
Learning Abstractions for Model

Checking

Anubhav Gupta
June 2006

CMU-CS-06-131

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Edmund M. Clarke - chair

Randal E. Bryant
Bruce H. Krogh

Kenneth L. McMillan (Cadence Berkeley Labs)

Copyright c© 2006 Anubhav Gupta

This research was sponsored by the National Science Foundation under grant no. CCF-0429120,
the Semiconductor Research Corporation under agreement nos. 2002-TJ-1027 and 99-TJ-684, and
the Defense Advanced Projects Agency under subcontract no. SA2208-23106PG. The views and
conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.



Keywords: abstraction, boolean satisfiability, bounded model checking, broken
trace, decision tree, formal methods, integer linear programming, machine learning,
model checking, quantified boolean formula, refinement, unsatisfiable core.



Dedicated to mom, dad and bhai





Abstract

Learning is a process that causes a system to improve its performance
through experience. Inductive learning is the process of learning by exam-
ples, i.e. the system learns a general rule from a set of sample instances.

Abstraction techniques have been successful in model checking large
systems by enabling the model checker to ignore irrelevant details. The
aim of abstraction is to identify a small abstract model on which the
property holds. Most previous approaches for automatically generat-
ing abstract models are based on heuristics combined with the iterative
abstraction-refinement loop. These techniques provide no guarantees on
the size of the abstract models.

We present an application of machine learning to counterexample-
guided abstraction refinement, and to abstraction without refinement.
Our work formulates abstraction as an inductive learner that searches
through a set of abstract models. The machine learning techniques pre-
cisely identify the information in the design that is relevant to the prop-
erty. Our approach leverages recent advances in boolean satisfiability and
integer linear programming techniques. We provide better control on the
size of the abstract models, and our approach can generate the smallest
abstract model that proves the property.

Most previous work has focused on applying abstraction to model
checking, and bounded model checking is used as a subroutine in many
of these approaches. We also present an abstraction technique that speeds
up bounded model checking.

We have implemented our techniques for the verification of safety
properties on hardware circuits using localization abstraction. Our exper-
imental evaluation shows a significant improvement over previous state-
of-the-art approaches.
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Chapter 1

Introduction

The complexity of computer systems is increasing at a tremendous rate, and this

growth in complexity is making it harder to ensure that the systems are error-free.

Furthermore, computer systems are now used in almost every aspect of our lives,

and many of their applications are safety-critical. Thus, it is extremely important

that these systems perform as expected. Simulation-based verification techniques

cannot achieve the required level of confidence in the performance of these systems,

and therefore, application of formal verification techniques is essential.

Model Checking [Clarke and Emerson, 1981; Clarke et al., 1999] is a formal veri-

fication technique that automatically decides whether a finite state system satisfies a

temporal property by an exhaustive state-space traversal. The temporal logics that

model checkers support can specify most of the properties of interest. This thesis

focuses on two classes of temporal properties: safety properties and liveness proper-

ties. Intuitively, a safety property states that something bad never happens, while a
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liveness property states that something good eventually happens.

The major capacity bottleneck for model checking is the state-space size. The use

of symbolic Binary Decision Diagram (BDD) [Bryant, 1986] based representations

has allowed model checkers to verify systems with several hundred state elements.

However, many industrial designs today are at least an order of magnitude larger.

Abstraction techniques [Clarke et al., 1994; Cousot and Cousot, 1977] have been very

successful in combating the state-explosion problem. The idea behind abstraction is

to build a smaller model, called the abstract model, by grouping together multiple

states in the concrete (original) model into a single abstract state. The abstract

model preserves all the behaviors of the concrete model by allowing a transition from

an abstract state ŝ to an abstract state t̂ if there is some concrete state in ŝ that has a

concrete transition to some concrete state in t̂. This ensures that if the model checker

proves a safety or liveness property on the abstract model, the property also holds on

the concrete model. However, abstraction can introduce behaviors that violate the

property in the abstract model, even when the property holds on the concrete model.

Abstraction techniques search over a predefined set of abstract models, looking for

one that proves that property and is small in size.

Starting with Kurshan’s localization reduction [Kurshan, 1995], there has been a

lot of work in automatically generating good abstract models [Barner et al., 2002;

Chauhan et al., 2002; Clarke et al., 2000, 2003; Das and Dill, 2002; Glusman et

al., 2003; Gupta et al., 2003; Jain et al., 2005; Mang and Ho, 2004; Wang et al.,

2001, 2003, 2004a]. Many of these techniques follow the Counterexample-Guided

Abstraction-Refinement (cegar) framework [Clarke et al., 2000, 2003]. These tech-

2



niques start with an initial abstract model and iteratively add more details (re-

finement) to eliminate spurious counterexamples, until the property holds on the

abstract model or a counterexample is found on the concrete model. The refinement

of the abstract model and the search for a concrete counterexample are guided by

the abstract counterexamples produced by the model checker.

The field of machine learning [Mitchell, 1997] deals with programs that improve

their performance through experience. It is an interdisciplinary area that draws

on results from statistics, artificial intelligence, probability, information theory, com-

plexity, etc. In recent years, there have been many advances in this area, and machine

learning techniques have been used for a wide variety of applications, ranging from

data mining of medical records for detecting important correlations to autonomous

vehicle navigation systems.

This thesis shows how machine learning techniques can be used in an abstraction-

based model checking framework to identify good abstract models. We demonstrate

the applicability of these techniques for abstraction both with and without refine-

ment. These techniques increase the capacity of model checking by learning the

information in the design that is relevant to the property.

We present an application of boolean satisfiability (SAT) and machine learning

techniques to the cegar framework. In each iteration of the cegar loop, we check

whether the abstract system satisfies the specification with a standard OBDD-based

symbolic model checker. If a counterexample is reported by the model checker, we

try to simulate it on the concrete system with a fast SAT-solver. In other words, we
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generate and solve a SAT instance that is satisfiable if and only if the counterexample

is real. If the instance is not satisfiable, we look for the failure state, which is the

last state in the longest prefix of the counterexample that is still satisfiable. Note

that this process cannot be performed with a standard circuit simulator, because the

abstract counterexample does not include values for all the inputs in the concrete

model.

We use the failure state in order to refine the abstraction. The abstract system

has transitions from the failure state that do not exist in the concrete system, and

our refinement strategy tries to eliminate these transitions. Our implementation

verifies properties of hardware circuits using localization abstraction. Abstraction is

performed by selecting a set of state variables and making them invisible, i.e., they are

treated as inputs. Refinement corresponds to making some variables visible that were

previously invisible. It is important to find a small set of variables to make visible

in order to keep the size of the abstract state space manageable. This problem can

be reduced to a problem of separating two sets of states (abstraction unites concrete

states, and therefore refining an abstraction is the opposite operation, i.e., separation

of states). For realistic systems, generating these sets is not feasible, both explicitly

and symbolically. Moreover, the minimum separation problem is known to be NP-

hard [Clarke et al., 2000, 2003]. Instead of enumerating all the states in these sets,

we generate samples of these states and learn the separating variables from these

samples using Integer Linear Programming and Decision Tree Learning techniques.

Most of the abstraction techniques in literature are based on refinement. The

disadvantage of any refinement-based strategy is that once some irrelevant constraint
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is added to the abstract model, it is not removed in subsequent iterations. As

the model checker discovers longer abstract counterexamples, the constraints that

were added to eliminate the previous counterexamples might become redundant.

Refinement-based techniques do not identify and remove these constraints from the

abstract model. This drawback is present in a refinement-based strategy irrespective

of the technique that is used to eliminate spurious counterexamples.

We formalize abstraction for model checking as an inductive learning [Mitchell,

1997] problem and present an iterative algorithm for abstraction-based model check-

ing that is not based on refinement. In order to formulate abstraction as inductive

learning, we need some notion of samples that constitute the experience available to

the learner. We introduce the notion of broken traces which capture the necessary

and sufficient conditions for the existence of an error path in the abstract model.

Our abstraction methodology computes the smallest abstract model that eliminates

all broken traces. This corresponds to the smallest abstract model that can prove the

property. The naive method of computing this model by generating and eliminating

all broken traces is infeasible because the set of broken traces is too large to enumer-

ate. Instead, we learn this model by generating a set of sample broken traces such

that the abstract model that eliminates the broken traces in this set also eliminates

all other broken traces. Starting with an empty set, we iteratively generate this set of

samples. In each iteration of the loop, we compute an abstract model that eliminates

all broken traces in the sample set, and then use the counterexample produced by

model checking this abstract model to guide the search for new broken traces that

are not eliminated by the current abstract model. The loop terminates when no
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counterexample is present in the abstract model, or a broken trace corresponding to

a real bug is generated. We compare this approach with our learning-based cegar

approach and other state-of-the-art abstraction techniques.

In the last few years, SAT-based Bounded Model Checking (BMC) [Biere et

al., 1999] has gained widespread acceptance in industry as a technique for refuting

properties with shallow counterexamples. The extreme efficiency of modern SAT-

solvers makes it possible to check properties typically up to a depth of a few hundred

cycles. There is a very weak correlation between what is hard for standard BDD-

based model checking, and what is hard for BMC. It is many times possible to refute

properties with the latter that cannot be handled at all by the former.

Most previous work has focused on applying cegar to model checking. This

thesis presents a cegar technique for BMC. Our technique makes BMC faster, as

indicated by our experiments. BMC is also used for generating refinements in the

Proof-Based Refinement (pbr) framework [Gupta et al., 2003; McMillan and Amla,

2003]. Previous research has shown that cegar and pbr are extreme approaches:

cegar burdens the model checker and pbr burdens the refinement step [Amla and

McMillan, 2004] . We show that our technique unifies pbr and cegar into an

abstraction-refinement framework that can balance the model checking and refine-

ment efforts.
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1.1 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 provides an introduction to the machine learning concepts that are

used in the thesis. The contents of this chapter are based on [Mitchell, 1997].

• Chapter 3 provides a brief introduction to model checking; the use of abstrac-

tion in model checking; and SAT-based bounded model checking.

• Chapter 4 presents an application of inductive learning techniques to the

counterexample-guided abstraction-refinement framework. The contents of this

chapter are based on [Clarke et al., 2002, 2004].

• Chapter 5 formalizes abstraction as an inductive learning problem and presents

an abstraction-based model checking framework that is not based on refine-

ment. The contents of this chapter are based on [Gupta and Clarke, 2005].

• Chapter 6 discusses the theoretical complexity of generating the smallest ab-

stract model that can prove the property.

• Chapter 7 describes a counterexample-guided abstraction-refinement technique

for SAT-based bounded model checking. The contents of this chapter are based

on [Gupta and Strichman, 2005].

• Chapter 8 concludes the thesis with a summary of the major contributions

and directions for future research.
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Chapter 2

Machine Learning

Definition 2.0.1. Machine learning is the process that causes a system to improve

its performance at a particular task with experience.

2.1 Inductive Learning

Consider a system with the task of classifying objects x ∈ X into classifications

c ∈ C. The performance of this system is characterized by how successful it is in

producing the right classification. The experience available to the system is a set

S of samples, where each sample is an object with its corresponding classification.

The goal of an inductive learner is to infer a classifying function f : X → C from

these samples that can correctly predict the classification for the unobserved objects

(Figure 2.1). The learner searches for this function in a set F of candidate functions,

which is implicitly defined by the representation being used for these functions.
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Figure 2.1: Inductive Learning: Generalizing from samples.

Definition 2.1.1. Inductive learning is the process of inferring a target concept by

generalizing from a set of training samples.

2.2 Generating Samples

There are two frameworks for generating the set of samples:

1. Random Sampling: The set of samples is randomly chosen.

2. Queries: The learner asks some specific questions about the target function to

generate the set of samples.

The types of queries that have been studied in literature [Angluin, 1988] include:

1. Membership Query: The input to the query is an object and the output is its

classification.
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2. Equivalence Query: The input to the query is a function g and the output is

yes if g is the same as the target function f , otherwise the output is an object

x and its classification f(x), such that g(x) 6= f(x).

We illustrate these concepts through an example. Consider the problem of learning

conjunctions of boolean literals. The set of objects X consists of all assignments to

the boolean variables V = {x1, . . . xn}. The set of classifications C is {0, 1}. The set

of candidate functions F consists of conjunctions of boolean literals over variables in

V .

Algorithm 2.1 learns boolean conjunctions with random sampling (LearnConjR).

Starting with a boolean conjunction of all the 2n literals (line 1), it goes over all sam-

ples with classification 1 and removes all literals that are assigned a value 0 in the

corresponding object (line 4). If a sample with classification 0 is incorrectly classi-

fied by the current function g (line 6), it means that the set of samples S cannot be

classified by a conjunction of boolean literals (line 7).

Example 2.2.1. Given V = {x1, x2, x3, x4, x5}, and the sample set

S = { 〈(1, 0, 0, 1, 1), 1〉, 〈(1, 1, 0, 1, 1), 1〉, 〈(1, 1, 0, 0, 1), 0〉, 〈(1, 1, 0, 0, 0), 1〉 }

We show the working of LearnConjR, as it goes over the samples in S.

1. Initially (g = x1 ∧ ¬x1 ∧ x2 ∧ ¬x2 ∧ x3 ∧ ¬x3 ∧ x4 ∧ ¬x4 ∧ x5 ∧ ¬x5).

2. After 〈(1, 0, 0, 1, 1), 1〉, (g = x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ x5).

3. After 〈(1, 1, 0, 1, 1), 1〉, (g = x1 ∧ ¬x3 ∧ x4 ∧ x5).
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4. After 〈(1, 1, 0, 0, 1), 0〉, (g = x1 ∧ ¬x3 ∧ x4 ∧ x5).

5. After 〈(1, 1, 0, 0, 0), 1〉, (g = x1 ∧ ¬x3).

If S also contains the sample 〈(1, 0, 0, 0, 1), 0〉, it cannot be classified by a conjunction

of boolean literals.

Algorithm 2.1 Learning Boolean Conjunctions with Random Sampling

LearnConjR(S)

1: g =
∧n

i=1(xi ∧ ¬xi)

2: for (〈x, c(x)〉 ∈ S do

3: if (c(x) = 1) then

4: Remove from g all literals that are assigned 0 in s

5: else

6: if (g(x) 6= 0) then

7: return Target function is not a boolean conjunction

8: return g

Algorithm 2.2 learns boolean conjunctions with equivalence queries (LearnConjQ).

At each iteration, it checks if the current function g matches the target function with

an equivalence query (line 3). If g is different from the target function, the sample

returned by the query is used to update g (line 8).
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Algorithm 2.2 Learning Boolean Conjunctions with Equivalence Queries
LearnConjQ

1: g =
∧n

i=1(xi ∧ ¬xi)

2: while (1) do

3: if (equivalence query(g) = yes) then

4: return g

5: else

6: Let 〈x, c(x)〉 be the result of the query

7: if (c(x) = 1) then

8: Remove from g all literals that are assigned 0 in s

9: else

10: return Target function is not a boolean conjunction

2.3 Inductive Bias

In order to be able to meaningfully predict a classification for the unseen objects, an

inductive learner must be biased towards certain target functions.

Consider a completely unbiased learner that learns boolean functions by memo-

rization. It stores the classification for each sample object in a table. When asked to

classify an object, if the object is present in the table, the corresponding classification

is returned, otherwise it randomly returns 0 or 1. This example illustrates that an

unbiased learner has no rational basis for classifying the unseen objects.

Definition 2.3.1. The inductive bias of a learner is the set of assumptions that the

learner makes to generalize beyond the samples in the training set.
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There are two forms of inductive biases:

1. Restriction Bias: This bias is captured by the set F of candidate functions.

For an inductive learner with restriction bias, F contains only a subset of the

set of all functions from X → C. The assumption is that the target function

is present in F .

2. Preference Bias: This bias is captured by the order in which the learner looks

at the functions as it searches in F . An inductive learner with a preference

bias gives preference to a function f1 over f2, even when both f1 and f2 classify

the training samples. The assumption is that f1 is a better predictor for the

unseen objects.

An inductive learner can also have a combination of the two biases. For example,

the LearnConjR and LearnConjQ algorithms have both a restriction bias and

a preference bias.

1. Restriction Bias: Instead of all boolean functions of n variables (there are 22n

such functions), the set F only consists of functions that are conjunctions of

boolean literals (there are only 3n such functions).

2. Preference Bias: These algorithms prefer a function f1 over f2 (assuming both

f1 and f2 classify the training samples) if

(f1(x) = 1) =⇒ (f2(x) = 1)
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Chapter 3

Model Checking and Abstraction

3.1 Model Checking for Safety and Liveness

Model Checking [Clarke and Emerson, 1981; Clarke et al., 1999] is a formal verifi-

cation technique that automatically decides whether a finite state system satisfies a

temporal property by an exhaustive state-space traversal. In this thesis, we focus on

two classes of temporal properties: safety properties and liveness properties. Intu-

itively, a safety property states that something bad never happens, while a liveness

property states that something good eventually happens. For example, consider a

system with multiple processes accessing a shared resource. The property that two

processes do not access the shared resource at the same time is a safety specifica-

tion. A desirable liveness property for this system is one that states that if a process

requests access to the shared resource, the request is eventually granted.
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A system is modeled by a transition system M = (S, I, R,E, F ) where:

1. S is the set of states.

2. I ⊆ S is the set of initial states.

3. R ⊆ S × S is the set of transitions.

4. E ⊆ S is the set of error states.

5. F ⊆ S is the set of good states.

The set E consists of the error states for the safety property, and the set F consists

of the good states for the liveness property. If no safety properties are specified, E

is the empty set, and if no liveness properties are specified, F is the set of states S.

Given a set W , we use the notation W (x) to denote the fact that x ∈ W . Thus,

I(s) denotes that s is an initial state, and R(s1, s2) indicates that the transition

between the states s1 and s2 is in R.

Definition 3.1.1. The size of a model M = (S, I, R,E, F ) is defined as |S|, i.e. the

size of its state space.

Definition 3.1.2. A path in the transition system M = (S, I, R,E, F ) is an infinite

sequence of states π = 〈s0, s1, . . .〉, such that I(s0) and ∀i ≥ 0. R(si, si+1).

A transition systemM satisfies the safety property if there is no path inM to an error

state. If the safety property is violated, the model checker produces a counterexample

CS = 〈s0 . . . sk〉
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Figure 3.1: A counterexample for a safety property.

which is a prefix of a path in M such that E(sk) (Figure 3.1).

A transition system M satisfies the liveness property if it can reach a good state

on all paths. If the liveness property is violated, there is a path π = 〈s0, s1, . . .〉 in

M such that ∀i ≥ 0. ¬F (si). Since the system is finite state, the existence of such a

path implies that there exists an infinite repeating path

CL = 〈s0 . . . sl−1(sl . . . sk)
ω〉

which satisfies ∀0 ≤ i ≤ k. ¬F (si). For liveness properties, the counterexample

produced by the model checker is such an infinite repeating path (Figure 3.2). In

this thesis, we do not handle fairness constraints. However, our technique can be

easily extended to deal with fairness.

3.2 Abstraction

The major capacity bottleneck for model checking is the size of the model, which can

be enormous for real world systems. For example, a simple hardware circuit with 10

32-bit integer registers has a state space size of 2320 (≈ 1096).
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Figure 3.2: A counterexample for a liveness property.

Abstraction [Clarke et al., 1994; Cousot and Cousot, 1977] is one of the most

successful techniques to combat this state-explosion problem. The idea behind ab-

straction is to construct a smaller model, called the abstract model, by grouping

together multiple states in the concrete model into a single state in the abstract

model. The abstract model preserves all the behaviors of the concrete model, which

ensures that if the property holds on the abstract model, it also holds on the con-

crete model. Abstraction works because in many cases, the property at hand does

not depend on all the details in the system description. Formally, an abstract model

is characterized by an abstraction function, which is defined as follows.

Definition 3.2.1. An abstraction function h : S → Ŝ for a transition system M =

(S, I, R,E, F ) maps a concrete state in S to an abstract state in Ŝ.

Given an abstract state ŝ, h−1(ŝ) denotes the set of concrete states that are mapped

to ŝ.

Definition 3.2.2. The minimal abstract model M̂ = (Ŝ, Î , R̂, Ê, F̂ ) corresponding

to a concrete model M = (S, I, R,E, F ) and an abstraction function h is defined as
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follows:

1. Ŝ = {ŝ | ∃s. s ∈ S ∧ (h(s) = ŝ)}

2. Î = {ŝ | ∃s. I(s) ∧ (h(s) = ŝ)}

3. R̂ = {(ŝ1, ŝ2) | ∃s1. ∃s2. R(s1, s2) ∧ (h(s1) = ŝ1) ∧ (h(s2) = ŝ2)}

4. Ê = {ŝ | ∃s. E(s) ∧ (h(s) = ŝ)}

5. F̂ = {ŝ | ∀s. (h(s) = ŝ) =⇒ F (s)}

The above definition corresponds to existential abstraction. An abstract state ŝ is

an error state if there exists a concrete error state that is mapped to ŝ. An abstract

state ŝ is a good state if all concrete states that map to ŝ are good states. Minimality

implies that M̂ has a transition from an abstract state ŝ1 to an abstract state ŝ2 only

if there is a state s1 in h−1(ŝ1) that has a transition in M to a state s2 in h−1(ŝ1).

A non-minimal abstract model, on the other hand, may allow additional transitions.

Unless otherwise stated, we will be working with minimal abstract models in this

thesis. The essence of abstraction is the following preservation theorem [Clarke et

al., 1994].

Theorem 3.2.3. Let M̂ be an abstract model corresponding to M and h. Then if

M̂ satisfies the safety (liveness) property, then M also satisfies the safety (liveness)

property.

Proof. Let M = (S, I, R,E, F ) and M̂ = (Ŝ, Î, R̂, Ê, F̂ ). Assume that M does

not satisfy the safety (liveness) property. We show that M̂ also violates the safety
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(liveness) property.

(Safety) Since M does not satisfy the safety property, there is a counterexample

CS = 〈s0 . . . sk〉 onM . Consider the sequence of abstract states ĈS = 〈h(s0) . . . h(sk)〉

obtained by mapping each state in CS to its corresponding abstract state. By Defi-

nition 3.2.2 we get

1. I(s0) =⇒ Î(h(s0))

2. ∀0 ≤ i < k. R(si, si+1) =⇒ R̂(h(si), h(si+1))

3. E(sk) =⇒ Ê(h(sk))

Thus, ĈS is a counterexample on M̂ , which implies that M̂ violates the safety prop-

erty.

(Liveness) Since M does not satisfy the liveness property, there is a counterex-

ample CL = 〈s0 . . . sl−1(sl . . . sk)
ω〉 on M . Consider the sequence of abstract states

ĈL = 〈h(s0) . . . h(sl−1)(h(sl) . . . h(sk))
ω〉 obtained by mapping each state in CL to its

corresponding abstract state. By Definition 3.2.2 we get

1. I(s0) =⇒ Î(h(s0))

2. ∀0 ≤ i < k. R(si, si+1) =⇒ R̂(h(si), h(si+1))

3. R(sk, sl) =⇒ R̂(h(sk), h(sl))

4. ∀0 ≤ i ≤ k. ¬F (si) =⇒ ¬F̂ (h(si))
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Thus, ĈL is a counterexample on M̂ , which implies that M̂ violates the liveness

property.

The converse of Theorem 3.2.3 is not true. The property might not hold on the

abstract model, even though the property holds on the concrete model. In this

case, the abstract counterexample generated by the model checker is spurious, i.e. it

does not correspond to a concrete path. The current abstract model is too coarse to

validate the specification. The aim of abstraction is to identify an abstract model that

on the one hand is small enough to be handled by the model checker, and on the other

hand avoids grouping of concrete states that introduces spurious counterexamples.

Abstraction techniques search for this abstract model over a set of candidate abstract

models, which is implicitly defined by the techniques being used to generate these

models.

3.3 Abstraction Functions

The number of ways to partition a set with m elements into disjoint non-empty

subsets is given by the Bell number Bm.

Bm =
1

e

∞
∑

k=0

km

k!

An abstract model essentially corresponds to a partition of the set of concrete states

into disjoint non-empty sets. Thus, the number of possible abstract models for

M = (S, I, R,E, F ) is given by B|S| � 2|S|. Most abstraction techniques work with
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only a small part of this large space of all possible abstract models.

3.3.1 Predicate Abstraction

Predicate Abstraction [Graf and Saidi, 1997] has emerged as a popular technique

for creating abstract models. Consider a system with a set of state variables V =

{x1, . . . xn}, where each variable xi ranges over a non-empty domain Dxi
. Each state

s of the system assigns values to the variables in V . The set of states for the system

is S = Dx1
× · · · ×Dxn

.

In predicate abstraction, the abstraction functions are characterized by a set of

predicates P = {p1, . . . pk} over the variables V . The predicates are formulas from

some predefined theory (for example: separation logic, linear arithmetic, etc). The

abstract model has a boolean state variable bi corresponding to each predicate pi.

Each abstract state ŝ assigns values to the variables V̂ = {b1, . . . bk}. The value of

the variable bi in state ŝ indicates the truth value of the corresponding predicate in

that state. The set of abstract states is Ŝ = {0, 1}k. The abstraction function hP

corresponding to the set of predicates P is given by

hP(s) =
k

∧

i=1

(pi(s) ⇐⇒ bi) (3.1)

This abstraction functions maps a concrete state s on to the abstract state corre-

sponding to the valuation of the predicates at s. An abstraction technique based on

predicate abstraction only considers abstraction functions of the form hP , where P

is a finite set of predicates from the theory of interest.
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3.3.2 Localization Abstraction

Localization abstraction [Kurshan, 1995] is another widely used technique for creating

abstract models, especially for the verification of hardware circuits. Localization

abstraction partitions the set of state variables V into two sets: the set of visible

variables which we denote by V and the set of invisible variables which we denote by

I. Let s(x), x ∈ V denote the value of variable x in a state s. Given a set of variables

U = {u1, . . . up}, U ⊆ V , sU denotes the portion of s that corresponds to the variables

in U , i.e. sU = (s(u1) . . . s(up)). Let V = {v1, . . . vk}. The abstract model consists of

only the visible variables, i.e. the set of abstract states is Ŝ = Dv1
× · · · ×Dvk

. The

abstraction function hV corresponding to the set of visible variables V is given by

hV(s) = sV (3.2)

This abstraction functions maps a concrete state s on to the abstract state corre-

sponding to the assignment to the visible variables at s. An abstraction technique

based on localization abstraction only considers abstraction functions of the form

hU , where U ⊆ V .

3.3.3 Abstract Models for Localization Abstraction

Definition 3.3.1. Given a modelM = (S, I, R,E, F ), the transition relationR(s1, s2)

is said to be in functional form if the next state s2 is specified as a function of the
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current state s1. Formally, R(s1, s2) is of the form

R(s1, s2) = (s2 = G(s1))

where G is some function of s1. The function G does not depend on s2.

For an arbitrary system M and abstraction function h, it is often too expensive to

construct the minimal abstract model M̂ [Clarke et al., 1994], because computation

of this model requires exact quantification over the state variables in M (Definition

3.2.2). For localization abstraction, on the other hand, we can compute M̂ efficiently

for systems where the transition relation R is in functional form. For these systems,

M̂ can be computed syntactically from the system description, by removing the logic

that defines the invisible variables and treating them as inputs. This construction

also explains why this technique is called localization: because it localizes the part of

the system description which is responsible for the ensuring that the property holds.

Theorem 3.3.2. If the transition relation is in functional form, the model obtained

by removing from R the logic that defines the invisible variables V and replacing them

with non-deterministic inputs, represents the minimal abstract model corresponding

to the abstraction function h(s) = sV .

Proof. The proof is based on the observation that we can quantify out the next-state

copy of the invisible variables if the transition relation is in functional form, because

in that case, the value of each next-state variable does not depend on other next-state

variables.
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Consider a model with state variables {x1, . . . xn} and inputs {i1, . . . iq}. We use

the standard notation x′ to denote the next-state version of x. Let s = (x1, . . . xn),

s′ = (x′1, . . . x
′
n) and i = (i1, . . . iq). Since the transition relation R is in functional

form, it can be expressed as:

R(s, s′) = ∃i. (
n

∧

j=1

x′j = fxj
(s, i) )

where fxj
is the functional definition of x′j. By Definition 3.2.2, the minimal abstract

transition relation R̂ is given by:

R̂(ŝ, ŝ′) = ∃s. ∃s′. ( R(s, s′) ∧ h(s) = ŝ ∧ h(s′) = ŝ′ )

Substituting expressions for R and the abstraction function h, and splitting s and s′

into visible and invisible parts yields

R̂(ŝ, ŝ′) = ∃sV . ∃sI . ∃s′V . ∃s′I . ∃i. (
∧

xj∈V

x′j = fxj
(sV , sI , i) ∧

∧

xj∈I

x′j = fxj
(sV , sI , i)

∧ sV = ŝ ∧ s′V = ŝ′ )

We can eliminate the quantification over the visible variables using the rule:

∃a. ( f(a) ∧ a = b ) ≡ f(b)

This gives us

R̂(ŝ, ŝ′) = ∃sI . ∃s′I . ∃i. (
∧

xj∈V

x̂′j = fxj
(ŝ, sI , i) ∧

∧

xj∈I

x′j = fxj
(ŝ, sI , i) )

Since the left conjunct does not depend on s′I , we can push the quantification over

s′I to the right conjunct, which gives us

R̂(ŝ, ŝ′) = ∃sI . ∃i. (
∧

xj∈V

x̂′j = fxj
(ŝ, sI , i) ∧ ∃s′I . (

∧

xj∈I

x′j = fxj
(ŝ, sI , i) ) )
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The quantification over s′I evaluates to TRUE because fxj
does not depend on x′j.

Thus, the expression simplifies to

R̂(ŝ, ŝ′) = ∃sI . ∃i. (
∧

xj∈V

x̂′j = fxj
(ŝ, sI , i) )

which corresponds to the transition relation derived syntactically from the original

R by replacing the invisible variables with inputs.

Sometimes, constraints are imposed on the system during verification. These

constraints may arise, for example, from the restrictions on the environment or from

the don’t care space. In these cases, the transition relation has a non-functional

component g. If g is a function of only the present state variables and the inputs,

the minimal abstract transition relation is given by

R̂(ŝ, ŝ′) = ∃sI . ∃i. (
∧

xj∈V

x̂′j = fxj
(ŝ, sI , i) ∧ g(ŝ, sI , i) )

Intuitively, in addition to the logic for the visible variables, the constraints are also

included in the minimal abstract model.

In some scenarios, the non-functional component g might also depend on some

next-state variables. Let T ⊆ I denote the set of next-state invisible variables that

are present in g. For these models, the minimal abstract transition relation is given

by

R̂(ŝ, ŝ′) = ∃sI . ∃i. ∃s′T . (
∧

xj∈V

x̂′j = fxj
(ŝ, sI , i) ∧

∧

xj∈T

x̂′j = fxj
(ŝ, sI , i)
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∧ g(ŝ, sI , s′T , i) )

In addition to the logic for the visible variables and the constraints, the logic defining

the next-state invisible variables present in these constraints is also included in the

minimal abstract model. The proof for this construction is similar to the proof for

Theorem 3.3.2.

3.3.4 Pros and Cons of Localization Abstraction

In this thesis, we will use localization abstraction to construct the abstract models.

Localization abstraction has the following advantages:

1. The minimal abstract models can be efficiently constructed (Theorem 3.3.2).

2. Compared to approaches like predicate abstraction, the space of possible ab-

stract models is smaller. This makes it easier to identify an abstract model

that proves the property.

However, this restriction on the space of candidate abstract models can also be viewed

as a disadvantage. Localization abstraction will work only if the property at hand

is localizable, i.e. its validity depends on a small part of the system description. For

example, consider a property that depends on the fact that the two state variables

x1 and x2 are always equal. To be able to prove this property, a framework based on

localization abstraction would require that both x1 and x2 are included in the abstract

model. This might make the abstract model intractable for the model checker. Using

predicate abstraction, this property can be proved by a smaller abstract model that
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only contains the boolean variable b corresponding to the predicate (x = y). As

discussed in Chapter 8, the techniques presented in this thesis can also be used with

predicate abstraction.

3.4 An Example

Consider the model M in Figure 3.3, which is shown in NuSMV [Cimatti et al., 2002]

input format. It has 7 boolean state variables, namely x, y, z, u, c0.v, c1.v and c2.v;

and i,j are boolean inputs. The state space of M is S = {0, 1}7. The variables c0.v,

c1.v and c2.v implement a 3-bit counter. The variable u is updated every time the

counter hits the value 7. The model has a safety specification which states that u is

always 1. Note that this property holds on the model. All the logic is in the cone of

influence of the property, so the cone of influence reduction will not help in reducing

the size of the model for model checking. We will be using this example later in this

thesis as well.

Consider the localization abstraction function h1 : {0, 1}7 → {0, 1}3, for the set

of visible variables V = {x, y, u}.

h1( (x, y, z, u, c0.v, c1.v, c2.v) ) = (x, y, u) (3.3)

The abstract model corresponding to M and h1 is shown in Figure 3.4. This model

has been derived using the construction described in Section 3.3.3. The property

holds on this model, and therefore, by Theorem 3.2.3, the property also holds on M.

Another localization of M that proves this property corresponds to V = {z, c0.v, u}.
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MODULE main

VAR
x, y, z, u : boolean;
c0 : counter cell(1);

c1 : counter cell(c0.cout);
c2 : counter cell(c1.cout);

IVAR
i, j : boolean;

ASSIGN
init(x) := j;
next(x) := i;

init(y) := !j;
next(y) := !i;

init(z) := 0;

next(z) := !z;

init(u) := 1;

next(u) := case
c0.v & c1.v & c2.v : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 3.3: Description of model M in NuSMV input format.
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MODULE main

VAR
x, y, u : boolean;

IVAR
i, j, z, c0, c1, c2 : boolean;

ASSIGN
init(x) := j;
next(x) := i;

init(y) := !j;
next(y) := !i;

init(u) := 1;

next(u) := case
c0 & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

Figure 3.4: Abstract model corresponding to M (Figure 3.3) and h1 (Equation 3.3).
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The abstract model is shown in Figure 3.5.

On the other hand, the abstract model for V = {y, z, u} (Figure 3.6) does not

prove the property. Model checking of this model produces a spurious counterexam-

ple which is shown in Figure 3.7.

3.5 Bounded Model Checking

Bounded Model Checking (BMC) [Biere et al., 1999] is a powerful technique for re-

futing properties. The basic idea in BMC is to search for a counterexample in execu-

tions of some bounded depth. The depth is increased until either a counterexample is

found or the problem becomes too hard to solve. Given a model M = (S, I, R,E, F ),

and a positive integer k representing the depth of the search, BMC generates the

formulas Mk
S (Equation 3.4) and M k

L (Equation 3.5), for checking the safety and

liveness property, respectively. These formulas are satisfiable if and only if there is

a counterexample of length k for the respective property.

Mk
S = I(s0) ∧

k−1
∧

i=0

R(si, si+1) ∧ E(sk) (3.4)

Mk
L = I(s0) ∧

k−1
∧

i=0

R(si, si+1) ∧
k

∧

i=0

¬F (si) ∧
k

∨

i=0

R(sk, si) (3.5)

The satisfiability of these formulas can be efficiently reduced to Boolean Propositional

Satisfiability (SAT). The extreme efficiency of modern SAT-solvers makes it possible

to check properties typically up to a depth of a few hundred cycles. There is a very
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MODULE main

VAR
z, u : boolean;
c0 : counter cell(1);

IVAR
i, j, x, y, c1, c2 : boolean;

ASSIGN

init(z) := 0;

next(z) := !z;

init(u) := 1;

next(u) := case
c0.v & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 3.5: Abstract model for M (Figure 3.3) with V = {z, c0.v, u}.
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MODULE main

VAR
y, z, u : boolean;

IVAR
i, j, x, c0, c1, c2 : boolean;

ASSIGN
init(y) := !j;
next(y) := !i;

init(z) := 0;

next(z) := !z;

init(u) := 1;

next(u) := case
c0 & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

Figure 3.6: Abstract model for M (Figure 3.3) with V = {y, z, u}.

Figure 3.7: A counterexample on the model in Figure 3.6.
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weak correlation between what is hard for standard BDD-based model checking, and

what is hard for BMC. It is many times possible to refute properties with the latter

that cannot be handled at all by the former.
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Chapter 4

Abstraction-Refinement and

Learning

4.1 Abstraction-Refinement

Definition 4.1.1. Given a transition system M = (S, I, R,E, F ) and an abstraction

function h, h′ is a refinement of h (denoted by h ≺ h′) if

1. For all s1, s2 ∈ S, h′(s1) = h′(s2) implies h(s1) = h(s2).

2. There exists s1, s2 ∈ S such that h(s1) = h(s2) and h′(s1) 6= h′(s2).

If h ≺ h′, then the minimal abstract model corresponding to M and h′ is also called

a refinement of the minimal abstract model corresponding to M and h.

For example, for localization abstraction, given two sets of variables V1 and V2,
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Abstract Model Check

Spurious ?Refine

Figure 4.1: Counterexample-Guided Abstraction-Refinement (cegar).

if V1 ⊂ V2 then hV1 ≺ hV2 (Equation 3.2).

There has been a lot of work on automatically generating abstract models that

prove the property. Many of these techniques follow the Counterexample-Guided

Abstraction-Refinement (cegar) framework [Clarke et al., 2000, 2003]. These tech-

niques start with an initial abstraction function and iteratively refine it to eliminate

spurious counterexamples, until the property holds on the abstract model or a coun-

terexample is found on the concrete model (Figure 4.1). The refinement of the ab-

stract model and the search for a concrete counterexample are guided by the abstract

counterexamples produced by the model checker (hence the name Counterexample-

Guided).

In the rest of the chapter, we present an implementation of the cegar loop that

uses SAT-solvers and machine learning techniques for the verification of hardware

circuits.
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4.2 Step: Abstract

We use localization abstraction based on visible/invisible variables (Section 3.3.2).

Thus, we use the syntactic construction described in Section 3.3.3 to build the ab-

stract models. Our initial abstract model corresponds to V = {}, i.e. all state

variables are invisible.

4.3 Step: Model Check

We can use any off-the-shelf checker for this step. Our implementation interfaces

with two state-of-the-art model checkers, Cadence SMV [McMillan] and NuSMV

[Cimatti et al., 2002].

4.4 Step: Spurious?

For both safety and liveness properties, the counterexample is a finite sequence of

abstract states ŝ0, . . . ŝk (Section 3.1). Given a counterexample C on the abstract

model corresponding to an abstraction function h, and 0 ≤ i ≤ k, and 0 ≤ j ≤ k, let

C i(sj) denote the fact that the concrete state sj is mapped to the counterexample

state ŝi by the abstraction function h:

C i(sj) = (h(sj) = ŝi) (4.1)

As explained in Section 3.3.2, h(sj) is a projection of sj on to the visible variables.
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Therefore, C i(sj) is simply a restriction of the visible variables in state sj to their

values in the counterexample state ŝi.

For safety properties, the counterexample generated by the model checker is a

prefix to a path such that the last state in the prefix is an error state (Section 3.1):

CS = 〈ŝ0, . . . ŝk〉

The set of concrete error traces that agree with CS is given by:

ψCS
= { 〈s0, . . . sk〉 | I(s0) ∧

k−1
∧

i=0

R(si, si+1) ∧ E(sk) ∧
k

∧

i=0

C i
S(si) } (4.2)

For liveness properties, the counterexample produced by the model checker is an

infinite repeating path (Section 3.1):

CL = 〈ŝ0 . . . ŝl−1(ŝl . . . ŝk)
ω〉

The set of concrete paths that agree with CL is given by:

ψCL
= { 〈s0 . . . sl−1(sl . . . sk)

ω〉 | I(s0) ∧
k−1
∧

i=0

R(si, si+1) ∧ R(sk, sl) ∧

k
∧

i=0

¬F (si) ∧
k

∧

i=0

C i
L(si) } (4.3)

The counterexample is spurious if and only if the corresponding set ψ is empty. We

check for that by solving ψ with a SAT-solver. This formula is very similar in struc-

ture to the formulas that arise in Bounded Model Checking (BMC) (Section 3.5).

However, ψ is easier to solve because the traces are restricted to agree with the coun-

terexample. Most model checkers treat inputs as state variables, and therefore the
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counterexample includes assignments to inputs. While simulating the counterexam-

ple, we also restrict the values of the (original) inputs that are part of the definition

(lie on the RHS) of the visible variables to the value assigned to them by the coun-

terexample, which further simplifies the formula. If a satisfying assignment is found,

it corresponds to a real bug and the property fails on the model.

4.5 Step: Refine

If the counterexample is spurious, we refine the abstract model to eliminate this

spurious behavior. Our approach is based on the work by Yuan Lu et al. [Clarke et

al., 2000, 2003].

4.5.1 Safety Properties

Given a spurious counterexample CS = 〈ŝ0, . . . ŝk〉 for a safety property, consider the

following two sequences of formulas:

D̂i
S =















I(s0) ∧ C0
S(s0) i = 0

D̂i−1
S ∧ R(si−1, si) ∧ C i

S(si) 0 < i ≤ k

(4.4)

B̂i
S =















C i
S(si) ∧ R(si, si+1) ∧ C i+1

S (si+1) 0 ≤ i < k

Ck
S(sk) ∧ E(sk) i = k

(4.5)

These definitions satisfy:
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D̂i+1
S = D̂i

S ∧ B̂i
S (0 ≤ i < k) (4.6)

D̂k
S ∧ B̂k

S = ψCS
(4.7)

Let Di
S(si) denote the restriction of D̂i

S to the si variables.

Di
S(si) = D̂i

S ↓ si ≡ ∃s0 . . . si−1. D̂
i
S (4.8)

Similarly, let Bi
S(si) denote the restriction of B̂i

S to the si variables.

Bi
S(si) = B̂i

S ↓ si ≡ ∃si+1. B̂
i
S (4.9)

We find the largest index f such that Df
S is satisfiable. The index f is called the

failure index, and the abstract state ŝf is called the failure state. The set of concrete

states sf that is characterized by the formula Df
S(sf ) is called the set of deadend

states. We denote this set by D. The set D consists of all states sf such that there

exists some concrete trace 〈s1, . . . sf〉 that agrees with the counterexample CS , i.e.

∀0 ≤ i ≤ f. C i
S(si)

The set of concrete states sf that is characterized by the formula Bf
S(sf ) is called the

set of bad states. We denote this set by B. Both D and B are mapped to the failure

state in the abstract model. Since f is the largest index for which Df
S is satisfiable,

Equation 4.6 implies that
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D ∩B = {} (4.10)

The counterexample is spurious for one of two different reasons, which depends on

the value of f . We illustrate the two scenarios, corresponding to the two cases in

Equation 4.5:

1. 0 ≤ f < k: (Figure 4.2) The counterexample is spurious because there is no

concrete transition from a state in D, to a concrete state in h−1(ŝf+1). Since

there is an abstract transition from ŝf to ŝf+1, there is a non-empty set of

concrete transitions from h−1(ŝf ) to h−1(ŝf+1) (Definition 3.2.2). The set B

consists of the concrete states in ŝf that have a transition to a concrete state

in ŝf+1.

2. f = k: (Figure 4.3) The counterexample is spurious because there is no error

state inD. Since sk is an error state in the abstract model, there is a non-empty

set of concrete error states in h−1(ŝk) (Definition 3.2.2). The set B refers to

this set of error states.

4.5.2 Liveness Properties

In order to simplify our discussion on liveness properties, we assume that our initial

abstract model respects the non-good states, i.e. an abstract state is labeled as a

non-good state only if all the concrete states that map to that abstract state are

non-good states. Formally:
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Figure 4.2: (Safety property) The counterexample is spurious because there is no concrete transition

from a deadend state to the next abstract state.

Figure 4.3: (Safety property) The counterexample is spurious because there are no error states in

the set of deadend states.
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¬F (ŝ) ∧ (h(s) = (ŝ)) =⇒ ¬F (s) (4.11)

Since the initial abstract model respects the non-good states, the abstract models

generated in the subsequent iterations of the cegar loop, which are refinements of

the initial abstract model, also respect the non-good states.

Given a spurious counterexample CL = 〈ŝ0 . . . ŝl−1(ŝl . . . ŝk)
ω〉 for a liveness prop-

erty, consider the following two sequences of formulas:

D̂i
L =































I(s0) ∧ C0
L(s0) i = 0

D̂i−1
L ∧ R(si−1, si) ∧ C i

L(si) 0 < i ≤ k

D̂k
L ∧ R(sk, sk+1) ∧ C l

L(sk+1) i = k + 1

(4.12)

B̂i
L =































C i
L(si) ∧ R(si, si+1) ∧ C i+1

L (si+1) 0 ≤ i < k

Ck
L(sk) ∧ R(sk, sk+1) ∧ C l

L(sk+1) i = k

D̂k+1
L [sw/sk+1][sk+1/sl] i = k + 1

(4.13)

where g[a/b] denotes the formula obtained by substituting a for b in the formula g.

These definitions satisfy:

D̂i+1
L = D̂i

L ∧ B̂i
L (0 ≤ i < k + 1) (4.14)

Moreover, since CL is a counterexample for the liveness property, it satisfies ∀0 ≤

i ≤ k. ¬F (ŝi). Therefore, using Equation 4.11, we get
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D̂k+1
L ∧ B̂k+1

L = D̂k+1
L ∧ B̂k+1

L ∧
k

∧

i=0

¬F (sk) = ψCL
(4.15)

Let Di
L(si) denote the restriction of D̂i

L to the si variables.

Di
L(si) = D̂i

L ↓ si ≡ ∃s0 . . . si−1. D̂
i
L (4.16)

Similarly, let Bi
L(si) denote the restriction of B̂i

L to the si variables.

Bi
L(si) = B̂i

L ↓ si ≡ ∃s0 . . . si−1si+1sw. B̂
i
L (4.17)

We find the largest index f such that Df
L is satisfiable. The index f is called the

failure index. The set of concrete states sf that is characterized by the formula

Df
L(sf ) is called the set of deadend states. We denote this set by D. The set D

consists of all states sf such that there exists some concrete trace 〈s1, . . . sf〉 that

agrees with the counterexample CL, i.e.

∀0 ≤ i ≤ f. C i
L(si)

The set of concrete states sf that is characterized by the formula Bf
L(sf ) is called the

set of bad states. We denote this set by B. Both D and B are mapped to the failure

state in the abstract model. Since f is the largest index for which Df
L is satisfiable,

Equation 4.14 implies that

D ∩B = {} (4.18)

44



The counterexample is spurious for one of three different reasons, which depends on

the value of f . We illustrate the three scenarios, corresponding to the three cases in

Equation 4.13:

1. 0 ≤ f < k: (Figure 4.4) The counterexample is spurious because there is no

concrete transition from a state in D to a concrete state in h−1(ŝf+1). Since

there is an abstract transition from ŝf to ŝf+1, there is a non-empty set of

concrete transitions from h−1(ŝf ) to h−1(ŝf+1) (Definition 3.2.2). The set B

consists of the concrete states in ŝf that have a transition to a concrete state

in ŝf+1.

2. f = k: (Figure 4.5) The counterexample is spurious because there is no concrete

transition from a state in D to a concrete state in h−1(ŝl). Since there is an

abstract transition from ŝk to ŝl, there is a non-empty set of concrete transitions

from h−1(ŝk) to h−1(ŝl) (Definition 3.2.2). The set B consists of the concrete

states in ŝk that have a transition to a concrete state in ŝl.

3. f = k + 1: (Figure 4.6) The counterexample is spurious because no concrete

trace, that leads to a state in D, loops back on to itself. The formula for the

bad states is the same as the formula for the deadend states, except that it

refers to states at cycle l, instead of cycle k. Thus, the formula Bk+1
L (sk) for

the bad states is obtained by renaming variables sk+1 in the formula Dk+1
L for

the deadend states to new variables sw, and then renaming variables sl to sk+1

(Equation 4.13). The set B consists of the concrete states in ŝl that lie on a

trace that agrees with the counterexample and ends in a deadend state.
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Figure 4.4: (Liveness property) The counterexample is spurious because there is no concrete tran-

sition from a deadend state to the next abstract state.

Figure 4.5: (Liveness property) The counterexample is spurious because there is no concrete tran-

sition corresponding to the abstract transition that loops back.
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Figure 4.6: (Liveness property) The counterexample is spurious because no concrete trace, that

leads to a deadend state, loops back on to itself.

4.5.3 Refinement as Separation

For both safety and liveness properties, the spurious counterexample exists because

the deadend and bad states are mapped to the same abstract state. This motivates

the following heuristic to eliminate the counterexample:

Our refinement strategy: (Refinement as Separation) The abstraction function

h is refined to a new abstraction function h′ such that

∀d ∈ D,∀b ∈ B (h′(d) 6= h′(b))

i.e. the new abstraction function puts the deadend and bad states into separate

abstract states.
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Figure 4.7: Effect of separating deadend and bad states for the counterexample in Figure 4.2.

4.5.4 Separation for Safety Properties

We illustrate the effect of separating deadend and bad states for the two scenarios

in Section 4.5.1.

1. 0 ≤ f < k: (Figure 4.7) In the new abstract model, there is no transition from

the abstract state that contains the deadend states to the next abstract state

in the counterexample.

2. f = k: (Figure 4.8) In the new abstract model, the abstract state that contains

the deadend states is not an error state.
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Figure 4.8: Effect of separating deadend and bad states for the counterexample in Figure 4.3.

4.5.5 Separation for Liveness Properties

We illustrate the effect of separating deadend and bad states for the three scenarios

in Section 4.5.2.

1. 0 ≤ f < k: (Figure 4.9) In the new abstract model, there is no transition from

the abstract state that contains the deadend states, to the next abstract state

in the counterexample.

2. 0 ≤ f < k + 1: (Figure 4.10) In the new abstract model, there is no transition

from the abstract state that contains the deadend states, to the abstract state

corresponding to the start of the loop in the abstract counterexample.

3. f = k + 1 (Figure 4.11) In the new abstract model, there is no transition that

loops back from the last abstract state in the counterexample.
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Figure 4.9: Effect of separating deadend and bad states for the counterexample in Figure 4.4.

Figure 4.10: Effect of separating deadend and bad states for the counterexample in Figure 4.5.
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Figure 4.11: Effect of separating deadend and bad states for the counterexample in Figure 4.6.

4.5.6 The State Separation Problem

In the following definition, let S = {s1, . . . sm} and T = {t1, . . . tn} be two sets of

states, where each state is an assignment to a set of variables W .

Definition 4.5.1. (Separation of states with sets of variables) A set of variables

U = {u1, . . . uk}, U ⊆ W separates S from T if for each pair of states (si, tj), si ∈ S,

tj ∈ T , there exists a variable ur ∈ U such that si(ur) 6= tj(ur).

Definition 4.5.2. (The state separation problem) Given two sets of states S and T

as defined above, find the smallest set of variables U = {u1, . . . uk}, U ⊆ W that

separates S from T . The set U is a separating set for S and T .

Let H ∈ I be a set of variables that separates D from B. The refinement is

obtained by adding H to V . The requirement that H is the smallest set is not
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crucial for the correctness of our approach, rather it is a matter of efficiency. Smaller

sets of visible variables make it easier to model check the abstract system, but can

also be harder to find. In fact, it has been shown that computing the minimal

separating set is NP-hard [Clarke et al., 2000].

Lemma 4.5.3. Let H be a set of variables that separate the set of deadend states D

from the set of bad states B. Let the abstraction function h′ correspond to the visible

set V ′ = V ∪H, where V is the current set of visible variables. Then h′ maps D and

B on to different abstract states in the abstract model.

Proof. Let d ∈ D and b ∈ B. Since H separates D and B, there exists a u ∈ H

s.t. d(u) 6= b(u). Thus, for some u ∈ V ′, d(u) 6= b(u). By definition (Equation 3.2),

h′(d) = (d(u1) . . . d(uk)) and h′(b) = (b(u1) . . . b(uk)), ui ∈ V ′ for all 1 ≤ i ≤ k. Thus,

h′(d) 6= h′(b).

4.6 Refinement as Learning

The naive way of separating the set of deadend states D from the set of bad states

B would be to generate and separate D and B, either explicitly or symbolically.

Unfortunately, for systems of realistic size, this is usually not possible. For all but

the simplest examples, the number of states in D and B is too large to enumerate

explicitly. For systems with moderate complexity, these sets can be computed sym-

bolically with OBDDs. Experience shows, however, that there are many systems

for which this is not possible [Clarke et al., 2000]. Moreover, even if it was possible
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to generate D and B, it would still be computationally expensive to identify the

separating variables.

Instead, we generate samples from D and B and learn the separating variables

for the entire sets from these samples. In most cases, a small subset of D (denoted

by SD) and a small subset of B (denoted by SB) is sufficient to infer the separating

set, i.e. the separating set for SD and SB is also a separating set for D and B.

Our approach can be formulated as an inductive learning algorithm as follows:

An abstraction function h : S → Ŝ classifies states s ∈ S into classifications ŝ ∈ Ŝ.

The goal of our inductive learner is to identify an abstraction function hV ′
that is a

refinement of the abstraction function hV in the previous loop iteration, such that

hV
′

classifies the deadend states and the bad states into separate abstract states.

The experience available to the learner is a set of deadend state samples SD, and

a set of bad state samples SB. The learner searches for the function h′ in the set

F = { hV
′
| V ⊂ V ′ ⊆ V } (Figure 4.12).

4.7 Generating Samples

We experimented with both random sampling and equivalence queries to generate

the sample sets (Section 2.2). In the rest of the thesis, when the type of the property

is not relevant, we will use the notation D to refer to both Df
S and Df

L. Similarly, we

will use B to refer to both Bf
S and Bf

L.
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Figure 4.12: Abstraction-Refinement as Inductive Learning (see Figure 2.1).

4.7.1 Random Sampling

The sample sets are obtained by generating multiple satisfying assignments to D

and B. We used an incremental SAT-solver for generating these satisfying assign-

ments. Every time a satisfying assignment is obtained, a clause that eliminates the

assignment is added to the formula, and the incremental solver is asked to find an

assignment to the new formula. The process is repeated until a specified number

of samples have been generated; or until the formula becomes unsatisfiable, which

happens when all the satisfying assignments have been enumerated. The number of

samples to be generated is provided by the user. With random sampling, separating

SD and SB does not guarantee that D and B are separated. Thus, this approach

might not eliminate the counterexample in a single refinement step. However, the

overall algorithm is complete because the counterexample is eventually eliminated in

subsequent iterations of the cegar loop.
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4.7.2 Sampling with Equivalence Queries

In the equivalence query model (Section 2.2), the learner has access to an oracle

that takes as input a classifying function g and returns yes if g is the target function,

otherwise it returns an object that is classified incorrectly by g. The learner generates

a new sample by querying the oracle with a classifying function that it infers from

the current set of samples. The object that is returned as an answer to this query

contains more information than a randomly generated sample, since a randomly

generated sample might be classified correctly by the classifying function computed

from the current set of samples, and therefore might be redundant.

Sampling of D and B does not have to be arbitrary. Using equivalence queries, it

is possible to direct the search to samples that contain more information than others.

In the following section, we present an iterative algorithm that uses equivalence

queries to sample D and B.

4.7.3 The Sample-and-Separate algorithm

Algorithm 4.1 describes Sample-and-Separate (SampleSep), for sampling with equiv-

alence queries. Given two sets of states S1 and S2, let δ(S1, S2) denote the separating

set for S1 and S2. Let SepS denote the separating set that SampleSep is working

with at the current iteration. Initially, SepS is empty. SampleSep iteratively adds

or replaces elements in SepS until it becomes a separating set for D and B. In each

iteration, the algorithm finds samples that are not separable by SepS that was com-

puted in the previous iteration. Computing a new pair of deadend and bad states
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Algorithm 4.1 Sampling with Equivalence Queries

SampleSep(D,B)

1: SepS = ∅

2: i = 0

3: while (1) do

4: if ( Φ(D,B, SepS) is satisfiable ) then

5: Let di correspond to the assignment to the vi variables

6: Let bi correspond to the assignment to the v′i variables

7: SepS = δ(
⋃i

j=0{dj},
⋃i

j=0{bj})

8: i = i+ 1

9: else

10: return SepS

that are not separable by SepS is done by solving Φ(D,B, SepS), as defined below:

Φ(D,B, SepS) = D ∧ B′ ∧
∧

vi∈SepS

vi = v′i (4.19)

The prime symbol over B denotes the fact that we replace each variable vi in B with

a new variable v′i (note that otherwise, by definition, the conjunction of D with B

is unsatisfiable). The right-most conjunct in the above formula guarantees that the

new samples of deadend and bad states are not separable by the current separating

set.

In each iteration, SampleSep solves Formula 4.19 (line 4). In the learning with

equivalence queries model, this corresponds to an equivalence query to the oracle. If
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the formula is satisfiable, it implies that SepS is different from the target separating

set for D and B. In this case, SampleSep derives the samples di ∈ D and bi ∈ B

from the satisfying assignment (these are simply the assignments to the variables in D

and B′, respectively), which by definition are not separable by the current separating

set SepS (lines 5,6). It then re-computes SepS for the union of the samples that were

computed up to the current iteration (line 7). If Formula 4.19 is unsatisfiable, it

implies that SepS is the same as the target separating set for D and B. By repeating

the loop until Formula 4.19 becomes unsatisfiable, it guarantees that the resulting

separating set separates D from B.

In each iteration, SampleSep finds a single solution to Φ(D,B, SepS), and hence

a single pair of states di and bi. However, the number of samples in each iteration

can be larger. Larger number of samples may reduce the number of iterations,

but also require more time to derive and separate. The optimal number of new

samples in each iteration depends on various factors, like the efficiency of the SAT-

solver, the technique used to compute the separating set, and the examined model.

Our implementation lets the user control this process by adjusting two parameters:

the number of samples generated in each iteration, and the maximum number of

iterations.

4.8 Computing the Separating Set

We experimented with two techniques for computing the separating set from the

sample sets SD and SB. The first technique uses 0-1 Integer Linear Programming
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Min
∑|I|

i=1 vi

subject to: (∀s ∈ SD) (∀t ∈ SB)
∑

1≤i≤|I|,

s(vi)6=t(vi)

vi ≥ 1

Figure 4.13: State Separation with Integer Linear Programming.

(ILP), while the second technique is based on Decision Tree Learning (DTL). The

next two sections describe these techniques.

4.8.1 Separation using Integer Linear Programming

A formulation of the problem of separating SD from SB as a 0-1 Integer Linear

Programming problem is depicted in Figure 4.13. The value of each Boolean variable

v1...v|I| in the ILP problem is interpreted as: vi = 1 if and only if vi is in the

separating set. Every constraint corresponds to a pair of states (si, tj), stating that

at least one of the variables that separates (distinguishes) between the two states

should be selected. Thus, there are |SD| × |SB| constraints in the ILP formulation.

Example 4.8.1. Consider the sample sets SD = {s1, s2} and SB = {t1, t2}, where:

s1 = (0, 1, 0, 1) t1 = (1, 1, 1, 1)

s2 = (1, 1, 1, 0) t2 = (0, 0, 0, 1)

Assume that all the variables are invisible. Let vi correspond to the i-th component

of a state. Then the corresponding ILP for computing the separating set for SD and

SB is:
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Min
∑4

i=1 vi

subject to:

v1 + v3 ≥ 1 // Separating s1 from t1

v2 ≥ 1 // Separating s1 from t2

v4 ≥ 1 // Separating s2 from t1

v1 + v2 + v3 + v4 ≥ 1 // Separating s2 from t2

The optimal value of the objective function in this case is 3, corresponding to one of

the two optimal solutions {v1, v2, v4} and {v3, v2, v4}.

4.8.2 Separation using Decision Tree Learning

The ILP-based separation algorithm outputs the minimal separating set. Since ILP

is NP-complete, we also experimented with a polynomial approximation based on

Decision Tree Learning. This technique is polynomial both in the number of variables

and the number of samples, but does not necessarily give optimal results.

Learning with decision trees is one of the most widely used and practical meth-

ods for approximating discrete-valued functions. A DTL algorithm inputs a set of

examples. An example is described by a set of attributes and the corresponding

classification. The algorithm generates a decision tree that classifies the examples.

Each internal node in the tree specifies a test on some attribute, and each branch de-

scending from that node corresponds to one of the possible values for that attribute.

Each leaf in the tree corresponds to a classification.
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Data is classified by a decision tree by starting at the root node of the decision

tree, testing the attribute specified by this node, and then moving down the tree

branch corresponding to the value of the attribute. The process is repeated for the

sub-tree rooted at the branch until one of the leafs is reached, which is labeled with

the classification.

The problem of separating SD from SB can be formulated as a DTL problem as

follows:

• The attributes correspond to the invisible variables.

• The classifications are +1 and −1, corresponding to SD and SB, respectively.

• The examples are SD labeled +1, and SB labeled −1.

We generate a decision tree for this DTL problem. From this tree we extract all the

variables present at the internal nodes. These variables constitute the separating set.

Lemma 4.8.2. The formulation based on Decision Tree Learning outputs a separat-

ing set for SD and SB.

Proof. Let d ∈ SD and b ∈ SB. The decision tree will classify d as +1 and b as −1.

So, there exists a node n in the decision tree, labeled with a variable v, such that

d(v) 6= b(v). By construction, v lies in the output set. Thus, by Definition 4.5.1, the

DTL formulation outputs the separating set for SD and SB.

Example 4.8.3. Going back to Example 4.8.1, the corresponding DTL problem has

4 attributes {v1, v2, v3, v4} and as always, two classifications {+1,−1}. The set of

examples contains the following elements:
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Figure 4.14: Decision Tree for Example 4.8.3.

((0, 1, 0, 1),+1) ((1, 1, 1, 1),−1)

((1, 1, 1, 0),+1) ((0, 0, 0, 1),−1)

The tree appearing in figure 4.14 classifies these examples. It corresponds to the

separating set {v1, v2, v4}.

A number of algorithms have been developed for learning decision trees, e.g. ID3

[Quinlan, 1986], C4.5 [Quinlan, 1993]. All these algorithms essentially perform a

simple top-down greedy search through the space of possible decision trees. We

implemented a simplified version of the ID3 algorithm [Mitchell, 1997], which is

described in Algorithm 4.2.

DecTree is a recursive algorithm that takes as input a set of examples E and

a set of attributes A. It returns a decision tree whose nodes are labeled with the

attributes in A, and which classifies the examples in E. At each recursion, DecTree
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Algorithm 4.2 Decision Tree Learning

DecTree(E,A)

1: Create a root node R for the tree

2: If all examples in E are classified the same, return R with this classification

3: Let a = BestAttribute(E,A). Label R with attribute a

4: For i ∈ {0, 1}, let Ei be the subset of E having value i for a

5: For i ∈ {0, 1}, add an i branch to R pointing to sub-tree generated by

Dectree(Ei, A− {a})

6: return R

calls the BestAttribute function to pick an attribute to test at the root (line 3). In

order to make that choice, we need a measure of the quality of an attribute. We

start with defining a quantity called entropy [Mitchell, 1997], which is a commonly

used notion in information theory.

Definition 4.8.4. Given a set S containing n⊕ positive examples and n	 negative

examples, the entropy of S is given by:

Entropy(S) = −p⊕log2p⊕ − p	log2p	

where p⊕ = (n⊕)/(n⊕ + n	) and p	 = (n	)/(n⊕ + n	).

Intuitively, entropy characterizes the variety in a set of examples. The maximum

value for entropy is 1, which corresponds to a collection that has an equal num-

ber of positive and negative examples. The minimum value of entropy is 0, which

corresponds to a collection with only positive or only negative examples. We can

now define the quality of an attribute a by the reduction in entropy on partitioning
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the examples using a. This measure, called the information gain [Mitchell, 1997] is

defined as follows:

Definition 4.8.5. The information gain of an attribute a with respect to a set of

samples E is calculated as follows:

Gain(E, a) = Entropy(E) − (|E0|/|E|) · Entropy(E0) − (|E1|/|E|) · Entropy(E1)

where E0 and E1 are the subsets of examples having the value 0 and 1, respectively,

for attribute a.

The BestAttribute(E,A) function returns the attribute a ∈ A that has the highest

Gain(E,A). Its complexity is O(|E||A|).

Example 4.8.6. We illustrate the working of our algorithm with an example. Con-

tinuing with Example 4.8.1, we calculate the gains for the attributes at the top node

of the decision tree.

Entropy(E) = −(2/4)log2(2/4) − (2/4)log2(2/4) = 1.00

Gain(E, v1) = 1 − (2/4) · Entropy(Ev1=0) − (2/4) · Entropy(v1=1) = 0.00

Gain(E, v2) = 1 − (1/4) · Entropy(Ev2=0) − (3/4) · Entropy(v2=1) = 0.31

Gain(E, v3) = 1 − (2/4) · Entropy(Ev3=0) − (2/4) · Entropy(v3=1) = 0.00

Gain(E, v4) = 1 − (1/4) · Entropy(Ev4=0) − (3/4) · Entropy(v4=1) = 0.31

The DecTree algorithm will pick v2 or v4 to label the root. Figure 4.14 shows a

possible output of DecTree for this example set.
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4.9 Changing the objective

The criterion of minimum number of variables that separate a given set of samples is

not necessarily the optimal one for faster model checking. Through experiments we

discovered that minimizing the number of inputs in the abstract model is far better

for reducing the complexity of model checking (one of the expensive stages in model

checking is removing the quantifiers over all inputs).

4.9.1 Minimizing Inputs with ILP

Let In denote the set of primary inputs. In order to find the set of separating

variables that minimizes the number of inputs in the resulting abstract model, we

derive a mapping I → (2I∪In) that maps each invisible variable to the set of variables

in its (first-layer) fan-in that are not yet in the model. Let FanIn(v) denote this set

for a variable v, and let F =
⋃|I|

j=1 FanIn(vj). With ILP, we can now encode each

variable v ∈ I with a new Boolean variable and add a constraint stating that if v is

true, then so are all the variables in FanIn(v). Minimizing over the sum of inputs

gives us the desired result. Figure 4.15 gives a 0-1 ILP formulation of this problem.

Example 4.9.1. Continuing with Example 4.8.1, suppose that we derive the follow-

ing mapping of invisible variables to variables in their fanin:

v1 → {i1, i3} v2 → {i1, i5} v3 → {i2} v4 → {i3, i4}

The corresponding ILP is (here we write the new set of constraints as propositional

formulas rather than inequalities, for clarity):
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Min
∑|F|

i=1 vi

Subject to:

1. ∀s ∈ SD. ∀t ∈ SB.
∑

1≤i≤|I|,

s(vi)6=t(vi)

vi ≥ 1

2. ∀1 ≤ i ≤ |I|. ∀vj ∈ FanIn(vi). vj − vi ≥ 0 // Same as vi → vj

Figure 4.15: A 0-1 ILP formulation of the state separation problem, where the objective is to

minimize the number of inputs in the abstract model.

Min
∑5

i=1 ii

subject to:

. . . . . . // same constraints as in Example 4.8.1

v1 → i1 ∧ i3

v2 → i1 ∧ i5

v3 → i2

v4 → i3 ∧ i4

There are three possible satisfying assignments to the constraints that appeared

in Example 4.8.1: {v1, v2, v4}, {v3, v2, v4} and {v1, v2, v3, v4}. Only the first option

minimizes the number of inputs to four.
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4.9.2 Minimizing Inputs with DTL

For DTL-based separation, we minimize the number of inputs by assigning a higher

cost to the attributes corresponding to state variables that introduce more inputs into

the abstract model. Our DecTree algorithm can be modified to take into account

attribute costs by introducing a cost measure into the BestAttribute function. We

replaced the information gain attribute selection measure by the following measure

[Tan and Schlimmer, 1990]:

Gain2(E, a)

Cost(E, a)

Similar to unweighted DTL, such cost-sensitive measures do not guarantee finding

an optimal weighted decision tree. They only bias the search in favor of attributes

that have a lower cost.

In all our experiments, minimizing over the number of inputs turned out to be

more efficient than simply minimizing the number of state variables. In some cases,

it enabled us to solve instances that we could not solve with the previous method in

the given time and memory bounds.

4.10 Generating Good Samples

Through experiments, we found that the number of sampling iterations in Sample-

Sep can become a bottleneck. This problem is at least partially a consequent of the

arbitrariness of selecting an optimal solution when there are multiple equally good
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possibilities. For example, in the biggest circuit we experimented with (which has

5000 state variables), a sample pair of deadend and bad states (d, b) would differ

typically in more than a thousand variables. Our optimization engine selects one of

these variables arbitrarily, say v1. Then a new pair of states (d′, b′) is sampled, and

again, more than a thousand options exist to separate the sets ({d, d′}, {b, b′}) with

a single variable. If any one of these options was selected in the first iteration rather

than v1, it would have ruled out the sample pair (d′, b′).

This problem can be formally explained as follows. The SampleSep algorithm

computes a separating set that is a subset of the set of invisible variables I. Thus,

the number of potential candidates that SampleSep has to consider is 2|I|. Given a

sample pair (d, b), the variables W = {w1, . . . wk} on which d and b differ are called

the distinguishing variables for (d, b). Whenever SampleSep generates a sample

pair (d, b), it infers that at least one variable from the set of distinguishing variables

W for (d, b) should be present in the final separating set. Therefore, this sample pair

allows SampleSep to eliminate (from the set of potential candidates) all the subsets

of I that do not contain a variable from W . There are 2(|I|−|W |) such subsets. A

sample pair with fewer distinguishing variables (corresponding to a small value for

|W |) is a good sample pair because it would eliminate a large portion of the search

space for SampleSep, and would lead to faster convergence of the algorithm.

In each iteration of SampleSep, selecting the sample pair that has the minimum

number of distinguishing variables corresponds to finding a satisfying assignment

to Φ(D,B, SepS) (Equation 4.19) that minimizes the number of pairs (vi, v
′
i) that

are evaluated differently. We solve this boolean optimization problem with Pseudo-
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Boolean Solver (PBS) [Aloul et al., 2002].

A Psuedo-Boolean Constraint (PBC) [Aloul et al., 2002] is a linear constraint

over boolean variables:

∑

cixi ≤ n ci, n ∈ Z, xi ∈ {0, 1}

PBS extends the standard Davis-Putnam procedure to solve a formula consisting

of a conjunction of propositional clauses and PBCs. It uses special Boolean Con-

straint Propagation (BCP) rules for handing PBCs. This approach is more efficient

compared to expanding the PBCs into a collection of propositional clauses, because

such an expansion is exponential. PBS solves the boolean optimization problem by

adding a PBC corresponding to the objective function and progressively increasing

its value till the resulting formula becomes unsatisfiable.

In order to generate sample pairs with the smallest number of distinguishing

variables, the input to PBS is the following propositional formula:

Φ(D,B, SepS) ∧
∧

vi∈I

(di = (vi = v′i)) (4.20)

where d′is are fresh variables. Intuitively, a satisfying assignment to Equation 4.20

assigns a value 1 to di if and only if the variable vi has the same value in the

corresponding deadend and bad state sample, which implies that vi is not a separating

variable for these states. PBS is asked to maximize
∑

di. We tuned PBS for our

instances by forcing it to first split on variables in the objective function (the di
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variables), and to first try the value 1 for these variables since it is a maximization

problem. This strategy turned out to be far superior to standard dynamic orderings.

Due to the generation of good samples, in some of the big examples, we witnessed

a decrease of two orders of magnitude in the number of iterations that are required

for convergence of the sampling algorithm.

4.11 Example

We will go over each step of our cegar implementation, using the model M de-

scribed in Section 3.4 as an example. We will illustrate the configuration that uses

SampleSep for generating the samples, ILP for computing the separating set, and

PBS for generating good samples. The deadend and bad states in the sample sets

shown below are assignments to the state variables {x, y, z, u, c0.v, c1.v, c2.v}. In the

sample sets, assignments to variables in the separating set are shown in a bold font.

• Abstract (Iteration 1) : The initial abstract model M1, corresponding to V =

{}, is shown in Figure 4.16.

• Model Check (Iteration 1) : Model checking M1 produces the counterexample

shown in Figure 4.17.

• Spurious? (Iteration 1) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 4.17 is unsatisfiable. Thus, the counterexample is spurious.

• Refine (Iteration 1) : The counterexample is of length k = 0. Hence, the
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MODULE main

IVAR
i, j, x, y, z, u, c0, c1, c2 : boolean;

SPEC AGu

Figure 4.16: The initial abstract model M1.

Figure 4.17: Counterexample on model M1 (Figure 4.16).

failure index f is 0. The final sample sets and the separating set generated by

SampleSep are:

SD = {(1, 0, 0,1, 0, 0, 0)}

SB = {(1, 0, 0,0, 0, 0, 0)}

SepS = {u}

• Abstract (Iteration 2) : The abstract model M2 for iteration 2, corresponding

to V = {u}, is shown in Figure 4.18.

• Model Check (Iteration 2) : Model checking M2 produces the counterexample

shown in Figure 4.19.
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MODULE main

VAR
u : boolean;

IVAR
i, j, x, y, z, c0, c1, c2 : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0 & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

Figure 4.18: The abstract model M2.

• Spurious? (Iteration 2) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 4.19 is unsatisfiable. Thus, the counterexample is spurious.

• Refine (Iteration 2) : The largest index i for which the formula Di
S (Equation

4.8) is satisfiable is 0. Hence, the failure index f is 0. The final sample sets

and the separating set generated by SampleSep are:

SD = {(1, 0, 0, 1,0, 0, 0), (0, 1, 0, 1,0, 0, 0)}

SB = {(0, 0, 0, 1,1, 1, 1)}

SepS = {c0.v}
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Figure 4.19: Counterexample on model M2 (Figure 4.18).

• Abstract (Iteration 3) : The abstract model M3 for iteration 3, corresponding

to V = {u, c0.v}, is shown in Figure 4.20.

• Model Check (Iteration 3) : Model checking M3 produces the counterexample

shown in Figure 4.21.

• Spurious? (Iteration 3) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 4.21 is unsatisfiable. Thus, the counterexample is spurious.

• Refine (Iteration 3) : The largest index i for which the formula Di
S (Equation

4.8) is satisfiable is 1. Hence, the failure index f is 1. The final sample sets

and the separating set generated by SampleSep are:

SD = {(0, 1,1, 1, 1, 0, 0), (1, 0,1, 1, 1, 0, 0)}

SB = {(0, 0,0, 1, 1, 1, 1)}

SepS = {z}

• Abstract (Iteration 4) : The abstract model M4 for iteration 4, corresponding

to V = {z, u, c0.v}, is shown in Figure 4.22.
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MODULE main

VAR
u : boolean;
c0 : counter cell(1);

IVAR
i, j, x, y, z, c1, c2 : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0.v & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 4.20: The abstract model M3.

Figure 4.21: Counterexample on model M3 (Figure 4.20).
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• Model Check (Iteration 4) : The property holds on M4, and therefore the

property holds on M. This terminates the cegar loop.

4.12 Related Work

The closest work to our approach is described in Yuan Lu’s thesis [Lu, 2000] and

is more briefly summarized in [Clarke et al., 2000]. Like our approach, they also

use an automatic, iterative abstraction-refinement procedure that is guided by the

counterexample, and they also try to eliminate the counterexample by solving the

state-separation problem. But there are three main differences between the two

methods. First, their abstraction is based on replacing predicates of the program

with new input variables, while our abstraction is performed by making some of

the variables invisible (thus, we hide the entire logic that defines these variables).

The advantage of our approach is that computing the minimal abstract model be-

comes easy. Secondly, checking whether the counterexample is real or spurious was

performed in their work symbolically, using OBDDs. We do this stage with a SAT-

solver, which is extremely efficient for this particular task (due to the large number

of solutions to the SAT instance). Thirdly, they derive the refinement symbolically.

Since finding the coarsest refinement is NP-hard, they present a polynomial proce-

dure that in general computes a sub-optimal solution. For some well defined cases

the same procedure computes the optimal refinement. We, on the other hand, tackle

this complexity by considering only samples of the states sets, which we compute

explicitly.

74



MODULE main

VAR
z, u : boolean;
c0 : counter cell(1);

IVAR
i, j, x, y, c1, c2 : boolean;

ASSIGN

init(z) := 0;

next(z) := !z;

init(u) := 1;

next(u) := case
c0.v & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 4.22: The abstract model M4. This model proves the property.
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The work of Das et al. [Das and Dill, 2001] should also be mentioned in this

context, since it is very similar to [Clarke et al., 2000], the main difference being the

refinement algorithm: rather than computing the refinement by analyzing the ab-

stract failure state, they combine a theorem prover with a greedy algorithm that finds

a small set of previously abstracted predicates that eliminate the counterexample.

They add this set of predicates as a new constraint to the abstract model.

Previous work on abstraction by making variables invisible (this technique was

used under different names in the past) include the localization reduction of Kurshan

[Kurshan, 1995] and others (see, for example [Balarin and Sangiovanni-Vincentelli,

1993; Lind-Nielsen and Andersen, 1999]). The localization reduction follows the typ-

ical abstraction-refinement iterative process. It starts by making all but the prop-

erty variables invisible. When a spurious counterexample is identified, it refines the

system by making more variables visible. The variables made visible are selected

according to the variable dependency graph and information that is derived from the

counterexample. The candidates in the next refinement step are those invisible vari-

ables that are adjacent to the currently visible variables on the variable dependency

graph. Choosing among these variables is done by extracting information from the

counterexample. Another relevant work is described by Wang et al. in [Wang et al.,

2001]. They use 3-valued simulation to simulate the counterexample on the concrete

model and identify the invisible variables whose values in the concrete model conflict

with the counterexample. Variables are chosen from this set of invisible variables by

various ranking heuristics. For example, like localization, they prefer variables that

are close to the currently visible variables in the variable dependency graph.
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More recent research by Chauhan et al. [Chauhan et al., 2002] follows a technique

that is very similar to ours. Like our approach, they also look for the failing state

with a SAT-solver. But rather than analyzing the failing state, they derive informa-

tion from the SAT-solver that explains why the spurious counterexample cannot be

simulated beyond this state on the concrete machine. More specifically, they build

an unsatisfiability proof by joining conflict graphs in the SAT-solver, and make visi-

ble all the variables from the failing state that correspond to vertices in this graph.

As a second step, they try to minimize this set by gradually making some of these

variables invisible again, and check whether this makes the instance satisfiable. The

success of the second phase depends on the (arbitrarily chosen) order in which they

remove the variables.

This approach has both advantages and disadvantages when compared to ours.

The main advantage is that their refinement step consists of solving one SAT in-

stance and analyzing the proof of unsatisfiability of this instance. We, on the other

hand, look for an optimal solution, and therefore solve an optimality problem that

can potentially take more time. By doing so we hope to make the model checking

step faster. In general there is less arbitrariness in our procedure compared to theirs.

In practice it is hard to compare the two methods because of this arbitrariness. For

example, it is possible that due to two equally good refinements that the two tools

perform, the next counterexample that they need to analyze is different (the coun-

terexamples that model checkers produce are chosen arbitrarily from an exponential

number of options). This can drastically change the results of the overall proce-

dure. For this reason it is possible that their tool occasionally finds smaller abstract
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models compared to ours. We will refer to this point further when describing our

experimental results.

4.13 Experimental Results

We implemented our framework inside NuSMV [Cimatti et al., 2000]. We used

NuSMV as a front-end, for parsing SMV files and for generating abstractions. How-

ever, for actual model checking, we used Cadence SMV [McMillan], which implements

techniques like cone-of-influence reduction, cut-points, etc. We implemented a vari-

ant of the ID3 algorithm (Algorithm 4.2) to generate decision trees. We used Chaff

[Moskewicz et al., 2001] as our SAT-solver. Some modifications were made to Chaff

to efficiently generate multiple state samples in a single run. We used the mixed ILP

tool LP-Solve [Berkelaar] to compute the separating set, and we used PBS [Aloul et

al., 2002] to generate good samples.

Our experiments were performed on the “IU” family of circuits, which are various

localization abstractions of an interface control circuit from Synopsys, Incorporated.

We also experimented with several other circuits from various other sources, as we

report in Table 4.3. All experiments were performed on a 1.5GHz Dual Athlon

machine with 3GB RAM and running Linux. No pre-computed variable ordering

files were used in the experiments.

The results for the “IU” family are presented in Table 4.1 and Table 4.2. The two

tables correspond to two different properties. We compared the following techniques:
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Circuit SMV Rand, ILP Rand, ILP Eqv, DTL Eqv, DTL, Inp

Time Time S L Time S L Time S L Time S L

IU30 0.7 0.1 0 1 0.1 0 1 0.1 0 1 0.14 0 1

IU35 0.6 0.1 0 1 0.1 0 1 0.1 0 1 0.1 0 1

IU40 1.2 6.3 3 4 0.9 5 6 0.6 2 3 0.59 1 3

IU45 37.5 6.1 3 4 1.1 5 6 0.7 2 3 0.85 1 3

IU50 23.3 19.7 13 14 9.8 13 14 24.0 4 17 4.02 2 9

IU55 - - - - 2072 6 9 3.0 1 6 0.37 0 1

IU60 - 7.8 4 7 7.8 4 7 4.5 1 6 0.48 0 1

IU65 - 7.9 4 7 7.9 4 7 3.8 1 5 0.51 0 1

IU70 - 8.1 4 7 8.2 4 7 3.8 1 5 0.47 0 1

IU75 102.9 32.0 9 10 24.5 13 14 24.1 2 7 0.32 0 1

IU80 603.7 31.7 9 10 44.0 13 14 24.1 2 7 0.37 0 1

IU85 2832 33.1 9 10 44.6 13 14 25.2 2 7 0.36 0 1

IU90 - 33.0 9 10 44.6 13 14 25.4 2 7 0.35 0 1

Table 4.1: Model checking results for property 1.

1. ‘SMV’: Cadence SMV.

2. ‘Rand, ILP’: Random sampling, separation using LP-solve, 50 samples per

refinement iteration, minimizing number of state variables.

3. ‘Rand, DTL’: Random sampling, separation using Decision Tree Learning, 50

samples per refinement iteration, minimizing number of state variables.

4. ‘Eqv, DTL’: Sampling with equivalence queries, separation using Decision Tree

Learning, minimizing number of state variables.

5. ‘Eqv, DTL, Inp’: Sampling with equivalence queries, separation using Decision

Tree Learning, minimizing number of inputs.
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For the results in Table 4.2, we added the results of [Chauhan et al., 2002] (they did

not report their results for the circuits in the first table).

For each run, we measured the total running time in seconds (‘Time’), the number

of refinement steps (‘S’), and the number of state variables in the final abstract model

(‘L’). The original number of state variables in each circuit in indicated in its name.

A ‘−′ symbol indicates run-time longer than 10000 seconds.

The experiments indicate that our technique expedites standard model checking

in terms of execution time. We also compared our approach with the technique pre-

sented in [Chauhan et al., 2002] (Depen). In most cases our procedure, as expected,

constructs a smaller abstract model compared to them (as indicated by the number

of state variables chosen). For this set of examples, out approach did not translate

in general to faster run times, because the model checking phase for the abstract

models was not a bottleneck.

Comparing the various configurations of our tool, it is apparent that in most cases

the reduction in the number of required state variables translates to a reduction in the

total execution time. There were cases (see, for example, circuit IU50 in Table 4.2),

however, in which smaller sets of separating variables resulted in longer execution

time. Such ‘noise’ in the experimental results is typical to OBDD-based techniques.

We also tried another set of examples, as summarized in Table 4.31. For this set

of examples we replaced Cadence SMV with the model checker used by [Chauhan

1Unfortunately we could not compare many other circuits because the model checker used by

[Chauhan et al., 2002] is unstable.
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Circuit SMV Rand, ILP Rand, DTL Eqv, DTL Depen Eqv, DTL, Inp

Time Time S L Time S L Time S L time S L time S L

IU30 7.3 8.0 3 20 7.5 3 20 6.5 3 20 1.9 4 20 5.56 3 20

IU35 19.1 11.8 4 21 12.7 4 21 11.0 4 21 10.4 5 21 22.58 4 21

IU40 53.6 25.9 6 23 19.0 5 22 16.1 5 22 13.3 6 22 33.78 5 22

IU45 226.1 28.3 5 22 25.3 5 22 22.1 5 22 25 6 22 38.9 5 22

IU50 1754 160.4 13 32 85.1 10 27 15120 7 31 32.8 6 22 57.39 5 22

IU55 - - - - - - - - - - 61.9 4 20 58.94 3 20

IU60 - - - - - - - - - - 65.5 4 20 76.74 3 20

IU65 - - - - - - - - - - 67.5 4 20 79.99 3 20

IU70 - - - - - - - - - - 71.4 4 20 69.39 3 20

IU75 - 1080 21 38 586.7 16 33 130.5 5 26 15.7 5 21 22.59 4 21

IU80 - 1136 21 38 552.5 16 33 153.4 5 26 21.1 5 21 25.61 4 21

IU85 - 1162 21 38 581.2 16 33 167.7 5 26 24.6 5 21 27.5 4 21

IU90 - 965 20 37 583.3 16 33 167.1 5 26 24.3 5 21 27.96 4 21

Table 4.2: Model checking results for property 2.

et al., 2002] to check the abstract models. This model checker is built on top of

NuSMV2 and has several optimizations that Cadence SMV doesn’t have, like a very

efficient mechanism for early quantification, as describes in [Chauhan et al., 2001a,b]

(for the smaller examples described in the first two tables changing the model checker

did not make any notable difference).

Here we can see that our method performs better in four cases and worse in two.

As explained in Section 4.12, we attribute the smaller number of state variables that

they find in the last two cases to the arbitrariness of the counterexamples that are

generated by the model checker.
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Depen Eqv, DTL, Inp

Design Length Time S L Time S L

M9 TRUE 10.2 2 38 2.9 1 38

M6 TRUE 44.3 4 50 18.8 4 50

M16 TRUE 1162 61 35 44.7 3 34

M17 TRUE - 733 8 39

D6 20 917 46 89 1773 43 92

IUp1 TRUE 3350 13 19 - 9 41

Table 4.3: Results for various large hardware designs, comparing our techniques with [Chauhan et

al., 2002].
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Chapter 5

Learning Abstractions without

Refinement

5.1 Abstraction as Inductive Learning

As described in Section 3.2, the aim of abstraction is to identify an abstract model

that on the one hand is small enough to be handled by the model checker, and on the

other hand avoids grouping of concrete states that introduces spurious counterexam-

ples.

Abstraction can be formulated as an inductive learning problem as follows. Ab-

straction techniques try to infer an abstraction function h : S → Ŝ such that the

corresponding abstract model does not have any spurious counterexamples. The set

of candidate functions over which abstraction searches is implicitly defined by the
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technique being used to generate the abstract model (Section 3.2). This learner has

both forms of inductive biases (Section 2.3).

1. Restriction Bias: Abstraction techniques search over a very small subset of the

set of all possible abstraction functions (Section 3.3). For example, localization

abstraction on a circuit with n boolean latches considers only 2n abstraction

functions (corresponding to the 2n subsets of the set of n latches). The number

of possible abstraction functions for this circuit is much greater than 22n

.

2. Preference Bias: An abstraction function corresponding to an abstract model

with fewer states is preferred, because such a model is typically easier to model

check.

In order to complete the formulation of abstraction as an inductive learner, we need

some notion of samples that constitute the experience available to the learner. For

this, we introduce broken traces on concrete models. Broken traces capture the

necessary and sufficient conditions for the existence of an abstract counterexample.

The sample set for the learner is a set of broken traces. The abstraction function

generated by the learner eliminates all the broken traces in the concrete model

(Figure 5.1).

5.2 Broken Traces

We define the notion of broken traces for both safety and liveness properties.
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Figure 5.1: Abstraction as Inductive Learning (see Figure 2.1).

5.2.1 Broken Traces for Safety Properties

Definition 5.2.1. Given a model M = (S, I, R,E, F ) and an abstraction function

h, a broken trace for safety T on M for h is a sequence of pairs of concrete states

〈(s1, t1), . . . (sm, tm)〉, m ≥ 1 such that

1. I(s1), i.e. s1 is an initial state.

2. ∀1 ≤ i ≤ m. h(si) = h(ti), i.e, si and ti are mapped to the same abstract state

by the abstraction function.

3. ∀1 ≤ i < m. R(ti, si+1), i.e, ti → si+1 is a concrete transition.

4. E(tm), i.e. tm is an error state.

A broken trace 〈(s1, t1), . . . (sm, tm)〉 is said to break at cycle i if si 6= ti. If a broken

trace has no breaks, it corresponds to a counterexample C = 〈s1, . . . sm〉 on the
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MODULE main

VAR
x, y, z : boolean;

ASSIGN
init(x) := 0;
next(x) := x;

init(y) := 0;
next(y) := !y;

init(z) := 1;

next(z) := !x | !y;

SPEC AGz

Figure 5.2: An example model N in NuSMV input format.

concrete model. Consider the model N (shown in Figure 5.2) and the localization

abstraction function h : {0, 1}3 → {0, 1}2 for N defined as:

h((x, y, z)) = (y, z) (5.1)

Figure 5.3 shows a broken trace on N for h. This broken trace breaks at cycle 2.

5.2.2 Broken Traces for Liveness Properties

Definition 5.2.2. Given a model M = (S, I, R,E, F ) and an abstraction function

h, a broken trace for liveness T on M for h is a sequence of triplets of concrete states

〈(s1, u1, t1), . . . (sl, ul, tl), . . . (sm, um, tm)〉, m ≥ 2, 1 ≤ l < m, such that

1. I(s1), i.e. s1 is an initial state.
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Break

Initial
State

Error
State

Figure 5.3: A broken trace on N (Figure 5.2) for the abstraction function defined in Equation 5.1.

A state is an assignment to (x, y, z).

2. ∀1 ≤ i ≤ m. h(si) = h(ui) = h(ti), i.e, si, ti and ui are mapped to the same

abstract state by the abstraction function.

3. ∀1 ≤ i < m. R(ti, si+1), i.e, ti → si+1 is a concrete transition.

4. ∀1 ≤ i ≤ m. ¬F (ui), i.e, ui is a non-good state.

5. ∃1 ≤ l < m. tm = sl.

5.3 Broken Traces and Abstract Counterexamples

Theorem 5.3.1. Given a model M = (S, I, R,E, F ) and an abstraction function

h, there exists a counterexample for the safety property on the abstract model corre-

sponding to h if and only if there exists a broken trace for safety on M for h (See

Figure 5.4).
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Figure 5.4: An abstract counterexample for a safety property and a broken trace over the corre-

sponding concrete states. This figure illustrates Theorem 5.3.1.

Proof. (IF) Assume that T is a broken trace for safety on M for h. Let T =

〈(s1, t1), . . . (sm, tm)〉. Let M̂ = (Ŝ, Î , R̂, Ê, F̂ ) be the abstract model correspond-

ing to h. Let Ĉ = 〈ŝ1, ŝ2, . . . ŝm〉, where ŝi = h(si). Since I(s1), by Definition

3.2.2, we have Î(ŝ1). By Definition 5.2.1, R(ti, si+1). Therefore, by Definition 3.2.2,

R̂(h(ti), h(si+1)), i.e. R̂(ŝi, ŝi+1). Since E(tm), by Definition 3.2.2, we have Ê(ŝm).

Hence, Ĉ is a path counterexample on M̂ .

(ONLY IF) Assume that Ĉ is a path counterexample on the abstract model M̂

corresponding to h. Let Ĉ = 〈ŝ1, ŝ2, . . . ŝm〉. Let M̂ = (Ŝ, Î , R̂, Ê, F̂ ). Since Î(ŝ1),

by Definition 3.2.2, there exists a state s1 such that I(s1). Since R̂(ŝi, ŝi+1), by

Definition 3.2.2, there exist states ti and si+1 such that h(ti) = ŝi, h(si+1) = ŝi+1 and

R(ti, si+1). Since Ê(ŝm), by Definition 3.2.2, there exists tm such that E(tm). Thus,

T = 〈(s1, t1), . . . (sm, tm)〉 is a broken trace for safety on M for h.

For example, consider the abstract model in Figure 5.5 for N , corresponding to the
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MODULE main

VAR
y, z : boolean;

IVAR
x : boolean;

ASSIGN
init(y) := 0;
next(y) := !y;

init(z) := 1;

next(z) := !x | !y;

SPEC AGz

Figure 5.5: Abstract model for N (Figure 5.2) corresponding to h defined by Equation 5.1.

abstraction function defined in Equation 5.1. Figure 5.6 shows a counterexample on

this model. This abstract counterexample corresponds to the broken trace shown in

Figure 5.3.

Theorem 5.3.2. Given a model M = (S, I, R,E, F ) and an abstraction function h,

there exists a counterexample for the liveness property on the abstract model corre-

sponding to h if and only if there exists a broken trace for liveness on M for h.

Figure 5.6: A counterexample on the model in Figure 5.5.
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Proof. (IF) Assume that T is a broken trace for liveness on M for h.

Let T = 〈(s1, u1, t1), . . . (sl, ul, tl), . . . (sm, um, tm)〉. Let M̂ = (Ŝ, Î , R̂, Ê, F̂ ) be the

abstract model corresponding to h. Let Ĉ = 〈ŝ1, . . . ŝl, . . . ŝm〉, where ŝi = h(si).

Since I(s1), by Definition 3.2.2, we have Î(ŝ1). By Definition 5.2.2, R(ti, si+1).

Therefore, by Definition 3.2.2, R̂(h(ti), h(si+1)), i.e. R̂(ŝi, ŝi+1). Since ¬F (ui),

by Definition 3.2.2, we have ¬F̂ (ŝi). Since tm = sl, we have ŝm = ŝl. Hence,

Ĉ = 〈ŝ1, . . . (ŝl, . . . ŝm−1)
ω〉 is a loop counterexample on M̂ .

(ONLY IF) Assume that Ĉ is loop counterexample on the abstract model M̂

corresponding to h. Let Ĉ = 〈ŝ1, . . . (ŝl, . . . ŝm−1)
ω〉. Let M̂ = (Ŝ, Î , R̂, Ê, F̂ ).

Since Î(ŝ1), by Definition 3.2.2, there exists a state s1 such that I(s1). Since

R̂(ŝi, ŝi+1), by Definition 3.2.2, there exist states ti and si+1 such that h(ti) = ŝi,

h(si+1) = ŝi+1 and R(ti, si+1). Since ¬F̂ (ŝi), by Definition 3.2.2, there exists ui

such that ¬F (ui). Since R̂(ŝm−1, ŝl), by Definition 3.2.2, there exist states tm−1

and sm such that h(tm−1) = ŝm−1, h(sm) = ŝl and R(tm−1, sm). Thus, T =

〈(s1, u1, t1), . . . (sl, ul, tl), . . . (sm−1, um−1, tm−1), (sm, ul, tl)〉 is a broken trace for live-

ness on M for h.

5.4 Eliminating Broken Traces

Definition 5.4.1. An abstraction function g, and the corresponding abstract model,

are said to eliminate a broken trace for safety 〈(s1, t1), . . . (sm, tm)〉 if ∃1 ≤ i ≤ m.

g(si) 6= g(ti).
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For example, the abstraction function g((x, y, z)) = (x) eliminates the broken trace

in Figure 5.3, because g((0, 1, 1)) = (0) and g((1, 1, 1)) = (1).

Definition 5.4.2. An abstraction function g, and the corresponding abstract model,

are said to eliminate a broken trace for liveness 〈(s1, ul, t1), . . . (sl, ul, tl), . . . (sm, um, tm)〉

if ∃1 ≤ i ≤ m.(g(si) 6= g(ti)) ∨ (g(si) 6= g(ui)) ∨ (g(ti) 6= g(ui)).

5.5 Our Abstraction Strategy

Theorem 5.3.1 and Theorem 5.3.2 say that the existence of a broken trace on a

concrete model for an abstraction function h is a necessary and sufficient condition

for the existence of a counterexample on the abstract model corresponding to h. This

is the motivation behind our abstraction strategy. We compute the smallest abstract

model that eliminates all broken traces on the concrete model. Theorem 5.3.1 and

Theorem 5.3.2 imply that this is the smallest abstract model that can prove the

property.

5.6 Learning Abstractions

The naive method of computing the abstract model by generating and eliminating

all broken traces is infeasible, because the set of broken traces is infinite. Instead, we

learn this model by generating a set of sample broken traces such that the abstract

model that eliminates the broken traces in this set also eliminates all other broken

traces.
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Figure 5.7: Sample broken traces on N (Figure 5.2). A state is an assignment to (x, y, z).

For example, the broken trace samples in Figure 5.7 are eliminated by the abstraction

function

h((x, y, z)) = (x, z) (5.2)

This abstraction function also eliminates the broken trace in Figure 5.3. The property

holds on the corresponding abstract model shown in Figure 5.8, and therefore by

Theorem 5.3.1, h eliminates all broken traces in N .

Figure 5.9 is a simplified view of our overall strategy. Starting with an empty set,

we iteratively generate the set of broken trace samples. In each iteration of the loop,

we compute an abstract model that eliminates all broken traces in the sample set,

and then use the counterexample produced by model checking this abstract model to

guide the search for new broken traces that are not eliminated by the current abstract

model. The call to the model checker is like an equivalence query (Section 2.2) in the

inductive learning framework. If the property holds on the abstract model, it implies

that our learner has derived the required abstraction function. Otherwise, the broken
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MODULE main

VAR
x, z : boolean;

IVAR
y : boolean;

ASSIGN
init(x) := 0;
next(x) := x;

init(z) := 1;

next(z) := !x | !y;

SPEC AGz

Figure 5.8: Abstract model for N (Figure 5.2) corresponding to h defined by Equation 5.2. The

property holds on this model.

Broken Trace
Samples

Abstract
Model

Eliminating
Abstract Model

Broken
Traces

Property HoldsReal Bug

Figure 5.9: Learning Abstract Models.
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traces generated are like the objects that are incorrectly classified by the abstraction

function generated by the learner. The abstract model generated in the next iteration

from the augmented set of samples is not necessarily a refinement of the previous

abstract model. The loop terminates when either of the following happens:

1. No counterexample is present in the abstract model (property holds).

2. A broken trace with no breaks is generated (property does not hold).

5.6.1 The LearnAbs Algorithm

Algorithm 5.1 Learning Abstractions for Model Checking

LearnAbs (M,ϕ)

1: B = {}

2: while (1) do

3: h = ComputeAbstractionFunction(B)

4: M̂ = BuildAbstractModel(M,h)

5: if MC(M̂, ϕ) = TRUE then return ‘TRUE’

6: else Let C be the counterexample produced by MC

7: for (n = 1; n ≤ N ; n = n+ 1) do

8: T = GenerateBrokenTrace(M,C)

9: if T has no breaks then return ‘FALSE’

10: else B = B ∪ {T }

The pseudo-code for Learning Abstractions(LearnAbs) is shown in Algorithm 5.1.

The ComputeAbstractionFunction function (line 3) computes an abstraction function
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that eliminates all broken traces in the sample set B (see Section 5.9). The Build-

AbstractModel function (line 4) builds the abstract model corresponding to h (see

Section 5.7). If the model checker proves the property on the abstract model (line

5), the algorithm returns TRUE. Otherwise, the GenerateBrokenTrace function (line

8) generates N broken trace samples corresponding to the abstract counterexample

C (see Section 5.10). If a real bug is found in the process (line 9), the algorithm

returns FALSE. Otherwise, the loop is repeated with the augmented set of samples

(line 10).

5.6.2 Termination

Since the broken trace(s) generated in a particular iteration of the loop are not

eliminated by the current abstraction function h, the same abstraction function will

not be computed in subsequent iterations. Thus, termination of the LearnAbs is

guaranteed if the following conditions are met:

1. The ComputeAbstractionFunction function generates abstraction functions from

a finite set H.

2. The set H contains the identity abstraction function h(s) = s, for which the

abstract model is the same as the concrete model.

These assumptions apply to many practical scenarios, including localization abstrac-

tion, and predicate abstraction over a finite set of predicates (Section 3.3).
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We now describe an implementation of our LearnAbs algorithm that uses lo-

calization abstraction for verification of hardware circuits.

5.7 Abstraction Functions

We use localization abstraction based on visible/invisible variables (Section 3.3.2).

The BuildAbstractModel function simply removes the logic that defines the variables

in I, and replaces these variables with inputs (Section 3.3.3). Our initial abstract

model corresponds to V = {}, i.e. all variables are invisible.

5.8 Model Checker

We can use any off-the-shelf checker for this step. Our implementation interfaces

with a state-of-the-art model checker, Cadence SMV [McMillan].

5.9 Computing the Eliminating Abstract Model

For a broken trace for safety T = 〈(s1, t1), . . . (sm, tm)〉, the eliminating set ET con-

sists of all variables r such that for some 1 ≤ i ≤ m, the states si and ti differ on the

value of r. Similarly, for a broken trace for liveness T = 〈(s1, u1, t1), . . . (sm, um, tm)〉,

the eliminating set ET consists of all variables r such that for some 1 ≤ i ≤ m, the

states si and ti, or the states si and ui, or the states ui and ti differ on the value of

r. The broken trace T is eliminated by an abstraction function hV if ET ∩ V 6= {}.
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For example, the broken traces in Figure 5.7 are eliminated by abstraction functions

corresponding to V = {x, z}, V = {y, z}, and V = {x, y, z}. Given a set B of bro-

ken trace samples, we want to compute the smallest set V such that hV eliminates

all broken traces in B. This computation corresponds to the minimum hitting-set

problem, which is an NP-complete problem. We formulate this as an Integer Linear

Program (ILP), and solve it using an ILP-solver. This formulation is very similar to

the one described in Section 4.8.1. We also have a formulation that minimizes the

number of inputs (instead of the number of state variables) in the abstract model

(Section 4.9).

The ILP-based approach computes the smallest eliminating set. However, the

complexity of this approach is exponential in the number of state variables. We also

implemented various polynomial-time algorithms that compute an approximation of

the minimum hitting-set. These algorithms rank variables based on some heuristic

measure, and then compute a hitting-set by greedily selecting variables till all the

traces are eliminated. For example, one of the heuristic measures we used was

the number of breaks on a variable over all the broken trace samples. The greedy

algorithms do not guarantee the smallest abstract model, but their complexity is

polynomial in the number of state variables and the number of broken trace samples.

5.10 Generating Broken Traces

A SAT-solver implements a function Sat[F ] that returns an arbitrary satisfying

assignment for the boolean formula F . We enhanced the SAT-solver to implement

97



‘SAT with hints’. The function SatHint[F ,H] takes as input a boolean formula F

and a set H of assignments to a subset of variables in F . It returns a satisfying

assignment for F that agrees with the assignments in H on ‘many’ variables. This

is achieved by forcing the SAT-solver to first decide on the literals corresponding to

the variable assignments in H. Thus, the satisfying assignment will disagree with H

on a variable v only if v is forced to a different value by a conflict.

Theorem 5.3.1 and Theorem 5.3.2 say that if there is a counterexample on the

abstract model, there exists a broken trace on the concrete model for the correspond-

ing abstraction function. We illustrate how we generate this broken trace for safety

properties. The broken traces for liveness are generated in a similar fashion. The

GenerateBrokenTraceS function (Algorithm 5.2) generates broken traces for safety.

Starting with a concrete initial state s1 (line 2), it successively finds a concrete tran-

sition corresponding to each of the abstract transitions in the counterexample (line

4). The hints to SatHint ensure that at cycle i, a state ti different from si is picked

only if si does not have a transition to some concrete state in ŝi+1. This helps in

reducing the size of the eliminating set for the broken trace. A broken trace with

a smaller eliminating set is better because it helps the sampling loop to converge

faster (Section 4.10). Multiple samples are generated by randomizing the selection

of assignments to the inputs.

Note that our approach does not perform BMC on the concrete model. The SAT-

solver works on a single frame of the transition relation, thus it can potentially handle

much larger designs. We cannot replace the SAT-solver with a circuit simulator,

because the circuit outputs (latches) are constrained to lie in the corresponding
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abstract state in the counterexample. A circuit-simulator, on the other hand, only

permits constraints on the inputs. A potential disadvantage of our approach for

designs with bugs is that our method for generating broken traces might generate a

large number of samples before it finds an unbroken trace corresponding to a bug.

In order to deal with this, if the number of samples at a particular depth reaches a

threshold, we check for the presence of a real bug at that depth by performing BMC

on the concrete model.

Algorithm 5.2 Generating Broken Traces

GenerateBrokenTraceS(M,C)

1: Let C = 〈ŝ1, . . . ŝm〉

2: s1 = Sat[ I(s1) ∧ (h(s1) = ŝ1) ]

3: for (i = 1; i < m; i = i+ 1) do

4: (ti, si+1) = SatHint[ R(ti, si+1)∧ (h(ti) = ŝi)∧ (h(si+1) = ŝi+1), {ti = si} ]

5: tm = SatHint[ E(tm) ∧ (h(tm) = ŝm), {tm = sm} ]

6: Return T = 〈(s1, t1), . . . (sm, tm)〉

5.11 LearnAbs vs. Separating Deadend/Bad

Many abstraction techniques eliminate a spurious abstract counterexample as fol-

lows: they identify an abstract failure state by a forward (or backward) simulation

of the counterexample on the concrete model and then remove the abstract transi-

tion from (or to) the failure state by splitting the failure state into multiple abstract

states. The drawback of these techniques is that they focus on a single abstract state.
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Figure 5.10: V = {x}, I = {y, z}. The counterexample breaks at abstract state (2).

A smaller abstract model that eliminates the counterexample can be generated by

splitting multiple abstract states of the counterexample. Moreover, these techniques

do not guarantee that the counterexample is eliminated. We illustrate these short-

comings through some examples in the context of the approach based on separating

deadend and bad states (Section 4.5). We also illustrate how our approach fixes these

shortcomings.

Example 5.11.1. Consider the abstract counterexample in Figure 5.10, with V =

{x} and I = {y, z}. Figure 5.11 is an abstract model obtained by separating state

set S1 from S2, and S3 from S4, where S1 = {(2, 0, 0)}, S2 = {(2, 1, 0), (2, 1, 1)},

S3 = {(3, 0, 1)}, and S4 = {(3, 1, 0), (3, 1, 1)}. These sets are indicated by the dashed

boxes in Figure 5.11. S1 and S2 lie in the abstract state (2), while S3 and S4 lie in the

abstract state (3). This separation can be achieved by making y visible, and the new
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Figure 5.11: An abstract model that eliminates the counterexample in Figure 5.10 by splitting

multiple abstract states.

Figure 5.12: Broken trace samples corresponding to the counterexample in Figure 5.10. A state is

an assignment to (x, y, z).

101



Bad
States

Deadend
States

Failure
State

Figure 5.13: V = {x}, I = {y, z}. The counterexample breaks at abstract state (2).

abstract model eliminates the counterexample. Note that this abstract model does

not separate the deadend and bad states. Separating deadend and bad states for this

example would require both y and z to be visible, thereby adding unnecessary state

variables to the abstract model. This example illustrates that separating deadend and

bad states is not necessary for eliminating the counterexample. Figure 5.12 illustrates

some broken trace samples corresponding to this counterexample. All these samples

are eliminated by making y visible. Thus our technique does not have this drawback.

Example 5.11.2. Consider the abstract counterexample in Figure 5.13, with V =

{x} and I = {y, z}. Figure 5.14 is an abstract model that puts the deadend and bad

states into separate abstract states. The counterexample is not eliminated from the

new abstract model, because the bad states are reachable in this model. This example
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Figure 5.14: An abstract model obtained by separating deadend and bad states in Figure 5.13. The

counterexample is not eliminated.

Figure 5.15: Broken trace samples corresponding to the counterexample in Figure 5.13. A state is

an assignment to (x, y, z).
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illustrates that separating deadend and bad states is not sufficient to eliminate the

counterexample. Note that the counterexample now fails at an earlier cycle, therefore

the counterexample will eventually be eliminated in subsequent refinement iterations.

Figure 5.15 illustrates some broken traces corresponding to this counterexample. In

order to eliminate these broken traces, we need to make both y and z visible, which

eliminates the counterexample. Thus our technique does not suffer from this problem.

5.12 LearnAbs vs. Abstraction Refinement

Counterexample-Guided Abstraction-Refinement (cegar) framework (Section 4.1)

is a common strategy for automatically generating abstract models. Starting with an

initial abstraction function, this technique refines it in each iteration to eliminate one

or multiple spurious counterexamples. The smallest abstract model that eliminates

a set of counterexamples is not necessarily a refinement of the smallest abstract

model that eliminates a subset of this set. Thus, a refinement-based strategy cannot

guarantee the smallest abstract model that proves the property. The proof-based

abstraction technique presented in [Gupta et al., 2003; McMillan and Amla, 2003]

tries to alleviate this problem by building a fresh abstract model at each iteration.

They perform BMC on the concrete model up to the length of the counterexample.

The abstract model consists of the gates that are used by the SAT-solver to prove

unsatisfiability of the BMC instance. However, this approach is also not optimal.

The LearnAbs algorithm is not based on refinement, and therefore it does not have

this drawback.
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Example 5.12.1. Consider the application of a cegar-based strategy to N (Figure

5.2). In the first iteration of the cegar loop, an abstract model is generated to

eliminate counterexamples of length 1. This could produce an abstract model with

V = {y, z} (see Figure 5.5), which is one of the smallest models that eliminates all

counterexamples of length 1. In the next iteration, a counterexample of length 2 will

be generated and this adds the variable x to V . At this point, the variable y is not

needed, but it ends up being part of the abstract model because cegar is based

on refinement. Even if a fresh abstract model is generated using a SAT-solver, the

abstract model will contain the variable y if the SAT-solver first makes decisions on

the variables corresponding to y. Our approach, on the other hand, guarantees that

y is not included in the final abstract model (see Figure 5.8).

5.13 Example

In this section, we will use the model M described in Section 3.4 to illustrate the

following:

• The working of our LearnAbs algorithm.

• The advantages of LearnAbs over abstraction-refinement.

In Section 4.11, we went over each step of our cegar implementation on the same

model. At some of the refinement steps (namely Iteration 2 and Iteration 3), there

were multiple options available to cegar for which variables to add to the abstract

model. All these options corresponded to separating sets of the same (smallest) size,
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and therefore cegar was free to choose any one of them. We presented a run in

which cegar picked the variables that generated an optimal abstract model in the

end. We now describe another possible execution sequence which shows how cegar

can end up making the wrong choices, thereby generating long spurious abstract

counterexamples and a large abstract model.

5.13.1 An execution of cegar

The deadend and bad states in the sample sets shown below are assignments to the

state variables {x, y, z, u, c0.v, c1.v, c2.v}. In the sample sets, the assignments to the

variables in the separating set are shown in a bold font.

• Abstract (Iteration 1) : The initial abstract model M1, corresponding to V =

{}, is shown in Figure 5.16.

• Model Check (Iteration 1) : Model checking M1 produces the counterexample

shown in Figure 5.17.

• Spurious? (Iteration 1) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 5.17 is unsatisfiable. Thus, the counterexample in spurious.

• Refine (Iteration 1) : The counterexample is of length k = 0. Hence, the

failure index f is 0. The final sample sets and the separating set generated by

SampleSep are:

SD = {(1, 0, 0,1, 0, 0, 0)}
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MODULE main

IVAR
i, j, x, y, z, u, c0, c1, c2 : boolean;

SPEC AGu

Figure 5.16: The initial abstract model M1.

Figure 5.17: Counterexample on model M1 (Figure 5.16).

SB = {(1, 0, 0,0, 0, 0, 0)}

SepS = {u}

• Abstract (Iteration 2) : The abstract model M2 for iteration 2, corresponding

to V = {u}, is shown in Figure 5.18.

• Model Check (Iteration 2) : Model checking M2 produces the counterexample

shown in Figure 5.19.

• Spurious? (Iteration 2) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 5.19 is unsatisfiable. Thus, the counterexample in spurious.
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MODULE main

VAR
u : boolean;

IVAR
i, j, x, y, z, c0, c1, c2 : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0 & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

Figure 5.18: The abstract model M2.

• Refine (Iteration 2) : The largest index i for which the formula Di
S (Equation

4.8) is satisfiable is 0. Hence, the failure index f is 0. The final sample sets

and the separating set generated by SampleSep are:

SD = {(1, 0, 0, 1,0, 0, 0), (0, 1, 0, 1,0, 0, 0)}

SB = {(0, 0, 0, 1,1, 1, 1)}

SepS = {c0.v}

• Abstract (Iteration 3) : The abstract model M3 for iteration 3, corresponding

to V = {u, c0.v}, is shown in Figure 5.20.
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Figure 5.19: Counterexample on model M2 (Figure 5.18).

• Model Check (Iteration 3) : Model checking M3 produces the counterexample

shown in Figure 5.21.

• Spurious? (Iteration 3) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 5.21 is unsatisfiable. Thus, the counterexample in spurious.

• Refine (Iteration 3) : The largest index i for which the formula Di
S (Equation

4.8) is satisfiable is 1. Hence, the failure index f is 1. The final sample sets

and the separating set generated by SampleSep are:

SD = {(0, 1, 1, 1, 1,0, 0)}

SB = {(0, 0, 0, 1, 1,1, 1)}

SepS = {c1.v}

• Abstract (Iteration 4) : The abstract model M4 for iteration 4, corresponding

to V = {u, c0.v, c1.v}, is shown in Figure 5.22.

• Model Check (Iteration 4) : Model checking M4 produces the counterexample

shown in Figure 5.23.
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MODULE main

VAR
u : boolean;
c0 : counter cell(1);

IVAR
i, j, x, y, z, c1, c2 : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0.v & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.20: The abstract model M3.

Figure 5.21: Counterexample on model M3 (Figure 5.20).
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• Spurious? (Iteration 4) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 5.23 is unsatisfiable. Thus, the counterexample in spurious.

• Refine (Iteration 4) : The largest index i for which the formula Di
S (Equation

4.8) is satisfiable is 3. Hence, the failure index f is 3. The final sample sets

and the separating set generated by SampleSep are:

SD = {(1, 0, 1, 1, 1, 1,0), (0, 1, 1, 1, 1, 1,0)}

SB = {(0, 0, 0, 1, 1, 1,1)}

SepS = {c2.v}

• Abstract (Iteration 5) : The abstract model M5 for iteration 5, corresponding

to V = {u, c0.v, c1.v, c2.v}, is shown in Figure 5.24.

• Model Check (Iteration 5) : Model checking M5 produces the counterexample

shown in Figure 5.25.

• Spurious? (Iteration 5) : The formula φCS
(Equation 4.2) for the counterex-

ample in Figure 5.25 is unsatisfiable. Thus, the counterexample in spurious.

• Refine (Iteration 5) : The largest index i for which the formula Di
S (Equation

4.8) is satisfiable is 7. Hence, the failure index f is 7. The final sample sets

and the separating set generated by SampleSep are:

SD = {(1, 0,1, 1, 1, 1, 1), (0, 1,1, 1, 1, 1, 1)}
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MODULE main

VAR
u : boolean;
c0 : counter cell(1);

c1 : counter cell(c0.cout);

IVAR
i, j, x, y, z, c2 : boolean;

ASSIGN

init(u) := 1;

next(u) := case
c0.v & c1.v & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.22: The abstract model M4.
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Figure 5.23: Counterexample on model M4 (Figure 5.22).

SB = {(0, 0,0, 1, 1, 1, 1)}

SepS = {z}

• Abstract (Iteration 6) : The abstract model M6 for iteration 6, corresponding

to V = {z, u, c0.v, c1.v, c2.v}, is shown in Figure 5.26.

• Model Check (Iteration 6) : The property holds on M6, and therefore the

property holds on M. This terminates the cegar loop.

The final abstract model that cegar generates contains 5 state variables, while the

smallest abstract model that proves the property contains only 3 state variables.

Moreover, the longest counterexample generated by cegar is of length 8, which

means that it builds a BMC unfolding of length 8 to check the validity of this

counterexample.

5.13.2 An execution of LearnAbs

We now show how LearnAbs behaves on M. For each iteration, we show the

abstract model, the abstract counterexample, and the broken trace samples that
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MODULE main

VAR
u : boolean;
c0 : counter cell(1);

c1 : counter cell(c0.cout);
c2 : counter cell(c1.cout);

IVAR
i, j, x, y, z : boolean;

ASSIGN

init(u) := 1;

next(u) := case
c0.v & c1.v & c2.v : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.24: The abstract model M5.
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Figure 5.25: Counterexample on model M5 (Figure 5.24).

LearnAbs generates.

• Abstract Model (Iteration 1) : Initially, the set of broken trace samples is empty.

The initial abstract model M1, corresponding to V = {}, is shown in Figure

5.27.

• Model Check (Iteration 1) : Model checking M1 produces the counterexample

shown in Figure 5.28.

• Broken Trace Samples (Iteration 1) : Figure 5.29 shows the broken trace sam-

ples generated by LearnAbs. These samples can be eliminated by making u

visible.

• Abstract Model (Iteration 2) : The abstract model M2 for iteration 2, corre-

sponding to V = {u}, is shown in Figure 5.30.
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MODULE main

VAR
z, u : boolean;
c0 : counter cell(1);

c1 : counter cell(c0.cout);
c2 : counter cell(c1.cout);

IVAR
i, j, x, y : boolean;

ASSIGN

init(z) := 0;

next(z) := !z;

init(u) := 1;

next(u) := case
c0.v & c1.v & c2.v : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.26: The abstract model M6. The property holds on this model.
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MODULE main

IVAR
i, j, x, y, z, u, c0, c1, c2 : boolean;

SPEC AGu

Figure 5.27: The initial abstract model M1.

Figure 5.28: Counterexample on model M1 (Figure 5.27).

Figure 5.29: Broken trace samples corresponding to the counterexample in Figure 5.28. Each state

is an assignment to {x, y, z, u, c0.v, c1.v, c2.v}.
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MODULE main

VAR
u : boolean;

IVAR
i, j, x, y, z, c0, c1, c2 : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0 & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

Figure 5.30: The abstract model M2.

• Model Check (Iteration 2) : Model checking M2 produces the counterexample

shown in Figure 5.31.

• Broken Trace Samples (Iteration 2) : Figure 5.32 shows the broken trace sam-

ples generated by LearnAbs. All the broken traces seen so far can be elimi-

nated by making u and c0.v visible.

• Abstract Model (Iteration 3) : The abstract model M3 for iteration 3, corre-

sponding to V = {u, c0.v}, is shown in Figure 5.33.

• Model Check (Iteration 3) : Model checking M3 produces the counterexample

shown in Figure 5.34.
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Figure 5.31: Counterexample on model M2 (Figure 5.30).

Figure 5.32: Broken trace samples corresponding to the counterexample in Figure 5.31. Each state

is an assignment to {x, y, z, u, c0.v, c1.v, c2.v}.
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• Broken Trace Samples (Iteration 3) : Figure 5.35 shows the broken trace sam-

ples generated by LearnAbs. All the broken traces seen so far can be elimi-

nated by making u and c1.v visible.

• Abstract Model (Iteration 4) : The abstract model M4 for iteration 4, corre-

sponding to V = {u, c1.v}, is shown in Figure 5.36.

• Model Check (Iteration 4) : Model checking M4 produces the counterexample

shown in Figure 5.37.

• Broken Trace Samples (Iteration 4) : Figure 5.38 shows the broken trace sam-

ples generated by LearnAbs. All the broken traces seen so far can be elimi-

nated by making u and c2.v visible.

• Abstract Model (Iteration 5) : The abstract model M5 for iteration 5, corre-

sponding to V = {u, c2.v}, is shown in Figure 5.39.

• Model Check (Iteration 5) : Model checking M5 produces the counterexample

shown in Figure 5.40.

• Broken Trace Samples (Iteration 5) : Figure 5.41 shows the broken trace sam-

ples generated by LearnAbs. The set of all generated broken trace samples

cannot be eliminated by making 2 variables visible. There are 5 3-variable

options for LearnAbs:

V1 = {u, x, y}
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MODULE main

VAR
u : boolean;
c0 : counter cell(1);

IVAR
i, j, x, y, z, c1, c2 : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0.v & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.33: The abstract model M3.

Figure 5.34: Counterexample on model M3 (Figure 5.33).
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Figure 5.35: Broken trace samples corresponding to the counterexample in Figure 5.34. Each state

is an assignment to {x, y, z, u, c0.v, c1.v, c2.v}.

V2 = {u, c0.v, z}

V3 = {u, c0.v, c1.v}

V4 = {u, c1.v, c2.v}

V5 = {u, c2.v, c3.v}

If LearnAbs picks V1 or V2, the resulting abstract model proves the property.

In the worst case, LearnAbs ends up picking one of V3, V4 or V5. Lets assume

that it picks up V4.

• Abstract Model (Iteration 6) : The abstract model M6 for iteration 6, corre-

sponding to V = {u, c1.v, c2.v}, is shown in Figure 5.42.

• Model Check (Iteration 6) : Model checking M6 produces the counterexample

shown in Figure 5.43.

• Broken Trace Samples (Iteration 6) : Figure 5.44 shows the broken trace sam-

ples generated by LearnAbs. The set of samples can be eliminated by V1,
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MODULE main

VAR
u : boolean;
c1 : counter cell(p);

IVAR
i, j, x, y, z, c0, c2, p : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0 & c1.v & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.36: The abstract model M4.

Figure 5.37: Counterexample on model M4 (Figure 5.36).
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Figure 5.38: Broken trace samples corresponding to the counterexample in Figure 5.37. Each state

is an assignment to {x, y, z, u, c0.v, c1.v, c2.v}.

V2, V3 or V5. In the worst case, there are two more iterations of the Learn-

Abs loop, one with V = V3 and the other with V = V4. Both these iterations

produce a counterexample of length 4. Eventually, LearnAbs picks V1 or

V2 as the set of visible variables and proves the property. The model M7

corresponding to V = V1 is shown in Figure 5.45.

The final abstract model that LearnAbs generates contains 3 state variables. This is

one of the smallest models that can prove the property. In each iteration, LearnAbs

generates an abstract model that has no more than 3 state variables. Also, the longest

counterexample generated by LearnAbs is of length 4. This example illustrates the

advantages that LearnAbs has over cegar.

5.14 Optimizations

The following optimizations were implemented on top of the basic LearnAbs algo-

rithm.
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MODULE main

VAR
u : boolean;
c2 : counter cell(p);

IVAR
i, j, x, y, z, c0, c1, p : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0 & c1 & c2.v : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.39: The abstract model M5.

Figure 5.40: Counterexample on model M5 (Figure 5.39).
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Figure 5.41: Broken trace samples corresponding to the counterexample in Figure 5.40. Each state

is an assignment to {x, y, z, u, c0.v, c1.v, c2.v}.

Fine Grained Abstractions : The latch-level abstraction can be too coarse for

larger circuits. We modified the BuildAbstractModel function (line 4) to perform

BMC on the latch abstraction computed from the samples. The BMC instance is

restricted with values from the counterexample. If the BMC instance is unsatisfiable,

only the gates used in the proof of unsatisfiability are added to the abstract model

[McMillan and Amla, 2003]. If the BMC instance is satisfiable, it means that the

counterexample has not been eliminated, and more samples are generated.

Eliminating All Counterexamples : Eliminating one counterexample in each

iteration could lead to a lot of expensive model checking calls [Amla and McMillan,

2004]. The LearnAbs loop can be modified to eliminate all counterexamples at the

current depth. The modified loop performs (unrestricted) BMC on the current ab-

stract model in the BuildAbstractModel function, and proceeds to the model checking

step only if the BMC instance is unsatisfiable. If BMC produces a counterexample,

the counterexample is used to generate more samples. This optimization assumes
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MODULE main

VAR
u : boolean;
c1 : counter cell(p);
c2 : counter cell(c1.cout);

IVAR
i, j, x, y, z, c0, p : boolean;

ASSIGN
init(u) := 1;

next(u) := case
c0 & c1.v & c2.v : x | y | z;
1 : u;

esac;

SPEC AGu

MODULE counter cell(cin)

VAR
v : boolean;

ASSIGN
init(v) := 0;

next(v) := v + cin mod 2;

DEFINE
cout := v & cin;

Figure 5.42: The abstract model M6.
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Figure 5.43: Counterexample on model M6 (Figure 5.42).

Figure 5.44: Broken trace samples corresponding to the counterexample in Figure 5.43. Each state

is an assignment to {x, y, z, u, c0.v, c1.v, c2.v}.
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MODULE main

VAR
x, y, u : boolean;

IVAR
i, j, z, c0, c1, c2 : boolean;

ASSIGN
init(x) := j;
next(x) := i;

init(y) := !j;
next(y) := !i;

init(u) := 1;

next(u) := case
c0 & c1 & c2 : x | y | z;
1 : u;

esac;

SPEC AGu

Figure 5.45: The abstract model M7. The property hold on this model.
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that BMC is faster than model checking.

Reducing Number of Samples : It can be shown that computing the small-

est abstract model that eliminates all counterexamples up to a certain length, is a

ΣP
2 -complete problem [Umans, 1998] (see Chapter 6 for details). The LearnAbs

algorithm could potentially generate a large number of samples before it terminates.

In order to balance the time spent in computing the abstract model and in model

checking, we added some simple heuristics to the ComputeAbstractionFunction func-

tion (line 3) to pick larger non-optimal separating sets if the sampling step takes too

much time.

Is Small Always Good? : In most cases, an abstract model with fewer state

variables is easier to model check. However, for some circuits, we observed that

reducing the number of state variables makes model checking harder. The reason for

this is as follows: the property can be proved on these circuits using two different

sub-circuits, S1 and S2. The sub-circuit S1 contains fewer state variables compared

to S2, however, the combinational logic that S1 contains is more complex than S2,

and therefore S1 is harder to model check. Reducing the number of state variables

generates the abstract model corresponding to S1, instead of S2. After analyzing the

high-level descriptions of these circuits, we observed that the properties were derived

from compositional verification. At the high-level, these properties were assertions of

the form (A→ B), where the consequent B is true independent of the antecedent A.

However, using the antecedent A made the proof of the assertion easier. By forcing
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our approach to use the state variables in A, we were able to reduce the complexity of

model checking. Since the state variables in A were part of the property specification,

we achieved this by forcing LearnAbs to always add the property variables to the

abstract model, even if the property can be proved without using them.

5.15 Related Work

Starting with Kurshan’s localization reduction [Kurshan, 1995], there has been a

lot of work in automatically generating good abstract models [Barner et al., 2002;

Chauhan et al., 2002; Clarke et al., 2003, 2004; Das and Dill, 2002; Glusman et

al., 2003; Gupta et al., 2003; Jain et al., 2005; Mang and Ho, 2004; Wang et al.,

2001, 2003, 2004a]. Many of these techniques follow the Counterexample-Guided

Abstraction-Refinement (cegar) framework (Section 4.1). These techniques start

with an initial abstract model and iteratively add more constraints (refinement) to

eliminate spurious counterexamples, until the property holds on the abstract model

or a counterexample is found on the concrete model. The refinement of the abstract

model and the search for a concrete counterexample are guided by the abstract

counterexamples produced by the model checker.

The technique in [Barner et al., 2002; Chauhan et al., 2002; Clarke et al., 2003,

2004; Gupta et al., 2003] uses BDDs or SAT-solvers to identify the failure state,

which is the last state in the longest prefix of the abstract counterexample that has

a corresponding path in the concrete model. It then adds a set of constraints that

eliminate the abstract transition from the failure state by splitting it into multiple
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abstract states. The methods in [Das and Dill, 2002; Jain et al., 2005] are similar,

except that instead of the longest prefix, they look for a minimal spurious sub-trace

[Das and Dill, 2002] or the longest suffix [Jain et al., 2005]. The drawback of these

strategies is that they focus their efforts on a single abstract state instead of the whole

counterexample. A smaller abstract model that eliminates the counterexample can

be generated by splitting multiple abstract state in the counterexample. Moreover,

identification of the failure state involves building an unrolling of the concrete model,

which is expensive. Our approach fixes these drawbacks by analyzing all the abstract

states and by never building an unfolding of the concrete model.

The techniques presented in [Mang and Ho, 2004; Wang et al., 2003] use a game-

theoretic approach to eliminate spurious counterexamples. They analyze the abstract

model to identify the variables that can steer the abstract model away from the error

states. The approach in [Wang et al., 2001] simulates the abstract counterexample on

the concrete model using 3-valued simulation, and looks for variables that conflict

with their values in the counterexample. The method in [Glusman et al., 2003]

finds variables that are assigned the same value in multiple counterexamples. All

these approaches use a heuristic to identify a set of candidate variables to add to

the abstract model, and then greedily add variables from this list until the abstract

counterexamples are eliminated. These approaches provide no guarantees on the

size of the abstract model. Our approach, on the other hand, computes the smallest

abstract model that can prove the property.

The disadvantage of any refinement-based strategy, is that once some irrelevant

constraint is added to the abstract model, it is not removed in subsequent iterations.
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As the model checker discovers longer abstract counterexamples, the constraints

that were added to eliminate the shorter counterexamples might become redundant.

Refinement-based techniques do not identify and remove these constraints from the

abstract model. This drawback is present in a refinement-based strategy irrespective

of the technique that is used to eliminate spurious counterexamples. The proof-based

abstraction technique presented in [Gupta et al., 2003; McMillan and Amla, 2003]

tries to alleviate this problem by building a fresh abstract model at each iteration.

However, the abstract model is computed from the proof of unsatisfiability produced

by SAT-solvers, and this technique is also not optimal. Our approach is not based on

refinement. In our iterative loop, the abstract model generated in the next iteration

is not necessarily a refinement of the previous abstract model.

Refinement minimization [Wang et al., 2001] is used by various approaches to

reduce the size of the abstract model. However, it is an expensive operation, and it

can only guarantee local minimality, i.e., it only ensures that none of the variables

in the abstract abstract model can be removed while still preserving the property.

There has been some work in extracting the smallest unsatisfiable subset of a set of

clauses [Lynce and Silva, 2004; Oh et al., 2004]. In theory, these techniques can be

combined with the proof-based abstraction method [McMillan and Amla, 2003] to

generate small abstract models. However, in practice, these techniques can only be

applied to instances with a small number of variables and clauses, and therefore do

not scale to real-world systems.
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5.16 Experimental Results

We implemented a model checker for hardware circuits based on the LearnAbs

algorithm. It uses Chaff [Moskewicz et al., 2001] as the SAT-solver, and CPLEX

[ILOG] as the ILP-solver. Cadence SMV [McMillan] is used as the BDD-based model

checker for verifying the abstract models. We used 3 sets of benchmarks for our

experiments: the IU benchmarks [Clarke et al., 2004] from Synopsys, Incorporated,

the PJ benchmarks derived from the PicoJava processor [McMillan and Amla, 2003],

and the RB benchmarks from the IBM Formal Verification Library [Zarpas, 2004].

The value ofN in LearnAbs was set to 25, i.e., we generated 25 broken trace samples

in each iteration of LearnAbs. All experiments were performed on a 1.5GHz Dual

Athlon machine with 3GB RAM and running Linux. No pre-computed variable

ordering files were used in the experiments.

Table 5.1 shows the comparison of LearnAbs with the abstraction strategy

based on separating the set of deadend states from the set of bad states [Clarke

et al., 2004]. The numbers for Deadend/Bad were obtained from [Clarke et al.,

2004] (these experiments were performed on the same machine as ours). The table

shows the number of latches in the circuit (reg); the counterexample length (cex)

- ‘T’ indicates that the property holds; the total running time (time); the number

of model checking calls (itr); and the number of latches in the final abstract model

(abs). The LearnAbs algorithm generates smaller abstract models. For smaller

benchmarks, model checking is not the bottleneck, and therefore the effort spent in

generating a good abstract model does not result in a smaller overall running time.
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circuit reg cex Deadend/Bad LearnAbs

time itr abs time itr abs

IU30 30 10 6 3 20 8 10 14

IU35 35 19 23 4 21 61 70 16

IU40 40 19 34 5 22 37 35 15

IU45 45 19 39 5 22 34 31 17

IU50 50 19 57 5 22 67 22 16

IU55 55 10 59 3 20 13 10 13

IU60 60 10 77 3 20 34 9 14

IU65 65 10 80 3 20 30 10 13

IU70 70 10 69 3 20 25 10 13

IU75 75 10 23 4 21 22 11 15

IU80 80 10 26 4 21 26 10 14

IU85 85 10 28 4 21 25 9 14

IU90 90 10 28 4 21 21 10 13

IUP1 4494 T >2hr - - 1295 18 8

Table 5.1: Comparison of Deadend/Bad with LearnAbs.
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The LearnAbs algorithm performs better on the larger benchmarks.

Table 5.2 and Table 5.3 compare the LearnAbs algorithm with the abstraction

strategy based on the proof of unsatisfiability generated by SAT-solvers (Satproof)

[Chauhan et al., 2002; Gupta et al., 2003; McMillan and Amla, 2003]. We did not use

greedy minimization on the unsatisfiable cores in Satproof. For both these tech-

niques, we show results for the single-counterexample mode (indicated by ‘S’) that

eliminates one abstract counterexample in each iteration; and the all-counterexample

mode (indicated by ‘A’) that eliminates all counterexamples at the current depth in

each iteration. The LearnAbs algorithm consistently generates smaller abstract

models, and this translates to a better or similar runtime on most benchmarks. For

the benchmarks with bugs, Satproof performs better because the BMC step is

very efficient in identifying the error trace. The LearnAbs algorithm completes all

the benchmarks, while Satproof cannot complete 4 benchmarks. On IUP1, the

SAT-solver runs out of memory while trying to build an unrolling of the concrete

model for depth 67 for Satproof (S), and 69 for Satproof (A).
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circuit reg cex Satproof (S) LearnAbs (S) Satproof (A) LearnAbs (A)

time itr abs time itr abs time itr abs time itr abs

PJ00 348 T 7 3 9 6 3 4 7 3 9 6 3 4

PJ01 321 T 6 3 3 5 2 0 6 3 3 5 2 0

PJ02 306 T 7 3 4 6 3 4 7 3 4 6 3 4

PJ03 306 T 6 3 4 5 3 4 6 3 4 6 3 4

PJ04 305 T 7 3 3 5 2 0 6 3 3 5 2 0

PJ05 105 T 9 7 34 35 8 28 9 7 34 34 8 28

PJ06 328 T 209 7 56 23 7 41 210 7 56 24 7 41

PJ07 94 T 18 11 36 13 7 32 20 10 36 14 7 32

PJ08 116 T 58 6 41 75 7 41 58 6 41 76 7 41

PJ09 71 T 8 6 31 4 6 25 8 6 31 4 6 25

PJ10 85 T 3 3 5 2 3 4 3 3 5 2 3 4

PJ11 294 T 11 5 12 5 2 0 12 5 12 5 2 0

PJ12 312 T 4 1 0 4 1 0 4 1 0 4 1 0

PJ13 420 T 10 5 13 8 3 8 10 5 13 8 3 8

PJ14 127 T 25 6 32 9 4 13 35 5 32 9 4 13

PJ15 355 T 184 5 42 14 5 23 185 5 42 15 5 23

PJ16 290 T 248 6 44 64 7 32 246 6 44 65 7 32

PJ17 212 T 2126 14 43 1869 20 29 5037 11 43 3685 14 31

PJ18 145 T 993 22 49 390 8 32 161 7 45 542 7 36

PJ19 52 T >2hr - - 18 3 12 >2hr - - 19 3 12

Table 5.2: Comparison of Satproof and LearnAbs, in single (S) and all (A) counterexamples

mode.
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circuit reg cex Satproof (S) LearnAbs (S) Satproof (A) LearnAbs (A)

time itr abs time itr abs time itr abs time itr abs

RB05 1 313 31 11 10 24 141 17 13 17 6 12 137 11 13

RB09 1 168 T 1 4 9 1 3 4 1 4 9 1 3 4

RB10 1 236 T 3 5 9 1 4 3 3 5 9 1 4 3

RB10 2 236 T 3 6 11 2 4 3 3 6 11 2 4 3

RB10 3 236 T 5 7 34 2 5 5 5 7 34 1 5 5

RB10 4 236 T 8 10 23 1 4 5 6 8 22 2 4 5

RB10 5 236 T 1 4 7 2 4 4 2 4 7 2 4 4

RB10 6 236 T 3 5 7 2 4 4 2 5 7 2 4 4

RB11 2 242 T >1hr - - 128 24 26 >1hr - - 219 14 30

RB14 1 180 T 37 7 47 3 5 15 37 7 47 3 5 15

RB14 2 180 T >1hr - - 1258 60 37 334 11 87 179 13 38

RB15 1 270 9 2 7 8 17 9 4 2 7 8 13 9 4

RB16 1 1 1117 T 8 7 92 324 8 80 8 7 92 260 8 80

RB16 2 4 1113 5 4 5 40 61 5 32 4 5 40 48 5 32

RB26 1 608 T 1 1 0 1 1 0 1 1 0 1 1 0

RB31 2 1 111 T >1hr - - 38 27 29 >1hr - - 17 12 26

IUP1 4494 T mem - - 1295 18 8 mem - - 151 13 5

Table 5.3: Comparison of Satproof and LearnAbs, in single (S) and all (A) counterexamples

mode.
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Chapter 6

Complexity of Abstraction

6.1 Smallest Unsatisfiable Cores

Let C = {c1, ..., cn} be a set of clauses over the set X of boolean variables. Let

w : C → Z be a weight function that assigns a non-negative integral weight to each

clause.

Definition 6.1.1. The weight |R| of a set R of clauses, R ⊆ C, is defined as the

sum of the weights of the clauses in R.

|R| =
∑

ci∈R

w(ci)

Definition 6.1.2. A set R of clauses, R ⊆ C, is said to be satisfiable if the formula

F , given by the conjunction of the clauses in R is satisfiable.

F =
∧

ci∈R

ci
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The set R is said to be unsatisfiable if F is unsatisfiable.

Definition 6.1.3. A set R of clauses, R ⊆ C, is called a Smallest Unsatisfiable Core

(SUC) of C if

1. R is unsatisfiable.

2. For all unsatisfiable sets R′, R′ ⊆ C,

|R| ≤ |R′|

6.2 Quantified Boolean Formulas

A Quantified Boolean Formula (QBF) is a formula of the form

F = Q0X0. . . . QdXd φ

where φ is a propositional formula over a set X of boolean variables. Without loss of

generality, we can assume that φ is a conjunction of clauses. The X ′
is are mutually

disjoint subsets of variables such that
⋃

0≤i≤dXi = X. Each Qi is either an existential

quantifier ∃ or a universal quantifier ∀, and no two adjacent quantifiers are the same.

The depth d is called the alternation depth of the QBF formula.

QBF is the standard PSPACE-complete problem, thereby placing it higher in the

complexity hierarchy than problems like SAT, which are NP-complete. The class of

one-alternation QBF formulas (corresponding to d = 1), which we denote by QBF2,

is ΣP
2 -complete. Intuitively, a ΣP

2 -complete problem can be solved in polynomial time

by a non-deterministic turing machine that has access to an NP-complete oracle.
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6.3 Complexity of SUC

In this section, we show that the decision version of SUC is ΣP
2 -complete. Clearly, this

problem lies in ΣP
2 , because it can be solved by a non-deterministic turing machine

that guesses a subset of C and checks if the subset is unsatisfiable. To show that

the decision version of SUC is ΣP
2 -hard, we describe a translation of QBF2 to this

problem. This translation is similar to the one described in [Umans, 1998].

Theorem 6.3.1. The problem of checking if a set C of clauses has a SUC of weight

k is ΣP
2 -hard.

Proof. Consider a QBF2 formula

F = ∀X0.∃X1 φ(X0, X1)

such that the set X0 contains k variables. For each variable xi ∈ X0, we introduce

two new variables, x+
i and x−i . The set of all x+

i variables is denoted by X+
0 and the

set of all x−i variables is denoted by X−
0 . The formula ψ(X+

0 , X
−
0 , X1) is obtained

from φ by replacing every positive occurrence of xi with x+
i , and every negative

occurrence of xi with x−i . Let

G = ( ψ(X+
0 , X

−
0 , X1) ∨

∨

xi∈X0

(¬x+
i ∧ ¬x−i ) )

Let CG consist of the clauses in the CNF translation of G. Let U consist of 2k unit

clauses (x+
i ) and (x−i ), xi ∈ X0. Let C = CG ∪ U . The clauses in CG are each

assigned a weight 0, while the clauses in U are each assigned a weight 1.
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A SUC of C must contain at least one of each pair (x+
i ) and (x−i ), otherwise the

clauses in the SUC can be satisfied by assigning 0 to the missing x+
i and x−i . Thus,

the weight of a SUC of C is at least k. We show that C has a SUC of weight k if

and only if the formula F evaluates to 0.

(ONLY IF) Suppose C has a SUC R of weight k. Let R′ = R ∪ CG. Note that R′ is

also a SUC of C, since the clauses in CG have weight 0. Since R′ contains at least

one of (x+
i ) and (x−i ) for each xi ∈ X0 and each of these clauses has weight 1, the fact

that R′ has weight k implies that R′ contains exactly one of (x+
i ) and (x−i ) for each

xi ∈ X0. Consider an assignment to the variables xi ∈ X0 obtained by assigning 1

to xi if (x+
i ) ∈ R′ and 0 to x−i if (x−i ) ∈ R′. This assignment satisfies the clauses in

R′ ∩ U . Since R′ is a SUC, the clauses in R′ ∩ CG = CG cannot be satisfied after

applying this assignment. Thus, we have an assignment to X0 for which φ(X0, X1)

is unsatisfiable, which implies that F evaluates to 0.

(IF) Suppose F evaluates to 0. Then there exists an assignment A to the variables

in X0 for which φ(X0, X1) is unsatisfiable. Let U1 consist of exactly one of (x+
i ) and

(x−i ) for each xi ∈ X0, such that (x+
i ) is in U1 if xi is assigned 1 by A, and (x−i ) is in

U1 if xi is assigned 0 by A. Let R = U1∪CG. Clearly, |R| = k. Also, since φ(X0, X1)

is unsatisfiable after applying A, R is unsatisfiable. Thus, C has a SUC of weight k.

Since QBF2 is ΣP
2 -hard, this proves that the decision version of SUC is ΣP

2 -hard.
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6.4 Refinement and SUC

Consider the separation-based refinement technique described in Section 4.5. This

refinement strategy tries to find the smallest set of variables that separates the dead-

end and bad states. In this section, we reduce this problem to the task of finding a

SUC of a set of clauses.

Let D (and B) denote the formula for the deadend (and bad) states for the

property at hand (Section 4.5). Let I denote the set of invisible variables. Let

F = D ∧ B′ ∧
∧

vi∈I

( di ⇒ (vi = v′i) )

The prime symbol over B denotes the fact that we replace each variable vi in B with

a new variable v′i. The d′is are also new variables, corresponding to each xi ∈ I. Let

CF consist of the clauses in the CNF translation of F . Let U consist of the unit

clauses (di), for each di. Let C = CF ∪ U . The clauses in CF are each assigned a

weight 0, while the clauses in U are each assigned a weight 1. Let R be a SUC of

C. The smallest separating set for the deadend and bad states consists of the xi

variables corresponding to the (di) clauses in R ∩ U .

6.5 Abstraction and SUC

The aim of abstraction is to find a small abstract model such that the property holds

on that model (Section 3.2). For localization abstraction, the transition relation R
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can be viewed as a conjunction of constraints

R(s, s′) = R1(s, s
′) ∧R2(s, s

′) . . . ∧Rn(s, s′)

For example, for the abstraction framework with visible/invisible variables, each con-

straint corresponds to the next-state function of a state variable. For fine-grained

abstractions, each constraint might correspond to a gate in the circuit. There is a

weight associated with each constraint, which is a measure of the increase in the

complexity of model checking if that constraint is included in the abstract model.

Localization tries to identify a subset of these constraints thats proves the property

and has a small weight. Most abstraction frameworks (including LearnAbs, Section

5.6) try to identify the constraints that prove the property for all depths, by identi-

fying constraints that prove the property for some bounded depth. In this section,

we show how to reduce the problem of finding the smallest subset of constraints that

prove the property up to a given depth, to the task of finding a SUC for a set of

clauses.

Consider the formula R′(s, s′, d) obtained from R by introducing a selection vari-

able di for each Ri.

R′(s, s′, d) = (d1 ⇒ R1(s, s
′)) ∧ (d2 ⇒ R2(s, s

′)) . . . ∧ (dn ⇒ Rn(s, s′))

Let Nk denote the BMC unfolding of the model (similar to M k
S and Mk

L in Section

3.5), with R replaced with R′. Let CN consist of the clauses in the CNF translation of

Nk. Let U consist of the unit clauses (di), corresponding to each di. Let C = CN ∪U .

The clauses in CN are each assigned a weight 0, while the clauses in U are each
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assigned the weight of the corresponding Ri. Let R be a SUC of C. The smallest

abstract model consists of the R′
is corresponding to the clauses in R ∩ U .

6.6 Duality : SAT vs. UNSAT

This section illustrates the duality between satisfiable subsets and unsatisfiable cores.

In addition to SUC (Definition 6.1.3), we need the following definitions.

Definition 6.6.1. A set R of clauses, R ⊆ C, is called a Largest Satisfiable Subset

(LSS) of C if

1. R is satisfiable.

2. For all satisfiable sets R′, R′ ⊆ C,

|R| ≥ |R′|

Definition 6.6.2. A set R of clauses, R ⊆ C, is called a Minimal Unsatisfiable Core

(MUC) of C if

1. R is unsatisfiable.

2. Any set R′ with R′ ⊂ R is satisfiable.

Definition 6.6.3. A set R of clauses, R ⊆ C, is called a Maximal Satisfiable Subset

(MSS) of C if

1. R is satisfiable.
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2. Any set R′ with R ⊂ R′ is unsatisfiable.

Algorithm 6.1 computes a MSS of a set of clauses C. Starting with an empty set

(line 1), it goes over every clause in C (line 2), and adds it to this set (line 4) if it

does not make the set unsatisfiable (line 3). The resulting set is a MSS of C.

Algorithm 6.1 Maximal Satisfiable Subset

Mss (C)

1: R = {}; i = 1

2: while (i <= n) do

3: if (R ∪ {ci} is satisfiable) then

4: R = R ∪ {ci}

5: i = i+ 1

6: return R

Algorithm 6.2 computes a MUC of a set of clauses C. Starting with the set of

clauses C (line 1), it goes over every clause in C (line 2), and removes it from this

set (line 4) if it does not make the set satisfiable (line 3). The resulting set is a MUC

of C.

Algorithm 6.3 computes a LSS of a set of clauses C. The output R is initially

set to C (line 1). The algorithm terminates when R becomes satisfiable (line 2). At

each iteration, it computes an unsatisfiable subset of R (line 3). All these subsets

are collected in the set I (line 4). It then computes the smallest cover of the sets in

I (line 5) and the set R is assigned the complement of the cover (line 6). A heuristic

to speed up the convergence of this algorithm is to compute a MUC (or SUC) of R
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Algorithm 6.2 Minimal Unsatisfiable Core

Muc (C)

1: R = C; i = 1

2: while (i <= n) do

3: if (R/{ci} is unsatisfiable) then

4: R = R/{ci}

5: i = i+ 1

6: return R

at line 3.

Algorithm 6.3 Largest Satisfiable Subset

Lss (C)

1: R = C; I = {}

2: while (R is not satisfiable) do

3: T = any unsatisfiable subset of R

4: I = I ∪ {T}

5: H = MinCover(I)

6: R = C/H

7: return R

Algorithm 6.4 computes a SUC of a set of clauses C. The output R is initially set

to the empty set (line 1). The algorithm terminates when R becomes unsatisfiable

(line 2). At each iteration, it computes a satisfiable subset of C that contains R

(line 3). The complements of these subsets are collected in the set I (line 4). It

then computes the smallest cover of the sets in I (line 5) and the set R is assigned
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this cover (line 6). A heuristic to speed up the convergence of this algorithm is to

compute a MSS (or LSS) of C at line 3.

Algorithm 6.4 Smallest Unsatisfiable Core

Suc (C)

1: R = {}; I = {}

2: while (R is satisfiable) do

3: T = any satisfiable subset of C that contains R

4: I = I ∪ (C/{T})

5: H = MinCover(I)

6: R = H

7: return R

Our LearnAbs algorithm (Chapter 5.6) is very similar to Suc (Algorithm 6.4).

The broken traces essentially correspond to satisfiable subsets of the set of clauses for

the BMC unfolding of the property, and our good sampling heuristic tries to speed

up convergence by generating maximal (or largest) satisfiable subsets of this set of

clauses.
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Chapter 7

Abstraction-Refinement for

Bounded Model Checking

7.1 Preliminaries

7.1.1 Bounded Model Checking

SAT-based Bounded Model Checking (BMC) (Section 3.5) is a powerful technique

for refuting properties. Given a model M , a property ϕ and a positive integer k

representing the depth of the search, a Bounded Model Checker generates a proposi-

tional formula that is satisfiable if and only if there is a counterexample of length k

or less to ϕ, in M . In this case we write M 6|=k ϕ. The idea is to iteratively deepen

the search for counterexamples until either a bug is found or the problem becomes

too hard to solve in a given time limit. There is a very weak correlation, if any,
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between what is hard for standard BDD-based model checking, and BMC. It should

be clear, then, that every attempt to make this technique work faster, and hence

enable to check larger circuits and in deeper cycles, is worth while.

7.1.2 Unsatisfiable cores generated by SAT-solvers

While a satisfying assignment is a checkable proof that a given propositional formula

is satisfiable, until recently SAT-solvers produced no equivalent evidence when the

formula is unsatisfiable. The notion of generating resolution proofs from a SAT-

solver was introduced in [McMillan and Amla, 2003]. From this resolution proof, one

may also extract the unsatisfiable core, which is the set of clauses from the original

CNF formula that participate in the proof. Topologically, these are the roots of the

resolution graph. The importance of the unsatisfiable core is that it represents a

subset, hopefully a small one, of the original set of clauses that is unsatisfiable by

itself. This information can be valuable in an abstraction-refinement process as well

as in other techniques, because it can point to the reasons for unsatisfiability. In the

case of abstraction-refinement, it can guide the refinement process, since it points

to the reasons for why a given spurious counterexample cannot be satisfied together

with the concrete model.

7.1.3 Counterexample-Guided Abstraction-Refinement

Given a model M and a safety or liveness property ϕ, the abstraction-refinement

framework (Section 4.1) encapsulates various automatic algorithms for finding an
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abstract model M̂ with the following two properties:

• M̂ over-approximates M , and therefore M̂ |= ϕ→M |= ϕ;

• M̂ is smaller than M , so checking whether M̂ |= ϕ can be done more efficiently

than checking the original model M .

This framework is an important tool for tackling the state-explosion problem in model

checking. Algorithm 7.1 describes a particular implementation of the Counterexample-

Guided Abstraction-Refinement (cegar) loop. We denote by BMC(M,ϕ, k) the

process of generating the length k BMC unfolding for model M and solving it, ac-

cording to the standard BMC framework as explained in Section 3.5. The loop

simulates the counterexample on the concrete model using a SAT-solver (line 4), and

uses the unsatisfiable core produced by the SAT-solver to refine the abstract model

(lines 5,6). This refinement strategy was proposed by Chauhan et al.[Clarke et al.,

2002].

7.2 Abstraction-Refinement for Bounded Model

Checking

The underlying principles behind the cegar framework are the following:

• The information that was used to eliminate previous counterexamples, which

is captured by the abstract model, is relevant for proving the property.
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Algorithm 7.1 Counterexample-Guided Abstraction-Refinement

cegar (M,ϕ)

1: M̂ = {}

2: if MC(M̂, ϕ) = TRUE then return ‘TRUE’

3: else let C be the length k counterexample produced by the model checker

4: if BMC(M,k, ϕ) ∧ C = SAT then return ‘bug found in cycle k’

5: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver

6: M̂ = M̂ ∪ U

7: goto line 2

• If the abstract model does not prove the property, then the counterexamples

in the abstract model can guide the search for a refinement.

We apply these principles to guide the SAT-solver, thereby making BMC faster. The

underlying assumption of our technique is that the information necessary for proving

the property along the various cycles is relatively stable. In other words, similar

abstract models can verify the property along consecutive cycles. This assumption

is exactly what explains the success of cegar. We use the same assumption, but for

making BMC itself work faster.

7.2.1 The cg-bmc algorithm

The pseudo-code of Counterexample-Guided Bounded Model Checking (cg-bmc) is

shown in Algorithm 7.2. We start with an empty initial abstraction and an initial

search depth k = 1. In each iteration of the cg-bmc loop, we first try to find a
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counterexample in the abstract model (line 3). If there is no counterexample in the

abstract model, the property holds at cycle k and the abstract model now contains

the gates in the unsatisfiable core generated by the SAT-solver (lines 4,5). Otherwise,

if a counterexample is found, we simulate the counterexample on the concrete model

(line 8). If the counterexample can be concretized, we report a real bug. If the

counterexample is spurious, the abstract model is refined by adding the gates in

the unsatisfiable core (line 10). Like standard BMC, cg-bmc either finds an error

or continues until it becomes too complex to solve within a given time limit. It

can be combined, like standard BMC, with techniques to make it complete, such as

finding the Completeness Threshold (an upper bound on the length of the shortest

counterexample if one exists) [Kroening and Strichman, 2003].

7.2.2 Inside a SAT-Solver

Most modern SAT-solvers are based on the DPLL search procedure [Davis and Put-

nam, 1960]. The search for a satisfying assignment in the DPLL framework is or-

ganized as a binary search tree in which at each level a decision is made on the

variable to split on, and the first branch to be explored (each of the two branches

corresponds to a different Boolean assignment to the chosen variable). After each

decision, Boolean Constrain Propagation (BCP) is invoked, a process that finds the

implications of the last decision by iteratively applying the unit-clause rule (the

unit-clause rule simply says that if in an l-length clause l− 1 literals are unsatisfied,

then the last literal must be satisfied in order to satisfy the formula). Most of the

153



Algorithm 7.2 Counterexample-Guided Bounded Model Checking

cg-bmc (M,ϕ)

1: k = 0; M̂ = {}

2: k = k + 1

3: if BMC(M̂, k, ϕ) = UNSAT then

4: Let U be the set of gates in the unsatisfiable core produced by the SAT-solver

5: M̂ = U

6: goto line 2

7: else let C be the satisfying assignment produced by the SAT-solver

8: if BMC(M,k, ϕ) ∧ C = SAT then return ‘bug found in cycle k’

9: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver

10: M̂ = M̂ ∪ U

11: goto line 3
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computation time inside a SAT-solver is spent on BCP. If BCP leads to a conflict

(an empty clause), the SAT-solver backtracks and changes some previous decision.

The performance of a SAT-solver is determined by the choice of the decision vari-

ables. Typically SAT-solvers compute a score function for each undecided variable

that prioritizes the decision options. Many branching heuristics have been proposed

in the literature: see, for example, [Silva, 1999]. The basic idea behind many of these

heuristics is to increase the score of variables that are involved in conflicts, thereby

moving them up in the decision order. This can be viewed as a form of refinement

[McMillan, 2003].

An obvious question that comes to mind is why do we need an abstraction-

refinement framework for BMC when a SAT-solver internally behaves like a refine-

ment engine. A major drawback of the branching heuristics in a SAT-solver is that

they have no global perspective of the structure of the problem. While operating on

a BMC instance, they tend to get ‘distracted’ by local conflicts that are not relevant

to the property at hand. cg-bmc avoids this problem by forcing the SAT-solver to

find a satisfying assignment to the abstract model, which contains only the relevant

part of the concrete model. It involves the other variables and gates only if it is not

able to prove unsatisfiability with the current abstract model.

The method suggested by Wang et al. [Wang et al., 2004b] that we describe in

the related work section (Section 7.3), tries to achieve a similar effect by modifying

the branching heuristics. They perform BMC on the concrete model, while changing

the score function of the SAT-solver so it gives higher priority to the variables in
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the abstract model (they do not explicitly refer to an abstract model, rather to the

unsatisfiable core of the previous iteration, which is what we refer to as the abstract

model). Since their SAT-solver operates on a much larger concrete model, it spends

a lot more time doing BCP. Moreover, many of the variables in the abstract model

are also present in clauses that are not part of the abstract model and their method

often encounters conflicts on these clauses. cg-bmc, on the other hand, isolates the

abstract model and solves it separately, in order to avoid this problem.

7.2.3 The cg-bmc-t algorithm

The following is an implicit assumption in the cg-bmc algorithm: Given two un-

satisfiable sets of clauses C1 and C2 such that C1 ⊂ C2, solving C1 is faster than

solving C2. While this is a reasonable assumption and mostly holds in practice, it

is not always true. It is possible that the set of clauses C2 is over-constrained, so

that the SAT-solver can prove its unsatisfiability with a small search tree. Removing

clauses from C2, on the other hand, could produce a set of clauses C1 that is no

longer over-constrained and proving the unsatisfiability of C1 could take much more

time [Crawford and Anton, 1993].

We observed this phenomenon in some of our benchmarks. As an example, con-

sider circuit PJ05 in Table 7.1 (see Section 7.4). The cg-bmc algorithm takes much

longer than BMC to prove the property on PJ05. This is not because of the over-

head of the refinement iterations: the abstract model has enough clauses to prove

the property after an unfolding length of 9. The reason for this is that BMC on the
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small abstract model takes more time than BMC on the original model.

In order to deal with such situations, we propose a modified cg-bmc, called

cg-bmc-t (t stands for Timeout). Algorithm 7.3 describes the pseudo-code for cg-

bmc-t. The intuition behind this algorithm is the following: if the SAT-solver is

taking a long time on the abstract model, we check if it can quickly prune away this

search region by adding some constraints from the concrete model. In each iteration

of the cg-bmc-t loop, we set a timeout T for the SAT-solver (line 3) and try to

find a counterexample in the abstract model (line 4). If the SAT-solver completes,

the loop proceeds like cg-bmc. However, if the SAT-solver times-out, we simulate

the partial assignment on the concrete model with a smaller timeout (T × β, β < 1)

(lines 13,15). If the concrete model is able to concretize the partial assignment, we

report a bug (line 16). If the concrete model refutes the partial assignment, we add

the unsatisfiable core generated by the SAT-solver to the abstract model, thereby

eliminating the partial assignment (line 20). If the concrete solver also times-out,

we go back to the abstract solver. However, for this next iteration, we increase the

timeout with a factor of α (line 13). The cg-bmc-t algorithm is more robust, as

indicated by our experiments.

7.3 Related Work

An alternative to our two-stage heuristic, corresponding to checking the abstract and

concrete models, is to try to emulate this process within a SAT-solver by controlling

the decision heuristic (focusing first on the parts of the model corresponding to the
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Algorithm 7.3 cg-bmc with Timeouts

cg-bmc-t (M,ϕ)

1: k = 0; M̂ = {}

2: k = k + 1; T = Tinit

3: Set T imeout(T )

4: Res = BMC(M̂, k, ϕ)

5: if Res = UNSAT then

6: Let U be the set of gates in the unsatisfiable core produced by the SAT-solver

7: M̂ = U

8: goto line 2

9: else

10: if Res = SAT then

11: Let C be the satisfying assignment produced by the SAT-solver

12: else

13: T = T × α; Set T imeout(T × β)

14: Let C be the partial assignment produced by the SAT-solver

15: Res = BMC(M,k, ϕ) ∧ C

16: if Res = SAT then return ‘bug found in cycle k’

17: else

18: if Res = UNSAT then

19: Let U be the set of gates in the unsat core produced by the SAT-solver

20: M̂ = M̂ ∪ U

21: goto line 3
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abstract model). Wang et al. [Wang et al., 2004b] went in this direction: they

use the unsatisfiable cores from previous cycles to guide the search of the SAT-

solver when searching for a bug in the current cycle. Guidance is done by changing

the variable selection heuristic to first decide on the variables that participated in

the previous unsatisfiable cores. Furthermore, McMillan observed in [McMillan,

2003] that modern SAT-solvers internally behave like abstraction-refinement engines

by themselves: their variable selection heuristics move variables involved in recent

conflicts up in the decision order. However, a major drawback of this approach is that

while operating on a BMC instance, they propagate values to variables that are not

part of the abstract model that we wish to concentrate on, and this can lead to long

phases in which the SAT-solver attempts to solve local conflicts that are irrelevant

to proving the property. In other words, this approach allows irrelevant clauses to

be pulled into the proof through propagation and cause conflicts. This is also the

drawback of [Wang et al., 2004b], as we will prove by experiments. Our approach

solves this problem by forcing the SAT-solver to first find a complete abstract trace

before attempting to refute it. We achieve this by isolating the important clauses

from the rest of the formula in a separate SAT instance.

Another relevant work is by Gupta et al. [Gupta et al., 2003], that presents a top-

down abstraction framework where proof analysis is applied iteratively to generate

successively smaller abstract models. Their work is related because they also suggest

using the abstract models to perform deeper searches with BMC. However, their

overall approach is very different from ours.

We take the cg-bmc approach one step further in Section 7.5.2, by consider-
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ing a new abstraction-refinement framework, in which cg-bmc unifies cegar and

Proof-Based Refinement (pbr) [Gupta et al., 2003; McMillan and Amla, 2003]. pbr

eliminates all counterexamples of a given length in a single refinement step. The

pbr refinement uses the unsatisfiable core of the (unrestricted) BMC instance to

generate a refinement. Amla et al. showed in [Amla and McMillan, 2004] that ce-

gar and pbr are two extreme approaches: cegar burdens the model checker by

increasing the number of refinement iterations while pbr burdens the refinement

step because the BMC unfolding without the counterexample constraints is harder

to refute. They also present a hybrid approach that tries to balance between the

two, which results in a more robust overall behavior. We show that by replacing

BMC with a more efficient cg-bmc as the refinement engine inside pbr, we also get

a hybrid abstraction-refinement framework that can balance the model checking and

refinement efforts.

7.4 Experimental Results

We implemented our techniques on top of the SAT-solver Chaff [Moskewicz et al.,

2001]. Some modifications were made to Chaff to produce unsatisfiable cores while

adding and deleting clauses incrementally. Our experiments were conducted on a

set of benchmarks that were derived during the formal verification of an open source

Sun PicoJava II microprocessor [McMillan and Amla, 2003]. All experiments were

performed on a 1.5GHz Dual Athlon machine with 3Gb RAM. We set a timeout of

2 hours and a maximum BMC search depth of 60.
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We use the incremental feature of Chaff to optimize the cg-bmc loop as follows.

We maintain two incremental SAT-instances: solver-Abs contains the BMC unfolding

of the abstract model while solver-Conc contains the BMC unfolding of the concrete

model. The counterexample generated by solver-Abs is simulated on solver-Conc

by adding unit clauses. The unsatisfiable core generated by solver-Conc is added

to solver-Abs. Our algorithm can in principle be implemented inside a SAT-solver

although this requires fundamental changes in the way it works, and it is not clear

if it will actually perform better or worse. We discuss this option further in Chapter

8.

Table 7.1 compares our techniques with standard BMC. For each circuit, we

report the depth that was completed by all techniques, the runtime in seconds, and

the number of backtracks (for cg-bmc/cg-bmc-t we report the backtracks on both

abstract and concrete models). We see a significant overall reduction in runtime.

This reduction is due to a decrease in the total number of backtracks, and the fact

that most of the backtracks (and BCP) are performed on a much smaller abstract

model. We also observe a more robust behavior with cg-bmc-t (Tinit = 10s, α =

1.5, β = 0.2).

Table 7.2 compares our technique with the approach based on modifying the

SAT-solver’s branching heuristics, as described in Wang et al. [Wang et al., 2004b].

We report results for both static (Ord-Sta) and dynamic (Ord-Dyn) ordering meth-

ods. The static ordering method gives preference to variables in the abstract model

throughout the SAT-solving process. The dynamic ordering method switches to the

SAT-solver’s default heuristic after a threshold number of decisions. Our approach
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Circuit Depth Time(s) Backtracks

BMC cg-bmc cg-bmc-t BMC cg-bmc cg-bmc-t

Abs Conc Abs Conc

PJ00 35 7020 48 48 139104 378 27 378 27

PJ01 60 273 99 99 169 187 9 187 9

PJ02 39 6817 51 51 79531 807 5 807 5

PJ03 39 6847 51 51 79531 807 5 807 5

PJ04 60 125 99 98 169 184 7 184 7

PJ05 25 751 2812 296 12476 582069 59 64846 445

PJ06 33 2287 2421 364 23110 346150 92 82734 137

PJ07 60 1837 789 449 34064 197843 86 111775 132

PJ08 60 5061 201 201 43564 44468 124 44468 124

PJ09 60 1092 110 110 22858 32453 57 32453 57

PJ10 50 6696 47 46 76153 3285 67 3285 67

PJ11 33 6142 69 70 120158 1484 95 1484 95

PJ12 24 5266 28 28 117420 2029 91 2029 91

PJ13 60 327 103 102 1005 4019 4 4019 4

PJ14 60 5086 295 316 103217 64392 84 62944 93

PJ15 34 6461 117 115 86567 16105 111 16105 111

PJ16 56 4303 172 173 37843 30528 56 30528 56

PJ17 20 7039 815 1153 81326 68728 548 72202 2530

PJ18 43 7197 719 992 170988 102186 1615 126155 1904

PJ19 9 5105 2224 2555 544941 522702 2534 522460 34324

AVG 4286 563 365

Table 7.1: Comparison of cg-bmc/cg-bmc-t with standard BMC.
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performs better than these methods.

7.5 A hybrid approach to refinement

7.5.1 Proof-based Refinement and a hybrid approach

We described the cegar loop in Section 7.1.3. An alternative approach, called

Proof-Based Refinement (pbr), was proposed by McMillan et al. [McMillan and

Amla, 2003] (and independently by Gupta et al.[Gupta et al., 2003]). The pseudo-

code for this approach is shown in Algorithm 7.4. In each refinement iteration, pbr

performs BMC on the concrete model (line 4) and uses the unsatisfiable core as the

abstract model for the next iteration (line 6). As opposed to cegar that eliminates

one counterexample, pbr eliminates all counterexamples of a given length in a single

refinement step.

Algorithm 7.4 Proof-Based Refinement

pbr(M,ϕ)

1: M̂ = {}

2: if MC(M̂, ϕ) = TRUE then return ’TRUE’

3: else let k be the length of the counterexample produced by the model checker

4: if BMC(M,k, ϕ) = SAT then return ’bug found in cycle k’

5: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver

6: M̂ = U

7: goto line 2
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Circuit Depth Time(s)

Ord-Sta Ord-Dyn cg-bmc cg-bmc-t

PJ00 60 961 942 104 104

PJ01 60 729 711 99 99

PJ02 60 694 678 101 101

PJ03 60 693 679 101 100

PJ04 60 656 641 99 98

PJ05 25 219 205 2812 296

PJ06 20 4786 1192 148 154

PJ07 25 4761 124 40 41

PJ08 60 703 712 201 201

PJ09 60 494 483 110 110

PJ10 54 827 6493 54 69

PJ11 60 816 796 135 111

PJ12 60 1229 973 101 101

PJ13 60 673 657 103 102

PJ14 60 3101 2746 295 316

PJ15 60 3488 3456 296 371

PJ16 60 3022 3021 198 199

PJ17 21 3132 6114 1069 1570

PJ18 38 6850 4846 556 721

PJ19 5 5623 176 113 116

AVG 1829 1077 136 117

Table 7.2: Comparison of cg-bmc/cg-bmc-t with Wang et al. [Wang et al., 2004b].
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Amla et. al. [Amla and McMillan, 2004] performed an industrial evaluation of the

two approaches and concluded that pbr and cegar are extreme approaches. pbr

has a more expensive refinement step than cegar, since pbr performs unrestricted

BMC while cegar restricts BMC to the counterexample produced by the model

checker. cegar, on the other hand, has a larger number of refinement iterations

since it only eliminates one counterexample per refinement iteration, thereby putting

more burden on the model checker. To balance the two, they propose a hybrid of

the two approaches.

Their hybrid approach also performs BMC on the concrete model after given a

counterexample from the abstract model. However, they use the counterexample

only to provide the initial decisions to the SAT-solver. They also set a time limit

to the SAT-solver. If the SAT-solver completes before the time-out with an UNSAT

answer, the hybrid approach behaves like pbr. On the other hand if the SAT-solver

times-out, they rerun a BMC instance conjoined with constraints on some of the

variables in the counterexample (but not all). From this instance they extract an

unsatisfiable core, thereby refuting a much larger space of counterexamples (note that

this instance has to be unsatisfiable if enough time was given to the first instance

due to the initial decisions). Their experiments show that the hybrid approach is

more robust than pbr and cegar.
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7.5.2 A hybrid approach based on cg-bmc

Since the cg-bmc algorithm outperforms BMC, it can be used as a replacement for

BMC in the refinement step of pbr. For example, in our experiments on PJ17 (see

Section 7.4), cg-bmc proved the property up to a depth of 29, and model checking

could prove the correctness of the property on the generated abstract model. BMC

could only finish up to depth of 20, and the resulting abstract model had a spurious

counterexample of length 21.

cg-bmc is also a better choice than BMC because it provides an elegant way of

balancing the effort between model checking and refinement. Algorithm 7.5 shows the

pseudo-code of hybrid, that we obtained after replacing BMC with cg-bmc inside

the refinement step of pbr, and adding a choice function (line 2). At each iteration,

hybrid chooses either the model checker (line 3) or a SAT-solver (line 8) to find a

counterexample to the current abstract model. The model checker returns ‘TRUE’

if the property holds for all cycles (line 3). If the SAT-solver returns UNSAT, the

property holds at the current depth and the unsatisfiable core is used as the abstract

model for the next iteration (line 10). If a counterexample is produced by either the

model checker or the SAT-solver, it is simulated on the concrete model (line 13). If

the counterexample is spurious, the unsatisfiable core generated by the SAT-solver

is added to the abstract model (line 15).

At a first glance, the hybrid algorithm looks like a cegar loop, with the ad-

ditional option of using a SAT-solver instead of a model checker for verifying the

abstract model. However, the hybrid algorithm captures both the cegar and the
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pbr approaches. If the choice function always chooses the model checker (line 3), it

corresponds to the standard cegar algorithm. Now consider a strategy that chooses

the model checker every time there is an increase in k at line 10, but chooses the

SAT-solver (line 8) in all other cases. This is exactly the pbr loop that uses cg-bmc

instead of BMC. Other choice functions correspond to a hybrid approach. There can

be many strategies to make this choice, some of which are:

1. Use previous runtime statistics to decide which engine is likely to perform better

on the next model. Occasionally switch to give the other engine a chance.

2. Measure the stability of the abstract model. That is, whether in the last few

iterations (increases of k) there was a need for refinement. Only if not - send

it to a model checker.

3. Run the two engines in parallel. If the model checker completes with a coun-

terexample, set k to the cycle number it reached, terminate the SAT process,

and continue. If it proved correctness then exit. If the SAT-solver finds a

counterexample first - terminate the model checker and continue.
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Algorithm 7.5 Hybrid of cegar and pbr

hybrid (M,ϕ)

1: k = 1; M̂ = {}

2: goto line 3 OR goto line 8

3: if MC(M̂, ϕ) = TRUE then return ‘TRUE’

4: else

5: Let C be the length r counterexample produced by the model checker

6: k = r

7: goto line 13

8: if BMC(M̂, k, ϕ) = UNSAT then

9: Let U be the set of gates in the unsatisfiable core produced by the SAT-solver

10: M̂ = U ; k = k + 1

11: goto line 2

12: else let C be the satisfying assignment produced by the SAT-solver

13: if BMC(M,k, ϕ) ∧ C = SAT then return ’bug found in cycle k’

14: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver

15: M̂ = M̂ ∪ U

16: goto line 2
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Chapter 8

Conclusions and Future Work

8.1 Thesis Contributions

The following are the major contributions of this thesis:

1. We present an application of SAT and machine learning techniques to the

counterexample-guided abstraction-refinement framework. Our algorithm out-

performs standard model checking, both in terms of execution times and mem-

ory requirements. Compared to the state-of-the-art refinement strategy based

on the proof of unsatisfiability produced by SAT-solvers [Chauhan et al., 2002],

our approach performs better on several benchmarks. This work has been pub-

lished in [Clarke et al., 2002, 2004].

2. Most abstraction techniques in literature are based on refinement. We formu-

late abstraction as an inductive learner that learns the abstract model from
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samples of broken traces. We present an iterative algorithm for abstraction-

based model checking that is not based on refinement, and that can generate the

smallest abstract model that proves the property. We evaluate our algorithm

on a large set of industrial circuits, and compare it against our learning-based

cegar approach [Clarke et al., 2002, 2004] and the proof-based abstraction

techniques [Chauhan et al., 2002; McMillan and Amla, 2003]. The results in-

dicate that our technique generates much smaller abstract models, leading to

better overall performance and a more robust behavior on harder benchmarks.

This work has been published in [Gupta and Clarke, 2005].

3. Most previous work has focused on applying cegar to model checking. We

present a cegar technique for BMC. Our technique makes BMC much faster,

as indicated by our experiments. BMC is also used for generating refinements

in the pbr framework. We show that our technique unifies pbr and cegar

into an abstraction-refinement framework that can balance the model checking

and refinement efforts. This work has been published in [Gupta and Strichman,

2005].

8.2 Future Directions

8.2.1 Learning Abstractions

The work in this thesis has focused on localization abstraction (Section 3.3.2). Lo-

calization abstraction will work only if the property at hand is localizable, i.e., its
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int main () {

int x, y;

1: x = 100;

2: y = 100;

3: while (x 6= 0) {

4: x --;

5: y --;

}

6: assert(y == 0);

}

Figure 8.1: An example C program.

validity depends on a small part of the system description. The techniques presented

in this thesis can also be used with predicate abstraction (Section 3.3.1), which does

not suffer from this drawback. Using an example, we provide some intuition on the

issues involved in combining our techniques with predicate abstraction.

Consider the C program in Figure 8.1. A concrete state for this program is an

assignment to {PC, x, y}, where PC (program counter) indicates the location in the

program and x and y are the program variables. We want to show that the assertion

holds on the program, i.e. the state (6, , y 6= 0) is not reachable. We construct an

initial abstract model for the system using the predicates b1 : (x = 0) and b2 : (y = 0)

that occur syntactically in the C program. The abstract model tracks the values of
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these predicates, instead of the variables x and y. Thus, an abstract state is an

assignment to {PC, b1, b2} where b1 and b2 are boolean variables corresponding to

the predicates. Model checking of this abstract model produces the counterexample

in Figure 8.2. This counterexample is spurious, which indicates that the current set

of predicates are not sufficient to prove the property and new predicates need to be

generated.

Figure 8.3 shows a broken trace corresponding to this counterexample. This

broken trace breaks at cycle 4. An abstraction function with predicate (x = y)

eliminates this broken trace. The predicates (x = 1) and (x = 100) also eliminate

this broken trace. However, the predicate (x = y) is a better choice because it

proves the property, while the other eliminating predicates generate longer spurious

counterexamples.

The key to combining LearnAbs with predicate abstraction is an efficient way

of computing these eliminating predicates from the set of broken trace samples.

Many techniques have been proposed in the machine learning community to compute

classifiers for a set of sample points [Mitchell, 1997]. These techniques can be applied

to the broken trace samples to infer the eliminating predicates.

8.2.2 Abstraction-Refinement for BMC

There are many directions in which our research on abstraction-refinement for BMC

can go further. First, hybrid (Algorithm 7.5) should be evaluated empirically,

and appropriate choice functions should be devised. The three options we listed
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Figure 8.2: Counterexample on the abstract model of the C program in Figure 8.1 with predicates

b1 : (x = 0) and b2 : (y = 0).

Figure 8.3: Broken trace corresponding to the counterexample in Figure 8.2. Each state is an

assignment to {PC, x, y}.
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in Section 7.5.2 are probably still naive. Based on the experiments of Amla et al.

reported in [Amla and McMillan, 2004] in hybrid approaches, it seems that this can

provide a better balance between the efforts spent in model checking and refinement,

and also enjoy the benefit of cg-bmc (Algorithm 7.2). Second, it is interesting to

check whether implementing cg-bmc inside a SAT-solver can make it work faster.

This requires significant changes in various fundamental routines in the SAT-solver.

In particular, this requires some mechanism for clustering the clauses inside the

SAT-solver into abstraction levels, and postponing BCP on the clauses in the lower

levels until all the higher levels are satisfied. Refinement would correspond to moving

clauses up (and down) across levels, possibly based on their involvements in conflicts.

A third direction for future research is to explore the application of cg-bmc to other

theories and decision procedures, like bit-vector arithmetic.
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