
Privacy-Preserving
Distributed Information Sharing

Lea Kissner

CMU-CS-06-149

July 2006

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Dawn Song, Chair

Manuel Blum
Dan Boneh, Stanford University
Benny Pinkas, Haifa University

Michael Reiter

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2006 Lea Kissner

This research was sponsored by the US Army Research Office under contract no. DAAD19-02-1-0389 and the
National Science Foundation under subcontract no. SA4896-10808PG.

The views and conclusions contained herein are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of any sponsoring institution, the U.S. government, or any other
governmental, commercial or legal entity.



Keywords: privacy, distributed information sharing, multiset operations, hot-item identi-
fication



For Chris, whose support, kindness, and reminders
to eat regularly have made this work possible.



iv



Abstract

In many important applications, a collection of mutually distrustful parties must
share information, without compromising their privacy. Currently, these applica-
tions are often performed by using some form of a trusted third party (TTP); this
TTP receives all players’ inputs, computes the desired function, and returns the
result. However, the level of trust that must be placed in such a TTP is often
inadvisable, undesirable, or even illegal. In order to make many applications prac-
tical and secure, we must remove the TTP, replacing it with efficient protocols for
privacy-preserving distributed information sharing. Thus, in this thesis we explore
techniques for privacy-preserving distributed information sharing that are efficient,
secure, and applicable to many situations.

As an example of privacy-preserving information sharing, we propose efficient
techniques for privacy-preserving operations on multisets. By building a frame-
work of multiset operations, employing the mathematical properties of polynomials,
we design efficient, secure, and composable methods to enable privacy-preserving
computation of the union, intersection, and element reduction operations. We
apply these techniques to a wide range of practical problems, including the Set-
Intersection, Over-Threshold Set-Union, Cardinality Set-Intersection, and Thresh-
old Set-Union problems. Additionally, we address the problem of determining Subset
relations, and even use our techniques to evaluate CNF boolean formulae.

We then examine the problem of hot item identification and publication, a prob-
lem closely related to Over-Threshold Set-Union. Many applications of this problem
require greater efficiency and robustness than any previously-designed secure pro-
tocols for this problem. In order to achieve sufficiently efficient protocols for these
problems, we define two new privacy properties: owner privacy and data privacy.
Protocols that achieve these properties protect the privacy of each player’s personal
input set, as well as protecting information about the players’ collective inputs.
By designing our protocols to achieve owner and data privacy, we are able to sig-
nificantly increase efficiency over our privacy-preserving set operations, while still
protecting the privacy of participants. In addition, our protocols are extremely
flexible - nodes can join and leave at any time.



Acknowledgements

I would like to thank my (impressively patient) family and friends1 for supporting me through
the highs and lows of my graduate school experience. I would like to thank my dance shoes for
supporting my arches and salsa habit.

I’d like to thank Dawn Song, my advisor. I’ve learned so much from her over the last four
years, and this thesis could not have been written without her guidance. My thesis committee,
Manuel Blum, Dan Boneh, Benny Pinkas and Mike Reiter, provided me with perspective, many
valuable insights and comments on this work which improved it in innumerable ways.

I’d like to thank Catherine Copetas and Sharon Burks in a large font, and
not just because it’s a required part of the thesis. I have always appreciated the wisdom they’ve
shared with me, as well as their scarily efficient ability to get things done when asked nicely.

The set operations work in this thesis was performed with my advisor, Dawn Song. The hot
item work in this thesis was performed with Hyang-Ah Kim, Dawn Song, Oren Dobzinski and
Anat Talmy.

I would like to thank David Molnar, Christopher Colohan, Lujo Bauer, Nikita Borisov,
and Alina Oprea for their invaluable comments on the hot item identification work in this
thesis. I would also like to extend my thanks to Dan Boneh, Benny Pinkas, David Molnar, and
Alexandre Evfimievski for their invaluable help and comments on the content and presentation
of the multiset operations work in this thesis. My thanks also go out to Luis von Ahn, Lujo
Bauer, David Brumley, Bryan Parno, Alina Oprea, Mike Reiter, and the many anonymous
reviewers who reviewed my papers and provided valuable feedback which enhanced the work
which you read here. Finally, I’d like to thank David Molnar again for his help in proofreading
my thesis.

1Note that this thesis is about preserving privacy. Thus, I have not listed my family and friends to preserve
their privacy and give them plausible deniability. You know who you are.

vi



Contents

1 Introduction 1

1.1 Privacy-Preserving Set and Multiset Operations . . . . . . . . . . . . . . . . . . . 2

1.2 Privacy-Preserving Distributed Hot Item Identification and Publication . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 Works Related to Multiset Operations . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Works Related to Hot-Item Identification . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries 9

3.1 Adversary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Honest-But-Curious Adversaries . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Malicious Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Multiset Operations Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Additively Homomorphic Cryptosystem . . . . . . . . . . . . . . . . . . . 10

3.2.2 Shuffle Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Privacy-Preserving Set and Multiset Operations 13

4.1 Techniques and Mathematical Intuition . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Background: Polynomial Rings and Polynomial Representation of Sets . . 14

4.1.2 Our Techniques: Privacy-Preserving Multiset Operations . . . . . . . . . 15

4.1.3 Overview of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Application I: Private Set-Intersection and Cardinality Set-Intersection . . . . . . 19

4.2.1 Set-Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Cardinality Set-Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 Malicious Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Application II: Private Over-Threshold Set-Union and Threshold Set-Union . . . 23

4.3.1 Over-Threshold Set-Union Protocol . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Threshold Set-Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



4.3.3 Malicious Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Set-Intersection, Cardinality Set-Intersection, and Over-Threshold Set-Union for
Malicious Parties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 Set-Intersection Protocol for Malicious Adversaries . . . . . . . . . . . . . 31

4.4.3 Cardinality Set-Intersection Protocol for Malicious Adversaries . . . . . . 34

4.4.4 Over-Threshold Set-Union Protocol for Malicious Adversaries . . . . . . . 36

4.5 Other Applications of Our Multiset Computation Techniques . . . . . . . . . . . 38

4.5.1 General Computation on Multisets . . . . . . . . . . . . . . . . . . . . . . 38

4.5.2 Private Subset Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.3 Computation of CNF Formulae . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Proof of Mathematical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.2 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Hot Item Identification and Publication 47

5.1 Problem Definition and Desired Properties . . . . . . . . . . . . . . . . . . . . . . 47

5.2 HotItem-ID Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Approximate Heavy-Hitter Detection . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 One-Show Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.3 Approximate Distinct Element Counting . . . . . . . . . . . . . . . . . . . 51

5.2.4 Anonymous Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.5 Distributed One-Show Tag Collection . . . . . . . . . . . . . . . . . . . . 52

5.2.6 Putting HotItem-ID to Work . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Hot Item Publication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Commitment to Foil Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Putting HotItem-Pub to Work . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 HotItem-ID Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.2 Privacy in HotItem-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.3 Privacy in HotItem-Pub . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6.1 Distributed Worm Signature Detection . . . . . . . . . . . . . . . . . . . . 60

5.6.2 Real-world Data and Experiment Method . . . . . . . . . . . . . . . . . . 61

5.6.3 Bandwidth Consumption and Accuracy . . . . . . . . . . . . . . . . . . . 62

viii



6 Conclusion 65

A Appendices for Privacy-Preserving Set Operations 71

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B Appendices for Hot-Item Identification 73

B.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.2 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2.2 Owner Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2.3 Data Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2.4 Analysis for Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.3 Details of One-Show Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



x



List of Figures

3.1 Basic outline of a standard simulation proof. . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Total communication complexity comparison for our multiparty protocols, pre-
vious solutions, and general multiparty computation. There are n ≥ 2 players,
c < n dishonestly colluding, each with an input multiset of size k. The do-
main of the multiset elements is P . Security parameters are not included in the
communication complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Set-Intersection protocol secure against honest-but-curious adversaries. . . . . . . 19

4.3 Cardinality set-intersection protocol secure against honest-but-curious adversaries. 21

4.4 Over-Threshold Set-Union protocol secure against honest-but-curious adversaries. 23

4.5 Threshold Set-Union protocol secure against honest-but-curious adversaries
(semi-perfect variant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Threshold Set-Union protocol secure against honest-but-curious adversaries
(threshold contribution variant). . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Threshold Set-Union protocol secure against honest-but-curious adversaries (per-
fect variant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 Set-Intersection protocol secure against malicious adversaries. . . . . . . . . . . . 32

4.9 A simulation proof defines the behavior of the player G, who translates between
the malicious players Γ, who believe they are operating in the real model, and
the ideal model, in which the trusted third party computes the desired answer. . 33

4.10 Cardinality set-intersection protocol secure against malicious adversaries. . . . . 35

4.11 Over-threshold set-intersection protocol secure against malicious adversaries. . . 37

5.1 Components of HotItem-ID protocol: HotItem-ID defines how to efficiently compute
an approximate representation of Hk in distributed fashion. Each player i (1 ≤ i ≤ n)
constructs local filters to approximately represent his private input set Si, generates
one-show tags for marked bits in filters, and sends a subset of those one-show tags to the
network using anonymous routing. A distributed approximate distinct element counting
protocol aggregates those tags in the network. At the end of the protocol, all players
learn the global filters that approximate Hk. At the right side of the figure we list the
purpose of each component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



5.2 In our HotItem-ID protocol, each player i constructs a set of local filters from his
private input set Si (dark bits are ‘hit’). The players then construct global filters using
an approximate counting scheme; if a bit was hit by at least k players, then it is ‘hit’
(dark) as well. If an element hashes to a dark bit in each of the global filters, then it is
classified as hot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 t-collection protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 t-minimum value aggregation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 HotItem-ID protocol, for identifying the hot items in each players’ private input. . . . 54

5.6 HotItem-Pub protocol, for publishing the hot items in each players’ private input. . . 57

5.7 The degree of data privacy for an element with frequency fa is Φ(fa)
|M | . Ideally, the degree

of data privacy would be 1 for all frequencies, but by compromising this strong definition
of security, we obtain more efficient and robust protocols. We graph the degree of data
privacy (a), showing the increase in protection for rare elements. The same function is
graphed in (b) on a logarithmic scale, for increased detail. . . . . . . . . . . . . . . . . 59

5.8 Number of hosts (players) that have generated each content block (item) from observed
suspicious flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.9 Normalized bandwidth consumption per player in performing hot item identification
(k = 100). Underlines values indicate that there were false positives or false negatives. . 62

B.1 Buckets that are unsafe for hj′(a) (1 ≤ j′ ≤ T ) are those that have been marked as hit
by a sufficient number of players to allow the possibility that a might be erroneously
identified as a k′-threshold hot item. In (1), a is mapped to a sufficiently full bucket,
causing a to be erroneously identified as a k′-hot item. In (2), a is mapped to a safe
bucket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2 Players collect one-show tags for each filter bucket during the HotItem-ID protocol.
Given a complete set of filters for some element, one may still not determine which
element produced the filters. However, each tag has a probability of 1− t

k −
1
2κ of having

too high a value for the t-collection phase, and thus of being hidden. When all tags for
an element in a specific filter are removed, as in (2), an even larger number of elements
could have produced the observed filters. . . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



Chapter 1

Introduction

As computer system capacity has increased, organizations and individuals have collected greater
and greater amounts of data. Developments in data mining have increased the utility of this
data; a data holder can now discover hidden trends and cheating customers. However, a great
deal of useful data cannot be computed from one party’s data alone. When multiple parties
can compare and share data, they can greatly increase the utility of their data. For example,
multiple pharmacies might compare their records to detect people filling a prescription multiple
times. Subtle trends can leave fingerprints in many data sets, hiding them from detection unless
multiple data sets are examined. The early stages of a disease epidemic might cause an increased
rate of absenteeism from work and school, higher sales of certain over-the-counter medications,
and many other small traces. Each of these traces, on its own, might not be enough to detect
an epidemic, as they fluctuate based on many factors. By combining many data sets, we can
detect increasingly more subtle trends.

Data does not exist in a void, however. To detect trends that involve medical data, we must
use medical data collected from individuals. This data is generally considered to be private;
many countries have strict regulations that control the use of medical and other personal infor-
mation. Many other data sets are collected by companies who are concerned about preserving
the proprietary value of their data. Government data often has both privacy and security re-
strictions associated with its use. Thus, we often cannot simply combine data sets held by
multiple parties to compute functions over the combined data. In the real world, parties often
resort to use of a trusted third party, who computes a fixed function on all parties’ private in-
puts, or forgo the application altogether. This unconditional trust is fraught with security risks;
the trusted party may be dishonest or compromised, as it is an attractive target. The problem
of privacy-preserving distributed information sharing is to allow parties with private data sets
to compute these joint functions without use of a trusted party, and thus achieve many of the
benefits obtained from combining the data sets without undesirably revealing private data.

Protocols for privacy-preserving distributed information sharing must also be designed
around a number of practical concerns. Many data sets are extremely large; protocols that
operate on large data sets must be efficient in order to operate in the real world. In addition,
we must be concerned with robustness. Adversaries may attempt to manipulate the protocol
to learn private information or change the results. Some adversaries may even manipulate the
network, causing some players to become disconnected from others. In some problem scenarios,
such as those concerning detecting and defending against network attacks, robustness against
an unreliable network is paramount.

In this thesis, we examine several specific problems that fall under the heading of privacy-

1



preserving distributed information sharing. We design efficient protocols for these problems,
proving their security and correctness in the presence of attackers. The first set of problems we
examine are those related to privacy-preserving set and multiset operations. We then examine
in depth the problem of hot item identification, including its need for extreme efficiency and
robustness.

1.1 Privacy-Preserving Set and Multiset Operations

We design efficient privacy-preserving techniques and protocols for computation over multisets
by mutually distrustful parties: no party learns more information about other parties’ private
input sets than what can be deduced from the result of the computation.

For example, to determine which airline passengers appear on a ‘do-not-fly’ list, the airline
must perform a set-intersection operation between its private passenger list and the govern-
ment’s list. This is an example of the Set-Intersection problem. If a social services organization
needs to determine the list of people on welfare who have cancer, the union of each hospital’s
lists of cancer patients must be calculated (but not revealed), then an intersection operation
between the unrevealed list of cancer patients and the welfare rolls must be performed. This
problem may be efficiently solved by composition of our private union and set-intersection
techniques.

Another example of the use of these techniques is in privacy-preserving distributed network
monitoring. In this scenario, each node monitors anomalous local traffic, and a distributed
group of nodes collectively identify popular anomalous behaviors: behaviors that are identified
by at least a threshold t number of monitors. This is an example of the Over-Threshold Set-
Union problem.

In this thesis, we propose efficient techniques for privacy-preserving operations on multisets.
By building a framework of multiset operations using polynomial representations and employing
the mathematical properties of polynomials, we design efficient methods to enable privacy-
preserving computation of the union, intersection, and element reduction1 multiset operations.

An important feature of our privacy-preserving multiset operations is that they can be
composed, and thus enable a wide range of applications. To demonstrate the power of our
techniques, we apply our operations to solve specific problems, including Set-Intersection, Car-
dinality Set-Intersection, Over-Threshold Set-Union, and Threshold Set-Union, as well as deter-
mining the Subset relation. Furthermore, we show that our techniques can be used to efficiently
compute the output of any function over multisets expressed in the following grammar, where
s represents any set held by some player and d ≥ 1:

Υ ::= s | Rdd(Υ) | Υ ∩Υ | s ∪Υ | Υ ∪ s

Note that any monotonic function over multisets2 can be expressed using our grammar, showing
that our techniques have truly general applicability. Finally, we show that our techniques are
applicable even outside the realm of set computation. As an example, we describe how to utilize
our techniques to efficiently and privately evaluate CNF boolean functions.

Our protocols are more efficient than the results obtained from previous work. General mul-
tiparty computation is the best previous result for most of the multiset computation problems

1The element reduction by d, Rdd(A), of a multiset A is the multiset composed of the elements of A such that
for every element a that appears in A at least d′ > d times, a is included d′ − d times in Rdd(A).

2Any function computed with only intersection and union, without use of an inverse operation.

2



we address in this thesis. Only the private Set-Intersection problem and two-party Cardinality
Set-Intersection problem have been previously studied [1, 23]. However, previous work only
provides protocols for 3-or-more-party Set-Intersection secure only against honest-but-curious
players; it is not obvious how to extend this work to achieve security against malicious players.
Also, previous work focuses on achieving results for the Set-Intersection problem in isolation
– these techniques cannot be used to compose set operations. In contrast, we provide efficient
solutions for private multi-party Set-Intersection secure against malicious players, and our mul-
tiset intersection operator can be easily composed with other operations to enable a wide range
of efficient private computation over multisets. We compare the communication complexity of
our protocols with previous work and solutions based on general multiparty communication in
Table 4. Note that the techniques utilized to create the circuits for the general solution are both
complex and incur very large constants, on top of the constants inherent in the use of general
multiparty computation [2]; we thus achieve greater practical efficiency, as well as asymptotic
efficiency.

Our protocols are provably secure in the PPT-bounded adversary model. We consider both
standard adversary models: honest-but-curious adversaries (HBC) and malicious adversaries.
For protocols secure in the HBC model, we prove that the information learned by any coalition
of honest-but-curious players is indistinguishable from the information learned in the ideal
model, where a trusted third party (TTP) calculates the function. For protocols secure in
the malicious model, we provide simulation proofs showing that for any strategy followed by a
malicious coalition Γ in the real protocol, there is a translated strategy they could follow in the
ideal model, such that, to Γ, the real execution is computationally indistinguishable from ideal
execution.

1.2 Privacy-Preserving Distributed Hot Item Identification and
Publication

In this thesis, we consider a scenario in which a group of distributed nodes, each holding its
local data set, would like to collectively identify commonly occurring items. More formally,
a “commonly occurring item” is one that appears in at least a threshold number of nodes’
local data sets. We call such items hot items. The problem of identifying and publishing
these hot items is closely related to the Over-Threshold Set-Union problem we examine in
Chapter 4. Distributed identification of hot items, while preserving privacy, is important for
many applications.

For example, in distributed network monitoring, each participant monitors its local traffic
and the participants collectively need to identify common offenders (IP addresses that are
flagged as malicious by multiple sites) and common alerts (events that are flagged as anomalous
or malicious by multiple sites). Identifying common offenders and alerts is important to enable
defenses against wide-spread attacks as well as reduce the false positive rate; an offender or
alert reported by multiple sites is more likely to be truly malicious.

Many more applications use hot item identification for statistics gathering. In computer
troubleshooting, common configurations among unbroken computers can be used to identify
configuration errors and suggest fixes for troubled computers [25, 30, 55]. In a distributed
content delivery network (CDN), distributed identification of hot pages (web pages that are
commonly requested at different sites) is important for making effective caching decisions; hot
pages should have higher priority when caching [10].

3



In each of these applications, it is crucial to identify hot items held by distributed players.
At the same time, each local data set, be it local network traffic, a computer’s configurations,
or a site’s web surfing traffic, often contains personal or security-critical data; thus, we need
effective methods to identify hot items without revealing information about the non-hot items.
Moreover, in many distributed applications, some participants may not be trustworthy, and may
even be malicious. Thus, we need to design effective methods to enable distributed privacy-
preserving hot item identification in the presence of malicious participants. Additionally, as
players may join and leave the network frequently, we must construct protocols that do not
require global knowledge of the network.

Efficient, secure, and privacy-preserving hot item identification and publication is a challeng-
ing problem; previous solutions are largely insufficient. One approach is for every participant
to send his data to a trusted central authority, who identifies and announces the hot items.
In this approach, all security and privacy relies on the central authority. This level of trust is
unacceptable for many situations. Even if the authority is trusted, an attacker may compromise
the authority and players’ privacy with it. Several other problems inherent in centralization
are discussed in [37].

Another approach is to use a partially homomorphic cryptosystems, such as a distributed
version of Paillier [21, 22, 45], or a secure multi-party computation scheme to compute the
frequencies of each item or to identify hot items directly. However, these methods have signifi-
cant computation and communication overhead, including zero-knowledge proofs, which is often
prohibitive for large scale applications. Key management for maintaining shared keys in the
presence of malicious parties and players that join and leave the network may add non-trivial
overhead and complexity.

All previous approaches (except our Over-Threshold Set-Union protocols of Chapter 4) of
which we are aware propose heuristic solutions [37]; some even require additional trust assump-
tions such as “friends” [30, 55]. They do not preserve several forms of privacy that we believe
are important (see Section 5.1), do not give rigorous analysis, and cannot prevent malicious
participants from changing the result arbitrarily.

In this thesis, we propose new techniques for efficient, secure, and privacy-preserving dis-
tributed hot item identification and publication. To avoid counting the occurrences of each
hot item separately, we utilize a probabilistic filtering technique, allowing both efficiency and
privacy. Each player constructs a local filter, which is then combined with those of other play-
ers to create a global filter. In the process of combination, we utilize an approximate counting
technique which is both efficient and secure against undue interference by malicious parties.

Protocols for hot item identification and publication that achieve standard cryptographic
definitions of privacy [28] are too inefficient for many applications, including our protocols of
Chapter 4. We design protocols that enable these demanding applications by trading a certain
degree of privacy for greater efficiency; as a result, our protocols are comparably asymptot-
ically efficient to approaches that do not protect the privacy of participants, as described in
Section 5.4.4. We also construct one-show tags to prevent malicious players from tampering
with the identification of hot items. Our protocols scale extremely well when increasing the
number of players. If the hot-item threshold is proportional to the number of players, then
the bandwidth used per node is essentially constant as the number of players increases, as is
optimal. (See Section 5.4.4.)

Elements of honest players’ private input sets are protected by data privacy. This property,
which we rigorously define, is weaker than a standard notion of cryptographic privacy [28], but
can be achieved more efficiently. Essentially, the data privacy property states that non-hot

4



items are hidden in a crowd of indistinguishable elements, and that the more rare an item is,
the less information is revealed about it. Players who publish their hot items are protected by
the property owner privacy, which we rigorously define. Players may choose between correlated
owner privacy, in which published elements cannot be associated with the publishing player,
and uncorrelated owner privacy, in which we enforce the additional guarantee that no player
can distinguish whether two items have appeared in the same private input set.

Our protocol prevents a group of malicious players from influencing the identification and
publication of hot items: no group of malicious players may cause any element to be identified
as a hot item with higher probability than if it simply appeared in the malicious players’ private
input sets.

Unlike previous work, our protocols are extremely flexible in situations in which untrusted
clients often join and leave the network. As we require no threshold cryptography, secure multi-
party computation, or global knowledge of the network, no consistent set of players is needed
to execute a protocol. No player need trust any other.

We prove bounds on the probability of correctness of our protocols, as well as for data- and
owner-privacy. The approach we introduce in this thesis is applicable to many situations. Our
protocols are the most efficient hot item identification and publication protocols of which we
are aware that achieve the properties of data and owner privacy.

1.3 Thesis Outline

We begin by discussing related work in Chapter 2 and cryptographic and mathematical prelim-
inaries in Chapter 3. We then introduce our techniques and protocols for privacy-preserving set
and multiset computation in Chapter 4. In Chapter 5, we introduce our protocols for privacy-
preserving distributed hot item identification and publication. We conclude in Chapter 6. We
include additional proofs and information about our results in Chapter 5 in Appendix B.

5



6



Chapter 2

Related Work

In this chapter, we consider previous work related to our privacy-preserving multiset operations
and hot-item identification. We then discuss the distinctions between our results and previous
work.

2.1 Works Related to Multiset Operations

Most of the privacy-preserving multiset operations and functions we address in this thesis
(Chapter 4) have no better result in previous work than through general multiparty computa-
tion. General two-party computation was introduced by Yao [56], and general computation for
multiple parties was introduced in [5]. In general multiparty computation, the players share
the values of each input, and cooperatively evaluate the circuit. For each multiplication gate,
the players must cooperate to securely multiply their inputs and re-share the result, requiring
O(n) communication for honest-but-curious players and O(n2) communication for malicious
players [28]. Recent results that allow non-interactive private multiplication of shares [16] do
not extend to our adversary model (see Section 3.1), in which any c < n players may collude.
Our results are more efficient than the general MPC approach; we compare communication
complexity in Table 4.

One privacy-preserving function that has been considered in both our results and previ-
ous work is set intersection. Rakesh Agrawal and Alexandre Evfimievski and Ramakrishnan
Srikant [1] and Freedman, Nissim, and Pinkas (FNP) [23] proposed protocols for problems re-
lated to two party Set-Intersection. FNP proposed protocols for multiparty set intersection
(secure only against honest-but-curious players) and two-party cardinality set intersection as
well. FNP’s results are based on the representation of sets as roots of a polynomial [23]. Their
work does not utilize properties of polynomials beyond evaluation at given points. In Chapter 4
of this thesis, we explore the power of polynomial representation of multisets, using operations
on polynomials to obtain three composable privacy-preserving multiset operations. We give a
more detailed comparison of our Set-Intersection protocol with FNP in Table 4.

In addition to previous work on privacy-preserving set intersection, researchers have designed
protocols for privacy-preserving computation of several related functions. For example, private
equality testing is the problem of set-intersection for the case in which the size of the private
input sets is 1. Protocols for this problem are proposed in [19, 38, 43], and fairness is added
in [8]. Another related problem is in testing the disjointness of private input sets [34]; a
restricted version of the Cardinality Set-Intersection problem. We do not enumerate the works

7



of privacy-preserving computation of other functions here, as they address drastically different
problems and cannot be applied to our setting.

2.2 Works Related to Hot-Item Identification

In essence, hot-item identification is a small variation on the problem of Over-Threshold Set-
Union. We address the Over-Threshold Set-Union problem in Chapter 4, with previous work
in a cryptographically secure setting considered in Section 2.1. In hot-item identification, the
players in the protocol approximate the desired results, and give up a certain measure of privacy
in exchange for increased efficiency and robustness. For example, our Over-Threshold Set-Union
protocol requires the players to share a decryption key and perform joint decryption. We do
not believe that such an assumption is tenable in all situations.

Several applications of privacy-preserving hot item identification and publishing have been
considered in previous work. Certain privacy-breaching attacks against distributed network
monitoring nodes were described in [37]. They did not, however, give a concrete definition of
security for their attempts to defeat such attacks, and their techniques require trusted central
servers. Additionally, in many cases, significant breaches in privacy occur when outlier ele-
ments, that appear in very few other players’ servers, are revealed; they do not assuage such
concerns. Privacy-preserving collection of statistics about computer configurations has also
been considered in previous work [30, 55]. Like the work in [37], they do not give a concrete
definition of security, but instead a technique for heuristically confusing attackers. Their ap-
proach also relies on chains of trust between friends, unlike our approach, in which nodes may
be arbitrarily malicious. It is nearly impossible to evaluate the claims of privacy of these works,
without a formal definition of security. We also believe some of the assumptions made in these
works are untenable in many scenarios.

In a non-distributed context, [4, 27, 32] examine the identification of elements that appear
often in a data stream, through the use of approximate counting. We generalize this task to a
distributed setting, as well as enforcing important privacy properties.

8



Chapter 3

Preliminaries

In this thesis, we utilize several cryptographic and mathematical tools described in previous
work. We briefly describe these tools in this chapter, including references to fuller descriptions,
as well as the standard adversary models utilized in this thesis.

3.1 Adversary Models

In this section we describe the adversary models used in the work throughout this thesis. We
provide intuition and informal definitions of these models; formal definitions can be found
in [28].

3.1.1 Honest-But-Curious Adversaries

Honest-but-curious adversaries act according to their prescribed actions in the protocol. Se-
curity against such adversaries is straightforward: no player or coalition of c < n honest-but-
curious players (who may cheat by sharing their private information) gains information about
other players’ private input sets, other than what can be deduced from the result of the protocol.
This is formalized by considering an ideal implementation where a trusted third party (TTP)
receives the inputs of the parties and outputs the result of the defined function. We require
that in the real implementation of the protocol—that is, one without a TTP—each party does
not learn more information than in the ideal implementation, with overwhelming probability.

3.1.2 Malicious Adversaries

Malicious adversaries may behave arbitrarily, in contrast to honest-but-curious adversaries who
follow the specified protocol. In particular, we cannot hope to prevent malicious parties from
refusing to participate in the protocol, choosing arbitrary values for their private data inputs, or
aborting the protocol prematurely. Instead, we focus on the standard security definition (see,
e.g., [28]) which captures the correctness and the privacy issues of the protocol. Informally,
the security definition is based on a comparison between the ideal model and a TTP, where a
malicious party may give arbitrary input to the TTP. The security definition is also limited to
the case where at least one of the parties is honest. Let Γ be the set of colluding malicious parties;
for any strategy Γ can follow in the real protocol, there is a translated strategy that it could

9



Trusted 
third party

Honest 
party

Honest 
party

Private
input

Private
input

The simulator communicates with the malicious parties Γ according to the 
protocol. Using his special abilities as a simulator, he obtains their private 
inputs, submits this data to the trusted third party, and communicates the 

result returned by the trusted third party to the malicious parties.

Malicious 
party

Malicious 
party

Malicious 
party

Private inputs of
malicious parties Results

ResultResult

Figure 3.1: Basic outline of a standard simulation proof.

follow in the ideal model, such that, to Γ, the real execution is computationally indistinguishable
from execution in the ideal model.

A simulation proof is a common method of proving security under such a definition: the
simulator G provides a concrete method of translating any strategy executed by Γ to a strategy
in the TTP model. We illustrate such a proof in Figure 4.9.

In this thesis we consider only the class of PPT adversaries, whether they are malicious or
honest-but-curious.

3.2 Multiset Operations Preliminaries

In this section, we describe several cryptographic tools that we utilize in our constructions of
Chapter 4.

3.2.1 Additively Homomorphic Cryptosystem

In Chapter 4, we utilize a semantically secure [29], additively homomorphic public-key cryp-
tosystem whose plaintext domain can be chosen to be a ring R of arbitrarily large size. Let

10



Epk(·) denote the encryption function with public key pk. The cryptosystem supports the fol-
lowing operations, which can be performed without knowledge of the private key: (1) Given the
encryptions of a and b, Epk(a) and Epk(b), we can efficiently compute the encryption of a+ b,
denoted Epk(a+b) := Epk(a) +h Epk(b); (2) Given a constant c and the encryption of a, Epk(a),
we can efficiently compute the encryption of ca, denoted Epk(c · a) := c ×h Epk(a). When such
operations are performed, we require that the resulting ciphertexts be re-randomized for secu-
rity. In re-randomization, a ciphertext is transformed so as to form an encryption of the same
plaintext, under a different random string than the one originally used. We also require that
the homomorphic public-key cryptosystem support secure (n, n)-threshold decryption, i.e., the
corresponding private key is shared by a group of n players, and decryption must be performed
by all players acting together. We also require that no PPT adversary can recover the sizes of
the subfields of R with greater than negligible probability.

When we utilize an additively homomorphic cryptosystem in protocols secure against mali-
cious players, we require that: (1) the decryption protocol be secure against malicious players –
typically, this is done by requiring each player to prove in zero-knowledge that he has followed
the threshold decryption protocol correctly [26]; (2) efficient construction of zero-knowledge
proofs of plaintext knowledge; (3) optionally, efficient construction of certain zero-knowledge
proofs concerning the use of the cryptosystem’s homomorphic properties, as detailed in Sec-
tion 4.4.1.

Note that Paillier’s cryptosystem [45] satisfies each of our requirements: it is additively
homomorphic, supports ciphertext re-randomization and threshold decryption (secure in the
malicious case) [21, 22], allows efficient zero-knowledge proofs for the cases that we require
(these are standard constructions from [9, 14] and proof of plaintext knowledge [15]), and
recovering the sizes of the subfields of the plaintext domain R is equivalent to breaking the
semantic security of the cryptosystem. Key generation can be performed in a distributed
fashion for these distributed Paillier schemes [21, 22].

In Chapter 4, we simply use Epk(·) to denote the encryption function of a homomorphic
cryptosystem which satisfies all the aforementioned properties.

3.2.2 Shuffle Protocol

Let each player i (1 ≤ i ≤ n) in the Shuffle protocol have a private input multiset Vi. We define
the Shuffle problem as follows: all players learn the joint multiset V1 ∪ · · · ∪ Vn, such that no
player or coalition of c < n players Γ can gain a non-negligible advantage in distinguishing, for
each element a ∈ V1 ∪ · · · ∪ Vn, an honest player i (1 ≤ i ≤ n, i 6∈ Γ) such that a ∈ Vi. That is,
the origin of each element (contributed by an honest player) in the joint multiset V1 ∪ · · · ∪ Vn
is anonymous to any player or coalition of c < n players. A Shuffle protocol may be secure
against honest-but-curious or malicious players; we specify this security requirement in context
of the protocol’s use.

In several protocols in Chapter 4, we will impose an additional privacy condition on the Shuf-
fle problem; the multisets V1, . . . , Vn are composed of ciphertexts, which must be re-randomized
so that no player may determine which ciphertexts were part of his private input multiset. The
revised problem statement is as follows: all players learn the joint multiset V1 ∪ · · · ∪ Vn, such
that no player or coalition of players can gain a non-negligible advantage in distinguishing, for
each element a ∈ V1 ∪ · · · ∪ Vn, a player i (1 ≤ i ≤ n) such that a ∈ Vi. That is, the origin of
each element (contributed by any player) in the joint multiset V1 ∪ · · · ∪ Vn is anonymous to
any player or coalition of c < n players.

11



Both variants of the Shuffle protocol can be easily accomplished with standard techniques [13,
17, 24, 31, 44], with communication complexity at most O(n2k).

12



Chapter 4

Privacy-Preserving Set and Multiset
Operations

Sets and multisets are common data formats; many database operations may be represented
as operations on sets and multisets. We thus examine in this chapter an important application
of privacy-preserving distributed information sharing: composable privacy-preserving set and
multiset operations, and secure protocols based on these operations.

We begin by describing our composable operations and their mathematical foundations in
Section 4.1 before proceeding to construct protocols for several important applications. These
protocols include several secure against honest-but-curious adversaries: Set-Intersection and
Cardinality Set-Intersection (Section 4.2), as well as Over-Threshold Set-Union and several vari-
ants on Threshold Set-Union (Section 4.3). We then construct protocols for Set-Intersection,
Cardinality Set-Intersection, and Over-Threshold Set-Union secure against malicious players in
Section 4.4. To show that our techniques extend even beyond privacy-preserving set and multi-
set operations, we briefly describe protocols for several additional applications in Section 4.5. In
Table 4, we show the communication complexity of several of our protocols, and compare their
efficiencies to that of previous work (see Section 2.1 for a more detailed discussion of previous
work).

Our solution Previous solution General MPC

Set-Intersection (HBC) O(cnk lg |P |) O(n2k lg |P |) [23] O(n2k polylog(k) lg |P |)
Set-Intersection (Malicious) O(n2k lg |P |) none O(n3k polylog(k) lg |P |)
Cardinality Set-Intersection (HBC) O(n2k lg |P |) none O(n2k polylog(k) lg |P |)
Over-Threshold Set-Union (HBC) O(n2k lg |P |) none O(n2k polylog(nk) lg |P |)
Threshold Set-Union (HBC) O(n2k lg |P |) none O(n2k polylog(nk) lg |P |)
Subset (HBC) O(k lg |P |) none O(k polylog(k) lg |P |)

Figure 4.1: Total communication complexity comparison for our multiparty protocols, previous
solutions, and general multiparty computation. There are n ≥ 2 players, c < n dishonestly
colluding, each with an input multiset of size k. The domain of the multiset elements is P .
Security parameters are not included in the communication complexity.

13



4.1 Techniques and Mathematical Intuition

In this section, we introduce our techniques for privacy-preserving computation of operations
on sets and multisets.

Problem Setting. Let there be n players. We denote the private input set of player i as Si,
and |Si| = k (1 ≤ i ≤ n). We denote the jth element of set i as (Si)j . We denote the domain
of the elements in these sets as P , (∀i∈[n],j∈[k] (Si)j ∈ P ).

Let R denote the plaintext domain Dom(Epk(·)) (in Paillier’s cryptosystem, R is ZN ). We
require that R be sufficiently large that an element a drawn uniformly from R has only negligible
probability of representing an element of P , denoted a ∈ P . For example, we could require
that only elements of the form b = a || h(a) could represent an element in P , where h(·)
denotes a cryptographic hash function [40]. That is, there exists an a of proper length such
that b = a || h(a). If |h(·)| = lg

(
1
ε

)
, then there is only ε probability that a′ ← R represents an

element in P .

In this section, we first give background on polynomial representation of multisets, as well as
the mathematical properties of polynomials that we use in this chapter. We then introduce our
privacy-preserving (in a TTP setting) multiset operations using polynomial representations,
then show how to achieve privacy in the real setting by computing them using encrypted
polynomials. Finally, we overview the applications of these techniques explored in the rest of
the chapter.

4.1.1 Background: Polynomial Rings and Polynomial Representation of Sets

The polynomial ring R[x] consists of all polynomials with coefficients from R. Let f, g ∈ R[x],
such that f(x) =

∑deg(f)
i=0 f [i]xi, where f [i] denotes the coefficient of xi in the polynomial f . Let

f +g denote the addition of f and g, f ∗g denote the multiplication of f and g, and f (d) denote
the dth formal derivative of f . Note that the formal derivative of f is

∑deg(f)−1
i=0 (i+1)f [i+1]xi.

Polynomial Representation of Sets. In this chapter, we use polynomials to represent
multisets. Given a multiset S = {Sj}1≤j≤k, we construct a polynomial representation of S,
f ∈ R[x], as f(x) =

∏
1≤j≤k(x − Sj). On the other hand, given a polynomial f ∈ R[x],

we define the multiset S represented by the polynomial f as follows: an element a ∈ S if
and only if (1) f(a) = 0 and (2) a represents an element from P . Note that our polynomial
representation naturally handles multisets: The element a appears in the multiset b times if
(x− a)b | f ∧ (x− a)b+1 6 | f .

Note that previous work utilized polynomials to represent sets [23] (as opposed to multisets).
However, to the best of our knowledge, no operations beyond polynomial evaluation have been
employed to manipulate said polynomials. As a result, previous work is limited to set intersec-
tion and cannot be composed with other set operators. In this chapter, we propose a framework
to perform various set and multiset operations using polynomial representations and construct
efficient privacy-preserving set operations using the mathematical properties of polynomials.
By utilizing polynomial representations to represent sets and multisets, our framework allows
arbitrary composition of multiset operators as outlined in our grammar.

14



4.1.2 Our Techniques: Privacy-Preserving Multiset Operations

In this section, we construct algorithms for computing the polynomial representation of opera-
tions on sets, including union, intersection, and element reduction. We design these algorithms
to be privacy-preserving in the following sense: the polynomial representation of any operation
result reveals no more information than the set representation of the result. First, we introduce
our algorithms for computing the polynomial representation of set operations union, intersec-
tion, and element reduction (with a trusted third party). We then extend these techniques
to encrypted polynomials, allowing secure implementation of our techniques without a trusted
third party. Note that the privacy-preserving multiset operations defined in this section may
be arbitrarily composed (see Section 4.5.1), and constitute truly general techniques.

Set Operations Using Polynomial Representations

In this section, we introduce efficient techniques for multiset operations using polynomial rep-
resentations. In particular, let f, g be polynomial representations of the multisets S and T ,
respectively. We describe techniques to compute the polynomial representation of their union,
intersection, and element reduction. We design our techniques so that the polynomial repre-
sentation of any operation result reveals no more information than the multiset representation
of the result. We formally state a strong privacy property for each operation in Theorems 1, 3,
and 5.

Union. We define the union of multisets S ∪ T as the multiset where each element a that
appears in S bS ≥ 0 times and T bT ≥ 0 times appears in the resulting multiset bS + bT times.
We compute the polynomial representation of S∪T as follows, where f and g are the polynomial
representation of S and T respectively:

f ∗ g.

Note that f ∗ g is a polynomial representation of S ∪ T because (1) all elements that appear in
either set S or T are preserved: (f(a) = 0) ∧ (g(b) = 0) → ((f ∗ g)(a) = 0) ∧ ((f ∗ g)(b) = 0);
(2) as f(a) = 0 ⇔ (x − a) | f , duplicate elements from each multiset are preserved: (f(a) =
0) ∧ (g(a) = 0) → (x − a)2 | (f ∗ g). In addition, we prove that, given f ∗ g, one cannot learn
more information about S and T than what can be deduced from S ∪ T , as formally stated in
the following theorem:

Theorem 1. Let TTP1 be a trusted third party which receives the private input multiset Si
from player i for 1 ≤ i ≤ n, and then returns to every player the union multiset S1 ∪ · · · ∪ Sn
directly. Let TTP2 be another trusted third party, which receives the private input multiset Si
from player i for 1 ≤ i ≤ n, and then: (1) calculates the polynomial representation fi for each
Si; (2) computes and returns to every player

∏n
i=1 fi.

There exists a PPT translation algorithm such that, to each player, the results of the following
two scenarios are distributed identically: (1) applying translation to the output of TTP1; (2)
returning the output of TTP2 directly.

Proof. Theorem 1 is trivially true. (This theorem is included for completeness.)

Intersection. We define the intersection of multisets S∩T as the multiset where each element
a that appears in S bS > 0 times and T bT > 0 times appears in the resulting multiset

15



min{bS , bT } times. Let S and T be two multisets of equal size, and f and g be their polynomial
representations (also of equal size) respectively. We compute the polynomial representation of
S ∩ T as:

f ∗ r + g ∗ s

where r, s← Rdeg(f)[x], where Rb[x] is the set of all polynomials of degree 0, . . . , b with coeffi-
cients chosen independently and uniformly from R: r =

∑deg(f)
i=0 r[i]xi and s =

∑deg(f)
i=0 s[i]xi,

where ∀0≤i≤deg(f) r[i]← R, ∀0≤i≤deg(f) s[i]← R.

We show below that f ∗ r + g ∗ s is a polynomial representation of S ∩ T . In addition, we
prove that, given f ∗ r + g ∗ s, one cannot learn more information about S and T than what
can be deduced from S ∩ T , as formally stated in Theorem 3.

First, we must prove the following lemma, based on our definition of gcd as the output of
Euclid’s gcd algorithm (see Lemma 19 in Section 4.6):

Lemma 2. Let f, g be polynomials in R[x] where R is a ring such that no PPT adversary
can find the size of its subfields with non-negligible probability, deg(f) = deg(g) = α, β ≥ α,
gcd(f, g) = 1, and f [deg(f)] ∈ R∗ ∧ g[deg(g)] ∈ R∗. Let r =

∑β
i=0 r[i]x

i and s =
∑β

i=0 s[i]x
i,

where ∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R (independently).

Let u = f ∗ r + g ∗ s =
∑α+β

i=0 u[i]xi. Then ∀0≤i≤α+β u[i] are distributed uniformly and
independently over R.

We prove Lemma 2 in Section 4.6.

By this lemma, f ∗ r + g ∗ s = gcd(f, g) ∗ u, where u is distributed uniformly in Rγ [x] for
γ = 2 deg(f)− |S ∩ T |. Note that a is a root of gcd(f, g) and (x− a)`a | gcd(f, g) if and only
if a appears `a times in S ∩ T . Moreover, because u is distributed uniformly in Rγ [x], with
overwhelming probability the roots of u do not represent any element from P (as explained in
the beginning of Section 4.1). Thus, the computed polynomial f ∗ r + g ∗ s is a polynomial
representation of S∩T . Note that this technique for computing the intersection of two multisets
can be extended to simultaneously compute the intersection of an arbitrary number of multisets
in a similar manner. Also, given f ∗ r + g ∗ s, one cannot learn more information about S and
T than what can be deduced from S ∩ T , as formally stated in the following theorem:

Theorem 3. Let TTP1 be a trusted third party which receives the private input multiset Si of
size k from player i for 1 ≤ i ≤ n, and then returns to every player the intersection multiset
S1∩ · · ·∩Sn directly. Let TTP2 be another trusted third party, which receives the private input
multiset Si from player i for 1 ≤ i ≤ n, and then: (1) calculates the polynomial representation
fi for each Si; (2) chooses ri ← Rk[x]; (3) computes and returns to each player

∑n
i=1 fi ∗ ri.

There exists a PPT translation algorithm such that, to each player, the results of the following
two scenarios are distributed identically: (1) applying translation to the output of TTP1; (2)
returning the output of TTP2 directly.

Proof sketch. Let the output of TTP1 be denoted T . The translation algorithm operates as
follows: (1) calculates the polynomial representation g of T ; (2) chooses the random polynomial
u← R2k−|T |[x]; (3) computes and returns g ∗ u.

Element Reduction. We define the operation of element reduction (by d) of a multiset
S (denoted Rdd(S)) as follows: for each element a that appears b times in S, it appears

16



max{b − d, 0} times in the resulting multiset. We compute the polynomial representation of
Rdd(S) as:

d∑
j=0

f (j) ∗ Fj ∗ rj

where rj ← Rdeg(f)[x] (0 ≤ j ≤ d) and each Fj is any polynomial of degree j, such that
∀a∈P F (a) 6= 0 (0 ≤ j ≤ d) and gcd(F0, . . . , Fd) = 1. Note that random polynomials of degree
0, . . . , d in R[x] have these properties with overwhelming probability.

To show that formal derivative operation allows element reduction, we require the following
lemma:

Lemma 4. Let Fj ∈ R[x] (0 ≤ j ≤ d) each of degree j such that gcd(F0, . . . , Fd) = 1. For
all elements a ∈ R such that ∀0≤j≤d (x − a) - Fj, q ∈ R[X] such that (x − a) - q, and
rj ← Rm+deg(q)[x] (0 ≤ j ≤ d), and:

• if m > d, f = (x − a)m ∗ q → (x − a)m−d |
∑d

j=0 f
(j) ∗ Fj ∗ rj ∧ (x − a)m−d+1 -∑d

j=0 f
(j) ∗ Fj ∗ rj

• if m ≤ d, f = (x− a)m ∗ q → (x− a) -
∑d

j=0 f
(j) ∗ Fj ∗ rj

with overwhelming probability.

We prove this lemma in Section 4.6. By Lemma 2,
∑d

j=0 f
(j) ∗ Fj ∗ rj =

gcd(f (d), f (d−1), . . . , f) ∗ u, where u is distributed uniformly in Rγ [x] for γ = 2k − |Rdd(S)|.
Thus, with overwhelming probability, any root of u does not represent any element from P .
Therefore,

∑d
j=0 f

(j) ∗ Fj ∗ rj is a polynomial representation of Rdd(S), and moreover, given∑d
j=0 f

(j) ∗Fj ∗ rj , one cannot learn more information about S than what can be deduced from
Rdd(S), as formally stated in the following theorem:

Theorem 5. Let Fj (0 ≤ j ≤ d) be publicly known polynomials of degree j such that
∀a∈P Fj(a) 6= 0 and gcd(F0, . . . , Fd) = 1. Let TTP1 be a trusted third party which receives a
private input multiset S of size k, and then returns the reduction multiset Rdd(S) directly. Let
TTP2 be another trusted third party, which receives a private input multiset S, and then: (1)
calculates the polynomial representation f of S; (2) chooses r0, . . . , rd ← Rk[x]; (3) computes
and returns

∑d
j=0 f

(j) ∗ Fj ∗ rj.
There exists a PPT translation algorithm such that the results of the following two scenarios

are distributed identically: (1) applying translation to the output of TTP1; (2) returning the
output of TTP2 directly.

Proof sketch. Let the output of TTP1 be denoted T . The translation algorithm operates as
follows: (1) calculates the polynomial representation g of T ; (2) chooses the random polynomial
u← R2k−|T |[x]; (3) computes and returns g ∗ u.

Operations with Encrypted Polynomials

In the previous section, we prove the security of our polynomial-based multiset operators when
the polynomial representation of the result is computed by a trusted third party (TTP2).
By using additively homomorphic encryption, we allow these results to be implemented as
protocols in the real world without a trusted third party (i.e., the polynomial representation of

17



the set operations is computed by the parties collectively without a trusted third party). In the
algorithms given above, there are three basic polynomial operations that are used: addition,
multiplication, and the formal derivative. We give algorithms in this section for computation
of these operations with encrypted polynomials.

For f ∈ R[x], we represent the encryption of polynomial f , Epk(f), as the ordered
list of the encryptions of its coefficients under the additively homomorphic cryptosystem:
Epk(f [0]), . . . , Epk(f [deg(f)]). Let f1, f2, and g be polynomials in R[x] such that f1(x) =∑deg(f1)

i=0 f1[i]xi, f2(x) =
∑deg(f2)

i=0 f2[i]xi, and g(x) =
∑deg(g)

i=0 g[i]xi. Let a, b ∈ R. Using the
homomorphic properties of the homomorphic cryptosystem, we can efficiently perform the fol-
lowing operations on encrypted polynomials without knowledge of the private key:

• Sum of encrypted polynomials: given the encryptions of the polynomial f1 and f2, we
can efficiently compute the encryption of the polynomial g := f1 + f2, by calculating
Epk(g[i]) := Epk(f1[i]) +h Epk(f2[i]) (0 ≤ i ≤ max{deg(f1),deg(f2)})

• Product of an unencrypted polynomial and an encrypted polynomial: given a polynomial
f2 and the encryption of polynomial f1, we can efficiently compute the encryption of
polynomial g := f1 ∗ f2, (also denoted f2 ∗h Epk(f1)) by calculating the encryption of
each coefficient
Epk(g[i]) := (f2[0] ×h Epk(f1[i])) +h (f2[1] ×h Epk(f1[i −
1])) +h . . . +h (f2[i] ×h Epk(f1[0])) (0 ≤ i ≤ deg(f1) + deg(f2)).

• Derivative of an encrypted polynomial: given the encryption of polynomial f1, we can
efficiently compute the encryption of polynomial g := d

dxf1, by calculating the encryption
of each coefficient Epk(g[i]) := (i+ 1) ×h Epk(f1[i+ 1]) (0 ≤ i ≤ deg(f1)− 1).

• Evaluation of an encrypted polynomial at an unencrypted point: given the encryption of
polynomial f1, we can efficiently compute the encryption of a := f1(b), by calculating
Epk(a) := (b0 ×h Epk(f1[0])) +h (b1 ×h Epk(f1[1])) +h . . . +h (bdeg(f1) ×h Epk(f1[deg(f1)])).

Utilizing the above operations on encrypted polynomials, we can securely compute results
according to the multiset operations described in Section 4.1.2 without the trusted third party
(TTP2). We demonstrate this property with concrete examples detailed in the remainder of
this chapter.

4.1.3 Overview of Applications

The techniques we introduce for privacy-preserving computations of multiset operations have
many applications. We give several concrete examples that utilize our techniques for specific
privacy-preserving functions on multisets in the following sections.

First, we design efficient protocols for the Set-Intersection and Cardinality Set-Intersection
problems, secure against honest-but-curious adversaries (Section 4.2). We then provide an
efficient protocol for the Over-Threshold Set-Union problem, as well as three variants of the
Threshold Set-Union problem, secure against honest-but-curious adversaries, in Section 4.3. We
introduce tools and protocols, secure against malicious players, for the Set-Intersection, Cardi-
nality Set-Intersection, and Over-Threshold Set-Union problems in Section 4.4. We propose an
efficient protocol for the Subset problem in Section 4.5.2.

18



Protocol: Set-Intersection-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private input
set Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding public key
of a homomorpic cryptosystem.
Output: Each player determines S1 ∩ · · · ∩ Sn.

1. Each player i = 1, . . . , n

(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c ∗ ri,i−c + · · · + fi−1 ∗ ri,i−1 + fi ∗ ri,0,

utilizing the algorithms given in Sec. 4.1.2.

2. Player 1 sends the encryption of the polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing the algorithms given in

Sec. 4.1.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Pn

i=1 fi ∗
“Pc

j=0 ri+j,j

”
to all other

players.
5. All players perform a group decryption to obtain the polynomial p.

Each player i = 1, . . . , n determines the intersection multiset as follows: for each a ∈ Si, he calculates b such
that (x− a)b|p ∧ (x− a)b+1 6 |p. The element a appears b times in the intersection multiset.

Figure 4.2: Set-Intersection protocol secure against honest-but-curious adversaries.

More generally, our techniques allow private computation of functions based on composition
of the union, intersection, and element reduction operators. We discuss techniques for this
general private computation on multisets in Section 4.5.1.

Our techniques are widely applicable, even outside the realm of computation of functions
over multisets. As an example, we show how to apply our techniques to private evaluation of
boolean formulae in CNF form in Section 4.5.3.

4.2 Application I: Private Set-Intersection and Cardinality Set-
Intersection

In this section, we design protocols for Set-Intersection and Cardinality Set-Intersection secure
against a coalition of honest-but-curious adversaries.

4.2.1 Set-Intersection

Problem Definition. Let there be n parties; each has a private input set Si (1 ≤ i ≤ n) of
size k. We define the Set-Intersection problem as follows: all players learn the intersection of
all private input multisets without gaining any other information; that is, each player learns
S1 ∩ S2 ∩ · · · ∩ Sn.

Our protocol secure against honest-but-curious adversaries is given in Fig. 4.2. In this
protocol, each player i (1 ≤ i ≤ n) first calculates a polynomial representation fi ∈ R[x] of
his input multiset Si. He then encrypts this polynomial fi, and sends it to c other players
i+ 1, . . . , i+ c. For each encrypted polynomial Epk(fi), each player i+ j (0 ≤ j ≤ c) chooses a

19



random polynomial ri+j,j ∈ Rk[x]. Note that at most c players may collude, thus
∑c

j=0 ri+j,j
is both uniformly distributed and known to no player. They then compute the encrypted
polynomial

(∑c
j=0 ri+j,j

)
∗h Epk(fi). From these encrypted polynomials, the players compute

the encryption of p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
. All players engage in group decryption to

obtain the polynomial p. Thus, by Theorem 3, the players have privately computed p, a
polynomial representing the intersection of their private input multisets. Finally, to reconstruct
the multiset represented by polynomial p, the player i, for each a ∈ Si, calculates b such that
(x− a)b|p ∧ (x− a)b+1 6 |p. The element a appears b times in the intersection multiset.

Security Analysis. We show that our protocol is correct, as each player learns the appro-
priate answer set at its termination, and secure in the honest-but-curious model, as no player
gains information that it would not gain when using its input in the ideal model. A formal
statement of these properties is as follows:

Theorem 6. In the Set-Intersection protocol of Fig. 4.2, every player learns the intersection
of all players’ private inputs, S1 ∩ S2 ∩ · · · ∩ Sn, with overwhelming probability.

Proof. Each player learns the decrypted polynomial p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
. If

∀i∈[n] fi(a) = 0, then p(a) = 0. As no elements that are not in every players’ private in-
put can be in the set-intersection of all private inputs, all elements in the set-intersection can
be recovered by each player. Each element in his private input that a root of p is a member of
the intersection set.

We now show that, with high probability, erroneous elements are not inserted into the answer
set. Note that, by the reasoning of Lemma 19, all coefficients of fi (1 ≤ i ≤ n) are in the set
R∗∪{0}. Thus, by Lemma 2, the decrypted polynomial is of the form

(∏
a∈I(x− a)

)
∗s, where

s is uniformly distributed over R2k−|I|[x]. This random polynomial s is of polynomial size, and
thus has a polynomial number of roots. Each of these roots is a representation of an element from
P with only negligible probability. Thus, the probability that an erroneous element is included
in the answer set is also negligible, and all players learn exactly the intersection set.

Theorem 7. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is se-
mantically secure, with overwhelming probability, in the Set-Intersection protocol of Fig. 4.2,
any coalition of fewer than n PPT honest-but-curious players learns no more information than
would be gained by using the same private inputs in the ideal model with a trusted third party.

Proof. We assume that the homomorphic cryptosystem (E,D) used in the protocol is in fact
secure as we required. Thus, as the inputs of the other players are all encrypted until the
decryption is performed, nothing can be learned by any player before that point. Each player
j then learns only the summed polynomial p =

∑n
i=1 fi ∗

(∑c
j=0 ri+j,j

)
.

Note that to every coalition of c players, for every i,
∑c

j=0 ri+j,j is completely random, as
at least one player in the c+ 1 players who chose that random polynomial is not a member of
the coalition, and so

∑c
j=0 ri+j,j is uniformly distributed and unknown.

Note that, by the reasoning of Lemma 19, all coefficients of fi (1 ≤ i ≤ n) are in the set
R∗ ∪ {0}. Thus, by Lemma 2, p =

∑n
i=1 fi ∗

(∑c
j=0 ri+j,j

)
=
(∏

a∈I(x− a)
)
∗ s, where I is

the intersection set and s is uniformly distributed over the polynomials of appropriate degree.

20



Protocol: Cardinality-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private input
set Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding public key
of a homomorpic cryptosystem.
Output: Each player determines |S1 ∩ · · · ∩ Sn|.

1. Each player i = 1, . . . , n

(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 random polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c ∗ ri,i−c + · · · + fi−1 ∗ ri,i−1 + fi ∗ ri,0,

utilizing the algorithms given in Sec. 4.1.2.

2. Player 1 sends the encrypted polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing the algorithms given in

Sec. 4.1.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Pn

i=1 fi ∗
“Pc

j=0 ri+j,j

”
to all other

players.
5. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial p at each input (Si)j , obtaining encrypted elements
Epk(cij) where cij = p((Si)j), using the algorithm given in Sec. 4.1.2.

(b) for each j = 1, . . . , k chooses a random number rij ← R and calculates an encrypted element
(Vi)j = rij ×h Epk(cij)

6. All players perform the Shuffle protocol on their private input sets Vi, obtaining a joint set V , in
which all ciphertexts have been re-randomized.

7. All players 1, . . . n decrypt each element of the shuffled set V .

If nb of the decrypted elements from V are 0, then the size of the set intersection is b.

Figure 4.3: Cardinality set-intersection protocol secure against honest-but-curious adversaries.

Thus no information about the private inputs of the honest players can be recovered from p,
other than that given by revealing the intersection set.

4.2.2 Cardinality Set-Intersection

Problem Definition. We define the Cardinality Set-Intersection problem on sets as follows:
each player learns the number of unique elements in S1 ∩ · · · ∩ Sn, without learning any other
information. A variant of this problem is the Cardinality Set-Intersection problem on multisets,
which we define as follows: all players learn |S1 ∩ · · · ∩ Sn|, as computed on multisets.

Our protocol for Cardinality Set-Intersection, given in Figure 4.3, proceeds as our protocol
for Set-Intersection, until the point where all players learn the encryption of p, the polynomial
representation of S1 ∩ · · · ∩ Sn. Each player i = 1, . . . , n then evaluates this encrypted poly-
nomial at each unique element a ∈ Si, obtaining βa, an encryption of p(a). He then blinds
each encrypted evaluation p(a) by calculating β′a = ba ×h βa. All players then distribute and
shuffle the ciphertexts β′a constructed by each player, such that all players receive all cipher-
texts, without learning their source. The Shuffle protocol can be constructed from standard
techniques [13, 17, 24, 31, 44], with communication complexity at most O(n2k). The players
then decrypt these ciphertexts, finding that nb of the decryptions are 0, implying that there
are b unique elements in S1 ∩ · · · ∩ Sn. FNP utilize a variation of this technique [23], but it

21



is not obvious how to construct a multiparty Cardinality Set-Intersection protocol from their
techniques.

Variants. Our protocol can be simply extended to privately compute the Cardinality Set-
Intersection problem on multisets, by utilizing an encoding as follows: any element a that
appears b times in a multiset is encoded as the set: {a || 1, . . . , a || b}, with element included
only once. Note that this is a set of equivalent size as the original multiset representation, so
this variant preserves the efficiency of our protocol.

Security Analysis. We show that our protocol is correct, as each player learns the size of the
answer set at its termination, and secure in the honest-but-curious model, as no player gains
information that it would not gain when using its input in the ideal model. A formal statement
of these properties is as follows:

Theorem 8. In the Cardinality Set-Intersection protocol of Fig. 4.3, every player learns the
size of the intersection of all players’ private inputs, |S1 ∩ S2 ∩ · · · ∩ Sn|, with overwhelming
probability.

Proof. Note that, following the proof of Theorem 6, p is a polynomial representation of the
intersection multiset, with overwhelming probability. Each player evaluates p (encrypted) at
each of their inputs, then blinds it by homomorphically multiplying a random element by the
encrypted evaluation. Thus each resulting encrypted element (Vi)j (1 ≤ i ≤ n, 1 ≤ j ≤ k) is
either 0, representing some element of a private input set in the intersection set, or uniformly
distributed, representing some element not in the intersection set. An element is a member of
S1∩· · ·∩Sn if and only if each player holds it as part of their private input set, for each element of
S1∩· · ·∩Sn, there are n encrypted evaluations that are 0. Thus, when the encrypted evaluations
(Vi)j (1 ≤ i ≤ n, 1 ≤ j ≤ k) are shuffled and decrypted, there are exactly n|S1 ∩ · · · ∩ Sn| 0s,
and thus all players learn the size of the intersection set.

Theorem 9. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is se-
mantically secure and that the Shuffle protocol is secure, with overwhelming probability, in the
Cardinality Set-Intersection protocol of Fig. 4.3, any coalition of fewer than n PPT honest-but-
curious players learns no more information than would be gained by using the same private
inputs in the ideal model with a trusted third party.

Proof. We assume that the cryptosystem Epk(·) and Shuffle protocol are secure, so we may
note that no player or coalition of players learns any information from the protocol except the
decryption of the randomly-ordered set {(Vi)j}i∈[n],j∈[k]. As each element of that set is either 0
or a uniformly distributed element, it conveys no information other than the statement ‘some
player had an element in their private input set that was/was not in the intersection set’. As
this information precisely constitutes the result of the Cardinality Set-Intersection problem, no
additional information is revealed.

4.2.3 Malicious Case

We can extend our protocols in Figures 4.2 and 4.3, secure against honest-but-curious players,
to protocols secure against malicious adversaries by adding zero-knowledge proofs or using
cut-and-choose to ensure security. We give details of our protocols secure against malicious
adversaries in Section 4.4.2.

22



Protocol: Over-Threshold Set-Union-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private input
set Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding public key
for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears in the
output is t. F0, . . . , Ft−1 are fixed polynomials of degree 0, . . . , t− 1 which have no common factors or roots
representing elements of P .
Output: Each player determines Rdt−1(S1 ∪ · · · ∪ Sn)

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algorithm given in

Sec. 4.1.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Qn

i=1 fi to players 2, . . . , c + 1
5. Each player i = 1, . . . , c + 1

(a) calculates the encryption of the 1, .., t−1st derivatives of p, denoted p(1), . . . , p(t−1), by repeating
the algorithm given in Sec. 4.1.2.

(b) chooses random polynomials ri,0, . . . , ri,t−1 ← Rnk[x]
(c) calculates the encryption of the polynomial

Pt−1
`=0 p(`) ∗F` ∗ ri,` and sends it to all other players.

6. All players perform a group decryption to obtain the polynomial Φ =
Pt−1

`=0 p(`) ∗ Fj ∗
`Pc+1

i=0 ri,`

´
.

7. Each player i = 1, . . . , n, for each j = 1, . . . , k

(a) chooses a random element bi,j ← R
(b) calculates ui,j = bi,j × Φ((Si)j) + (Si)j

8. All players i = 1, . . . n perform the Shuffle protocol on the elements ui,j (1 ≤ j ≤ k), such that each
player obtains a joint set V .

Each element a ∈ P that appears b times in V is an element in the threshold set that appears b times in the
players’ private inputs.

Figure 4.4: Over-Threshold Set-Union protocol secure against honest-but-curious adversaries.

4.3 Application II: Private Over-Threshold Set-Union and
Threshold Set-Union

In this section, we design protocols for the Over-Threshold Set-Union problem and several
variations of the Threshold Set-Union problem, secure against a coalition of honest-but-curious
adversaries.

4.3.1 Over-Threshold Set-Union Protocol

Problem Definition. Let there be n players; each has a private input set Si (1 ≤ i ≤ n)
of size k. We define the Over-Threshold Set-Union problem as follows: all players learn which
elements appear in the union of the players’ private input multisets at least a threshold number
t times, and the number of times these elements appeared in the union of players’ private inputs,
without gaining any other information. For example, assume that a appears in the combined
private input of the players 15 times. If t = 10, then all players learn a has appeared 15 times.
However, if t = 16, then no player learns a appears in any player’s private input. This problem
can be represented as Rdt−1(S1 ∪ · · · ∪ Sn).

We describe our protocol secure against honest-but-curious players for the Over-Threshold
Set-Union problem in Fig. 4.4. In this protocol, each player i (1 ≤ i ≤ n) first calculates fi, the

23



polynomial representation of its input multiset Si. All players then compute the encryption of
polynomial p =

∏n
i=1 fi, the polynomial representation of S1 ∪ · · · ∪ Sn. Players i = 1, . . . , c+

1 then each choose random polynomials ri,0, . . . , ri,t−1, and calculate the encryption of the
polynomial

∑t−1
`=0 p

(`) ∗ F` ∗ ri,` as shown in Fig. 4.4. All players then calculate the encryption

of the polynomial Φ =
∑t−1

`=0 p
(`) ∗ F` ∗

(∑c+1
i=0 ri,`

)
and perform a group decryption to obtain

Φ. As at most c players may dishonestly collude, the polynomials
∑c+1

i=1 ri,` (1 ≤ ` ≤ d) are
uniformly distributed and known to no player. By Theorem 5, Φ is a polynomial representation
of Rdt−1(S1 ∪ · · · ∪ Sn).

Each player i = 1, . . . , n then chooses bi,j ← R and computes ui,j = bi,j × Φ((Si)j) + (Si)j
(1 ≤ j ≤ k). Each element ui,j equals (Si)j if (Si)j ∈ Rdt−1(S1 ∪ · · · ∪ Sn), and is otherwise
uniformly distributed over R. The players then shuffle these elements ui,j , such that each player
learns all of the elements, but does not learn which player’s set they came from. The shuffle
can be easily accomplished with standard techniques [13, 17, 24, 31, 44], with communication
complexity at most O(n2k). The multiset formed by those shuffled elements that represent
elements of P is Rdt−1(S1 ∪ · · · ∪ Sn).

Security Analysis. We show that our protocol is correct, as each player learns the appro-
priate answer set at its termination, and secure in the honest-but-curious model, as no player
gains information that it would not gain when using its input in the ideal model with a trusted
third party. A formal statement of these properties is as follows:

Theorem 10. In the Over-Threshold Set-Union protocol of Fig. 4.4, every honest-but-curious
player learns each element a which appears at least t times in the union of the n players’ private
inputs, as well as the number of times it so appears, with overwhelming probability.

Proof. All players calculate and decrypt Φ =
∑t−1

`=0 p
(`) ∗ F` ∗

(∑c+1
i=1 ri,`

)
. As

∑c+1
i=1 ri,` (0 ≤

` ≤ t − 1) are distributed uniformly over all polynomials of approximate size nk and, by the
reasoning of Lemma 19, all coefficients of p(`) ∗ F` (0 ≤ ` ≤ t − 1) are in the set R∗ ∪ {0},
Lemma 2 tells us that Φ = gcd

(
p(t−1), p(t−2), . . . , p

)
∗u, where u is a random polynomial of the

appropriate size. As u has only a polynomial number of roots, each of which has a negligable
probability of representing a member of P , u is a polynomial representation of the empty set
with overwhelming probability.

By Theorem 4, gcd
(
p(t−1), p(t−2), . . . , p

)
has roots which are exactly those that appear at

least t times in the players’ private inputs (the threshold set). The players calculate elements
ui,j , which are uniformly distributed if (Si)j is not a member of the threshold set, and (Si)j if
it does appear in the threshold set. These elements are shuffled and distributed to all players.
Each reveals an element of the private input, if that element is in the threshold set, and nothing
otherwise. Thus each element in the threshold intersection set is revealed as many times as it
appeared in the private inputs.

Theorem 11. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is
semantically secure, with overwhelming probability, in the Over-Threshold Set-Union protocol
of Fig. 4.4, any coalition of fewer than n PPT honest-but-curious players learns no more infor-
mation than would be gained by using the same private inputs in the ideal model with a trusted
third party.

Proof. We assume that the cryptosystem employed is semantically secure, and so play-
ers learn only the formula Φ =

∑t−1
`=0 p

(`) ∗ F` ∗
(∑c+1

i=1 ri,`

)
. Note that

∑c+1
i=1 ri,` (0 ≤

24



` ≤ t − 1) are uniformly distributed and unknown to all players, as the maximum coali-
tion size is smaller than c + 1. Note that by the reasoning of Lemma 19, all coeffi-
cients of p(`) ∗ F` (0 ≤ ` ≤ t − 1) are in the set R∗ ∪ {0}. Thus, by Theorem 2,
Φ = gcd

(
p(t−1) ∗ Ft−1, p

(t−2) ∗ Ft−2, . . . , p ∗ F0

)
∗ s, for some uniformly distributed polynomial

s. As s is uniformly distributed for any player inputs, no player or coalition can learn more than
gcd

(
p(t−1), p(t−2), . . . , p

)
. F0, . . . , Ft−1 are chosen such that gcd(p, F0, . . . , Ft−1) = 1 with over-

whelming probability, and so gcd
(
p(t−1) ∗ Ft−1, p

(t−2) ∗ Ft−2, . . . , p ∗ F0

)
= gcd

(
p, p(t−1) ∗ F

)
=

gcd
(
p(t−1), p(t−2), . . . , p

)
with overwhelming probability. As was observed in Theorem 10, this

information exactly represents the threshold set, and can thus be derived from the answer that
would be returned by a trusted third party. Thus no player or coalition of at most c players
can learn more than in the ideal model.

Neither do the shuffled elements reveal additional information. As we assume the shuffling
protocol is secure, the origin of any element is not revealed. The elements revealed are exactly
those in the threshold set, each included as many times as it was included in the private inputs,
and thus also do not reveal information to any adversary.

4.3.2 Threshold Set-Union

Problem Definition. We define the Threshold Set-Union problem as follows: all players
learn which elements appear in the combined private input of the players at least a threshold
number t times. For example, assume that a appears in the combined private input of the
players 15 times. If t = 10, then all players learn a. However, if t = 16, then no player learns
a. This problem differs from the Over-Threshold Set-Union problem in that each player learns
the elements of Rdt−1(S1 ∩ · · · ∩ Sn), without learning how often each element appears.

We offer protocols for several variants on Threshold Set-Union: threshold contribution,
perfect, and semi-perfect. Threshold contribution allows for thresholds t ≥ 1, and each player
learns only those elements which appear both in his private input and the threshold set: player
i (1 ≤ i ≤ n) learns the elements of Si ∩Rdt−1(S1 ∩ · · · ∩Sn). Perfect threshold set-intersection
allows for thresholds t ≥ 1, and conforms exactly to the definition of threshold set-intersection.
The semi-perfect variant requires for security that t ≥ 2, and that the cheating coalition does
not include any single element more than t − 1 times in their private inputs. Note that the
information illicitly gained by the coalition when they include more than t − 1 copies of an
element a is restricted to a possibility of learning that there exists some other player whose
private input contains a. We do not consider the difference in security between the semi-perfect
and perfect variants to be significant.

The protocols for the Threshold Set-Union problem, given in Figs. 4.5, 4.6, and 4.7, are
identical to the protocol for Over-Threshold Set-Union (given in Fig. 4.4) from step 1-5. We
explain the differences between the protocols for each variant: threshold contribution, semi-
perfect, and perfect. Each player constructs encryptions of the elements Φ((Si)j) from his
private input set in step 6, and continues as described below.

Threshold Contribution Threshold Set-Union. This protocol is given in Fig. 4.6. The
players cooperatively decrypt the encrypted elements Φ((Si)j) ∗ (

∑n
`=1 b`,i,j). This decryption

must take place in such a way that only player i learns the element Φ((Si)j) ∗ (
∑n

`=1 b`,i,j).
Typically, parties produce decryption shares and reconstruct the element from them; player i
simply retains his decryption share, so that only he learns the decryption. Thus each player
learns which of his elements appear in the threshold set, since if (Si)j appears in the threshold

25



Protocol: Threshold-SemiPerfect-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private input
set Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding public key
for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears in the
output is t. F0, . . . , Ft−1 are fixed polynomials of degree 0, . . . , t− 1 which have no common factors or roots
representing elements of P .
Output: Each player learns the elements of Rdt−1(S1 ∪ · · · ∪ Sn).

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algorithm given in

Sec. 4.1.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Qn

i=1 fi to players 2, . . . , c + 1
5. Each player i = 1, . . . , c + 1

(a) calculates the encryption of the 1, .., t−1st derivatives of p, denoted p(1), . . . , p(t−1), by repeating
the algorithm given in Sec. 4.1.2.

(b) chooses random polynomials ri,0, . . . , ri,t−1 ← Rnk[x]
(c) calculates the encryption of the polynomial

Pt−1
`=0 p(`) ∗F` ∗ ri,` and sends it to all other players.

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ =
Pt−1

`=0 p(`) ∗ F` ∗
`Pc+1

i=1 ri,`

´
at each input

(Si)j , obtaining encrypted elements Epk(cij) where cij = Φ((Si)j), using the algorithm given
in Sec. 4.1.2

(b) for each j = 1, . . . , k calculates an encrypted tag Tij = Enci(h((Si)j) || (Si)j)
(c) for each j = 1, . . . , k chooses a random number rij ← R and calculates an encrypted element

Uij = (rij ×h Epk(cij)) +h Epk((Si)j)
(d) constructs the set Vi = {(Tij || Uij) | 1 ≤ j ≤ k}

7. By using the Shuffle protocol, players perform shuffling on their private input sets Vi.
8. For each shuffled element T || U in sorted order, each player i = 1, . . . , n

(a) if Di(T ) = h(a) || a for some a

i. if a has previously been revealed to be in the threshold set, then calculate an incorrect
decryption share of U , and send it to all other players

(b) else calculate a decryption share of U , and send it to all other players
(c) reconstruct the decryption of U . If the element a ∈ P , then a is in the threshold result set

Figure 4.5: Threshold Set-Union protocol secure against honest-but-curious adversaries (semi-
perfect variant).

set, Φ((Si)j) ∗ (
∑n

`=1 b`,i,j) = 0. No player learns more information because if an element (Si)j
is not in the threshold set, Φ((Si)j) ∗ (

∑n
`=1 b`,i,j) is uniformly distributed.

Semi-Perfect Threshold Set-Union. This protocol is given in Fig. 4.5. The encrypted
element (Ui)j calculated from the encrypted evaluation of Φ((Si)j) is either: (1) an encryption
of the private input element (Si)j (if (Si)j is in the intersection set) or (2) an encryption of a
random element (otherwise). However, the player also constructs a corresponding encrypted
tag for each (Ui)j , Tij . We require that the cryptosystem used to construct these tags be key-
private, so that the origin of ciphertext pairs T,U cannot be ascertained by the key used to
construct the tags.

The players then correctly obtain a decryption of each element in the threshold set exactly
once. Any other time a ciphertext U for an element in the threshold set is decrypted, a player

26



Protocol: Threshold-Contribution-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private input
set Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding public key
for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears in the
output is t. F is a fixed polynomial of degree t − 1 which has no roots representing elements of P . The
threshold number of repetitions at which an element appears in the output is t ≥ 2. F0, . . . , Ft−1 are fixed
polynomials of degree 0, . . . , t− 1 which have no common factors or roots representing elements of P .
Output: Each player i (1 ≤ i ≤ n) determines Si ∩ Rdt−1(S1 ∪ · · · ∪ Sn).

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algorithm given in

Sec. 4.1.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Qn

i=1 fi to players 2, . . . , c + 1
5. Each player i = 1, . . . , c + 1

(a) calculates the encryption of the 1, .., t−1st derivatives of p, denoted p(1), . . . , p(t−1), by repeating
the algorithm given in Sec. 4.1.2.

(b) chooses random polynomials ri,0, . . . , ri,t−1 ← Rnk[x]
(c) calculates the encryption of the polynomial

Pt−1
`=0 p(`) ∗F` ∗ ri,` and sends it to all other players.

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ =
Pt−1

`=0 p(`) ∗ F` ∗
`Pc+1

i=1 ri,`

´
at each input

(Si)j , obtaining encrypted elements Epk(cij) where cij = Φ((Si)j), using the algorithm given
in Sec. 4.1.2, and sends them to all players

(b) chooses a random element bi,j,` (1 ≤ j ≤ n, 1 ≤ ` ≤ k)
(c) for each ciphertext cj`, calculate bi,j,` ×h cj` (1 ≤ j ≤ n, 1 ≤ ` ≤ k)

7. The players i (1 ≤ i ≤ n) calculate Ujm =
`Pn

`=1 b`,j,m

´
×h cjm (1 ≤ j ≤ n, 1 ≤ m ≤ k)

8. All players decrypt the ciphertexts Uij , so that only player i learns the decryption ai,j .

For each player i (1 ≤ i ≤ n), if ai,j = 0 (1 ≤ j ≤ k), then (Si)j is in his result set.

Figure 4.6: Threshold Set-Union protocol secure against honest-but-curious adversaries (thresh-
old contribution variant).

sabotages it. In group decryption schemes, players generally produce shares of the decrypted
element; if one player sends a uniformly generated share instead of a valid one, the decrypted
element is uniform. If the decrypted element is uniform, it conveys no information to the
players. To ensure an encryption of an element in the threshold set is not decrypted once
the element is known to be in the threshold set, a player sabotages the decryption under the
following conditions: (1) he can decrypt the tag to h(a) || a for some a and (2) a has already
been determined to be a member of the threshold set. All other ciphertexts should be correctly
decrypted; either they are encryptions of elements in the threshold set which have not yet been
decrypted, or they are encryptions of random elements.

Note that the protocol is the only protocol proposed in this chapter with a non-constant
number of rounds. Because of the need to sabotage decryptions based on the results of past
decryptions, there are O(nk) rounds in this protocol.

Perfect Threshold Set-Union. This protocol is given in Fig. 4.7. Each player constructs
the encrypted elements (Ui)j from the encrypted evaluation of Φ((Si)j) as written in step 6
of Figure 4.5. The players then utilize the Shuffle protocol to anonymously distribute these
elements. If an element appears in the threshold set, then at least one encryption of it appears

27



Protocol: Threshold-Perfect-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with a private input
set Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding public
key for a homomorphic cryptosystem. The threshold number of repetitions at which an element appears
in the output is t. F is a fixed polynomial of degree t − 1 which has no roots representing elements of P .
The threshold number of repetitions at which an element appears in the output is t ≥ 2. F0, . . . , Ft−1 are
fixed polynomials of degree 0, . . . , t− 1 which have no common factors or roots representing elements of P .
IsEq(C, C′) = 1 if the ciphertexts C, C′ encode the same plaintext, and 0 otherwise.
Output: Each player determines the elements of Rdt−1(S1 ∪ · · · ∪ Sn).

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algorithm given in

Sec. 4.1.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Qn

i=1 fi to players 2, . . . , c + 1
5. Each player i = 1, . . . , c + 1

(a) calculates the encryption of the 1, .., t−1st derivatives of p, denoted p(1), . . . , p(t−1), by repeating
the algorithm given in Sec. 4.1.2.

(b) chooses random polynomials ri,0, . . . , ri,t−1 ← Rnk[x]
(c) calculates the encryption of the polynomial

Pt−1
`=0 p(`) ∗F` ∗ ri,` and sends it to all other players.

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ =
Pt−1

`=0 p(`) ∗ F` ∗
`Pc+1

i=1 ri,`

´
at each input

(Si)j , obtaining encrypted elements Epk(cij) where cij = Φ((Si)j), using the algorithm given
in Sec. 4.1.2, and sends them to all players

(b) for each i′ = 1, . . . , n, j = 1, . . . , k chooses a random number ri′j ← R and calculates an
encrypted element Uij = (ri′j ×h Epk(ci′j)), and sends it to player i′

(c) calculates the elements for j = 1, . . . , k
Uij = (r1j ×h Epk(c1j)) +h . . . +h (rnj ×h Epk(cnj)) +h Epk((Si)j)

(d) constructs the set Vi = {Uij | 1 ≤ j ≤ k}

7. By using the Shuffle protocol, all players perform shuffling on their private input sets Vi, obtaining
the set U ′.

8. For each shuffled ciphertext U ′
` with arbitrary ordering index ` ∈ [nk], the players i = 1, . . . , n

(a) each player i chooses random elements qi,` ← R
(b) calculate W` = U ′

` +h Epk

``Pn
i=1 qi,`

´
(IsEq(U ′

`, U
′
`−1) + · · ·+ IsEq(U ′

`, U
′
1))

´
9. All players 1, . . . , n decrypt each ciphertext W`, obtaining an element a` (1 ≤ ` ≤ nk).

If aj ∈ P (1 ≤ j ≤ k), then aj is a member of the result set.

Figure 4.7: Threshold Set-Union protocol secure against honest-but-curious adversaries (perfect
variant).

in the shuffled ciphertexts. The players ensure in step 8 that all duplicates (ciphertexts of
the same element) except the first have a random element added to them. This disguises the
number of players who have each element of the threshold set in their private input. Let the
shuffled ciphertexts U have an arbitrary ordering U ′

1, . . . , U
′
nk. IsEq(C,C ′) = 1 if the ciphertexts

C encode the same plaintext, and 0 otherwise. (This calculation can be achieved with the
techniques in [36].) The players i ∈ [n] then choose random elements qi,` ← R (1 ≤ ` ≤ nk) and
decrypt the ciphertexts W` = U ′

` +h Epk
(
(
∑n

i=1 q`) (IsEq(U ′
`, U

′
`−1) + . . . IsEq(U ′

`, U
′
1))
)
. Thus,

if U ′
` is a duplicate (encryption of an element which also appeared early in the ordering), it has

a uniformly distributed element added to it, and conveys no information. Each element of the
threshold set is decrypted exactly once, and all players thus learn the threshold set.

28



Security Analysis. We show that our protocol is correct, as each player learns the appropri-
ate result set at its termination, and secure in the honest-but-curious model, as no player gains
information that it would not gain when using its input in the ideal model. A formal statement
of these properties is as follows:

Theorem 12. In the Threshold Contribution Threshold Set-Union protocol of Fig. 4.6, every
player i (1 ≤ i ≤ n) learns the set Si ∩ Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Proof. Note that the encrypted computation is performed in accordance with Theorems 3 and 5,
and thus the polynomial Φ is a polynomial representation of the multiset Rdt−1(S1 ∪ · · · ∪ Sn),
with overwhelming probability. Each player i (1 ≤ i ≤ n) constructs encrypted evaluations of
each a ∈ Si, which are them homomorphically multiplied by a uniformly distributed element
by all players. Thus, each ciphertext constructed in this fashion is either 0 (meaning a ∈
Rdt−1(S1 ∪ · · · ∪ Sn)) or uniformly distributed (meaning a 6∈ Rdt−1(S1 ∪ · · · ∪ Sn)). These
ciphertexts are then decrypted; thus, each player i learns which elements of his private input
appear in the threshold set Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Theorem 13. In the Semi-Perfect Threshold Set-Union protocol of Fig. 4.5, each player i
(1 ≤ i ≤ n) learns the set Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Proof. Following the proof of Theorem 12, the polynomial Φ is a polynomial representation
of the multiset Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability and each shuffled element
T || U is of one of the following forms:

• For some a ∈ S1 ∪ · · · ∪ Sn, 1 ≤ i ≤ n, T = Enci(h(a) || a), U is of the form Epk(a) –
thus, a ∈ Rdt−1(S1 ∪ · · · ∪ Sn)
• For some a ∈ S1 ∪ · · · ∪ Sn, 1 ≤ i ≤ n, T = Enci(h(a) || a), U is not of the form Epk(a) –

thus, a 6∈ Rdt−1(S1 ∪ · · · ∪ Sn)

The operation of Step 8 assures that for each a ∈ Rdt−1(S1 ∪ · · · ∪ Sn), a corresponding
U is correctly decrypted exactly once – all other decryptions of a are sabotaged to appear
uniformly distributed. Thus, all players learn the elements of the set Rdt−1(S1 ∪ · · · ∪Sn), with
overwhelming probability.

Theorem 14. In the Perfect Threshold Set-Union protocol of Fig. 4.7, every player learns the
set Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Proof. Following the proof of Theorem 12, the polynomial Φ is a polynomial representation of
the multiset Rdt−1(S1 ∪ · · · ∪Sn), with overwhelming probability and each shuffled (encrypted)
element U ′

` (1 ≤ ` ≤ nk) is of one of the following forms: a ∈ P (indicating that a ∈ Rdt−1(S1∪
· · ·∪Sn)), or a uniformly distributed element (which can be distinguished from a representation
of an element of P with overwhelming probability). Note that, if U ′

` is an encryption of an
element a, and ¬∃`′∈[`−1] U

′
`′ such that U ′

`′ is also an encryption of a, then W` is also an
encryption of a. (Otherwise, W` is an encryption of a uniformly distributed element.)

This calculation results in a list of encrypted elements W`, each of which is of one of the
following forms: a ∈ P (indicating that both: a ∈ Rdt−1(S1 ∪ · · · ∪ Sn), and W` is with over-
whelming probability the only encryption of a in the list), or a uniformly distributed element.
Thus, when the players decrypt the list W`, they learn all elements of Rdt−1(S1 ∪ · · · ∪ Sn)
exactly once, with overwhelming probability.

29



Theorem 15. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is
semantically secure and that the Shuffle protocol is secure, with overwhelming probability, in the
Threshold Set-Union protocols of Figs. 4.5, 4.6, and 4.7, any coalition of fewer than n PPT
honest-but-curious players learns no more information than would be gained by using the same
private inputs in the ideal model with a trusted third party.

Proof. Note that in the threshold contribution and perfect variants of Threshold Set-Union, all
data is encrypted until the final result sets are revealed through joint decryption. As shown in
Theorems 12 and 14, the final sets correspond exactly to the elements revealed (all elements
that are not in the result set are uniformly distributed over R, and thus hold no information),
no information except the result set is revealed to the players.

In the protocol for semi-perfect Threshold Set-Union, the result set is not decrypted all-
at-once, but one element at a time. Theorem 13 shows the the resulting elements correspond
exactly to the desired result set, but we must show that the behavior of each player during the
process of decryption yields no disallowed information. Note that we require for the security of
this protocol that a dishonest coalition hold no more than t− 1 copies of any given element in
their private input sets.

When performing the decryption process, each player learns two pieces of information when
a result set element is revealed: the element, and whether the element revealed came from that
player’s own private input multiset. Each ciphertext is ‘tagged’, so each player can easily decide
whether they constructed that ciphertext. Thus, if a dishonest coalition held at least t copies
of any given element, they could determine that at least one other player also held a copy of
that element, revealing forbidden information. However, as we have precluded this situation, no
information is revealed; if a dishonest coalition holds t− 1 copies of an element which appears
in the result set, they already know that at least one other player holds it (otherwise it would
not appear in the result set!).

4.3.3 Malicious Case

By adding zero-knowledge proofs to our Over-Threshold Set-Union protocol secure against
honest-but-curious adversaries, we extend our results to enable security against malicious adver-
saries. We provide details of our protocol secure against malicious adversaries in Section 4.4.4.

4.4 Set-Intersection, Cardinality Set-Intersection, and Over-
Threshold Set-Union for Malicious Parties

We extend the protocols for the Set-Intersection, Cardinality Set-Intersection, and Over-
Threshold Set-Union problems given in Sections 4.2 and 4.3 to obtain security against ad-
versaries in the malicious model. To obtain this result, we add zero-knowledge proofs, verified
by all players, to ensure the correctness of all computation. In this section, we first introduce
notation for zero-knowledge proofs, then give the protocols secure against malicious parties.

4.4.1 Tools

In this section, we describe cryptographic tools that we utilize in our protocols secure against
malicious players.

30



Zero-Knowledge Proofs. We utilize several zero-knowledge proofs in our protocols for the
malicious adversary model. We introduce the notation for these zero-knowledge proofs below;
for additively homomorphic cryptosystems such as Paillier, we can efficiently construct these
zero-knowledge proofs using standard constructions [9, 14].

• POPK{Epk(x)} denotes a zero-knowledge proof that given a public ciphertext Epk(x),
the player knows the corresponding plaintext x [15].

• ZKPK{f | p′ = f ∗h α} is shorthand notation for a zero-knowledge proof of knowledge
that the prover knows a polynomial f such that encrypted polynomial p′ = f ∗h α, given
the encrypted polynomials p′ and α.

• ZKPK{f | (p′ = f ∗h α) ∧ (y = Epk (f))} is the proof ZKPK{f | p′ = f ∗h α} with the
additional constraint that y = Epk(f) (y is the encryption of f), given the encrypted
polynomial p′, y, and α.

Equivocal Commitment. A standard commitment scheme allows parties to give a “sealed
envelope” that can be later opened to reveal exactly one value. We use an equivocal commitment
scheme in our protocols secure against malicious players, such that the simulator can open the
‘envelope’ to an arbitrary value without being detected by the adversary [33, 39].

4.4.2 Set-Intersection Protocol for Malicious Adversaries

Our protocol for malicious parties performing Set-Intersection, given in Fig. 4.8, proceeds largely
as the protocol secure against honest-but-curious parties, which was given in Fig. 4.2. The
commitments to the data items Λ(ci,j) are purely for the purposes of a simulation proof. We
add zero-knowledge proofs to prevent three forms of misbehavior: choosing ciphertexts for the
encrypted coefficients of fi without knowledge of their plaintext, not performing the polynomial
multiplication of fj ∗ ri,j correctly, and not performing decryption correctly. We also constrain
the leading coefficient of fi to be 1 for all players, to prevent any player from setting their
polynomial to 0; if fi = 0, every element is a root, and thus it can represent an unlimited
number of elements. We can thus detect or prevent misbehavior from malicious players, forcing
this protocol to operate like the honest-but-curious protocol in Fig. 4.2. The protocol can gain
efficiency by taking advantage of the maximum coalition size c.

Our set-intersection protocol secure against malicious parties utilizes an expensive (O(k2)
size) zero-knowledge proof to prevent malicious parties from cheating when multiplying the
polynomial ri,j by the encryption of the polynomial fj . Each player i must commit to each
polynomial ri,j (1 ≤ i, j ≤ n), for purposes of constructing a zero-knowledge proof. We may
easily replace this proof with use of the cut-and-choose technique, which requires only O(k)
communication.

Security Analysis. We provide a simulation proof of this protocol’s security; an intermediary
G translates between the real wold with malicious, colluding PPT players Γ and the ideal world,
where a trusted third party computes the answer set. Our proof shows that no Γ can distinguish
between the ideal world and the real world, thus no information other than that in the answer
set can be gained by malicious players. A formal statement of our security property is as follows:

Theorem 16. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is
semantically secure, and the specified zero-knowledge proofs and proofs of correct decryption

31



Protocol: Set-Intersection-Mal
Input: There are n ≥ 2 players, each with a private input set Si, such that |Si| = k. The players share the
secret key sk, to which pk is the corresponding public key to a homomorpic cryptosystem. The commitment
scheme used in this protocol is a equivocal commitment scheme; each player holds any additional inputs
necessary for this scheme, such as a common reference string.
Output: Each player determines S1 ∩ · · · ∩ Sn.

All players verify the correctness of all proofs sent to them, and stop participating in the protocol if any are
not correct.

Each player i = 1, . . . , n:

1. (a) calculates the polynomial fi such that the k roots of the polynomial are the elements of Si, as
fi = (x− (Si)1) . . . (x− (Si)k)

(b) sends δi, the encryption of the polynomial fi to all other players along with proofs of plaintext
knowledge for all coefficients except the leading coefficient (POPK{(δi)j}, 0 ≤ j < k).

(c) for 1 ≤ j ≤ n

i. chooses a random polynomial ri,j ← Rk[x]
ii. sends a commitment to Λ(ri,j) to all players, where Λ(ri,j) = Epk(ri,j)

2. for 1 ≤ j ≤ n

(a) opens the commitment to Λ(ri,j)
(b) verifies proofs of plaintext knowledge for the encrypted coefficients of fj

(c) sets the leading encrypted coefficient (for xk) to a known encryption of 1
(d) calculates µ, the encryption of the polynomial pi,j = fj∗ri,j with proofs of correct multiplication

ZKPK{ri,j | (µ = ri,j ∗h δj) ∧ (Λ(ri,j) = Epk (ri,j))} and sends it to all other players

3. All players

(a) calculate the encryption of the polynomial p =
Pn

i=1

Pn
j=1 pi,j =

Pn
i=1 fi∗(rj,i) as in Sec. 4.1.2,

and verifies all attached proofs
(b) perform a group decryption to obtain the polynomial p, and distribute proofs of correct decryp-

tion

Each player i = 1, . . . , n determines the intersection multiset as follows: for each a ∈ Si, he calculates b such
that (x− a)b|p ∧ (x− a)b+1 6 |p. The element a appears b times in the intersection multiset.

Figure 4.8: Set-Intersection protocol secure against malicious adversaries.

cannot be forged, then in the Set-Intersection protocol secure against malicious adversaries in
Fig. 4.8, for any coalition Γ of colluding players (at most n− 1 such colluding parties), there is
a player (or group of players) G operating in the ideal model, such that the views of the players
in the ideal model is computationally indistinguishable from the views of the honest players and
Γ in the real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model. This
player communicates with the malicious players Γ, pretending to be one or more honest players
in such a fashion that Γ cannot distinguish that he is not in the real world. We assume that all
malicious players can collude. The trusted third party takes the input from G and the honest
parties, and gives both G and the honest parties the intersection set. G then communicates
with the malicious players Γ, so they also learn the intersection set. A graphical representation
of these players is given in Figure 4.9

We give a sketch of how the player G operates (note that G can prevaricate when opening
commitments, as we use an equivocal commitment scheme, and can extract plaintext from
proofs of plaintext knowledge):

1. For each simulated honest player i, G:

32



Trusted 
third party

Honest 
party

Honest 
party

Private
input

Private
input

The simulator communicates with the malicious parties Γ according to the 
protocol. Using his special abilities as a simulator, he obtains their private 
inputs, submits this data to the trusted third party, and communicates the 

result returned by the trusted third party to the malicious parties.

Malicious 
party

Malicious 
party

Malicious 
party

Private inputs of
malicious parties Results

ResultResult

Figure 4.9: A simulation proof defines the behavior of the player G, who translates between
the malicious players Γ, who believe they are operating in the real model, and the ideal model,
in which the trusted third party computes the desired answer.

(a) chooses a polynomial fi such that each such polynomial is relatively prime and has
leading coefficient 1 (for randomly generated polynomials with leading coefficient 1,
this is true with overwhelming probability)

(b) chooses arbitrary polynomials ri,1, . . . , ri,n and creates encryptions Λ(ri,j) from them
(in the case of Paillier, specially construct encryptions of those polynomials, and
proofs of knowledge of each coefficient, see Section 4.4.1)

2. Performs step 1 of the protocol:

(a) sends the encryption of fi to all malicious players Γ, along with proofs of plaintext
knowledge and commitments to Λ(ri,j) (1 ≤ j ≤ n)

(b) sends data items Λ(ri,j) (1 ≤ j ≤ n) to all malicious players Γ
(c) Receives from each malicious player α ∈ Γ:

i. encryption of a polynomial fα and proofs of plaintext knowledge for its coeffi-
cients

ii. trapdoor commitments to data items Λ(rα,j) for each random polynomial rα,j ,
1 ≤ j ≤ n

3. The player G extracts from the proofs of plaintext knowledge and trapdoor commitments
to Λ(ri,j) (in the case of Paillier, the extraction is from the proof of knowledge of the
discrete logarithm), the polynomials fα, and the random polynomials rα,j the malicious
players Γ have chosen.

4. G obtains the roots of each polynomial fα (as these exactly determine, for the purposes
of the protocol, his set):

• If polynomial factoring is possible, G may factor fα. fα(a) = 0⇔ (x− a)|fα, so all
roots of fα may be determined by examining the linear factors.

33



• If we are working in the random oracle model, then, with overwhelming probability,
to correctly represent any element of the valid set P , a player must consult the
random oracle. As there can be only a polynomial number of such queries, for each
query a, G may check if fα(a || h(a)) = 0.

• If neither of these routes are feasible, then a proof that fα was constructed by
multiplying k linear factors of the form x− a may be added to the protocol instead
of proofs of plaintext knowledge. This proof is of size O(k3), and is constructed by
using proofs of plaintext knowledge for some linear factors, and layering proofs of
correct multiplication to obtain the complete polynomial fα. From this proof, each
linear factor of fα can be obtained, and thus all roots of fα.

5. G submits the sets represented by these roots to the trusted third party. The honest
players submit their private input sets to the trusted third party. The trusted third party
returns the intersection set I to G and the honest players.

6. G prepares to reveal the intersection set to the malicious players Γ:

(a) selects a target polynomial p =
(∏

a∈I(x− a)
)
∗ s, where s is chosen uniformly

from those polynomials of degree 2k − |I|. (note that, by Lemma 2, this is exactly
the polynomial calculated by simply running the protocol, as by the reasoning of
Lemma 19, all coefficients of fi (1 ≤ i ≤ n) are in the set R∗ ∪ {0}.)

(b) chooses a set of polynomials ri,j (where i is one of the simulated honest players)

such that
∑n

i=1 fi

(∑n
j=1 ri,j

)
= p (from the proof of Lemma 2, we know that such

polynomials exist, and can be determined through simple polynomial manipulation)

7. G follows the rest of the protocol with the malicious players Γ as written, except that he
opens the trapdoor commitment to reveal an appropriate Λ(ri,j) for the new chosen ri,j .
In this way, the players calculate an encryption of the polynomial p chosen by G, and
then decrypt it. The coalition players thus learn the intersection set.

Note that the dishonest players cannot distinguish that they are talking to G (who is working
in the ideal model) instead of other clients (in the real world), and the correct answer is learned
by all parties, in both the real and ideal models.

4.4.3 Cardinality Set-Intersection Protocol for Malicious Adversaries

We give a protocol, secure against malicious parties, to perform Cardinality Set-Intersection in
Fig. 4.10. It proceeds largely as the protocol secure against honest-but-curious parties, which
was given in Fig. 4.3. The commitments to the data items Λ(ri,j) are purely for the purposes
of a simulation proof. We add zero-knowledge proofs of knowledge to prevent five forms of
misbehavior: choosing fi without knowledge of its roots, choosing fi such that it is not the
product of linear factors, not performing the polynomial multiplication of fj ∗ ri,j correctly,
not calculating encrypted elements (Vi)j correctly (either not from the data items (Si)j or not
evaluating the encrypted polynomial p), and not performing decryption correctly. We can thus
detect or prevent misbehavior from malicious players, forcing this protocol to operate like the
honest-but-curious protocol in Fig. 4.3.

Security Analysis. We provide a simulation proof of this protocol’s security; an intermediary
G translates between the real wold with malicious, colluding PPT players Γ and the ideal world,

34



Protocol: Cardinality-Mal
Input: There are n ≥ 2 players, each with a private input set Si, such that |Si| = k. The players share the
secret key sk, to which pk is the corresponding public key to a homomorpic cryptosystem. The commitment
scheme used in this protocol is a equivocal commitment scheme.
Output: Each player determines |S1 ∩ · · · ∩ Sn|.

All players verify the correctness of all proofs sent to them, and stop participating in the protocol if any are
not correct.

Each player i = 1, . . . , n:

1. (a) calculates the polynomial fi such that the k roots of the polynomial are the elements of Si, as
fi = (x− (Si)1) . . . (x− (Si)k)

(b) sends:

i. encrypted elements yi,1 = Epk((Si)1), . . . , yi,k = Epk((Si)k) to all other players, along with
proofs of plaintext knowledge (POPK{Epk(yi,j)}, 1 ≤ j < k)

ii. sends δi, the encryption of the polynomial fi to all other players, along with a proof of cor-

rect construction ZKPK

8<:a1, . . . , ak

˛̨̨̨
˛̨ τi = ((x− a1) ∗h . . . ∗h (x− ak−1) ∗h α)
∧ yi,1 = Epk(a1) ∧ · · · ∧ yi,k = Epk(ak)
∧ α = Epk(x− ak)

9=;
(c) for 1 ≤ j ≤ n

i. chooses a random polynomial ri,j ← Rk[x]
ii. sends a commitment to Λ(ri,j) to all players, where Λ(ri,j) = Epk(ri,j)

2. for 1 ≤ j ≤ n

(a) opens the commitment to Λ(ri,j)
(b) verifies proofs of plaintext knowledge for the encrypted coefficients of fj

(c) sets the leading encrypted coefficient (for xk) to a known encryption of 1
(d) calculates τi,j , the encryption of the polynomial pi,j = fj ∗ ri,j , with proofs of correct multipli-

cation ZKPK{ri,j | (τi,j = ri,j ∗h δj) ∧ (Λ(ri,j) = Epk (ri,j))} and sends it to all other players

3. Each player i = 1, . . . , n:

(a) calculates µ, the encryption of the polynomial p =
Pn

i=1

Pn
j=1 pi,j , as in Sec. 4.1.2, and verifies

all attached proofs
(b) evaluates the encryption of the polynomial p at each input (Si)j , obtaining encrypted elements

Epk(cij) where cij = p((Si)j), using the algorithm given in Sec. 4.1.2.
(c) for each j ∈ [k] chooses a random element rij , calculates an encrypted el-

ement (Vi)j = rij ×h Epk(cij), with attached proof of correct construction
ZKPK{(rij , z) | ((Vi)j = rij ×h µ(z)) ∧ (yi,j = Epk(z))}, and sends the encrypted element
(Vi)j and the proof of correct construction to all players

4. All players perform the Shuffle protocol on the sets Vi, obtaining a joint set V , in which all ciphertexts
have been re-randomized.

5. All players 1, . . . , n decrypt each element of the shuffled set V (and send proofs of correct decryption
to all other players)

If nb of the decrypted elements from V are 0, then the size of the set intersection is b.

Figure 4.10: Cardinality set-intersection protocol secure against malicious adversaries.

where a trusted third party computes the answer set. Our proof shows that no Γ can distinguish
between the ideal world and the real world, thus no information other than that in the answer
set can be gained by malicious players. A formal statement of our security property is as follows:

Theorem 17. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is
semantically secure, the Shuffle protocol is secure, and the specified zero-knowledge proofs and
proofs of correct decryption cannot be forged, then in the Cardinality Set-Intersection protocol
secure against malicious adversaries in Fig. 4.10, for any coalition Γ of colluding players (at
most n−1 such colluding parties), there is a player (or group of players) G operating in the ideal
model, such that the views of the players in the ideal model is computationally indistinguishable

35



from the views of the honest players and Γ in the real model.

Proof. The simulation proof of this theorem follows the proof of Theorem 16 with only small
changes; the additional zero-knowledge proofs in the protocol are generally irrelevant to the
operation of the simulator.

4.4.4 Over-Threshold Set-Union Protocol for Malicious Adversaries

We give a protocol, secure against malicious parties, to perform Over-Threshold Set-Union in
Fig. 4.11. It proceeds largely as the protocol secure against honest-but-curious parties, which
was given in Fig. 4.4. The commitments to the data items Λ(ri,j) are purely for the purposes
of a simulation proof. We add zero-knowledge proofs of knowledge to prevent six forms of
misbehavior: choosing fi without knowledge of its roots, choosing fi such that it is not the
product of linear factors, not performing the polynomial multiplication of fj ∗ λj−1 correctly,
not calculating αi,` = p(`) ∗ ri,` (0 ≤ ` ≤ t − 1) correctly, not calculating encrypted elements
(Vi)j correctly (either not from the data items (Si)j or not evaluating the encrypted polyno-
mial Φ), and not performing decryption correctly. We can thus detect or prevent misbehavior
from malicious players, forcing this protocol to operate like the honest-but-curious protocol in
Fig. 4.4.

Security Analysis. We provide a simulation proof of this protocol’s security; an intermediary
G translates between the real wold with malicious, colluding PPT players Γ and the ideal world,
where a trusted third party computes the answer set. Our proof shows that no Γ can distinguish
between the ideal world and the real world, thus no information other than that in the answer
set can be gained by malicious players. A formal statement of our security property is as follows:

Theorem 18. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is
semantically secure, the Shuffle protocol is secure, and the specified zero-knowledge proofs and
proofs of correct decryption cannot be forged, then in the Over-Threshold Set-Union protocol
secure against malicious adversaries in Fig. 4.10, for any coalition Γ of colluding players (at
most n−1 such colluding parties), there is a player (or group of players) G operating in the ideal
model, such that the views of the players in the ideal model is computationally indistinguishable
from the views of the honest players and Γ in the real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model. This
player communicates with the malicious players Γ, pretending to be one or more honest players
in such a fashion that Γ cannot distinguish that he is not in the real world. We assume that all
malicious players can collude. The trusted third party takes the input from G and the honest
parties, and gives both G and the honest parties the intersection set. G then communicates
with the malicious players Γ, so they also learn the intersection set. A graphical representation
of these players is given in Figure 4.9.

We give a sketch of how the player G operates (note that G can prevaricate when opening
commitments, as we use an equivocal commitment scheme, and can extract plaintext from
proofs of plaintext knowledge):

1. For each simulated honest player i, G:

(a) chooses a set S′i of arbitrary elements (S′i)1, . . . , (S
′
i)k ∈ R

36



Protocol: OverThreshold-Mal
Input: There are n ≥ 2 players, c < n maliciously colluding, each with a private input set Si, such that
|Si| = k. The players share the secret key sk, to which pk is the corresponding public key to a homomorpic
cryptosystem. The commitment scheme used in this protocol is a equivocal commitment scheme. The
threshold number of repetitions at which an element appears in the output is t. F0, . . . , Ft−1 are fixed
polynomials of degree 0, . . . , t− 1 which have no common factors or roots representing elements of P .
Output: Each player determines Rdt−1(S1 ∪ · · · ∪ Sn).
All players verify the correctness of all proofs sent to them, and refuse to participate in the protocol if any
are not correct.
Each player i = 1, . . . , n:

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Players 1, . . . , c+1 send commitments to yi,1, . . . , yi,k to all players, where yi,j = Epk((Si)j) (1 ≤ j ≤

k). All players then open these commitments.
3. Player 1 sends to all other players: encrypted elements y1,1 = Epk((S1)1), . . . , y1,k = Epk((S1)k),

along with proofs of plaintext knowledge (POPK{Epk(y1,j)}, 1 ≤ j < k); τ1, the encryp-
tion of the polynomial λ1 = f1 to all other players, along with a proof of correct construction

ZKPK

8<:a1, . . . , ak

˛̨̨̨
˛̨ τ1 = ((x− a1) ∗h . . . ∗h (x− ak−1) ∗h α)
∧ y1,1 = Epk(a1) ∧ · · · ∧ y1,k = Epk(ak)
∧ α = Epk(x− ak)

9=;
4. Each player i = 2, . . . , n

(a) receives τi, the encryption of the polynomial λi−1, from player i− 1
(b) sends to all other players: encrypted elements yi,1 = Epk((Si)1), . . . , yi,k = Epk((Si)k),

along with proofs of plaintext knowledge (POPK{Epk(yi,j)}, 1 ≤ j < k); τi, the en-
cryption of the polynomial λi = fi ∗ λi−1, along with a proof of correct construction

ZKPK


a1, . . . , ak

˛̨̨̨
τi = ((x− a1) ∗h . . . ∗h (x− ak) ∗h τi−1)

∧ yi,1 = Epk(a1) ∧ · · · ∧ yi,k = Epk(ak)

ff
5. Each player i = 1, . . . , c + 1

(a) choose random polynomials ri,0, . . . , ri,t−1 ← Rk[x]
(b) for ` = 0, . . . , t− 1, calculate α` the encryption of the `th derivative of p = λn, denoted p(`), by

repeating the algorithm given in Sec. 4.1.2.
(c) calculate αi,`, the encryption of the polynomial p` ∗ ri,`, for 0 ≤ ` ≤ t − 1 and

send them to all other players, along with proofs of correct polynomial multiplication,

ZKPK
n

ri,`

˛̨̨
αi,` = ri,` ∗h p(`)

o
6. Each player i = 1, . . . , n:

(a) calculates µ, the encryption of the polynomial Φ =
Pt−1

`=0 p(`) ∗Fj ∗
`Pc+1

i=0 ri,`

´
, as in Sec. 4.1.2,

and verifies all attached proofs
(b) evaluates the encryption of the polynomial Φ at each input (Si)j , obtaining encrypted elements

Epk(cij) where cij = p((Si)j), using the algorithm given in Sec. 4.1.2.
(c) for each j ∈ [k] chooses a random element rij ← R, calculates an encrypted ele-

ment (Vi)j = (rij ×h Epk(cij)) + (Si)j , with attached proof of correct construction
ZKPK{(rij , z) | ((Vi)j = (rij ×h µ(z)) + z) ∧ (yi,j = Epk(z))}, and sends the encrypted ele-
ment (Vi)j and the proof of correct construction to all players

7. All players perform the Shuffle protocol on the sets Vi, obtaining a joint set V , in which all ciphertexts
have been re-randomized, then jointly decrypt each element of the shuffled set V (and send proofs of
correct decryption to all other players).

Each element a ∈ P that appears b times in V is an element in the threshold set that appears b times in the
players’ private inputs.

Figure 4.11: Over-threshold set-intersection protocol secure against malicious adversaries.

(b) Performs steps 1 − 2 of the protocol, sending equivocal commitments to the set Si
for each simulated honest player.

2. The player G extracts the private input sets chosen by Γ, for each malicious player, from
the equivocal commitments sent in step 2 of the protocol. G submits the sets extracted
from these commitments to the trusted third party. The honest players submit their

37



private input sets to the trusted third party. The trusted third party returns the result
set I to G and the honest players.

3. G prepares to reveal the intersection set to the malicious players Γ: G chooses new sets
Si to replace the sets S′i used to construct the commitment. These sets are chosen to
contain the following elements:

(a) for each element a that appears b > 0 in I, and bΓ times in the private input multisets
of the malicious players (Γ), the element a is included b + t − 1 − bΓ times in the
multisets Si

(b) all elements not specified by the prior rule are chosen uniformly from R

4. G follows the rest of the protocol with the malicious players Γ as written. The coalition
players thus learn the result set.

Note that the dishonest players cannot distinguish that they are talking to G (who is working
in the ideal model) instead of other clients (in the real world), and the correct answer is learned
by all parties, in both the real and ideal models.

4.5 Other Applications of Our Multiset Computation Tech-
niques

Our techniques for privacy-preserving computation of multiset operations have wide applicabil-
ity beyond the protocols we discuss in Sections 4.2 and 4.3. We first discuss the composition of
our techniques to compute arbitrary functions based on the intersection, union, and reduction
operators. We also propose an efficient method for the Subset problem, determining whether
A ⊆ B. As an example of the application of our techniques to problems outside the realm of
set computation, we describe their use in evaluation of boolean formulae.

4.5.1 General Computation on Multisets

Our techniques for privacy-preserving multiset operations can be arbitrarily composed to enable
a wide range of privacy-preserving multiset computations. In particular, we give a grammar
describing functions on multisets that can be efficiently computed using our privacy-preserving
operations:

Υ ::= s | Rdd(Υ) | Υ ∩Υ | s ∪Υ | Υ ∪ s,

where s represents any multiset held by some player, and d ≥ 1. Note that any monotone
function on multisets can be expressed using the grammar above, and thus our techniques for
privacy-preserving multiset operations are truly general.

It is worth noting that the above grammar only allows computation of the union operator
when at least one of the two operands is a multiset known to some player. Although any
monotone function on multisets can be described by our grammar, in some cases it is desirable
(or more efficient) to enable the calculation of the union operator on two multisets calculated
from other multiset operations, such that neither operand is known to any player. In this
case, we could calculate the union operation in the following way. Let λ and Epk(f) be the
encrypted polynomial representations of the two multisets. The players use standard techniques
to privately obtain additive shares f1, . . . , fν of f , given Epk(f). Using these shares, they

38



then calculate (f1 ∗h λ) +h . . . +h (fν ∗h λ) = f ∗h λ, the encryption of the polynomial
representation of the union multiset.

4.5.2 Private Subset Relation

Problem Statement Let the set A be held by Alice. The set B may be the result of an
arbitrary function over multiple players’ input sets (for example as calculated using the grammar
above). The Subset problem is to determine whether A ⊆ B without revealing any additional
information.

Let λ be the encryption of the polynomial p representing B. Note that A ⊆ B ⇔ ∀a∈A p(a) =
0. Alice thus evaluates the encrypted polynomial λ at each element a ∈ A, homomorphically
multiplies a random element by each encrypted evaluation, and adds these blinded ciphertexts
to obtain β′. If β′ is an encryption of 0, then A ⊆ B. More formally:

1. For each element a = Aj (1 ≤ j ≤ |A|), the player holding A:

(a) calculates βj = λ(a)
(b) chooses a random element bj ← R, and calculates β′j = bj ×h βj

2. The player holding A calculates β′ = β′1 +h . . . +h β
′
|A|

3. All players together decrypt β′ to obtain y. If y = 0, then A ⊆ B.

This protocol may be simply extended to allow the set A to be held by multiple players, such
that A = A1 ∪ · · · ∪Aν , where each set Ai is held by a single player.

4.5.3 Computation of CNF Formulae

Finally, we show that our techniques on private multiset operations have applications outside
of the realm of multiset computations. As a concrete example, we show that we can apply
our techniques to efficient privacy-preserving evaluation of boolean formulae, in particular, the
conjunctive normal form (CNF). A formula in CNF is a conjunction of a number of disjunctive
clauses, each of which is formed of several variables (or their negations).

Problem Statement Let φ be a public CNF boolean formula on variables V1, . . . , Vκ. Each
player knows the truth assignment to some subset of {V1, . . . , Vκ}, where each variable is known
to at least one player. The players cooperatively calculate the truth value of φ under this
assignment, without revealing any other information about the variable assignment.

We address this problem by introducing multiset representations of boolean formulae. Let
True and False be distinct elements of R (e.g., 0 and 1). For each variable in the formula, let
the multiset representation of the variable be { True} if its value is true, and { False} if its
value is false. Then, replace each ∨ operator in φ with a ∪ operator, and each ∧ operator with
a ∩ operator. If True is a member of the resulting multiset, then φ is true. The polynomial
multiset representation of the CNF formula can now be evaluated by the players through use of
our privacy-preserving multiset operations, as the function is described in the grammar given
in Section 4.5.1.

We can also solve many variations on boolean formula evaluation using our techniques. For
example, we might require, instead of using the boolean operations, that at least t of the
variables in a clause be satisfied. Note that using our techniques can be more efficient than

39



standard multiparty techniques, as standard techniques require an expensive multiplication
operation, involving all players, to compute the ∧ operator [5, 28].

4.6 Proof of Mathematical Lemmas

In this section, we prove Lemmas 2 and 4, as well as several lemmas on which these proofs
depend.

4.6.1 Proof of Lemma 2

Lemma 19. Let the ring R have subfields F1 and F2. Define the gcd of two polynomials
f, g ∈ R[x] as the output of Euclid’s algorithm for computing the greatest common denominator;
if Euclid’s algorithm fails, the gcd is undefined.
Any PPT adversary who can obtain (with non-negligible probability) two polynomials for which
the gcd is undefined can determine the size of the subfields of R (with non-negligible probability).

Proof. If the leading coefficient of a polynomial p is in R∗, then for any polynomial b ∈ R[x],
there exist unique polynomials q, r such that p = q ∗ b + r (deg(r) < deg(b)) [51]. Note
that this is the sole calculation necessary to compute the Euclidean gcd algorithm, and that
this algorithm runs in PPT. Thus, if this algorithm fails to compute gcd(f, g), it must have
calculated some polynomial p′ as an intermediate result such that the leading coefficient of p′

is in R \ (R∗ ∪ {0}). The elements of R \ (R∗ ∪ {0}) are those without a multiplicitive inverse:
multiples of |F`| (1 ≤ ` ≤ 2). Thus, the polynomial p that causes Euclid’s algorithm to fail must
have a leading coefficient of a multiple of the size of some sub-field F` (1 ≤ ` ≤ 2). Given this
coefficient, one can compute |F1|, |F2| in probabilistic polynomial time by using the Euclidean
algorithm over integers. As, by assumption in Section 3.2.1, this problem is hard over our ring
R, we can (with overwhelming probability) compute gcd(f, g) using Euclid’s algorithm.

Remark 20. For all a, b ∈ R, if a ∈ R∗, there exists no element c ∈ R (c 6= b) such that
ab = ac.

Lemma 21. For all polynomials f, g ∈ R[x] such that the leading coefficient of f is a member
of R∗, there exists no polynomial y ∈ R[x] such that f ∗ g = f ∗ y, g 6= y.

Proof. For two polynomials to be equal, each of their coefficients must be equal. Thus, we may
express the condition f ∗ g = f ∗ y as follows for each ` ≥ 0:

(f ∗ g)[`] =
∑̀
j=0

f [`− j]g[j]

(f ∗ y)[`] =
∑̀
j=0

f [`− j]y[j]

∑̀
j=0

f [`− j] (g[j]− y[j]) = 0

40



We prove by induction that g[`] = y[`] (0 ≤ ` ≤ deg(g)). As a base case, we prove that
g[deg(g)] = y[deg(g)]:

deg(f)+deg(g)∑
j=0

f [deg(f) + deg(g)− j](g[j]− y[j]) = 0

f [deg(f)](g[deg(g)]− y[deg(g)]) = 0

Because f [deg(f)] ∈ R∗ (by definition, f [deg(f)] 6= 0), by Lemma 20 g[deg(g)] = y[deg(g)].

We now make the strong inductive assumption that for i ≤ ` ≤ deg(g), g[`] = y[`]. Next, we
use this assumption to prove that g[i− 1] = y[i− 1]:

deg(f)+i−1∑
j=0

f [deg(f) + i− 1− j] (g[j]− y[j]) = 0

deg(f)+i−1∑
j=0

f [deg(f) + i− 1− j] (g[j]− y[j]) = f [deg(f)] (g[i− 1]− y[i− 1])

f [deg(f)] (g[i− 1]− y[i− 1]) = 0

Because f [deg(f)] ∈ R∗ (by definition, f [deg(f)] 6= 0), by Lemma 20 g[i− 1] = y[i− 1]. Thus,
by the inductive principle, all coefficients of g are identical to those of y up to deg(g). We now
prove that deg(y) ≤ deg(g), showing that y = g (and thus that our lemma is true).

If deg(y) > deg(g) then ∃`>deg(g) y[`] 6= 0 (let ` be the minimal such index):

g[`] = 0
g[`]− y[`] 6= 0

i∑
j=0

f [i− j] (g[j]− y[j]) = 0

We may remove from the sum all terms for which g[j]− y[j] = 0, leaving us with the following
equation for some i ≤ deg(f):

f [deg(f)] (g[`]− y[`]) = 0

Because f [deg(f)] ∈ R∗ (by definition, f [deg(f)] 6= 0), by Lemma 20 y[`] = g[`] = 0. Thus, no
such index ` can exist; deg(y) ≤ deg(g). Because we also know that all terms of y up to deg(g)
are identical to those of g, we may conclude that y = g, and thus that our lemma is true.

Lemma 22. For all polynomials f1, f2, g1, g2 ∈ R[x] such that f1 ∗ g1 = f2 ∗ g2, gcd(f1, f2) = 1,
then f2 | g1.

Proof. We defined gcd(f1, f2) with f1, f2 ∈ R[x] as the output of Euclid’s algorithm for calcu-
lating the gcd (which succeeds with overwhelming probability by Lemma 19). Note that from
the intermediate results of this calculation we can determine polynomials p1, p2 ∈ R[x] such
that p1 ∗ f1 + p2 ∗ f2 = 1, as gcd(f1, f2) = 1.

41



p1 ∗ f1 + p2 ∗ f2 = 1
p1 ∗ f1 = 1− p2 ∗ f2

g1 ∗ p1 ∗ f1 = g1(1− p2 ∗ f2)
p1 ∗ (f2 ∗ g2) = g1(1− p2 ∗ f2)

g1 = f2 (p1 ∗ g2 + p2 ∗ g1)

Because there exists a polynomial p1 ∗g2 +p2 ∗g1 ∈ R[x] such that g1 = f2 (p1 ∗ g2 + p2 ∗ g1),
f2 | g1.

Lemma 2. Let f, g be polynomials in R[x] where R is a ring such that no PPT adversary
can find the size of its subfields with non-negligible probability, deg(f) = deg(g) = α, β ≥ α,
gcd(f, g) = 1, and f [deg(f)] ∈ R∗ ∧ g[deg(g)] ∈ R∗. Let r =

∑β
i=0 r[i]x

i and s =
∑β

i=0 s[i]x
i,

where ∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R (independently).

Let u = f ∗ r + g ∗ s =
∑α+β

i=0 u[i]xi. Then ∀0≤i≤α+β u[i] are distributed uniformly and
independently over R.

Proof. For clarity, we give a brief outline of the proof before proceeding to the details. Given
any fixed polynomials f, g, u, we calculate the number z of r, s pairs such that f ∗ r+ g ∗ s = u.
We may then check that, given any fixed polynomials f, g, the total number of possible r, s
pairs, divided by z, is equal to the number of possible result polynomials u. This implies that,
if gcd(f, g) = 1 and we choose the coefficients of r, s uniformly and independently from R, the
coefficients of the result polynomial u are distributed uniformly and independently over R.

We now determine the value of z, the number of r, s pairs such that f ∗ r+ g ∗ s = u. Let us
assume that for this particular u there exists at least one pair r̂, ŝ such that f ∗ r̂ + g ∗ ŝ = u.
For any pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u, then

f ∗ r̂ + g ∗ ŝ = f ∗ r̂′ + g ∗ ŝ′

f ∗ (r̂ − r̂′) = g ∗ (ŝ′ − ŝ)

As gcd(f, g) = 1, we may conclude that g|(r̂− r̂′) and f |(ŝ′− ŝ) by Lemma 22. Let p∗g = r̂− r̂′
and p ∗ f = ŝ′ − ŝ.

We must now show that each polynomial p, of degree at most β − α, determines exactly
one unique pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u, and that there exist no pairs r̂′, ŝ′ such that
f ∗ r̂′ + g ∗ ŝ′ = u that are not generated by a single choice of the polynomial p of degree at
most β − α.

To show that there exist no pairs r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u that are not generated by
some choice of the polynomial p, of degree at most β−α, we let p′ ∗ g = r̂− r̂′ and p∗f = ŝ′− ŝ
for any p′, p of degree at most β−α. As we proved that g|(r̂− r̂′) and f |(ŝ′− ŝ), we can represent
f and g in this fashion without loss of generality.

f ∗ (r̂ − r̂′) = g ∗ (ŝ′ − ŝ)
f ∗ (p′ ∗ g) = g ∗ (p ∗ f)

As the leading coefficients of f and g are members of (R∗ ∪ {0}), we may apply Lemma 21 to
remove both f and g from our equation, leaving the fact that p = p′. Thus, there exist no pairs

42



r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u that are not generated by some choice of the polynomial p, of
degree at most β − α.

To show that each polynomial p, of degree at most β − α, determines exactly one unique
pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u, note that r̂′ = r̂ − g ∗ p, ŝ′ = ŝ+ f ∗ p; as we have fixed
f, g, r̂, ŝ, a choice of p determines both r̂′, ŝ′ . If these assignments were not unique, there would
exist polynomials p, p′ such that either r̂′ = r̂ − g ∗ p = r̂ − g ∗ p′ or ŝ′ = ŝ+ f ∗ p = ŝ+ f ∗ p′.
These conditions imply that either g ∗ p = g ∗ p′ or f ∗ p = f ∗ p′ for some polynomials p 6= p′;
we know this is impossible (when the leading coefficients of f and g are members of R∗ ∪ {0})
by Lemma 21.

Thus the number of polynomials p, of degree at most β − α, is exactly equivalent to the
number of r, s pairs such that f ∗ r + g ∗ s = u. As there are |R|β−α+1 such polynomials p,
z = |R|β−α+1.

We now show that the total number of r, s pairs, divided by z, is equal to the number of
result polynomials u. There are |R|2β+2 r, s pairs. As |R|2β+2

z = |R|2β+2

|R|β−α+1 = |R|α+β+1, and there

are |R|α+β+1 possible result polynomials, we have proved the theorem true.

4.6.2 Proof of Lemma 4

Lemma 23. For all polynomials q ∈ R[x], t ≥ 0,m ≥ 1, (x− a)m |
(
(x− a)t+mq

)(t)
Proof. We prove this lemma by induction.

As a base case, we prove the lemma for t = 0.

((x− a)mq)(0) = (x− a)mq

Thus, (x− a)m | ((x− a)mq)(0)

Next, we make the inductive assumption for t = i: (x − a)m |
(
(x− a)i+mq

)(i). Using this
assumption, we may prove the lemma holds for t = i+ 1.

(
(x− a)m+i+1q

)(i+1) =
(
(m+ i+ 1)(x− a)m+iq − (x− a)m+i+1q(1)

)(i)

=
(
(x− a)m+i

(
(m+ i+ 1)q − (x− a)q(1)

))(i)

Thus, by the inductive assumption, (x−a)m |
(
(x− a)m+i+1q

)(i+1). By the inductive principle,
our lemma holds.

Lemma 24. For all polynomials q ∈ R[x] such that (x − a) - q, t ≥ 0, m ≥ 1, (x − a)m−t+1 -
((x− a)m ∗ q)(t)

Proof. We prove this lemma by induction. Note that we may uniquely represent q as (x−a)b1+r
such that r 6= 0 and deg(r) < 1.

As a base case, we prove the lemma for t = 0.

((x− a)mq)(0) = (x− a)mq
= (x− a)m((x− a)b1 + r)
= (x− a)m+1b1 + (x− a)mr

43



Because (x−a)mr 6= 0, deg(r) < 1, and (x−a)m+1 - (x−a)mr, we know that deg ((x− a)mr) <
deg

(
(x− a)m+1

)
, and (x− a)m+1 - ((x− a)mq)(0).

Next, we make the inductive assumption for t = k: (x− a)m−k+1 - ((x− a)m ∗ q)(k). Using
this assumption, we may prove that the lemma holds for t = k + 1.

((x− a)m ∗ q)(k+1) =
(
m(x− a)m−1q + (x− a)mq(1)

)(k)

=
(
(x− a)m−1

(
mq + (x− a)q(1)

))(k)

Let m′ = m− 1 and q′ = mq + (x− a)q(1). We know through the inductive assumption that:

(x− a)m′−k+1 -
(
(x− a)m′

q′
)(k)

(x− a)(m−1)−k+1 -
(
(x− a)m−1q′

)(k)
(x− a)m−(k+1)+1 -

(
(x− a)m−1

(
mq + (x− a)q(1)

))(k)

- ((x− a)m ∗ q)(k+1)

Thus, by the inductive principle, our lemma holds.

Lemma 25. For all polynomials q ∈ R[x] such that (x− a) - q, (x− a) -
(
(x− a)tq

)(t).
Proof. We prove this lemma by induction. Note that we may uniquely represent q as (x−a)b1+r
such that r 6= 0 and deg(r) < 1.

As a base case, we prove the lemma for t = 0.(
(x− a)0q

)(0) = q

Because (x− a) - q, (x− a) -
(
(x− a)0q

)(0).
Next, we make the inductive assumption for t = i: (x − a) -

(
(x− a)iq

)(i). Using this
assumption, we may prove that the lemma holds for t = i+ 1.(

(x− a)i+1q
)(i+1) =

(
(i+ 1)(x− a)iq + (x− a)i+1q(1)

)(i)

=
(
(i+ 1)(x− a)iq

)(i) +
(
(x− a)i+1q(1)

)(i)

By Lemma 23, (x − a) |
(
(x− a)i+1q(1)

)(i)
. Thus, for some unique polynomial b2 ∈ R[x],(

(x− a)i+1q(1)
)(i)

= (x − a)b2. By the inductive assumption, (x − a) -
(
(i+ 1)(x− a)iq

)(i).
Thus, for some unique polynomials b3, r3 ∈ R[x] (such that r3 6= 0,deg(r3) < 1),(
(i+ 1)(x− a)iq

)(i) = (x− a)b3 + r3.(
(x− a)i+1q

)(i+1) = ((x− a)b3 + r3) + ((x− a)b2)
= (x− a)(b3 + b2) + r3

As r3 6= 0,deg(r3) < 1, (x − a) -
(
(x− a)i+1q

)(i+1). By the inductive principle, our lemma
holds.

44



Lemma 4.

Let Fj ∈ R[x] (0 ≤ j ≤ d) each of degree j such that gcd(F0, . . . , Fd) = 1. For all elements
a ∈ R such that ∀0≤j≤d (x − a) - Fj, q ∈ R[X] such that (x − a) - q, and rj ← Rm+deg(q)[x]
(0 ≤ j ≤ d), and:

• if m > d, f = (x − a)m ∗ q → (x − a)m−d |
∑d

j=0 f
(j) ∗ Fj ∗ rj ∧ (x − a)m−d+1 -∑d

j=0 f
(j) ∗ Fj ∗ rj

• if m ≤ d, f = (x− a)m ∗ q → (x− a) -
∑d

j=0 f
(j) ∗ Fj ∗ rj

with overwhelming probability.

Proof. • If m ≤ d, by Lemma 25, there exists with overwhelming probability at least
one index j (0 ≤ j ≤ d) such that (x − a) - ((x− a)m ∗ q)(j) Fj ∗ rj1. Let A = {j |
(x − a) - ((x− a)m ∗ q)(j) Fj ∗ rj} and B = {j | 0 ≤ j ≤ d ∧ j 6∈ A}. Each polynomial
((x− a)m ∗ q)(j) Fj ∗ rj can be represented as (x− a)qj + sj . By the definition of A and
B, ∀j∈A sj 6= 0 and ∀j∈B sj = 0.

d∑
j=0

((x− a)m ∗ q)(j) ∗ Fj ∗ rj =

∑
j∈A

((x− a)m ∗ q)(j) ∗ Fj ∗ rj

+

∑
j∈B

((x− a)m ∗ q)(j) ∗ Fj ∗ rj


=

∑
j∈A

((x− a)qj + sj) +
∑
j∈B

((x− a)qj)

= (x− a)
d∑
j=0

qj +
∑
j∈A

sj

Note that
∑

j∈A sj 6= 0 with overwhelming probability. Thus, as deg
(∑

j∈A sj

)
< 1, we

may conclude that (x− a) -
∑d

j=0 ((x− a)mq)(j) ∗ Fj ∗ rj with overwhelming probability.
• If m > d, by Lemma 23, (x−a)d−m | f (j) for 0 ≤ j ≤ d. Thus, by the distributive property

over rings, (x−a)m−d |
∑d

j=0 f
(j)∗Fj∗rj . Note also that by Lemma 24, (x−a)d−m+1 - f (d).

By the analysis above, with overwhelming probability, f = (x− a)m ∗ q → (x− a)m−d+1 -∑d
j=0 f

(j) ∗ Fj ∗ rj .

1Note that (x− a) - rj with overwhelming probability, as rj is random and of polynomial size.

45



46



Chapter 5

Hot Item Identification and
Publication

Ideally, all privacy-preserving distributed information sharing protocols would use extremely
strong definitions of security. In Chapter 4, we constructed protocols for many important
applications that are secure under standard notions of cryptographic security. Unfortunately,
these protocols are not sufficiently efficient or robust for certain demanding applications; we
believe that no protocols so stringently secure can be sufficiently efficient. Thus, in this chapter,
we examine variants of the Over-Threshold Set-Union problem from Chapter 4. We construct
protocols for these variants, the hot item identification and publication problems, that are both
extremely efficient and robust. In order to achieve these levels of efficiency, we compromise
privacy. Instead of being cryptographically secure, our protocols achieve the novel notions of
owner and data privacy.

We begin in Section 5.1 by describing the hot item identification and publication problems,
as well as defining our security properties of owner and data privacy. We then construct efficient
and robust protocols for the hot item identification and publication problems in Sections 5.2
and 5.3, respectively. In Section 5.4 we analyze the security of these protocols, before describing
several extensions in Section 5.5. To show the utility and efficiency of our hot item identification
protocol, we perform experiments in Section 5.6 in which we perform distributed detection of
simulated worms in real network traffic.

5.1 Problem Definition and Desired Properties

In this section, we give a formal definition of the hot item identification and publication problems
and our novel security and privacy properties.

Problem Definition. In our problem setting, each player i (1 ≤ i ≤ n) in the system holds
a private dataset Si of m elements from a domain denoted M1. Let a k-threshold hot item
(referred to in this chapter as a hot item) be any element a that appears in at least k distinct
players’ private input datasets. Hk is the set of all k-threshold hot items in the system. All
items not in Hk are called cold items. We define the hot item identification problem as follows:
each player i (1 ≤ i ≤ n) learns Si ∩Hk, denoted Pi.

1Note that here for simplicity, we assume each player has the same number of items in its private set; our
protocols can be easily extended to scenarios where this is not the case.

47



Adversary Model. In this chapter, we consider a strong adversary model. First, we assume
that the adversary can eavesdrop on all communication. Second, we assume that a fraction
λ of the players may maliciously and arbitrarily misbehave, while the rest of the players are
honest-but-curious.

A malicious player may not follow the protocol; instead he may behave arbitrarily. For
example, malicious players could collude such that if λn exceeds k, they can make an arbitrary
cold item hot by each reporting it as in their private input set2. However, this issue is out of
the scope of our problem. Because any player has the freedom to choose his private input set,
any protocol in this setting is vulnerable to this manipulation.

Another attack a malicious player could mount is to claim to have many copies of one item
to try to boost the frequency of a cold item to be high enough to become a hot item; we call this
the inflation attack. Thus, our protocols must ensure that during hot item identification, each
player can only contribute to the frequency count of an item at most once. Note that this is a
challenging task, as we will need to preserve the players’ privacy as well as security. We have
designed a novel cryptographic method, one-show tags (Section 5.2.2), to prevent the inflation
attack and preserve the players’ privacy. This novel construction could be of independent
interest.

Moreover, malicious players could attempt to forge cryptographic signatures, send bogus
messages, try to learn honest players’ private data, or fool other players. Note that our protocol
defends against all of these attacks, by provably achieving the properties of owner and data
privacy as defined below.

Definition of Correctness. Given the false positive rate δ+ and the false negative rate δ−

• ∀a ∈ Si ∩Hk, player i learns that a ∈ Pi with probability at least 1− δ−,

• ∀a ∈ Si ∩ H̄k, player i learns that a 6∈ Pi with probability at least 1− δ+.

To allow more flexible and efficient protocols, while preserving a reasonable level of privacy
for participants, we define two new concepts of security: owner privacy and data privacy.

Definition of Owner Privacy. Intuitively, a protocol that is owner private prevents an
adversary from determining that any element a is part of a particular honest player’s private
input set. Even an element that is known to be hot cannot be shown to be held by any player;
the elements of a player’s private input set are anonymous.

Formally, we say a k-hot item identification protocol satisfies owner privacy if: no coalition of
at most λn malicious PPT adversaries can gain more than a negligible advantage in associating
an item a with a honest player i (1 ≤ i ≤ n) such that a ∈ Si, over a situation in which all
players simply are given the set of hot items P and their frequencies.

Definition of Data Privacy. Data privacy concerns protection of the union of the players’
inputs, especially cold items. Ideally, a truly privacy-preserving hot-item identification protocol
should not reveal any information about the cold items; we give such a protocol in Chapter 4.
However, such a strong privacy definition entails inefficient solutions, as the cryptographic
techniques add too much overhead in computation and communication for many situations.
Thus, in this chapter, we study the tradeoff between privacy and efficiency; in particular, we
rigorously define a relaxed notion of privacy, show that it provides sufficient protection for many
applications, and design efficient solutions to achieve it.

2In fact, even when λn is less than k, they could make a cold item that appears at least k − λn times in
non-malicious players to appear as a hot item.

48



Local filters for heavy-
hitter identification

One Show Tags

Anonymous Routing

Approximate distinct counting with t-collection/t-minimum

Approximately Constructed Global Filters

S1 Sn

S1!Hk Sn!Hk

Protocol
Start

End

Data Privacy &
Domain Reduction

Reliability against
Inflation attacks
Owner Privacy

Bandwidth Saving 
& Reliability

Purpose
Local filters for heavy-

hitter identification

One Show Tags

. . .

. . .

Figure 5.1: Components of HotItem-ID protocol: HotItem-ID defines how to efficiently compute
an approximate representation of Hk in distributed fashion. Each player i (1 ≤ i ≤ n) constructs local
filters to approximately represent his private input set Si, generates one-show tags for marked bits in
filters, and sends a subset of those one-show tags to the network using anonymous routing. A distributed
approximate distinct element counting protocol aggregates those tags in the network. At the end of the
protocol, all players learn the global filters that approximate Hk. At the right side of the figure we list
the purpose of each component.

In our definition of data privacy, the degree of the privacy of an item describes the size of the
‘crowd’ in which the element is hidden; no adversary can determine which element of the large
crowd was included in the players’ private input sets. Formally, we say an element a which
appears in fa players’ private input sets has Φ(fa)-degree of data privacy if: no coalition of
at most λ malicious probabilistic polynomial-time (PPT) adversaries [28] can distinguish the
element a from an indistinguishable set with expected size Φ(fa). Thus, for a cold item a, the
larger Φ(fa) is, the better protected it is in general.

Efficiency. We also want the protocol to be highly efficient. In particular, to identify hot
items that appear in at least a certain fraction of the total number of players’ private input
sets, we would like the protocol to have constant per-player communication overhead. We will
show that our protocol achieves this property by using a combination of various approximate
counting methods.

5.2 HotItem-ID Protocol

In Figure 5.1, we show an overview of the components of our efficient privacy-preserving hot item
identification protocol HotItem-ID and their purposes. We first introduce the intuition behind
each component. Then, in Section 5.2.6, we describe the full construction of our HotItem-
ID protocol. Once all players learn the hot items in their private datasets, they can run our
HotItem-Pub protocol (Section 5.3) to securely publish the identified hot items.

5.2.1 Approximate Heavy-Hitter Detection

A näıve approach to hot item identification is to count the number of players holding each
possible element, then determine whether that element is hot. However, performing this task
is extremely inefficient for large domains; many applications require use of strings of 1024
bits or more. In most scenarios with a large number of players, it is prohibitively expensive
to count each of these 21024 (or more) distinct elements separately. Even if the players only
count the frequency of those elements that appear in their private input sets, the bandwidth

49



filter 1

filter 2

filter 3

Player 1's local filter Global FiltersPlayer 2's local filter Player 3's local filter

Figure 5.2: In our HotItem-ID protocol, each player i constructs a set of local filters from his private
input set Si (dark bits are ‘hit’). The players then construct global filters using an approximate counting
scheme; if a bit was hit by at least k players, then it is ‘hit’ (dark) as well. If an element hashes to a
dark bit in each of the global filters, then it is classified as hot.

required will often be prohibitive. In order to avoid this inefficient näıve approach, we utilize
an approximate heavy-hitter identification scheme [18]. This approximation scheme allows us
to efficiently combine the process of counting the elements held by all players.

In this approximate heavy-hitter identification scheme, each player constructs a local filter.
The players then combine their local filters to construct a global filter; this global filter approx-
imately identifies hot items. We illustrate this process of local and global filter construction in
Figure 5.2.

First, each player constructs a set of T local filters, which approximately represent his private
input set. Let h1, . . . , hT : {0, 1}ω → {1, . . . , b} be polynomial-wise independent hash functions
with uniformly distributed output, such as cryptographic hash functions [40]. Each filter q
(1 ≤ q ≤ T ) for player i (1 ≤ i ≤ n) is an array of b bits, represented by the bit array
{wi,q,j}j∈{1,...,b}. A local filter bit set to 1 indicates that at least one element in the player’s
private input set hashes to that bit; we refer to such bits as hit. Formally, player i (1 ≤ i ≤ n)
computes each bit wi,q,j := 1 ⇔ ∃a∈Sihq(a) = j. The players then combine their local filters
into a set of global filters, using methods described below; global filters approximately represent
the players’ combined private input sets. We will represent each global filter as the bit array
{xq,j}j∈{1,...,b} (1 ≤ q ≤ T ). If at least k players marked bits j of filter q as hit, then let the bit
in the global filter xq,j := 1 (1 ≤ q ≤ T , 1 ≤ j ≤ b). Otherwise, let xq,j := 0. Given this global
filter, a is hot with high probability if x1,h1(a) = 1, . . . , xT,hT (a) = 1. For statistical analysis of
this approximation scheme, see Section 5.4.1.

5.2.2 One-Show Tags

In order to construct the global filters, we must count how many players hit each bit in their
local filters. Malicious players may attempt to affect this count by ‘voting’ multiple times for
a bit; this inflation attack could lead to elements being erroneously marked as hot. If players
later publish their hot items, the attacker would learn private information through this attack.
Most techniques that ensure players ‘vote’ at most once would reveal an unacceptable level of
information about each players’ private filters. The voting process must therefore be anonymous
to prevent the adversaries from learning information about any particular players’ private input.
We ensure that each player can ‘vote’ only once, without compromising their privacy, with
anonymous one-show tags. If a player set a bit, he constructs a tag for that bit; the players
then count the number of valid tags for each bit to construct the global filters. We require that
one-show tags posses the following properties: (a) no PPT adversary can construct more than
one valid tag for any bit with non-negligible probability; (b) any PPT player can detect tags that

50



are invalid, or not associated with a particular bit, with overwhelming probabilty; (c) for every
bit, the tags constructed by any two players are distinct, with overwhelming probability; (d) no
PPT adversary can distinguish the player that constructed it, with probability non-negligibly
different than 1

n , where n is the number of honest players.

Let all players share a group public key for tag verification. Each player holds an individual
private key, used to construct tags. The message and one-show parameters vary by bit, to
ensure that tags constructed for one bit are not confused with those for another bit. We denote
the algorithm for construction of a one-show tag OST(group public key, private signing key,
message, one-show parameter). We provide a construction of such tags in Appendix B.3. Note
that this cryptographic tool is communication-efficient; our construction requires only 1, 368
bits.

5.2.3 Approximate Distinct Element Counting

We may now securely identify hot items by utilizing global filters and anonymous one-show
tags. However, exactly counting the number of valid, distinct one-show tags is inefficient; the
players would have to collect every single tag. To ensure that no tag is counted twice, the
players would also have to store information about every tag.

We can perform the task of approximate counting of distinct tags through an efficient al-
gorithm for approximate distinct element counting [4]. In our protocol, however, we gain even
more efficiency by estimating directly, through modified use of this approximation, whether
there are more or fewer than k tags for a bit; this is the task that must be performed to
construct the global filters.

To approximate the number of distinct tags, we need t specific tags from the set. Let
H : {0, 1}∗ → {0, 1}ω be a collision-resistant cryptographic hash function [40]. Let v1, . . . , vt
represent valid one-show values that, when hashed with H, have the smallest values of any tags
in the set. We estimate the total number of distinct tags as t2ω

H(vt)
[4]. To increase the accuracy of

this approximation, one may choose α independent hash functions and perform this estimation
with each such function; the resulting estimate is the median of the approximation obtained
with each hash function. We have found α := 1, t := 25 sufficient in practice.

To perform the task of determining whether there are at least k distinct tags corresponding
to a bit, the players can perform a full approximation. However, we have designed a more
efficient variant for this particular problem. Note that, if there exist t tags such that the values
of their hashes is at most t2ω

k , the approximation scheme we describe above will conclude that
there are at least k total distinct tags. The players thus can instead perform this more efficient
collection task, often without even examining ever tag. For example, any tag with value greater
than t2ω

k may be immediately discarded without affecting the approximation.

In many situations, there is a large gap between the frequency of hot items and cold items.
For example, worm attacks will be detected a large number of times by network monitors;
normal traffic is far more varied. Thus, to gain greater efficiency in detecting bits with at least
k one-show tags, we may adjust the t-collection protocol to follow the algorithm of [54]: each
player attempts to collect t tags with hash values of at most (1 + γ) t2

ω

k . (γ is a constant based
on the size of the ‘gap’ between the frequency of hot and cold items.) We gain efficiency in such
situations by reducing t, while retaining accuracy. In practice, we have found γ := .2, t := 5
sufficient. This scheme is identical to the above scheme if γ := 0.

51



Protocol: t-Collection
Input: All n players know H, t, k, γ, and the diameter of the network, D. Each player i (1 ≤ i ≤ n) holds
a set U ′

i,0 = Ui,0 of one-show tags for some specific bit.
Output: Each player outputs success if they collected t valid one-show tags with one show value v such
that H(v) ≤ (1 + γ) t2ω

k
; otherwise, they output failure.

1. For ` = 1, . . . , D, each player i (1 ≤ i ≤ n):

(a) Sends the set of new small tags Ui,`−1 ∩ U ′
i,`−1 to all of his neighbors.

(b) If |Ui,`−1| = t then player i stops participating in the protocol and goes to Step 2.

(c) Receives a set of tags as a result of Step 1a (a) – let the set Ui,` be those which are valid tags
for the correct bit, with one show value v such that H(v) ≤ (1 + γ) t2ω

k
.

(d) Calculates U ′
i,` = U ′

i,`−1 ∪ Ui,`.

2. Each player i (1 ≤ i ≤ n) outputs success if |Ui,`| = t, and otherwise outputs failure.

Figure 5.3: t-collection protocol

5.2.4 Anonymous Communication

We must now apply our tools to a network structure to complete the protocol. In order to
disassociate the anonymous one-show tags each player constructs from their location in the
network, each player anonymously routes his tags to ρ random players. The constant ρ can be
varied to achieve greater or lesser degrees of robustness; at least one participating player should
receive each player’s tags with high probability. We require an anonymous routing scheme
allows any player to send a message to a uniformly randomly selected player, without revealing
the source to any intermediate routing node. Simple and lightweight schemes can be used, as we
require only that each player send anonymous messages to a uniformly selected destination node,
without revealing who sent the message. Some previously proposed anonymous networking
schemes include [11, 13, 42, 48, 49].

5.2.5 Distributed One-Show Tag Collection

The players, once they have anonymously received their initial set of tags, then count the
number of tags associated with each bit of the filters. There are many different ways in which
they can accomplish this task, such as through the use of gossip networks or centralized servers;
the ideal method depends on the particular network in which it is employed. We suggest two
distributed, secure, and efficient protocols that require only minimal network capabilities: each
player must be able to send messages to each of its neighbors, who form a connected graph.
As we require only minimal network capabilities, even more efficient schemes than appear in
previous work may be employed [47, 50, 53]. For clarity of presentation, our protocols assume
synchronous communication, but can be adapted to an asynchronous model by adapting the
termination conditions.

Our two protocols for distributed one-show tag collection function as follows: (a) collecting
t one-show tags (with sufficiently small hash value) to approximate whether there are at least
k valid, distinct tags for a bit or, (b) finding the t one-show tags with the smallest hash values
to approximate how many valid, distinct tags there are for a bit. Note that these protocols can
be executed in parallel for each bit of the global filters.

We give an efficient, robust protocol for (a), the t-collection task in Figure 5.3. Each player
maintains a set of at most t valid tags which have hash values at most (1+γ) t2

ω

k . Upon learning
a new tag that will be added to his set, a player sends the new tag to all of his neighbors. When

52



Protocol: t-Minimum Aggregation
Input: All n players know H, t, and the diameter of the network D. Each player i (1 ≤ i ≤ n) holds a set
U ′

i,0 = Ui,0 of one-show tags for some specific bit.
Output: Each player learns the set U ′, those t tags with the smallest hashes of their one-show values.

1. For ` = 1, . . . , D, each player i (1 ≤ i ≤ n):

(a) Sends the set of new small tags Ui,`−1 ∩ U ′
i,`−1 to all of his neighbors.

(b) Receives a set of tags as a result of Step 1a – let those which are valid one-show tags for the
correct bit form the set Ui,`.

(c) Calculates U ′
i,` to be those t tags with one-show values v1, . . . , vt such that H(v1) < · · · < H(vt)

and ∀
w∈(Ui,`∪U′

i,`−1)∩U′
i,`
H(w) > H(vt).

2. Each player i (1 ≤ i ≤ n) outputs the set U ′ = U ′
i,D.

Figure 5.4: t-minimum value aggregation protocol

a player has collected t tags with hash values of at most (1 + γ) t2
ω

k , and sent each of these
tags to his neighbors, he ends his participation in the t-collection protocol. If there do not
exist t such small-hash-value tags, the protocol must continue until it converges. The players
must ensure that information travels from one side of the network to the other; this requires D
rounds, where D is the diameter of the network3.

We give an efficient, robust protocol for (b), the t-minimum task in Figure 5.4. Like the
t-collection protocol, each player passes on small-valued valid tags to his neighbors, retaining
the t tags with the smallest hash values. This process continues until it converges (at D rounds)
and all players have learned the t tags with the smallest hash values. This protocol is based on
that of [46].

5.2.6 Putting HotItem-ID to Work

We now outline our HotItem-ID protocol in Figure 5.5. Let ski be player i’s (1 ≤ i ≤ n)
private key, allowing him to construct one-show tags. These keys can be distributed by a trusted
‘group manager’, by a mutually distrustful group of players acting as such, or by all players
acting in concert (see Appendix B.3).

In Step 1, each player i (1 ≤ i ≤ n) constructs T local heavy-hitter identification filters
{wi,q,j}j∈{1,...,b} (1 ≤ q ≤ T ) from their private input sets. They then construct a one-show tag
for each bit in the filters marked as hit (wi,q,j = 1); for a specific construction of the one-show
value, see Appendix B.3. In Step 2, player i anonymously sends the tags for counting to ρ
randomly chosen players. (If the players will be utilizing t-collection for counting, they may
save bandwidth by only sending those tags where the hash (H) of the one-show value is at most
(1 + γ) t2

ω

k .)

To construct the global filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ), the players must determine, for
each bit in the global filters, whether at least k players hit that bit in their local filters. In Step
3, to efficiently and securely perform this task, the players utilize either the t-collection protocol
(Figure 5.3) or t-minimum aggregation protocol (Figure 5.4). Using one of these protocols, the
players approximate whether there were at least k valid, distinct tags constructed for each bit
(for greater accuracy, the players perform this approximation α times. taking the median of

3Note that this achieves a strict lower bound on the speed of information transmission, based on the definition
of network diameter.

53



Protocol: HotItem-ID
Input: There are n players, λ maliciously colluding, each with a private input set Si. Each player i ∈ {1, . . . , n}
holds a secret key ski allowing him to construct one-show tags, as well as a common public key pk for tag
verification. These keys can be chosen by a trusted administrator or by a distrustful collective [3]. h1, . . . , hT

are independently chosen cryptographic hash functions with range {1, . . . , b}. H is a cryptographic hash function
with range {0, 1}ω. ρ, b, T, t, α, γ are parameters known to all participants.
Output: Each player i (1 ≤ i ≤ n) obtains the set Pi ⊆ Si, such that each element a ∈ Pi is a hot item. All
players hold the approximate heavy-hitter filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ).

1. Each player i (1 ≤ i ≤ n) constructs T local approximate heavy-hitter identification filters {wi,q,j}j∈{1,...,b}
(1 ≤ q ≤ T ) from their private input set Si: ∃a∈Sihq(a) = j ⇒ wi,q,j = 1. wi,q,j = 0, otherwise.

2. Each player i (1 ≤ i ≤ n), for each bit j of filter q (1 ≤ j ≤ b, 1 ≤ q ≤ T ) s.t. wi,q,j = 1:

(a) constructs a one-show tag OST(pk, ski, q || j, one-show-value)
(b) player i anonymously routes the tag to ρ randomly chosen players (if the players will be utilizing

t-collection in Step 3, do not send the tag unless H of the one-show value is ≤ (1 + γ) t2ω

k
)

3. For each bit j of filter q (1 ≤ j ≤ b, 1 ≤ q ≤ T ) , all players 1, . . . , n, perform exactly one of the following
tasks:

• perform t-collection, with α independent hash functions, on the tags received in Step 2, attempting to
collect, for each hash function H, t valid one-show tags such that each one-show value v ≤ (1+γ) t2ω

k
.

If t-collection was successfully performed for the majority of hash functions, set xq,j = 1. Otherwise,
xq,j = 0.

• perform t-minimum value aggregation, with α independent hash functions, on the tags received in
Step 2. If v is the tth minimum hash value, approximate that there are t2ω

v
total tags; the median of

each such approximation forms the final approximation. If this process determines that there were
at least k tags, set xq,j = 1. Otherwise, xq,j = 0.

4. Each player calculates his output set Pi: for each element a ∈ Si, if ∀q∈{1,...,T} xq,hq(a) = 1, then a ∈ Pi.

Figure 5.5: HotItem-ID protocol, for identifying the hot items in each players’ private input.

the approximations). If the players conclude that there were at least k valid, distinct tags
constructed for bit j of filter q (1 ≤ j ≤ b, 1 ≤ q ≤ T ), then they set xq,j := 1; else, set
xq,j := 0.

Once they have constructed the global filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ), each player can
utilize these filters, as shown in Step 4, to determine whether each element of his input is a hot
item. If, for an element a, ∀q∈{1,...T} xq,H(a) = 1, then a is a hot item with high probability.

5.3 Hot Item Publication Protocol

In this section, we present our HotItem-Pub protocol. This protocol utilizes the HotItem-ID
protocol, so that each player may identify his hot items, but also ensures that the players may
securely and efficiently publish their common hot items.

5.3.1 Commitment to Foil Attacks

When players publish hot items, we must prevent two attacks by malicious players: (1) sup-
pressing hot items, so players do not learn them; (2) fooling honest players into accepting cold
items as hot. As we have shown, our HotItem-ID protocol (see Section 5.2) effectively allows
all players to identify the hot items in their private input sets, even in the presence of malicious
players. By using the HotItem-ID protocol to identify hot items, we must only address attacks
on the publication process itself.

54



Common Protocol Outline. Each of the variants of our HotItem-Pub protocol prevents
both item suppression and fooling attacks; however, they achieve different levels of owner
privacy. For clarity, we will first describe the basic outline for the protocol, which is common
between all variants. In the HotItem-Pub protocol, the players follow four steps:

1. Commitment. Each player constructs a computationally-binding and computationally-
hiding commitment to their private input set [40]; the exact form of the commitment
varies according to the level of owner-privacy desired. This is later used to prove (by
opening the commitment) that a published hot item was held by some player before the
global filters were constructed, without revealing any information at this stage of the
protocol. If owner-privacy is desired, the players then send each of these commitments to
ρ random players. This commitment is then distributed to all players.

2. HotItem-ID. The players then execute the HotItem-ID protocol, described in Sec-
tion 5.2. Each player learns, with high probability, which of the elements of his private
input set are hot, even in the presence of malicious players. In addition, each player also
obtains the global filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ) used to identify their hot items.

3. Publication. Each player, for each hot item in his input, constructs an opening for the
commitment to that element (see the Commitment step). If owner-privacy is desired, the
players then send each of these element/opened commitment pairs to ρ random players.
All players the use a redundant element distribution protocol, ElementDist, to efficiently
and robustly publish the element/opened commitment pairs. Such a protocol follows from
the following rule: when a player receives a previously-unseen hot item, he: (1) using the
opened commitment attached to the hot item, checks that he received a valid commitment
to that item during the commitment phase of the protocol; (2) if it passes the check, sends
the hot item (and associated commitment opening) to each of his neighbors and retains
it himself in the set P . By following this simple protocol, duplicate publications of hot
items are efficiently suppressed, while ensuring that all players receive each hot item in
their provisional set P .

4. Verification. As a result of publication, each player obtains a provisional set of elements
P , each of which may be hot. For each such item a ∈ P , the player checks that it passes
the global hot item identification filters; if ∀q∈{1,...,T} xq,hq(a) = 1, then it is truly a hot
item.

5.3.2 Putting HotItem-Pub to Work

We now describe the details of each variant of our HotItem-ID protocol (with varying degrees
of owner privacy), as well as the commitments and openings used to meet each definition. Note
that to increase the level of owner privacy provided, the players must utilize more bandwidth.
We formally describe the HotItem-Pub protocol in Figure 5.6.

No Owner Privacy. If the players are not concerned about owner privacy, they may simply
commit to their private input sets using Merkle hash trees. A Merkle hash tree is a data struc-
ture allowing a player to produce a constant-sized commitment to an ordered set S. Later any
player holding S may produce a commitment opening: a verifiable proof (given the committ-
ment) that an element a ∈ S [41].

Correlated Owner Privacy. In correlated owner privacy, the players wish to ensure that
the elements of their private input sets cannot be traced to them, but do not care if an adversary

55



can determine that some pair of elements came from the same player. To achieve this level of
privacy, the players may also use Merkle hash tree commitments [41]. The protocol only differs
from the non-owner private version in that the players anonymously send their commitments
and hot items to random players before they are distributed in the commitment and publication
phases of the protocol. This ensures that the elements can not be associated with any player.

Uncorrelated Owner Privacy. In uncorrelated owner privacy, the players wish to ensure
that the elements of their private input sets cannot be traced to them, and also care if an
adversary can determine that some pair of elements came from the same player. When the
players desire this level of privacy, they cannot utilize the efficient Merkle commmitments, but
instead must commit to each element separately. As the commitments, as well as the hot items,
are sent independently and anonymously to random players before publication, they cannot be
linked with the player who constructed them. In addition, as elements have independent com-
mitments, no player can gain advantage in determining whether one player held both elements.

5.4 Analysis

Now we proceed to analyze the security and performance of our HotItem-ID and HotItem-
Pub protocols.

5.4.1 HotItem-ID Correctness

In Theorem 26 we prove that our HotItem-ID protocol functions correctly: hot items are
identified as hot and cold items are identified as cold with high probability. Note that the filter
sizes b, T must be chosen as described in the theorem for our guarantees to hold, though they
may be smaller in practice.

Theorem 26. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε
and β, the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the
following: t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b × T ,

and at the same time, satisfy

(
mb n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1− δ+, every element a that appears
in fa < βk players’ private input sets is not identified as a k-threshold hot item.

In the HotItem-ID protocol, with probability at least 1− δ−, every element a that appears
in fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

We defer the proof of Theorem 26 to Appendix B.2.1.

5.4.2 Privacy in HotItem-ID

In these theorems, we prove the owner and data privacy of our HotItem-ID protocol.

Theorem 27. Assume that one-show tags are unlinkable and that the anonymous communica-
tion system is secure such that no coalition of adversaries can distinguish which honest player

56



Protocol: HotItem-Pub

Input: There are n players, λ maliciously colluding, each with a private input set Si. Each player
i ∈ [n] holds a private key ski, allowing him to construct one-show tags. h1, ,̇hT are independently
chosen cryptographic hash functions. ρ, b, T, t are parameters known to all participants.
Output: The set P of hot items published by honest players.

1. Each player i (1 ≤ i ≤ n) commits to their private input set Si:

• If the players are not concerned with Owner-Privacy, each player constructs a hash tree from
his randomly-permuted private input set Si, with root hash-value yi; then sends yi to all
players

• If the players wish to ensure Correlated Owner-Privacy, each player constructs a hash tree
from his randomly-permuted private input set Si, with root hash-value yi; then anonymously
routes yi to all players

• If the players wish to ensure Uncorrelated Owner-Privacy, for each element a ∈ Si, he
constructs a commitment to a, and anonymously routes it to every other player

2. All players 1, . . . , n execute the HotItem-ID protocol (Figure 5.5), so that each player i (1 ≤ i ≤
n) obtains: (a) the set Pi ⊆ Si of hot items in that player’s private input set and (b) global hot
item identification filters {xq,j}j∈{1,...,b}{1,...,b} (1 ≤ q ≤ T )

3. All players 1, . . . , n publish the hot items in their private input sets:

• If the players are not concerned with Owner-Privacy:
(a) for each element a ∈ Pi, constructs a proof of inclusion in Si, showing the path from

the leaf a to the root value yi

(b) distributes the elements of the set Pi to all other players, along with their proofs of
correctness, using the ElementDist protocol, such that all connected honest players
learn the set P = P1 ∪ · · · ∪ Pn.

• If the players wish to ensure Correlated Owner-Privacy:
(a) for each element a ∈ Pi, constructs a proof of inclusion in Si, showing the path from

the leaf a to the root value yi and anonymously routes it to ρ randomly chosen players.
(b) the players distribute all the elements and proofs received in Step 3a using the Element-

Dist protocol, such that all connected honest players learn the set P = P1 ∪ · · · ∪ Pn.
• If the players wish to ensure Uncorrelated Owner-Privacy:

(a) for each element a ∈ Pi, opens his commitment to a, and anonymously routes it to ρ
randomly chosen players.

(b) the players distribute all the elements and proofs received in Step 3a using the Element-
Dist protocol, such that all connected honest players learn the set P = P1 ∪ · · · ∪ Pn.

4. Each player i = 1, . . . , n verifies that each element a ∈ P :

• was committed to with a valid committment by some player in Step 1
• passes the filter – ∀q∈[T ] xq,hq(a) = 1

Figure 5.6: HotItem-Pub protocol, for publishing the hot items in each players’ private input.

sent any given anonymous message with probability more than negligibly different from a ran-
dom guess. In the HotItem-ID protocol, for any element a, no coalition of at most λ malicious
players can gain more than a negligible advantage in determining if a ∈ Si, for any given honest
player i (1 ≤ i ≤ n).

We defer the proof of Theorem 27 to Appendix B.2.2.

When considering data privacy, we wish to prove that the cold elements in S1∪· · ·∪Sn remain
hidden from adversaries. For example, in the HotItem-ID protocol, no player or coalition of

57



at most λ malicious players may gain more than an expected I = tnm
k lg b bits of information

about all players’ inputs
⋃n
i=1 Si. We prove a tighter bound on the degree to which each

element is hidden in a crowd of indistinguishable elements. Two elements are indistinguishable
if an attacker cannot distinguish which one was in players’ private input sets based on the
information gained in HotItem-ID. For an element a, its indistinguishable set consists of all
elements indistinguishable from it by an adversary who has no prior knowledge. To provide
data privacy, we wish for cold items to have large indistinguishable sets; we compromise perfect
(semantic) security, in which all items are indistinguishable, to achieve much greater efficiency.

Theorem 28. In the HotItem-ID protocol, each element a, which appears in fa dis-
tinct players’ private input sets, has an indistinguishable set of expected size Φ(fa) =∑T

`=1

(
T
`

) (
1− t

k

)fa(T−`)
(
1−

(
1− t

k

)fa
)` |M |

b`
.

We defer the proof of Theorem 28 to Appendix B.2.3.

We graph the fraction of the indistinguishable set size to the domain size, Φ(x)
|M | in Figure 5.7.

When an item a appears in fa players’ private datasets, the higher Φ(fa)
|M | indicates that it is

harder for adversaries to distinguish a from other items in the domain |M |. Note that if a
appears in only a few players’ private input sets, a very large proportion of the domain is
indistinguishable from a. As fa approaches k

t , the size of the indistinguishable set decreases;
this character ensures that truly rare elements are highly protected. In many applications,
there is a big gap between the frequency of hot items and cold items. In this case, our protocol
guarantees that the cold items will be extremely well protected, as their fequency will be much
smaller than k

t .

5.4.3 Privacy in HotItem-Pub

We now consider the degree of owner privacy conferred by each version of our HotItem-Pub
protocol. Correlated owner privacy allows adversaries to link the items published by each player,
while uncorrelated owner privacy prevents this.

Theorem 29. Assume that one-show tags are unlinkable and that the anonymous communica-
tion system is secure such that no coalition of adversaries can distinguish which honest player
sent any given anonymous message with probability more than negligibly different from a ran-
dom guess. In the Correlated Owner-Private HotItem-Pub protocol, for any element a, no
coalition of at most λ malicious players can gain more than a negligible advantage in determin-
ing if a ∈ Si, for any given honest player i (1 ≤ i ≤ n), assuming that the adversary is given
the set of hot items P , and the frequency of each hot item.

Theorem 30. Assume that one-show tags are unlinkable and that the anonymous communica-
tion system is secure such that no coalition of adversaries can distinguish which honest player
sent any given anonymous message with probability more than negligibly different from a ran-
dom guess. In the Uncorrelated Owner-Private HotItem-Pub protocol, for any element a, no
coalition of at most λ malicious players can gain more than a negligible advantage in determin-
ing if a ∈ Si for any given honest player i (1 ≤ i ≤ n), assuming that the adversary is given
the set of hot items P , and the frequency of each hot item.

Additionally, given two elements a, a′ ∈ P , no coalition of at most λ malicious players
can gain more than a negligable advantage in determining if there exists a honest player i
(1 ≤ i ≤ n) such that a, a′ ∈ Si, assuming that the adversary is given the set of hot items P ,
and the frequency of each hot item.

58



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fa

!
(f a)/|

M
|

(a)

t/k = 1/30
t/k = 1/100

0 20 40 60 80 100
10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

100

fa

(b)

Figure 5.7: The degree of data privacy for an element with frequency fa is Φ(fa)
|M | . Ideally, the degree

of data privacy would be 1 for all frequencies, but by compromising this strong definition of security,
we obtain more efficient and robust protocols. We graph the degree of data privacy (a), showing the
increase in protection for rare elements. The same function is graphed in (b) on a logarithmic scale, for
increased detail.

We prove these theorems in Appendix B.2.3.

5.4.4 Performance

By utilizing a novel combination of approximation counting algorithms, our protocol represents
a clear gain in efficiency over exact counting. In particular, aside from the cost of anonymous
routing messages, which vary according to the scheme employed, our protocol achieves a mul-
tiplicitive factor of Tt

k more efficiency than the exact-counting based non-privacy-preserving
protocol using the same message propagation abilities. (A network with improved capability
for routing messages will increase the performance of both protocols.) Note that this improve-
ment in performance is significant, especially considering that the baseline protocol provides
no privacy at all, where our protocols enforce principled guarantees of privacy while retaining
efficiency. In particular, if k is a fraction of n, our protocol achieves constant per player commu-
nication overhead. We present experimental results to validate the efficiency of our protocols
in distributed networks in Section 5.6.

5.5 Extensions

In this section, we briefly describe several extensions to our HotItem-ID and HotItem-Pub
protocols.

Private Input Multisets. Instead of identifying hot items as those that appear in at least
k players’ private input sets, we may identify those items that appear at least k times in the
players’ private input multisets. In the modified protocol, we associate γ one-show values with a
single (filter,bucket) pair so that up to γ hits to a single bucket by a single player can be counted
as distinct elements. The constants b, T may be chosen by slightly adjusting the analysis given
in the proof of Theorem 26.

59



Using Bloom Filters. Bloom filters provide a compact probabilistic representation of set
membership [6]. Instead of using T filters, we can use a combined Bloom filter. This achieves the
same asymptotic communication complexity, however, in practice the Bloom filter approach can
have smaller constants. We describe our approach using T filters in this paper in the interests
of clarity. Our scheme can be easily adapted to use Bloom filters. The choices of the constants
b, T can be adjusted to give an acceptable false-positive rate, given the domain M ; the analysis
may be performed similarly to that of [6] and the analysis of the HotItem-ID protocol given
in this paper.

Theorem 31. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε
and β, the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the
following: t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b × T ,

and at the same time, satisfy

(
mT b n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1− δ+, every element a that appears
in fa < βk players’ private input sets is not identified as a k-threshold hot item.

In the HotItem-ID protocol, with probability at least 1− δ−, every element a that appears
in fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

We defer the proof of Theorem 31 is given in Appendix B.2.4. As the properties of owner
and data privacy are unchanged by this variant, we do not perform a separate analysis.

Top-k. The Top-k problem is identifying those k elements that appear most often in the
players’ private input sets. An efficient non-private solution to this problem is given in [10]. In
their protocol, a trusted authority calculates an estimated threshold value τ ; every element in
the top k appears at least τ times.

We now briefly describe how to calculate the top k values without use of a central authority
and while preserving each players privately. Like in HotItem-ID, the players calculate global
filters, but by using t-minimum value aggregation instead of t-collection. In this way, each player
may estimate the number of players who hit each (filter,bucket) pair. Using these estimates,
the players may approximate τ , marking each (filter,bucket) pair hit by at least τ players as 1.
The global filters may then be used to identify the top-k.

5.6 Experimental Results

In order to experimentally evaluate the efficiency and accuracy of our protocol, we implemented
our HotItem-ID protocol with t-collection and applied it to distributed worm signature de-
tection. As we describe in Section 5.6.3, our experimental results support the efficiency and
accuracy of our protocol.

5.6.1 Distributed Worm Signature Detection

A widely utilized tactic for detecting worms is to search for byte strings that appear with
unusually high frequency in network traffic [35, 52]. By distributing the execution of this
strategy over a large number of hosts, players can increase the accuracy of their results [35].

60



 1

 10

 100

 1  10  100  1000

N
um

be
r 

of
 H

os
ts

 (
pl

ay
er

s)

Content Blocks (Sorted)

Content Block Frequency (port 80)

HTTP-tr1
HTTP-tr2
HTTP-tr3

 1

 10

 100

 1  10  100  1000  10000  100000

N
um

be
r 

of
 H

os
ts

 (
pl

ay
er

s)

Content Blocks (Sorted)

Content Block Frequency (port 25)

SMTP-tr1
SMTP-tr2
SMTP-tr3

(1) HTTP (port 80) (2) SMTP (port 25)

Figure 5.8: Number of hosts (players) that have generated each content block (item) from observed
suspicious flows.

However, as network traffic often contains sensitive information such as email or information
that could aid a network attack, it is imperative to protect the privacy of participants.

In a distributed network monitoring scenario, each monitor attempts to detect malicious
traffic on his own network. As anomaly detection is imperfect, this process will often identify
innocuous traffic as malicious. Thus, monitors must take further steps to improve the accuracy
of their results; comparing the results with other monitors. If the malicious traffic belongs to
a worm, there will be other monitors that observed similar traffic; an effective heuristic for
identifying possibly malicious traffic is that worms often send a large volume of repetitive data
as they attempt to infect other computers. We use our HotItem-ID protocol to perform this
comparison while protecting the privacy of non-worm network traffic.

Because polymorphic worms often change their form, players must compare many small
pieces of a possible worm payload instead of the entire payload. We use a content-based
payload partitioning technique (proposed in [35]) to split a payload into many small segments.
In this section, we call such segments content blocks. The payload partitioning technique is
robust against small payload byte changes and generates the same content blocks for different
forms of a worm. Once monitors have identified possible worms and split them into content
blocks, they then perform hot item identification over the sets of content blocks. Content blocks
generated from innocuous, private network traffic appear only in the sets from a few monitors.
Hot content blocks indicate that the traffic has been seen at an unusually large number of
hosts; it is therefore almost certainly part of a worm attacking those hosts and can be used as
a signature of the worm.

5.6.2 Real-world Data and Experiment Method

We performed simulated distributed network monitoring on traces captured on a campus net-
work that uses one third of a class B IP address space. HTTP-tr1, HTTP-tr2, and HTTP-tr3
are one-hour long traces containing all HTTP (tcp port 80) packets and payloads addressed to
hosts in the monitored network. Similarly, SMTP-tr1, SMTP-tr2, and SMTP-tr3 contain SMTP
(tcp port 25) packets captured for an one-hour time period. During the trace collection periods,
a total of 5246 IP addresses received at least one packet. Our trace does not contain any known

61



HTTP-tr3 SMTP-tr1

# of messages bandwidth # of messages bandwidth
t=3 t=5 t=10 t=3 t=5 t=10 t=3 t=5 t=10 t=3 t=5 t=10

ψ=5 näıve 1 (11,399msgs) 1 (228KB) 1 (300,757msgs) 1 (6015KB)
γ=0 0.044 0.075 0.151 0.412 0.708 1.422 0.026 0.039 0.073 0.248 0.364 0.687
γ=0.2 0.048 0.081 0.162 0.455 0.764 1.524 0.032 0.048 0.088 0.306 0.448 0.825
γ=0.5 0.052 0.088 0.177 0.493 0.831 1.664 0.042 0.062 0.117 0.395 0.583 1.100

ψ=10 näıve 1 (25,643msgs) 1 (513KB) 1 (676,612msgs) 1 (13,532KB)
γ=0 0.038 0.068 0.141 0.363 0.638 1.331 0.017 0.021 0.065 0.162 0.199 0.611
γ=0.2 0.042 0.071 0.146 0.394 0.665 1.372 0.022 0.028 0.068 0.208 0.261 0.638
γ=0.5 0.044 0.074 0.149 0.414 0.695 1.402 0.036 0.062 0.124 0.341 0.584 1.169

Figure 5.9: Normalized bandwidth consumption per player in performing hot item identification (k =
100). Underlines values indicate that there were false positives or false negatives.

worm traffic and does not contain hot items (threshold k = 100). We graph the number of
hosts who generate each innocuous content block (by identification of possible worm traffic) in
Figure 5.8. Only at most 2.2% (HTTP) or 1.4% (SMTP) of content blocks appear at more than
one host. Through manual examination, we determined that content blocks that appeared at
more than one host indicated web crawler (HTTP) or spamming (SMTP) activity, and never
appeared at more than 45 hosts.

We injected simulated worm traffic into the input of 200 of 1024 monitors in the network.
Each monitor generates a set of content blocks from captured anomalous traffic. Note that
all the sets generated from those 200 attacked monitors include the content blocks from the
worm traffic. We ran our HotItem-ID protocol in the overlay network of 1024 monitors and
measured the number of messages and the required bandwidth per monitor, while varying the
t-collection parameters t and γ, and the average number of neighbors ψ in the overlay network.
We also computed the false positive and false negative rates at the end of the HotItem-ID
execution by counting the innocuous content blocks identifed as to be hot (false positives),
and the worm content blocks that are not identified (false negatives). In our experiment, we
utilized the parameters b := 606, T := 5 for HTTP traces, and b := 4545, T := 5 for SMTP
traces, chosen according to the guidelines in Section 5.4.1. We compared our protocol to a
non-private näıve protocol, in which all content blocks are forwarded to all participating 1024
monitors, using the same network topology and the same communication model for both the
näıve protocol and the HotItem-ID protocol.

5.6.3 Bandwidth Consumption and Accuracy

Our HotItem-ID protocol efficiently identified every simulated worm injected into the network
traces, while generating no false positives; no innocuous data was mistakenly categorized as
malicious except when we use SMTP-tr1 with t ≤ 3 and γ ≥ 0.5. We present our comparison
of the required bandwidth and messages in Figure 5.9. HTTP-tr3 contains 724 unique content
blocks, while SMTP-tr1 contains 46,120 unique ones. Underlined values in the figure indicate
there were false negatives (failed to identify worm content blocks). Our HotItem-ID protocol
scales better than the näıve protocol (Section 5.2); as problems increase in size, our protocol
becomes more attractive. Even at small problem sizes, the overhead required to protect the
privacy of participants is not high. Our experiments show that to ensure correctness while
retaining efficiency, we may set γ := 0.2, t := 3 (HTTP) and γ := 0.5, t := 5 (SMTP). Our
HotItem-ID implementation, based on an efficient group signature scheme [7], requires 193

62



bytes per message (Appendix B.3) while the näıve protocol utilizes only 20 bytes per message. 4

However, our protocol requires only a small number of message transmissions; as a result,
HotItem-ID used only 39% and 58% of the bandwidth used by the näıve protocol in the
HTTP-tr3 and SMTP-tr1 experiments, respectively. Note that the performance gain from our
HotItem-ID protocol increases as the more monitors participate. For example, when 10240
monitors participate in worm signature generation and we need only 10% of them to catch
worm traffic (k = 1000), our HotItem-ID protocol uses less than 6% of the bandwidth used
by näıve protocol.

4To save bandwidth and give a trivial measure of privacy against casual attacks [37], we hash each content
block with SHA-1 in the näıve protocol.

63



64



Chapter 6

Conclusion

In this thesis, we have introduced multiple techniques and protocols for privacy-preserving dis-
tributed information sharing. We designed composable set and multiset operations, and pro-
tocols for Set-Intersection, Over-Threshold Set-Union, Cardinality Set-Intersection, Threshold
Set-Union, Subset, and CNF formula evaluation based on these operations. We then examined
the problems of hot item identification and publication, variants of the Over-Threshold Set-
Union problem. In order to increase the efficiency and robustness of our hot item protocols, we
designed these protocols to achieve novel definitions of security and privacy.

65



66



Bibliography

[1] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information sharing
across private databases. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, pages 86–97, New York, NY, USA, 2003.
ACM Press. ISBN 1-58113-634-X. 1.1, 2.1

[2] M. Ajtai, J. Komlos, and E. Szemeredi. An o(n log n) sorting network. In Proc. of STOC,
pages 1–9, 1983. 1.1

[3] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology — CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages 255–270, 2000. URL
citeseer.ist.psu.edu/ateniese00practical.html. 5.2.5

[4] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In RANDOM ’02: Proceedings of the 6th International
Workshop on Randomization and Approximation Techniques, pages 1–10, London, UK,
2002. Springer-Verlag. ISBN 3-540-44147-6. 2.2, 5.2.3, B.2.1, B.2.1, 34, B.2.1

[5] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of STOC, 1988. 2.1, 4.5.3

[6] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970. 5.5

[7] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In
Proceedings of Computer and Communications Security (CCS), pages 168–177, 2004. 5.6.3,
B.3

[8] Fabirce Boudot, Berry Schoenmakers, and Jacques Traore. A fair and efficient solution to
the socialist millionaires’ problem. Discrete Applied Mathematics, 111:77–85, 2001. 2.1

[9] Jan Camenisch. Proof systems for general statements about discrete logarithms. Technical
Report 260, Dept. of Computer Science, ETH Zurich, Mar 1997. 3.2.1, 4.4.1

[10] Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed networks. In PODC
’04: Proceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, pages 206–215, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-802-4.
1.2, 5.5

[11] D. Chaum. The dining cryptographers problem: unconditional sender and recipient un-
traceability. J. Cryptol., 1(1):65–75, 1988. ISSN 0933-2790. 5.2.4

67

citeseer.ist.psu.edu/ateniese00practical.html


[12] D. Chaum, J.-H. Evertse, J. Graaf, and R. Peralta. Demonstrating possession of a discrete
logarithm without revealing it. In Advances in Cryptology—CRYPTO ’86, pages 200– 212.
Springer-Verlag, 1987. B.3

[13] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24:84–8, 1981. 3.2.2, 4.2.2, 4.3.1, 5.2.4

[14] David Chaum, Jan-Hendrick Evertse, Jeroen van de Graaf, and Rene Peralta. Demon-
strating possession of a discrete log without revealing it. In A.M. Odlyzko, editor, Proc.
of Crypto, pages 200–212. Springer-Verlag, 1986. 3.2.1, 4.4.1

[15] R. Cramer, I. Damg̊ard, and J. Buus Nielsen. Multiparty computation from threshold
homomorphic encryption. In Proc. of Eurocrypt, pages 280–99. Springer-Verlag, 2001.
3.2.1, 4.4.1

[16] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-party computation
from any linear secret sharing scheme. In Proc. of Eurocrypt. Springer-Verlag, May 2000.
2.1

[17] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In
Proc. of Eurocrypt, pages 557–72. Springer-Verlag, 2000. 3.2.2, 4.2.2, 4.3.1

[18] Cristian Estan and George Varghese. New directions in traffic measurement and account-
ing: Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Sys-
tems, August 2003. 5.2.1

[19] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking it.
Communications of the ACM, 39:77–85, 1996. 2.1

[20] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings on Advances in cryptology—CRYPTO ’86, pages
186–194, London, UK, 1987. Springer-Verlag. ISBN 0-387-18047-8. B.3

[21] P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting of
lotteries. In Proc. of Financial Cryptography, 2000. 1.2, 3.2.1

[22] Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure against
chosen-ciphertext attacks. In Proc. of Asiacrypt, pages 573–84, 2000. 1.2, 3.2.1

[23] Michael Freedman, Kobi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In Proc. of Eurocrypt, volume LNCS 3027, pages 1–19. Springer-Verlag, May
2004. 1.1, 2.1, 4, 4.1.1, 4.2.2

[24] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Proc. of Crypto,
pages 368–87. Springer-Verlag, 2001. 3.2.2, 4.2.2, 4.3.1

[25] Archana Ganapathi and David Patterson. Crash data collection: A windows case study.
In To Appear in the Proceedings of the International Conference on Dependable Systems
and Networks, June 2005. 1.2

[26] Rosario Gennaro and Victor Shoup. Securing threshold cryptosystems against chosen
ciphertext attack. Journal of Cryptology, 15:75–96, 2002. 3.2.1

68



[27] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving
approximate query answers. In Proc. ACM SIGMOD International Conf. on Management
of Data, pages 331–342, June 1998. 2.2

[28] Oded Goldreich. The Foundations of Cryptography – Volume 2, volume 2. Cambridge Uni-
versity Press, May 2004. URL http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.
html. 1.2, 2.1, 3.1, 3.1.2, 4.5.3, 5.1

[29] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
Systems Science, 28:270–99, 1984. 3.2.1

[30] Qiang Huang, Helen Wang, and Nikita Borisov. Privacy-preserving friends troubleshooting
network. In Proceedings of the Symposium on Network and Distributed Systems Security,
February 2005. 1.2, 2.2

[31] M. Jakobsson. A practical mix. In Proc. of Eurocrypt, pages 448–61. Springer-Verlag,
1998. 3.2.2, 4.2.2, 4.3.1

[32] R. Karp, S. Shenker, and C. Papadimitriou. A simple slgorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst., 28(1):51–55, 2003. 2.2

[33] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In
Proc. of Crypto. Springer-Verlag, 2004. 4.4.1

[34] Aggelos Kiayias and Antonina Mitrofanova. Testing disjointness of private datasets. In
Proc. of Financial Cryptography, 2005. 2.1

[35] Hyang-Ah Kim and Brad Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Generation. In Proceedings of the 13th Usenix Security Symposium (Security 2004),
San Diego, CA, August 2004. 5.6.1

[36] Lea Kissner, Alina Oprea, Michael Reiter, Dawn Song, and Ke Yang. Private keyword-
based push and pull with applications to anonymous communication. In Applied Cryptog-
raphy and Network Security, 2004. 4.3.2

[37] Patrick Lincoln, Phillip Porras, and Vitaly Shmatikov. Privacy-preserving sharing and
correlation of security alerts. In Proceedings of the 13th USENIX Security Symposium,
page 239254, August 2004. 1.2, 2.2, 4

[38] Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In
Proc. of Asiacrypt, pages 416–33, 2003. 2.1

[39] Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In Proc. of
Eurocrypt, pages 382–400. Springer-Verlag, 2004. 4.4.1

[40] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, October 1996. 4.1, 5.2.1, 5.2.3, 1, B.2.1, B.3

[41] Ralph C. Merkle. A certified digital signature. In Proc. of Advances in Cryptology, pages
218–238. Springer-Verlag New York, Inc., 1989. ISBN 0-387-97317-6. 5.3.2, 5.3.2

[42] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel, and Dan S.
Wallach. Ap3: Cooperative, decentralized anonymous communication. In 11th ACM
SIGOPS European Workshop, September 2004. 5.2.4, B.2.1

69

http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html


[43] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proc.
ACM Symposium on Theory of Computing, pages 245–54, 1999. 2.1

[44] A. Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS, pages
116–25, 2001. 3.2.2, 4.2.2, 4.3.1

[45] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Proc. of Asiacrypt, pages 573–84, 2000. 1.2, 3.2.1

[46] Bartosz Przydatek, Dawn Song, and Adrian Perrig. Sia: secure information aggregation
in sensor networks. In SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 255–265. ACM Press, 2003. ISBN 1-58113-707-
9. 5.2.5, B.2.1

[47] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content addressable network. Technical Report TR-00-010, University of California
at Berkeley, Berkeley, CA, 2000. URL citeseer.ist.psu.edu/ratnasamy01scalable.
html. 5.2.5

[48] M G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communication, Special Issue on Copyright
and Privacy Protection, 1998. 5.2.4

[49] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998. URL citeseer.ist.
psu.edu/article/reiter97crowds.html. 5.2.4

[50] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–350, November 2001. 5.2.5

[51] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2005. URL http://shoup.net/ntb/. 4.6.1

[52] Sumeet Singh, Cristian Estan, George Varghese, and Stegan Savage. Automated worm
fingerprinting. In Proceedings of 6th Symposium on Operating Systems Design and Imple-
mentation (OSDI’04), San Francisco, CA USA, December 2004. 5.6.1

[53] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. on Networking,
11:17–32, February 2003. 5.2.5

[54] Shobha Venkataraman, Dawn Song, Phil Gibbons, and Avrim Blum. New streaming
algorithms for superspreader detection. In Proceedings of Network and Distributed Systems
Security Symposium (NDSS), February 2005. 5.2.3

[55] Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, and Yi-Min Wang. Friends
troubleshooting network: Towards privacy-preserving, automatic troubleshooting. In Pro-
ceedings of IPTPS, February 2004. 1.2, 2.2

[56] Andrew C-C Yao. Protocols for secure computations. In Proc. of FOCS, 1982. 2.1

70

citeseer.ist.psu.edu/ratnasamy01scalable.html
citeseer.ist.psu.edu/ratnasamy01scalable.html
citeseer.ist.psu.edu/article/reiter97crowds.html
citeseer.ist.psu.edu/article/reiter97crowds.html
http://shoup.net/ntb/


Appendix A

Appendices for Privacy-Preserving
Set Operations

A.1 Notation

• P – the set of elements which can be members of a private input set
• k – size of each private input set
• n – number of players participating in a protocol
• t – threshold number, an element must appear t times in the private input sets to be

included in the threshold set
• Epk(·) – encryption under the additively homomorphic, public key cryptosystem to which

all players share a secret key
• Epk(a) +h Epk(b) – combination of two ciphertexts (under the homomorphic cryptosys-

tem) to produce a re-randomized ciphertext which is the encryption of a+ b
• a ×h Epk(b) – combination of an integer and a ciphertext (under the homomorphic cryp-

tosystem) to produce a re-randomized ciphertext which is the encryption of ab
• f ∗h Epk(g) – combination of two polynomials (under the homomorphic cryptosystem) to

produce a re-randomized encrypted polynomial which is the encryption of f ∗ g
• F0, . . . , Fd – public ‘helper’ polynomials for computing element reduction
• h(·) – a cryptographic hash function from {0, 1}∗ to {0, 1}` (` = lg

(
1
ε

)
), where ε is

negligible.
• Rdd(S) denotes the element reduction by d of set S
• Ra[x] denotes the set of all polynomials of degree between 0 and a with coefficients from
R
• [c] for an integer c denotes the set {1, . . . , c}
• a := b denotes that the variable a is given the value b
• a || b denotes a concatenated with b
• a← S denotes that element a is sampled uniformly from set S
• f ∗ g is the product of the polynomials f, g
• deg(p) is degree of polynomial p
• p(d) is the dth formal derivative of p
• gcd(p, q) is the greatest common divisor of p, q
• Si is the ith player’s private input set
• Vj is the jth element of the set V , under some arbitrary ordering

71



72



Appendix B

Appendices for Hot-Item
Identification

B.1 Notation

Notation.

• a || a′ - a and a′ concatenated
• a := a′ - the value of a′ is assigned to a

Variable List.

• a - an item, member of a private input set
• b - number of buckets per filter
• d - d(x) = Φ(x)

|M | , a measure of data privacy which varies by the number of players holding
any particular item

• ei - group certificate for player i (1 ≤ i ≤ n) in group signature for one-show tags scheme
• fa - number of players’ private input sets in which an element a appears
• g1, g2 - group elements in one-show tag scheme
• gq,j - group element for producing one-show value (1 ≤ q ≤ T , 1 ≤ j ≤ b)
• H(·) - a cryptographic hash function with range {0, 1}κ
• h1(·), . . . , hT (·) - independent cryptographic hash functions with range [b]
• i - index over players (1 ≤ i ≤ n)
• I - expected number of bits of information that any coalition can learn about players’

private input sets
• j - index over buckets (1 ≤ j ≤ b)
• k - minimum number of players that must hold an alert for it to be published
• ` - index
• m - maximum size of Si
• M - domain of elements (

⋃n
i=1 Si ⊆M)

• n - the number of players
• o - a secret value used in constructing one-show tags
• pe - probability of edge existence in a random network graph
• pt - probability that an anonymously routed message is traced to its source
• Pi - each player’s set of alerts for publication

73



• P =
⋃n
i=1 Pi

• q - index over filters (1 ≤ q ≤ T )
• r1, r2, r′1, r′2 - prime numbers used in one-show tags
• s - group manager’s secret element in group signature scheme
• si - each player’s secret element in group signature scheme (1 ≤ i ≤ n)
• Si - each player’s private input set (1 ≤ i ≤ n)
• S =

⋃n
i=1 Si

• t - number of values collected to estimate the number of distinct elements in a set
• T - number of filters
• u - estimated set size
• Ui - the tags collected during a t-collection or t-minimum value aggregation protocol by

player i (1 ≤ i ≤ n)
• v - a one-show value
• [wi,q,j ]j∈[b] - local filter q (1 ≤ q ≤ T ) for player i (1 ≤ i ≤ n)
• [xq,j ]j∈[b] - global filter q (1 ≤ q ≤ T )
• yi - the root of a Merkle hash tree, a commitment to the input set Si of player i (1 ≤ i ≤ n)
• z0, z1, z2 - elements of the group signature public key for one-show tags
• Zn - the ring of integers modulo n
• α - number of separate approximate distinct element counting estimations that must be

combined to obtain the desired confidence probability δ1
• β - secret value for ZK proof in one-show tags scheme
• γ - ”gap” factor in approximate distinct element counting
• δ1 - confidence probability for the approximate distinct element counting algorithm
• δ+ - maximum probability of false positive
• δ− - maximum probability of false negative
• ε - allowed error bound for the approximate distinct element counting algorithm is between

(1− ε) times the actual value and (1 + ε) times the actual value
• κ - security parameter for modified unpredictable-value group signature scheme
• λ - number of malicious players
• µ - secret value for ZK proof in one-show tags scheme
• η - part of public key for one-show scheme η = r1r2
• φ - secret value for ZK proof in one-show tags scheme
• ϕ - maximum number of duplicates of each element allowed in a private input multiset

(see Section 5.5)
• ρ - number of randomly chosen players chosen to receive anonymous messages in

HotItem-ID and HotItem-Pub, so that, with high probability, at least one message
reaches an honest player

• τ - threshold value for top-k protocol extension to HotItem-ID (see Section 5.5)
• σ - seed for pseudo-random number generator
• σ` - the `th member of Zν output by a pseudo-random number generator on input σ
• Φ(fa) - expected size of indistinguishable set, if element a appears in fa players’ private

inputs
• ψ - average number of neighbors per node

74



B.2 Detailed Analysis

B.2.1 Correctness

In this section, we analyze our HotItem-ID protocol to ensure that, given certain choices of the
parameters b, T , our protocol correctly identifies hot items with high probability. In analyzing
this protocol, we must consider both false positives (in which cold items are identified as hot),
and false negatives. Errors may be caused by inaccurate approximate distinct element counting,
a badly constructed filter, or a combination of the two.

Recall that h1, . . . , hT : {0, 1}κ → {1, . . . , b} are polynomial-wise independent hash function
with uniformly distributed output, such as cryptographic hash functions, and that H is a
collision-resistant cryptographic hash function [40].

Error from Approximate Distinct-Element Counting. To begin, we state a simple
lemma that shows the t-collection and t-minimum value aggregation protocols (Figures 5.3
and 5.4) obtain the information needed for approximating the number of ‘hits’ to any particular
bucket.

Lemma 32. Each participant in the t-collection protocol of Figure 5.3 collects t ‘small-value’
one-show tags created by distinct players, if such tags exist.

Each participant in the t-minimum value aggregation protocol of Figure 5.4 obtains the t
one-show tags created by distinct players with the smallest hash values.

Proof. The proof of this theorem relies on the proof of information distribution in [46], which
uses a closely related information distribution mechanism. We can thus observe that all in-
formation held by connected honest players is distributed to all connected players unless it is
specifically filtered by an honest player. In the t-minimum value aggregation protocol, the only
tags filtered are those which do not appear in the final result; that is, they are not one of the
t one-show tags with smallest hash value. Note also that the one-show value of a tag is unique
per player, and that each player cannot construct tags with different, valid one-show values
with overwhelming probability. Thus, in the t-minimum value aggregation protocol, all players
obtain the t one-show tags with smallest values created by distinct players.

We may reason similarly about our t-collection protocol. Each player only filters tags (by
terminating his involvement in the protocol) if he has collected t tags and sent them on to
all neighbors. Thus, the player has ensured that if t small hash-value tags exist, each of his
neighbors collect them as well. By induction, all connected honest players thus collect t small-
value tags created by distinct players, if such tags exist.

As detailed in [4], ifH(v) is the tth smallest hash value in a set S, whereH : {0, 1}∗ → {0, 1}κ,
then the estimate of |S| is t2κ

H(v) . By computing the median of O
(
lg 1

δ1

)
such estimates, with

computationally independent hash functions, we obtain |S|, an (ε, δ1)-approximation of |S|:

Lemma 33. This algorithm, for any ε, δ1 > 0, (ε, δ1)-approximates |S|. That is,

Pr
[
|S| > (1 + ε)|S| ∨ |S| < (1− ε)|S|

]
≤ δ1

Proof. Proof of this theorem is given in [4].

75



As this is an (ε, δ1)-approximation algorithm, we may note that we are concerned with
elements that appear fewer than k

1+ε times, when computing false positives, and elements that
appear at least k

1−ε times, when computing false negatives. Based on this algorithm, we may
conclude that, if there exist at least t elements with hash values at most t2κ

k , our estimate of
|S| is at least k:

Corollary 34. If there exist t values v1, . . . , vt ∈ S such that ∀`∈[t] H(v`) ≤ t2κ

k , then the
approximate distinct element counting algorithm of [4] will estimate that |S| ≥ k.

Proof. Let w = max`∈[t]{H(v`)}. The approximation algorithm specifies that |S| = t2κ

w . As
w ≤ t2κ

k , then |S| ≥ k.

Error from Filters. We now calculate the probability that an element a, which appears in
fa < k′ players’ private input sets, is identified as a k′-threshold hot item. We set k′ := k

1+ε , so
as to account for the allowed inaccuracy in the approximate counting algorithm.

As illustrated in Figure B.1, we may bound the probability that a is erroneously identified
as k′-hot by one filter j′ (1 ≤ j′ ≤ T ) by determining the maximum number of filter buckets
that were hit by k′ − fa distinct players1. If a bucket j (1 ≤ j ≤ b) was hit by k′ − fa players
who do not hold a, then if hj′(a) = j, then a will be identified by filter j′ as a k′-threshold
hot item. As malicious players may claim to hit all buckets, a minimum of k′ − fa − λ honest
players must hit any given bucket for it to cause any possibility of error.

Each honest player has a maximum of m items in their private input set. Thus, using every
element of each players’ private input set, each group of k′ − fa − λ honest players may hit
at most m buckets a sufficient number of times to introduce any danger of error2. There are
n− fa − λ honest players who do not hold a as an element of their private input set, and thus
b n−fa−λ
k′−fa−λc groups of players that can hit m buckets per group enough times to allow danger

of an error. Note that any group of fewer than k′ − fa − λ players cannot hit any particular
bucket a sufficient number of times to cause a total of k′ − fa hits; each player may only hit
any particular bucket at most once.

Thus, at most mb n−fa−λ
k′−fa−λc buckets of each filter can be ‘unsafe’; if a is not mapped to one

of those buckets, then there is no possibility of error from the malfunctioning of the filter. As
hj′(a) is distributed computationally indistinguishably from uniformly over [b], we may thus
bound the probability that bucket hj′(a) is erroneously designated as ‘hot’:

Pr
[
a is identified as k′-hot by one filter

]
≤

mb n−fa−λ
k′−fa−λc
b

Combined Error. We may now consider the two sources of error together. There are two
possible error types: false positives (in which cold items are identified as hot), and false negatives
(in which hot items are not identified as hot).

Theorem 26. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε
and β, the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the

1Note that the fa signatures related to the element a will raise the total number of signatures to k′; if there
are at least k′ signatures, error in the approximate counting algorithm may cause a to be identified as a k-hot
item.

2Note that, with high probability, more that one element of an honest players’ private input set will hash to
the same bucket, and thus this is a conservative analysis.

76



(1)

malicious players may sign all buckets

b buckets

λ

k'

k'-fabuckets 
hit by 

honest 
players

k'-fa-λ

m

buckets 
hit by 

honest 
players

`safe' buckets
for h(a)

Insufficient buckets hit 
by honest players

a

(2)

malicious players may hit all buckets

b buckets

λ

k'

k'-fabuckets 
hit by 

honest 
players

k'-fa-λ

m

buckets 
hit by 

honest 
players

`safe' buckets
for h(a)

Insufficient buckets hit 
by honest players

a

Figure B.1: Buckets that are unsafe for hj′(a) (1 ≤ j′ ≤ T ) are those that have been marked as hit
by a sufficient number of players to allow the possibility that a might be erroneously identified as a
k′-threshold hot item. In (1), a is mapped to a sufficiently full bucket, causing a to be erroneously
identified as a k′-hot item. In (2), a is mapped to a safe bucket.

following: t := d96
ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b × T ,

and at the same time, satisfy

(
mb n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1− δ+, every element a that appears
in fa < βk players’ private input sets is not identified as a k-threshold hot item.

In the HotItem-ID protocol, with probability at least 1− δ−, every element a that appears
in fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

Proof. The probability that an element a, which appears in fa <
k

1−ε players’ private input
sets, is not identified as a k-threshold hot item can be bounded as follows (recall that we have
set k′ = k

1+ε , to account for the allowed tolerance in approximate counting):

Pr [a is identified as k-hot] ≤ Pr[in all filters, element a is identified as k′-hot ∨
set of size < k′ approximated as ≥ k]

=
T∏

j′=1

Pr[in filter j′, element a is identified as k′-hot ∨

set of size < k′ =
k

1 + ε
approximated as ≥ k]

≤
T∏

j′=1

(
mb n−fa−λ

k′−fa−λc
b

+ δ1

)

=

(
mb n−fa−λ

k′−fa−λc
b

+ δ1

)T

=

mb n−fa−λ
k

1+ε
−fa−λ

c

b
+ δ1

T

If an element a, which appears in fa ≥ k
1−ε players’ private input sets, is not identified as a

77



k-threshold hot item, it is due to error in the set-counting approximation. When the number
of hits for every bucket in a filter is counted exactly, there can be no false negatives. Thus, we
may bound the probability of a false negative as follows:

Pr [a is not identified as k-hot] = Pr
[
in at least one filter, a set of size ≥ k

1− ε
approximated as < k

]
≤

T∑
j′=1

Pr
[
in filter j′, a set of size ≥ k

1− ε
approximated as < k

]

≤
T∑

j′=1

δ1

= δ1T

Choice of Constants. Given our analysis, we may outline how to choose the constants
δ1, t, b, T based on the parameters ε, δ−, λ, n,m, δd, β.

δ1. Recall that the probability of a false negative, for an element a which appears in at least
fa ≥ k

1−ε players’ private input sets, is required to be at most δ−. We may then choose
δ1 as follows:

Pr [a is not identified as k-hot] = δ−

≤ δ1T

δ1 :=
δ−
T

b, T . Given this assignment of δ1, we may simplify our bound on the probability of a false
positive on an element a, which appears in βk < k

1+ε players’ private input sets, as
follows:

Pr [a is identified as k-hot] ≤

mb n−fa−λ
k

1+ε
−fa−λ

c

b
+ δ1

T

≤

mb n−βk−λ
k

1+ε
−βk−λc

b
+
δ−
T

T

We choose b, T so as to minimize b× T , while satisfying the above constraint.
t, α. In the approximate distinct element counting algorithm in [4], t := d96

ε2
e, α := O

(
lg 2

δ−

)
.

In practice, one may safely choose to retain t < d96
ε2
e smallest values per parallel execution,

and run only one parallel execution, while retaining a confidence bound of δ1. We found
that t := 25 was sufficient.
Note that, when running very small examples, or with very high accuracy requirements,
one may obtain an assignment for t that is ≥ k. In this case, simply set t := k, and
note that ε, δ1 = 0; each player is now collecting a sufficient number of signatures so as
to determine, without error, whether any particular bucket was hit by at least k distinct
players.

78



ρ. The choice of ρ must be based on the choice of anonymous message system. We provide
here an analysis based upon the scheme of [42], in which each node, upon receipt of
a message to be anonymously routed, sends it to a random neighbor with probability
pf > .5, and to its intended destination with probability 1−pf . Note that the probability
that a message will, somewhere along its anonymously routed path, encounter a malicious
node is at most λ

n + λ
npf + λ

np
2
f + · · · ≤ λ

n . As we cannot ensure that a message is delivered
if it encounters a malicious node, we wish to choose ρ such that at least one message will
be delivered to its destination, with probability at least δd. Thus, ρ := O

(
lg 1

δd

)
.

B.2.2 Owner Privacy

Theorem 27. Assume that one-show tags are unlinkable and that the anonymous commu-
nication system is secure such that no coalition of adversaries can distinguish which honest
player sent any given anonymous message with probability more than negligibly different from
a random guess. In the HotItem-ID protocol, for any element a, no coalition of at most λ
malicious players can gain more than a negligible advantage in determining if a ∈ Si, for any
given honest player i (1 ≤ i ≤ n).

Proof. The proof of this theorem is straightforward.

Theorem 29. Assume that one-show tags are unlinkable and that the anonymous com-
munication system is secure such that no coalition of adversaries can distinguish which honest
player sent any given anonymous message with probability more than negligibly different from
a random guess. In the Correlated Owner-Private HotItem-Pub protocol, for any element
a, no coalition of at most λ malicious players can gain more than a negligible advantage in
determining if a ∈ Si, for any given honest player i (1 ≤ i ≤ n), assuming that the adversary
is given the set of hot items P , and the frequency of each hot item.

Proof. The proof of this theorem is straightforward.

Theorem 30. Assume that one-show tags are unlinkable and that the anonymous com-
munication system is secure such that no coalition of adversaries can distinguish which honest
player sent any given anonymous message with probability more than negligibly different from
a random guess. In the Uncorrelated Owner-Private HotItem-Pub protocol, for any element
a, no coalition of at most λ malicious players can gain more than a negligible advantage in
determining if a ∈ Si for any given honest player i (1 ≤ i ≤ n), assuming that the adversary is
given the set of hot items P , and the frequency of each hot item.

Additionally, given two elements a, a′ ∈ P , no coalition of at most λ malicious players
can gain more than a negligable advantage in determining if there exists a honest player i
(1 ≤ i ≤ n) such that a, a′ ∈ Si, assuming that the adversary is given the set of hot items P ,
and the frequency of each hot item.

Proof. The proof of this theorem is straightforward.

79



(1)

filter 1

filter 2

filter 3

h1(a) = 2

h2(a) = 4

h3(a) = 1
(2)

filter 1

? ?? ? ?filter 2

filter 3

h1(a) = 2

h3(a) = 1

Figure B.2: Players collect one-show tags for each filter bucket during the HotItem-ID protocol.
Given a complete set of filters for some element, one may still not determine which element produced
the filters. However, each tag has a probability of 1− t

k−
1
2κ of having too high a value for the t-collection

phase, and thus of being hidden. When all tags for an element in a specific filter are removed, as in (2),
an even larger number of elements could have produced the observed filters.

B.2.3 Data Privacy

Theorem 28. In the HotItem-ID protocol, each element a, which appears in fa dis-
tinct players’ private input sets, has an indistinguishable set of expected size Φ(fa) =∑T

`=1

(
T
`

) (
1− t

k

)fa(T−`)
(
1−

(
1− t

k

)fa
)` |M |

b`
.

Proof. Let M be the domain of possible private input set elements, such that ∀i∈[n] Si ⊆ M .
Given knowledge of h1(a), . . . , hT (a), we may infer that approximately |M |

bT
possible elements

a ∈ M could have produced that filter pattern, as there are bT total possible filter patterns
caused by one element and h1, . . . , hT are cryptographically secure hash functions. As illustrated
in Figure B.2, if information about one or more filters has been elided, a correspondingly larger
number of elements could have produced that filter pattern. We may use Bernoulli trials to
calculate the expected size of the indistinguishable set for element a, which appears in fa players’
private input sets:

E [size of indis. set] =
T∑
`=1

Pr [` filters are elided]
|M |
b`

=
T∑
`=1

(
T

`

)(
1− t

k

)fa(T−`)
(

1−
(

1− t

k

)fa
)`
|M |
b`

We graph in Figure 5.7 the expected proportion of the total domain M of the indistinguish-
able set, as fa increases. Note that if a appears in only a few players’ private input sets, a very
large proportion of the domain is indistinguishable from a. As fa approaches k

t , less and less
of the domain is indistinguishable; this character ensures that truly rare elements are highly
protected. As t is a constant, independent of n, while k will often grow with the size of the
network, we see that protection for rare elements generally increases as the network increases
in size.

80



B.2.4 Analysis for Bloom Filters

Theorem 31: Given the false positive rate δ+ and the false negative rate δ−, error bounds ε
and β, the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the
following: t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b × T ,

and at the same time, satisfy

(
mT b n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1− δ+, every element a that appears
in fa < βk players’ private input sets is not identified as a k-threshold hot item.

In the HotItem-ID protocol, with probability at least 1− δ−, every element a that appears
in fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

Proof. The proof of this theorem very closely follows the proof of Theorem 26.

B.3 Details of One-Show Tags

In this section, we describe a one-show tag scheme obtained through the modification of the
group signature scheme of Boneh and Shacham [7]. One one-show tag is lightweight, requiring
only 1539 bits. Using the same techniques, similar constructions can be obtained from other
group signature schemes.

A group signature scheme allows each member of group of players to sign messages on behalf
of the group. Given these signatures, no player or coalition of players (except the trusted group
manager) can distinguish the player that produced any signature, nor can they determine if
two signatures were produced by the same group member.

In the Boneh/Shacham group signature scheme, the group public key is pk = {g1, g2, w},
where g1 ∈ G1, g2 ∈ G2, and w = gγ2 for γ ← Z∗

p . (p can be taken to be a 170-bit prime,
and the elements of G1, G2 can be represented in 171 bits [7].) The trusted group manager
holds the group secret key γ. Each user i (1 ≤ i ≤ n) has a private key si = {Ai, xi}, where
xi ∈ Z∗

p , Ai ∈ G1. Using his private key, each player may sign a message, using a variant of the
Fiat-Shamir heuristic [20], by proving knowledge of a pair {Ai, xi} such that Axi+γ

i = g1.

We may modify this group signature scheme to include provably correct one-show values,
making each signature a one-show tag. Each user i (1 ≤ i ≤ n) may construct a one-show tag
for bucket j of filter q (1 ≤ q ≤ T , 1 ≤ j ≤ b) by: (1) signing the message q || j essentially as
in the original signature scheme; (2) computing two additional values to enable the recipient to
compute the one-show value.

Each user generates gq,j ∈ G2 by an agreed-on scheme; we discuss this element later in the
section. We utilize the same bilinear mapping e as in the computation of the main signature,
as well as the intermediate values v, α, rα computed as intermediate values utilized in the main
signature. User i computes these additional elements for a one-show tag:

T3 = e(v, gq,j)rα

T4 = e(v, gq,j)α

The sole change to the original signature scheme is that the challenge value c is computed as
c = H(pk, q || j, r, T1, T2, T3, T4, R1, R2, R3).

81



The recipient conducts all the validity checks specified in the Boneh/Shacham signature
scheme, as well as the following additional check, derived from a proof of discrete logarithm
equality [12]:

e(v, gq,j)sα = T c4T3

We define the one-show value as e(Ai, gq,j); note that this value cannot be constructed by any
player other than i and that player i can construct exactly one such value. To compute this
value, the signature recipient computes:(

e(T2, gq,j)ce(v, gq,j)−sαT3

) 1
c

The additional zero-knowledge proof required for the one-show tag construction is efficient,
and thus our one-show tag construction and verification is nearly as efficient as the original
group signature scheme. Note that these one-show tags are unlinkable, anonymous, and can be
verified by all players who hold the group public key.

The parameter gq,j , used to construct a one-show value associated with bucket j of filter q
(1 ≤ q ≤ T , 1 ≤ j ≤ b), can be efficiently constructed in a variety of ways such that no player
knows its discrete logarithm. In this section, we briefly describe one such approach.

Let PRNG be a pseudo-random number generator with range G2 [40]. Let HPRNG be a hash
function that takes bit strings as input and outputs data suitable for input into PRNG. Let
σ = HPRNG(g || q || j). Let the `th element output from this PRNG on seed σ be denoted σ`.
Each player calculates the element σ`′ , the first generator of G2 in the sequence σ1, σ2, . . . . Set
gq,j = σ`′ .

82


	1 Introduction
	1.1 Privacy-Preserving Set and Multiset Operations
	1.2 Privacy-Preserving Distributed Hot Item Identification and Publication
	1.3 Thesis Outline

	2 Related Work
	2.1 Works Related to Multiset Operations
	2.2 Works Related to Hot-Item Identification

	3 Preliminaries
	3.1 Adversary Models
	3.1.1 Honest-But-Curious Adversaries
	3.1.2 Malicious Adversaries

	3.2 Multiset Operations Preliminaries
	3.2.1 Additively Homomorphic Cryptosystem
	3.2.2 Shuffle Protocol


	4 Privacy-Preserving Set and Multiset Operations
	4.1 Techniques and Mathematical Intuition
	4.1.1 Background: Polynomial Rings and Polynomial Representation of Sets
	4.1.2 Our Techniques: Privacy-Preserving Multiset Operations
	4.1.3 Overview of Applications

	4.2 Application I: Private Set-Intersection and Cardinality Set-Intersection
	4.2.1 Set-Intersection
	4.2.2 Cardinality Set-Intersection
	4.2.3 Malicious Case

	4.3 Application II: Private Over-Threshold Set-Union and Threshold Set-Union
	4.3.1 Over-Threshold Set-Union Protocol
	4.3.2 Threshold Set-Union
	4.3.3 Malicious Case

	4.4 Set-Intersection, Cardinality Set-Intersection, and Over-Threshold Set-Union for Malicious Parties
	4.4.1 Tools
	4.4.2 Set-Intersection Protocol for Malicious Adversaries
	4.4.3 Cardinality Set-Intersection Protocol for Malicious Adversaries
	4.4.4 Over-Threshold Set-Union Protocol for Malicious Adversaries

	4.5 Other Applications of Our Multiset Computation Techniques
	4.5.1 General Computation on Multisets
	4.5.2 Private Subset Relation
	4.5.3 Computation of CNF Formulae

	4.6 Proof of Mathematical Lemmas
	4.6.1 Proof of Lemma 2
	4.6.2 Proof of Lemma 4


	5 Hot Item Identification and Publication
	5.1 Problem Definition and Desired Properties
	5.2 HotItem-ID Protocol
	5.2.1 Approximate Heavy-Hitter Detection
	5.2.2 One-Show Tags
	5.2.3 Approximate Distinct Element Counting
	5.2.4 Anonymous Communication
	5.2.5 Distributed One-Show Tag Collection
	5.2.6 Putting HotItem-ID to Work

	5.3 Hot Item Publication Protocol
	5.3.1 Commitment to Foil Attacks
	5.3.2 Putting HotItem-Pub to Work

	5.4 Analysis
	5.4.1 HotItem-ID Correctness
	5.4.2 Privacy in HotItem-ID
	5.4.3 Privacy in HotItem-Pub
	5.4.4 Performance

	5.5 Extensions
	5.6 Experimental Results
	5.6.1 Distributed Worm Signature Detection
	5.6.2 Real-world Data and Experiment Method
	5.6.3 Bandwidth Consumption and Accuracy


	6 Conclusion
	A Appendices for Privacy-Preserving Set Operations
	A.1 Notation

	B Appendices for Hot-Item Identification
	B.1 Notation
	B.2 Detailed Analysis
	B.2.1 Correctness
	B.2.2 Owner Privacy
	B.2.3 Data Privacy
	B.2.4 Analysis for Bloom Filters

	B.3 Details of One-Show Tags


