
Learning Others’ Calendars

Akiva Leffert
June 2006

CMU-CS-06-130

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the Senior Honors Thesis in the School of Computer Science.
The work in this report is based within the context of the RADAR project, supported by the Defense Advanced

Research Projects Agency (DARPA) under Contract No. NBCHD030010. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA), or the Department of Interior-National Business Center
(DOI-NBC).

Keywords: calendar learning, meeting scheduling

Abstract

This work develops a method for aiding the process of meeting scheduling through learning about
the meetings in the calendars of other users. We assume users do not share their entire calendars.
This makes it difficult to determine the exact state of another user’s calendar and represent it us-
ing a traditional calendar. We solve this problem by representing another agent’s calendar as a
probability distribution of possible meeting types and present an algorithm calledLOC (Learning
Others’ Calendars) for learning these distributions based on responses to meeting requests. We
then present a modification toLOC which uses this information to guide the process of selecting
time slots to decrease the number of messages sent during the meeting negotiation process. We im-
plemented these algorithms and ran experiments to test them. We found they successfully learned
others’ calendars and the second version sent fewer messages than a system which did not leverage
the learning information. This shows that calendar learning can aid the scheduling process. Our
work integrates into the CMRadar project.

1 Introduction

In many organizations, people need to schedule meetings with each other. Meeting scheduling is
typically done over email and can be a significant cognitive burden on computer users. It involves
weighing multiple options, keeping track of communication, finding mutually agreeable time slots
from a potentially large set, and possibly moving existing meetings. People typically find this both
difficult and tedious. Hence, it is no surprise that there have been a number of attempts to automate
the process. These efforts have primarily had two goals: to learn user preferences and to increase
schedule quality. Examples of user preferences include a preference for afternoons over mornings
and a preference for continuous blocks of meetings versus more spread out meetings with breaks.

One effort to learn user preferences was CAP[3], which used a rule induction system based on
user feedback to suggest to users what times to select when adding meetings to their calendars.
Sen and Durfee[5] tried to solve the problem of scheduling meetings by focusing on the negotia-
tion protocol and tweaking the parameters to the protocol they developed. Garrido and Sycara[2]
used a negotiation algorithm based on gradually moving away from the user’s preferred times.
More recently, both the CMRadar[4] and CALO[1] projects are working toward the goal of a fully
featured learning agent for handling meeting scheduling.

We consider the meeting scheduling problem in the context of a distributed environment. This
is different from how meetings are scheduled using typical commercial systems like Microsoft
Exchange Server. In that environment, every calendar is on a central server and users explicitly
share their calendar information with others. Our assumptions are more general. We do not assume
that other users are using any particular piece of software or indeed any software at all. In this way
we minimize software incompatibilities while providing for the more general case. Our approach
also facilitates privacy since there is no central server with every users calendar. Additionally, we
also aid privacy by assuming users do not transmit their entire calendar when scheduling meetings.
In fact, we introduce a way to transmit less calendar information and still schedule high quality
meetings. For the aforementioned reasons, we use the distributed approach to meeting scheduling.

It is obviously easier to schedule a meeting if we know the calendars of the meeting attendees
exactly as we can find time slots where all of the attendees are free without even asking them.
However, as stated, we are not operating in an environment where we have perfect access to that
information. Therefore we will attempt to learn the calendars of other users. This allows us to
behave as if we have good information about the calendars of others while maintaining a distributed
setting and allowing agents to keep their information private when they choose.

Most attempts to automate meeting scheduling have involved the use of negotiation. Each user
can be represented by an agent. An agent could be a completely autonomous piece of software, a
program that works with a certain amount of user input, or a user not aided by automation at all.
When a meeting needs to be scheduled among a set of users, their agents negotiate the meeting
time on their behalf. Typically, the negotiation involves one agent, the meeting initiator, proposing
times to the attendee agents and receiving responses from the attendees signifying some sort of
acceptance or rejection. A simplified version of this general approach works as follows:

while no intersection in proposals:
initiator proposes times to the attendees
attendees respond about times to the initiator

1

Automating meeting negotiation effectively is very challenging. An automated negotiation
agent needs to be able to effectively schedule meetings with many different types of agents. Each
agent is available at different times and must be able to handle different negotiation strategies
e.g., some agents are more willing to compromise their time preferences than others. Each agent
can have different preferences about things like time of day or meeting density. The process of
learning the preferences of an agent’s user is difficult. Some users may not have agents at all. As
such, verbose and frequent communications, which may be adequate when sent to an automated
agent can be aggravating to humans that have to respond to them. Additionally, the problem we
consider is incremental. That is, calendars change gradually as new meetings are introduced so we
cannot just find a globally optimal schedule. This results in a tradeoff between local optimization
and future planning.

In this report, we show how an agent can learn a model of another agent’s calendar by intro-
ducing an algorithm LOC (LearningOthers’ Calendars). We show how it can use the models it
learns of other agents to schedule meetings more effectively. In particular, we show in simulation,
how an agent learning online can exploit as it learns to increase its user’s satisfaction with schedul-
ing outcomes. Our work is implemented as part of the CMRadar project and integrates into the
CMRadar code base.

The basic organization of this report is as follows. In Section 2, we formalize the problem
definition and discuss representing calendars using probability distributions. In Section 3, we in-
troduce an algorithm for learning the calendars of other agents and present a set of experiments
demonstrating its efficacy. In Section 4, we present an algorithm which uses this method to in-
crease the quality of scheduled meetings according to a user’s utility metric and give the results of
experiments using this method. Finally, in Section 5, we present our conclusions.

2 Representation

In this section we discuss representing the meeting scheduling process. First, in Subsection 2.1
we introduce the notation we use for the remainder of this thesis. Then we present a formalization
of the meeting scheduling problem using this notation. In Subsection 2.2 we discuss the problem
inherent in representing another user’s calendar and introduce the idea of a probabilistic calendar
as a solution.

2.1 Problem Definition

This subsection presents our notational conventions in a formal manner. We then present the
problem of scheduling meetings using these notational conventions. This gives us a formalism to
use for this document.

2.1.1 Notation

We now define our environment and notational conventions.

• There is a set of agentsA. These are the people between whom meetings are scheduled.
They can be human or completely or partially automated agents representing humans. This
might be the people in an office or a set of professors and students.

2

Monday Tuesday Wednesday

9am

10am

11am

Class

Class

Class

Free

Free

SeminarFree

Free

Class

Figure 1: Example Calendar

• A meetingm is a triple:(a0, A0, t) of an initiator agenta0, a set of agentsA0 ⊆ A represent-
ing the attendees of the meeting, and a meeting typet. The initiator agent is responsible for
scheduling the meeting. If a meeting has to be canceled or moved it is the initiator’s job to
reschedule it.

• A meeting typet is an element from a set of meeting typesT . As we will discuss later, learn-
ing about the types of other users’ meetings can aid the scheduling process. A sample set of
meeting types, which we will use in our examples later is{class, conference, seminar}.

• A time slotd is a date indicating the start of the time slot. That is, it contains an hour, day,
year or any other relevant information for fixing a moment in time. We assume all time slots
are of fixed size and start at regular times. For example, we will later consider time slots as
being an hour long and starting on the hour.

• A calendarc is a set of time slots. Each time slot can have a meeting attached to it. This
indicates that the calendar contains a meeting scheduled at that time slot. Although we do
not do it, it would be simple to extend this definition such that a meeting spanned multiple
time slots. Additionally, making the time slot size sufficiently small, for example the Planck
time, would allow for meetings of arbitrary start time and length. An example calendar with
three time slots and three days appears in Figure 1.

• Each agenta ∈ A has a corresponding calendarca. This calendar represents the meetings in
the calendar of agenta.

3

• A meeting responser is an element from a setR of possible responses in a negotiation. An
example of a response would be an affirmation signifying that a proposed time is acceptable.
Another type of response might indicate that an agent would be willing to schedule a meeting
at the proposed time, but would prefer not to.

2.1.2 Problem Formalization

Thus, we restate the scheduling problem as follows: To schedule a meetingm with attendeesA0,
the initiator agenta0 sends a set of possible slots for the meeting to each attendee inA0. These
slots signify the time slots at whicha0 is proposing to have the meeting. The other agents then
send a responser for each time slot. If there is a time slot the agents agree on thena0 sends a
confirmation message to the agents. Otherwise it sends a new set of time slots to the other agents.
This process continues until an acceptable time is found. This communication process continues
until a slot is agreed upon. This process is an example of meeting negotiation and is the formalism
for negotiation we use for the remainder of this document.

2.2 Calendar Representation

We want to learn the calendars of other agents and use this information to improve the scheduling
process. With this information we can ask about times that are likely to be free or favorable and
use this to cut down the messages sent between agents. We need some way to represent this
information for our agent’s use. In this subsection, we describe the problems with representing
others’ calendars as we would our own. We then present the idea of a probabilistic calendar as a
solution to this problem.

2.2.1 Limitations

We can use the information in the calendars of others even if we do not accurately know what those
calendars actually look like. For example, we might be able to learn that another agent tends to
schedule meetings in the afternoon. Therefore, we know that they are more likely to be busy if we
try to propose a meeting in the afternoon. This is the case even if they have not signified this for
certain by responding negatively to a request at a specific afternoon time.

In the previous subsection we described each calendar as a set of time slots that may have
meetings attached if the agent associated with the calendar has a meeting at that time. An agent
can use this as a model for the calendar of its user, as the agent knows the calendar of its user as
ground truth. However, the calendars of other agents change. Other agents can schedule meetings
between when our agent last contacted them. Indeed, it is rarely the case that we even have a
complete picture of another person’s calendar captured at a single point in time and we make the
assumption that calendars are not, in general, public. People tend not to want to share their entire
calendar with other people. As such, they tend to give a limited subset of their times during a round
of meeting negotiation. If we tried to use a traditional calendar to represent this we only be able
to indicate information we have for certain, but we can make use of other information. Therefore,
this is not a useful representation.

4

2.2.2 Probabilistic Calendars

Given the inconclusive nature of the information we can collect about the calendars of other agents,
we propose representing the calendars of other users with probability distributions. Our agenta0

represents the calendar of each other agenta ∈ A as a probabilistic calendarpa0,a. A probabilistic

Monday Tuesday Wednesday

9am

10am

11am

Free

Class

Activity

40%

40%

20% Free

Class

Activity

40%

40%

20% Free

Class

Activity

40%

40%

20%

Free

Class

Activity

10%

80%

10% Free

Class

Activity

86%

8%

6% Free

Class

Activity

05%

05%

90%

Free

Class

Activity

13%

44%

43% Free

Class

Activity

05%

05%

90% Free

Class

Activity

33%

33%

34%

Figure 2: Example Probabilistic Calendar

calendar is a set of time slots each paired with a probability distribution over type of meeting at
that time slot. For example, an elementj of pa,i would represent that agenta believes that during
time slotdj there is a thirty percent chance that useri has a meeting of typet0, a forty percent
chance it is of typet1, and thirty percent chance that time slot is empty for useri if the slot is
paired with the described distribution. This representation provides more flexibility than a static
representation while also being able to represent meetings we know about for certain. We initialize
each distribution over responses to a uniform distribution. An example probabilistic calendar for
three days with three time slots appears in Figure 2. Contrast it with Figure 1, a traditional calendar.
Keep in mind that this probabilistic calendar is what one agent believes is the calendar of another
user, but may not accurately reflect that calendar.

3 Learning

Since we are modeling the calendars of other agents with probability distributions, we must have a
way to learn these probability distributions in order for this representation to be useful. We present

5

an algorithmLOC (LearningOthers’Calendars) to do this. At the very high level, this algorithm
works by examining the messages sent during meeting negotiations. If an agent typically responds
affirmatively when a meeting is requested at a certain slot then the agent is probably free at that
time and analogously for negative responses. Once we have presented this algorithm, we then
present a series of experiments. The first demonstrates the general efficacy ofLOC. The second
tests it under more difficult learning conditions.

3.1 Learning From Negotiations

To learn others’ calendars we keep track of the responses to meeting requests. If an agent accepts
when we propose a meeting at a certain time several weeks in a row, it is likely the agent is normally
free at that time. This works analogously for negative responses, providing information on when
other agents are not free. Simply keeping track of this data allows us to build up a reasonable idea
of when another agent is free.

We extend this basic idea so we can also learn the types of these meetings. For each type
of meeting, we assume that there is a fixed probability distribution that models the responses the
agent makes when a time containing an existing meeting of that type is requested. For instance, a
professor is unlikely to accept a new meeting at a time when he/she normally teaches a class, but
may occasionally accept a new meeting if he/she had been planning to attend a seminar at that time.
We codify this intuition into a probably distribution for that response type. In this paper, we assume
that for each meeting type we know the probability of receiving each possible type of response.
In practice, this information could be gathered by observing user behavior. Figures 1 and 2 show
examples of these distributions with a set of meeting typesT = {conference, class, seminar}
and set of response typesR = {yes, no, hesitant− yes}

Formally: LetR be the set of possible meeting request responses andT be the set of all meeting
types. For eacht ∈ T we assume we have a probability distribution over the responsesr ∈ R. We
let rt denote the probability of an agent making responser when it receives a request for a meeting
at a time when it has a meeting of type. Additionally, for notational convenience, we denote
an empty time slot as containing a meeting of typee and we letet be the response probability
distribution for empty time slots.

For example, letR = {yes, no} andT = {t0, t1} wheret0 is something of moderate impor-
tance, andt1 is something of high importance. A likely distribution for this would have a high
probability ofyes for no meeting, a moderate probability ofyes for meetings of typet1, and a low
probability for those of typet2. We can compare these distributions to the observed distribution of
responses to learn the types of meetings in other users’ calendars.

3.2 Belief Updating

We now present our belief update method for an agenta after a responser to a request for a meeting
at time slotd from agentu.

1. Take the element frompa,u for timed. As previously mentioned, if we have learned nothing
about this time yet, we use a uniform distribution.

6

2. Treat this element as a vector of weights−→w n wherewn,j is the current belief of the agent
thatu has a meeting of typej atd. This includes an element for the empty meeting.

3. Define a vectorwn+1,j = wn,j · rj. Divide eachwn+1,j by Σt∈Twn+1,t. This normalized−−→wn+1

is then used as an updated version of the beliefs in place ofwn.

Basically, this updates the weight for a type according to the likelihood of the observed response
given a meeting of that type and then normalizes the results.

We now give a general example of applying this update method. We return to our example
whereR = {yes, no} andT = {t0, t1}. Assume we are an agenta0 and have received a response
of yes in response to a request for a meeting at time slotd with agenta. We look up the current
probability distribution ford in pa0,a. After our updating, the probability ofnone rises significantly
since we got a positive response. The probability oft0 stays about the same since meetings of that
type are somewhat likely to be bumped or skipped. The probability oft1 drops since it is unlikely
someone would want to schedule another meeting over a meeting of typet1.

3.3 Agent Behavior

initiate-meeting(m)
possible-slots = pick-random-free-slots
foreach attendee a of m

send-proposal(a, m, possible-slots)

handle-response(m, responses)
foreach possible-slot s in responses

update-beliefs(s, response-for(s, responses))
if contains-possible-meeting(responses)

foreach attendee a of m
send-confirmation(a, m)

else
initiate-meeting(m)

Figure 3: Agent Algorithm

A brief version of theLOC algorithm for our learning agent is given in Figure 3, a more
complete version is found in Appendix A. The algorithm for our learning agent has two routines:
initiate-meeting andhandle-response . The initiate-meeting routine is given
a meeting and tries to schedule it by coming up with a list of time slots. It then sends these slots
to the other attendees of the meeting. Thehandle-response routine takes a meeting and a set
of responses from the other agents about the proposed time slots. First it updates the beliefs about
the type of meetings in others calendars based on the responses we get. Then it checks if there is a
slot they all agree on. If there is, it confirms it, otherwise it tries again with a different set of time
slots.

7

yes hesitant− yes no
class 0.30 0.30 0.40

conference 0.10 0.30 0.60
seminar 0.05 0.10 0.85

none 0.80 0.10 0.10

Table 1: Learning Experiment Response Distributions

3.4 Experiments

Now that we have described our algorithm for learning, we must show that this algorithm actually
works. We ran a series of experiments testing aspects of this algorithm. The first experiment tested
thatLOC actually learned another user’s calendar and tested a parameter to the learning function.
The second experiment tested the algorithm under more constrained circumstances.

3.4.1 Learning Experiment

We ran two parallel scenarios to test theLOC algorithm. These are grouped together as the Learn-
ing Experiment. These experiments were meant to simulate the typical behavior of a student and
the meeting types and response distribution we use in the experiments reflect that assumption. Both
shared the following setup.

1. The set of meeting typesT was{class, seminar, conference} along with the empty type
none, signifying no meeting.

2. The set of response typesR = yes, no, hesitant−yes. yes andno indicate a positive or neg-
ative response respectively. Ahesitant− yes indicates that the responder would be willing
to schedule a meeting at that time but would prefer not to if possible. We modified theLOC
algorithm described in the previous subsection slightly to allow for this type of response.
If, from the list of responses to a request we got both ayes response and ahesitant − yes
response for two different slots, we would schedule theyes response. Otherwise, we would
schedule thehesitant−yes response. The response distribution table used in the experiment
is shown in in Table 1.

3. There were three agents: thelearner, theresponder, theschedulee. Thelearner, was the
agent runningLOC and was the initiator for all the meetings. Theresponder was an agent
programmed to simply respond to requests according to the appropriate response distribution
based on its calendar. Theschedulee was the party with whom all of the meetings in the
responder’s calendar were scheduled. It was necessary to have this so that the the meetings
in theresponder’s calendar would not be with thelearner which would allow thelearner
to start out knowing the types of the meetings in the calendar of theresponder.

4. Calendars ranged over one work week, Monday - Friday, with hour long time slots starting
at 8am and going hourly until 6pm. This gives fifty time slots in a week. Thelearner started
with an empty calendar. Theresponder started with a randomly generated calendar. This
was generated by assigning each type of meeting, includingnone, a random likelihood and

8

then, for each time slot picking a type from that distribution. Theschedulee had the same
calendar as theresponder as adding additional meetings to theschedulee’s calendar would
not have had an effect on the interaction we were looking at, that between thelearner and
theresponder.

5. To simulate the process of learning from week to week, we scheduled five meetings at a
time and then restored the calendars to their original state. This state was meant to indicate
the regular meetings in that user’s calendar. Each reset denoted one week. We then ran this
through forty weeks.

The initiate-meeting function picks some subset of the set of the set of free time slots
to propose. The number of time slots it picks is a free parameter. The value of this parameter
represents how big our messages are. Consider, that when scheduling a meeting with a human
it may be worthwhile to propose fewer slots than when scheduling a meeting with an automatic
agent. This can reduce the burden on the human. For a program, message overhead may be
less significant. Thus, to represent the effects of this tradeoff between message size and amount
learned, we ran two similar experiments based on the previously described setup. In the first, we
set this parameter to five time slots per proposal, in the second we set this parameter to ten slots
per proposal.

3.4.2 Learning Experiment Results

Figure 4 was generated by running the previously described experiments ten times each and aver-
aging the results of the ten runs. Remember, we have two different versions, one which proposes
five time slots at a time and one which proposes ten. The ten slot condition is the solid line, the five
slot condition is the dotted line. Each line shows the correct number of meeting types learned by
thelearner about the meetings in theresponder’s calendar after each week against the number of
weeks passed. We consider the first ten weeks the most important as that is a realistic amount of
time over which meetings are scheduled with a static base calendar. The other thirty weeks are to
show what happens in the optimal case where we have traffic over a longer period.

The first thing to note is that as time goes on, the number of correct meetings increases. The
second thing to note is that the ten slots condition correctly learned the types of half of the calendar
meetings after just three weeks. This shows not only thatLOC does its job, but that it can do it
quickly. The ten slot condition leveled off rapidly after it hit forty correct time slots, whereas the
five slot condition had a gradual increase. It seems reasonable at that point to cut down on the
messages sent in the ten slot condition, since asking about more slots does not provide much more
information. This is because we have already learned pretty much everything. Later on, we will
introduce a version ofLOC which has a similar effect to cutting the number of messages.

3.4.3 Constrained Response Experiment

We wanted to test the performance ofLOC when the response distributions for each meeting type
were less distinct, that is, when it was more difficult to determine which meeting had which type.
To do this, we adjusted the response distributions from those in Table 1 to a more homogenous,
constrained set of distributions. This new distribution set is found in Table 2. When running this

9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40

Co
rre

ct
 M

ee
tin

gs

Time

Correct Meeting Types After Each Week

10 times per proposal
5 times per proposal

Figure 4: Learning Experiment Results

experiment, each meeting proposal contained ten time slots. All other aspects of this experiment
are the same as the previous experiment.

3.4.4 Constrained Response Experiment Results

The results of this experiment are in Figure 5. They show thatLOC works under constrained cir-
cumstances. However, not surprisingly, it does not perform as well as in the previous experiment,
where the distributions were more distinct. We cite this result as a demonstration that even if we
do not predict very well how people will respond, as long as there is some difference,LOC will
converge on the correct calendar.

4 Improving Scheduling

We have demonstrated theLOC algorithm for learning calendars. We introduced this algorithm in
order to use the information it learns to improve the scheduling process. In this chapter we present
a way of doing this. First, we formalize our conception of quality meetings with a numeric utility
function. Then we describe a modification to theLOC algorithm which uses the learned data to

10

yes hesitant− yes no
class 0.20 0.45 0.35

conference 0.30 0.30 0.40
seminar 0.10 0.25 0.65

none 0.60 0.20 0.20

Table 2: Constrained Response Experiment Distributions

decrease the number of messages sent in negotiation while scheduling meetings with high utility.
Lastly, we present an experiment succesfully demonstrating this.

4.1 Utility

How do we define the concept of meeting quality? We do this by assuming that users have a utility
function that provides a mapping from time slots to utilities. For convenience, we assume that
utilities are in the interval[0, 1] where 0 is minimal utility and 1 is maximal utility. For example,
by having a function that gives a low utility for early morning times we can represent a person who
does not like to meet in the morning. The version ofLOC previously described generated times
randomly, this results in a mostly uniform distribution of scheduled meetings. In the presence of
a utility function that does not value all times equally, this doesn’t really make sense. As such,
we augment each agenta with a known utility functionua which takes a time slot and returns the
utility of scheduling a meeting at that time.

4.2 Modified LOC Algorithm

We have a modified version ofLOC which uses this utility function and what we have learned
about the other users’ calendars to schedule meetings with high utility. Additionally, it uses fewer
messages than a method that picks times without using calendar learning. This is done using a sim-
ple modification. In the definition ofinitiate-meeting instead of picking times randomly,
we order the times. This ordering is accomplished by assigning each slotd a priority based on the
utility of that time and the learned probabilitypr that a meeting request at that time will receive an
affirmative response. The exact priority is given by the following formula:

p = αua(d) ∗ βpr

In this caseα andβ are parameters describing the relative weight of each portion of the utility.
Using this ordering is not always ideal. First, at the beginning, when we do not know anything

about other agents’ calendars the probability of acceptance component does not provide any in-
formation. Once we gain this information, it can possibly change as people adjust their calendars
from week to week as classes end or obligations change. Additionally, this could open up times
with high utility or fill up times at which we have previously had success scheduling meetings.

As such, rather than following this ordering every time we try to schedule a meeting, we prob-
abilistically choose either to use this ordering, that is, to exploit our information, or to explore
randomly in the hopes of obtaining useful information for later. Furthermore, as time goes on

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40

Co
rre

ct
 M

ee
tin

gs

Time

Correct Meeting Types After Each Week

Figure 5: Constrained Response Experiment Results

and our picture of other agents calendars get better we explore less often, until we hit a minimum
level at which point we explore with the constant probability of .1. The threshold is there as other-
wise, any decreasing function would eventually stop exploring entirely even in the face of calendar
changes. This introduces a time dependencyt into our decision making process. We specify this
decision making process in Figure 6. The process starts att = 0 with high probability of exploring
and gradually explores less by using a falloff proportional to1/(1 + t) to give the probability that
we should explore. That this is a proportional falloff and not an exact function is implemented by
the weightw in the decision process specification. This function falls ast increases, meaning we
exploit increasingly often until we hit the exploitation threshold.

4.3 Slot Ordering Experiment

In this subsection, we present an experiment testing this modified version of theLOC algorithm.
We first explain how we model the general utility function in our system. We then describe the
experimental setup which is similar to previous experiments. Finally, we present the results of this
experiment, showing that we can successfully use calendar information to cut down on communi-
cation while keeping utility high.

12

r = rand(0, 1)
if r < max(.1, 1 / (1 + w * t))

explore
else

exploit

Figure 6: Exploitation vs Exploration Control Process

4.3.1 Utility Modeling

We previously described utility as a mapping from time slot to utility value. We model this by
dividing each day into three sections - morning, afternoon, and evening. Morning is from 8am
to 12pm. Afternoon is from 12pm to 3pm. Evening is from 3pm to 6pm. We assume each user
then provides a utility weight in the interval[0, 1] for each of these time ranges. However, as other
work on learning user preferences develops, such systems could be used to learn these weights
rather than assuming they are specified by the user. This was done to simplify our model for the
experiment, there is nothing about our algorithm that requires we use this simplification.

4.3.2 Experimental Setup

We ran an experiment to show that we can use this algorithm to get a utility comparable to a
system which orders slots entirely by user preference while also sending fewer messages than such
a system. To demonstrate this we ran a simulation in two slightly different conditions. Both used
the same setup as the previous experiments except for the following modification and additions:

1. For the first condition we use the slot ordering method described previously. We call this
the learning condition. The second condition uses this algorithm, except that it hasβ = 0,
causing it to ignore the calendar information we have learned. We call this the no learning
condition. The learning condition usesβ = 1.0. All other aspects are the same between the
two conditions.

2. We setα = 1.0. This causes each part of the ordering to function to be weighed equally in
the case of the learning condition.

3. We setw, the weight of the falloff for exploring versus exploiting to 0.3. This was determined
empirically as a number which leveled out the falloff.

4. We ask about three time slots at a time. The primary reason for this is that we are no longer
trying to learn about the calendar for the sake of learning. Rather, we are learning about
the calendar in order to leverage this information to improve the quality of scheduling. As
such, sending enough messages so that we can learn everything about the calendar with high
probability is not that useful. Instead, care more about the slots with high utility and only if
those are not available do we move onto less desirable slots. Thus, we show that using our
algorithm we can schedule well with less information.

13

5. We used the meeting response distribution used in experiment 1 as given in Figure 1.

6. Unlike in previous experiments, some meetings shift around the calendar of theresponder
between each week. Specifically, we chose three slots per week. Three was chosen as a
number where the calendar would be mostly stable, but still show recognizable change. This
shifting has two purposes. First, it makes the experiment more realistic - it is likely in the
real world that some meetings shift from week to week. Second, a changing calendar makes
the exploration/exploitation tradeoff more paramount. In the case where meeting times do
not change, once the learner component finds a set of free slots with high utility it can just
ask about those times each week. Thus, after a few weeks, there is no utility to be gained by
exploring. By moving some meetings each week, we raise the utility gained by exploring,
while also using a more realistic setting.

4.3.3 Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

Sl
ot

s P
ro

po
se

d

Time

Cumulative Slots Proposed Against Week

learning condition
no learning condition

Figure 7: Order Weighting Experiment Slots Proposed Results

A plot of the number of time slots proposed over time in both the learning and no learning
conditions is given in Figure 7. The learning condition is displayed with a solid line, the no learning
condition with a dotted line. The graph shows that the number of times proposed was consistently

14

 0

 0.2

 0.4

 0.6

 0.8

 1

Learning Condition No-Learing Condition

U
til

ity

Experimental Condition

Average Utility Per Week

Figure 8: Order Weighting Experiment Utility Results

lower in the learning condition and the disparity between the two conditions became more extreme
as time went on. Clearly, using the learned information made a big difference. Figure 8 shows the
mean utility of the experimental condition and the control condition. The maximum value was 1.0,
which both achieved. Simply sorting slots by utility in this situation where one-third of the slots
have the maximum utility was enough to maximize utility as it is unlikely that all of these slots are
full. The two have comparable mean utility, yet our algorithm, which adjusts its ordering based on
the calendar learning, sends fewer messages. More specifically, by the end of the experiment it had
proposed one hundred sixty-six fewer slots, which averages out to over four per week. Within the
ten week period, as previously mentioned, we consider especially relevant, this works out to forty
fewer slots proposed.

5 Conclusion

We set out to improve the quality of automatic meeting scheduling. This process is tedious. Fur-
thermore, it is complicated due to the inaccuracies in information we receive and the sparsity of
information available in general. To deal with these inaccuracies, we decided to represent the cal-
endars of other users using a probability distribution for every time slot. This let us handle the fact

15

that others’ calendars can change without our agent’s knowledge. By making a simple assumption
about response patterns based on meeting type, we were able to learn a probability distribution
for each time slot in others’ calendars. This algorithm used the responses to meeting proposals.
For each time slot in a response we updated the beliefs about that time slot in the responder’s
calendar based on the response using a Bayesian update method. Not only did this system suc-
ceed at learning the meetings of others, but it was able to learn them within just a few weeks of
negotiations.

Once we had learned the meetings of others calendars. We then set out to use the learned
calendar information to decrease the number of messages sent. This allows us to give out less
information while creating less communication overhead in negotiation. This was used to improve
the meeting negotiation process by decreasing the number of messages sent while scheduling meet-
ings in slots with high utility. We compared this to a version which did not use calendar learning
when coming up with time for proposals. Our algorithm outperformed it significantly. Thus, we
have shown that calendar learning can aid meeting negotiation.

Our system integrates into the work of the CMRadar project[4]. It is simple and straightforward
to implement. Our part of the CMRadar code base is approximately two thousand lines of Java
code along with assorted scripts and data files used to run the simulations.

References

[1] Pauline Berry, Melinda Gervasio, Tomas Uribe, Karen Myers, and Ken Nitz. A personalized
calendar assistant. InIn the AAAI Spring Symposium Series, March, 2004.

[2] Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling: Preliminary experi-
mental results. InProceedings of the First International Conference on Multi-Agent Systems,
1995.

[3] Tom M. Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David Zabowski. Ex-
perience with a learning personal assistant.Communications of the ACM, 37(7):80–91, 1994.

[4] Pragnesh Jay Modi, Manuela Veloso, Stephen F. Smith, and Jean Oh. Cmradar: A personal
assistant agent for calendar management. In6th International Workshop on Agent-Oriented
Information Systems, 2004.

[5] Sandip Sen and Edmund Durfee. A formal study of distributed meeting scheduling.Group
Decision and Negotiation, 7:265–289, 1998.

16

initiate-meeting(m)
possible-slots = shuffle(free-times)
negotiation-info[m] = possible-slots
propose-times(m)

propose-times(m)
possible-slots = negotiation-info[m]
current-slots = take(TIMES-PER-ROUND,

possible-slots)
negotiation-info[m] = drop(TIMES-PER-ROUND,

possible-slots)
foreach attendee a of m

send-proposal(a, m, possible-slots)

handle-response(m, responses)
foreach possible-slot s in responses

update-beliefs(s, response-for(s, responses))
slot = best-time(responses)
if slot = none

propose-times(m)
else

foreach attendee a of m
send-confirmation(a, m, slot)

Figure 9: Full Version ofLOC Algorithm

A LOC Algorithm

The following definitions are used in the definition of the learner algorithm in Figure 9:

• free-times is a list of the free time slots in the agent’s calendar.

• shuffle a function which takes a list and randomly orders it.

• take is a function which takes an integern and a list and returns the firstn elements of the
list.

• drop is a function which takes an integern and a list and returns all elements of the list
after the firstn.

• TIMES-PER-ROUNDwhich is a constant parameter indicating the number of time slots the
agents asks about at one time.

• send-proposal is a function which takes an agent, a meeting, and a set of time slots and
sends a message to the agent proposing those times for the meeting.

17

• update-beliefs is a function which given a slots and responser updates the beliefs
about slots by applying the belief updating algorithm described in section 3.2.

• response-for is a function which takes a slot and a set of responses and gets the response
for that slot.

• best-time is a function which takes a list of pairs of time slots and responses and finds a
time slot with an affirmative response. If there is none it returnsnone .

• send-confirmation is a function which takes an agent, a meeting, and a time slot and
confirms that the meeting should be scheduled at that time slot.

18

