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A B S T R A C T

Recently, cells in the dorsal medial entorhinal cortex (dMEC) were found have
spatially modulated activity patterns, comprising multiple active regions
organized in a hexagonal lattice across the environment. These “grid cells”
show the same field spacing in any environment and are sometimes modu-
lated by the rodent’s speed and direction of travel, leading to the hypothesis
that dMEC subserves a path integration system. Downstream, hippocampal
“place cells” are typically active only within a single contiguous region of an
environment. Unlike grid cells, changes either in sensory information or to
the rodent’s task can cause place cells to “remap,” or radically change their
activity patterns.

The first part of this thesis presents a neural network model of dMEC
grid cells that provides both a cogent explanation of the firing properties of
the grid cells and a mechanism by which they could satisfy the computa-
tional requirements for path integration. The efficiency and properties of a
hippocampal spatial code derived from grid cells is also explored.

The second part considers place cell remapping as a method of encod-
ing context and presents a Bayesian statistical model for context learning.
Context learning is defined as the problem of decomposing the rodent’s
history of experiences into temporal windows within which the distribu-
tion of sensory and task-related hippocampal input is statistically stationary.
Context learning can therefore be understood as a model selection problem:
how many contexts make up the rodent’s world? The theory provides an
understanding of why remapping sometimes develops gradually over many
days of experience, why the time course of reversal learning depends on the
degree to which the reward contingencies were changed, and why overlap-
ping sequence learning does not consistently result in “context-dependent”
sequence representations.

The third part presents an analysis of a hippocampal physiology exper-
iment, in collaboration with Bruce McNaughton (University of Arizona),
that pitted sensory information against path integration information. Rats
foraged in two identical, connected boxes with either the same or opposite
orientations. The observed pattern of place cell responses suggest that a com-
bination of linear and angular path integration eventually overrides sensory
cues, even when linear path integration alone does not.
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A B B R E V I AT I O N S

CA1 cornu ammonis (Ammon’s horn) subregion 1

CA2 cornu ammonis (Ammon’s horn) subregion 2

CA3 cornu ammonis (Ammon’s horn) subregion 3

CPFE context pre-exposure facilitation effect

DG dentate gyrus

dMEC dorsolateral medial entorhinal cortex

EC entorhinal cortex

FFX fibria-fornix pathway

HF hippocampal formation

LTP long-term potentiation

LEC / LEA lateral entorhinal cortex (area)

MEC / MEA medial entorhinal cortex (area)

PREE partial reinforcement extinction effect
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1
I N T R O D U C T I O N

One of the most widely discussed topics in the philosophy of mind is the
question of whether the brain can be understood as a computational process
(e.g. Searle, 1980; Pylyshyn, 1989; Dennett, 1994). This question originated in
the formal sense out of the Church-Turing thesis which posited that every
computable function could be computed using a Turing machine (Kleene,
1943). To this day, no formalism of computation has been offered that defines
a class of computations not computable by a suitable Turing machine. That
the Turing machine formalism suffices to describe any computation has
naturally led to the possibility that, to the extent to which the brain can be
described as a computational system, its computations could be understood
in algorithmic form.

Discovering the computational processes underlying brain function has
proven to be an unparalleled scientific challenge, and, as in other domains
of hard science, concrete, quantitative theories are critical to the scientific
process. Indeed, major advances in our understanding of brain function have
been made by so-called “rational analysis,” the exploration of how neural
systems may implement an approximation of a computationally ideal system.
For example, neuronal responses in the visual and auditory systems have
been shown to reflect information theoretic coding principles. The role of the
dopamine system in animal learning has been elegantly formalized within a
reinforcement learning framework. Examples are numerous.

This thesis advances along that path by contributing to an understanding of
the rodent hippocampal region using a variety of computational techniques
in machine learning and artificial neural networks. The hippocampal region
receives convergent input from a diverse array of brain structures, leading to
its implication in a variety of cognitive functions. In recent years, lesion and
physiology studies have provided converging evidence that the hippocampus
proper is critical for learning associations between sensory stimuli and the
rodent’s spatial location. Indeed, theories of rodent navigation have centered
around the hippocampus and the “place cells” within that show spatially
selective firing fields (for review, see Redish, 1999).

While navigation studies have focused on associations with particular loca-
tions, “contextual” classical conditioning studies have focused on associations
with whole environments, and hippocampal place cells have been shown to
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have different activity patterns in different environments. The notion that the
hippocampus provides a representation of context has become pervasive, and
it has been suggested that hippocampal lesion impairments in other tasks,
such as reversal learning and T-maze alternation, derive from the lesioned
brain’s lack of a representation of context.

This thesis comprises two parts. The first part, Chapters 2-5, provides a
review of the experimental literature, while, the second part, Chapters 6-8,
covers original research that advances an understanding of hippocampal
region function in rodent navigation and in providing a representation of
context. In Chapter 2, the neuroanatomy of the hippocampal region is
reviewed, including both a description of connectivity within the region
and a summary of the afferent and efferent projections of structures within
the region. Chapter 3 presents a review of lesion and physiology data
involving two structures in the parahippocampal region, the postsubiculum
and entorhinal cortex, geared toward an understanding of these structures
roles in rodent navigation. Chapter 4 presents a systematic review of the
physiology data from the hippocampus, while Chapter 5 presents a review
of behavioral data, including the effects of hippocampal lesions, transient
neuronal inactivation, and genetic knockouts, focusing where possible on
studies that restrict the affected area to particular subregions (DG, CA3,
CA1).

Chapter 6 presents a neural network model of a path integration system
(Fuhs and Touretzky, 2006), a critical component for rodent navigation. The
model connects previous theories that a path integrator must exist within
the brain with recent data from the dorsal medial entorhinal cortex (dMEC),
proposing a model of dMEC that both explains the intriguing properties
of dMEC neurons and demonstrates how cells with such properties could
compose a neural path integrator.

Chapter 7 presents a computational theory of context learning in the rodent
hippocampus. The theory presents a single, unified notion of context that is
equally applicable across the different experimental domains in which context
has been posited to play a critical role. The theory formalizes this notion
of context within a Bayesian statistical framework, demonstrating that the
development of different contextual representations within the hippocampus
can be understood as a statistical inference problem.

Chapter 8 presents a physiology experiment that explores the roles of
linear and angular path integration in forming spatial representations in the
hippocampus (Fuhs et al., 2005). This author was responsible for the complete
analysis of the raw data, including the development of a novel inference
technique to measure moment-to-moment changes in the rats’ representation
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of the environment.
Chapter 9 concludes with a discussion of experimental and theoretical

questions prompted by this work that may be addressed by future research.
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2
N E U R O A N AT O M Y

There is some inconsistency regarding the naming conventions involving
groups of structures in the hippocampal region. Consistent with Witter
and Amaral (2004), I will use the term “hippocampal region” to denote
two sub-structures, the archicortex, or “hippocampal formation,” and the
“parahippocampal region.” The hippocampal formation includes the fascia
dentata (dentate gyrus), cornu ammonis (Ammon’s Horn, including subfields
CA3, CA2 and CA1) and the subiculum. The “parahippocampal region”
denotes the entorhinal cortex (EC) and pre- and para-subiculum. The term
“hippocampus” is most commonly used to denote Ammon’s horn and the
dentate gyrus, and it will be used so here. In the remainder of this section,
a summary of the intrinsic and extrinsic connectivity is presented based on
reviews by Witter et al. (2000; 2004), unless otherwise noted.

The hippocampal formation, situated in the medial temporal lobe in mam-
mals (see Figure 2.1), is part of the limbic system, a phylogenetic predecessor
of the neocortex. It is sometimes referred to as “archicortex” because its
laminar organization is more primitive than neocortex, containing only three
anatomically distinct cell layers and only one layer in which principal cells
reside. Similar structural homologues, often referred to as the medial pallium,
have been identified across the Chordate phyla, including birds, frogs, and
fish.

2.1 Entorhinal Cortex

The dominant afferent input to the entorhinal cortex arises from two neighbor-
ing structures, the perirhinal and postrhinal cortices, each of which receives
converging input from a diverse panoply of cortical areas. In addition, the
entorhinal cortex receives somewhat weaker input from many of these ar-
eas as well, including perirhinal and postrhinal cortices; the olfactory bulb,
anterior olfactory nucleus, and piriform cortex; agranular insular cortex;
medial prefrontal cortex, especially the prelimbic / infralimbic areas; anterior
cingulate and posterior cingulate (retrosplenial) cortex; insular cortex; ventral
posterior temporal cortex; and posterior parietal cortex.

EC is subdivided into medial and lateral regions. The distribution of Afferent
connectivityafferent projections to these regions is not uniform. Figure 2.2 shows the
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neuroanatomy

Figure 2.1: The position of the hippocampal formation within the rodent brain.
In views (a) and (d), the anterior-to-posterior (front-to-back) axis of the brain is
top-to-bottom on the page. In (b), the anterior end is toward the left. View (c) is
from the anterior end of the brain.

distribution of inputs from other cortical structures. Simplifying this pic-
ture somewhat results in the pattern of connections shown in Figure 2.3.
Interestingly, the afferent visual and spatial areas (retrosplenial, parietal, and
occipital) preferentially target the medial entorhinal cortex (MEC), especially
the dorsal portion. Of particular note is the projection from the neighboring
presubiculum (including the dorsal part, also referred to as the postsubicu-
lum) whose projection to EC targets layer III of the medial portion almost
exclusively.

In addition to the cortical afferents, EC receives projections from a number
of subcortical areas as well, including the thalamus, mostly from the nucleus
reuniens and nucleus centralis medialis; medial septal complex; amygdala;
and hypothalamus, including the supramammillary nucleus and lateral
hypothalamic area. Monoaminergic inputs from the central tegmental area,
dorsal raphe nuclei, and locus ceoruleus have also been found.

Projections from EC layers II and III form one of the dominant inputIntrinsic and
efferent
connectivity

pathways, the perforant path, to all subregions of the hippocampal formation.
Return projections from the hippocampus terminate largely in layer V of EC.
The principal cells of layer II, stellate cells, are organized in groups (“cell
islands” ), whereas cells in other layers are more diffusely arranged. Some
cells in layer II also synapse onto other cells within layer II, and, in fewer
instances, layer III. Layer III cells give off collaterals within layer III and to

6



2.1 entorhinal cortex

Figure 2.2: Distribution of inputs to the LEA (A) and MEA (B) arising from piriform,
frontal, insular, temporal, cingulate, parietal and occipital cortex, respectively. The
lateral, middle, and medial bands indicate areas of LEA and MEA that project to
dorsal, medial, and ventral structures in the hippocampal formation. (Reprinted
from Burwell (2000).)
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neuroanatomy

Figure 2.3: Projections to LEA and MEA differ. LEA and MEA afferents mix in
DG and CA3, but are kept segregated in CA1 and the subiculum. (Reprinted from
Burwell (2000).)
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2.2 hippocampus formation

layer I, which contains a sparse population of both stellate (excitatory) and
GABAergic (inhibitory) horizontal cells that terminate onto the dendrites of
layer II stellate cells.

Efferent cortical projections from EC are targeted most strongly at the
perirhinal and postrhinal cortices, arising largely from deep EC layers. Perirhi-
nal and postrhinal cortices in turn have projections back to unimodal sensory
and polymodal association areas. In addition, direct projections to olfactory
areas, prelimbic (medial prefrontal) cortex, orbitofrontal agranular insular
cortex, and retrosplenial cortex have been found. Subcortical projections are
largely to the septum, mostly lateral, the amygdala, and nucleus accumbens
(ventral striatum).

2.2 Hippocampus Formation

The hippocampal formation makes afferent and efferent connections largely,
though not exclusively, via two main pathways. The first, the fimbria-fornix
(FFX) pathway, connects the HF directly with several subcortical structures,
while the second, the entorhinal cortex, provides the gateway to and from
a multitude of areas throughout the neocortex. The HF being a bilateral
structure, substantial intrinsic interhemispheric projections are also made via
the anterior commissure. A summary of the connectivity of the hippocampal
formation is shown in Figure 2.4.

The entorhinal cortex provides the dominant cortical input to the HF, a Afferent
connectivityfiber bundle called the perforant path. Perirhinal and postrhinal cortices,

which project heavily to EC, also contribute to the perforant path projection.
EC layer II projects to the dentate and CA3, while layer III projects to
CA1 and the subiculum. (The projection from EC (in medial temporal
cortex) to the hippocampus (Ammon’s horn) is sometimes referred to as the
temporoammonic pathway, often in contrast with perforant path terminals
in the dentate.) CA1 and the subiculum both project back to the deep layers
of EC, predominantly layer V.

The fimbria-fornix pathway is dominated by GABAergic and cholinergic
projections from the medial septum and a neighboring structure, the nu-
cleus of the diagonal band of Broca. The GABAergic projections largely
terminate on GABAergic neurons, providing essentially an inhibition of
intrahippocampal inhibition. These GABAergic projections provide the sub-
stantial theta-frequency (4–12Hz) modulation of hippocampal activity.

Descriptions of the intrinsic circuitry of the hippocampal formation typ- Intrinsic and
efferent
connectivity

ically involve a reference to the “trisynaptic pathway,” denoting a flow of
information from EC to DG, CA3, and CA1 (see Figure 2.5). However, as
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Figure 2.4: Intrinsic and extrinsic connections of the hippocampal formation.
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2.2 hippocampus formation

Figure 2.5: Anatomically “correct” diagram of the trisynaptic pathway within the
hippocampus. Perforant path projections from the entorhinal cortex project to DG;
the DG mossy fiber pathway projects to CA3; Schaffer collaterals from CA3 project
to CA1.

Figure 2.4 shows, the circuitry is far more complex, and involves multiple
sets of recurrent connections both between and within HF regions.

The dentate gyrus contains two major groups of excitatory cells, granule
cells in the granule layer and mossy cells in the polymorphic layer. The
polymorphic layer is often referred to as the hilus, and has also sometimes
(erroneously) been grouped with the hippocampus as region CA4. Granule
cells project to both hilar mossy cells and CA3 pyramidal cells via axonal
projections referred to as “mossy fibers.” Mossy fiber synapses are sizable
and quite potent, requiring few mossy fiber action potentials to trigger an
action potential in the post-synaptic cell. However, an individual granule
cell makes few connections, including only 14–28 CA3 pyramidal cells. Hilar
mossy cells send strong projections both back to the granule cells as well as
to inhibitory basket cells, forming recurrent circuitry within DG comprised
of both excitatory and inhibitory components. The mossy cells also receive
projections from CA3, forming a larger recurrent loop encompassing both
DG and CA3.

11



neuroanatomy

In CA3, in addition to perforant path and mossy fiber input, substantial
and highly divergent recurrent collaterals between pyramidal cells are found.
These same axons bifurcate to form the Schaffer collateral projection into
CA1. Interestingly, CA3 is known to have exactly one extra-hippocampal
target, the lateral septum, an important consideration when interpreting
subregional lesion studies showing a larger effect of DG or CA3 lesions than
CA1.

The Schaffer collateral and perforant path input converge in CA1, and
there are no projections back to DG or CA3. CA1 projects both directly and
indirectly (via the subiculum) to the entorhinal cortex, as well as directly to
several cortical and subcortical structures. The subiculum receives perforant
path input as well, and provides the dominant cortical and subcortical output
of the hippocampal formation. Because CA1 and the subiculum are the only
two areas to have substantial extra-hippocampal projections, interpretation
of CA1 lesion studies requires consideration of whether impairment is due
to a loss of information processing in these areas or a loss of information
propagation to downstream areas.

It is interesting to note the distribution of perforant path projections from
medial and lateral EC. As mentioned above, these areas receive somewhat
different input from afferent cortical areas, and the LEC and MEC project
to non-overlapping portions of CA1 and the subiculum (see Figure 2.3). By
contrast, DG and CA3 receive convergent input from both LEC and MEC,
suggesting a functional role in unifying or associating information across
these two areas.

12



3
T H E PA R A H I P P O C A M PA L R E G I O N

3.1 The Head Direction System and Postsubiculum

While this thesis does not directly address the inner workings of the head
direction system, a brief summary is provided here as background for future
discussions of related systems. For a more comprehensive discussion, the
reader is referred to any of several models of the head direction system
(Skaggs et al., 1995; Redish et al., 1996; Blair et al., 1997; Goodridge and
Touretzky, 2000; Song and Wang, 2005).

Head direction cells are so named because they fire preferentially when
the animal’s head is facing a particular horizontal bearing (azimuth) in the
environment. Cells sensitive to head direction have been found in several
regions of the brain, most notably the postsubiculum (PoS), the anterior
dorsal nucleus of the thalamus (AD), and the lateral mammillary bodies
(Taube et al., 1990a,b; Blair et al., 1997; Blair and Sharp, 1998; Stackman and
Taube, 1998). Additionally, medial prestriate and retrosplenial cortex cells
were sensitive to head direction and in many cases modulated by one or
more of: behavior (left turns, right turns, forward motion), visual cues, and
vestibular information (passive rotation) (Chen et al., 1994b,a). Some striatal
neurons have also been found to show head direction sensitivity (Wiener,
1993).

The postsubiculum, part of the parahippocampal region, and AD are
reciprocally connected, and PoS appears to derive its head direction signal
from AD, as AD lesions disrupt the head-direction tuning of PoS cells
(Goodridge and Taube, 1994, 1997). AD head direction tuning is in turn
dependent on the vestibular system, as vestibular system lesions abolish AD
head direction specific firing (Stackman and Taube, 1997). Additionally, it
is believed that AD receives motor efference copy, indicative of very-near-
future movements, as AD cells are predictive of future head direction by
approximately 23 msec (Taube and Muller, 1998).

If the postsubiculum derives its head direction tuning from AD, what
purpose does PoS serve? An intact postsubiculum is not necessary for head
direction specificity in AD (Goodridge and Taube, 1997), but PoS lesions
do disrupt hippocampal place cell firing (Calton et al., 2003) and spatial
navigation tasks typically associated with hippocampal function (Taube et al.,

13



the parahippocampal region

Figure 3.1: In a typical awake, behaving, rodent neurophysiology experiment, a
microdrive is surgically implanted atop a rat’s head, and one or more recording
electrodes are lowered into the targeted brain region. In addition, one or two ground
wires are positioned nearby but outside the region, away from any cell bodies, to act
as a voltage reference. In tasks involving some spatial component, LEDs attached
to the top of the microdrive are tracked by a camera that is mounted to the ceiling
of the room. This provides for the simultaneous recording of the animal’s position,
its head direction (in some cases), and the activity of the neurons. (Photo by Eric L.
Hargreaves. Reprinted with permission.)

1992). The postsubiculum has direct projections to the hippocampal region,
specifically the medial entorhinal cortex, and is likely critical for updating
the representation of space in MEC during movement (see Section 3.2 and
Chapter 6).

The information flow from PoS to AD is critical for updating AD based on
associations of head direction with external landmarks. Normally, familiar
external cues are able to reorient the head direction system to reestablish
correspondence between an observed cue and its previously learned compass
direction (Goodridge and Taube, 1995). However, cue control of cells in AD
is largely abolished when PoS is lesioned (Goodridge et al., 1998).

3.2 Path Integration and the Entorhinal Cortex

3.2.1 Behavioral path integration

While animal navigation based on external landmarks is well documented
(e.g. Collett et al., 1986), it has also been shown that a wide variety of animals
can navigate in the absence of spatially informative cues (for review, see
Etienne and Jeffery, 2004). Path integration experiments typically rely on
the nesting behavior of the species being studied. After searching in an
environment in a long circuitous path for a target object, perhaps some food
or a lost pup, the animal returns directly to its nest. Several experiments
have been carried out to dissociate navigation by external spatial cues from
navigation using an internal path integration mechanism (Mittelstaedt, 1962;

14



3.2 path integration and the entorhinal cortex

Mittelstaedt and Mittelstaedt, 1980; Etienne et al., 1986, 1988, 1996).
As a classic example, Mittelstaedt and Mittelstaedt (1980) tested path

integration in a pup retrieval task. A gerbil’s pup was displaced from its
mother’s nest at the edge of an arena into the center. The mother gerbil then
departed from the nest, searched the environment, and located the pup. The
pup was placed on an area of the floor that was slowly rotated while the
mother was upon it. Since the speed of rotation was below detection by the
mother’s vestibular system, the mother set off in a direction different from
the actual location of the nest. The deviation from the correct nest location
was predicted by the amount of rotation, indicating that the return path was
not guided by external cues but rather by some internal navigation system.

This behavioral evidence led to a variety of theories that postulated some
form of neural path integration system (for discussion, see Chapter 6). Recent
evidence suggests that the entorhinal cortex provides a representation of
space based on idiothetic (self-motion) information that could serve as the
basis for path integration.

3.2.2 Entorhinal cortex

The spatial properties of cells in the entorhinal cortex were first explored by
Quirk et al. (1992), who recorded from medial entorhinal cortex. The cells
from which they recorded were spatially selective, showing a “place field,”
a spatially localized area of activity within the environment surrounded by
quiescence. When a prominent cue card affixed to the wall of the arena
was rotated, MEC place fields rotated with it. However, removing the cue
had little impact on the cells’ activity. Moreover, in contrast to place cells in
the hippocampus (see Section 4.1), MEC place fields were similar in arenas
with two different shapes (square and cylindrical), suggesting that they
represented a “universal” (environment independent) map of space.

More recently, a series of papers from Moser and colleageus have reported Grid cells
in detail about the physiological properties of MEC neurons (Fyhn et al., 2004;
Hafting et al., 2005; Sargolini et al., 2006). Fyhn et al. (2004) systematically
recorded from layer II neurons along the dorsal-to-ventral axis of MEC.
Fascinatingly, the firing fields in the dorsal subregion (dMEC), nearest the
border with postrhinal cortex, had multiple peaks, or nodes, and the structure
of the nodes obeyed the planar symmetry group p6m, the most symmetric of
the 17 groups (Grünbaum and Shephard, 1987). Of p6m’s many rotations,
reflections and glide reflections, the most notable is the order six rotational
symmetry: firing fields rotated about any node by any multiple of 60 o were
similar to the original field. Each node was surrounded by six equally spaced
nodes around it. Treating nodes as points in a point lattice, one may therefore
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describe the point lattice as hexagonal, as the Voronoi polygons of the
lattice are hexagons, or equilateral triangular, as the Delaunay triangulation
comprises equilateral triangles. These cells have been called “grid cells.”

As recording distance is increased from the postrhinal border along the
dorsal-ventral axis, both the size of fields and spacing between them increased
proportionately. In the ventral portion of dMEC, little or no spatial specificity
was observed. However, the increase of field sizes and spacing suggests that
the cells may not be spatially non-selective; rather, their spatial selectivity
may be observable only over arena sizes in excess of what was used.

Postrhinal cortex provides the dominant visuospatial input to dMEC and
therefore its strongest source of spatial information. However, Fyhn et al.
(2004) report that fields in postrhinal cortex showed little spatial information
content or spatial correlation across sessions. Additionally, lesions of DG,
Ammon’s horn and the subiculum did not destroy the spatial specificity of
dMEC fields either. The lesions did not significantly impact spatial informa-
tion rate, the median number of peaks or the mean field size, though trends
toward larger, less spatially informative fields were present. These lesions
did impact the spatial coherence and the uniformity of dispersion of the
firing fields, though fields were still more dispersed than chance. Thus, the
two most obvious sources of afferent spatial information for dMEC cells do
not in fact appear necessary for spatially localized dMEC fields.

Hafting et al. (2005) reported several additional properties of layer II dMECGrid cells as a
universal map cells. Of particular interest was the behavior of simultaneously recorded cells

in proximity to one another (recorded on the same tetrode). First, the spacing
of nodes varied by 30 cm across the dorso-ventral span from which they
recorded. However, the spacing of neighboring neurons varied very little, on
average only 2.1 cm. Similarly, the orientations of grid cell fields observed
across rats were uniformly distributed, but, among neighboring cells, the
orientations were tightly coupled. In contrast, neighboring grid cell field
phases showed no statistical correlation. Taken together, these results suggest
that local connectivity couples the behavior of proximal units, whereas more
distal neurons showed no evidence joint participation within the same neural
network. Whether these local neural networks are related to the stellate “cell
islands” observed in layer II has yet to be determined.

Hafting et al. (2005) also explored the effects of several environmental
manipulations on layer II dMEC cells. First, in a novel environment, grid cell
fields were observed immediately. The first two minutes show significant
correlations with later recording, though they are not as sharp as subsequent
two minute blocks. Second, when the size of the arena was varied, the
size and spacing of the nodes remained constant. (Subsequent preliminary
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data suggest that grid cells do not distinguish between arena shape or color
either (Hafting et al., 2004; Fyhn et al., 2005).) Third, when all lights were
extinguished, grid spacing, mean firing rate and spatial information remained
unchanged, though there was a mildly weaker spatial correlation across
sessions. If one takes these cells to indicate the rat’s internal representation
of his location, then this weaker spatial correlation may simply reflect the
darkness-induced error in updating that spatial representation during travel.
Taken together, these data suggest that the first-order hexagonal structure
of the grid cell fields is sensory independent. These properties are similar
to the head direction system and suggest that internal motion information,
whether from the vestibular system or motor efference copy, likely plays a
significant role in updating the dMEC representation. For this reason, the
grid cells have been conjectured to underlie the behavioral ability to path
integrate.

Grid cells are not immune to all cue changes, however. When a prominent
orienting cue card was rotated 90o, grid cell fields rotated equivalently. Such
field rotation presumably occurs in an effort to realign the internal spatial
map with the external world, as is observed in the head direction system.

Beyond the first-order hexagonal structure, it was observed that the in-
dividual peak firing rates of different nodes varied, and these variations
were systematic. Repeated visits to the same environment showed that peak
firing rates were positively correlated across sessions (r = 0.35). Whether this
modulation reflects the impact of afferent input or some internal dynamic of
dMEC is not known. However, the wealth of afferent input to MEC suggests
that these peak variations may in fact represent a superposition of afferent
input and the dMEC representation of space.

Sargolini et al. (2006) recorded from layers III, V and VI to assess the degree Grid cells and
path integrationto which cells in these other layers show similar properties to the layer II cells.

They found that, while most cells in layer II show p6m periodicity, only a
minority of cells in III, V and VI do. Of those that did, similar properties were
found. Node spacing increased with distance from the postrhinal border.
Grid orientations of nearby, simultaneously recorded cells were consistent,
while grid phases of nearby, simultaneously recorded cells were uniformly
distributed.

While cells in layer II showed almost no directional tuning, approximately
70% of cells in each of the other recorded layers did. The distribution of
preferred directions appeared uniform, and, among simultaneously recorded
neurons, the preferred directions were heterogeneous. Moreover, the popu-
lation of grid and directional neurons were not disjoint. While neurons in
layer II showed no directional preference, 66% of layer III and 90% of layer
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V neurons showed both directional and grid activity patterns. In layer VI,
that percentage drops to 28%. When a prominent orienting cue card was
rotated 90o, the grid fields and direction tuning rotated together, consistent
with the notion that a change in the internal compass of the rat (e.g. in the
head direction system) underpins both the direction preference of the cells
and the dynamics of the grid cell fields.

Finally, Sargolini et al. (2006) note that there is a positive correlation be-
tween firing rate and speed. Speed and directional preference together
compose a motion vector, the fundamental building block of a path integra-
tion system. This existence of this information in dMEC was predicted by
the theoretical work of Fuhs and Touretzky (2006), which is presented in
Chapter 6.

While all of these studies have focused on MEC, Hargreaves et al. (2005)
recorded from several areas in the hippocampal region, including CA1, MEC,
LEC, the parasubiculum and perirhinal cortex (the major input to LEC). They
found that cells in CA1, MEC and parasubiculum show spatial selectivity,
whereas cells in LEC and perirhinal cortex largely do not. Both spatial
information (bits per spike) and spatial correlations between sessions are
lower for LEC and perirhinal. Taken together with the Fyhn et al. (2004) data
showing little spatial information in postrhinal cortex, it appears that the
spatial representation in dMEC is created therein and propagated into the
hippocampal formation.
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4
T H E H I P P O C A M PA L F O R M AT I O N :
N E U R O P H Y S I O L O G Y

4.1 Place Cells

Well before dMEC grid cells were discovered, DG, CA3 and CA1 principal
cells had been known to have spatially localized firing fields, which has led
to their being described as “place cells” (O’Keefe and Dostrovsky, 1971; Jung
and McNaughton, 1993). In contrast to dMEC, a cell usually has at most one
field in an environment, though granule cells more often have multiple fields
(see Figure 4.1; Jung and McNaughton 1993; Wilson and McNaughton 1993).
Individual place cells therefore code more clearly for a particular place than
do grid cells. Hippocampal place fields are slightly larger and fire at lower
rates than those in dMEC, and they are generally quite stable across sessions,
somewhat more so than dMEC grid cells (Fyhn et al., 2004). Also, in addition
to the animal’s location, hippocampal principal cells are modulated by a
variety of environmental stimuli and internal variables.

Most neuronal recordings are performed toward the dorsal end of hip-
pocampus; in the ventral portion, fewer cells show spatial selectivity and
those that do show more diffuse fields. However, recent evidence suggests
that ventral cells may simply have very large place fields (Moser, 2006).

4.1.1 Place cell maps and remapping

In dMEC, grid cells appear to be active in all environments, and neighbor-
ing grid cell fields appear to have a fixed phase relationship: when the
environment changes, the phase relationship among nearby grid cells does
not (Fyhn et al., 2005). By contrast, most place fields are inactive in most
environments, and, when active, the place fields of hippocampal neurons
randomly reorganize between environments (see Figure 4.2; O’Keefe and
Conway (1978); Muller and Kubie (1987); Thompson and Best (1989); Wilson
and McNaughton (1993)). Thompson and Best (1989) identified hippocampal
complex-spike burst (pyramidal) cells under barbiturate anesthesia, which
causes all cells to become active. They then recorded from these cells while
rats explored three different environments, a radial maze, a cylindrical envi-
ronment, and a rectangular environment. Only 37% of cells showed a place
field in any of the environments, and these cells were often active in only
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Figure 4.1: Simultaneously recorded cells in the dorsal CA1 region of the hippocam-
pus while a rat foraged for food in a square arena. While many pyramidal or “place”
cells are inactive or have a single spatially localized field, interneurons are active
throughout the environment. (Reprinted from Wilson and McNaughton, 1993.)
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4.1 place cells

Figure 4.2: Place cells “remap” between familiar square and cylindrical arenas.
(Reprinted from Lever et al., 2002.)

one of the three environments. The remaining two-thirds of the isolated cells
were not active in any environment. Statistical tests showed that cells were
selected as if at random to be active in each environment. Thus, the subset
of cells active in each environment is sparse (few in number) and random
(different in each environment).

Muller and Kubie (1987) studied how changing the shape of the arena
affected hippocampal place cell activity. They recorded from two familiar
arenas, one cylindrical and one square, and again found that different but
overlapping populations of place cells were active in each arena. Moreover,
of those cells that were active in both arenas, the place fields were different in
an apparently random way. They coined the term “remapping” to describe
this place cell selection and field reorganization phenomenon. A recent
meta-analysis by Redish et al. (2001) showed that there were no anatomical
correlates to how cells remapped: anatomically nearby cells (< 1400 microns
apart) were no more likely to have spatially correlated firing fields than more
distant cells recorded on different electrodes.

These results yield two critical insights. First, while the dMEC creates a
universal map of space, the hippocampal representation is context-dependent.
Second, while dMEC cells are active in all environments, the hippocampal
encoding is based on a representation that is sparse. This encoding sparsity
is achieved in two ways. First, the subset of active cells changes between
contexts. Second, the subset of active cells in any one place changes between
contexts. If two place cells are active in two different contexts and they
happen to be active in the same location in one context, they are nonetheless
unlikely to be active in the same location in the second context. Thus,
even among cells active in multiple contexts, the population activity at
any location within either context is quite different. This sparse encoding
minimizes interference between contexts, which is critical for storing and
recalling multiple activity patterns in an associative neural network (Marr,
1971; Hopfield, 1982, 1984). Since an animal would typically experience many
contexts over the course of a day or week, the sparsity therefore likely reflects
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an encoding strategy to maximize the number of contexts simultaneously
representable within the hippocampus. Sparse encoding will be discussed in
more detail in Chapter 7.

Place fields are generally stable across recording sessions, and, in one study,Long-term
(in)stability of
place fields

a place field was shown to be stable for 153 days (Thompson and Best, 1990).
However, place field stability has been shown to be dependent on NMDA-
dependent long-term potentiation (LTP) of synaptic efficacies. Normally, LTP
is triggered subsequent to an influx of Ca2+ through NMDA receptors, which
are sensitive both to the potential of the postsynaptic cell and to presynaptic
release of glutamate (or exposure to the synthetic amino acid N-methyl-D-
aspartate; NMDA). The Ca2+ activates the calcium-calmodulin-dependent
kinase II (CaMKII) enzyme, resulting in an immediate potentiation via the
CaMKII phosphorylation of nearby glutamate-sensitive AMPA receptors
to make them more permeable (Silva et al., 1992). Additionally, longer-
term structural changes in the synapse requiring protein synthesis can more
permanently cement the change in efficacy (Toni et al., 1999). Rotenberg et al.
(1996) tested a mutant strain of mice that expressed a Ca2+-independent
form of CaMKII, and found that place fields were less spatially localized and
less stable between sessions.

Subsequent studies have confirmed this instability. Barnes et al. (1997)
compared the stability of place fields in young and old rats, LTP deficiency
having been implicated in the latter group. While the place fields of young
rats were reliable across multiple sessions, between which the rats were
removed from the maze, old rats sometimes showed the same fields but
sometimes did not. A similar result was observed by Kentros et al. (1998),
who created an LTP-deficient population by systemic pharmacological block-
ade of NMDA receptors. In addition, when protein synthesis is inhibited,
blocking the expression of late-phase LTP, place fields show short-term sta-
bility but long-term instability (Agnihotri et al., 2004). Interestingly, when
LTP-deficiency is localized to CA3 or CA1, CA1 place fields remain stable
across sessions (McHugh et al., 1996; Nakazawa et al., 2002).

4.1.2 Sensory-vestibular conflict I: Cue rotations and the head direction system

In contrast to the substantial environmental changes used to promote com-
plete remapping, a variety of more subtle experimental manipulations have
been performed. One class of these manipulations involves environments in
which the directional cues (i.e. those that indicate in which direction “north”
is) are rotated, repositioned, or removed.

One of the first observations about cue control of place fields was that,Rotated cue
card when the external landmarks are rotated, so do the animal’s place fields
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(O’Keefe and Conway, 1978). Muller and Kubie (1987) trained rats to forage
for food in a gray, cylindrical arena with a white cue card attached to one side.
When the cue card was rotated 90o, place fields rotated by the same amount.
A similar result has been found for head direction cells in the postsubiculum
and thalamus Goodridge and Taube (1995). In addition, when the orienting
cue was removed, place fields were observed to rotate by a random angle,
though they remained otherwise intact in most cases.

A more direct link between place cells and the head direction system Disorientation
was observed by Knierim et al. (1995), in a curious experiment involving
animal disorientation. Knierim et al. (1995) studied rats who were either
disoriented or not disoriented before entering a cylindrical environment with
an orienting cue card affixed to the arena wall. They recorded simultaneously
from place cells and at least one thalamic head direction cell. For rats
who received disorientation before each session, eventually (by the seventh
recording session), place cells and head direction cells no longer aligned
their fields with the cue card. While most place cells appeared to have
rotated fields, other cells (especially in one rat) remapped. Nonetheless,
of simultaneously recorded cells that showed rotated fields, the amount of
rotation was approximately equal, as was the rotation of any head direction
cells also recorded. Thus, even when a cue loses control over place cells and
head direction cells, the two spatial representations maintain coherent firing
fields with respect to each other.

In order to explore the types of cues most strongly used to orient the rat in Cues for
estimating
compass bearing

space, Cressant et al. (1997) trained rats to randomly forage in a cylinder that
contained two or three objects. For the group of rats for which the objects
were near the center of the arena, rotation of the objects rarely exerted control
over the angular location of the place fields. By contrast, for the group of rats
for which the objects were near the edge of the arena, either apart or together,
almost perfect cue control was observed. They also observed that a cue card,
added to the objects-in-center group, acquired control of the place fields
after a week of exposure without rotations; however, subsequent rotation of
the objects in the absence of the cue card still did not result in place field
changes. Together, these results suggest that, to shift the angular location of
place fields, the cue must be as distal as possible.

What is particularly interesting about the Cressant et al. (1997) study is
that distal cues are the best possible cues for determining one’s bearing, but
the worst possible cues for determining one’s position. Thus, the impact
of a cue rotation on the place code is likely due to its impact on the head
direction system, and not vice versa, since it is the head direction system
which would be expected to orient based on distal cues.
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To further explore the relationship between the head direction systemExplicit visual-
vestibular
conflict

and the hippocampal place code, Knierim et al. (1998) created an explicit
conflict between vestibular and visual information in order to examine how
the conflict was resolved in each system. Rats were placed in a cylindrical
arena with a white cue card, and the entire arena, including the rat, was
rotated either slowly or quickly by either a small amount (45 degrees) or a
large amount (180 degrees). In some rats, recording electrodes were in the
hippocampus; in others, they were in the anterior thalamus. For slow or
small rotations, head direction tuning curves and place fields rotated with the
cue card. For large, fast rotations, head direction cells sometimes maintained
their orientation in the room frame or otherwise altered their tuning curves
relative to the position of the cue card, suggesting that the system accounted
for the vestibular sense of rotation in preference to the location of the cue
card. In a similar percentage of cases, place fields remapped after the large,
fast rotation.

Interpreting the exact cause of the remapping is difficult, as place cells and
head direction cells were not simultaneously recorded. One explanation is
that visual information is encoded in an allocentric representation, i.e. the
cue’s bearing is encoded as “north,” where the direction of north is defined
by the head direction system. After the rotation, the rotated cue is now repre-
sented as a different card located “south.” This difference in afferent input to
the hippocampus leads to the observed remapping. An alternate explanation
is that the fast rotation is (incorrectly) perceived by the rat to include a trans-
lational component. Such a possibility is reasonable considering that even the
rotational component was not integrated particularly accurately, as judged
by the tuning curves of head direction cells after the rotation. This perceived
translation would then alter the path integration representation in dMEC,
resulting in remapping in CA1. By either explanation, internal integration
of perceived movement plays a critical role in determining the hippocampal
place code. Consistent with this, disabling the vestibular system disrupts
both postsubicular head direction cells and CA1 place cells (Stackman et al.,
2002).

While the Knierim et al. (1998) study created a perceived vestibular sense of
motion in an environment that was visually unchanged, Jeffery and O’Keefe
(1999) explored the effect of witnessing the cue being moved in the absence of
perceived self-motion (see Figure 4.3). They ran five sessions, each containing
two parts. During the first part (card-only rotations), Covered rats were either
covered while the cue card was rotated (n=2) or this part was omitted (n=2);
in either case, rats never explicitly witnessed the card being moved. During
the second part (card+rat rotations), all rats were covered, and the rats and the
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Figure 4.3: The recording apparatus used by Jeffery and O’Keefe (1999). The rat
could be rotated on the center platter in addition to the cue card being moved.
(Reprinted from Jeffery and O’Keefe, 1999.)

card were rotated (slowly) by different amounts (either 90o or 180o). A third
group, Briefly Covered rats, received the same training as the Covered Rats,
except all were covered for only 30s (instead of 2+min) during the card-only
rotations. They found two main effects.

First, during the card-only rotations, the place fields of Covered rats always
rotated with the card, whereas the place fields of the Uncovered rats rarely
did, sometimes remaining stable in the room frame, sometimes remapping.
This effect was mirrored in the card+rat rotations, in which the place fields
of Covered rats always realigned to the card, whereas those of the Uncovered
rats progressively decreased the rate of re-alignment (81% in session 1, 33%
in session 5). Interestingly, though the influence of the card in the covered
card+rat rotations progressively declined for Uncovered rats, the cue showed
control of the place code more often in the card+rat rotations than the
card-only rotations, suggesting that, though the card was being ignored
when visibly moved, it still retained some control over the place code when
invisibly moved.

Second, they found that the longer the duration of covering during the card-
only trials, the more impact the card had on the place code. This suggests
that rats maintain both a head direction estimate and a sense of precision (or
confidence) in that estimate. When covered, the estimate will tend to drift
over time, and the perception of a dearth of viable sensory information to
maintain an accurate estimate may contribute to a lower perceived precision
in that estimate. Consequently, covering the rat for longer periods may shift
the balance of reliance on idiothetic and sensory information, biasing the
system to re-orient when sensory information again becomes available.

Does the response of place fields to a rotated cue affect performance of a Cue rotations
and task
performance

spatial task? Lenck-Santini et al. (2002) trained rats on three versions of a
place preference task in which they had to navigate to and remain briefly
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Figure 4.4: The three tasks used by Lenck-Santini et al. (2002). The rotation disrupted
performance in the Far task, but not the other two. (Reprinted from Lenck-Santini
et al., 2002.)

within a small area in order to receive a food reward, which was randomly
scattered into the cylindrical arena (see Figure 4.4). In all three versions,
three sessions were run in which a cue card was rotated 90 degrees between
sessions. Rats were removed from the arena between sessions 1 and 2, but
not between 2 and 3, resulting in one hidden rotation and one visible rotation.
In the Cue task, a visible floor cue demarcated the reward area, which was
unrelated to the location of the cue card. In the Near and Far tasks, the
reward area was unmarked and was located either very close to or on the
opposite side of the arena from the cue card, respectively.

In general, fields almost always rotated subsequent to the hidden rotation,
but rotated less frequently with the visible rotation. As observed by Jeffery
and O’Keefe (1999), fields were progressively less likely to rotate with the card
the more often it was observed to move. Interestingly, fields were more likely
to rotate with the cue during the hidden rotation if the cue was predictive of
reward area. In the Far task, performance was substantially disrupted when
fields did not rotate with the card. In the Near task, performance was only
mildly disrupted, though rats did make more entries into the field-relative
reward area than chance, suggesting a minimal hippocampal component to
behavior. Thus, place fields are predictive of behavior when the rat must use
a locale navigation strategy, which involves determining one’s location in
space based on a “cognitive map” incorporating multiple landmarks (Tolman,
1948; O’Keefe and Nadel, 1978), instead of a taxon (cue-approach) strategy.

While visual and/or vestibular rotations can cause conflicting estimatesLocal cues,
distal cues and
place cells

of head direction and disrupt both head direction and hippocampal place
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Figure 4.5: Translational shifts of the track performed by Knierim and Rao (2003).
The track was surrounded by curtains with distal objects affixed to or near them.
(Reprinted from Knierim and Rao (2003).)

cells, Cressant et al. (1997) noted that cues in the center of an area, those that
would serve as poor reference points for head direction, rarely influenced
place cells when rotated. To more explicitly explore the roles of proximal
and distal landmarks on place cells, Knierim and Rao (2003) trained rats
to forage for food on circular or rectangular tracks (with no surface cues).
They translated the tracks north, south, east, and west in the room (see
Figure 4.5), but found that, with the exception of one rat on the rectangular
maze, rats showed little to no evidence of remapping during the translations.
The exception rat showed substantial remapping on the rectangular maze,
but none on a circular maze a few days later. However, when the distal
landmarks were rotated by 450 while rats were foraging on the circular track,
place fields clearly rotated in accord, suggesting that rats did process the
distal landmarks, but predominantly for head direction instead of position.

4.1.3 Sensory-vestibular conflict II: Path integration

While studies discussed in the previous section explored the relationship
between the hippocampal place code and the head direction system, other
studies have explored the relationship between the hippocampal place code
and the internal path integration system.

Gothard et al. (1996a) trained rats to depart from a holding box, travel Place field
realignmentdown to the end of a linear track to receive a food reward, and then return

to the holding box. Rats were initially given 6 to 7 training sessions with the
holding box at a fixed distance from the end of the track. After initial training,
test sessions were conducted in which, after the rat departed from the box,
it was moved to a different location. There were five possible locations: the
original location (P1), farthest from the end of the track, and four locations
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closer to the end (P2–P5). They observed that, when the track length was
shortened slightly (P2), the locations of place fields were shifted to compress
them all within the shorter length. However, for even shorter track lengths,
they observed a discontinuity. Place cells would initially fire as if the rat
were leaving from box position P1. However, after covering part of the track
length, place cell firing would abruptly realign with the rat’s position relative
to the track and room. During the return journey, place cells fired unaltered
until just before entering the box, at which point they abruptly switched back
to representing the animal’s track position relative to the box.

The authors make two key observations. First, at any one time, all si-
multaneously recorded cells appeared to reflect the same position on the
track, irrespective of whether that position was determined the rat’s position
relative to the box, the room, or both. Second, when departing from the
box, the box was behind the animal and therefore unlikely to be providing
a strong sensory influence, whereas, when returning to the box, the box
was in front of the animal. By contrast, in shortened trials (P3-P5), rats
showed longer maintenance of the box-relative place cell activity during
the outgoing than the returning portion of the trip. This suggests that the
primary influence on prolonging the box-relative place cell activity was an
internal spatial representation updated by the animal’s movements: a path
integration system.

Gothard et al. (2001) further explored this paradigm in two ways. They
recorded from both DG and CA1 cells to determine to what extent the areas
differed, possibly suggesting a role for the hippocampus proper in path
integration. However, firing patterns in the two areas were similar. They also
recorded during trials in which the lights were extinguished, to explore how
distal sensory cues influenced the place cell representation. As expected,
room-aligned place fields were observed later in dark trials than in light
trials, suggesting that visual cues hasten the transition to room-alignment.

To test the behavioral significance of box-room transitions, Rosenzweig
et al. (2003) trained rats to find a room-defined location on a linear track,
starting from, as before, a moving start box. They found an age-related deficit
in locating the room-relative place and in transitioning from box-aligned to
room-aligned place fields. Young adult rats generally transitioned to a room-
relative reference frame faster than old rats, and they slowed down more in
the goal position relative to a control position, indicating knowledge of the
reward position (at which they had to sit and wait for medial forebrain bundle
stimulation reward). These results confirm the notion that this experimental
paradigm contrasts learning-dependent sensory and learning-independent
path integration mechanisms for localization: sensory information has a
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weaker impact on the hippocampal place code in old rats, presumably due
to the age-related deficiency in LTP.

In another experiment designed to study hippocampal activity when path Two identical
boxesintegration and sensory information are in conflict, Skaggs and McNaughton

(1998) trained rats to forage for food in two identical boxes, each with an
opening on the east side and connected by a corridor. While the Gothard
et al. studies suggested that sensory information should eventually overcome
(and presumably reset) the path integration system, Skaggs and McNaughton
observed something entirely unexpected: a partial remapping between the
boxes. While some place cells showed identical fields in both boxes, others
cells clearly differentiated the boxes. Different rats showed different degrees
of partial remapping, and, for a particular rat, the degree of partial remapping
varied between days. Nonetheless, there was no systematic trend of more or
less remapping over the course of the experiment.

Subsequent work by Fuhs et al. (2005), which represents a portion of this
thesis and is discussed in detail in Chapter 8, did not confirm these findings.
In the part of our experiment that replicated the Skaggs and McNaughton
experiment, rats did not remap at all between the boxes. The significance of
this difference and some preliminary data suggesting its underlying cause is
discussed in Chapter 8.

4.1.4 Local cues and local place field changes

While cue rotations appear to have their most direct influence on the head
direction system, other studies have addressed environment manipulations
that do not involve rotations, thereby factoring out any effect of the head
direction system. Gothard et al. (1996b) trained rats to depart from a holding
box, retrieve a food reward at a goal location defined by its proximity to two
local cues, and then return to the holding box. The goal location (and the
cues that demarcate it) were moved before each trial began, and the holding
box was moved between the rat’s departure and its return. They found that,
while some place cells represented position in the room reference frame,
other place cells showed coherent fields relative to the holding box location
or the goal location. Interestingly, while room-relative place fields were
distributed over the entire arena, box or goal fields were observed only in
proximity to the box or goal locations. They note that the data are consistent
with (though not demonstrably indicative of) the rats switching between
three contexts, one each for the room, the box and the goal.

An earlier experiment by Muller and Kubie (1987) considered a simpler Barriers
task in which a barrier was added at varying locations within a cylindrical
arena. They found that place fields observed where there was previously no
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barrier were largely suppressed when the added barrier encroached upon
the field, and new place fields were observed where the barrier was added.
Fields more distant from the added barrier were not significantly different,
a locality effect that has also been observed in a cue deletion experiment
(Hetherington and Shapiro, 1997). The opacity of the barrier did not impact
Muller and Kubie’s results: a clear plastic barrier yielded similar results.
However, when just the weighted base of the barrier was instead used, the
impact on place cell activity was minimal, suggesting that the place field
changes were due to the obstruction of the barrier rather than its visual
impact.

In a subsequent study, Rivard et al. (2004) trained rats in an environment
with a barrier in a fixed position. During subsequent sessions in which
the barrier was rotated or translated, cells showed heterogeneous responses.
Some fields were observed to follow the barrier, some fields were suppressed
when the barrier was moved onto them, some fields showed only a rate
change, and some, even those juxtaposed with the barrier, did not react to the
barrier movement at all. Thus, it was clear that the arena and the barrier were
represented concurrently instead of as separate contexts (“near the barrier”
“elsewhere in the arena”) active at different times, as observed by Gothard
et al. (1996b). Interestingly, when introduced to a second environment
that also contained the barrier, some cells that were active in proximity
to the barrier in the first environment showed similar fields in the second
environment. Thus, hippocampal place cells represented both the arena, the
barrier, and, in some cases, the conjunction of the two.

If the presence or absence of an object induces place field changes, whatObject
replacement effect is caused by the substitution of one object with another. Lenck-Santini

et al. (2005) recorded from rats while they explored a cylindrical environment
containing two objects. When the objects were rotated 90o about the center of
the arena, place fields near the objects showed a complex pattern of change,
while fields far from the objects showed only a mild decrement in firing
rate. Fields near the objects did not rotate with the objects, per se, frequently
shutting off or possibly “following” one of the objects. By contrast, when
the familiar object was switched with a new object (without rotation), no
hippocampal unit activity differences were observed. This is consistent with
the earliest barrier experiments in which the sensory qualities of the object
seemed of little importance compared to their impact on navigation (Muller
and Kubie, 1987), as well as a lesion study implicating the hippocampus in
detecting changes to an object’s position but not to its identity (Lee et al.,
2005).

Much as the insertion of an object evokes local changes to the hippocampalAnnular water
maze
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place code, the introduction of some behavioral significance to a particular
location can also impact place cells. A pair of studies involved training rats
to find a hidden platform in a ring-shaped pool (or annular water maze)
(Hollup et al., 2001b; Fyhn et al., 2002). Hollup et al. (2001b) found that,
when systematically trained to find the platform in one location, more than
twice the place fields were found at the platform location as in any other
segment of the maze. When rats were trained with randomly distributed
platform locations, no such accumulation of place fields was observed. For
the fixed-location group, there was also a slightly elevated number of place
fields in the segment just before the platform, suggesting an encoding of
expectation of the platform.

In a subsequent study, Fyhn et al. (2002) first trained rats to find the
platform at a fixed location and then moved the platform to a different
location. They made a number of observations:

• Roughly a third of the cells active at the platform location showed fields
as soon as the rat climbed onto the platform at the new location, but
with repeated training at the new location, this effect went away.

• Only a few fields elsewhere were changed due to the change in platform
location.

• Of cells active at the new platform location whose recording was
maintained through training, some fields (4/10) became inactive with
repeated visits to the new location, others (2/10) remained active only
on the platform, and others (4/10) became active during the swim
phase before the platform was reached, perhaps indicating a predictive
hippocampal representation.

• The effect was not observed when rats were trained with random
platform locations, suggesting that the effect was not based purely on
novel platform / location associations.

• The effect was not observed when a task-irrelevant stimulus was used
(a water jet at the bottom of the tank).

• Interneurons were less active immediately after the platform change,
but return to baseline during subsequent training. This is consistent
with Wilson and McNaughton (1993), and may suggest an increase in
LTP.

• They suggest that the change in activity may reflect the exploration
of the platform, not simply the mismatch itself, because the decay of
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platform-specific fields at the new platform position was consistent
with the time course of exploration of novel objects.

Taken together, these results clearly demonstrate that significant locations
are preferentially represented, even in the absence of a local cue at the site,
and that, similar to the barrier experiments, place cells will, at least for some
period of time, flexibly relocate when the goal location is moved.

4.1.5 Delayed and gradual remapping

Bostock et al. (1991) recorded from CA1 and CA3 in 12 rats while theyDelayed abrupt
remapping randomly foraged for food in a cylindrical arena painted grey. The northern

quadrant of the cylinder was initially covered by a white cue card. After one
to four weeks of training in the white card environment, the white card was
replaced in some sessions by a black card. Ten of thirteen rats did not remap
during the first black card session. However, during subsequent sessions
recorded from seven rats, six of whom initially did not remap, four rats were
observed to remap after repeated exposure to both the white and black card
environments. In cases in which two neurons were simultaneously recorded,
they always both either remapped or remained unchanged, suggesting that,
when it occurred, the remapping was population-wide.

In an experimental manipulation described as a “double rotation”, rats runDouble rotation
experiments on a track (plus maze or circular maze) with multiple local texture and scent

cues; these track cues are referred to as the “local cues.” Large visual distal
cues are mounted to curtains surrounding and at some distance from the
track. The original experiments were performed on a plus maze with 180o

double rotations: one set of cues was rotated 90o clockwise, while the other
set of cues was rotated 90o counterclockwise (Tanila et al., 1997; Shapiro
et al., 1997). These double rotations produced discordant responses among
place cells. Some fields rotated consistently with the distal cues, others
rotated with the local cues, others did not rotate at all, and others remapped.
Subsequent parallel recordings from tens of cells by Knierim (2002) confirm
this finding, as well as extended it to double rotations of lesser magnitude.

There was also an experience-dependent effect on remapping. Shapiro
et al. (1997) reported that, while the majority of cells rotated with the distal
cues initially, repeated exposure to the double rotation condition (as well
as less regular cue scrambling and cue deletion conditions) resulted in
progressively fewer cells rotating with the distal cues and progressively more
cells remapping. Brown and Skaggs (2002) attempted to reproduce these
findings, but observed remapping in only two of four rats. Interestingly,
neither of those two rats remapped during the first session, but both did by
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day 8. In one rat, the remapping was abrupt, starting on day 8. In the other
rat, lost data prevents knowing the exact time course of remapping. In both
cases, remapping was only partial, even after at least 11 days of training.

Lee et al. (2004b) trained rats in two double rotation and three standard
sessions per day for eight days. One of four double rotation angles was used
(45o, 90o, 135o, and 180o). They observed no increase in remapping over
the course of their experiment (Lee & Knierim, personal communication).
However, it should be noted that, with only four exposures to each double
rotation angle, it is possible that the experiences were insufficient to trigger
increased remapping.

In a vivid demonstration of gradual remapping, Lever et al. (2002) studied Gradual
remappingrats alternately exposed to cylindrical and square environments, for 4-6 trials

per day. In contrast to previous experiments such as Muller and Kubie (1987),
rats were given no prior experience in either environment. They found that
there was little remapping initially; however, each successive day of exposure
to both environments yielded a higher percentage remapping. There were
two particularly interesting details in their data. First, the remapping was
gradual; for several days in each rat, a varying but increasing degree of partial
remapping was observed. Second, they show the slow steady formation or
destruction of individual fields during the course of a session and, in some
cases, over several days, suggesting that a learning process is intimately tied
to this remapping.

Taken together, the experiments in this section clearly demonstrate the
powerful effect previous experience can have on the hippocampal representa-
tion.

4.1.6 Hysteresis, pattern separation and pattern completion

One of the first demonstrations of hysteresis in the hippocampal place code Hysteresis
was the study by Quirk et al. (1990), who recorded from place cells in light
and dark conditions. When the lights were extinguished subsequent to the
animals’ entry into the arena, 24 of 28 cells maintained their firing fields.
However, when the lights were extinguished prior to the animals’ entry, 14 of
22 cells remapped in comparison to previous lights-on sessions that day, and,
in the majority of cases, these remapped fields persisted when the lights were
subsequently turned on. Interestingly, they found cases in which, among
two simultaneously recorded cells, one remapped in the entry-in-darkness
condition and one did not. Thus, the firing of some place cells in the lights-
on condition depended upon whether the animal entered in the light or
darkness, while for others it did not. Pattern

separation and
completion in
CA3

The vast majority of hippocampal neurophysiology studies involve record-
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ing from CA1. While lowering recording electrodes from the top of the skull,
CA1 is the first layer of hippocampal cells reached, and they are generally
reported to be the most likely to be active in any given environment (e.g.
Vazdarjanova and Guzowski, 2004; Leutgeb et al., 2005b). However, in three
recent studies, the activity of cells in CA1 and CA3 were simultaneously
studied to see how they reacted to changes in the environment.

In the first study, Leutgeb et al. (2004) recorded in arenas in two rooms.
They found that, when the arena shapes in the two rooms were the same,
CA1 remapping was only partial, while CA3 remapping was complete.
When the arena shapes in the two rooms were made progressively more
different, CA1 cells responded with increased remapping. They suggest
that the room difference alone is sufficient for CA3 to form a completely
distinct representation of the two rooms, whereas CA1 is more reflective of
the current sensory experience. This claim is bolstered by their showing that
CA1 fields are relatively stable in novel environments, whereas CA3 fields
change and develop over the course of the first 30 min of exposure.

In the second study, Lee et al. (2004b) found essentially the opposite
results. They performed a double rotation experiment (see Section 4.1.5)
using four double rotation angles (45o, 90o, 135o, and 180o). In confirmation
of previous double rotation studies, some CA1 fields rotated with distal
cues, other rotated with local cues, and others remapped. By contrast, CA3
showed a more homogeneous response. Three times as many CA3 fields
rotated with local cues, fewer fields rotated with distal cues, and there was
less remapping and fewer “ambiguous fields.”

In a related analysis, Lee et al. (2004a) examined how place fields evolve
over the course of an experimental session. On a linear track, place fields
in CA1 are known to slide backward and develop a negative skew relative
to the direction of travel (Mehta et al., 1997, 2000). Lee et al. (2004a) found
that place fields also moved backward in CA3, but only during the first few
exposures to each double rotation angle. On days 3 and 4, CA3 fields did
not move, and the fields’ skewness was already judged to be high at the
beginning of each session. By contrast, place fields in CA1 did not shift on
day 1, but did on subsequent days. These results are in agreement with
Leutgeb et al. (2004).

In the third study, Vazdarjanova and Guzowski (2004) used an in situ
hybridization technique that binds immediate-early gene (IEG) mRNA to
fluorescent markers within the cell. Riboprobes for two IEGs with different
temporal expression profiles were used. The first, Arc, is transcribed about 2-
15 minutes after cell activity, while the second, Homer 1a, is transcribed about
25-40 minutes after activity. When exposed to two different environments,
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one in each time window, the technique can therefore distinguish between cell
activity in each environment. They exposed rats to a standard environment
(A) containing distal room cues, arena walls, and objects within the arena
and one of four variations: different within-arena objects (Aobj), different
within-arena object locations (Aconf), a different room with different distal
room cues (AB), and a different room with a different arena and objects
(BB). They found that, for the smaller variations (Aobj, Aconf, and AB), the
representation was more similar to the environment A representation in CA3
than CA1. For the largest variation (BB), the representation was more distinct
in CA3 than CA1.

The Vazdarjanova and Guzowski (2004) study essentially unified the re-
sults of Leutgeb et al. (2004) and Lee et al. (2004b). While CA1 shows an
immediate representation of an environment that is more directly represen-
tative of the sensorium, CA3 constructs representations which attempt to
more clearly distinguish different environments, while representing similar
environments with greater similarity (Guzowski et al., 2004). This is known
in the associative memory literature as pattern separation and pattern com-
pletion, respectively, and the significance of these findings is discussed in
Chapter 7.

To explore the pattern separation effect in more detail, Leutgeb et al.
(2005c) trained rats to forage in arenas that varied either in shape (square
and cylinder) or color (black and white) in the same room. They found that,
while cells change rate, often to the degree that activity in one arena is largely
absent, spikes are nonetheless localized to the same area within both arenas,
i.e. the place fields don’t move. They coined the term “rate remapping” to
describe this. By contrast, when recording in two different rooms, place field
correlation coefficients (which are firing rate independent), are much lower,
a phenomenon they call “global remapping.” They confirm the results of
Leutgeb et al. (2004) that global remapping in CA3 is much more pronounced
than in CA1. Nonetheless, in both regions of the hippocampus, the observed
global remapping is caused by place field shift in addition to rate change.

As many place field experiments have involved training in square and Morph
experimentscylindrical arenas, Wills et al. (2005) explored how rats would represent a

series of arenas whose shapes were morphs between a square and cylinder.
During the first three days of training, rats were trained in two environments
that differed in shape (square vs. cylinder), color (brown vs. white), and
texture (masking tape vs. white-painted wood). The square arena was
actually a “morph box,” whose walls were composed of vertical slats that
allowed the box to be morphed into various shapes. A white painted-
wood cylinder was used for the other arena. Rats ran three sessions per
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Figure 4.6: (Top) The six days of pretraining used to cause rapid remapping between
the square and cylindrical arenas. (Bottom) The six arena shapes used in the morph
training. (Adapted and reprinted from Wills et al., 2005).

day alternating between the two environments and completely remapped
between them. In the fourth and sixth sessions of the fourth day and on
days 5-6, the white cylinder was replaced with the morph box, now reshaped
into a cylinder; complete remapping between arena shapes persisted (see
Figure 4.6, top). They then trained rats in a randomized sequence of six arena
shapes (see Figure 4.6, bottom): square, morph 1:7, morph 2:6, morph 3:5,
morph 4:4 (octagon), and cylinder. During the first pass, CA1 representations
in the morph environments in all rats were highly similar to the square map
for 1:7 and 2:6 and to the circle map for 3:5 and 4:4. During the second
pass, two of the four rats switched maps earlier (rat 2 at morph 1:7; rat 3
at 2:6). This pattern completion is initially present, and the hippocampal
representations of the morph environments become even more similar to the
square or cylindrical representations over the course of the first two minutes
of recording.

Leutgeb et al. (2005b) performed a very similar experiment that yielded
the opposite results: a gradual transition in representation between the two
morphs, both in CA1 and in CA3. Leutgeb et al. (2005b) first pretrained rats
for 16-19 days to forage for food in square and cylindrical arenas in the same
room (see Figure 4.7). Unlike Wills et al. (2005), the two arenas were not
initially distinguished by color and material, so fields presumably gradually
remapped over the course of pretraining. The rats were pretrained for eight
sessions per day, 10 min each, in a random sequence of the two arenas. Then,
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Figure 4.7: The pretraining and morph experiment sequences used by Leutgeb et al.
(2005b). Unlike Wills et al. (2005), their pretraining sequence involved only the two
arenas later used during the morph experiment proper. The horizontal lines indicate
orienting cue cards whose widths vary in different arena shapes. (Reprinted from
Leutgeb et al., 2005b).

rats foraged for food in sequences of “morph” arenas. Again, eight sessions
were run. In sessions 1 and 8, either the square or cylindrical arena was used,
and, in session 7, the other familiar arena was used. Sessions 2-6 were arenas
whose shape was morphed from the pretrained shape in session 1 to the
pretrained shape in session 7.

They found two interesting results, both involving hysteresis. First, the
CA3 place code during morph session 7 is more similar to the place code
from session 1 than what was observed during the non-morphed pretraining
sessions, even though the arenas in sessions 1 and 7 are the pretrained arenas.
This effect was more pronounced during the first morph set, though still
statistically distinguishable during later morph sets. CA1 showed no such
effect. They argue that the session-by-session similarity of the morph sets
facilitates a CA3 representation of each arena that is somewhat more similar
to the previous arena. When the arena is switched between the pretrained
arenas for the last session, CA3 shows no hysteresis.

Why do the results of Wills et al. (2005) and Leutgeb et al. (2005b) differ?
Preliminary evidence from Leutgeb et al. (2006b) suggests that rats in the
Wills et al. (2005) study adopted a different sets of path integrator coordinates
for each environment, whereas rats in the Leutgeb et al. (2005b) used the
same set of path integrator coordinates in both environments. Leutgeb et al.
(2006b) trained two groups of rats: group 1 was trained in cylindrical and
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square arenas in the same location, while group 2 was trained in cylindrical
and square arenas in two separate locations connected by a corridor. Both
groups were then tested on the same sequence of morph arenas. Group 1
reproduced the earlier findings of Leutgeb et al. (2005b). Group 2, who had
been introduced to the two arenas in two different room locations, showed
the sharp changes in hippocampal representation typical of the Wills et al.
(2005) findings.

In addition to the morph results, Leutgeb et al. (2005b) report a second
major finding. Unlike CA3, the CA1 representations during the first session
of each sequence were different from those of the last session, even when
the training sequence consisted only of a series of cylindrical and square
environments. Unfortunately, they do not explore the nature of the change,
i.e., whether the two representations become more similar over time or more
different, so it is difficult to speculate on what computational process might
underpin this change.

4.1.7 Replay

When two CA1 cells have overlapping place fields in an environment, there
will naturally be a correlation between their activity patterns. Wilson and
McNaughton (1994) discovered that the same correlations are observed
subsequent to this awake exploration during sleep. By contrast, in a sleep
session that preceded the exploration, no such correlations were observed,
suggesting that the correlated activity resulted in learning which led to
repetition of these activity patterns. Shen et al. (1998) extended this finding
to DG.

Skaggs and McNaughton (1996) examined the temporal relationship of
pairs of cells on a 1D track, triangular or square in shape. As expected, cells
with partially overlapping place fields had temporally asymmetric cross-
correlations: when one cell’s place field preceded another on the track, the
temporal cross-correlation reflected this bias. During sleep sessions after
running on the track but not before, the temporal cross-correlation was
also observed to be both non-zero and asymmetric. Thus, they concluded
that replay during sleep preserves some temporal structure of the awake
experience.

A subsequent pair of studies demonstrated that this reactivation shows
a precise temporal structure, suggesting that entire sequences are replayed
during sleep. Louie and Wilson (2001) examined rapid eye movement (REM)
sleep, which shows strong theta frequency (4-12Hz) modulation, much like
when the rat is active. They found that windows of activity during REM sleep
matched well with sequences of activity recorded previously during awake
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behavior, and these sequences were replayed during sleep at a similar time
scale to their occurrence during behavior. Lee and Wilson (2002) examined
slow wave sleep (SWS) and found that such sequences were replayed during
SWS on a much shorter time scale (~200 ms vs. ~6 s).

When the rat is not active, EEG power in the theta band is low, and the
EEG signal (and corresponding brain state) is described as low-amplitude
irregular activity (LIA). Foster and Wilson (2006) trained rats to shuttle
back and forth on a linear track, receiving a food reward at each end. Rats
frequently entered LIA during consumption of the reward, and Foster and
Wilson discovered that the sequence of place fields on the track was replayed
backwards during EEG ripple events, which occurred several times during
each period of LIA. This result has several profound implications. First, since
replay was observed after the very first traversal of a novel track, sequences of
activity can be encoded after a single “episode” of experiences. Second, the
reverse direction of replay, especially in the context of receiving a food reward,
suggests a biological solution to the credit assignment problem: replaying
recent events permits the discovery of how the reward was achieved.

4.2 Place Cells and Multiple Behavioral Goals

While Section 4.1 discussed the behavior of hippocampal principal cells while
the animal performed a single task, often random foraging, this section ad-
dresses neurophysiology studies involving multiple tasks or tasks involving
multiple stages. In general, cells respond conjunctively to the animal’s place
and to a variety of variables associated with the details of the task and / or
which task is being performed.

4.2.1 Multiple tasks or task stages

Hampson et al. (1993) trained rats to perform a spatial delayed-match-to- Delayed
(non-)match to
sample

sample (DMS) task. The task consists of three phases. In the sample phase,
one of two levers in an operant chamber was extended, and the rat had to
press the lever. In the delay phase, the rat had to return to a nose-poke port
at the opposite side of the operant chamber and remain there repeatedly
nose-poking the port throughout the delay. In the choice phase, both levers
were extended, and the rat is rewarded for choosing the same lever as in
the sample phase. (In a delayed-non-match-to-sample task (DNMS), the rat
would be rewarded for choosing the other lever.)

Hampson et al. (1993) report that, as expected, CA3 and CA1 cells are
sensitive to place; however, they found that cells conjunctively encoded
stages of the task as well. They report several classes of cell behaviors.
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Sample-match cells respond to both the sample and match lever presses.
Match-only cells respond to the match lever press but not the sample lever
press. Sample-match-response cells respond to both lever presses as well as
the reward.

Similarly, Otto and Eichenbaum (1992) trained rats in an odor-guided
continuous DNMS task, and report that cells often responded to the match
or non-match between the current and previous trial. They did not observe
persistent activity during the delay which would implicate the hippocampus
directly in working memory. In a follow-up study, Wood et al. (1999) report
that cells show correlations with many aspects of the task: the rat’s position,
the rat’s approach to the odor cup, the odor being sniffed, and the trial type
(match or non-match observed).

Markus et al. (1995) trained rats to either randomly forage or shuttleMultiple spatial
tasks on a track between four locations for food on an open field. They report that, when

rats are performed the shuttle task, more place fields were directional than
in the random foraging task. This directionality was reminiscent of what
is observed on a linear track or multiple-arm maze, though fewer cells
had directional fields in the open-field shuttle task than on an 8-arm radial
maze. This suggests that the animal’s navigational route (likely represented
elsewhere in the brain) causes a directional representation similar to the
representation of the environmental constraints of the radial maze.

Markus et al. (1995) also report that some place fields remap between
the foraging and shuttle tasks, suggesting that the task itself results in two
similar but distinct hippocampal representations. Oler and Markus (2000)
explore this task-dependent remapping by training rats on a plus maze that
could, with two additional pieces of track, be extended into a figure-8 maze
(see Figure 4.8). Rats were trained on both a win-shift task on the plus maze
and a figure-8 trajectory on the figure-8 maze. Critically, since the figure-8
maze was composed in part by the plus maze, place fields on the plus maze
could be directly compared while rats performed each task. They again
found a partial remapping between the tasks. Oler and Markus studied both
middle-aged and old rats, and found no behavioral difference between them
on the plus-maze, a working memory task; however, old rats showed less
remapping between tasks, further reflecting an inability of hippocampal cells
in old rats to encode salient behavioral aspects of an environment (Redish
et al., 1998). Both studies recorded from both CA1 and DG/CA3 (they could
not distinguish between these two areas), and found no differences between
the two cell groups.

The aforementioned studies recorded from rats already familiar with theRemapping and
task
performance

task or tasks. To address how the hippocampal representation changes
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Figure 4.8: The two configurations of the apparatus used by Oler and Markus (2000):
(A) the figure-8 configuration and (B) the plus maze configuration. (Reprinted from
Oler and Markus, 2000.)

during training, Masters and Skaggs (2001) trained rats on a place preference
task in a cylinder with white or black cue cards. Briefly pausing in an
unmarked area triggered reward; the location of the reward area depended
on the color of the cue card. Two of the four rats completely remapped
upon first exposure to the black-card environment; one rat never remapped;
one rat initially did not remap at all, but after many days exposure to both
environments, substantially remapped (at least 2/3 of the cells) between
environments. The rats’ remapping between the environments seemed to be
both necessary and sufficient for the animal to learn the task; rats that didn’t
remap were unable to acquire the task and rats that did remap were able to
acquire the task. Incredibly, the one rat that did not remap until many days
into training was unable to learn the task prior to remapping, but improved
considerably during the same session as the first remapping. It is difficult
to draw causal inferences from this study, since it is unclear whether other
brain areas ostensibly involved in learning the task (e.g. striatum and pre-
and infralimbic cortices) prompted the remapping or were simply able to
learn the task subsequent to it. Nonetheless, the experiment demonstrates
the intimate association between multiple contextual representations (maps)
in the hippocampus and multiple behavioral goals.

While these studies have explored the conjunctive encoding of the task or Attentional
effectstask variables with the first-order place representation, other studies have

explored the impact of the task on the quality of the place representation itself.
Zinyuk et al. (2000) trained rats either on a place preference task (defined in
relation to the room) or to randomly forage. In their version, the platform on
which each rat was trained was either stationary or continuously rotating. In
both groups, fields were found that were stable in the room reference frame,
the rotating reference frame, or the combination (conjunctive encoding); other
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fields were disrupted, showing no clear field in either frame. Compared
to foragers, navigators showed more room frame-stable or conjunctive cells
and fewer disrupted cells; cells tied to the rotating frame only were rare
in either group. Thus, conflicting reference frames tended to disrupt the
spatial locality of place fields, but making the animal’s location behaviorally
significant improved hippocampal spatial coding for both reference frames.

Kentros et al. (2004) trained mice in three tasks of increasing spatial de-
mand: a null task (do nothing), a random foraging task, and a place pref-
erence task. (Unlike rats, mice are spontaneously active, even without an
explicit motivation, so place fields can still be mapped out; rats would just
doze off.) They report several observations:

• Place cell stability across days increased with task demand and novelty.
(The instability in mice during random foraging is not typical of rats.)

• Good performers of the place preference task had much more stable
fields across days than bad performers.

• Place cells in place preference performers and non-performers were of
equal size and information content, but performers’ fields were more
coherent (smoothly changing) and fired more strongly.

• Prior to place preference task training, mice did not preferentially
explore a novel object vs. a familiar one. After training, performing
mice showed substantially more exploration of the novel object than the
familiar, whereas non-performers showed equal exploration of both.

• A dopamine D1/D5 receptor agonist increases stability in “no task”
mice (with little baseline field stability) and a dopamine D1/D5 recep-
tor antagonist decreases stability in “foraging” mice (with moderate
baseline field stability).

Thus, the stability of place fields was reflective of a mouse’s ability to perform
a place preference task. They attribute the stability to an attentional mech-
anism, showing that the increased attention to the environment facilitates
novel object recognition, and they argue that this attentional mechanism is
mediated in the hippocampus by dopamine, showing that place field stability
can be artificially manipulated using a dopamine agonist or antagonist.

4.2.2 Spatial alternation

If place cells conjunctively encode the task being performed or different
stages of the DNMS task, do place cells also differentially encode travel along
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Figure 4.9: A) The figure-8 maze used by Wood et al. (2000). B) To ensure that they
measured only place cell activity indicating future or past behavior, they restricted
analysis to activity in sectors 2 and 3 on the center arm to exclude any differences
due to the rat’s current position. (Reprinted from Wood et al., 2000)

different but overlapping routes? Wood et al. (2000) explored this question
by training rats on a continuous T-maze alternation task on a figure-8 maze,
shown in Figure 4.9. They found that firing rate modulation of some place
fields along the center arm reliably differentiated between left-turn and
right-turn trials. Frank et al. (2000) performed a similar analysis on data
recorded while animals traveled about a W-shaped maze. They observed
both prospective coding (place field modulation dependent on the animal’s
future location) and retrospective coding (place field modulation dependent
on the animal’s past location).

Other studies have failed to find route-based modulation of place cell
activity. Lenck-Santini et al. (2001) trained rats on a continuous alternation
task on a Y-maze. One arm was designated the goal arm (G, where rewards
were provided), while the other two arms (A and B) were to be visited
in alternation, resulting in a G-A-G-B-G-A-G-B pattern of arm visits. No
differential encoding of either the prior or next arm was found on the goal
arm. Similarly, Hölscher et al. (2004) trained rats on a continuous T-maze
alternation task on a figure-8 maze and found that only 4 of 45 cells showed
any route dependence. Importantly, despite the lack of route-dependent
encoding, rats in these studies were capable of performing the alternation.

In an elegant exploration of the discrepancies between these studies, Bower
et al. (2005) trained rats to traverse routes through an open field composed of
an overlapping sequence of straight-line route segments; at least one segment
was used twice within the overall route (see Figure 4.10). When food was
available at the end of each route segment and the rat’s path remained
unfettered during the course of training, no differential encoding of the
sequence stage was observed, though rats were able to learn the sequence.
However, when the training paradigm was adapted to include the use of
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Figure 4.10: Three different training paradigms were used by Bower et al. (2005). In
each case, they contained at least one overlapping segment. (Reprinted from Bower
et al., 2005.)

barriers to guide the rat through the sequence during early training, or when
reward at the beginning and end of the common segment was removed,
differential encoding was observed. As the authors point out, these two
alternative training paradigms were inspired by their original use in Wood
et al. (2000) and suggest that differential encoding, where observed, is likely
a conjunctively encoded state-dependent task representation projected from
some afferent brain area.

None of these studies contained a delay component. Recently, a pair of
studies by two different groups demonstrated the effect of adding a delay
just before the center arm in a T-maze alternation task (Ainge et al., 2005;
Robitsek et al., 2005). Both groups trained the rats in a way that evoked
route-dependent encoding along the center arm, and they both observed
that, when the delay was added, the route-dependent encoding was almost
completely abolished. Nonetheless, rats continued to perform the alternation.
Thus, the cause of the route-dependent encoding is dissociable from the
performance of the task, even in rats who have previously developed such a
conjunctive encoding.

4.2.3 Serial reversal learning

Instead of alternating between two behaviors on every trial, others have
examined the hippocampal representation during alternation between blocks
of one behavior and blocks of another. In the conditioning literature, this is
referred to as serial reversal learning, reflecting the reversal of behavior at
the start of each block of trials.

Ferbinteanu and Shapiro (2003) recorded from CA1 place cells while
performing a periodically reversed spatial win-stay task on a plus maze. At
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the beginning of each block, one of two possible goal arms (East or West)
was chosen as the rewarded arm. Rats were started randomly on either the
north or south arm, and learned to go to the end of the rewarded arm. When
rats performed well, a new block was started and the task was reversed: the
other goal arm was now rewarded instead. Thus, on either start arm, the rat
could be headed to one of two goal locations (prospective), and, on each goal
arm, the rat could have been coming from either start arm (retrospective).

While some cells were sensitive to place alone, others were conjointly
sensitive to the start or goal arm of that trial. Over half of the cells coded
either retrospectively or prospectively, with a somewhat higher percentage
of journey-dependent cells coding for goal location. In contrast to the al-
ternating T-maze studies, decreased prospective coding during some trials
was significantly correlated with the rat choosing the incorrect goal arm.
During such error trials, prospective coding decreased prominently while
the decrease in retrospective coding was more modest.

Smith and Mizumori (2006) performed a very similar experiment, differing
largely in two ways. First, the inactive goal arm could serve as a start
arm, resulting in three possible start arms for each of the two goal arms.
Second, they began trained rats on a randomly rewarded version of the task,
recording from the hippocampus from the beginning of training. As with
Ferbinteanu and Shapiro (2003), they report a complex pattern of activity.
They show that these activity patterns are often block-specific and show
several examples: a cell coding for one place and one start arm in east-goal-
arm blocks, and a different place and start arm in west-goal-arm blocks,
a cell with an event-related response in east-goal-arm blocks and a place
field in west-goal-arm blocks, etc. During prior training in random reward
sessions, these differential encodings did not develop, suggesting that it
was the statistical structure of the reversal task, not the behaviors associated
with traversing the arms, that engendered the development of block-specific
representations.

4.3 Task-related Activity Outside the Hippocampus

The observation that hippocampal cells respond in relation to the animal’s
behavior, not just its sensory experience, suggests that other areas of the
brain provide a task representation to the hippocampus. Here is a brief
review of recent neurophysiology studies in brain areas implicated in task
performance with afferent and or efferent connectivity to the hippocampal
region.

Hippocampal studies reporting an accumulation of place fields at a goal
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location are complemented by a study of neurons in the prelimbic / infral-
imbic (PL / IL) area of medial prefrontal cortex (mPFC). Hok et al. (2005)
trained rats on a place preference task in a circular arena; the reward location
was unmarked. Spending two seconds within the reward location resulted
in the release of a food pellet, which scattered around the arena. Cells in
PL / IL areas showed spatially localized firing fields, mostly either at the
reward location, or the pellet landing location, which they presumably de-
duced from the sound of the pellet hitting the floor. Interestingly, the cells
with landing location fields did not change when an orienting cue card was
rotated. However, when the ceiling-mounted feeder was repositioned, the
location of the landing field changed.

Jung et al. (1998) recorded from deep-layer mPFC neurons during three
tasks: 8-arm radial maze win-shift task (don’t visit the same arm twice),
a figure-eight maze spatial alternation task, and random foraging. Within
the sample of cells recorded, correlations to nearly any behavior they could
imagine were found. Correlates on the radial maze included: direction of
movement on arm, entering an arm, running, turning, between turning and
reaching a new goal, firing during the intertrial interval, etc. Classical “place
fields” were not typically observed. Correlates on the figure-eight maze
included: arriving at goal, leaving goal, moving toward goal, returning to
center arm, and, occasionally, center arm memory of the prior path. In a
phenomenon similar to hippocampal remapping, coding of behaviors in
mPFC showed no systematic similarities between the two tasks. Jung et al.
(2000) found that neighboring neurons in mPFC that code for different task
stages showed no evidence of coupling within a local neural network.

In nucleus accumbens and the ventromedial caudate nucleus, which both
receive afferent input from the hippocampus, Mulder et al. (2004) report that
some neurons code entire segments of travel in a plus maze, i.e. from one
goal location (at the end of an arm) to the next, or from a goal location to
the center of the maze. They argue that the spatial and temporal profiles of
neural activity are consistent with the hypothesis that these areas serve as a
bridge between the limbic and motor systems.

Chang et al. (2002) recorded from the medial prefrontal cortex (mPFC),
nucleus accumbens and dorsal striatum while rats performed a delayed
match-to-position task. They found that neurons in all three areas showed
the greatest differences between the sample and match phases of the task,
though a robust lever phase was also observed. Differential activity was also
observed in all regions during various portions of the delay period. However,
most of the cells in mPFC that showed differential activity during the delay
period fired consistently throughout the duration of the delay period, unlike
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the other areas; many other cells in mPFC showed a gradual ramping of
activity through the duration of the delay period.

Baeg et al. (2003) recorded from multiple mPFC units while rats learned a
serial alternation task in a figure-eight maze. Bayesian decoding of multiple
units active on the center arm was performed to analyze cell ensemble
responses during individual passes down the center arm. Since individual
passes were analyzed, both correct (left-to-right and right-to-left) trials and
error trials (left-to-left and right-to-right) could be analyzed, which made
it possible to decouple retrospective and prospective coding on the figure-
eight maze. The analysis revealed that the cell ensembles showed both
retrospective and prospective coding. The decoding accuracy increased from
near chance levels on day 1 to peak accuracy by day 8, as did behavioral
task performance. Interestingly, during the first few days, cells showed
retrospective coding at the earlier part of the center arm, but not the latter
part, suggesting that further training allowed the mPFC network to extend
the retrospective coding down the length of the center arm. Prospective
coding along the center arm increased concomitantly with the retrospective
coding in the latter portion of the center arm.

During error trials on days 5-8, cells showed accurate coding of the prior
arm, suggesting that errors were not due to forgetting the prior arm. Activity
during the early center-arm portion of error trials was similar to activity
during correct trials with the same prior arm, suggesting good retrospective
coding. However, all late center-arm activity during error trials was slightly
different from correct trials, and behavior prediction was at chance. Some
cells were continuously active along the entire center arm, while others were
not. Behavioral prediction was still possible (though with some reduced
accuracy) by examining cells with more spatially (temporally) localized
activity, suggesting that mPFC may chain together units along the center
arm to construct a temporally continuous representation of the task. It
would be interesting to know whether adding a delay would disrupt such a
representation.
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5
T H E H I P P O C A M PA L F O R M AT I O N : L E S I O N S ,
K N O C K O U T S A N D I N A C T I VAT I O N

While chapter 4 reviews the complex neurophysiological properties of cells
in the hippocampus, this chapter considers the complementary question:
what is the impact of these neurons on the animal’s behavior? Data from
three types of studies will be reviewed here:
Tissue lesions. These studies involve localized destruction of tissue, either
by physical removal of the tissue (aspiration lesions), heat (radiofrequency
lesions), or the use of a toxic agent to destroy just the neurons. All of these
techniques have their drawbacks. Physical destruction of the neural tissue
(aspiration, radiofrequency) can also destroy fibers of passage through the
lesioned area that do not directly connect to the neurons therein. Toxic
agents usually promote cell death by causing an influx of calcium into the
neuron. This influx strongly stimulates the neurons which in turn powerfully
stimulate downstream structures. This downstream stimulation may produce
behavioral effects apart from the cell death in the targeted area.
Inactivation. These studies involve injecting receptor antagonists into brain
tissue that either completely block neural activity or disable particular re-
ceptors. Particularly common are inactivation studies involving AP5. AP5
blocks NMDA receptors, which have been implicated in synaptic plasticity.
Genome knockouts. These studies involve strains of mice that are bred to have
changes to specific genes. Often, these changes involve disabling genes that
contribute to the formation of NMDA receptors.
Where possible, I will focus on studies limiting the manipulation to a single
subregion (DG, CA3 or CA1). Throughout this chapter, the term “lesion”
may be used more generally to refer to all three types of studies.

This chapter divides these studies into three parts. Section 5.1 considers
the effects of hippocampal lesions on contextual conditioning studies, where
conditioned associations are shown to be differentially expressed in different
environments. Section 5.2 discusses reversal learning and the impairments
in reversal learning observed subsequent to hippocampal lesions. Section
5.3 focuses on the role of the hippocampus in forming associations within
a context, especially associations involving spatial location or associations
across time.
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5.1 Conditioning and Environmental Contexts

While the hippocampus is not required for forming basic associations (e.g.,
a tone with a shock), the environmental context in which associations are
formed play a role in where the associations are later expressed. This section
reviews studies on the context specificity of fear conditioning, the context
specificity of the extinction of conditioned fear, and the context specificity of
latent inhibition.

5.1.1 Contextual fear conditioning

In a classical fear conditioning experiment, a neutral conditioned stimulus
(CS) such as a tone is paired with an aversive unconditioned stimulus (US)
such as a shock. Animals learn to associate the CS with the US, resulting in a
conditioned fear response (CR), which is typically measured by the amount
of time during which the animal is motionless (freezing). One also finds that
the background cues of the environment, often referred to as the context, can
influence the perception of fear.

As discussed in Section 4.1.1, the hippocampus represents different en-Conditioning
and context vironments with highly orthogonal activity patterns, an encoding that first

appears within the hippocampus itself. It would therefore seem reasonable to
believe that the hippocampus is involved in the role of context in fear condi-
tioning. Indeed, Phillips and Le Doux (1992) found that, while both cued and
contextual associations required an intact amygdala, fear of the context in the
absence of the cue required the hippocampus. In a related study, Honey and
Good (1993) found that the CS–US pairings show some context specificity:
rats who learned the CS–US pairing in one context showed a weakened
association (less freezing) when presented with the CS in a different context.
Finally, Selden et al. (1991) found that hippocampal lesions impaired the rats’
ability to choose a safe environment instead of the environment in which it
was shocked; however, cued fear conditioning was spared.

Unfortunately, hippocampal lesions also cause hyperactivity, which inter-
feres with the measurement of conditioned freezing. A study by Maren et al.
(1997) is illuminating. Pre-training excitotoxic lesions of the dorsal hippocam-
pus did not significantly impair contextual fear recall. However, post-training
excitotoxic lesions of the dorsal hippocampus resulted in substantial deficits.
This suggests that, when available, the hippocampal representation is the
basis of the contextual association, but, when unavailable, some other (per-
haps elemental) representation of the environment is used. When electrolytic
lesions were instead made, conditioned freezing was decreased, though
they show that pre-shock activity is elevated in lesioned rats, confounding
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measurement of the CR.
Richmond et al. (1999) studied the effects of excitotoxic lesions of the

complete, dorsal or ventral hippocampus on contextual fear conditioning. In
agreement with Maren et al. (1997), they found that pre-training dorsal lesions
did not cause an impairment. However, ventral or complete hippocampal
lesions did, though they argue that the impairments in their study were also
due to hyperactivity.

A subsequent set of studies have explored the role of the hippocampus in Context
pre-exposure
facilitation
effect

a related behavioral phenomenon: the context pre-exposure facilitation effect
(CPFE; Fanselow, 1990). When rats are very briefly exposed to a context
and shocked, they later show almost no fear of the context. However, when
they are first pre-exposed to the context, the shock elicits a conditioned fear
response when subsequently returned to the shock context. This experimental
design allows a disambiguation between the time in which the representation
of the context is formed (pre-exposure) and the time in which the context-
shock association is made.

In a series of experiments, Matus-Amat et al. (2004) explored the effect of
inactivation of the dorsal hippocampus using the GABAA agonist muscimol.
They found that muscimol injected into the dorsal hippocampus prior to
context pre-exposure nullified the effect of the pre-exposure. Additionally,
muscimol injected just prior to the shock inhibited the association of the con-
text with the shock. They argue from these findings that context pre-exposure
allows the hippocampus time to construct a contextual representation of the
environment. When the representation is inhibited from forming, no con-
textual representation can form. When the representation is inhibited from
being recalled, the shock cannot be associated with it.

One criticism of their study might be that muscimol injections during
training might lead to other side effects. Barrientos et al. (2002) administered
the protein synthesis inhibitor anisomycin into the dorsal hippocampus im-
mediately after pre-exposure to the context. Late stage LTP (> 4 hrs) requires
protein synthesis and has been shown to be inhibited in hippocampal slices
by application of anisomycin (Mochida et al., 2001). Barrientos et al. found
that pre-exposed rats did not show facilitation when anisomycin was admin-
istered, supporting the notion that the relevant contextual representation is
found in dorsal hippocampus, and that late-stage LTP is required in order
for the newly-formed contextual representation to be preserved for recall
during the shock trial.

Rudy and Matus-Amat (2005) carried out similar studies in the ventral
hippocampus, finding congruent results. Inactivation of the ventral hip-
pocampus prior to pre-exposure reduced the CPFE, as did injections of
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anisomycin into the ventral hippocampus following context pre-exposure.
While these studies have considered the role of the hippocampus in con-Consolidation

textual fear conditioning over relatively short time scales, studies of human
amnesia have led to theories of hippocampal function that predict that the
role of the hippocampus in any declarative learning should be time-limited
(McClelland et al., 1995; McClelland and Goddard, 1996). Young et al. (1994)
explored this possibility within the contextual conditioning paradigm. When
rats trained 7, 14 or 28 days after hippocampectomy were given fear condition-
ing training, the contextual association was not observed at any post-surgical
latency. However, rats who were exposed to the context 28 days before
lesioning were able to associate the context with the CS.

In a related study, Shimizu et al. (2000) tested mice with reversible CA1
NMDA receptor knockouts. Adding doxycycline to the mice’ water caused
NMDAR1 protein expression to be suppressed within 3-5 days, and NMDA
currents and LTP were both mostly abolished in doxycycline treated mice.
The protein began to reappear within 5 days of the end of treatment. Contex-
tual fear conditioning impairments were caused by treatment during the first
two weeks but not the fourth week after training; mice were tested one month
after training. Since AMPA receptors were not affected, they suggest that
the CA1 context encoding is repeatedly potentiated during the consolidation
process, and interference with that re-potentiation disrupts consolidation.

This time-limited role of the hippocampus in contextual fear condition-
ing was also underscored by studies of neurogenesis and environmental
enrichment. Abraham et al. (2002) studied perforant-path elicited LTP in
DG, finding that shorter high-frequency stimuli produced LTP that lasted for
a few days, while longer stimuli produced LTP that lasted for at least two
months (over a year in the one recorded case). However, this long-lasting LTP
diminished with exposure to an enriched environment containing a variety
of objects that were rearranged each day. They posit that the cause of the
diminishing LTP they observe is due to DG neurogenesis and associated
pruning, triggered by experience in the enriched environments.

Feng et al. (2001) tested the role of neurogenesis more directly, by creating
knockout mice lacking the Presenilin-1 (PS1) gene, implicated in adult neu-
rogenesis in the forebrain region (cerebral cortex, hippocampus, striatum,
amygdala, etc., but not the olfactory bulb, thalamus, brainstem or cerebel-
lum). The dentate gyrus is the cite of the highest levels of adult neurogenesis,
so neurogenesis downregulation would be expected to have a particularly
strong effect on hippocampal-dependent tasks.

While some mice were exposed to enriched environments, including “vari-
ous toys, spin wheels, small tunnels, and houses,” (Feng et al., 2001, p. 913)
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others were not. Without enriched environment exposure, they found very
little neurogenesis in either group (no difference). Enrichment triggered
substantial neurogenesis in both knockouts and controls, but knockout mice
showed a 37% reduction in new cells relative to controls. Electrophysiological
properties of DG cells were not distinguishable between groups, nor were
there performance differences across a variety of tasks (object novelty, Morris
water maze, contextual and cued fear conditioning).

With two weeks of prior experience in enriched environments, both contex-
tual and cued conditioning were enhanced. With two weeks of experience
in enriched environments subsequent to conditioning, the contextual but not
cued conditioning was retained more strongly in knockout mice than control
mice. They propose that this difference is due to impaired enrichment-
triggered DG neurogenesis in the knockouts; the knockouts failed to “clear
out” old memories by replacing older DG cells with newer “naive” cells.
Unlike DG, the amygdala does not show adult neurogenesis, and cued con-
ditioning, which is amygdala but not hippocampal dependent, did not differ
between groups.

In summary, the hippocampus is implicated in the formation of a contex-
tual representation with which associations, such as a shock, may be made;
however, once consolidated, the recognition of context no longer depends on
intact hippocampal function. Suppression of NMDA function subsequent to
acquisition impairs the maintenance of the contextual representation, and
stimulation of DG neurogenesis hastens its clearance from the hippocampus.

5.1.2 Extinction

The extinction paradigm consists of first training the animal on a CS–US
pairing, and then repeatedly presenting the CS in the absence of the US.
After initial training, the animal will show a conditioned response to the CS.
However, as the extinction phase proceeds, the response will lessen, until no
CR is observed.

The functional underpinnings of conditioning in general and extinction in Extinction and
hippocampal
lesions

particular are most generally associated with structures in the basal ganglia,
including the striatum and amygdala, and prefrontal cortex (Maren, 2001;
Daw et al., 2005). The impact of hippocampal lesions on extinction varies
substantially. While some studies have found little or no impact (Webster
and Voneida, 1964; Berger and Orr, 1983; Corcoran et al., 2005; Ji and Maren,
2005), others have found more severe deficits (Kimble, 1968; Chan et al.,
2003).

Even more perplexing are the lesion studies of the partial reinforcement Partial
reinforcement
extinction effect

extinction effect (PREE; Wike, 1953; Pennes and Ison, 1967). When rats are
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given only partial reinforcement – some trials are rewarded, others are not –
the CS–US association is more difficult to extinguish. While combined hip-
pocampus / subiculum and EC / subiculum lesions both abolish the PREE,
hippocampal lesions alone do not (Jarrard et al., 1986). Subiculum lesions
alone also do not abolish the effect (Sinden et al., 1988), but transection of the
subicular fibers to accumbens does (Rawlins et al., 1989), as do lesions of the
nucleus accumbens (Tai et al., 1991). In short, the role of the hippocampus in
extinguishing an association is murky at best.

The role of the hippocampus in providing context specificity for the ex-Renewal of
extinction tinction has been more conclusively demonstrated. This context specificity is

demonstrated most clearly during renewal experiments that vary the context
during different parts of the experiment.

While one would expect extinction to simply decrement the associative
strength between the CS and US until the association was “unlearned,”
converging evidence suggests that some component of extinction involves
new learning (for reviews, see Bouton, 1993; Bouton et al., 2006). This is
particularly well illustrated by the renewal phenomenon, of which there are
several variants. Each variant takes the form x-y-z, where x denotes the
context in which the original association is learned, y denotes the context in
which the association is extinguished, and z denotes the context in which
probe trials are given to test for a conditioned response. There are three
variants: ABA, ABC and AAB. In ABA renewal, rats are conditioned to the
CS–US pairing in context A, then extinguished in context B. When returned
to context A after extinction, rats nonetheless continue to show a CR. The
extinction is largely learned as a second context-specific association that
supplements the original association. (However, the degree of CR observed
in the test context is nonetheless not as strong as is found when there is no
extinction, so some context-independent learning must occur.) The AAB
variant is particularly intriguing. Though rats acquire and extinguish the
association in the same context, the original association is more general,
while the extinction is highly context-specific. Thus, a conditioned response
is observed in the novel context B.

This immediately raises questions about the relationship between the
CS, the US and the context. In particular, does the context have a direct
additive effect on prediction of the US, or does the context modulate the
CS–US association? Evidence suggests the latter. A direct positive association
between the conditioned context and the US is belied by the observation
of renewal in a novel context (i.e. the ABC variant). Neither is there a
direct negative association between the extinguished context and the US:
extinguishing one CS in an environment does not cause suppression of
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another CS–US association in the same environment (Bouton and King,
1983).

When fimbria-fornix or excitotoxic hippocampal lesions were administered
before the animals were shocked, no deficits were observed (Wilson et al.,
1995; Frohardt et al., 2000). Similar to the aforementioned studies involving
contextual fear conditioning, alternative (possibly elemental) environmental
associations are constructed in the absence of an available hippocampal
representation. However, dorsal hippocampal lesions or inactivation lead to
a varied set of results. Lesions or muscimol inactivation (a GABAA agonist)
before renewal testing result in generalization of the extinction outside of
the extinction context (Corcoran and Maren, 2001, 2004; Ji and Maren, 2005).
The same effect was observed when the dorsal hippocampus was lesioned
prior to conditioning (Ji and Maren, 2005), as well as when the ventral
hippocampus was inactivated (Hobin et al., 2006). However, inactivation
before the extinction phase produced the opposite results: fear was expressed
in all contexts. In essence, the extinction learning was lost.

One explanation for these findings may lie in the impact of hippocampal
manipulations on learning the association and its extinction. Rats with pre-
training lesions showed just as much freezing during the conditioning session
as sham rats; however, on the next day, lesioned rats showed less freezing
during the first extinction session (Ji and Maren, 2005). This suggests that,
while hippocampal damage may not have interfered with the acquisition of
the association, it may have interfered with maintenance of the fear memory
after conditioning (Wittenberg et al., 2002). Lesions or inactivation before
conditioning or after extinction would equate the impact of the hippocampus
on the relative strengths of the original and extinction associations. In
these circumstances, the extinction association, the more recently formed
of the two, prevailed, irrespective of the context. By contrast, inactivation
before extinction would result in maintenance of a strong fear association
but a relatively weaker extinction association. (These experiments employed
training paradigms based on a fixed number of trials.) In this circumstance,
the fear association prevailed.

5.1.3 Latent inhibition

Latent inhibition is essentially the same paradigm as extinction, only in Latent
inhibition and
hippocampal
lesions

reverse order. First, the animal is exposed to the CS in the absence of
reinforcement; then, the CS is paired with a US. The unreinforced exposure
to the CS decreases the CR that develops due to the subsequent CS–US
training.

Early reports suggested that the hippocampus was responsible for the
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latent inhibition effect (Ackil et al., 1969; Solomon and Moore, 1975). However,
subsequent studies using more selective lesioning techniques have led to
the hypothesis that it is in fact the entorhinal cortex that serves as the basis
of latent inhibition (Honey and Good, 1993; Purves et al., 1995; Shohamy
et al., 2000). Nonetheless, like extinction, latent inhibition shows a strong
contextual specificity.

Honey and Good (1993) showed that latent inhibition is context specific.Renewal of
latent inhibition Rats were exposed to an unreinforced sound X in context A and an unrein-

forced sound Y in context B. Then, two types of appetitive reinforced trials
in context A: AX+ and AY-. In control rats, prior unreinforced exposure to
the AX trials resulted in a weaker conditioned response to the AX+ trials
than the AY+ trials. In rats with excitotoxic hippocampal lesions, the latent
inhibition generalized across contexts: lesioned rats showed the same weak
response to both trials that control rats showed to the AX+ trials.

Holt and Maren (1999) performed a similar experiment using muscimol
inactivation instead of lesions. Rats were given unreinforced CS trials either
in context A or B, followed by fear conditioning trials (CS→shock) in context
C. Freezing was then measured in context A subsequent to CS presentations.
Control rats who received unreinforced trials in context B or no unreinforced
trials at all showed similar high levels of freezing, while rats who received
unreinforced trials in context A showed less freezing. Rats who received
dorsal hippocampal inactivation prior to final testing also showed latent inhi-
bition, comparable to that observed in control rats. However, the inhibition
was not context specific: even when unreinforced trials were given in context
B, latent inhibition was still observed in context A.

The role of the hippocampus in latent inhibition therefore closely parallels
that of extinction.

5.2 Reversal Learning

This section first reviews the behavioral literature on various forms of re-
versal learning, including serial reversal learning and partial reinforcement
reversal learning. The impact of hippocampal lesions on reversal learning
performance is then considered.

5.2.1 Behavior

In the simplest case, reversal learning involves training an animal on an
initial discrimination between two choices, A and B, in which one choice,
say A, is rewarded and the other is not. The reward contingencies are
then reversed: B is rewarded and A is not. There are several experimental
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variants. In serial reversal learning, multiple reversals are performed, usually
after a fixed number of trials have elapsed or after the animal reaches some
predetermined threshold of performance on the current discrimination. In
partial reinforcement reversal learning, the probability of reward for at least
one of the choices is between 0 and 1. The standard notation includes
the probability of reward, as a percentage, for each choice, separated by a
colon: 100:0 therefore denotes full reinforcement, while 67:33 denotes partial
reinforcement of both choices.

In a classic work, Brunswick (1939) explored both serial and partial re- Serial reversal
learninginforcement reversal learning. Rats were trained on an elevated T-maze in

which they had to choose the left or right arm for reward. Two general
patterns emerged. First, when multiple reversals were performed between
100:0 and 0:100, rats reversed their choice in fewer trials with each subsequent
reversal. This pattern is clearly observable even after the second reversal –
when the rat first returns to the original discrimination – suggesting that the
behavioral strategy to prefer choice A is not lost when, after the first reversal,
the subsequent strategy to prefer choice B is adopted. Rather, the animal
learns that there are in fact two patterns of reinforcement, switching between
them progressively more quickly with each reversal. By the fifth reversal,
most of the improvement occurs between the first and second trials after
the reversal. While Brunswick (1939) trained rats roughly to a performance
criterion before reversal, Gatling (1952) trained rats using an equal number
of trials per reversal and found similar results. Buytendijk (1930) showed
single-trial reversals after five or fewer reversals, and Dufort et al. (1954)
observed single-trial reversals after at most six.

The second major finding by Brunswick (1939) is that more ambiguous Partial
reinforcement
reversal
learning

choices lead to a slower reversal of choice. Full reinforcement reversals (100:0
→ 0:100) lead to a relatively fast reversal of the rat’s choice. However, more
ambiguous reinforcement paradigms (50:0 → 0:50, 75:25 → 25:75, 100:50 →
50:100) lead both to a slower acquisition of the original discrimination and a
slower reversal of choice when the reward contingencies are reversed. For
sufficiently subtle differences in reinforcement (67:33 → 33:67), rats showed
no choice preference during either the original discrimination or the reversal.

The partial reinforcement reversal results of Brunswick (1939) were criti-
cized because of the ambiguity about whether the slower reversal was due
to the partial reinforcement of the original discrimination, of the reversal
discrimination, or both. Subsequently, Wike (1953) trained rats in a T-maze
discrimination using either full (100:0) or partial (50:0) reinforcement. Both
discriminations were reversed to 0:100. Again, rats in the partial reinforce-
ment group were slower to learn both the initial discrimination and the

57



the hippocampal formation: lesions, knockouts and inactivation

reversal. Thus, even though both groups of rats were trained on the same
reversal condition, prior experience differences with the initial reinforcement
condition influenced their subsequent acquisition of the reversal. Subsequent
studies have confirmed these results Grosslight et al. (1954); Wise (1962);
Pennes and Ison (1967).

Elam and Tyler (1958) studied partial reinforcement reversal learning in
rhesus monkeys, varying the probability of reward of the less profitable
choice instead of the more profitable choice. Monkeys were presented with
two objects, under which food was sometimes placed. They compared two
initial reward schedules 60:0 and 60:40. The reversed reward schedule was
always 0:100. In the initial discrimination, the monkeys were able to show
some choice preference for the more rewarded object; however, preference in
the 60:40 condition was mild. When reversed, monkeys in the 60:40 condition
showed slower reversal of behavior.

Pubols (1962) studied serial reversal learning, varying the number of trials
per reversal (10, 20 or 40). When looking at performance as a function of the
number of reversals, the 10 trials per reversal group is initially better, but the
performance of the three groups eventually switches order, reflecting that
the increased training per reversal improves the rats’ performance. However,
when looking at performance as a function of the total number of trials, the
10 trials per reversal group showed better performance than the 20 or 40
trials per reversal groups; the difference between the groups decreased with
increased training. This may reflect a perseveration effect: after many trials
with the same outcome, the contextual modulation of the current behavior
may be diminished, resulting in more errors at the beginning of a new
(reversed) block of trials.

At the other extreme, Reid (1953) found that, when rats were significantlyOvertraining
reversal effect overtrained on the initial discrimination, they learned the reversal more

quickly. Rats were first trained to criterion, and then given 0, 50 or 150
further trials. Then, the discrimination was reversed. While overtrained rats
initially showed more perseveration for the initially rewarded choice, they
eventually reversed more quickly. These effects were stronger for the 150
overtraining-trials group than the 50 overtraining-trials group.

In a further exploration of the overtraining reversal effect, Mackintosh
(1962) first trained rats to distinguish cue card color (solid black vs. solid
white); one was rewarded, the other was not. Mackintosh was able to
reproduce the reversal results of Reid (1953), but Mackintosh also found
that, if the nature of the task was changed to a task involving discriminating
horizontal vs. vertical lines, the overtraining that sped reversal now interfered
with the task switch: more overtraining on the black-white discrimination
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caused slower acquisition of the horizontal-vertical discrimination. Thus,
the overtraining reversal effect appears to be an attentional effect. Under a
reversal, overtraining causes the reward to be more strongly correlated with
the attended features (color) than with other features. However, when the
relevant features change, overtraining impairs the animals’ ability to switch
consideration to new features of the environment.

5.2.2 Lesions

Not only does reversal learning lead to separate hippocampal representations
of each condition (see Section 4.2.3), reversal learning has consistently been
shown to be impaired by hippocampal lesions (Kimble and Kimble, 1965;
Silveira and Kimble, 1968; Olton, 1972; Winocur and Olds, 1978; Berger
and Orr, 1983; McDonald et al., 2002; Ferbinteanu and Shapiro, 2003) or
fimbria-fornix transection (Neave et al., 1994; Aggleton et al., 1995; Fagan
and Olton, 1986). For example, Kimble and Kimble (1965) trained rats with
hippocampal lesions and controls to serially reverse a position preference on
a Y-maze. Rats were given ten trials per day for 10 days during which time
they learned to choose the arm based on location (or route to goal). Each
reversal commenced upon reaching a predefined performance criterion. The
median number of successful reversals for controls and hippocampals was 9
and 1, respectively. This substantial impairment is common across studies,
as is the lack of significant impairment in hippocampal rats when learning
the initial discrimination.

Berger and Orr (1983) studied rabbits in a non-spatial Pavlovian condition-
ing paradigm and reversal: one of two tones predicted an air puff to the eye.
They measured the nictitating membrane closure as a conditioned response.
Rabbits with hippocampal lesions showed dramatically slower learning on
the reversal, though not on the original association. Interestingly, hippocam-
pal rabbits did not show impairments on extinction, again disconfirming the
hypothesis that the hippocampus’ role lies in the inhibition of previously
learned responses.

Winocur and Olds (1978) trained rats to pass through the correct door (out
of two choices) in order to receive a reward. As expected, hippocampal le-
sions impaired performance when the reward was switched to the other door.
However, if the reversal was carried out in a second room, the impairment
was greatly reduced, suggesting that the room cues provided an external con-
textual cue with which to disambiguate current and past learning. McDonald
et al. (2001, 2002), exploring the same paradigm, found that hippocampal
rats, whether in the same room or a different room, initially perseverated
on the reversal; however, both lesion and sham groups reached asymptotic
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performance in the different room much more quickly than either group
in the same room. Thus, an explicit change in context that accompanies
the reversal supersedes any inference process about a possible change in
behavioral context (reward contingency).

The notion that each new environment provides a context with which
to associate a particular reward contingency is bolstered by Fagan and
Olton (1986). Rats were trained to choose between two arms, one rewarded
and one not, in several different rooms. The rewarded arm depended on
the room. The sequence of training days was: D1, D2, D3, R3, D4, D1
(again), D5, D2 (again), where the number indicates the room number, D
indicates the original discrimination in that room, and R indicates its reversal.
Fimbria-fornix lesions caused some impairment in initial learning, an effect
expected since rats were required to select the arm based on external room
cues. Moreover, substantial impairment was observed when the reward
contingencies were reversed in R3. Subsequent new discriminations D4 and
D5 were learned much more quickly. Though not significantly different,
there was a trend toward better performance in the D1 (again) and D2 (again)
sessions than the D4 and D5 sessions, suggesting that, even in lesioned
rats, some context-specific savings occurs when each context is explicitly
differentiated (e.g. by different room cues).

In addition to the hippocampus, lesions of the medial prefrontal cortex
have been found to impair reversal learning (Aggleton et al., 1995). However,
reversal learning impairments were not found due to inactivation of the
more specific prelimbic-infralimbic (PL-IL) area (Ragozzino et al., 1999).
Interestingly, PL-IL inactivation was found to have an effect on an intermodal
task shift: switching from a place strategy (go to a position) to a response
preference (always turn right) on a four-arm radial maze was impaired
(Ragozzino et al., 1999). This sets the stage for the possibility that the
overtraining reversal effect is PL-IL mediated.

5.3 Associations within a Context

While the previous sections have discussed conditioned associations to an
environmental or behavioral context, this section will focus on associations
formed between elements (a place, an odor, a reward, etc.) within a context.
Recent methodological advances have made it possible to lesion or inactivate
single subregions within the hippocampal formation, as well as inactivate
NMDA-dependent plasticity within one or more of these subregions. Much
of this review will focus on those subregional studies in order to best il-
lustrate what is known about the contribution of each subregion to overall
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hippocampal function.

5.3.1 Reference memory

Reference memory and whole hippocampus studies in the water maze. Because
of the strongly spatial nature of hippocampal representations, a variety of
studies have examined the role of the hippocampus in forming associations
involving spatial location. One of the most popular assessments of spatial
learning is the Morris water maze task (Morris, 1981). A pool filled with an
opaque liquid (often water with dried milk added) contains a single platform.
The rat is released from a random starting location in the pool and must
swim to the platform in order to end its swim. In the cued version of the
task, the platform is visible just above the water, while in the hidden version
the platform is slightly submerged, and the rat must learn to navigate to
the location of the platform using distal visual cues outside the pool. The
experiment is intended to highlight the rat’s ability to navigate based on distal
cues, and it is essentially a better-controlled version of the place preference
task, discussed in the previous chapter. The liquid prevents navigation based
on local odor cues, an important control since odor cues have been shown to
stabilize hippocampal place fields (Save et al., 2000).

In a landmark result, lesions of the entire hippocampus have been shown
to disrupt the hidden but not the cued platform version of the task (Morris
et al., 1982). Moser et al. (1995) lesioned progressively larger segments from
the dorsal (septal) and ventral (temporal) poles of the hippocampus. They
found that rats were impaired in learning the platform location only when at
least the dorsal 40-60% of the hippocampus was destroyed. As long as at least
~26% of the dorsal hippocampus remained, no impairment was observed,
a result consistent with the observation that place cells are more spatially
selective in the dorsal portion of the hippocampus.

In a variant of the water maze task, Hollup et al. (2001a) trained rats in Water maze
variantsan annular water maze, essentially a circular water track. Rats typically

swim in laps around the track, guaranteeing that they come into contact
with the location of the platform in a reasonable amount of time. Rats with
hippocampal lesions, even if pretrained before surgery in either a standard
Morris water maze or the annular water maze, do not slow down and search
for the platform at the correct location. Thus, the hippocampal place code is
necessary for the recognition of a place-goal association.

In another variant of the water maze task, McGregor et al. (2004) trained
rats in a rectangular water maze with no other cues. The NW and SE corners
were therefore indistinguishable, as were the NE and SW corners, though
the two groups of corners were distinguishable from each other (short wall
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on the left vs. right). For each rat, one pair of corners was chosen, and
the hidden platform was randomly alternated between them. After surgery,
rats were trained on a cued version of the task, and all rats performed very
well. However, on subsequent days when the cue was removed, rats with
hippocampal lesions could not learn to distinguish the (possibly) correct
corners from the (always) incorrect corners. They found equivalent results
when four objects denoting the corners of the rectangle were used in a
cylindrical pool. Rats could not learn to preferentially approach the two
possibly correct goal locations near each corner. When trained in a square in
which opposing walls were the same color (white or black) and neighboring
walls were of opposite color, control and lesioned rats both performed very
well, suggesting that they are able to solve the task when it involves a simple
visual discrimination (white on left; black on right). They therefore attribute
the deficit to an inability to process spatial relationships among cues.

The water maze task is fairly complicated, and subsequent studies haveAlternative
training
strategies

explored how alternative training strategies affect the hippocampal depen-
dency of the task. Morris et al. (1990) found that, if trained long enough,
even hippocampal rats eventually perform as well as controls. Whishaw et al.
(1995; 1996) first trained fimbria-fornix or hippocampus lesioned rats on
the visible-cue variant of the water maze task. With sufficient training, rats
learned to correctly navigate to the platform, even without the cue. However,
the same rats showed no ability to transfer learning to a new location, while
control rats were able to flexibly learn new platform locations. Day et al.
(1999) trained rats using progressively smaller platforms, another effective
training paradigm. However, rats tended to overshoot the location of the
platform, suggesting that they had learned to navigate by learning the direc-
tion to the platform, but they were unable to recognize its location (using the
distal landmarks) once there.

These studies suggest that multiple learning systems are present within
the rodent brain, and, in the absense of the hippocampus, other systems
attempt to compensate. An elegant demonstration of this hypothesis was
provided by McDonald and White (1993), who tested rats with lesions to
hippocampus, amygdala, or dorsal striatum on three different 8-arm radial
maze tasks. In a spatial win-shift task, rats were trained to visit each arm once
for reward. This is a spatial working memory task, and only hippocampal
lesions caused impaired performance. In the conditioned cue preference task,
rats were confined to “light” or “dark” arms, only one of which was rewarded.
Only rats with amygdala lesions showed no preference for the previously
rewarded arm when allowed to choose between them. In a non-spatial win-
stay task, rats were trained to approach a light for food reward. Only rats with
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dorsal striatal lesions were impaired. Taken together, the authors suggest
that different learning systems handle spatial working memory (win-shift
task), cue-reward associations (conditioned cue preference), and cue-response
associations (win-stay task).

Is the role of the hippocampus simply to rapidly learn goal-place asso- Declarative vs.
procedural
learning

ciations, or does it also play a role in procedural learning? For example,
one might dissociate the strategy for navigating to the platform from the
specific knowledge of the platform’s location. When first learning the water
maze task, rats execute an innate thigmotaxic strategy, in which they travel
around the edge of the pool, whiskers in physical contact with the pool walls,
searching for an exit. (This is often described as an arbitrary behavioral
strategy, though the notion that a rat should instead swim out into the center
of a body of water in order to find an exit from it is unintuitive.) Over the
course of multiple trials, repeated failure of this strategy and discovery of
the hidden platform lead to acquisition of the task. Day et al. (1999) also
examined, after the shrinking platform training, how quickly rats with and
without hippocampal lesions would switch back to a thigmotaxic strategy
when the platform was moved to random positions at the edge of the pool.
Hippocampal rats were significantly slower switching back to the thigmotaxic
strategy.

To address the procedural learning question further, Micheau et al. (2004)
trained rats on a variant of the water maze task in which rats had to dwell in
the location of the hidden platform for a prescribed amount of time before
the platform would rise. While rats with continuous (chronic micropump)
hippocampal inactivation showed some location preference, they displayed a
complete failure to dwell in the correct location. In a second experiment, half
of the control rats from the first experiment received continuous inactivation
subsequent to training (during consolidation). The inactivated rats still
displayed a dwell response, indicating intact procedural memory, but forgot
where the platform was located, indicating impaired declarative memory.

Despite the distinction between declarative and procedural memory, it’s
important to recognize their essential dependency: learning a procedural
strategy through trial and error requires a declarative (perhaps episodic)
memory of recent successes and failures to guide improvement of the behav-
ior. This dependency may underly the results of Micheau et al. (2004). The
memory of recent trials likely guides the switch from the failing thigmotaxic
strategy to a dwelling-at-a-place strategy and back. However, while the
incremental improvement of the strategy likely requires the recall of recent
experiences (see Section 4.1.7), the resultant strategy is not dependent on
hippocampal consolidation.
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A pair of studies has explored the role of NMDA-dependent LTP in
water maze learning (Bannerman et al., 1995; Saucier and Cain, 1995). In
each case, they found that naive rats were impaired in water maze learning
during systemic NMDA receptor inactivation; however, rats given pretraining
to find a platform before inactivation were unimpaired, even if, during
pretraining, the platform moves each trial and the water maze is in a different
room. Thus, they argue that the NMDA receptor contribution to water maze
strategy learning can be dissociated pharmacologically from its contribution
to platform location memory.

A subsequent study has clouded this interpretation. Rampon et al. (2000)
showed that CA1 NMDA receptor knockout mice show deficits in contextual
fear conditioning and social transmission of food preference; however, with
prior experience in enriched environments, knockouts showed no perfor-
mance deficit. Critically, they show that, even in the knockouts, synaptic
density is higher in CA1 following exposure to enriched environments, in-
dicating that NMDA-independent plasticity is possible in CA1. (An in vitro
study showed that LTP is easier to induce in hippocampal slices from en-
riched mice (Duffy et al., 2001), though this larger potentiation has been
associated with NMDA receptors (Tang et al., 2001).) To what extent the
benefits of water maze pretraining (Bannerman et al., 1995; Saucier and Cain,
1995) may be due to a similar enrichment effect is not known.

Reference memory and subregional studies in the water maze. Subregional lesionsDG-specific
impairments paint a more nuanced picture of hippocampal function. McNaughton et al.

(1989) showed that colchicine lesions of DG impaired water maze perfor-
mance, as well as two other spatial tasks (hole preference on a circular
platform, and new-daily spatial memory in a radial maze). Interestingly,
spatially selective firing in CA3 and CA1 was not disrupted, suggesting
the deficit did not arise from the lack of a spatial representation. Xavier
et al. (1999) found that rats with DG lesions could eventually show pref-
erence for the general area (quadrant) of the platform, but not its specific
location, and tended to take more circuitous routes to get there. Lassalle
et al. (2000) blocked the output of DG by temporarily inactivating the mossy
fiber synapses, which caused an impairment only when the mossy fibers
were blocked during learning. When blocked during recall (after a week of
training) or during consolidation, no effect was observed. Thus, it seems DG
is critical for acquisition (but not performance of) the water maze task, at
least when the procedural aspect of the task is unfamiliar.

Otnaess et al. (1999) blocked LTP of perforant path synapses to DG by
electrically saturating them. Comparing low-frequency and high-frequency
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stimulation, they found that only high-frequency stimulation saturates LTP,
and only high-frequency stimulation disrupts learning the water maze task.
(What other efferent areas are affected by this stimulation was not discussed.)
However, if rats are pretrained on another water maze in a different room
with different distal cues and a different platform location, high-frequency
stimulation has no effect on task performance.

The Otnaess et al. (1999) results are similar to the aforementioned systemic
NMDA-LTP inactivation results (Bannerman et al., 1995; Saucier and Cain,
1995). It should be noted that mossy fiber LTP is associative but not NMDA-
dependent (Schmitz et al., 2003), suggesting that, when the procedure is
familiar, mossy fiber LTP (and any non-NMDA dependent plasticity in CA3
or CA1) is sufficient for reference-memory learning of a platform location.
Hoh et al. (1999) attempted to address the procedural learning question by
inactivating NMDA receptors during non-spatial (random platform location)
pretraining as well as reference-memory water maze training. They report no
impact of systemic NMDA inactivation; however, their data suggest that the
inactivation window was not sufficient to block learning during later trials.

Brun et al. (2002) found that rats with excitotoxic lesions of CA3 were CA3-specific
impairmentsalso impaired in learning the water maze platform location. However, in the

annular water maze, CA3 lesions had no effect. This result is in contrast to
whole hippocampus lesions which do impair performance in the annular
water maze (Hollup et al., 2001a). CA1 place fields were slightly less sharp
but otherwise normal without CA3, even after manual transection of all
fibers between CA3 and CA1. Thus, in sufficiently constrained circumstances,
the DG-CA3 network is not necessary to demonstrate a place response.

Nakazawa et al. (2002) studied the performance of mutant mice lacking
functional NMDA receptors (and therefore NMDA-dependent LTP) only
in CA3. In the standard version of the task, four extra-maze cues were
provided to aid the rats’ navigation, and knockout mice performed as well
as controls. When three of the four cues were removed, CA3-NMDAR
knockout mice performed as badly as when no cues were present, but control
mice performed as well as if all four cues were present. With only one
cue present, CA1 place fields of mutants were smaller and less robust than
controls; however, CA1 fields returned to their previous strength under full
cue conditions. Thus, whereas the mossy fiber pathway appears necessary
for platform location encoding, the perforant path and recurrent input to
CA3 appears necessary for maintaining a coherent spatial representation in
the face of environmental changes.

By contrast, Tsien et al. (1996) showed that NMDA-dependent LTP in CA1 CA1-specific
impairmentsis necessary for learning the water maze under normal conditions. They
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created CA1-specific NMDA receptor knockout mice, and found that, during
probe trials, CA1-KO mice showed no preference for the quadrant of the pool
in which the platform was previously located. McHugh et al. (1996) report
that CA1 place fields in such mice are stable but larger and more diffuse,
and cells with overlapping place fields show reduced temporal correlation
compared to controls.

To examine the role of consolidation in water maze learning, Shimizu
et al. (2000) created reversible CA1 NMDA receptor knockout mice. Adding
doxycycline (doxy) to rats’ water caused NMDAR1 protein expression to
be suppressed within 3-5 days, and NMDA currents and LTP were both
mostly abolished in doxy treated rats. The protein began to reappear within
5 days of the end of doxy treatment. Doxy treatment during training caused
impairments in water maze performance (as it did with contextual fear con-
ditioning). Doxy treatment during the first but not second week after training
caused impaired water maze performance; mice were tested two weeks
after training. Since AMPA receptors were not affected, they suggest that
CA1 memory encodings are repeatedly potentiated during the consolidation
process, and interference with that re-potentiation disrupts consolidation.

Reference memory and other tasks. DeCoteau and Kesner (1998) trained rats onObject
replacement and
displacement

one of three go / no-go discrimination tasks in which rats were presented
with a standard “scene” comprising a series of objects at particular places in
the arena or a perturbed scene, which could involve replacement of an object,
displacement of an object, or both. Rats learned to approach the standard
scene but not the perturbed scene for a reward. Rats were trained prior to
lesioning. Both hippocampal and parietal lesions caused rats to incorrectly
“go” when the object was displaced but not replaced. The results for the
replacement / displacement task were more complex. Controls learned to
solve this task spatially; they performed well when probed on displacement
only scenes, but not on replacement only scenes. Interestingly, hippocampal
rats re-learned to solve the task based on object identity, showing strong
performance in replacement-only probe trials.

Gilbert and Kesner (2003) trained rats to associate odors or small toys (AConfigural
learning and B) with positions (1 and 2) in an apparatus. Objects were placed atop

a small food cup filled with sand, requiring displacement of the object to
retrieve the reward. Odors were mixed with the sand. Food rewards were
burried in the sand, requiring digging to retrieve the reward. On each trial, a
single food cup was presented. This is a biconditional discrimination task:
A1 and B2 were rewarded; A2 and B1 were not. Rats with excitotoxic lesions
of the dorsal CA3, but not dorsal DG or dorsal CA1, were much slower to
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learn the object-place associations and were unable to learn the odor-place
associations.

What is surprising about this result is that CA1 lesions do not cause
impairment. CA1 is typically considered to be the output pathway of the
DG-CA3 circuit, suggesting that lesions of CA1 should prevent the CA3
representation from reaching efferent areas. The authors point out that
pilot studies involving complete CA1 lesions also do not cause impairment,
suggesting that the extrahippocampal pathway from CA3 to the lateral
septum mediates (or is sufficient for) performance of this task.

The biconditional discrimination task used by Gilbert and Kesner (2003) is
an example of a so-called “configural association” task (Rudy and Sutherland,
1995). The hallmark of configural tasks is that they can be learned only
by constructing reward associations with conjunctions of cues, e.g. odor
and position, as opposed to single (elemental) cues. Unfortunately, the
inconsistencies among hippocampal lesion studies addressing configural
association learning are substantial, and others have suggested that these
inconsistencies are indicative of some of the tasks having an underlying
spatial or temporal component (Jarrard, 1993; Redish, 2001). As such, the
configural learning lesion literature has tended as much to obscure as to
clarify the function of the hippocampus and it will not be further addressed
here.

5.3.2 Short and intermediate-term memory

Intermediate-term memory. One of the difficulties in interpreting results in-
volving the reference-memory water maze task is that only one platform
location is ever learned, and performance is generally measured over several
days of training. An alternative testing paradigm is to change the location of
the platform each day. While “working memory” is typically used to describe
an association that is acquired and applied within a single trial, such as in a
DNMS task, intermediate-term memory testing involves multiple (typically
4 or more) trials using the same platform location.

During the first trial after the platform is moved, perseveration on the
previous location is typically observed, leading to poor performance. The
key feature of this testing paradigm is the observation of improvements
on subsequent trials that demonstrate rapid encoding of the new platform
location. This paradigm has the additional benefit that it decouples learning
of the path to the goal from learning the location of the goal itself, since
improvement during the second trial requires both that the animal has
learned the new platform location (to some degree) and that the animal does
not take the first-trial path to get there.
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Hippocampal lesions severely impair intermediate-term place learning inLesion studies
the water maze (Whishaw et al., 1995; Whishaw and Jarrard, 1996). While DG
lesions moderately impair reference-memory place responses, intermediate-
term memory for the platform is completely abolished (Xavier et al., 1999).
Rats with DG lesions show no preference for the platform position on the
day before or improvement in finding the platform over the 4 trials each day.

Similar to the water maze, the 8-arm radial maze is sometimes used to test
spatial memory. McNaughton et al. (1989) exposed rats to a single sample
arm during the first trial each day. On subsequent trials, spaced 15 min
apart, the animal could explore all eight arms, but only the sample arm was
rewarded. A new sample arm was chosen each day. DG lesions caused more
errors in returning to the sample arm after the first trial.

Steele and Morris (1999) pretrained rats on the intermediate-term waterNMDA
inactivation
studies

maze task and then studied how hippocampal lesions, systemic NMDA
receptor inactivation, or intrahippocampal NMDA receptor inactivation ef-
fected performance on subsequent testing. Between the first and second trial,
they inserted a delay of 15 sec, 20 min or 2 hours. Hippocampal lesions
completely disrupted performance at all delays. NMDA receptor inactivation,
whether systemic or intrahippocampal disrupted performance at the 20 min
and 2 hour delays, but not the 15 sec delay. NMDA-inactivated rats did show
some improvement with each trial, and perseverated on the previous day’s
platform location, suggesting that some degree of gradual learning was still
possible.

Interestingly, since rats were pretrained on the task, this result stands
in contrast to reference-memory tests that did not observe a significant
impairment (Bannerman et al., 1995; Saucier and Cain, 1995). The different
results underscore the role of the hippocampus in the rapid acquisition of
new associations. In the reference memory version, the goal position may be
acquired gradually over several trials. In the present experiment, performance
was measured on the second trial, and, indeed, most improvement was shown
between trials 1 and 2. Steele and Morris (1999) argue that such one-trial
improvement requires NMDA-dependent one-shot associations with the
hippocampal map, whereas more gradual learning requires the map, but not
NMDA-mediated platform associations with points on the map.

In a related experiment, Nakazawa et al. (2003) trained wild-type and
CA3 NMDA receptor knockout mice on an intermediate-term water maze
task. After three days of pretraining on a cued version of the task, days
1-12 consisted of “training” days in which mice were placed on the platform
if they did not find it. During these days, both groups of mice steadily
improved, presumably improving their search strategy and learning the
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procedural aspects of the task. Days 13-16 consisted of “test” days. Wild-type
and knockout mice showed the same latencies to find the platform during the
first trial, but wild-type mice improved significantly more during subsequent
trials than knockout mice. Knockout mice showed no more perseveration for
the previous day’s platform location than wild-type mice, suggesting they
learned the rule-based volatility of the platform, but weren’t able apply the
“one-shot” learning from trial 1 during trial 2.

The obvious interpretation of these results is that CA3 NMDA receptor
function is necessary for proper recall of the current platform location;
however, this is not the case. When mice were instead presented during days
13-16 with the locations of 9-12, respectively, knockouts performed as well as
controls. Thus, CA3 NMDA receptor function was necessary only when the
platform location was novel. Place cell recordings in CA1 of the knockout
mice during the exploration of familiar and novel portions of a track show
that place fields are larger, more diffuse, and often multi-peaked in just the
novel portion. On the next day, place fields look the same in both portions
of the track. This suggests that CA3 NMDA-dependent synaptic plasticity
is critical for rapidly creating novel representations, including place-goal
associations, a hypothesis further supported by DNMS studies discussed in
the following section.

Short-term memory and delayed-(non-)match-to-sample. In the intermediate-
term memory studies above, several trials were given on the same goal,
but performance improved (and was sometimes judged) mostly from the
degree of improvement from the first to the second trials. Naturally, the
hippocampal dependence on such “one-shot” learning would be suspected
to carry over to tasks in which the goal changes each trial.

Long and Kesner (1996) trained rats to perform either a go / no-go working Complete
hippocampal
lesions

memory or reference memory task requiring the discrimination of different
(allocentric) distances between objects. In the reference memory task, rats
were rewarded when the objects were 7 cm but not 2 cm apart (or vice versa),
and hippocampal lesions did not impair rats at this task. In the working
memory task, a study phase presented objects at one of these distances,
and a test phase presented either the same distance or the other distance.
Rats were trained to approach the objects only when at the same distance
as in the study phase for a food reward. Complete hippocampal lesions
impaired rats’ performance in this task. While spatial relationships underlie
this task, the task is not strictly a spatial task in the navigational sense, and,
consistent with this, lesions of just the dorsal hippocampus, which impairs
water maze performance, did not impair this task. (Lesions limited to ventral
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hippocampus did not cause impairment either.)
In a related study, Long and Kesner (1998) trained rats to perform either

go / no-go working memory or reference memory tasks testing egocentric
distance or spatial discrimination. The test for egocentric distance placed
an object at one of two distances from the rat and required it to identify the
correct distance. In the reference memory version, one of the distances was
always correct. In the working memory version, a DNMS task, a study phase
was presented in which an object was placed at some distance from the rat
and, after a delay, the object at either the same or a different distance was
presented. The test for spatial discrimination involved placing an object at
one of two locations in the arena. In the reference memory version, rats had
to discriminate between the fixed rewarded and unrewarded locations. In
the working memory version, rats had to “go” to the object during the test
phase if and only if it was in the same location as when presented in the
study phase. Rats were impaired at working-memory versions of both the
egocentric distance and spatial discrimination tasks, but were unimpaired at
either reference memory task.

Clark et al. (2001) trained rats on an object-based DNMS task, and found
that, even with extended training, hippocampal rats performed poorly at 1
min and 2 min delays, but were unimpaired at 4 sec or 30 sec delays. Their
results stand in contrast to Duva et al. (1997), who found no impairment, but
Clark et al. note that the lesions performed by Duva et al. (1997) were not as
complete, perhaps permitting unimpaired performance.

Day et al. (2003) trained rats on a one-trial food-place paired associate task.Intra-
hippocampal
NMDA
inactivation

Rats were presented with two samples phases and a choice phase. During
each sample phase, rats were presented with food of a randomly selected
flavor (F1, F2) buried at a randomly located food well (L1, L2). During the
choice phase, rats were given a taste of one of the foods (e.g. F1) and had
to navigate to the correct food well (e.g. L1) for reward. Many flavors and
positions were used over the course of the experiment.

Rats with intra-hippocampal AP5 (NMDA antagonist) injections before
the first sample phase but not before the choice phase performed at chance.
Rats with intra-hippocampal CNQX (AMPA antagonist) injections at either
time performed at chance. One might suspect that CNQX caused general
spatial impairments by blocking all hippocampal activity, including general
place-specific activity (apart from any place-goal association). However, rats
repeatedly trained on the same two associations (instead of associations that
varied with each trial) performed above chance despite either antagonist.
Thus, interference with NMDA-dependent synaptic plasticity appears to
effect the encoding of food-place associations, and CNQX inactivation of the
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Subregion Delay Environment NMDA inactivation Dorsal lesion
10 sec familiar none transient

DG 10 sec novel none partial
5 min familiar (unknown) sustained

10 sec familiar none transient
CA3 10 sec novel partial partial

5 min familiar transient sustained

10 sec familiar none none
CA1 10 sec novel none none

5 min familiar sustained sustained

Table 5.1: A summary of impairments by Lee and Kesner (2002; 2003), categorized
as one of four types. A transient impairment is an initial performance accuracy
decrease subsequent to the lesion or inactivation which eventually dissipated. A
partial impairment is a performance decrease with some subsequent improvement,
but not a return to baseline accuracy. A sustained impairment is an initial deficit
that does not improve.

hippocampus impairs their recall.
In a systematic study of the role of each hippocampal subregion, Lee and Subregional

lesions and
inactivation

Kesner (2002; 2003) lesioned or inactivated each subregion after training
rats on a spatial DNMS task in an 8-arm radial maze. For each trial, rats
first explored a randomly-selected study arm, and, after a delay, were then
allowed to enter either the study arm (unrewarded) or a neighboring choice
arm (rewarded). There were three variants of the task. In the familiar variant,
the delay was 10 sec and the room used was the same as that during training.
In the novel variant, the delay was still 10 sec but the task was performed
in a different, novel room. In the delay variant, the delay was increased to 5
min and the task was performed in the familiar room.

Their results are summarized in Table 5.1, and there are two particularly
interesting findings. First, in a novel but not familiar environment, a sus-
tained partial impairment is observed if DG is lesioned or CA3 is lesioned
or inactivated. Together with the results of Nakazawa et al. (2003), this
suggests that DG is necessary for creating a task-relevant representation of
the new environment, and CA3 must learn this representation using NMDA-
dependent synaptic plasticity. Second, the 5 minute delay requires an intact
DG, CA3 and CA1, as well as intact learning in CA1 but not CA3, since the
CA3 learning deficit was transient. (AP5 leakage from DG to CA1 prevents
interpretation of the DG inactivation data.)

The difference in results with the longer delay time highlights the dis-
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tinction between two independent memory processes (Hebb, 1949): active
maintenance and associative learning. Active maintenance refers to the
sustained activation of neurons in order to maintain a representation of
some memory; disruption of this activation results in the memory being
lost. Associative learning involves adapting synaptic strengths in a neural
network so that the memory can later be recalled (Hopfield, 1982, 1984). Since
the memory is encoded in the weights for later recall, the memory can be
recalled so long as the synaptic strengths are maintained; sustained activity
is not necessary. (The role of the hippocampus in associative memory is
discussed in detail in Chapter 7.) The hippocampus has long been implicated
in spatial associative memory (e.g. McNaughton and Morris, 1987), and there
is converging evidence for active maintenance of spatial and other memories
in frontal and parietal areas across the mammalian phylogenetic tree (Cohen
et al., 1997; Awh et al., 1998; Courtney et al., 1998; Postle et al., 2004; see also
Section 4.3).

Interpreted in the context of these two memory processes, the Lee and
Kesner results suggest that an extrahippocampal active maintenance buffer
is sufficient to bridge the 10 sec delay, whereas associative memory storage
in the hippocampus is necessary to bridge the 5 min delay. Disruption
of performance by NMDA inactivation in CA1 but not CA3 suggests that,
whereas plasticity in CA3 is necessary for the creation of an appropriate
representation, plasticity in CA1 is necessary for preserving each trial-specific
memory during the delay period.

A series of related studies by Gilbert et al. (1998; 2001; 2006) further
elucidates the function of each subregion. They trained rats to perform a
spatial DNMS task in an open field. During the sample phase, rats retrieved
a reward covered in a food well that was placed at one of 15 locations in the
apparatus. During the choice phase, the sample phase well was rebaited and
an unbaited distractor well was also covered at a variable distance (15 cm,
37.5 cm, 60 cm, 82.5 cm, or 105 cm) from the rewarded well. Rats with CA3
lesions were impaired at this task irrespective of the distance between the
two wells. By contrast, rats with DG lesions were impaired in a distance-
dependent manner: while no significant impairment was observed at the
farthest distance, progressively stronger impairments were observed at closer
distances, and these impairments did not ameliorate over time. Rats with
CA1 lesions showed no impairment.

The lack of effect of a CA1 lesion stands in contrast to the 8-arm radial
maze DNMS study (Lee and Kesner, 2002, 2003). The difference may lie in
the way in which rats solve each problem. The open field task may be solved
as a novelty problem: which of the two target objects during the test phase
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is in a novel position? This hypothesis is consistent with impairments in
novelty detection following DG and CA3 but not CA1 lesions (see Section
5.3.4). Novelty detection is not applicable to the 8-arm task and the water
maze task, in which there is no sensory comparison to be made; rather, the
rat must recall its previous behavior. In these latter tasks, an intact CA1 is
crucial to good performance.

Just as Nakazawa et al. (2002) found that NMDA-dependent LTP in
CA3 was necessary for reference memory water maze performance in cue-
degraded environments, Gold and Kesner (2005) found that CA3 lesions
disrupt a spatial DNMS task when environmental cues are removed during
the testing phase. Since task training occurred before the lesion and cues
were removed only during the test phase, these data further support CA3
being integral to recall of an intact spatial representation under landmark
perturbation.

Short-term memory and overlapping sequences. Section 4.2.2 discussed the in- Spatial
alternationconsistently observed physiological representations of spatial alternation (e.g.

on a T-maze). Perhaps the most interesting aspect of the physiology data is
that, when a delay is imposed at the start of the “common” segment of the
T-maze, differentiation of the left-to-right and right-to-left routes is largely
abolished (Ainge et al., 2005; Robitsek et al., 2005). It is therefore somewhat
surprising that hippocampal lesions impair T-maze alternation only when
the delay is present (Ainge and Wood, 2003; see also Neave et al., 1994;
Aggleton et al., 1995); with no delay, normal rats remap but hippocampal
rats are not impaired. Thus, the conditions under which the hippocampus
physiologically differentiates the common segment based on the rat’s route
is dissociated from the conditions under which hippocampal function is
necessary to follow that route.

In a non-spatial odor-based version of the DNMS task, Agster et al. (2002) Odor sequences
trained rats on two overlapping six-odor sequences, as shown in Figure
5.1. Learning of the sequences was measured by correctly choosing the odor
during the fifth stage, which depended upon which odors had been rewarded
during the first and second stages. Rats were pretrained on the task prior to
lesions, so the purpose of the study was not to demonstrate acquisition of the
sequences themselves (reference memories), but to determine whether the
hippocampus is involved in recalling the particular sequence in each trial.

In all cases, the inter-stage interval was less than one minute. When rats
were trained on alternating sequences presented in relatively rapid succession
(1 minute inter-trial interval), hippocampal rats initially performed at chance
levels. Rats with radiofrequency hippocampal lesions improved to near-
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Figure 5.1: Overlapping sequences used by Agster et al. (2002). A) The initial
difference between the sequences (P1 and P2) indicates how rats should respond on
P5. B) All but choice P5 is forced. The position of the odor cups is randomized to
ensure no spatial relationships can be used to solve the task. (Reprinted from Agster
et al., 2002.)

control levels, whereas rats with ibotenic acid lesions did not. (The exact
cause of the difference is not clear.) When the inter-trial interval was increased
to 15 minutes and sequence order was randomized, rats with radiofrequency
lesions performed as well as controls. However, when a 30 minute delay
was inserted before the fifth stage, hippocampal rats returned to near chance
levels, despite the inter-trial interval. Thus, when sequences are presented in
quick succession or when a pre-choice delay is imposed, the hippocampus
plays a critical role.

5.3.3 Temporal associations

Reference memory. In delay conditioning, a CS (e.g. a tone) is continuouslyTrace
conditioning presented over some short window of time, near the end of which, a US (e.g.

a shock) is given. Animals learn the temporal offset between the beginning
of the CS and the time of the US, displaying a CR at the expected time of
the US. A variant of this, called trace conditioning, uses a short CS, followed
by a “trace” period in which nothing happens, followed by the US. As with
delay conditioning, normal animals learn to predict the US.

Hippocampal lesions impair the acquisition of trace but not delay condi-
tioning (Solomon et al., 1986). Huerta et al. (2000) trained wild-type and CA1
NMDA receptor knockout mice in delay and trace conditioning paradigms,
and found that the knockout mice were slower than controls to learn only the
trace conditioning paradigm; however, unlike rats with complete hippocam-
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pal lesions, asymptotic performance of the knockout mice was equivalent to
controls.

Beylin et al. (2001) explored whether the hippocampus would be impli-
cated if the delay task were simply more difficult. They double the length
of the delay period and found that rats with hippocampal lesions took four
times the number of trials to reach the control animals’ asymptotic perfor-
mance; however, the deficit was mild. Hippocampal rats trained on the trace
conditioning paradigm showed almost no freezing after the same number
of trials (1200). Interestingly, they also found that, once hippocampal rats
were trained on the delay conditioning paradigm, performance transferred to
subsequent trace conditioning, suggesting that, once constructed, the CS-US
association can be maintained even with the trace.

Bangasser et al. (2006) further explored the role of the hippocampus in
trace conditioning by training rats on trace, delay and a contiguous trace
conditioning (CTC) paradigm. In the CTC paradigm, the CS and trace period
are as in standard trace conditioning, but the CS is presented a second time
simultaneously with the US. Thus, while the first presentation of the CS is not
directly linked to the US as it is in delay conditioning, it is indirectly linked
through the second presentation of the CS. Hippocampal lesions impaired
the trace but not the CTC paradigm, suggesting that the critical role of the
hippocampus is to bridge the CS-US association across the trace period.

Dusek and Eichenbaum (1997) tested rats on a transitive inference task. Transitive
inferenceRats were trained on pairs of odors (A+ vs. B-, B+ vs. C-, C+ vs. D-, D+ vs.

E-). Two types of lesions were performed: aspiration lesions of the perirhinal
and entorhinal cortex and radiofrequency lesions of the fornix. Performance
of the two lesion groups did not appear to differ from each other. After
surgery, lesioned rats continued to perform indistinguishably from controls
on the training pairs (B+ vs. C-, C+ vs. D-), but fell to chance levels on
the “relational probe pair” (B+ vs. D-). When trained on new pairs, both
control and hippocampal rats failed to perform well during initial training,
demonstrating that the transitive inference deficit was not due to the control
animals quickly learning the correct response for the new BD pair.

Van Elzakker et al. (2003) revisited the odor-based transitive inference task,
varying the number of odor pairs. The first task contained four pairings
(A+B-, B+C-, C+D- and D+E-), and they reproduced the findings of Dusek
and Eichenbaum (1997), namely that rats correctly solved B+D-. However,
when trained on a second task using five pairings (A+B-, B+C-, C+D-, D+E-,
E+F-), rats could correctly solve B+E- but not B+D-. Interestingly, in both
tasks, rats learned the last pairing (task 1: D+E-; task 2: E+F-) in the sequence
better than any of the others. The authors suggest that rats are learning to
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solve the last pairing purely as an avoidance problem: avoid E- (task2: F-)
and ignore the positive odor with which it is paired. Thus, while the D+
(task 2: E+) should get positive valence from this pairing to offset its negative
valence in the other pairings, it in fact does not. The B+D- pairing in the first
task and B+E- pairing in the second task elicit transitive responses, but the
B+D- in the second task does not, because it is E that is undervalued in the
second task, not D. Thus, Van Elzakker et al. (2003) conclude that rats cannot
really solve transitive inference problems, even with a hippocampus.

Single trial memory for sequence order. Gilbert et al. (2001) tested for learningSpatial
sequences the temporal order of a sequence of arm visits in an 8-arm radial maze.

Rats were forced to visit each arm in a sequence that varied each day (one
trial per day). Two of the arms, with temporal separation of 0, 2, 4 or 6,
were then opened and rats were rewarded for entering the arm occurring
earlier in the sequence. Rats with dorsal CA1 and dorsal CA3 (Kesner et al.,
2004) but not dorsal DG lesions performed near chance, even for the longest
separation (6 arms). Previous studies have demonstrated the same result
for complete hippocampal lesions (Chiba et al., 1994). Also, DeCoteau and
Kesner (2000) showed that, for fixed sequences, rats optimize their path
through the arms for speed (procedural memory), and this optimization is
suppressed by striatal lesions, specifically the medial caudoputamen.

In an impressive display of odor memory, two groups have shown thatOdor sequence
learning the hippocampus is necessary for learning the temporal order of a sequence

of odors (Fortin et al., 2002; Kesner et al., 2002). Fortin et al. (2002) trained
rats on one-trial sequences of five odors, and then tested them on either the
presentation order of two odors in the sequence or on whether an odor was
part of the sequence (see Figure 5.2).

When tested on sequence order – a Fruit Loop was hidden in the less
recently presented odor cup – rats with hippocampal damage (radiofrequency
lesions) performed at near chance levels on almost all pairings. (Only A vs
E was significantly different from chance, though performing at less than
70% correct). However, when tested on recognition – a Fruit Loop was
hidden in the cup whose odor was not presented in the previous sequence –
performance of hippocampal rats was indistinguishable from controls. Both
groups performed at ~80% on the earliest odor comparisons (A vs. X) and at
~90% on the most recent odor comparisons (E vs. X), so hippocampal rats
appear to have the same temporal bias as control rats. The authors suggest
that they therefore have “normal access to differences in trace strengths for
the odors.” However, the observation that traces degrade does not imply
that animals can “measure” this degree of degradation in order to infer
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Figure 5.2: Details of the sequence presentation and probe trials of Fortin et al. (2002).
For each trial, 5 odors were randomly selected from a set of 20. A variable (average
2.5 minute) inter-stimulus interval was interposed between stimulus presentations.
The probe test consisted of two sand-filled odor cups presented in one of three
locations in the home cage, in order to randomize the position of the cups. The
inter-trial interval was 30-60 minutes. (Reprinted from Fortin et al., 2002.)

stimulus order, nor that the degradation of odor traces within any particular
trial is gradual; a bi-stable recognition memory system, one whose traces
remained strong until they vanished suddenly after some degree of time,
could nonetheless produce behavior consistent with the present data.

5.3.4 Novelty

Clark et al. (2000) tested rats on an unrewarded version of the DNMS task.
Rats were exposed to two copies of an object during the sample phase. After
a delay, the test phase began, in which a copy of the familiar object and a
novel object were presented. Rats (and many other animals) preferentially
explore a novel object in an environment without being trained to do so,
so they used exploration time as their dependent variable. Rats with ra-
diofrequency and ibotenic acid lesions were impaired at longer delays (10
min, 1 hr) relative to controls. At shorter delays, little (1 min) to no (10 sec)
impairment was observed. Rats with fornix lesions were not impaired. The
delay-dependent effect is similar to that observed by Lee and Kesner (2002;
2003) and likely underpins the extent to which a sustained-activity working
memory buffer can provide recognition memory over short delays in the
absence of hippocampal function.

In another test of novelty detection, Lee et al. (2005) explored whether DG,
CA3 or CA1 lesions affected object replacement or displacement. Figure 5.3
shows the seven sessions of the study. During sessions 5-6, object E was
generally not re-explored, even by controls. However, control rats showed
substantial re-exploration of object D. All three lesion groups showed de-
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Figure 5.3: The seven sessions of the novelty study by Lee et al. (2005). In sessions 5-
6, object E was moved to object D’s location, and object D was moved to a previously
open location. In session 7, object A was replaced with a novel object F. Each session
lasted 6 minutes, with a 3-minute inter-session interval. (Reprinted from Lee et al.,
2005.)

creased exploration relative to controls, but, whereas the DG and CA3 group
differences were quite significantly different, the CA1 group difference was
not. Exploration of the novel object F was elevated in all groups, though the
3-minute inter-session interval was perhaps insufficient to expect a significant
effect, as seen in Clark et al. (2000).

In contrast to Lee et al. (2005), Rampon et al. (2000) report an impairment
in object novelty detection in CA1 NMDA receptor knockout mice. However,
pre-exposure to enriched environments improved performance, though not
entirely to the level of control mice.

5.4 Summary

Hippocampal lesions result in a complex pattern of impairments. How-
ever, converging evidence suggests that the hippocampal lesions cause three
classes of deficits. First, as reviewed in Section 5.1, studies of contextual
conditioning, extinction and latent inhibition suggest that the hippocampus
contributes an encoding of the context in which the CS-US association is
made. This is consistent with a wealth of hippocampal physiology studies
showing different place cell activity patterns in different environments. Sec-
ond, Section 5.2 discusses the role of the hippocampus in reversal learning
tasks, where separating the task into different reward contingencies, each
represented by a different behavioral context, is critical to solving the task.
Hippocampal lesions severely disrupt learning reversal learning tasks. Third,
Section 5.3 discusses the role of the hippocampus in forming associations
involving spatial location or associations across time, especially when these
associations must be learned quickly and / or re-learned repeatedly.
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While it is difficult to clearly dissociate the roles of DG, CA3 and CA1, a
series of subregional studies have demonstrated that some distinctions may
be drawn in their functional roles. DG appears critical for the formation
of new associations, especially those involving precise spatial locations. In
CA3, NMDA-mediated synaptic plasticity is crucial for the rapid formation
of novel associations and performance in novel environments, as well as for
detecting novel spatial arrangements of landmarks. In addition, CA3 lesions
or NMDA inactivation impair pattern completion: familiar environmental
contexts are not accurately recalled when environmental cues are removed.
While plasticity in CA3 is critical in novel situations, plasticity in CA1 appears
necessary for maintaining frequently changing associations across a delay, a
function consistent with physiological studies showing that potentiation in
CA1 but not CA3 appears to fade by the next day. CA3 and CA1 both appear
critical for learning temporal sequences.

This concludes the review of prior experimental studies. The following three
chapters present the original research contributions of the thesis.
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6
S PA C E A N D T H E D O R S A L M E D I A L E N T O R H I N A L
C O RT E X

“There are ever appearing in the world men who, almost
as soon as they are born, take a bee-line to the rack of
the inquisitor, the axe of the tyrant....”
– Ralph Waldo Emerson (Society and Solitude, 1870)

An earlier version of this chapter appeared in the Journal of Neuroscience as “A
spin-glass model of path integration in rat medial entorhinal cortex” by Mark C.
Fuhs and David S. Touretzky (2006, vol. 26, pp. 4266–4276; Copyright c© 2006,
Society for Neuroscience; reprinted with permission).

6.1 Path Integration and Animal Navigation

Even before the first modern scientific debates about animal path integration
(Wallace, 1873a; Darwin, 1873b; Wallace, 1873b; Darwin, 1873a), the image
of a bee returning directly to its nest after foraging for pollen engendered
its own English language verb: beeline (Oxford English Dictionary, 1989).
However, only in roughly the last 30 years has there been strong scientific
evidence to support the theory that a wide variety of animals are capable of
navigation based on an internal sense of motion (for review, see Section 3.2. )

Early models of path integration, largely in insects, were based on some
representation of the distance traveled from a start location (Mittelstaedt,
1962; Müller and Wehner, 1988). Mittelstaedt (1962) proposed a simple
model in which the animal’s current location was represented in Cartesian
coordinates as a 2-vector that represented the current position of the animal
relative to its home base. This 2-vector was to be updated based on the
distance and bearing in which each step is taken. A more neurally plausible
implementation of this theory was developed by Touretzky et al. (1993).
Instead of Cartesian coordinates, Müller and Wehner (1988) suggested a
model based in polar coordinates using a particular formulation of update
rule that reproduced the systematic path integration errors observed in rats.

In all of these early theories, external sensory information played no role
in path integration. Given some level of noise within the path integration
system, error would therefore be expected to accumulate over time. To make
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path integration workable, theories of animal navigation (McNaughton, 1989;
O’Keefe, 1989; McNaughton et al., 1991, 1994, 1996; Touretzky and Redish,
1996; Redish and Touretzky, 1997; Samsonovich and McNaughton, 1997)
began to explore neurobiological solutions to a problem known within the
robotics community as the “simultaneous localization and mapping” (SLM)
problem (Smith et al., 1990; Montemerlo et al., 2002). The goal of a navigation
system that integrates sensory and idiothetic (self-motion) information is to
be able to use sensory information regarding the locations of landmarks to
infer one’s current location; this is localization. However, in a novel environ-
ment, the locations of landmarks are not known, requiring the creation of a
correspondence between sensory landmark information and position within
the environment; this is mapping.

Two groups have proposed detailed computational theories of rodent
navigation that deserve particular mention (Touretzky and Redish, 1996;
Redish and Touretzky, 1997, 1998; Samsonovich and McNaughton, 1997).
Samsonovich and McNaughton (1997) proposed that place cell maps were
represented as 2-dimensional plane attractors within the recurrent CA3
network. In their theory, an activity bump on the surface of the plane
represents the position of the animal, and this position can be updated
either via learned associations between the bump’s position and the current
sensorium or based on prewired idiothetic motion information. Their theory
required that each plane attractor be created during development, and,
during the developmental process, idiothetic input would be organized to
produce movement of the bump.

In order to avoid this complicated construction, Redish and Touretzky
proposed that the path integrator was to be found outside the hippocampus
(Touretzky and Redish, 1996; Redish and Touretzky, 1997, 1998). (Presciently,
their theory posited that superficial EC was one of the regions implicated in
path integration.) In their construction, the path integrator circuit involved
a single 2-dimensional plane attractor, prewired to move a bump across
the plane based on idiothetic information. This neural path integrator was
bidirectionally connected to the hippocampus, and the hippocampus was
responsible for associating input from the path integrator with input from
the sensorium. Upon entering a familiar environment, pattern completion
in the hippocampus resulted in the recall of that environment’s map, which
in turn reset the activity bump of the path integrator. When entering a new
environment, the essentially random location of the activity bump in the
path integrator resulted in a highly novel input pattern, leading to a new
place cell map.

Both theories propose essentially the same solution to the SLM problem:
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gradually expand a spatial map using the noisy path integration information
to explore new areas and form new sensory associations; then, return to
familiar territory (e.g. a nest) to correct the path integrator for drift. As
new areas become familiar, the map can be expanded further without fear of
corruption from path integrator drift. A handful of behavioral studies have
looked at this so-called “home base” behavior in animals, and they find that
rodents return to the same home base location repeatedly during exploration
(Eilam and Golani, 1989; Golani et al., 1993), providing the opportunity to
reset the path integration system with each return. Note that solving the
SLM problem does not alone solve the original behavioral path integration
problem. Navigation using a spatial map instead of a simple distance vector
requires a separate system to decode the map and create an appropriate
homing vector; this system is sometimes referred to as a praxic navigation
system.

Recent electrophysiological recording experiments in the dorsocaudal
region of rat medial entorhinal cortex (dMEC) strongly suggest that the
population of dMEC grid cells could serve as a distributed encoding of a
spatial map (for review, see Section 3.2). This chapter presents the work of
Fuhs and Touretzky (2006), in which a neural network model is developed
that is consistent with dMEC serving as the path integrator within a locale
navigation system. The model provides both a cogent explanation of the
firing properties of grid cells and a mechanism by which such cells could
satisfy the computational requirements for path integration. Redish and
Touretzky (1997) posited these to include the following: (1) spatially localized
firing fields that are universal across environments; (2) activity patterns
updated based on self-motion information; (3) activity patterns reset during
reentry into a familiar environment; and (4) population activity patterns
coding for position over a large area. What role the dMEC might play in
praxic navigation is not addressed here.

It is first shown that hexagonally spaced activity bumps can arise spon-
taneously on a sheet of neurons in a spin glass-type neural network model
(Hopfield, 1982, 1984). Introducing an asymmetric form of the connection
matrix and assigning a preferred direction of motion to each cell, with a
corresponding velocity-dependent input such as might be provided by the
head direction system (Sharp et al., 2001; Wiener and Taube, 2005), allows
the bumps to shift in any direction and gives individual units hexagonally
repeating firing fields. A collection of grids with different scales and orienta-
tions is then shown to allow an efferent structure such as the hippocampus
to construct place specific representations covering a substantially larger
area than the period of the largest grid. Finally, it is shown that “sensory”
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patterns can be superimposed onto the network, modulating the strengths of
the firing fields of the cells without disrupting their hexagonal structure.

6.2 Spin Glass Model

To model the formation of a grid of bumps, a network of nonlinear neu-
rons is used, arranged on a two-dimensional sheet. The weight matrix
governing their mutual interactions is symmetric, and neuron interactions
are constrained to be local: a neuron interacts only with those within a
neighborhood around it on the sheet. This type of network is known as a
spin glass model, by analogy with statistical mechanics models of frustration
in magnetic systems (Hopfield, 1982, 1984). Spin glass models exhibit stable
states (attractors) that correspond to local minima of an energy function. They
will settle into one of these minima from any nearby starting state. Adding
noise helps the system escape from shallow energy minima (frustrated states)
and settle into a global minimum energy state. Attractor networks have been
widely used to model the hippocampus (Samsonovich and McNaughton,
1997; Redish, 1999; Káli and Dayan, 2000; Touretzky et al., 2005; see also
Zhang, 1996).

The construction of the weight matrix was inspired by the observation,
originally proven by (Thue, 1892, 1910), that the optimal packing of equally
sized circles in a plane is a hexagonal lattice. Similarly, hexagonal activity
patterns on a sheet can be explained as the result of competition between
each neuron and those neighbors that are within a certain radius around
it. Such competition was created by composing weights based on two
properties. First, weights are proportional to a periodic function of the
distance between units on the sheet; this creates cooperation between units of
similar “phases” and competition between units out-of-phase. Second, unit
interactions are constrained to be local. The result yields a symmetric weight
matrix that produces multiple activity bumps that arrange themselves in a
hexagonally periodic lattice attributable to the locality and radial symmetry
of the recurrent connections.

6.2.1 Structure of the network

Let ξi be the membrane voltage of neuron i, and let fi be its firing rate. We
use square root as the nonlinear transfer function that converts membrane
voltage to firing rate, with a threshold of 0:

fi =

{ √
ξi ξi > 0

0 ξi 6 0
(6.1)
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Ermentrout (1994) showed that this transfer function was consistent with that
of a conductance-based model with class I membranes, i.e., neurons whose
firing rate can vary continuously from 0.

The evolution of the membrane voltage ξi over time is governed by a
differential equation that includes an integration time constant τ, recurrent
connections with weights Wij, a velocity input vi, and a Gaussian noise term
ε:

τ
dξi

dt
= −ξi +

∑
j

Wijfj + vi + ε (6.2)

To allow for translation of the hexagonal activity patterns across the sheet,
the full weight matrix Wij is composed of symmetric and asymmetric com-
ponents. The symmetric matrix establishes hexagonal periodicity, whereas
the asymmetric matrix provides directional biases to translate the pattern.
To calculate Wij, let dij be the distance between pairs of units on this sheet.
Each unit is assigned an integer coordinate pair (xi,yi) whose xi and yi

values range from 1 to Ndiam; the circular sheet of neurons used in these
simulations is 61 units in diameter, 2861 units total. The Euclidean distance

between units i and i is then dij =

√(
xi − xj

)2
+

(
yi − yj

)2. The symmetric
matrix for connections between neurons i and j has connection strengths:

W
sym
ij = αsymγjΨ

(
ωdij

)
(6.3)

The structure of the connection strengths is principally determined by
Ψ

(
ωdij

)
, a local, periodic function of the distance between units. This

function is shown in Figure 6.1E and derived in the Section 6.3.2. The spatial
frequency rescales the function, thus determining the number of bumps
that form along one axis of the grid. The term γj decreases the projection
strengths of neurons near the edge of the sheet, limiting the boundary effects.
Figure 6.1A shows the symmetric weight matrix for the central unit in the
sheet.

The asymmetric weight matrix Wasym, which is purely inhibitory, has a
similar form but is offset from the center, as shown in Figure 1B:

W
asym
ij =

{
αasymγjΨ

(
ωδij

)
ωδij < ψ1

0 ωδij > ψ1
(6.4)

Because the asymmetric weights serve only to translate the activity pattern
across the sheet, a small region of inhibition is sufficient. We therefore
restricted the weights to include only the portion of up to its first 0 crossing,
ψ1.
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Figure 6.1: Recurrent weight matrix Wij contains symmetric and asymmetric com-
ponents. Shown here are the weights for the central unit in the sheet. A) Symmetric
component contains angular rings of excitation. B) Asymmetric component contains
a ring of inhibition, offset slightly from the center, opposite the preferred direction
φi of the unit. C) The output weights of a unit (a column of Wij) are the sum of the
weights in (A) and (B). D) The input weights for the unit (a row of Wij) are approx-
imately symmetrical; the “noise” reflects the variation in preferred directions of the
afferent cells. All weights have been raised to the 0.5 power in these plots to better
reveal the structure in both components, which differ in magnitude by a factor of 3.
E) The structure of the symmetric component is determined by the wave function
Ψ, which depends solely on the distance between units on the sheet. The magenta
points indicated values that were learned in a neural network simulation, and the
green line indicates the function based on numerical integration that was used to
construct the symmetric weight matrix Wsym

ij . F, G) These diagrams illustrate how
the temporal phase of unit j changes as a function of the direction of propagation
of the wave packet, θwave, for a given phase of unit i (see Section 6.3.2). (Reprinted
from Fuhs and Touretzky, 2006.)
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6.2 spin glass model

The offset distance function δij is biased in a direction opposite the pre-
ferred movement direction of the cell i, offset by approximately one-eighth
wavelength:

δij =

√(
xi − xj − δx

j

)2
+

(
yi − yj − δ

y
j

)2
(6.5)

The offsets are δx
j = β/ω cosφj and δ

y
j = β/ω sinφj. In theory, the φi

values can be random and uniformly distributed around the circle. However,
because of the relatively small number of units in our simulation, we found
it advantageous to use just four preferred directions, 90◦ apart, assigned in
an alternating manner across the grid so that, at every point at which four
pixels meet, all four preferred directions are represented. This approach
ensures a smooth distribution of preferred directions so that the local bump
representation is not biased toward motion in any particular direction.

Figure 6.1C shows the sum of the symmetric and asymmetric projection
weights of the central unit, Wij = W

sym
ij +W

asym
ij . Although the efferent

weight matrix for each unit is asymmetric, the afferent connections of the unit
are approximately symmetric, because it receives projections from units with
all possible preferred directions. Figure 6.1D shows the input weights for the
central unit of the sheet; the apparent graininess in this plot is attributable to
the variation in preferred directions across units. The projection strengths of
units near the edge of the sheet were faded to 0 by the γj term in Equations
6.3 and 6.4 to ameliorate edge effects. These edge effects were caused
by units on the edge receiving unbalanced input: unlike units closer to
the center whose inputs were from units in all directions, units near the
edge received no input from beyond the edge of the sheet. This imbalance
resulted in bumps of activity preferentially forming at the edges of the sheet,
constraining the formation thereafter of bumps in the interior. For sheets
with non-circular boundaries, this caused the lattice of bumps to form only
at orientations that would maximize the number of bumps aligned along
the edges of the sheet. For example, a square sheet elicits grid bump lattices
with orientations of 0 or 90◦. Also, the inter-bump distance along one axis is
distorted by a factor of 3 relative to the other, reflecting the stretching of the
lattice necessary for bumps to be located along all four edges. The existence
of these minimum energy states prevents the network from exhibiting the
variety of grid orientations observed by Hafting et al. (2005). Moreover,
when the bumps are moved across the sheet, they tend to bunch up along
the edge rather than smoothly sliding off, which destroys the hexagonal
symmetry. Switching to a toroidal topology would resolve this latter problem
but would not eliminate the tendency toward axis alignment. The γi term
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space and the dorsal medial entorhinal cortex

Spin glass model
Ndiam 61
Wave function frequency ω 0.67
Weight parameters:

Symmetric amplitude αsym 0.5
Asymmetric amplitude αasym -1.5
First cycle cutoff ψ1 2.55
Weight fadeout annulus σγ 30/ 4

√
5

Asymmetric offset β 1.5
Head direction sharpness σhd 0.245
Gaussian noise ε 0±0.2, mean ± SD
Integration time constant τ 10

Weight function Ψ
Training wave frequency κ 9π/31
Number of waves per packet Nw 3
Tonic firing rate ftonic 1.0

Multiple grids
Global inhibition coefficients c2, c1, c0 -0.062, 2.103, 1.946

Table 6.1: Parameter values

solves both problems. It eliminates distortion caused by edge effects because
the progressively weaker weights fail to reinforce the bumps as they move
toward the edge, so that they smoothly “fade away” rather than abruptly
“fall off.” Also, the annular shape eliminates the bias in favor of axis-aligned
grids. The γj term is defined as follows:

γj = exp

[
−

(
1

σγ

√(
xj − r

)2
+

(
yj − r

)2
)4

]
(6.6)

where r =
⌈

1
2Ndiam

⌉
.

The top three panels of Figure 6.2A show the formation of a hexagonal
lattice of bumps across the neural sheet. The noise term ε in Equation 6.2
serves to break the initial symmetry, and the phase and orientation of the
bumps is established within the first few dozen time steps. After 200 time
steps, the result is a robust lattice of bumps. Parameter values for this
simulation are given in Table 6.1.
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6.2 spin glass model

T = 10 T = 30 T = 200

T = 210 T = 350 T = 500

Cell at 31,21 Cell at 31,31 Cell at 35,35

A

B

Network Activity Pattern Formation and Translation

Spatial Firing Fields

Figure 6.2: Formation and translation of the bump grid. A) Starting from an all-zero
state, at T = 30, the bump array is somewhat disordered; there is a heptagon in the
top left quadrant. By T = 200, a regular hexagonal pattern has been established. The
next three panels show translation of the grid to the left. B) Spatial firing fields of
three grid cells in a simulated square arena. (Reprinted from Fuhs and Touretzky,
2006.)
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space and the dorsal medial entorhinal cortex

6.2.2 Path integration

The central hypothesis explored by this model is that path integration can
be achieved by moving the bump array around on the sheet. A variety of
schemes have been proposed for shifting an attractor bump around a ring
(Skaggs et al., 1995; Redish et al., 1996; Zhang, 1996; Goodridge and Touret-
zky, 2000; Sharp et al., 2001; Hahnloser, 2003) or over a sheet (Samsonovich
and McNaughton, 1997; Conklin and Eliasmith, 2005). The model presented
here differs from these previous models in that, rather than moving a single
bump, it is designed to move multiple bumps simultaneously while enforcing
a particular spatial relationship between them.

To move the bumps in direction Φ, the velocity input vi to units with
preferred direction φi close to Φ is increased, whereas the input to units
with preferred direction nearly opposite Φ is decreased. The asymmetric
inhibitory projections, because they are offset from the center of each unit,
inhibit one flank of the bumps more than the opposite flank, causing the
bumps to shift.

Let s be the animal’s current speed, normalized to lie between 0 and 1, and
let Φ be its current direction of motion. Then the velocity input to each unit
is calculated as follows:

vi = 0.5+ 2s

(
exp

(
− sin2

(
Φ−φi

2

)
/σ2

hd

)
− 0.25

)
(6.7)

The value of vi ranges between 0 and 2; it is 0.5 when the animal’s speed is 0.
A plot of vi as a function of φi resembles the head direction cell tuning curves
seen in postsubiculum (Taube et al., 1990a,b) or anterior dorsal thalamus
(Blair and Sharp, 1995; Taube, 1995), which have a width of 90-100◦. However,
the model also functions properly with broader tuning functions; previous
tests used a σhd value of 0.633, which produced a much wider curve.

The bottom three panels of Figure 6.2A show the bump array being shifted
to the right. The hexagonal periodicity of the bumps is preserved during
translation. Interestingly, except at the edges of the sheet, the velocity
modulation causes little change in the firing rates of the cells, suggesting
that the dMEC could perform path integration even if firing rates were only
weakly velocity dependent. Figure 6.2B shows the place fields of three units
in a square arena. To generate these fields in an efficient and systematic
manner, the lattice of bumps was shifted to the right to correspond to leftward
travel along the top edge of the arena. Then, at each of 75 positions along the
top edge, the network was reset to its previous state at that position, and the
activity pattern was shifted upward to correspond to downward travel. As
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6.3 in vivo development of the weight matrix

the activity pattern shifted across the neural sheet, individual cells showed a
corresponding pattern of activity across space. The firing fields differ only as
to phase; the grid spacing and orientation is constant.

6.2.3 Resetting the path integrator

The coupling of path integration and place systems facilitates both the
correction of inaccurate path integration information by sensory cues and the
representation of place in cue-deprived conditions. The ability of stable cues
to reset the place code (Knierim et al., 1995; Jeffery and O’Keefe, 1999) and to
influence praxic navigation (Etienne and Jeffery, 2004) is well established. The
integration of these two systems suggests that recall of a hippocampal map
when, for example, the rat returns to a familiar environment, should lead to
reset of the path integrator to agree with the previously constructed place
code (Touretzky and Redish, 1996; Redish and Touretzky, 1998).We assume
that the projection from CA1 and subiculum to the deep layers of entorhinal
cortex can influence the attractor bumps, and that these connections are
established through Hebbian learning when the environment is novel.

To simulate recall of a specific activity pattern, we supplied additional
external input to each of the cells equal to the value of the firing rate fi of
that cell in that pattern. The input was supplied continuously for 200 time
steps via an additional term to Equation 6.2, and it was always successful in
resetting the state of the network. However, weaker inputs, typically those
below 0.25 fi, did not always succeed, and, because of the nonlinear proper-
ties of the attractor network, the effect of this input was state dependent. If
the input pattern was close to the current state, the network settled into a
new minimum energy state that mirrored the input. However, if the input
was nearly orthogonal to the current state, it had little effect, and the bumps
did not move. This suggests that, after brief exposure to an environment or
under conditions in which long-term potentiation (LTP) is impaired, a grid
is more likely to be reset during the rat’s reentry into the environment if the
phase to which it is being reset is similar to its phase just before entry.

6.3 In Vivo Development of the Weight Matrix

6.3.1 General constraints

Although a developmental model of dMEC is beyond the scope of this work,
albeit an intriguing avenue for future research, some insights are provided
here into the developmental processes potentially underlying the construction
of such a matrix.
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space and the dorsal medial entorhinal cortex

Patches of cells within dMEC must first be organized into two-dimensional
sheets. One way to achieve this is by innervation by an afferent cortical
sheet in a localized manner: each dMEC cell receives projections from a
small region within the sheet. Such projections would need to be only
approximately topographic, i.e., the “logical” position of the dMEC cell in
the sheet, as dictated by the source of its afferent projections, does not bear
a strict correspondence with its physical location within the brain. Early
in development within the visual system, a similar imprecision appears to
exist: the chemical markers underlying axonal wiring yield an approximately
retinotopic projection that is then improved based on the spatiotemporal
coactivity of the neurons (Miller et al., 1989; Wong, 1999). This assumption
is important, because anatomically proximate dMEC cells (recorded on the
same tetrode) show firing fields at different phases. However, only a small
amount of jitter in the relationship between logical and physical position
is sufficient to account for the observed heterogeneity of field phase in
neighboring neurons. To illustrate this point, consider the second and third
cells in Figure 6.2B. Although close to each other on the sheet, they have
completely different firing field phases.

To construct the symmetric portion of the weight matrix via Hebbian learn-
ing, dMEC cells would require coincident activity between units that varied
as a radially symmetric, locally weighted periodic function of their distance.
It is important to note that, in the context of Hebbian learning, coincident
activity is a statistical construct. On average, the correlation between units
at distance d should be proportional to Ψ

(
ωdij

)
. However, many possible

sets of activity patterns could give rise to such a correlation structure, and
individual activity patterns need not look anything like the weight matrix it-
self. For example, the weight function used in these simulations was derived
from multi-wave packets of activity propagating across the sheet of dMEC
neurons (see Section 6.3.2).

Furthermore, the specific quantitative formulation of used in these sim-
ulations is not critical to capturing the activity patterns of the grid cells.
Although the used shows two “rings” of excitatory connections, we also tried
functions composed of one and three rings (two- and four-wave packets;
see Section 6.3.2), both of which produced hexagonal activity patterns. The
choice of two rings was based only on our subjective impression that it
produced the most accurate path integration. We also tried a cropped version
of the 0th-order Bessel function of the first kind in which values beyond the
fourth 0 crossing were set to 0; this also produced hexagonal activity patterns.
In fact, in early versions of our model, a completely different function was
successfully used, one based on the product of a sinusoid with a Gaussian.
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6.3 in vivo development of the weight matrix

Thus, any function approximately of the form that we have described should
suffice. The asymmetric portion of the weight matrix is simpler in form and
serves only to translate the bumps across the sheet. Models of the head direc-
tion system have used various weight matrices to achieve translating of an
activity bump around a ring, and our asymmetric weight function is unlikely
to be unique. Hahnloser (2003) showed that integration of an activity bump
on a ring can be learned by a form of anti-Hebbian learning. A similar form
of learning could likely be generalized to a two-dimensional space. Because
the asymmetric connectivity used here only creates interactions between
neighboring neurons within the same activity bump, the asymmetric connec-
tions translate bumps independently of each other, whereas the symmetric
connections enforce the hexagonal lattice structure. Thus, teaching a network
to translate a single bump across a sheet would be sufficient for it to later
translate a lattice of bumps.

6.3.2 Derivation of the weight function

During the development of the visual system, it has been known for some
time that spontaneous waves of activity propagate across the surface of the
retina (for review, see Shatz, 1996; Wong, 1999). These waves have been
observed in several mammals, including rodents. They occur one at a time
(one wave fully propagates across the retina before another is formed), and
the direction of propagation of each wave varies randomly from one to the
next. The waves are believed to serve several roles, including the refinement
of topographical specificity of axonal projections to the LGN and beyond, as
well as ocular specificity by layer in the LGN and by column in visual cortex.

For the purpose of learning the symmetric weight matrix, we consider a
variation on this theme: a “wave packet,” composed of multiple contiguous
waves, propagating across a dMEC sheet, each wave packet traveling in
a different random direction. By passing a wave packet across the sheet,
connections are learned both between units coactivated by the same wave and
between units activated by other waves in the packet. Because the direction of
propagation varies from packet to packet, units develop radially symmetric
weights: one annulus of excitation and inhibition for each wave in the packet.

We simulated a square sheet of 31 × 31 dMEC units. Each unit i was
assigned integral (x, y) positions on the grid from (15, 15) to (15, 15), which
were converted to polar coordinates (ri, θi). The temporal phase of each unit
was defined as follows:

ζi (t) = t− κri sin (θi − θwave) (6.8)
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where κ determines the width of each wave in the packet, and θwave specifies
the direction of travel of the wave packet; a different random value of wave
was picked for each packet. As time t increased, the temporal phase of
each unit advanced. Each wave packet was propagated across the sheet by
clamping the firing rate fi of each unit to a sinusoidal function of its temporal
phase:

fi (t) =

{
ftonic + sin (ζi (t)) 0 6 ζi (t) 6 2πNw

ftonic otherwise
(6.9)

where Nw is the number of waves in the packet. For values of ζi (t) < 0, the
wave packet had yet to reach the unit; for values between 0 and 2πNw, the
unit was somewhere within the packet, and, for values greater than 2πNw,
the entire packet had already passed over the unit. Outside the packet, the
firing rates of the units were set to a baseline tonic activity, ftonic, of 1. Within
the packet, the firing rate of each unit varied from 0 to 2 as a sinusoidal
function of its temporal phase. After each packet finished propagating across
the network, t was reset, a new random value for θwave was chosen, and
propagation of the next packet began.

A form of Hebbian learning was used to shape connections between dMEC
units in the network:

τW

dWlearn
ij

dt
=

(
fi − f̄i

)
fj −Wlearn

ij (6.10)

This learning rule is similar to the Bienenstock-Cooper-Munro (BCM) learn-
ing rule (Bienenstock et al., 1982) in that the average postsynaptic activity f̄i
determines the threshold between weight increase and decrease. However,
the nonlinearity of the BCM rule was removed, making analytic analysis of
the asymptotic weight values tractable. In these simulations, f̄i was set to
ftonic, the true mean activity of each unit. The learning rate τW was slowed
exponentially from 2,000 to 100,000 during the course of training to increase
accuracy by averaging over many packets once the weights were close to
their asymptotic values.

One thousand wave packets, each containing three waves, were successively
driven across the network. A one-dimensional projection of the learned
weights of the center unit is shown in Figure 6.1E (magenta points); weights
of other units were similar. The magnitude of the weight is plotted as a
function of the distance between the center unit and the others in the network.
The three waves in each packet gave rise to a weight profile with a strong
center peak and two progressively weaker peaks at larger distances.

As learning progresses,Wlearn
ij converges to the expected value of

(
fi − f̄i

)
fj
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6.3 in vivo development of the weight matrix

over all wave packets. This expected value can be determined analytically
as a function of the distance d between units i and j. Let ζi be the temporal
phase of some unit i. Outside the packet, fi = f̄i, so dWlearn

ij /dt = 0 We
therefore only consider values of ζi between 0 and 2πNw. Let ζi be the
temporal phase of some unit j. Figure 6.1F shows an example of units i and
j, both within the wave packet. Let us consider unit i to be at some fixed
temporal phase ζi within the packet; thus, varying θwave results in the packet
rotating about unit i. The temporal phase of unit j can therefore be expressed
as a function of ζi, θwave, and the relative positions of the two units on the
sheet:

ζj = ζi − κdij sin
(
θij − θwave

)
(6.11)

where θij is the angle of unit j relative to unit i. By averaging over the
ranges of ζi and θwave, one can calculate the asymptotic values of Wlearn

ij as a
function of the distance between units:

Ψ (κd) =
1

2πNw

∫2πNw

0

1

2π

∫2π

0

(
fi − f̄i

)
fjdθwavedζi (6.12)

The outer integral averages over the range of temporal phases of unit i as the
packet passes over it. The inner integral averages over the various phases of
unit j at a given distance d by averaging over all possible directions of wave
propagation.

To evaluate Equation 6.12, we must consider the piecewise nature of the
firing rate function (see Equation 6.9). Although we assume by construction
that unit i is always within the packet, unit j may or may not be, depending
on the value of wave. Figure 6.1G shows the result of increasing θwave to the
point at which unit j is at the front edge of the wave packet. This value of
θwave will be referred to as θfront,1. Rotating the wave packet further results
in unit j being outside the wave packet. Rotating it further, unit j rejoins
the wave packet at θfront,2. Rotating further, unit j remains within the packet
until θback,1 and is behind the packet until θback,2. Thus, wave values may be
divided into four intervals:

[
θback,2, θfront,1

]
and

[
θfront,2, θback,1

]
when unit jis

within the packet;
[
θfront,1, θfront,2

]
when the packet has yet to pass over unit

j; and
[
θback,1, θback,2

]
when the packet has finished passing over unit j. This
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leads to the following substitution of Equation 6.9 into Equation 6.12:

Ψ (κd) =
1

4π2Nw

∫2πNw

0

[∫ front,1

back,2

(
ftonic + sin ζj

)
sin ζidθwave

+

∫ front,1

back,2

(
ftonic + sin ζj

)
sin ζidθwave

+

∫ front,2

front,1
ftonic sin ζidθwave

+

∫back,2

back,1
ftonic sin ζidθwave

]
dζi (6.13)

The inner integral in Equation 6.12 has been divided into a sum of integrals
in Equation 6.13, each spanning one of the four aforementioned intervals
of wave. The first and second inner integrals are equal and so they are
collapsed together in Equation 6.14. The third and fourth inner integrals
do not contribute to the result because the range of the outer integral is a
multiple of two. Simplifying Equation 6.12 and substituting in Equation 6.11
yields the following:

Ψ (κd) =
1

lπ

∫ l

0

∫ front,1

back,2

(
ftonic + sin

(
ζi + κd sin

(
θij − θwave

)))
sin ζidθwavedζi

(6.14)
where l = 2πNw. Although the intervals of θwave and the value θij depend
on the position of unit j relative to unit i, the value of the inner integral
depends only on the distance between the units because of the rotational
symmetry underlying its construction. Hence, Ψ is simply a function of d.

Equation 6.14 was integrated numerically for many values of d, resulting
in the green line shown in Figure 6.1E. The results of these integrations were
used in the construction of the weight matrices shown in Figure 6.1A-D and
in the simulations shown in Figure 6.2.

6.4 Multiple Grids

As Hafting et al. (2005) point out, a single hexagonal grid of the scale observed
in dMEC is insufficient for path integration because the bump pattern soon
repeats itself, leading to ambiguities in the rat’s location. However, multiple
grids, with different scales and/or orientations, can encode a much larger
space without repetition. More ventrally located cells in dMEC have larger
firing fields and proportionately greater spacing between them; the distance
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6.4 multiple grids

between field peaks varies by at least a factor of two, and cells in different
regions of the dMEC show different grid orientations.

To determine to what extent a conjunctive encoding of multiple grids could
produce unique positional encodings over a large space, we generated a set
of grids of varying spatial frequencies and orientations and computed their
activity patterns at all possible positions in environments of varying sizes. We
used these patterns to drive a population of 2000 simulated “place cells.” The
place cell population activity vectors were then correlated across positions
to quantify how well the population encoding could distinguish positions
over a large space when driven by a set of grid patterns that repeated over
smaller spaces.

6.4.1 Simulating multiple grids

For computational efficiency, simulated grid cell activities were calculated in
closed form. We first defined three basis vectors ~bk, 60◦ apart:

~bk =

[
cos (kπ/3)

sin (kπ/3)

]
for 0 6 k 6 2 (6.15)

Each grid g was assigned a random orientation θg, defining a rotation matrix
Rg that was used to rotate the basis vectors:

Rg =

[
cos θg − sin θg

sin θg cos θg

]
(6.16)

Each grid was also assigned a unique random spatial frequency ωg between
1 and 2. The grid was represented by an 8 × 8 array of units. Each unit i had
a phase offset vector pi that represented its position within the grid; values
ranged from (0, 0) to (4π

√
3, 4π

√
3). Three amplitude functions zg,i,k were

calculated for each grid unit as a function of the environment location, ~x:

zg,i,k (~x) = Rg
~bk (ωg~x+ pi) (6.17)

The variable ~x ranged over a square space with side length L times the period
of the lowest frequency grid, i.e., its values ranged from (0, 0) to (4π

√
3L,

4π
√
3L); values of L up to 10 were simulated. The firing rates of the grid

cells, which were hexagonally periodic functions, were calculated based on
the sum of the three amplitude functions:

fg,i (~x) =
[
cos zg,i,0 (~x) + cos zg,i,1 (~x) + cos zg,i,2 (~x)

]
+

(6.18)
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where [. . .]+ is the semi-linear threshold function that maps negative values
to 0.

To construct a place cell representation based on the conjunctive activities
of the grids, each of the n = 2000 place cells received connections from these
grid cells, at most one grid cell per frequency. The weights W were all of
unit strength, and the phases of grid cells selected to project to each place
cell were chosen at random. The activity of each place cell was calculated as
fj =

[
ξj − ξ98%

]
+

, where

ξj =
∑
g,i

Wj,g,ifg,i (6.19)

and ξ98% is a global inhibition term.

For the place representation to be sparsely coded, as seen in the hippocam-
pus, a simple feed-forward inhibition mechanism was used to reduce the
number of active place cells at any one position to approximately 2% of the
population. The global inhibition term, ξ98%, was calculated as a function of
the average weighted input to the place cell population:

ξ̄ =
1

n

∑
j

ξj (6.20)

The 98th percentile of ξj values was then well approximated by a quadratic
function of ξ̄: ξ98% = c2ξ̄

2 + c1ξ̄+ c0, with coefficients as shown in Table
6.1. ξ98% is monotonically increasing and slightly sublinear over the range of
values in these simulations.

6.4.2 Similarity of population codes within an arena

Grid and place cell activities were calculated over square spaces whose side
length, L, was up to 10 times the period of the lowest spatial frequency grid.
At each position in the space, the place cell population vector was compared
with the vectors at every other position, calculating a correlation coefficient
between each pair of vectors. To measure how well the place cells uniquely
represented each of the positions in the space, each position was associated
with a second position (at least one highest-frequency period away) whose
population vector was the most similar to the first. Correlation coefficients
between pairs of “most similar positions,” rmax, indicated how well the
population represented the space. Values of rmax above 0.5 were considered
to indicate inadequate distinction between positions. Although this threshold
is somewhat arbitrary, other thresholds yielded the same pattern of results.
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Figure 6.3: Multiple grids yield unique place codes. A) Correlations between place
cell population vectors decrease as the number of grids increases. Each line shows
how the percentage of positions for which rmax exceeds 0.5 varies as the size of the
space is increased. The number superimposed on each line indicates the number
of grids used as input to the place cells. B) Correlations are further reduced when
the grid orientations vary. C) When grid cells project sparsely to the place fields
(two grids per cell), place coding does not deteriorate. (Reprinted from Fuhs and
Touretzky, 2006.)
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Figure 6.3A shows how the percentage of positions for which rmax > 0.5
varies with the size of the space and the numbers of grids. For this exper-
iment, the orientations of the grids were the same. With only two grids,
repetition within even smaller spaces was inevitable; population vectors at
each position quickly began to reoccur as the size of the space increased.
However, as more grids were used, progressively larger spaces could be rep-
resented without similar population vectors occurring at multiple positions.

When grid orientations were allowed to vary, additional decorrelation
between population vectors was observed. Figure 6.3B shows the distribution
of rmax when grid orientations were randomized. Clearly, using grids at
varying orientations provides a substantial benefit in representing a large
number of locations.

In the simulations above, each place cell received a projection from a grid
cell in every grid. To explore the effects of a sparser connection structure, the
projection density was reduced to two randomly chosen grids per place cell.
Figure 6.3C shows the effect of this sparsity on the efficacy of the place code.
The results are nearly indistinguishable from the dense connectivity results
in Figure 6.3B.

Place cells tended to have multiple firing fields in the larger environments,
and, when many grids were sampled, the firing fields were randomly dis-
tributed. This would be expected in any sparse code in which individual
units are reused as part of a larger set of patterns, and this has been observed
experimentally (Gerrard et al., 2001). When only a few grids were sampled,
the place cells displayed a somewhat hexagonal arrangement of firing pat-
terns, but this regularity was still limited to localized portions of the space.
In no case did the place fields show the hexagonal regularity of the grid cells
across the entire space.

6.4.3 Partial remapping

With multiple independent grids, resetting the path integrator would require
resetting all of the grids. If only some grids were reset, the result should be
what (Muller et al., 1991) called “partial remapping.” To quantify this effect,
we calculated place cell population vectors for each position in a space four
times the period of the lowest-frequency grid. The population vectors were
calculated twice: during the second run, the phases of Nreset of the grids
were reset to their previous value, whereas the remaining grids were set
to random phase values unrelated to their values during the first run. The
simulations used eight grids of varying spatial frequencies and orientations,
and place cells received either sparse (three grids) or dense (all eight grids)
projections from the grid cell population. The population vector correlations
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between the first and second runs are shown in Figure 6.4A. As the number
of reset grids increased, the similarity of the place code representation also
increased. The number of grids sampled (three vs all eight) had a negligible
effect.

6.4.4 Discordant remapping

Several studies have reported that place cells show discordant remapping
during “double rotations,” when two sets of cues are rotated in equal and
opposite directions (for review, see Section 4.1.5). Specifically, some place
fields rotated with the local track cues, other fields rotated with distal room
cues, and others remapped. Moreover, the activity patterns in CA3 and
CA1 differed. Lee et al. (2004b) found that, whereas CA3 fields rotated
predominantly with one set of cues, CA1 fields rotated in approximately
equal numbers with each set of cues, suggesting that the CA3 and CA1
representations may be formed independently.

The discordant remapping must initially be driven by sensory information.
However, early experiments in darkness suggest that, once formed, some
hippocampal place fields in CA1 persist without the support of visual sensory
information (Quirk et al., 1990). Is it possible that discordant remapping
could persist in darkness as well?

With multiple independent grids, some grid orientations could align with
respect to the local cues, whereas others could align with respect to the distal
cues. To understand the effects of such grid discordance on a place cell
population, we simulated the activity of place cells under two conditions.
In the “standard condition,” grid cell networks were initialized to random
orientations. In the “rotated condition,” the grid networks were divided
into two sets, and the orientations in one set were rotated by 90◦ with
respect to those of the other set. Place field correlations were calculated
to determine whether the fields in the rotated condition were similar to
those in the standard condition (modulo rotation) or whether they bore little
resemblance to the standard configuration field at either rotation angle, i.e.,
they remapped.

Figure 6.4B shows the results. When the number of grids in each set is
equal (four grids each) and place cells are sparsely connected, the distribution
of place cell responses to the double rotation is consistent with those found by
Lee et al. (2004b) in CA1. As one set grows larger than the other, place cells
tend to show fields consistent with the orientation of that set. In this figure,
place field correlations less than 0.5 were taken to indicate remapping. Other
values would change the percentages somewhat; however, values around 0.5
are typical in physiology studies.
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Figure 6.4: Resetting only a subset of the grids during recall of an environment
results in partial remapping. A) Similarity to the original place code increases with
the number of grids that are reset. The joint distribution over 20 runs, each with
different grid spacings and orientations, is shown for each value of Nreset. Box plot
tails indicate the central 95% of the joint distribution. B) Double-rotation experiments
can produce a range of remapping effects depending on the number of grids aligned
with each set of cues. Distributions were based on the average over 20 runs, each
with different grid spacings and orientations. (Reprinted from Fuhs and Touretzky,
2006.)
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6.5 Sensory Modulation of Activity Patterns

Hafting et al. (2005) found that dMEC cells exhibited different peak firing
rates in their various spatial firing fields, and these variations were repro-
ducible during a second session in the same environment. We interpret this
in the following way: dMEC receives sensory or hippocampal input that
varies depending on the animal’s location, and this secondary input exerts a
modulatory influence on the activity levels of dMEC cells without disrupting
the hexagonal activity pattern.

To test this interpretation, we explored whether such a secondary input
could modulate the rates of different neurons in our model in a reproducible
way. A set of 100 random external input patterns was generated, abstractly
representing the input from sensory cortex or hippocampus. A pattern of
hexagonal firing fields was allowed to form in the network. After the firing
fields stabilized, input patterns were applied to the network in the following
way: (1) apply random noise for 10 time steps, (2) apply one of the input
patterns for 10 time steps, (3) take a snapshot of the vector of firing rates,
and repeat. Thus, every 20 time steps, a new pattern was presented for 10
time steps. The purpose of the intervening noise was to eliminate temporal
correlations between successive patterns attributable to hysteresis in the
network. The entire sequence of 100 patterns was presented twice.

The mean of the firing rates across patterns was subtracted from each
snapshot, so that the snapshots reflect input-modulated changes from the
average hexagonal grid pattern. The snapshots from the first and second
presentations were then cross-correlated (Pearson’s r).

Figure 6.5A shows the correlation coefficients across patterns, comparing
the first presentation with the second. The dark diagonal suggests that
the second presentation evokes very similar network activity to the first
presentation and is unrelated to that of the other patterns. Figure 6.5B (top)
is a histogram of the correlation coefficients between the first and second
presentations of the same pattern (i.e., the diagonal elements in Fig. 6.5A);
all correlations are tightly clustered above 0.8. The middle histogram shows
correlation coefficients between the first presentation of pattern i and the
second presentation of another pattern, that which evoked the closest network
activity to that of pattern i. In all cases, the next closest matching pattern has
a dramatically lower correlation coefficient. The bottom histogram shows all
off-diagonal correlation values from the correlation coefficient matrix shown
in Figure 6.5A.

To assess the ability of individual hippocampal cells with limited fan-in to
discriminate between these sensory patterns imposed on the same array of
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Figure 6.5: Sensory modulation of grid cell activity. A) One hundred random input
patterns produce population activity vectors that are clearly distinguishable from
each other. B) Histogram of correlation coefficients between pattern i and the second
presentation of the same pattern (top), the second presentation of the next closest
matching pattern (middle), and all patterns other than i (bottom). C, D) Same as A
and B except the results were recalculated using a 20 unit subset of the place cell
population. (Reprinted from Fuhs and Touretzky, 2006.)
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activity bumps, we recalculated the correlations using a randomly selected
subset of 20 units with nonzero activity instead of the full population. Pattern
discrimination is still feasible, and the results are shown in Figure 6.5C-D.

6.6 Discussion

6.6.1 Summary of properties of dMEC cells

The following points summarize the account of our model of the extant data
on grid cells in dMEC and present predictions from the model for future
studies.

1. Dorsal MEC cells exhibit multiple spatial firing fields arranged in a
hexagonal lattice. These are expressed immediately in a novel environment,
show a constant phase relationship between cells across environments, and
do not change scale with the size of the arena.

Explanation: Local, radially symmetric on-center / off-surround connections
produce an attractor network whose stable states are a two-dimensional
toroidal manifold of hexagonally periodic activity patterns. (Note that,
whereas the state space manifold is toroidal, the network connectivity is
a simple sheet.) Different neurons in the same network are most active at
different phases of the periodic pattern, but the firing fields of all units will
show the same orientation and spacing.

The model occasionally settles into stable states with local irregularities in
the network activity pattern, e.g., a pentagonal or heptagonal bump cluster.
Such irregularities are caused by frustration among the arrangement of
bumps as they form, not properties of specific neurons in the system. From
this, an important prediction follows: when such irregularities are observed,
they should be environment specific. Although not explicitly addressed by
Hafting et al. (2005), the cell shown in their Figure 6 appears to bear this
out: the field of the cell looks hexagonal in the familiar environment and
heptagonal in the novel environment.

2. The size and spacing of fields is similar among neighboring neurons but
varies systematically along the dorsoventral axis.

Explanation: As Hafting et al. (2005) point out, neighboring neurons in
dMEC are likely coupled together as part of one of many local neural
networks. Simulations show that multiple independent networks provide a
basis for constructing a representation of space over a substantially larger
domain than the periodicity of any one network.
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The size and spacing of fields is determined by two factors in our model.
The first is the parameter, which determines the spatial frequency of bumps
on the neural sheet. The second is the strength of velocity, which determines
how far the bumps are translated across the sheet per unit of travel in the
environment. Increasing the rate of bump shift relative to physical movement
shrinks the size and spacing of nodes in the field of a cell. Decreasing this
ratio expands the node size and spacing. One should be able to determine
whether velocity modulation differences account for field size variations:
cells with tightly packed fields should show stronger changes in firing rate
as a function of the animal’s velocity than cells with larger, more dispersed
fields. Evidence of this has been observed downstream in the hippocampus
(Maurer et al., 2005).

Amaral et al. (1990) estimated that there were 200,000 layer II entorhinal
cortical cells that projected to the dentate gyrus (DG). If the number of cells
in dMEC is approximately one quarter of that, then 17 networks of the size
simulated here could be embedded within layer II. However, grid cells have
also been found in layers III, V, and VI of dMEC Sargolini et al. (2006), so
the number of grid networks, or the number of cells per network, could be
substantially higher than our model assumes.

3. The orientation of fields is similar among neighboring neurons but varies
over the dorsoventral axis and is not preserved across environments. (But
see Section 6.6.2.)

Explanation: Radially symmetric connections allow each network to settle
into a bump array with any orientation. Simulations show that this hetero-
geneity of orientations provides a superior representation for constructing a
place representation over a large space.

4. Across multiple sessions in the same environment, phase and orientation
of a firing field of a cell, and firing rate differences between its peaks, are all
reproducible, whereas in different environments, they are different.

Explanation: The ability to restore the state of a grid cell network to an
earlier state is similar to the previously studied recall problem in single-
bump attractor networks. Without such coherent input, the network settles
into a random stable state. Failing to reset some of the networks or resetting
them discordantly may reinforce partial or discordant remapping in the
hippocampus. Variations in peak firing rates among individual nodes of
activity can be caused by afferent input without disrupting the hexagonal
firing patterns in the network, and these inputs can be distinguished from
one another based on the firing rates of the network.
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5. In darkness, spacing, mean firing rate, and spatial information did not
change, but the fields shifted somewhat relative to the lighted condition.

Explanation: Relative phases and orientations of different grid fields should
persist in the dark because they are a product of attractor dynamics, not
sensory input. However, field drift attributable to path integration error
will accumulate in the absence of sensory information that can maintain
alignment of the fields with external landmarks.

6. Grid cells show weak velocity modulation.

Explanation: In order to perform path integration, the model critically relies
on a velocity signal, so the existence of a similar signal in vivo was a strong
prediction of the model. However, the attractor dynamics of a network
tend to dampen the impact of the velocity input on the firing rate of a cell,
predicting that grid cells will show some velocity modulation, but it will
be small relative to the range of firing rates of the cell. It has since been
confirmed that cells in layers III, V and VI are modulated both by the animal’s
speed (weakly) and direction (to varying degrees) (Sargolini et al., 2006; see
Section 3.2.2).

6.6.2 Neural architecture of grid cell networks

In the idealized architecture presented here, all units use the same weight
pattern, rotated to reflect their preferred direction, and all cells show velocity
tuning. There are asymmetric connections between cells of similar direc-
tional bias, with progressively more symmetric connections between cells of
differing directional biases. The Sargolini et al. (2006) results suggest an alter-
native architecture that divides the roles of the two connection types. In this
scenario, two populations of dMEC cells would interact. The symmetrically
weighted cells would enforce the hexagonal periodicity of firing patterns,
whereas the asymmetric cells would shift these patterns during movement.
Only the latter population should show velocity modulation.

A recent computational model of dMEC by McNaughton et al. (2006)
explores this architecture. However, there are several other more fundamental
differences as well. The McNaughton et al. (2006) model is constructed using
a set of hexagonal activity patterns to train a hexagonally toroidal network.
This results in a model that differs from the one presented here in three
as-yet untested ways:

1. Irregularities in the lattice structure of activity nodes. While the model
presented here is able to show irregular lattice structures (e.g. hep-
tagons, pentagons), the hexagonal periodicity is hard-wired into the
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network topology in the McNaughton et al. (2006) model. Thus, future
data substantiating the regular occurrence of lattice irregularities would
rule out the McNaughton et al. (2006) model, and, more generally, lend
support to the notion, as developed here, that the hexagonal periodicity
emerges out of a stability constraint on what patterns are stable within
the network, as opposed to a topological constraint that mandates
hexagonal periodicity.

2. Fixed orientation of the lattice. In contrast to Hafting et al. (2005),
McNaughton et al. (2006) assert that it is not currently known whether
grid orientations vary within one animal. That the orientations of grid
cell fields vary can be accounted for by differences in the head direction
system, since the direction of shift on the grid cell network relative
to the direction of travel in space is a free parameter. In the model
presented here, the same network is capable of adopting multiple
orientations. Thus, this model predicts that it should be possible to
see relative changes in the orientations of two simultaneously recorded
grid cell fields if they are recorded from different grid cell networks (i.e.
by varying the dorsoventral position of the two recording electrodes).

3. Same lattice orientation among all grid networks. The training regimen
used by McNaughton et al. (2006) involves afferent hexagonally periodic
activity patterns at a fixed orientation. Thus, in contrast to the present
model, they predict that the lattice orientation of different grid cell
networks will be the same.

Given the significant architectural differences between the two models, future
experimental work to study these issues would provide great insight into the
neural architectural of grid cell networks.

6.6.3 dMEC impact on hippocampal remapping

Redish and Touretzky (1997) argued that navigation was likely accomplished
using a set of interdependent representations, two of which were the hip-
pocampal “place” representation, which provided an environment-specific
place code, and a universal coordinate map to support path integration based
on vestibular and motor information. In their theory, these two representa-
tions were tightly coupled: in cue-deficient conditions, the hippocampal place
representation could be updated based on idiothetic movement information,
whereas in cue-rich conditions, cumulative error in the PI could be corrected
by efferent projections from the place code, whose representation is strongly
driven by sensory information. Thus, in a novel environment, a bidirectional
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mapping is learned between PI coordinates and hippocampal representations
of place. When returning to a familiar environment, it follows that the PI
system would have to be reset to realign it with the animal?s present location.
Failure to reset the system would result in complete hippocampal remapping
(Redish and Touretzky, 1998).

Recent data has shed light on the possibility that the hippocampal remap-
ping phenomenon may be mediated by a set of distinct (if interdependent)
processes. Specifically, there appears to be evidence that, in novel environ-
ments, CA1 and CA3 representations form independently (Leutgeb et al.,
2004; Lee et al., 2004a; Wilson et al., 2005). Place fields in CA1 are observed
even when the Schaffer collateral projection from CA3 is severed (Brun et al.,
2002). This suggests that immediate CA1 remapping is mediated by an
extrahippocampal process such as the failure to reset the grid cell networks
in dMEC.

In contrast, the gradual remapping in CA1 that manifests over many days
of exposure is likely to be intrahippocampally mediated. When visual cues
were reshaped (Lever et al., 2002) or repositioned either with respect to
each other (Shapiro et al., 1997; Jeffery, 2000) or in conflict with vestibular
information (Sharp et al., 1995), the number of CA1 cells that remapped
during each successive experimental manipulation progressively increased.
Preliminary evidence from recordings in DG shows heightened sensitivity to
arena shape changes in DG relative to CA3 (Leutgeb et al., 2005a), suggesting
that, with experience, this remapping is propagated along the trisynaptic
pathway from DG to CA1. Such DG sensitivity is consistent with behavioral
data showing that DG lesions impair the rats’ ability to distinguish two
locations only if they are nearby (Gilbert et al., 2001).

Together, these data suggest that hippocampal remapping attributable to
gross environmental changes (or deficient LTP) may be caused by a failure to
reset the dMEC grid cells, whereas subtle changes to spatial relationships
between landmarks may be detected within the hippocampus and gradually
propagated into CA1 in an experience-dependent manner.
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7
C O N T E X T A N D T H E H I P P O C A M P U S

“Context is an elusive concept.”
– Kubie and Ranck (1983)

7.1 Introduction

Several theories have posited that the hippocampus is responsible for pro-
viding a representation of context, and that this representation underpins an
animal’s performance of a variety of tasks sensitive to hippocampal lesions
(Hirsh, 1974; Nadel and Willner, 1980; Jarrard, 1993; Levy, 1996; Wallenstein
et al., 1998; Redish, 1999, 2001; Hasselmo and Eichenbaum, 2005). These
tasks include spatial navigation, sequence learning, and hippocampal lesion-
sensitive conditioning paradigms such as reversal learning (for review, see
Chapter 5). Models have typically focused on one or two of these domains
(Levy, 1989; Schmajuk and DiCarlo, 1992; Gluck and Myers, 1993; Levy, 1996;
Samsonovich and McNaughton, 1997; Wallenstein and Hasselmo, 1998; Re-
dish and Touretzky, 1998; Doboli et al., 2000; Hasselmo et al., 2002; Hasselmo
and Eichenbaum, 2005), developing mechanisms of context learning that
are well tailored to the domain of study but do not generalize well across
domains.

Moreover, empirical data from both lesion and physiology studies has
called into question the viability of existing models. Attractor models of
hippocampal place cell remapping (Samsonovich and McNaughton, 1997;
Redish and Touretzky, 1998; Tsodyks, 1999; Doboli et al., 2000) cannot ac-
count for the gradual separation of maps between similar environments
(Jeffery, 2000; Lever et al., 2002). Hippocampal models addressing reversal
learning (Schmajuk and DiCarlo, 1992; Gluck and Myers, 1993; Hasselmo
et al., 2002) fail to capture the experimental observation that, after a series
of discrimination reversals, rats can learn to reverse behavior after a single
trial (Buytendijk, 1930; Dufort et al., 1954; Pubols, 1962). Models of sequence
learning (Levy, 1989, 1996; Wallenstein and Hasselmo, 1998) are challenged
by the failure to find sequence-dependent differences in hippocampal place
cell activity in some studies (Lenck-Santini et al., 2001; Hölscher et al., 2004;
Bower et al., 2005).

While these previous modeling efforts have offered neural mechanisms
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to explain how the hippocampus remaps, the present work focuses on a
related but distinct question: why does the hippocampus remap? More
specifically, if remapping serves to create a representation of context, then
understanding remapping across problem domains requires a general and
concrete definition of what a context is. We propose that context learning
may be formalized as decomposing a non-stationary world of hippocampal
input patterns (and the sensory input and behaviors they represent) into
multiple domains, or contexts, within which the distribution of these input
patterns is stationary. What critically defines a context is therefore not a
particular class of stimuli (e.g. background cues) or behaviors (e.g. random
vs. directed foraging), but a set of time windows within which the statistical
structure of sensory experiences and behaviors is stable.

Such a definition of context advances its role in prediction: if recent
experiences suggest that the present context is C, then other prior knowledge
about context C should also be applicable for the foreseeable future (i.e., until
the context changes). The predictive power of a context is determined both by
the temporal duration of the context and the (systematic) variability within a
context. Contexts that generally last only a short duration fail to be useful
in prediction because of the high probability that a different context with
different contingencies will soon become active. Contexts that encompass
a highly variable set of sensory experiences and behaviors are also poor
predictors insofar as they do not delineate among the many possibilities
within the context.

As a concrete example, consider the serial reversal learning task in which
animals must make a choice between two alternatives (levers, maze arms,
etc.). During odd blocks of trials, one choice is rewarded; during even blocks,
the other is rewarded. As training progresses, the two reward contingencies
may be codified as two different contexts, each with a static reward structure
in which only choice one is rewarded (context 1) or only choice two is
rewarded (context 2). Thus, when a particular choice is rewarded (or is not
rewarded), it suggests which of the two contexts is active, thereby predicting
that that choice will be rewarded on subsequent trials as well. If, however,
both reward contingencies were grouped together in the same context, the
identity of the active context would not be useful in predicting an optimal
behavioral strategy. By contrast, in a random foraging paradigm, the random
scattering of food within the environment ensures that the reward location
is unpredictable. Dissecting a random foraging session into a large number
of contexts, each representing a distinct location at which food was found,
would result in a complex contextual representation with no predictive value.

Inferring the most informative context model is therefore the central prob-
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lem of interest. In this article, we formulate context learning as a model
selection problem: into how many contexts should the world be divided? We
develop a statistical framework for context learning based on the hypothe-
sis that the degree of remapping in hippocampus reflects two independent
factors: the degree of similarity between contexts and the animal’s confi-
dence that the two contexts are in fact distinct. The framework shows how
contextual representations should evolve over time as the animal progresses
through a training regimen, whether that regimen involves different environ-
ments, reward contingencies, or sequences. Within the framework, model
selection is biased to prefer contexts that are active for longer periods of time,
a key constraint that explains the development of hippocampal contextual
representations in spatial and reversal learning paradigms and justifies their
absence in overlapping sequence learning. The framework also distinguishes
between context learning (inferring the context model), which may be a
gradual process over many blocks of trials, and context selection (inferring
the current context given a context model), which should be a more abrupt
phenomenon. This distinction is critical to understanding serial reversal
learning: substantial training is required for rats to achieve single-trial re-
versals, but, once trained, single trial reversals can be realized as a context
switch. Several testable predictions are made to motivate future experimental
work.

7.2 A Statistical Framework for Context Learning

7.2.1 Overview

Hidden Markov models and hippocampal activity patterns. We model context
learning as a process in which the hippocampus constructs a generative
model of its inputs. Within our statistical framework, which is based on
hidden Markov models (HMMs), generative models are composed of states
and contexts. An HMM with a given number of states is parameterized
by a distribution of expected values for each state and a transition matrix,
which expresses the probability of transition from one state to another. Each
state represents a conjunctive encoding of the hippocampal input and may
be thought of as a particular hippocampal activity pattern. Different states
are therefore used to represent different positions within an environment or
different stages in a task.

A context is simply a group of states. States are grouped together into
contexts such that, while state transitions are frequent, transitions between
states in different contexts are rare. Transition probabilities between states
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within the same context are not constrained, and each is individually param-
eterized, but the transition probability between states in different contexts
is fixed at a small value. If, for a particular model, context switches occur
frequently, the goodness of fit of the model will therefore be judged to be
low. Thus, the fixed inter-context transition probability encourages context
switches to be rare, or, inversely, context durations to be long.

What is the relationship between states, contexts, and hippocampal activity
patterns? In an HMM, states are “identifiable” in the sense that there is an
abstract label for each state that is independent of its particular parameters.
This permits an HMM to contain multiple distinct states with the same
parameters. This state identifiability is a theoretical construct that we view
as unreasonable to apply to the hippocampus. Rather, we argue for weaker
identifiability constraints:

• States within a context are distinguished only by their expected obser-
vations. Thus, within a context, different hippocampal activity patterns
can only be observed when different input patterns are presented.

• Contexts are identifiable, i.e. the hippocampus forms a latent represen-
tation of context. This implies that the same input pattern presented
in two different contexts will result in different hippocampal activity
patterns.

These constraints suggest that an observed hippocampal activity pattern
(i.e. the currently active state) is determined by two factors: afferent activity
and the currently active context. Intuitively, when the same input pattern
is represented by multiple hippocampal codes, each code must be part of
a different context. These constraints are closely related to the behavior of
latent attractors (Doboli et al., 2000), where network activity is determined
both by the input pattern driving the network and the network’s current
attractor basin (which represents the current context).

In order to handle input pattern noise, each state is parameterized by a
distribution of input patterns. Thus, determining which state is active is a
(minor) statistical inference problem, requiring the determination of the state
under which the input pattern is most likely. This is qualitatively similar
to pattern completion in associative memory models, where the network
activity pattern resulting from a noisy input is made more similar to the
best matching previously stored pattern. Several theories have implicated
the hippocampus in conjunctive encoding (e.g. Rudy and Sutherland, 1995)
and associative memory function (Marr, 1971; O’Reilly and McClelland,
1994; Rolls, 1996), and the present formulation is not incompatible with
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these notions. However, the present work focuses not on the utility of the
individual states but on their contextual organization.

Adopting new models. In the hippocampus, new experimental conditions are
observed to cause the creation of new place cell maps. In the model, a new
experimental condition is represented by augmenting the current HMM with
new states in a new model context. Given that the input patterns are noisy,
under what conditions should a new context be added to the model? A
larger, more complex model, one with more contexts, will inevitably provide
a better fit of the input patterns. However, one should distinguish the extent
to which the model is fitting the statistical structure of the inputs from the
extent it is better fitting the noise.

In a Bayesian setting, a model should be adopted when its posterior
likelihood is higher than competing models. This posterior probability
accounts for the complexity of the model by averaging the goodness of fit of
the model over the prior uncertainty in the model’s parameterization. Larger
models have more parameter values that must be specified, so the prior
probability of any particular parameterization is lower. Larger models are
therefore implicitly penalized for the size of their parameter space.

In clear cases, such as when entering a completely new and different
environment, the sensory input would differ strongly from what is expected
by any state under the “current” model. A larger model, augmented with a
group of states for the new environment, would therefore be immediately
justifiable. In more subtle cases, such as when a new environment is similar
to a familiar environment, the posterior likelihood of the larger model would
rise more gradually as the animal gains more experience in each environment.
This increasing experience offsets the penalty caused by the larger model’s
added complexity.

A distributed neural representation of context allows multiple models to
be expressed simultaneously. Returning to the two-environment example, if a
larger model were only weakly favored over a smaller one, then it is possible
for some cells to represent the larger model, distinguishing between the two
environments, while other cells represent the smaller model, showing the
same firing patterns in both. We interpret gradual increases in the number of
cells that remap between contexts (gradual remapping) as observed by Lever
et al. (2002) and others as a reflection of the relative degree of acceptance of
each model: the increasing degree of remapping between two environments
reflects the increased statistical likelihood of a model that represents them as
two separate contexts.
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Independent and dependent contexts. Consider again the case of two similar
environments, i.e. where the input patterns at corresponding positions in
each environment are similar. These two environments could be represented
by a one-context HMM, where each of the p states represents a corresponding
position in the two environments. Each state would therefore be optimally
parameterized when tuned to the distribution of input patterns observed at
that position in either environment. The two environments could also be
represented by a two-context HMM, where two different groups of states,
each of size p, represent the two environments. Such a two-context model
would have double the number of parameters, and the Schwarz criterion
(Schwarz, 1978) suggests that this corresponds to a quadratic increase in
complexity.

Penalized for such high complexity, preliminary simulations showed that,
compared to a one-context model, a two-context model would be consid-
ered astronomically improbable until after substantial experience in both
environments. This would predict that, without substantial experience, rats
should never show any remapping between similar environments, a finding
incompatible with the observation of gradual remapping.

Instead of asking whether there is sufficient evidence to justify the com-
plexity of an entirely new context, one might ask whether there is sufficient
evidence to justify the complexity required to express how the second envi-
ronment differs from the first. If the two environments are similar, then it
may be simpler to express this difference than to express the second envi-
ronment independently. This is tantamount to assuming a priori that the two
contexts are related, but that their differences may nonetheless be valuable to
represent in separate contexts.

A two-level contextual hierarchy is therefore considered in which contexts
may either be independent or dependent. At the top level are independent
contexts, whose states’ parameters are not statistically associated with those
in any other independent context. The creation of an independent context
must be justified with respect to the complexity of its entire set of parameters,
which is easily done when the animal enters an environment clearly unrelated
to any other. At the second level are dependent contexts, each of which
is associated with an independent context. Specifically, each state in a
dependent context is paired with a corresponding state in an independent
context, and states in the dependent context may share parameters with
states in that independent context. In addition, the expected hippocampal
inputs of states in the dependent contexts are assumed to be similar to those
of the states in their respective independent contexts. This reduces the added
complexity of the dependent context to more accurately reflect the degree to
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which it differs from the independent context.

There is a growing body of evidence to support the notion that similar
contexts are not represented independently in vivo. Very similar contexts
show partially overlapping representations (partial remapping), especially
when only a change in task is involved (e.g. Markus et al., 1995; Shapiro et al.,
1997; Skaggs and McNaughton, 1998; Wood et al., 2000; Jeffery, 2000). Even
between contexts with more pronounced differences (arena wall shape or
color changes), the type of remapping observed primarily involves a change
in firing rate, but not of the location of the place field (Leutgeb et al., 2005c).
We therefore interpret the degree of remapping to be determined, in the
asymptote, by the similarity of the contexts. With little experience, the degree
of remapping is even less, reflecting the uncertainty that the two contexts are
distinct. We do not propose a specific similarity metric – any such metric
would vary among subjects – but such a metric should be monotonic: changes
that make two contexts more different should not result in less remapping.

Even if the contexts are not independent, why should one be represented
as an independent context and the other as a dependent context? (In other
words, why not represent them symmetrically as two co-dependent contexts
without introducing an explicit hierarchy?) The asymmetry allows the
models to be nested, which provides a more direct relationship between
model contexts and place cell activity patterns. Consider an experiment
involving two similar environmental contexts (E1 and E2). Before the start of
the experiment, the animal has contextual representations only for its home
cage, a transport box, etc.; let this be context model M0. Upon introduction
to E1, which is nothing like any previously experienced context, a new
model is immediately adopted, M1 = M0 ∪ {I1}, i.e. all contexts in Mo

and an independent context I1 for E1. Subsequent exposure to E2 leads
to consideration of M2 = M1 ∪

{
D

I1
2

}
= M0 ∪

{
I1,DI1

2

}
, where DI1

2 is a
dependent context associated with I1 that represents E2. As more experience
is acquired in E1 and E2, the relative likelihood of M2 will gradually increase.
Given a nested model structure, the only change from M1 to M2 involves
the creation of a new context DI1

2 for E2. The model context I1 for E1 exists
(has been statistically justified) independently of any experiences in E2. Thus,
the most parsimonious hippocampal representational change would involve
the creation of a contextual representation for E2 without changing the
representations of any other contexts.

Gradual remapping appears to show such an asymmetry. Lever et al.
(2002) first exposed rats to a cylindrical arena (E1), then a square arena
(E2). Over the course of many subsequent exposures to both arenas, rats
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gradually remapped between them. The observed pattern of remapping
suggests that the activity of place cells in the square arena (E2) diverged
from the cylindrical arena E1; in contrast, fields in the cylindrical arena (E1)
appeared stable over several days.

It should be noted that, whereas the experiments and simulations in this
study focus on learning to distinguish two contexts, the statistical framework
outlined here can be extended in a straightforward manner to allow an
arbitrary number of dependent contexts.

In the following subsections, a detailed description is provided of how
simulated hippocampal inputs are constructed, how HMMs with indepen-
dent and dependent contexts are defined, and how the posterior likelihood
of different models is calculated.

7.2.2 Simulated hippocampal inputs

While the inputs to the hippocampus are very high dimensional, input
patterns to the model, for computational simplicity, were formulated as
noisy scalar values. Input patterns were generated based on a simulated
“ground truth” of the animal’s actual state (location, task stage, etc.) in the
world. These environmental states (“e-states”) compose the true generative
model, not to be confused with states in the hippocampal HMM model. Each
e-state was assigned a positive index i, and the hippocampal input value
y generated for that e-state was 8 (i−n/2) + η, where n is the number of
e-states in the environment and η is a Gaussian noise term; the y values
are therefore roughly centered around 0, as expected under the prior (see
below). The standard deviation of the noise term was 0.125, which ensures
that different e-states within an environmental context are unambiguously
distinct.

To simulate an experiment involving multiple sequences or tasks, a single
set of e-states was used; only their order of presentation changed. For
example, multiple spatial sequences were simulated using the same set of
position e-states, but the order of visited positions was different for each
sequence. To simulate small environmental changes, each e-state’s input
value was mildly perturbed (see specific simulations for details).

Experiments were modeled in discrete time: each discrete time step had
an associated e-state. To model a specific experimental paradigm of duration
T , a sequence of T e-states was produced, representing the entire course of
the experiment over many days. A sequence of hippocampal inputs, y1...T ,
was then generated based on the e-state sequence.
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7.2.3 Hidden Markov models with independent and dependent contexts

Our simulations used Gaussian HMMs as a model of the hippocampal
representation of its input patterns. By using HMMs, we do not intend to
suggest that the hippocampus is a finite state machine; rather, HMMs provide
a convenient statistical framework in which to represent both a mixture of
many different input patterns and their temporal structure (or a Markov
approximation thereof).

Formally, a Gaussian HMM is composed of a set ofNS states, each of which
is parameterized by a Normal distribution of expected values, N

(
µs,σ2

s

)
. A

transition probability matrix, Aji, defines the probability of transitioning from
state i to state j at each time step. Additionally, a starting state probability
p0 must be specified; in these simulations, the starting state probability was
assumed to be uniform over all states.

In the present framework, states are organized into multiple contexts,
an organization realized by restrictions placed on transition probabilities.
Transition probabilities between states in the same context could vary to fit
the observed sequence of transitions in y. However, the sum of transition
probabilities to all states in other contexts was fixed at γ = 0.05. This is the
critical parameter that determines how strongly models are biased against
context changes.

If the total between-context transition probability is γ, what is the transition
probability from some state s to some other state s ′ in a different context?
This is defined based on a hierarchical organization of states and contexts.
Consider a model Mk composed of NS states, S1 . . . SNS

. These states are
organized into NC contexts, C1 . . . CNC

. Contexts are organized into NG

context groups, G1 . . . GNG
, where each context group contains exactly one

independent context and any dependent contexts associated with it. For
the purpose of defining transition probabilities, the model Mk is therefore
organized as a mixture of context groups, each context group a mixture of
contexts, each context a mixture of states. For each mixture, the component
probabilities are set to be equal. Thus, the probability of transitioning to a
particular context group, Gg, is p1 = 1/NG. The probability of transitioning
to a particular context in that group is p2 = 1/ |Gg|, the inverse of the number
of contexts in group Gg. The probability of transitioning to a particular state
in that context is p3 = 1/ |Cc|, the inverse of the number of states in context
Cc. Thus, the probability of transitioning from state s to state s ′ is γp1p2p3.
When the values p1 and p2 are calculated, the context of s is first excluded,
since these transitions are only between states in different contexts.

The hierarchical organization of contexts helps us take into account the
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fact that there are other unrelated contexts outside of the experimental
apparatuses. A fixed value of NG is used to reflect that the transition
probabilities among unrelated contexts would not change with the addition of
one or two more. For the multiple environments simulations, NG = 3, since
up to three independent contexts are considered; for the other simulations,
NG = 1. (How exposure to just a few or to many completely different
environments affects remapping is not known, but an increased willingness
to remap after experiencing many previous environments would argue
instead that NG is explicitly represented in the hippocampus.)

We now describe how states in independent and dependent contexts are
parameterized. In particular, we describe a model in which a state in a
dependent context may share parameters with a state in an independent
context, and the prior probabilities of parameters in dependent contexts
may depend on corresponding parameters in their respective independent
contexts. Qualitatively, the particular scheme for parameter sharing and the
priors used here have a singular purpose: to reduce the size of the parameter
space (i.e. the complexity) of the dependent context. Other formulations that
achieve the same goal would have been equally acceptable, so readers not
well-versed in statistics may safely skip the remainder of this section.

To define the parameters of a model, consider a state ŝ in a dependent
context and its corresponding state s in the associated independent context.
The independent state’s parameters are defined purely in terms of the state’s
transition probability vector, ~as, and mean and variance terms, µs and σ2

s :

A∗s = ~as (7.1)

p (y|s) ∼ N
(
µs,σ2

s

)
(7.2)

where A∗s denotes a row of the HMM’s transition probability matrix and y
is the observed input pattern. The dependent state ŝ is defined with respect
to both the set of parameters for state s and a set of parameters unique to
state ŝ:

A∗ŝ = (1− zŝ) ~as + zŝ ~aŝ (7.3)

p (y|ŝ) ∼ (1− ζŝ)N
(
µs,σ2

s

)
+ ζŝN

(
µŝ,σ2

ŝ

)
(7.4)

The mixing parameters zŝ and ζŝ govern the relative contribution of each
component. This allows a dependent state to, for example, share the same
transition probability vector with its corresponding independent state (zŝ ≈
0), but adopt a different distribution of y values (ζŝ ≈ 1). When a mixing
parameter is close to zero, the second mixture component plays no role in
the likelihood of y under the model, thus reducing the model’s effective

120



7.2 a statistical framework for context learning

HMM Parameters Prior Value
Transition probabilities ~a δa 0.8
Parameter sharing probabilities zŝ and ζŝ δ1, δ2 0.1, 0.05
Mean of µs ξ 0
Inverse variance of µs κ1 0.01
Inverse variance of µŝ κ2 4
Shape parameter of σ−2

s α1 2
Shape parameter of σ−2

ŝ α2 10
Rate parameter of σ−2

s β1 0.1
Offset of mean of µŝ from µs h 0.4

Table 7.1: Hyperparameter values that define the prior distributions over each
parameter.

complexity.
The prior over each mixing parameter was a highly sparse beta distribution

that mildly favored smaller values: zŝ ∼ B(δ1, δ2) and ζŝ ∼ B(δ1, δ2). All fixed
hyperparameters are listed in Table 7.1. For the first components’ parame-
ters, vague priors were used: ~as ∼ Dirichlet (δa, δa, . . . , δa), µs ∼ N

(
ξ, κ−1

1

)
,

σ−2
s ∼ Γ (α1,β1). The prior over each ~aŝ was the same as ~as. The priors

for µŝ and σŝ were biased to be somewhat similar to µs and σs, further
reducing the dependent context’s contribution to the complexity penalty:
µŝ ∼ N

(
µs + h, κ−1

2

)
and σ−2

ŝ ∼ Γ
(
α2,α2σ

2
s

)
. The purpose of h was to en-

courage model parameterizations in which ζŝ = 0 instead of ζŝ = 1 and
µŝ = µs,1. A more sophisticated approach might involve splice sampling
from the non-conjugate prior µŝ ∼ I (µs, r)N

(
µs, κ−1

2

)
, where the indica-

tor function I is zero over some interval around the mean, [µs − r,µs + r];
however, the simpler procedure was sufficient for our simulations.

7.2.4 State inference and model selection

Let Mk denote a model composed of Nk
S states grouped into Nk

C contexts.

Let θk =
(
~z, ~ζ,A, ~µ,~σ2

)
denote the parameters of the states in Mk. Given a

sequence of noisy inputs, y1...T , the state inference problem is to infer under
which sequence of states the inputs are most probable. For state inference,
it is assumed that both Mk and θk are known, and that the HMM is the
generative model of y1...T , i.e. each HMM state corresponds to an e-state in
the world. Thus, inferring the HMM state serves as a proxy for inferring the
true e-state. This is traditionally done using the Viterbi algorithm (Viterbi,
1967).

The context learning problem can be understood as part of the more
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fundamental problem of inferring the generative model of the input patterns:
given the sequence y1...T , infer the HMM most likely to have generated
it. This can be decomposed into two parts: model parameterization and
model selection. Model parameterization involves inferring the most likely
set of parameters, θk, given an HMM Mk with a known structure. Model
selection involves inferring which model structure is most likely out of a set
of candidates, typically with different numbers of states.

While model selection in a machine learning context typically involves
a single batch analysis, the hippocampus provides some representation
of context even in completely novel environments. Multiple models with
different numbers of contexts were therefore compared based on initial
subsequences, y1...τ, τ < T . As τ increased, the models were provided
with progressively more input patterns to fit, resulting in changes in their
likelihoods.

In a Bayesian setting, models are compared based on relative likelihoods,
given the observed data (y1...T ). Assuming equal prior probability across
models, this can be reduced to calculating the odds of y1...T under each
model:

Bk` =
P (y1...τ|Mk)

P (y1...τ|M`)
(7.5)

This is known as the Bayes factor (for review, see Kass and Raftery, 1995),
and all model comparisons calculated will be presented as a log Bayes factor.
p (y1...τ|Mk) is the marginal likelihood of y1...T under Mk, marginalized
over the entire parameter space:

p (y1...τ|Mk) =

∫
θ∈Θ

p (y1...τ|θk,Mk)p (θk|Mk)dθk (7.6)

where p (y1...τ|θk,Mk) is the conditional probability of the inputs given a
particular parameterization of the model, and p (θk|Mk) is the prior proba-
bility density over the parameter space.

As mentioned above, Equation 7.6 provides an implicit complexity penalty.
Importantly, while p

(
y1...τ|θ∗k,Mk

)
depends on y1...τ, p (θk|Mk) does not.

Since the difference in conditional probability between models typically
grows with the length of y1...τ, the Bayes factor asymptotically determines
by how well each model fits y1...τ. However, for smaller input sequences
(τ� T), the prior uncertainty over the parameter space, p (θk|Mk), can
strongly influence the Bayes factor.

The computational challenge in calculating Bayes factors is to accurately
calculate p (y1...τ|Mk), which requires integration over the parameter space
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(Equation 7.6). A closed-form solution does not exist, but any accurate
numerical approximation method is equally acceptable, and the results
presented here do not depend on the particular method employed. We use a
Monte Carlo integration technique described in the following section.

7.2.5 Estimating marginal model probabilities

For these simulations, Equation 7.6 was numerically approximated by Monte
Carlo integration of the parameter samples using an importance distribution.
The importance distribution was constructed in an automated fashion using
500 samples from the posterior parameter distribution, p (θk|y1...τ,Mk), and
the Gibbs kernels from the Markov chain Monte Carlo (MCMC) sampler that
generated the parameter samples (for details, see Frühwirth-Schnatter, 2004).
Monte Carlo integration becomes unstable when the tails of the importance
distribution are narrower than the posterior distribution along any dimension
of the parameter space. To guard against this, the variances of the µ and
σ−2 components were doubled, and the variance of the as component was
increased by multiplying each Dirichlet parameter by 0.75.

The MCMC sampler was constructed based on previous sampling tech-
niques for standard HMMs (Chib, 1996). Briefly, the Markov chain was
constructed from Gibbs kernels that sample sequentially from both the pa-
rameters of the model and latent indicator vectors, which indicate, for each
mixture distribution within the model and each time step t, which mixture
component is implicated in the observed value yt. For the shared parameter
HMMs, there are three indicator vectors. The vector S1...T indicates the active
HMM state at each time step, and was sampled using a standard HMM Gibbs
move:

p (St = i| . . .) ∝ Ai,St−1
p

(
yt|µi,σ2

i

)
ASt+1,i (7.7)

The vector u1...T−1 indicates which component of the transition probability
mixture (Equation 7.3) for the current state contributed to each transition.
The vector v1...T indicates which component of the hippocampal input value
mixture (Equation 7.4) for the current state contributed to each observation.
Gibbs moves were as for standard mixtures:

p (ut = Dep| . . .) ∝ ASt+1,ŝ/
(
ASt+1,s +ASt+1,ŝ

)
(7.8)

p (vt = Dep| . . .) ∝ p
(
yt|µŝ,σ2

ŝ

)
/

(
p

(
yt|µs,σ2

s

)
+ p

(
yt|µŝ,σ2

ŝ

))
(7.9)

The values of ut and vt are defined only for times when the HMM state
indicator vector indicates a state in a dependent context.

Gibbs moves for the HMM parameters were complicated by sharing of
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parameters between independent and dependent states. Gibbs moves for the
mixing parameters were:

p (zŝ| . . .) ∝ Beta (δ1 +nu
s , δ2 +nu

ŝ ) (7.10)

p (ζŝ| . . .) ∝ Beta (δ1 +nv
s , δ2 +nv

ŝ) (7.11)

where nu
s = #

(
uŝ

t = Ind
)
, nu

ŝ = #
(
uŝ

t = Dep
)
, nv

s = #
(
vŝ

t = Ind
)

and nv
ŝ =

#
(
vŝ

t = Dep
)
. The counting function # () returns the number of occurrences

over a time-indexed vector in which the specified condition is satisfied. Gibbs
moves for the transition probabilities were:

p (~as1
| . . .) ∝ Dirichlet

(
δ+nind

1 , δ+nind
2 , . . .

)
(7.12)

p (~aŝ1
| . . .) ∝ Dirichlet

(
δ+n

dep
1 , δ+n

dep
2 , . . .

)
(7.13)

The transition probabilities for a state in an independent context, s1, were
updated based on a transition count, nind

s2
, which counts the number of

occurrences of a transition from s1to s2. If the independent context had a
dependent context (with states ŝ1 and ŝ2 that are paired with states s1 and
s2), then nind

s2
also included the number of occurrences of a transition from

ŝ1 to ŝ2 when ut = Ind. For a state in a dependent context, ŝ1, the transition
count ndep

ŝ2
included transitions from ŝ1 to ŝ2 when ut = Dep.

The observation parameters for a state in an independent context were
sampled using the following Gibbs moves

p (µs| . . .) ∝ N

σ−2
s

∑
t∈Ts

yt + κ1ξ

σ2
µ, σ2

µ

 (7.14)

p
(
σ−2

s | . . .
)
∝ Γ

α1 +
1

2
|Ts| , β1 +

1

2

∑
t∈Ts

(yt − µs)

 (7.15)

where σ−2
µ = σ−2

s |Ts| + κ1 and Ts is the set of times for which St = s or
for which vt = Ind and St = ŝ. The observation parameters for a state in a
dependent context were sampled using the following Gibbs moves:

p (µŝ| . . .) ∝ N

σ−2
ŝ

∑
t∈Tŝ

yt + κ2 (µs + h)

σ2
µ, σ2

µ

 (7.16)
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p
(
σ−2

ŝ | . . .
)
∝ Γ

α2 +
1

2
|Tŝ| , α2σ

2
s +

1

2

∑
t∈Tŝ

(yt − µŝ)

 (7.17)

where σ−2
µ = σ−2

ŝ |Tŝ| + κ2 and Tŝ is the set of times for which vt = Dep and
St = ŝ.

Five thousand samples from the importance distribution were used to
estimate Equation 7.6. The availability of samples from the posterior dis-
tribution permitted evaluation of Equation 7.6 with the computationally
more expensive technique of bridge sampling. Unlike traditional importance
sampling, an accurate estimate via bridge sampling does not require the
importance distribution to be broader than the posterior distribution (Meng
and Wong, 1996; Frühwirth-Schnatter, 2004). In our many test cases, we
found that the differences based on which integration technique was used
were negligible, suggesting that the importance distribution was accurately
covering the entire mass of the posterior distribution.

7.3 Simulation Results: Multiple Environments

7.3.1 Gradual remapping

Recent data have demonstrated that the development of distinct spatial maps
for two environments can be gradual (Tanila et al., 1997; Jeffery, 2000; Lever
et al., 2002). Tanila et al. (1997) found that repeatedly rotating two sets of
cues in opposite directions engendered an increase in remapping between
the cue configurations over time. Jeffery (2000) found that when the same
arena was placed in two different room locations, the number of place fields
that differentiated between arena room locations gradually increased over
several days. Lever et al. (2002) similarly found that, when hunting for
food pellets alternately in cylindrical and square arenas, different place cells
developed distinct place fields in each arena on different days; two weeks of
training were required to achieve complete remapping. In each case, repeated
conflicts between cue configurations were gradually resolved by developing
separate contexts for each configuration.

Our modeling of gradual remapping is described with reference to the
Lever et al. (2002) study, though it could equally well be interpreted with
respect to the others. The arena geometry change is interpreted as a small
but consistent difference in the afferent input pattern for which a model with
a separate context for each arena will, with enough experience, be better
suited.

To model gradual remapping, we constructed input sequences, y1...T ,

125



context and the hippocampus

Context #3
Cylindrical Arena

Context #1
Both Arenas

TwoArena Model

OneArena Model

Pos B


B

Pos A


A

Context #2
Pedestal

Pos P


P

Context #1
Square Arena

Pos B


B
- 

Pos A


A
- 

Context #2
Pedestal

Pos P


P

Pos B


B
+ 

Pos A


A
+ 

Figure 7.1: Diagram of one- and two-arena models used to model gradual remap-
ping. The small white boxes represent states in each model, and the large grey
boxes indicate how the states are grouped into contexts. Arrows indicate transition
probability parameters that are either sampled (within a context) or fixed (between
contexts).

generated from alternating sessions in each arena, interposed by time spent
on a holding pedestal (during which an experimenter would swap arenas).
For computational tractability, two positions within the environment – A and
B – were modeled (e.g. one in each half of the arena). The simulated rat spent
2 time-steps on the pedestal and 10 time-steps in each arena, alternating
between the positions in order to remove trajectory differences that might
suggest the environments were different. An entire sequence contained 16
environment visits, half in each arena, for a total sequence length of 192
samples.

At each position, the input was perturbed depending on the shape of the
arena. For example, at position A, the input had mean µA − ε in the square
arena but µA + ε in the cylindrical arena. The input standard deviation for
all states was σ = 0.125, and the value of ε used was 0.175, so the input
distributions of the two contexts overlapped.

The likelihoods of the one- and two-arena models shown in Figure 7.1
were compared using the model selection framework described above. The
“No pretraining” line in Figure 7.2 shows that, as more experience is gained
in each environment, the Bayes factor gradually increases toward a decisive
positive value. This suggests that the observed gradual remapping reflects
an underlying statistical process: an evidence-based transition to a more
complex contextual model.

If one were to pretrain rats by exposing them first to one arena for multiple
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Figure 7.2: With more experience in each environment, the relative likelihood of the
two-arena model increases toward certainty. As a result of first pretraining in one
arena, the two-arena model is initially less likely, but preference for this model then
increases more rapidly.

sessions, how should this pretraining experience affect the rate of remapping?
The “N sessions” lines in Figure 7.2 reflect a training sequence that starts
with N sessions of pretraining in one environment, followed by alternating
sessions in the two environments. These simulations predict that pretraining
should both delay the onset of gradual remapping and hasten its completion.
With few experiences, the second arena looks like a “noisy” version of the first;
however, the larger sequence of experiences due to pretraining eventually
permits the environments to be distinguished more rapidly.

7.3.2 Failure to generalize

In an extension of the Jeffery (2000) study, Hayman et al. (2003) trained rats in
a box placed in two different locations in the room. After place cells gradually
learned to remap between box positions, the color of the box and floor was
changed from white to black. This substantial sensory change resulted in
an immediate, complete remapping. Interestingly, despite multiple days
of training in a white box in the same two locations, place cells did not
immediately discriminate the two locations of the black box.

Their result can be understood as a consequence of the relative differences
of the box position and box color manipulations. Specifically, while the
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Figure 7.3: Diagram of three- and four-context models used to model the Hayman
et al. (2003) study. The two white box contexts differ subtly, as do the two black box
contexts. However, the white box and black box contexts are highly differentiated.
The dotted lines at ±5 denote the thresholds beyond which there is essentially no
statistically uncertainty in which model is preferred.
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Figure 7.4: The likelihood of the four-context model relative to the three-context
model (Black Box) increases at the same rate as the two-context model relative to
the one-context model (White Box). A copy of the White Box log Bayes factors are
superimposed on top of the Black Box log Bayes factors to illustrate their similarity.

position shift created a relatively subtle change, the color change was large.
We model their experiment by extending the gradual remapping simulation
to include two additional “black box” contexts whose hippocampal inputs are
similar to each other but not to states in the original two contexts. Specifically,
we constructed input sequences, y1...T , generated from alternating sessions
in the white box in room locations 1 and 2, followed by alternating sessions in
the black box in room locations 1 and 2. Box visits were, as before, interposed
by time spent on a holding pedestal. The two white box positions were
modeled identically to the square and cylindrical arenas in the previous
simulation. The two black box room locations were modeled in an analogous
fashion: the hippocampal inputs for corresponding rat positions in the two
black boxes differed by ±ε, but their µ values differed substantially from
hippocampal inputs in the white box.

Figure 7.3 shows the three- and four-context models evaluated on the
sequence of hippocampal inputs. Figure 7.4 shows the evolution of the
likelihoods of the three- and four-context models over the course of training
in the black box, subsequent to full training in the white box. For comparison,
training of one- and two-context models in the white box (structured as in
Figure 7.1) is shown as well. Since the white and black boxes differ so strongly,
the question of whether the black box locations should be represented as
one context or two is statistically unrelated to the representation of the white
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box locations. The relative likelihood of the four-context model therefore
increases at the same gradual rate, predicting that rats should show the same
gradual remapping between room locations in both white and black boxes.
Consistent with this prediction, Hayman et al. (2003) found in the one rat
whose rate of remapping was fastest that the rat remapped between black
box locations at the same rate as between white box locations. (The black
box sessions were not continued long enough to assess remapping in the rats
who were slower to remap in the white box.)

7.3.3 Morph environments

Leutgeb et al. (2005b) trained rats in square and cylindrical environments
until the degree of remapping between arenas reached asymptote. Then, they
exposed the rats to a sequence of arenas whose wall shape systematically
morphed between the square and cylinder. They found that the rats’ place
cell activity in the morph environments reflected various averages of the two
maps.

What if the rats were first trained on the morph environments and then
on just the square and cylindrical environments? In the gradual remapping
simulations, separate contexts for the square and cylindrical arenas develop
because they result in distinct clusters of hippocampal input patterns. How-
ever, substantial pretraining in the morph environments would generate one
broad cluster of input patterns, predicting that morph training should inhibit
remapping during subsequent training in just the square and cylindrical
arenas.

To model this hypothesized experiment, five arenas were used, and input
patterns were generated that varied linearly from the square arena (arena
1) to the cylindrical arena (arena 5). For example, at position A, the inputs
in the five arenas had means µA − ε, µA − 1

2ε, µA, µA + 1
2ε, and µA + ε.

We constructed input sequences beginning with sessions in just the morph
arenas, selecting arena 3 twice as often as 2 or 4 to reinforce a single cluster
distribution of input patterns. These sessions were followed by alternating
sessions in the square and cylindrical arenas. All other details were the same
as in the gradual remapping simulation described previously.

Simulation results are shown in Figure 7.5. Compared to the baseline
condition (no morph training), the 16 morph training sessions roughly dou-
bled the time required to complete remapping during subsequent cylinder /
square training. With 16 pretraining sessions, remapping was further delayed.
This prediction stands in direct contrast to hippocampal models based on
independent component analysis (ICA), which would predict place code
differentiation during the morph pretraining, as the arena shape acts as an
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Figure 7.5: Morph experiment simulation: pretraining in the morph environments
inhibits adoption of a two-context model during later training only in square and
cylindrical arenas. Simulation results involving morph training were calculated after
each block of 8 sessions, and simulation results not involving morph training are
plotted after each block of 4 sessions. All plots begin after completion of the first
block of training, i.e., after 4 or 8 sessions.

independent source of variation (Lörincz and Buzsáki, 2000).
The disorientation study by Knierim et al. (1995) invites a similar interpre-

tation. Rats were trained to forage for food in a cylinder with an orienting
cue card. They found that when rats were disoriented by carrying them
around in a closed box before being placed in the arena, their place fields
failed to align with the cue card after several sessions, while non-disoriented
rats maintained the alignment. They interpreted their results to suggest that
the cue card was perceived to be in a different location each time the rats
entered the arena after disorientation. After several sessions, the cue card
was perceived as “unstable” and therefore was ignored. Moreover, even
after multiple subsequent sessions without disorientation, place fields never
developed a consistent alignment with the cue card.

Their experiment likely reflects the influence of the head direction system
on the place code more than any computational process within the hippocam-
pus itself. Nonetheless, their findings suggest a similar type of statistical
inference elsewhere in the brain: if a cue varies in an apparently random
manner, its impact on the overall representation of an environment should
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be minimized.

7.4 Simulation Results: Reversal Learning

While many conditioning paradigms are not hippocampus dependent, rever-
sal learning has consistently shown dependence on hippocampal function
(Kimble and Kimble, 1965; Silveira and Kimble, 1968; Winocur and Olds, 1978;
Berger and Orr, 1983; Neave et al., 1994; McDonald et al., 2002; Ferbinteanu
and Shapiro, 2003). Consistent with this interpretation are place cell studies
showing context-specific firing patterns during spatial reversal learning tasks
(Ferbinteanu and Shapiro, 2003; Smith and Mizumori, 2006).

One of the most interesting aspects of reversal learning is that repeated
reward reversals lead to progressively faster behavioral reversal. Two studies
have demonstrated that after repeated reward reversals, rats are capable of
reversing behavior after a single error trial (Buytendijk, 1930; Dufort et al.,
1954). Additionally, Pubols (1962) showed near-perfect reversal performance
(< 0.5 errors on average after initial error trial), and Brunswick (1939) showed
that, even when single-trial reversal performance is not yet achieved, most of
the improvement is observed on the second trial. Thus, rats can be trained to
select a different (previously learned) behavioral strategy after a single error
trial.

Several studies have also explored the impact of partial reinforcement on
reversal learning, considering cases in which the “correct choice” is only
rewarded on some percentage of trials, as well as cases in which the “incorrect
choice” is also rewarded on some smaller percentage of trials (Brunswick,
1939; Wike, 1953; Grosslight et al., 1954; Elam and Tyler, 1958; Wise, 1962;
Pennes and Ison, 1967). The pattern of data across these studies suggests that
the more similar the original and reversed contingencies, the more slowly
the animal learns the reversal. While intuitive, this suggests that the impact
of a trial on a reward association is weighted by how informative the trial is
perceived to be. If the expectation of a particular outcome (reward, no reward)
is more uncertain, then observing the outcome provides less information
about whether the distribution of outcomes has changed.

Previous approaches to modeling reversal learning have posited that the
discrimination is relearned during each reversal. Hasselmo et al. (2002)
theorized that the hippocampal facilitation of reversal learning was due
to quick unlearning and relearning of the association between choice and
reward within the hippocampal representation. Learning in their model is
unsupervised (Hebbian), and they suggest that reversal learning deficits due
to hippocampal or theta modulation impairment are caused by the inability to
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separate new learning from past associations. Unfortunately, since this model
completely relearns the reward association after each reversal, no savings
with repeated reversals is predicted. Also, since the current association is
dissociated from the previous association, partial reinforcement would not
affect the speed of reversal learning under this model.

Another series of models have proposed that the hippocampus plays a role
in stimulus representation (Gluck and Myers, 1993; Myers et al., 1995; Gluck
and Myers, 1996), performing both stimulus compression and predictive
stimulus differentiation. A similar model has been proposed by Schmajuk
and DiCarlo (1991, 1992). Both models propose that the hippocampus is
critically involved in learning a conjunctive stimulus layer (hidden layer),
though their network topologies differ somewhat. In addition, both models
train the hidden layer using variants of the backpropagation learning rule;
Schmajuk and DiCarlo propose a more direct, biologically plausible imple-
mentation, while Gluck and Myers suggest only that a functionally similar
computational process occurs in vivo.

Both models demonstrate some savings during repeated retraining (on
serial reversals or serial extinctions and renewals). In the Gluck and Myers
model, hidden layer discrimination increases gradually, making associations
with the output layer simpler to learn. In the Schmajuk and DiCarlo model,
the learning rate of the input-to-hidden-layer weights is higher, so the in-
creased weighting of the hidden layer representation at the output layer
over the repeated reversals leads to faster relearning. In either case, both
models fundamentally rely on some degree of retraining during each rever-
sal. However, the single trial reversals observed experimentally occurred
based on an error trial alone (Buytendijk, 1930; Dufort et al., 1954). Even
with an arbitrarily high learning rate, it is not clear how one could retrain a
backpropagation network without at least one positive trial.

In addition, the partial reinforcement conditions are not well explained by
these models, or other delta-rule based models (e.g. Rescorla and Wagner,
1972; Pearce and Hall, 1980), since learning is not adjusted based on the
entropy of the trial’s outcome. Similarly, none of these models accounts
well for the partial reinforcement extinction (PRE) effect, in which extinction
training is prolonged following partial reinforcement. With generalized delta
rule learning, partial reinforcement results in a weaker association between
behavioral choice and outcome. During a reversal (or extinction), this weaker
association would be easier to expunge than a stronger association would be.
However, the data show the opposite results. A few recent statistical models
account well for the basic PRE effect (Gallistel and Gibbon, 2000; Courville,
2006), but they do not address the progressive improvement observed in
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reversal learning.
An alternative interpretation of the reversal learning data, as proposed

by Hirsh (1974), is that the hippocampus represents each reward condition
as a separate context. If the reward contingencies of both contexts are rep-
resented simultaneously, then after initial training no retraining should be
required after each reversal. Rather, recent trial outcomes can be compared
to prior knowledge of each context to infer which context is active. In a
full-reinforcement reversal learning paradigm, knowledge of both contexts
allows a single error trial to be sufficient to infer a context switch, since
the choice during the error trial should yield no reward only in “the other”
context. One might think of this process as analogous to the problem of self-
localization in spatial navigation, a function that has also been attributed to
the hippocampus (Touretzky and Redish, 1996). The present statistical formu-
lation of context learning also correctly quantifies the increased uncertainty
in the adoption of a new context under partial reinforcement conditions.

Interestingly, if the reversal is performed in a different environment, the
environmental cues substantially improve adaptation to the reversal, even in
hippocampal animals (McDonald et al., 2002). This finding further reinforces
the notion that what the hippocampus contributes to reversal learning is a
contextual cue to separate the two discriminations.

To model reversal learning, we constructed a simple model of discrim-
ination learning (Figure 7.6). The discrimination begins at the start state,
denoting the availability of two options (A and B). The start state leads to
either of two states reflecting the rat’s choice. The choice states in turn lead
to reward and no reward states, indicating the outcome of that choice. (Such
reward states are justified by studies showing reward-related responses in
the hippocampus; Tabuchi et al., 2003; Smith and Mizumori, 2006.)

7.4.1 Serial reversal learning

To simulate serial reversal learning training, alternating blocks of 10 trials
were generated in which, for odd blocks, choice A was rewarded, and, for
even blocks, choice B was rewarded. To simulate behavioral learning, the
rat’s choice was selected randomly such that, during the first block, the prob-
ability of selecting the correct choice exponentially approached 58.5% from
50%; during the second block, the correct choice probability exponentially ap-
proached 62% from 41.5% (100% - 58.5%); during the third block, the correct
choice probability exponentially approached 65.5% from 38%. This continued
for 10 blocks, increasing the final correct choice probability in each successive
block by 3.5%. The exponential “decay” of choice probabilities within each
trial approximates the trial-by-trial error data of Brunswick (1939).
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Figure 7.6: Diagram of one- and two-context models used to model reversal learning.
Arrows within each context indicate transition probabilities that are typically high;
however, transitions between any two states are possible.
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Figure 7.7: Serial reversal learning simulation: whereas rapid reversals are indistin-
guishable from partial reinforcement, less frequent reversals lead to the adoption of
a separate context for each reward contingency.
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Figure 7.8: Context selection in the two-context model. Each circle represents a state
in the HMM, and each column represents the full set of states of the two-context
model at a particular point in time. The gray box shows e-states (hippocampal
inputs) from three trials. Trials k− 2 and k− 1 are at the end of a block of trials in
which choice A is rewarded. Trial k is the first trial of a new block in which choice
B is rewarded. HMM states that are probable given the hippocampal input are
darkened. With full reinforcement, only one choice in each context is associated with
reward. Therefore, while the gray path (remaining in Context #1) initially appears to
be more likely, the lack of reward indicates that trial k is actually part of Context #2.
Once the context switch has been inferred, the most likely path through the states
will continue within Context #2 until choice B is no longer rewarded.
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One- and two-context models, shown in Figure 7.6, were compared as
the number of training blocks was increased, and the results are shown
in Figure 7.7. With increased training, the likelihood of the two-context
model gradually increases, predicting a gradual adoption of context-specific
hippocampal firing patterns. Smith and Mizumori (2006) showed that context-
specificity developed during reversal learning training, though they do not
examine the time course of remapping across training sessions. Figure 7.8
illustrates context selection in the two-context model, demonstrating how a
context switch can be inferred after a reversal.

If the number of trials per block is substantially reduced, the reward
structure becomes difficult to distinguish from partial reinforcement. When
training sequences were generated comprising three trials per block, the
two-context model required too many context switches to be justified, since
context switches are constrained to be unlikely. This resulted in the progres-
sively decreasing likelihood of the two-context model, as shown in Figure
7.7.

7.4.2 Partial reinforcement and reversal

In order not to conflate the effects of partial reinforcement during the original
and reversal discriminations, the training paradigm typically applies partial
reinforcement to choices during the original discrimination, leaving the
reversal condition unambiguous (Wike, 1953; Grosslight et al., 1954; Elam
and Tyler, 1958; Wise, 1962; Pennes and Ison, 1967). We consider three cases:
full reinforcement (100:0), in which choice A is always rewarded and choice
B is never rewarded; partial reinforcement of A (75:0), in which choice A is
rewarded only 75% of the time; and partial reinforcement of A and B (75:25),
in which choice B is also rewarded 25% of the time. In all cases, only choice
B is rewarded during the reversal discrimination (0:100).

Training consisted of a single original and single reversal block, the length
of each being equal and set so that the Bayes factor would be roughly 5.0 by
the end of training on both blocks. The rat’s choice was selected randomly,
where the probability of a correct choice exponentially approached 90% from
50% in the original block, and 90% from 10% in the reversal block.

Figure 7.9 shows that, as the original discrimination is made more am-
biguous, learning to differentiate it as a separate context from the reversal
discrimination requires progressively more trials. We therefore predict that
context-specific hippocampal representations would develop more slowly in
these partial reinforcement paradigms.
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Figure 7.9: Partial reinforcement reversal learning simulation results show that a
two-context model is adopted more slowly when the two reward contingencies are
more similar.

7.5 Simulation Results: Sequence Learning

The hippocampus has been implicated in a variety of tasks involving se-
quences (Kesner and Novak, 1982; Chiba et al., 1994; Gilbert et al., 2001;
Agster et al., 2002; Fortin et al., 2002; Kesner et al., 2002). For example, Fortin
et al. (2002) found that, after being presented with a random sequence of
odors, hippocampal rats could not choose the earlier of two odors from
the sequence. Of particular interest has been the study of overlapping se-
quences, in which multiple sequences share common middle elements but
distinct beginning and ending elements. Agster et al. (2002) found that, while
hippocampal rats could disambiguate two partially overlapping olfactory
sequences, inter-trial interference or a delay condition could impair their
performance substantially.

Several models have proposed that the hippocampus develops separate
contextual representations of each sequence that serve to associate the am-
biguous middle elements with the rest of the sequence (Levy, 1989, 1996;
Wallenstein and Hasselmo, 1998). These models predict that, if a rat were to
repeatedly travel down a common maze arm that was part of two different
paths (e.g. a continuous figure-8 pattern), place cells on the common arm
would fire differently depending upon which path the animal was traveling.

Some studies have confirmed this finding (Frank et al., 2000; Wood et al.,
2000) while others found no path-related differences (Lenck-Santini et al.,
2001; Hölscher et al., 2004). Intriguingly, Bower et al. (2005) were able to
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reproduce both cases by varying the shaping procedure used to train the rats.
The studies that found no path-related differences nonetheless reported that
rats were able to learn the task, a result consistent with Ainge and Wood
(2003) who found that hippocampal lesions did not impair the continuous
version of the task. However, when a small delay was added at the start of
the common maze arm, Ainge and Wood found that hippocampal rats were
impaired. Subsequently, two groups trained unlesioned rats on a figure-8
maze, each finding, paradoxically, that path-specific modulation of place
fields on the common maze arm occurred with no delay (when the task was
not hippocampus dependent) but largely disappeared when a delay was
added (Ainge et al., 2005; Robitsek et al., 2005). Despite this disappearance,
rats could still perform the task. As Bower et al. (2005) point out, the sequence
dependence of place cell activity is likely attributable to differing input from
some extra-hippocampal brain area instead of a contextual representation
developed within the hippocampus.

An alternative hypothesis, adopted by Hasselmo and Eichenbaum (2005),
is that sequence replay (Foster and Wilson, 2006) in the hippocampus guides
behavior independently of whether or not path-specific remapping is seen on
the common arm. Specifically, an extra-hippocampal brain area incrementally
learns rules for completing each sequence, given its beginning; replay of
the beginning of the current sequence is then sufficient to complete the
task. (With a higher learning rate, Hasselmo et al. (2002) would likely
provide an elegant model of such one-shot learning.) Such a division of labor
explains why Agster et al. (2002) found evidence of rats learning overlapping
sequences but failing, under some circumstances, to recall which sequence
had most recently begun.

The rapid alternation between sequences on a figure-8 maze is incompatible
with our constraint that context switches should be rare. To demonstrate
this, we constructed a simulation of the figure-8 task. Five positions on the
track were modeled, and were traversed in a six-step loop: Start Left, Center,
End Right, Start Right, Center, End Left, repeat. A trial constituted a pass
through one start arm, the center arm, and the opposing end arm. One-
and two-context models (see Figure 7.10) were compared, and the results
are shown in Figure 7.11. Even after just 12 trials, the two-context model is
astronomically unlikely.

To demonstrate that the context switch penalty in the two-context model
is the specific cause of the low Bayes factors, the one-context model was also
compared with the generative model (see Figure 7.10). Figure 7.11 shows
that decisive preference for the generative model is attained by 30 trials.

Bower et al. (2005) have considered training regimes that promote sequence
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Figure 7.10: Diagram of the generative model and one- and two-context models
used to model sequence. Note that the generative model includes two states (Center
LR and Center RL) in the same context that represent the same distribution of input
patterns (identical µC values). Our weak-identifiability constraint (see Statistical
Framework: Overview) that such states can be represented only when in separate
contexts excludes the generative model from the class of possible hippocampal
context models. Arrows within each context indicate transition probabilities that are
typically high; however, transitions between any two states are possible.
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Figure 7.11: Sequence learning simulation results show that the one-context model
is overwhelmingly more likely than the two-context model, due to the constraint
that transitions between contexts are of low probability. If the generative model
were admissible, it would be adopted over the one-context model.

disambiguation of the common path, presumably due to afferent input
from another brain region. However, were rats to be trained repeatedly on
one sequence, then the other, our framework would predict that sequence-
specific encodings of the common path would reliably develop due to intra-
hippocampal mechanisms sensitive to temporal mismatch.

7.6 Discussion

7.6.1 Significance features of the theory

Advances in Bayesian computational statistics techniques over the last decade
have opened the door to evaluating the marginal model probabilities of many
new classes of models. Using these techniques, insights into animal learning
and human reasoning have begun to arise from their formulation as Bayesian
inference problems, often over multiple generative models that provide
competing explanations of a corpus of data (Tenenbaum and Griffiths, 2001;
Courville et al., 2003, 2004; Griffiths and Tenenbaum, 2005; Daw et al., 2005).
In a similar vein, the present work advances a theory of context learning in
which hippocampal input patterns are grouped together in the same context
when they reliably cluster together in time. Choosing between generative
models that group the experiences into different numbers of clusters is
therefore the fundamental challenge of context learning.
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Sequence learning models (Levy, 1989, 1996; Wallenstein and Hasselmo,
1998) provide a rather different notion of context, one oriented toward bind-
ing together elements of a temporal sequence. Interestingly, this binding
process simultaneously serves to differentiate elements based on their order
within the sequence. By contrast, in our theory, context learning groups all
sequence elements together without disambiguating multiple occurrences of
the same element. Thus, sequence learning models predict that alternating,
overlapping sequences should be represented with different contextual bind-
ings, whereas our theory groups them together into one context. The failure
for sequence-dependent hippocampal representations to be consistently ob-
served (e.g. Bower et al., 2005) or to serve a behavioral function (Ainge and
Wood, 2003) argues against such representations playing a critical role in the
disambiguation of alternating, overlapping sequences. Others have argued
that such sequential encodings are instead formed in medial temporal lobe
areas outside the hippocampus proper such as the entorhinal cortex (Howard
et al., 2005).

An important aspect of this theory is that it distinguishes between the
inference processes of context learning and context selection: context learning
may be gradual over many days, while context selection should be an abrupt
process. Multi-basin attractor models (Samsonovich and McNaughton, 1997;
Redish and Touretzky, 1998; Tsodyks, 1999; Doboli et al., 2000) have demon-
strated how multiple contexts, each a stable basin of attraction, could be
simultaneously represented within the same network. In such models, con-
text selection involves restabilization of the network in the most appropriate
basin. What these models lack is an explanation of the gradual development
of new contextual representations.

By contrast, backpropagation models (Schmajuk and DiCarlo, 1992; Gluck
and Myers, 1993) have attempted to address the gradual development of
new (hidden layer) representations. However, these networks do not have
multi-stable activity patterns; they have no “memory” of the current context
across time beyond what is encoded in the weights. Thus, they fail to
capture the one-trial context switching behavior observed in reversal learning.
In addition, backpropagation and similar delta rule learning models do
not properly adapt learning to the information provided by each trial and
therefore cannot account for the slower reversal of partial reinforcement
reward contingencies.

Finally, while backpropagation is an efficient search technique for learning
high dimensional mappings, the complexity of the function represented by
the neural network is not explicitly considered. (In a machine learning setting,
overcomplexity can result in “overfitting,” which is typically detected via
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cross-validation of the model on a separate data set.) Similarly, independent
component analysis (used in a hippocampal model by Lörincz and Buzsáki,
2000) does not adjust the number of independent components based on the
observed data. In contrast, the present framework considers the inherent
trade-off between model fit and model complexity that underpins any model
selection problem. Our framework can most clearly be dissociated from
other models that do not consider this trade-off by determining whether
remapping is observed subsequent to training in a set of morph boxes: our
simulations predict that remapping should not occur.

7.6.2 Localizing contextual representations within the hippocampus

Since our theory concerns contextual representations in the hippocampus,
we discuss how it relates to known facts about hippocampal anatomy and
physiology. First, we argue that abrupt and gradual remapping are mediated
by distinct physiological processes. Specifically, whereas abrupt remapping
is caused by a change in the path integrator representation located in dorsal
medial entorhinal cortex (dMEC), gradual remapping is caused by experience-
dependent representational changes within the DG / CA3 network. Then,
we discuss the evidence for pattern separation and completion in the DG /
CA3 network and how such mechanisms could underpin context learning.
We contrast the role of the DG / CA3 network with the role of CA1 in gating
the projection of the DG / CA3 representation to efferent cortical areas.

Abrupt remapping and attractor dynamics. Marr (1971) first proposed that the
architecture of the hippocampus is well suited to encode new memory traces
using orthogonalized representations, which minimize interference between
stored patterns. Recordings from hippocampal pyramidal cells confirmed
that sparse, orthogonalized representations are formed to encode different
places and other features within an environment (O’Keefe and Dostrovsky,
1971; Wood et al., 1999), as well as different environments as a whole (Muller
and Kubie, 1987). Attractor models of hippocampal function (Samsonovich
and McNaughton, 1997; Redish and Touretzky, 1998; Doboli et al., 2000),
which address the remapping of place fields between environments, were
born out of the observation that, when place cells remap, they appear to
remap together. For example, Bostock et al. (1991) found that the change of
a cue card’s color sometimes caused a remapping, and, when observed, all
simultaneously recorded cells remapped. When introduced repeatedly to the
same environment, rats with deficient LTP sometimes recalled a completely
different map (Barnes et al., 1997; Kentros et al., 1998).

One difficulty in interpreting such remapping data is in disambiguating
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the role of the path integrator, currently believed to be in dorsal medial
entorhinal cortex (dMEC) (Fyhn et al., 2004; Hafting et al., 2005; Fuhs and
Touretzky, 2006; McNaughton et al., 2006; see Chapter 6), from the place
code. As noted by Touretzky and Redish (1996), failure to reset the path
integrator should cause a substantial change in the afferent input to the
hippocampus, resulting in abrupt hippocampal remapping independent
of any attractor dynamics in the hippocampus. This reset failure likely
underpins the results of Leutgeb et al. (2005c), who showed that switching
between two rooms causes a different and more radical form of remapping
than switching between arena shapes in the same room. While dMEC grid
cells change phase when the arena is placed in a novel room (Hafting et al.,
2005), preliminary findings by Leutgeb et al. (2006a) show that grid cell
phases remain constant when the arena changes shape in the same room,
while DG and CA3 undergo rate remapping (see also Quirk et al., 1992).
Thus, abrupt remapping, even when delayed from the first exposure to the
environment (e.g. Bostock et al., 1991; Brown and Skaggs, 2002), is likely
attributable to a reset failure of the path integrator which causes remapping
simultaneously in all subfields of the hippocampus. By this interpretation,
delayed abrupt remapping reflects a stochastic process where, for those rats
that attend to the environmental change, there is a fixed probability of PI
reset failure upon each visit to the perturbed environment, which should
result in an exponentially distributed time to first remapping.

Gradual remapping, context learning and the DG / CA3 network. In contrast to
abrupt remapping, the gradual differentiation of contextual representations
should be attributable to circuitry within the hippocampus, specifically DG
and CA3. Several authors have suggested that exposure to a novel context
results in an orthogonalized representation being formed in DG which is
then propagated to CA3 (Marr, 1971; McNaughton and Morris, 1987; Treves
and Rolls, 1992, 1994; O’Reilly and McClelland, 1994). Preliminary evidence
suggests that the rate remapping between similar contexts observed by
Leutgeb et al. (2005c) originates in DG (Leutgeb et al., 2006a). In a familiar
context, perforant path input and recurrent collaterals in CA3 guide the
recall of the previously learned contextual representation. O’Reilly and
McClelland (1994) explored a simplified model of DG and CA3, showing
that, while similar patterns could be mapped to an even more similar CA3
representation (pattern completion), more strongly differing input patterns
could be separated as well (pattern separation).

The neural mechanisms of pattern separation and completion resemble the
statistical process of clustering: map noisy input patterns into more similar
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representations to denote their association with the same cluster; map input
patterns associated with different clusters into more distinct representations.
One might therefore think of a clustering neural network as an extension of
the O’Reilly and McClelland (1994) model in which the threshold between
separation and completion is not static, but dynamically adjusted based
on the distribution of input patterns. While O’Reilly and McClelland only
elucidated the benefits of CA3 perforant path plasticity, NMDA-dependent
synaptic plasticity is well known to exist within DG and the CA3 recurrent
collaterals. In addition, there is intriguing new evidence that mossy fiber
synapses show heterosynaptic plasticity, though changes in synaptic efficacy
appear to depend on neighboring synapses in stratum radiatum instead of
the depotentiation of the post-synaptic cell (Schmitz et al., 2003). We propose
that one function of this learning is to adjust the separation-completion
threshold, gating when new contextual representations would be propagated
from DG to CA3.

In a familiar context, once the path integrator and any other brain state
is reset, the activity patterns projected from DG onto CA3 should match
the patterns projected from the perforant path and recurrent collaterals,
modulo some noise. However, if this familiar context is perturbed into a
similar but distinct second context, then there should be some mismatch
between the pathways: the representation in DG should more accurately
reflect the current input patterns, whereas the perforant path and recurrent
circuitry should reinforce a previously learned representation. Critically,
our framework suggests that if the differences between recalled and input
patterns are small, the impact of the DG representation should be minimal,
and, if such differences do not repeat, the impact of DG should remain
minimal. However, if the same differences are observed repeatedly, the
impact of DG on the CA3 representation should increase, causing remapping
in CA3 (Fuhs and Touretzky, 2000). In this way, more complex context
models may be adopted.

Small but repeated differences would be expected to cause incremental
changes in synaptic connectivity in the DG perforant path and mossy fiber
pathway to strengthen the impact of DG on CA3. Interestingly, perforant
path plasticity in DG can last for months (Abraham et al., 2002), suggesting
that this pathway is capable of accruing changes in synaptic efficacy over
many training days. However, granule cell neurogenesis causes cells to be
gradually replaced, slowly fading away previous associations (Feng et al.,
2001). These opposing forces provide a natural balance for input pattern
density estimation. New input patterns can be registered and their impact
can be strengthened with repeated exposure; however, this strengthening is
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tempered by the replacement of granule cells to clear out old memories. It
follows from this proposal that DG principal cells should fire at a lower rate
in a novel environment and, with repeated exposure, gradually increase their
rates as the environment becomes familiar.

While presenting a neural network model of context learning is beyond
the present scope, recent physiology, gene expression, and lesion studies are
consistent with the proposal that a neural instantiation of context learning
should be localized to the DG / CA3 network, whereas CA1 integrates the
experience-dependent DG / CA3 representation with the entorhinal cortical
representation. Both pattern separation and pattern completion have been
observed in CA3 in response to changes in environmental cues (Vazdarjanova
and Guzowski, 2004; Lee et al., 2004b; Leutgeb et al., 2004; Guzowski et al.,
2004). Vazdarjanova and Guzowski (2004) found in an immediate-early gene
expression study that similar environments were represented with a greater
similarity in CA3 than CA1, while two very different environments were
represented with less similarity in CA3 than CA1. Both Lee et al. (2004b)
and Leutgeb et al. (2004) found that the CA1 representation more directly
reflected the current sensory environment, whereas the CA3 representation
reflected either pattern completion of a previously learned contextual repre-
sentation (Lee et al., 2004b) or pattern separation to create a new contextual
representation (Leutgeb et al., 2004).

A behavioral role of CA3 pattern completion is suggested by Nakazawa
et al. (2002), who found that performance in a cue-degraded version of the
Morris water maze is impaired by CA3 NMDA receptor knockout. Lee
and Kesner (2002; 2003) showed that delayed non-match to place (DNMP)
was impaired in a novel (but not familiar) environment by CA3 NMDA
inactivation or DG or CA3 lesion. These deficits may be interpreted as a
failure to recall or learn a conjunctive representation of position and target
(hidden platform, object, etc.) that could be retrieved via pattern completion
using the target as an autoassociative memory cue. (Evidence for such a
target representation has been found in prelimbic / infralimbic cortex; Hok
et al., 2005.) Consistent with this hypothesis, DG appears necessary to create
such conjunctive representations: DG lesions reduce performance to chance
on a working-memory water maze task in which the platform is moved to a
new location each day (Xavier et al., 1999). In relation to our theory, these
data point to DG and CA3 to construct a model-based representation of the
animal’s experiences, including various conjunctive associations instrumental
in solving behavioral tasks.

CA1 appears to relay a composition of the model-based CA3 representation
and the context-free entorhinal cortical information to efferent cortical areas.
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Hasselmo and colleagues have presented a series of models and pharma-
cological data supporting the notion that increased cholinergic modulation
decreases the contribution of CA3 to the CA1 representation, but increases
plasticity of both the CA3 recurrent and Schaffer collaterals (Hasselmo and
Schnell, 1994; Hasselmo et al., 1995, 1996). More recently, Yu and Dayan
(2005) have proposed a theory of acetylcholine and noradrenaline in which
acetylcholine represents expected uncertainty, whether due to the context
being new or to known unpredictability within a familiar context. Taken
together, these models suggest that CA1 should be influenced by CA3 when
the context is informative (low ACh); CA3’s influence should be reduced
when the context is less informative (high ACh). This gating of the CA3
representation has been confirmed experimentally in novel environments:
CA1 shows a stable representation while the CA3 representation evolves
over the course of 20 to 30 minutes (Leutgeb et al., 2004). Additionally, sev-
eral monoaminergic neurotransmitters have been implicated in modulating
the balance of CA3 and EC input to CA1 (Otmakhova and Lisman, 1998;
Otmakhova et al., 2005).

The complementary roles of the DG / CA3 and CA1 networks provide
some insight with which to interpret discrepancies between the double rota-
tion experiments of Shapiro et al. (1997) and Lee et al. (2004b). When local
and distal cues were rotated in opposite directions, both studies observed
“heterogeneous” or “discordant” responses. However, Shapiro et al., record-
ing mostly from CA1 at the beginning of the experiment, initially observed
many more place fields to rotate with the distal cues than the local cues.
In fact, the ratio of place fields rotating with each set of cues observed by
Shapiro et al. much more closely resembles the ratio of place fields in CA3
tied to each set of cues observed by Lee et al. (2004b), suggesting that, in
the Shapiro et al. study, CA3 strongly influenced the representation in CA1.
Shapiro et al. repeatedly trained rats on two standard condition sessions and
a single double rotation session (local and distal cues rotated 180o apart) each
day, as well as various other less frequent cue scrambling and deletion probe
trials. They observed that, over time, cells (predominantly in CA3 by the end
of the experiment) more strongly remapped between standard and double
rotation conditions. This change in the degree of remapping could reflect
either the change in cell populations they recorded from or an experience-
dependent effect; they do not address this issue statistically. Nonetheless,
if we assume that the initial primacy of distal influence on CA1 place cells
reflects pattern completion in CA3, then the increase in remapping reflects
an experience-dependent transition in CA3 between pattern completion and
pattern separation in order to adopt separate contexts for the standard and
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double rotation cue configurations. This is consistent with our simulations
of gradual remapping, which show that two repeatedly experienced and
distinct conditions should be differentiated by context. By contrast, Lee et al.
trained rats equally on four rotation angles in addition to the standard condi-
tion, a training paradigm more akin to our morph experiment simulations.
Though the relatively short duration of training by Lee et al. prevents any de-
cisive conclusions, their observation that CA3 maintained pattern completion
throughout the course of their experiment (I. Lee & J. J. Knierim, personal
communication) is consistent with our morph experiment simulation results
which predict that experience-dependent remapping should not occur in
such a case.

148



8
S PA C E A N D C O N T E X T I N T W O I D E N T I C A L B O X E S :
A P L A C E C E L L S T U D Y

An earlier version of this chapter appeared in the Journal of Neurophysiology as “In-
fluence of path integration versus environmental orientation on place cell remapping
between visually identical environments.” by Mark C. Fuhs, Shea R. VanRhoads,
Amanda E. Casale, Bruce McNaughton and David S. Touretzky (2005, vol. 94,
pp. 2603–2616; reprinted with permission). The experiment was performed at the
University of Arizona, Tucson by Shea R. VanRhoads, Amanda E. Casale and Bruce
McNaughton. I carried out the analysis of the data.

8.1 Introduction

This chapter presents the work of Fuhs et al. (2005), in which the Skaggs and
McNaughton experiment is revisited and extended. Skaggs and McNaughton
(1998) measured the effects of sensory-vestibular conflict between two pu-
tatively different contexts, two boxes connected by a corridor. Since rats
walked between the boxes, vestibular cues alone should clearly differentiate
the boxes; however, the boxes were visually identical, so, based on sensory
cues alone, the two boxes were the same. What they observed was a partial
remapping between the boxes, which they interpreted as a representation of
a conflict between a linear path integrator and the sensory cues. In short, the
linear path integrator indicated that the boxes occupied two different spaces,
but the sensory cues (and behavioral task, random foraging) indicated that
they were the same environmental context.

Section 4.1.3 reviewed the effects of sensory-vestibular conflicts caused by
translational manipulations. In general, the impact of the linear path inte-
grator was limited. For example, in the linear track contraction experiments
(Gothard et al., 1996a, 2001; Redish et al., 2000; Rosenzweig et al., 2003), the
place code invariably realigned with the room’s distal landmarks after a
limited maintenance of place field firing relative to the start box location.
By contrast, sensory-vestibular conflicts caused by rotational manipulations
have a strong effect on hippocampal place cell firing (for review, see Section
4.1.2), motivating the present experiment.

In the present experiment, rats were retested in a two-box apparatus de-
signed to match that used by Skaggs and McNaughton; this is referred to
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as the same-orientation condition, as the two boxes were placed in the same
orientation in the room. The experiment was extended with a second con-
dition, the opposite-orientation condition, in which the boxes were abutted
entrance-to-entrance, one box rotated 180◦ with respect to the other (see
Figure 8.1). In this condition, there is conflict between the sensory cues and
both the linear and angular path integrators.

In contrast to the findings of Skaggs and McNaughton, the present experi-
ment found no remapping in the same-orientation case. However, a complete
remapping between the same boxes in the opposite-orientation case was
eventually observed. Interestingly, the onset of remapping, though abrupt,
varied between rats. The time course of remapping is explored in detail.
Also, some preliminary evidence is discussed in the Discussion section that
sheds light on a possible source of the discrepancy between the results of the
Skaggs and McNaughton study and the present one.

8.2 Methods

8.2.1 Subjects and apparatus

Three male FBNF1 rats (Harlan Sprague Dawley), age 9-13 mo, were used in
this experiment. The apparatus consisted of two identical boxes similar to
those in the Skaggs and McNaughton (1998) experiment. The boxes were 60
× 60 × 60 cm in size, with a trapezoidal doorway in one wall whose width
progressed from 15 cm at the bottom to 33 cm at the top. (The opening
was wider at the top to permit free travel of the recording cable.) In the
same-orientation condition, the boxes were placed side by side with identical
orientations, such that the prominent features of each box (a light and a
doorway) faced the same direction. The doorway panels of each box were
connected to one another by a 15-cm-wide hallway, as shown in Fig. 8.1A,
same orientation. An attempt was made to keep the rats’ visual experiences
in the two boxes as nearly identical as possible. The room lights were
kept off. Distally, black curtains devoid of cues encircled the boxes. To
obscure any overhead distal cues, a single dim light (0.9 W) surrounded
by a semitransparent shade was fixed in each box near the top of the inner
wall opposite the box doorway. These lights were adjusted so that they were
similarly bright in each box and cast similar faint shadows on the box walls
and floor. The boxes were placed such that the commutator-to-headstage
cable fell in the exact center of the entire two-box/hallway apparatus. To
prevent the rat from experiencing disparate angular force on his head and
neck from the tug of this cable in the two boxes, a triangular dowel-rod
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Figure 8.1: Summary of experimental manipulations. A) In the same-orientation
condition, the boxes were connected by a corridor; in the opposite-orientation
condition, the corridor was removed and the boxes were rotated and abutted. Red
dots indicate lights mounted on the walls. B) Each recording session contained 2
foraging epochs, consisting of 2 visits to each box, giving a total of 8 visits per day.
Order of visits within an epoch was always , A1, B1, A2, B2. Notation SA1 describes
a visit in the same-orientation configuration, box A, visit 1. Green “Rat n” tags in
the top right corner of certain boxes indicate the visit in which a rat first showed
remapping. (Reprinted from Fuhs et al., 2005.)

151



space and context in two identical boxes: a place cell study

guide track was attached to the top of each box near the doorway. A fresh,
large sheet of brown packaging paper was placed under the entire two-
box/hallway structure at the beginning of each recording session, to prevent
scent markings or other rat-produced floor cues from accumulating. The
boxes, hallway, and all exposed nuts and bolts were painted a uniform dark
gray to minimize spurious reflections in the tracker data. The positions of the
boxes were outlined in tape on the recording room floor to ensure consistent
alignment.

8.2.2 Recording

Rats were implanted and recordings made using the procedures described
in Skaggs and McNaughton (1998). Neuronal spike signals from the dorsal
CA1 pyramidal layer were amplified by a factor of 1,000 to 5,000, band-
pass–filtered between 600 Hz and 6 kHz, and transmitted to a Cheetah Data
Acquisition system (Neuralynx). Signals crossing a minimal threshold, set
just above background noise levels, were digitized at 32 kHz and sampled
for a duration of 1 ms, beginning 0.25 ms before the spike peak. A cluster
of light-emitting diodes was mounted on the headstage to allow position
tracking by means of a video camera that was placed directly above the
experimental apparatus and recorded with a sampling frequency of 60 Hz.

8.2.3 Unit isolation

Putative single neurons were isolated based on the relative action potential
amplitudes and principal components from the four tetrode channels (Gray
et al., 1995; McNaughton et al., 1983; Wilson and McNaughton, 1994), by
means of a semiautomatic clustering algorithm (BBClust, author: P. Lipa). The
resulting classification was corrected and refined manually with dedicated
software (MClust, author: A. D. Redish), resulting in a spike train time series
for each of the discriminated cells. Only single neurons satisfying standard
criteria (e.g. Skaggs and McNaughton, 1998) for hippocampal pyramidal cells
were included.

8.2.4 Protocol

Rats underwent 19 to 26 recording sessions, one per day. Each session was
composed of five epochs: Sleep 1 (about 30 min), Forage 1 (16-20 min), Sleep
2 (about 40 min), Forage 2 (16-20 min), and Sleep 3 (about 30 min). On odd-
numbered days Box 1 was installed in position A for the first foraging epoch,
then moved to position B for the second epoch. On even-numbered days the
opposite was done. The swapping of boxes between epochs was done to help
distinguish box-specific associations from location-specific associations.
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The intervening Sleep 2 epoch allowed the rat to rest from foraging, and
provided time for the box locations to be exchanged and other changes to
be made to the apparatus, such as installing or removing the connecting
corridor. The brown paper covering the floor was also replaced during Sleep
2.

Rats were not intentionally disoriented during this experiment. At the start
of each day’s session, they were transported from the colony room to the
recording room along the most direct route possible. The rats were carried in
a flowerpot lined with a towel. On reaching the recording room, they were
deposited in another towel-lined flowerpot sitting on a cinderblock 6-12 in.
away from the midpoint of the two-box apparatus. While in this flowerpot,
the headstage was attached and the Sleep 1 epoch began. At the beginning of
a foraging epoch, the rat was gently grasped by the experimenter, lifted from
the flower pot, and deposited in box A as close to the doorway as possible,
facing the center of the box. At the conclusion of a foraging epoch the rat
was gently grasped with one or two hands, removed from box B, and placed
back in the flowerpot to begin the next sleep epoch.

The rat’s task during the two foraging epochs was always the same: to
search for small chocolate pellets, one box at a time. Each epoch consisted of
four 4.5-min box visits, starting in box A, moving to box B, then back to box
A, and finally back to box B. During each visit, the rat was restricted to that
box by a closed door. At the end of 4.5 min, the door would open and the rat
would exit the box, run down the hallway, enter the other box, and resume
foraging as the door closed behind it. In the opposite-orientation condition
the boxes were separated by a single door, which was raised when it was
time for the rat to travel to the other box. The door was then reversed before
being lowered, so that the same side always faced the rat.

Rats were food deprived to promote foraging. They were offered water to
drink from a 1-ml syringe at the beginning of Sleep 2. Small balls of slightly
moist rat food were also sprinkled in the boxes in addition to the chocolate
pellets.

For the first 16-23 days, the rats became familiar with the two-box envi-
ronment and experienced a series of manipulations in the same orientation
configuration. These included, in order: turning the lights off after the start
of a trial (3-4 days), introducing a white cue card into one box to visually
differentiate it from the other box (4 days; this proved ineffective), placing
a white towel on the floor of one box (4 days), and starting the rat in Box
B instead of Box A (at most 1 day). The data from these manipulations are
not presented here. Starting on the 17th, 24th, or 18th day (for rats 1, 2, and
3, respectively), place cells were recorded as the rat experienced the 3-day

153



space and context in two identical boxes: a place cell study

sequence of conditions shown in Fig. 8.1B. For commonality across rats, this
sequence is referred to as days 1-3. Day 1 was a rat’s first exposure to the
opposite-orientation condition.

8.2.5 Place field calculation

For analysis purposes, each of the two foraging epochs was subdivided into
four visits: first visit to box A, first visit to box B, second visit to box A, and
second visit to box B. This yielded a total of eight box-visits per day, for each
of which a 16 × 16 pixel spatial firing rate map, or place field, was calculated.
To facilitate further analyses, each place field was smoothed by fitting it to
a two-dimensional cubic B-spline (De Boor, 2001) with five segments along
each axis. The spline, which is a nonparametric regression model of the
firing rate map, was then used as the estimate of the cell?s true spatial firing
rate in that visit. The 16 ×16 pixel maps for each box visit in Figures 8.3, 8.4,
8.5 and 8.10 are the result of this smoothing process.

8.2.6 Cell selection

The analysis began by finding the pyramidal cells with spatially selective
firing fields. The inclusion of interneurons, which fire throughout the en-
vironment and have no discernible place fields, would have skewed the
measure of remapping. For each smoothed place field, of which there were
eight per cell (one per box visit), the spatial information content (SIC) was
calculated according to the method of Skaggs et al. (1993). To be included in
the analysis, a cell’s SIC value had to pass two tests in two successive visits to
the same box. For example, if the cell passed the tests in visits SA1 and SA2,
or OB1 and OB2 (see Figure 8.1B for visit notation), it would be included.

The first test, called Imin, was an absolute measure of spatial information
content: the SIC value had to be 0.15 bits/spike. This low threshold excluded
only the interneurons. Interneuron firing can have some weak spatial corre-
lation, but because of the high spike rate the number of bits per individual
spike is low.

The second test was a visit-specific statistical measure: a place field’s SIC
value in a given visit was compared with a distribution of SIC values for
250 “randomized” fields computed from the same spike sequence, but with
randomized position data. To generate these data, the rat’s actual position
data were reversed in time and then divided into 10-s windows. These
windows were then randomly shuffled, resulting in a new temporal sequence
of positions. After each shuffle, a spatial firing rate map was constructed.
The SIC values for these 250 randomized maps formed a distribution of
expected values under the null hypothesis that the cell was not spatially
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Rat Day Raw Cells Satisfied Imin Satisfied I95% Net Cells
1 1 7 6 7 6

2 42 39 28 25
3 16 15 13 11

2 1 55 49 45 41
2 58 48 51 44
3 33 22 27 19

3 1 5 4 3 2
2 10 10 9 8
3 9 6 7 4

Totals 235 199 190 160

Table 8.1: Summary of cells recorded in the experiment.

selective. The critical value I95% for the visit was set at the 95th percentile of
this SIC distribution. A cell passed the test in a given visit if the SIC of its
unshuffled firing rate map exceeded this critical I95% value. This test should
classify fields as spatially selective with a type I error of 5%.

Whereas the Imin test measures a cell’s intensity of firing rate variation
across spatial locations, the I95% test measures a cell’s consistency of firing
rate within spatial locations. The I95% test therefore disqualifies two types
of cells: those with unreliable fields whose firing rates are not strongly
correlated with space, and those with low firing rates, for which the sample
of spikes is too small to substantiate consistent spatially selective firing. In
the extreme case of a cell with only a few spikes, those spikes could be from
a single burst that occurred on one pass through the putative place field. In
that case, shuffling the position data in 10-s windows will maintain the high
SIC value, causing the cell to fail the I95% test because shuffled sequences
have information content comparable to the original.

Table 8.1 shows that for each epoch, the number of cells that satisfied both
the Imin and I95% tests was almost always less than the number that satisfied
each test individually. Thus the tests are somewhat independent. If they are
effective at selecting legitimate place cells, those cells should show a high
degree of correlation between successive visits to the same box, illustrated in
Figure 8.2. In Fig. 8.2A, cells that failed the I95% test (95% shaded area) have
substantially lower correlations between SA1 and SA2 visits than those that
passed the test (5% unshaded area). The correlation between two smoothed
place fields were found by calculating the pixelwise correlation coefficient of
the fields, excluding undersampled pixels. In Figure 8.2B, excluded cells may
occasionally have high correlation values because they are interneurons that
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Figure 8.2: Two tests for spatial selectivity based on spatial information content
(SIC): a 95th percentile ranking, and a fixed minimum value of 0.15 bits/spike.
Each test is plotted against another measure of spatial selectivity: the correlation
between place fields from successive visits to the same box. Data are from place
fields recorded in the first and second visits to box A each day. 95th percentile of
the distribution of correlations expected between remapped fields was plotted as a
horizontal dashed line in each graph; values above this line indicate that the fields’
correlation is unlikely to be coincidental. Gray areas indicate regions in which cells
would not qualify for inclusion in the subsequent analysis. A) SIC percentile ranking
was strongly indicative of field correlation between successive visits. B) Cells with
very low SIC values (0.15 bits/spike) also had low correlations between successive
box A visits, and were probably interneurons. (Reprinted from Fuhs et al., 2005.)
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fire nearly everywhere, but they fail the Imin test because their SIC values
are 0.15 bits/spike. The dashed lines in both figures mark the threshold for
statistical significance of SA1× SA2 correlations, calculated by comparing the
distribution of correlations across two visits to the same box with that for the
Complete Remapping distribution, described below.

8.2.7 ANOVA groups

Our goal is to assess whether the hippocampus as a whole remapped between
various pairs of visits, such as successive visits to the same box, or between
box A and box B, or between same-orientation and opposite-orientation con-
ditions. Because the cells’ spatial firing patterns are not perfectly correlated
even across visits to the same box (note the distribution of points along the
x-axes in the plots in Figures 8.6, 8.7, 8.8, and 8.9), and because random
changes in individual cells might be observed even when the hippocampus
as a whole does not remap, it is necessary to construct statistical tests to
formally assess the degree of correlation observed between visits. Given any
two visits, one can measure the correlation of place cell firing fields between
those visits for all the cells in the population, yielding a distribution of corre-
lation values. Analyses of variance can then test whether this distribution
is statistically different from other distributions of interest. A total of eight
salient distributions were identified, summarized in Table 8.2.

The SA1 × SA2 No Remapping distribution consisted of correlations between
successive box A visits, with one exception: box B fields had to be used for
the first day of rat 1 because of a recording problem during the SA1 visit.
No remapping was expected or qualitatively observed during successive
visits to the same box, so this distribution was used as the prototypical No
Remapping distribution.

The SA× SB distribution consisted of correlations between the first box A
visit and the first box B visit, with one exception: the second visits had to be
used for the first day of rat 1, resulting from the aforementioned recording
problem in SA1.

The OA1 ×OA2 distribution consisted of correlations between successive
box A visits in the opposite-orientation configuration.

The SA×OA distribution contained correlations between fields from the
temporally closest visits to box A in each configuration, i.e., between SA2 and
OA1 on day 1, and between OA2 and SA1 on day 2. Because the boxes in the
opposite-orientation configuration were rotated 90◦ in the room frame with
respect to the boxes in the same-orientation configuration, fields from the
opposite-orientation configuration were first rotated 90◦ before correlations
were calculated. However, cells recorded during the second day for rat
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Distribution Component Correlations
SA1 × SA2 “No Remapping” Rat 1: SA1 × SA2 day 1 (see text)

117 cells Rats 2, 3: SA1 × SA2 day 1
All: SA1 × SA2 day 2

SA× SB Rat 1: SA2 × SB2 day 1
117 cells Rats 2, 3: SA1 × SB1 day 1

All: SA1 × SB1 day 2

OA1 ×OA2 All: OA1 ×OA2 day 1
113 cells All: OA1 ×OA2 day 1

SA×OA All: SA2 ×OA1 day 1
120 cells All: OA2 × SA1 day 2

OX2 ×OX3 Day 3 All: OA2 ×OA3 day 3
59 corr. from 35 cells All: OB2 ×OB3 day 3

OA×OB “Before remap” Rat 2: OA2 ×OB2 day 2
40 cells Rat 3: OA1 ×OB1 day 1

OA×OB “After remap” Rat 1: OA1 ×OB1 day 1
76 cells Rat 2: OA2 ×OB2 day 1

Rat 3: OA1 ×OB1 day 2
All: OA1 ×OB1 day 3

“Complete Remapping” All: Cell i OA1×Cell j OB1,
5113 cell pairs where tetrode(i) 6= tetrode(j)

Table 8.2: Distributions used in ANOVA tests for remapping. There were no
statistical differences in the median correlation among the first six distributions
(above dividing line) or the last two (below dividing line). However, the shaded and
unshaded distributions differed significantly from each other. See Section 8.3 for
details of the statistical analysis.
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1 showed a stronger correlation without rotation, and therefore were not
rotated before calculating the correlations reported here.

The OX2 ×OX3 Day 3 distribution, where X could be either A or B, con-
tained correlations between fields in the same box during the second visit of
the first foraging epoch and the first visit of the second foraging epoch on
day 3. This distribution measured consistency of fields across the intervening
Sleep 2 period.

The OA×OB Before remap distribution contained correlations between
boxes A and B in the opposite-orientation configuration before remapping
was observed. The onset of remapping varied across rats; because rat 1’s
fields remapped on first entry to box B in the opposite-orientation configura-
tion (see Section 8.3), it was excluded from this group. Fields in box B were
rotated 180◦ before correlations were calculated.

The OA×OB After remap distribution contained correlations between boxes
A and B in the opposite-orientation configuration after remapping had been
observed. Fields in box B were rotated by 180◦ before correlations were
calculated for the first 2 days of recording, but were not rotated on the third
day.

The Complete Remapping distribution modeled the expected distribution
of correlations between place fields when the hippocampus remapped com-
pletely. To estimate this distribution, cells’ box A firing fields were correlated
with the box B firing fields of other cells, on different tetrodes, within the
same dataset. Because some cells had fields in only one box, this estimate
includes cases where a cell remaps by gaining or losing a field between boxes.

Once again, these eight groups are distributions of correlations between
two place fields for a cell. When computing these distributions, if neither
field was spatially selective (SIC value failed to exceed I95% and Imin), that
correlation was excluded from the distribution because the cell was con-
sidered uninformative about the similarity of representations in the two
environments.

For the bulk of the analysis, correlations were measured by calculating the
Pearson r correlation coefficient. This requires first normalizing each place
field by its variance. A drawback of this approach is that if a cell remaps
by changing only its firing rate and not the shape of its firing field, the
correlation between normalized fields will be high and no remapping will
be detected. Such “rate remapping” has been reported by Lever et al. (2002)
and Hayman et al. (2003). Therefore to test for systematic rate differences
across conditions, we also computed a second set of eight distributions using
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the following difference metric in place of the Pearson r correlation

D =

∑
x |f1 (x) − f2 (x)|∑
x |f1 (x)| + |f2 (x)|

(8.1)

where the variable x ranges over map locations, and f1 (x) and f2 (x) are two
place field firing rate maps that have been zero-normalized by subtracting
off their respective mean firing rates. Intuitively, the metric calculates the
ratio of the difference between rate maps to the difference between each rate
map and its mean. The metric equals 0 for identical fields and rises toward
a maximum of 1 when fields are either not well spatially aligned or have
substantially different firing rates.

8.2.8 P-HMM reconstruction

By averaging over several minutes, rate maps provide a robust estimate of
place cells’ overall spatial firing patterns, which permits the discovery of
heterogeneous behavior within the cell population, such as varying degrees
of partial remapping. We also performed a complementary analysis, pop-
ulation reconstruction, which assumes homogeneity within the population
to reconstruct a variable of interest, such as the animal?s location, from the
activity of many cells within a small window of time.

Our population reconstruction analysis used three box visits during which
the same cells were recorded: two Reference visits, one from each box,
between which remapping was observed, and a Test visit which could be
from either box. The Test visit was divided into time windows of 250 ms and,
for each window, t, a spike count vector Nt (1 . . . C) was created containing
the number of spikes recorded from each cell, 1 6 c 6 C.. The results of the
analysis then indicated whether the spike count vector during each Test time
window was more likely to have been generated by the box A or box B map,
or whether the cells were inactive.

A Poisson hidden Markov model (P-HMM) was constructed from the rate
maps of each pair of Reference visits to provide a model of the expected
distribution of spike count vectors in either box. The P-HMM used three
states: Box A, Box B, and Quiescent. The state transition probabilities were
weighted strongly in favor of remaining in the same state (p = 0.97), which
was intended to reflect the idea that transitioning between maps occurs much
less frequently than traveling within a map. Transitions from a state to either
of the other two states had a probability of 0.015. The P-HMMs were defined
to output spike count vectors of length C.

It was assumed that spikes from a place cell occurred according to a Poisson
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distribution whose mean depended on the rat’s location, and that place
cells were conditionally independent of each other, given the hippocampal
map and the rat’s location. These assumptions were used in the Bayesian
reconstruction methods in Zhang et al. (1998), the statistical machinery they
develop being similar to the present approach.

Based on these assumptions, each element of the P-HMM’s output vector
was Poisson distributed and independent of the other elements. Specifically,
for a given time window t, the distribution of spike counts for element c was
modeled as

Nt (c) ∼ Poisson (fc (St,xt)) (8.2)

where Poisson (µ) denotes a Poisson distribution with mean µ, and fc (St,xt)

is the observed mean firing rate of cell c at position xt according to the cell
c’s Reference rate map associated with state St.

The Quiescent state was associated with rate maps whose values were all
zero, representing a state in which no cells were active. This proved to be an
important inclusion in the P-HMMs because during the beginning of a visit
cells sometimes showed little activity. When only a handful of cells were
recorded, this could be interpreted as representing the activity patterns of
the “wrong” box.

The reconstruction process was based on the supposition that a P-HMM
was the generative model of the spike count vectors recorded in the Test visit.
The Viterbi algorithm Forney (1973), the standard algorithm for inferring
an HMM’s sequence of “hidden” states from a sequence of its outputs, was
used to infer from the observed spike counts the most likely sequence of
active hippocampal maps.

8.3 Results

A total of 235 cells were recorded from three rats during the 3-day experimen-
tal sequence shown in Fig. 1B. The spatial information content of 160 cells
met or exceeded both the Imin and I95% thresholds during two or more con-
secutive visits to the same box (possibly across epochs), and were included
in further analyses (Table 8.1).

Eight distributions of place field correlation coefficients were computed
from the 160 place cells as described in ANOVA groups in Section 8.2.7
and Table 8.2. Two of these distributions, the No Remapping and the arti-
ficially constructed Complete Remapping distributions, were included as
baseline measures of what the distribution of place field correlation coeffi-
cients should be in the extreme cases of no or complete remapping. The other
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six distributions were compared with each other and with these two baseline
distributions to assess the extent to which remapping occurred under various
conditions.

8.3.1 Remapping occurred in the opposite-orientation configuration

All eight distributions listed in Table 8.2 were analyzed together using a
Kruskal-Wallis nonparametric ANOVA, which showed significant differences
among them (χ2

7 = 1291.3; p � 0.001). Post hoc comparisons revealed
no significant differences among the first six (p > 0.5), including the No
Remapping distribution, suggesting that the same hippocampal map was being
recalled in each of the conditions measured by these distributions. Post hoc
comparisons also revealed significant differences (p� 0.001) between these
first six distributions and the last two (the OA×OB After Remap distribution
and the artificially constructed Complete Remapping distribution), There were
no significant differences between the OA×OB After Remap and Complete
Remapping distributions (p ≈ 0.1). Thus remapping was observed only in
the OA×OB After Remap distribution, and the degree of remapping was
statistically indistinguishable from a complete remapping.

8.3.2 No remapping detected in the same-orientation configuration

Although Skaggs and McNaughton (1998) observed partial remapping be-
tween the two boxes in the same-orientation configuration, there was no
evidence for remapping between boxes in the corresponding condition in
this study, including those visits subsequent to opposite-orientation sessions.
The median correlation values of the same box (SA1 × SA2) and different box
(SA× SB) distributions were both 0.71. Post hoc comparisons between same
box and different box correlations revealed no significant difference (p > 0.5).

A Kruskal-Wallis nonparametric ANOVA revealed no significant differ-
ences among the six sets of fields (3 rats × 2 days) that constituted the
SA1 × SA2 group, our prototypical No Remapping group (χ2

5 = 4.8; p ≈ 0.44).
Similarly, no significant differences among the six sets of fields that con-
stituted the SA× SB group were observed (χ2

5 = 9.25; p ≈ 0.1). A visual
comparison of SA fields to SB fields in Figures 8.3, 8.4, and 8.5 confirms that
cells behaved similarly in the two boxes. Figure 8.6 compares the correlations
in the same box (SA1 × SA2) distribution with the different box (SA× SB)
distribution. Cells tend to cluster near the 45◦ line, meaning that their corre-
lations between boxes are similar to their correlations between visits to the
same box.
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Figure 8.3: Place fields recorded in rat 1 show that the first remapping in box B
occurred in visit OB1 on day 1. Surprisingly, but consistent with the bulk of the
day 2 place cell population, the fields in OA1 and OA2 on day 2 had the strongest
correlations with the 0◦ rotations of the fields in SA1 and SA2. On day 1, and on
both days for the other 2 rats, the strongest correlations were at 90◦. A different cell
is shown for each day. Color bars at right show spike rate in Hz. (Reprinted from
Fuhs et al., 2005.)
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Figure 8.4: Place fields recorded in rat 2 show that the first remapping in box B
occurred in visit OB2 on day 1. Note that the field in SA2 day 1 shows the strongest
correlation with the field in OA1 day 1 at the 90◦ rotation. A different cell is shown
for each day. Color bars at right show spike rate in Hz. (Reprinted from Fuhs et al.,
2005.)
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Figure 8.5: Place fields recorded in rat 3 show that the first remapping in box B
occurred in visit OB1 on day 2: the field in the bottom left corner of OA1 is absent
from the top right corner of OB1. A different cell is shown for each day. Color bars
at right show spike rate in Hz. (Reprinted from Fuhs et al., 2005.)
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Figure 8.6: Rats did not remap between boxes in the same-orientation configuration.
Place field correlations between boxes A and B are plotted against correlations
between successive visits to the same box (usually box A, but occasionally box B
if there was no field in box A). Points lie mostly on the 45◦ line, suggesting that
field correlations are as strong between boxes as within a box. (Reprinted from Fuhs
et al., 2005.)
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8.3.3 Same-orientation box A fields were maintained in the opposite-orientation
condition

For all three rats, the box A fields in the opposite-orientation condition were
isomorphic to those in the same-orientation condition. For each visit, we
found the best fitting rotation from among 0, 90, 180, or 270◦, and then
computed the correlation. The best-fitting rotation was 90◦ in all but one
case. The median correlation between fields in the temporally closest same-
orientation and opposite-orientation box A visits (SA×OA) was 0.61. Post
hoc comparisons showed no significant difference between this distribution
and the same-box distributions from either configuration (SA1 × SA2 and
OA1 ×OA2, p > 0.5).

A Kruskal-Wallis nonparametric ANOVA revealed significant differences
among the six sets of correlations that constituted the SA×OA distribution
(3 rats × 2 days; χ2

5 = 16.0; p < 0.01). The rat 1, day 2 set had the lowest
median correlation of the six (0.49), and post hoc comparisons showed that
the rat 1, day 2 SA×OA correlations were significantly lower than the rat 2,
day 2 set (p < 0.05).

To understand to what extent these differences were attributable simply
to differences in overall place field stability among recording sessions, each
SA×OA distribution was compared with the corresponding SA1 × SA2 dis-
tribution using Kolmogorov-Smirnov tests. Only during the second day of
rat 1 was there a significant difference (D25,25 = 0.54, p < 0.002), suggesting
that variations in SA×OA correlations were indeed linked to varying place
field stability. Even for the rat 1, day 2 set, the SA×OA group median of
0.49 suggests at most a partial remapping between configurations.

The second day in rat 1 was different from the others in that, despite the ro-
tation of box A by 90◦ between the opposite-orientation and same-orientation
configurations, the place fields did not rotate. Figure 8.7A compares the
within-configuration box A correlations to the between-configuration box A
correlations for each rat and each day. Except for this second day in rat 1,
cells that showed consistent fields in box A between visits in the opposite-
orientation configuration also showed consistent fields across configurations
when rotated by 90◦. Figure 8.7B shows the within-configuration versus
between-configuration plots for rat 1, day 2 for the four possible rotations
of the fields consistent with the shape of the box walls. Only the 0◦ rotation
shows a strong positive correlation.
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Figure 8.7: Box A fields in the opposite-orientation condition were isomorphic to
those in the same-orientation condition. Correlations between box A place fields in
the 2 conditions are plotted against correlations between successive visits to box A.
A) except for the second day of rat 1 (labeled 0◦ Rotation), all the fields correlated
best when rotated by 90◦. B) during the second day for rat 1, fields appeared to
remain fixed in the room frame rather than rotating with the box. Only the 0◦

rotation gave correlations significantly centered at the diagonal line. (Reprinted
from Fuhs et al., 2005.)
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8.3.4 Opposite-orientation box A fields were stable across visits

Overall, box A place fields were as stable between visits in the opposite-
orientation configuration as in the same-orientation configuration. The
OA1 ×OA2 median correlation was 0.67, which was not significantly differ-
ent from the SA× SB distribution (p > 0.5). However, a Kruskal-Wallis non-
parametric ANOVA revealed significant differences between the six sets of
fields that constituted the OA1 ×OA2 distribution (3 rats × 2 days; χ2

5 = 13.5;
p < 0.02). The rat 1, day 2 group again had the lowest median (0.57), and
post hoc comparisons showed it to be significantly lower than the median for
the first day for the same rat (P 0.05). No other differences were significant.

8.3.5 Box B fields eventually differed from box A in the opposite-orientation config-
uration

For all three rats, place cells eventually showed completely different fields
between boxes A and B in the opposite-orientation configuration. However,
the rats differed with respect to the visit in which box B differentiation
first occurred. Rat 1’s place fields remapped on first visiting box B in the
opposite-orientation configuration (Figure 8.3, visit OB1 day 1). Rat 2’s fields
remapped on its second visit to box B (Figure 8.4, visit OB2 day 1). Rat 3’s
fields remapped on its third visit to box B (Figure 8.5, visit OB1 day 2).

Figure 8.8 shows how the place fields correlated between boxes as a
function of how they correlated between successive visits to box A over
the first 2 days. Remapping is indicated by a majority of points falling
significantly below the 45◦ line. There are two interesting features to note.
First, scanning down each column, it can be seen that once a rat’s place fields
remapped between the boxes, they continued to remap in all subsequent
visits. (The between-box correlations were calculated after rotating the box
B fields by 180◦, but once remapping occurred, these correlations were no
stronger than unrotated correlations.) Second, as noted earlier, fields in box
A in the opposite-orientation configuration were stable across visits and were
not disrupted by the remapping in box B; this can be seen from the tendency
of points to fall on the right side of each plot.

A Kruskal-Wallis ANOVA was performed on the first five pairs of opposite-
orientation between-box visit correlations from each rat (i.e. OA1 ×OB1 on
days 1 and 2; OA2 ×OB2 on days 1 and 2, and OA1 ×OB1 on day 3) and
the No Remapping (SA1 × SA2) distributions. Significant differences were
observed consistent with the previously described timing of remapping
for each rat (χ2

15 = 138.0; p < 0.001). Post hoc comparisons showed the
following:
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Figure 8.8: Rats first showed remapping during their first, second, or third visit
to box B in the opposite-orientation configuration. Correlations between box A
and box B place fields in the opposite-orientation configuration are plotted against
correlations between successive opposite-orientation visits to box A. Box B fields
were rotated 90◦ before calculating correlations, unless otherwise shown. Strong
correlations (points on or above the diagonal line) are shown during the first box B
visit by rat 2 and the first two visits by rat 3, indicating that remapping had not yet
occurred. (Reprinted from Fuhs et al., 2005.)
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Rat 1. There were no significant differences among the five visit pairs,
which is consistent with the rat remapping on first exposure to the opposite-
orientation condition. None of these was significantly different from any
of the other “remapped” visit pairs (p > 0.5). The second visit pair of the
second day yielded the largest number of cells with spatially selective fields
in at least one box (24), and the between-box correlations during the second
visit pair of the second day were significantly lower than the first visit pair
of rat 2, which had not remapped yet (p < 0.05).
Rat 2. The first visit pair showed significantly stronger correlations than
the following four (p < 0.005), which were not significantly different from
the other “remapped” visit pairs (p > 0.5). This is consistent with the rat
remapping on second exposure to the opposite-orientation condition.
Rat 3. Only two cells were recorded during the first two visit pairs (day 1);
they both showed strong correlations between boxes. By contrast, in the third
and fourth visit pairs (day 2), none of the eight cells showed even a weak
correlation between boxes. Correlations in the fifth visit pair (day 3) were
similarly low, but the small sample size (four cells) was not sufficient to show
a statistical difference between these OA×OB pairs and the No Remapping
distribution. Nonetheless, the values for the third and fourth visit pairs were
significantly lower than for the first visit pair of rat 2 (p < 0.025), consistent
with the rat remapping at the beginning of day 2.

The between-box correlations for the visits just before remapping in rats
2 and 3 were combined into an OA×OB Before remap distribution (median
correlation 0.67), and the between-box correlations for the visit initially show-
ing remapping in all three rats were combined into an OA×OB After remap
distribution (median correlation 0.06). OA×OB Before remap showed high
correlation values and was not significantly different from either same-box
correlation group (SA1 × SA2 or OA1 ×OA2, p > 0.5). By contrast, OA×OB
After remap was significantly different from OA×OB Before remap (p < 0.001),
and not significantly different from the artificially created Complete Remapping
distribution (p > 0.5).

8.3.6 Place fields on day 3 were stable across epochs

Figure 8.9 shows, for day 3, how the place fields correlated between boxes
as a function of how they correlated between successive visits to box A. The
correlations were measured without rotation, because two cells each recorded
from rats 1 and 2 appeared to show consistent fields between boxes when
not rotated (Figure 8.10). The third rat showed equally low correlations for
all four rotations consistent with the box shape (0, 90, 180, and 270◦).

The OX2 ×OX3 day 3 distribution, constituting box A and B field correla-
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Figure 8.9: All three rats showed strong remapping between the two boxes on day
3: most points on the right are well below the diagonal line. Points labeled 1-3 are
the cells for rat 1 that exhibited consistent fields across boxes instead of remapping;
points labeled 4 and 5 are the 2 cells for rat 2 that did the same. (Reprinted from
Fuhs et al., 2005.)
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Figure 8.10: Four of the 5 place cells (from 2 rats) that showed similar fields between
boxes on day 3. Cell numbers (in parentheses) match those in Figure 8.9. Cells 1
and 4 may be examples of rate remapping. Cell 2 from Figure 8.9 is omitted because
it had only a very faint field in one box, although the between-box correlation
coefficient was high. (Reprinted from Fuhs et al., 2005.)
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tions between the second visit of the first foraging epoch and the first visit
of the second foraging epoch, was not significantly different from any of
the other non-remapping distributions (p > 0.5). A Kruskal-Wallis ANOVA
comparing the six sets of correlations in this distribution (2 boxes × 3 rats)
showed no significant differences among them (χ2

5=6.6; p ≈ 0.25). Thus all
rats were remapping between boxes on day 3, and the maps were stable
across the two opposite-orientation epochs.

8.3.7 No evidence of rate remapping in the absence of field remapping

The main Kruskal-Wallis ANOVA was recalculated using the same distribu-
tions in Table 8.2 but using a place field difference metric (Equation 8.1) that
is strongly sensitive to absolute rate variations. Again, significant differences
were found (χ2

7 = 1268.8; p < 0.001). Post hoc comparisons again found
no significant differences between the first six distributions (p < 0.5), but
significant differences between these six distributions and the OA×OB After
Remap distribution (p < 0.001). The median D values for the No Remapping
and OA×OB Before Remap distributions were 0.37 and 0.42, respectively,
whereas the median D value for the OA×OB After Remap was 0.74. The
median D value of the Complete Remapping distribution (0.81) was found to
be even higher than that of the OA×OB After Remap distribution (p < 0.01),
although this difference is likely explained by the artificially constructed
nature of the Complete Remapping distribution. Absolute firing rates are likely
to vary between cells to a greater degree than between conditions for the
same cell, and tetrode cell isolation techniques do not generally produce an
equal sampling of spikes from all cells.

8.3.8 Population dynamics within a session

We analyzed the temporal dynamics of place cells during opposite-orientation
box A and B visits on the day in which remapping was first observed. The
purpose of the analysis was to determine to what extent place cells showed
activity consistent with the same map throughout the visit (see Section 8.2.8)
For each rat, a Poisson hidden Markov model (P-HMM) was constructed
using firing rate maps from Reference visits OA2 and OB2. These box A and
box B Reference visits were used as archetypes of the firing patterns expected
in each box subsequent to remapping between them. (Place field correlations
indicated that place cells completely remapped between these visits.) Spike
trains from two Test visits, OA1 and OB1, recorded just before the Reference
visits, were then analyzed by inferring the sequence of P-HMM states (Box A,
Box B, or Quiescent) most likely to have generated each spike train.

The sequences of inferred states for the Test visits of each rat are shown in
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Figure 8.11: Hippocampal state (Box A, Box B, or Quiescent) inferred by the P-HMM
model during the course of a box visit. A and B) rats 1 and 3 are mostly in state
Box A during OA visits, and state Box B or Quiescent during OB visits. C) rat 2
favors state Box B in the first 27 s of visit OB1 on day 1, but then switches to Box A.
(Reprinted from Fuhs et al., 2005.)
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Figure 8.11. The top graph for each rat shows the reconstruction performed
on the box A Test visit, providing a baseline indication of how well the
reconstruction method was able to infer the identity of the box. The bottom
graph for each rat shows the reconstruction performed on the box B Test
visit. For rats 1 and 3, the box B reconstructions are consistent with the fields
having remapped on entry into the box. Interestingly, the likelihood of the
Quiescent state being active decreases with time in both cases (Rat 1: r = 0.28,
p < 0.005; Rat 3: r = 0.22; p < 0.02), suggesting that cell firing became more
robust as the visit progressed. This phenomenon is consistent with previous
reports progressively stronger cell firing over the course of a session (Wilson
and McNaughton, 1993; Mehta et al., 1997).

Based on firing rate map correlations, Rat 2 was judged to still be using the
box A map during the reconstructed box B Test visit (OB1 day 1) shown in
Figure 8.11C. The reconstructed state sequence is mostly consistent with this
description. However, during the first 27 s, the place cells appear to adopt
the box B map later used in the following box B visit, before switching back
to the box A map.

To ascertain how well the place cell firing patterns were fit by the box B
state, two portions of the box visit were defined: the box B portion (t < 27
s) and the box A portion (t > 27 s). Four groups of P-HMM log observation
likelihoods were then analyzed: P(Nt | Box A), 0 < t < 27 s; P(Nt | Box B), 0 <
t < 27 s; P(Nt | Box A), t > 27 s; and P(Nt | Box B), t > 27 s). A Kruskal-Wallis
ANOVA was performed on the four groups and found significant differences
(χ2

3 = 226.1; p� 0.001). Post hoc comparisons revealed that groups P(Nt |
Box B), 0 < t < 27 s and P(Nt | Box A), t > 27 s were not significantly different,
yet both groups’ median correlations were significantly higher than group
P(Nt | Box B), t > 27 s), suggesting that the box B state was characterizing the
first 27 s of population activity nearly as well as the box A state characterized
the remainder of the session.

8.4 Discussion

8.4.1 Same-orientation case

Linear path integration could in principle have differentiated the two boxes
in the same-orientation configuration, and might account for the partial
remapping Skaggs and McNaughton observed (Touretzky, 2005). No partial
remapping, not even rate remapping, however, was observed under nearly
identical conditions in the present experiment. Skaggs and McNaughton rats
were naive to the apparatus, whereas our rats had already undergone 16-23
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days of trials in the same-orientation configuration. Therefore to rule out
experience-dependent effects, data were examined from the rats? first 2 days
of exposure to the apparatus, i.e., days 1 and 2 of the 19- to 26-day recording
sequence. In these first 2 days, the between-box correlations were actually
slightly stronger than the within-box, between-epoch correlations (p < 0.05),
indicating that partial remapping did not occur even at the beginning of the
experiment.

The present study used Fisher Brown Norway rats, in contrast to the albino
rats used by Skaggs and McNaughton. Albino rats have roughly half the
visual acuity of non-albinos. Also, the box lights used by Skaggs and Mc-
Naughton were dimmer and better shielded than in the present experiment.
If the failure to find partial remapping in the present experiment were due
to the higher light levels and greater visual acuity, then training in darkness
should decrease the place code similarity between boxes. Preliminary data
from one rat confirms this finding. When trained initially in the two boxes in
darkness, the place codes in the two boxes were completely different. Thus,
as the quality of sensory information provided to the rat is decreased from
that available in the present experiment, to what was available in the Skaggs
and McNaughton, to darkness, the degree of remapping between the boxes
increases.

When the rats in this experiment left box A, traveled down the corridor,
entered box B, and ended up back on the box A map, did they jump to it
abruptly or transition smoothly? To see whether an abrupt change in map,
or position within a map, was detectable in our data, we generated sets of
ensemble activity patterns for rat 2 on days 1 and 2 and rat 1 on day 2 as
they traveled from box A through the corridor and into box B. (Rat 3 had too
few cells to be included in this analysis.) The patterns were constructed by
dividing each visit into 500-ms bins and computing the average spike rate of
each cell within each bin. We then looked at a trajectory from box A through
the corridor and into box B, measuring the maximum correlation at each
time step between the current activity pattern and the activity pattern at the
entrance to box A, which is also the expected pattern in box B because the
rats were not remapping between boxes. When the rats entered box B from
the corridor, we did not see any evidence that the correlation increase was
sudden, as would be expected if the hippocampal representation abruptly
changed from that of the corridor to that of the box A map. However, given
the paucity of trajectories through the corridor, it is unlikely that such a jump
would be detectable in the present data.

If the hippocampus did not abruptly jump between maps in this condi-
tion, one possible explanation is that the representation of the apparatus

177



space and context in two identical boxes: a place cell study

formed a non-Euclidean map in which the same box A doorway could be
smoothly entered from either end of the straight corridor. The inability of
the linear path integrator to differentiate two same-orientation boxes, even
after place fields were remapping in the opposite-orientation condition, is a
striking demonstration of the difference between linear and angular idiothetic
information.

8.4.2 Opposite-orientation case

The opposite-orientation portion of the experiment tested the influence of
both linear and angular path integration on place fields. All three rats
eventually exhibited different maps in the two boxes when their orientations
were 180◦ apart. For rats 2 and 3, however, this result did not emerge until
the second or third box B visit, respectively.

Several experiments have shown that repeated instances of orientation
discordance can weaken visual cues’ control of place fields. Knierim et al.
(1995) showed that repeatedly disorienting rats before placing them in a
cylinder with a white cue card along the wall prevented the card from
acquiring directional control of place fields. The disorientation would have
caused the card to appear at a different allocentric bearing on each trial. In a
subsequent experiment, Knierim et al. (1998) introduced a conflict between
visual and vestibular cues by rapidly rotating the cylinder wall and floor
through an angle of 135-180◦ while the rat remained inside. The rat’s visual
system would indicate no self-motion under these conditions, whereas its
vestibular system would sense the rotation. Knierim et al. found that place
cells could remap in this situation, and head direction cells could fail to stay
aligned with the cue card.

When the rat entered box B in the present experiment, visual landmarks
would indicate that the world had rotated by 180◦, whereas its vestibular
sense would deny that any rotation had occurred – the complement of
the Knierim et al. (1998) scenario. However, if either type of discordance
between visual landmarks and the rat’s internal direction sense weakens
the landmarks’ control of place fields, it follows that repeated trips between
boxes A and B in the opposite-orientation configuration should eventually
lead to the abandonment of the box A map in box B.

Rat 1 seemed to be the most sensitive to orientation discordance because
its cells remapped immediately on entering box B in the opposite-orientation
configuration, in visit OB1 on day 1. They continued to remap during visit
OB2, and again on day 2 in visits OB1 and OB2; but then, after the sleep
period between epochs, when the rat was again passively transported to box
A – now in the familiar side-by-side configuration – its fields maintained the
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same orientation relative to the room as before, rather than rotating by 90◦

to align with the within-box cues. (See Fig. 3, visit SA1 on day 2.) In this
rat, after experiencing just two opposite-orientation epochs constituting four
trips from box A to box B, the visual cues appear to have lost directional
control of place cells. Jeffery and O’Keefe previously showed that rats could
learn to ignore visual cues and follow idiothetic cues when a prominent
visual cue repeatedly shifted location.

Rats 2 and 3 continued to use a 90◦ rotation of the box A map in the same-
orientation configuration. (Compare visits OA1 and OA2 with visits SA1 and
SA2 on day 2, Figures 8.4 and 8.5.) It is significant that the rats entered box
A at the start of the SA1 visit by passive transport. Stackman et al. (2003)
showed that rats do not integrate vestibular and optic flow cues accurately
when transported passively through a 180◦ heading change. The 90◦ rotation
in the present experiment may therefore have been barely noticeable. In
contrast, the rats always entered box B by active locomotion, so they should
have been able to maintain their angular orientation Taube and Burton (1995).
The 180◦ heading change required to realign the box A map with the box B
landmarks would have been highly salient.

Another possible response to orientation discordance is for place fields to
both remap and dissociate (follow different sets of cues), as seen in double-
cue rotation tasks Knierim (2002); Tanila et al. (1997). Dissociation was not
observed in the present experiment, possibly because there were no distal
cues; the room was kept dark and within-box illumination was faint. So the
discordance perceivable to the rats was between visual and vestibular inputs,
not between competing sets of visual cues. The outcome might have been
different if the rats had access to prominent room cues. What distinguishes
our result from previous discordance results, specifically the double-cue
rotation experiments of Tanila et al. (1997) and Knierim (2002), is that the
remapping was complete, and in two of the three rats, the remapping was
delayed rather than immediate (Bostock et al., 1991). Whether the delay is
dependent on some representation of the animal’s cumulative experience is
not known; however, as discussed in the next section, it may simply reflect
the increasing cumulative likelihood of a failure to realign the box A map in
box B space.

8.4.3 Remapping versus map extension

We define two maps as distinct if there is no continuous path from a place on
one map to a place on the other. If such a path exists, then the two maps are
really just different regions of the same map. In topological terms, a ?place?
is a vector of place cell firing rates and a ?map? is a collection of such vectors
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forming a two-dimensional manifold. Maps are distinct if the manifolds do
not intersect.

The appearance of a separate box B map in the opposite orientation con-
dition could arise in two ways. The rat could be literally remapping, i.e.,
jumping from the initial manifold to a separate manifold containing the box
B map. Or the rat could be using a single manifold for the entire apparatus,
but the portion containing the box B activity patterns might initially be unob-
servable because the rat jumped (or smoothly transitioned) back to the box A
portion of the manifold on entering box B. In this situation, the subsequent
change in box B patterns we attributed to “remapping” (jumping to a new
manifold) would actually be the result of the rat’s no longer resetting its
position on the current manifold.

The P-HMM reconstruction for rat 2 is consistent with the notion that the
rat extended the box A map into box B rather than switching to a new map.
Because remapping in box B did not emerge until the second visit on day
1, we can compare firing fields of the same cells before the emergence (visit
OB1) and afterward (visit OB2). Figure 8.11C shows that during visit OB1, the
rat started out using what would later appear as the box B map. It switched
to the rotated box A map after about 27 s. This is consistent with the rat
initially maintaining its orientation sense during the first 27 s of the box B
visit, which would be natural if the box B map were simply an extension of
the existing box A map through the doorway and into additional territory.

The argument would be strengthened if place fields spanning the two
boxes could be found. We did see a few such fields, but they appeared to
be tied to the doorway because they did not remap when the rat adopted a
separate representation for box B.

Although remapping in the opposite-orientation configuration was com-
plete on day 2, there is a hint of partial remapping on day 3 (Figure 8.10).
Rat 1 had three cells and rat 2 had two cells that appeared to stay in the box
A reference frame, displaying similar fields in box B despite the fact that the
cues were 180◦ opposite. (However, cell 4 and possibly also cell 1 in Figure
8.10 are exhibiting rate remapping.) The remaining cells recorded on day 3
remapped between boxes. This suggests either that the remapping on day 2
was substantial but not actually complete, or else the rats’ representation for
the task had begun evolving in a new direction by day 3. To date there have
been no reports of two completely distinct hippocampal states becoming
more similar over time, so the former hypothesis seems more likely.

In conclusion, linear and angular path integration function differently in
the rat. Linear path integration appears easily overridden by visual land-
marks, whereas angular path integration is more sensitive to cue discordance.
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In the present experiment, although repeated visits to the two boxes in
the same orientation condition produced no measurable remapping, one to
three visits in the opposite orientation condition prompted (nearly) complete
remapping. That this remapping was both delayed and abrupt suggests
a sudden failure to reset idiothetic representations, rather than a gradual
adaptation of the hippocampal code.

181



space and context in two identical boxes: a place cell study

182



9
C O N C L U S I O N

“Reasoning draws a conclusion, but does not make the
conclusion certain, unless the mind discovers it by the
path of experience. “
– Roger Bacon (1214–1294)

9.1 Summary of Research Contributions

The goal of this thesis has been to contribute to an understanding of neural
systems within the hippocampal region using advanced techniques from
machine learning, computational statistics, and artificial neural networks.
I have focused on two anatomical areas, dorsal medial entorhinal cortex
(dMEC) and hippocampus, presenting a neural network model of path
integration in dMEC and both theoretical and empirical contributions to an
understanding of contextual representations in hippocampus.

Chapter 6 presented a neural network model of dMEC that unified recent
physiological findings in dMEC with previous theories suggesting the ex-
istence of a neural path integration system in rats. The model provides an
account of how the hexagonally periodic firing fields of dMEC grid cells
can arise from a recurrent neural network with local, radially symmetric
connections. In addition, it demonstrates how a network with hexagonally
periodic firing fields can be used, with the addition of a velocity signal, to
integrate motion across an environment. The differences in field size, spacing
and orientation at different dorso-ventral levels of dMEC can be understood
to reflect different networks with different of velocity modulation. How a
sparse place code could be formed from the conjunctive encoding of mul-
tiple grid cell networks, each with highly periodic activity patterns, is also
explored.

Chapter 7 presented a Bayesian statistical theory of contextual represen-
tations in hippocampus. The principal goal of this work is to advance a
single notion of context that can be applied in both spatial and non-spatial
domains. This single notion is that a context is a statistically stationary
distribution of experiences that occur in temporal proximity to one another.
Statistical stationarity permits inference across time: the distribution of future
experience in a context should be similar to past experiences in that context.
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Thus, context selection (or context recall) should be an informative inference
process; knowing the current context should permit expectations within the
context that would not in general be reasonable.

Since an animal’s world is not a stationary distribution of experiences,
the challenge of context learning is to divide the animal’s experiences into
separate contexts, each of whose distribution of experiences is stationary.
The theory shows that this process, context learning, can be understood
as a model selection problem and that the gradual development of distinct
hippocampal contextual representations can be understood as reflecting the
adoption of progressively more complex context models. Because contexts
represent a temporal clustering of experiences, the theory explains why
contextual representations develop for different reward contingencies in
reversal learning but not for overlapping trajectories in alternating sequence
tasks. Because context selection and context learning are distinct inference
processes within this theory, it is able to capture the gradual adoption
of a context model to distinguish between contingencies in serial reversal
learning, as well as the single-trial behavioral reversals observed in well-
trained animals.

In Chapter 8, I analyzed data from an experiment performed in Bruce
McNaughton’s lab in which rats foraged for food in two identical boxes
with either the same or opposite (180o) orientation in the room. The analysis
showed that, while rats represented the two boxes in the same orientation
condition using the same hippocampal code, a second hippocampal code
developed for the second box in the opposite orientation case. Thus, linear
and angular path integration could both serve to distinguish the two boxes,
the hippocampal code differentiated them. When when only linear path
integration could serve to differentiate the two boxes, the hippocampal code
was shared.

Of particular interest was the time course of differentiation of the two boxes.
Each rat began to differentiate the two opposite-orientation boxes after a
different number of visits to each box (first, second and third, respectively).
As part of the analysis, I developed a novel application of inhomogeneous
Poisson HMMs to decoding the rats’ hippocampal code. Interestingly, the
decoding showed that hippocampal representations need not be constant
throughout a visit to an environment; rather, hippocampal representations
can abruptly change several tens of seconds after entry.
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9.2 Future Experimental Work

9.2.1 Grid cells

The model presented in Chapter 6 and the model presented by McNaughton
et al. (2006) differ in a number of fundamental ways. There are three experi-
ments that would help to distinguish between them:

1. Irregularities in the lattice structure of activity nodes during exploration
in an open field. While the model presented here is able to show
irregular lattice structures (e.g. heptagons, pentagons), the hexagonal
periodicity is hard-wired into the network topology in the McNaughton
et al. (2006) model.

2. A single orientation shared by every grid cell network. Such a result
could be tested by recording simultaneously from cells at different
dorso-ventral levels within the same animal. In contrast to Hafting
et al. (2005), McNaughton et al. (2006) assert that it is not currently
known whether grid orientations vary within one animal. The model
presented here supports multiple orientations and place code analysis
suggests that coding efficiency is substantially improved by grid cell
networks with varying activity pattern orientations.

3. A fixed difference in orientations between grid networks. Though the
orientation of different networks may vary, there may be a consistent
relationship between them across environments. The training regimen
used by McNaughton et al. (2006) involves afferent hexagonally periodic
activity patterns at a fixed orientation. Thus, in contrast to the present
model, they predict that the lattice orientation of different grid cell
networks will be the same.

In addition, our dMEC model does not directly address praxic navigation,
where a homing vector is constructed to return to the starting point of a
previously integrated path. Discovering the locus of such a system within
the brain and exploring its physiological properties would provide important
insights into the role of dMEC in spatial navigation.

9.2.2 Hippocampus

The context learning theory presented in Chapter 7 makes several predictions
about future experiments. First, in an extension of the Hayman et al. (2003)
study, rats should gradually remap between black box room positions at
the same rate as between white box room positions. Second, when rats are
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trained initially in a series of morph boxes whose shapes vary from square
to cylinder, the hippocampal place code should not distinguish among
arena shapes. Third, in a serial reversal learning paradigm, remapping
between reward contingencies should develop in a gradual manner, and the
rate of remapping should decrease when reward contingencies are made
more similar. However, if each reversal block is very small (e.g. 3 trials /
reversal), no remapping between contingencies should be observed. Finally,
since the theory showed that the alternating T-maze task should not lead
to the development of distinct contextual representations to distinguish
left-to-right and right-to-left trials, replay of the previous trial or of earlier
portions of the current trial should be necessary in cases where the task
is hippocampus-dependent (e.g., when a delay is present). In cases where
trial-type remapping is observed, trial-type differences should be due to
afferent input and observable in superficial EC.

Critical to understanding how new contextual representations are formed is
place cell data from DG and CA3, in addition to CA1, in all of the paradigms
addressed by the model. Since the most likely neural instantiation of the
theory involves the pattern-separation and pattern-completion mechanisms
associated with DG and CA3, mossy-fiber inactivation (as in Lassalle et al.,
2000) should inhibit gradual remapping between two similar contexts.

The experiment presented in Chapter 8 suggests the following question:
why was partial remapping between same-orientation boxes observed by
Skaggs and McNaughton (1998)? Preliminary evidence suggests that the
salience of visual cues is the significant difference, and further experimental
work should be (and is being) carried out to explore the relative contributions
of visual cues and linear path integration to the formation of the hippocampal
place code.

9.3 Future Theoretical Work

9.3.1 Space

In designing the grid cell model, simplicity and accessibility were favored
over path integration accuracy. The best approach to improving path inte-
gration accuracy is likely by incorporating learning into the model, which
naturally invites the question of development: how could such a model be
constructed during the development of the pup’s neural circuitry? Hahn-
loser (2003) provides an elegant explanation of the self-organization of the
head direction system; however, application of Hahnloser’s technique to a
path-integration system is not straight-forward. McNaughton et al. (2006)
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present a developmental model of their neural architecture, but the details of
their developmental model constrain it to have properties that differ critically
from our model.

Müller and Wehner (1988) demonstrated a simple model of path integration
involving vector arithmetic in polar coordinates whose systematic errors are
similar to those observed (Seguinot et al., 1993). However, I am not aware of
any attractor-based models that show such systematic errors (nor am I aware
that any attempts have been made to show such a bias). Showing how these
systematic errors arise from a developmental model of the dMEC circuitry
would be an important contribution to understanding praxic navigation in
rodents.

While grid cells are known to be sensitive to sensory cues, the dMEC
model currently does not consider how associations should be formed be-
tween sensory cues and grid network phases. It has been argued that the
hippocampus is critical for learning these associations (Redish and Touretzky,
1997, 1998), even if they are eventually consolidated to an extra-hippocampal
area. Concurrent simulations of dMEC and hippocampus could explore how
rats solve the simultaneous localization and mapping problem (Smith et al.,
1990; Montemerlo et al., 2002): learning associations between PI coordinates
and sensory cues in a novel environment.

The dMEC model is a firing rate model, and currently does not consider
precise temporal pattern of spikes. However, the timing of spikes of hip-
pocampal place cells is known to vary within the theta cycle depending on
the rat’s position relative to the center of the cell’s field; preliminary evidence
suggests this is true of layer II grid cells as well. Though the septum is critical
for theta modulation, the origin of phase precession is not known, nor is
it well understood how the animal’s environment and behavior influence
the phase precession effect. Moreover, it is not clear how phase precession
in dMEC might cause phase precession in the hippocampus, where place
cell firing is believed to depend on multiple simultaneously active neurons.
Further research to explore these issues will be necessary.

9.3.2 Context

The context learning theory presented in Chapter 7 includes a series of sim-
plifying assumptions in order to make model selection more computationally
tractable. By using HMMs as a generative model of the animal’s experiences,
time is discretely modeled, and time dependency can only be modeled across
a single time step. Daw et al. (2006) have suggested that a more sophisticated
semi-Markov process better explains physiology studies of the dopamine
system. In a semi-Markov process, an explicit “dwell time” is incorporated
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into the model to reflect an expectation about the duration of time the animal
expects to spend in each state or context. Context learning in vivo may
similarly involve a more explicit inference about the duration of time an
animal expects to be in each context. In addition, transition probabilities
between contexts could be defined as parameters that are adapted based on
the observed sequence of context transitions.

Skaggs and McNaughton (1998) started each session of their two-box
experiment in box A. On the final day, rats were instead introduced into box
B, but recalled the box A map. Since the boxes could only be distinguished
based on a hallway connecting them, this recall was presumably due to
previous days training where they became aware during travel between
boxes that box A was their starting box.

The theory also assumes a perfect memory of past experiences, an as-
sumption certain to be untrue. It would be interesting to explore to what
extent memory limitations, perhaps imposed by the representation of the full
history of experiences by a set of (in)sufficient statistics, would impact the
predictions made by the present framework.

While HMMs are composed of discrete states, the distribution of hip-
pocampal input patterns is likely better represented in a continuous fashion.
To deal with more physiologically realistic input patterns, the generative
model should be adapted to model regions of continuously varying input
patterns. This leads to the question of what sort of topology one might
expect to see both in the hippocampal input patterns and in the hippocampal
representation itself. The development and application of machine learning
tools to analyze physiological data sets to explore this and similar questions
is an important avenue for future research.

On a more theoretical note, a more sophisticated notion of context might
be considered in which contexts were not exclusive of one another. In the
theory presented, contexts represent clusters of experiences where each
experience is associated with one context. (Technically, each experience is
probabilistically associated with every context; however, this uncertainty
is intended to reflect uncertainty in context membership, not membership
in multiple contexts.) This theory could be generalized to consider non-
exclusive contexts, where multiple contexts may be simultaneously active.
For example, m behavioral contexts and n environmental contexts could
either be represented conjunctively via m×n exclusive contexts, or by m+n

non-exclusive contexts. In the latter case, recall of the correct behavioral
context could occur independently of recall of the correct environmental
context, permitting recall of a behavioral context in a new environment (or
vice versa). This is related to the idea of maplets (Touretzky and Muller, 2006),
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in which the hippocampal CA3 circuitry forms many small sub-networks,
each with multiple attractor basins. Maplets have been shown to better
account for discordant hippocampal representations than single attractor
networks. In addition, Chapter 6 explores how multiple networks in dMEC
might support such discordant activity in hippocampus.

Finally, while CA1 has historically been by far the most common record-
ing site within hippocampus, explorations of CA3 and DG during subtle
contextual manipulations are beginning to be performed. These new data
will permit realistic exploration of detailed neural network models of context
learning. In particular, how are new contextual representations gradually
formed in an experience-dependent manner? An early study exploring po-
tential learning rules to separate maps was offered by Fuhs and Touretzky
(2000). However, that model lacked a principled basis on which to form
new maps. With a theoretical foundation for context learning having been
presented here, neural network instantiations that embody this foundation
are ripe for exploration.
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