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Abstract

We introduce the concept of Anonymous Multi-Attribute Byption with Range Query and Con-
ditional Decryption (AMERQCD). In AMERQCD, a plaintext isierypted under a point in multi-
dimensional space. To a computationally bounded advetbargiphertext hides both the plaintext
and the point under which it is encrypted. In a range queryasten key owner releases the decryp-
tion key for an arbitrary hyper-rectangle in space, thusvathg decryption of ciphertexts previ-
ously encrypted under any point within the hyper-rectangl@vever, a computationally bounded
adversary cannot learn any information on ciphertextsideithie range covered by the decryption
key (except the fact that they do not lie within this rangeg §ive an efficient construction based
on the Decision Bilinear Diffie-Hellman (D-BDH) and Decisitiinear (D-Linear) assumption.






1 Introduction

Searching on encrypted data is an important technique todedoth functionality and privacy in
database applications, and has recently captured a coasidemount of attention in the com-
munity. Previously, researchers have proposed encrysiohiemes that allow keyword-based
searches [27, 8, 1], and specific types of comparison-basadis [11, 10]. In this paper, we
propose a more powerful technique that allows range quepgnorypted data.

Specifically, we consider the problem of designing an erntapscheme in which data entries
consist of a paifX, Msg), where the vectoK is a point in some multi-dimensional lattiéé,
and the messag¥lsg is an arbitrary string. Our scheme encrypts the data ergrnidsachieves the
following properties.

1. Range Query & Conditional Decryption. Upon the request on a regidd C Ua, the
master key owner releases a decryption Ky such that given a ciphertext for some
entry (X, Msg), using the keyDKg, it is possible to decide wheth& < B and it is
possible to recovevsg from C iff X € B.

2. Confidentiality. Given ciphertexC for entry (Msg, X), a computationally bounded adver-
sary cannot learivVIisg from C, provided that the adversary has not queried the decryption
key for a region containing.

3. Anonymity. Given ciphertexC for entry(Msg, X), suppose that a computationally bounded
adversary has queried for regioBs, B., . . ., B, all of which do not contaiX, the adver-
sary cannot learn anything more abdufrom C, apart from the fact thaX does not fall in
B,,B,, ..., B.

We refer to this problem as Anonymous Multi-Attribute Engtipn with Range Query and
Conditional Decryption(AMERQCD).

1.1 Applications

AMERQCD has important applications in database privacyneldata is stored on an untrusted
storage server. All database entries are stored encrylgtetkr certain circumstances, a master key
owner can issue capabilities for a storage server to deernypies that satisfy certain conditions.
However, the storage server must not be able to learn angniaitton on entries that do not meet
the conditions (except that they do not satisfy the cond#jo We give a number of concrete
examples in this flavor.

Medical privacy. The AMERQCD problem is motivated by medical-privacy apgiions. When
Alice goes around in her daily life, a PDA or smart-phone shgies automatically deposits
encrypted crumbs of her trajectory at a storage server. rAsghat each crumb is of the form

Note that a potentially stronger security definition cousduseful in certain applications, where eveiXiflies
within a queried regiom, nothing is revealed aboX except that it lies withiB.



((x,y,t),ct), where(z, y) represents the locationhrepresents time, and is Alice’s contact in-
formation. During an outbreak of an epidemic, Alice wishedé alerted if she happened to be
present at a site borne with the disease during an incubpginad, i.e., if(z, y, t) is in some alert
regionB. However, she is also concerned with privacy, and she ddesisioto leak her trajectory
if she has not been to a site borne with the disease.

Untrusted remote storage. Individual users may wish to store emails and files on a remote
server, but because the storage server is untrusted, ttentomust be encrypted before it is stored
at the remote server. Emails and files can be classified withi-dimensional attributes. Users
may wish to perform range queries and retrieve only datasi#fy the queries.

Using biometrics in anonymous IBE. The AMERQCD scheme can also be used in biometric-
based Anonymous ldentity-Based Encryption (AIBE). Usitmnetrics in identity-based encryp-
tion first appeared in [25]. In this application, a person@netric features such as finger-prints,
blood-type, year of birth, eye color, etc., are encoded asirat X in a multi-dimensional lattice.
Personal data is encrypted using the owner’s biometricifeatas the identity, and the encryption
protects both the secrecy of the personal data and the anmerhetric identity. Due to poten-
tial noise each time a person’s biometric features are sainpl user holding the private key for
biometric identityX should be allowed to decrypt data encrypted urXeriff X’ lies within a
certainHamming distancérom X. In particular, the decryption region is a hyper-cube ifshene
weight is assigned to each dimension, and a hyper-recténgjiéerent weights are assigned to
different dimensions.

1.2 Our Result and Contributions

To the best of our knowledge, we are among the earliest ty shadproblem of point encryption,
range query, and conditional decryption of matching estri€oncurrently, Boneh and Waters
also proposed ways to perform complex queries over enalygida [12]. We formally define
the AMERQCD problem in Section 3. AMERQCD differs from preusly proposed searchable
encryption schemes [27, 8, 1] in that 1) we consider rangeyquhkile previous work addresses
keyword-based search; 2) in addition to deciding whetherary is covered by the specified range
we also provide conditional decryption of matching entries

Table 1 compares the cost of our new construction and soraglstiorward extensions of
related work. We observe that naively representing thecéatising a quadtree [14] or Hilbert
curve [21, 24] and using Anonymous Identity-Based Encoyp(AIBE) [1, 13] on top results in
a decryption key size and decryption costofl'®~1) (as described in Section 4.2). Meanwhile,
a straightforward extension from a one-dimensional AMERQECheme results i®((log 7))
encryption cost and ciphertext size (as described in Sedtid).

We propose a new AMERQCD construction with D - logT") public key size, encryption
cost, ciphertext size and decryption key size; and Withlog 7')?) decryption cost (as described
in Section 5). We formally define and prove the security of AMFERQCD scheme in the face of
computationally bounded adversaries. Since we borrownigales from the AHIBE scheme [13],



Scheme Encrypt. Cost  CT Size Decrypt. Key Sizel Decrypt. Cost
QuadTree/Hilbert O(D -logT) | O(D -logT) o(TP-1) o(TP-1)
Naive ext. AMERQCD (1) O((logT)?) | O((logT)P) O((log T)P) O((log T)P)
AMERQCD (D) O(D -logT) | O(D -logT) O(D -logT) O((log T)7)

Table 1: Cost of various approache¥he number of dimensions of the lattidg is denoted
D, and the number of points along each dimension is dendte@QuadTree/Hilbert, Naive ext.
AMERQCD (1) are potential schemes as explained in Secttm”MMERQCD (D) is our new con-
struction where the number in the parenthesis stands fontimber of dimensions. The notation
O suppresses logarithmic terms.

the security of our scheme can be likewise reduced to thenkasdof the Decision Bilinear Diffie-
Hellman problem and the Decision Linear problem. We descaiplications of AMERQCD to
closely related problems in Appendix A.

2 Related Work

IBE, Anonymous IBE. The notion of IBE was introduced by Shamir [26] two decades. ag
Several IBE [17, 9, 5, 4, 16, 28, 23] and HIBE [19, 18, 6] schermave emerged since then.
In particular, the HIBE scheme proposed by Boneh Boyen an [GJocan be extended to mul-
tiple dimensions efficiently and in a collusion-resistargrmer. The resulting M-HIBE scheme
can be adapted to solve a related problem which we call Muttibute Encryption with Range
Query (MERCD) (See Section A.1). M-HIBE is also closely related to Forw8eture HIBE
(fs-HIBE) [15, 30], where the number of dimensions is twoe @f them being the identity, and
the other the time.

Recently researchers have proposed anonymous IBE (AIB&)Asmonymous Hierarchical
Identity-Based Encryption (AHIBE) schemes [13, 1]. The tobssely related work is the AHIBE [13]
scheme recently proposed by Boyen and Waters. Like the HtBErse [6] mentioned above, the
AHIBE scheme can be extended into multiple dimensions iflagion-resistant manner, resulting
in a Multi-dimension Anonymous Hierarchical Identity-BasEncryption scheme (M-AHIBE).
Our work borrows techniques from the AHIBE [13] scheme. Intipalar, we prevent collusion
attacks in the same way that an M-AHIBE scheme does. Howewectly applying M-AHIBE to
AMERQCD has the following problems: 1) Because the encoypts anonymous and hides the
attributes used as the public key, at time of decryption aezla to try all possible decryption keys
on a given ciphertext. This incur8(7”) decryption cost on a single ciphertext, whereT'| is
the range along one dimension, alds the number of dimensions. 2) The AMERQCD problem
does not require the delegation property necessary tditvadi HIBE schemes. By removing the
delegation property, we can gain savings on the cipherieatasd encryption cost. Although our
AMERQCD scheme borrows techniques from the AHIBE [13] papex differ from M-AHIBE
in that we address the above two requirements posed by theRMED problem.



Search on encrypted data. Song et al. [27] propose one of the first schemes for searanng
encrypted data (SoE). The SoE scheme leverages symmeyriedeniques and allows a party
that encrypted the data to generate keyword search capebilBoneh et al. [8] proposed Pub-
lic Key Encryption with Keyword Search (PEKS), where anytpgmossessing the public key can
encrypt and the owner of the corresponding private key caergee keyword search capabilities.
Abdalla et al. [1] formalized the notion of anonymous IBE dtsdelationship to PEKS. Both SoE
and PEKS can be trivially extended to support one-dimemsitange queries. The extension is
similar to the AMERQCD (1) scheme described in Section 4rfe louilds an interval tree in one
dimension, and encrypts the plaint&xtlog 7') times along the the path to the root. Because any
interval can be represented B\(log ') nodes in the tree, a master key owner may i€3(eg 7'
capabilities corresponding to tkiglog 7") nodes, to allow the query on any particular range. How-
ever, such extensions from SoE or PEKS support only rangg ¢ue., given a ciphertext from
(Msg, X), decide whetheKX falls within a certain region), but not the decryption of ofdhg
entries.

In recent work by Boneh, Sahai and Waters [10], and by Bondh/éetters [11], they propose
how to do a specific type comparison query on encrypted dateen@ ciphertextC over point
X = (21,9, ...,xp) inSpace, a master key owner can issue tokens that allow esidedwhether
rg < ' foralll <d < D with O(\/T) ciphertext size and token size.

Concurrent to our work, Boneh and Waters [12] propose hovetéopm complex queries over
encrypted data. In particular, they define a more generakndger security game for complex
gueries over encrypted data, and propose a primitive calidden Vector System (HVE) that
enables several types of queries. Since we have a sligliterethit security goal, and optimize
specifically for range queries, our scheme is more efficientdnge queries. In addition, our
construction builds on a different complexity assumptiamf theirs.

Spatial data structure and space-filling curves. Spatial data structures such as quadtrees [14]
and KD-trees [2] have been intensively studied by the da@bammunity for efficient search and
indexing based on spatial locations. A typical spatial datacture encodes a multi-dimensional
lattice in a single tree, where each leaf node representmagd non-leaf nodes represent axis-
parallel hyper-rectangles in the lattice. Alternativétyencode a multi-dimensional lattice with
a single tree, one can leverage space-filling curves (&g Htlbert space-filling curve), first in-
troduced by Peano [21, 24]. Space-filling curves embed aiqgintensional space into a curve
of lengthO(T?) in a single dimension. The resulting curve can then be ertading a simple
interval tree.

One potential approach to tackling the AMERQCD problem eply an AIBE scheme on top
of spatial data structures or space-filling curves as daesdiin Section 4.2. However, we observe
that using a quadtree or Hilbert curve for our purpose canltrgs O (7”~!) decryption key size
and decryption cost for an arbitrary hyper-rectangle, duteé fact that representing an arbitrary
hyper-rectangle can take(7”~!) nodes in the resulting tree [3, 22].



3 Definitions

We use the notatioff’] to denote integers fromto 7', i.e.,[T] = {1,2,...,T}. LetS < T be
integers, we usgs, T'] to denote integers frorfi to 7" inclusive, i.e.[S, T ={S,S + 1,...,T}.

Definition 1 (D-dimensional lattice, point, hyper-rectangléet A = {13, Ts,...,Tp}. Un =

[T1] x [T3] x ... x [Tp] defines aD-dimensional lattice. A D-tupleX = (z1,xs,...,2p) de-

fines apoint in Ua, wherez, € [T,](Vd € [D]). A hyper-rectangle B in U, is defined as
B(sy,t1, 89, t9, ..., 8p,tp) = {(xl,@,...,xD)Wd € [D],xqg € [sq,ta]} (Vd € [D],1 < 54 <

tg < Ty).

Throughout this paper, we assume thatZ/glé are powers of 2, and dendig, as simplylog.

Definition 2 (AMERQCD (D)). An Anonymous Multi-Attribute Encryption with Range Query
and Conditional Decryption imD-dimensions (AMERQCD (D)) scheme consists of the following
polynomial-time randomized algorithms.

1. Setup(X,Ua): Takes a security paramet&rand D-dimensional latticé/, and outputs
public keyPK and master private keylK.

2. Encrypt(PK, X, Msg): Takes a public kePK, a pointX, and a messagelsg from the
message spack! and outputs a ciphertext.

3. DeriveKey(PK, MK, B): Takes a public ke K, a master private keyIK, and a hyper-
rectangleB and outputs decryption key for hyper-rectanBle

4. QueryDecrypt(PK, DK, C): Takes a public keyPK, a decryption keyDK, and a ci-
phertextC and outputs either a plaintekisg or L, signaling decryption failure.

For each messag®lsg < M, hyper-rectangldB C Ua, and pointX € Ua, the above
algorithms must satisfy the following consistency coriatsa

Msg if X € B
i w.h.p., ifX ¢ B

whereC = Encrypt(PK, X, Msg) andDK = DeriveKey(PK, MK, B).

QueryDecrypt(PK, DK, C) = { (2)

3.1 Security Definitions

For security, we would like the property that for a ciphett€k = Encrypt(PK, X, Msg), a
computationally bounded adversary cannot Ie&randMsg from C, given that it has not queried
the decryption key for any hyper-rectangle containkg

Since our scheme builds on top of AIBE, we adopt the termigyplivom IBE schemes, and
define the security for AMERQCD in the sense of selective-éhantic security and anonymity.
In Section 7.1, we explain the relationship between seledd and standard notions of security
(i.e., adaptive-ID security), and show how our scheme candude secure in the adaptive-1D sense.
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Definition 3 (AMERQCD selective-ID confidentiality gameJThe AMERQCD selective-1D confi-
dentiality game is defined as below.

Init : The adversaryd outputs a poinX* where it wishes to be challenged.

Setup The challenger runs th8etup(3X, /) algorithm to generatP K, MK. It gives
PK to the adversary, but does not divulyek.

Phase 1 The adversary is allowed to issue decryption key queriebyper-rectangles that
do not containX*.

Challenge The adversary submits two equal length messades,, andMsg,. The chal-
lenger flips a random coim, and encryptdMsg, underX*. The ciphertext is passed to the
adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary outputs a guéssf b.

Definition 4 (AMERQCD selective-ID anonymity gameyhe AMERQCD selective-ID anonymity
game is defined as below.

Init : The adversaryd outputs two pointX, andX;, where it wishes to be challenged.

Setup The challenger runs th®etup(3,Ua) algorithm to generat®K, MK. It gives
PK to the adversary, but does not divulyek.

Phase 1 The adversary is allowed to issue decryption key queriebyper-rectangles that
do not containX, andX;.

Challenge The adversary submits a messadsg. The challenger first flips a random coin
b, and then encryptdsg underX,. The ciphertext is passed to the adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary outputs a guéssf b.

In either game, we define the adversaty advantage as

Advy(X) = |Prb=1b]— =

2

|

Definition 5 (IND-sID-CPA). An AMERQCD scheme is IND-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in éinéadentiality game.

Definition 6 (ANON-sID-CPA) An AMERQCD scheme is ANON-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in tloagmity game.

Definition 7 (AMERQCD security) An AMERQCD scheme is selective-ID secure if it is both
IND-sID-CPA secure and ANON-sID-CPA secure.
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4 The AMERQCD (1) Scheme and Extensions

In this section, we propose an efficient AMERQCD (1) schensetdan Anonymous IBE (AIBE).
Then we show that straightforward extensions of the AMERQQCPscheme are expensive in
multiple dimensions. In Section 5, we will propose our candion of an efficient AMERQCD
(D) scheme.

4.1 AMERQCD (1)

Intuition.  Figure 1 illustrates the intuition behind the AMERQCD (1)nstruction. We build

an interval tree over integers fromto 7°. In the interval tree, each leaf node represents a unique
integer in[1, 7], and an internal node represents a range covered by all delgfsnin the subtree
rooted at that node. To encrypt a messMij@z and a valuer, we produce a portion of ciphertext
for each node on the path from the root of the tree to the ledénmepresenting. Hence, the
ciphertext isO(log T') in length. To issue decryption keys for a rangef] C [1,7], let A(s,t)
denote a set of nodes coverifigt|, we issue a portion of decryption key for each nodd (m, ¢).
Since any rangés, t] C [1,7] can be represented by a collection@flog7’) nodes in the tree,
the decryption key has length(log 7). We now give formal definitions and then describe how to
derive an AMERQCD (1) scheme from AIBE.

Definition 8 (Interval tree) Let I'(T") denote a binary interval tree, where the leaf nodes corre-
spond to integers from to 7, and an internal node represent the range covered by all ¢aé |
nodes in the subtree. Naturally(7") has heightog T". Let L. = log T' + 1.

For convenience, we assume that each nodg(if) has a pre-assigned unigué. Let
ID (I'(T)) represent the set of all nodeDs inI'(T"). ForID € ID(I'(T)), if the leaf node
in I'(T) representing: € [T'] is in the subtree rooted at nod®, then we say that nodeD covers
x. Letev(ID) denote the set of integers covered by ndde

Definition 9 (Range as a collection of nodespr 1 < s <t < T, letA(s,t) CZD (I'(T)) denote
the smallest set of nodeslii7’) such that
U ov(ID)=s.1.
IDeA(s,t)

It is trivially true thatA(s, ¢) is uniquely defined and for any ranget] C [1,7] (1 < s <t <
T); moreover|A(s,t)| = O(logT)).

Definition 10 (Path to root) Let P(x) = (Z1(z), Zs(z), . .., Z.(z)) denote the path from the root
of I'(T) to the leaf node representinge [T]. Z;(z) (1 < [ < L) represents the node dp(z) at
depthi of the tree. By convention, we assume that the root is at depth

Proposition 1. Given an IND-sID-CPA and ANON-sID-CPA secure Anonymoug/MBE) scheme
[Setup*(X), DeriveKey* (PK, MK, ID), Encrypt*(PK, ID, Msg), Decrypt*(PK, DK, C)],
one can implement an IND-sID-CPA and ANON-sID-CPA AMERQOB¢heme, witld (log T')
encryption cost, ciphertext size, decryption key size autygtion cost.

7



[3,7]
(a) Path toroot. (b) Ciphertext and decryption keys in AMERQCD (1).

Figure 1: An AMERQCD (1) scheme.(a) Path from the leaf node representinge 7] to the
root. P(z) = (Z1(x), Zo(x), Z3(x), Z4(x)). (b) Encryption to the point = 3 and the keys released
for the range(3, 7].

The construction of AMERQCD (1) from an AIBE scheme is straigrward as shown in
Figure 1. To encrypt a messafydsg under a pointr, one encryptdMsg under all nodes along
the pathP(x) from z to the root. To release decryption keys for a rafige|, one releases the
decryption keys for all node IDs iA(s, t).

To be able to check whether a decryption is valid, prior torgption, we append a message
Msg € {0, 1} with a series of trailing 0g)™ .

e Setup(X, T) callsSetup*(X) and outputP K andMK.

e Encrypt(PK, x, Msg) yields(ci, cs, . . ., c), wheree; = Encrypt*(PK, Z;(x), Msg||0™)
1<i<l).

e DeriveKey(PK, MK, [s,t]) yields asef{(I;p, kip) |ID € A(s,t)}, where
kip = DeriveKey*(PK, MK, I D)
andl;p is the depth of nodéD in I'(7"). DK has size)(log T').
e QueryDecrypt(PK,DK, C), whereC = (¢y, co, ..., cr), is defined as below:
1. ForeacHl, k;p) € DK, compute
V «— Decrypt*(PK, k;p, ).

If V is of the formA SG||0™, then outpuf/SG as the decrypted message and exit.
2. Ifforall (I, k;p) € DK, the previous step fails to produce a plaintext, then output

4.2 Extension to Multi-Dimension

We explore several potential approaches to extend the AMER() scheme to multiple dimen-
sions.



Spatial data structures and space-filling curves. The first approach is to encode a multi-
dimensional lattice using a single tree, where leaf nodesespond to points in the lattice and
internal nodes represent sets of points. There are two f@terays to achieve this: 1) use spatial
data structures like a quad-tree or KD-tree; 2) use a sphiog-fiurve to embed thé-dimension
lattice into a single dimension, and then encode the siriglemksion using a binary interval tree.
Once we encode &-dimensional lattice in a single tree, we can apply the sabrtique
we used for AMERQCD (1), and construct a AMERQCD (D) schenoenflan AIBE scheme.
The resulting AMERQCD (D) scheme hé¥ D logT') encryption cost and ciphertext size. The
decryption key size and decryption cost depends on how maahgsnin the tree it takes to represent
an arbitrary hyper-rectangle .. It has been previously shown that representing an arpitrar
hyper-rectangle in space can taR€I'’~!) nodes in a quad-tree (fd» > 2) in the worst case [3].
For space-filling curves such as the Hilbert curve, reprsgran arbitrary hyper-rectangle in
space can tak€(7°1) intervals on the curve [22]. Hence, applying AIBE on top ofimd-tree
or a Hilbert curve results i@(TD‘l) decryption key size and decryption cost.

Naive extension of AMERQCD (1). One seemingly plausible way to extend the AMERQCD (1)
scheme intd) dimensions is to build interval trees, each representing one of thdimensions.
We randomly split the plaintext int® shares, and encrypt each share in one dimension using the
above-mentioned technique. To decrypt a hyper-rectamglee lattice, one projects the hyper-
rectangle onto each separate dimension, and releasesdiyptiten keys under each dimension.
This results in ciphertext size 6(D log T') and decryption key siz€ (D log T'). Unfortunately,
the security of such a scheme is flawed. As shown in Figure 2nwgiven the decryption keys for
region R, and R4, one can decrypR, and R3 as well. This attack is in spirit the collusion attack
when taken in the context of Multi-dimensional Hierarchickentity-Based Encryption(M-HIBE)
schemes. A straightforward approach to securing agaiestalusion attack is to encrypt the
ciphertext under the cross-product Bfpaths to the root, thus incurring((log 7')?) ciphertext
size.

We now formally describe the resulting AMERQCD (D) schemee &gsume that each tree
node has a globally uniqueD, and define functio® (/D) := (d, ) to return the dimension and
depth of nodel/ D. In particular,®,(/D) = d outputs the dimension afD, and®,(ID) = [
outputs the depth of D. For convenience, in the remainder of the paper, we assuatelh
dimensions have the same size,il@.= 1T, =...=1Tp =T. LetL =logT + 1.

Definition 11 (Hyper-rectangle as a collection of simple hyper-rectespglFor 1 < s; < t;, < T
(1 < d < D), suppose we have a hyper-rectan®és;, t1,...,sp,tp) = {(z1, 22, . .. ,xD)\sd <
Ty <ty,1< d< D} C Ua. DenOtEAd(B) = A(Sd, td).

Then,B gives a collectiom\ * (B) of simple hyper-rectangles:

AX(B) = Ay(B) x As(B) x ... x Ap(B)

We call a hyper-rectangl®, C U, a simple hyper-rectangl@ and only if V1 < d <
D, |Ay(Bo)| = 1. In other words, a simple hyper-rectanddg can be represented by/atuple,

A*(Bo) = {(IDy,ID,,...,IDp)}

9



Ry R,

Figure 2: The collusion attackWith decryption keys for region®; and R,, R, and R; are
compromised.

wherel D, represents théD of a tree node in thd" dimension. In particular, any poiX in
the lattice is a simple hyper-rectangle. et = logT,; + 1, then a poinX can be represented
by a D-tuple A*(X) = {(ID;,ID,,...,I1Dp)}. Because\*(By) is a set containing only one
element, for convenience, we overload(B,) to denote a-tuple(I/D;, I D,, ..., 1Dp) without
risk of ambiguity.

It is easy to see that for any hyper-rectanBl& Ua, |[A*(B)| = O((log T)P).

Definition 12 (Path to root in thel’® dimension) Let AX(By) = {(ID,ID,,...,I1Dp)} repre-
sent a simple hyper-rectangl®,, and letl; be the depth of nod&D, in the d"* tree. Then, for
1<d<D,

Pa(Bo) = (Z(a,1)(Bo), Z(a2)(Bo), - - -, Z(a,) (Bo))
represents the path from nodeD, to the root in the tred(T;) of the d"* dimension, where
Twn(Bo) (1 <d < D,1<1<1y) represents the node at degtbnP,(B,).

Proposition 2. Given an IND-sID-CPA and ANON-sID-CPA secure Anonymoug/MBE) scheme
[Setup*(X), DeriveKey* (PK, MK, I D), Encrypt*(PK, I D, Msg), Decrypt*(PK, DK, C)],

one can implement an IND-sID-CPA and ANON-sID-CPA AMERQE)Z¢heme, witld) ((log T')7)
encryption cost, ciphertext size, decryption key size audygtion cost.

The construction of AMERQCD (D) from AIBE is straightforwearTo encrypt messagelsg
under pointX, one encryptdVisg under the cross-product dd paths to the root. To release
the decryption key for a hyper-rectandBe one releases a decryption key for each simple hyper-
rectangle in\*(B).

e Setup(X, T) callsSetup*(X) and outputP K andMK.

e Encrypt(PK, X, Msg) yields ciphertexC of lengthL?, C = [cy|v = (I1, s, ..., lp) € [L]"].
Letid ((ll, l2, ceey ZD) ,X) = (I(Lll)(X),I(gh)(X), c 7I(D,ZD)(X))’ which is used as the
identity for encryption in the underlying AIBE schemg.is then computed as below:

¢y = Encrypt”(PK,id(v, X), Msg| \Om/)

10



¢ DeriveKey(PK, MK, B) yields the following set of sizé&”:

®,(ID k ] :
[®2( d)]dem Bo AX(Bo)={(ID1,IDs,....ID4)}CAX (B)

whered, (I D) returns the depth of node), andkg, = DeriveKey” (PK, MK, A*(By)).

e QueryDecrypt(PK, DK, C), whereC = [cy|v = (I3,1s,...,lp) € [L]”], is define as
below:

1. Foreachv, kg,) € DK, wherev = (Iy,[s,...,lp), compute

V «— Decrypt*(PK, kg,, ¢v).

If V' is of the formM/\SG\ |0™, then outpum as the decrypted message and exit.
2. Ifforall (v, kg,) € DK, the previous step fails to produce a plaintext, then output

5 The AMERQCD (D) Scheme

In Section 4, we show that straightforward extensions of MMERQCD (1) scheme into multiple
dimensions are expensive in at least one of the followingheitext size, encryption cost, decryp-
tion key size and decryption cost. In this section, we detailcryptographic construction of an
efficient AMERQCD (D) scheme.

5.1 Preliminary: Bilinear Groups

A pairing is an efficiently computable, non-degenerate fionce : G x G — ¢, satisfying
the bilinear property that(¢",9°) = e(g,9)™. G, G andG’ are all groups of prime orderg,

g ande(g, g) are generators df, G and¢g’ respectively. Although our AMERQCD scheme can
be constructed using asymmetric pairing, for simplicitg, describe our scheme using symmetric
pairing in the remainder of the paper, i.€.= G.

We name a tupléx = [p,G, G, g, e] a bilinear instance, whei@ andg’ are two cyclic groups
of prime orderp. We assume an efficient generation algorithm that on inpetargy parameter
%, outputsG & GenX) wherelog, p = O(%).

We rely on the following complexity assumptions:

Decision BDH Assumption The Decision Bilinear DH assumption, first used by Joux [2&er
used by IBE systems [9], posits the hardness of the folloywhodplem:

Given|g, g™, g*2, 9%, Z] € G* x G', where exponents,, z,, z3 are picked at random frotf,,,
decide whethef = e(g, g)**2*.

Decision Linear Assumption The Decision Linear assumption, first proposed by BonelyeBo
and Shacham for group signatures [7], posits the hardnabe @bllowing problem:

Given|g, g*, g*2, g%, g***, Z] € G°, wherezy, 29, 23, 24 are picked at random frorg,, de-
cide whetherZ = g#+*,

11



5.2 The AMERQCD (D) Scheme

A D-dimensional latticé/, can be represented with a set/ofirees. Assume each tree node has a
globally uniquel D. For convenience, we assume that/dn of a tree node has two components,
ID = [IDjl;c;9- By convention, the first componehD, € Z*, and is globally unique for each
tree node; and the second componght is always fixed to 1. Hence, from now on, the reader
should keep in mind that the notatidi andZ have two components. In particular, when the
subscripy is used in combination withD or I, it is always used to index into the two components.
This avoids ambiguity when multiple subscripts exist. Wpepl a messagdelsg € {0, 1}™ with

a series of trailing zero$!™', prior to encryption. Assume th&o, 1}+™ C G'.

Intuition.  To encrypt messag®lIsg under pointX, for each dimensiod € [D], we encrypt
Msg along the pathP,(X) to the root. This results i0)(D logT') ciphertext size. To compute
decryption keys for a hyper-rectand®eC U, we represenB usingA“(B), a collection of nodes
corresponding to disjoint intervals over different dimens (See Definition 13). We compute
a decryption keyDK (7 D) for each node with D € A“(B), resulting in a decryption key size
of O(DlogT). To prevent the collusion attack, we rerandomize decrypitieys for each query,
such that the decryption keys for different dimensions @ to each other, and cannot be used
in combination with decryption keys issued in another quéttthe time of decryption, we can
use [DK([D)]IDeAU(B) to generate a separate decryption key for each simple hgptangle
A*(Bg) € A*(B). We then try these decryption keys on the ciphertext to samyifone of them
yields a valid decryption. To ensure the security of the sedeve need to introduce extra degrees
of freedom as represented by the subscripts {1,2} andj € {1,2} in the following scheme
description. On one hand, our construction borrows teclesdrom the AHIBE construction [13]
by Boyen and Waters; on the other hand, the technique we ysevent the collusion attack can
also be used to extend their AHIBE construction into mudtigimensions, resulting in a Multi-
Dimension AHIBE (M-AHIBE) or a Forward Secure AHIBE (fs-ABE) scheme.

Definition 13 (Hyper-rectangle as a collection of node#) hyper-rectangleB C U, gives a
collection of nodes corresponding to disjoint intervaleodifferent dimensions:

A"(B) = A (B)UAy(B)U...UAp(B)
Note that for all hyper-rectangB C Ux, |[AY(B)| = O(DL).

Setup(X,Ua) To generate public parameters and the master private kegettup algorithm

first generates a bilinear instanGe= [p,G,G’, g, €| & GenY). Then, the setup algorithm does
the following.

1. Select at random the following parameters.

w?
[ Bonl e anye(p)x 1) mel €r Z; x Z31P x Z,1P0F

O8] =@y e1D) [11.6=(n.j)e 2 x 2
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At this point, we give a brief explanation of our notation.€elVariabley is used to index a
tuple(d,l) € [D] x[L], whered denotes the dimension ahdenote the depth of a node in the
corresponding tree. Some variables have four versionsxeaiby(n, j) € [2] x [2]. Atfirst
sight, they seem to be redundant, but are in fact needed e fine security of the scheme.
In particular, we need to prove confidentiality, and botthhand; to prove anonymity.

2. PublishG and the following public parameters:

Qhe(gvg)ug ! SDL
o Bombo. €eg xg
[ag5 — grerfes,  byg— g% M}w=(d,l)€[D}X[L]ﬁ:(n,j)eﬂ]x[2]

PK «—

3. Retain a master private key comprising the following edats:

a}<_gw’

MK «+— [a%n — g%, byn — gﬁw’n} € giPLtl

b p=(d,l)€[D]x[L],n€[2]
(Y5 = goerPertes] i nepixiiomimperxi

DeriveKey(PK, MK, B) The following steps compute the decryption key for hypetargle
B, given public keyPK and master private kaylK.

1. PickO(D - L) random integers,

~ 1D
[ [:ud]de[D]’ [ﬂg )]

such thaf [, 1ia = @.

Observe that we release a portion of the decryption key fcin eade inA" (), as opposed

to for each hyper-rectangle ih*(B). In this way, the size of the private key (3(DL),
instead ofO(LP).

2|AY(B)|+D
IDeAY(B),ne2] } SR Zp

2. Compute and release the following decryption key:

DK « [ ®(ID),DK(ID) |, .\, € (D] x [L] go)n @

where ®(/ D) extracts the dimension and depth of nade, and DK (/D) is defined as
below:

. p(ID)
Ha - 11 (yp ')
DK(ID) «— 5=(n.j)€l2] x[2]
(ID) _ (D)
a@vn_pn ? bﬂovn o

)

:|n€[2]
wherep = (d,l) = ®(ID).
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Encrypt(PK, X, Msg) The following algorithm encrypts a messayksg under pointX.
1. SelecDL + 1 random integers € Z,, [7yn] . aeippx(nimei € 2o -
2. Compute and output the following ciphertext:
(Msgl[0™)-Q7", g,

c g/ % g4DL+1

[T (bps™) ", TI (apstes) "
i€, Jjef2l,
6=(n,j) 8=(n,j) o=(d,l)e[D]x[L],ne[2]

whereZ, = Z,(X).

For each dimensiod and deptH, we create a portion of the ciphertext corresponding to the
node in thel™" tree at depth, on the pathP,(X) to the root.

QueryDecrypt(PK, DK, C) Given ciphertextC = (c, Co, [cg,)n,cg}%} )
p=(d,l)e[D]x[L],n€[2]

and decryption keyDK for hyper-rectangld, the following algorithm iterates through the sim-
ple hyper-rectangles in*(B) and attempts to decrypt the ciphertext under each simplerhyp
rectangle.

1. For each simple hyper-rectang\& (By) = {(/D1,ID,,...,IDp)} C A*(B),

(1) LetDK(ID,) = (kg%)d, [k%d71,kggd71], [k%d72,kggd72]) represent the element DK
for ID,, whered € [D].
(2) Compute the following:

ko — I kg%)d§

de[D]
I I 11 II
Vicoelcok) TT (elchnkfh,,) el ki, )
de[D],ne[2],
0a=®(IDa)

If V' is of the forml\//Is\g| 0™, then outpuﬂ\//Is\g as the decrypted plaintext and exit.

2. If for all simple hyper-rectangles ih* (B), the previous step fails to produce the plaintext,
then outputl.

When done naively, the abo@ueryDecrpty algorithm takesD(D(log T')?) time. How-
ever, if one saves intermediate results, it can be dot¥ jtog 7)) time with O(D log T') storage.
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6 Consistency, Security

In this section, we formally state the consistency and sicof the above AMERQCD (D) con-
struction. We give a high level intuition about the secupitgof, and provide the detailed proof in
Appendix C.

Theorem 6.1 (Internal consistency)The above defined AMERQCD scheme satisfies the consis-
tency requirement posed by Equation (1).

We say that an AMERQCD scheme(is ¢, €) secure if any adversary makiggange queries
for decryption keys, cannot have more theaadvantage within time.

Theorem 6.2(Confidentiality) Supposés satisfies thér, ¢) D-BDH assumption, then the above
defined AMERQCD scheme(is, ¢, ¢) IND-sID-CPA secure, where < 7 — ©(¢DlogT).

Theorem 6.3(Anonymity). Supposeéa satisfies ther, ) D-Linear assumption, then the above
defined AMERQCD scheme(is, ¢, ¢') ANON-sID-CPA secure, wheré < 7 — ©(¢D log T'), and
€ =(2DlogT+ 1)(e +1/p).

In particular,© (gD logT") comes from the fact that the simulator ne€disD log T') time to
compute the decryption key for each hyper-rectangle qderide2D log T + 1 loss factor ine/
comes from the hybrid argument we use to prove anonymity,aatuitive 1/p comes from the
probability that bad events happen in the simulation sotti@simulator has to abort.

Our proof techniques are similar to that presented in theBEH{daper [13]. However, since we
do not require the delegation property of HIBE/AHIBE schepwee do not need as many degrees
of freedom as required by the AHIBE scheme. In the proof, amukator inherits parameters
specified by the D-BDH/D-Linear instance, hence, it hasnimglete information about the master
private key. In order to simulate the key query process,ithalator leverages a dimensidralong
which X* does not overlap with the queried hyper-rectangle. Thelsitouuses randomness in the
d"" dimension to cancel out the unknown parameters inherited the D-BDH/D-Linear instance.
In comparison, the anonymity proof is more complicated ttienconfidentiality proof, because
it involves a hybrid argument containirld) L steps. In stegd,, [;,n;) of the hybrid argument,
Yor,(n1,j) (01 = (d1, 1), j € [2]) in the master key contains unknown parameters inherited the
D-Linear instance. Therefore, we need to condition on theive position betweeiX* and the
(dy,1;) in question. We provide detailed proof of Theorems 6.1, G2&3 in Appendix C.1, C.2
and C.3 respectively.

7 Extensions

7.1 Adaptive-ID Security

Our scheme is provably secure in the selective-ID modelréngier notion of security is adaptive-
ID security (also known afull security), i.e., the adversary does not have to commit abktithe
which point in the lattice to attack. Specifically, in botketbonfidentiality and anonymity games,
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the adversaryl does not commit to any particular poiKt' in thelnit phasePhase 1is the same
as before except that there is no restriction on the hypeangles the adversary can query. In
the Challengestage, the adversary picks a pokit, which is not contained in any of the hyper-
rectangles queried iRhase 1 In Phase 2 the adversary can query hyper-rectangles that do not
containX*. After this point, the game proceeds in the same way as héfdeeresent the formal
definition for AMERQCD adaptive-ID security in Appendix B.

Previous research has shown that IBE schemes secure ingbv@ID sense can be converted
to schemes fully secure [4, 16, 28, 23] with some loss in sgcun particular, Boneh and Boyen
prove the following theorem:

Theorem 7.1([4]). A (t, q, €)-selective identity secure IBE systeiND-sID-CPA) that admitsV
distinct identities is also &, ¢, Ne)-fully secure IBE (ND-ID-CPA).

This technique can be applied to our case to achieve fulldenfiality and anonymity. In our
case, the scheme admits= T'” identities and hence that would be the loss factor in sgcurit

7.2 Applications to Closely Related Problems

Our AMERQCD scheme can be applied to two closely relatedlpm® which we call Multiple-
Attribute Encryption with Ranged Conditional DecryptiddEERCD) and Anonymous Multi-Attribute
Encryption with Range Query (AMERQ) respectively. In ApdenA, we define these two
problems, describe scenarios where each might be usefdlegplain their relationship with
AMERQCD.

8 Conclusion

We define the concept of Anonymous Multi-Attribute Encrgptiwith Range Query and Condi-
tional Decryption (AMERQCD), and give a cryptographic cwastion. When compared with

other potential approaches, our scheme is efficient in tefreacryption cost, ciphertext size, de-
cryption key size, and decryption cost. We reduce the siycofiour AMERQCD scheme to the

intractability of the D-BDH and D-Linear problem in bilinegroups.
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A Applications to Closely Related Problems

In this section, we describe two closely related problemER@D and AMERQ. We describe
specific scenarios where each may be useful. It is easy to #etwWAMERQCD implies both
MERCD and AMERQ.

A.1 Multiple-Attribute Encryption with Ranged Conditiona | Decryption

In a partially encrypted databaseeach data entry consists of bqgihblic attributesand private
attributes The public attributes are stored in clear-text, and theapei attributes are stored in
encrypted format. Multiple-Attribute Encryption with Rged Conditional Decryption (MERCD)
allows a master key owner to issue decryption keys for a hygxetangle such that it is possible
to decrypt the private attributes of an entffy the public attributes of that entry fall within the
hyper-rectangle.

Partially encrypted database are useful in various saamalm trace-driven network intrusion
detection, network traces are often partially encryptedrieethey are released. For instance, due
to privacy concerns, source/destination addresses arldguobgre encrypted, but port numbers,
packet length and other fields in the packet header are im-idga One can apply statistical
methods to find anomalies in the network traces. When an dgosfaund, one wishes to obtain
capabilities from an authority to decrypt the source/aedibn addresses and payload of suspicious
packets whose port numbers or payload length fall withinréagerange. Waters et al. study a
related problem of searching encrypted audit logs [29].

We can formally define MERCD problem in a way similar to the ARIBCD problem. The
differences between MERCD and AMERQCD are: 1) In MERCD, hyklag at the public at-
tributes of a database entry, one learns under which posgace a message is encrypted. Hence,
at decryption, one does not have to iterate through all pieiepoints and try with the corre-
sponding decryption key; 2) The security definition for MER@Bas only the confidentiality game.
Anonymity is not required, since the point under which a ragssis encrypted is stated by the
public attributes of a database entry.

It is easy to see that AMERQCD implies MERCD. Meanwhile, MEHREan be solved using
an M-HIBE scheme. In particular, the HIBE scheme proposeBdiyeh Boyen and Goh [6] can
be extended to multiple dimensions in a collusion-reststaamner. Using the resulting M-HIBE
scheme for MERCD results i@ (D) ciphertext sizeQ (D log T') encryption costQ(D logT") de-
cryption key size, and (D log T') decryption cost. Since MERCD does not require the delegatio
property needed by M-HIBE, it is possible to derive a moregffit MERCD scheme by removing
key delegation from the M-HIBE scheme.

A.2 Anonymous Multi-Attribute Encryption with Range Query

AMERQCD allows the untrusted database to perform rangeyqueencrypted data entries, and
decrypt only ciphertexts matching the range query. By @sttrin some scenarios, a data owner
may want to retrieve from the database encrypted entriesfysag certain range queries, without
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having the database decrypt these matching entries. thdiea data owner performs the final
decryption after retrieving the entries. We call this ppgshlAMERQ.

The AMERQ problem can be formally defined in a similar way as AMERQCD problem.
The differences between AMERQ and AMERQCD are: 1) In AMER&tup returns a public key
PK, a master private kelWIK for generating query capabilities, and a decryption pevayDK
for decryption; 2) Instead of generating a decryption k2yriveKey generates a query k&K
3) TheQueryDecrypt(PK, DK, C) algorithm is replaced by a separ&@mery(PK, QK, C)
algorithm and Decrypt(PK, DK, C) algorithm. For any messaddsg € M, hyper-rectangle
B C Up, pointX € Up, let C = Encrypt(PK, X, Msg), QK = DeriveKey(PK, MK, B),
then

e Query(PK, QK, C) returnsl if X € B; otherwise, it returng with high probability.
e Decrypt(PK, DK, C) returns the plaintexIsg.

Corollary 1. Let AMERQCD= (Setup®, Encrypt”, DeriveKey”, QueryDecrypt”) be an
IND-sID-CPA and ANON-sID-CPA secure AMERQCD schemedtet= (I, £, D) be an IND-

CPA secure public key encryption scheme independent ofMERQCD schemel, £, D repre-

sent the key generation, encryption and decryption algorg respectively. Given AMERQCD and

AE, an IND-sID-CPA and ANON-sID-CPA secure AMERQ schéeéup, Encrypt, DeriveKey, Query, De
can be constructed as below:

e Setup runs(pko, dky) «— K and(pk;, mk) «— Setup”; and outputPK — (pkg, pk1),
DK « dky andMK « mk.

e Encrypt((pko, pk1), X, Msg) := [€(pko, Msg), Encrypt*(pks, X, 0™)];
e DeriveKey((pko, pki), MK, B) := DeriveKey" (pk;, MK, B);

e Query((pko, pk1), QK, (co, c1)) callsQueryDecrypt*(pk;, QK, ¢;), and outputg if QueryDecrypt*
decrypts ta)", 0 otherwise.

e Decrypt((pko,pk:1), DK, (co, 1)) := D(pko, DK, co).

In particular, in the above constructioBncrypt*(pk;, X, 0™) provides a searchable label
which enables range query. The security of the AMERQ schetiesron the IND-CPA security
of AE and the ANON-sID-CPA security of the underlying AMERQCD eoie. The searchable
label idea is similar to that adopted by Song et al. [27] anddBoet al. [8] in their encryption
schemes with keyword-based search. We can take the ideaeméusgther, and label arbitrary
content with a searchable label. The label encrypts maliiteger attributes and can be used to
perform range query on the encrypted attributes.
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B

Definition of Adaptive-ID Security

Definition 14 (AMERQCD adaptive-ID confidentiality gameThe AMERQCD adaptive-ID con-
fidentiality game is defined as below.

Setup The challenger runs th8etup(3, /s ) algorithm to generatP K, MK. It gives
PK to the adversary, but does not divulyEK.

Phase 1 The adversary is allowed to issue decryption key queriesiyper-rectangles in
the D-dimensional lattice.

Challenge The adversary submits two equal length messades, andMsg,, and a point
X*. X* must not be contained in any hyper-rectangle queriddhase 1 The challenger
flips a random coin), and encrypt®sg, underX*. The ciphertext is passed to the adver-
sary.

Phase 2 Phase 1 is repeated, in addition, any hyper-rectangleegugrPhase 2must not
containX* as specified in th€hallengephase.

Guess The adversary outputs a guéssf b.

Definition 15 (AMERQCD adaptive-ID anonymity game)he AMERQCD adaptive-ID anonymity
game is defined as below.

C
Cl1

Setup The challenger runs th®etup(3,Ua) algorithm to generat®K, MK. It gives
PK to the adversary, but does not divulyek.

Phase 1 The adversary is allowed to issue decryption key queriesiyper-rectangles in
the D-dimensional lattice.

Challenge The adversary submits two poink, and X, and a messagklsg. X, and
X4 must not be contained in any hyper-rectangle queridehiase 1 The challenger flips a
random coinp, and encrypt®sg underX,. The ciphertext is passed to the adversary.

Phase 2 Phase 1 is repeated, in addition, any hyper-rectangleeguagrPhase 2must not
containX, andX; specified in theChallengephase.

Guess The adversary outputs a guéssf b.

Proof of Consistency and Security

Proof: Consistency

Proof of Theorem 6.1:
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Let C = | ¢, ¢, [cg?n,cgf%} ) be the encryption oMsg on pointX. Let
p=(d1)€[D]x [L],ne[2]

A*(By) = {(IDy,ID»,...,IDp)} € A*(B) be the current simple hyper-rectangle under de-
cryption. Letp, = ®(IDy) (d € [D]).

If X € By, then for alld € [D], Z,,(X) = Z,,(Bo) = IDy. For simplicity, let\(z) =
e(g,9)*. Now decryption folB, proceeds as follows:

O
ko = H ng)d
de[D]

p(IDd)
- H fid H (Ypus"29)™
6=(n.j)e[2]x[2]

(IDg)

=0 I ™)

de[D],
5=(n.j)€2]x[2]
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, (IDg)
V=Msgl|0™)- Qe lgd  J[  (geus)”

de[D],
5=(n.j)€2]x[2]

(IDg) D) AT (IDg) r—r
— 5 d-m — IDg ; Pdm
' H e agpdﬂl pr ? H (b@dy(s 43 ) e b@dvn pr ? H (a@(bé 43 )

de[D], Jj€l2l, Jj€l2l,
ne(2] 6=(n.J) 6=(n.5)

:(MSgHOm/) Q7" e (gr’ @) AT E agod,nﬁgpd,negod,épng)IDd,j
de[D],
5=(n.j)el2)x[2)

A Z acpd,n(_png))530d,n9g0d,5[Dd,jrcpd,n
de[D],
d=(n,j)€[2]x[2]

A Z 5god,n(_png))awd,neg@d,é[Dd,j (r— Toqmn)
de[D],
6=(n,j)€2]x[2]

=(Msg|[0™) - Q7" e(g". @) A Y. opunBeunbensp PP IDg

de[D],
5=(nj)e[2]x[2]

A YT epunBeunbes(—pd P IDy
de[D],
d=(n,j)€2]x[2]

—Msg]|[0™ .

Else ifX ¢ By, Z,,,(X) # Z,,(Bo) = 1Dy, d € [D]. Hence decryption yields

>\ r- Z O{@dﬂ/”/@@d’ne@d’&pg]l)d)I'de.y
de[D],
’ 6=(n,j
V _ (MSgHOm ) . (n,5)€[2]x[2]
Al > aw,nﬁwdm@wdﬁpng)I%j (X)
de[D],
s=(n el x[2
= (Msgl[0™) - Q"
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where

Q = )\ Z a@d7n/84pd7n0§0d76p7(11Dd)Idej - Z a@d7n/84pd7n94pd75p£lIDd)I§07j (X‘>
de[D], de[D],
6=(n,g)e2]x[2] 6=(n,j)€[2]x[2]

With probabilityl —1/p, @ # 1, and the ciphertext is distributed uniformly at randonginHence
the probability that is of the formMsg||0™ is less thar}, +

om/ *

C.2 Proof: Confidentiality

Proof of Theorem 6.2:

We reduce the semantic security of AMERQCD to the hardnediseoD-BDH problem. Let
l9, 91, g2, g3, Z] denote the D-BDH instance supplied to the simuldSosvhereg, = ¢**, go = g*2,
gs = ¢, the simulator’s task is to decide whether or tbot= €(g, g)***2*3. And to do this, the
simulator leverages an AMERQCD IND-sID-CPA adversaty,

We describe a reduction such thakif= e(g, g)*'*2*, the simulator produces a valid ciphertext;
otherwise, the first term in the ciphertext is random. Hence, if the adversary couéhbkrthe
confidentiality of the scheme, the simulator would be ablgdive the D-BDH problem.

Init: The adversary selects a polt € U, that it wishes to attack. Fay € [D] x [L], define
T: = T,(X").
Setup To create public and private parameters, the simulatos tuefollowing:

1. Pick at random

Apn: Bonlo—tarerpixio nets ADL ADL ADL
0.8 o= @)1 x(1),5= () el 12 SR

[0

0] p=(d 1) €[D]x|L],6=(n,j)€[2] x[2]

subject to the constraint that

J€[2],0=(n.7) o—=(d,)e[D]x[L],n€[2]
whereZ; = 7,(X*).
2. Release the following public parameters to the adversary

Q 9(91792)7

[%,5 — (g%s g1 %e0)” fon

p=(d,))€[D]x[L],0=(n,j)€[2]x[2]

p.n

, bps — (g% %)

Note that this posits that = z;z,; in addition, bothw and& are both unknown to the
simulator.
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3. Compute what it can of the master key.

Qp,n G ,n
3o = 97" bon = 077 ieimixitimer

0s.s 0 s Oﬂp,nﬁw,n ]
I @ @ 3
[y“’ (g72917) o=(d1)e[D]x [L],6=(n.)€[2] % [2

Portion of the master key is unknown to the simulator.

Phase 1 Suppose the adversary makes a decryption key query foythermectangld(si, t1, so, t2, ..., Sp, tp).
SinceB does not contaiiX*, there exists a dimensiafy € [D] such thate} ¢ [s4,,t4,], Where

7, is X* projected onto the{" dimension. Hence, there exists a dimensipre [D], such that

forall ID € Ay, (B), ID # I}, wherep = (do,l) = ®(ID). We say thaiX* does not overlap

with B in dimensiond,. The simulator now does the following:

1. Pickd, such thatX* does not overlap witliB in dimensiond,. Letny = 1.

2. Pick the following numbers at random:

[l ge(py
~(ID)
no

i l1Deny (B) y

[ (D
A

1 ID€A 4, (B),n#no

1 IDeAY (B)—Aq,(B),ne2] ]

subject to the constraint that ;. pa = 0.

3. ForallID € AY(B) — Ay, (B), let DK(ID) = (kgcg, Kk ] kD, k%)g]) represent

the element ilDK for ID, lety = (d,l) = ®(ID) whered # d,, compute and release
DK(ID) as below:

0
ng) —gh- [1 (?/%5
5=(n.g)el2)x[2

D) k(II)

KD b —ri
ID;n S don yRKiDn < Do

nel2]

4. ForallID € Ay (B), letyy = (do, 1) = ®(ID), compute and relead@K (/D) as below:

(ID)

0 o~ N Pn
ng) “— wgﬂdo . H (y%(;ID])P ,
5=(n,J)')€[2}X[2} )
I _p,ub 1I —
k.([[)),n “—agn 7k.(TD),n byon " ]
nel2]
where p,
2
pol) = piP) — - ©)

a@o 10 ﬂ@o ;10 @Sﬂo 10
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Opomy = O OpsIDj #0.
J€[2],60=(n0,5)

This ensures that,.” is distributed uniformly at random ifi,. Andsince ) éw(),g()I;OJ =
J€[2],60=(n0,5)

0; moreover, the simulator has pickegl such that/ D # I3 , we then have,, ,, # 0.
Although the simulator does not kno OD) (since it does not know,), it can compute
(ID ID)

) _ , : : -
apyme 7m0 andby, ,, "m0 giveng®. Since the simulator does not knaw we now ex-
plain how to computckﬁ%). The simulator rewrites the equation kﬁ%’ as

(ID)
kg%) :wgiu‘do . H (y@0’6IDJ)pn
d=(n.j)el2x[2]
(ID) (ID)
= | gtdo - H (yw075.[Dj)p2 5 H (y¢0751Dj)p1
6=(2,5)e{2}x2] 6=(1,5)e{1}x2]
Let )
\I] = glu‘do . H (y@0’5IDj)p2
5=(2.4)e{2}x[2]
Then
(D)
O ~ n
ng) =V H (ys007501D])p 0
J€[2],60=(n0,5)
. (ID)
=\. gzlz? . H (gawoynoﬁwo’no(ewoﬁo"'zle_woﬁo))ID]pnO

J€[2],60=(n0,5)

The simulator can compute partbecause it possesses all necessary parameters required to
compute it.

Although the simulator cannot directly compute the valueﬁé?) (since it does not know

2), it is capable of computing!) giveng* andg*; since if we rewritek\%) as below, we

can see that the exponent only containandz, to the first degree.

kgo) =V . g*1*2. H g‘zlz?pgom‘gvoﬁole/éwo»no
J€[2],60=(n0,7)
H ga*’O*”OBvo,no‘gvoﬁoIDJ'pfzoD . ga%vnoﬁ%v”oZléwoﬁoIDjﬁgoD)]
Jj€[2],60=(n0,5)
=\. H |:gavo,"oﬁwoano‘gvoalsolDJ'vaLg . go‘wovnoﬁ%v”ozle_wo,éoIDji’{nloD):|

J€[2],60=(n0,5)

Challenge The adversary gives the simulator two messaybksg, and Msg,. The simulator
picks a random bib, and encryptdsg, under pointX* as below:
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1. Pick random integers., ,,| € Z2PL,

p=(d,l)€[D]x[L],n€[2]

2. Compute and release the following as the ciphertext.

(MsngOml) AN

H gr%nﬁ%ne%(ﬂ;’j’ H (93 . g—r%n)aw,ne%(ﬂ;’j
i€l i€,
0=(n.j) 6=(n,j) o=(d,})e[D]x[L],n€[2]

Note that this implies that = z3; and if Z = e(g, g)***2*, it is easy to verify that the ciphertext is

well-formed, due to the fact th{t > O,sL5;=0 . On the other hand,
J€[2],0=(n.) p=(d)e[D]x [L],nel2]

if Z is a random number, then the first teerin the ciphertext is random and independent of the

remaining terms.

Phase 2 Phase 1 is repeated.

Guess When the adversary outputs a gu&ss b, the simulator outputsif ¥’ = b and0 otherwise,

in answer to the D-BDH instance. [

C.3 Proof: Anonymity

In Definition 4 of the selective-ID anonymity game, the caafier flips a random coihin the
Challengephase. An equivalent definition is where the challenger tiygscoind in the Setup
phase before running th&etup (X, Ua ) algorithm. This new definition can be further tranlated
into a real-or-random version which we will use in the follogyproof of anonymity. In the real-or-
random game, the adversary commits to only one p&inin thelnit phase; any of its subsequent
range queries must not contaXt; in the Challengephase, the challenger either returns a faithful
encryption ofMsg underX* or a completely random ciphertext; and the adversary’s ot i
distinguish between these two worlds. It is easy to veriit the above real-or-random definition
implies the selective-ID anonymity definition as stated efiDition 4 [13].

The proof of anonymity is carried out 2D L steps using a hybrid argument. To do this, we
define the following games, whesaepresents a number distributed uniformly at random froen th
appropriate group.
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Weea : The challenge ciphertext (s, ¢y, [c (11 " EIll)l) 1.

: II I II
Wy :  The challenge mphertext(sk,co, leqay 1 El )1) ], .,[08 )2 ED)L) 2]) ;
Wii1: The challenge ciphertext (Sk,co, (1)1) cﬁf’lm], e [CE%,L)Q’CEIDI),L)Q]) :
Wii2: The challenge ciphertext (Sk,co, [*, %], [cﬁ)’m, 65111,)2),1]7 o [cgg L)72’ng),L) ]> :
Wpri: The challenge ciphertext(s*,co, [%, %], [*,#], . .., [*, %], [c EI[)) b EIII))L) ]) .
Whp 2 : The challenge ciphertext s, co, [*, %], [*,*], ..., [*, %], [*, *]).

In step(d, [, n) of the hybrid argument, we show tha,, ,, is computationally indistinguish-
able from the previous world. Note that the transition frovh,,; to W, is the standard concept
of semantic security, and has been proved in the previot®setn addition Wp, 1 » is computa-
tionally indistinguishable from a completely random cigbkgt, hence is anonymous.

We reduce the anonymity of our AMERQCD scheme to the hardofdbe D-Linear problem.
We rewrite the D-Linear problem as given g*1, g, Y, g**, g* %] € G°, wherezy, 29, 23, 2, are
picked at random frong,, decide whetheY” = ¢g* . It is easy to show that this is equivalent to
the original D-Linear problem. For convenience,det= g°, go = g%, goy = g2, g3, = g7 .

Without loss of generality, we show only how to prove stép [;, n,) of the hybrid argument.

Lemma C.1. SupposeG satisfies thgr, ¢) D-Linear assumption, then no adversary making
decryption key queries, within time— ©(¢D logT'), can distinguish betweeW;, ;, ,, and the
preceding game with more thant+ 1/p probability.

Proof of Lemma C.1: Let ¢; = (di,l;). We describe a reduction such thaftif = g# %3,

then the simulator produces a ciphertext in which the blef:fj(l gl)ll) | is well-formed,;
otherwise, ifY is picked at random, the block is random as WeII Hence ifatheersary can
distinguish between the two scenarios, the simulator cbse $loe D-Linear problem.

Init : The adversary selects a polit in space that it wishes to attack. Defilig; = 7, ;(X*).
Setup To create public and private parameters, the simulatos tuefollowing:

1. Pick the following parameters at random:
w,
[O[%n’ﬁ%”]cp:(d,l)e[D}X[L],nE[Z},(go,n);é(gm,nl)’ €p Z* x ZHDL-1 7 4DL | Z4DL-1
196,6) o= 0.0y D) x (L] 5= () 2112 : . ?
Ops o=(d,l)€[D]x[L],0=(n.j)€[2] x [2],(¢,n)#(p1,m1)

subject to the constraint that

Z 9_%051523 0

J€[2),0=(n,g) p=(d)€[D]X[L],ne[2],(,m)£(1,m1)
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whereZ; ; = 7, ;(X*).
In addltlon later in Equation (5), we will need thﬁjE 2] 73, 9.5 # 0. Hence, the
= 0.

simulator simply aborts if it happens to piék, (,, ;'s such thatz o L1 i001.(n1.)
Note that this happens with probabilityp, and this explains Why the/p addltlve factor
exists in the adversary’s advantage in Lemma C.1.

2. Compute and release to the adversary the following pphliameters:

Q —e(yg, 9)
(0016 710 by 5y — goPeran ] (m)efmx2]”

n Be,
a 7(5 «— ©,0 Lp,& e, , b 7(5 «— ©,0 (p,é
[ v (g g) v (g i) p=(d,1)€[DIx[L],6=(n.g)€[2] X [2],(#,;n)#(p1,m1)

This posits thatv,, ,, = 21, B4, », = 22, both of which are unknown to the simulator.

3. Compute what it can of the private key:

W gw a<p1 ny < 91, bgol,rn — 92,
[ag.n <= g¥m by, — gfen

3 e=(d,l)e[D]x[L],n€[2],(p,n)#(¢1,n1)
[y%(; — (gew’égle“""s) w,nPp,n

p=(d.)€[D]x[L],6=(n.j)€[2]x[2},(p.n)#(p1,n1)
Note that the simulator does not kngw, (,, ;).

The following lemma shows that even if we do not know the pat@nsz,, z, ¥y, (n, ), We
can still compute certain terms efficiently.

Lemma C.2. In step(dy,l1,n,) of the hybrid arguement, leb; = (di,l;). Suppose we are
given (da, ls,no) # (di,l1,n1), and letps = (do,l). Supposd D; and I D, are nodes such
that®(1D;) = 1 and®(ID;) = ¢, and I D, # I7,. Moreover, suppose we are givene z,.
Then, even though the simulator does know kngow,, ;), it can efficiently generate the following
term, such that the its resulting distribution is the samevagnp, is picked uniformly at random.

D1, P IDy; (P2
H<y¢17(fil,j)> 'H(yw,(fimj)) ’ (3)

Jjel2] Jj€l2]
Moreover, the following two terms can also be computed efftty

RSP e (4)

Proof. Let o = aip, nys 8 = Bpamns- FOri € (2], j € (2], 1€t6; ; = O, (0, )i @2 = O
Define fori € [2], ©; = Ej€[2} 0; ;I D;; andO, = 2j6[2} 5/2,jID2,j
Recall our convention that the first component (indexed hysstptj) of an 7D is globally
unique for each tree node, and the second componentidbasfixed to 1. Sincd D, # Z , and

Zje 2]623.,[ = Oandg/QJ #0,

»2,]

,(n2,7)

62 == Zglg’jIDg’j §£ 0

JE€[2]
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First, the simulator pick uniformly at random and define

220101
Oéﬁ@g .

P2=pP—

Observe thap, is distributed uniformly, but we cannot computgefficiently because we do
not knowz,. However, since we know*2, we can compute”? efficiently. Hence, it follows that
we can compute the two terms in (4) efficiently in the follogiimay.

2l = ("), b, = (97) 7"

It remains to show how to compute the term in (3). Rewrite E3palow:

IDlaj P . IDQJ p2 _ 212207 . IDljr‘ pP1 04,3(9/27 '4—21@2’ ')IDQ7 i P2
1T et 11 ety = L] 0o 10rm - [ g2t
J€[2] JE[2] J€[2] J€[2]
:gzlZ2pl91+C‘fﬁ(®2+zlé2)(P—Z2pl®l/aﬁé2) — gaﬁ@w . <gzl)0rﬁ@2p . <gz2)—p1@1@2/éz7

which can be computed efficiently giveft andg*. [ |

Phase 1:Suppose the adversary makes a decryption query for thengpangleB (s, ¢4, ..., sp, tp).
SinceB does not contaiiX*, there exists a dimensiafy € [D] such thate} ¢ [s4,,t4,], Where

xy, Is X* projected onto the’* dimension. Hence, exactly one of the following cases must be
true:

Case 1: Forall D € Ay, (B) such that(ID) = ¢4, ID # I, (X*).

Case 2: There existsD € A4 (B) such thatb(/D) = ¢, andID = 7, (X*). Note that in this
case, for alllD’ € A4 (B) such that!D" # ID, ID" # I,(X*), wherey' = ®(ID');
moreover, there exists a dimensidg such that for all Dy € A4 (B), IDy # Z,,(X"),
wherepy = ®(1Dy).

Figure 3 illustrates the above two cases with a 2-dimensexample. We now explain how the
simulator generates the decryption key in each of the abasesc

Case 1: (a) Pick atrandoffiy] ., €r G”, such thaf [, fa = &.

(b) For eachID € A”(B) wherep := ®(ID) # ¢4, pick at random[pgD)] . Let

nel2]
DK(I/D) = (kg%), [k%l,kggl], [k%g,k%)QD represent the element DK for /D,

compute and releaddK (/D) as below:

ki —fa- T (ges™)™
s=(n.g)€RIx[2]

@ —pP) | (1)
|:kID,n —apn ’ kaD,n —b
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d2

.X* case 1 .X* case 1
.X* case 2
.X* case 1
3 4 9 10 d
(a)

Figure 3: A 2-dimensional example: Relative position betw&* and the queried hyper-
rectangle. (a) Each small rectangle shown is a simple rectangle. Along dsio d,, ranges
[3,4] and[9, 10] correspond to nodes at levil (b) The interval tree corresponding to dimension
dy.

(c) Foreachh D € A¥(B) suchthatb(ID) = ¢, the simulator can compute the following
DK(ID) efficiently:

O ~ 1D\ Pn
ng)  Hdy - H (y¢l,i5> )
5(=(T;,j JER]x[2] o)
@ —piP) ) (IT) —pitP
kID,n N agpﬁn 7kID,n N bgpﬁn ] €2

Since the simulator does not knayy, », j), hence, it needs to use Lemma C.2 to

generatedDK (/D). Letn’ # n;. To apply Lemma C.2, the simulator first picks at

randomp!”, and rewritek?) as

o) e 1D\ Pn
ng) = Hdy - H (yapl,%>
ID) (ID)

(
—~ ID;\ P ID;\ Pu
e I )T I ()

6=(n1,5)e{n1}x[2] 5=(n",j)e{n’}x[2]

sincelD # Z,,(X*) , the simulator can apply Lemma C.2 by substitutitig (>, n)
in the lemma with(dy, l;, »’), andp; with png); in addition, both/ D, andI D, in the
lemma are substituted withD.

Case 2: (a) Pick at randofal,cp €r Z, suchthad . pa = w.
(b) Foreach D € AY(B)—A4 (B)—Ag4 (B)wherep := ®(ID) = (d, 1), d # do andd #

. pick at random{,{(”] . Let DK(1D) = (kjp). [, k. ki ki)
ne(2 ’ ’ ’ ’
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represent the elementIDK for /D, compute and releadeK (/D) as below:

(D)
O : n
ki g 11 (p6™)"
5=(n(7j)€[2]x[2] )

1D
kgll)),n — a%n_p" )7 k,([%)ﬂ?, — bspvn_pn

Y

:|n6[2]
(c) LetID € A4 (B) andID = T, (X*). There exists exactly one su¢iv. The simula-

tor picks at randonpg?) €r Z,. DefineT = II y@l,élmjpSle)
d1=(n1,5)€{n1}x[2]

(d) Foreach D € A, (B) wherep, = (do, 1) := ®(ID), compute and releadeK (/D):

(0) p(ID)

kID — g“do . T . H (y¢0751Dj) " ,
d=(n,j)€[2]x[2]

(ID) k(H) _p%ID)]

) —p
[kID,n —agyn " L Kip, < byon
ne(2)

This implies thatu,, = g¢#% - Y. Note thatY cannot be computed efficiently, as
the simulator does not know,, », ;). However, sincd D # Z, (X*), the simulator
can apply Lemma C.2 by substitutiid,, l», no) in the lemma with(dy, [, 1), p; with
pitP), I D, with TD, andI.D, with ID. The remaining terms ik{>) can be computed
efficiently.

(e) Foreach D € A, (B) wherey| = (dy,1) := ®(ID) # 1, compute and release
DK(ID):

(ID)

O _ N\ Pn
KO o grar .71 11 (o0 s™2)"
<)5=(n,j)6[2}X[2} .
M _pIp) - (1I) —pn
KiDm < agtn ™ Kipy < boin” ]ne[z}

This implies thafiy, = ¢g*4 - T=1. Note thatY~! cannot be computed efficiently, as
the simulator does not know,, (», ;). However, sincd D # 7., (X*), the simulator
can apply Lemma C.2, by substitutif@,, [», n2) in the lemma with(dy, [, 1), p; with
—pitP), ID, with TD, andI D, with ID. The remaining terms ik}, can be computed
efficiently.

(f) For ID, letn’ # n,. Pick p(I,L) at random fromZ,. Then compute and release the
n p
following DK(/D):

(ID)
0 B .\ Pn
k5_17) — g:u'dl . T 1. H <y<p1,61D1> ,
5=(n.3)[2)x 2 B
I _ (D) I _ (ID)
[k%m —apn Pn ’k%,n — b<p17n Pn }ne[z]

As before, hergiy, = g'a - T k%) can be computed because the terms containing

(ID)

) - \ Pt
Ypr. (1,5 CANCEl oUL, leaving'™) = gra: . I (whéij)
d=(n',j)e{n’}x[2]
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(g) For eachID € A4 (B) such thatb(ID) = ¢, andID # 1D, compute and release

DK(ID):
K(©) pay Y1 o\
D 9" [1 (?/30176 ) ;
(ID?=(n,j)€[2}X[2} o
I _ 11 _p
|:k.(7[)),n — a<p17n pn 7k.(TD),n — bgpl,n g ]ne[ﬂ

Again, to be able to generaléo), Lemma C.2 is required. However, in this case, a
slight complication is involved, since two termskﬁ} containy,,, (, j):

(ID)

kgo) gl Y 1. H (yw’ém )pn

d=(n,j)€(2]x[2]
(ID)

(D)
M4 1D Pn . [Dv Pn
=g H Yp1,61 e (ysmﬁ )
d1=(n1,j)e{n1}x[2] 0=(n,j)€[2]x[2]
(ID) (ID)
M —ID; Pn . ID,p,
=g H <ye01751 Ihm Ypro 20

S1=(n1,5)€{n1}x[2]

(ID)
| | 1D
y%l,é 3P

5=(n",5)e{n’}x[2]

Now the simulator plck$n1 at random fromz;, and computes

ﬁ(ID) _ p(ID) Z [D 9891 (n1,5) (ID) (5)
n n ni
' ' Zjep] IDjesm, (n1,5)

Here we require th ID;0,, n, 5 # 0, and as we explained in ti&etup stage,
€[2] e1,(n1.7)

the simulator aborts |f it happens to pik, (,,5)'s such thad _ ., ID;by, (n, 5y = 0.
Hence,

o 5. 51D) (1D)
Q=g T (s ) L s
d1=(n1,j)€{n1}x[2] d=(n'.j)e{n'}x[2]

And now the simulator can apply Lemma C.2 by substitutig />, n-) in the lemma
with (dy,11,n), p1 with 52, 1D, with TD, andI D, with ID.

Challenge On receiving a messa@dsg from the adversary, the simulator does the following:

1. Pick random integers,. . ,_ 4 ycipixinerz € 2o -
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2. Compute and release the following as the ciphertext.

r 7] 7* . * 7
s, 3 Deoxl, Pl TT (g3) e, [T Yoot

Jjel2], Jjel2],

d1=(n1,j) d1=(n1,5)

H (gTLp,n)5<Pvn€<P,5I;,j ’ H (9;;1 . g—T¢,n)a<P=7L6<P-,5I;,j ,
jel2), jel2),
6=(n.j) 6=(n.j) (dy,l1,n1)<(d,L,n)<(D,L,2),0=(d)l) .

where(d,l,n) < (d,l',n')ifand only if 1)d < d’; or 2)d = d' andl < I'; or 3) (d,1) =
(d',l") andn < n'.

Note that this implies that = z5 + 2z, andr,, ,, = 2. If Y = ¢#*, it is easy to verify that the
ciphertext is well-formed, due to the fact that

Z éMI;;J =0

J€[2,9=(n.5) (d,lm)(da 11 ),p=(do)

If Y is a random number, then temﬁll)’ll)’
the ciphertext.

Phase 2 Phase 1 is repeated.

Guess If the adversary guesses that the ciphertext is an enoryptiMsg underX*, the simulator
guesses that = g1, Else if the adversary guesses that the ciphertext is thrygtian under a
random point, then the simulator guesses iha picked at random frorg. [ |

_is random and independent of the remaining terms of

n

Proof of Theorem 6.3: The theorem follows naturally from Lemma C.1 and the hybrglianent.
|
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