
Using Physical Layer Emulation to

Understand and Improve Wireless Networks

Glenn Judd

CMU-CS-06-164

October 2006

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Peter Steenkiste, Chair

Srinivasan Seshan
Dan Stancil

David Maltz, Microsoft
Robert Morris, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2006 Glenn Judd

This research was sponsored by the NSF under award numbers CCR-0205266 and CNS-0434824.
Additional support was also provided by Intel and Xilinx. Glenn Judd was supported by a National
Defense Science and Engineering Graduate Fellowship and an Intel Fellowship. The views and
conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Wireless, Network, Emulation

Abstract

Researchers and developers have long faced a fundamental tension between the ex-
perimental realism of wireless testbeds on one hand, and the control and repeatability
of simulation on the other hand. This thesis introduces physical layer wireless net-
work emulation – a new approach to wireless network experimentation that balances
the stark tradeoff of traditional alternatives by enabling both realistic and repeatable
experimentation.

The design and implementation of a functional wireless emulator are presented
along with a discussion of how this implementation overcomes the challenges nec-
essary to meet operational requirements. In particular, solutions to the problems
of developing a hardware architecture for emulation, and software control of that
architecture will be presented.

To illustrate the power of physical layer wireless network emulation, case studies
are presented. First, physical layer emulation is used to analyze several aspects of
wireless LAN link-level behavior. Physical layer emulation is then used to investigate
wireless LAN access point selection performance, and to develop improvements.

This thesis shows that – compared to traditional approaches – physical layer wire-
less network emulation provides a better understanding of real-world wireless net-
work performance, shortens the development cycle of wireless networking software,
and facilitates the deployment of research into operational wireless networks without
sacrificing a controlled experimental environment.

Acknowledgements

This work would not have been possible without large amounts of assistance
from several people and organizations. Peter Steenkiste, supported me in taking this
project from the “crazy idea” stage through to a working system both technically, as
my advisor, and practically by procuring support for this work. Dan Stancil provided
a wealth of knowledge of all things RF, space and equipment with which to conduct
this work, and prevented me from offending engineers with abused terminology. Dave
Maltz and Srini Seshan provided much needed external perspective on this work and
on useful problems to investigate in wireless networks.

The Roofnet Group led by Robert Morris and consisting of Sanjit Biswas, John
Bicket, and Dan Aguayo provided a reality-based perspective and a bevy of interesting
problems in need of emulation-based analysis. In addition, numerous discussions with
them yielded insight into important aspects of wireless performance, and pointed me
in productive directions.

In addition Dan Stancil’s students: J. P. Vant Hof, Ben Henty, Ahmet Cepni,
Kevin Borries, and Ratish Punnoose provided a wealth of both practical and theo-
retical engineering knowledge essential to accomplishing this work.

I am also grateful for the National Defense Science and Engineering Grant that
supported me for several years as well as to Intel, the National Science Foundation,
and Xilinx for their support.

Finally, I am extremely grateful for the support and patience of my wife and the
unfailing faith and encouragement of my children.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Trade-offs in Existing Experimental Techniques 2

1.1.2 A New Approach . 3

1.2 Architecture Overview . 4

1.3 Related Work . 5

1.3.1 Wireless Simulators . 5

1.3.2 Wireless Emulators . 6

1.3.3 Wireless Testbeds . 6

1.3.4 Channel Emulators / Fading Simulators 8

1.3.5 Analog Network Emulator . 8

1.3.6 Software Radio . 8

1.4 Challenges . 9

1.4.1 Bandwidth . 9

1.4.2 Dynamic Range . 9

1.4.3 Signal Integrity . 10

1.4.4 Latency . 10

1.4.5 Scale . 10

1.4.6 Internal Isolation . 11

1.4.7 External Isolation . 11

1.4.8 Hardware . 11

1.4.9 Software Infrastructure for Managing Experiments 12

1.5 Thesis Statement . 12

vii

1.6 Contributions . 12

1.7 Scope of Work . 13

1.7.1 Signal Environment Emulation 14

1.7.2 Architectural Enhancements and Alternatives 14

1.8 Outline . 15

2 Architecture 17

2.1 Requirements . 17

2.2 System Architecture . 19

2.2.1 Provisions for Future Improvements 21

2.3 Summary . 25

3 Implementation 27

3.1 Implementation Versions . 27

3.2 RF Front End . 27

3.2.1 Requirements . 27

3.2.2 Implementation . 28

3.2.3 Summary . 35

3.3 Signal Conversion . 35

3.3.1 Requirements . 35

3.3.2 Implementation . 36

3.3.3 Summary . 39

3.4 DSP Engine . 39

3.4.1 Requirements . 39

3.4.2 Implementation . 40

3.4.3 Summary . 41

3.5 Auxiliary FPGA . 41

3.5.1 Requirements . 42

3.5.2 Implementation . 42

3.5.3 Summary . 43

3.6 Packaging . 43

viii

3.7 Summary . 43

4 Control Software 47

4.1 Emulation Software Requirements . 47

4.2 Experimental Control . 49

4.3 Software Architecture . 50

4.3.1 Execution Control . 50

4.3.2 Hardware Configuration . 51

4.3.3 Physical World . 51

4.3.4 Signal Environment . 52

4.3.5 Signal Processing . 53

4.3.6 DSP Support . 54

4.3.7 Signal Conversion Module . 55

4.4 Case Studies . 55

4.4.1 TCP Throughput vs. Distance 55

4.4.2 Hidden Terminal Throughput 57

4.4.3 Vehicular Convoy Channel Replay 59

4.4.4 Programmatic Channel Control 60

4.5 Summary . 63

5 Signal Environment Emulation 65

5.1 Modeling . 65

5.1.1 Large-scale Path Loss . 66

5.1.2 Small-scale Fading . 66

5.1.3 Artificial Channel Models . 66

5.2 Ray Tracing . 67

5.3 Trace Capture and Playback . 67

5.3.1 Trace Capture . 68

5.3.2 Trace Playback . 69

5.3.3 Limitations . 69

5.3.4 Comparison with Real-world Behavior 70

ix

5.3.5 Discussion . 73

5.3.6 Trace Playback Summary . 78

5.4 Channel Sounding . 79

5.5 Discussion . 79

5.6 Summary . 81

6 Validation 83

6.1 RF Front End . 83

6.1.1 Downconversion. 84

6.1.2 Upconversion. 88

6.2 Signal Conversion . 88

6.2.1 Flatness. 89

6.3 RF Front End - SCM Composite . 94

6.3.1 EVM . 94

6.3.2 Spectrum Analysis . 96

6.4 Transport Level Fidelity . 97

6.5 Isolation. 98

6.6 Summary . 100

7 Link and Device Characterization 101

7.1 Link Behavior . 102

7.1.1 Experimental Setup . 103

7.1.2 Clear-channel Reception . 103

7.1.3 Capture and Acquisition Under Delayed Interference 104

7.1.4 Capture with Competing Transmitters 107

7.1.5 Off-channel Behavior . 110

7.1.6 Multipath Performance . 116

7.1.7 Link Asymmetry . 118

7.1.8 Causes of Link Asymmetry . 118

7.2 WLAN Performance Analysis . 121

7.3 Device Characterization . 126

x

7.4 Case Studies . 130

7.4.1 802.11b Rate Selection . 130

7.4.2 Bluetooth Interference . 135

7.4.3 Flexible Antenna and Multi-element Air Interface Support . . 135

7.5 Summary . 137

8 Network Experiments 139

8.1 Access Point Selection . 139

8.2 802.11 Background . 140

8.3 Measuring Access Point Selection Performance 141

8.3.1 Two Access Point Tests. 142

8.4 Improving and Tuning Madwifi 0.9.1 145

8.5 Improving Access Point Selection Using Fast Scanning 147

8.5.1 Previous Work . 148

8.5.2 Fast Scanning Introduction 148

8.6 Using Emulation to Aid Development 150

8.7 Measuring Fast Scanning Performance 150

8.7.1 Two Access Point Tests . 150

8.8 Multiple Access Point Performance. 151

8.9 Summary . 152

9 Conclusion 155

9.1 Motivation Revisited . 155

9.2 Contributions . 156

9.3 Lessons Learned . 157

9.4 Future Work . 159

9.4.1 Scale . 159

9.4.2 Improving Wireless LANs . 160

9.5 Trends in Wireless Technology . 160

9.5.1 Cellular . 160

9.5.2 Metropolitan Area Networks 161

xi

9.5.3 Wireless Local Area Networks 161

9.5.4 Short-range Wireless . 161

9.5.5 RFID. 162

9.5.6 Intervehicular Networks . 162

9.5.7 Sensor Networks . 162

9.5.8 The Future Role of Emulation 162

xii

List of Figures

1.1 Emulator Architecture . 4

2.1 Detailed Emulator Architecture . 20

2.2 Modified Architecture for Increased Scale 21

2.3 Multiple DSP Logical Architecture 22

2.4 Connecting Multiple DSP Engines . 23

2.5 Modified Architecture for I/Q Signal Processing 25

3.1 Strawman RF Front End Implementation 28

3.2 Actual RF Front End Implementation 30

3.3 RF Front End Picture . 31

3.4 MAMXES0042 Spur Isolation . 32

3.5 Signal Conversion Implementation . 37

3.6 Signal Conversion Implementation Picture 38

3.7 DSP Engine Picture . 40

3.8 Signal Conversion Chassis . 44

3.9 Emulator Rack . 45

4.1 Software Architecture Overview . 51

4.2 Interactive GUI . 52

4.3 Physical World and Signal Environment 53

4.4 DSP Engine Operation Example . 54

4.5 Throughput vs. Distance Topology 55

4.6 Hidden Terminal Topology . 57

4.7 Packet Capture Topology . 61

xiii

4.8 Packet Capture: In-range . 63

5.1 RSSI-based Channel Capture . 68

5.2 Sample Channel Trace . 69

5.3 Link-layer Test/Channel Capture . 71

5.4 Two-channel Capture - Over-the-air 72

5.5 Real-world vs. Emulated Replay. Test 1. 73

5.6 Real-world vs. Emulated Replay. Test 2. 74

5.7 CDF of Error for All Tests . 74

5.8 Card Characterization . 75

5.9 RSSI Correction . 76

5.10 Raw RSSI Emulation Accuracy . 77

6.1 Measurement Signal Path . 84

6.2 SFDR Analysis - IF Below Nyquist 85

6.3 SFDR Analysis - IF Above Nyquist 86

6.4 Direct Device Output vs. Output After RFFE Loop Start 86

6.5 Downconversion Flatness . 87

6.6 Upconversion Flatness . 88

6.7 SCM D/A Conversion Flatness . 89

6.8 SCM A/D and D/A Conversion . 90

6.9 SCM A/D Conversion . 91

6.10 Gain Variation of Digitally Corrected A/D-D/A Signal 91

6.11 Signal Constellation and Error Vector Magnitude (EVM) 92

6.12 Signal Conversion Module EVM . 93

6.13 RF Front End + Signal Conversion Module EVM 95

6.14 Spectral Comparison - Direct Device Output vs. Output after SCM . 97

6.15 Transport Layer Fidelity . 98

6.16 External Isolation . 99

7.1 Clear Channel Reception . 104

7.2 Capture Under Delayed Interference 104

xiv

7.3 Capture Under Delayed Interference 105

7.4 Capture . 107

7.5 Packet Capture Results . 108

7.6 Off-channel Interference . 110

7.7 Off-channel Interference, 1Mbps, No Delay 110

7.8 Off-channel Interference, 1Mbps, Large Delay 110

7.9 Off-channel Interference, 2Mbps, No Delay 111

7.10 Off-channel Interference, 2Mbps, Large Delay 111

7.11 Off-channel Interference, 5.5Mbps, No Delay 112

7.12 Off-channel Interference, 5.5Mbps, Large Delay 112

7.13 Off-channel Interference, 11Mbps, No Delay 113

7.14 Off-channel Interference, 11Mbps, Large Delay 113

7.15 Off-channel Interference, 11Mbps, large delay, -72 dBm Interference . 114

7.16 Off Channel Reception . 114

7.17 Off-channel Reception, 1 Mbps . 114

7.18 Off-channel Reception, 2 Mbps . 115

7.19 Off-channel Reception, 5.5 Mbps . 115

7.20 Off-channel Reception, 11Mbps . 116

7.21 Two-ray Test Topology . 117

7.22 Two-ray Delivery Rate vs. SNR . 117

7.23 Senao Card Power . 119

7.24 Packet Delivery Rate Variation . 120

7.25 Infrastructure Topologies . 122

7.26 Distance CDF . 122

7.27 Loss CDF . 123

7.28 Hidden Node Collision Probability, 1 Mbps vs. 11 Mbps 124

7.29 Hidden Node RSS Difference CDF . 124

7.30 External Interferer CDFs, 1 Mbps . 125

7.31 External Interferer CDFs, 11 Mbps 125

7.32 External Interferer RSS Difference CDF 126

7.33 Per-card RSSI Variation . 127

xv

7.34 Per-card Noise Variation . 127

7.35 Per-card RSS Variation after Correction 128

7.36 Per-card Delivery Rate Variation . 129

7.37 Two-ray MP Metric vs. Delay . 129

7.38 One-ray MP Metric vs. RSS . 130

7.39 Rate Selection for Fixed RSS . 133

7.40 Rate Selection for Under Multipath 133

7.41 Rate Selection for Driveby Emulation 134

7.42 Directional Antenna Topology . 136

7.43 Directional Antenna Results . 136

8.1 Abrupt Roam Test Configuration . 143

8.2 Gradual Roam Test Configuration . 144

8.3 802.11 Scanning . 148

8.4 Fast Scanning . 149

8.5 Multi-AP Test Topology . 151

xvi

Chapter 1

Introduction

1.1 Motivation

As wireless networks become ubiquitous, it is increasingly important to make efficient
use of the finite spectrum available. Unfortunately, research aimed at evaluating and
improving wireless network protocols and applications is hindered by the inability
to perform repeatable and realistic experiments. Experimental techniques that have
proven successful for wired networks are inadequate for wireless networks since a
wireless physical layer fundamentally affects operation at all layers of the protocol
stack in complex ways. Links are no longer constant, reliable, and physically isolated
from each other, but are variable, error-prone, and share a single medium with each
other and with external uncontrolled sources.

This thesis presents a new technique for conducting wireless experiments that si-
multaneously achieves large degrees of realism and repeatability. A primary goal of
this work is to provide the wireless networking community with a powerful experi-
mental methodology that can be used to understand and improve wireless networks.
The benefits of the approach presented in this thesis - physical layer wireless network
emulation - are not, however, limited to the networking community. The high degree
of fidelity achieved by the emulation technique presented here allows this approach
to be used by the telecommunications research community. This approach could be
particularly useful in analyzing wireless environments with a large number of channels
such as MIMO (especially multi-user MIMO.)

Moreover, this approach has a broad potential for industrial application. The de-
velopment, implementation, and tuning of wireless networking protocols is hindered
by the same issues afflicting the research community. In particular, the distributed,
ephemeral nature of wireless signal propagation greatly complicates the development
of wireless protocols, software, and hardware. Physical layer emulation increases

1

2 CHAPTER 1. INTRODUCTION

the effectiveness of developers by giving a controlled signal environment that greatly
shortens the development and debug cycle by allowing complete control and repeata-
bility. Likewise, testing and tuning can be largely automated - providing for shorter
product development cycles.

1.1.1 Trade-offs in Existing Experimental Techniques

Before discussing physical layer wireless emulation, this discussion first considers an
idealized method of experimentation. An ideal method of wireless experimentation
would possess the following properties: repeatability and experimental control, layer
1-4 realism, the ability to run real applications, configurability, the ability to mod-
ify wireless device behavior, automation and remote management of experiments,
support for a large number of nodes, isolation from production networks, and inte-
gration with wired networks and testbeds. The remainder of this section considers
how alternative methods of experimentation fare with respect to this list of desirable
properties, and introduces a new approach that has several advantages compared to
existing approaches.

The most direct method of addressing realism is to conduct experiments using real
hardware and software in various real world environments. Unfortunately, this ap-
proach faces serious repeatability and control issues since the behavior of the physical
layer is tightly coupled to the physical environment and precise conditions in which
an experiment is conducted. Uncontrolled interfering radio sources, and the mobility
of people and physical objects, make signal environment conditions nearly impossi-
ble to reproduce. As a result, even repeating the same experiment twice can be a
daunting task; remote researchers face an even bleaker situation trying to reproduce
an experiment. It is also difficult to avoid affecting colocated production networks.
Moreover, configuration and management of even a small number of mobile nodes
distributed in three dimensions is cumbersome.

For these reasons, many researchers have understandably embraced simulation.
This approach solves the problems of repeatability, configurability, manageability,
modifiability, and (potentially) integration with external networks, but faces formi-
dable obstacles in terms of realism. Recent work [33], for example, has shown that un-
less a great deal of care is taken, simulation-based experiments can produce imprecise
and even inaccurate results. While careful simulation setup is a necessary condition
for producing valid experimental results, it is clearly not sufficient in and of itself. A
more fundamental condition that must be met to achieve valid wireless networking
simulation results is the use of an accurate simulator. Not only must this simulator
have a correct networking protocol stack, but it must accurately reproduce wireless
signal transmission, propagation, and reception. To make the problem tractable, sim-
plifications are typically made throughout the implementation of the simulator. Even

1.1. MOTIVATION 3

fundamental functions such as deciding what a received frame looks like [59] diverge
greatly from the operation of real hardware. As wireless signal reception behavior
is only completely accurate when using real hardware, wireless simulations will al-
ways be a coarse approximation. Evaluating real applications running over wireless
networks is typically very difficult using a simulator.

In addition, while wireless technology is undergoing rapid advances, wireless simu-
lators, in particular open source wireless simulators, have lagged significantly behind
these advances as discussed in Section 1.3.

The aforementioned issues with simulators, and a desire to avoid long simulation
times, have caused some researchers to adopt emulation as a means of evaluation.
Emulation retains simulation’s advantages of repeatability and manageability, while
potentially mitigating the issue of realism. Unfortunately, as discussed in Section 1.3,
most emulators have adopted extremely simplified MAC and physical layers. As the
operation of these layers is fundamental to the operation of a wireless network, it is
unclear that these emulators gain any realism over existing simulators.

1.1.2 A New Approach

This thesis presents a new approach to wireless emulation that enables both realis-
tic and repeatable wireless experimentation by accurately emulating wireless signal
propagation in a physical space. Unlike previous approaches, this technique utilizes
a real MAC layer, provides a realistic physical layer, and supports real applications
while avoiding adopting an uncontrollable or locale-specific architecture. The key
technique used to accomplish this is digital emulation of signal propagation using a
field-programmable gate array (FPGA). This approach is made possible by the conflu-
ence of advancing programmable logic technology and advancing data converter tech-
nology. Only recently have commodity FPGAs and data converters become available
that allow wideband wireless LAN signals to be digitized and processed using com-
modity dataconverters and programmable logic. Previously, wireless signal emulation
was limited to a small number of wireless channels.

Physical emulation’s high degree of control and fidelity allow signal propagation to
be modeled in several ways: first, widely used statistical models of signal propagation
can be used; in addition, traces of observed signal propagation can be “replayed”;
lastly, manual control of signal propagation can be used to analyze behavior in artifi-
cially created situations that would be difficult or impossible to reproduce in an open
system. Chapter 5 will discuss signal environment emulation in more detail.

Physical layer emulation provides an attractive middle ground between pure sim-
ulation and wireless testbeds. To a large degree, this approach maintains the re-
peatability, configurability, isolation from production networks, and manageability of

4 CHAPTER 1. INTRODUCTION

simulation while retaining the support for real applications and much of the realism of
hardware testbeds. As a result, physical layer network emulation provides a superior
platform for wireless experimentation in many instances.

Physical layer network emulation is not, however, a complete replacement for
simulation and real world evaluation. Simulation is still useful in cases where a very
large-scale experiment is needed or in certain cases where functionality not available in
hardware is required (e.g. changing the radio behavior beyond what is allowed by the
hardware design or vendor policies). Real world evaluation is still useful when radio
channel fidelity beyond the capabilities of the emulator is required, or for verifying
the operation of emulation in real-world settings.

1.2 Architecture Overview

Emulation
Controller

Network
Devices

Wireless Network
Emulator

Figure 1.1: Emulator Architecture

The high-level emulator architecture is depicted in Figure 1.1. A number of “RF
nodes” (e.g. laptops, access points, cordless phones, or any wireless device in the
supported frequency range) are connected to the emulator through a cable attached
to the antenna port of their wireless line cards (each RF node corresponds to a sin-
gle antenna, so a single device can be represented by multiple RF nodes). Signals
transmitted by each RF node are digitized, and then processed using a large FPGA

1.3. RELATED WORK 5

to create impairments similar to those found in the real world. For each RF node,
the received signal is computed by digitally combining the incoming signals from in-
range RF nodes, and then converting the outgoing signal back to analog form. The
RF nodes are shielded from each other so that no communication occurs over
the air. All communication between RF nodes occurs through the signal propagation
environment modeled within the emulator. That is, the emulator achieves via digital
signal processing the same physical effects that occur in the real world: attenuation,
multipath, interference, etc. This allows researchers to use real commercial wireless
networking hardware, running on a real device, with a real OS, and real applications.
Emulation is controlled by an Emulation Controller PC which models the physical
environment and coordinates the movement of RF nodes in the modeled physical
environment with the modeling of the signal propagation environment on the emu-
lator hardware. Emulation occurs in real time. Thus, the emulator supports both
real wireless devices and real applications operating as if they were actually in the
emulated environment.

Chapter 2 discusses this architecture in more detail.

1.3 Related Work

1.3.1 Wireless Simulators

For several years now, ns-2 [38] has been the de facto standard means of experimental
evaluation for the wireless networking community. Yet ns-2’s wireless support has
not kept pace with current technology, and is targeted towards the original 802.11
standard developed in 1997. Even this support, however, is inexact as ns-2 does not
support automatic rate selection, uses a non-standard preamble, and a non-standard
802.11 ACK timeout value. In addition, ns-2’s physical layer is particularly simple
[59]. As a result, some researchers are opting to use commercial simulators such as
QualNet [53] and OpNet [43] since they claim better support for current standards.
Despite these claims, however, it is unclear how well these simulators reflect actual
hardware.

More fundamentally, the real APIs, parameters, and capabilities provided by real
wireless hardware are not supported by wireless simulators. Moreover, real user ap-
plications running on real operating systems are not supported using simulators.

Thus, testing simulator code in the real world frequently involves the development
of two implementations: one for the simulator, and one for a real device. As a result,
simulation-based research is frequently never ported to a real wireless device which
hampers verification of results obtained during simulation, and lessens its impact and
benefit to the community.

6 CHAPTER 1. INTRODUCTION

Some efforts have been made, however, to ameliorate this problem by creating
environments that enable certain types of simulation code to be tested in real devices
without modification. In particular, environments [9, 52] have been created that
allow ad hoc routing protocols to be developed in ns-2 and run at user level on
real hardware without code modification. Similar systems [35, 22] also allow sensor
network applications to be evaluated via simulation and then deployed into sensor
networks without modification. In contrast to these systems that are hand-crafted for
a particular problem, physical layer emulation provides a completely general approach
that is agnostic to the specifics of the system attached to it. Moreover, physical layer
emulation accomplishes this without forcing users to resort to user level code and
without taking shortcuts in wireless network modeling.

1.3.2 Wireless Emulators

Simulation’s lack of support for real devices can be overcome by combining elements
of simulation with real devices. This combination of real devices and simulation is
referred to as emulation. Emulation - the combination of real hardware endpoints
with simulated network communication - has proven to be a useful technique in wired
networking research [65, 17, 62], and it has an even larger potential in the wireless
domain.

A common approach that has been adopted for wireless emulation [42, 37, 36] is
to capture the behavior of a wireless network in terms of parameters such as capacity
and error rates and then use a wired network to emulate this behavior. This has the
advantage of allowing the use of real endpoints running real applications in real time.
The wireless MAC and physical layers, however, are only very crudely simulated. For
this reason, it is unclear whether or not this approach can obtain more realistic results
than pure simulation.

RAMON [23] uses three programmable attenuators to allow emulation of the sig-
nals between a single mobile node and two base stations. While useful for the intended
application of mobile IP roaming investigation, the inability to independently control
all signal paths severely limits this approach.

1.3.3 Wireless Testbeds

More recently, several efforts such as Emulab [64], WHYNET [61], Orbit [50], and
MiNT [12, 11] have begun using controlled wireless testbeds.

The emulator’s use of real devices and real applications is similar to that found
these testbeds such as Emulab [65], Orbit [50], Modelnet [37], or Mint-b [11]. Like
these systems, the emulator supports real devices running, and real applications.

1.3. RELATED WORK 7

The emulator and these systems, however, differ greatly in both their mechanism
for modeling signal propagation environments and the range of environments that
they are capable of modeling. Like the emulator, Emulab supports real wireless
devices, but in a testbed fashion; i.e. the wireless network is hardwired to a particular
physical location. Orbit is also a testbed, but attempts to emulate different physical
environments through selection of nodes positioned in a grid and the injection of
noise to alter signal-to-noise ratios and mimic the effect of path loss. The techniques
used in this approach are very different from those that can be leveraged in the
emulator. While injecting noise can provide the primitive ability to modify the signal
environment, it lacks the power of physical layer emulation in directly and completely
specifying the signal propagation environment. Mint-m and Emulab also use robots
to introduce mobility; while this supports mobility, the emulated signal environment
cannot be altered and is still bound to the room in which the robots reside. Earlier
work [30] proposed using coaxial cables to hardwire a custom signal propagation
environment. While useful for very limited experiments, physical layer emulation
allows for vastly improved flexibility, scale, mobility and complete signal control.
Modelnet, makes use of real end hosts, but does not make use of real wireless devices,
preferring to simulate their behavior.

The wireless network emulation developed in this work is - in some ways - a hybrid
of traditional network simulation and emulation. Like other systems, the emulator
uses real devices; unlike other systems, however, the emulator is capable of full control
over the physical signal propagation between the devices attached to the network.
This is enabled by the unique emulator hardware which contains a powerful digital
signal processing platform capable of digitizing and manipulating signals streaming

Moreover, the emulator is more general than typical wireless network simulators.
ns-2’s wireless support, for instance, was originally developed with the assumption
that ad hoc routing was the problem of interest; the emulator makes no assumption
about the problem or even the devices attached to it (as long as they fall in the
supported frequency band.) Thus mixing devices of different technologies is supported
with no additional effort. In contrast, a traditional packet simulator with n different
types of devices will need to resolve the O(n2) possible interactions between these
devices. In addition, the emulator removes the assumption that a physical world
is necessarily being modeled. That is, the emulator allows users to directly control
the signal propagation channels between devices without necessarily considering a
physical world. This is similar to “multipath fading simulators” [15, 56] discussed
below that are commercially used to evaluate RF devices.

8 CHAPTER 1. INTRODUCTION

1.3.4 Channel Emulators / Fading Simulators

The most functionally similar approach to the technique introduced in this thesis is
provided by channel emulators [26, 2, 4, 6, 15, 56, 8] (also known as fading simula-
tors.) The goal of these emulators, however, is quite different. As the name of these
devices implies, rather than supporting emulation of all channels in a wireless net-
work, commercial channel emulators [15, 56] are designed to support very fine-grained
emulation of the wireless channel between either a pair of devices or between a small
number of base stations and a small number of mobile devices (with the total of both
typically being less than 8.)

In contrast to the telecommunications networks typically targeted by channel em-
ulators, wireless data networks are frequently contention-based with half-duplex de-
vices. Channel emulators lack direct support for half-duplex nodes and require exter-
nal components to support half-duplex nodes. As a result, while channel emulators
are very useful for equipment vendors evaluating a new device, the limited scale, lack
of support for complete interaction between all nodes, and high cost make commercial
channel emulators an unattractive option.

1.3.5 Analog Network Emulator

Azimuth Systems produces an analog network emulator [57] that provides very coarse
grained network level emulation. In their analog emulator, RF devices are connected
to programmable attenuators which are interconnected in a star topology. While this
technique provides network level testing, the star topology severely limits the signal
propagation topologies that can be emulated. In addition, the use of programmable
attenuators precludes the support for multiple signal paths and limits the resolution
at which fading can be emulated.

1.3.6 Software Radio

The physical layer wireless emulator presented here bears several similarities to (wide-
band) software radios [34, 5]. In both systems, wideband RF signals are digitized and
then manipulated in a programmable manner and vice versa. The manner in which
the signals are manipulated, however, is very different. Software radios send and re-
cover digital data which requires a great deal of filtering to select signals in addition
to modulation/demodulation logic. A network emulator, on the other hand, is ag-
nostic to the format of signals passing through it. Thus the operations performed are
more straightforward. In spite of this, however, the scale of the operations required
imposes large computational demands on the emulator.

1.4. CHALLENGES 9

1.4 Challenges

Physical layer network emulation must overcome several difficult challenges in order
to be a viable experimental methodology. This section briefly discusses several of the
most difficult obstacles. Subsequent chapters will discuss how these challenges are
addressed by this work.

1.4.1 Bandwidth

Traditional wireless channel emulation has focused on telecommunication market
where the bandwidth in use is fairly limited. Wireless data networks - in contrast -
use large swaths of bandwidth. For example, the 802.11b/g band utilizes 72 MHz of
bandwidth in the United States. Digitizing this entire band results in a digital data
stream with a data rate of approximately 2 Gbps, and requires approximately 170
million scaling operations per second per channel.

Moreover, emulating an entire network requires not only emulating a single chan-
nel, but emulating all channels in use in that network as discussed above. For exam-
ple, a ten node network has 90 channels; for the 802.11b band discussed above, this
means streaming approximately 180 Gbps of data to/from the signal processing unit,
and performing 15 billion scaling operations per second. Thus, signal conversion and
processing must operate at a very high sample rate in order to support the emulation
of an entire network.

1.4.2 Dynamic Range

Dynamic range refers to the difference - usually measured in dB - between the
strongest and weakest signals that can be emulated. Commodity signal conversion
components operate on digital samples of signals of n-bits resulting in 2n represented
signal strengths. The represented signal strengths are evenly spaced in volts in the
case of the A/D converters and amps in the case of the current source D/A converters.

The sample size n determines the dynamic range d in dB as follows: d = 20 ·
log10(2

n). Thus, in approximate terms d = 6.02 · n. In practice, data converter
imperfections result in a dynamic range less than this theoretical upper bound.

While it is desirable - from the standpoint of dynamic range - to increase the sam-
ple size, doing so imposes requirements on the A/D converters, the D/A converters,
and the digital signal processing system. In particular, the resolution of available
A/D converters drops rapidly as sampling rate increases. Thus, there is a tradeoff
between supported bandwidth and dynamic range.

10 CHAPTER 1. INTRODUCTION

1.4.3 Signal Integrity

Processing analog signals inevitably degrades them in some undesired manner. There
are numerous factors that may harm signal integrity. Several of the most important
factors are briefly discussed here. These are covered in more detail in Chapter 6.

Noise. Every component that touches an analog signal introduces some noise
into it. In addition, quantization introduces signal noise.

Intermodulation. Several stages of signal conversion introduce undesired inter-
modulation products where signals mix either with the local oscillator (LO) or each
other in undesired ways.

Phase Noise/Jitter. Jitter in the digital system clock, jitter in the LOs, plus
data converter aperture uncertainty produces phase noise in the signals processed by
the emulator. In certain circumstances - such as undersampling - these can place an
upper bound on the achievable signal-to-noise ratio.

1.4.4 Latency

In the real world, physical distance introduces latency in signal propagation. In cer-
tain situations, it is useful to emulate this latency. This would allow the investigation
of effects related to time of propagation. This is challenging since it requires delay-
ing the signal in a controlled fashion over a potentially wide range of values. Given
the large data rate of each data stream, the data storage requirements for latency
emulation make it difficult to support large delays.

Moreover, latency in the signal processing unit must be kept to a minimum since
the minimum latency required for the emulator to receive a signal from an RF Node,
process the signal, and send it to its destination RF Node imposes an effective “min-
imum distance” on time of flight emulation. That is, even if nodes are co-located in
an emulated physical environment, there will be an artificial latency added to trans-
missions as if the nodes were actually located at a greater distance from each other.
For many wireless protocols, however, the artificial latency introduced by emulation
is not significant.

1.4.5 Scale

Arguably the most difficult challenge facing physical layer network emulation is that
of scale. Physical layer network emulation fundamentally requires physical network
devices. In the simplest implementation, one physical device must be present for every
emulated device. Under this approach, the scale of the emulated network is limited
by the number of devices that can be procured and included in the emulator. This

1.4. CHALLENGES 11

straightforward one-to-one mapping of physical and emulated devices is the approach
used in this thesis; it is possible, however, to employ various techniques to allow one
physical device to support multiple emulated devices.

A much more significant scaling challenge arises when all-to-all connectivity needs
to be emulated. The real-world interaction of n devices that are in communication
range of each other grows with complexity O(n2): specifically, for n devices in com-
munication range of each other n · (n−1) channels must be emulated. Even modeling
a single channel requires a large amount of computation; thus the number of channels
required quickly limits the amount of all-to-all communication that can be emulated
with a physical layer network emulator.

1.4.6 Internal Isolation

A fundamental requirement of physical layer network emulation is that no direct over-
the-air communication or interference occur. This thesis refers to this requirement as
“internal isolation.” Without this requirement, nodes would never be out-of-range of
each other, and undesired multipath effects would occur. Achieving internal isolation
is difficult since receivers are designed to be sensitive to very weak signals. For
instance some commodity receivers can decode signals as weak as 1× 10−13W . Thus
achieving sufficient internal isolation is a difficult task and requires very meticulous
design.

1.4.7 External Isolation

Signals generated external to the emulator should not be receivable by or affect the
operation of devices inside the emulator. Similarly, signals generated inside the emu-
lator should not affect devices outside of the emulator. This thesis collectively refers
to these properties as “external isolation.” Ideal external isolation allows the emulator
to be co-located with a production wireless network without affecting its performance
and vice versa. In practice, only a certain degree of isolation can be guaranteed.
Fortunately, it is possible to guarantee enough isolation so that external isolation is
achievable for most realistic scenarios. That is all devices that are not within close
physical proximity to the emulator will be isolated from it.

1.4.8 Hardware

Physical layer wireless network emulation requires a powerful distributed hardware
architecture that must be carefully designed and implemented. Many aspects of
designing this hardware are technically challenging.

12 CHAPTER 1. INTRODUCTION

In the analog domain, interfacing with the wireless card requires the ability to
manipulate microwave frequencies. Microwave circuit boards are difficult to design
and implement correctly; they are not easily amenable to correction after fabrication
and assembly.

In the digital realm, the most significant challenge is synchronizing the large
amount of incoming data from the data converter units to a common digital clock on
the central signal processing unit without introducing additional latency.

1.4.9 Software Infrastructure for Managing Experiments

The custom hardware developed for the emulator must be controlled in such a way
as to mimic the effects of signal propagation in a real environment; this must be done
in real time.

Moreover, the software infrastructure must be designed in a way that enables
novice users to easily execute basic experiments. Advanced users must be able to
control the full range of the emulator’s functionality and completely control the wire-
less devices in synchrony with the environment emulation.

1.5 Thesis Statement

Physical layer network emulation is a powerful technique for wireless experimentation
that simultaneously achieves realism from the physical layer through the application
layer while providing precise physical layer repeatability. This enables fair side-by-
side experimental comparisons; a capability that is extremely difficult to achieve
using other realistic techniques. This technique can be feasibly implemented using
commodity components.

1.6 Contributions

This thesis presents several significant contributions to the research community.

New Experimental Methodology. This most significant contribution of thesis
is the introduction of a new research methodology: physical layer wireless network
emulation. This technique enables wireless experiments to be conducted in a con-
trolled and repeatable environment while maintaining much of the realism of wireless
testbeds. Moreover, the complete control over the signal propagation environment en-
ables experiments to be conducted that could not be conducted in a wireless testbed
or a wireless simulator.

1.7. SCOPE OF WORK 13

Hardware Architecture and Implementation for Wideband Wireless
Network Emulation. This thesis presents solutions to the problems necessary to
develop a practical wireless network emulator. At the hardware level, this thesis
presents an architecture for performing physical layer wireless network emulation. In
addition, as this work includes functional implementations for the components in this
architecture that overcome key challenges such as the synchronization of distributed
data conversion components.

Software Architecture for Physical Layer Emulation. At the software level,
this thesis presents an architecture for controlling the hardware-based emulation in
real time, as well as an implementation of that architecture.

Trace Capture and Playback. This work also introduces a simple method
for recording, processing, and playing back coarse-grained channel traces using com-
modity wireless hardware. This technique is shown to obtain good results in low a
delay-spread environment.

Functional Emulator. Moreover, this work has resulted in fully functional
emulator that will continue to be used for wireless research. This emulator will also
serve as a template for the development of emulators for use by other researchers.

Device and Link-level Analysis. This thesis presents an investigation into
802.11b device and link-level behavior. The results of this investigation should enable
a better understanding of the behavior of 802.11b devices by replacing convention
with actual measurement. This data should be particularly useful in developing more
accurate wireless simulators.

Access Point Selection. Finally, to demonstrate the ability of physical layer
emulation to yield insight into wireless network behavior this thesis analyzes 802.11
access point selection for a popular wireless platform: Madwifi-0.9.1. Emulation-
based experiments quickly show that Madwifi-0.9.1 performs poorly in changing sig-
nal environments, and that emulation enables the rapid development of an improved
driver. Moreover, observations gained during this analysis result in a proposed exten-
sion to the 802.11 protocol that improves 802.11 access point selection and roaming
performance.

1.7 Scope of Work

Physical layer wireless network emulation is a broad topic with many interesting
problems. This thesis addresses a specific subset of the possible problems that could
be addressed. In this section, we clarify issues that - while interesting problems to
solve - will not be addressed by this thesis.

14 CHAPTER 1. INTRODUCTION

1.7.1 Signal Environment Emulation

The signal environment emulation discussed Chapter 5 of this thesis employs a variety
of techniques. The majority of these techniques have been known in the literature for
many years and this thesis does not attempt to extend them further. In particular,
this thesis does not introduce new methods for analytical wireless channel modeling.
This thesis does, however, introduce a simple method for recording actual wireless
channels using commodity hardware and replaying them in the emulator.

1.7.2 Architectural Enhancements and Alternatives

The emulator architecture and implementation presented in this thesis are designed to
be useful in a variety of configurations. The majority of this thesis will, however, use
only a single configuration of the emulator. Chapter 2 discusses how the emulator’s
architecture and implementation support additional configurations, but the actual
use of these configurations is left as future work. In particular, this thesis will not
examine:

Implementations Using Multiple DSP Engines. Multiple DSP engines can
be employed to increase the number of emulated channels and nodes that can be
supported. The implementation presented in this thesis is designed to allow two DSP
engines to be used. The architecture’s support for multiple DSP engines is discussed;
this thesis does not, however, evaluate actual implementations using multiple DSP
engines.

I/Q Implementations. It is frequently useful to break an ordinary scalar signal
up into two parts “I” (cosine) and “Q” (sine). The signal processing system then
operates on a vector signal representation. The architecture and implementation dis-
cussed here are designed to support this, but I/Q implementations are not evaluated
as part of this thesis.

Time Multiplexing. One approach to scaling the number of devices attached to
the emulator is to multiplex signal processing in time. This technique is particularly
useful for low bandwidth devices such as sensor networks. This technique is not
considered in this thesis.

Additional Architectural Alternatives. There are numerous alternative em-
ulator architectures that may be useful beyond those listed above which will not be
addressed other than to present the rationale behind current design decisions.

1.8. OUTLINE 15

1.8 Outline

The remainder of this thesis proceeds as follows. Chapter 2 presents an architecture
for physical layer wireless emulation; Chapter 3 then discusses the implementation of
that architecture developed in this thesis. Chapter 4 discusses the control software
used to coordinate and manage the emulator. Chapter 5 discusses techniques for
emulating signal propagation environments in a physical layer emulator. Chapter 6
presents tests verifying and quantifying the emulation integrity of the implementation
presented in this thesis. Chapter 7 uses physical layer emulation to measure 802.11b
link and device behavior. Chapter 8 uses physical layer network emulation to analyze
the problem of 802.11 access point selection and roaming. Chapter 9 concludes this
thesis.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Architecture

Section 1.2 briefly sketched a high-level view of the architecture of the emulator. This
chapter discusses this architecture in detail.

2.1 Requirements

Before discussing the architecture of the emulator, this section first considers the
requirements that the emulator is designed to meet. Several of these were touched
on earlier in Section 1.4. In this section, specific targets are defined for many of the
items discussed earlier.

Real-time Digital Signal Processing. In order to support real devices, the
emulator must digitize incoming signals from devices, process the resulting signals,
and convert these signals back to analog in real time.

Low Latency. Moreover, signals must be processed with as little latency as
possible since latency incurred while processing signals imposes a minimum latency
on the signal propagation between devices attached to the emulator. In the real world
latency is directly proportional to distance between devices. Any latency added by
the emulator creates an artificial minimum “distance” between devices. Thus, we
desire to keep latency as low as possible.

Note that typical protocol level behavior - e.g. 802.11 ACK timeout - is not
affected until tens of microseconds of latency are added. Physical layer emulators
should be able to attain a minimum latency of under 100 nanoseconds, thus protocol-
level artifacts should not result due to increased latency.

In certain cases, the absolute latency requirements discussed above are less impor-
tant than the relative latency between devices. For example, consider two channels
A to C and B to C involving three devices A, B, and C. The relative difference in

17

18 CHAPTER 2. ARCHITECTURE

the latency between channels A to C and B to C may be more important than the
absolute latencies. In cases such as this, the relative latency can be modeled with-
out encountering the fundamental artifacts that are introduced into absolute latency
modeling.

Internal Isolation. Devices attached to the emulator must be isolated from each
other. The targetted class of devices has transmit power as high as 19 dBm and receive
sensitivity as low as -95 dBm. Hence at least 114 dB of internal isolation is required
between nodes. An additional margin of 7 dB, however, is required to avoid leaking
signals under the reception threshold from interfering with weak desired signals. Thus,
the emulator requires 121 dB of internal isolation.

External Isolation. External isolation with respect to typical ISM band devices
located in close proximity to the emulator is necessary to avoid uncontrolled trans-
missions from affecting emulator operation. The desired target, in this case, is to
achieve isolation from 19 dBm devices - a somewhat strong WLAN transmitter - lo-
cated at least 5 meters away from the emulator and separated by one 10 dB partition
(a wall.) The intuition behind the 5 meter goal is that devices closer than that should
be located in the same room as the emulator and hence under the control of emulator
operators. Assuming a receive sensitivity of -95 dBm and a desired margin of 7 dB
beyond that yields a required maximum received signal strength of -102 dBm.

Now the required isolation i is: i = 19dBm−−102dBm or 121 dB. To determine
the path loss naturally present in the target environment the log distance path loss
model in [49] is used: PL(d) = PL(d0)+10nlog(d/d0). Adding 10 dB for the partition
loss, using a typical value for PL(d0) at d0 = 1m of 40 dB, and assuming free space
loss where n = 2 gives PL(d) = 40dB +10∗2∗ log(5/1) Thus PL(d) = 54dB; i.e. the
targeted environment provides 54 dB of isolation. To compute the additional isolation
that must be provided by the emulator packaging we subtract the isolation provided
by the environment from the total isolation required. Hence requiredisolation =
121dB − 54dB or 67 dB of additional isolation is required to achieve the external
isolation goal

Half-duplex Device Support. Most wireless LAN devices are half-duplex.
Transmission and reception cannot occur simultaneously. Traditional channel emula-
tors must employ external components to support half-duplex devices. This approach
can limit the performance of the emulator as these external components have limited
isolation which results in a restricted dynamic range. As most devices attached to
the emulator are likely to be half-duplex, these devices must be supported without
the use of external components and degradation of performance.

Wide Bandwidth. Many wireless networks utilize multiple channels, and many
interesting experiments require multiple channel support. Thus, the emulator must
support a wide enough bandwidth to allow for multiple-channel experiments. The goal

2.2. SYSTEM ARCHITECTURE 19

for this thesis is to support emulation of all US 802.11b channels. These channels
range from 2.401 GHz to 2.473 GHz. Hence, the emulator must support 72 MHz of
bandwidth.

Scale. The initial target in this thesis is to produce an architecture capable of sup-
porting 15 devices with provisions for higher numbers of devices. The implementation
discussed in this thesis consists of 8 devices.

2.2 System Architecture

Developing a physical layer wireless network emulator is a difficult task requiring
careful design. The massive computation, low latency, high isolation, and support for
diverse experimental setups require a power, flexible architecture.

Traditional channel emulators have utilized a monolithic ASIC-based design. In
these designs analog signals from transmitters are routed via coaxial cable to a central
emulator unit. Inside this unit the signals are digitized, channel emulation occurs,
and then the resulting channel analog output signals are routed out via coaxial cables
to receivers. Some advanced emulators provide digital inputs and outputs for use
with digital baseband devices.

At an abstract level discussed in Chapter 1 and shown in Figure 1.1, the architec-
ture of the wireless network emulator is similar to the traditional monolithic approach.
Wireless devices - “RF nodes” - are connected to the emulator; all communication be-
tween RF nodes occurs through the signal propagation environment modeled within
the emulator. While sufficient for channel emulation, this traditional architecture is
less than ideal for network-wide emulation. Routing a large number of analog signals
to a small physical space makes the problem of isolating these signals from each other
extremely difficult.

Instead, this work presents a distributed emulator architecture, as shown in Fig-
ure 2.1. On transmit, the RF signal from a given RF node is passed into the RF
Front End where it is shifted down to a lower frequency. This lower frequency signal
is then digitized by the Signal Conversion Module, and forwarded in digital form into
a central DSP Engine that is built around one or more FPGAs. By digitizing signals
in a distributed fashion, there is no centralized isolation problem to solve in the DSP
Engine. All signals exiting the Signal Conversion Modules for transmission to the
DSP Engine (and vice versa) are digital.

The RF Front End is distinct from the Signal Conversion Module since RF compo-
nents are frequency specific. Keeping the RF Front End separate allows for different
RF bands to be supported by swapping RF Front End cards without the need to
construct an expensive multi-band RF Front End (unless desired.)

20 CHAPTER 2. ARCHITECTURE

Emulation
Controller

Network devices and signal conversion modules reside in shielded chassis.

DSP Engine
FPGA-based

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

RF
Front End

RF
Front End

RF
Front End

RF
Front End

Figure 2.1: Detailed Emulator Architecture

The DSP Engine models the effects of signal propagation (e.g. large-scale atten-
uation and small-scale fading) on each signal path between each RF node. For each
RF node, the DSP Engine combines the processed input signals from all the other RF
nodes. For each RF node, the resulting signal is then sent out to the signal conver-
sion module which converts the digital signal back to a radio signal. It is then sent to
the wireless line card through the antenna port. Using multiple DSP Engines, larger
systems can be built. Using an FPGA-based architecture yields the massive signal
processing power necessary to perform network-wide emulation. At the same time,
this programmable logic provides flexibility in the allocation of resources.

The Emulation Controller controls RF node movement in the emulated physical
environment as well as application behavior on the end hosts. Movement within
the physical environment is emulated in real time; the controller coordinates this
movement with the real-time modeling of the signal propagation environment. Each
RF node runs a small daemon that allows the Emulation Controller to control its
operation via a wired network. A proxy can be used for nodes that cannot run the
daemon themselves.

Connecting the Emulation Controller to an external network allows remote man-
agement of the emulator. In addition, individual nodes in the emulator may be
connected to external networks in order to allow emulator nodes access to the Inter-
net at large or to allow the emulator to be used in conjunction with testbeds such as
PlanetLab [46], Emulab [65], or Orbit [50].

2.2. SYSTEM ARCHITECTURE 21

2.2.1 Provisions for Future Improvements

The architecture discussed here, and the implementation discussed in the next Chap-
ter, have been enhanced to provide provisions for future modifications. This section
discusses two of these provisions that utilize multiple DSP Engines: in the first case
to enable improved scale, and in the second to provide additional signal processing
power.

Improving Scale with Multiple DSP Engines

Emulation
Controller

DSP Engine
FPGA-based

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

DSP Engine
FPGA-based

Figure 2.2: Modified Architecture for Increased Scale

The basic architecture presented above is limited by the internal resources of the
FPGA in the DSP Engine. In most circumstances, the scale of all-to-all connec-
tivity that can be supported is limited by the number of multipliers on the FPGA
since one multiplier is typically required per signal path. In the current DSP Engine
implementation, a total of 15 wideband RF nodes can be supported.

To grow beyond the limits of a single DSP Engine, the modified architecture shown
in Figure 2.2 may be used (in this figure and in the following figure the RF Front
End is not shown since it is co-located with the Signal Conversion Module). In this
architecture, each Signal Conversion Module is connected to multiple DSP Engines.
The figure depicts the case where the number of DSP Engines is two; for simplicity,
four RF Nodes are shown.

22 CHAPTER 2. ARCHITECTURE

DSP Engine
Signal

Conversion

DSP Engine

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

a)

b)

c)

d)

a)

b)

c)

d)

• Single DSP Engine Arch.
– DSP

• N(N-1) signal paths
• N inputs, N outputs

– Signal Conversion Module
• 1 output
• 1 input

– N cables

• Multiple DSP Engine Arch.
– DSP

• N(N-1)/M signal paths
• N/M inputs
• N outputs

– Signal Conversion Module
• 1 output
• M inputs

– NM cables

N = # Signal Conversion Modules
M = # DSP Engines
Requirements for supporting all-to-all connectivity:

Figure 2.3: Multiple DSP Logical Architecture

Consider Figure 2.3 which shows the logical flow of signals in a multiple DSP En-
gine Architecture (again a two-DSP Engine, four RF Node case is shown) from source
Signal Conversion Modules on the left to destination Signal Conversion Modules on
the right. Each physical Signal Conversion Module appears once on the left-hand side
as a source and once on the right-hand side as a destination. In this architecture,
the output from each Signal Conversion Module is connected to only a single DSP
Engine. An input into each Signal Conversion Module, however, is required for each
DSP Engine.

The key benefit of using multiple DSP Engines is an increase in the number of
paths supported that is directly proportional to the number of DSP Engines used.
In a single DSP Engine implementation, if N RF Nodes are attached to the system,
the number of paths that must be provided by the DSP Engine in order to support
all-to-all connectivity is N · (N − 1). Now in the multiple DSP Engine case, if the
number of RF Nodes attached to the system is N and the number of DSP Engines
utilized is M, then the number of paths that each DSP Engine must support is then
N · (N − 1)/M . In other words, the number of paths available in the system scales
linearly with the number of DSP Engines used.

2.2. SYSTEM ARCHITECTURE 23

The fundamental complexity of all-to-all connectivity, however, is manifested in
increased requirements for DSP Engine I/O, increased numbers of cables, and in-
creased Signal Conversion Module I/O. These requirements limit the multiple DSP
Engine approach to a few DSP Engines. Nevertheless, while this approach is not a
panacea, it can yield a useful increase in system scale.

Interconnecting Multiple DSP Engines

Emulation
Controller

DSP Engine

DSP Engine

DSP Engine

DSP Engine

Emulated environment

Figure 2.4: Connecting Multiple DSP Engines

In many circumstances, nodes in wireless networks are physically separated to the
extent that they are not all in communication range of each other. It is possible to
leverage this physical distribution to allow the emulator to scale beyond the limits of
a single DSP Engine.

Figure 2.4 depicts how a two dimensional distribution of wireless nodes could be
leveraged by an emulator using multiple DSP Engines. In this architecture, each DSP
Engine is responsible for fine-grained emulation of nodes within a unique region of
physical space. DSP Engines communicate with neighbors to handle borderline cases
or distant emulation at a coarser scale.

24 CHAPTER 2. ARCHITECTURE

Quadrature Architecture

The current architecture and implementation operate on scalar signals in order to ease
Signal Conversion Module design and improve scale. Radios typically process signals
by creating a phase shifted copy of the signal. This is referred to as I/Q (cosine-sine)
or quadrature signal processing. Processing signals in I/Q form is simpler than scaler
form for many operations.

In addition, if I/Q conversion is done in the analog domain, using I/Q signals
allows the signals to be digitized at baseband instead of at a low IF as is done in the
standard emulator architecture. Thus, an analog I/Q architecture effectively doubles
the emulator’s supported bandwidth at the expense of doubling the required signal
paths.

There are a variety of ways in which I/Q modulation can be supported. The
current implementation can implement I/Q modulation by digitally decomposing and
recovering the signal into I/Q either on the Signal Conversion Module or the DSP
Engine. This has the advantage of requiring no changes in the current implementation,
but consumes more resources since the number of signal paths doubles.

More scale can be achieved using a modified architecture to better support I/Q
modulation as shown in Figure 2.5. In this architecture, two DSP Engines are used:
one for I and one for Q (this provides twice the computational resources compared to
handling both I and Q in a single FPGA.) These DSP Engines operate in symmetry,
but on different portions of the signal. The current DSP Engine can be used in this
case. The I/Q signals can be created and recovered either digitally as mentioned
above, or in the analog realm by modifying the RF Front End and using two Signal
Conversion Modules per RF Node.

Multiple Antenna Support

In the architecture discussed in this chapter, each Signal Conversion Module is con-
nected to a single device antenna port via an RF Front End. Supporting true antenna
diversity under this architecture requires using two Signal Conversion Modules. This
approach works without requiring any modification to the emulator hardware or soft-
ware, but sacrifices scale. In the implementation discussed in the next chapter, true
antenna diversity is not directly supported in favor of increasing emulator scale. The
effects of antenna diversity, however, could be emulated by altering channel modeling
to consider diversity. In this approach, each device would have two (or more) virtual
antennas for each actual antenna port. The channel modeling would then be altered
- e.g. by reducing the depth of fading - to model the impact of antenna diversity.

Antenna diversity support could be added at the hardware level - without requiring

2.3. SUMMARY 25

Emulation
Controller

DSP Engine
FPGA-based

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

DSP Engine
FPGA-based

Signal
Conversion

Signal
Conversion

Signal
Conversion

Signal
Conversion

Figure 2.5: Modified Architecture for I/Q Signal Processing

one Signal Conversion Module per antenna - by altering the Signal Conversion Module
to support multiple RF Front Ends per Signal Conversion Module. A single digital
data stream to and from the DSP Engine would still be used in order to maintain
scalability. For receive diversity, signals outgoing to each element would be altered to
mimic the effects of diversity in the real-world. Thus, the hardware diversity circuitry
would still be exercised, but scaling would not be any different than the non-diversity
case. Transmit diversity could be handled in a similar fashion by altering incoming
data streams.

Emerging and future networks will increase throughput by using multiple antennas
to support techniques such as steerable antennas, MIMO [19], and “time reversal” [18].
Like antenna diversity, these technologies can be supported through either the brute
force approach of using one Signal Conversion Module/RF Front End per antenna,
or by modifying the Signal Conversion Module to support multiple RF Front Ends.
In the long run, the latter technique of developing Signal Conversion Modules with
multiple RF Front End support appears to be the most promising approach.

2.3 Summary

This chapter has presented an architecture that enables physical layer wireless net-
work emulation, discussed this architecture’s benefits, and outlined its provisions for
growth. The following chapter discusses the hardware implementation of this archi-
tecture, and illustrates concretely how system requirements are met.

26 CHAPTER 2. ARCHITECTURE

Chapter 3

Implementation

The previous chapter discussed the emulator architecture and implementation at a
high level. This chapter now discusses each component of the emulator in detail. For
each component, this chapter first discusses the requirements that it must meet; the
implementation of the component is then discussed in detail.

3.1 Implementation Versions

The work presented in this thesis was conducted using three increasingly capable
implementations. These implementations will be referred to as “Prototype”, “Version
1”, and “Version 2.” When not otherwise specified, the implementation referred to is
Version 2 which is the version described in this chapter. The architecture is the same
for all three versions.

3.2 RF Front End

3.2.1 Requirements

The RF Front End converts the high frequency signals transmitted by the device to
a low frequency that can be digitized by the Signal Conversion Module. When the
device is not transmitting (the emulator targets half-duplex devices), signals from
other devices in the emulated environment must be converted from the low frequency
signals produced by the Signal Conversion Module to the high frequencies that the
signals were originally transmitted at.

In addition, the RF Front End must meet the following requirements:

27

28 CHAPTER 3. IMPLEMENTATION

Signal Scale. The RF Front End must ensure that transmitted signals are pre-
sented to the Signal Conversion Module at an ideal signal strength: as close as possible
to the maximum signal strength supported by the Signal Conversion Module, but not
greater.

Similarly, received signals must be attenuated in order to place the received signal
at the desired range of signal strengths.

Flatness. At each frequency supported by the RF Front End, the scaling intro-
duced by the RF Front End should be as close to equal as possible. That is, the
transmit frequency response should be flat as should the receive frequency response.

Noise. The RF Front End should introduce as little noise as possible into the
signal.

Spurious Signals. Finally, the RF Front End must produce as little spurious
signal energy as possible.

3.2.2 Implementation

LO

DAC

ADC

RF Node
Antenna Port

Mixer

Circulator

Figure 3.1: Strawman RF Front End Implementation

Strawman Design.

The main signal paths in the RF Front End are 1) from the RF port of the RF
Node to the A/D port of the Signal Conversion Module, and 2) from the D/A port of
the Signal Conversion Module to the RF port of the RF Node. Conceptually, the RF
Front End could be implemented as shown in Figure 3.1. This figure shows the RF

3.2. RF FRONT END 29

Front End in a shaded box; the RF Front End connects the RF Node’s antenna port to
the ADC and DAC which are located in the Signal Conversion Module. An off-board
local oscillator (LO) signal source is used. In this implementation a single “mixer”
is used. On downconversion, the mixer shifts the high-frequency signal generated by
the RF Node down to a lower frequency as required by the Signal Conversion Module.
On upconversion, the mixer shifts the low-frequency signal generated by the Signal
Conversion Module up to the high-frequency that it was originally transmitted at. As
the RF Node may be half-duplex, these two paths must share the same RF Port. The
architecture in Figure 3.1 solves this problem using a “circulator.” This device sends
signals transmitted by the RF Node to the downconversion path; signals received
from the Signal Conversion Module are sent to the RF Node. In principle, no signal
would leak between the two signal paths.

Unfortunately, this design has shortcomings.

• Isolation - the limited isolation of the circulator means that some signals will go
in undesired directions. For example, some signal coming into the upconversion
path from the Signal Conversion Module will leak through the circulator onto
the downconversion path. This signal will then enter the Signal Conversion
Module. The net effect during emulator operation would be to make signals
being received by one RF Node appear as if there were being transmitted -
weakly - from that RF Node.

In addition, the LO distribution system can be an additional source of signal
leakage. Some of the signal being transmitted will leak into the LO distribution
system and arrive at another RF Front End where it will be sent for reception.

• Lack of undersampling support - the use of a single LO for both upconversion
and downconversion in this design effectively precludes the use of undersam-
pling. The use of undersampling is discussed further below.

• Signal Matching/LO Strength - The downconversion output signal strength
should match the ADC input range. In practice, however, the input signal
to the mixer has a limit which prevents a good match. Using a higher powered
LO can achieve a better match, but such a high powered LO can be difficult to
achieve.

• Spurs - All mixers produce spurious signals known as “mixer spurs.” These
become more severe as the mixer input signal strength approaches the mixer
signal limit. In the strawman design, the input signal needs to be as close to
the limit as possible to allow for a good ADC input range match. Thus, this
design cannot simultaneously achieve good isolation from spurs and good ADC
input range match.

30 CHAPTER 3. IMPLEMENTATION

DAC

ADC

LO

To Signal
Conversion

Split/
Comb

RF Node
Antenna Port

LO

Transmission
Detection

RF Switch

Amp

(optional)

Figure 3.2: Actual RF Front End Implementation

Actual Implementation.

Developing an RF Front End to overcome the shortcomings of the simple design
discussed above is a challenging problem, with a large design space in which to look
for possible solutions. This discussion presents an attractive solution to this problem -
shown in Figures 3.2 and 3.3 - that meets the design requirements, and provides good
performance. Other solutions are, however, possible. For each of the shortcomings
discussed previously, this discussion will elaborate on how the design in Figures 3.2
and 3.3 overcomes the challenge, and why each particular design element was selected.

Improving Isolation. A key problem in the simplistic design is the lack of
isolation, particularly in the circulator. As the emulator targets half-duplex devices,
isolation between upconversion and downconversion paths can be greatly improved by
using an RF switch instead of a circulator. (Full-duplex devices can still be supported
using two RF Front Ends with one dedicated to each direction.) The RF switch must
be very fast to detect transmissions so as to truncate as little of the transmitted signal
as possible; it also must recognize the end of a transmission quickly, though this is
not as critical as recognizing the start of a transmission. The use of an RF switch
requires a transmit detection circuit that controls the switch. This detection circuit
must also be fast for the same reasons that the switch must be fast.

Leakage through the LO distribution system is limited as follows. First sepa-
rate mixers and LO distribution systems are used for downconversion and upconver-
sion. This allows undersampling to be supported as discussed below. Moreover, this

3.2. RF FRONT END 31

Figure 3.3: RF Front End Picture

eliminates leakage between the upconversion and downconversion LO systems. To
further reduce leakage, the LO circuits contain high-pass filters that eliminate spu-
rious low-frequency signals that result from mixing and that can be mixed back to
high-frequency inadvertently.

Signal Scaling. On upconversion, the signal must be scaled into the desired
dynamic range. Upconversion signal scaling can easily be accomplished by adding
attenuation to the IF input port. Attenuation here affects only the upconversion
path and improves spurious signal isolation.

On downconversion, in order to match the required Signal Conversion Module
input level, an on-board jumper cable is added on the downconversion path. This
allows variable amounts attenuation to be added in four places on the RF Front
End: the RF Port, the IF input, the IF output, and the on-board jumper loop. As
discussed below, rather than add attenuation to the IF output port, it is preferable
to add attenuation to the loop. Hence attenuation is never added to the IF output
port.

Reducing Spurs. Another important problem that must be solved is the reduc-
tion of “mixer spurs” on the downconversion path. On downconversion a mixer works
by multiplying a local oscillator signal (LO) with an RF signal. This results in the
desired signal of RF − LO being output from the IF port. Unfortunately, however,

32 CHAPTER 3. IMPLEMENTATION

the mixer also outputs numerous combinations of m · RF + n · LO where m and n
take on arbitrary integral values. In practice, only small values are of importance.

For example, using an LO of 2.396 GHz, an RF signal of 2.412 GHz mixing with
the LO would produce the desired signal of 16 MHz, but also the undesired signals of
32 MHz (the “first mixer spur”) and 64 MHz (the “second mixer spur.”) (The first
and second mixer spurs are the most difficult to deal with hence this discussion is
restricted to the reduction of these mixer spurs.) If these mixer spurs are sufficiently
weaker than the desired signal, they can be ignored.

0

10

20

30

40

50

60

70

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

Input Power dBm

Is
ol

at
io

n
dB

c

26 MHz Spur

39 MHz Spur

Figure 3.4: MAMXES0042 Spur Isolation

Figure 3.4 shows the measured performance of a medium power (13 dBm LO)
mixer with respect to first and second mixer spur isolation. For this measurement a
13 dBm, 2.449 GHz LO was connected to the LO port of a M/A-com MAMXES0042
mixer; this mixer has very good spurious isolation. The x-axis shows the strength
of the RF signal connected to the mixer’s RF port. The output from the mixer’s IF
port was sent to a spectrum analyzer, and isolation of the desired signal with respect
to spurs was measured. The y-axis shows the measured degree of spurious signal
isolation. Higher values indicate more isolation, and hence are better. This figure
shows that at 0 dBm, the isolation achieved with respect to the first mixer spur is
41.5 dBc. Hence, using this mixer and a 0 dBm RF input signal strength would result
in a spurious free dynamic range (SFDR) of 41.5 dBc which is good performance for
a mixer, but still less than ideal for the RF Front End.

3.2. RF FRONT END 33

This can be addressed in a few ways. Using a higher power mixer (i.e. a mixer
that uses a higher power LO) produces greater isolation with respect to spurs. Using
a higher power LO, can be inconvenient as the LO signal source must be strong
enough to drive multiple RF Front Ends. More importantly, the best SFDR achieved
after testing several mixers using this technique was 41.8 dBc which is still less than
desired. Moreover, this value was achieved with an input signal strength of 0 dBm.
The output signal from the mixer will experience additional signal loss of around 7
dB. Hence the mixer output signal that achieves 41.8 dBc of isolation is -7 dBm. The
signal conversion module, however, requires +8 dBm in order to match the full range
of the A/D converter. As a result, 15 dB of dynamic range would be lost simply due
to this mismatch.

A key observation in Figure 3.4 is that isolation - and hence SFDR - increases as
the RF signal incident to the mixer becomes weaker. Hence, excellent SFDR can be
obtained if a sufficiently weak RF signal is used. Unfortunately, doing this will further
increase the mismatch of the required input signal strength to the Signal Conversion
Module, thus simply reducing the RF signal strength is not feasible.

Part of the solution used in this work is to amplify the signal after it has passed
through the mixer in order to meet the signal strength requirement of the Signal
Conversion Module. This introduces some undesired noise into the signal. However,
much of this noise is unimportant since the signal is so much stronger than the noise.
Thus, this noise is “buried” in the actual noise floor received by RF nodes. Added
phase noise, however, does degrade the signal somewhat.

Another alternative design would be to use an “active mixer” that amplifies as it
mixes. In practice, however, active mixers were found to perform very poorly with
respect to flatness over frequency due to impedance variation over frequency.

Note that on upconversion, mixer spurs are also produced. The incoming signal
is weak enough, however, that mixer spurs are not an issue for upconversion.

Undersampling. Spurious signal isolation can be further improved using under-
sampling. In order to meet the Nyquist criteria, an A/D converter running at a sample
rate of Fsample is typically used to sample signals where Fsignal < Fsample/2. Signals
where Fsignal > Fsample/2 will alias into the region Fsignal mod Fsample/2. For this rea-
son, digital signal processing systems typically filter signals Fsignal > Fsample/2. It is
possible, however, to leverage aliasing to perform a “digital downconversion.” That
is, signals Fsignal > Fsample/2 can be intentionally aliased to the desired frequency
range. Now, undersampled signals where Fsignal mod Fsample > Fsample/2 will be
inverted in frequency; for this reason, undersampled signals typically are sampled to
meet the condition Fsignal mod Fsample < Fsample/2.

Undersampling is not, however, without drawbacks. The first effect is that addi-
tional noise is folded in. This effect is negligible in this case since the additional noise

34 CHAPTER 3. IMPLEMENTATION

is so much weaker than the signal being sampled. A much more significant drawback
of undersampling, in the emulator, is increased sensitivity to sampling clock phase
noise - measured in the frequency domain - or sampling clock jitter - measured in the
time domain.

The achievable signal-to-noise ratio of a sampled signal is limited by phase noise
and A/D aperture uncertainty tjitter as follows [31]: SNR = −20log10(2πfanalogtjitter)

Solving for tjitter yields: tjitter = (10SNR/−20)/(2πfanalog)

With an LO of 2.396 GHz and a sampling clock running at 180 MHz, fanalog for
802.11b/g channel 11 is (2.462 GHz - 2.396 GHz + 180 MHz) = 246 MHz. Thus, to
achieve a target dynamic range of 60 dB requires 0.65 ps jitter rms. Achieving 50 dB
requires 2.0 ps jitter rms.

This is further discussed in the Signal Conversion discussion below.

Miscellaneous. In addition, the RF Front End contains a filter on the RF
input/output that eliminates any low-frequency components that might be present
on the RF path to or from the RF node. Filters are also placed on the IF input and
output ports to filter out undesired signals. An optional high-pass filter is placed
between the RF Front End IF output and the SCM IF input as shown in Figure 3.2.
This filter is used when undersampling since, in this case, the signal to be sampled
will typically be placed at some frequency just over Fsample, and frequencies less than
Fsample should be filtered out.

The RF port also contains a coaxial connectorized attenuator. This attenuator is
set at a low value (e.g. 2 dB), and reduces any impedance mismatch that might be
seen by the RF node looking into the RF Front End and vice versa.

Quadrature Sampling. Note that the RF Front End does not employ quadra-
ture sampling. This approach is taken to improve the scalability of the emulator
by reducing the number of signal paths that must be handled. This approach also
simplifies the design of the RF Front End.

Nevertheless, quadrature sampling would be a useful avenue for future implemen-
tations. The current design could be adapted to support quadrature sampling by
using two RF Front Ends connected to the RF Node via a splitter and a 90 degree
phase shifter.

Quadrature digital signal processing can, however, be supported by the signal
conversion module discussed in the next section. The primary advantage of supporting
this directly in the RF Front End would be to double the bandwidth that could be
digitized.

3.3. SIGNAL CONVERSION 35

3.2.3 Summary

Developing an RF Front End for network emulation is a challenging task due to the
demanding constraints placed on the design. This section has presented a simplistic
reference design to illustrate the basic functionality required of the RF Front End,
and to show the difficulties that arise in meeting the full requirements. An improved
RF Front End design was then presented that overcomes the shortcomings of the
naive design.

As discussed in this section, while there are multiple approaches to designing an
RF Front End for network emulation, the RF Front End implementation presented
here provides very good solutions to all of the individual design constraints required
of it.

3.3 Signal Conversion

3.3.1 Requirements

The primary purpose of the Signal Conversion Module is to interface the RF Front
End with the DSP Engine. When an RF Node is transmitting, the signal conversion
module must digitize the incoming signal and send it to the RF Front End. When
an RF Node is not transmitting, the incoming signal from the DSP Engine must be
converted to analog and sent to the RF Front End.

Key in the design of the Signal Conversion Module is the choice of data converters.
The data converters used in the Signal Conversion Module largely determine the
dynamic range, bandwidth, and signal quality of the overall system.

The Sampling Theorem states that the sampling rate must be twice the desired
sampled bandwidth. 802.11b/g signals span from 2.401 GHz to 2.473 GHz for 72
MHz of bandwidth. Hence, the sampling rate must be at least 144 MHz to capture
signals contained in this range.

As discussed in Chapter 1, dynamic range d of an ideal A/D converted is limited
by the sample size n according to d = 6.02 · n. The emulator target devices - for
version 2 - have a minimum receive sensitivity of -95 dBm and a transmit power of 19
dBm. A 7 dB margin is needed to be able to emulate interference from nodes that are
out of reception range. Thus the required minimum signal strength is -102 dBm. At
1 meter, path loss is typically about 40 dB. Hence, emulating reception from 1 meter
separation to out-of-range requires 62 dB of dynamic range. More sensitive devices
can require support for even weaker signals. For instance supporting devices with a
minimum RSS of -100 dBm requires an additional 5 dB of dynamic range for 67 dB

36 CHAPTER 3. IMPLEMENTATION

total. It is possible to sacrifice support for strong signals in favor of supporting weak
signals if desired.

Analog to Digital Conversion. Number of bits - the discussion above leads
to a minimum requirement for 11 bits of sample resolution to achieve the 60+ dB
dynamic range target. Data converter imperfections, however, mean that more bits
are actually required. Thus the SCM must support at least 12-bit samples.

Bandwidth - the SCM bandwidth goal is to support all 802.11b/g channels. Thus
the required bandwidth is 2.401 GHz to 2.473 GHz or 72 MHz wide. The Nyquist
Criteria means that the sample clock must run at least twice this rate or 144 MHz.

Digital to Analog Conversion. The D/A converter requirements track those
of the A/D converter. D/A converter capabilities, however, greatly exceed those of
A/D converters. Thus the A/D converter is the limiting factor in the SCM signal
conversion system.

It is useful, however, to employ a D/A converter that has a higher resolution than
the A/D converter. While the A/D resolution still limits the SNR of the system, in-
creasing D/A resolution allows for a greater range of signal strengths to be supported.
In particular, at the extreme ends of the supported dynamic range, the supported sig-
nal strength steps in dB can become quite large. Using additional bits on the D/A
improves resolution and allows those jumps to be greatly reduced. Hence, 14 bits are
required for D/A converter samples.

Synchronization. A difficult requirement for the emulator implementation to
meet is the synchronization of all data and clocks on the DSP Engine. Samples
generated on discrete Signal Conversion Modules must be processed on a common
clock inside of the DSP Engine. The DSP Engine FPGA contains resources capable
of synchronizing data and clocks, but they are limited in number. Further circuitry
could be added to the DSP Engine, but this would increase the complexity of the
design. To achieve scalability and simplicity, this synchronization problem must be
solved off-board of the DSP Engine. Thus, this problem is best addressed in the
Signal Conversion Module.

3.3.2 Implementation

Figures 3.5 and 3.6 show the implementation of the Signal Conversion Module. In-
coming transmissions are first digitized by the A/D converter; digitized samples are
then forwarded to an on-board FPGA: a Xilinx XC4VSX25 [69]. The FPGA converts
the digitized signals into half-width double data rate (DDR) signals for transmission
to the DSP Engine. The DDR format reduces the number of pins consumed on the
DSP FPGA as well as the number of wires required to carry signals.

3.3. SIGNAL CONVERSION 37

IF In
From RF Front End

A/D Converter
AD9430

12-bit
210 Msps (max.)

D/A Converter
AD9736

14-bit
1.2 Gsps (max.)

FPGA
XC4VSX25

To DSP

From DSP

Tx Active
From RF Front End

Phase
Shifter

DCM

DCM
DCM

Clock

Digital Samples
Clock

Analog
Control

IF Out
To RF Front End

Figure 3.5: Signal Conversion Implementation

The use of an FPGA on the SCM is not strictly necessary, but it provides several
benefits:

• Flexible clock and I/O systems make achieving good on and off-board clock
synchronization and obtaining good digital signal integrity much easier.

• Computational resources can be used to correct signal imperfections introduced
by the RF Front End.

• Some computation may be offloaded from the DSP Engine.

• The SCM can be utilized as a software radio.

• The SCM can be utilized as a standalone channel emulator.

• The SCM can be utilized as a spectrum analyzer.

On reception - i.e. whenever the RF Node is not transmitting - the node’s com-
puted signal from the DSP Engine is routed by the SCM FPGA to the D/A for
conversion to analog.

A/D Converter. The only commodity A/D converter available at the com-
mencement of this work that met the sample size and resolution criteria discussed

38 CHAPTER 3. IMPLEMENTATION

Figure 3.6: Signal Conversion Implementation Picture

earlier was the Analog Devices AD9430 [13]. This converter has a resolution of 12
bits and a maximum sample rate of 210 Msps. It has a dynamic range of 65 dBc at
the 210 Msps rate.

A practical advantage of this A/D converter is its use of a low-voltage differential
signaling (LVDS) data bus which greatly simplifies the integration of this A/D con-
verter into a printed circuit board. LVDS provides increased system signal integrity
and reduced electromagnetic emissions (EMI.)

D/A Converter. The D/A converter selected for the emulator was an AD9736 [14].
This converter supports 14-bit samples at up to 1.2 Gsps. It includes an integrated
PLL that reduces phase noise for the output signal. Like the AD9430, this device
supports an LVDS I/O interface which is important in supporting high data rates
cleanly.

Synchronization. Synchronization of data when it reaches the DSP Engine is
achieved using a phase shifter on the clock input line. This allows each Signal Con-
version Module’s clock to be shifted such that the DSP Engine can latch the incoming
data on a common clock. (The common clock on the DSP Engine is generated by
using a single clock forwarded from an SCM. The clocks forwarded from other SCMs
are ignored.)

3.4. DSP ENGINE 39

Data from the A/D, outgoing to the D/A, and incoming from the DSP engine
uses the on-board digital clock management (DCM) resources of the XC4VSX25 to
synchronize data with the accompanying clock.

3.3.3 Summary

The Signal Conversion Module discussed in this section provides a very high per-
formance signal conversion platform that enables accurate network emulation. The
key elements in this design are the use of very high performance data converters in-
terconnected by an FPGA. While the design could have been implemented without
the FPGA, using the FPGA simplifies on-board clock synchronization and enables
correction of data conversion imperfections. In addition, the use of an FPGA allows
the signal conversion module to be used as a powerful signal processing platform that
can be the basis of a standalone channel emulator, a spectrum analyzer, or a software
radio.

3.4 DSP Engine

3.4.1 Requirements

The Digital Signal Processing Engine is the heart of the emulator. It is here that
signals are processed in order to mimic the effects of signal propagation in the real
world. The DSP Engine must be able to process samples at the sample rate. In
addition, it must be programmable in order to support different signal environment
models to be used. The most difficult requirement to meet is that of scale. For n RF
Nodes that are within range of each other, there exist n·(n−1) channels paths between
these nodes. This O(n2) number of channels means that the DSP Engine can quickly
become a bottleneck in system scaling. Programmability allows the DSP Engine to
achieve further scale by varying signal environment modeling fidelity according to the
needs of the emulation. The DSP Engine should be able work in conjunction with
other DSP Engines in order to increase system scale.

Consider a system with 10 RF nodes, using the Signal Conversion Module de-
scribed above, where a single signal path between all nodes is to be modeled. Each
SCM generates 12-bit samples at 170 Msps for a total of 2.04 Gbps. Thus in order to
support this 10 node system, the DSP Engine must be able to receive and transmit
data at 20.4 Gbps. Internally, the signal conversion module must be able to support
90 signal paths with an aggregate 183.6 Gbps of data and process an aggregate 15.3
billion scaling operations per second. Moreover, the DSP Engine must process this
data while introducing minimal additional latency.

40 CHAPTER 3. IMPLEMENTATION

3.4.2 Implementation

The only hardware capable of meeting the demands discussed above is an FPGA
or ASIC based system. The massive communication, computation, and low-latency
requirements are too great for a commodity general purpose or even a digital signal
processor. The flexibility requirement makes an ASIC an undesirable choice. Thus
the only feasible method to meet the target requirements discussed above is to use
an FPGA.

Figure 3.7: DSP Engine Picture

The DSP Engine implementation is shown in Figure 3.7. The implementation
discussed in this work uses an XC2VP50 [70] with software developed using the Xil-
inx ISE tool [66]. This is a higher-end FPGA that contains sufficient resources to
construct an emulator of several nodes. The rest of this section discusses how this
FPGA is used to meet the requirements discussed earlier.

I/O. The first challenge is getting massive amounts of streaming data into and
out of the DSP Engine. FPGAs come with multi-gigabit transceivers which could
- in principle - be used. The high latency associated with these devices, however,
makes using them less-desirable. Thus the general purpose I/O pins on the FPGA
are used. The high data rate, however, makes using a single-ended I/O standard
undesirable. This is overcome using the Low Voltage Differential Signalling (LVDS)
standard to send and receive data. Unfortunately, this requires two I/O pins per

3.5. AUXILIARY FPGA 41

bit. Fortunately, I/O can be sent on both the rising and falling edges of the system
clock using a double data rate (DDR) approach. Using this technique is equivalent
to one pin per bit without DDR. LVDS requires 100 ohm terminating resistors as
close to the receiver as possible. Modern FPGAs include these resistors on-chip so
that the printed circuit board (PCB) need not include them. Using these, however,
requires that unidirectional (i.e. typical) LVDS be used. Thus, the number of data
pins required per SCM supported is 6 for transmit plus 7 for receive for a total of 13.
This is a large number of pins, and restricts the total number of devices that can be
connected to the emulator.

When emulating all-to-all connectivity, however, the number of pins required is
not the bottleneck in this implementation. In this case the limitation is the number of
multipliers provided. Assuming one signal path per channel, the number of multipliers
required is the same as the number of channels discussed earlier n · (n− 1) where n is
the number of nodes. For the XC2VP50 used in this implementation, 232 multipliers
are available. As a result, the maximum number of nodes that can be supported
with all-to-all connectivity for this DSP engine is 15 nodes, since 15 nodes require
210 multipliers, and 16 nodes would require 240 multipliers.

The circuit implemented inside of this FPGA scales, delays, and combines signals
to implement the desired signal environment. This is discussed in Chapter 4.

3.4.3 Summary

While non-trivial to realize in hardware, the DSP Engine is a logically straightforward
design that provides an extremely high power signal processing engine. This engine
forms the core of the network emulator, and provides the key means of enabling signal
environment emulation of sufficient scale to emulate a wireless network.

3.5 Auxiliary FPGA

The Emulation Controller and the DSP Engine must communicate via a high band-
width connection. The implementation of the DSP Engine hardware is greatly sim-
plified by moving as much communication logic as possible off-board. This is ac-
complished using an “Auxiliary FPGA” which contains the complex functionality
necessary to communicate with the Emulation Controller as well as the hardware
interface necessary to communicate with the DSP Engine.

42 CHAPTER 3. IMPLEMENTATION

3.5.1 Requirements

This design yields the following requirements:

Commodity Hardware. Using commodity hardware in the Auxiliary FPGA
eliminates the need for a custom hardware element.

User-defined I/O Pins. Interfacing with the DSP Engine requires a compatible
hardware interface. As a no commodity part uses the exact pin-specification required
by the DSP Engine, the Auxiliary FPGA must have user defined I/O pins in order
to allow custom functionality to be achieved using a commodity component.

Interface with User-level Code on Emulation Controller. Some candidate
devices require a device driver to be written on the Emulation Controller in order to
communicate. Providing a user-code interface on the Emulation Controller eliminates
this task.

3.5.2 Implementation

These requirements are met using a commodity FPGA evaluation board: a Xilinx
ML-401 [67]. Programs for this board are developed using the Xilinx Embedded
Development Kit [68] (EDK.) This software makes the FPGA on the ML-401 appear
as a CPU that supports user-defined devices.

Communication with the DSP Engine is accomplished by creating a user-defined
device capable of communicating over the LVDS interface to the DSP Engine. The
Auxiliary FPGA utilizes the exact same physical interface (a VHDCI cable and con-
nectors) that the SCM boards use. This allows the Auxiliary FPGA to connect to the
DSP Engine via the same method. (The DSP Engine has 16 VHDCI ports. 15 are
used for SCM connectivity and 1 is used for the Auxiliary FPGA.) A small adapter
allows the general purpose I/O pins on the ML-401 to connect to the VHDCI cables
utilized by the DSP Engine.

The EDK provides a primitive embedded operating system and an embedded
C development platform. Communication between the Auxiliary FPGA and the
Controller utilizes the TCP/IP library provided by this environment.

Commands outbound from the Controller to the DSP Engine are sent as UDP
Packets to the Auxiliary FPGA. Inside the Auxiliary FPGA, these packets are de-
coded and turned into low-level commands that go over the VHDCI/LVDS cable to
the DSP Engine.

3.6. PACKAGING 43

3.5.3 Summary

Communication between the DSP Engine and the Emulation Controller requires an
interface that connects the custom interface found on the DSP Engine to a commodity
PC. This section has presented a design that accomplishes this using a commodity
component that is flexible enough to meet the requirements required to implement
this interface.

3.6 Packaging

The large amount of hardware present in the emulator demands a modular packaging
implementation to achieve manageability. The general approach taken to achieve this
is the use of rack-mount packaging.

The current implementation makes use of laptop computers for RF Nodes. The
stringent isolation requirements demand that the laptops, RF Front Ends, and Signal
Conversion Boards Modules be housed together inside of a shielded chassis. For
further modularity, the RF Front End and Signal Conversion Board are housed inside
of a smaller aluminum chassis - shown in Figure 3.8 - with bulkhead adapters for all
needed external coaxial connectors. The larger chassis is lined with RF absorber that
greatly reduces the ability of RF energy to enter and exit the chassis. Small openings
in the front panel of the large chassis allow the connection of needed cables. The
large chassis are then rack-mounted as shown in Figure 3.9.

3.7 Summary

Implementing physical layer network emulation requires powerful hardware and care-
ful coordination. This chapter has discussed the requirements of each component in
the emulator, and how each component is implemented to meet its requirements.

44 CHAPTER 3. IMPLEMENTATION

Figure 3.8: Signal Conversion Chassis

3.7. SUMMARY 45

Figure 3.9: Emulator Rack

46 CHAPTER 3. IMPLEMENTATION

Chapter 4

Control Software

The emulator developed in this thesis consists of both custom and commodity hard-
ware that must act in concert to enable users to accurately emulate arbitrary signal
propagation environments and efficiently execute experiments. Developing software
to achieve this has been a challenging task. This chapter discusses the software archi-
tecture that enables the physical layer wireless emulator to achieve accurate emulation
while enabling efficient experimentation.

This discussion proceeds as follows. Section 4.1 compares and contrasts the re-
quirements of the emulator with the capabilities of existing network simulators and
emulators. Section 4.2 describes how users interact with the emulator. Section 4.3
then discusses the emulator’s software architecture in detail. Section 4.4 presents
several case studies of how this software architecture allows various experiments to
be conducted on the emulator, and Section 4.5 summarizes this chapter’s discussion.

4.1 Emulation Software Requirements

Before discussing emulator’s software architecture and how users interact with the
system, this discussion will briefly consider the requirements that real-time physical
emulation imposes on the software that supports it. It will also consider how the
capabilities of existing simulators and emulators compare to the physical layer network
emulator’s requirements.

At a high level, the emulator performs modeling similar to that of traditional
wireless simulators. Like traditional wireless simulators, the physical layer emulator
can model a physical environment with wireless devices distributed in it, and path
loss between devices. Traditional simulators, however, also must model the behavior
of the transmitter radio and MAC, the receiver radio and MAC, the network stack,
and applications running on the network. Physical network emulation - in contrast -

47

48 CHAPTER 4. CONTROL SOFTWARE

removes the need to model any of these since the wireless devices are real from the
application layer to the radio.

Physical layer emulation’s use of real devices and real applications is similar to
that found in other emulators such as Emulab [65], Orbit [50], or Modelnet [37]. Like
these systems, the emulator must control real devices and the applications that run
on them. Modelnet, however, does not make use of real wireless devices. Emulab,
supports real wireless devices, but in a testbed fashion; i.e. the wireless network is
hardwired to a particular physical location. Orbit is also a testbed, but attempts to
emulate different physical environments through selection of nodes positioned in a
grid and the injection of noise to alter signal-to-noise ratios and mimic the effect of
path loss; the techniques used in this approach are very different from those that can
be leveraged in the emulator.

The emulator requires a software infrastructure that is - in some ways - a hy-
brid of traditional network simulation and emulation. Unlike traditional systems,
however, the emulator has complete control over the physical signal propagation be-
tween the devices attached to it. This is enabled by the emulator’s unique hardware
which contains a powerful digital signal processing platform capable of digitizing and
manipulating signals streaming between all wireless devices attached to it.

Specifically, the emulator software infrastructure must meet the following require-
ments:

• Accurately emulate signal propagation - A key requirement of the emulator’s
software is to make use of this signal processing platform to accurately emulate
signal propagation in a controlled manner. At the lowest level, this requires
software to control the signal processing. In the emulator’s case, this low-level
software is written using a hardware description language (HDL). (As this code
is reconfigurable, this discussion will refer to this HDL code as software.) No
existing wireless network simulator or emulator contains software for this fine-
grained level of signal processing.

• Minimal assumptions regarding problem addressed by experiments - The emu-
lator should make no assumptions regarding what problem users are addressing.
ns-2’s wireless support, in contrast, was originally developed with the assump-
tion that ad-hoc routing was the problem of interest.

• Minimal assumptions regarding hardware - Moreover, the emulator software
should make no assumption about the devices attached to it (as long as they
fall in the supported frequency band.) In addition, this approach removes the
assumption that a physical world is necessarily being modeled. That is, users
are allowed to directly control the signal propagation channels between devices
without necessarily considering a physical world. This is similar to “multipath

4.2. EXPERIMENTAL CONTROL 49

fading simulators” that are commercially used to evaluate RF devices. Fading
simulators, however, are severely limited in the number of channels that they
support and are not capable of modeling an entire network.

• Interactive use - The emulator should enable users to control it in an interactive
fashion to mimic the unscripted experiments that are typically used for initial
investigations.

• Enable simple experiments - The emulator should enable basic experiments
without the need to climb a steep learning curve. This should be possible
without introducing an additional programming language into the emulator
(beyond Java which is used in the core software.)

• Enable advanced experiments - Advanced users should be able to use a program-
matic interface to enable powerful experiments like those found in traditional
network simulators.

4.2 Experimental Control

Users control the emulator via three interfaces: scripts that provide an easy-to-use
method for conducting simple experiments, programs that provide more advanced
users with powerful control, and a graphical user interface that enables interactive
experimentation as well as visualization.

Scripts. The script interface is an easy-to-use interface for conducting basic
experiments. This interface allows users to define node movement and application
execution without the need to write real code. The scripting interface is deliberately
simple. No looping, branching, or variables are supported. Rather scripts are defined
as lists of events using an XML-based syntax. This restricted interface provides a
very shallow learning curve, and makes writing basic emulator experiments an easy
task.

An alternative design would be to use a scripting language such as TCL. This is
avoided since 1 - it does not eliminate the need for a compiled programming interface
for advanced access to the core of the emulator control code; it simply adds a new
language that must be learned, and 2 - the need to access core emulator functionality
from the scripting language would quickly lead to a bloated scripting interface and
complex coupling with the programmatic interface. As the scripted interface does not
maintain emulator state, there is virtually no coupling between user scripts and core
emulator code.

Hence the emulator’s design maintains the key benefit of scripting - the ability
to run simple experiments - while supporting full programmatic control in a clean
manner.

50 CHAPTER 4. CONTROL SOFTWARE

Programs. Experiments that have requirements exceeding the capabilities of
the script interface utilize the programmatic interface. The control code running on
the Emulation Controller is written in Java. Users may write Java classes that are
loaded at emulation boot time and then have full access to the emulator code. Using
the programmatic interface, experiments with arbitrarily complex behavior can be
created in a straightforward fashion.

GUI. When conducting experiments with real hardware in a physical environ-
ment, there is frequently an exploration phase during which wireless nodes are moved
and applications are run in an interactive fashion. For instance, a transmit rate se-
lection experiment between a laptop and an access point would likely include a phase
where the laptop was moved around and performance observed in an interactive fash-
ion. After initial performance was observed, then strict procedures would be followed
for formal results gathering. One unique aspect of the emulator is the ability to
perform this exploratory phase without the need to actually move around the real
world.

To support this type of functionality, the emulator provides an interactive GUI
that can be used to move RF nodes around in an emulated physical environment and
in the corresponding emulated signal propagation environment.

4.3 Software Architecture

As alluded to earlier, controlling real-time physical layer wireless network emulation
is a complex task that requires careful real-time coordination of several hardware
devices and the software distributed in them. At the same time, the complexity of
the emulation must be shielded from users as much as possible; to accomplish this,
the emulator control software presents users with a simple interface that makes the
emulator appear largely like a traditional wireless network simulator. This provides
a familiar experimental interface.

Figure 4.1 depicts the major systems in the software architecture of the emulator;
system names are shown in shaded boxes. The software systems are grouped according
to the language in which they are written; the italicized labels identify the hardware
components in which the software systems reside. The remainder of this section will
discuss each of the software systems depicted in the figure.

4.3.1 Execution Control

The execution control system provides three interfaces that can be used to provide
experimental control as discussed earlier: a GUI for interactive experiments shown in
Figure 4.2, scripts for very simple experiments, and the ability to load Java code into
the core of the emulator to provide full access to emulator internal data structures

4.3. SOFTWARE ARCHITECTURE 51

Hardware
Configuration

Physical
World

Signal
Environment

Node
Control

Signal
Processing

Signal
Conversion

DSP
Support

Execution
Control

Emulation Controller

Emulation Controller/RF Nodes

DSP EngineAuxiliary FPGA
Signal Conversion

Module

HDLC

Java

GUI XML Scripts

Java Programs

Figure 4.1: Software Architecture Overview

enabling powerful experiments to be conducted. Examples scripted and programmatic
emulator control will be discussed in Section 4.4.

4.3.2 Hardware Configuration

The hardware configuration code is divided into two portions. The first portion
manages information about the physical hardware setup. It keeps track of the number
of emulated nodes in the system, the identities of the circuit boards used to emulate
each node, etc. The second portion manages the software used for signal processing
on the DSP engine. This module reads the emulation configuration file and generates
HDL code to implement the channel models on the DSP engine. This code generation
is necessary since the HDL code used by the DSP Engine (see below) changes based
on the simulation environment specified by the user.

4.3.3 Physical World

The physical world system is responsible for managing physical objects in the emu-
lated physical environment. In particular, the physical world controls the movement
of EmuNodes which represent wireless devices.

The structure of the Physical World system is shown in Figure 4.3(a). Each
EmuNode may have one or more wireless NICs, and each NIC has one or more anten-
nas. Antennas connect the physical world with the signal propagation environment
as discussed in the following section. Each antenna corresponds to a single RF node

52 CHAPTER 4. CONTROL SOFTWARE

Figure 4.2: Interactive GUI

in the general architecture picture. Hence each EmuNode may be represented by
multiple RF nodes.

As EmuNodes move in the physical environment, their antennas move and the
corresponding signal environment modules are informed of the movement.

4.3.4 Signal Environment

Signal propagation modeling is controlled by the SignalEnvironment system which
is currently structured as shown in Figure 4.3(b). The remainder of this discussion
will assume this implementation, but should not be construed as implying that this
is the only implementation possible. The hardware is capable of supporting many
other architectures for modeling the signal environment, and the software has been
designed to allow for additional signal environment models to be incorporated into it.

Between each pair of antennas in the wireless system, there exist two channels -
one in each direction. Each channel consists of one or more signal paths. Each path
has a propagation delay, a loss model, and a fading model associated with it. The
loss model defines large-scale path loss - a fixed attenuation determined by distance -
between the destination and source antennas. A typical loss-model will register itself
with the physical world so that whenever the source or the destination antennas move,
loss is recomputed. The fading model defines small-scale fading (rapid variation in

4.3. SOFTWARE ARCHITECTURE 53

Physical World

EmuNode…

NIC…
Antenna…

Signal Environment

Path-based Channel Model

Path…

Source Antenna…

Destination Antenna…

Loss Model

Fading Model

delay

Channel…

a)

b)

Figure 4.3: Physical World and Signal Environment

signal strength that can occur even if the device antennas are motionless) between the
source and destination antennas. A typical fading model will register its interest in
velocity changes of the source and destination antennas. It then uses the velocities of
the two antennas to compute small-scale signal strength variations which are added
on top of the large-scale path loss.

4.3.5 Signal Processing

The Signal Processing HDL code is responsible for performing the processing required
by the channel modeling code discussed earlier. Figure 4.4 shows the typical operation
of the Signal Processing code. Again, the programmable nature of the DSP Engine
allows for alternative implementations of this code. In the typical version shown in
Figure 4.4, incoming signals are first sent into a delay line where one or more copies
(“taps”) of the signal are pulled off after going through a programmable amount of
delay. Each of these signals is then scaled by a programmable factor as determined by
the signal environment emulation code. Each outgoing signal, from the FPGA to an
RF node, is then computed by summing the scaled signals from the other RF nodes.
These outgoing signals are then sent to the D/A board for reconstruction.

The programmable nature of this circuit allows the emulator to trade off resources
such as the precise depth of the delay pipes and number of signal copies supported.
Thus, users can customize the operation of the DSP Engine to the particular test
being run.

54 CHAPTER 4. CONTROL SOFTWARE

Input 1

Input 2

Input 3

Output 1

Output 2

Output 3

sf sf…

sf sf

sf sf

…

…

Delay Pipe

Delay Pipe

Delay Pipe

Figure 4.4: DSP Engine Operation Example

4.3.6 DSP Support

The DSP Support code acts as an intermediary between the Java-based code on the
Emulation Controller and the HDL code on the DSP Engine. It translates high level
requests from the Emulation Controller into into hardware instructions for the DSP
Engine. Likewise, it allows the HDL code on the DSP Engine to send messages to
the Java-based code on the Emulation Controller. In addition, the DSP support code
provides access to an embedded processor that can be leveraged to assist both the
Emulation Controller and DSP Engine in tasks such as channel modeling. This allows
for more fine-grained temporal control of channel modeling.

In the current signal environment implementation, all signal environment emula-
tion - such as large scale path loss and small scale fading - occurs on the Emulation
Controller. For each signal path inside the DSP Engine, the Emulation Controller
sends attenuation updates when the attenuation on a path changes. The rate at which
scaling updates can be sent is limited by the Ethernet link between the Emulation
Controller and the Auxilliary FPGA to approximately 3 million updates per second.
Even when all signal paths must be constantly updated, the number of updates per
second is approximately 14,000 per second. The corresponding minimum update pe-
riod is at most 70 microseconds. Thus, the emulation controller can control fading
at a very fine granularity. For instance, if the length of a signal path is changing at
a speed of 60 miles per hour or 27 meters per second, the path attenuation can be
updated before the path has changed by 2 mm.

4.4. CASE STUDIES 55

Currently there is a lag of several milliseconds - maximum near 10 ms - between
the time a scale factor is sent from the Emulation Controller and the attenuation
is set inside of the DSP Engine. As a result, when modeling signal paths at high
granularity, the Emulation Controller must work ahead of the actual time. Currently
this is not completely implemented, but provisions allowing this are. To support this,
scaling values sent out from the Emulation Controller can be tagged with the times
at which the Auxilliary FPGA should send them out to the DSP Engine.

4.3.7 Signal Conversion Module

The signal conversion module converts between the RF signals used by the wireless
devices and the digital signals processed by the emulator. On transmit, signals dig-
itized by the A/D converter must be sent to the DSP Engine. On receive, signals
from the DSP Engine must be sent to the D/A. Also, for testing and other purposes
it is useful to allow signals to bypass the DSP and be sent directly from the A/D to
the D/A. This functionality is achieved through the use of an FPGA on each signal
conversion module. Hence, the signal conversion module software is written to accom-
plish this routing of signals in this FPGA. Moreover, the signal conversion software
has the ability to process signals outside of the main DSP. Thus effects such as noise
generation can be offloaded from the DSP Engine.

4.4 Case Studies

To illustrate how this software architecture enables users to easily conduct a broad
range of experiments, a series of case studies are now presented. These examples do
not cover all of the control software architecture’s functionality, but they have been
chosen to illustrate a range of ways in which the user is able to utilize the system.

20 40 60

TCP

80

Figure 4.5: Throughput vs. Distance Topology

4.4.1 TCP Throughput vs. Distance

To demonstrate how the emulator’s software architecture facilitates conducting simple
experiments, consider a simple TCP throughput vs. distance experiment where TCP

56 CHAPTER 4. CONTROL SOFTWARE

throughput is measured at a small number of discrete locations in an emulated en-
vironment. This is a straightforward experiment, and the emulator’s script interface
provides a simple means of implementing it.

For this experiment, a signal propagation environment where all channels are
modeled using a single path with log-distance large-scale path loss and Ricean fading
will be used. This signal propagation environment is defined as follows in the software
configuration file:

<ChannelDef>
<name>Default</name>
<Channel>
<ChannelModel type="PathBased">
<Path>
<LossModel type="LogDistance">
<d0>1</d0>
<p1d0>40.0</p1d0>
<n>2.8</n>

</LossModel>
<FadingModel type="Ricean">
<k>3.0</k>

</FadingModel>
</Path>

</ChannelModel>
</Channel>

</ChannelDef>

In this experiment, TCP throughput between two wireless NICs is measured at
four different distances in the emulated environment. This is done as follows (pseudo-
code in square brackets is used for brevity):

<EventDef>
<EventGroup time="0.0" concurrent="true">
<Add>
<node>emu-1</node>
<pos>0.0 0.0 0.0</pos>

</Add>
<exec>
<node>emu-1</node>
<cmd>iwconfig wlan0 essid test mode ad-hoc

channel 6</cmd>
</exec>
[add node 2 and run iwconfig on it]

</EventGroup>
<EventGroup time="1.0" concurrent="false">
<exec>
<node>emu-1</node>
<cmd>tcpThroughputServer</cmd>

4.4. CASE STUDIES 57

</exec>
<exec>
<node>emu-2</node>
<cmd>tcpThroughputClient emu-1</cmd>

</exec>
<SetPos>
<node>emu-2</node>
<pos>40.0 0.0 0.0</pos>

</StartRoute>
...

</EventGroup>
</EventDef>

Application results can be either streamed to the controller or stored on emulator
nodes for examination upon completion.

As shown in this example, the emulator’s script control interface allows concise,
easily mastered code to completely specify a signal propagation environment, and
conduct simple experiments in that environment. This provides a shallow learning
curve that should enable novice users to quickly begin conducting experiments using
the emulator.

4.4.2 Hidden Terminal Throughput

70 dB 70 dB

In range: 90 dB

Hidden: Infinite

Node 1 Node 3

Node 2

Figure 4.6: Hidden Terminal Topology

The hidden terminal problem is a well known problem in wireless networks where
two stations transmitting to a common third station may interfere with each other.
Figure 4.6 shows the topology of a typical hidden node scenario: two terminals -
Nodes 1 and 3 - are sending data to a third terminal - Node 2. If Nodes 1 and 3

58 CHAPTER 4. CONTROL SOFTWARE

do not sense each other’s transmissions, then they are said to be “hidden” from each
other, and their transmissions may collide at Node 2 which may cause data loss. In
the worst case, these collisions can continue and the links may become unusable.

To measure the impact of this problem on real hardware, it is useful to deliberately
create a hidden node situation and run throughput tests. Despite the conceptual
simplicity of this task, investigating hidden node performance with real hardware in
a real physical environment can be very difficult. Unless the carrier sense mechanism
can be altered (which varies by platform), determining when devices are in carrier
sense range of each other requires indirect measurements such as a throughput test.
Moreover, even if devices are verified to be out of carrier sense range, the signal
propagation environment may change such that they are brought into carrier sense
range.

The emulator’s complete control over signal propagation makes this difficult prob-
lem trivial by enabling complete specification of wireless channels. Moreover, the em-
ulator’s software architecture allows this experiment to be constructed in a straight-
forward manner. This example illustrates the emulator’s ability to directly control
channel conditions without the need to worry about the physical environment. In
other words, in this experiment there is no physical environment, just a manually
specified signal propagation environment.

The desired signal propagation environment is created by manually specifying
attenuation between RF nodes to create the in-range and hidden node topologies
shown in Figure 4.6. In both cases, two nodes (1 and 3) communicate with a third
node (2) over channels with a single path and 70 dB of attenuation. In the in-range
case, the attenuation between 1 and 3 is set to be 90 dB.

The in-range configuration file channel signal environment definitions are as fol-
lows:

<ChannelDef>
<name>Default</name>
<Channel>
<ChannelModel type="PathBased">
<Path>
<LossModel type="Manual">
<loss>70.0</loss>

</LossModel>
</Path>

</ChannelModel>
</Channel>

</ChannelDef>

<Channel src="1" dest="3">
<ChannelModel type="PathBased">
<Path>

4.4. CASE STUDIES 59

<LossModel type="Manual">
<loss>90.0</loss>

</LossModel>
</Path>

</ChannelModel>
</Channel>
[use same definition for 3 to 1]

In the hidden case, the attenuation between 1 and 3 is set to be infinite. This is
done by simply changing the channels between 1 and 3 as follows:

<Channel src="1" dest="3">
<ChannelModel type="PathBased">
<Path>

<LossModel type="Manual">
<loss>Infinity</loss>

</LossModel>
</Path>

</ChannelModel>
</Channel>
[use same definition for 3 to 1]

Bandwidth tests may then be conducted for each of these situations in a manner
similar to the TCP Throughput example.

As stated above, the key point of this example is to show how manual control
of the signal propagation environment is easily specified, and can be used to obtain
useful results.

4.4.3 Vehicular Convoy Channel Replay

The previous tests have illustrated modeled or manually specified signal propagation
environments. An alternative to modeling wireless channel conditions is to record a
real wireless channel and then to replay that channel in the emulator.

This example shows how the software infrastructure easily incorporates traces of
wireless channel behavior and corresponding device location traces. Channel traces
consist simply of time stamped path loss values, and can be gathered using commodity
wireless hardware (see Section 5.3 and [28] for details.) A portion of an actual pathloss
trace gathered by a major automobile manufacturer is shown below:

<LossTrace>
<name>1-2</name>
<duration>2700</duration>
<sample>
<time>38.000000</time>
<gain>-104.000000</gain>

60 CHAPTER 4. CONTROL SOFTWARE

</sample>
<sample>
<time>38.201000</time>
<gain>-99.000000</gain>

</sample>
...

</LossTrace>

Channel traces can be combined with node mobility traces gathered using a local-
ization system such as GPS. The below trace is an excerpt of a location trace gathered
in conjunction with the loss trace shown above:

<route>
<name>1</name>
<waypoint>
<pos>51835.325630 4432.397624 0.000000</pos>
<arrivalTime>38.000000</arrivalTime>

</waypoint>
<waypoint>
<pos>51835.391262 4430.662439 0.000000</pos>
<arrivalTime>38.201000</arrivalTime>

</waypoint>
...

</route>

One application of trace record and playback is intervehicular communication.
Major automobile manufacturers are working to equip vehicles with short range
wireless networks. As part of this effort, they are gathering traces of intervehicu-
lar pathloss and corresponding location traces.

Replaying these path loss traces within the emulator allows researchers to con-
duct an experiment multiple times while varying experimental parameters - such as
the routing algorithm. By replaying the exact same signal trace, researchers are able
to evaluate the desired experimental aspect without the need to worry about chan-
nel variations across runs. In contrast, conducting a similar comparison using real
world experiments is next to impossible since, even if the cars in the experiment were
driven over the same route, large amounts of channel variation would occur across
experiments.

4.4.4 Programmatic Channel Control

As a final example of how the software infrastructure enables the emulator to con-
duct insightful experiments, consider an experiment conducted as part of this thesis:
measuring 802.11b packet capture behavior. (Packet capture is reception in spite of
interfering signals. Chapter 7 will examine this problem in detail.) This test was

4.4. CASE STUDIES 61

R

Ta Tb

R

Ta Tb

Hidden In-range

Figure 4.7: Packet Capture Topology

enabled by the emulator’s manual channel control interface. The manual control in-
terface allows the experiment to directly specify channel conditions without worrying
about what physical environment might create such a channel. As the channels in this
experiment required a large number of configurations, the software infrastructure’s
programmatic interface was leveraged.

The setup for this experiment is shown in Figure 4.7. The goal of this experiment
was to establish the reception outcome given the RSS at a receiver R from transmit-
ters Ta and Tb without controlling precisely for interference timing. That is, this
experiment didn’t control when packets from Ta and Tb arrived at receiver R.

In both configurations shown in Figure 4.7, the tests proceeded as follows: two
transmitters Ta and Tb constantly sent broadcast packets at a very high rate to the
receiver R. At first, the channels were all “turned off” in the emulator so that no
packets were actually received at R. While the channels were “off” the traffic sources
were started. The channels were then simultaneously turned on, and the RSS at R
from each transmitter was set to the desired values by the emulator control software.
In the “hidden” configuration, Ta and Tb were not allowed to hear each other’s
transmissions. In the “in-range” setup the RSS from Ta to Tb was set at -80 dBm
and vice versa, so that Ta and Tb always heard each other’s transmissions. After a
fixed time interval, the channels from Ta and Tb to R were shut off. R then recorded
how many packets it received from each transmitter. This test was repeated for all
combinations of RSS values from Ta and Tb at R between -102 and -72 dBm in 1
dBm intervals. An excerpt from this experiment’s code is shown below:

// set attenuation to infinity
mPathController.setAllPathsOff();

[start traffic sources]

// set attenuation from transmitters->receiver
// uplinkRSS[] is the current RSS to be used
for (int i = 0; i < uplinkRSS.length; i++) {
mPathController.setPathRSS(txNodes[i],

destNode, 0, txPowerdBm, txRSS[i]);

62 CHAPTER 4. CONTROL SOFTWARE

mPathController.setPathRSS(
destNode, txNodes[i],
0, txPowerdBm, txRSS[i]);

}
// set attenuation between transmitters
for (int i = 0; i < txNodes.length; i++) {
for (int j = 0; j < txNodes.length; j++) {
if (i != j) {
if (runningHiddenTest) {
// turn channel off between transmitters
mPathController.setPathRSS(

txNodes[i], txNodes[j], 0,
txPowerdBm, Double.NEGATIVE_INFINITY);

} else {
// set attenuation between transmitters
mPathController.setPathRSS(

txeNodes[i], txNodes[j], 0,
txPowerdBm, interferenceRSS);

}
}

}
}
// wait for traffic to be sent/received
Thread.sleep(trafficDurationMillis);

// set attenuation to infinity
mPathController.setAllPathsOff();

// gather results

Chapter 7 presents extensive results obtained from this experiment. A few results
are briefly summarized here.

Figure 4.8 shows a sample set of results gathered in this experiment. In each of
this figure the z-axis is the number of packets received from both Ta and Tb at R.
In many RSS combinations, however, packets were actually only received from one
or the other; the regions where one source or the other dominated are labeled on the
plots.

In in-range case shown in this figure (where transmitters were always within re-
ception range of each other), when the RSS at R from both Ta and Tb was high
CSMA did a good job of allowing the two nodes to share the medium, and only a
small number of collisions occurred. When one transmitter was out of range of R
and the other was in range, the number of packets received for the in-range cases
was roughly half of the channel capacity since the reception between Ta and Tb is
still good, and they defer for each other’s transmissions irrespective of the number of
packets successfully received at R.

4.5. SUMMARY 63

-1
20 -1

14 -1
08 -1

02

-9
6 -9

0 -8
4

-1
20-1

15-1
10-1

05-1
00-9

5-9
0-8

5-8
0

0
38
76
114
152
190
228
266
304
342
380

Source 1 uplink rssSource 2 uplink rss

342-380
304-342
266-304
228-266
190-228
152-190
114-152
76-114
38-76
0-38

Source 2
dominates Source 1

dominates

Reception is
shared

Collisions

Figure 4.8: Packet Capture: In-range

An important question is what happens when transmissions from two nodes over-
lap in time at a single receiver. The “hidden node” configuration tests investigate this
question. Full results for this case are discussed in Chapter 7. The emulator’s precise
programmatic control over channels was key in allowing the precise characterization
of reception behavior of commodity devices and yielded insight into packet capture
behavior in the presence of competing 802.11b signals.

4.5 Summary

Physical layer wireless network emulation promises to combine much of the flexibility
of traditional wireless network simulation with much of the realism of testbed-based
experimentation. Coordinating the operation of a physical network emulator in real-
time is a complex task. This chapter has presented a software architecture that
manages the complexity of physical network emulation while presenting users with a
powerful yet easy-to-use interface.

This discussion has shown through a series of case studies how this software archi-
tecture allows a wide variety of wireless experiments to be conducted in an efficient
manner. This architecture provides the basis for quickly conducting realistic wireless
experiments in a flexible manner.

64 CHAPTER 4. CONTROL SOFTWARE

Chapter 5

Signal Environment Emulation

With the emulator’s ability to completely control wireless signal propagation comes
the challenge of modeling or recreating propagation in an appropriate manner for a
given experiment. The goal in this work is not to develop and justify new physical
models of signal propagation, but to discuss how current and future models as well
as signal propagation trace playback can be used in the emulator.

Fortunately, unlike wireless simulators, the emulator is freed from the task of
emulating radio behavior in conjunction with signal propagation modeling: users
simply pick a suitable signal propagation model, the emulator then computes each
receiver’s received signal, and lets the radio decide what happens. The emulator does
not need to make any assumptions regarding any radio issues such as “sensing range”,
“interfering range”, or packet capture.

This chapter discuss several different methods of modeling wireless signal propa-
gation in the emulator. This discussion begins with signal propagation models that
require no site-specific information, and then discusses models that use increasing
amounts of site-specific information. Most of these techniques are completely opera-
tional in the emulator (large-scale path loss, signal capture and replay, and small-scale
fading); a couple discussed require some external tools before they can be used in the
emulator (ray-tracing, channel sounding).

5.1 Modeling

The simplest approach to emulating a signal propagation environment is to employ
analytical modeling. A key advantage of this technique is that it does not require any
site-specific data which can be difficult to obtain. The lack of site-specific data is also
this method’s biggest drawback since specific environmental information is required
to get realistic results for any particular environment.

65

66 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

5.1.1 Large-scale Path Loss

The signal propagation model most commonly used by simulators is a large-scale
path loss model. Specifically, the received signal strength at each receiver (RSS) is
computed as RSS = Pt + Gt − PL + Gr. Where Pt and Gt are the transmit power
and antenna gain at the transmitter, PL is the path loss, and Gr is the antenna gain
at the receiver. Large-scale path loss models simply compute PL as a function of
distance between the transmitter and the receiver.

The Emulation Controller implements large-scale path loss by simply calculating
the loss between nodes whenever the distance between them changes. These loss
values are then sent into the emulator where they are used to control the attenuation of
the signal path between two nodes. The current large-scale path loss model employed
by the emulator is log-distance path loss [49] with user-defined parameters.

5.1.2 Small-scale Fading

While large-scale fading models can accurately capture the average path loss between
two points, on a short time scale the path loss between these points may vary sub-
stantially.

To support this behavior, the emulator currently leverages the technique presented
in [47] to incorporate the Ricean and Raleigh statistical models of small-scale fading.
In this implementation, the fading parameters are computed offline, and are then
loaded into the emulator’s control software before emulation begins. At run time,
these parameters are added to the large-scale path loss which causes short term vari-
ation with the desired statistical properties. When a measurable change in path loss
occurs, the path attenuation parameters are updated in the DSP Engine. Indepen-
dent use of fading parameters allows independent, on-line modification of small-scale
fading for each RF node.

5.1.3 Artificial Channel Models

In some experiments it is useful to construct signal propagation environments where
portions or all of the model does not correspond to any physical environment. These
artificial environments are particularly useful for conducting tests measuring behavior
with respect to signal strengths (relative or absolute) of the signals involved (e.g. the
packet capture tests in Chapter 7), or for measuring multipath reception performance
(e.g. the multipath reception tests in Chapter 7.)

5.2. RAY TRACING 67

5.2 Ray Tracing

The previous three methods required no site-specific information other than picking
the correct path loss models and model parameters. By incorporating site-specific
information, it is possible to generate more accurate signal propagation models.

One technique that can be implemented in the emulator is to leverage ray tracing
techniques [25, 48]. If the motion of nodes can be pre-computed off-line, ray-tracing
techniques can be used to precisely compute all rays incident on each receiver at a
given point in time. If motion cannot be pre-computed, then approximations can be
made.

At runtime, the pre-computed series of attenuation over time values for each signal
path would then be used to set path attenuation inside the DSP Engine in much the
same way that the large-scale path loss and small-scale fading cause updates to path
attenuation values.

Ray tracing can produce results that are far more realistic than simple analytical
modeling. Moreover, ray tracing can be performed on hypothetical environments and
does not necessarily require conducting measurements in the real world. Ray tracing
is, nevertheless, not a complete substitute for real-world measurements in all cases.

5.3 Trace Capture and Playback

One simple method of accurately modeling signal propagation is to measure the signal
propagation in a given environment and then to replay it. This section discusses a
novel method developed as part of this thesis for implementing a signal capture system
using standard wireless NICs that measures path loss in a physical environment.
This system works by constantly sending small packets from each transmitter to be
emulated and receiving these packets on each receiver being emulated. An important
part of this method is the processing of data gathered from these tests into accurate
path loss measurements.

A key benefit of this approach is that it enables measurement of real signal prop-
agation environments. The key disadvantages are that the measurements are some-
what crude: no multipath information is provided, and all-to-all connectivity cannot
be measured simultaneously. Rather, measurements are made on a link-by-link basis.

This trace capture and playback method will be discussed at length to illustrate
that this technique can produce accurate results in a low delay-spread environment,
and to show that given an accurate model of the signal propagation environment,
the wireless network emulator can produce wireless network that is very similar to
the behavior that would have occurred if the experiments were conducted in the real
world.

68 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

5.3.1 Trace Capture

Figure 5.1 shows this approach for gathering traces of signal strength. A transmitter
constantly sends very small 802.11 broadcasts using a low modulation rate (2 Mbps
for results discussed in this section). As deep signal fades may prevent sounding
packets from being received successfully, packets are tagged with sequence numbers
that enable the detection of packets reception failure. The receiver operates in “mon-
itor mode.” This mode gives the receiver complete 802.11 layer packet information.
The receiver logs all captured packets from the transmitter including measurements
of received signal strength (RSSI) and noise. This trace is then post-processed to
generate a file that lists time (based on the MAC timestamp) and received signal
strength. This post-processing replaces missing packets - inferred from missing se-
quence numbers - with low RSSI values (-1 for results discussed in this section). This
system is able to record RSSI samples with a granularity of approximately 2 ms.

Transmitter
broadcasts

Receiver
In monitor mode

Small test packets

Packet capture with
<RSSI, noise, timestamp, sequence #>Transmitter and receiver are

positioned and possibly moved
in the desired way.

Figure 5.1: RSSI-based Channel Capture

The experiments in this section utilize Engenius NL-2511 Plus EXT2 cards based
on the Prism2.5 chipset as well as an Atheros 5212 based card. The Atheros card
was used for RSSI measurement only. These cards measure received signal strength
at the beginning of packet acquisition, so the RSSI samples are quick samples rather
than an average of RSS for the whole packet.

Figure 5.2 shows a sample signal strength trace. This particular trace was captured
with the receiver antenna mounted on a car parked at the side of a freeway while the
transmitter drove by at approximately 60 MPH. From this trace we see that the
transmitter and receiver had a good line-of-sight connection when the cars were at
their closest point. At further distances signal strength degrades and fading increases.

5.3. TRACE CAPTURE AND PLAYBACK 69

-110

-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

0 5 10 15 20 25

Time (seconds)

R
S

S
 (

dB
m

)

Figure 5.2: Sample Channel Trace

5.3.2 Trace Playback

Once a trace of signal strength is obtained, this trace can be replayed in the emulator.
To do this, the Emulation Controller reads the trace and replays it in real time.
That is, for each < RSS, timestamp > pair in the sample, the Emulation Controller
waits until the emulation time matches the recorded time and then commands the
Emulator to set the emulated path loss to match the observed path loss as illustrated
in Section 4.4.3. The temporal resolution of the channel power settings is limited by
the trace recording process which is 2 ms as discussed above.

5.3.3 Limitations

This approach is attractive in that it is supported by commodity hardware currently
found in wireless testbeds. Using commodity hardware, however, has limitations such
as: non-linearities in RSSI measurements; bogus RSSI values; missing RSSI values in
deep fades; and a lack of foreign RF interference characterization. These limitations
can be worked around to some degree as discussed in Section 5.3.5. In addition
there are fundamental limitations to this approach with current commodity hardware
such as: lack of channel impulse response/multipath information; path loss limited

70 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

by accuracy of RSSI measurement and transmit power consistency; and sounding
temporal resolution limited by packet transmit rate. These fundamental issues will
also be discussed further in Section 5.3.5

5.3.4 Comparison with Real-world Behavior

Methodology

The trace recording and playback method presented here is straightforward and can
easily be used to gather traces from many existing wireless testbeds. An important
question is how much realism is lost with respect to the real world. Clearly this
technique does not completely compute the impulse response of the channel and track
it over time. This would require a full-blown channel sounder. This technique does,
however, track the RSS changes due to large scale path loss and small scale fading
with 2 ms granularity. This section will show that in a low delay spread environment,
the technique presented here is sufficient to produce link-level behavior that is quite
similar to real-world behavior.

To show this, experiments were conducted that were designed to allow the simul-
taneously measurement of real-world link-layer performance while gathering signal
strength traces. The idea is that the emulator can then replay the captured signal
trace while re-running the link-layer test. Ideally similar performance will be ob-
served. Note that this is an ambitious goal since even if the emulator could perfectly
reproduce the radio channel that existed when the original link-layer test was con-
ducted, factors outside of experimental control - such as packet transmission time
variance - will lead to inevitable variance from the original test during a replay.

Figure 5.3 shows the setup for this experiment. In this experiment, two concurrent
tests are run: a link-level behavior test, and a channel measurement test. Each test
uses a distinct transmitter, receiver pair. To ensure that the channel is as similar as
possible, both transmitters are connected to the same antenna via a splitter/combiner.
Each transmitter operates on a non-overlapping 802.11 channel; this allows the link-
level and channel measurement experiments to be conducted concurrently. A small
amount of attenuation is introduced to further avoid interference between transmit-
ters. The receivers are setup in a similar fashion though they require less attenuation
since they will only be receiving traffic.

Note that less attenuation is used on the channel measurement receiver. This
allows the channel to be measured even when no packets can be received at the re-
ceiver. In addition, the channel transmitter uses more power than the test transmitter
to further increase the ability to measure the channel when the test receiver cannot
receive packets. The motivation behind these measures are to increase the ability to

5.3. TRACE CAPTURE AND PLAYBACK 71

Transmitter
broadcasts

Receiver

Small test packets

Packet capture with
<RSSI, noise, timestamp,

sequence #>

Transmitter and receiver are
positioned and possibly moved
in the desired way.

Receiver
In monitor mode

Channel Sampling
Channel 5

Link-layer Delivery Test
Channel 11

0 dB

10 dB15 dB

15 dB

Transmitter
broadcasts

Large data packets

Number of packets received
in 1 second intervals

Figure 5.3: Link-layer Test/Channel Capture

measure the actual communication channel for verification purposes in this work. In
ordinary channel capture where verification was not needed, a single transmitter and
a single receiver would be used with no additional attenuation on any transmit or
receive path.

Two-channel Measurements

While using different channels allows this setup to simultaneously run applications
and gather signal strength traces, there is still likely to be some divergence between
the two channels. This divergence does not affect this trace gathering and replaying
approach in any manner. Rather, it only pessimistically affects the ability to verify
the accuracy of this approach.

72 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

This section explores what is lost in gathering two signal strength traces simul-
taneously. To do this, the delivery test in Figure 5.3 is replaced with another signal
strength capture. Hence, for the following tests, two channel measurements are run-
ning concurrently.

0

5

10

15

20

25

30

0 5 10 15 20

Time (seconds)

S
N

R
 (

R
S

S
I -

 n
o

is
e,

 d
B

)

Channel A
Channel B

Figure 5.4: Two-channel Capture - Over-the-air

The traces from the two-channel signal strength capture test are shown in Fig-
ure 5.4. In this test, the traces are not identical for three reasons: 1 - the transmitters
are not synchronized so the channel is being sampled at different times, 2 - some fre-
quency selective fading is occurring, 3 - RSSI measurement error. Nevertheless, the
traces are similar enough for validation purposes though they will introduce some
divergence between the emulated results and real-world results. Hence, the com-
parison of real-world link-layer performance and the emulated replay will be slightly
pessimistic since a single channel capture will not have this variation.

Comparison Results

This section compares the performance of real-world link-layer behavior vs. an emu-
lated playback of this same behavior. The link layer test conducted for this compar-
ison sent approximately 124 large (1460 bytes payload) UDP broadcast packets per
second from the test transmitter to the test receiver. As previously discussed, the
wireless channel was concurrently measured as shown in Figure 5.3. Approximately

5.3. TRACE CAPTURE AND PLAYBACK 73

2-3 channel samples were obtained per traffic test packet. This test was then replayed
in the emulator for comparison.

Figure 5.5 and Figure 5.6 show the results of two separate record/ playback ver-
ification tests. With a few notable exceptions, the results are quite similar. The
average packets received in the emulated replays generally closely tracks the original
results. This is in spite of extraneous error introduced by the two-channel verification
technique, imperfections in card characterization, variation in packet send time, and
other similar factors.

For each 1 second interval in these tests, the absolute difference between the real-
world throughput and the throughput in the corresponding emulated interval was
computed. The CDF of these error measurements is shown as the “Atheros” plot
in Figure 5.7. This figure also shows the CDF of three tests (not shown above)
comparing real-world throughput vs. emulated throughput where a Prism 2.5 card
was used for channel sounding instead of the Atheros card used above. In both cases
the majority of time intervals were reproduced with low error. There are, however,
some time intervals with significant error. As a result, it is possible to construct
movement patterns where the verification tests will yield poor results.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80
Time (seconds)

P
ac

ke
ts

 R
ec

ei
ve

d

Actual
Emulated Replay

Figure 5.5: Real-world vs. Emulated Replay. Test 1.

5.3.5 Discussion

Several practical considerations must be taken into account when capturing and play-
ing back signal environment traces. This section begins by discussing how RSSI im-

74 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Time (seconds)

P
ac

ke
ts

 R
ec

ei
ve

d

Actual
Emulated Replay

Figure 5.6: Real-world vs. Emulated Replay. Test 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Error %

Fr
ac

tio
n

Prism 2.5 Tests
Atheros Tests

Figure 5.7: CDF of Error for All Tests

perfections can be reduced to improve the quality of path loss traces, followed by a
discussion of the types of interference present in a network, and how they are sup-
ported in trace playback. Lastly, techniques for improving trace playback fidelity and
extending trace recording and playback to an entire network are discussed.

5.3. TRACE CAPTURE AND PLAYBACK 75

RSSI Considerations

In order to effectively translate RSSI measurements into path loss measurements,
the received RSSI measurements must be processed to remove imperfections in the
measurements. Two classes of RSSI imperfections are particularly important: non-
linearity and bogus values.

RSSI Non-linearity. As discussed in [29] on-card received signal strength mea-
surements (RSSI) are not completely accurate even under the best circumstances.
Thus, relying strictly on RSSI for trace playback without a mapping between RSSI
and RSS (the actual received signal strength) will distort the replayed signal. The
effect of this can be reduced by characterizing the RSSI-RSS relationship on a per-
card basis. Figure 5.8 shows the mean RSSI measured by an Atheros-based card as
actual RSS is varied using the emulator. Ideally each card in a testbed would be
characterized in this manner. At the very least, each type of card should have an
RSSI characterization performed.

An important feature of Figure 5.8 that should be taken into consideration is
the fact that RSSI values near the lowest end of the card’s reception range become
indistinguishable. As a result, channel characterization will be less accurate in this
regime.

0

2

4

6

8

10

12

14

16

18

20

-95 -90 -85 -80 -75 -70

RSS (dBm)

R
S

S
I

Figure 5.8: Card Characterization

“Bogus” RSSI Values. In addition to the non-linearities shown in Figure 5.8,
wireless cards tend to return a certain number of RSSI values that seem to be bogus.

76 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

Both Atheros and Prism 2.5 cards were observed to occasionally return values that
are around 20 dB below what seems to be the true value.

In order to get a good match between the real-world comparisons discussed earlier,
it is necessary to filter out these bogus values. This was done by limiting the rate at
which the signal strength was allowed to change, and interpolating between “good”
values. Figure 5.9 shows the “corrected” signal trace used in the Figure 5.6 test versus
its raw counterpart.

The benefit of this RSSI correction is shown by comparing the playback result of
the uncorrected raw version. Figure 5.10 shows the same test as that in Figure 5.5,
but with the use of raw RSSI values. Clearly eliminating these bogus RSSI values
yields a significant improvement in matching the real-world measurements.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

Time (seconds)

R
S

S
I

Raw
Corrected

Figure 5.9: RSSI Correction

Noise

Conspicuously missing from this trace playback methodology is use of the noise values
reported by the card. These noise values are the sum of both true noise as well
as interference. True noise comes from both sources external to the card - most
importantly thermal radiation - as well is sources internal to the card which make up
the card’s “noise figure”. Interference that comes from sources internal to the network
- “internal interference” - is simply non-captured traffic; “external interference” is
from received signals from RF sources that are outside of experimental control.

5.3. TRACE CAPTURE AND PLAYBACK 77

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80
Time (seconds)

P
ac

ke
ts

 R
ec

ei
ve

d

Actual
Emulated, No RSSI Correction

Figure 5.10: Raw RSSI Emulation Accuracy

Externally generated true noise is likely to be mostly due to thermal radiation
and constant. Hence, this can usually be computed rather than measured. As the
card’s internal noise figure and uncaptured traffic are naturally occurring features of
playback, recording them is not useful. It might be useful, however, to know levels
of external interference, though this value would need to be separated out from the
noise figure and internal interference. In many cases, the difficulty of this task is not
worth the added fidelity that it would provide. For networks with significant external
interference, however, the on-card noise measurements could potentially provide a
means of emulating this interference.

Improving Channel Recording and Playback

This section now discusses a few additional sources of error in the trace recording and
playback methodology presented here and how these might be addressed.

Channel Probe Granularity. The technique presented here uses simple UDP
broadcast packets to probe the channel. Granularity is limited to 2 ms using this
approach. Using 802.11 level packets, with a short preamble would increase trace
resolution. In addition, some NICs allow the 802.11 CSMA/CA mechanism to be
turned off. This could be used to greatly decrease inter-packet delay and greatly
increase sampling resolution.

78 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

Multipath. Finer granularity measurements will improve the ability to capture
fast fading induced by multipath effects. This technique is not, however, amenable
to analyzing radio-level effects such as the efficacy of a RAKE receiver or equalizer.
This level of channel modeling fundamentally requires a channel sounder that can
capture the impulse response of the channel.

A related question is why multipath effects do not make this technique ineffec-
tive considering measurements [1] that show multipath can dominate RSS in certain
situations. In this case, the delay spread of the network is well within the radio’s
capabilities. As shown in [1], multipath does not affect packet reception very much
for low delay spreads. As a result, this technique should work well for environments
that are within a radio’s ability to mitigate multipath effects. Outside of that regime,
however, this technique will be less effective. Additional work is required to quantify
this technique’s accuracy in higher delay spread environments.

Network Modeling

These experiments have demonstrated channel capture and playback of a single chan-
nel. This technique can be extended to an entire wireless network in several ways.
First, if the channels are relatively stable or correlation between channels is low, each
channel in the network can simply be captured independently in time. If channel
correlation needs to be captured, these measurements must occur concurrently. In
this case, transmitters that are nearby must take turns in sending probe packets; for
802.11 networks this can largely be accomplished simply by using 802.11’s CSMA/CA
mechanism. In some cases, it may be necessary to control the rate of probe packets
in order to reduce the likelihood of collision of probe packets at distant receivers.

Once traces have been obtained for all channels in the network, playback proceeds
in the same manner as before.

5.3.6 Trace Playback Summary

Accurate wireless channel modeling is an important element in physical layer wireless
emulation as well as wireless simulation. This section has presented a simple method
for gathering traces of wireless channel behavior, and a technique of analyzing the
effectiveness of channel emulation by simultaneously recording a signal strength trace
while a real application is being run on the same transmit and receive antennas. Using
this technique, this section has shown that the wireless signal traces can be gathered
that produce behavior that is surprisingly similar to real-world wireless behavior in
spite of the simple nature of on-card channel measurements.

5.4. CHANNEL SOUNDING 79

5.4 Channel Sounding

A more sophisticated method of measuring signal propagation in a physical environ-
ment is to use specialized hardware [16] to precisely measure the “impulse response”
of the channel [49]. The impulse response provides information about multiple signal
paths in the environment; this provides a much more accurate picture of the signal
propagation environment. Such measurements can be difficult to obtain since they
require specialized hardware.

While the channel capture technique presented in Section 5.3.6 does not provide
full impulse response information, the emulator itself is capable of replaying measure-
ments obtained by channel sounding. This is done by using one or more signal paths
per channel and then setting the attenuation and delay of each signal path in the
DSP Engine according to the values extracted from the channel sounding.

5.5 Discussion

Before concluding this chapter, this section briefly considers the capabilities, limita-
tions, and applications of signal propagation modeling using the approaches discussed
above, and compares these with alternative approaches.

Simulation. Many of the signal propagation models that the emulator utilizes
can also be used in simulation. This superficial similarity, however, belies a massive
difference in how these models are used. Computational constraints placed on a
simulator, force the simulator to work at a very coarse timescale. A typical simulator
will use a signal propagation model as part of its computation of an average signal-to-
interference-and-noise ratio (SINR) and then make a binary reception decision. The
emulator, on the other hand, uses a statistical propagation model to manipulate a
real modulated signal on the timescale of 5 ns. This is then sent to a real receiver to
determine the reception behavior. Accurate receiver behavior in a simulator would
require transistor level simulation which is completely infeasible for the number of
nodes that we are looking at. Realtime simulation of such behavior is out of the
question.

Similarly, while a simulator can replay a captured channel trace, it can only do so
at a very coarse timescale and with far less fidelity than a physical layer emulator.

Real-world experimentation. The ability to precisely recreate a signal prop-
agation environment is a huge advantage compared to real-world experimentation.
This power, however, comes with a price of reduced realism and scale in signal prop-
agation.

80 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

Physical layer emulation necessarily models a wireless channel using discrete ele-
ments (e.g. one line-of-sight ray and two reflections) whereas a true wireless channel
is a continuous phenomenon. Also, as the number of RF nodes attached to the DSP
Engine increases, the number and length of delayed signal paths that can be imple-
mented drops. Hence physical layer emulation is a compromise between the fidelity
of the real-world and the control of simulation.

Noise. As discussed above, the term noise is frequently used to refer to both
true noise (e.g. receiver noise) and interference from other wireless devices. Receiver
noise is naturally present in the emulator since it uses real receivers. Interference
from other wireless devices can be supported in several ways. First, if RF Node ports
are free and the devices are available, these devices can simply be attached to the
emulator. Secondly, it is possible to record “noise” resulting from interference and to
replay this in the emulator. Third, a white noise generator can be implemented in
either the DSP Engine or the Signal Conversion Module to generate noise.

Note that the emulator’s effective receiver noise floor will be slightly higher than a
coaxial based system since the emulator uses additional amplifiers etc. that introduce
noise. This level will still be much lower than the noise floor of a true free-space
wireless system.

Scale. As hardware is finite, the richness of channel modeling possible using
hardware-based emulation drops as the scale of the network being emulated increases.
The limiting factor is typically the number of multipliers in the DSP Engine’s FPGA.

Much of this discussion has assumed the desire to support the independent pair-
wise emulation of all pairs of RF Nodes attached to an emulator. Clearly this approach
becomes infeasible at a certain point as the complexity of pairwise interaction is order
n2.

It is important to observe, however that emulating complete interaction is not
always necessary. Clearly, if nodes are out of range with respect to each other, then
no emulation between them is necessary. In addition, complexity may be reduced by
simplifying and aggregating the emulation of channels for distant nodes.

Multi-element Air Interface Support. Current wireless networks are pushing
the limits of the throughput that are possible with a single element antenna. Future
networks will increase throughput by using multiple elements to support techniques
such as steerable antennas, MIMO [19], and “time reversal” [18].

The emulator can support such emerging technologies in at least two ways. First,
where hardware exists, the emulator can support these multi-element experiments
by simply treating each element as an independent RF node. The control software
then controls these RF nodes in a coordinated fashion which also opens up some
room for reducing FPGA resources consumed. Second, in certain circumstances, it
may be possible for the emulator to emulate the effect of a given technology. For

5.6. SUMMARY 81

instance, a steerable antenna can be completely emulated without necessarily using
a true steerable NIC.

5.6 Summary

This chapter has discussed several different methods of emulating signal propaga-
tion environments. Existing analytical models of path loss and fading can easily be
incorporated into emulator operation. This models have the benefits of ease of com-
putation, and the lack of any need for site-specific data. With detailed site-specific
data, however, ray tracing can provide more robust models of signal propagation in
an environment.

This chapter has also discussed at length how commodity wireless devices can
gather simple traces of received signal strength and how these traces can be processed
to produce traces of signal attenuation over time. In a low delay-spread environment
these loss traces have been shown to be produce accurate link-level behavior.

82 CHAPTER 5. SIGNAL ENVIRONMENT EMULATION

Chapter 6

Validation

In order for a physical layer emulator to be effective, the emulator must digitize and
reconstruct RF signals with minimal distortion. This chapter examines the perfor-
mance of the emulator’s implementation with respect to maintaining signal integrity,
and demonstrates how low-level signal fidelity translates into accurate higher-level
network behavior.

As the DSP Engine operates entirely on digital signals, the fidelity of the emulator
is determined by the RF Front End and Signal Conversion Module. Hence, the fidelity
of the emulator may be measured solely by measuring the fidelity of the RF Front
End and Signal Conversion Module.

The configuration for the major tests in this chapter is shown in Figure 6.1. Two
signal sources are used for these tests: an Agilent ESG digital signal generator and a
Senao NL-5354MP ARIES2 802.11a/b/g card. Measurements are made using either
a spectrum analyzer or a vector signal analyzer connected to one of the measurement
ports labeled in Figure 6.1. These ports will subsequently be referred to simply by
the labels shown in the figure.

This discussion will first present low-level measurements of RF Front End and
Signal Conversion Module fidelity followed by tests demonstrating that this low-level
fidelity translates into accurate higher-level behavior.

6.1 RF Front End

This section evaluates RF Front End downconversion and upconversion performance.
A wide variety of tests can be conducted to verify fidelity, this section presents results
from a few of the most important tests conducted on a single RF Front End. The
behavior of other RF Front Ends is similar, but not presented here.

83

84 CHAPTER 6. VALIDATION

b)
RF Loop Start

RF Front End Signal Conversion Module

c)
IF Output Port

e)
IF Output Port

a)
RF Port

f)
IF Input Port

d)
IF Input Port

Figure 6.1: Measurement Signal Path

Some of the metrics that will be measured using these tests are:

• Gain/loss - The amount of signal strength gained or lost during signal conver-
sion. On downconversion the final signal level should match the A/D converter’s
input range. On upconversion the dynamic range should be placed in the de-
sired range (e.g. the low end should extend several dB below the receiver’s
minimum reception threshold.)

• Flatness - The degree to which gain/loss is constant over frequency. Under 2
dB can be tolerated in many instances without correction. Flatness variation
up to approximately 10 dB can be corrected by using a digital filter inside the
Signal Conversion Module or DSP Engine. Variations greater than this become
difficult to correct without affecting system performance.

• Spurious Free Dynamic Range (SFDR) - The isolation between the desired
signal and the closest spur. This is less important for a single channel, but is
very important for wideband experiments.

6.1.1 Downconversion.

This discussion first presents tests measuring RF Front End downconversion perfor-
mance. The benefits of undersampling in improving RF Front End spurious free
dynamic range are examined followed by measurements of the ability of the RF Front
End to eliminate spurious device output and measurements of flatness over frequency.

6.1. RF FRONT END 85

-80

-70

-60

-50

-40

-30

-20

-10

0

0 20 40 60 80 100
Frequency (MHz)

P
o

w
er

 r
el

at
iv

e
to

 c
ar

ri
er

 (
d

B
)

Figure 6.2: SFDR Analysis - IF Below Nyquist

Spurious Free Dynamic Range (SFDR). Spurious free dynamic range when
not undersampling was measured by applying a 0 dBm 2.412 GHz signal to the
RF input port (a) of the RF Front End. The LO frequency for this experiment
was 2.396 GHz, and LO power was just over 7 dBm. Measurements were gathered
from measurement point (c), the RF Front End’s IF Output port, using a spectrum
analyzer (resolution bandwidth was 30 kHz.) Figure 6.2 shows the resulting IF output
between 0 and 100 MHz. The desired signal is at 16 MHz. The y-axis is normalized
with respect to this signal. Two strong spurious signals can be seen at 32 MHz and
48 MHz. SFDR in this case is 37 dB.

As discussed in Section 3.2.2, undersampling can greatly improve SFDR. Assuming
that the RF Front End is targeting an SCM with a sampling rate of 170 Msps, the
improved SFDR (at IF output) from undersampling is demonstrated by repeating the
SFDR test with an LO of 2.226 GHz and examining IF output between 170 MHz and
270 MHz. Measurements were taken from point (c) as before with the same spectrum
analyzer settings except for the new frequency range. Figure 6.3 shows the result. No
spurs are seen in this case. (Spurious signals near the desired signal in this case are
due to the signal source.)

The emulator typically operates in undersampling mode in order to achieve im-
proved SFDR.

86 CHAPTER 6. VALIDATION

-80

-70

-60

-50

-40

-30

-20

-10

0

170 190 210 230 250 270

Frequency (MHz)

P
ow

er
 r

el
at

iv
e

to
 c

ar
rie

r
(d

B
)

Figure 6.3: SFDR Analysis - IF Above Nyquist

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 500 1000 1500 2000 2500
Frequency (MHz)

P
ow

er
 (

dB
m

)

Direct
RFFE Loop Start

Figure 6.4: Direct Device Output vs. Output After RFFE Loop Start

6.1. RF FRONT END 87

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

175 185 195 205 215 225 235 245

IF Output(MHz)

G
ai

n
 (

d
B

)

Figure 6.5: Downconversion Flatness

Eliminating Spurious Device Output. Wireless devices generate a broad
range of signals in addition to the desired signal output. Unfiltered, these will be
aliased into the sampled signal by the SCM. The “Direct” data series in Figure 6.4
shows the direct output of a Senao NL-5354MP ARIES2 broadcasting 1 Mbps data
at 2.412 GHz. The figure shows the card’s output between 0 and 2.8 GHz directly
connected to a spectrum analyzer with a resolution bandwidth of 100 kHz.

The efficacy of the RF Front End at filtering out these undesired signals is shown
in the RFFE Loop start series in Figure 6.4. This data was obtained by connecting
the Senao NL-5354MP ARIES2 source from the previous test to the RF Port (a)
and examining the output of the RF Front End downconversion loop start port (b).
Thus, this measurement is after filtering, transmit detection, and transmit switching
have occurred. This series shows that the RF Front End successfully filters the vast
majority of spurious signals. (It also shows that a small amount of attenuation occurs
between the RF input port and the loop start port as expected.)

Flatness. Downconversion performance was measured using an LO of 2.226 GHz
at 7 dBm (at the mixer), and an RF signal of 0 dBm swept between 2.401 GHz and
2.473 GHz (the 802.11b/g band in the United States) sent into port (a) the RF Front
End’s RF Port. Figure 6.5 shows the results measured using a spectrum analyzer
attached to (c) the RF Front End’s IF output port (30 kHz resolution bandwidth was
used.) Gain variation during the downconversion process varies by 1.7 dB. Thus, the
RF Front End produces a reasonably flat frequency response.

88 CHAPTER 6. VALIDATION

-38

-37.5

-37

-36.5

-36

-35.5

-35

-34.5

-34

2401 2411 2421 2431 2441 2451 2461 2471

Frequency (MHz)

P
ow

er
 (

dB
m

)

Figure 6.6: Upconversion Flatness

6.1.2 Upconversion.

Upconversion performance was then measured using an LO of 2.396 GHz at 7 dBm,
and an RF signal of -10 dBm swept between 5 and 77 MHz into (f) the RF Front
End’s IF input port. Figure 6.6 shows the results measured using a spectrum analyzer
attached to (a) (cable loss is not accounted for in these measurements.) Gain in this
case varies by approximately 0.7 dB which is a very flat frequency response.

6.2 Signal Conversion

This section presents several tests to verify that good performance is obtained by the
Signal Conversion Module.

Note that the Signal Conversion Module can be characterized by many of the same
metrics applied to the RF Front End. The limiting factor for many metrics is the A/D
converter - an Analog Devices AD9430. This section will not discuss specifications
for this device as they can be found in the corresponding datasheet [13].

6.2. SIGNAL CONVERSION 89

-1

-0.5

0

0.5

1

1.5

2

2.5

3

5 15 25 35 45 55 65 75

Frequency (MHz)

P
o

w
er

 (
d

B
m

)

Figure 6.7: SCM D/A Conversion Flatness

6.2.1 Flatness.

The Signal Conversion Module should ideally have a flat frequency response for both
D/A conversion and A/D conversion in the same way that the RF Front End would
ideally have flat RF conversion frequency responses. This section measures both A/D
and D/A conversion flatness.

D/A Conversion Flatness. SCM D/A conversion flatness over frequency was
measured by using the SCM FPGA to digitally generate a full-scale (maximum D/A
power) sine wave between 5 and 77 MHz. The output was measured using a spectrum
analyzer set at 30 kHz resolution bandwidth connected to the IF output port (e).
Figure 6.7 shows that, in this case, there is a noticeable lack of flatness. A technique
for correcting this imperfection in the current implementation is discussed further
below.

A/D D/A Composite Flatness. Composite A/D D/A performance was mea-
sured by sweeping a 0 dBm signal between 5 MHz and 77 MHz into the SCM IF input
port (d) with the SCM sampling at 170 Msps. The digitized samples were forwarded
to and reconstructed by the D/A converter. The output was measured using a spec-
trum analyzer set at 30 kHz resolution bandwidth connected to the IF output port
(e).

90 CHAPTER 6. VALIDATION

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 15 25 35 45 55 65 75

Frequency (MHz)

P
o

w
er

 (
d

B
m

)

Figure 6.8: SCM A/D and D/A Conversion

Figure 6.8 shows the composite SCM A/D D/A frequency response. Again, there
is a lack of flatness, though it is quite close to that of the D/A alone implying that
the A/D frequency response is flat.

A/D Conversion Flatness. A/D signal conversion flatness was computed by
subtracting the data in Figure 6.7 from those in Figure 6.8.) Figure 6.9 shows the
resulting variation in signal conversion gain over frequency. Performance is very flat.
(Loss is present due to signal loss on the PCB before the A/D die, imperfect signal
conversion, and test calibration inaccuracy.)

Correcting for Lack of Flatness. While the ADC-DAC composite lack of
flatness is noticeable, it can be corrected using digital filtering on board the SCM.
For example, Figure 6.10 shows expected gain variation after a digital correction filter
has been applied to the data in Figure 6.8. This data was generated by passing the
gain values measured in Figure 6.8 through a 9 tap digital filter1.

Error Vector Magnitude. A common technique used to measure a signal’s
physical layer fidelity is to compare the signal under test with an ideal signal; this is
done by periodically sampling the signal and plotting the results on a polar graph as
shown in Figure 6.11. This polar graph is known as the signal’s “constellation”. The
measured constellation can then be compared against an ideal constellation.

1This digital correction analysis was conducted by Kevin Borries.

6.2. SIGNAL CONVERSION 91

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

5 15 25 35 45 55 65 75

Frequency (MHz)

G
ai

n
 (

d
B

)

Figure 6.9: SCM A/D Conversion

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 15 25 35 45 55 65 75

Frequency (MHz)

V
ar

ia
tio

n
(d

B
)

Figure 6.10: Gain Variation of Digitally Corrected A/D-D/A Signal

92 CHAPTER 6. VALIDATION

Ideal
signal

Measured
signal

Error vector

Figure 6.11: Signal Constellation and Error Vector Magnitude (EVM)

6.2. SIGNAL CONVERSION 93

ESG�VSA
20 MHz
EVM: 3.8%

ESG�SCM->VSA
20 MHz
170 Msps
EVM: 3.0%

ESG�SCM->VSA
190 MHz
170 Msps
EVM: 2.5%

a)

b)

c)

Figure 6.12: Signal Conversion Module EVM

94 CHAPTER 6. VALIDATION

(Figure 6.11 illustrates a quadrature phase shift keying (QPSK) constellation.
This modulation represents data using four different phase shifts of the carrier signal;
amplitude is held constant. The axis shown in this figure represent the decision
boundaries for this modulation scheme.)

The difference between the measured signal and an ideal signal can be quantified
by measuring “error vector magnitude” (EVM). EVM is the relative difference be-
tween ideal signal constellation points and observed constellation points as shown in
Figure 6.11. EVM measures the average magnitude of the error vector (a vector from
the ideal constellation point to the observed point) as a percentage of the ideal signal
vector’s magnitude. As a rough guide: an EVM of around 3% should be considered
excellent while an EVM near 10% should be considered poor.

Figure 6.12 shows the results of EVM/constellation measurements for the Signal
Conversion Module. In all cases the source signal was generated by a digital signal
generator (an Agilent Systems ESG) modulating an 11 Msps QPSK symbol with a
Gaussian filter where alpha=0.5. Figure 6.12(a) was obtained from a signal centered
at 20 MHz sent directly from a signal generator (ESG) into the measurement vec-
tor signal analyzer (VSA). This measurement acts as a reference for the other two
measurements; that is, ideally the other signals would be precisely the same as this
signal.

Figure 6.12(b) was obtained by passing the signal in (a) through the SCM sampling
- in the IF input port (d) and out the IF output port (e) at 170 Msps and then into
the VSA. A small degree of degradation is evident.

Figure 6.12(c) measures the undersampling case by repeating the test in (b) with
the signal centered at 190 MHz. A greater degree of degradation is evident, but
the constellation and EVM are still quite clean. As mentioned earlier, the emulator
typically runs in undersampling mode; thus this figure corresponds to the typical
operation.

6.3 RF Front End - SCM Composite

This section examines the quality of signals sent through the RF Front End and then
through the Signal Conversion Module. (As the VSA only operates at low frequency,
the signals are not passed back up into the RF Front End.)

6.3.1 EVM

Figure 6.13 presents EVM/constellation measurements for this setup. As before, in all
cases the source signal was generated by a digital signal generator modulating an 11

6.3. RF FRONT END - SCM COMPOSITE 95

ESG�RFFE�VSA
Low IF
EVM: 4.6%

ESG�RFFE�SCM�VSA
Low IF
EVM: 5.2%

ESG�RFFE�SCM�VSA
High IF
EVM: 3.8%

ESG�RFFE�SCM�VSA
High IF
With > 100 MHz High pass filter
EVM: 2.8%

a)

b)

c)

d)

Figure 6.13: RF Front End + Signal Conversion Module EVM

96 CHAPTER 6. VALIDATION

Msps QPSK symbol with a Gaussian filter where alpha=0.5; the signal was centered
at 2.417 GHz for all cases. Ideally a reference constellation and EVM would be
measured by sending this signal from the ESG directly into the VSA. Unfortunately,
the VSA can only measure frequencies less than 40 MHz. As a result, we generate
a reference signal by downconverting the signal generated by the VSA using the RF
Front End. Figure 6.13(a) shows the reference signal obtained by sending the signal
from the ESG through the RF Front End - into the RF port (a) and out the IF output
port (c) - with the LO operating at 2.396 GHz. This measurement shows that the
generated and downconverted signal is very clean. Subsequent measurements would
ideally be identical to this signal.

Figure 6.13(b) measures the degradation due to digital signal conversion when not
undersampling. This was obtained by passing the signal in (a) through the SCM -
sampling at 170 Msps and then into the VSA. I.e. the source signal enters port (a)
and is measured at port (e). A small degree of degradation is evident.

Figure 6.13(c) measures the undersampling case by repeating the test in (b) with
LO set to 2.226 GHz which results in undersampling by the SCM A/D converter. A
greater degree of degradation is evident in the constellation, and the EVM has been
altered from the original signal.

Now when undersampling with a 170 Msps sample rate, all signals should be
greater than 170 MHz; thus, any signal under 170 MHz is undesired. Measurements
have shown that intermodulation products can be produced in this range particularly
near 0 MHz. By placing a filter on the RF Front End IF output, these undesired
signals can be removed. These cannot be removed when not undersampling since
they are co-located with the desired signals.

Figure 6.13(d) then shows the case with the same setup as in (c) except that the
RF Front End is followed by a high pass filter designed to filter out frequencies under
100 MHz before the signal enters the SCM. In this case, some improvement is seen
over (c) as these undesired signals are removed.

6.3.2 Spectrum Analysis

The quality of the digitized signal can also be measured by comparing the digitized
spectrum with that of a the signal sent directly out from the wireless device. Fig-
ure 6.14 compares the spectrum obtained by directly connecting an Atheros-based
device - a Senao NL-5354MP ARIES2 - to a spectrum analyzer with that of a signal
that has passed through the same setup in Figure 6.13(d). I.e. in the RF Front End’s
RF Port (a) and out the Signal Conversion Module’s IF port (e) with a high pass
filter in place before the VSA. Since the signal levels and frequencies are different,
the results have been normalized to allow accurate comparison. Figure 6.14 shows

6.4. TRANSPORT LEVEL FIDELITY 97

-60

-50

-40

-30

-20

-10

0

-50 -30 -10 10 30 50

Offset from Center (MHz)

N
o

rm
al

iz
ed

 o
ff

se
t

fr
o

m
 p

ea
k

(d
B

)
After D/A
Direct

Figure 6.14: Spectral Comparison - Direct Device Output vs. Output after SCM

that the signals are quite similar with the exception of a few spurious signals toward
the higher end of the digitized signal. These are almost entirely out of the supported
frequency band (which ranges from -36 MHz to +36 MHz in the figure), and hence
are largely unimportant. (The large downward spike at the center of the figure is an
artifact due to interframe spacing, and can be ignored.)

6.4 Transport Level Fidelity

Figure 6.15 demonstrates that physical and link layer fidelity translate into transport
level fidelity by comparing the TCP throughput for two laptops connected via coaxial
cable and discrete attenuators versus two laptops connected via Version 1 of the
emulator.

(This version used the same A/D converter, a different D/A converter (12-bits),
and had somewhat inferior signal integrity. Thus the results obtained for the Version
2 discussed by the majority of this thesis should be somewhat better than those
obtained with Version 1.)

98 CHAPTER 6. VALIDATION

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16

SNR (dB)

Th
ro

ug
hp

ut
 (M

bp
s)

Emulator
Coaxial-based

Figure 6.15: Transport Layer Fidelity

Each data point is an average of 20 trials measuring one-way TCP throughput
for approximately 5 seconds. Confidence intervals are omitted since they are tight,
and the SNR measurement error is dominant (about 1 dB). The results match quite
closely and are within the measurement error of the experiment.

6.5 Isolation.

An important benefit of the emulator is the ability to conduct experiments in isolation
from external sources of interference. Measuring isolation into the emulator is (almost
entirely2) reciprocal to measuring isolation out of the receiver. Thus isolation was
measured by configuring an emulator node as access point transmitting at 19 dBm
and then using an external wireless card attached to a 5.5 dBi antenna to listen for the
beacon packets. Beacon packets were captured by configuring the receiver in monitor
mode and capturing packets in the immediate vicinity of the emulator. Figure 6.16
shows the results of this test. Two regions of isolation are shown: a moderate isolation
region where roughly more than 20% of beacons were received, and a high isolation
region shown where roughly less than 20% of beacons were received. The moderate
isolation region is depicted as a circle and the high isolation region is depicted as an
oval. Outside of these regions, no beacons were received. Thus the current emulator

2The RF Front End has separate signal paths for transmit and receive which may radiate and
receive in somewhat different ways. The amount of signal radiating from these paths, however,
should be reasonably small.

6.5. ISOLATION. 99

6 meters

Emulator

Figure 6.16: External Isolation

requires approximately 6 meters and a separation barrier (e.g. a wall) to achieve good
isolation in its current environment. The main limitation on this isolation is the need
to sacrifice perfect shielding in order to allow the RF nodes to be cooled. Additional
work - such as adding external shielding - should cut the interfering range down to a
few meters even for strong transmitters.

Building a large setup requires placing RF nodes in close proximity to each other.
To allow for this while maintaining internal isolation, each emulator node is mounted
inside of a shielded rack-mount chassis. By altering the external isolation test to
measure internal isolation, the nodes attached to the emulator were verified to be
effectively isolated against undesired transmission to each other despite their close
proximity (8.75 inches). This was measured by conducting two reception rate vs.
signal strength tests. Three RF Nodes were used: a transmitter, a receiver, and an
interferer. In the first test, the transmitter sends broadcast packets to the receiver
through the emulator over a series of signal strengths down to the minimum receivable
signal strength (where interference causes the most harm) and the receiver records
the number of packets received; the interferer is silent for this test. In the second
test, the same experiment is conducted except that the interferer constantly blasts
large broadcast packets; the emulator is configured to disallow any signal from the

100 CHAPTER 6. VALIDATION

interferer to reach any other node. In both cases the reception rate was the same,
thus the interferer was effectively isolated in this case and isolation is achieved.

6.6 Summary

In order to provide effective emulation the emulator must accurately digitize and
reconstruct RF signals. This chapter examined the signal integrity performance of
the emulator’s implementation with using a variety of signal integrity tests. This
implementation was shown to provide good performance across a variety of metrics.
The weakest point of the current implementation is a lack of flatness over frequency.
While not yet implemented, this discussion showed the emulator can digitally correct
much of this imperfection.

Chapter 7

Link and Device Characterization

As discussed in Chapter 1, while hardware-based experimentation clearly achieves the
most physical layer realism, practical considerations such as ease of development, con-
trol, and experimental repeatability have made simulation the dominant experimental
technique.

Recent work [33], however, has shown that unless a great deal of care is taken,
simulation based-research can produce imprecise results. While careful simulation
setup is a necessary condition for producing valid experimental results, it is clearly
not sufficient in and of itself. A more fundamental condition that must be met to
achieve valid wireless networking simulation results is the use of an accurate simulator.
Not only must this simulator have a correct networking protocol stack, but it must
accurately reproduce wireless signal transmission, propagation, and reception. As
wireless signal propagation is only completely accurate when using real hardware,
wireless simulations will always be a coarse approximation. It is critical, nevertheless,
that wireless device behavior be modeled as accurately as possible.

Despite the massive amount of research relying on simulation, relatively little work
has been done to validate the accuracy of these simulators. Initial work [71, 21, 45]
has shown that wireless network behavior is complex and that low level behavior has
a strong impact on higher layer results. Additional work [32] has shown that the
most commonly used simulator - ns-2 - produces results that vary significantly from
real-world experiments.

Moreover, real-world measurements [1] [44] show that wireless networks exhibit a
variety of behaviors that are difficult to understand - such as link asymmetry - and
are simply not recreated in current simulators. A controlled investigation of link-level
and device behavior will enable a better understanding of these difficult-to-understand
phenomena.

101

102 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

This chapter leverages physical layer wireless network emulation to undertake a
detailed analysis of 802.11 device and link-level behavior using real wireless hardware.
This analysis illustrates the power that the emulator can bring to bear on wireless
network link-level and device behavior. The emulator enables complete control over
signal propagation between the devices under examination, and enables the detailed
analysis presented here. For many items discussed, conducting these experiments
using other techniques would be either impractical or impossible.

This chapter also presents a series of case studies illustrating how the emulator
can be used to conduct link level related experiments that illustrate how link-level
insight can be gained into a variety of issues. Finally, a small number of case studies
are presented to illustrate some of the range of experiments that it is possible for
users to conduct.

7.1 Link Behavior

This chapter begins with an analysis of link level network behavior conducted as
a result of discussions with the Roofnet research group. Roofnet is a large-scale
outdoor wireless mesh network. Analysis of link-level Roofnet behavior [1] revealed
many difficult to understand phenomena that did not correspond to the typical link-
level behavior assumed by simulators. The object of the work in this section was to
develop a detailed understanding of link behavior in a controlled environment using
emulation based experiments. The results of these experiments formed a reference
which the actual behavior observed in Roofnet was then compared against [1].

This section will present the results of these controlled experiments beginning with
a look at AWGN reception behavior, followed by experiments investigating hidden and
exposed nodes, packet capture behavior of two competing transmitters, off-channel
reception behavior, off-channel interference, and the causes of link-asymmetry. In
addition, this section uses insights gained here to look at the impact of link-level
behavior on WLAN performance. This analysis should contribute to a better un-
derstanding of the link-level behavior of 802.11 hardware by replacing conventional
assumptions (e.g. interference range is twice the reception range) and possible mis-
conceptions with actual recorded behavior. Moreover, this work should enable the
development of more accurate wireless network simulators. Section 7.2 will use the
results obtained in this section to analyze 802.11 uplink behavior in a wireless WLAN
setting.

7.1. LINK BEHAVIOR 103

7.1.1 Experimental Setup

Wireless link behavior is characterized through a series of experiments using three
wireless NICs. In some experiments, there is an implicit fourth receiver for which
characterization is not necessary. All experiments in this chapter, utilizes Senao
2511CD Plus Ext2 NICs. These cards were chosen since they are based on the Prism
2.5 chipset which is in widespread use in the research community and is one of the
most popular 802.11b chipsets. The Senao cards are a mature design with very good
performance. While the precise values reported here are specific to these cards, the
observations made should apply to many other hardware configurations. For instance,
the robustness of 802.11b’s 1 Mbps spread spectrum modulation to interference is
a fundamental characteristic of the standard, and all standard compliant hardware
should have this feature.

Fine grained characterization of wireless link-level behavior requires tight con-
trol over signal propagation between the transmitters and receivers. To obtain this
control, two techniques are used: digital wireless network emulation as discussed in
previous chapters, and communication via coaxial cable. In addition, standard RF
measurement devices are utilized to measure specific device characteristics.

Version 1 of the emulator [29] is used to conduct emulation-based experiments.
For the work discussed in this section four laptops are connected to the emulator via
coaxial cable. Inside this emulator, the RF signals from each laptop are digitized as
discussed earlier. The signals are then digitally attenuated and combined between
laptops. This enables complete control over the signal paths between any pair of
laptops. Hence, for any signal path from a transmitter to a receiver, the emulator can
explicitly set the received signal strength. This allows the construction of arbitrary
network topologies for test purposes.

7.1.2 Clear-channel Reception

The first test conducted was to measure clear-channel reception behavior. In this test,
a single transmitter and a single receiver were used. The emulator was used to vary
the RSS (received signal strength) at the receiver from -102 dBm to -80 dBm in 1 dB
increments. For each RSS value, the transmitter sent 200 broadcast packets to the
receiver. The receiver then recorded the number of successful packets. As broadcast
packets do not use link-level retries, this experiment measured packet delivery rate as
a function of RSS. This test was repeated for each of the four 802.11b transmission
rates. In all cases, the same transmitter and receiver were used. The results are shown
in Figure 7.1; note that different pairs of wireless transmitters and receivers will have
results that vary slightly from the results shown in this graph (see Figure 7.24.) These
results indicate that this receiver is quite sensitive (the noise floor and carrier sense

104 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1 Mbps
2 Mbps
5.5 Mbps
11 Mbps

Figure 7.1: Clear Channel Reception

of the Senao cards used in this section is approximately -99 dBm.) As expected,
increasing transmission rates required larger signal strengths in order to be received
successfully.

7.1.3 Capture and Acquisition Under Delayed Interference

R

T I
Time

Interference
Delay

acquisition

DataPreamble

Figure 7.2: Capture Under Delayed Interference

An essential element in understanding and modeling wireless packet reception is
understanding what happens when two competing signals arrive at a receiver. Is a
packet received? Is there a collision? Can a receiver begin acquiring a new packet
in the middle of receiving a weaker packet? Simulators have made contradictory
assumptions, but little data exists on the behavior of real receivers.

This section quantifies the effects of timing and received signal strength on a
receiver’s ability to capture a single desired signal in the presence of an undesired
interfering signal. The subsequent section will discuss the effects of received signal
strength on the outcome of two competing desirable signals.

Figure 7.2 shows the setup for these experiments. In this case, a transmitter T
sends traffic to a receiver R. A second transmitter I plays the role of the interferer.
T and I are hidden [60] [20] and cannot hear each other’s transmissions. I constantly

7.1. LINK BEHAVIOR 105

0

6.
4

12
.8

19
.2

25
.6 32

38
.4

44
.8

51
.2

57
.6 64

70
.4

76
.8

83
.2

89
.6 96

-72
-74
-76
-78
-80
-82
-84
-86
-88
-90
-92

175-200
150-175
125-150
100-125
75-100
50-75
25-50
0-25

Delay (us)

RSS (dBm)

0

6.
4

12
.8

19
.2

25
.6 32

38
.4

44
.8

51
.2

57
.6 64

70
.4

76
.8

83
.2

89
.6 96

-72
-74
-76
-78
-80
-82
-84
-86
-88
-90
-92

175-200
150-175
125-150
100-125
75-100
50-75
25-50
0-25

Delay (us)

RSS (dBm)

0

6.
4

12
.8

19
.2

25
.6 32

38
.4

44
.8

51
.2

57
.6 64

70
.4

76
.8

83
.2

89
.6 96

-72
-74
-76
-78
-80
-82
-84
-86
-88
-90
-92

175-200
150-175
125-150
100-125
75-100
50-75
25-50
0-25

Delay (us)

RSS (dBm)

0

6.
4

12
.8

19
.2

25
.6 32

38
.4

44
.8

51
.2

57
.6 64

70
.4

76
.8

83
.2

89
.6 96

-72
-74
-76
-78
-80
-82
-84
-86
-88
-90
-92

175-200
150-175
125-150
100-125
75-100
50-75
25-50
0-25

Delay (us)

RSS (dBm)

a) 1 Mbps

b) 2 Mbps

c) 5.5 Mbps

d) 11 Mbps

Figure 7.3: Capture Under Delayed Interference

106 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

sends interfering 1 Mbps 1500 byte broadcast packets at -82 dBm. The emulator’s
default behavior is modified for this experiment to allow R to hear transmissions from
I only if: 1) T was actively transmitting, and 2) T’s current transmission had been
active for a specified delay. In this way, the effect of interference timing on packet
reception was investigated by varying the delay of I with respect to T’s transmission
in 3.2 microsecond increments between 0 and 96 microseconds. The strength of the
RSS of T at R was also varied in 1 dB increments between -72 dBm and -92 dBm in
order to see how delay and relative received signal strength interact.

Figure 7.3 shows the results of these experiments. The x-axis shows the delay in
microseconds, and the y-axis shows the RSS of T at R. For each delay, RSS combina-
tion, 200 packets were sent from T to R and number received was recorded as shown
in the figures.

Figure 7.3(a) shows capture performance for 1 Mbps. Three regions of perfor-
mance with respect to delay can be seen: 0 microseconds, (0-37] microseconds, and >
37 microseconds. As expected, reception is worst when the interference has no delay,
though packet reception is still possible even when interference arrives at the same
time as the desired transmission. If the interference is delayed by at least 3.2 microsec-
onds, a noticeable improvement in performance is seen due to the fact that the receiver
has begun acquisition of the desired signal. At delays greater than approximately 32
microseconds, there is a further improvement of approximately 4 dB in reception be-
havior. This improvement is due to the receiver having acquired the transmission.
Interference that occurs before this point may prevent signal acquisition. After this
point, the interference must be strong enough to overcome the demodulation that is
occurring. Of particular note is the fact that after signal acquisition, interference can
be rejected even if it is stronger than the transmission.

At 2 Mbps (Figure 7.3(b)), delayed capture behavior is similar to 1 Mbps, though
somewhat worse, as expected. At 5.5 (Figure 7.3(c)) and 11 Mbps (Figure 7.3(d)),
however, reception is no longer possible when the signal is weaker than the interfering
signal.

The results discussed above have important ramifications on MAC design and
performance. 802.11’s carrier sense mechanism operates without respect to the cell in
which a station resides. Not only will this cause transmitters to needlessly defer (an
exposed node situation), but since carrier sense works without respect to the cell in
which transmitters reside, transmitters in different cells (i.e. with different receivers)
will tend to synchronize their attempted transmissions. The idea is to limit the time
that the medium is experiencing collisions [51].

As the results discussed above have shown, this is the worst possible timing for
packet capture since the very start of a frame is the most vulnerable. A more so-
phisticated MAC could take packet capture into consideration and avoid needlessly

7.1. LINK BEHAVIOR 107

synchronizing transmitters in different cells. A shift of a few microseconds would
greatly improve capture performance, and would have negligible impact on the time
that the medium might experience collisions. In addition, a capture aware MAC could
calculate the degree of interference likely to be present and realize when deferring was
necessary due to possible poor signal-to-interference and noise ratio at the receiver.

7.1.4 Capture with Competing Transmitters

R

Ta Tb

R

Ta Tb

Hidden In-range

Figure 7.4: Capture

The previous section discussed the effects of timing and received signal strength
on a receiver’s ability to capture a single desired signal in the presence of an undesired
interfering signal. This section now discusses the effects of received signal strength
on the outcome of two competing desirable signals.

This capture behavior is quantified using a series of experiments with the con-
figurations shown in Figure 7.4. The goal of these experiments is to establish the
reception outcome given the RSS at R from Ta and Tb without controlling precisely
for interference timing. That is, this experiment doesn’t control when packets from
Ta and Tb arrive at receiver R.

In both configurations shown in Figure 7.4, these tests proceeded as follows: two
transmitters Ta and Tb constantly send broadcast packets at a very high rate to the
receiver R. At first, the channels are all “turned off” in the emulator so that no
packets are actually received at R. The emulator then simultaneously turns on the
channels and sets the RSS at R from each transmitter to the desired values. In the
“hidden” configuration, the emulator does not allow Ta and Tb to hear each other’s
transmissions. In the “in-range” setup the emulator sets the RSS from Ta to Tb at -80
dBm and vice versa, so that Ta and Tb will always hear each other’s transmissions.
After a fixed time interval, the emulator shuts off the channels from Ta and Tb to R.
R then records how many packets it received from each transmitter. This experiment
measured all combinations of RSS values from Ta and Tb at R between -102 and -72
dBm in 1 dBm intervals. This test was repeated for all 802.11b transmission rates.

Figure 7.5 shows the results. In each of these figures the z-axis is the number
of packets received from both Ta and Tb at R. In many RSS combinations, however,

108 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION
-1

20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

342-380
304-342
266-304
228-266
190-228
152-190
114-152
76-114
38-76
0-38

Source 2
dominates

Source 1
dominates

Collisions

Reception is
shared

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

342-380
304-342
266-304
228-266
190-228
152-190
114-152
76-114
38-76
0-38

Source 2
dominates

Source 1
dominates

Collisions

-1
20 -1

1
4 -1

08 -1
02

-9
6 -9

0 -8
4

-1
20-1

1
4-1

08-1
02

-9
6-9

0-8
4

0
38
76
114
152
190
228
266
304
342
380

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Collisions

-1
20 -1

1
4 -1
08 -1

02

-9
6 -9

0 -8
4

-1
20-1

15-1
10-1

0
5

-1
00-9

5-9
0-8

5-8
0

0

38

76

114

152

190

228

266

304

342

380

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Reception is
shared

Collisions

1 Mbps

a) In-range b) Hidden
-1

20 -1
1

4 -1
08 -1

02

-9
6 -9

0 -8
4

-1
20-1

15-1
10-1

0
5

-1
00-9

5-9
0-8

5-8
0

0

70

140

210

280

350

420

490

560

630

700

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Reception is
shared

Collisions

-1
20 -1

1
4 -1

08 -1
02

-9
6 -9

0 -8
4

-1
20-1

1
4-1

08-1
02

-9
6-9

0-8
4

0
70
140
210
280
350
420
490
560
630
700

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Collisions

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss630-700

560-630
490-560
420-490
350-420
280-350
210-280
140-210
70-140
0-70

Source 2
dominates

Source 1
dominates

Collisions

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

630-700
560-630
490-560
420-490
350-420
280-350
210-280
140-210
70-140
0-70

Source 2
dominates

Source 1
dominates

Collisions

Reception is
shared

2 Mbps
c) In-range d) Hidden

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

1620-1800
1440-1620

1260-1440
1080-1260
900-1080

720-900
540-720
360-540

180-360
0-180

Source 2
dominates

Source 1
dominates

Collisions

Reception is
shared

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

1620-1800

1440-1620
1260-1440
1080-1260

900-1080
720-900
540-720

360-540
180-360
0-180

Source 2
dominates

Source 1
dominates

Collisions

-1
20 -1

1
4 -1

08 -1
02

-9
6 -9

0 -8
4

-1
20-1

1
4-1

08-1
02

-9
6-9

0-8
4

0
180
360
540
720
900
1080
1260
1440
1620
1800

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Collisions

-1
20 -1

1
4 -1
08 -1

02

-9
6 -9

0 -8
4

-1
20-1

15-1
10-1

0
5

-1
00-9

5-9
0-8

5-8
0

0

180

360

540

720

900

1080

1260

1440

1620

1800

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates Source 1

dominates

Reception is
shared

Collisions

5.5 Mbps
e) In-range f) Hidden

-1
20 -1

1
4 -1
08 -1

02

-9
6 -9

0 -8
4

-1
20-1

15-1
10-1

0
5

-1
00-9

5-9
0-8

5-8
0

0

270

540

810

1080

1350

1620

1890

2160

2430

2700

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Reception is
shared

Collisions

-1
20 -1

1
4 -1

08 -1
02

-9
6 -9

0 -8
4

-1
20-1

1
4-1

08-1
02

-9
6-9

0-8
4

0
270
540
810
1080
1350
1620
1890
2160
2430
2700

Source 1 uplink rssSource 2 uplink rss

Source 2
dominates

Source 1
dominates

Collisions

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

2430-2700
2160-2430
1890-2160

1620-1890
1350-1620
1080-1350

810-1080
540-810
270-540

0-270

Source 2
dominates

Source 1
dominates

Collisions

-1
20

-1
17

-1
14

-1
11

-1
08

-1
05

-1
02 -9
9

-9
6

-9
3

-9
0

-8
7

-8
4

-8
1

-120

-117

-114

-111

-108

-105

-102

-99

-96

-93

-90

-87

-84

-81

Source 1 uplink rss

Source 2
uplink rss

2430-2700

2160-2430
1890-2160
1620-1890

1350-1620
1080-1350
810-1080

540-810
270-540

0-270

Source 2
dominates

Source 1
dominates

Collisions

Reception is
shared

11 Mbps
g) In-range h) Hidden

Figure 7.5: Packet Capture Results

7.1. LINK BEHAVIOR 109

packets were actually only received from one or the other; the regions where one
source or the other dominated are labeled on the plots.

In all in-range cases, these results show that when the RSS at R from both Ta and
Tb was high CSMA did a good job of allowing the two nodes to share the medium, and
only a small number of collisions occurred. As expected when one transmitter was
out of range of R and the other was in range, the number of packets received for the
in-range cases was roughly half of the channel capacity since the reception between
Ta and Tb is still good, and they defer for each other’s transmissions irrespective of
the number of packets successfully received at R. In an actual network, this would
only occur when the out-of-range node was sending to a receiver other than R (or
broadcasting) since unicast communication requires acknowledgement of successful
reception. For these “exposed node” cases, the in-range node may be needlessly
deferring since the out-of-range node isn’t communicating with the same receiver.

An important question is what happens when transmissions from two nodes over-
lap in time at a single receiver. The “hidden node” configuration tests investigate
this question. In hidden node situations, Ta and Tb send at full rate since they are out
of carrier sense range. Looking at the 1 Mbps results, collisions only occur for a very
narrow range of signal strengths where the RSS at R is nearly identical from both
Ta and Tb. Hence, in the exposed node situation, waiting is likely unnecessary if the
transmission of the in-range node is 1 Mbps. At higher transmission rates, the range
over which collisions occur grows especially for 5.5 and 11 Mbps rates. Hence, higher
transmission rates require a larger signal to interference and noise ratio (SINR) in
order to be captured successfully.

In summary, these tests have shown that for low transmission rates, collisions
occur only when the received signal strengths of the competing signals at a receiver
are nearly equal. Hence, packets sent at low rates - in particular management and
control packets such as beacons, RTS, CTS, and ACK - are very robust to interference.
At higher modulation rates, however, a broader range of received signal strengths will
interfere. Nevertheless, even high modulation rates will very often capture packets in
spite of interference. Hence, deferring transmission due to an interfering source below
the capture threshold is not necessary and hurts network performance. Section 7.2
will use this data to illustrate the occurrence of this inefficiency in 802.11 networks.
Finally, an important corollary of these results is that recreating realistic capture
behavior in simulators requires more than the fixed threshold that is commonly used,
but a realistic model such as the data gathered in these tests.

110 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

R

T I

Channel 6

Channel 6

Channel 1-6

Figure 7.6: Off-channel Interference

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.7: Off-channel Interference, 1Mbps, No Delay

7.1.5 Off-channel Behavior

Off-channel Interference

In the United States, eleven 802.11b channels are available in 5 MHz increments from
2.412-2.462 GHz. Each 802.11b channel is designed to have 22 MHz occupied band-

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.8: Off-channel Interference, 1Mbps, Large Delay

7.1. LINK BEHAVIOR 111

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.9: Off-channel Interference, 2Mbps, No Delay

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.10: Off-channel Interference, 2Mbps, Large Delay

width which implies that a total of three 802.11b signals may coexist - on channels 1,
6, and 11 - without interfering. Ideally, adjacent 802.11b cells would utilize different
channels. Unfortunately, it is frequently impossible to deploy an 802.11b network
without placing some adjacent cells on the same frequency. For this reason, some
have advocated using four channels [39] despite the fact that there would be some
signal overlap.

While there is some evidence to support this idea, there has not been a tightly
controlled measurement of the impact on real hardware.

In order to quantify the viability of this 4-channel proposal and, more importantly,
to understand the impact of off-channel interference on successful packet capture, this
section presents measurements of the impact of off-channel interference on packet
reception using the setup shown in Figure 7.6.

In this experiment there are two transmitters T and I and a single receiver R. Both
T and R are on channel 6; I plays the role of an off-channel interferer on channels

112 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.11: Off-channel Interference, 5.5Mbps, No Delay

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.12: Off-channel Interference, 5.5Mbps, Large Delay

1-6. As in the delayed capture test discussed in Section 7.1.3, the interference from I
is controlled so R only hears the signal from I some specified delay after R begins to
hear a packet from T. For this test, two delay values are used: 0 and 384 microseconds
i.e. immediately, or well after packet acquisition. For each channel that I is placed
on, the RSS at R from I has held constant at -82 dBm while the RSS at R from T
is varied between -72 and -102 dBm. For each channel, RSS combination T sends a
series of packets to R and R records how many made it through successfully. Packets
were broadcast, so no retries took place. This test was repeated for all four 802.11b
transmission rates.

Results are shown in Figures 7.7- 7.14. For all tests where interference was pre-
vented until well after packet acquisition, the impact of interference from channels 1,
2, and 3 was low and virtually identical. Channel 4 degraded performance approxi-
mately 4 dB, while channels 5 and 6 degraded performance more significantly.

For tests where interference was allowed to occur at the start of packet reception,

7.1. LINK BEHAVIOR 113

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.13: Off-channel Interference, 11Mbps, No Delay

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.14: Off-channel Interference, 11Mbps, Large Delay

the interference of channels 1, 2, and 3 was still nearly identical though channel 3 was
slightly worse in some cases. Interference from channels 4-6 was much more significant
in this case.

To investigate the effect of stronger interference, the 11 Mbps large delay tests
were repeated, but with an interference of -72 dBm. As shown in Figure 7.15, the
larger interference has a strong impact when the interferer is on channels 4-6. When
the interferer is on channels 1-3, interference impact is approximately 2 dB stronger
than it was with -82 dBm of interference.

These tests show that a well-designed receiver can cope quite well with off-channel
interference that is at least 3 channels away. This is an important result as it demon-
strates that the 802.11b five channel separation that is typically used is overly conser-
vative for well-designed receivers. Thus, these tests have shown that 802.11b networks
can safely use four channels in place of the typical three and reap nearly a 33% im-
provement.

114 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.15: Off-channel Interference, 11Mbps, large delay, -72 dBm Interference

Off-channel Reception

R

T

Channel 6

Channel 1-6

Figure 7.16: Off Channel Reception

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.17: Off-channel Reception, 1 Mbps

Recently the observation that some off-channel packets can be received has lead to
an ambitious proposal for leveraging off-channel communication for purposes such as
bridging between channel regions in multi-hop networks. The utility of this proposal,

7.1. LINK BEHAVIOR 115

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.18: Off-channel Reception, 2 Mbps

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.19: Off-channel Reception, 5.5 Mbps

however, clearly relies on the efficacy of off-channel communication which has not
been analyzed in a controlled manner.

To remedy this lack of knowledge of off-channel reception behavior, this section
characterizes off-channel reception as shown in Figure 7.16. In this test, there is a
single transmitter receiver pair. The receiver is varied from channels 1-6 while the
transmitter remains on channel 6. (Note that there is no interference at all in this
test.)

For each receiver channel, the RSS at the receiver from the transmitter was varied
between -102.0 and -72.0 dBm. For each channel, RSS pair the transmitter sent 200
broadcast packets to the receiver and measured how many were received. This test
was repeated for all 802.11b transmission rates.

Figure 7.17 shows the results of this test for 1 Mbps. At 1 Mbps, off-channel
communication appears to work as anticipated by providing increasing isolation as
the channel separation increases.

116 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

20

40

60

80

100

120

140

160

180

200

-102 -97 -92 -87 -82 -77 -72

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d

1
2
3
4
5
6

Figure 7.20: Off-channel Reception, 11Mbps

At 2 Mbps, however, this scheme begins to break down as shown in Figure 7.18.
For this modulation, reception is possible, but only when the signal is strong and
even then it’s imperfect. Also, the fact that packet delivery rate is not monotonically
increasing with RSS hints that signal distortion may be occurring. At 5.5 and 11
Mbps, things are even worse. Up through -72.0 dBm, the receiver received no off-
channel packets as shown in Figures 7.19 and 7.20.

The trouble with off-channel reception likely lies with several elements of the
receiver. For instance, when the receiver filter is applied off-center with respect to
the modulated signal’s center frequency, the result is distortion of the signal in time.
Also, the receivers acquisition circuitry may be unable to acquire the signal. The 1
Mbps transmission rate uses BPSK modulation which is somewhat robust to these
effects. All remaining bit-rates use QPSK modulation which is much more susceptible
to these effects.

Unlike the previous section where emulator-based measurements confirmed the
efficacy off previously proposed off-channel techniques, the results presented here
have shown that the efficacy of off-channel reception is limited. In particular, off-
channel reception is only effective at the lowest transmission rate of 1 Mbps or when
the received signal is extremely strong. Thus, while this technique may prove useful
in some unique circumstances, it is unlikely to be broadly applicable since alternative
designs may provide better performance.

7.1.6 Multipath Performance

Link behavior in the presence multipath was then measured. To do this the emulator
was configured to emulate the signal propagation environment shown Figure 7.21
using three different primary ray strengths (-70 dBm, -90 dBm, and -95 dBm). For

7.1. LINK BEHAVIOR 117

Primary Ray

Delayed RayTransmitter Receiver

Figure 7.21: Two-ray Test Topology

each primary ray strength, a delayed ray was emulated at all 2 dB increments of
attenuation between the primary ray strength and -100 dBm. For each primary
ray, secondary ray signal strength combination, the secondary ray’s delay was varied
between 0 and 2.22 us in 0.0185 us increments. For each of these combinations, a test
was conducted by transmitting 500 packets, of 1500-bytes each, from the sender. The
receiver then measured the packet delivery rate and other on-card statistics such as
signal and noise measurements (for successfully received frames).

0

20

40

60

80

100

120

0 10 20 30 40 50

SNR

D
el

iv
er

y
R

at
e

%

-70 dBm
Tests

-90 dBm
Tests

-95 dBm
Tests

Figure 7.22: Two-ray Delivery Rate vs. SNR

As seen in Figure 7.22, the delivery rate exhibited large variation for different delay
spread, delayed signal strength combinations (each point represents a the delivery rate
for one primary ray strength, delayed ray strength, delay spread combination). Hence,
SNR may be a very poor indicator of packet delivery rate when significant multipath
is present.

118 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

7.1.7 Link Asymmetry

Several research groups have independently observed asymmetric wireless link be-
havior. In particular several instances of asymmetric packet delivery rate have been
observed; i.e. cases where for two wireless nodes A and B the packet delivery rate
from A to B is not the same as the packet delivery rate from B to A. As this is an
important observation, this section now discusses why such behavior might exist.

7.1.8 Causes of Link Asymmetry

There are a variety of factors that can - and many that cannot - contribute to link
asymmetry such as:

• Asymmetric signal propagation (not actually possible)

• Transmit power variation

• Antenna diversity

• Transmit modulation quality variation

• Receive noise floor variation

• Receive quality variation

• Interference variation

Asymmetric signal propagation. This is actually a “non-cause”. That is,
asymmetric signal propagation is physically impossible according to the reciprocity
theorem [58] which states that if the role of the transmitter and the receiver are
interchanged, the instantaneous signal transfer function between the two remains un-
changed. As asymmetric signal propagation has frequently been posited as an expla-
nation for link asymmetry, it is listed here to discourage its consideration.

Antenna Diversity. Antenna diversity could result in different transmit and/or
receive antennas being used on one or both ends of the link. In these situations, some
degree of link asymmetry could arise. Nevertheless, asymmetry has been observed
even in cases where no antenna diversity exists.

Transmit power variation. Clearly using asymmetric transmit power on a link
can cause asymmetric packet delivery rates due to the disparity in received signal
strength. As real wireless networks are typically composed of a heterogeneous mix of
devices, real networks will likely have asymmetric links due to asymmetric transmit
power. Link asymmetry has been observed, however, even when the same model

7.1. LINK BEHAVIOR 119

card is used. The transmit power of 11 different Senao cards was measured using a
spectrum analyzer in order to see how much transmit power variation was present.
23 individual measurements were made for each card. 0.5 dB was added to the
measurements to account for pigtail loss (an estimate). Figure 7.23 shows the results
and computed 95% confidence intervals.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3

Card

Tr
an

sm
it

P
ow

er
 (d

B
m

)

Figure 7.23: Senao Card Power

The cards fell into two distinct sets “a” and “b”. The cards in set a averaged
quite close to 23 dBm of transmit power with very little variation. Set b, on the other
hand, had significantly more power and variation. While these cards were marketed,
sold, and labeled as identical they were purchased at different times, from different
vendors, and contain MAC addresses that fall into two distinct ranges corresponding
to sets “a” and “b”.

The data support the following conclusions. Even cards that appear outwardly to
be identical, may actually be different and have different transmit power. Cards that
are actually identical, may have very little transmit power variance, but they may
also have significant variance.

As a result, transmit power variation seems to be one likely contributor to link
asymmetry.

Transmit modulation quality variation. A large number of factors such as
transmitter linearity may cause cards to vary in the fidelity of the transmitted signal
that they produce. Similar cards should produce similar fidelity.

Receiver quality variation. Likewise, a receivers can also vary in quality such
as linearity and signal acquisition. Again, similar cards should have similar receive
fidelity.

Receiver noise floor variation. The noise floor of the receiver is determined
largely by the performance of the low noise amplifier (LNA). LNAs are designed
to amplify the weak signal received at the antenna into a larger signal that can be
processed without introducing much noise into the signal. Anything that touches a

120 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

signal, however, adds some degree of noise. The figure of merit for LNAs is their
“noise figure”, measured in dB, which quantifies how much noise they introduce into
the signal.

0

10

20

30

40

50

60

70

80

90

100

-98 -96 -94 -92 -90 -88 -86 -84 -82 -80

RSS (dBm)

P
ac

ke
ts

 R
ec

ei
ve

d
36:55:9f 04:a8:c7 36:55:9f 04:a8:d2 36:55:9f 04:a8:ce
04:a8:d2 04:a8:ce 04:a8:d2 04:a8:c7 04:a8:d2 36:55:9f
04:a8:c7 36:55:9f 04:a8:c7 04:a8:ce 04:a8:c7 04:a8:d2
04:a8:ce 04:a8:d2 04:a8:ce 04:a8:c7 04:a8:ce 04:a8:d2

Figure 7.24: Packet Delivery Rate Variation

To quantify how much asymmetry might be from the combined effects of receiver
noise floor variation, transmit quality variation and receive quality variation, the
pairwise packet delivery rate was measured between all possible pairs of four wireless
cards using 2 Mbps broadcast packets. In this case, coaxial cable and a variable
attenuator were used to vary the transmit power between these nodes. This test
corrected for transmit power variation in order to isolate the desired effects. The
received signal strength was varied between -80 and -98 dBm.

Figure 7.24 shows the results. Approximately 3 dB of variation was observed over
all of the links that were measured.

Interference variation. A final potential contributor to link asymmetry is inter-
ference level variation. Interference variation between two nodes is likely to contribute
to asymmetry in a way that is highly site-specific and variable over time. Evaluating
its impact requires doing a careful study of interference and its variability in time and
space. An important distinction of interference with respect to the previous potential
factors is that it is highly unlikely to be constant. Most sources of interference e.g.
undesired 802.11 traffic, non-802.11 data traffic, cordless phones, microwaves, etc. are
bursty on some time scale.

Several researchers have observed asymmetric links that have a fairly consistent
constant bias. Thus, in at least some cases it seems unlikely that bursty interference
is the cause of link asymmetry.

Summary. This section has discussed several potential causes of link asymmetry
and has shown that several of these are contributing factors. While in some cases
one factor such as transmit power asymmetry may be the dominant factor, in many

7.2. WLAN PERFORMANCE ANALYSIS 121

cases, asymmetry may result from the additive effects of several causes. Importantly,
this section has shown that link asymmetry can exist even when using homogeneous
hardware and when external interference does not play a role. Thus, protocol de-
signers should consider link asymmetry even when hardware is uniform. Symmetric
signal propagation can, however, be assumed between two antennas since asymmetry
is physically impossible in this case.

7.2 WLAN Performance Analysis

This section leverages the link behavior characterization discussed earlier to analyze
WLAN uplink behavior. The aim of this analysis is to gain insight into the issue of
hidden and exposed nodes. Why do WLANs seem to work reasonably well despite
the fact that almost nobody uses RTS/CTS? Traditional analysis would indicate that
network performance could grind to a halt if hidden nodes are present and RTS/CTS
is not utilized.

To answer these questions this section analyzes the performance of an operational
and heavily utilized wireless network in CMU’s Tepper School of Business. This
network consists of a 17 access point 802.11b network on channels 1, 6, and 11, and
covers a single large campus building. A radio map of this building was constructed
by sampling received signal strength throughout the building, and storing the physical
location of each sample. For the sake of this analysis, each node was considered to
have the same transmit power, which as discussed previously, is likely to be violated
in a real network.

The likelihood of hidden terminals and exposed nodes was then analyzed as follows.
First, in software, a random distribution of 400 nodes within this building was created
taking into account the likelihood of a particular location’s occupancy. I.e. nodes
were much more likely to be located in lecture halls than offices. The actual observed
access point locations and channel assignments were used. Each node picked a random
recorded set of access point signal samples at it’s location in the radio map. Each
node was then associated with the access point having the strongest signal.

This analysis then looked at each node in the network and analyzed its pairwise
interaction with all other nodes in the network as depicted in Figure 7.25. Each
primary node considered is labeled “A” in Figure 7.25. The nodes with which A’s
interaction are considered are labeled “B”. Considering A’s interaction with its access
point we have 6 possible cases. If A and B are associated with the same access point
then they must be able to communicate with it and: a) they are in carrier sense
range of each other or b) they are out of carrier sense range - “hidden” - from each
other. If A and B are associated with different access points, then we have four cases:
c) A and B are in carrier sense range of each other, but B does not interfere with

122 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

A B

APab

A B

APab

A B

APa APb

A B

APa APb

A B

APa APb

a) In-range

Same AP

Different APs

b) Hidden

c) Exposed d) External In-range e) External Hidden
Interferer

Figure 7.25: Infrastructure Topologies

A’s transmissions to its access point. d) A and B are in carrier sense range and B’s
transmission can interfere with A’s transmissions to its access point. e) A and B are
out of carrier sense range from each other and B’s transmissions can interfere with
A’s transmissions to its access point. Again, only A’s interaction with its access point
is considered. B’s interactions with its access point are considered when in turn when
it is “A”. f) A and B are out of carrier sense range and B’s transmissions do not
interfere with A’s transmissions to its access point. B does not affect A in this case;
hence this case is not depicted in Figure 7.25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Distance (meters)

Fr
ac

tio
n

of
 P

ai
rs

Distance A-B, All
Distance A-B, Same AP

Figure 7.26: Distance CDF

In this analysis, path loss between nodes and access points is computed directly
from radio map measurements. Between nodes, however, there are no direct measure-
ments. To model path loss between these nodes a log distance path loss model [49]
is used with a d0 of 1.0 meter pld0 of 40.0 dB and a path loss exponent n of 5.0.
Figure 7.26 plots the CDF of pair distance for all pairs and also for pairs associated
with the same access point. This CDF is for a single execution of this analysis (runs

7.2. WLAN PERFORMANCE ANALYSIS 123

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120 140

Loss (dB)

Fr
ac

tio
n

of
 P

ai
rs

Loss A-B, All
Loss A-B, Same AP

Figure 7.27: Loss CDF

produce very similar results, so the results of other runs are omitted). The corre-
sponding CDF of path loss values using the node-node path loss model is shown in
Figure 7.27.

Table 7.2 shows the frequency of the various types interaction found in a single
run of this analysis (other runs were quite similar). Clearly, hidden nodes were very
uncommon. The reason for this can be found by analyzing Figures 7.26 and 7.27.
The wireless network in this building is fairly dense; thus, nodes associated with the
same AP tend to be quite close to each other. To be out of range requires a loss
of 115 dB which occurred for very few pairs associated with the same access point.
Exposed pairs and external interferer pairs, however, were much more common.

Total Pairs 159600

Same AP Pairs 12230

Hidden Pairs 406
Exposed Pairs 11438

External Interferer Pairs 34374

Table 7.1: WLAN Performance Analysis Summary

The impact that hidden nodes might have on performance was analyzed next.
Note that just because A and B are hidden does not mean that A’s transmissions
with B will always fail. For each hidden pair, the data obtained in Section 7.1.4 was
used to estimate what the probability that A’s transmissions would be received by
its access point if it interfered with a transmission from B. The path loss measured
in the radio map was used to compute the RSS at A’s access point for both A and B
and then the capture probability was computed from the table in Section 7.1.4. RSS
values that were not in this table were computed via extrapolation.

124 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Collision Probability

Fr
ac

tio
n

of
 P

ai
rs

1 Mbps
11 Mbps

Figure 7.28: Hidden Node Collision Probability, 1 Mbps vs. 11 Mbps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-60 -40 -20 0 20 40 60

RSS A - RSS B (dB)

Fr
ac

tio
n

of
 P

ai
rs

Figure 7.29: Hidden Node RSS Difference CDF

Figure 7.29 shows the result for both 1 Mbps transmissions and for 11 Mbps
transmissions. At 1 Mbps, very few of the hidden pairs are likely to have high collision
probabilities. For these cases, A will receive more throughput to its access point than
B will. At 11 Mbps, however, there is a fair chance for collision. In practice, most
nodes in this network would likely communicate at 11 Mbps, so hidden nodes could
interfere with each other. Nevertheless, the scarcity of hidden nodes indicates that
they are not likely to present much of a problem.

A similar analysis for external interferer pairs was then conducted; again the
capture data measured earlier was used. The results are shown in Figure 7.30 and
Figure 7.31. In this case we have three possible outcomes a collision, A’s packet is
captured - the desired outcome, B’s packet is captured - thus causing A’s packet to
fail. At 1 Mbps the odds of a A’s packet not being captured are extremely small.
While the odds of A’s packet being received at 11 Mbps are somewhat worse, they
are still very good. Thus, even though there are a large number of external interferer

7.2. WLAN PERFORMANCE ANALYSIS 125

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Outcome Probability

Fr
ac

tio
n

of
 P

ai
rs

Collision
Capture A
Capture B

Figure 7.30: External Interferer CDFs, 1 Mbps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Outcome Probability

Fr
ac

tio
n

of
 P

ai
rs

Collision
Capture A
Capture B

Figure 7.31: External Interferer CDFs, 11 Mbps

pairs, the impact of this phenomenon on performance is minimal.

To understand why external interference has so little impact, consider Figure 7.32
which shows a CDF of difference in received signal strength at A’s AP from A and
B. For the vast majority of external interferer pairs, A enjoys a significant advantage
in signal strength.

This analysis leads to the conclusion that the most serious inefficiency that is
likely to plague this network is exposed nodes. Consider Figure 7.32 which shows a
CDF of the difference in received signal strength at A’s AP from A and B. For the
vast majority of pairs, A again enjoys a significant advantage. Hence, A need not
defer when B is transmitting.

126 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 0 20 40 60 80 100

RSS A - RSS B (dB)

Fr
ac

tio
n

of
 P

ai
rs

Figure 7.32: External Interferer RSS Difference CDF

7.3 Device Characterization

This section now considers experiments that measure particular aspects of wireless
NIC behavior such as perceived received signal strength versus actual received signal
strength. Many of these tests were conducted in conjunction with the Roofnet group
as described earlier. In addition to providing the control necessary for these tests,
the emulator allows these tests to be automated which greatly reduces execution time
while eliminating the error associated with manually conducting similar experiments.

NIC Signal Measurement Characterization

Many researchers have proposed techniques that rely on signal strength and/or noise
floor measurements provided by the card. Two common examples are signal strength
based device location [3] and SNR-based rate selection [24]. The success of these
proposed techniques hinges on the accuracy of NIC signal measurement; very little
information, however, has been published regarding the accuracy of these measure-
ments in actual hardware.

To investigate the accuracy of signal measurements made by current 802.11b cards,
the signal measurement behavior of five wireless cards was tested. Each card was the
exact same model: an Engenius NL-2511CD Plus Ext2 card. Using the emulator
to connect a single transmitter-receiver pair enabled precise control of the received
signal strength (RSS) at each card (the transmitter was constant while alternately
measuring each receiver). For each signal strength between -70 dBm and -100 dBm
at 2 dB intervals 500 packets of 1500 bytes each were sent at 1 Mbps. The average
signal strength (RSSI) and noise measured by each card were then computed (along
with 95 % confidence intervals).

7.3. DEVICE CHARACTERIZATION 127

0

5

10

15

20

25

30

35

40

-100 -95 -90 -85 -80 -75 -70
RSS (dBm calculated)

R
S

S
I

00:02:6f:07:30:64
00:02:6f:04:a8:cf
00:02:6f:04:a8:c7
00:02:6f:04:a8:ce
00:02:6f:04:a8:d2

Figure 7.33: Per-card RSSI Variation

0

2

4

6

8

10

12

14

-100 -95 -90 -85 -80 -75 -70
RSS (dBm calculated)

S
ile

nc
e

00:02:6f:07:30:64
00:02:6f:04:a8:cf
00:02:6f:04:a8:c7
00:02:6f:04:a8:ce
00:02:6f:04:a8:d2

Figure 7.34: Per-card Noise Variation

As shown in Figure 7.33 there is approximately 10 dB of variation in the measure-
ments even for the exact same model of card. This is clearly inadequate for many
purposes. For most cards, however, this variation seems to be caused by a constant
bias. This implies that each card’s measurement behavior, RSSI, for a given RSS can

128 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

5

10

15

20

25

30

35

-100 -95 -90 -85 -80 -75 -70
RSS (dBm calculated)

S
N

R
 (R

S
S

I -
 S

ile
nc

e)

00:02:6f:07:30:64
00:02:6f:04:a8:cf
00:02:6f:04:a8:c7
00:02:6f:04:a8:ce
00:02:6f:04:a8:d2

Figure 7.35: Per-card RSS Variation after Correction

be defined as: RSSI(RSS) = RSS + Ec + E(RSS). Where RSSI is the measured
signal strength, RSS is the actual signal strength, Ec is a constant (per-card) error
term, and E(RSS) is each card’s variation of from the base Ec for a particular RSS.
Ideally, each card would have a lookup table that would give the Ec as well as E(RSS)
for each RSS. Lacking such a table, however, we can leverage the fact that most of
the error is contained in Ec to correct RSSI.

One very simple method of obtaining a good estimate of Ec is to min-filter the
noise measurements (the filtering eliminates spurious noise measurements). As shown,
in Figure 7.34, the noise measurements over the same set of tests shows very similar
variation. That is, each card’s variation in RSSI closely matches it’s variation in
measured noise. Figure 7.35 shows the variation in RSS when using this technique.
With the exception of one card, this lowers the variation to approximately 4 dB. This
is a greatly reduced variation, but may not be low enough for some purposes (e.g.
signal strength based location). Complete card characterization of the relationship
between RSSI and RSS is possible, but may not be worth the per-card testing required.

Multipath Performance

The potential of applications to estimate the amount of multipath present using
information obtained from the NIC’s equalizer was then analyzed. On the Engenius
NL-2511CD Plus Ext2 cards (and all other cards based on the same chipset), a register
- “MPMetric” - is available to estimate the amount of multipath interference present

7.3. DEVICE CHARACTERIZATION 129

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-102 -100 -98 -96 -94 -92 -90 -88

RSS (dBm calculated)

D
el

iv
er

y
R

at
e

00:02:6f:07:30:64
00:02:6f:04:a8:cf
00:02:6f:04:a8:c7
00:02:6f:04:a8:ce
00:02:6f:04:a8:d2

Figure 7.36: Per-card Delivery Rate Variation

during reception.

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5
Delay (us)

M
P

 M
et

ric

Figure 7.37: Two-ray MP Metric vs. Delay

As the documentation on the Prism 2.5 MPMetric register is scant, the emula-
tor’s ability to measure the behavior of this register is critical in understanding its
performance. Figure 7.37 shows MPMetric as a function of delay spread for two
equal-strength rays. These measurements were obtained from the two-ray test de-
scribed earlier, and use the five Engenius cards used previously. From this test, it
can be inferred that if significant multipath reception is present, MPMetric is likely
to be high. MPMetric was the measured in the presence of no multipath as shown
in Figure 7.38. From this test it is seen that the MPMetric register may also go high

130 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

0

2

4

6

8

10

12

14

16

18

-100 -95 -90 -85 -80 -75 -70
RSS (dBm calculated)

m
pM

et
ric

00:02:6f:07:30:64
00:02:6f:04:a8:cf
00:02:6f:04:a8:c7
00:02:6f:04:a8:ce
00:02:6f:04:a8:d2

Figure 7.38: One-ray MP Metric vs. RSS

whenever the signal conditions are marginal irrespective of multipath. This suggests
that a high MPMetric reading is a likely indicator of multipath when the received
signal strength is high, but it is not a useful indicator of multipath when the received
signal strength is weak.

7.4 Case Studies

This section presents three case studies that illustrate how users can conduct various
types of link-level tests. These tests were chosen to illustrate some of the range of
capabilities provided by the emulator. These experiments were conducted using the
Prototype Version of the emulator [27].

7.4.1 802.11b Rate Selection

The first case study looks at the problem of 802.11b transmit rate selection. This
study illustrates how the emulator can be used to fairly compare different rate selec-
tion algorithms.

When selecting a transmit rate, a fundamental tradeoff that wireless protocols
must make is throughput vs. range: higher transmit rates increase throughput but
at the cost of range and robustness to interference. Rather than selecting a fixed
point in this tradeoff, wireless protocols such as 802.11b support multiple transmit

7.4. CASE STUDIES 131

rates. This allows wireless NICs to potentially select the best transmit rate in a given
environment and at a given moment.

Selecting the best rate, however, is a difficult problem and several schemes have
been proposed. The emulator allows a controlled comparison of the performance of
these schemes on real hardware. For illustrative purposes three schemes are examined:
ARF - auto rate fallback [63, 7], SNR signal-to-noise ratio based scheme (with the
same goal as [24], but very different mechanisms), and ERF - Estimated Rate Fallback.
Each of these approaches is described below.

The transmission rate selection implementations are based on the HostAP mode
Prism driver for Linux. Extensive alterations were made in order to take fine-grained
control of rate selection out of the firmware, and put it into the driver. These alter-
ations enable per-packet control over transmit rate, and effectively disable firmware
rate control.

ARF Implementation. Auto rate fallback attempts to select the best transmit
rate via in-band probing using 802.11’s ACK mechanism. ARF assumes that a failed
transmission indicates a transmit rate that is too high. A successful transmission is
assumed to indicate the current transmit rate is good, and that a higher rate might
possibly be useful.

The ARF implementation works as follows. If a given number of consecutive
packets are sent, then increment to the next highest transmission rate. If a given
consecutive number of packets are dropped then decrement the rate. If no traffic has
been sent for a given amount of time, then use the highest possible transmission rate
for the next transmission. In this ARF implementation, the increment threshold is set
at 6, the decrement threshold at 3, and the timeout value at 10 seconds. (The Prism
2.5 firmware based ARF algorithm uses a decrement threshold of 3 and a timeout of
10 seconds, but is somewhat different than the algorithm used here since retries are
implemented entirely in firmware.)

SNR Implementation. SNR-based approaches attempt to eliminate the over-
head of probing for the correct transmission rate by selecting the optimal transmission
rate for a given SNR. These schemes typically ignore multipath interference, and as-
sume that card RSSI/noise floor measurements are completely characterized on a
per-card basis.

SNR-based rate selection algorithms are faced with the fundamental problem that
the information they need to make the rate selection decision is measured at the
receiver. The SNR-based implementation leverages receiver based reception informa-
tion, like RBAR [24], but eliminates the per-packet overhead and works with standard
802.11. The key insight that the SNR-based algorithm leverages is the fact that in-
stantaneous path loss between two given points is symmetric in both the sending

132 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

and receiving directions 1. Hence, it’s possible to estimate SNR at the receiver by
observing traffic in the reverse direction. Further details of this scheme are omitted
as they are beyond the scope of this work.

Estimated Rate Fallback. While signal based transmission rate selection has
the benefit of quickly setting the transmission rate, this technique may be inadequate
in some situations. Auto rate fallback, on the other hand, has the advantage of
implicitly taking all relevant channel factors into consideration, but may probe more
than necessary. A simple hybrid algorithm was developed that uses both SNR and
ARF in conjunction the on-card measurements of multipath. This scheme is called
Estimated Rate Fallback (ERF).

The basic idea of ERF is to run the ARF and SNR-based schemes in parallel,
and then to select the appropriate estimate. This is done by using the SNR-based
estimate unless one of the following is true: multipath is detected, or the SNR estimate
is near a decision threshold (2 dB in this implementation). This allows ERF avoid
the multipath weakness of the SNR-based approach while reducing the need for card
characterization.

Rate Selection Algorithm Comparison The performance of the previously
discussed transmission rate selection algorithms is now evaluated using three emulated
signal propagation environments. In all cases, the same test is used to measure
performance.

Under lightly loaded traffic conditions, optimal rate selection is not strictly nec-
essary since a lower transmission rate can simply be used. Rate selection becomes
critically important, however, when the wireless network is running at capacity. For
two of these tests, this fully loaded condition for a single transmit-receive pair is
examined. For the third test, a lightly loaded situation is examined.

To measure performance of a single transmitter under full load, as many unicast
UDP 1400-byte packets as possible are sent from the transmitting node to the re-
ceiving node under the given signal environment. For the lightly loaded scenario, 100
packets are sent over 10 seconds and the number successfully received is measured.

These tests highlight the emulator’s ability to enable controlled comparison of rate
selection mechanisms with a high degree of repeatability. For each experiment this
section will briefly discuss how the experiment would have fared using an alternate
approach.

Fixed RSS. The first test used to evaluate the various rate selection mechanisms
was to measure performance when the received strength was constant and the source
sent as much traffic as possible as described above. Figure 7.39 shows the results. As

1This discussion assumes a single receive and transmit antenna. This approach can be modified
to support the general case.

7.4. CASE STUDIES 133

0

100

200

300

400

500

600

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

SNR (dB)

T
hr

ou
gh

pu
t (

pa
ck

et
s

re
ce

iv
ed

)

ARF
SNR
ERF

Figure 7.39: Rate Selection for Fixed RSS

0

20

40

60

80

100

120

ARF SNR ERF

T
hr

ou
gh

pu
t (

pa
ck

et
s)

Figure 7.40: Rate Selection for Under Multipath

expected, SNR performs well. ARF, on the other hand, performs poorly at interme-
diate signal levels where it is periodically probing for a higher bandwidth that will
never be useful. ERF, is able to match SNR performance quite closely.

Obtaining this result using real-world experimentation would be possible, but
tedious since positioning nodes to obtain a particular fixed RSS is difficult. Simulation
might be used, but would only yield useful results if the hardware were modeled
accurately.

Multipath. Next, rate selection performance in a multipath environment was
measured by commanding the emulator to introduce a delayed copy of the primary
signal from the sender to the receiver (ideally this would be both directions) with a

134 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

fixed delay of 1 symbol period. With the RSS of the primary ray set to -77 dBm,
the delayed ray strength is set to -84 dBm. As shown in Figure 7.40, ERF and ARF
perform much better than SNR since SNR sends at 11 Mbps. This also masks the fact
that SNR uses multiple retries to even attain this throughput. This test demonstrates
that multipath can cause the SNR-based scheme to fail, although it is unclear whether
this situation is common enough to worry about in many environments. Nevertheless,
ERF is able to use hardware information to eliminate even this situation.

Eliciting this result using real-world experimentation would essentially require a
highly controlled large-scale RF test range. Using simulation would simply not be
feasible.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time (seconds)

T
h

ro
u

g
h

p
u

t
(p

ac
ke

ts
)

ARF
SNR
ERF

Figure 7.41: Rate Selection for Driveby Emulation

Fast Fading. Performance in a fast fading environment was then tested by
measuring throughput during a replay of a “drive by” scenario similar to that shown
in Figure 7.41. (In this experiment, the controller is simply emulating the fast fading
caused by multipath, and is not actually emulating multiple signal copies. Hence,
the multipath differences in the various algorithms are not demonstrated by this
experiment.) Figure 7.41 shows that in this scenario, all algorithms perform similarly
though ARF and ERF generally outperform SNR when the signal is marginal, while
SNR and ERF generally outperform ARF when the signal is strong.

This experiment demonstrates the benefits of being able to replay the exact same
signal trace. Comparing these rate selection algorithms in a real drive-by experi-
ment would be difficult since even slight variations in mobility would cause channel
inconsistency across experiments. Hence, it would be difficult to separate the effects

7.4. CASE STUDIES 135

on performance due to the different algorithms from the effects due to RF channel
variation.

In practice, experiments that include mobility are also very cumbersome to execute
in the real-world especially as the number of mobile nodes increases. A simulated
test would result in a much coarser grained use of the signal fading trace and fail to
simulate the effects of rapid fading due to vehicle mobility. Hence, confidence in the
accuracy of such a simulated test would be greatly reduced.

7.4.2 Bluetooth Interference

One well known problem that can afflict wireless networks in a license free band is
interference from competing sources. To illustrate the emulator’s ability to investigate
interference from arbitrary sources a simple experiment was conducted involving two
802.11b nodes communicating in the face of interference from a Bluetooth source. As
shown in Figure 7.42, each node was positioned 50 meters from the other two nodes.

This experiment was conducted using one or more of three RF Nodes connected to
the emulator prototype: “Orchid”, “Hermes”, and an interferer (“Nice” or a Bluetooth
source). For experiments conducted in an emulated physical environment (i.e. where
manual control of channel parameters is not required), a log-based path loss model
derived from the local environment was used. For each of the experiments discussed,
obtaining realistic results using traditional methods would be difficult or inaccurate.

Figure 7.43 shows the results of communication between Hermes and Orchid for
four scenarios (each value is an average of 25 trials with 95% confidence intervals
shown), two of which - the “Yagi” cases - will be discussed in the next section.

In the “Isotropic, No Interference” test, Hermes and Orchid communicate with
omnidirectional antennas with no interference (using a TCP benchmark with traf-
fic from Orchid to Hermes). Communication is only around 1.25 Mbps due to the
distance between the nodes.

In the “Isotropic, Interference” test, Hermes and Orchid communicate as before,
but the Bluetooth source is configured to broadcast a constant 15 dBm signal with
Bluetooth modulation. TCP communication between Orchid and Hermes is not pos-
sible in this case.

7.4.3 Flexible Antenna and Multi-element Air Interface Sup-
port

Complete control over signal propagation also allows the emulator to emulate ar-
bitrary types of antennas. To illustrate this, the ability of directional antennas to

136 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

Orchid

Hermes

Bluetooth-like
Source

50 m

50 m

50 m

18 dBi Yagi antenna
radiation pattern

Figure 7.42: Directional Antenna Topology

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Isotropic Isotropic Yagi Yagi

No Interference Interference No Interference Interference

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 7.43: Directional Antenna Results

improve range and spatial reuse by minimizing the effects of interfering Bluetooth
traffic (discussed in 7.4.2) was analyzed. Orinoco cards were used for these tests.

The “Yagi” tests repeat the “Isotropic” tests discussed previously, but with 18
dBi Yagi antennas [55] attached to Orchid and Hermes. These antennas are aimed
directly at each other. Figure 7.42 shows the radiation pattern for these antennas.
Note that for Orchid and Hermes, the Bluetooth source lies along a side lobe with
approximately 22 dB and 18 dB respectively less gain than the primary lobe. As shown
in Figure 7.43 these directional antennas successfully increase the communication rate
and also mitigate the effects of external interference.

7.5. SUMMARY 137

7.5 Summary

A clear understanding of wireless device performance is critical in understanding how
wireless networks function and how they might be improved. Despite this need,
little data exists for modern wireless networks on important performance issues such
as packet capture, collision, off-channel reception and interference and how these
interplay with issues such as hidden and exposed nodes.

This section has presented a large controlled study of 802.11 link and device be-
havior aimed at replacing convention and assumption with measured device behavior.
The link-level performance data in conjunction with a wireless LAN radio map has
shown that hidden nodes are uncommon in dense wireless networks, and that true
collisions are unlikely for low transmission rates. Moreover, this section has shown
that interference from nodes that are hidden but external to a given wireless cell
have little impact on wireless network performance due to packet capture. These
findings hint that a capture-aware MAC could reduce the number of exposed nodes
by allowing simultaneous transmissions in cases where it poses no harm.

This section has also measured off-channel interference and reception behavior.
These tests of revealed that off-channel interference rejection can perform very well,
and confirmed the usefulness of leveraging this feature to allow more than three
channels to be used in the 802.11b networks. These results show, however, that off-
channel reception behavior is quite poor and this feature should be used with great
caution.

In addition, fine-grained measurements of device behavior have enabled an ac-
curate understanding of metrics such as RSSI. In particular, imperfections in RSSI
measurements were discussed, and methods of mitigating these imperfections were
illustrated. The data presented in this section should enable a better understanding
of wireless device performance, and act as a catalyst for improving wireless simulator
fidelity.

This chapter has demonstrated that physical layer wireless network emulation can
provide detailed link and device level insights that can be difficult to obtain using
other techniques.

138 CHAPTER 7. LINK AND DEVICE CHARACTERIZATION

Chapter 8

Network Experiments

Chapter 7 illustrated how physical layer wireless network emulation is a powerful
technique that can provide important insights into link-level wireless network behav-
ior. This chapter discusses how physical layer wireless network emulation provides
similar benefits at the wireless network layer.

As an illustrative example, this section considers the important problem of wire-
less LAN access point selection. This problem is analyzed in an enterprise setting for
two reasons. First, enterprise wireless LANs are an important market segment, and
handoff-sensitive applications such as voice over IP (VoIP) are of increasing impor-
tance within this segment. Secondly, enterprise wireless LANs have unique features
such as trust between access points and a wired backhaul infrastructure that simplify
this discussion and provide an opportunity to leverage the wired infrastructure to
improve wireless performance.

The use of physical layer emulation can be applied to a wide range of problems;
this problem was chosen to demonstrate several of the key benefits achievable via this
technique such as: a controlled experimental environment, fair comparison across
experiments enabled by signal environment repeatability, improved “exploratory” ex-
perimentation, and a shortened development cycle.

8.1 Access Point Selection

Access point selection is a fundamental issue that has a large impact on wireless LAN
performance. The 802.11 standard places the burden of solving this problem on the
clients. Access points provide mechanisms for client association and disassociation;
clients are left to discover access points and implement policies that provide good
performance.

139

140 CHAPTER 8. NETWORK EXPERIMENTS

Achieving good performance is challenging for several reasons:

• The limited capabilities of wireless LAN hardware. 802.11 clients are half-
duplex and operate on a single channel. Thus, data communication and looking
for new access points are largely mutually exclusive operations.

• Development of wireless network software is cumbersome. The development
cycle of wireless software requires programmers to move devices in physical
space to explore the effects of parameters and algorithms.

• Testing of wireless network software is difficult. Likewise, the testing of and
debugging of software require physically moving devices. As a result, exercising
all code paths of wireless software can be difficult to achieve.

The development cycle of wireless drivers and firmware is complicated by the
need to run wireless experiments to test, debug, and optimize the algorithms and
software under development. These experiments are typically conducted in a deployed
testbed which can even be co-located with a production network. The resulting lack
of experimental control and repeatability can be serious drawbacks that hinder the
ability to test software, discover problems, and determine the causes of the problems
observed.

Physical layer wireless emulation provides researchers and developers with several
important benefits as discussed in previous chapters.

8.2 802.11 Background

Before discussing how the emulator aids the development of improved access point se-
lection, this section reviews the access point selection mechanisms provided by 802.11.

Access Point Discovery. The first task that a disconnected client must perform
is access point discovery. 802.11 provides two mechanisms for doing this: beacons and
probes.

802.11 access points periodically send beacons announcing their presence and ca-
pabilities. Clients can leverage these beacons to passively discover access points by
simply listening a certain amount of time for incoming beacon frames. The primary
disadvantage of this approach is the latency involved. Beacons are typically sent out
at 100 ms intervals, thus a station must listen to each channel for at least 100 ms
to ensure that all beacons on that channel have been received (in practice a little
more time is needed since beacon frame transmission can be delayed from the nom-
inal transmission time.) Thus scanning eleven 802.11b/g channels requires over one

8.3. MEASURING ACCESS POINT SELECTION PERFORMANCE 141

second, scanning eight 802.11a channels requires nearly one second, and scanning 19
802.11a/b/g channels requires approximately two seconds.

To reduce the latency required to discover stations, 802.11 provides an active
access point discovery mechanism using probe frames. To actively discover access
points on a given channel, a client sends out a probe frame and then waits for a
certain amount of time for responses. Access points that hear the probe frame send
probe response frames containing the same capability information that is contained in
beacon frames. While significantly faster than passive scanning, this process can still
take several hundred milliseconds; moreover, recent trends in access point implemen-
tation point to a possible increase in this latency as more access point functionality
is moved out of firmware and into drivers and centralized access point controllers.

Selection Policy. Access point selection policy is not specified in the 802.11
standard. Given the paucity of information provided by access points, however, the
only realistic interoperable policy is to select the access point with the strongest
signal. (Proprietary extensions from some vendors enable the use of other load-
sensitive policies.)

Access Point Authentication Association. After selecting a suitable access
point, a client joins the access point by first authenticating and then associating.
Association is accomplished by the client sending an association request to an access
point which sends back an association response indicating the results of the request.
Similarly, a client leaves an access point by first sending a disassociation request
frame.

In an enterprise setting, initial authentication will incur a high latency due to
the need to contact a central authentication server. Authentication with subsequent
access points can then be performed very quickly using a variety of fast authentication
approaches [10]. For simplicity, this discussion will consider the case of an open
network where authentication is not required. Networks with fast authentication
should see similar performance.

Roaming. 802.11 roaming between access points is supported using the mech-
anisms presented earlier for access point discovery and association. When a client
desires to search for new access points it uses passive or active scanning to discover
new access points. It then disassociates with the old access point and associates with
the new access point.

8.3 Measuring Access Point Selection Performance

Controlled, accurate, and detailed measurement of access point selection performance
is fundamental to understanding the behavior of access point selection and developing

142 CHAPTER 8. NETWORK EXPERIMENTS

improved policies, protocols, and implementations. Physical layer emulation provides
an ideal environment in which to conduct this measurement, and provides insights
into behavior that can be extremely difficult to obtain using other techniques.

This section discusses a series of experiments that quantify access point selection
performance. For each test, this section will discuss how it is implemented in the
emulator. Results of running these tests then illustrate the insight that controlled
experiments provide.

8.3.1 Two Access Point Tests.

This discussion first considers tests that examine a single roam operation between two
access points. This is an ideal test from which to begin access point selection analysis
since direct control over the signal propagation environment allows the behavior of
a “perfect” client to be fixed a priori. The operation of an actual wireless device’s
access point selection behavior can then be compared with the theoretical “optimal”
behavior. Optimality can be debated since the client lacks a true understanding of
the signal environment that it resides in. “Optimal” behavior - as discussed here -
means optimal given a complete understanding.

This discussion considers two different two access point tests: “abrupt” and “grad-
ual”. Both tests begin with a client associated with a first access point A and ideally
end with the client associated with a second access point B; in some cases the client
may fail to associate with the second access point. Thus, these tests measure perfor-
mance for a fixed scenario namely a roam from access point A to B.

Abrupt. In the two access point abrupt roam test, the emulator signal envi-
ronment is constructed as shown in Figure 8.1. The client initially has a superb
connection with access point A, and no connectivity with the second access point
B. At a certain instant in time, tmove, the connections are reversed so that there is
no connectivity with A and excellent connectivity with B. This experiment measures
how well the client copes with this instantaneous change. Note that signal fading is
not utilized in this test.

This experiment - and the rest of the experiments in this section - use the em-
ulator’s programmatic control interface to define the experiment. This allows tight
control and coordination of the movement of the clients in the emulated signal envi-
ronment with the measurement of access point selection behavior.

Complete measurement of access point behavior requires instrumentation of the
client driver and possibly firmware. This test adopts a less detailed approach in the
interest of portability between drivers. At 250 ms intervals, iwconfig is executed on
the client to determine which access point it is associated with. Using this approach,
the following metrics are extracted:

8.3. MEASURING ACCESS POINT SELECTION PERFORMANCE 143

Client

Access Point
A

Access Point
B

Circles delimit access point communication range.

Figure 8.1: Abrupt Roam Test Configuration

• treaction the amount of time after tmove required until the client either associates
with access point B, or disassociates with A. Intuitively, this is the amount of
time until the client reacts to the new signal environment.

• tcompletion the amount of time after tmove required until the client is associated
with access point B and no further associations or disassociations are observed.

• tdisassociation the amount of time in the roam process during which the client was
disassociated from all access points.

• nassociations the number of access point associations. E.g. a client that disasso-
ciated with A, associated with B, disassociated with B, then associated with A
would yield nassociations = 2.

The abrupt test was used to analyze the roaming performance of a driver that was
very popular at the time of this work: the Madwifi-NG driver. The version used was
0.9.1 which was current when this test was conducted (this driver will be referred to
as Madwifi 0.9.1 hereafter.) The wireless cards used were Senao NL-5354MP ARIES2
cards which are based on the Atheros 5212.

Table 8.1 shows the two access point abrupt roaming performance of the Madwifi
0.9.1 driver. The results shown are drawn from a series of 20 repetitions of the abrupt
roam test. This test clearly reveals two serious shortcomings of this driver’s access
point selection behavior:

144 CHAPTER 8. NETWORK EXPERIMENTS

treaction tcompletion tdisassociation nassociations

Mean 7.32 s 15.24 s 7.92 s 1.0
Median 6.36 s 16.13 s 7.21 s 1.0
Min. 0.75 s 7.88 s 6.19 s 1.0
Max. 21.28 s 38.52 s 17.24 s 1.0

Table 8.1: Abrupt roam performance for Madwifi 0.9.1

• The driver is extremely slow to react to the new signal environment. It took
over 7 seconds on average to begin searching for a new access point.

• Once the driver has recognized the need to find a new access point, it is quite
slow in doing so. It took an average of nearly 8 seconds to find and associate
with the new access point.

Client

Access Point
A

Access Point
B

Figure 8.2: Gradual Roam Test Configuration

Gradual. The abrupt roam test just discussed is quite useful in that the “optimal”
client behavior is known: once the signal environment has changed, the client should
change access points as soon as possible. Real signal environments, however, are not
discrete in nature. Thus, while the abrupt test yields insight into driver performance,
it is not representative of a typical roam from one access point to another.

To observe behavior under a more typical roam scenario - but one in which the
“optimal” outcome is still known - a two access point gradual roam test is used as

8.4. IMPROVING AND TUNING MADWIFI 0.9.1 145

depicted in Figure 8.2. This test is similar to the abrupt test, except that the change
in signal conditions is gradual, and the client is never completely out of range of either
access point as shown by the ovals which depict access point range in the figure.

Specifically at a given instant in time, the client begins moving from access point
A to access point B over an interval of 20 seconds. It then is stationary at B for 20
more seconds before the test is repeated in the opposite direction. This process was
repeated 20 times. Again, fading was not used in this test.

Under this test, the Madwifi 0.9.1 driver failed to roam despite very poor connec-
tivity when near access point B. For the entire test Madwifi 0.9.1 remained associated
with access point A.

This test clearly shows that Madwifi 0.9.1’s slow reaction to a changing signal
environment performs very poorly in a mobile scenario.

8.4 Improving and Tuning Madwifi 0.9.1

The exceptionally poor performance of Madwifi 0.9.1 access point selection is partly
caused by the rudimentary support provided by 802.11 for access point selection.
The high overhead of invoking the active or passive scanning mechanisms makes it
undesirable to do so. The difficulty of implementing, testing, and tuning a high-
performance access point selection algorithm led the authors of the Madwifi driver
to implement a simplistic placeholder access point policy until a more sophisticated
algorithm could be developed. The algorithm that they implemented simply selects
the “best” access point and sticks with it. Roaming only occurs when the initial
connection is broken. Moreover, the implemented scanning algorithm is very slow,
and uses poorly tuned parameters.

While poor performance will occur in real networks, the causes of poor perfor-
mance can be difficult to isolate. When analyzing access point selection in the emu-
lator, in contrast, many of the causes become obvious.

After observing the poor performance of Madwifi 0.9.1, an investigation was initi-
ated into the causes of this poor performance. The emulator’s interactive environment
provided an ideal environment in which to conduct this investigation. In this case, the
signal environment from the abrupt roam case was used, but the mobility script was
turned off. After turning on the Madwifi scan and roam debug logging, roams were
initiated interactively by simply moving the client under inspection from near one
access point to the other in the GUI. The time at which this occurred was recorded,
as was the time at which disassociation with the old access point occurred, and the
time that reassociation with the new access point completed.

146 CHAPTER 8. NETWORK EXPERIMENTS

Conducting this procedure several times quickly revealed a variety of mechanisms
that were causing very poor roaming. For instance:

• Scanning was failure driven; that is, the connection with the current access
point had to break before scanning was initiated. Proactive scanning code was
disabled.

• Low-pass filtering of signal results caused very slow updates. Thus, several scans
were required before an accurate view of the signal environment was obtained.

• Caching of scan entries caused invalid results to be used as if they were fresh.

• Multiple attempts were made to associate with access points even if the only
information about that access point was not fresh.

Thus, Madwifi 0.9.1 was functional for a scenario with little to no mobility; even very
modest amounts of mobility would break network connectivity.

An effort was then undertaken to improve Madwifi’s performance. The above
problems were all found to be easily amenable to improvement through tuning and
small additions to the Madwifi 0.9.1 code as discussed further below. The emulator
provided two important benefits during this effort. First, it reduced development cycle
time. Traditional development would have required testing by running around with
laptops in a real wireless network which would slow development time considerably.
The emulator enabled testing simply by moving icons in the interactive GUI. Secondly,
the emulator’s complete control over the signal propagation environment allowed quick
tuning of parameters. The effects of various values such as proactive scan interval
and scan cache behavior were easily observable in the emulator without any degree of
uncertainty in what the signal propagation environment looked like when tests were
conducted.

The abrupt roam and gradual roam tests were then repeated for the enhanced
version of Madwifi 0.9.1 - called Madwifi 0.9.1-E. Madwifi 0.9.1-E contains a small
number of modifications to address the major shortcomings discussed in the list above.
The results are shown in Table 8.2 and Table 8.3. Again, these results are from 20
executions of each test.

In the abrupt roam case, reaction time and completion time have both dropped
significantly.

In the gradual roam case slightly different definitions for tcompletion are utilized -
labeled tcompletionA and tcompletionB - since the client may switch between access points
multiple times during the test. They are defined as follows:

• tcompletionA the amount of time after tmove required until the client is first asso-
ciated with access point B.

8.5. IMPROVING ACCESS POINT SELECTION USING FAST SCANNING 147

treaction tcompletion tdisassociation nassociations

Mean 0.98 s 4.04 s 3.15 s 1.2
Median 0.94 s 4.00 s 3.08 s 1.0
Min. 0.39 s 3.59 s 2.59 s 1.0
Max. 1.55 s 4.53 s 4.28 s 2.0

Table 8.2: Abrupt roam performance for Madwifi 0.9.1-E

treaction tcompletionA tcompletionB tdisassociation nassociations

Mean 9.96 s 11.33 s 16.14 s 0.95 s 2.1
Median 10.31 s 11.28 s 15.44 s 0.52 s 2.0
Min. 3.22 s 8.54 s 8.54 s 0.00 s 1.0
Max. 17.56 s 17.56 s 34.52 s 3.47 s 5.0

Table 8.3: Gradual roam performance for Madwifi 0.9.1-E

• tcompletionB the amount of time after tmove required until the client is associated
with access point B and no further associations or disassociations are observed.

In contrast to the original driver, the Madwifi 0.9.1-E now roams in the gradual
roam case. In fact the movement time was reduced to 14 seconds in this case, and
roaming clearly happens well under that. Ideally in this case, roaming would occur
halfway between the access points or at at 7 seconds. The enhanced version performs
within a couple seconds of this optimal time, but there is still room for improvement.
The following section introduces a novel way in which access point selection can be
improved by speeding up the scanning process.

8.5 Improving Access Point Selection Using Fast

Scanning

Observation of Madwifi 0.9.1 scan performance in the emulator revealed that a scan
operation would typically take around three seconds to complete. Thus even Madwifi
0.9.1-E would still take a very long time to locate new access points. This observation
inspired a new approach to scanning to reduce this time.

148 CHAPTER 8. NETWORK EXPERIMENTS

8.5.1 Previous Work

Previous efforts have attempted to reduce scan completion time by reducing the
number of channels scanned [10, 54, 41, 40]. The idea is that each access point
maintains a list of neighbors. When a station roams away from that access point, it
only scans channels of neighbors thereby reducing scanning time.

8.5.2 Fast Scanning Introduction

Consider Figure 8.3 which shows the operation of a traditional, non-optimized 802.11b/g
active scan operation. When searching for access points, a scanning client scans all
eleven channels by changing to the desired frequency, sending a probe request, and
then waiting a period of time for probe responses. While a station is scanning, it
cannot communicate with its access point. The time to complete active scanning is
dominated by the need to wait for probe responses from access points. As a result,
even scanning two channels can be very time consuming since if no access point is
heard on a given channel, the maximum channel dwell time must be used. For Mad-
wifi 0.9.1 this is 200 ms. Reducing this dwell time is one option, but can only help to
a limited degree and could cause missed probe responses.

Probe 1

Probe 2

Probe 11 Wait 11

AP 1

AP 2

AP 11

Client

Response

Wait 1

Wait 2

Response

Response

Figure 8.3: 802.11 Scanning

8.5. IMPROVING ACCESS POINT SELECTION USING FAST SCANNING 149

Probe 1

Probe 2

Probe 11 Wait 1

AP 1

AP 2

AP 11

Client

Probe responses 1-10 forwarded to AP 11

Aggregate
Response

Figure 8.4: Fast Scanning

This section introduces a new approach to reducing scanning time called Fast
Scanning, and depicted in Figure 8.4. The idea is to eliminate the time required
to listen for probe responses. The key insight leveraged by the “Fast Scanning”
algorithm developed here is that scan completion time can be dramatically reduced
by changing the scanning protocol so that only a station’s current access point (or
others on the same channel) respond with a probe response. Access points on other
channels forward scan information to the scanning node’s access point where it is sent
to the scanning access point.

A fast scanning client scans all channels by changing to each channel, sending a
probe request, and then changing to the next channel without waiting for a probe
response. The last channel scanned is the channel of the currently associated access
point which sends an aggregate probe response containing scan information from all
associated access points. This approach greatly reduces the amount of time required
to complete a scan. Thus all channels can often be scanned in less time than two
channels can be scanned without fast scanning. Moreover, the only wait for probe
reponses occurs when on the channel of the currently associated access point. As a
result, unlike traditional scanning, communication can still take place while waiting
for the probe response.

When initially joining a network, fast scanning must be modified since there is no

150 CHAPTER 8. NETWORK EXPERIMENTS

treaction tcompletionA tcompletionB tdisassociation nassociations

Mean 6.71 s 6.71 s 9.37 s 0.14 s 1.7
Median 6.61 s 6.61 s 7.85 s 0.00 s 1.0
Min. 3.53 s 3.53 s 4.95 s 0.00 s 1.0
Max. 10.66 s 3.53 s 4.95 s 1.33 s 4.0

Table 8.4: Gradual roam performance for Madwifi 0.9.1-EFS

current access point for the scanning client. In this case, the client may use the first
candidate access point to forward probe responses. This case is left as future work.

8.6 Using Emulation to Aid Development

To demonstrate the usefulness of fast scanning, this approach was implemented in
the Madwifi 0.9.1 driver. This driver which includes both the earlier enhancements
and fast scanning is called Madwifi 0.9.1-EFS.

Again, the emulator proved essential in allowing this work to proceed quickly.
Using the emulator’s interactive GUI enabled manual testing of implemented features.
Bugs in the development process were quickly revealed since complete control over the
signal environment eliminated uncertainly and allowed precise testing. No physical
movement of devices was required.

8.7 Measuring Fast Scanning Performance

8.7.1 Two Access Point Tests

The performance of the Madwifi 0.9.1-EFS was then measured using the two access
point gradual roam test. The abrupt roam test was measured as a sanity check;
results are not shown since performance was essentially the same as Madwifi 0.9.1-E
since fast scanning was not implemented for the not associated case.

Gradual Roam Scenario.

Table 8.4 shows the two access point gradual roam performance of Madwifi 0.9.1-
EFS (again, the figures shown are from 20 repetitions.) The reduced scanning time
enabled by fast scanning brings the scan completion time much closer to the opti-
mal 7.0 seconds compared to Madwifi 0.9.1-E. Thus fast scanning appears to be a
promising and viable approach.

8.8. MULTIPLE ACCESS POINT PERFORMANCE. 151

8.8 Multiple Access Point Performance.

Figure 8.5: Multi-AP Test Topology

The performance of the three Madwifi variations discussed above was then mea-
sured for in a multiple-access point high-mobility scenario. The topology for this test
is shown in Figure 8.5. Six access points - emu-3, emu-6, emu-7, emu-8, emu-9, and
emu-10 - are distributed in the test area. They are set to channels 8, 10, 6, 4, 2, and
10 respectively. A log distance large scale path loss model is used with a d0 of 1 m, a

152 CHAPTER 8. NETWORK EXPERIMENTS

Mean Median Standard
Fraction Received Fraction Received Deviation

Madwifi 0.9.1 0.41 0.41 0.16
Madwifi 0.9.1-E 0.70 0.69 0.05
Madwifi 0.9.1-EFS 0.77 0.76 0.04

Table 8.5: Multi-access point roam performance comparison

pld0 of 40 dB, and a path loss exponent n of 4.1. Ricean fading with k = 3 was used.

The client - emu-5 - navigated a route near all of the access points beginning
near access point emu-8 and moving in a counter-clockwise fashion. While the client
navigated this route, UDP-unicast traffic was sent from a wired host, through the
client’s current access point, to the client. Each packet was stamped with an ID, and
the client recorded which packets were received successfully. This test executed 20
times. The test was always commenced as the client approached emu-8 at the start
of route navigation. The test terminated when completion of a single circuit neared
completion. Thus, for each circuit, a particular packet number is sent to the client
when it is nearly in the same physical location as it is on other circuits. The traffic
sent used a VoIP-like data profile of 240 byte packets sent at 33 packets per second.
4620 were sent during each circuit.

Table 8.5 shows the result. As expected, Madwifi 0.9.1 fares very poorly. Madwifi
0.9.1-E performs reasonably well, and is a substantial improvement over the original
driver. Madwifi 0.9.1-EFS is able to increase performance slightly in this case. (The
full benefits of fast scanning are somewhat hidden in this test since the VoIP-like data
does not push the limits of throughput connectivity and quality differences between
Madwifi 0.9.1-E and Madwifi 0.9.1-EFS due to transmission rate are not observable.)

8.9 Summary

This chapter has demonstrated the emulator’s benefits enabling network layer tests
and experiments. In particular, this chapter has looked at the problem of 802.11
access point selection. The performance of a popular driver was measured and found
to be very poor under any sort of mobility. The emulator enabled an investigation
into the source of the poor performance which quickly revealed several contributing
factors.

An improved version of Madwifi 0.9.1 was developed using the insight gained, and
the emulator allowed accurate measurement of the effects of various tuning parameters
which resulted in a better driver.

8.9. SUMMARY 153

Finally, the above experiments inspired a new approach to access point selection
- Fast Scanning - that greatly reduces the time required to look for access points in a
wireless LAN. The emulator aided development of this driver by reducing development
cycle latency and enabling precise tests to be conducted.

The performance of access point selection in a highly mobile multiple access point
scenario was then measured to demonstrate the power of the emulator at conducting
a network-wide test. This test revealed that Madwifi 0.9.1-E and Madwifi 0.9.1-EFS
greatly improved roaming behavior in this highly mobile environment.

Using traditional techniques to conduct the work discussed in this chapter have
been extremely labor intensive, and yielded less accurate insight into driver behavior.
For example, the closest analog to the abrupt roam test in a wireless testbed involves
running between two distributed access points. Simulation would not have allowed
experimentation with the actual driver. Conducting the multi-access point test would
have required a large amount of setup. Even then, the mobility would not have been
precisely controlled and coordinated with packet transmission. Moreover, the signal
environment would have been uncontrolled and differences between tests might have
been caused by factors outside of experimental control. In contrast, physical layer
emulation enabled realistic, yet precisely controlled experiments to be conducted.
This high level of control and repeatability was essential in allowing useful summary
statistics to be computed for the tests described earlier.

154 CHAPTER 8. NETWORK EXPERIMENTS

Chapter 9

Conclusion

In concluding this thesis, this chapter first revisits the motivation behind this work,
and the role that this work plays in assisting wireless researchers and developers.
Key contributions are then discussed, after which important lessons learned about
wireless network behavior - discovered in the course of this work - will be presented.
This work then concludes by discussing future directions that wireless technology is
likely to take and the role that physical layer network emulation can play.

9.1 Motivation Revisited

The Need for Accurate, Controlled Wireless Experimentation. Wireless
networks are rapidly proliferating, providing Internet connectivity in campus envi-
ronments, homes, and public places. New applications - perhaps sensor networks,
vehicular networks, and others currently unforeseen - will further increase the preva-
lence of wireless networks. Given the massive deployment of wireless networks, under-
standing and improving wireless network reliability and performance is an increasingly
important and timely topic. To accomplish this, researchers need the capability to
run realistic and repeatable tests and experiments.

Drawbacks of Previous Approaches. The most obvious way to gain exper-
imental realism is to run experiments on a real wireless network. Unfortunately,
conducting wireless experiments on a deployed testbed is challenging due to the dis-
tributed topology of wireless networks, the ephemeral nature of wireless signal prop-
agation, and the susceptibility to external interference. Obtaining, repeatable exper-
imentation with real wireless nodes running real applications operating in a physical
environment is often not feasible. For this reason, most wireless research to-date has
relied on evaluation via simulation.

155

156 CHAPTER 9. CONCLUSION

Wireless simulators do not, however, completely duplicate real hardware in an
operational environment, and the correctness of wireless simulation is poor at worst
and difficult to validate at best.

Thus researchers have faced a stark alternative: conduct simple yet unrealistic
experiments via simulation, or conduct realistic yet cumbersome and unrepeatable
experiments via testbeds.

How Physical Layer Wireless Network Emulation Helps. This work has
addressed these obstacles by introducing a new experimental approach that strikes a
balance between the realism of testbeds and the repeatability of simulation: physical
layer wireless emulation. This technique supports real applications running on real
wireless devices, and virtualizes only the minimum experimental component - the
signal propagation environment - necessary to obtain experimental repeatability.

This work has shown that physical layer wireless emulation achieves fine grained
control over RF propagation, enables the analysis of higher layer performance, and
facilitates the development of enhanced wireless protocols.

9.2 Contributions

New Experimental Methodology. This most significant contribution of this thesis
is the introduction of a new research methodology: physical layer wireless network em-
ulation. This technique has been shown to possess unique advantages over previous
techniques. Like wireless testbeds, physical layer emulation supports experimenta-
tion with real wireless devices running real applications. Unlike testbeds, however,
the signal propagation environment is fully flexible and controllable. Thus, arbitrary
signal propagation environments can be utilized in a completely controlled and re-
peatable fashion. This is similar to the control and repeatability found in wireless
simulators, but without sacrificing support for real devices, network software, and
user applications like wireless simulators do. Moreover, the complete control over the
signal propagation environment enables experiments to be conducted that could not
be conducted in a wireless testbed or a wireless simulator.

Solves Problems Necessary for Hardware Realization. This work has
solved the problems necessary to implement an operational wireless network emu-
lator. An architecture was developed for converting RF signals to and from digital
form, and for processing these signals to construct arbitrary wireless signal propa-
gation environments. In addition, as this work includes functional implementations
for the components in this architecture that overcome key challenges such as the
synchronization of distributed data conversion components.

9.3. LESSONS LEARNED 157

Software Architecture for Physical Layer Emulation. At the software level,
this thesis has presented an architecture for controlling the hardware-based emulation
in real time, as well as an implementation of that architecture.

Trace Capture and Playback. This work developed a simple method for
recording, processing, and playing back coarse-grained channel traces using commod-
ity wireless hardware. Techniques were developed for overcoming the major inaccu-
racies inherent in these traces, and this technique was shown to obtain good results
in low a delay-spread environment.

Functional Emulator. Moreover, this work has resulted in fully functional
emulator that will continue to be used for wireless research. This emulator will also
serve as a template for the development of emulators for use by other researchers.

Device and Link-level Analysis. This thesis has utilized physical layer em-
ulation to analyze 802.11 link-level behavior. This analysis supplants convention
with actual measured behavior, and should provide the basis for more accurate un-
derstanding of device operation and the development of improved wireless network
simulators.

Access Point Selection. In addition, the emulation platform was used to an-
alyze 802.11 access point selection and roaming, and to develop 802.11 protocol ex-
tensions that improve access point selection and roaming performance.

Utilizing the techniques developed in this work, researchers can reap similar bene-
fits by conducting realistic tests in a controlled environment, and gaining insight into
wireless network and application behavior that is not possible using other techniques.

9.3 Lessons Learned

As touched on in the contributions above, the network, device, and link-level analyses
in this thesis have shed light on a number of important elements of wireless network
performance. While general aspects of many of these elements can be found in other
sources, the specific results are largely unique to this work. This section recaps several
of the most important behavioral elements that networking researchers can benefit
from.

Capture. Several tests in Chapter 7 illustrated the key role that capture plays in
wireless data reception. While the basic effects of capture can be computed analyti-
cally, these tests have precisely quantified the performance of an actual implementa-
tion.

As a receiver begins to acquire a packet it must first lock onto the incoming
signal. The first part of the preamble - before lock is acquired - is the most vulnerable

158 CHAPTER 9. CONCLUSION

to interference. After lock is acquired, capture effect enables the receiver to reject
many interfering signals. For low transmission rates, even interfering signals that are
somewhat stronger than the packet being received may be rejected.

If an interfering signal is strong enough, however, the receiver will drop the initial
packet in favor of the new packet. If the two signals are nearly equal, then both will
be lost and a collision will occur. For low transmission rates, the collision regime is
narrow and signals must be nearly equal. For higher transmission rates, the regime
is large.

An important result of this capture behavior is that 802.11 control and manage-
ment frames are very robust to interference, and are unlikely to collide.

Off-channel behavior. 802.11b defines three “non-overlapping channels” in the
North American regulatory domain. Several groups have proposed “cheating” by
using four slightly overlapping channels, but no fine-grained controlled studies have
been conducted to evaluate the efficacy of this proposal. This work has shown that
a well-designed receiver can reject off-channel interference sufficiently to make four
channels a viable approach.

In addition, some have proposed leveraging the fact that devices can communicate
when they are on different channels for various purposes. The results in Chapter 7,
however, show that this technique is of very limited use.

Hidden and exposed nodes. The link level measurements in Chapter 7 were
used to analyze wireless LAN uplink behavior to gain insight into the prevalence of
hidden and exposed nodes. This analysis shows that in a typical office WLAN, the
hidden node problem is unlikely to afflict the vast majority of nodes due to the fact
that very few nodes associated with the same access point are out of carrier sense
range of each other. Moreover, co-channel interference is unlikely to be a problem
in 802.11b network uplinks due to capture effect. As a result, 802.11b uplinks suffer
most from exposed nodes - the needless deferring of a transmission to avoid collisions.
Future MAC designs could achieve higher throughput by being capture aware.

RSSI. Much research has been published using RSSI for various purposes, yet
scant attention is often paid to what exactly RSSI is reporting. This work has quan-
tified RSSI, and found that RSSI linearity and accuracy varies across vendors and
in some cases across cards from the same vendor. A common feature of RSSI mea-
surements is that near the lowest signal levels, RSSI measurements “flatten out”, and
several actual RSS values will return the same RSSI. A key lesson is that researchers
should measure RSSI on their devices (or a similar device) - using a spectrum analyzer
for instance - before reporting values.

Multipath. This work has quantified the multipath reception behavior of a
popular 802.11b card. The results show that this device does a good job of rejecting
multipath indoors, but does a poor job outdoors. This is a result of the equalizer

9.4. FUTURE WORK 159

on the card being designed to mitigate indoor multipath delay spreads only. Hence,
using wireless LAN hardware outdoors may result in unstable links due to multipath.

Naive use of channel information. Chapter 8 analyzes the roaming behavior
of a popular wireless platform. While the driver analyzed was only a development
version, it contained reasonably sophisticated code that attempted to apply many
heuristics to improve performance. For instance, channel measurements were low-
pass filtered using an exponentially weighted moving average filter, and scan results
were aggressively cached. The undesired effect of these “enhancements”, however,
was to make access point selection decisions based on very stale information.

A key lesson is that naively applying standard performance enhancing heuristics
without considering the behavior of wireless channels may backfire.

9.4 Future Work

This thesis has introduced physical layer network emulation as an attractive alter-
native to traditional methods of wireless network experimentation. While this work
has developed solutions necessary to make this technique viable, there are many open
avenues work to pursue. This section discusses promising directions in which this
work can be extended in the short term. The following section will discuss trends in
wireless technology, and how physical layer emulation can play a role further in the
future.

9.4.1 Scale

The clearest avenue of future work to pursue is that of increasing emulator scale.
Several alternative architectures to the one used in this work were discussed in Chap-
ter 2. Further development and implementation of these alternative architectures
should provide improved emulator scale and fidelity; research in this direction is a
high priority for future work.

Moreover, the channel modeling techniques utilized in the emulator’s current in-
carnation assume that two unique and independent channels exist between every pair
of RF Nodes attached to the emulator. This results in the need to support an order
n2 number of channels. Reducing fidelity of channel modeling for nodes that are more
distant could reduce the need for independent channels and also increase emulator
scale.

160 CHAPTER 9. CONCLUSION

9.4.2 Improving Wireless LANs

Chapter 8 has analyzed one important aspect of wireless LAN operation: access point
selection and roaming. The work in that chapter, however, is only a beginning. Fast-
scanning can be improved to handle cases where nodes are not yet associated with
an access point, and to handle cases where encryption is in use.

In addition, many other important areas of wireless networking operation such
as rate selection and load balancing are excellent candidates for analysis using the
emulator developed in this thesis. Previous work in these areas has suffered greatly
from a lack of a controlled, realistic experimental environment. Emulation overcomes
this obstacle, and should enable insights that are extremely difficult to achieve using
other techniques.

9.5 Trends in Wireless Technology

A common theme in future wireless networks is the increasing prevalence of data.
Data traffic is bursty and difficult to predict; as a result, data networks benefit greatly
from statistical multiplexing of resources. While previous voice-centric wireless net-
works - especially TDMA and FDMA networks - had fewer network level effects to
contend with, statistical multiplexing will cause network-level effects to play promi-
nent roles in the data-centric networks of the future.

Physical layer wireless network emulation provides powerful insight into network
level behavior by striking a balance between control and realism that is achieved
by no other technique. While experiments in real networks will always be necessary,
emulation will enable future wireless networks to be developed with fewer real-network
experiments. This will enable faster, more reliable development of wireless networks,
and will provide a greater understanding of network operation than can be attained
in other ways. Simulation will continue to play a role as a technique of last resort
that provides intuition when the scale or functionality of an experiment cannot be
investigated using emulation or real networks.

This section now elaborates on emerging trends in consumer wireless technology,
and what role physical layer emulation can play.

9.5.1 Cellular

The mass adoption of wireless technology - led by cellular - is arguably the most
fundamental technological development in the last decade. In the coming years, this
will continue as cellular adoption increases penetration in existing markets, and enters
new markets in the developing world.

9.5. TRENDS IN WIRELESS TECHNOLOGY 161

Contemporary cellular devices are, however, no longer merely mobile telephones,
but are increasingly data-capable and data-centric. Future cellular devices will con-
tinue this trend, and will be full-blown computing platforms with ever-increasing
requirements for both sending and receiving data. As a result, cellular networks are
already becoming more data oriented. Future cellular networks will be IP-based and
support data as a first-class service.

9.5.2 Metropolitan Area Networks

To-date, metropolitan area wireless networks have occupied a relatively small niche of
the wireless market. With the advent of WiMAX (IEEE 802.16) networks, however,
the WMAN market is undergoing a dramatic transformation into a commodity-driven
market providing consumer Internet connectivity. Initial users of 802.16 networks will
be traditional data devices such as laptops (laptops are - in fact - already beginning
to ship with integrated WiMAX support.) WiMAX technology will, however, form
the basis of some fourth generation cellular networks. As a result, in the coming
years, there will be no distinction between cellular networks and WMANs; WMANs
will simply be part of standard cellular service.

9.5.3 Wireless Local Area Networks

WLAN technology has flourished over the last decade, and continues to grow at
a rapid rate. While originally targeted towards enterprise LAN replacement, several
innovative usages of WLAN technology have emerged such as “hotspots” and “wireless
mesh” networks. In the long term, however, cellular/WMAN networks will likely
greatly reduce the need for both hotspots and mesh networks. Enterprise WLAN
networks, however, will persist due to both performance and security issues that
make running a LAN over the WMAN/Internet unattractive. Similarly, home WLAN
networks will also persist. In addition, small device-to-device ad hoc usage of WLAN
technology - such as that found in portable video game devices - is also likely to
persist.

9.5.4 Short-range Wireless

Short-range wireless networks are primarily targeted at “cord replacement” i.e. al-
lowing electronic devices to communicate without requiring wires. Bluetooth devices
currently provide low-bandwidth wireless connectivity for headsets, keyboards, etc.
UWB devices will be available reasonably soon that will eliminate the need for wires
between everything from computer monitors to video recorders.

162 CHAPTER 9. CONCLUSION

9.5.5 RFID.

Embedded RF-based identification tags will eventually replace bar-codes on products.
While primarily designed for retail purposes, widespread RFID will enable devices to
discover rich information about objects in their surrounding environment.

9.5.6 Intervehicular Networks

Automobile manufacturers are currently developing intervehicular wireless networks.
These are primarily targeted towards safety applications. The devices used in these
networks, however, will likely provide WLAN access as well that will be used to
communicate with roadside services and infrastructure (e.g. to pay a toll without
requiring a custom transponder.)

9.5.7 Sensor Networks

Sensor networks are currently a very popular research topic, though commercially
they have yet to make significant inroads. In the next several years, they will likely
continue to be an active area of research. Commercial prospects, however, are unclear.

9.5.8 The Future Role of Emulation

The contention-based MACs used in WLAN, sensor, and intervehicular networks
make physical layer network emulation particularly useful for these networks. Never-
theless, the increasing data present in cellular/WMAN networks makes physical layer
network emulation attractive even for these networks. Short-range networks may also
benefit as the number of devices interacting may grow to be quite large, though tech-
nical challenges must be overcome to digitally emulate UWB signals. In the near
term, RFID networks are not likely to require physical layer emulation, but should
challenging multi-reader environments become common, network emulation will be
useful to understand the network level effects present.

A common element in both future WLANs and WMANs will be the use of multiple
air interface devices such as MIMO technology. The current emulator architecture
supports these in a straightforward fashion with each antenna element supported as
an independent RF Node. This simple approach limits emulator scale and models
extraneous channels (such as those between antenna elements on a single device.) An
important area of future research will be scalable support for multiple air interface
devices as discussed in Chapter 2.

9.5. TRENDS IN WIRELESS TECHNOLOGY 163

In closing, the increasing deployment of data-centric wireless networks make phys-
ical layer network wireless emulation an attractive technique for conducting future
wireless experiments. The precise design presented in this thesis will need to adapt,
however, to accommodate future technology. Nevertheless, the design challenges
should be resolvable, and physical layer wireless network emulation will be able to
provide powerful insight for years to come.

164 CHAPTER 9. CONCLUSION

Bibliography

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level Measure-

ments from an 802.11b Mesh Network. In Proceedings of the ACM SIGCOMM

Conference on Network Architectures and Protocols, Portland, August 2004.

[2] G. Arredondo and W. Chriss. A multipath fading simulator for mobile radio.

IEEE Transactions on Communications, 21(11):1325–1328, November 1973.

[3] P. Bahl and V. Padmanabhan. RADAR: an in-building RF-based user location

and tracking system. In Proceedings of PIMRC 2000. London, UK, September

2000.

[4] J.R. Ball. A real time fading simulator for mobile radio. The Radio and Electronic

Engineer, 52(10), 1982.

[5] V. Bose. Design and implementation of software radios using general purpose

processor, June 1999.

[6] E. Boutillon, J. Danger, and A. Gazel. Design of high speed awgn communication

channel emulator. Analog Integrated Circuits and Signal Processing, 34(2):133–

142, February 2003.

[7] B. Braswell. Modelling data rate agility in the 802.11a wireless local area net-

working protocol, March 2001.

[8] E. Casas and C. Leung. A simple digitial fading simulator for mobile radio. IEEE

Transactions on Vehicular Technology, 39(3):205–212, August 1990.

[9] Rooftop Communications. The rooftop c++ protocol toolkit. http://www.

rooftopcommunications.com.

165

166 BIBLIOGRAPHY

[10] Cisco Corporation. Cisco Compatible Extensions. http://www.cisco.com/web/

partners/pr46/pr147/partners pgm concept home.html.

[11] P. De, R. Krishnan, A. Raniwala, K. Tatavarthi, N. Syed, J. Modi, and T. Chiueh.

MiNT-m: An Autonomous Mobile Wireless Experimentation Platform. In Proc.

of Mobisys 2006, Uppsala, Sweden, June 2006.

[12] P. De, A. Raniwala, S. Sharma, and T. Chiueh. MiNT: A Miniaturized Network

Testbed for Mobile Wireless Research. In Proc. of Infocom 2005, Miami, Florida,

March 2005.

[13] Analog Devices. Ad9430. http://www.analog.com/en/prod/0,,AD9430,00.

html.

[14] Analog Devices. Ad9736. http://www.analog.com/en/prod/0,,AD9736,00.

html.

[15] Elektrobit. Propsim c8 wideband multichannel simulator. http://www.propsim.

net/.

[16] Elektrobit. Propsound cs. http://www.propsim.com/index.php?1983.

[17] K. Fall. Network emulation in the vint/ns simulator. In Proc. of The Fourth

IEEE Symposium on Computers and Communications, Red Sea, Egypt, July

1999. IEEE.

[18] M. Fink. Time-reversed acoustics. Scientific American, 281(5):91–97, 1999.

[19] G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading

environment when using multiple antennas. Wireless Personal Communications,

6(3):311 – 335, March 1998.

[20] C. Fullmer and J. Garcia-Luna-Aceves. Solutions to Hidden Terminal Problems

in Wireless Networks. In Proceedings of Sigcomm 1997, Cannes, France, 1997.

[21] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.

Complex behavior at scale: An experimental study of low-power wireless sensor

networks. In UCLA Computer Science Technical Report UCLA/CSD-TR 02-

0013. UCLA Computer Science Department, 2002.

BIBLIOGRAPHY 167

[22] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D. Estrin.

Emstar: A software environment for developing and deploying wireless sensor

networks. In Proceedings of the 2004 USENIX Technical Conference.

[23] E. Hernandez and S. Helal. Ramon: Rapid mobility network emulator. In Proc.

of the 27th IEEE Conference on Local Computer Networks (LCN’02), Tampa,

FL, November 2002. IEEE.

[24] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC Protocol for Multi-

hop Wireless Networks. In Proceedings of MobiCom2001. Rome, Italy, September

2001.

[25] W. Honcharenko and H. Bertoni. Prediction of wideband RF propagation char-

acteristics in buildings using 2D ray tracing. In Proceedings of VTC July 1995,

2005.

[26] W.C. Jakes. Microwave Mobile Communications. Wiley, New York, NY, 1974.

[27] G. Judd and P. Steenkiste. Repeatable and realistic wireless experimentation

through physical emulation. In HotNetsII, Boston, MA, November 2003. ACM.

[28] G. Judd and P. Steenkiste. A simple mechanism for capturing and replaying

wireless channels. In E-Wind 2005, Philadelphia, PA, August 2005. ACM.

[29] G. Judd and P. Steenkiste. Using Emulation to Understand and Improve Wireless

Networks and Applications. In Proceedings of NSDI 2005, Boston, MA, May

2005.

[30] J. Kaba and D. Raichle. Testbed on a Desktop: Strategies and Techniques to

Support Multi-hop MANET Routing Protocol Development. In Proc. of Mobihoc

2001, Long Beach, CA, October 2001.

[31] Walt Kester. MT-007: Aperture Time, Aperture Jitter, Aperture Delay Time

Removing the Confusion. http://www.analog.com/en/content/0,2886,760%

255F788%255F91284,00.html.

[32] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan, and

Chip Elliott. Experimental evaluation of wireless simulation assumptions. In

Proceedings of MSWiM 2004, Venice, Italy, October 2004.

168 BIBLIOGRAPHY

[33] S. Kurkowski, T. Camp, and Michael Colagrosso. Manet simulation studies:

The incredibles. Mobile Computing and Communications Review, pages 50–61,

October 2005.

[34] R. Lackey and D. Upmal. Speakeasy: The military software radio. IEEE Com-

munications, 33(5):56–61, 1995.

[35] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable

simulation of entire tinyos applications. In Proceedings of the First International

Conference on Embedded Networked Sensor Systems, 2003.

[36] T. Lin, S. Midkiff, and J. Park. A dynamic topology switch for the emulation of

wireless mobile ad hoc networks. In Proc. of the 27th Annual IEEE Conference

on Local Computer Networks (LCN’02), Tampa, FL, November 2002. IEEE.

[37] P. Mahadevan, K. Yocum, and A. Vahdat. Emulating large-scale wireless net-

works using modelnet. In Poster and Abstract Mobicom 2002, Atlanta, GA,

September 2002. ACM.

[38] S. McCanne and S. Floyd. UCB/LBNL/VINT Network Simulator - ns (version

2). http://www.isi.edu/nsnam/ns/, April 1999.

[39] A. Mishra, E. Rozner, S. Banerjee, and W. Arbaugh. Exploiting Partially Over-

lapping Channels in Wireless Networks: Turning a Peril into an Advantage . In

Proceedings of IMC 2005, Berkeley, CA, 2005.

[40] Arunesh Mishra, Minho Shin, and William Arbaugh. An empirical analysis of

the ieee 802.11 mac layer handoff process. ACM SIGCOMM Computer Commu-

nication Review, 33(2), 2003.

[41] Arunesh Mishra, Minho Shin, and William Arbaugh. Context caching using

neighbor graphs for fast handoffs in a wireless network. In Proceedings of Infocom

2004, Hong Kong, 2004.

[42] B.. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz. Trace-based mobile

network emulation. In Proc. of SIGCOMM 1997, Cannes, France, September

1997. ACM.

[43] OPNET Tech. Opnet. http://www.opnet.com.

BIBLIOGRAPHY 169

[44] K. Papagiannaki, M. Yarvis, and W. Conner. Experimental characterization of

home wireless networks and design implications. In Proceedings of Infocom 2006,

Barcelona, Spain, April 2006.

[45] K. Pawlikowski, H. Jeong, and J. Lee. On credibility of simulation studies of

telecommunications research. IEEE Communications, 40(1):132–139, January

2002.

[46] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing

disruptive technology into the internet. In Proc. of HotNets-I, Princeton, NJ,

October 2002. ACM.

[47] R. Punnoose, P. Nikitin, and D. Stancil. Efficient simulation of ricean fading

within a packet simulator. In Proc. of the IEEE Conference on Vehicular Tech-

nology, Boston, MA, September 2000. IEEE.

[48] A. Rajkumar, B. Naylor, and L. Rogers. Predicting rf coverage in large en-

vironments using ray-beam tracing and partitioning tree represented geometry.

Wireless Networks, 2(2):143–154, 1996.

[49] T.S. Rappaport. Wireless Communications: Principles and Practice. Prentice-

Hall, Englewood Cliffs, NJ.

[50] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,

R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT Radio Grid Test-

bed for Evaluation of Next-Generation Wireless Network Protocols. In Proc. of

WCNC 2005., New Orleans, LA, March 2005.

[51] L. Roberts. Aloha packet system with and without slots. ARPA Network Infor-

mation Center, TR ASS Note 8, 1972.

[52] A. Saha, K. To, S. PalChaudhuri, S. Du, and D. Johnson. Physical imple-

mentation and evaluation of ad hoc network routing protocols using unmodified

simulation models. In Proceedings of the ACM SIGCOMM Asia Workshop, 2005.

[53] Scalable Network Tech. Qualnet. http://www.scalable-networks.com/.

[54] Minho Shin, Arunesh Mishra, and William Arbaugh. Improving the latency of

802.11 hand-offs using neighbor graphs. In Proceedings of Mobisys 2004, Boston,

MA, 2004.

170 BIBLIOGRAPHY

[55] SmartAnt Telecomm Ltd. Yagi antennas. http://www.smartant.com/

Products/ISM/2.4G/FYW24-01518BFL.pdf.

[56] Spirent Communications. Tas4500 flex5 rf channel emulator. http://www.

spirent-communications.com/.

[57] Azimuth Systems. Azimuth w-series wi-fi test solutions. http://www.

azimuthsystems.com/index.asp?p=213.

[58] C. Tai. Complementary reciprocity theorems in electromagnetic theory. IEEE

Trans. on Antennas and Propagation, 40(6):675–681, 1992.

[59] M. Takai and J. Martin. Effects of Wireless Physical Layer Modeling in Mobile

Ad Hoc Networks, October 2001.

[60] F. Tobagi and L. Kleinrock. Packet switching in radio channels: Part ii–the hid-

den terminal problem in carrier sense multiple-access and the busy-tone solution.

IEEE Trans. on Communications, 23(12):1417–1433, 1975.

[61] UCLA. Whynet Project. http://chenyen.cs.ucla.edu/projects/whynet.

[62] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and

D. Becker. Scalability and accuracy in a large-scale network emulator. In Proc.

of OSDI 2002, Boston, MA, December 2002. USENIX Association.

[63] V. van der Vegt. Auto Rate Fallback. http://www.phys.uu.nl/∼vdvegt/docs/

gron/node24.html.

[64] B. White, J. Lepreau, and S. Guruprasad. Lowering the barrier to wireless and

mobile experimentation. In Proc. of HotNets-I, Princeton, NJ, October 2002.

ACM.

[65] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-

bler, C. Barb, and A. Joglekar. An integrated experimental environment for

distributed systems and networks. In Proc. of OSDI 2002, Boston, MA, Decem-

ber 2002. USENIX Association.

[66] Xilinx. Ise foundation. http://www.xilinx.com/ise/logic design prod/

foundation.htm.

BIBLIOGRAPHY 171

[67] Xilinx. Ml401 documentation. http://www.xilinx.com/products/boards/

ml401/docs.htm.

[68] Xilinx. Platform studio and the edk. http://www.xilinx.com/ise/embedded

design prod/platform studio.htm.

[69] Xilinx. Virtex-4 family overview. http://direct.xilinx.com/bvdocs/

publications/ds112.pdf.

[70] Xilinx. Virtex-ii pro and virtex-ii prox x platform fpgas: Complete data sheet.

http://direct.xilinx.com/bvdocs/publications/ds083.pdf.

[71] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic. Impact of radio irregularity

on wireless sensor networks. In Proc. of MobiSys 2004, Boston, MA, June 2004.

ACM.

