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Abstract

We present an asymptotically optimal algorithm for themaxvariant of thek-armed bandit problem.
Given a set ofk slot machines, each yielding payoff from a fixed (but unknown) distribution, we
wish to allocate trials to the machines so as to maximize the expected maximum payoff received

over a series ofn trials. Subject to certain distributional assumptions, we show thatO
(
ln(1

δ
) ln(n)2

ε2

)
trials are sufficient to identify, with probability at least1− δ, a machine whose expected maximum
payoff is withinε of optimal. This result leads to a strategy for solving the problem that is asymp-
totically optimal in the following sense: the gap between the expected maximum payoff obtained
by using our strategy forn trials and that obtained by pulling the single best arm for alln trials
approaches zero asn →∞.
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1 Introduction

In thek-armed bandit problem one is faced with a set ofk slot machines, each having an arm that,
when pulled, yields a payoff from a fixed (but unknown) distribution. The goal is to allocate trials
to the arms so as to maximize the expected cumulative payoff obtained over a series ofn trials.
Solving the problem entails striking a balance between exploration (determining which arm yields
the highest mean payoff) and exploitation (repeatedly pulling this arm).

In the maxk-armed bandit problem, the goal is to maximize the expectedmaximum(rather
than cumulative) payoff. This version of the problem arises in practice when tackling combina-
torial optimization problems for which a number of randomized search heuristics exist: givenk
heuristics, each yielding a stochastic outcome when applied to some particular problem instance,
we wish to allocate trials to the heuristics so as to maximize the maximum payoff (e.g., the maxi-
mum number of clauses satisfied by any sampled variable assignment, the minimum makespan of
any sampled schedule). Cicirello and Smith [3] show that a maxk-armed bandit approach yields
good performance on the resource-constrained project scheduling problem with maximum time
lags (RCPSP/max).

1.1 Summary of Results

We consider a restricted version of the maxk-armed bandit problem in which each arm yields
payoff drawn from ageneralized extreme value (GEV) distribution(defined in§2). This paper
presents the first provably asymptotically optimal algorithm for this problem.

Roughly speaking, the reason assuming a GEV distribution is the Extremal Types Theorem
(stated in§2), which states that the distribution of the sample maximum ofn independent iden-
tically distributed random variables approaches a GEV distribution asn → ∞. A more formal
justification is given in§3. For reasons that will become clear, the nature of our results depend on
the shape parameter (ξ) of the GEV distribution. Assuming all arms haveξ ≤ 0, our results can be
summarized as follows.

• Let a be an arm that yields payoff drawn from a GEV distribution with unknown parameters;
let Mn denote the maximum payoff obtained after pullinga n times; and letmn = E[Mn].

We provide an algorithm that, after pulling the armO
(
ln(1

δ
) ln(n)2

ε2

)
times, produces an esti-

matem̄n of mn with the property thatP [|m̄n −mn| < ε] ≥ 1− δ.

• Let a1, a2, . . . , ak be k arms, each yielding payoff from (distinct) GEV distributions with
unknown parameters. Letmi

n denote the expected maximum payoff obtained by pulling the
ith armn times, and letm∗

n = max1≤i≤k mi
n. We provide an algorithm that, when run forn

pulls, obtains expected maximum payoffm∗
n − o(1).

Our results for the caseξ > 0 are similar, except that our estimates and expected maximum
payoffs come within arbitrarily smallfactors(rather than absolute distances) of optimality. Specif-

ically, our estimates have the property thatP
[

1
1+ε

< m̄n−α1

mn−α1
< 1 + ε

]
≥ 1 − δ for constantα1

independent ofn, while the expected maximum payoff obtained by using our algorithm forn pulls
is m∗

n(1− o(1)).
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1.2 Related Work

The classicalk-armed bandit problem was first studied by Robbins [7] and has since been the
subject of numerous papers; see Berry and Fristedt [1] and Kaelbling [6] for overviews. In a paper
similar in spirit to ours, Fong [5] showed that an initial exploration phase consisting ofO( k

ε2
ln(k

δ
))

pulls is sufficient to identify, with probability at least1−δ, an arm whose mean payoff is withinε of
optimal. Theorem 2 of this paper proves a bound similar to Fong’s on the number of pulls needed
to identify an arm whose expectedmaximumpayoff (over a series ofn trials) is near-optimal.

The max variant of thek-armed bandit problem was first studied by Cicirello and Smith [2, 3],
who successfully used a heuristic for the maxk-armed bandit problem to select among priority
rules for the RCPSP/max. The design of Cicirello and Smith’s heuristic is motivated by an anal-
ysis of the special case in which each arm’s payoff distribution is a GEV distribution with shape
parameterξ = 0, but they do not rigorously analyze the heuristic’s behavior. Our paper is more
theoretical and less empirical: on the one hand we do not perform experiments on any practical
combinatorial problem, but on the other hand we provide stronger performance guarantees under
weaker distributional assumptions.

1.3 Notation

For an arbitrary cumulative distribution functionG, let the random variableMG
n be defined by

MG
n = max{Z1, Z2, . . . , Zn}

whereZ1, Z2, . . . , Zn are independent random variables, each having distributionG. Let

mG
n = E[MG

n ] .

2 Extreme Value Theory

This section provides a self-contained overview of results in extreme value theory that are relevant
to this work. Our presentation is based on the text by Coles [4].

The central result of extreme value theory is an analogue of the central limit theorem that
applies to extremely rare events. Recall that the central limit theorem states that (under certain
regularity conditions) the distribution of the sum ofn independent, identically distributed (i.i.d)
random variables converges to a normal distribution asn → ∞. The extremal types theorem
states that (under certain regularity conditions) the distribution of the maximum ofn i.i.d random
variables converges to a generalized extreme value (GEV) distribution.

Definition (GEV distribution). A random variableZ has ageneralized extreme value distribution
if, for constantsµ, σ > 0, andξ, P[Z ≤ z] = GEV(µ,σ,ξ)(z), where

GEV(µ,σ,ξ)(z) = exp

(
−
(

1 +
ξ(z − µ)

σ

)− 1
ξ

)
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for z ∈ {z : 1+ξ(z−µ)σ−1 > 0}, andGEV(µ,σ,ξ)(z) = 1 otherwise. The caseξ = 0 is interpreted
as the limit

lim
ξ′→0

GEV(µ,σ,ξ′)(z) = exp

(
− exp

(
µ− z

σ

))
.

The following three propositions establish properties of the GEV distribution.

Proposition 1. LetZ be a random variable withP[Z ≤ z] = GEV(µ,σ,ξ)(z). Then

E[Z] =


µ + σ

ξ
(Γ(1− ξ)− 1) if ξ < 1, ξ 6= 0

µ + σγ if ξ = 0
∞ if ξ ≥ 1

where

Γ(z) =

∫ ∞

0

tz−1 exp(−t) dt

is the complete gamma function and

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)

is Euler’s constant.

Proposition 2. LetG = GEV(µ,σ,ξ). ThenMG
n has distributionGEV(µ′,σ′,ξ′), where

µ′ =

{
µ + σ

ξ
(nξ − 1) if ξ 6= 0

µ + σ ln(n) otherwise,
σ′ = σnξ, and
ξ′ = ξ .

Substituting the parameters ofMG
n given by Proposition 2 into Proposition 1 gives an expres-

sion formG
n .

Proposition 3. LetG = GEV(µ,σ,ξ) whereξ < 1. Then

mG
n =

{
µ + σ

ξ

(
nξΓ(1− ξ)− 1

)
if ξ 6= 0

µ + σγ + σ ln(n) otherwise.

It follows that

• for ξ > 0, mG
n is Θ(nξ);

• for ξ = 0, mG
n is Θ(ln(n)); and

• for ξ < 0, mG
n = µ− σ

ξ
−Θ(nξ) .
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Figure 1: The effect of the shape parameter (ξ) on the expected maximum ofn independent draws
from a GEV distribution.

It is useful to have a visual picture of what Proposition 3 means. Figure 1 plotsmG
n as a function

of n for three GEV distributions withµ = 0, σ = 1, andξ ∈ {0.1, 0,−0.1}.
The central result of extreme value theory is the following theorem.

The Extremal Types Theorem.LetG be an arbitrary cumulative distribution function, and sup-
pose there exist sequences of constants{an > 0} and{bn} such that

lim
n→∞

P
[
MG

n − bn

an

≤ z

]
= G∗(z) (2.1)

for any continuity pointz of G∗, whereG∗ is a not a point mass. Then there exist constantsµ,
σ > 0, andξ such thatG∗(z) = GEV(µ,σ,ξ)(z) ∀z. Furthermore,

lim
n→∞

P [Mn ≤ z] = GEV(µan+bn,σan,ξ)(z) .

Condition (2.1) holds for a variety of distributions including the normal, lognormal, uniform,
and Cauchy distributions.

3 The Max k-Armed Bandit Problem

Definition (max k-armed bandit instance). An instanceI = (n,G) of the maxk-armed bandit
problem is an ordered pair whose first element is a positive integern, and whose second element
is a setG = {G1, G2, . . . , Gk} of k cumulative distribution functions, each thought of as an arm
on a slot machine. Theith arm, when pulled, returns a realization of a random variable with
distributionGi.

Definition (max k-armed bandit strategy). A maxk-armed bandit strategyS is an algorithm
that, given an instanceI = (n,G) of the maxk-armed bandit problem, performs a sequence ofn
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arm-pulls. For any strategyS and integer̀ ≤ n, we denote byS`(I) the expected maximum payoff
obtained by runningS on I for ` trials:

S`(I) = E
[
max
0≤j≤`

pj

]
wherepj is the payoff obtained from thejth pull, and we definep0 = 0.

Our goal is to come up with a strategyS such thatSn(I) is near-maximal.
Note that the problem is ill-posed (i.e., there is no clear criterion for preferring one strategy

over another) unless we make some assumptions about the distributionsGi. We will assume that
each armGi = GEV(µi,σi,ξi) is a GEV distribution whose parameters satisfy

1. |µi| ≤ µu

2. 0 < σ` ≤ σi ≤ σu

3. ξ` ≤ ξi ≤ ξu < 1
2

for known constantsµu, σ`, σu, ξ`, andξu.
There are two arguments for assuming that each arm is a GEV distribution. First, in practice

the distribution of payoffs returned by a strong heuristic may be approximately GEV, even if the
conditions of the Extremal Type Theorem are not formally satisfied [2].

A second argument runs as follows. SupposeI = (n,G) is an instance of the maxk-armed
bandit problem in which each distributionGi ∈ G satisfies condition (2.1) of the Extremal Types
Theorem. Consider the instanceĪ = ( n

m
, Ḡ), whereḠ = {Ḡ1, Ḡ2, . . . , Ḡk}, and armḠi returns

the maximum payoff obtained by pulling the corresponding armGi m times. Effectively,Ī is a
restricted version ofI in which the arms must be pulled in batches of sizem, rather than in any
arbitrary order. Form sufficiently large, the Extremal Types Theorem guarantees that for each
i, Ḡi u GEV(µi,σi,ξi) for some constantsµi, σi, andξi. Thus, the instanceI ′ = ( n

m
,G ′) with

G ′ = {G′
1, G

′
2, . . . , G

′
k} andG′

i = GEV(µi,σi,ξi) is approximately equivalent tōI and satisfies our
distributional assumptions.

The purpose of the restrictions on the parametersµi, σi, andξi is to ensure that each GEV
distribution has finite, bounded mean and variance.

4 An Asymptotically Optimal Algorithm

We will analyze the following maxk-armed bandit strategy.
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StrategyS1(ε, δ):
1. (Exploration)For each armGi ∈ G:

(a) Usingt = O
(
ln(1

δ
) ln(n)2

ε2

)
samples ofGi, obtain an estimatēmGi

n of mGi
n .

Assuming that armGi has shape parameterξi ≤ 0, our estimate will have
the property that

P
[
|m̄Gi

n −mGi
n | < ε

]
≥ 1− δ .

2. (Exploitation)Set î = arg max1≤i≤k m̄Gi
n , and pull armGî for the remaining

n− tk trials.

If an armGi has shape parameterξi > 0, the estimate obtained in step 1 (a) will instead have

the property thatP
[

1
1+ε

< m̄n−α1

mn−α1
< 1 + ε

]
≥ 1− δ for constantα1 independent ofn.

The following theorem shows that with appropriate settings ofε andδ, strategyS1 is asymp-
totically optimal.

Theorem 1. Let I = (n,G) be an instance of the maxk-armed bandit problem, whereG =
{G1, G2, . . . , Gk} andGi = GEV(µi,σi,ξi). Let

• m∗
n = max1≤i≤k mGi

n ,

• ξmax = max1≤i≤k ξi, and

• S = S1
(

3

√
k
n
, 1

kn2

)
.

Then ifξmax ≤ 0,
lim

n→∞
Sn(I) = m∗

n

while if ξmax > 0,

lim
n→∞

Sn(I)

m∗
n

= 1 .

Proof.

Caseξmax ≤ 0. Let m̂n = m
Gî
n (wherêi is the arm selected for exploitation in step 2). Thenm̂n−tk

is the expected maximum payoff obtained during the exploitation step, so

Sn(I) ≥ m̂n−tk .

Claim 1. m̂n − m̂n−tk is O( tk
n
).

Proof of Claim 1. Let µ = µî, σ = σî, andξ = ξî be the parameters of the arm selected for
exploitation. Supposeξ = 0. Then by Proposition 3,̂mn − m̂n−tk = σ (ln(n)− ln(n− tk)).
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Expandingln(x + β) in powers ofβ aboutβ = 0 for |β| < x
2
, x > 0 yields

|ln(x + β)− ln(x)| =
∣∣∣∑∞

i=1(−1)i+1 1
i

(
β
x

)i∣∣∣
≤
∑∞

i=1

(
|β|
x

)i

= |β|x−1

1−|β|x−1

< 2 |β|
x

so forn sufficiently large,m̂n − m̂n−tk ≤ 2σ tk
n

= O( tk
n
).

Now supposeξ < 0. By Proposition 3,m̂n − m̂n−tk = σ
ξ
Γ(1 − ξ)(nξ − (n − t)ξ) = O((n −

t)ξ−nξ) where we have used the fact thatσ
ξ
Γ(1− ξ) < 0. Expanding(n− t)ξ in powers oft about

t = 0 gives

(n− t)ξ = nξ − ξnξ−1t−O

(
t2

nξ−2

)
and so(n− t)ξ − nξ ≤ −ξnξ−1t ≤ |ξ`| t

n
= O( t

n
).

With probability at least1− kδ, all estimates obtained during the exploration phase are within
ε of the correct values, so thatm∗

n − m̂n < 2ε. Assumingm∗
n − m̂n < 2ε, it follows that

m∗
n − m̂n−tk = (m∗

n − m̂n) + (m̂n − m̂n−tk)
< 2ε + O( tk

n
)

= 2ε + k
n
O
(
ln(1

δ
) (ln n)2

ε2

)
= O (∆)

where∆ = ln(nk) ln(n)2 3

√
k
n
, and on the second line we have used Claim 1. Thus,

Sn(I) ≥ (1− kδ) (m∗
n −O (∆))

= m∗
n −O (∆)

= m∗
n − o(1) .

Caseξmax > 0. See Appendix A.

Theorem 1 completes our analysis of the performance ofS1. It remains only to describe how
the estimates in step 1 (a) are obtained.

4.1 Estimatingmn

We adopt the following notation:

• Let G = GEVµ,σ,ξ denote a GEV distribution with (unknown) parametersµ, σ, andξ satis-
fying the conditions stated in§3, and
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• let mi = mG
i .

To estimatemn, we first obtain an accurate estimate ofξ. Then

1. if ξ u 0 (so that the growth ofmn as a function ofln n is linear), we estimatemn by first
estimatingm1 andm2, then performing linear interpolation;

2. otherwise we estimatemn by first estimatingm1, m2, andm4, then performing a nonlinear
interpolation.

4.1.1 Estimatingmi for i ∈ {1, 2, 4}

The following two lemmas use well-known ideas to efficiently estimatemi for small values ofi.

Lemma 1. Let i be a positive integer and letε > 0 be a real number. ThenO
(

i
ε2

)
draws fromG

suffice to obtain an estimatēmi of mi such that

P[|m̄i −mi| < ε] ≥ 3

4
.

Proof. First consider the special casei = 1. Let X denote the sum oft draws fromG, for some
to-be-specified positive integert. ThenE[X] = m1t andV ar[X] = σ̃2t, whereσ̃ is the (unknown)
standard deviation ofG. We takem̄1 = X

t
as our estimate ofm1. Then

P[|m̄1 −m1| ≥ ε] = P[|tm̄1 − tm1| ≥ tε]

= P[|X − E[X]| ≥
√

tε
σ̃

√
V ar[X]]

≤ σ̃2

tε2

where the last inequality is Chebyshev’s. Thus to guaranteeP [|m̄1 −m1| ≥ ε] ≤ 1
4

we must set
t = 4σ̃2

ε2
= O

(
1
ε2

)
(note that due to the assumptions in§3, σ̃ is O(1)).

For i > 1, we letX be the sum oft block maxima (each the maximum ofi independent draws
from G), which increases the number of samples required by a factor ofi.

To boost the probability that|m̄i − mi| < ε from 3
4

to 1 − δ, we use the “median of means”
method.

Lemma 2. Let i be a positive integer and letε > 0 and δ ∈ (0, 1) be real numbers. Then
O
(
ln(1

δ
) i

ε2

)
draws fromG suffice to obtain an estimatēmi of mi such that

P [|m̄n −mn| < ε] ≥ 1− δ .

Proof. We invoke Lemma 1r times (forr to be determined), yielding a setE = {m̄(1)
i , m̄

(2)
i , . . . , m̄

(r)
i }

of estimates ofmi. Let m̄i be the median element ofE. LetA = {m̄(j)
i ∈ E : |m̄(j)

i −mi| < ε} be
the set of “accurate” estimates ofmi; and letA = |A|. Then|m̄i −mi| ≥ ε impliesA ≤ r

2
, while

E[A] ≥ 3
4
r. Using the standard Chernoff bound, we have

P [|m̄i −mi| ≥ ε] ≤ P
[
A ≤ r

2

]
≤ exp

(
− r

C

)
for constantC > 0. Thusr = O

(
ln(1

δ
)
)

repetitions suffice to ensureP[|m̄i −mi| > ε] ≤ δ.
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4.1.2 Estimatingmn when ξ = 0

Lemma 3. AssumeG has shape parameterξ = 0. Letn be a positive integer and letε > 0 and

δ ∈ (0, 1) be real numbers. ThenO
(
ln(1

δ
) ln(n)2

ε2

)
draws fromG suffice to obtain an estimatēmn

of mn such that
P[|m̄n −mn| < ε] ≥ 1− δ .

Proof. By Proposition 3,mi = µ + σγ + σ ln(i). Thus

mn = m1 + (m2 −m1) log2(n) . (4.1)

Let m̄1 andm̄2 be estimates ofm1 andm2, respectively, and let̄mn be the estimate ofmn obtained
by pluggingm̄1 andm̄2 into (4.1). Define∆i = |m̄i −mi| for i ∈ {1, 2, n}. Then

∆n ≤ (1 + log2(n))(∆1 + ∆2) .

Thus to guaranteeP[∆n < ε] ≥ 1 − δ, it suffices thatP
[
∆i ≤ ε

2(1+log2(n))

]
≥ 1 − δ

2
for all

i ∈ {1, 2}. By Lemma 2, this requiresO
(
ln(1

δ
) (ln n)2

ε2

)
draws fromG.

4.1.3 Estimatingmn when ξ 6= 0

For the purpose of the proofs presented here, we will make a minor assumption concerning an
arm’s shape parameterξi: we assume that for some known constantξ∗ > 0,

|ξi| < ξ∗ ⇒ ξi = 0 .

Removing this assumption does not fundamentally change the results, but it makes the proofs more
complicated.

Lemma 5 shows how to efficiently estimateξ. Lemmas 6 and 7 show how to efficiently estimate
mn in the casesξ < 0 andξ > 0, respectively. We will use the following lemma.

Lemma 4.
m4 −m2 ≥ 1

4
σ and

m2 −m1 ≥ 1
8
σ .

Proof. See Appendix A.

Lemma 5. For real numbersε > 0 andδ ∈ (0, 1), O
(
ln(1

δ
) 1

ε2

)
draws fromG suffice to obtain an

estimatēξ of ξ such that
P
[
|ξ̄ − ξ| < ε

]
≥ 1− δ .

Proof. Using Proposition 3, it is straightforward to check that for anyξ < 1,

ξ = log2

(
m4 −m2

m2 −m1

)
. (4.2)
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Let m̄1, m̄2, andm̄4 be estimates ofm1, m2, andm4, respectively, and let̄ξ be the estimate of
ξ obtained by plugginḡm1, m̄2, andm̄4 into (4.2). Define∆m = maxi∈{1,2,4} |m̄i−mi| and define
∆ξ = |ξ̄ − ξ|. We wish to upper bound∆ξ as a function of∆m.

In Claim 1 of Theorem 1 we showed that| ln(x + β) − ln(x)| ≤ 2β
x

for β ≤ x
2
. Letting

N = m4−m2 andD = m2−m1, and noting thatξ = log2(N)− log2(D) = 1
ln 2

(ln(N)− ln(D)),
it follows that

∆ξ ≤
1

ln(2)

(
2(2∆m)

N
+

2(2∆m)

D

)
for ∆m < 1

2
min(N, D). Thus by Lemma 4 and the assumption thatσ ≥ σ`, ∆ξ is O(∆m).

Define∆i = |m̄i −mi|, so that∆m = maxi∈{1,2,4} ∆i. Then to guaranteeP[∆ξ < ε] ≥ 1− δ,
it suffices thatP [∆i ≤ Ω(ε)] ≥ 1− δ

3
for all i ∈ {1, 2, 4}. By Lemma 2, this requiresO

(
ln(1

δ
) 1

ε2

)
draws fromG.

Lemma 6. AssumeG has shape parameterξ ≤ −ξ∗. Letn be a positive integer and letε > 0 and
δ ∈ (0, 1) be real numbers. ThenO

(
ln(1

δ
) 1

ε2

)
draws fromG suffice to obtain an estimatēmn of

mn such that
P[|m̄n −mn| < ε] ≥ 1− δ .

Proof. By Proposition 3,

mi = µ +
σ

ξ

(
iξΓ(1− ξ)− 1

)
.

Define
α1 = µ− σξ−1

α2 = σξ−1Γ(1− ξ)
α3 = 2ξ

so that
mi = α1 + α2α

log2(i)
3 . (4.3)

Plugging in the valuesi = 1, i = 2, and i = 4 into (4.3) yields a system of three quadratic
equations. Solving this system forα1, α2, andα3 yields

α1 = (m1m4 −m2
2)(m1 − 2m2 + m4)

−1

α2 = (−2m1m2 + m2
1 + m2

2)(m1 − 2m2 + m4)
−1

α3 = (m4 −m2)(m2 −m1)
−1 .

Let m̄1, m̄2, andm̄4 be estimates ofm1, m2, andm4, respectively. Plugginḡm1, m̄2, and
m̄4 into the above equations yields estimates, sayᾱ1, ᾱ2, andᾱ3, of α1, α2, andα3, respectively.
Define∆m = maxi∈{1,2,4} |m̄i −mi| and∆α = maxi∈{1,2,3} |ᾱi − αi|. To complete the proof, we
show that|m̄n − mn| is O(∆m). The argument consists of two parts: in claims 1 through 3 we
show that∆α is O(∆m), then in Claim 4 we show that|m̄n −mn| is O(∆α).

Claim 1. Each of the numerators in the expressions forα1, α2, andα3 has absolute value bounded
from above, while each of the denominators has absolute value bounded from below. (The bounds
are independent of the unknown parameters ofG.)
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Proof of claim 1.The numerators will have bounded absolute value as long asm1, m2, andm3 are
bounded. Upper bounds onm1, m2, andm3 follow from the restrictions on the parametersµ, σ,
andξ. As for the denominators, by Lemma 4 we have

|m1 − 2m2 + m4| = |(m2 −m1)(α3 − 1)|
≥ 1

8
σ`|2−ξ∗ − 1| .

Claim 2. Let N andD be fixed real numbers, and letβN andβD be real numbers with|βD| < |D|
2

.
Then|N+βN

D+βD
− N

D
| is O(|βN |+ |βD|).

Proof of claim 2.First, using the Taylor series expansion ofN
D+βD

,

| N
D+βD

− N
D
| = |NβD

D2

∑∞
i=0(−1)i+1

(
βD

D

)i |
≤ | NβD

D2(1−βDD−1)
|

= O (|βD|) .

Then ∣∣∣N+βN

D+βD
− N

D

∣∣∣ ≤
∣∣∣ N
D+βD

− N
D

∣∣∣+ ∣∣∣ βN

D+βD

∣∣∣
= O (|βN |+ |βD|) .

Claim 3. ∆α is O(∆m).

Proof of claim 3.We show that|ᾱ1 − α1| is O(∆m). Similar arguments show that|ᾱ2 − α2| and
|ᾱ4−α4| areO(∆m), which proves the claim. To see that|ᾱ1−α1| isO(∆m), letN = m1m4−m2

2,
and letD = m1 − 2m2 + m4, so thatα1 = N

D
. DefineN̄ andD̄ in the natural way so that̄α1 = N̄

D̄
.

Becausem1,m2, andm3 are allO(1) (by Claim 1), it follows that both|N̄ −N | and|D̄ −D| are
O(∆m). That|ᾱ1 − α1| is O(∆m) follows by Claim 2.

Claim 4. |m̄n −mn| is O (∆α).

Proof of claim 4.Becauseξ` ≤ ξ ≤ −ξ∗ it must be that0 < 2ξ` < α3 < 2−ξ∗ < 1. So for∆α

sufficiently small,0 < ᾱ3 < 1.

|m̄n −mn| = |(ᾱ1 + ᾱ2ᾱ
log2(n)
3 )− (α1 + α2α

log2(n)
3 )|

≤ |ᾱ1 − α1|+ |ᾱ2ᾱ
log2(n)
3 − ᾱ2α

log2(n)
3 |

+ |ᾱ2α
log2(n)
3 − α2α

log2(n)
3 |

≤ |ᾱ1 − α1|+ |ᾱ2||ᾱ3 − α3|+ |ᾱ2 − α2|
= O(∆α)

where on the third line we have used the fact that bothα3 andᾱ3 are between 0 and 1, and in the
last line we have used the fact that|ᾱ2| is O(1).
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Putting claims 3 and 4 together,|m̄n −mn| is O(∆m). Define∆i = |m̄i −mi|, so that∆m =
maxi∈{1,2,4} ∆i. Thus to guaranteeP[|m̄n−mn| < ε] ≥ 1−δ, it suffices thatP [∆i < Ω(ε)] ≥ 1− δ

3

for all i ∈ {1, 2, 4}. By Lemma 2, this requiresO(ln(1
δ
) 1

ε2
) draws fromG.

Lemma 7. AssumeG has shape parameterξ ≥ ξ∗. Letn be a positive integer and letε > 0 and

δ ∈ (0, 1) be real numbers. ThenO
(
ln(1

δ
) ln(n)2

ε2

)
draws fromG suffice to obtain an estimatēmn

of mn such that

P
[

1

1 + ε
<

m̄n − α1

mn − α1

< (1 + ε)

]
≥ 1− δ

whereα1 = µ− σ
ξ
.

Proof. See Appendix A.

Putting the results of lemmas 3, 5, 6, and 7 together, we obtain the following theorem.

Theorem 2. Let n be a positive integer and letε > 0 and δ ∈ (0, 1) be real numbers. Then

O
(
ln(1

δ
) ln(n)2

ε2

)
draws fromG suffice to obtain an estimatēmn of mn such that with probability at

least1− δ, one of the following holds:

• ξ ≤ 0 and|m̄n −mn| < ε, or

• ξ > 0 and 1
1+ε

< m̄n−α1

mn−α1
< 1 + ε, whereα1 = µ− σ

ξ
.

Proof. First, invoke Lemma 5 with parametersξ∗

3
and δ

2
. Then invoke one of Lemmas 3, 6, or 7

(depending on the estimatēξ obtained from Lemma 5) with parametersε and δ
2
.

Theorem 2 shows that step 1 (a) of strategyS1 can be performed as described.

5 Conclusions

The maxk-armed bandit problem is a variant of the classicalk-armed bandit problem with prac-
tical applications to combinatorial optimization. Motivated by extreme value theory, we studied a
restricted version of this problem in which each arm yields payoff drawn from a GEV distribution.
We derived PAC bounds on the sample complexity of estimatingmn, the expected maximum ofn
draws from a GEV distribution. Using these bounds, we showed that a simple algorithm for the
maxk-armed bandit problem is asymptotically optimal. Ours is the first algorithm for this problem
with rigorous asymptotic performance guarantees.
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Appendix A

Theorem 1. Let I = (n,G) be an instance of the maxk-armed bandit problem, whereG =
{G1, G2, . . . , Gk} andGi = GEV(µi,σi,ξi). Let

• m∗
n = max1≤i≤k mGi

n ,

• ξmax = max1≤i≤k ξi, and

• S = S1
(

3

√
k
n
, 1

kn2

)
.

Then ifξmax ≤ 0,
lim

n→∞
Sn(I) = m∗

n

while if ξmax > 0,

lim
n→∞

Sn(I)

m∗
n

= 1 .

Proof. For ξmax ≤ 0, the theorem was proved in the main text. It remains only to address the case
ξmax > 0.

Caseξmax > 0. We will prove the stronger claim that

Sn(I)− α1

m∗
n − α1

= 1−O(∆) (5.1)

where∆ = ln(nk) ln(n)2 3

√
k
n

andα1 = max1≤i≤k αi, whereαi = µi − σi

ξi
.
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For the moment, let us assume thatall arms have shape parameterξi > 0. LetA be the event
(which occurs with probability at least1 − kδ) that all estimates obtained in step 1 (a) satisfy the
inequality in Theorem 2.

Claim 1. To prove (5.1), it suffices to show thatA implies m∗
n−α1

m̂n−tk−α1
= 1 + O(∆).

Proof of claim 1.BecauseSn(I) ≥ m̂n−tk and the eventA occurs with probability at least1− kδ,
it suffices to show thatA implies

(1− δk)m̂n−tk − α1

m∗
n − α1

= 1−O(∆) .

Becauseδk(m̂n−tk)

m∗
n−α1

is O
(

1
n2

)
= o(∆), it suffices to show thatA implies

m̂n−tk − α1

m∗
n − α1

= 1−O(∆) .

This can be rewritten asm∗
n − α1 = (m̂n−tk − α1)

1
1−O(∆)

= (m̂n−tk − α1)(1 + O(∆)) (we can

replace 1
1−O(∆)

with 1 + O(∆) because forr < 1
2
, 1

1−r
= 1 + r

1−r
< 1 + 2r).

Claim 2. m̂n−α̂1

m̂n−tk−α̂1
= 1 + O(∆).

Proof of claim 2.Using Proposition 3,

ln
(

m̂n−α̂1

m̂n−tk−α̂1

)
= ln

(
nξ

(n−t)ξ

)
= ξ (ln(n)− ln(n− tk))
= O( tk

n
)

= O(∆)

The claim follows from the fact thatexp(β) < 1 + 3
2
β for β < 1

2
, so thatexp(O(∆)) = 1 +

O(∆).

Claim 3.A implies that for alli,
m̄i

n − α1

mi
n − α1

< 1 + ε .

Proof of claim 3.By definition,α1 = αi
1−β for someβ ≥ 0. The claim follows from the fact that

for positiveN andD andβ ≥ 0, N
D

< 1 + ε implies N+β
D+β

< 1 + ε.

Claim 4.A implies m∗
n−α1

m̂n−tk−α1
= 1 + O(∆).

Proof of claim 4.
m∗

n−α1

mî
n−tk−α1

= m∗
n−α1

m̄∗
n−α1

· m̄∗
n−α1

m̄î
n−α1

· m̄î
n−α1

mî
n−α1

· mî
n−α1

mî
n−tk−α1

≤ (1 + ε) · 1 · (1 + ε) · (1 + O(∆))
= 1 + O(∆)

where in the second step we have used claims 2 and 3.
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Putting claims 1 and 4 together completes the proof. To remove the assumption that all arms
haveξi > 0, we need to show thatA implies that forn sufficiently large, the armŝi andi∗ (the
only arms that play a role in the proof) will have shape parameters> 0. This follows from the fact
that if ξi ≤ 0, mi

n is O(ln(n)), while if ξi > ξ∗ > 0, mi
n is Ω(nξi).

Lemma 4.
m4 −m2 ≥ 1

4
σ and

m2 −m1 ≥ 1
8
σ .

Proof. If ξ = 0, then by Proposition 3,m4−m2 = m2−m1 = ln(2)σ and we are done. Otherwise,

m4 −m2 = σ(2ξ − 1)ξ−1Γ(1− ξ) and
m2 −m1 = σ(4ξ − 2ξ)ξ−1Γ(1− ξ) .

It thus suffices to prove the following claim.

Claim 1.

min
ξ< 1

2

{
2ξ − 1

ξ
Γ(1− ξ)

}
≥ 1

4
, and

min
ξ< 1

2

{
4ξ − 2ξ

ξ
Γ(1− ξ)

}
≥ 1

8
.

Proof of claim 1.We state without proof the following properties of theΓ function:

Γ(z) ≥ bzc! ∀z ≥ 2
Γ(z) ≥ 1

2
∀z > 0

Making the change of variabley = −ξ, it suffices to show

min
y>− 1

2

{
1− 2−y

y
Γ(1 + y)

}
≥ 1

4
, and (5.2)

min
y>− 1

2

{
2−y(1− 2−y)

y
Γ(1 + y)

}
≥ 1

8
. (5.3)

(5.2) holds because for−1
2

< y ≤ 1,

1− 2−y

y
Γ(1 + y) ≥ 1

2
Γ(1 + y) ≥ 1

4
,

while for y > 1,
1− 2−y

y
Γ(1 + y) ≥ by + 1c!

2y
≥ 1

2
.

Similarly, (5.3) holds because for−1
2

< y ≤ 1,

2−y(1− 2−y)

y
Γ(1 + y) ≥ 1

8
,
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while for y > 1,
2−y(1− 2−y)

y
Γ(1 + y) ≥ by + 1c!

2y(2y)
≥ 1

8
.

Lemma 7. AssumeG has shape parameterξ ≥ ξ∗. Letn be a positive integer and letε > 0 and

δ ∈ (0, 1) be real numbers. ThenO
(
ln(1

δ
) ln(n)2

ε2

)
draws fromG suffice to obtain an estimatēmn

of mn such that

P
[

1

1 + ε
<

m̄n − α1

mn − α1

< (1 + ε)

]
≥ 1− δ

whereα1 = µ− σ
ξ
.

Proof. We use the same estimation procedure as in the proof of Lemma 6. Letα1, α2, α3, ∆α, and
∆m be defined as they were in that proof.

The inequality 1
1+ε

< m̄n−α1

mn−α1
< 1 + ε is the same as| ln( m̄n−α1

mn−α1
)| < ln(1 + ε). For ε < 1

2
,

ln(1 + ε) ≥ 7
8
ε, so it suffices to guarantee that

| ln(m̄n − α1)− ln(mn − α1)| <
7

8
ε .

Claim 1. | ln(m̄n − α1)− ln(mn − α1)| is O(ln(n)∆α).

Proof of claim 1.Because| ln(m̄n−α1)−ln(m̄n−ᾱ1)| isO(∆α), it suffices to show that| ln(m̄n−
ᾱ1)− ln(mn − α1)| is O(ln(n)∆α). This is true because

ln(m̄n − ᾱ1) = ln
(
ᾱ2ᾱ

log2(n)
3

)
= log2(n) ln(ᾱ3) + ln(ᾱ2)
= log2(n) ln(α3) + ln(α2)±O (ln(n)∆α)

= ln
(
α2α

log2(n)
3

)
±O (ln(n)∆α)

= ln(mn − α1)±O (ln(n)∆α) .

Setting∆α < Ω (ln(n)−1ε) then guarantees| ln(m̄n) − ln(mn)| < 7
8
ε. By Claim 3 of the

proof of Lemma 6 (which did not depend on the assumptionξ < 0), ∆α is O (∆m), so we require
P[∆m < Ω (ln(n)−1ε)] ≥ 1 − δ. Define∆i = |m̄i − mi|, so that∆m = maxi∈{1,2,4} ∆i. It
suffices thatP [∆i < Ω (ln(n)−1ε)] ≥ 1− δ

3
for i ∈ {1, 2, 4}. By Lemma 2, ensuring this requires

O
(
ln(1

δ
) ln(n)2

ε2

)
draws fromG.
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