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Abstract

We introduce the concept of Anonymous Multi-Attribute Encryption with Range Query and Con-
ditional Decryption (AMERQCD). In AMERQCD, a plaintext is encrypted under a point in multi-
dimensional space. To a computationally bounded adversary, the ciphertext hides both the plaintext
and the point under which it is encrypted. In a range query, a master key owner releases the decryp-
tion key for an arbitrary hyper-rectangle in space, thus allowing decryption of ciphertexts previ-
ously encrypted under any point within the hyper-rectangle. However, a computationally bounded
adversary cannot learn any information on ciphertexts outside the range covered by the decryption
key (except the fact that they do not lie within this range). We give an efficient construction based
on the Decision Bilinear Diffie-Hellman (D-BDH) and Decision Linear (D-Linear) assumption.





1 Introduction

Searching on encrypted data is an important technique to provide both functionality and privacy in
database applications, and has recently captured a considerable amount of attention in the com-
munity. Previously, researchers have proposed encryptionschemes that allow keyword-based
searches [27, 8, 1], and specific types of comparison-based search [11, 10]. In this paper, we
propose a more powerful technique that allows range query onencrypted data.

Specifically, we consider the problem of designing an encryption scheme in which data entries
consist of a pair(X,Msg), where the vectorX is a point in some multi-dimensional latticeU∆

and the messageMsg is an arbitrary string. Our scheme encrypts the data entriesand achieves the
following properties.

1. Range Query & Conditional Decryption. Upon the request on a regionB ⊆ U∆, the
master key owner releases a decryption keyDKB such that given a ciphertextC for some
entry (X,Msg), using the keyDKB, it is possible to decide whetherX ∈ B and it is
possible to recoverMsg from C iff X ∈ B.

2. Confidentiality. Given ciphertextC for entry(Msg,X), a computationally bounded adver-
sary cannot learnMsg from C, provided that the adversary has not queried the decryption
key for a region containingX.

3. Anonymity. Given ciphertextC for entry(Msg,X), suppose that a computationally bounded
adversary has queried for regionsB1, B2, . . ., Bq all of which do not containX, the adver-
sary cannot learn anything more aboutX from C, apart from the fact thatX does not fall in
B1, B2, . . ., Bq

1.

We refer to this problem as Anonymous Multi-Attribute Encryption with Range Query and
Conditional Decryption(AMERQCD).

1.1 Applications

AMERQCD has important applications in database privacy, where data is stored on an untrusted
storage server. All database entries are stored encrypted.Under certain circumstances, a master key
owner can issue capabilities for a storage server to decryptentries that satisfy certain conditions.
However, the storage server must not be able to learn any information on entries that do not meet
the conditions (except that they do not satisfy the conditions). We give a number of concrete
examples in this flavor.

Medical privacy. The AMERQCD problem is motivated by medical-privacy applications. When
Alice goes around in her daily life, a PDA or smart-phone she carries automatically deposits
encrypted crumbs of her trajectory at a storage server. Assume that each crumb is of the form

1Note that a potentially stronger security definition could be useful in certain applications, where even ifX lies
within a queried regionB, nothing is revealed aboutX except that it lies withinB.



((x, y, t), ct), where(x, y) represents the location,t represents time, andct is Alice’s contact in-
formation. During an outbreak of an epidemic, Alice wishes to be alerted if she happened to be
present at a site borne with the disease during an incubationperiod, i.e., if(x, y, t) is in some alert
regionB. However, she is also concerned with privacy, and she does not wish to leak her trajectory
if she has not been to a site borne with the disease.

Untrusted remote storage. Individual users may wish to store emails and files on a remote
server, but because the storage server is untrusted, the content must be encrypted before it is stored
at the remote server. Emails and files can be classified with multi-dimensional attributes. Users
may wish to perform range queries and retrieve only data thatsatisfy the queries.

Using biometrics in anonymous IBE. The AMERQCD scheme can also be used in biometric-
based Anonymous Identity-Based Encryption (AIBE). Using biometrics in identity-based encryp-
tion first appeared in [25]. In this application, a person’s biometric features such as finger-prints,
blood-type, year of birth, eye color, etc., are encoded as a point X in a multi-dimensional lattice.
Personal data is encrypted using the owner’s biometric features as the identity, and the encryption
protects both the secrecy of the personal data and the owner’s biometric identity. Due to poten-
tial noise each time a person’s biometric features are sampled, a user holding the private key for
biometric identityX should be allowed to decrypt data encrypted underX′, iff X′ lies within a
certainHamming distancefrom X. In particular, the decryption region is a hyper-cube if thesame
weight is assigned to each dimension, and a hyper-rectangleif different weights are assigned to
different dimensions.

1.2 Our Result and Contributions

To the best of our knowledge, we are among the earliest to study the problem of point encryption,
range query, and conditional decryption of matching entries. Concurrently, Boneh and Waters
also proposed ways to perform complex queries over encrypted data [12]. We formally define
the AMERQCD problem in Section 3. AMERQCD differs from previously proposed searchable
encryption schemes [27, 8, 1] in that 1) we consider range query while previous work addresses
keyword-based search; 2) in addition to deciding whether anentry is covered by the specified range
we also provide conditional decryption of matching entries.

Table 1 compares the cost of our new construction and some straightforward extensions of
related work. We observe that naively representing the lattice using a quadtree [14] or Hilbert
curve [21, 24] and using Anonymous Identity-Based Encryption (AIBE) [1, 13] on top results in
a decryption key size and decryption cost ofÕ(TD−1) (as described in Section 4.2). Meanwhile,
a straightforward extension from a one-dimensional AMERQCD scheme results inO((logT )D)
encryption cost and ciphertext size (as described in Section 4.2).

We propose a new AMERQCD construction withO(D · log T ) public key size, encryption
cost, ciphertext size and decryption key size; and withO((log T )D) decryption cost (as described
in Section 5). We formally define and prove the security of ourAMERQCD scheme in the face of
computationally bounded adversaries. Since we borrow techniques from the AHIBE scheme [13],
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Scheme Encrypt. Cost CT Size Decrypt. Key Size Decrypt. Cost
QuadTree/Hilbert O(D · log T ) O(D · log T ) O(T D−1) Õ(TD−1)

Naive ext. AMERQCD (1). O((log T )D) O((log T )D) O((logT )D) O((log T )D)
AMERQCD (D) O(D · log T ) O(D · log T ) O(D · log T ) O((log T )D)

Table 1: Cost of various approaches.The number of dimensions of the latticeU∆ is denoted
D, and the number of points along each dimension is denotedT . QuadTree/Hilbert, Naive ext.
AMERQCD (1) are potential schemes as explained in Section 4.2. AMERQCD (D) is our new con-
struction where the number in the parenthesis stands for thenumber of dimensions. The notation
Õ suppresses logarithmic terms.

the security of our scheme can be likewise reduced to the hardness of the Decision Bilinear Diffie-
Hellman problem and the Decision Linear problem. We describe applications of AMERQCD to
closely related problems in Appendix A.

2 Related Work

IBE, Anonymous IBE. The notion of IBE was introduced by Shamir [26] two decades ago.
Several IBE [17, 9, 5, 4, 16, 28, 23] and HIBE [19, 18, 6] schemes have emerged since then.
In particular, the HIBE scheme proposed by Boneh Boyen and Goh [6] can be extended to mul-
tiple dimensions efficiently and in a collusion-resistant manner. The resulting M-HIBE scheme
can be adapted to solve a related problem which we call Multi-Attribute Encryption with Range
Query (MERCD) (See Section A.1). M-HIBE is also closely related to ForwardSecure HIBE
(fs-HIBE) [15, 30], where the number of dimensions is two, one of them being the identity, and
the other the time.

Recently researchers have proposed anonymous IBE (AIBE) and Anonymous Hierarchical
Identity-Based Encryption (AHIBE) schemes [13, 1]. The most closely related work is the AHIBE [13]
scheme recently proposed by Boyen and Waters. Like the HIBE scheme [6] mentioned above, the
AHIBE scheme can be extended into multiple dimensions in a collusion-resistant manner, resulting
in a Multi-dimension Anonymous Hierarchical Identity-Based Encryption scheme (M-AHIBE).
Our work borrows techniques from the AHIBE [13] scheme. In particular, we prevent collusion
attacks in the same way that an M-AHIBE scheme does. However,directly applying M-AHIBE to
AMERQCD has the following problems: 1) Because the encryption is anonymous and hides the
attributes used as the public key, at time of decryption one needs to try all possible decryption keys
on a given ciphertext. This incursO(T D) decryption cost on a single ciphertext, where[1, T ] is
the range along one dimension, andD is the number of dimensions. 2) The AMERQCD problem
does not require the delegation property necessary to traditional HIBE schemes. By removing the
delegation property, we can gain savings on the ciphertext size and encryption cost. Although our
AMERQCD scheme borrows techniques from the AHIBE [13] paper, we differ from M-AHIBE
in that we address the above two requirements posed by the AMERQCD problem.
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Search on encrypted data. Song et al. [27] propose one of the first schemes for searchingon
encrypted data (SoE). The SoE scheme leverages symmetric key techniques and allows a party
that encrypted the data to generate keyword search capabilities. Boneh et al. [8] proposed Pub-
lic Key Encryption with Keyword Search (PEKS), where any party possessing the public key can
encrypt and the owner of the corresponding private key can generate keyword search capabilities.
Abdalla et al. [1] formalized the notion of anonymous IBE andits relationship to PEKS. Both SoE
and PEKS can be trivially extended to support one-dimensional range queries. The extension is
similar to the AMERQCD (1) scheme described in Section 4.1: one builds an interval tree in one
dimension, and encrypts the plaintextO(log T ) times along the the path to the root. Because any
interval can be represented byO(log T ) nodes in the tree, a master key owner may issueO(logT )
capabilities corresponding to theO(log T ) nodes, to allow the query on any particular range. How-
ever, such extensions from SoE or PEKS support only range query (i.e., given a ciphertextC from
(Msg,X), decide whetherX falls within a certain region), but not the decryption of matching
entries.

In recent work by Boneh, Sahai and Waters [10], and by Boneh and Waters [11], they propose
how to do a specific type comparison query on encrypted data. Given a ciphertextC over point
X = (x1, x2, . . . , xD) in space, a master key owner can issue tokens that allow us to decide whether
xd ≤ x′ for all 1 ≤ d ≤ D with O(

√
T ) ciphertext size and token size.

Concurrent to our work, Boneh and Waters [12] propose how to perform complex queries over
encrypted data. In particular, they define a more general andstronger security game for complex
queries over encrypted data, and propose a primitive calledHidden Vector System (HVE) that
enables several types of queries. Since we have a slightly different security goal, and optimize
specifically for range queries, our scheme is more efficient for range queries. In addition, our
construction builds on a different complexity assumption from theirs.

Spatial data structure and space-filling curves. Spatial data structures such as quadtrees [14]
and KD-trees [2] have been intensively studied by the database community for efficient search and
indexing based on spatial locations. A typical spatial datastructure encodes a multi-dimensional
lattice in a single tree, where each leaf node represents a point and non-leaf nodes represent axis-
parallel hyper-rectangles in the lattice. Alternatively,to encode a multi-dimensional lattice with
a single tree, one can leverage space-filling curves (e.g., the Hilbert space-filling curve), first in-
troduced by Peano [21, 24]. Space-filling curves embed a multi-dimensional space into a curve
of lengthO(T D) in a single dimension. The resulting curve can then be encoded using a simple
interval tree.

One potential approach to tackling the AMERQCD problem is toapply an AIBE scheme on top
of spatial data structures or space-filling curves as described in Section 4.2. However, we observe
that using a quadtree or Hilbert curve for our purpose can result in Õ(TD−1) decryption key size
and decryption cost for an arbitrary hyper-rectangle, due to the fact that representing an arbitrary
hyper-rectangle can takẽO(TD−1) nodes in the resulting tree [3, 22].
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3 Definitions

We use the notation[T ] to denote integers from1 to T , i.e., [T ] = {1, 2, . . . , T}. Let S ≤ T be
integers, we use[S, T ] to denote integers fromS to T inclusive, i.e.,[S, T ] = {S, S + 1, . . . , T}.

Definition 1 (D-dimensional lattice, point, hyper-rectangle). Let ∆ = {T1, T2, . . . , TD}. U∆ =
[T1] × [T2] × . . . × [TD] defines aD-dimensional lattice. A D-tupleX = (x1, x2, . . . , xD) de-
fines apoint in U∆, wherexd ∈ [Td](∀d ∈ [D]). A hyper-rectangle B in U∆ is defined as
B(s1, t1, s2, t2, . . . , sD, tD) = {(x1, x2, . . . , xD)

∣∣∀d ∈ [D], xd ∈ [sd, td]} (∀d ∈ [D], 1 ≤ sd ≤
td ≤ Td).

Throughout this paper, we assume that allTd’s are powers of 2, and denotelog2 as simplylog.

Definition 2 (AMERQCD (D)). An Anonymous Multi-Attribute Encryption with Range Query
and Conditional Decryption inD-dimensions (AMERQCD (D)) scheme consists of the following
polynomial-time randomized algorithms.

1. Setup(Σ,U∆): Takes a security parameterΣ andD-dimensional latticeU∆ and outputs
public keyPK and master private keyMK.

2. Encrypt(PK,X,Msg): Takes a public keyPK, a pointX, and a messageMsg from the
message spaceM and outputs a ciphertextC.

3. DeriveKey(PK,MK,B): Takes a public keyPK, a master private keyMK, and a hyper-
rectangleB and outputs decryption key for hyper-rectangleB.

4. QueryDecrypt(PK,DK,C): Takes a public keyPK, a decryption keyDK, and a ci-
phertextC and outputs either a plaintextMsg or⊥, signaling decryption failure.

For each messageMsg ∈ M, hyper-rectangleB ⊆ U∆, and pointX ∈ U∆, the above
algorithms must satisfy the following consistency constraints:

QueryDecrypt(PK,DK,C) =

{
Msg if X ∈ B

⊥ w.h.p., ifX /∈ B
(1)

whereC = Encrypt(PK,X,Msg) andDK = DeriveKey(PK,MK,B).

3.1 Security Definitions

For security, we would like the property that for a ciphertext C = Encrypt(PK,X,Msg), a
computationally bounded adversary cannot learnX andMsg from C, given that it has not queried
the decryption key for any hyper-rectangle containingX.

Since our scheme builds on top of AIBE, we adopt the terminology from IBE schemes, and
define the security for AMERQCD in the sense of selective-ID semantic security and anonymity.
In Section 7.1, we explain the relationship between selective-ID and standard notions of security
(i.e., adaptive-ID security), and show how our scheme can bemade secure in the adaptive-ID sense.
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Definition 3 (AMERQCD selective-ID confidentiality game). The AMERQCD selective-ID confi-
dentiality game is defined as below.

• Init : The adversaryA outputs a pointX∗ where it wishes to be challenged.

• Setup: The challenger runs theSetup(Σ,U∆) algorithm to generatePK, MK. It gives
PK to the adversary, but does not divulgeMK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles that
do not containX∗.

• Challenge: The adversary submits two equal length messagesMsg0 andMsg1. The chal-
lenger flips a random coin,b, and encryptsMsgb underX∗. The ciphertext is passed to the
adversary.

• Phase 2: Phase 1 is repeated.

• Guess: The adversary outputs a guessb′ of b.

Definition 4 (AMERQCD selective-ID anonymity game). The AMERQCD selective-ID anonymity
game is defined as below.

• Init : The adversaryA outputs two pointsX0 andX1, where it wishes to be challenged.

• Setup: The challenger runs theSetup(Σ,U∆) algorithm to generatePK, MK. It gives
PK to the adversary, but does not divulgeMK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles that
do not containX0 andX1.

• Challenge: The adversary submits a messageMsg. The challenger first flips a random coin
b, and then encryptsMsg underXb. The ciphertext is passed to the adversary.

• Phase 2: Phase 1 is repeated.

• Guess: The adversary outputs a guessb′ of b.

In either game, we define the adversaryA’s advantage as

AdvA(Σ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣

Definition 5 (IND-sID-CPA). An AMERQCD scheme is IND-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in the confidentiality game.

Definition 6 (ANON-sID-CPA). An AMERQCD scheme is ANON-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in the anonymity game.

Definition 7 (AMERQCD security). An AMERQCD scheme is selective-ID secure if it is both
IND-sID-CPA secure and ANON-sID-CPA secure.
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4 The AMERQCD (1) Scheme and Extensions

In this section, we propose an efficient AMERQCD (1) scheme based on Anonymous IBE (AIBE).
Then we show that straightforward extensions of the AMERQCD(1) scheme are expensive in
multiple dimensions. In Section 5, we will propose our construction of an efficient AMERQCD
(D) scheme.

4.1 AMERQCD (1)

Intuition. Figure 1 illustrates the intuition behind the AMERQCD (1) construction. We build
an interval tree over integers from1 to T . In the interval tree, each leaf node represents a unique
integer in[1, T ], and an internal node represents a range covered by all leaf nodes in the subtree
rooted at that node. To encrypt a messageMsg and a valuex, we produce a portion of ciphertext
for each node on the path from the root of the tree to the leaf node representingx. Hence, the
ciphertext isO(log T ) in length. To issue decryption keys for a range[s, t] ⊆ [1, T ], let Λ(s, t)
denote a set of nodes covering[s, t], we issue a portion of decryption key for each node inΛ(s, t).
Since any range[s, t] ⊆ [1, T ] can be represented by a collection ofO(logT ) nodes in the tree,
the decryption key has lengthO(log T ). We now give formal definitions and then describe how to
derive an AMERQCD (1) scheme from AIBE.

Definition 8 (Interval tree). Let Γ(T ) denote a binary interval tree, where the leaf nodes corre-
spond to integers from1 to T , and an internal node represent the range covered by all the leaf
nodes in the subtree. NaturallyΓ(T ) has heightlog T . LetL = log T + 1.

For convenience, we assume that each node inΓ(T ) has a pre-assigned uniqueID. Let
ID (Γ(T )) represent the set of all nodeIDs in Γ(T ). For ID ∈ ID (Γ(T )), if the leaf node
in Γ(T ) representingx ∈ [T ] is in the subtree rooted at nodeID, then we say that nodeID covers
x. Let cv(ID) denote the set of integers covered by nodeID.

Definition 9 (Range as a collection of nodes). For 1 ≤ s ≤ t ≤ T , letΛ(s, t) ⊆ ID (Γ(T )) denote
the smallest set of nodes inΓ(T ) such that

⋃

ID∈Λ(s,t)

cv(ID) = [s, t].

It is trivially true thatΛ(s, t) is uniquely defined and for any range[s, t] ⊆ [1, T ] (1 ≤ s ≤ t ≤
T ); moreover,|Λ(s, t)| = O(log T ).

Definition 10 (Path to root). LetP(x) = (I1(x), I2(x), . . . , IL(x)) denote the path from the root
of Γ(T ) to the leaf node representingx ∈ [T ]. Il(x) (1 ≤ l ≤ L) represents the node onP(x) at
depthl of the tree. By convention, we assume that the root is at depth1.

Proposition 1. Given an IND-sID-CPA and ANON-sID-CPA secure Anonymous IBE(AIBE) scheme

[Setup∗(Σ),DeriveKey∗(PK,MK, ID),Encrypt∗(PK, ID,Msg),Decrypt∗(PK,DK,C)] ,

one can implement an IND-sID-CPA and ANON-sID-CPA AMERQCD (1) scheme, withO(logT )
encryption cost, ciphertext size, decryption key size and decryption cost.
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x T. . .1 . . .
I4(x)

I3(x)

I2(x)

I1(x)

(a) Path to root.

kIDA
kIDB

kIDC

c4

c3

2c

c1

x T1 . . . 1 T73. . . . . .. . .

[3,7]

(b) Ciphertext and decryption keys in AMERQCD (1).

Figure 1: An AMERQCD (1) scheme.(a) Path from the leaf node representingx ∈ [T ] to the
root.P(x) = (I1(x), I2(x), I3(x), I4(x)). (b) Encryption to the pointx = 3 and the keys released
for the range[3, 7].

The construction of AMERQCD (1) from an AIBE scheme is straightforward as shown in
Figure 1. To encrypt a messageMsg under a pointx, one encryptsMsg under all nodes along
the pathP(x) from x to the root. To release decryption keys for a range[s, t], one releases the
decryption keys for all node IDs inΛ(s, t).

To be able to check whether a decryption is valid, prior to encryption, we append a message
Msg ∈ {0, 1}m with a series of trailing 0s,0m′

.

• Setup(Σ,T) callsSetup∗(Σ) and outputsPK andMK.

• Encrypt(PK,x,Msg) yields(c1, c2, . . . , cL), wherecl = Encrypt∗(PK, Il(x),Msg||0m′

)
(1 ≤ l ≤ L).

• DeriveKey(PK,MK, [s, t]) yields a set{(lID, kID) |ID ∈ Λ(s, t)}, where

kID = DeriveKey∗(PK,MK, ID)

andlID is the depth of nodeID in Γ(T ). DK has sizeO(log T ).

• QueryDecrypt(PK,DK,C), whereC = (c1, c2, . . . , cL), is defined as below:

1. For each(l, kID) ∈ DK, compute

V ← Decrypt∗(PK, kID, cl).

If V is of the formM̂SG||0m′

, then output̂MSG as the decrypted message and exit.

2. If for all (l, kID) ∈ DK, the previous step fails to produce a plaintext, then output⊥.

4.2 Extension to Multi-Dimension

We explore several potential approaches to extend the AMERQCD (1) scheme to multiple dimen-
sions.
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Spatial data structures and space-filling curves. The first approach is to encode a multi-
dimensional lattice using a single tree, where leaf nodes correspond to points in the lattice and
internal nodes represent sets of points. There are two potential ways to achieve this: 1) use spatial
data structures like a quad-tree or KD-tree; 2) use a space-filling curve to embed theD-dimension
lattice into a single dimension, and then encode the single dimension using a binary interval tree.

Once we encode aD-dimensional lattice in a single tree, we can apply the same technique
we used for AMERQCD (1), and construct a AMERQCD (D) scheme from an AIBE scheme.
The resulting AMERQCD (D) scheme hasO(D log T ) encryption cost and ciphertext size. The
decryption key size and decryption cost depends on how many nodes in the tree it takes to represent
an arbitrary hyper-rectangle inU∆. It has been previously shown that representing an arbitrary
hyper-rectangle in space can takeO(T D−1) nodes in a quad-tree (forD ≥ 2) in the worst case [3].
For space-filling curves such as the Hilbert curve, representing an arbitrary hyper-rectangle in
space can takeO(T D−1) intervals on the curve [22]. Hence, applying AIBE on top of a quad-tree
or a Hilbert curve results iñO(TD−1) decryption key size and decryption cost.

Naive extension of AMERQCD (1). One seemingly plausible way to extend the AMERQCD (1)
scheme intoD dimensions is to buildD interval trees, each representing one of theD dimensions.
We randomly split the plaintext intoD shares, and encrypt each share in one dimension using the
above-mentioned technique. To decrypt a hyper-rectangle in the lattice, one projects the hyper-
rectangle onto each separate dimension, and releases the decryption keys under each dimension.
This results in ciphertext size ofO(D log T ) and decryption key sizeO(D log T ). Unfortunately,
the security of such a scheme is flawed. As shown in Figure 2, when given the decryption keys for
regionR1 andR4, one can decryptR2 andR3 as well. This attack is in spirit the collusion attack
when taken in the context of Multi-dimensional Hierarchical Identity-Based Encryption(M-HIBE)
schemes. A straightforward approach to securing against the collusion attack is to encrypt the
ciphertext under the cross-product ofD paths to the root, thus incurringO((log T )D) ciphertext
size.

We now formally describe the resulting AMERQCD (D) scheme. We assume that each tree
node has a globally uniqueID, and define functionΦ(ID) := (d, l) to return the dimension and
depth of nodeID. In particular,Φ1(ID) = d outputs the dimension ofID, andΦ2(ID) = l
outputs the depth ofID. For convenience, in the remainder of the paper, we assume that all
dimensions have the same size, i.e.,T1 = T2 = . . . = TD = T . Let L = log T + 1.

Definition 11 (Hyper-rectangle as a collection of simple hyper-rectangles). For 1 ≤ sd ≤ td ≤ T
(1 ≤ d ≤ D), suppose we have a hyper-rectangleB(s1, t1, . . . , sD, tD) = {(x1, x2, . . . , xD)

∣∣sd ≤
xd ≤ td, 1 ≤ d ≤ D} ⊆ U∆. DenoteΛd(B) := Λ(sd, td).

Then,B gives a collectionΛ×(B) of simple hyper-rectangles:

Λ×(B) = Λ1(B)× Λ2(B)× . . .× ΛD(B)

We call a hyper-rectangleB0 ⊆ U∆ a simple hyper-rectangleif and only if ∀1 ≤ d ≤
D, |Λd(B0)| = 1. In other words, a simple hyper-rectangleB0 can be represented by aD-tuple,

Λ×(B0) = {(ID1, ID2, . . . , IDD)} ,

9



3R 4R

2R1R

Figure 2: The collusion attack.With decryption keys for regionsR1 and R4, R2 and R3 are
compromised.

whereIDd represents theID of a tree node in thedth dimension. In particular, any pointX in
the lattice is a simple hyper-rectangle. LetLd = log Td + 1, then a pointX can be represented
by a D-tupleΛ×(X) = {(ID1, ID2, . . . , IDD)}. BecauseΛ×(B0) is a set containing only one
element, for convenience, we overloadΛ×(B0) to denote aD-tuple(ID1, ID2, . . . , IDD) without
risk of ambiguity.

It is easy to see that for any hyper-rectangleB ⊆ U∆, |Λ×(B)| = O((logT )D).

Definition 12 (Path to root in thedth dimension). Let Λ×(B0) = {(ID1, ID2, . . . , IDD)} repre-
sent a simple hyper-rectangleB0, and letld be the depth of nodeIDd in thedth tree. Then, for
1 ≤ d ≤ D,

Pd(B0) =
(
I(d,1)(B0), I(d,2)(B0), . . . , I(d,ld)(B0)

)

represents the path from nodeIDd to the root in the treeΓ(Td) of the dth dimension, where
I(d,l)(B0) (1 ≤ d ≤ D, 1 ≤ l ≤ ld) represents the node at depthl onPd(B0).

Proposition 2. Given an IND-sID-CPA and ANON-sID-CPA secure Anonymous IBE(AIBE) scheme

[Setup∗(Σ),DeriveKey∗(PK,MK, ID),Encrypt∗(PK, ID,Msg),Decrypt∗(PK,DK,C)] ,

one can implement an IND-sID-CPA and ANON-sID-CPA AMERQCD (D) scheme, withO((log T )D)
encryption cost, ciphertext size, decryption key size and decryption cost.

The construction of AMERQCD (D) from AIBE is straightforward: To encrypt messageMsg

under pointX, one encryptsMsg under the cross-product ofD paths to the root. To release
the decryption key for a hyper-rectangleB, one releases a decryption key for each simple hyper-
rectangle inΛ×(B).

• Setup(Σ,T) callsSetup∗(Σ) and outputsPK andMK.

• Encrypt(PK,X,Msg) yields ciphertextC of lengthLD, C =
[
cv

∣∣v = (l1, l2, . . . , lD) ∈ [L]D
]
.

Let id ((l1, l2, . . . , lD) ,X) =
(
I(1,l1)(X), I(2,l2)(X), . . . , I(D,lD)(X)

)
, which is used as the

identity for encryption in the underlying AIBE scheme.cv is then computed as below:

cv = Encrypt∗(PK, id(v,X),Msg||0m′

)
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• DeriveKey(PK,MK,B) yields the following set of sizeLD:
[
[Φ2(IDd)]d∈[L] , kB0

]

Λ×(B0)={(ID1,ID2,...,IDd)}⊆Λ×(B)
,

whereΦ2(ID) returns the depth of nodeID, andkB0 = DeriveKey∗(PK,MK, Λ×(B0)).

• QueryDecrypt(PK,DK,C), whereC =
[
cv

∣∣v = (l1, l2, . . . , lD) ∈ [L]D
]
, is define as

below:

1. For each(v, kB0) ∈ DK, wherev = (l1, l2, . . . , lD), compute

V ← Decrypt∗(PK, kB0, cv).

If V is of the formM̂SG||0m′

, then output̂MSG as the decrypted message and exit.

2. If for all (v, kB0) ∈ DK, the previous step fails to produce a plaintext, then output⊥.

5 The AMERQCD (D) Scheme

In Section 4, we show that straightforward extensions of an AMERQCD (1) scheme into multiple
dimensions are expensive in at least one of the following: ciphertext size, encryption cost, decryp-
tion key size and decryption cost. In this section, we detailour cryptographic construction of an
efficient AMERQCD (D) scheme.

5.1 Preliminary: Bilinear Groups

A pairing is an efficiently computable, non-degenerate function, e : G × Ĝ → G′, satisfying
the bilinear property thate(gr, ĝs) = e(g, ĝ)rs. G, Ĝ andG′ are all groups of prime order.g,
ĝ ande(g, ĝ) are generators ofG, Ĝ andG′ respectively. Although our AMERQCD scheme can
be constructed using asymmetric pairing, for simplicity, we describe our scheme using symmetric
pairing in the remainder of the paper, i.e.,G = Ĝ.

We name a tupleG = [p,G,G ′, g, e] a bilinear instance, whereG andG ′ are two cyclic groups
of prime orderp. We assume an efficient generation algorithm that on input a security parameter

Σ, outputsG
R← Gen(Σ) wherelog2 p = Θ(Σ).

We rely on the following complexity assumptions:
Decision BDH Assumption: The Decision Bilinear DH assumption, first used by Joux [20], later
used by IBE systems [9], posits the hardness of the followingproblem:

Given[g, gz1, gz2, gz3, Z] ∈ G4 × G′, where exponentsz1, z2, z3 are picked at random fromZp,
decide whetherZ = e(g, g)z1z2z3 .
Decision Linear Assumption: The Decision Linear assumption, first proposed by Boneh, Boyen
and Shacham for group signatures [7], posits the hardness ofthe following problem:

Given [g, gz1, gz2, gz1z3, gz2z4, Z] ∈ G6, wherez1, z2, z3, z4 are picked at random fromZp, de-
cide whetherZ = gz3+z4.

11



5.2 The AMERQCD (D) Scheme

A D-dimensional latticeU∆ can be represented with a set ofD trees. Assume each tree node has a
globally uniqueID. For convenience, we assume that anID of a tree node has two components,
ID = [IDj]j∈[2]. By convention, the first componentID1 ∈ Z∗

p , and is globally unique for each
tree node; and the second componentID2 is always fixed to 1. Hence, from now on, the reader
should keep in mind that the notationID andI have two components. In particular, when the
subscriptj is used in combination withID or I, it is always used to index into the two components.
This avoids ambiguity when multiple subscripts exist. We append a messageMsg ∈ {0, 1}m with
a series of trailing zeros,0m′

, prior to encryption. Assume that{0, 1}m+m′ ⊆ G′.

Intuition. To encrypt messageMsg under pointX, for each dimensiond ∈ [D], we encrypt
Msg along the pathPd(X) to the root. This results inO(D log T ) ciphertext size. To compute
decryption keys for a hyper-rectangleB ⊆ U∆, we representB usingΛ∪(B), a collection of nodes
corresponding to disjoint intervals over different dimensions (See Definition 13). We compute
a decryption keyDK(ID) for each node withID ∈ Λ∪(B), resulting in a decryption key size
of O(D log T ). To prevent the collusion attack, we rerandomize decryption keys for each query,
such that the decryption keys for different dimensions are tied to each other, and cannot be used
in combination with decryption keys issued in another query. At the time of decryption, we can
use [DK(ID)]ID∈Λ∪(B) to generate a separate decryption key for each simple hyper-rectangle
Λ×(B0) ⊆ Λ×(B). We then try these decryption keys on the ciphertext to see ifany one of them
yields a valid decryption. To ensure the security of the scheme, we need to introduce extra degrees
of freedom as represented by the subscriptsn ∈ {1, 2} andj ∈ {1, 2} in the following scheme
description. On one hand, our construction borrows techniques from the AHIBE construction [13]
by Boyen and Waters; on the other hand, the technique we use toprevent the collusion attack can
also be used to extend their AHIBE construction into multiple dimensions, resulting in a Multi-
Dimension AHIBE (M-AHIBE) or a Forward Secure AHIBE (fs-AHIBE) scheme.

Definition 13 (Hyper-rectangle as a collection of nodes). A hyper-rectangleB ⊆ U∆ gives a
collection of nodes corresponding to disjoint intervals over different dimensions:

Λ∪(B) = Λ1(B) ∪ Λ2(B) ∪ . . . ∪ ΛD(B)

Note that for all hyper-rectangleB ⊆ U∆, |Λ∪(B)| = O(DL).

Setup(Σ,U∆) To generate public parameters and the master private key, the setup algorithm

first generates a bilinear instanceG = [p,G,G ′, g, e]
R← Gen(Σ). Then, the setup algorithm does

the following.

1. Select at random the following parameters.




ω,
[αϕ,n, βϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2]

[θϕ,δ]ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2]



 ∈R Z∗
p × Z∗

p
4DL × Zp

4DL
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At this point, we give a brief explanation of our notation. The variableϕ is used to index a
tuple(d, l) ∈ [D]×[L], whered denotes the dimension andl denote the depth of a node in the
corresponding tree. Some variables have four versions, indexed by(n, j) ∈ [2]× [2]. At first
sight, they seem to be redundant, but are in fact needed to prove the security of the scheme.
In particular, we needj to prove confidentiality, and bothn andj to prove anonymity.

2. PublishG and the following public parameters:

PK←
[

Ω← e(g, g)ω,[
aϕ,δ ← gαϕ,nθϕ,δ , bϕ,δ ← gβϕ,nθϕ,δ

]
ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2]

]
∈ G′×G8DL

3. Retain a master private key comprising the following elements:

MK←




ω̂ ← gω,[
aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2][

yϕ,δ ← gαϕ,nβϕ,nθϕ,δ
]
ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2]


 ∈ G8DL+1

DeriveKey(PK,MK,B) The following steps compute the decryption key for hyper-rectangle
B, given public keyPK and master private keyMK.

1. PickO(D · L) random integers,
[

[µ̂d]d∈[D] ,
[
ρ

(ID)
n

]
ID∈Λ∪(B),n∈[2]

]
∈R Z2|Λ∪(B)|+D

p

such that
∏

d∈[D] µ̂d = ω̂.

Observe that we release a portion of the decryption key for each node inΛ∪(B), as opposed
to for each hyper-rectangle inΛ×(B). In this way, the size of the private key isO(DL),
instead ofO(LD).

2. Compute and release the following decryption key:

DK←
[

Φ(ID),DK(ID)
]
ID∈Λ∪(B)

∈
(
[D]× [L]× G5

)|Λ∪(B)|

whereΦ(ID) extracts the dimension and depth of nodeID, andDK(ID) is defined as
below:

DK(ID)←




µ̂d ·
∏

δ=(n,j)∈[2]×[2]

(
yϕ,δ

IDj
)ρ

(ID)
n ,

[
aϕ,n

−ρ
(ID)
n , bϕ,n

−ρ
(ID)
n

]

n∈[2]




whereϕ = (d, l) = Φ(ID).
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Encrypt(PK,X,Msg) The following algorithm encrypts a messageMsg under pointX.

1. Select2DL + 1 random integersr ∈ Zp, [rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .

2. Compute and output the following ciphertext:




(Msg||0m′

) · Ω−r, gr,


∏
j∈[2],

δ=(n,j)

(bϕ,δ
Iϕ,j )

rϕ,n
,

∏
j∈[2],

δ=(n,j)

(aϕ,δ
Iϕ,j )

r−rϕ,n




ϕ=(d,l)∈[D]×[L],n∈[2]


 ∈ G′ × G4DL+1

whereIϕ = Iϕ(X).

For each dimensiond and depthl, we create a portion of the ciphertext corresponding to the
node in thedth tree at depthl, on the pathPd(X) to the root.

QueryDecrypt(PK,DK,C) Given ciphertextC =

(
c, c0,

[
c
(I)
ϕ,n, c

(II)
ϕ,n

]

ϕ=(d,l)∈[D]×[L],n∈[2]

)

and decryption keyDK for hyper-rectangleB, the following algorithm iterates through the sim-
ple hyper-rectangles inΛ×(B) and attempts to decrypt the ciphertext under each simple hyper-
rectangle.

1. For each simple hyper-rectangleΛ×(B0) = {(ID1, ID2, . . . , IDD)} ⊆ Λ×(B),

(1) Let DK(IDd) =
(
k
(O)
IDd

, [k
(I)
IDd,1, k

(II)
IDd,1], [k

(I)
IDd,2, k

(II)
IDd,2]

)
represent the element inDK

for IDd, whered ∈ [D].

(2) Compute the following:

k0 ←
∏

d∈[D]

k
(O)
IDd

;

V ← c · e(c0, k0) ·
∏

d∈[D],n∈[2],
ϕd=Φ(IDd)

(
e(c

(I)
ϕd,n, k

(I)
IDd,n) · e(c

(II)
ϕd,n, k

(II)
IDd,n)

)

If V is of the formM̂sg||0m′

, then output̂Msg as the decrypted plaintext and exit.

2. If for all simple hyper-rectangles inΛ×(B), the previous step fails to produce the plaintext,
then output⊥.

When done naively, the aboveQueryDecrpty algorithm takesO(D(log T )D) time. How-
ever, if one saves intermediate results, it can be done inO((log T )D) time withO(D log T ) storage.
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6 Consistency, Security

In this section, we formally state the consistency and security of the above AMERQCD (D) con-
struction. We give a high level intuition about the securityproof, and provide the detailed proof in
Appendix C.

Theorem 6.1(Internal consistency). The above defined AMERQCD scheme satisfies the consis-
tency requirement posed by Equation (1).

We say that an AMERQCD scheme is(τ, q, ǫ) secure if any adversary makingq range queries
for decryption keys, cannot have more thanǫ advantage within timeτ .

Theorem 6.2(Confidentiality). SupposeG satisfies the(τ, ǫ) D-BDH assumption, then the above
defined AMERQCD scheme is(τ ′, q, ǫ) IND-sID-CPA secure, whereτ ′ < τ −Θ(qD log T ).

Theorem 6.3(Anonymity). SupposeG satisfies the(τ, ǫ) D-Linear assumption, then the above
defined AMERQCD scheme is(τ ′, q, ǫ′) ANON-sID-CPA secure, whereτ ′ < τ −Θ(qD log T ), and
ǫ′ = (2D log T + 1)(ǫ + 1/p).

In particular,Θ(qD log T ) comes from the fact that the simulator needsO(D log T ) time to
compute the decryption key for each hyper-rectangle queried. The2D log T + 1 loss factor inǫ′

comes from the hybrid argument we use to prove anonymity, andadditive1/p comes from the
probability that bad events happen in the simulation so thatthe simulator has to abort.

Our proof techniques are similar to that presented in the AHIBE paper [13]. However, since we
do not require the delegation property of HIBE/AHIBE schemes, we do not need as many degrees
of freedom as required by the AHIBE scheme. In the proof, our simulator inherits parameters
specified by the D-BDH/D-Linear instance, hence, it has incomplete information about the master
private key. In order to simulate the key query process, the simulator leverages a dimensiond along
whichX∗ does not overlap with the queried hyper-rectangle. The simulator uses randomness in the
dth dimension to cancel out the unknown parameters inherited from the D-BDH/D-Linear instance.
In comparison, the anonymity proof is more complicated thanthe confidentiality proof, because
it involves a hybrid argument containing2DL steps. In step(d1, l1, n1) of the hybrid argument,
yϕ1,(n1,j) (ϕ1 = (d1, l1), j ∈ [2]) in the master key contains unknown parameters inherited from the
D-Linear instance. Therefore, we need to condition on the relative position betweenX∗ and the
(d1, l1) in question. We provide detailed proof of Theorems 6.1, 6.2 and 6.3 in Appendix C.1, C.2
and C.3 respectively.

7 Extensions

7.1 Adaptive-ID Security

Our scheme is provably secure in the selective-ID model. A stronger notion of security is adaptive-
ID security (also known asfull security), i.e., the adversary does not have to commit aheadof time
which point in the lattice to attack. Specifically, in both the confidentiality and anonymity games,
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the adversaryA does not commit to any particular pointX∗ in theInit phase.Phase 1is the same
as before except that there is no restriction on the hyper-rectangles the adversary can query. In
theChallengestage, the adversary picks a pointX∗, which is not contained in any of the hyper-
rectangles queried inPhase 1. In Phase 2, the adversary can query hyper-rectangles that do not
containX∗. After this point, the game proceeds in the same way as before. We present the formal
definition for AMERQCD adaptive-ID security in Appendix B.

Previous research has shown that IBE schemes secure in the selective-ID sense can be converted
to schemes fully secure [4, 16, 28, 23] with some loss in security. In particular, Boneh and Boyen
prove the following theorem:

Theorem 7.1([4]). A (t, q, ǫ)-selective identity secure IBE system (IND-sID-CPA) that admitsN
distinct identities is also a(t, q, Nǫ)-fully secure IBE (IND-ID-CPA).

This technique can be applied to our case to achieve full confidentiality and anonymity. In our
case, the scheme admitsN = T D identities and hence that would be the loss factor in security.

7.2 Applications to Closely Related Problems

Our AMERQCD scheme can be applied to two closely related problems which we call Multiple-
Attribute Encryption with Ranged Conditional Decryption (MERCD) and Anonymous Multi-Attribute
Encryption with Range Query (AMERQ) respectively. In Appendix A, we define these two
problems, describe scenarios where each might be useful, and explain their relationship with
AMERQCD.

8 Conclusion

We define the concept of Anonymous Multi-Attribute Encryption with Range Query and Condi-
tional Decryption (AMERQCD), and give a cryptographic construction. When compared with
other potential approaches, our scheme is efficient in termsof encryption cost, ciphertext size, de-
cryption key size, and decryption cost. We reduce the security of our AMERQCD scheme to the
intractability of the D-BDH and D-Linear problem in bilinear groups.
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A Applications to Closely Related Problems

In this section, we describe two closely related problems, MERCD and AMERQ. We describe
specific scenarios where each may be useful. It is easy to showthat AMERQCD implies both
MERCD and AMERQ.

A.1 Multiple-Attribute Encryption with Ranged Conditiona l Decryption

In a partially encrypted database, each data entry consists of bothpublic attributesandprivate
attributes. The public attributes are stored in clear-text, and the private attributes are stored in
encrypted format. Multiple-Attribute Encryption with Ranged Conditional Decryption (MERCD)
allows a master key owner to issue decryption keys for a hyper-rectangle such that it is possible
to decrypt the private attributes of an entryiff the public attributes of that entry fall within the
hyper-rectangle.

Partially encrypted database are useful in various scenarios. In trace-driven network intrusion
detection, network traces are often partially encrypted before they are released. For instance, due
to privacy concerns, source/destination addresses and payload are encrypted, but port numbers,
packet length and other fields in the packet header are in clear-text. One can apply statistical
methods to find anomalies in the network traces. When an anomaly is found, one wishes to obtain
capabilities from an authority to decrypt the source/destination addresses and payload of suspicious
packets whose port numbers or payload length fall within a certain range. Waters et al. study a
related problem of searching encrypted audit logs [29].

We can formally define MERCD problem in a way similar to the AMERQCD problem. The
differences between MERCD and AMERQCD are: 1) In MERCD, by looking at the public at-
tributes of a database entry, one learns under which point inspace a message is encrypted. Hence,
at decryption, one does not have to iterate through all potential points and try with the corre-
sponding decryption key; 2) The security definition for MERCD has only the confidentiality game.
Anonymity is not required, since the point under which a message is encrypted is stated by the
public attributes of a database entry.

It is easy to see that AMERQCD implies MERCD. Meanwhile, MERCD can be solved using
an M-HIBE scheme. In particular, the HIBE scheme proposed byBoneh Boyen and Goh [6] can
be extended to multiple dimensions in a collusion-resistant manner. Using the resulting M-HIBE
scheme for MERCD results inO(D) ciphertext size,O(D log T ) encryption cost,O(D log T ) de-
cryption key size, andO(D log T ) decryption cost. Since MERCD does not require the delegation
property needed by M-HIBE, it is possible to derive a more efficient MERCD scheme by removing
key delegation from the M-HIBE scheme.

A.2 Anonymous Multi-Attribute Encryption with Range Query

AMERQCD allows the untrusted database to perform range query on encrypted data entries, and
decrypt only ciphertexts matching the range query. By contrast, in some scenarios, a data owner
may want to retrieve from the database encrypted entries satisfying certain range queries, without
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having the database decrypt these matching entries. Instead, the data owner performs the final
decryption after retrieving the entries. We call this problem AMERQ.

The AMERQ problem can be formally defined in a similar way as the AMERQCD problem.
The differences between AMERQ and AMERQCD are: 1) In AMERQ,Setup returns a public key
PK, a master private keyMK for generating query capabilities, and a decryption private keyDK

for decryption; 2) Instead of generating a decryption key,DeriveKey generates a query keyQK;
3) TheQueryDecrypt(PK,DK,C) algorithm is replaced by a separateQuery(PK,QK,C)
algorithm and aDecrypt(PK,DK,C) algorithm. For any messageMsg ∈M, hyper-rectangle
B ⊆ U∆, pointX ∈ U∆, let C = Encrypt(PK,X,Msg), QK = DeriveKey(PK,MK,B),
then

• Query(PK,QK,C) returns1 if X ∈ B; otherwise, it returns0 with high probability.

• Decrypt(PK,DK,C) returns the plaintextMsg.

Corollary 1. Let AMERQCD= (Setup∗,Encrypt∗,DeriveKey∗,QueryDecrypt∗) be an
IND-sID-CPA and ANON-sID-CPA secure AMERQCD scheme, letAE = (K, E ,D) be an IND-
CPA secure public key encryption scheme independent of the AMERQCD scheme.K, E ,D repre-
sent the key generation, encryption and decryption algorithms respectively. Given AMERQCD and
AE , an IND-sID-CPA and ANON-sID-CPA secure AMERQ scheme(Setup,Encrypt,DeriveKey,Query,Decrypt

can be constructed as below:

• Setup runs(pk0, dk0) ← K and (pk1, mk) ← Setup∗; and outputsPK ← (pk0, pk1),
DK← dk0 andMK← mk.

• Encrypt((pk0, pk1),X,Msg) :=
[
E(pk0,Msg),Encrypt∗(pk1,X, 0m′

)
]
;

• DeriveKey((pk0, pk1),MK,B) := DeriveKey∗(pk1,MK,B);

• Query((pk0, pk1),QK, (c0, c1)) callsQueryDecrypt∗(pk1,QK, c1), and outputs1 if QueryDecrypt∗

decrypts to0m′

, 0 otherwise.

• Decrypt((pk0, pk1),DK, (c0, c1)) := D(pk0,DK, c0).

In particular, in the above construction,Encrypt∗(pk1,X, 0m′

) provides a searchable label
which enables range query. The security of the AMERQ scheme relies on the IND-CPA security
of AE and the ANON-sID-CPA security of the underlying AMERQCD scheme. The searchable
label idea is similar to that adopted by Song et al. [27] and Boneh et al. [8] in their encryption
schemes with keyword-based search. We can take the idea one step further, and label arbitrary
content with a searchable label. The label encrypts multiple integer attributes and can be used to
perform range query on the encrypted attributes.
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B Definition of Adaptive-ID Security

Definition 14 (AMERQCD adaptive-ID confidentiality game). The AMERQCD adaptive-ID con-
fidentiality game is defined as below.

• Setup: The challenger runs theSetup(Σ,U∆) algorithm to generatePK, MK. It gives
PK to the adversary, but does not divulgeMK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles in
theD-dimensional lattice.

• Challenge: The adversary submits two equal length messagesMsg0 andMsg1, and a point
X∗. X∗ must not be contained in any hyper-rectangle queried inPhase 1. The challenger
flips a random coin,b, and encryptsMsgb underX∗. The ciphertext is passed to the adver-
sary.

• Phase 2: Phase 1 is repeated, in addition, any hyper-rectangle queried in Phase 2must not
containX∗ as specified in theChallengephase.

• Guess: The adversary outputs a guessb′ of b.

Definition 15 (AMERQCD adaptive-ID anonymity game). The AMERQCD adaptive-ID anonymity
game is defined as below.

• Setup: The challenger runs theSetup(Σ,U∆) algorithm to generatePK, MK. It gives
PK to the adversary, but does not divulgeMK.

• Phase 1: The adversary is allowed to issue decryption key queries for hyper-rectangles in
theD-dimensional lattice.

• Challenge: The adversary submits two pointsX0 andX1, and a messageMsg. X0 and
X1 must not be contained in any hyper-rectangle queried inPhase 1. The challenger flips a
random coin,b, and encryptsMsg underXb. The ciphertext is passed to the adversary.

• Phase 2: Phase 1 is repeated, in addition, any hyper-rectangle queried in Phase 2must not
containX0 andX1 specified in theChallengephase.

• Guess: The adversary outputs a guessb′ of b.

C Proof of Consistency and Security

C.1 Proof: Consistency

Proof of Theorem 6.1:
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Let C =

(
c, c0,

[
c
(I)
ϕ,n, c

(II)
ϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2]

)
be the encryption ofMsg on pointX. Let

Λ×(B0) = {(ID1, ID2, . . . , IDD)} ⊆ Λ×(B) be the current simple hyper-rectangle under de-
cryption. Letϕd = Φ(IDd) (d ∈ [D]).

If X ∈ B0, then for alld ∈ [D], Iϕd
(X) = Iϕd

(B0) = IDd. For simplicity, letλ(x) =
e(g, g)x. Now decryption forB0 proceeds as follows:

k0 =
∏

d∈[D]

k
(O)
IDd

=
∏

d∈[D]


µ̂d ·

∏

δ=(n,j)∈[2]×[2]

(
yϕd,δ

IDd,j
)ρ

(IDd)
n




= ω̂
∏

d∈[D],
δ=(n,j)∈[2]×[2]

(
yϕd,δ

IDd,j
)ρ

(IDd)
n
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V =(Msg||0m′

) · Ω−r · e


gr, ω̂

∏

d∈[D],
δ=(n,j)∈[2]×[2]

(
yϕd,δ

IDd,j
)ρ

(IDd)
n




·
∏

d∈[D],
n∈[2]


e


aϕd,n

−ρ
(IDd)
n ,

∏

j∈[2],
δ=(n,j)

(bϕd,δ
IDd,j)

rϕd,n


 · e


bϕd,n

−ρ
(IDd)
n ,

∏

j∈[2],
δ=(n,j)

(aϕd,δ
IDd,j)

r−rϕd,n







=(Msg||0m′

) · Ω−r · e (gr, ω̂) · λ


r ·

∑

d∈[D],
δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δρ
(IDd)
n IDd,j




· λ




∑

d∈[D],
δ=(n,j)∈[2]×[2]

αϕd,n(−ρ(IDd)
n )βϕd,nθϕd,δIDd,jrϕd,n




· λ




∑

d∈[D],
δ=(n,j)∈[2]×[2]

βϕd,n(−ρ(IDd)
n )αϕd,nθϕd,δIDd,j(r − rϕd,n)




=(Msg||0m′

) · Ω−r · e(gr, ω̂) · λ


r ·

∑

d∈[D],
δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δρ
(IDd)
n IDd,j




· λ


r ·

∑

d∈[D],
δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δ(−ρ(IDd)
n )IDd,j




=Msg||0m′

.

Else ifX /∈ B0, Iϕd
(X) 6= Iϕd

(B0) = IDd, d ∈ [D]. Hence decryption yields

V = (Msg||0m′

) ·

λ


r ·

∑
d∈[D],

δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δρ
(IDd)
n IDd,j




λ


r ·

∑
d∈[D],

δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δρ
(IDd)
n Iϕ,j(X)




= (Msg||0m′

) ·Qr

23



where

Q = λ




∑

d∈[D],
δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δρ
(IDd)
n IDd,j −

∑

d∈[D],
δ=(n,j)∈[2]×[2]

αϕd,nβϕd,nθϕd,δρ
(IDd)
n Iϕ,j(X)




With probability1−1/p, Q 6= 1, and the ciphertext is distributed uniformly at random inG ′. Hence
the probability thatV is of the formM̂sg||0m′

is less than1
p

+ 1
2m′ .

C.2 Proof: Confidentiality

Proof of Theorem 6.2:
We reduce the semantic security of AMERQCD to the hardness ofthe D-BDH problem. Let

[g, g1, g2, g3, Z] denote the D-BDH instance supplied to the simulator,B, whereg1 = gz1, g2 = gz2,
g3 = gz3, the simulator’s task is to decide whether or notZ = e(g, g)z1z2z3 . And to do this, the
simulator leverages an AMERQCD IND-sID-CPA adversary,A.

We describe a reduction such that ifZ = e(g, g)z1z2z3 , the simulator produces a valid ciphertext;
otherwise, the first termc in the ciphertext is random. Hence, if the adversary could break the
confidentiality of the scheme, the simulator would be able tosolve the D-BDH problem.
Init : The adversary selects a pointX∗ ∈ U∆ that it wishes to attack. Forϕ ∈ [D] × [L], define
I∗ϕ = Iϕ(X∗).
Setup: To create public and private parameters, the simulator does the following:

1. Pick at random



[αϕ,n, βϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2]

[θϕ,δ]ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2][
θ̄ϕ,δ

]
ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2]


 ∈R Z∗

p
4DL ×Zp

4DL × Z∗
p

4DL

subject to the constraint that



∑

j∈[2],δ=(n,j)

θ̄ϕ,δI∗ϕ,j = 0




ϕ=(d,l)∈[D]×[L],n∈[2]

whereI∗ϕ = Iϕ(X∗).

2. Release the following public parameters to the adversary.
[

Ω← e(g1, g2),[
aϕ,δ ← (gθϕ,δg1

θ̄ϕ,δ )
αϕ,n

, bϕ,δ ← (gθϕ,δg1
θ̄ϕ,δ)

βϕ,n
]

ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2]

]

Note that this posits thatω = z1z2; in addition, bothω and ω̂ are both unknown to the
simulator.
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3. Compute what it can of the master key.



[
aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2][

yϕ,δ ← (gθϕ,δg1
θ̄ϕ,δ)

αϕ,nβϕ,n
,
]

ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2]




Portionω̂ of the master key is unknown to the simulator.

Phase 1: Suppose the adversary makes a decryption key query for the hyper-rectangleB(s1, t1, s2, t2, . . . , sD, tD).
SinceB does not containX∗, there exists a dimensiond0 ∈ [D] such thatx∗

d0
/∈ [sd0 , td0 ], where

x∗
d0

is X∗ projected onto thedth
0 dimension. Hence, there exists a dimensiond0 ∈ [D], such that

for all ID ∈ Λd0(B), ID 6= I∗ϕ, whereϕ = (d0, l) = Φ(ID). We say thatX∗ does not overlap
with B in dimensiond0. The simulator now does the following:

1. Pickd0 such thatX∗ does not overlap withB in dimensiond0. Let n0 = 1.

2. Pick the following numbers at random:



[µd]d∈[D][
ρ̃

(ID)
n0

]

ID∈Λd0
(B)[

ρ
(ID)
n

]

ID∈Λd0
(B),n 6=n0[

ρ
(ID)
n

]

ID∈Λ∪(B)−Λd0
(B),n∈[2]




∈R ZD
p × Z2|Λ∪(B)|

p

subject to the constraint that
∑

d∈[D] µd = 0.

3. For allID ∈ Λ∪(B)−Λd0(B), letDK(ID) =
(
k
(O)
ID , [k

(I)
ID,1, k

(II)
ID,1], [k

(I)
ID,2, k

(II)
ID,2]

)
represent

the element inDK for ID, let ϕ = (d, l) = Φ(ID) whered 6= d0, compute and release
DK(ID) as below:




k
(O)
ID ← gµd ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ,δ

IDj
)ρ

(ID)
n ,

[
k
(I)
ID,n ← aϕ,n

−ρ
(ID)
n , k

(II)
ID,n ← bϕ,n

−ρ
(ID)
n

]
n∈[2]




4. For allID ∈ Λd0(B), let ϕ0 = (d0, l) = Φ(ID), compute and releaseDK(ID) as below:




k
(O)
ID ← ω̂gµd0 ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ,δ

IDj
)ρ

(ID)
n ,

[
k
(I)
ID,n ← aϕ0,n

−ρ
(ID)
n , k

(II)
ID,n ← bϕ0,n

−ρ
(ID)
n

]

n∈[2]




where
ρ(ID)

n0
= ρ̃(ID)

n0
− z2

αϕ0,n0βϕ0,n0Θ̄ϕ0,n0

(2)
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Θ̄ϕ0,n0 =
∑

j∈[2],δ0=(n0,j)

θ̄ϕ0,δ0IDj 6= 0.

This ensures thatρ(ID)
n0 is distributed uniformly at random inZp. And since

∑
j∈[2],δ0=(n0,j)

θ̄ϕ0,δ0I∗ϕ0,j =

0; moreover, the simulator has pickedd0 such thatID 6= I∗ϕ0
, we then havēΘϕ0,n0 6= 0.

Although the simulator does not knowρ(ID)
n0 (since it does not knowz2), it can compute

aϕ0,n0
−ρ

(ID)
n0 andbϕ0,n0

−ρ
(ID)
n0 given gz2. Since the simulator does not knoŵω, we now ex-

plain how to computek(O)
ID . The simulator rewrites the equation fork

(O)
ID as

k
(O)
ID =ω̂gµd0 ·

∏

δ=(n,j)∈[2]×[2]

(
yϕ0,δ

IDj
)ρ

(ID)
n

=



gµd0 ·
∏

δ=(2,j)∈{2}×[2]

(
yϕ0,δ

IDj
)ρ

(ID)
2



 · ω̂ ·
∏

δ=(1,j)∈{1}×[2]

(
yϕ0,δ

IDj
)ρ

(ID)
1

Let

Ψ = gµd0 ·
∏

δ=(2,j)∈{2}×[2]

(
yϕ0,δ

IDj
)ρ

(ID)
2

Then

k
(O)
ID = Ψ · ω̂ ·

∏

j∈[2],δ0=(n0,j)

(
yϕ0,δ0

IDj
)ρ

(ID)
n0

= Ψ · gz1z2 ·
∏

j∈[2],δ0=(n0,j)

(
gαϕ0,n0βϕ0,n0 (θϕ0,δ0

+z1θ̄ϕ0,δ0
)
)IDjρ

(ID)
n0

The simulator can compute partΨ because it possesses all necessary parameters required to
compute it.

Although the simulator cannot directly compute the value ofρ
(ID)
n0 (since it does not know

z2), it is capable of computingk(O)
ID givengz1 andgz2; since if we rewritek(O)

ID as below, we
can see that the exponent only containsz1 andz2 to the first degree.

k
(O)
ID =Ψ · gz1z2 ·

∏

j∈[2],δ0=(n0,j)

g−z1z2ρ
(ID)
n0

θ̄ϕ0,δ0
IDj/Θ̄ϕ0,n0

·
∏

j∈[2],δ0=(n0,j)

[
gαϕ0,n0βϕ0,n0θϕ0,δ0

IDjρID
n0 · gαϕ0,n0βϕ0,n0z1θ̄ϕ0,δ0

IDj eρ
(ID)
n0

]

=Ψ ·
∏

j∈[2],δ0=(n0,j)

[
gαϕ0,n0βϕ0,n0θϕ0,δ0

IDjρID
n0 · gαϕ0,n0βϕ0,n0z1θ̄ϕ0,δ0

IDj eρ
(ID)
n0

]

Challenge: The adversary gives the simulator two messagesMsg0 andMsg1. The simulator
picks a random bitb, and encryptsMsgb under pointX∗ as below:
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1. Pick random integers[rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .

2. Compute and release the following as the ciphertext.




(Msgb||0m′

) · Z−1, g3,


∏
j∈[2],

δ=(n,j)

grϕ,nβϕ,nθϕ,δI
∗

ϕ,j ,
∏

j∈[2],
δ=(n,j)

(g3 · g−rϕ,n)
αϕ,nθϕ,δI

∗

ϕ,j




ϕ=(d,l)∈[D]×[L],n∈[2]




Note that this implies thatr = z3; and ifZ = e(g, g)z1z2z3, it is easy to verify that the ciphertext is

well-formed, due to the fact that

[
∑

j∈[2],δ=(n,j)

θ̄ϕ,δI∗ϕ,j = 0

]

ϕ=(d,l)∈[D]×[L],n∈[2]

. On the other hand,

if Z is a random number, then the first termc in the ciphertext is random and independent of the
remaining terms.
Phase 2: Phase 1 is repeated.
Guess: When the adversary outputs a guessb′ of b, the simulator outputs1 if b′ = b and0 otherwise,
in answer to the D-BDH instance.

C.3 Proof: Anonymity

In Definition 4 of the selective-ID anonymity game, the challenger flips a random coinb in the
Challengephase. An equivalent definition is where the challenger flipsthe coinb in the Setup
phase before running theSetup(Σ,U∆) algorithm. This new definition can be further tranlated
into a real-or-random version which we will use in the following proof of anonymity. In the real-or-
random game, the adversary commits to only one pointX∗ in theInit phase; any of its subsequent
range queries must not containX∗; in theChallengephase, the challenger either returns a faithful
encryption ofMsg underX∗ or a completely random ciphertext; and the adversary’s job is to
distinguish between these two worlds. It is easy to verify that the above real-or-random definition
implies the selective-ID anonymity definition as stated in Definition 4 [13].

The proof of anonymity is carried out in2DL steps using a hybrid argument. To do this, we
define the following games, where∗ represents a number distributed uniformly at random from the
appropriate group.
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Wreal : The challenge ciphertext is
(
c, c0, [c

(I)
(1,1),1, c

(II)
(1,1),1], . . . , [c

(I)
(D,L),2, c

(II)
(D,L),2]

)
;

W0 : The challenge ciphertext is
(
∗, c0, [c

(I)
(1,1),1, c

(II)
(1,1),1], . . . , [c

(I)
(D,L),2, c

(II)
(D,L),2]

)
;

W1,1,1 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [c(I)

(1,1),2, c
(II)
(1,1),2], . . . , [c

(I)
(D,L),2, c

(II)
(D,L),2]

)
;

W1,1,2 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [∗, ∗], [c(I)

(1,2),1, c
(II)
(1,2),1], . . . , [c

(I)
(D,L),2, c

(II)
(D,L),2]

)
;

. . .

WD,L,1 : The challenge ciphertext is
(
∗, c0, [∗, ∗], [∗, ∗], . . . , [∗, ∗], [c(I)

(D,L),2, c
(II)
(D,L),2]

)
;

WD,L,2 : The challenge ciphertext is(∗, c0, [∗, ∗], [∗, ∗], . . . , [∗, ∗], [∗, ∗]) .

In step(d, l, n) of the hybrid argument, we show thatWd,l,n is computationally indistinguish-
able from the previous world. Note that the transition fromWreal toW0 is the standard concept
of semantic security, and has been proved in the previous section. In addition,WD,L,2 is computa-
tionally indistinguishable from a completely random ciphertext, hence is anonymous.

We reduce the anonymity of our AMERQCD scheme to the hardnessof the D-Linear problem.
We rewrite the D-Linear problem as given[g, gz1, gz2, Y, gz2z4 , gz3+z4] ∈ G6, wherez1, z2, z3, z4 are
picked at random fromZp, decide whetherY = gz1+z3 . It is easy to show that this is equivalent to
the original D-Linear problem. For convenience, letg1 = gz1, g2 = gz2, g×

24 = gz2z4 , g+
34 = gz3+z4 .

Without loss of generality, we show only how to prove step(d1, l1, n1) of the hybrid argument.

Lemma C.1. SupposeG satisfies the(τ, ǫ) D-Linear assumption, then no adversary makingq
decryption key queries, within timeτ − Θ(qD log T ), can distinguish betweenWd1,l1,n1 and the
preceding game with more thanǫ + 1/p probability.

Proof of Lemma C.1: Let ϕ1 = (d1, l1). We describe a reduction such that ifY = gz1+z3,
then the simulator produces a ciphertext in which the block[c

(I)
(d1,l1),n1

, c
(II)
(d1,l1),n1

] is well-formed;
otherwise, ifY is picked at random, the block is random as well. Hence, if theadversary can
distinguish between the two scenarios, the simulator can solve the D-Linear problem.
Init : The adversary selects a pointX∗ in space that it wishes to attack. DefineI∗ϕ,j = Iϕ,j(X

∗).
Setup: To create public and private parameters, the simulator does the following:

1. Pick the following parameters at random:



ω,
[αϕ,n, βϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)

,

[θϕ,δ]ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2] ,[
θ̄ϕ,δ

]
ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2],(ϕ,n)6=(ϕ1,n1)


 ∈R Z∗

p ×Z∗
p

4DL−1 × Zp
4DL × Z∗

p
4DL−1

subject to the constraint that



∑

j∈[2],δ=(n,j)

θ̄ϕ,δI∗ϕ,j = 0




ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)
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whereI∗ϕ,j = Iϕ,j(X
∗).

In addition, later in Equation (5), we will need that
∑

j∈[2] I∗ϕ1,jθϕ1,(n1,j) 6= 0. Hence, the
simulator simply aborts if it happens to pickθϕ1,(n1,j)’s such that

∑
j∈[2] I∗ϕ1,jθϕ1,(n1,j) = 0.

Note that this happens with probability1/p, and this explains why the1/p additive factor
exists in the adversary’s advantage in Lemma C.1.

2. Compute and release to the adversary the following publicparameters:



Ω← e(g, g)ω,[
aϕ1,δ1 ← g1

θϕ1,δ1 , bϕ1,δ1 ← g2
θϕ1,δ1

]
δ1=(n1,j)∈{n1}×[2]

,[
aϕ,δ ← (gθϕ,δg1

θ̄ϕ,δ)
αϕ,n

, bϕ,δ ← (gθϕ,δg1
θ̄ϕ,δ)

βϕ,n
]

ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2],(ϕ,n)6=(ϕ1,n1)




This posits thatαϕ1,n1 = z1, βϕ1,n1 = z2, both of which are unknown to the simulator.

3. Compute what it can of the private key:



ω̂ ← gω, aϕ1,n1 ← g1, bϕ1,n1 ← g2,[
aϕ,n ← gαϕ,n , bϕ,n ← gβϕ,n

]
ϕ=(d,l)∈[D]×[L],n∈[2],(ϕ,n)6=(ϕ1,n1)

,[
yϕ,δ ← (gθϕ,δg1

θ̄ϕ,δ)
αϕ,nβϕ,n

]

ϕ=(d,l)∈[D]×[L],δ=(n,j)∈[2]×[2],(ϕ,n)6=(ϕ1,n1)




Note that the simulator does not knowyϕ1,(n1,j).

The following lemma shows that even if we do not know the parametersz1, z2, yϕ1,(n1,j), we
can still compute certain terms efficiently.

Lemma C.2. In step(d1, l1, n1) of the hybrid arguement, letϕ1 = (d1, l1). Suppose we are
given (d2, l2, n2) 6= (d1, l1, n1), and letϕ2 = (d2, l2). SupposeID1 and ID2 are nodes such
that Φ(ID1) = ϕ1 andΦ(ID2) = ϕ2 andID2 6= I∗ϕ2

. Moreover, suppose we are givenρ1 ∈ Zp.
Then, even though the simulator does know knowyϕ1,(n1,j), it can efficiently generate the following
term, such that the its resulting distribution is the same aswhenρ2 is picked uniformly at random.

∏

j∈[2]

(y
ID1,j

ϕ1,(n1,j))
ρ1 ·

∏

j∈[2]

(y
ID2,j

ϕ2,(n2,j))
ρ2

, (3)

Moreover, the following two terms can also be computed efficiently

a
−ρ2
ϕ2,n2

, b−ρ2
ϕ2,n2

. (4)

Proof. Let α = αϕ2,n2 , β = βϕ2,n2. For i ∈ [2], j ∈ [2], let θ′i,j = θϕi,(n1,j); θ′2,j = θϕ2,(n2,j).

Define fori ∈ [2], Θi =
∑

j∈[2] θ
′
i,jIDi,j andΘ2 =

∑
j∈[2] θ

′
2,jID2,j

Recall our convention that the first component (indexed by subscriptj) of an ID is globally
unique for each tree node, and the second component of anID is fixed to 1. SinceID2 6= I∗ϕ2

, and∑
j∈[2] θ

′
2,jI∗ϕ2,j = 0 andθ

′
2,1 6= 0,

Θ2 =
∑

j∈[2]

θ
′
2,jID2,j 6= 0
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First, the simulator pickρ uniformly at random and define

ρ2 = ρ− z2ρ1Θ1

αβΘ2

.

Observe thatρ2 is distributed uniformly, but we cannot computeρ2 efficiently because we do
not knowz2. However, since we knowgz2, we can computegρ2 efficiently. Hence, it follows that
we can compute the two terms in (4) efficiently in the following way.

a
−ρ2
ϕ2,n2

= (gρ2)−α, b−ρ2
ϕ2,n2

= (gρ2)−β.

It remains to show how to compute the term in (3). Rewrite (3) as below:

∏

j∈[2]

(y
ID1,j

ϕ1,(n1,j))
ρ1 ·

∏

j∈[2]

(y
ID2,j

ϕ2,(n2,j))
ρ2

=
∏

j∈[2]

gz1z2θ′1,j ID1,j ρ1 ·
∏

j∈[2]

gαβ(θ′2,j+z1θ′2,j)ID2,j ρ2

=gz1z2ρ1Θ1+αβ(Θ2+z1Θ2)(ρ−z2ρ1Θ1/αβΘ2) = gαβΘ2ρ · (gz1)αβΘ2ρ · (gz2)−ρ1Θ1Θ2/Θ2,

which can be computed efficiently givengz1 andgz2.

Phase 1:Suppose the adversary makes a decryption query for the hyper-rectangleB(s1, t1, . . . , sD, tD).
SinceB does not containX∗, there exists a dimensiond0 ∈ [D] such thatx∗

d0
/∈ [sd0 , td0 ], where

x∗
d0

is X∗ projected onto thedth
0 dimension. Hence, exactly one of the following cases must be

true:

Case 1: For allID ∈ Λd1(B) such thatΦ(ID) = ϕ1, ID 6= Iϕ1(X
∗).

Case 2: There existsID ∈ Λd1(B) such thatΦ(ID) = ϕ1 andID = Iϕ1(X
∗). Note that in this

case, for allID′ ∈ Λd1(B) such thatID′ 6= ID, ID′ 6= Iϕ′(X∗), whereϕ′ = Φ(ID′);
moreover, there exists a dimensiond0, such that for allID0 ∈ Λd0(B), ID0 6= Iϕ0(X

∗),
whereϕ0 = Φ(ID0).

Figure 3 illustrates the above two cases with a 2-dimensional example. We now explain how the
simulator generates the decryption key in each of the above cases.

Case 1: (a) Pick at random[µ̂d]d∈[D] ∈R GD, such that
∏

d∈[D] µ̂d = ω̂.

(b) For eachID ∈ Λ∪(B) whereϕ := Φ(ID) 6= ϕ1, pick at random
[
ρ

(ID)
n

]

n∈[2]
. Let

DK(ID) =
(
k
(O)
ID , [k

(I)
ID,1, k

(II)
ID,1], [k

(I)
ID,2, k

(II)
ID,2]

)
represent the element inDK for ID,

compute and releaseDK(ID) as below:




k
(O)
ID ← µ̂d ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ,δ

IDj
)ρ

(ID)
n ,

[
k
(I)
ID,n ← aϕ,n

−ρ
(ID)
n , k

(II)
ID,n ← bϕ,n

−ρ
(ID)
n

]
n∈[2]



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X* case 2

d1

d2
X* case 1

X* case 1

3 4 9 10

X* case 1

(a)

d1, l1

1 3... 10 T

d1, l1

4 9

l1

... ...

(b)

Figure 3: A 2-dimensional example: Relative position between X∗ and the queried hyper-
rectangle. (a) Each small rectangle shown is a simple rectangle. Along dimensiond1, ranges
[3, 4] and [9, 10] correspond to nodes at levell1. (b) The interval tree corresponding to dimension
d1.

(c) For eachID ∈ Λ∪(B) such thatΦ(ID) = ϕ1, the simulator can compute the following
DK(ID) efficiently:




k
(O)
ID ← µ̂d1 ·

∏
δ=(n,j)∈[2]×[2]

(
y

IDj

ϕ1,δ

)ρ
(ID)
n

,
[
k
(I)
ID,n ← a

−ρ
(ID)
n

ϕ1,n , k
(II)
ID,n ← b

−ρ
(ID)
n

ϕ1,n

]
n∈[2]




Since the simulator does not knowyϕ1,(n1,j), hence, it needs to use Lemma C.2 to
generateDK(ID). Let n′ 6= n1. To apply Lemma C.2, the simulator first picks at
randomρ

(ID)
n1 , and rewritesk(O)

ID as

k
(O)
ID = µ̂d1 ·

∏

δ=(n,j)∈[2]×[2]

(
y

IDj

ϕ1,δ

)ρ
(ID)
n

= µ̂d1 ·
∏

δ=(n1,j)∈{n1}×[2]

(
y

IDj

ϕ1,δ

)ρ
(ID)
n1 ·

∏

δ=(n′,j)∈{n′}×[2]

(
y

IDj

ϕ1,δ

)ρ
(ID)

n′

sinceID 6= Iϕ1(X
∗) , the simulator can apply Lemma C.2 by substituting(d2, l2, n2)

in the lemma with(d1, l1, n
′), andρ1 with ρ

(ID)
n1 ; in addition, bothID1 andID2 in the

lemma are substituted withID.

Case 2: (a) Pick at random[µd]d∈[D] ∈R Zp such that
∑

d∈[D] µd = ω.

(b) For eachID ∈ Λ∪(B)−Λd0(B)−Λd1(B) whereϕ := Φ(ID) = (d, l), d 6= d0 andd 6=
d1, pick at random

[
ρ

(ID)
n

]

n∈[2]
. Let DK(ID) =

(
k
(O)
ID , [k

(I)
ID,1, k

(II)
ID,1], [k

(I)
ID,2, k

(II)
ID,2]

)
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represent the element inDK for ID, compute and releaseDK(ID) as below:



k
(O)
ID ← gµd ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ,δ

IDj
)ρ

(ID)
n ,

[
k
(I)
ID,n ← aϕ,n

−ρ
(ID)
n , k

(II)
ID,n ← bϕ,n

−ρ
(ID)
n

]
n∈[2]




(c) Let ID ∈ Λd1(B) andID = Iϕ1(X
∗). There exists exactly one suchID. The simula-

tor picks at randomρ(ID)
n1 ∈R Zp. DefineΥ =

∏
δ1=(n1,j)∈{n1}×[2]

yϕ1,δ1
IDjρ

(ID)
n1 .

(d) For eachID ∈ Λd0(B) whereϕ0 = (d0, l) := Φ(ID), compute and releaseDK(ID):



k
(O)
ID ← gµd0 ·Υ ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ0,δ

IDj
)ρ

(ID)
n ,

[
k
(I)
ID,n ← aϕ0,n

−ρ
(ID)
n , k

(II)
ID,n ← bϕ0,n

−ρ
(ID)
n

]
n∈[2]




This implies thatµ̂d0 = gµd0 · Υ. Note thatΥ cannot be computed efficiently, as
the simulator does not knowyϕ1,(n1,j). However, sinceID 6= Iϕ0(X

∗), the simulator
can apply Lemma C.2 by substituting(d2, l2, n2) in the lemma with(d0, l, 1), ρ1 with

ρ
(ID)
n1 , ID1 with ID, andID2 with ID. The remaining terms ink(O)

ID can be computed
efficiently.

(e) For eachID ∈ Λd1(B) whereϕ′
1 = (d1, l) := Φ(ID) 6= ϕ1, compute and release

DK(ID): 


k
(O)
ID ← gµd1 ·Υ−1 ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ′

1,δ
IDj

)ρ
(ID)
n ,

[
k
(I)
ID,n ← aϕ′

1,n
−ρ

(ID)
n , k

(II)
ID,n ← bϕ′

1,n
−ρ

(ID)
n

]

n∈[2]




This implies that̂µd1 = gµd1 · Υ−1. Note thatΥ−1 cannot be computed efficiently, as
the simulator does not knowyϕ1,(n1,j). However, sinceID 6= Iϕ′

1
(X∗), the simulator

can apply Lemma C.2, by substituting(d2, l2, n2) in the lemma with(d1, l, 1), ρ1 with

−ρ
(ID)
n1 , ID1 with ID, andID2 with ID. The remaining terms ink(O)

ID can be computed
efficiently.

(f) For ID, let n′ 6= n1. Pick ρ
(ID)
n′ at random fromZp. Then compute and release the

following DK(ID):



k
(O)

ID
← gµd1 ·Υ−1 ·

∏
δ=(n,j)∈[2]×[2]

(
yϕ1,δ

IDj

)ρ
(ID)
n

,

[
k
(I)

ID,n
← aϕ1,n

−ρ
(ID)
n , k

(II)

ID,n
← bϕ1,n

−ρ
(ID)
n

]

n∈[2]




As before, herêµd1 = gµd1 · Υ−1. k
(O)

ID
can be computed because the terms containing

yϕ1,(n1,j) cancel out, leavingk(O)

ID
= gµd1 ·

∏
δ=(n′,j)∈{n′}×[2]

(
yϕ1,δ

IDj

)ρ
(ID)

n′

.
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(g) For eachID ∈ Λd1(B) such thatΦ(ID) = ϕ1 andID 6= ID, compute and release
DK(ID): 


k
(O)
ID ← gµd1 ·Υ−1 · ∏

δ=(n,j)∈[2]×[2]

(
yϕ1,δ

IDj
)ρ

(ID)
n ,

[
k
(I)
ID,n ← aϕ1,n

−ρ
(ID)
n , k

(II)
ID,n ← bϕ1,n

−ρ
(ID)
n

]

n∈[2]




Again, to be able to generatek(O)
ID , Lemma C.2 is required. However, in this case, a

slight complication is involved, since two terms ink
(O)
ID containyϕ1,(n1,j):

k
(O)
ID = gµd1 ·Υ−1 ·

∏

δ=(n,j)∈[2]×[2]

(
yϕ1,δ

IDj
)ρ

(ID)
n

= gµd1 ·
∏

δ1=(n1,j)∈{n1}×[2]

yϕ1,δ1
−IDjρ

(ID)
n1 ·

∏

δ=(n,j)∈[2]×[2]

(
yϕ1,δ

IDj
)ρ

(ID)
n

= gµd1 ·
∏

δ1=(n1,j)∈{n1}×[2]

(
yϕ1,δ1

−IDjρ
(ID)
n1 · yϕ1,δ1

IDjρ
(ID)
n1

)

·
∏

δ=(n′,j)∈{n′}×[2]

yϕ1,δ
IDjρ

(ID)

n′

Now the simulator picksρ(ID)
n1 at random fromZ∗

p , and computes

ρ̃(ID)
n1

= ρ(ID)
n1

∑
j∈[2] IDjθϕ1,(n1,j)

∑
j∈[2] IDjθϕ1,(n1,j)

− ρ(ID)
n1

(5)

Here we require that
∑

j∈[2] IDjθϕ1,(n1,j) 6= 0, and as we explained in theSetupstage,

the simulator aborts if it happens to pickθϕ1,(n1,j)’s such that
∑

j∈[2] IDjθϕ1,(n1,j) = 0.
Hence,

k
(O)
ID = gµd1 ·

∏

δ1=(n1,j)∈{n1}×[2]

(
yϕ1,δ1

IDj eρ
(ID)
n1

)
·

∏

δ=(n′,j)∈{n′}×[2]

yϕ1,δ
IDjρ

(ID)

n′

And now the simulator can apply Lemma C.2 by substituting(d2, l2, n2) in the lemma
with (d1, l1, n

′), ρ1 with ρ̃
(ID)
n1 , ID1 with ID, andID2 with ID.

Challenge: On receiving a messageMsg from the adversary, the simulator does the following:

1. Pick random integers[rϕ,n]ϕ=(d,l)∈[D]×[L],n∈[2] ∈ Z2DL
p .
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2. Compute and release the following as the ciphertext.




∗, g+
34, [∗, ∗], . . . , [∗, ∗],

∏
j∈[2],

δ1=(n1,j)

(g×
24)

θϕ1,δ1
I∗

ϕ1,j ,
∏

j∈[2],
δ1=(n1,j)

Y θϕ1,δ1
I∗

ϕ1,j ,




∏
j∈[2],

δ=(n,j)

(grϕ,n)βϕ,nθϕ,δI
∗

ϕ,j ,
∏

j∈[2],
δ=(n,j)

(g+
34 · g−rϕ,n)

αϕ,nθϕ,δI
∗

ϕ,j ,




(d1,l1,n1)<(d,l,n)<(D,L,2),ϕ=(d,l)




where(d, l, n) < (d′, l′, n′) if and only if 1) d < d′; or 2) d = d′ andl < l′; or 3) (d, l) =
(d′, l′) andn < n′.

Note that this implies thatr = z3 + z4 andrϕ1,n1 = z4. If Y = gz1z3 , it is easy to verify that the
ciphertext is well-formed, due to the fact that




∑

j∈[2],δ=(n,j)

θ̄ϕ,δI∗ϕ,j = 0




(d,l,n)6=(d1,l1,n1),ϕ=(d,l)

If Y is a random number, then termc(II)
(d1,l1),n1

is random and independent of the remaining terms of
the ciphertext.
Phase 2: Phase 1 is repeated.
Guess: If the adversary guesses that the ciphertext is an encryption ofMsg underX∗, the simulator
guesses thatY = gz3+z4 . Else if the adversary guesses that the ciphertext is the encryption under a
random point, then the simulator guesses thatY is picked at random fromG.

Proof of Theorem 6.3: The theorem follows naturally from Lemma C.1 and the hybrid argument.
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