, we can very crudely tell if they originate
from the same network.

2.2.6 Peekabots

When people click the ‘I’m ready, let’s play!” button, they expect to start playing, and start playing soon.
Since a game of Peekaboom requires at least two people, sometimes a real person isn’t there for them. To
give the semblance of an actual game of Peekaboom for the lone player, we pair him or her with a Peekabot
— in other words, the game server takes the opposite role. From a usability standpoint, our system appears as
always available to anybody who wants to play. This reduces frustration, and, although we don’t collect any
actions from simulated games, Peekabots keep people engaged until we can begin collection in a real game.

Since we intend the bot to convincingly simulate a real person, the bot has to play the Peek and Boom
roles. The Boom role is exceptionally simple; we take the Boom player’s clicks, pings, and hints and play
them back to the human on the other end. Playing Peek in a way that is indistinguishable from humans,
however, is an exceptiorially hard problem — if computers could do this, then they would be able to locate
objects in images, and there would be no need for Peekaboom in the first place. Thus, some approximation
for playing Peek is in place. In particular, we make the assumption that areas clicked by Boom are necessary
to guess the label. As the Peek player, the computer has access to a list of guesses made by the human, as
well as Boom’s revealed area, call it A. As the human player on the other end reveals parts of the image that
cover more and more of A, the computer makes each of the guesses in turn. Once all of A is covered by the

areas revealed by the human, the computer merely gives the final, or correct, guess.

2.2.7 High Scores

People like to play computer games because of the rush of excitement. They’d also like to feel a sense of
accomplishment in the long term. While Peekaboom satisfies the former need with fast action gameplay,
it uses a scoring system to satisfy in the latter category. A player’s score is persistent — the more he plays,
the higher his score. To give him more incentive to play the game, we impose a ranking system, where, to
achieve the next rank, the player’s score must surpass a fixed threshold. Furthermore, we post two lists of
high scores: one for the day, compiled on the hour; and one for all time, compiled every day. We hope that
fostering competitiveness among players provides them an incentive to play the game more and produce
greater quantities of data under the collection mechanism. Shown below in Figure 2.7 is a screenshot of the
daily high scores list.

2.3: USAGE STATISTICS 13

CHOZART
~ BOSIE

 NALANWONG
. CRAFTYB

anu@eﬁtmu

mmugs&a

Figure 2.7: The daily high scores list.

2.3 Usage Statistics

We released Peekaboom to a general audience on August 1. At the time of writing on August 20, over
20,000 different people have tried out the game and generated at least 2 million pieces of data (one play
on one image of one game). A quick back of the envelope calculation shows that each person contributed
on average 100 images. A game of Peekaboom lasts 3.5 minutes, and players go through 8.7 images on
average, so we estimate that each person spent at least 40 minutes in our system, on average.

Over 90% of the usernames in our system qualify as second-timers or more, and, judging by their scores
in the millions, every player featured on the top scores list played at least 1, 500 games. Thus, the averages
in the first paragraph may be a little misleading: a small, dedicated core of volunteers contributed at least
40% of our repository.

Above all, Peekaboom is fun. Below are some comments from devotees’ emails:

> “The game itself is extremely addictive, as there is an element of pressure involved in beating the
clock, a drive to score more points, the feeling that you could always do better next time, and a
curiousity about what is going to come up next. I would say that it gives the same gut feeling as
combining gambling with charades while riding on a roller coaster. The good points are that you
increase and stimulate your intelligence, you don’t lose all your money, and you don’t fall off the ride.
The bad point is that you look at your watch and eight hours have disappeared!”

» “One unfortunate side effect of playing so much in such a short time was a mild case of carpal tunnel
syndrome in my right hand and forearm, but that dissipated quickly”.

> “This game is like crack. I've been Peekaboom-free for 32 hours. Unlike other games, Peekaboom is

cooperative (rather than competitive)”.

14

CHAPTER 2: PEEKABOOM

CHAPTER 3

Design Patterns for Human
Computation

3.1 The Peekaboom Dataset

With a large collection of post-processed player actions, how do we make sense of it all? For starters, we
show how players’ blob, ping, hint, and pass actions say a lot about the location of the target object, its
context, the way it appears, and about the relevancy of ESP generated labels to their respective images.
Next, we showcase Peekasearch, a direct and preliminary application of the Peekaboom repository in the

absence of any complicated computer vision algorithms.

3.1.1 Properties Guaranteed by Game Features

In the Game Features section, we described our design of Peekaboom. Now, we justify our choices for
including the features we did; as noted earlier, many exist to fulfill a practical purpose, in addition to con-
tributing to the fun factor. In the list below, we enumerate certain desirable properties of the data and exhibit
how the features passively enforce them:

» Objects and their context — Recognition of objects does not happen in a vacuum; sometimes, given
the exact pixels for a target object, one cannot properly classify it. Figure 3.1 below is just one such
instance of ambiguity. Incidentally, blobs and pings seem tailor-made to extract target object contexts,
as well as the target objects themselves. On one hand, blobs yield the big picture, which is however
much the Boom player feels is necessary to coax the Peek player into guessing his label. Thus, the
regions he clicks on would no doubt contain contextual information, in addition to the target object.

15

16

CHAPTER 3: DESIGN PATTERNS FOR HUMAN COMPUTATION

Figure 3.1: Consider the two different orientations of the dark object across the left and right images. On
the left, it’s a car driving down the road; on the right, it seems to be a person standing upright.

On the other hand, pings tell us what the Boom player really means, by precisely identifying the pixels
contained in the target object.

Temporal Saliency — By exploiting the fact we record the order of the Boom player’s blob and ping
actions, we are able to derive the most salient, or important, parts of an image. We have observed, for
example, that given an image with a man, players almost always click on the face. This should be no
surprise, since the most efficient way for Boom to play the game is to reveal the parts of the image
that give away his secret label.

Quality — We are able to, with high confidence, determine how relevant labels are to their associated
images. Moreover, with a very shallow inspection of the collected player actions, we can assess their
intrinsic quality. In the list below, we present criteria currently used to accept or reject the derived
data for further consideration:

e Type of Hints Given — Hints, as mentioned earlier, tell us how labels appear in their respective
images. For most purposes, one need not further consider image-label pairs with a hint other
than ‘Noun, because almost certainly the labels will not refer to actual objects. That’s not to
say that data with other hints given are useless; one could conceivably use those images branded
‘text’ to train optical character recognition systems.

e Peek Player Correctness — If the majority of player records show Peek guessing Boom’s label
correctly, then that signifies the target object is easy to identify. Contrarily, if the records recall
many pairs opting to pass, that likely means the underlying image makes a poor training example
for computer vision algorithms.

e Counting — For a given image-label pair, counting the number of plays is a very rudimentary
way of determining whether we should consider it for inclusion in our final dataset. For each
play, we can also count the number of blobs created by the Boom player. Thus, the pickier we

3.1: THE PEEKABOOM DATASET 17

are about quality, the higher we should set accept/reject thresholds on counts.

3.1.2 Displaying the Data — Peekasearch

After having collected over a million pieces of data, we wanted a simple way to display our results. Without
attempting to extract objects pixel for pixel, we instead compute bounding boxes around them. This is a
simple and effective way of qualitatively verifying that the game’s output is desirable — the user enters a
search for a commonplace object (e.g. man, car, dog) into a bar, and Peekasearch returns page after page of
images with bounding boxes around that object. Figure 3.2 is a graphic of the search system.

TH %
CARCONNECTION.COM™]

Figure 3.2: Sample results from a Peekasearch query ‘car’.

18 CHAPTER 3: DESIGN PATTERNS FOR HUMAN COMPUTATION

3.2 Peekaboom as Human Computation

In an earlier part, we reviewed human computation as a framework for tapping the collective knowledge of
humans. As such, we rely on intuition and empiricism to reason about and measure the effectiveness of
systems like Peekaboom. We do, however, revisit the three properties of human computing stated at the very

beginning of the thesis, and reflect on how the design of Peekaboom addresses them in Figure 3.3.

1. Incorporates the input-output behavior of humans.
Humans are at the heart of our game. One could see Peekaboom as merely a sieve and mediator
for their cycles.

2. Ensures, by its construction, that its human participants exhibit desired input-output

behavior. One should assume that the parties involved are self-interested and, in the
absence of an rewards structure, unwilling to cooperate.
The core Peek and Boom mechanism behind our game ensures that we learn about the target
object in an image. In addition, by properly crafting and introducing the concepts of blobs,
pings, and hints, we are able to refine our ideas of the target object: where it is, its context,
and how it appears. If the exhiliration of playing the game is not enough, we also provide a
scoring system. That is to say, we indulge peoples’ sense of long-term achievement. Thus, we
obtain a guarantee of desired output intrinsically built into the system.

3. Has a means to detect and discount the contributions of malicious participants.
In our game, malfeasance is equivalent to cheating, which we take measures to prevent in-
game and detect out-of-game. See the section on cheating to peruse the variety of techniques
at our disposal.

Figure 3.3: Revisiting human computation in the context of Peekaboom.

3.3 Common Themes

As one instance of using games as a vehicle for human computation, Peekaboom is the product of design
decisions that are universal. With this realization, we propose a set of properties that hold for any game with
a purpose. In the interests of brevity, we discuss two of the many possible key ingredients for games, and
mention how the four examples provided (Peekaboom, ESP, Phetch, Verbosity) utilitize each one.

3.3: COMMON THEMES 19

| | key fun feature | dual purpose]
Peekaboom Peek and Boom Boom reveals to Peek regions pertinent to
his label
The ESP Game || “try to guess what your partner is think- | agreement on a label tied to the image
ing”
Phetch search through a database of images for | the describer communicates with seekers
the one that is being described with rich sentences and phrases
Verbosity the guesser tries to deduce the narrator’s | the narrator’s use of sentence templates
secret word from a series of clues generates common sense facts

Table 3.1: How our features fulfill a purpose.

3.3.1 Double Purpose Features

In subsection 3.1.1, we noticed how Peekaboom’s features are simultaneously an important part of the
gameplay and a passive way to ensure data quality. The pings, blobs, and hints of the game direct players’
actions to tell us information about images, yet they are unobtrusive and actually make Peekaboom what it is.
Thus, the very components that make a game unique are engineered to fulfill a serious, dual purpose. From
experience, we’ve found that determining the ‘correct’ combination of features is tricky: favor fun, and lose
sight of the original purpose; favor purpose, and the system becomes tedious and annoying to interact with.
Using Table 3.1, we illustrate how games with a purpose strike a balance.

3.3.2 Approaches to Game Design

The design of games leverages ingenious ideas already polished from the trials and errors of others. For
example, we initially hammered out the mechanics of Peekaboom with the game of Pictionary in mind.
Pictionary is a game where, similar to Peek and Boom, one player has to draw a picture and another player
has to guess it. As we worked out more details, Peekaboom quickly diverged from the former and became
a novel concept in its own right, but the original gist of the design remains. The game of Verbosity has a
similar origins story — the core idea originates from the board game Taboo, in which one player describes
his or her secret word to a group of guessers without using that word or any of its similar ‘taboos’. By taking
the mechanics of widely known, fun, fast-paced games and gradually integrating a collection mechanism,
one can come up with games that have a more serious, underlying motivation.

Another game design returns to a fundamental question: What would users like? The designers of the
ESP Game [18] and Phetch [19] did exactly this — they came up with an idea and ran mockups on paper.
Test runs may seem like an obvious step, but they suggest why certain ideas are fun and while others are not.
As a result, one can understand what kinds of gameplay people would embrace in a final product.

20

CHAPTER 3: DESIGN PATTERNS FOR HUMAN COMPUTATION

CHAPTER 4

Experiments

4.1 User Studies

User studies are the primary way to validate hypotheses in the field of human-computer interaction. After
all, our games solicit information from people, and anything that they produce has correctness in a subjective
sense. The notion is defined relative to the behavior of people in the setting of a controlled experiment —
we say that the data collected is ‘correct’ if it achieves a high score under some measure of similarity to
what participants in the experiment generate. To see that Peekaboom collects the kinds of training examples
we intend, we conduct user studies showing that bounding boxes and pings derived from the game are very

close to their in-experiment counterparts.

4.1.1 Evaluation of Bounding Boxes

Before testing bounding boxes, we have to calculate them first. We consider an image-label pair I and all of
the n data D; associated with it. Each D; contains information about a set B; of blobs made by the Boom
player in his efforts to reveal the image to the Peek player. Now, think of I as a set of its pixels (¢,5), and
the B;’s as circles with centers and fixed radius 16 (this value was chosen to be a fraction of 24, the radius
of Gaussian blobs implemented in the game). We assign each pixel (¢, j) a count ¢(3,), which is

(i,j)eUBkH.

HkEn

21

22 CHAPTER 4: EXPERIMENTS

In other words, c(%,) is the number of distinct players whose blobs cover (z,). Now, for every (¢, j), we

apply a thresholding rule

1 c(i,j) =2
. .

c(i,J)

Said a different way, we’re interested in those pixels on which data for at least two pairs of players agree.
Such a requirement would help discount outliers produced during gameplay. Finally, we compute connected
components on what could be thought of as the resulting matrix of 0’s and 1’s. For each component, we
conservatively estimate its bounding box by taking the topmost, bottommost, leftmost, and rightmost points.
Notice that an image-label pair may yield multiple bounding boxes, a consequence of the fact that the
thresholding step may create multiple connected components. For a visual illustration of how bounding
boxes computed with the above method turns out, please refer to the earlier mention of Peekasearch.

To empirically assert that Peekaboom-derived bounding boxes are close to those generated by volunteers
in controlled settings, we define an overlap metric between two surfaces A and B as

area(A N B)

OVerlap(A, B) = W

In our case, the surfaces are just regions delimited by their respective bounding boxes. Note that this simi-
larity measure is quite reasonable: perfectly overlapping regions have measure 1; non-intersecting regions
have measure 0; and large differences in areas will also result in measure 0.

For the experimental setup, we selected a common pool of 50 image-label pairs found to have singleton
bounding boxes and to contain a noun referred to by the label. Each of four volunteers received this same
set of images. A volunteer was then asked, for each of the 50 pairs, to draw a box around the part(s) of the
image pertaining to the label. An ensemble average taken over the 200 = 50 x 4 overlap measurements
of volunteer-generated boxes against Peekaboom-derived boxes revealed a mean of 0.754 and a standard
deviation of 0.109. For the pair with the lowest score averaged over the four volunteers, we refer the reader
to Figure 4.1.

4.1.2 Evaluation of Pings

The second of our user studies concerns pings. Recall that a ping is a Boom player action meant to disam-
biguate a target object to the Peek player. As in the previous bounding box trials, we selected 50 image-label
pairs where the label refers to a noun in the image. We then extracted ping coordinates from the data as-
sociated with each pair. Three volunteers participated; we briefed them beforehand on examples where we
specified what points qualified as ‘inside the object’ and as ‘near or outside of the object’. A volunteer was

4.2: VALIDATION THROUGH COMPUTER VISION 23

Figure 4.1: An illustration of our worst result, suggesting that bounding boxes derived from Peekaboom
data are quite accurate. The volunteer drew the solid line, and we derived the dashed line.

then asked, for each pair, whether or not an associated ping chosen uniformly at random was inside the
target object. Incidentally, 100% of the 150 ratings agreed with the description ‘inside the object’.

4.2 Validation Through Computer Vision

Experiments like the user studies in subsections 4.1.1 and 4.1.2 assert that Peekaboom’s output isn’t far off
from what humans would generate under controlled conditions; they do not, however, directly imply that
the data improves the accuracy of computer vision algorithms. To show that having the Peekaboom data
does indeed improve the discriminativeness of such algorithms, we design and run an experiment making
use of computer vision techniques throughout. Before delving into details, we provide the reader with some
background knowledge in image segmentation and object recognition.

Image segmentation, or segmentation for short, is the process of partitioning images into internally
similar pieces in terms of texture, color, and possibly other features. See Figure 4.3 for the segmentation of
a rose into 256 pieces using the always popular normalized cuts heuristic developed by Shi and Malik [13].

Object recognition, or just recognition, is the process of identifying objects in images. The classification
problem in recognition tries to assign correct labels to the most prominent objects in test images — given an
image, a dog-cat classifier would return ‘dog’, ‘cat’, or ‘neither’. On the other hand, the detection problem
tries to find objects of a specific class in test images — given an image, a car detector would either try to draw
a bounding box around the region it believes to be a car or signal that a car isn’t present.

‘We can think of the Peekaboom data as a collection of object detection priors (standing for prior knowl-
edge) on images. The data may give us information about the locations of target objects, but how do we
convert it into something suitable for trials and measurement? To this an end, we design an experiment

24 CHAPTER 4: EXPERIMENTS

as in Figure 4.2. In stage 1, Peekaboom outputs data (oval 2) derived from the actions of players, along

1. Peekaboom 2. Derived point data

4. Training w/ fore- 3. Foreground inferencer

ground masks

6. Comparison of classifiers
trained on the data

5. Training w/o fore-
ground masks

Figure 4.2: The schematics for our proposed experiment. The squares represent programs, and the ovals
represent inputs and outputs to those programs.

with associated images. The data mostly consist of clicks and pings made by the Boom player. In stage 3,
we perform object inference — given an image, we independently compute its segmentation and estimate
the density distribution of the point data; then, we try to infer the regions belonging to the target object.
This stage results in a collection of original images with corresponding target object masks (oval 4) whose
pixels are white if they are inside the target object, and black otherwise. Lastly, we evaluate the accuracy
of two object classifiers trained and tested on different pools in stage 6: original images with target object
masks (oval 4) versus just original images (oval 5).

4.2.1 The Object Inference Step

Given an image and a target object, before a computer can ‘learn’ from the Peekaboom data, it needs to
know what parts of the image are inside the target and what points are outside. Equivalently, for each pixel
(z,y), we assign a true or a false (or a probability) to the predicate (z,y) € T, where T is the region

4.2: VALIDATION THROUGH COMPUTER VISION 25

Figure 4.3: The various stages of our inference scheme. Top left and right: the original image and its
segmentation. Middle left and right: points derived from blob and ping actions and the resulting density
estimate. Bottom left and right: object mask and the inferred object.

encompassed by the target object. Using point data directly out of the game is not feasible — the number of
Boom player clicks, on the order of 10, is too sparse cover the space of pixels, on the order of 10000. To get
around such a hurdle, we employ a Gaussian mixture model based point density estimation and combine it
with image segmentation to make a best guess at the region that is the target object. Our discussion focuses
on Gaussian mixture models, image segmentation, and then a combination of the two.

Gaussian mixture models [6] are probability distributions consisting of a weighted average of Gaus-
sians. More formally, a mixture model of /N Gaussians is characterized by a probability density function f

26 CHAPTER 4: EXPERIMENTS

satisfying

o)=Y wi g%

1€[N]
Z wy; = 1
i€[N]
gi ~ N(pi,04) Vi € [N].

We are interested in GMM’s because they are a reasonable estimate for the density induced by Peekaboom
point data. Said another way, they can model a probability distribution with concentration in regions where
the points are clustered tightly together, and hence assign more importance to those regions. A natural
measure of a GMM’s closeness of fit to its underlying points is the maximum likelihood score. If P is the
underlying set of points, then the best GMM g* is given by

g* = argmax Y _ g(p),
g peEP
where the argmax is taken to be over all GMM’s g. It turns out that finding ¢* is a hard optimization
problem, and so we approximate it through the expectation maximization method [5]. Given an image la-
bel pair and its associated point data, we create a density estimation through a composition of GMM’s (1).

4.2: VALIDATION THROUGH COMPUTER VISION 27

1 Let {Py,..., P,} be the associated data, and let P; be the points of the ith datum. [Recall that each
datum represents one play by a distinct pair of players.];

2 fori € [n] do '

3 Let g; be the maximum likelihood GMM computed for P; with | P;|/8 Gaussians. [An extra

Gaussian for every 8 points.];
4 end

5 Let g be the weighted sum of the g;’s, or

g=2%-g¢

i€[n]

[The contribution of every pair of players is weighted equally.];

6 Normalize g so that it sums to 1 when evaluated on all pixel coordinates of the image. [Notice that,
before normalization, g was originally a probability distribution on the plane, an infinite set of
points.];

7 return g

Algorithm 1: Computing a Gaussian mixture model.

Figure 4.3 (see middle left and middle right pictures) has a visualization of the probability distribution
gotten from such a procedure.

Independently of the point density estimation, we compute a segmentation of the image using the Berke-
ley Segmentation Engine [9], requiring an output consisting of 256 superpixels, or pieces (see top right pic-
ture of Figure 4.3). One important fact to know about the Berkeley Segmentation Engine is that it outputs,
as a side effect, a pixel affinity graph. Their construction is an area of study in itself, so we will just view
pixel affinity graphs as weighted graphs (V, E, w). Each pixel of the image is a vertex that has edges con-
necting it to every other vertex within a radius of 5. Consequently, each edge e’s (e = {u, v}) weight w(e) is
determined by the ‘affinity’ of the pixels u, v. The reader need only think of affinity as a similarity measure
among pixels — do they have similar surrounding colors and textures? With a point density estimation and a
segmentation in hand, we now proceed to combine the two.

The point density estimation, call it g, induces a natural distribution over the segmentation superpixels,
callthem S = {51, ..., Sk}. Since g is a probability distribution over the pixels of the image, we can define
a distribution h and its inverse h~! (with some constant normalization factor Z) as follows:

h(Si)z Z g(az,y)

(z,y)€S;
hH(Ss) = (1 - h(S))/Z.

28 CHAPTER 4: EXPERIMENTS

Said differently, the probability measure of a super pixel is the sum of the probabilities of image coordinates
it encompasses. Likewise, we extend the pixel affinity graph (V, E, w) to a superpixel affinity graph H =
(S, {{u, v} |u,v € S}, w’) (S is overloaded to represent the vertex set and the S;’s overloaded to represent
the vertices) by setting for all Sy, S, € S:

D := {{u,v} € E|u € Syp,v e Si}
w'({So, 51}) = Y we)-

eeD

Dispensing with formality, the weight of an edge between two superpixels Sp, S1 (now thought of as vertices
of H) is the sum of the pixel affinity weights of edges crossing between Sy and S;. Before constructing the

final graph I, let us take stock of what we have so far:
» A probability distribution h over superpixels that assigns mass to each superpixel based on the total
point density contained inside it.
> An inverse probability distribution h ! assigning mass to where h assigns little.
» An affinity graph H on superpixels gauging the similarity among pairs of superpixels.
We construct the final graph I by incorporating all three of the aforementioned concepts. To start with,
we introduce two vertices u, v that we call the source and the sink, respectively. We connect the source

and sink to all the vertices of H and set their weights accordingly, like so (let ¢ be the new edge weight

function):

V) =VH)U{u,v} =S U{y,v}
E(I)=EH)U{{u,S}|SeS}u{{v,S}|S e S}
w'(e) e={50,51}NS5,S1 €S
c(e) = a- h(e) e={u,S}ANS€ES
a-h7e) e={v,S}AS€S.
Note that « is some scaling constant we will choose later. One can think of I as the result of augmenting H

with a new set of edges, each of whose weight is proportional (or inversely proportional in the case of A1)
to the probability mass of the superpixel incident on it. See Figure 4.4 for an intuitive pictorial interpretation.

We can think of I as a min-cut problem. More specifically, we want to find a partition of the graph into
two sets of vertices T, T such that u € T, v € T such that the total weight (according to the function c) of

4.2: VALIDATION THROUGH COMPUTER VISION 29

source u

a - h(S)

image plane with superpixels

Figure 4.4: A diagram of how we plan to construct the graph 1. The edges incident on the source and the
sink have their weights determined by the distributions h and h™!, respectively, and scaled by a factor c.
The subgraph induced on vertices of the image is exactly the superpixel affinity graph.

edges crossing the cut is minimized. In mathematical notation:

(A, A) = {{a,b} € E(I)|a € A,b € A}

(T,T) = argmin Z c(e).
(4,4) e€(A,A)

The problem of finding minimum cuts [8] is one of most extensively studied topics in computer science. As
such, there are efficient, polynomial time algorithms to solve it. Figure 4.5 illustrates what a cut in would
look like. Keeping the picture in mind, we claim that the vertices belonging to the same partition as the
source u are a good estimate for the target object region. To see this, call the edges with u as one endpoint
‘prior’ edges and call the edges induced from the original affinity graph H ‘affinity’ edges. We emphasize
how the two types of edges are weighted differently: prior edges have their weight determined by point data
density, while affinity edges have their weight set by the image segmentation algorithm. Thus, the minimum

cut trades off between cutting prior edges as opposed to affinity edges, while trying keep its total weight

30 CHAPTER 4: EXPERIMENTS

source u

Figure 4.5: The min-cut of the graph separates foreground superpixels from background.

small. In effect, it has take into account the regions that Peekaboom says are important, as well as those
that mutually have high affinity according to the Berkeley Segmentation Engine. Looking upon the vertices
assigned to the source partition as the superpixels they represent, one can estimate the target object region
by taking their union. See the bottom right frame of Figure 4.3 for a sample end result.

We remind the reader that we go through all of the above trouble to derive target object masks as in
the bottom left frame of Figure 4.3, that is, white and black images that denote membership and non-
membership of pixels in the target object. The masks in turn will help improve the accuracy of classifiers
trained on them.

4.2.2 The Object Classification Step

Does Peekaboom improve intraclass discriminativeness? In other words, given a concept class, does the
game pick out parts of images intrinsic to that class? We demonstrate how integrating the information in
the form of target object masks improves recognition rates by as much as 10%. Before giving experimen-
tal findings, however, we provide background on the kind of algorithm used and exactly how we plan to

shoehorn in our masks.

4.2: VALIDATION THROUGH COMPUTER VISION 31

Our repository consists of 7 classes (airplane, dog, face, flower, man, tree, water) of 400 images each,
for a total of 2800 images originally fetched from the web for the purposes of running the ESP Game. We
ensure that each image has a sufficient number of plays on it to estimate its target object mask. From the
training set, and target object masks, we make two groups: augmented, the training set and masks; and
unaugmented, which is just the training set. v

To build our classifiers, we make extensive use of the texton based feature representation of images. Our
discussion will be self-contained, but the interested reader is referred to [15] for a foundational view and
[22] for an application. We provide an overview of our procedure (2) with accompanying diagrams in the
appendix.

1 Given an image, we convert it into a set of filter responses by convolving it with a filter bank
[appendix entry];

2 From a pool of images, we construct a space of filter responses by selecting, say, 256 responses from
each image. Cluster the space using K-means with K = 2048. Usually the cluster centers
summarize the whole space well; call the set of centers our visual dictionary D [appendix entry];

3 Represent images as histograms of size |D|, where each entry of the histogram corresponds to a word
in the dictionary. Take an image, and convolve it with our filter bank to get a set of filter responses.
For each response, find its closest visual word, and increment the entry of the histogram mapped to
that word. After all filter responses have been counted, the resulting histogram is a | D|-dimensional
vector encoding the image [appendix entry];

4 Compute the histogram representation of training and test set images. Classification proceeds like so
— given a test image and its histogram, find the histogram in the training set that matches it most
closely. The match is tied to a training image, with class z. Consequently, the classifier infers that the

test image’s class is also x [appendix entry];
Algorithm 2: Building a texton based classifier.

Of course, the pseudocode makes no mention of how we treat the augmented and unaugment experi-
mental groups differently throughout the whole process, and so step 3 deserves closer scrutiny.

The convolution of a filter bank with an image produces a 17-dimensional (17 is the number of filters
in our experiment) feature for each pixel in the image. For the unaugmented group, all of the responses
contribute to the resulting histogram. For the augmented group, however, only the responses on pixels that
fall within the mask are counted; we include a filter response only if we believe it to be inside the target
object. Essentially, our testing setup consists of two parallel tests: one in which classifiers are trained (and
tested) on the full set of filter responses, and one in which they are restricted to looking at a set designated
with information provided by the game. Thus, we will be able to say whether use of the Peekaboom data
helps computer vision algorithms discriminate between classes of objects.

We measure a classifier’s accuracy by taking the fraction of the test images for which it guesses correctly.

32 CHAPTER 4: EXPERIMENTS

| || airplane | car | dog | face | flower | tree | water |

airplane || 311 34 |12 |12 11 14 |12
car 32 222 129 |16 |47 33 |21
dog 16 34 154 |56 | 64 53 |23
face 4 18 |72 | 179 | 84 33 |10
flower 9 23 |35 |31 | 224 61 | 17
tree 18 20 |43 |26 |58 199 | 36
water 32 31 |49 |41 35 72 | 140

Table 4.1: The confusion matrix for the augmented case.

| || airplane | car | dog | face | flower | tree | water |

airplane || 288 29 |11 |7 14 19 | 31
car 26 202 |32 | 14 |51 51 | 24
dog 8 36 | 167 | 53 67 46 |23
face 4 29 | 119 | 109 | 85 24 | 30
flower 9 30 |49 |33 201 55 123
tree 22 53 139 |19 67 134 | 66
water 37 59 |51 |22 45 107 | 79

Table 4.2: The confusion matrix for the unaugmented case.

Notice that we don’t set aside a test set, and instead perform leave one out cross validation on the training
set. This approach gives us the maximum number of images to train on.

We present our results in confusion matrix form. A confusion matrix is a matrix {€2; ;} whose rows
and columns are the object classes we train and test over: an entry); ; is the number of times the input was
of class i and the output was of class j. Clearly, the numbers on the diagonal ¢ count the times objects of
class 7 were classified correctly, and vice versa for numbers not on the diagonal.

In Tables 4.1 and 4.1, we give the confusion matrices for experiments on our seven concept classes
in the augmented and unaugmented cases, respectively. The experiment where we considered information
from Peekaboom (augmented case) achieved an accuracy of 51%, while the experiment where we didn’t
(unaugmented case) achieved an accuracy of 42%. From the higher accuracy, we infer that taking into
account player actions from the game helped distinguish images of one class from another. More specifically,
the classification process benefited significantly from knowing regions of images likely to contain objects of

that image’s class.

CHAPTER J

Concluding Thoughts

5.1 Promise and Limitations

At the beginning of the thesis, we summarized the notion of human computation: utilizing the unique
capabilities of humans as a subroutine of some overarching algorithm. We then proposed computer games
as a way to channel human understanding into training examples usable by machine learning algorithms. In
particular, we laid out the internal workings of Peekaboom for all to see, from collection to post processing
to learning.

That human computation deserves further investigation is not in doubt — humans interact with computers
as a part of daily life now, so for the benefit of both parties, computers can improve their performance by
soliciting humans for insights not otherwise available to them. What of computer games, however? Are
they the optimal way to aggregate human cycles? The concept of ‘games with a purpose’ and its many
instantiations has addressed many difficult problems already, like locating objects in images, annotating
images with descriptions, and gathering common sense facts. For Peekaboom in particular, we’ve managed
to achieve positive empirical results. Despite the promise of this new way of thinking, something needs to
be said of the limitations.

First, we note that ideas behind games are intrinsically unique — they make each game what it is. There
is no cookie cutter method, but in its lieu are general design guidelines. The work done so far showcases
some of these principles, and surely there are other solutions to hard Al problems waiting to be discovered.

Second, games are sometimes appropriate remedies for situations requiring human feedback, but not
always. In many cases, the best way to tap into the expertise of humans is simply to ask them. Imagine, for
example, a biomedical program that displayed images to technicians and asked them to pick out cancer cells.
While enjoyability, incentives for the participants and guarantees of correctness are desirable properties, they
are not strictly necessary for the task described. Lab technicians, as opposed to self-interested web users

33

34 CHAPTER 5: CONCLUDING THOUGHTS

catered to by our games, are experts and have a job to do.

Finally, a game, as a level of indirection, invariably obfuscates the training examples we intend to collect.
Directly asking users to paint an outline of the target object would, under ideal circumstances, yield higher
quality data: we could specify to participants exactly how we wanted them to pick out the target object from
background clutter. Of course, doing the collection from within a game is far more preferable than not, as

we wouldn’t be able to gather millions of examples in the first place!

5.2 New Directions

Much more can be said and done with the simple experiment we proposed, implemented, and tested in

section 4.2. We focus on two areas for future improvement and exploration.

5.2.1 Making More Use of Limited Information

What if a computer could ‘refine’ sparse or noisy knowledge provided to it by making many passes over
the same training set? We make the observation that the object inference step of our experiment takes into
account a single image at a time, oblivious to other images of the same object class. On the other hand,
our classifiers, by construction, simultaneously take into account sets of images, class by class. It stands to
reason that if classifiers can discriminate among classes, they can also say what makes a class special. In
particular, for our texton based method, a ‘car’ classifier would be able to say which visual words appear
with a high frequency in cars. Thus, given an image labeled ‘car’ by the ESP Game, such a classifier would
be able to assert, with different degrees of confidence, whether or not each pixel belongs to the target car.
To see how a learning algorithm would refine an initial training set provided to it, consider the tree
image in figure 5.1. As is often the case, experienced Boom players only show minimal but salient parts of
the image; they have no need to reveal the other trees in the picture. For our purposes, however, we would
like all the trees in the image. Towards this end, we use a texton-based tree classifier (very much like one
featured in our earlier experiments) to ‘hallucinate’ a set of Peekaboom points that most likely belong in
the ‘tree’ class. We treat the fake points just as if a real player created them, and rerun the object inference
procedure on the union of both real and fake points. Thus, we hope to iteratively improve object inference

from a qualitative standpoint and ultimately boost classification accuracies.

5.2: NEW DIRECTIONS 35

Figure 5.1: The Boom player only needs to reveal one tree among many in this scene to get the Peek player
to guess ‘tree’.

5.2.2 Improving the State of Computer Vision

Although our experiment shows that Peekaboom picks out class-specific parts of images, it’s still a very
rudimentary step. Our plan going forward is to exhibit that data from the game can make a difference in
cutting edge computer vision algorithms. Virtually all training sets for computer vision come from hand la-
beling, and therein we intend to leverage our greatest strength: size. Our repository of one million examples,
although large, is disparate in the breadth of the object classes contained within. Focusing our collection
efforts on a handful of classes would greatly increase the size of the training sets we can work with. Cur-
rently, our largest classes contain 600 fully annotated (by ESP and Peekaboom) images each, as exhibited
in the experiment in section 4.2.

With more training examples in hand for common classes like ‘bicycle’, ‘person’, and ‘car’, we can test
our repository with state of the art recognition algorithms found in submissions to the 2005 Pascal Challenge
[7], for example. Only then can we definitively show that our game helps advance computer vision by
making the collection of large training sets on the order of thousands to tens of thousands feasible.

36

CHAPTER 5: CONCLUDING THOUGHTS

Appendix

37

APPENDIX A

» Player actions — The actions that we observe players taking during gameplay. We record all
their actions so that we can recreate a game fully.

» Data — Computer-usable training examples inferred from player actions.
» Datum — One piece of data arising from one play of one image for a distinct pair of players.
» Dataset — A collection of data.

» Collection mechanism — The process of recording player actions, storing them, and con-
verting them into data.

» Correctness — The concept of correctness is very subjective, so we when refer to data as
‘correct, we merely mean that it will perform well against hand-labeled examples in controlled
experiments and measurably improve the performance of computer vision algorithms trained
onit.

» Target object — For an image-label pair, the object referred to by the label.

Figure A.1: Some useful definitions to keep in mind while reading.

39

40 : APPENDIX A:

convolution filter bank

LER

image

filter responses

Figure A.2: When we say that an image is ‘convolved’ with a filter bank in I, we really mean that we
convolve each filter in turn with an image to produces a series of convolution results. The pictured filter
bank is due to Leung Malik [10]; ours is similar to it, and follows the construction in [15].

41

R4

Figure A.3: In step 2, we ‘summarize’ a space of d-dimensional points by estimating cluster centers (color
coded in red). We interpret the centers as the words in our visual dictionary of filter responses.

42

APPENDIX A:

image

converter

visual dictionary

A

histogram

Figure A.4: We reduce images into histograms by running them through a converter, which has access to

the visual dictionary generated in step 3.

43

classifier input: car

dog training histograms

car training histograms

output: {car,dog,...}

A

Figure A.5: Given an image and its associated histogram, the classifier in step 4 finds the closest match
from its set of training examples and returns the label of the closest match.

44

APPENDIX A:

Bibliography

[1] Flickr photo sharing service. http://www.flickr.com.
[2] The facebook. http://www.thefacebook.com.
[3] Interactive digital software association. http://www.idsa.com.

[4] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra Malik. Blobworld:
A system for region-based image indexing and retrieval. In Third International Conference On Visual
Information Systems (VISUAL °99), Amsterdam, The Netherlands, 2 1999.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38, 1977.

[6] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000.

[7] Mark Everingham et al. The 2005 pascal visual object classes challenge. In PASCAL Workshop 05,
number 3944 in Lecture Notes in Artificial Intelligence, pages 117-176, Southampton, UK, 2006.

[8] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.

[9] Charless Fowlkes, David R. Martin, and Jitendra Malik. Learning affinity functions for image segmen-
tation: Combining patch-based and gradient-based approaches. In CVPR (2), pages 54—64, 2003.

[10] Thomas Leung and Jitendra Malik. Representing and recognizing the visual appearance of materials
using three-dimensional textons. International Journal of Computer Vision, 43(1):29-44, 2001.

[11] David G. Lowe. Object recognition from local scale-invariant features. In Proceedings»of the Interna-
tional Conference on Computer Vision (ICCV), pages 1150-1157, 1999.

[12] Bryan Russell, Antonio Torralba, and William T. Freeman. Labelme: A database and web-based tool
for image annotation. Technical report, MIT AI Lab, September 2005.

[13] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.

[14] David G. Stork. Open data collection for training intelligent software in the open mind initiative.

45

46 BIBLIOGRAPHY

[15] Manik Varma and Andrew Zisserman. A statistical approach to texture classification from single
images. International Journal of Computer Vision, 62(1-2):61-81, 2005.

[16] Paul Viola and Michael Jones. Robust real-time object detection. International Journal of Computer
Vision, 2002.

[17] Luis von Ahn. Human computation. Technical Report CMU-CS-05-193, 2005. Carnegie Mellon
Computer Science Department PhD Dissertation.

[18] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In CHI °04: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 319-326, New York, NY,
USA, 2004. ACM Press.

[19] Luis von Ahn, Shiry Ginosar, Mihir Kedia, Roy Liu, and Manuel Blum. Improving accessibility of the
web with a computer game. In CHI ’06: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 2006. ACM Press.

[20] Luis von Ahn, Mihir Kedia, and Manuel Blum. Verbosity: A game for collecting common-sense facts.
In CHI *06: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New
York, NY, USA, 2006. ACM Press.

[21] Wikipedia. Wikipedia — wikipedia, the free encyclopedia, 2004. [Online; accessed 6-April-2006].

[22] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In
ICCV °05: Proceedings of the Tenth IEEE International Conference on Computer Vision, volume 2,
pages 1800—-1807, Washington, DC, USA, 2005. IEEE Computer Society.

