
Temporal-logics as query languages for
Dynamic Bayesian Networks: Application to

D. melanogaster Embryo Development
C. J. Langmead∗,†, S. Jha∗, E. M. Clarke∗

September 2006
CMU-CS-06-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213.
† Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA 15213

E-mail: cjl@cs.cmu.edu

CJL is supported by a Young Pioneer Award from the Pittsburgh Lifesciences Greenhouse and a CAREER award
from the U.S. Department of Energy.

Keywords: Biological networks, Dynamic Bayesian networks, Systems Biology, Model Check-
ing

Abstract

This paper introduces novel techniques for exact and approximate inference in Dynamic Bayesian
Networks (DBNs) based on algorithms, data structures, and formalisms from the field of model
checking. Model checking comprises a family of techniques from for formally verifying systems
of concurrent reactive processes. We discuss: i) the use of temporal logics as a query language for
inference over DBNs; ii) translation of DBNs into probabilistic reactive modules; and iii) the use
of symbolic data structures and algorithms for deciding complex stochastic temporal logic formu-
las. We demonstrate the effectiveness of these new algorithms by examining the behavior of an
enhanced expression model of embryogenesis in D. melanogaster. In particular, we converted an
existing deterministic developmental model over a one-dimensional arrays of cells into a stochas-
tic model over a two dimensional array of cells. Our results confirm that the rules which govern
the one-dimensional model also display wild-type expression patterns in the two-dimensional case
within certain parameter bounds.

1 Introduction
Computational cellular and systems modeling plays an important role in biology, bioengineering,
and medicine. Fundamentally, a computational model is a concrete instantiation of a particular
hypothesis or theory. As such, a model has two phases in its lifecycle. In the first phase, the model
is constructed and refined until it accurately reproduces known behaviors. In the second phase, the
refined model can then be used to: a) gain insights into the underlying phenomenon; b) make novel
predictions about steady-state or transient behaviors of the system under different conditions; and
c) design control strategies. The rapid growth of the field of systems biology has resulted in a
variety of new models for a diverse set of biological phenomena including circadian rhythms (e.g.,
[41]), regulatory pathways (e.g., [46]), metabolic pathways (e.g., [27]), and bacterial infection
(e.g., [22]). It can be safely assumed that the variety, scope, and complexity of such models will
continue to grow. Modeling techniques will need to keep pace with these developments.

There are variety of modeling techniques in use within systems biology. Dynamic Bayesian
Networks (DBNs) [36] are a popular method for studying state-transition systems with stochas-
tic behavior. DBNs comprise a large number of probabilistic graphical models [32], including
the familiar Hidden Markov Model (HMM). DBNs have been used widely in biology to model
sequential (e.g., [26, 12, 17]) and temporal data (e.g., [37, 42, 6]). There are two basics tasks
associated with DBNs: learning and inference. Learning involves estimating the parameters of
the model from a set of training data. Inference encompasses a number of tasks involving making
predictions based on the model.

This paper introduces a new set of algorithms for performing inference in DBNs using tech-
niques from the field of model checking [21]. Model checking refers to a family of algorithms, and
their associated data structures, for verifying systems of concurrent reactive processes. We will use
these techniques to reason formally about the dynamic behavior of complex systems. Historically,
model checking has been used to verify the correctness and safety of circuit designs, communica-
tions protocols, device drivers, and C or Java code. Abstractions of these systems can be encoded
as finite-state models. An important feature of model checking algorithms is that they are exact
and scale to real-world problems. For example, model checking algorithms for deterministic sys-
tems have been able to reason about systems having more than 1020 states since 1990 [11], and
have been applied to systems with as many as 10120 states [9, 10]. More recently, model checking
techniques have been created for stochastic systems. These so-called probabilistic model checking
techniques are central to this paper. Probabilistic model checking techniques can be either exact or
approximate. They also scale to large systems, and have been applied to systems with as many as
1030 states [25].

Our key observation is that performing inference in DBNs and performing probabilistic model
checking are very similar activities. This suggests that model checking algorithms can be used to
perform inference in DBNs, and visa-versa. The primary contribution of our paper, however, lies
in the demonstration that a model checking-based approach results in a substantially more general
framework for performing inference in DBNs. DBN inference algorithms are instance-based.
That is, one makes predictions by conditioning the model on a single, finite-length observation
sequence. Model checking, on the other hand, poses queries as formulas in a temporal logic. These
formulas can easily encode finite-length observation sequences, like those used in traditional DBN

1

(0,0)

(1,1)

(0,1)

(1,0)

1 1

0.2

0.8
0.9

0.1

(A)

(0,0) (0,1) (1,0) (1,1)

0.9 0.1 0 0

(B)

0.9 0.1 0 0

0.2 0.8 0 0

0 1 0 0

1 0 0 0

(0,0)

(0,1)

(1,0)

(1,1)

(0,0) (0,1) (1,0) (1,1)

(C)

Figure 1: (A) A finite-state Markov process,(S, T, π), in graphical form. The nodes in the graph correspond
to the state-space, S. Each state corresponds to one of the possible combinations of two Boolean random
variables, Z1 and Z2. (B) A vector encoding π, the prior probability over S. (C) The state transition matrix,
T .

inference algorithms. More importantly, temporal logic formulas can also encode queries over
a) infinite execution sequences, b) execution “trees” representing all possible outcomes for non-
deterministic systems, and c) logical orderings of events. That is, temporal logics can be used to
ask questions about equivalence classes of behaviors well beyond the capabilities of instance-based
inference methods. Model checking algorithms are then used to answer these questions either
exactly, or using approximate methods. Thus, a model- checking based approach to inference can
greatly enhance the power of DBNs.

The contributions of this paper are as follows:

• We establish the connection between DBNs and probabilistic model checking.

• We introduce algorithms for performing exact and approximate inference in DBNs via model
checking.

• We introduce temporal logics to DBN, facilitating a more general means of performing in-
ference.

• We demonstrate our algorithms on a novel model of development in Drosophila, building on
work initially reported by [1].

2 Background
The primary aim of this paper is to combine techniques from two fields that have evolved indepen-
dently: Dynamic Bayesian Network modeling and Model Checking. We briefly review each field
in the following two sub-sections.

2.1 Dynamic Bayesian Networks
A DBN is a compact encoding for Markov and semi-Markov processes. A Markov process is
a triple, (S, T, π) where S is a state space of size n, T : S × S → [0, 1] is an n × n stochastic

2

Z1 Z2

P(Z1)
0
1

1
0

P(Z2)

Z1 0 1
0 0.9 0.1
1 0.8 .2

(A)

Z1
t

Z2
t

Z1
t+1

Z2
t+1

P(Z2
t+1|Z1

t)
Z1 0 1
0 1 0
1 1 0 01(1,1)

10(1,0)
0.80.2(0,1)
0.10.9(0,0)
10(Z1,Z2)

P(Z2
t+1|Z2

t)

(B)

Figure 2: A DBN for the finite-state Markov process in Figure 1. (A) A static Bayesian network encoding
the prior distribution (π) over S. The nodes represent Boolean random variables Z1 and Z2. The CPD tables
are also shown. (B) A two-slice temporal Bayesian network encoding the state transition matrix, T . The
nodes represent Boolean random variables Z1 and Z2 at times t and t + 1. The CPD tables are also shown.
The pair (BS ,BT) comprises a DBN.

transition matrix, and π is a prior probability distribution over S. For a finite-state model1, the state
space corresponds to the cartesian product of a set of m random variables, Z = {Z1, Z2, ..., Zm},
over a finite domain, D. Thus, |S| = n = O(|D|m). The Markov property assures us that, in a
kth-order Markov model, the probability of being in some state s ∈ S at time t only depends on
the prior k states. Hence, for k = 1, Ti,j = P (Sj

t |Si
t−1). Figure 1 depicts a finite state Markov

process. Markov processes are a well-studied area, and numerous techniques exist for analyzing
their dynamic properties and for developing control policies (e.g., [24]).

Of course, when |S| is large, it is not practical to explicitly represent S or T . A DBN solves
this problem by encoding S, T , and π in a factored form, taking advantage of the conditional inde-
pendencies between random variables. Figure 2 shows a DBN of the finite-state Markov process
in Figure 1. A DBN is a pair, (BS ,BT), where BS is a static Bayesian network encoding the prior
probability distribution, π, over S (Fig. 2-A), and BT is a two-slice temporal Bayesian network
encoding the state transition matrix, T (Fig. 2-B). A Bayesian network is a probabilistic graphical
model comprising a set of nodes and edges. Nodes represent random variables and edges denote
conditional dependencies among variables. Associated with each node is a conditional probability
distribution (CPD) that encodes the probability of the state of that variable, given its parents in the
graph. The precise form of the CPD depends on the nature of the model. When the state space is
finite, CPDs are generally in tabular form. Notice that BT (Fig. 2-B) is a more compact represen-
tation than the state transition matrix, T , in Figure 1-C in that the combined size of the two CPDs
(12 table elements) is smaller than the size of T (16 matrix elements). In this example, the savings
are modest, but in a larger system, with many more state-variables, the savings can be dramatic.

1The restriction to finite-state models is for illustration purposes only. It is not an inherent limitation of DBNs.

3

The efficiency of DBN learning and inference algorithms is proportional to the size of the CDPs.
The transition model for a DBN is the product of the CPDs.

P (Zt|Zt−1) =
m∏

i=1

P (Zi
t |Pa(Zi

t)) (1)

The joint distribution for a sequence of length τ can be computed,conceptually, by “unrolling”
BT until it has τ slices. The joint distribution of the model is then:

P (S1..τ) =
m∏

i=1

PBS
(Zi

1|Pa(Zi
1))

τ∏
t=2

m∏
j=1

PBT
(Zj

t |Pa(Zj
t)) (2)

It is often the case that a particular observation sequence consists only of a subset of the random
variables, Z. These variables are usually called the observed variables, and the complementary set
are called the hidden (or latent) variables. By convention we refer to the observed variables by Y
and the hidden variables by X . The joint distribution P (X, Y) for a DBN with latent variables is
computed in a manner similar to Eq. 2.

The DBN in Figure 2 model might arise in the context of gene regulation, where the individ-
ual variables/nodes represent genes and the edge-set encodes the regulatory relations amongst the
genes. Given a DBN, there are a variety of tasks we may wish to perform. We use the terminology
of Murphy [36] and define:

• filtering: computing P (Xτ |y1..τ);

• prediction: computing P (Xτ+h|y1..τ), for h > 0;

• decoding: computing P (x1..τ |y1..τ);

• classification: computing P (y1..τ).

Inference algorithms for DBN are either exact or approximate. Exact inference is known to be
#P-hard in general [23], but there are exact algorithms for special classes of models. For example,
exact algorithms for decoding and classification in Hidden Markov Models run in time O(T |S|2).
Of course, when |S| is large, these algorithms are not practical, and approximate techniques are
needed. Deterministic approximate inference algorithms exist, but the tightness of the bounds
for these algorithms has not been established [36]. Inference techniques based on Monte Carlo
sampling can be used, but these are expensive and are not well suited to answering questions about
rare events (or rare sequences of events) that may be of biological significance.

2.2 Model Checking
The term model checking [21] refers to a family of techniques from the formal methods community
for verifying systems of concurrent reactive processes. Model checking algorithms were originally
developed to verify the correctness of circuit designs and communications protocols, both of which
can be encoded as finite-state models. Over the past 25 years, however, new model checking

4

Transition Z1
t Z2

t Z1
t+1 Z2

t+1 Z1
t Z1

t+1 Z2
t Z2

t+1 P(s → s’)

(0,0) → (0,0) 0 0 0 0 0 0 0 0 0.9
(0,0) → (0,1) 0 0 0 1 0 0 0 1 0.1
(0,1) → (0,0) 0 1 0 0 0 0 1 0 0.2
(0,1) → (0,1) 0 1 0 1 0 0 1 1 0.8
(1,0) → (0,1) 1 0 0 1 1 0 0 1 1
(1,1) → (0,0) 1 1 0 0 1 0 1 0 1

Z1
t

Z1
t+1

10.9 0.80.20.1

0

0

0 0

1

1

1 1

Z2
t

Z2
t+1

(A) (B)

Figure 3: (A) A binary encoding of the same transition model depicted in Figures 1-C and 2-B. Columns 2
and 3 contain binary encodings of states 1-4 at times t = i and t = i + 1, respectively, using the variables
Z1

t , Z2
t , Z1

t+1 and Z2
t+1. Column 4 shows one possible ordering of Z1

t , Z2
t , Z1

t+1 and Z2
t+1. (B) The MTBDD

encoding of Columns 4 and 5 of the table on the left. OBDD/MTBDD encodings do not represent internal
nodes if they aren’t necessary. For example, there is no need to explicitly represent Z1

t+1 since it is always
0. Notice that, in this example, the MTBDD encoding is more compact than the DBN encoding in Figure
2-B

algorithms have been devised for both stochastic (e.g., [4]) and hybrid models (models containing
mixtures of discrete and continuous variables) (e.g.,[19, 43, 39, 38]). As previously mentioned,
model checking algorithms scale to very large systems.

Model checking has recently been used to study biological systems (e.g., [14, 3, 15, 13, 5,
43, 39, 38, 29, 34]). However, the relationship between model checking to DBNs has not been
previously reported. Like DBNs, model checking is a very broad area, so we will highlight a
few key aspects of model checking that are relevant to this paper, focusing on aspects of model
checking stochastic system.

2.2.1 Representation:

Like DBNs, probabilistic model checking does not use an explicit construction of the entire state
space, S, or the state transition matrix, T . Rather, the state space is encoded in a factored form
using a collection of data structures known as multi-terminal binary decision diagrams (MTBDD)
[20]. A MTBDD is a directed acyclic graph for representing boolean functions of the form
f : {0, 1}n 7→ R (Fig. 3). MTBDDs can be used to encode arbitrary vectors and matrices
and are known to require no more space than a sparse encoding of the full matrix/vector. That
is, a MTBDD encoding is no worse than an explicit encoding. However, MTBDDs can sometimes
require less space than a sparse-matrix representation, depending on the exact nature of the matrix.
The MTBDD in Figure 3-B, for example, is a more compact representation than both the sparse-
matrix representation of the transition matrix in Figure 1-C and the DBN in Figure 2-B. The size of

5

the MTBDD depends on the number of unique elements in the transition matrix and the encoding
of the state transitions (e.g., Column 4 in Figure 3-A). Finding an optimal encoding is NP-hard,
but very good heuristics exist and the space savings can be substantial [8].

One of the advantages of MTBDD encodings is that arithmetic computations can be performed
directly on MTBDDs in time proportional to the product of their sizes. That is, if f and g are
MTBDDs encoding two matrices, then the time to compute f ◦ g is O(|f ||g|) where ◦ = ∗, /, +,−
and |f | and |g| are the number of nodes in the MTBDD representations of f and g, respectively.
This complexity result follows from a theorem due to Bryant for ordered binary decision diagrams
(OBDD) [8]. OBDDs are canonical encodings of boolean functions of the form f : {0, 1}n 7→
(0, 1). MTBDDs are a generalization of OBDDs to real-valued boolean functions.

2.2.2 Queries:

In model checking, queries are expressed as formulas in one of several temporal logics. The most
common temporal logics are those based on computation trees. The basic idea is that, conceptually,
the space of all possible execution traces from a given starting state (or set of starting states) can
be modeled as an infinite computation tree. A query, therefore, corresponds to a question about
a particular path, or sets of possible paths. These queries are encoded as a formula in a temporal
logic.

To draw a comparison with DBNs, recall that DBNs inference algorithms are instance based.
That is, they require a finite-length observation sequence. If all state variables are known (that is,
there are no hidden variables), then that observation sequence corresponds to a single path in the
computation tree. Otherwise, the observation sequence corresponds to a set of fixed-length paths,
and the likelihood of observing that sequence can be computed by integrating over those paths.
It is worth noting that there have been a variety of powerful model checking techniques that have
been developed for reasoning about finite-length execution sequences [7]. These so-called bounded
model checking techniques are also potentially useful as an alternative for inference algorithms on
DBNs.

Temporal logic formulas are also capable of expressing detailed questions about the logical
ordering of specific events, and can do so over both finite and infinite executions. The syntax
and semantics of temporal logics based on computation trees, known as computation tree logics
(CTL), vary, but they generally include the path quantifiers Aφ, and Eφ. Here, φ corresponds to a
path formula that encodes the attributes of interest, and A and E correspond to the notions “for all
paths” and “there exists a path” in the computation tree, respectively. CTL also includes temporal
operators, Xφ, Fφ, Gφ, and φ1Uφ2. Here, Xφ means that φ holds in the next state; Fφ means
that φ holds sometime in the future; Gφ means that φ holds globally in the future; and φ1Uφ2

means that φ1 holds until φ2 holds. There is also the notion of a bounded until operator, φ1U≤kφ2,
which means that φ1 holds for up to k steps, and then φ2 holds. These operators can be combined
using logical connectives and modifiers. Temporal logic formulas can encode a remarkable set
of complex abstract behaviors. For example, Antoniotti et. al. [3] define a formula that can be
used to ask whether a particular quantity, say x, oscillates between two thresholds, v1 and v2. The
corresponding temporal logic formula is:

6

G(F(x < v1) ∧ [x < v1 =⇒ F(x > v2)] ∧ [x > v2 =⇒ F(x < v1)]) (3)

In English this formula say that it is globally true that i) x will eventually fall below v1, ii) when
x falls below v1 it will, eventually, rise above v2, iii) when x rises above v2 it will, eventually, fall
below v1. DBN inference algorithms cannot encode such complex queries.

Many variants of CTLs exist. The most important of these with regard to this paper is prob-
abilistic computation tree logic (PCTL) [28] which adds probabilistic operators, such as P=?φ.
This operator asks “with what probability will φ hold?” Extensions to PCTL add operators for
computing upper and lower bounds (e.g., P<cφ), expected time, and steady-state probabilities.

The model checking community has developed techniques for converting formulas in temporal
logics into symbolic forms (i.e, OBDDs and MTBDDs). Queries are then answered, exactly, using
symbolic computations. In particular, the model checking community has algorithms for perform-
ing fix-point computations symbolically. This avoids the need to explicitly enumerate all paths.
Additionally, approximate model checking algorithms are also available (e.g, [47]).

Different temporal logics have different expressive powers. Consequently, the complexity of
model checking will vary, depending on which logic is used. For example, model checking CTL
formulae can be done in polynomial time in both the size of the model and the length of the
temporal logic formula [18], whereas model checking formulas in the temporal logic CTL*, which
combines the operators of CTL with those of linear temporal logic (LTL), is PSPACE-hard [44].
However, this result is tempered somewhat by the fact that model checking CLT* formula is linear
in the size of the model, but exponential in the size of the formula [35]. That is, for short formulas,
model checking CTL* formulas may be practical. We note that, as evidenced by the multitude
of real-world examples of model checking using a number of different logics (see, e.g., [21]),
effective strategies have been developed to address these worst-case complexity challenges.

3 Inference in DBNs via Model Checking
We have shown that DBNs and MTBDDs can be used to encode equivalent models. In this section
we outline a procedure for converting DBNs into probabilistic reactive modules and a procedure
for posing and answering inference problems using model checking.

The conversion of an existing DBN into a probabilistic reactive module is a one-time operation
that is easily automated. Briefly, model checking tools generally provide a high-level language for
defining a system of synchronous or synchronous processes. The syntax and semantics of these
system specification languages vary. Our experiments, for example, were conducing using the
PRISM probabilistic model checking software [31]. PRISM provides two options for specifying
systems: a probabilistic extension to the reactive module specification formalism of [2], and the
stochastic process algebra PEPA [30]; we specified our models using the PRISM modeling language.
A system specification is then compiled into a MTBDD (or equivalent) where optimizations are
applied to minimize the size of the MTBDD.

A DBN can be converted into a form suitable for model checking by creating a separate process
for each random variable in the model (Figure 4). Each process’ specification will encode the CPD

7

Z1
t

Z2
t

Z1
t+1

Z2
t+1

Z1
t

Z1
t+1

10.9 0.80.20.1

0

0

0 0

1

1

1 1

Z2
t

Z2
t+1

Process Z1

{
if(Z1==0)

Z1 = 0
if(Z1==1)

Z1 = 0
}

Process Z2

{
if(Z1==0 & Z2==0)

Z2 = 0.9 : 0 + 0.1:1
if(Z1==0 & Z2==1)

Z2 = 0.2 : 0 + 0.8:1
if(Z1==1 & Z2==0)

Z2 = 1
if(Z1==1 & Z2==1)

Z2 = 0
}

(A)

P(Z2
t+1|Z2

t)
(Z1,Z2) 0 1

(0,0) 0.9 0.1

(0,1) 0.2 0.8

(1,0) 0 1

(1,1) 1 0

(C)

(B)P(Z2
t+1|Z1

t)

Z1 0 1

0 1 0

1 1 0

Figure 4: The conversion of BT (panel A, copied from Fig. 2-B) into a probabilistic reactive module. Each
variable is modeled as a process (panel B). Here, we use pseudo code based on the system specification
language used by [31]. Basically, the specification encodes a CPD. This conversion is easily automated.
Model checking software then convert the system specification into a MTBDD (panel C).

for that variable. DBNs encode discrete-time Markov chains. That is, each variable is updated at
the same time. This implies that the processes in the system specification must be synchronous.
We note, however, that the model specification languages can also be used to model asynchro-
nous processes. Indeed, model checking is most often applied in other domains to asynchronous,
concurrent reactive processes. This flexibility actually permits model checking of continuous-time
Markov chains and Markov Decision processes (e.g., [40, 33]).

In addition to converting the DBN into a MTBDD, it is also necessary to support standard in-
ference mechanisms. As previously mentioned, DBNs perform instance-based inference where a
single, finite-length observation sequence, O, is specified. Generally, these observation sequences
specify an exact temporal ordering of the states of the observed variables. Let λ be a DBN ex-
pressed as a MTBDD and let O = (o1, o2, ..., ot) be a sequence of observations. We can compute
quantities like P (O1..τ |λ) using model checking by composing a PCTL formula of the form:

P=?[o1 ∧ X(o2 ∧ X(o3 ∧ ... ∧ X(oτ)...))] (4)

Here, oi is a Boolean predicate that indicates the values of the observed variables in the ith state.
For example, if Ya, Yb, and Yb are Boolean random variables, the Boolean predicate might be
oi |= (Ya = 1 ∨ Yb = 0 ∨ Yc = 0), where a |= b means that a models or satisfies b. Or, if the
variables are real-valued, the predicate may have the form oi |= (Ya = 0.8∨Yb = 99.2∨Yc = 2.1).
In English, Eq. 4 asks “With what probability will we, starting in state o1, immediately move to
state o2, and then move to state o3 and so on?” Probabilistic model checking algorithms are then
used to evaluate the formula. Thus, it is possible to perform classification (P (O1..τ |λ)) via model
checking. It is also possible to decode (i.e., compute P (x1..τ |y1..τ)) by taking advantage of the
counter-example generation capabilities of model checking. Here we would assert that a formula

8

of the following is not satisfied:

P<=0.8[o1 ∧ X(o2 ∧ X(o3 ∧ ... ∧ X(oτ)...))]. (5)

This formula asserts that all sequences of length τ that match the observation sequence have prob-
ability less than or equal to 0.8. If this property is not true, then the model checking algorithm
provides a counter-example which will reveal the state transitions for all variables, not just the
observed variables. In this way, decoding can be performed.

As previously mentioned, model checking also supports queries that are not expressible using
traditional DBN algorithms. For example, Boolean predicates can be written to define equivalence
classes of states such as oi |= (Ya >= 1.2 ∨ Yb < 0 ∨ Yc = 12) or oi |= (Ya + Yb > 7 ∧ Yc = 12).
These predicates correspond to sets of states. Additionally, formulas of the form φ1U≤kφ2 let
one specify both logical orderings of events, and a bound on the spacing between events, without
having to specify an exact distance between events, as is necessary in instance-based inference.
Finally, the previously cited formula expressing oscillating behavior is an example of a formula
over infinite sequences.

4 Application To D. Melanogaster Embryo Development
We applied our approach to inference in DBNs to an existing model of fruit fly embryo devel-
opment [1]. Briefly, Albert and Othmer have developed a Boolean network model of the segment
polarity gene network in D. Melanogaster based on differential equation model of the same system
developed by von Dassow and co-workers [46]. The model comprises 5 RNAs: (wingless (wg);
engrailed (en); hedgehog (hh); patched (ptc); and cubitus interruptus (ci)), and 10 proteins: (WG;
EN; HH; PTC; CI; smoothened (SMO); sloppy-paired (SLP); a transcriptional repressor, (CIR),
for wg, ptc, and hh; a transcriptional activator, (CIA) for wg and ptc; and the PTC-HH complex,
(PH)). Each molecule is modeled as a Boolean variable and the update rules are Boolean formulas
that take into account both intra-cellular state, and inter-cellular communication. We note that a
Boolean network model can be encoded as a DBN where the transition probabilities are binary.
That is, each element in the transition matrix, T , is either 0 or 1.

Albert and Othmer have demonstrated that the Boolean model accurately reproduces both wild-
type and mutant behaviors. In their experiments, they consider a 1-dimensional array of cells ini-
tialized to the experimentally characterized cellular blastoderm phase of Drosophila development,
which immediately precedes the activation of the segment-polarity network. The purpose of the
segment-polarity network is to maintain a pattern of expression throughout the life of the fly that
defines the boundaries between parasegments, small linear groupings of adjacent cells. Two possi-
ble parasegment boundary expression patterns are shown in Figure 5-A. In the Albert and Othmer
work, the parasegments are four cells wide.

In a follow-up study, Chaves, Albert, and Sontag [16] considered a somewhat different model
wherein the synchrony of the updates was broken. That is, rather than updating every molecule
in every cell at the same time, different molecules were allowed to update at different times. One
of the primary findings of that work was that it is important for the proteins to be updated before
the RNAs. When this property is violated, mutant patterns of expression are observed, such as the

9

1.0

8

-2
0.1

1.0

0.1

p1

p2

(A) (B)

Figure 5: (A) Expression pattern of wg in wild-type (top) and a “broad-stripe” mutant embryo (bottom).
Figures taken from http://www.fruitfly.org (top) and [45] (bottom). (B) Log-ratio of P=?(F wild−type)

P=?(F broad−stripe) for
different values of p1 (x-axis), the update probability for the proteins, and p2 (y-axis), the update probability
for the RNAs.

“broad-stripe” pattern in (Figure 5-A, bottom). Our experiments further explore this property by
computing the probability of the system converging onto either the wild-type expression pattern
or the broad-stripe expression pattern under different scenarios using our model-checking based
approach to inference. Additionally, we demonstrate the scalability of our approach by considering
a two-dimensional array of cells, instead of the one-dimensional array of cells considered in [1]
and [16]. We believe that this extension to the two-dimensional model is the first of its kind. There
were a total of 192 Boolean variables in our model.

4.1 Experiments and Results
In Albert and Othmer model, the proteins are updated with probability 1 before the RNAs are
allowed to update. In our experiment, we decided to further explore this property by exploring
constructing a DBN where, at each step, the proteins update with probability p1 and the RNAs
update with probability p2 for different values of p1 and p2 over the range [0.1,1.0]. Thus, when
p1 = p2 = 1 , the proteins and RNAs update synchronously, and the model is equivalent to the
Boolean network model in [1]. When either p1 or p2 are less than 1.0, then the molecules either
update according to the Boolean function, or they remain in the same state. We note that this
defines a continuous-time Markov chain (CTMC) for each molecule type. We are thus simulating
a pair of coupled CTMCs via a DBN in our experiments. Under this model, there are different
possible interleaving of updates for the RNAs and proteins. The question we set out to answer is:
for what combinations of p1 and p2 does the model converge on the wild-type expression pattern
with high probability?

10

In our experiment we used model checking to compute the probabilities P=?(F wild − type),
and P=?(F broad − stripe). That is, what is the probability that the system reaches either the
wild-type or broad-stripe pattern from a given starting state. Our starting state was the same as that
used in [1] and [16] —wg expressed in the posterior cell of the parasegment, en and hh expressed
in the anterior cell of the parasegment, ptc and ci expressed in all cells except the anterior cell of
the parasegment, and all other molecules are off. We considered a 4 by 4 array of cells. That is one
parasegment wide and 4 cells high. In contrast, the corresponding experiment in [16] work consid-
ered a single parasegment (i.e., 4 cells). Like [1] and [16] we used periodic boundary conditions.
In all, 100 different combinations of p1 and p2 were considered. Each experiment took between 18
seconds to 19 minutes on a single Pentium 3 processor.

Figure 5 shows the log-ratio of P (F wild−type)
P (F broad−stripe)

. Our results are consistent with [16]; under the
model, the system is more likely to converge on the wild-type pattern when the proteins are more
likely to be updated before the RNAs. Further analysis shows that the likelihood of the broad-stripe
pattern is greatest (89%) when p1 = p2 = 0.1. The wild-type pattern is most likely (100%) when
p1 = p2 = 1.0, as expected. The probability of going to the wild-type or the broad-stripe pattern is
roughly equal when p1 = 0.3 and p2 = 0.5.

5 Conclusions and Future Work
We have introduced a new method for performing inference in DBNs by first translating the DBN
into a reactive module formalism, and then using existing probabilistic model checking algorithms
to perform the inference. We believe that the primary advantage of a model- checking based ap-
proach lies in the richer set of inference problems that can be expressed using temporal logics. We
demonstrated the practical use of this method on a model of Drosophila embryo development over
a two dimensional array of cells. Previous experiments had considered only the one dimensional
case. Our model had a total of 192 Boolean variables and runtimes range from less than 20 seconds
to less than 20 minutes on the model.

There are many areas for future work. As previously mentioned, model checking techniques
exist for continuous-time Markov chains and Markov decision processes. Thus, model checking
is applicable to a larger variety of models than can be expressed using DBNs. Additionally, model
checking algorithms have often been used in other domains to develop control policies. We are
presently extending our method for the design of control strategies for biological systems. Such
techniques may have application in fields such as synthetic biology, where the goal is to design bi-
ological system that have a pre-defined behavior. Finally, we note that model checking algorithms
exist for hybrid systems — models containing mixtures of discrete and continuous variables. Our
experiments were limited to finite-state DBNs, but we are interested in developing similar tech-
niques for hybrid models.

11

Acknowledgments
This research was supported by a U.S. Department of Energy Career Award (DE-FG02-05ER25696),
and a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award to C.J.L.

References
[1] R. Albert and H. G. Othmer. The topology of the regulatory interactions predics the expres-

sion pattern of the segment polarity genes in drosophila melanogaster. Journal of Theoretical
Biology, 223:1, 2003.

[2] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design: An
International Journal, 15(1):7–48, 1999.

[3] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking for
biochemical processes. Cell Biochem Biophys., 38(3):271–286, 2003.

[4] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
model checking for probabilistic processes. In P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela, editors, Proc. 24th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’97), volume 1256 of LNCS, pages 430–440. Springer, 1997.

[5] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and D. Schneider.
Validation of qualitative models of genetic regulatory networks by model checking: analysis
of the nutritional stress response in Escherichia coli. Bioinformatics, 25(1):i19–i28, 2005.

[6] M. J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild. A bayesian approach to
reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21(3):349–
356, 2005.

[7] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using
SAT procedures instead of BDDs. In DAC ’99: Proceedings of the 36th ACM/IEEE confer-
ence on Design automation, pages 317–320, New York, NY, USA, 1999. ACM Press.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put., 35(8):677–691, 1986.

[9] J.R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transi-
tion relations. Proc. 1991 Conf. on VLSI, pages 49–58, 1991.

[10] J.R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 3(4):401–424, 1993.

12

[11] J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Proc. Fifth Ann. IEEE Symposium on Logic in Computer
Science, pages 428–439, 1990.

[12] C. Bystroff, V. Thorsson, and D. Baker. Hmmstr: a hidden markov model for local sequence-
structure correlations in proteins. J Mol Biol., 301(1):173–190, 2000.

[13] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways using
the PRISM model checker. In Proc. Computational Methods in Systems Biology (CMSB’05),
2005. To appear.

[14] N. Chabrier and F. Fages. Symbolic Model Checking of Biochemical Networks. Proc 1st
Internl Workshop on Computational Methods in Systems Biology, pages 149–162, 2003.

[15] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling and
querying biomolecular interaction networks. Theor. Comput. Sci., 325(1):25–44, 2004.

[16] M. Chaves, R. Albert, and E.D. Sontag. Robustness and fragility of boolean models for
genetic regulatory networks. Journal of Theoretical Biology, 235:431, 2005.

[17] W. Chu, Z. Ghahramani, and D. L. Wild. A graphical model for protein secondary structure
prediction. In ICML ’04: Proceedings of the twenty-first international conference on Machine
learning, page 21, 2004.

[18] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London, UK,
1981. Springer-Verlag.

[19] E. M. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald.
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
International Journal of Foundations of Computer Science, 14(4):583–604, 2003.

[20] E.M. Clarke, M. Fujita, P. C. McGeer, J.C.-Y. Yang, and X. Zhao. Multi-terminal binary de-
cision diagrams: An efficient datastructure for matrix representation. IWLS ’93 International
Workshop on Logic Synthesis, 1993.

[21] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,
1999.

[22] G. Clermont, J. Bartels, R. Kumar, G. Constantine, Y. Vodovotz, and C. Chow. In silico
design of clinical trials: A method coming of age. Crit. Care Med., 32(10):2061–2070, 2004.

[23] P. Dagum and R. M. Chavez. Approximating probabilistic inference in bayesian belief net-
works. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3):246–255,
1993.

[24] M. H. A. Davis. Markov Models and Optimization. Chapman & Hall, New York, 1993.

13

[25] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model check-
ing of concurrent probabilistic processes using MTBDDs and the Kronecker representation.
In S. Graf and M. Schwartzbach, editors, Proc. 6th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’00), volume 1785 of LNCS,
pages 395–410. Springer, 2000.

[26] A.L. Delcher, S. Kasif, H. R. Goldberg, and W. H. Hsu. Protein secondary structure modelling
with probabilistic networks. Proc Int Conf Intell Syst Mol Biol., 1:109–117, 1993.

[27] C. M. Ghim, K. I. Goh, and B. Kahng. Lethality and Synthetic Lethality in Genome-Wide
Metabolic Network of Escherichia coli. J. Theor. Biol., 237:401–411, 2005.

[28] H. Hansson and B. Honsson. A logic for reasoning about time and probability. Formal
Aspects of Computing, 6:512–535, 1994.

[29] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model
checking of complex biological pathways. In Proc. Computational Methods in Systems Biol-
ogy (CMSB’06), 2006. To appear.

[30] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

[31] A Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic veri-
fication of probabilistic systems. In H. Hermanns and J. Palsberg, editors, Proc. 12th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’06), volume 3920 of LNCS, pages 441–444. Springer, 2006.

[32] M.I. Jordan. An Introduction to Probabilistic Graphical Models. Unpublished Book, in
preparation.

[33] M. Kwiatkowska, G Norman, and D. Parker. Game-based abstraction for Markov decision
processes. In Proc. 3rd International Conference on Quantitative Evaluation of Systems
(QEST’06), pages 157–166. IEEE CS Press, 2006.

[34] M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney. Simula-
tion and verification for computational modelling of signalling pathways. Proc. 2006 Winter
Simulation Conference, page in press, 2006.

[35] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pages 97–107, New York, NY, USA, 1985.
ACM Press.

[36] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, University of California, Berkeley; Computer Science Division, 2002.

14

[37] K. Murphy and S. Mian. Modelling gene expression data using dynamic bayesian networks,
1999.

[38] V. Mysore and B. Mishra. Algorithmic Algebraic Model Checking III: Approximate Meth-
ods. 7th International Workshop on Verification of Infinite-State Systems (INFINITY), pages
61–77, 2006.

[39] V. Mysore, C. Piazza, and B. Mishra. Algorithmic Algebraic Model Checking II: Decidability
of Semi-Algebraic Model Checking and its Applications to Systems Biology. Automated
Technology for Verification and Analysis (ATVA), pages 217–233, 2005.

[40] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Formal analysis and vali-
dation of continuous time Markov chain based system level power management strategies. In
W. Rosenstiel, editor, Proc. 7th Annual IEEE International Workshop on High Level Design
Validation and Test (HLDVT’02), pages 45–50. IEEE Computer Society Press, 2002.

[41] V. Paetkau, R. Roderick Edwards, and R. Illner. A model for generating circadian rhythm by
coupling ultradian oscillators. Theor Biol Med Model., 3(1):495–505, 2006.

[42] B.E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. dAlchBuc. Gene networks
inference using dynamic Bayesian networks. Bioinformatics, 11(2):ii138–ii148, 2002.

[43] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra. Algorithmic
Algebraic Model Checking I: Challenges from Systems Biology. 17th Internl Conf. on Comp.
Aided Verification (CAV), pages 5–19, 2005.

[44] .A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J.
ACM, 32(3):733–749, 1985.

[45] T. Tabata, S. Eaton, and T. B. Kornberg. The drosophila hedgehog gene is expressed specif-
ically in posterior compartment cells and is a target of engrailed regulation. Genes Dev.,
6(12B):2635–2645, 1992.

[46] G. von Dassow, E. Meir, E. M. Munro, and G. M. Odell. The segment polarity network is a
robust developmental module. Nature, 406(6792):188–192, 2000.

[47] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. In CAV ’02: Proceedings of the 14th International Conference
on Computer Aided Verification, pages 223–235, London, UK, 2002. Springer-Verlag.

15

	1 Introduction
	2 Background
	2.1 Dynamic Bayesian Networks
	2.2 Model Checking
	2.2.1 Representation:
	2.2.2 Queries:

	3 Inference in DBNs via Model Checking
	4 Application To D. Melanogaster Embryo Development
	4.1 Experiments and Results

	5 Conclusions and Future Work

