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Abstract

This technical report contains four final project reports contributed by participants in CMU’s
Fall 2005 Advanced Operating Systems and Distributed Systems course (15-712) offered by pro-
fessor Garth Gibson. This course examines the design and analysis of various aspects of operating
systems and distributed systems through a series of background lectures, paper readings, and group
projects. Projects were done in groups of three and four, required some kind of implementation
and evaluation pertaining to the classroom material, but with the topic of these projects left up to
each group. Final reports were held to the standard of a systems conference paper submission; a
standard well met by the majority of completed projects. Some of the projects will be extended for
future submissions to major system conferences.

The reports that follow cover a broad range of topics. While not all of these reports report
definitely and positively, all are worth reading because they involve novelty in the systems ex-
plored and bring forth interesting research questions. These reports present methods for detecting
the presence of a virtual machine monitor (VMM) by malware being analyzed using slight ways
that a VMM differs from a real machine; the design and implementation of software transactional
memory library for the O’Caml programming language which allows transactions to be used for
synchronization, control flow, and shared variables; a virtual folder overlay to a filesystem combin-
ing context search techniques with traditional metadata information while also exploring indexing
tradeoffs; and a proposed semantic file-system which would allow a user to search for and manip-
ulate key-value pairs of attribute date on files using familiar file system primitives.
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Detecting the Presence of a VMM through Side-Effect Analysis
15-712 Project Final Report

Jason Franklin Mark Luk Jonathan M. McCune

Abstract

Virtual machine monitors (VMMs) are a critical enabling
technology for the security community. They allow for the
secure deployment of high interaction honeypots and the
dynamic analysis of malware such as worms and spyware.
VMMs must remain undetectable if they are to be used for
security applications since intruders or malware that are
able to detect a VMM can modify their behavior to thwart
analysis. Current botnet software like Agobot prevents dy-
namic analysis by running a simple check based on VMM
implementation quirks. In this paper, we develop detection
attacks which when run inside of a virtual machine moni-
tor are capable of detecting the VMM without relying on
VMM implementation details.

Our attacks are theoretically sound. They are based on
the two exceptions to the equivalence property of a virtual
machine monitor: timing dependencies and resource shar-
ing [21]. We believe that these exceptions are inherent to
any virtual machine monitor. In this paper, we describe
the design and implementation of our attacks, their suc-
cess detecting the Xen virtual machine monitor [3] without
relying on specific software implementation features, and
potential countermeasures.

1 Introduction

Because of the strong isolation properties provided by vir-
tual machines monitors (VMMs), virtualization has be-
come an important tool in the security community. Virtual
machines (VMs) allow untrusted code to be executed and
observed inside a constrained environment that is isolated
from other virtual machines. Hence, individuals who wish
to analyze malware are free to run potentially malicious
code without the risk of compromise or in the case of a
worm, without the risk of further propagation.

Dynamic analysis is the study of a program’s behavior
by monitoring its execution. Virtual machine monitors are
a critical enabling technology for dynamic analysis. Secu-
rity researchers have found dynamic analysis in conjunc-
tion with virtualization to be an effective tool to under-
stand the behavior of malicious software such as worms
and viruses [18, 31].

A critical assumption made in the dynamic analysis
community is that the behavior of the code being ana-
lyzed is representative of the natural behavior of the code.
Only if this assumption holds can the dynamic analysis

community make valid inferences about program behavior
through execution monitoring.

In this paper, we study the ability of a program to detect
the presence of a virtual machine monitor. After detecting
the presence of a VMM, a malicious program could mod-
ify its behavior in a number of ways to thwart dynamic
analysis. For example, a malicious program could execute
innocuous instructions instead of malicious ones, delete
itself, execute instructions to denial of service (DoS) the
VMM, obfuscate its behavior by adding spurious instruc-
tions to its execution, or generate false alarms in monitor-
ing software.

We define the problem of virtual machine monitor de-
tection, in which a program, called a detection attack, ex-
ecutes on a remote host in order to determine if a VMM
is resident in memory. The main contribution of this paper
is the development of a detection attack whose execution
differs from the perspective of an external verifier when a
VMM is resident in memory versus when it is executed di-
rectly on the underlying hardware. We describe the design
and implementation of our attacks, their success detect-
ing the Xen virtual machine monitor [3] without relying
on specific software implementation features, and poten-
tial countermeasures.

Our developed attacks are based on two exceptions to
the equivalence property [21] of a virtual machine moni-
tor, timing dependencies and resource sharing. We believe
that these exceptions are inherent to any virtual machine
monitor. However, testing our attacks against VMMs other
than Xen is a matter of future work.

In our scheme, an external verifier remotely exploits a
target host and gains kernel privilege. After which, an in-
stance of a detection attack is executed on the target host.
When the detection attack finishes executing, it sends the
result of a cryptographic computation back to an external
verifier who records the time elapsed since transmission of
the attack and verifies that the result is the expected value.
If the result differs from the expected value by more than
an experimentally determined threshold, a VMM is con-
sidered to be resident in memory and the detection attack
returns success. If the target host does not execute the de-
tection attack, the correct cryptographic response will not
be returned to the external verifier with high probability
and the detection attack defaults to success.

Most related work emphasizes software-dependent,
hardware-independent detection attacks which are usually
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possible to counter through modifications to the VMM
implementation. Our detection attacks are software-
independent and hardware-dependent. While the practical-
ity and even ability of organizations who develop VMMs
to modify VMM implementations to quickly counter
software-dependent, hardware-independent attacks can be
argued, we believe that organizations and individuals who
use VMMs for security critical applications would likely
modify the VMM implementation to thwart software-
dependent attacks, especially when trivial software coun-
termeasures exists. Our software-independent, hardware-
dependent attacks should be more difficult to counter with-
out hardware modification, a task which we assume is diffi-
cult for security conscious organizations who rely on com-
modity hardware.

This paper is organized as follows. Section 2 discusses
background including virtual machine monitors, dynamic
analysis, and honeypots. Section 3 contains a problem def-
inition, our virtual machine monitor model, and our as-
sumptions. In Section 4, we discuss the design, implemen-
tation, and evaluation of our attack. We describe future
work including additional potential detection attack tech-
niques in Section 5 and we discuss related work in Section
6. We conclude in Section 7.

2 Background
First, we describe the virtual machine monitor formaliza-
tion of Popek and Goldberg [21]. We define dynamic anal-
ysis and explain its relation to virtual machine monitors,
then we describe honeypots and their use of virtualization.

2.1 Virtual Machine Monitors
We follow Popek and Goldberg in defining a virtual ma-
chine monitor as an efficient, isolated duplicate of the un-
derlying hardware. This definition encompasses the three
primary properties that a control program must satisfy to
be termed a virtual machine monitor: efficiency, resource
control, and equivalence. In order to explain the three
properties in detail, we must first introduce some termi-
nology.

We classify the underlying instructions of a machine
based on their behavior. An instruction is privileged if it
can only be executed in the most priviledged ring, while
executing it in any other ring would result in a trap. Hence,
privileged instructions are characteristics of the underly-
ing hardware and are invariant over a particular instruction
set. One example of a privileged instruction on the x86
is the clear interrupts instruction (CLI). An instruction is
sensitive if it can interfere with the VMM. A instruction is
innocuous if it is not sensitive.

Informally, the efficiency property dictates that pro-
grams run in a virtualized environment show no more than
minor decreases in speed. Since minor decreases in speed

is difficult to quantify, a parallel requirement of the effi-
ciency property is that a statistically dominant subset of the
virtual processor’s instructions be executed directly by the
real processor. In terms of implementation, this typically
requires that all innocuous instructions be executed by the
hardware directly without intervention by the VMM.

The resource control property dictates that the VMM
is in complete control of system resources. This requires
that it be impossible for an arbitrary program to affect sys-
tem resources not allocated to it, for example memory and
peripherals.

Theequivalence propertydictates that the VMM pro-
vide an environment for programs which is essentially
identical to the original machine. The following parallel
formulation has also been put forward: any programP ex-
ecuting with a VMM resident in memory, with two pos-
sible exceptions, must perform in a mannerindistinguish-
ablefrom the case when the VMM did not exist andP had
the freedom of access to privileged instructions that the
programmer had intended. The two possible exceptions to
the equivalence property result from timing dependencies
and resource availability.

The timing dependency exceptionstates that certain
instruction sequences in a program may take longer to exe-
cute. Hence, assumptions about the length of time required
for the execution of an instruction might lead to incorrect
results. This exception results from the possibility of the
VMM occasionally intervening in certain instruction se-
quences.

The resource availability exceptionstates that it may
be the case that a particular request for a resource can not
be satisfied. As a result, a program may be unable to func-
tion in the same manner as it would if the resource were
made available. This exception is made because the VMM
shares the underlying hardware and hence consumes some
amount of resources.

These exceptions allow for the theoretical possibility
of detecting a virtual machine monitor. If these excep-
tions did not exist, a virtual machine monitor that per-
fectly satisfied the equivalence property would be impos-
sible to detect. In order to eliminate any dependence on
a particular virtual machine monitor implementation, we
develop our attacks around an abstract idealization of a
VMM which satisfies the equivalence property with the
above mentioned exceptions. We term such a VMM an
indistinguishable VMM.

One caveat is that there is no formal proof that these
possible exceptions must exist across all architectures and
VMM implementations. We give an informal argument for
the existence of the timing dependency exception on our
target architecture, the Intel Pentium. We assume that all
instructions execute in non-zero time. A sensitive instruc-
tion is one that can affect the state of the VMM or VM.

         8



In order to satisfy the resource control property, a VMM
must prevent arbitrary programs from executing sensitive
instructions without VMM intervention. If it was the case
that all sensitive instructions were also privileged, thenthe
sensitive instructions would be forced to trap and hence
the VMM would be able to intervene in their execution.
However, a previous analysis [24] of the Intel Pentium
demonstrated that sensitive, unprivileged instructions ex-
ist. These instructions require a VMM to intervene and
hence necessitate the existence of timing dependencies on
the Intel Pentium, regardless of VMM implementation.
Thus, for our target architecture, the timing dependence
exception exists. Exploiting these exceptions to detect a
VMM is a nontrivial task, the remainder of the paper ex-
plains our approach.

2.2 VMM Implementations

We are interested in two different virtual machine moni-
tor implementation techniques [25]: full virtualization and
paravirtualization. Both of these techniques are used to
virtualize operating system instances rather than processes
on one operating system; however, they differ in their ap-
proach to achieving this goal.

In full virtualization, the virtual replica of the underly-
ing hardware exposed is functionally identical to the un-
derlying machine. This allows operating systems and ap-
plications to run unmodified. In addition, these virtual ma-
chine monitors can be run recursively in virtual machines
exposed by other virtual machine monitors – up to resource
exhaustion. Full virtualization is typically implementedin
one of two ways: (1) with full support from the underlying
hardware, affording maximum efficiency; and (2) without
full support from the underlying hardware, requiring sen-
sitive instructions to be emulated in software.

A popular full system virtualization VMM is
VMWare [33, 34]. VMWare runs inside of a host
operating system – as opposed to running on the raw
hardware – and exposes an accurate representation of the
x86 architecture to guest operating systems. This causes
VMWare to suffer a performance overhead during the
execution of certain privileged instructions, since they
must be emulated in software.

In paravirtualization, the virtual replica of the underly-
ing hardware exposed is similar to the underlying machine,
but it is not identical. This is done when the underly-
ing machine architecture consists of sensitive instructions
which are not privileged. Paravirtualized VMMs have the
drawback that operating systems must be modified to run
on them; however, they enable efficient virtualization to be
performed even when hardware support for full virtualiza-
tion is unavailable [3].

Xen is an open-source x86 virtual machine monitor de-
veloped by University of Cambridge, and is popular in the

systems research community [3]. Xen uses paravirtualiza-
tion to achieve high performance and presents a software
interface to the guest OS that is not identical to the actual
hardware. Therefore, the guest operating system needs to
be modified before it can run on Xen.

Full virtualization on Xen can be accomplished with
hardware support, e.g., Intel Vanderpool Technology
(VT) [16] or AMD Pacifica [7]. VT support is already
implemented in the development version of Xen. Because
such machines are not yet widely available, even in the
systems research community, we focus on detecting Xen
on today’s Intel Pentium 4 CPUs.

Note that paravirtualization is trivially detectable from
within a guest OS, as certain features of the underlying
hardware will be broken or missing. In the remainder of
this paper, we do not consider such detection mechanisms.
We are interested in detection attacks predicated on the
theoretical timing and memory exceptions which will be
present in all VMMs (recall Section 2.1). That is, we only
include innocuous or privileged and sensitive instructions
in our detection attack code.

2.3 Dynamic Analysis

Dynamic analysis is the study of a program’s behavior by
monitoring its execution. In contrast to static analysis,
which is the study of a program’s behavior by examin-
ing its source code, dynamic analysis is unsound. How-
ever, security researchers have found dynamic analysis to
be an effective tool to understand the behavior of mali-
cious software such as Internet worms, viruses, and spy-
ware [18, 31].

A central assumption made in the dynamic analysis
community is that the behavior of the malicious code be-
ing analyzed is representative of the natural behavior of
the malicious code. Only if this assumption holds can the
dynamic analysis community make valid inferences about
program behavior through execution monitoring.

VMMs enable dynamic analysis through the detailed ex-
ecution monitoring and control of executing software. For
example, some VMMs can support rollback of file system
changes by keeping an extensive logfile of the virtual ma-
chine. This allows an investigator to repeat an experiment
multiple times with identical initial conditions. ReVirt [10]
is an instantiation of one such system, where the VMM
records all interrupts and inputs from the user.

2.4 Honeypots

Honeypots are specially constructed computer systems
connected to the Internet with the intention of attracting
malicious behavior. Once attacked, honeypots enable both
static and dynamic analysis. We define different classes
of honeypots, explain their relationship with VMM, and
motivate the incentives for malware writers to detect the
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existence of virtualized environments.

2.4.1 Definition
Spitzner defines a honeypot asa computational resource
whose value resides in being probed, attacked, or compro-
mised by invaders[29, 30]. A collection of honeypots is
called a honeynet [14]. Typically, honeypots are computer
systems that serve no legitimate purpose, so all traffic des-
tined for honeypots can be considered suspicious.

2.4.2 Classes
Honeypots are classified as being either high- or low-
interaction. Our work makes it possible to detect high-
interaction honeypots which use system virtualization. We
briefly describe both high and low-interaction honeypots.
Low-interaction Honeypots Low-interaction honeypots
emulate well-known operating systems and services like
web servers. These honeypots are less complex to de-
ploy than high-interaction honeypots and represent less
of a risk to the network where they are installed, how-
ever they capture less information about attackers. Per-
haps the best-known low-interaction honeypot is Honeyd
by Provos [22, 23]. Honeyd is a software package freely
available under the GNU Public License which can emu-
late and gather information about attacks on many popular
services (e.g., web servers, ftp servers).
High-interaction Honeypots In contrast to low-
interaction honeypots which simply emulate services,
high-interaction honeypots are real computer systems or
virtualized systems running real applications and servers.
They can capture far more information about attacks, but
they also expose the network to greater risk. Carbone and
de Geus present a mechanism for improving analysis of
attacks by gathering digital evidence from the filesystem
of high-interaction honeypots [8]. The basic premise of
their mechanism is to intercept certain system calls and
log the arguments for later analysis. Sebek is a tool which
attempts to capture most of the attacker’s activity once in-
side a honeypot [32]. Sebek is a client-server application,
where the client is installed on the honeypot and sends data
covertly (hopefully, so that the attacker does not realize it)
to the server.

2.4.3 Use of VMMs
Honeypots can yield tremendous value for computer secu-
rity personnel trying to understand attacks. Historically,
high-interaction honeypots have incurred significant cost
and risk because they consisted of a full computer sys-
tem which if compromised could be used to attack other
systems. The availability of virtual machine monitors
for commodity computer systems has made it possible
for a single physical machine to run a number of high-
interaction honeypots. This not only reduces the financial

burden of high-interaction honeypot deployment, but also
reduces the risks inherent in the deployment of these hon-
eypots because the VMM can isolate compromised virtual
machines to prevent them from attacking other systems.

Vrable et al. describe a honeyfarm they constructed
which makes heavy use of virtualization [35]. Their
Potemkin Virtual Honeyfarmis built on top of the Xen
VMM [3] and allows for the simultaneous execution of
thousands of high-interaction honeypots on a single ma-
chine.

The use of virtualization to enable dynamic analysis of
malware behavior as observed on high-interaction honey-
pots is a widely used and valuable tool for security person-
nel. Attackers have recognized this, and are beginning to
develop malcode that can detect the presence of a VMM
and alter its behavior to avoid detection or analysis [35].

Our project takes as its starting point the existence of
high-interaction honeypots created for the purpose of per-
forming dynamic analysis of malware, which leverage vir-
tual machine monitors to reduce the requisite financial in-
vestment and operational risks involved in setting up a hon-
eynet.

3 Problem Definition, VMM Model, and As-
sumptions

In this section, we define the problem of virtual machine
monitor detection, discuss our assumptions, and introduce
our virtual machine monitor model.

3.1 Problem Definition
We define the problem of virtual machine monitor detec-
tion, in which a program, called a detection attack, exe-
cutes on a remote host in order to determine if a VMM is
resident in memory.

We define adetection attackas any programD whose
execution differs, from the perspective of an external veri-
fier, when a VMM is resident in memory than whenD is
executed directly on the underlying hardware. In order to
avoid trivial solutions, we require the additional stipulation
thatD work without the explicit cooperation of the VMM.

In our scheme, an external verifier sends an instance of
a detection attackD to a remote host, hereafter refereed
to as the target host. After transmission, the target host
has complete control over the execution ofD. It can tam-
per with the execution of the detection attack or prevent
the attack from executing at all. For the purposes of this
project, we assume the VMM faithfully executesD in an
untampered execution environment. Designing our detec-
tion attacks so that tampering by way of dynamic analy-
sis is noticeable to the external verifier is a matter of fu-
ture work. In addition, resistance to tampering by way of
static analysis can be achieved with code obfuscation tech-
niques [19] and is also a matter of future work. WhenD
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finishes executing, it sends the result of its cryptographic
computation back to the external verifier who records the
time elapsed since transmission of the attack and verifies
that the result is the expected value. The external verifier
checks the result by comparing the elapsed time and result
of the computation against a predetermined range of val-
ues for the target host’s hardware platform. If the results
differ by more than this experimentally determined thresh-
old, a VMM is considered to be resident in memory and
the detection attack returns success. If the target host does
not execute the detection attack, the correct cryptographic
response will not be returned to the external verifier with
high probability and the detection attack defaults to suc-
cess. While this default detect behavior has the potential to
cause false positives, we assume that non-virtualized hosts
lack the ability to tamper with the execution of a detection
attack since the attack exploits and takes control of the tar-
get host’s operating system.

In order to provide a concrete mechanism to discuss
detection attacks, we develop the following classification.
We call a detection attackD software-independent if its
probability of success is independent of VMM software
implementation, more formallyP (S|I) = P (S) whereS

is successful detection andI is VMM implementation.D
is software-dependent if its probability of success depends
on a particular VMM implementation, soP (S|I) > P (S).
Similarly, a detection attackD is hardware-independent if
its probability of success is independent of the hardware
configuration of the target host, formallyP (S|H) = P (S)
whereH is the hardware configuration of the target host.
D is hardware-dependent ifP (S|H) > P (S). These
classifications can be combined in the obvious way. The
detection attacks developed in this paper are software-
independent and hardware-dependent.

In addition to defining attacks, we define acountermea-
sureas a defense mechanism incorporated into the VMM
to mask detectable differences betweenD′s execution with
and without a VMM resident in memory. The goal of a
countermeasure is to render a given instance of a detection
attackD ineffective.

3.2 Virtual Machine Monitor Model

In order to decrease the reliance of our attacks on an par-
ticular VMM software implementation, we base the devel-
opment of our detection attacks around an idealized VMM.
For our purposes, the VMM in question is an indistinguish-
able VMM which satisfies the resource control property.
Hence, our idealized VMM model is an isolated duplicate
of the underlying hardware which possesses the resource
control and equivalence properties. We do not require that
our abstract VMM be efficient, because a previous analy-
sis [24] has shown that virtualization on our target archi-
tecture, the x86, can not satisfy the efficiency requirement.

In practice, this exception does not effect our results.

3.3 Assumptions
We assume that we have root access to at least one VM
running inside the VMM. This is not an unreasonable as-
sumption, because remote root exploits are a key enabler
of Internet worms. The detection attack executes at the
highest privilege level with interrupts turned off after ex-
ploiting the OS.

We assume that the VMM will not tamper with the ex-
ecution of our detection code. Tampering is defined to be
modifying certain instructions in the execution stream, ei-
ther prior to or during their execution. Thus, the VMM is
required to faithfully execute all instructions in the detec-
tion code. Furthermore, we assume the VMM will only
employ software-based countermeasures. This is a reason-
able assumption because hardware changes are difficult to
realize for organizations who lack the ability to develop
their own platforms and hence must rely on commodity
hardware.

In addition, we assume that the VMM is running on an
unmodified x86 Pentium 4. The virtual machine monitor is
assumed to be a full system virtual machine monitor. For
the purposes of this paper, we are targeting Xen on legacy
systems. Future work will address VMMs that do not re-
quire paravirtualization, such as Xen on VT and VMWare.

4 Attack Design, Implementation, and Eval-
uation

Recall that in Popek and Goldberg’s formal requirements
for virtualization [21], the equivalence property of a VMM
has two exceptions: the timing dependency exception and
the resource availability exception. These two exceptions
highlight fundamental differences between running soft-
ware natively and inside a virtualized environment. We
leverage these two exceptions of a VMM in order to de-
tect its existence, in conjunction with a remote verifier
for reliable timing measurements. The significance of us-
ing these inherent properties of a VMM cannot be under-
stated. Since most previous work in VMM detection fo-
cuses on a specific detail that is different from one partic-
ular software implementation to another, these attacks can
be foiled by software patches to the VMM. Our attack, on
the other hand, is based on intrinsic properties of a VMM,
and thus is agnostic to the actual software implementation.
Therefore, we conjecture that it should be difficult to create
software-based countermeasure against our attack.

4.1 Attack Overview
We have two parties in our VMM detection protocol, an
external verifier and atarget host. The external verifier
would like to determine whether the target host is running
Xen by asking the target host to execute an instance of a
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detection attack, refereed to as theVMM Detection Code,
in a challenge-response protocol. The external verifier can-
not trust the target host to execute correctly. However, it
can trust itself to have an accurate clock, which is used to
measure the runtime of VMM Detection Code on the tar-
get host. Because all timing measurements are made on
the remote verifier, clock synchronization is not required
between the machines.

Because of the inherent properties of a VMM, Xen
should not be able to execute the detection code as fast
as native Linux. The detection code is crafted specifically
to target the timing and resource exceptions to the equiva-
lence property of the VMM to ensure a noticeable runtime
difference. In the following section, we will give a detailed
description of our protocol and implementation.

4.1.1 Protocol

Our detection attack proceeds as in Figure 1. We employ a
challenge-response protocol to determine the existence of
Xen. The external verifier starts an internal timer and per-
forms a remote root exploit against the target host. In other
words, the external verifier exploits a piece of software that
is running with root privilege on the target host. Since the
attack inherits root privilege from the exploited software,
it has the ability to install the detection code as a kernel
module. Remotely acquiring kernel privilege by installing
itself as a kernel module is a technique often found in mal-
ware and worm code, and has been proven to be easily
achievable in the wild. After such an exploit, the detection
code would run at the same privilege ring as the exploited
OS. If the target host was running native Linux, the de-
tection code would run in the highest priviledge ring, or
ring 0. On the other hand, if the target host was running a
VMM, the detection code would run in ring 1. The goal of
the detection code is to determine this difference.

The VMM Detection Code is structured as follows. It
has initial setup code that exploits the target machine and
installs itself as a kernel module. Next, it turns off inter-
rupts and executes a benchmarking loop that will experi-
ence detectable performance differences depending on the
execution environment. Note that the benchmarking loop
expects to run in an untampered environment inside the
target host. The benchmarking loop is the crux of our de-
tection attack and will be explained in detail. Finally, the
result of the benchmarking loop will be sent back to the
external verifier and interrupts re-enabled.

The verifier times the entire execution of the VMM de-
tection code to determine whether or not it ran natively
or inside a virtualized environment. If the execution time
exceeds a certain threshold based on empirical measure-
ments, the verifier would suspect that the target host is run-
ning a VMM, and would consequently command the de-
tection program to self-destruct or alter its behavior. Else,

if the execution time is as expected for running on native
Linux, the verifier would command the detection code to
proceed.

4.1.2 Benchmarking Loop
Since the external verifier determines the existence of a
VMM by timing the execution of the benchmarking loop,
we need this loop to have strict timing properties. Intu-
itively, this benchmarking loop needs toverifiablyexperi-
encelonger runtimeif it is executed inside a virtual ma-
chine. A detailed explanation of its desired properties fol-
lows.

A longer runtimeis defined by the following two state-
ments. First, for the same processor, executing the bench-
marking loop in a native OS should be faster than running
the benchmarking loop in an OS executing on top of a
VMM. Second, we would like the benchmarking loop run-
ning on top of a VMM on the fastest available Pentium 4
to execute slower than the benchmarking loop running in
a native OS on the slowest available Pentium 4. Note that
the second statement implies the first.

According to the above definition, the benchmarking
loop needs to experience runtime such that one can dif-
ferentiate between a virtualized environment and a native
OS without knowledge of the actual processor speed. We
assume the absence of such information because it is not
clear how one can obtain this knowledge prior to executing
the benchmarking loop.

Since an arbitrarily fast processor can simulate an arbi-
trarily slow processor, we need a realistic bound on the un-
derlying machine’s possible configurations. For the VMM
detection attack, we chose the Intel Pentium 4 architecture,
which features processor speeds ranging from 2.0 GHz to
3.8 GHz.1 Thus, our benchmarking loop needs to execute
faster on a 2.0 GHz non-virtualized machine than on a 3.8
GHz virtualized machine. We show how we satisfy this
claim in the following section, where we describe a bench-
marking loop that experiences a factor of four slowdown
when executed in a virtualized environment.

The second property required for the benchmarking loop
is one of verifiable execution. Intuitively, this means
that the external verifier needs a strong guarantee that the
benchmarking loop has finished execution on the target
host. In other words, the external verifier needs to verify
that a sequence of instructionsX had been executed on a
target host.

Achieving the verifiable execution property is a chal-
lenging research problem. Pioneer [28] has a checksum
function that can achieve this verifiable execution property.
However, Pioneer requires knowledge of exact hardware
specifications, while we only assume a particular proces-

1http://www.intel.com/products/processor/
pentium4
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1. VMM Detection Code

2. Run Detection Code

3. Done

4. Execute/Self Destruct

Detection CodeDetection Code

Timer Function
Linux

External Verifier Target Host

VMM or Hardware

Figure 1: Overview of VMM Detection Protocol.

sor family.
Client puzzles [20] are tests based on cryptographic

primitives that require a machine to spend a certain amount
of cycles to brute-force an answer. This computation is
a function of a fresh challenge generated by the external
verifier. The fact that the target host is able to respond
with the correct value implies that the target host has per-
formed the needed computation. However, client puzzles
do not guarantee that the target host actually executed the
intended programX. The target host could have executed
a programY that returns the same result.

Achieving the verifiable execution property remains an
open question. For this paper, we assume an untampered
execution environment. Therefore, the external verifier can
assume that the benchmarking loop executesd as intended
on the target host.

4.2 Trace Cache based Side Effects
In this section we detail the way in which we exploit the
properties of thetrace cache– a consistent feature across
all of Intel’s currently-released Pentium 4 processors – to
detect the presence of a VMM. Our detection strategy is
based on the presence of a small number of sensitive, priv-
ileged instructions inside a loop of thousands of arithmetic
instructions. In the remainder of this section, we refer to
sensitive instructions when in fact we mean sensitive, priv-
ileged instructions.

4.2.1 Architecture of the Pentium 4
All of Intel’s Pentium 4 CPUs include a Level 1 instruction
trace cache. A trace cache cachestracesof the dynamic
instruction stream, so instructions that are noncontiguous
in a traditional cache appear contiguous [26]. A trace is
a sequence of at mostn instructions and at mostm ba-
sic blocks2 starting at any point in the dynamic instruction
stream. An entry in the trace cache is specified by a starting
address and a sequence of up tom − 1 branch outcomes,
which describe the path followed. Intel has published the
size of the trace cache in the Pentium 4 CPU family – 12K
µops. However, the parametersm andn, as well as the

2A basic blockis a sequence of instructions without any jumps.

number ofµops into which x86 instructions decode, have
not published.3

A line in the trace cache is allocated and a trace is cre-
ated as instructions are fetched from the instruction cache.
If the same trace is encountered again (specified by a start-
ing address and a set of predicted branch outcomes), it will
be available in the trace cache and fed directly to the execu-
tion engine. If a trace is not available, instruction fetching
proceeds normally from the instruction cache.

The Netburst Microarchitecture of the Intel Pentium 4
family includes a trace cache with consistent specifications
across all currently-produced Pentium 4 CPUs. While a
full description of this architecture is beyond the scope of
this paper, it is necessary to summarize some relevant con-
cepts. Elements of the microarchitecture include an execu-
tion trace cache, an out-of-order core, and a rapid execu-
tion engine [4].

The trace cache stores instructions in the form of de-
codedµops rather than in the form of raw bytes which are
stored in more conventional instruction caches. This facili-
tates removal of the instruction decode logic from the main
execution loop, enabling the out-of-order core to sched-
ule multipleµops to the rapid execution engine in a single
clock cycle. In the case of arithmetic instructions with-
out data hazards, it is possible to retire threeµops every
clock cycle. Register-to-register x86 arithmetic instruc-
tions (e.g.,add, sub, and, or, xor, mov) decode into
a singleµop. Thus, it is possible to attain a Cycles-Per-
Instruction (CPI) rate of1

3
.

Other x86 instructions – especially sensitive instructions
– decode to hundreds or even thousands ofµops. These ex-
pensive instructions are decoded via lookup in aMicrocode
ROM; the trace cache does not fully support caching of
these expensive operations.

4.2.2 Detailed Design
Our basic VMM detection strategy is to construct code that
yields predictable behavior by the trace cache. Context
switches will alter the content of the trace cache, which
is detectable based on the resulting performance impact.
Note that since the trace cache operates on decodedµops,
there is no way for the VMM to efficiently simulate the
trace cache. It would have to emulate every instruction,
even register-to-register arithmetic instructions.

To detect the presence of a VMM, however, it is neces-
sary that we understand the behavior of the trace cache for
some subset of the CPU’s full instruction set. This way,

3Intel’s primary motivation for keeping this information secret is not
to inhibit competitors; rather, it is to prevent developers from writing
software which is dependent on the existence of the trace cache. Ideo-
logically, this is similar to information hiding in an object-oriented pro-
gramming paradigm. It is interesting that this project, where we emulate
the behavior of a malware writer, gives us cause to write tracecache-
dependent code.
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we can make statements about the expected behavior of a
piece of code constructed from the subset of instructions.

Before executing the block of arithmetic instructions,
we disable interrupts so that the trace cache will not be
polluted by spurious interrupts. If our code is executing
on the bare hardware, interrupts are truly disabled (except
non-maskable interrupts and exceptions, which are either
rare and can be detected, or can be avoided by careful cod-
ing), and the arithmetic instructions can execute with the
full benefit of the trace cache. If the block of instructions
are running on top of a VMM, then the VMM will dis-
able interrupts only for the VM which requested them to
be disabled. Thus, the trace cache will be polluted when
the VMM context switches between other VMs and itself.

More significantly, sensitive instructions which trap to
the VMM for emulation will incur a very large perfor-
mance overhead. We have written code and run experi-
ments which thoroughly explore these conditions. Our im-
plementation and evaluation are presented in the coming
sections.

4.2.3 Implementation

Our implementation proceeded through several phases: (1)
determine the expected behavior of the trace cache with
large basic blocks of arithmetic instructions; (2) determine
the effects of adding small numbers of sensitive instruc-
tions to the code blocks; and (3) determine how these ef-
fects differ when the experiment is run on top of a VMM
which must execute a significant number of instructions to
emulate the behavior of the sensitive instruction.

Figure 2(a) shows a simplified version of the instruction
sequences we executed to explore the trace cache behav-
ior. Essentially, we take a reading from the performance
counter (rdtsc: Read Time-Stamp Counter), execute a
large basic block of arithmetic instructions, and then take
another reading from the performance counter. The time-
stamp counter is incremented every clock cycle, but it is
not a serializing instruction. That is, it does not necessar-
ily wait until all previous instructions have finished exe-
cuting before reading the counter. Similarly, instructions
following therdtsc may begin execution before the read
operation is performed. For this reason, we iterate through
the loop of arithmetic instructions131072 (217) times, and
divide by131072 to get an actual cycle reading (the y-axis
in Figure 2(b) and subsequent figures).

Figure 2(b) shows the elapsed CPU cycles for the execu-
tion of varying numbers of arithmetic instructions on both
Xen and Linux. Since the instructions are not sensitive,
and do not require a trap to the VMM, the performance
on Xen and vanilla Linux is comparable. The most sig-
nificant feature in Figure 2(b) is the existence of the knee
just before 12K instructions. Prior to 12K instructions, the
arithmetic instructions (which decode to oneµop each) in-

side the loop fit entirely inside the trace cache. Note that
the graph shows a CPI of1

3
before the knee, which is inline

with the specifications of the Pentium 4 CPU (execution of
three arithmeticµops per clock cycle in the absence of data
hazards). Above 12K instructions, performance degrades
significantly, and the code executes with a CPI of1. This
is because the trace cache is not designed for basic blocks
this large and becomes entirely useless.

In the next section, we will show how the performance
on Xen and vanilla Linux diverge significantly upon the
introduction of sensitive instructions.

4.2.4 Evaluation

Our experiments focus on the presence of 1, 2, 4, 8, and 16
CLI (Clear Interrupt Flag – disable interrupts) instructions
in a loop of thousands of arithmetic instructions. The CLI
instruction is a sensitive instruction which results in a trap
to the VMM if it is executed from within a VM. Figure 3(a)
shows the impact of adding just a single CLI instruction at
the beginning of a loop of arithmetic instructions. Already,
the performance impact on Xen is considerable. Compare
this with Figure 2(b), where the performance difference
between Xen and vanilla Linux is negligible. We empha-
size that the presence of a single sensitive instruction is
sufficient to cause the disparity. The next four graphs in
Figure 3 show the impact of 2, 4, 8, and 16 CLI instruc-
tions in the loop of arithmetic instructions. These CLI in-
structions are inserted evenly spaced throughout the loop
of arithmetic instructions. For example, with two CLI in-
structions in a loop of 10240 arithmetic instructions, in-
structions 1 and 5120 will be CLI instructions.

In our experiments, we concentrated on the CLI instruc-
tion as the sensitive instruction in our experiments. There
are other sensitive instructions which will produce similar
behavior running on top of a VMM. Figure?? shows the
impact of a singlemov %cr0, %esi instruction, which
reads the current value of Processor Control Register 0 into
general-purpose registeresi. Note that Figure?? is very
similar to 3(a). As the attacker, we can take our pick from
among the sensitive instructions to construct a code se-
quence that will be very difficult for the VMM to tamper
with or otherwise modify in an attempt to fool our VMM
detection.

One interesting artifact in Figures 3(a) and?? is the two
vanilla Linux data points which lie on the slope where the
CPI is 1, when the trace cache behavior model we have pre-
sented thus far suggests that they fall on the slope where
the CPI is 1

3
. These outliers occur with exactly 10784

and 11168 arithmetic instructions with one sensitive in-
struction, regardless of whether that instruction is a CLI
or MOVCR0. Similar outlying points occur with greater
frequency as the number of sensitive instructions in the
loop of arithmetic instructions is increased. Intel has not
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rdtsc ;; get start time
mov $131072, %edi ;; n = 131072

loop: xorl %eax, %eax ;; begin special
addl %ebx, %ebx ;; instr. seq.
movl %ecx, %ecx
orl %edx, %edx
... ;; 1K – 16K instr.
sub $1, %edi ;; n = n − 1
jnz loop ;; until n = 0
rdtsc ;; get end time

(a) Simplified assembly code used to fill trace cache with arithmetic instruc-
tion sequences requiring 1µop per instruction. Note that the inclusion of 1
or more sensitive instructions occurs between varying numbers of blocks of
the 4 arithmetic instructions.
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(b) Average CPU cycles elapsed on a 2.0 GHz P4 for each iteration of a
loop of varying numbers of arithmetic instructions on vanillaLinux and
Linux on top of Xen 3.0.0. Arithmetic instruction block sizesrun from
1024 to 16384 in increments of 1024. The 12 KB trace cache is plainly
visible running vanilla Linux or Xen.

Figure 2: ASM code example and resulting execution graphs for increasing-sized blocks of arithmetic instructions on the
Intel Pentium 4. The arithmetic instructions decode to a singleµop on the Intel Pentium 4 Netburst Microarchitecture [4].

publicly released a detailed specification of the trace cache
characteristics inside the Pentium 4 CPU, but we have a
hypothesis for this behavior. As discussed in Section 4.2.1,
the trace cache is composed of multiple cache lines, which
can be strung together based on the length of a trace with
m − 1 or fewer branches. However, the trace cache lines
are of a finite size, and certain numbers of instructions in-
side the loop may not fit cleanly into the trace cache lines.
Since the traces we create are unusually long, this mis-
alignment results in the loop not fitting in the trace cache,
despite the total number ofµops being less than the abso-
lute capacity of the trace cache. We believe that additional
experimentation and reverse-engineering effort will make
it possible to exactly determine the trace cache parameters,
and we plan to pursue this as part of our future work.

Figure 4 shows the impact of the position of a single CLI
instruction in the loop of arithmetic instructions. This fig-
ure shows the effect of the CLI placed in the middle (Fig-
ure 4(a)) and end (Figure 4(b)) of the loop of arithmetic in-
structions. Figure 3(a) shows the case where the CLI is at
the beginning of the loop. The fewest outliers occur when
the CLI instruction is at the end of the loop. Our hypothe-
sis for this behavior is that the CLI instructions cannot be
placed into the trace cache, as they decode into too many
µops (on the order of hundreds ofµops). Thus, the nega-
tively impact the trace cache alignment when placed at the
beginning and middle of the loop.

Figure 5 shows the results of our code when run on
other architectures (64-bit Pentium 4 – Figure 5(a), and
32-bit Pentium M – Figure 5(b)). These results are con-
sistent with our expectations. That is, even 64-bit Pentium
4 CPUs are built with a trace cache, and its behavior is
consistent with the trace cache in its 32-bit counterparts.

The periodic increase in CPI provides further evidence that
alignment inside the trace cache impacts our results. The
Pentium M does not have a trace cache at all, and so the
instructions specially crafted to bring out trace cache be-
havior do not look interesting on the Pentium M.

4.3 Countermeasures
We have shown in the previous sections that it is possi-
ble to craft code which has pathological performance on a
VMM, while still executing efficiently on the native hard-
ware. This discrepancy is a threat, as it provides an avenue
through which malware writers can make their code more
resistant to dynamic analysis. In this section, we briefly
describe possible countermeasures that may thwart our de-
tection attack.

If a VMM is able to detect the detection attack, either be-
fore or during its execution, a number of countermeasures
are possible. If the VMM realizes it is under a detection
attack prior to the execution of the benchmarking loop, it
may be able to use static analysis and binary rewriting to
prevent the detection attack from executing correctly, per-
haps returning a valid response in the correct amount of
time for a nonvirtualized host. Similiarly, if the VMM
recognizes the attack during the execution of the bench-
marking loop, it may be able to employ dynamic analy-
sis to predict the expected result of the detection attack.
Although these countermeasures are currently beyond the
scope of our detection attack because of the untampered
execution assumption, we plan on extending our work to
remove such an assumption. Thus, these countermeasures
present possible hurdles that we need to overcome in our
future work.

There are a number of difficulties inherent in imple-
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(a) Onecli (Clear Interrupt Flag) instruction.
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(b) Twocli instructions.
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(c) Fourcli instructions.
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(d) Eightcli instructions.
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(e) Sixteencli instructions.
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(f) One mov %cr0, %esi (read Processor Control Register 0) in-
struction. Note the similarity with Figure 3(a).

Figure 3: Xen vs. Vanilla Linux for varying numbers of sensitive instructions. The graphs show average CPU cycles
elapsed for each iteration of a loop of varying numbers of arithmetic instructions with a small number of sensitive instruc-
tions. Each subfigure represents a different number of sensitive instructions inside the loop. The first sensitive instruction
occurs at the beginning of the loop, and subsequent sensitive instructions (where applicable) are evenly spaced in the
remainder of the loop.
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(a) 1 CLI instruction in the middle of the ASM loop.
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(b) 1 CLI instruction at the end of the ASM loop.

Figure 4: Effects of CLI instruction placement in the ASM loop on Vanilla Linux.
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(a) The trace cache on the 64 bit Pentium 4 is visible.
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(b) The complete lack of a trace cache on the Pentium M is visible.

Figure 5: Other popular Intel architectures.

menting these countermeasures. First, the VMM will need
to employ sophisticated intrusion detection system (IDS)
algorithms to determine if a particular piece of code is an
instance of a detection attack. These IDS algorithms will
likely have false positives which could result in the DoS
of benign applications. Even if a VMM is able to detect
a detection attack, static analysis can be prevented with
code obfuscation techniques [19]. In addition, our detec-
tion attacks could be designed so that tampering by way of
dynamic analysis is noticeable to the external verifier [28].

Finally, these countermeasures will need to be efficient
and have a minimal impact on the execution of software
within a VMM. Companies who develop VMMs for gen-
eral use would likely not be willing to take a significant
performance hit during the execution of all applications
in order to satisfy the concerns of the security commu-
nity. Much like the example of the VMM DoS-ing a be-
nign application, there are a number of risks and complexi-
ties inherent in deploying countermeasures inside a VMM.

These risks and complexities are likely to be a major hurdle
for companies who develop VMMs to develop and deploy
VMM detection attack countermeasures.

5 Future Work

5.1 Cryptographic Proofs of Work

The following section details a hypothesis we formulated
early in this work, which we believe still has potential. It
may be possible to detect the presence of a VMM using
cryptographic proofs-of-work [17] to profile machines.

In a proof-of-work protocol, a client demonstrates to a
server that it has invested a certain amount of resources
by providing a short certificate whose generation neces-
sitated the expenditure of resources. One example of a
CPU-bound proof-of-work is finding hash collisions for
truncated cryptographic hash functions.

We postulate that using proofs-of-work to profile a sys-
tem can be done in a fashion that makes it difficult for a
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VMM to mask the differences in timing and memory that
exist between the virtualized and nonvirtualized architec-
tures. A naive strategy for hiding the existence of a VMM
is using a VMM running on a fast machine to present
the appearance of a slower machine. However, accurately
representing the timing and memory behavior (recall Sec-
tion 2) of a particular machine configuration is non-trivial.
Accurate behavior emulation will require significant slow-
down, which will violate the efficiency property from Sec-
tion 2. Thus, we believe proof-of-work schemes have
promise.

Proof-of-work protocols are partitioned into different
classes based on their required workloads. Three inter-
esting classes are CPU-bound, memory-bound [1, 5], and
disk-bound proofs. CPU-bound proofs exercise the capa-
bilities of the CPU, drawing instructions primarily from
caches (as opposed to frequent memory accesses). In
memory-bound proofs, the server constructs a workload
that requires near constant memory accesses. This in turn
makes the resulting computation time dominated by the
time spent accessing memory. Analogously, disk-bound
proofs require near constant access to disk.

Memory- and disk-bound proofs force different work-
loads on the client as a way to marginalize the dispar-
ity between client capabilities. For detecting the exis-
tence of a VMM, memory- and disk-bound workloads
serves as a control mechanism to minimize the profile vari-
ance between devices. A proof-of-work which is strictly
based on the CPU speed of a client will have an exponen-
tially large difference between machines as predicted by
Moore’s Law, but disk or memory bound workloads will
have significantly smaller variance (e.g., memory and disk
capacity has been growing in accordance with Moore’s
Law, but memory and diskperformancehas not).

By timing the execution of a proof-of-work benchmark,
we may be able to determine if the benchmark was per-
formed by a resource-constrained virtual machine rather
than a nonvirtualized host.

There are a number of obstacles which must be over-
come for a proof-of-work protocol to serve as a useful
VMM detection attack. The first of these obstacles is
the construction of proofs-of-work whose runtimes allow
a remote party to accurately profile a host. This problem
may be solvable by testing a number of host configura-
tions and evaluating differences between them. Another
potential obstacle is the construction of a threshold metric
that allows one to differentiate between virtual machines
and nonvirtualized hosts simply by comparing their bench-
marks.

The resource costs incurred by proof-of-work schemes
and required by a change in the number of virtual machines
which can run on a single hardware platform can serve
as a useful metric. This metric will allow us to analyze

the monetary costs of defending against detection attacks.
A cost-benefit model which utilizes this economic metric
may allow us to develop virtual machine detection attacks
whose defense poses a substantial monetary cost.

5.2 Detection of OS & VMM Scheduler In-
terference

One VMM detection strategy we considered developing
during the early stages of this work exploits the existence
of multiple scheduler quanta. A VMM multiplexes oper-
ating system instances with some time quantum for each,
and each operating system instance multiplexes applica-
tion threads with some time quantum for each. The selec-
tion of appropriate time quanta is known to have a signifi-
cant impact on overall system performance. For example,
Hensbergen shows that virtualization can have a negative
impact on system performance by increasing the severity
of OS scheduler interference [12]. If we can exploit un-
intended interactions between VMM and OS quanta to de-
tect the existence of the VMM, defenses may have a severe
penalty in terms of system performance.

The scheduler interference strategy shares many com-
mon ideas with research on covert channels. For example,
Gligor explored the use of CPU scheduling to transmit data
between two processes [11]. The sender of information
varies the nonzero CPU time, which it uses during each
quantum allocated to it, to send different symbols. For 0
and 1 transmissions, the sender picks two nonzero values
for the CPU time used during a quantum, one representing
a 0 and the other a 1. Huskamp refers to this method of
communication as thequantum-time channel[15].

The work of Huskamp [15] and Gligor [11] provides de-
tailed information about using shared hardware for timing
channels. We believe it is feasible to use these same con-
cepts to pass a message between different VMs running on
the same VMM. If a VM receives a message, it can echo
the received message and the sending VM will know that
it is running on virtualized rather than real hardware.

The primary hypothesis for the interference-based ap-
proach is that differences in the execution pattern of the
quanta app on VMM and non-VMM systems will be ev-
ident with the appropriate filtering. It will be necessary
to select an appropriate filtering scheme, run it on the
data output by an application designed to interact with
scheduler quanta (thequanta app), and compare the re-
sults across VMM and non-VMM systems. It is likely that
a detection scheme such as this will have false positive and
false negative rates, which will need to be analyzed.

The default scheduler quanta for the Linux kernel
changes infrequently. We hypothesize that we can accu-
rately profile the expected behavior of the quanta app on a
non-VMM system. The quanta app shall be equipped with
this knowledge when it is deployed to hosts suspected of
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running a VMM, so that it is better able to make decisions
about the existence of a VMM.

We hypothesize that the actual detection criteria for the
quanta app will be non-trivial. Signal processing tech-
niques that have been applied in the domain of intrusion
detection may be able to help identify suspicious interlock-
ing module behavior. For example, Barford et al. have ap-
plied wavelet analysis to network traffic anomalies [2].

6 Related Work

Most related work emphasizes software-dependent,
hardware-independent detection attacks which are
usually possible to counter through modifications to
the VMM implementation. Our detection attacks are
software-independent and hardware-dependent. While the
practicality and even ability of organizations who develop
VMMs modifying VMM implementations to quickly
counter software-dependent, hardware-independent at-
tacks can be argued, we believe that organizations and
individuals who use VMMs for security critical appli-
cations would likely modify the VMM implementation
to thwart software-dependent attacks, especially when
trivial countermeasures exists. Our software-independent,
hardware-dependent attacks should be more difficult to
counter without hardware modification, a task which we
assume is difficult for security conscious organizations
who rely on commodity hardware.

Holz and Raynal describe some heuristics for detecting
honeypots and other suspicious environments from within
code executing in said environment [13]. Dornseif et al.
study mechanisms [9] designed specifically to detect the
Sebek high-interaction honeypot. While many of these
software-dependent heuristics suffice today, trivial coun-
termeasures exist. The mechanisms we have constructed
are not based upon specific software implementations.

Execution path analysis (EPA) [27] was first proposed
in Phrack 59 by Jan Rutkowski as an attempt to determine
the presence of kernel rootkits by analyzing the number of
certain system calls. Although the main idea can also apply
to detect VMMs, EPA has several severe drawbacks. The
main drawback is that it requires significant modification
to the system (debug registers, debug exception handler)
that could be easily detected and consequently forged by
the underlying VMM.

Delalleau proposed a scheme to detect the existence of a
VMM [6] by using timing analysis. The proposed scheme
requires a program to first time its own execution on a
VMM-free machine in a learning phase. Then, when the
program infects a suspect host, its execution time could
be compared against the results from the learning phase.
However, because the result of the learning phase is depen-
dent on a particular machine configuration and the scheme
is not designed to prevent tampering, it is unclear how

practical it is to deploy such a detection attack in the wild.
Pioneer [28] is a primitive which enables verifiable code

execution on remote machines. As part of the inherent
challenge of verifiable code execution, Pioneer needs to
determine whether or not it is running inside a VMM.
The solution in Pioneer is to time the runtime of a certain
function that also reads in the interrupt enable bit in the
EFLAGS register. This function is pushed into the kernel
and is expected to run with interrupts turned off. How-
ever, if it was running inside a VMM, the output of the
EFLAGS register would be different than expected. Al-
though promising, Pioneer assumes that the external ver-
ifier knows the exact hardware configuration of the target
host. We eliminate this assumption and rely on machine
interrogation and benchmarking to discover and verify the
target host’s hardware configuration.

Vrable et al. touch briefly on non-trivial mechanisms for
detecting execution within a VMM [35]. They allude to the
fact that although a honeynet maybe be able to perfectly
virtualize all hardware, an attacker may be able to infer
that it is executing inside a VMM by certain side channels.

There are a number of previously developed software-
dependent techniques from the blackhat community, two
of which we describe next.
Redpill Redpill4 is an example detection attack developed
to detect the VMWare virtual machine monitor. Redpill
operates by reading the address of the Interrupt Descrip-
tor Table (IDT) with theSIDT instruction and checking if
it has been moved to certain locations known to be used
by VMWare. This attack can be easily countered by mov-
ing the IDT away from these “known” locations. Hence,
we consider Redpill to be a software-dependent attack (it
only applies to VMWare) with a trivial countermeasure
(the IDT can be relocated at load-time).
VMWare’s Back Similar to Redpill, VMWare’s Back5 is
a software-dependent detection attack which uses the exis-
tence of a special I/O port, called the VMWare backdoor.
This I/O port is specific to the VMWare virtual machine
and hence can be used to detect VMWare. In order to
demonstrate the simplicity of the attack we have included
the sequence of commands6 used to call the backdoor func-
tion:

MOV EAX, 564D5868h ; Magic Number
MOV EBX, COMMAND_SPECIFIC_PARAMETER
MOV ECX, BACKDOOR_COMMAND_NUMBER
MOV DX, 5658h ; Port Number
IN EAX, DX

Depending on the value of the
BACKDOOR COMMAND NUMBER, this code is capa-

4http://invisiblethings.org/redpill.html
5http://chitchat.at.infoseek.co.jp/vmware/
6http://chitchat.at.infoseek.co.jp/vmware/

backdoor.html
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ble of retrieving VMWare’s version number, device
information, virtual machine configuration information,
and the host’s system time. In addition, the above code
allows data to be transfered into the virtual machine by
writing to EAX, EBX, and ECX which are used as input
parameters to different backdoor functions.

7 Conclusion

In this paper, we studied the ability of a program to detect
the presence of a virtual machine monitor. After detecting
the presence of a VMM, a malicious program can mod-
ify its behavior in a number of ways to thwart dynamic
analysis. We define the problem of virtual machine mon-
itor detection, in which a program called a detection at-
tack executes on a remote host to determine if a VMM is
resident in memory. The main contribution of this paper
is the development of a detection attack whose execution
differs from the perspective of an external verifier when a
VMM is resident in memory (versus when it is executed di-
rectly on the underlying hardware). Our developed attacks
are based on two exceptions to the equivalence property
of a virtual machine monitor: timing dependencies and re-
source sharing. We believe that these exceptions are inher-
ent to any virtual machine monitor and that the strategy our
attacks use should be capable of detecting any virtual ma-
chine monitor. We described the design and implementa-
tion of our attacks and their success detecting the Xen vir-
tual machine monitor without relying on specific software
implementation features. We also briefly treat potential
countermeasures. Most related work emphasizes software-
dependent, hardware-independent detection attacks which
are usually possible to counter through modifications to the
VMM implementation. Our detection attacks are software-
independent and hardware-dependent. Our attacks should
be more difficult to counter without hardware modifica-
tion, a task which we assume is difficult for security con-
scious organizations who rely on commodity hardware.

Most related work emphasizes software-dependent,
hardware-independent detection attacks which are usually
possible to counter through modifications to the VMM
implementation. Our detection attacks are software-
independent and hardware-dependent. Our attacks should
be more difficult to counter without hardware modifica-
tion, a task which we assume is difficult for security con-
scious organizations who rely on commodity hardware.
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Abstract

This paper describes 712Caml, a software transactional memory li-
brary for O’Caml. 712Caml provides first-class transactions as the only
synchronization primitive, functions for control flow among transactions,
and transactional shared variables. We evaluate the performance and scal-
ability of 712Caml and contrast our design choices by comparing against
AtomCaml [10].

1 Introduction

Software transactional memory (STM) systems provide transactions as a general-
purpose synchronization primitive with the guarantee that shared variable mod-
ifications within a transaction appear as atomic updates to global state. They
borrow from the database community the idea of a transaction: each critical
region is executed speculatively, but if any contention occurs the transaction is
rolled back and retried. Thus, critical regions appear to run atomically without
interference from any concurrent threads.

712Caml is a software transactional memory library for O’Caml that pro-
vides first-class transactions, functions for manipulating control flow between
transactions, and transactional shared variables. In contrast to AtomCaml’s
[10] compiler support for implicit transactions, 712Caml follows STM Haskell’s
[5] design as a library that provides transactions as first-class data objects.
The key differences and tradeoffs between the design choices of 712Caml and
AtomCaml include transaction interface, assumptions, levels of optimism, and
strength of atomicity.

AtomCaml is a modified O’Caml compiler that makes transactions implicit
by exposing a single function atomic that runs a piece of code atomically;
712Caml is an O’Caml library that makes transactions explicit as first-class data
objects and provides functions for manipulating transactions. This has deep im-
plications in terms of expressivity and implementation. First-class transactions
are easier to manipulate and track because transactional regions are clearly
identified, whereas AtomCaml has to generates two versions of each function:
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one ordinary version and one that can be run in an atomic context; the ver-
sion used is chosen at runtime depending on whether execution occurs inside a
transaction.

AtomCaml operates under the assumption that atomic blocks are always
short and guarantees atomicity by requiring transactions to complete in one
scheduler quantum. The problem with this assumption is that the definition
“short” varies with the choice of computer system, operating system and thread
library scheduler, since different configurations may have different scheduler
quanta. This assumption precludes the need to consider the amount of con-
tention, since interleaved execution of concurrent threads is necessary for there
to be any contention at all. In contrast, 712Caml does not make any assump-
tions about the duration of transactions, but instead optimistically assumes
that there is low contention for access to transactional shared memory among
threads. Contention is dealt with by retrying the transaction if it is unable to
commit.

The two systems also differ in their levels of optimism. AtomCaml pes-
simistically rolls back any atomic thread whose execution is preempted, since
this might lead to a violation of atomicity guarantees. On the other hand,
712Caml optimistically permits interleaved execution of transactions and only
rolls back when contention is detected. An important tradeoff is precisely when
to detect contention. The “lazy” approach we take is waiting until a transac-
tion is ready to commit and then checking that the transaction’s original view of
memory is consistent with the current state. One drawback is that long-running
transactions may waste processor time if they conflict with other threads and
have to perform large rollbacks. Like AtomCaml, we alleviate this problem by
adjusting the scheduler quantum for long-running transactions that repeatedly
fail to complete. Alternatively, we could look for contention on every transac-
tional memory access, paying a small up-front price often with the hope that
we might prevent large rollbacks early.

A fourth dimension in which AtomCaml differs from 712Caml is in strength
of the atomicity guarantee [1]. Weak atomicity means that transactions can
overlap with non-atomic threads. Strong atomicity means that transactions
must appear truly atomic: they cannot overlap even with other non-atomic
threads. Strong atomicity can lead to deadlock, since transactional code has
no way of synchronizing with non-transactional code. 712Caml provides weak
atomicity, which allows for more flexibility in program design. AtomCaml imple-
ments strong atomicity by construction, since it disallows interleaved execution
of transactions.

The rest of this paper is organized as follows. In Section 2, we describe
our system design. Section 3 discusses the benchmarks we used to evaluate
712Caml. In Section 4 we discuss our hypotheses, benchmarks, and results.
Section 5 describes related work, and Section 6 concludes.
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createvar()

write(var, val)

read(var)

Figure 1: Unitary transactions

2 System Design

2.1 Interface

712Caml applies Kung and Robinson’s [8] proposal for database transactions to
O’Caml by providing a library for software transactional memory with minimal
modifications to the runtime system. The library provides facilities for executing
transactions atomically, combining transactions and handling shared variables.
The runtime needs to be modified to support a custom scheduling policy to
provide fairness for concurrent transactions.

Instead of demarcating transactions with tbegin and tend like Kung, we
build transactions incrementally using a set of transaction combinators. There
are unitary transactions that create, read from, and write to shared variables
(Figure 1). Larger transactions can be made either by sequencing two trans-
actions, where the second may depend upon the result of the first (the bind

operation, Figure 2), or by composing two transactions in alternation, running
the second transaction only if the first fails (the orelse operation, Figure 3).
We also provide a transaction for explicit failure (the retry operation, Fig-
ure 4), which forces a transaction to rollback and attempt to re-execute later,
in case some precondition was not met, for example.

Once created, transactions can be executed atomically with exactly-once
semantics using the atomic operation. Moreover, in order to facilitate composi-
tionality of transactional code, we permit nested transactions but handle their
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transaction 1

transaction 2

Figure 2: Transaction sequencing

transaction 1 transaction 2

Figure 3: Transaction alternation

retry()

Figure 4: Explicit failure
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completion according to their depth. A nested (inner) transaction completes
by merging its log with its parent’s log, while an unnested (outer) transaction
completes by committing its write set globally provided its read set is consistent
with the global state at completion time.

Similar to Kung’s transactional object management facilities, we provide
transactional shared memory for arbitrary data types, with the programming
convention that using non-transactional shared memory with transactional shared
memory may void the serializability guarantee for concurrent transactions. Al-
though transactional variables are the only transactional shared memory primi-
tive we provide, other transactional data structures can easily be built on top of
this foundation. For example, transactional arrays can be implemented as im-
mutable vectors of transactional variables. Since O’Caml is a garbage-collected
language, we do not need to handle memory deallocation explicitly.

2.2 Implementation

712Caml is divided into three primary modules: the transaction library, trans-
actional variables, and a transaction log. In addition, our system relies on a
few small thread scheduler modifications. We describe each component of the
system below.

2.2.1 Transaction Log

Each transaction maintains a log recording its changes locally, to be committed
later. The log is a mapping from transactional variables accessed to the values
they had when first accessed together with the new values with which they
should be updated if the transaction succeeds.

Currently, our implementation uses a purely functional map based on a bal-
anced binary search tree. We experimented briefly with an implementation
based on an imperative hash table, but initial results indicated that an imper-
ative log decreased performance on account of copying and allocation. (The
purely functional log enjoys the benefit of persistence—many conceptual copies
of the log may share data in memory; the imperative log would require each
conceptual copy to be an actual copy in memory, which can lead to poor cache
performance due to sacrificed locality.)

Before committing, the old value of each transactional variable in the log is
compared with the actual value in memory to ensure a consistent view of the
world. The values stored in transactional variables are double-indirected, so
this is a pointer equality comparison. If another transaction has written to a
variable, the variable’s value will be pointer-unequal to the recorded value.

In order to rollback, the log is discarded, and no permanent changes take
place. In order to read a variable, the log must be consulted to see if it has
changed.
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2.2.2 Transaction Library

Transactions are implemented as functions from a log to a result. The atomic

function simply applies the transaction to an initially empty log and returns the
value returned by the transaction, after performing the consistency checks and
commit protocol described above.

The retry transaction is implemented as a function that raises an excep-
tion; atomic handles this exception by yielding to the scheduler and later re-
attempting atomic execution of the transaction that called retry.

2.2.3 Transactional Variables

Transactional variables are implemented as doubly-indirected values—pointers
to pointers to values. The first level of indirection permits us to modify the
value while the second level allows us to determine memory consistency via the
protocol described above.

2.2.4 Scheduler Modifications

712Caml also requires minor modifications to the scheduler in order to account
for the possibility of starvation if a long-running highly contentious thread keeps
getting rolled back. The modified thread scheduler provides exponential com-
pensation by doubling the time slice given to a thread each time a transaction
running in that thread rolls back, ensuring that eventually any transaction will
be able to run to completion. In order to ensure fair scheduling, threads with
larger time slices are scheduled proportionally less often. When a transaction
completes successfully, its thread loses any special status and gets scheduled
normally.

3 Evaluation

We evaluated 712Caml with a comparative analysis against AtomCaml using a
set of microbenchmarks, and portions of the AtomCaml and SXM benchmarks.

3.1 Microbenchmarks

We gauged the performance and scalability of transactions with tests consisting
of threads with different instruction mixes. We varied the number and duration
of transactions and the proportion of transactional and idle computation to
test scalability, the degree of read and write contention and the distribution of
transactional computation throughout the transaction to test scheduling and
conflict detection, and the number of transactional read, write, and read/write
variables to test the impact on performance. We generated the test cases with
a function parameterized in the number of threads, the number of transactional
variables and their use by each thread, and the duration and distribution of idle
computation.
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Figure 5: Nanobenchmarks: overhead of transactions

We used a homogeneous set of threads (1, 2, 4, 8, 16, 32 threads) executing a
single transaction atomically 16 times with varying idle computation overhead
(looping 0, 10, 100, 1, 000, 10, 000 times) between accesses to transactional
variables. In order to test the overhead of transactions in the absence contention,
we used a homogeneous transaction that performed the same operation (read
or write) 32 times on 32 shared transactional variables in random order. In
order to test the impact of contention on performance, we used a homogeneous
transaction that alternated 32 reads and 32 writes on 32 shared transactional
variables in random order.

We also simulated contention with a heterogeneous set of reader threads
executing a read transaction (10, 20, 50, 100 reads per transaction) and writer
threads executing a write transaction (100, 50, 20, 10 writes per transaction),
each thread executed its transaction 16 times with varying idle computation
overhead (looping 0, 10, 100, 1, 000, 10, 000 times) and sharing a buffer (1, 000
entries).

3.2 Nanobenchmarks

In order to measure the overhead incurred by transactional execution, we created
a set of “nanobenchmarks”, so called because they are smaller in scope than our
microbenchmarks. These benchmarks performed some number n of writes to a
mutable variable in a loop executed 100,000 times. We tested n = 10, 50, 100,
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and 200, under four different conditions:

• writing to a mutable transactional variable in a logged transaction (Logged),

• writing to an ordinary reference cell in an unlogged code fragment (Unlogged),

• writing to a reference cell through an abstraction boundary in an unlogged
code fragment (Module), and

• writing to a reference cell via a monadic library with an interface similar
to ours (Monad ).

By comparing the logged execution against the unlogged executions, we can
estimate the overhead our transactional library incurs. A graph showing this
data appears in Figure 5.

According to the graph, 712Caml’s logged execution is 120 times slower than
equivalent code using ordinary O’Caml references (slope(Logged)/ slope(Unlogged)
≈ 120). Much of this overhead is likely due to code crossing module bound-
aries, though, since the O’Caml compiler does not perform inlining optimiza-
tions across modules. As the graph shows, we only perform about 15 times
worse than equivalent reference updating code that lives in a module behind an
abstraction boundary (slope(Logged)/ slope(Module) ≈ 15).

An even more likely source of overhead is our underlying representation
of transactions. Since every transaction is represented as a closure and large
transactions are built from many smaller ones, large transactions must build
many, many closures which are eventually applied away. To determine how much
of our runtime overhead is due to closure-building, we wrapped the reference
writing code with a monadic interface that builds roughly the same number of
closures as our transactional library, but without any logging. We perform only
3 times slower than the monadic code (slope(Logged)/ slope(Monad) ≈ 3).

The rest of our overhead is due to logging. A more clever log implementa-
tion coupled with a more clever transaction representation has the potential to
increase our library’s performance by several orders of magnitude.

3.3 Testing Environment

Our tests were conducted on a machine with a 3 GHz Pentium 4 processor with
512 KB of L2 cache and 1 GB of RAM, running Linux 2.4.25.

4 Results

4.1 Scalability of Rollbacks

Since 712Caml does not roll back transactions until the commit point but Atom-
Caml rolls back on thread preemption, we predicted that 712Caml’s roll back
behavior would scale more gracefully in the presence of long-running transac-
tions.
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This hypothesis was confirmed by the homogeneous read-only and write-only
transactions: 712Caml incurred no rollbacks while AtomCaml started incurring
hundreds of rollbacks when the busy work went from 1, 000 to 1, 0000 idle it-
erations between each shared variable access. This means that the duration of
transactions with busy work of 10, 000 exceeded the scheduler quantum. Fig-
ures 6 and 7 show AtomCaml’s number of rollbacks in contention-free transac-
tions as the number of threads and amount of busy work varies. The number of
retries is linearly proportional to the number of threads and logarithmically pro-
portional to the amount of busy work. The logarithmic scaling is explained by
AtomCaml’s scheduler policy of exponential compensation. There are no figures
for 712Caml because by design it does not roll back contention-free transactions.

In the presence of contention, although 712Caml incurred more roll backs
early on, the number of rollbacks scaled more smoothly than AtomCaml as the
amount of busy work increased; see Figures 8 and 9. 712Caml appears to scale
logarithmically presumably due to exponential scheduler compensation. Atom-
Caml’s performance on the same test exhibited a much sharper performance
degradation. Since AtomCaml’s performance on contention-free transactions
scaled logarithmically, the best it can hope to do on transactions with con-
tention is also logarithmic. However, even if AtomCaml achieves this lower
bound, its performance degradation is still much steeper than 712Caml’s, so
much so that we were unable to collect data for AtomCaml with busy work of
100, 000.

4.2 Scalability of Running-Time

We tested the running-time performance of both systems with homogeneous
instruction mixes. For contention-free transactions, both systems scaled linearly
with the number of threads and amount of busy work. 712Caml outperformed
AtomCaml by roughly a factor of between two and four in read-only and write-
only transactions (Figures 10, 11, 12, and 13). However, for transactions with
contention 712Caml performed only slightly better than AtomCaml (Figures 14
and 15). Some data points are absent because they took too long to collect.

4.3 Speculation: Native Code

One of the initial design considerations for 712Caml was that it would be easier
to leverage the O’Caml native code compiler to produce fast standalone binaries
by implementing a library instead of a compiler extension like AtomCaml. We
were unable to fully explore this possibility because like AtomCaml, we modified
the virtual machine thread scheduler to prevent starvation. The native code
compiler uses the pthread library, which on our test platform is implemented
using kernel threads.

In order to get a taste of the kind of performance gain we could expect
from native code compilation, we ran a single comparative test of running
time of an a priori starvation-free set of transactions. The test consisted of
16 threads performing a homogeneous read-only transaction with busy work
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of 1, 000, varying the number of shared variables (1, 2, 4, 8, 16, 32) each ac-
cessed 32. Although 712Caml bytecode performed better than AtomCaml
bytecode, native code compilation outperformed both dramatically: its per-
formance was approximately 35 times faster per operation than AtomCaml
(slope(AtomCaml)/ slope(Native) ≈ 35). We didn’t get running time for na-
tive code compilation and 32 shared variables due to a technical glitch in our
testbed setup.

5 Related Work

Transactions were originally proposed as an alternative to lock-based synchro-
nization for databases [8], but have found applications in dependable systems
and as a general-purpose concurrency primitive [7]. The ACID (atomicity, con-
sistency, isolation, durability) properties [3] of database transactions provide an
abstraction for concurrency in which applications should preserve data structure
consistency while databases deal with concurrent accesses and recovery from in-
complete executions and system failures. In dependable systems, transactions
are used as an abstraction for distributed systems in which participants may co-
operate on a task or compete for resources [11]. Fault tolerance is achieved by
confining the errors of a transaction with backward (rollback and retry) and for-
ward error recovery (exception handling), although the all-or-nothing semantics
may be relaxed to exactly-once or run-then-compensate.

Achieving correctness and efficiency with explicit locks is difficult because
coarse-grained locks simplify correctness but limit scalability and parallelism,
while fine-grained locks reduce contention but incur a greater locking overhead
and may introduce data races and deadlocks. Transactions solve these difficul-
ties by enabling optimistic concurrent execution without explicit locks. How-
ever, transactions are not strictly safer than lock-based synchronization and the
semantics of atomicity between transaction and non-transaction code is subtle
[1].

In addition to the AtomCaml compiler extension for O’Caml [10], there
are various implementations of software transactional memory for other lan-
guages. The SXM transactional memory extension for C# [6], transactions as
preemptible atomic regions for real-time Java [9], and the STM Haskell extension
for Haskell [5]. Similar to 712Caml, SXM and STM Haskell feature first-class
transactions and transaction combinators like orelse.

The 712Caml API is closely modeled after the STM Haskell API, with an
abstract type denoting transactions as first-class objects and several functions
for composing transactions. Unlike Haskell, we do not treat a transaction that
raises an exception specially but instead as a legitimate way for a transaction to
finish its computation, committing any changes upon exceptional return. This
has the benefit of noticeably simplifying the semantics of transactions.

SXM also has transactional types, which are constructed using a metadata
annotation on class definitions with the necessary machinery built at runtime
using a proxy class which does run-time code generation. This is potentially
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Figure 6: Number of Retries for Homogeneous Reads, AtomCaml
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quite slow, but is done to permit the use of transactional types outside of trans-
actions.

In spite of the differences between our work and AtomCaml, our designs do
share many aspects. For example, our choice of exception semantics, mentioned
above, follows theirs: exceptions are simply non-local transfers of control that
cause an enclosing atomic block to commit its transaction log. Their rationale is
that programmers already have the yield and yield r primitives as a mecha-
nism for indicating failure of an atomic block, while 712Caml’s retry primitive
has similar semantics. Harris [4] provides an overview of the consequences of
different design decisions regarding exceptions in atomic blocks.

An older related work is that on “Tinkertoy Transactions” by Haines, et al
[2], which aimed to add transactions to Standard ML, a strict, mostly functional
language very similar to O’Caml. Their goal was primarily to separate transac-
tionality into its constituent parts: persistence, undoability, threads, and lock-
ing. As a consequence, their system has a more complicated interface, forcing
programmers to make explicit decisions about what to do in the case of failure.
In contrast, our design only gives the programmer control of what constitutes
failure (via the retry primitive) rather than what to do in case of failure. Their
system does not remove much locking burden from the programmer, which is a
primary goal of our design.
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6 Conclusion and Future Work

We designed and implemented an alternative software transactional memory sys-
tem for O’Caml and demonstrated that our design choices led to better scalabil-
ity and in many cases better performance than the existing system AtomCaml.
By optimistically assuming low contention instead of short duration, 712Caml
was able to incur less rollback overhead than AtomCaml in many realistic cases.

One problem we faced in evaluating our hypotheses was how to measure
the effects of a variety of non-independent factors. Since it was infeasible to
explore the entire space of interactions between these factors, we had to run our
microbenchmarks at points scattered throughout that space. While we chose
the parameters for our microbenchmarks for both general breadth and to target
interesting subspaces, we may have missed interesting interactions with this
evaluation strategy, and one direction for future work would be to run a more
extensive set of tests exploring this space more completely.

This work only begins to scratch the surface of possibilities for software
transactional memory for O’Caml. There are many obvious opportunities for
optimization; our nanobenchmarks showed that either a more efficient log data
structure or a more clever transaction representation could easily lead to an
order of magnitude improvement in performance. Moreover, a richer implemen-
tation could include more expressive primitives such as AtomCaml’s yield r

that suspends execution until a particular transactional variable is updated
or more sophisticated scheduling algorithms to prevent starvation by allowing
different thread priorities. We could move towards native code compilation
by implementing starvation-prevention for non-O’Caml VM threads, either by
leveraging a user space thread library or by obtaining hooks into the kernel
thread scheduler. The possibilities are endless.
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Abstract

We introduce a system that allows the user to combine metadata, user-defined labels, and Virtual
Folders as primary means of file organization and localization. We not only adopt and extend the advan-
tages of typical semantic file systems, but also preserve backward compatibility with current applications
by running on top of hierarchical file-systems and by providing the user with a virtual view of our new
organizational space. We show that there exist many typical organizational tasks for which our model
allows a more efficient solution than hierarchical file systems. Additionally, we explore various trade-offs
between functionality and performance; in particular we demonstrate how dynamic indexing strategies
can significantly improve performance.

1 Introduction

File searching on current systems has mostly been made possible by separate applications that run on top
of the operating system, such as Google Desktop Search, Beagle, and Spotlight.

While all of these tools provide search as an effective way of file localization, they do not significantly
improve the way in which we browse and organize our data. In order to find a file, current search tools
require the user to specify exact keywords (such as filenames or pathnames) and often necessitate that a new
search be started each time, even though identical queries might have been issued in previous instances.

In this paper, we attempt to show that the interplay of search, semantic labels, and Virtual Folders can
be used to significantly improve data organization and localization. We introduce our implementation of a
user-space file indexing system that not only allows searching for contents and meta-attributes of files, but
also includes mechanisms for semantic labeling and persistent query storage through Virtual Folders. We
furthermore take a detailed look at several factors for increasing the system’s overall indexing performance.
We show that indexing overhead can be minimized by dynamic adjustment of indexing frequency, depending
on the current system load, and also by coalescing file-system events to avoid redundant index processing.
Finally, we introduce a set of highly expressive tools that allow the user to operate efficiently in our new
organizational space.

For evaluation we examine organizational patterns in sample bash histories and measure system overhead
by running the Andrew benchmark.

The rest of this paper is organized as follows: section 2 presents other related work in this area; section
3 discusses several design considerations we made; section 4 describes system design and implementation;
section 5 presents the results of our experiments; conclusion and future work is given in section 6.

1.1 Virtual Folders and Labels

We introduce ‘Virtual Folders’, which act as abstract containers of search queries. Internally, a Virtual Folder
can store a logical set of one or more queries that are connected by set-operations. To the user however, a
Virtual Folder is represented as a single, folder-like data structure. A Virtual Folder could for example be
called “recent pictures” and when being browsed it would internally execute a search-query for all “.jpg”
files with a creation-date within the past 20 days. The term ‘folder’ might be slightly misleading because a
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file is not physically contained in the folder, but only happens to match the folder’s internal query. There
is no direct way of ‘moving’ a file into the “recent pictures”-folder; the file either happens to be a recent
picture or it does not.

This is where ‘labels’ come into play. A label is a special kind of semantic tag created by the user that
allows him to group files together arbitrarily even though they may not share common file attributes. In our
system there exists a central label-table which technically is nothing but a set of strings. A user can create
as many meaningful labels as he needs, such as ‘Work’, ‘Bills’, ‘Car’, etc. The user then has the possibility
to tag each of his files with any subset of these labels. In our system, each existing label will automatically
be represented by a matching Virtual Folder which contains a query to search for all files carrying that label.
More concretely, this means that if I open the ‘Car’ Virtual Folder, it will show me all the files carrying
the label ‘Car’. For these Label-Based Virtual Folders we can actually define a notion of ‘moving’ files and
files being ‘inside’ a folder. Moving a file from the ‘Car’ folder to the ‘Work’ folder would simply mean
removing the ‘Car’ label from the file and adding the ‘Work’ label to the file. A file can carry multiple labels
at the same time, and thus can simultaneously exist in several Virtual Folders. This should be considered
an advantage over hierarchical file-systems where users often tend to either copy or symbolically link files
which fit two or more nodes of their existing directory-hierarchy.

When interacting with the system through our shell interface (as described later in detail), the user is
presented a flattened appearance of the underlying hierarchical file-system. Browsing is performed by issuing
queries and appending them to a ‘query-stack’. The concept of the query-stack is that Search, Virtual
folders, and Labels all represent equally valid queries and can be arbitrarily chained together through set-
operations. By appending queries to the stack, the user can narrow down or expand the current search
results. Furthermore, any query-chain can also be stored as a Virtual Folder.

2 Related Work

2.1 Desktop Search Applications

A number of desktop search applications exist today, but the market is dominated by Beagle on GNU/Linux,
Google Desktop on Microsoft Windows systems, and Spotlight on Apple Mac OS.

2.1.1 Beagle

An existing implementation of content indexing for use in desktop search is Beagle [2]. Beagle is a desktop
search utility that runs on the GNU/Linux platform. Along with content-indexing the file-system (including
full text search, PDF text dumps, etc.), Beagle also indexes personal information such as e-mail, instant
messaging logs, etc. It is extensible through content filters, which can be implemented to extract attributes
from new data sources.

Beagle has two major components: A per-user indexing daemon, and tools to interact with the daemon
(a GUI tool for querying, API’s to use Beagle etc.). Unlike similar implementations, Beagle requires every
user to run their own daemon which indexes files accessible to them. The Beagle daemon uses the Inotify
interface provided by the Linux kernel to receive file modification events and do incremental updates. As
such, the daemon includes a scheduler to handle various events such as queued Inotify updates and other
jobs such as periodic optimization of indexes.

2.1.2 Google Desktop Search

Google Desktop Search [3] supports indexing for various file types, including email messages, chat messages,
Microsoft Office files, PDF files, text files, C program files, etc. On installation, a full system index is con-
structed, which could take hours depending on the size of the file-system. Once the full index is constructed,
later changes to the file-system are updated incrementally. In addition to searching the files available to
the user, Google Desktop Search also indexes web history caches. Search results are displayed in a browser
window and show excerpts from where the keywords used in the query match the file, just like in the web
search. As a privacy mechanism, users can list directories that they do not want to be indexed and searched.
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Although Google Desktop claims to do full-content indexing, it actually only indexes the first few kilobytes
when processing large files. It also omits content indexing for file types with unknown extensions, such as
a plain ASCII file. Email messages are indexed immediately upon reception, but for other files in the
file-system, the index is only updated when the system is idle.

2.1.3 Spotlight

Spotlight runs on Apple Mac OS [1]. In addition to indexing file contents, it also extracts file meta-data such
as file modification dates, ownership, access permissions, and other type-specific attributes like the EXIF
header in JPEG files. Email messages, address book contacts, iCal calendars, and system preferences are
also indexed and searched.

Spotlight allows the user to save search queries in “Smart Folders”, which groups files together based
on search criteria instead of physical location, similar to the virtual folders in our system. Files in Smart
Folders are automatically updated as documents are added or removed in the file-system.

Because Spotlight maintains a comprehensive, constantly updated index of the file-system, although
Apple claims that indexing is done transparently in the background, the actual overhead is quite high up to
the point that the user can notice significant decrease in system performance.

2.2 Semantic File Systems

The concept of introducing semantics into the hierarchical file-system for content access was first proposed by
Gifford et al. [6]. During indexing, file attributes are automatically extracted using “transducers” that work
on specific file types. The indexed attributes are extracted from file headers or content keywords, such as
the functions exported or imported in C program files, the article name in newspaper articles, or the sender
and receiver’s name in email messages. Whenever a search query is issued, a Virtual Folder having the same
name as the query is created that stores symbolic links to the search results. Users can also implement their
own transducers to extract file attributes that are of interest to them.

Although the semantic file system provides more advanced searches using file attributes and Virtual
Folders as a new means of data organization, its main drawback is that users cannot actively organize their
files using virtual directories. Also, whenever users want to find a file, they have to supply a specific query
with exact keywords to locate that file.

A recent example of a Semantic File System is the planned commercial integration of Microsoft’s WinFS
(Future Storage) [8]. Like in [6], the system will automatically retrieve various meta-properties of files and
store them in a so-called WinFS Store, which is a coupling of a database-server and the physical file-system.
Similar to our approach, the system provides a query based API for interactions with applications. Virtual
folders are implemented as XML-based search queries [10]. Microsoft is also aiming to provide Virtual
Folders as a fully integrated GUI interface which might ultimately replace the users’ dependence on purely
hierarchical folder structures. Unlike our system, WinFS’ planned solution does not fully reside in user space,
but will instead be partially implemented on the filesystem level. This might increase performance, but will
also hurt platform-independence.

Soules et al. [9] used contextual relationships between files to further enhance file system search. They
examined the temporal locality of file accesses, constructing a relation-graph of files for a given time window.
When the user searches for a keyword, the system first performs a content-only search, and the results are
then fed into the relation-graph to locate additional hits through contextual relationships. This approach
was able to improve both the recall (increasing the number of relevant hits) and precision (returning fewer
false-positives) by around 10% compared to content-only search.

2.3 Flattened File-Space and Virtual Folders

Other work extended the semantic file-system concept to incorporate more flexible functionalities in Virtual
Folder usage. The Nebula File System [5] implements files as sets of attributes. The traditional file naming
is replaced by combining file attributes to uniquely identify a file with a query. This is similar to the process
of refining searches to narrow down the results returned. In their example, the text version of a notes file
for a project called “plan2” is identified by the query “format=text & project=plan2 & name=notes2.txt”.
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These attributes can be created by the user or automatically generated by the system. Nebula also defines a
“view” of the file-system as a set of objects that match a particular query, similar to the concept of virtual
directories. The views are arranged in a flat structure instead of the traditional file-system hierarchy. Files
in a view must satisfy the particular query associated with the view, which disallows arbitrary adding or
moving of files.

The Hierarchy And Content (HAC) file system [7] extended the virtual directory concept by allowing
users to dynamically add or delete files under virtual directories. For new search results from future index
updates, the HAC file system will only move files that are obtained by evaluating queries; anything explicitly
added (or deleted) by users will stay in (or out) of that virtual directory. This provides more flexibility in the
organization of virtual directories, where users have control over the search query results and can fine-tune
the results manually. However, the HAC file system has the disadvantage that their virtual directories are
still based on pre-defined file attributes. If users want to include other files that do not have those existing
query attributes, they would have to be added to a particular Virtual Folder by hand. This could be a painful
process if the size of the file-system is large, and would counterbalance the gain from having a searchable
file-system.

Our project also adopts many concepts of a Semantic File System (SFS) proposed by Gifford et al [6]. In
addition to plain meta-data attributes that can be extracted from the file header and content, we also allow
full-text search and user-defined labels to act as equally valid organizational components. Chains including
any of these queries can not only be executed, but also be stored as new Virtual Folders which allows us to
achieve a much more powerful notion of data-organization than most previous approaches.

By using a combination of Virtual Folders and user-defined labels, we provide the same functionality as
the HAC file system [7], and Nebula [5], with the addition of full-text indexing and arbitrary labels that
users can apply to related files while achieving higher indexing performance.

3 Design Considerations

We decided to implement our system in user-space as opposed to kernel space. This is because it is easier to
develop and debug user-space code, and because it keeps portability and installation simple. To interact with
the user, we chose a shell interface rather than GUI interface since we feel that the shell is more expressive
and more powerful, while with a GUI interface the operations that can be performed are restricted to those
that are explicitly implemented.

4 System Design and Implementation

Figure 1 shows the overall view of our system structure, which is divided into three big components: the
database server, the Inotify daemon, and the shell interface. Our system runs on the Linux platform. The
entire server and shell are written in Java, while the Inotify daemon is implemented in C. A MySQL database
is used as central storage for all file indexing information, Virtual Folders, and user-defined labels, which
interfaces with the server through the JDBC (Java Database Connectivity) API.

4.1 Server

The server receives file-system change events from the Inotify daemon and interacts with the user through our
shell interface. Its main function is to index and retrieve files. It automatically extracts basic file information,
such as the filename, path, size, modified date, time of creation, etc. File types are also recognized by the
filename extension, and they are passed to appropriate “transducers” for further metadata extraction and
indexing. The server is able to recognize MP3 files and reads their ID3 headers, extracting information such
as song title, song duration, genre, artist, sampling rate, etc.

We also provide full-text indexing on text files by leveraging a search engine library in Java from Apache
called Lucene. Lucene provides a flexible API for updating, adding, and deleting indices. After the In-
dexWriter daemon is invoked to create indices for a given file, the content analyzer parses and filters out
useless words and characters from the index according to the semantics and syntax of the English language.
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Figure 1: A schematic of our system’s components

The server also manages Virtual Folders and user-defined labels. Users interact with the server through
our shell interface to save queries as Virtual Folders, and to define their own labels on files and use them as
organizational semantic tags.

When events are received from the Inotify daemon, the Inotify reader daemon in the server parses the
output and appends a matching event to the server’s Adding Queue, which is examined every 1000ms. If
there are events on the queue, the Adding Engine then performs all the index updates, moving, or deleting
files in the database that correspond to CREATE, MODIFY, and DELETE events. For ACCESS events (file
reads), we store both the last time the file was accessed and an incremental counter of number of accesses
to allow searching for recently used files.

4.2 Inotify Daemon

Inotify is a file-system event-monitoring mechanism in the Linux kernel that checks for file-system changes
like file creation, deletion, modification, and renaming. Once a watch for a directory is registered, the kernel
writes all event notifications for that directory to a file descriptor that is accessible to our Inotify Daemon.
The Inotify Daemon catches the ACCESS, CREATE, MODIFY, and DELETE events. After performing
some basic coalescing, the events are stored in a queue, and flushed out to the server at a frequency dependent
on a load balancing algorithm.

To eliminate unnecessary event processing, such as indexing temporary files that only exist for a short
time, or handling multiple updates to the same file, the Inotify Daemon first coalesces the received file-
system events before storing them on the queue. Our coalescing scheme performs several checks: remove
any CREATE and DELETE event pairs to the same file, merge CREATE and MODIFY events to the same
file, and remove CREATE and MODIFY events that are followed by a DELETE to the same file.

Since the file indexing operations should not become a burden on the system, we implemented a load
balancing algorithm, called the “Queue Size Driven, Load Feedback Controlled Throttle Engine”, to control
the frequency at which events are being flushed out to the server based on the current system load and the
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Figure 2: Simplified load balancing algorithm

state of the event queue. The load balancing algorithm is controlled by 3 parameters, listed in Appendix A.
The simplified flowchart for our algorithm is show in Figure 2. The throttle engine takes as input the

current system load and the queue size, then dynamically determines how many events to flush out to the
indexer.

The throttle engine algorithm is basically similar to the TCP (Transmission Control Protocol) congestion
control. If the system load is under SAFE LOAD value, the Inotify daemon doubles the number of events
flushed; if the system load is above SAFE LOAD, the number of events flushed is cut in half.

4.3 Shell Interface

In order for the user to interact efficiently with the system, we had to rethink the classical shell paradigm.
Since folders are virtual, there is no longer a real notion of being inside of a directory. With Virtual Folders
there no longer exists a clear, predefined hierarchy that we can descend on by using a ‘cd’ command. As a
replacement of a path we introduce the idea of a query-stack. This is best explained by an example: The
user starts out with an empty query-stack. This means that if we were to do a ‘ls’, we would see all files
of the entire system. We then append the Virtual Folder ‘Car’ to the stack. A ‘ls’ whould now give us
all car-related files (that is, all files carrying the label ‘Car’). We can then append ‘Bills’ to the stack. In
this case ‘ls’ would give us all the files which are both related to ‘Car’ and ‘Bills’. By default, appending
something to the stack means to intersect (logical AND) the results of the previous stack with the results of
the appended query. However, the user is equally able to perform unions (logical OR) or subtraction (logical
AND NOT). ‘Car union Bills’ would therefore give us all files which are related to either the ‘Car’ or ‘Bills’
(or both). ‘Bills minus Car’ would give us all Bills which are not related to ‘Car’.

Virtual Folders, Labels, and Search Queries are treated as equal citizens in our shell. We could easily
append the query ‘filename contains ferrari’ and the Virtual Folder ‘Cars’ to the stack, which will give us
all files which contain ‘ferrari’ and also happen to carry the ‘Cars’-label. If desired, the user can save the
current query-stack as a new Virtual Folder (remember, Virtual Folders are nothing but saved queries). The
shell is also the place where the user can define, apply, and remove labels. We introduce the ‘apl’ and ‘rml’
commands for applying and removing labels. A full listing of all available Shell commands can be found in
Appendix B.

A big problem that we had to overcome was to combine classical hierarchical file-systems with our
virtual approach. Enforcing a flat underlying file-system was considered an option, but this would render
our approach incompatible with almost all of today’s applications (e.g. how would we untar a source-tree
in a flat file-system?). We decided to take a more natural approach by running on top of the hierarchical
file-system and treat it virtually flattened within our space. This flattening process introduces at least two
questions: The first one is how to handle the fact that multiple files in our flattened space could carry the
same filename (because they could come from several physical directories). We decided to require the user to
disambiguate these cases by presenting him the different underlying paths (or possibly other meta-attributes)
of the affected ambiguous files. The second question is where in hierarchical file-space we should place newly
created files. We decided that each user should have his own default-directory where all newly created files
will be placed.

It should be noted that with our approach it is still possible to easily navigate through hierarchical file-
space by appending search queries to the stack. For instance, to list all files of the directory ‘/var/log/’, the
user can simply append a query for ‘path = /var/log/’ to the query-stack. In other words, a file’s path has
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simply become one of the many meta-attributes of the file itself.
Two other interesting problems are how to treat copy and move operations of files. For this we need to

distinguish two concepts: moving within our new virtual space and moving within the underlying hierarchical
file-system. In our virtual space, moving a file from one label-based Virtual Folder to another one would be
achieved by simply changing its semantic labels. To duplicate (copy) a file in our virtual space, we would
perform a physical duplication operation and attribute all of the source file’s labels to the new file as well.
Copy and move operations within the physical file-system are still possible as our shell provides full access
to the underlying ‘cp’ and ‘mv’ commands. However, it should be noted that an execution of the traditional
‘cp’ command will not be perceived as a copy operation by our system; it will merely be seen as the creation
of another independent file (as Inotify will receive a CREATE and not a COPY event) and as such will not
correctly copy the file’s labels. The best method of fixing this would be to define our own version of the ‘cp’
command which will correctly preserve the file’s attributes during copy operations. However, the traditional
‘mv’ command will execute correctly, as we will perceive it as a content-preserving move through Inotify and
therefore keep all of the affected files’ labels in a consistent manner.

A more complex problem is to intelligently move files between Virtual Folders that consist of more than
a single label query. This is only achievable if the query carries the property of being non-ambiguous. For
example, moving a file into a Virtual Folder with the query for the labels ‘Car’ AND ‘Bills’ is possible as
we will simply apply both labels ‘Car’ and ‘Bills’. If the Folder would contain the query ‘Car’ OR ‘Bills’
however, we would not really have a clear definition of which labels to apply (either ‘Car’, ‘Bills’, or maybe
both?). Move operations are therefore only defined between logically non-ambiguous Virtual Folders.

5 Evaluation

There are several hypotheses we make about this project. The first is that Virtual Folders are able to save
the amount of work users have to do to accomplish certain tasks, while making the shell more expressive;
the second is that the file indexing frequency plays a major role on system performance; and the third is
that our new file-system search imposes reasonable overhead on the system.

The first part of our experiments is for evaluating our shell and our new organizational paradigm. This
is done by collecting sample bash histories and determining what sequence of commands can be replaced by
more efficient operations from our introduced organizational concepts. The second part of our experiments
is for measuring the overall system overhead by running the Andrew Benchmark and keeping a timer in the
server to measure the execution time for various system components during indexing.

5.1 Virtual Folders

We collected bash histories from experienced Linux users and examined them to see which commands can
be replaced by simple Virtual Folder operations. We try to categorize common file access patterns to see
how we can save work for particular types of file-system operations.

From our observation, there are roughly three types of common file accesses that can be made more
efficient with our shell:

• File search through directory traversal

• File search through keyword refining

• Recent file accesses

An example sequence of commands is:

cd ../../..
cd ../../
ls
cd root
cd cvsClaytronics/
cd WorldGen0.1/
./run cube.xml cube.dpr

         46



In this example, the user is required to change between directories and manually scan through their contents
to search for a particular file. With our system, we can simply issue the query

a path contains WorldGen0.1;

This will append a search for filenames containing the keyword “WorldGen0.1” to the query-stack. The user
would not need to browse through the directory hierarchy to locate particular files. It is important to note
that this approach is optimistic and might in fact require additional disambiguations as there might be several
directories with the name “WorldGen0.1” on the filesystem that each contain the desired “cube.xml” and
“cube.dpr” files. In these cases, the user is easily able to refine his search by pushing additional queries onto
the stack, and our system will comfortably point out whenever such disambiguation is absolutely required.

Another example is locating files through the slocate command

slocate *.so
slocate *.so|more
slocate m*.so|more
slocate m*.so
slocate mozilla*.so
cd /usr/lib/mozilla
cd plugins/
ls
ls -l

Here the user searches multiple times and refines the query keyword until he or she finds the relevant files.
In our shell, we can eliminate some of these redundant commands by first saving the first query result into
a Virtual Folder, and then performing an AND operation to further fine-tune the search.

a filename contains *.so;
s2f so_file_label;
a filename contains mozilla;

By saving query results into Virtual Folders, we can also speed up file retrieval the next time similar files
are requested, since the server does not need to fetch from the database again.

An example of the third type of file accesses is

cd /usr/src/linux
ls
cd ..
cd linux_vanilla_2.6.12-rc4/
ls
vi fs/nfs/layout_driver.c
...
cd /home/apalekar/pnfs/
...
vi/usr/src/linux_vanilla_2.6.12-rc4/fs/nfs/layout_driver.c

The user modifies a file, then after working on something else later, wants to access that file again. Without
our metadata indexing, the user must change back and forth between directories if they want to retrieve
previously accessed files. With our system, such type of access can be done in one command:

a access.timestamp.last > 5min

which will return queries containing recently accessed files.
Our observation is that around 20% to 40% of the commands are cd and ls, and the probability that a file

will be accessed again in the near future is high. This common file usage pattern makes our Virtual Folder
organizational feature especially useful. We can reduce the number of steps that the user spends locating
a particular file and descending into that directory, and enable fast retrieval to frequently accessed files by
grouping them together using labels.
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Average Execution Time per File
SQL 17.08ms (18%)
Metadata Extraction 0.5ms (1%)
Lucene 78.30ms (81%)
Total 96.52ms

Table 1: Average execution time spent in each indexing component.

5.2 Indexing Overhead

Since our system presents a new organizational paradigm, there is not really an adequate standardized
performance benchmark that would provide a typical usage pattern involving our new organizational features.
However, it needs to be remembered that our system runs on top of classical file-systems and is therefore likely
to encounter traditional application workloads. We chose to run traditional benchmarks as we believe them
to cover an important subset of our performance space and because they offer a good basis of comparison
with existing systems.

5.2.1 System Timer

To measure our general indexing performance, we implemented a timer in the central server that measures
the execution of various components in the indexing process. It allows us to inspect how much execution time
is spent in the SQL database, in extracting file attributes and metadata, and in performing full-text indexing.
The following experiment data is the result of indexing a directory of over 30 HTML files, each between 4
and 20 kilobytes in size. The experiment was performed on an initially empty-database. The results are
shown in Table 1. From Table 1 we see that most of the indexing overhead comes from the fulltext-indexing
in the Lucene library. However, expensive full-text indexing is only performed on recognized text files, so
we expect the overhead for average execution to be smaller than this.

5.2.2 Standardized Benchmarks

At first we experimented with the Postmark Benchmark [4], which simulates the workload of a large Internet
electronic mail server. Postmark creates a large number of random text files, accesses the files with reads
and appends, and then deletes them. It turned out however, that our optimization in coalescing file-system
events successfully removed all pairs of CREATES and DELETES to avoid redundant indexing, so that the
total overhead measurement from the default Postmark-setup was in fact zero.

Thus we chose to go with the Andrew Benchmark instead, as it is not only well-known, but as it also
provides a workload which we believe to be more typical of a user-task than what Postmark does.

We ran the Andrew Benchmark on a machine with a Intel(R) Pentium(R) M processor 1600MHz and 768
MB of RAM. The benchmark consists of 5 phases: Phase I: recursively create files and directories; Phase II:
copy files; Phase III: recursively stat directories; Phase IV: scan files. For Phase V of the benchmark, we ran
two sets of experiments. The first first was a Linux kernel untar and compile, while the second is compiling
and installing Openssh-2.5.2p2.

For now, the load balancing parameters are set as follows:

CRITICAL_LOAD = 1.00
SAFE_LOAD = 0.75
NEGLIGIBLE_LOAD = 0.10

The event queue is flushed every 4 seconds, and the maximum number of events that can be flushed at a
time is 100.

To explore the tradeoff between performance and the indexing frequency options, we ran the Andrew
Benchmark with three different options: base-line execution without indexing, indexing with load balancing
and event throttling, and indexing without load balancing and event throttling.

         48



 0

 5

 10

 15

 20

 

T
im

e 
T

ak
en

 fo
r 

A
nd

re
w

 B
en

ch
m

ar
k 

in
 M

in
ut

es

Andrew Benchmark (kernel) 

6.81

8.9

19.5

Without Indexing
Indexing with throttling

Indexing without throttling
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Figure 3 and Figure 4 shows the result of the total time to run the benchmark for different set of Phase
V. When indexing is performed with the load balancing algorithm enabled to throttle the number of events
flushed each time, there is approximately a 30% and 15% overhead for indexing time, respectively. But
without the load balancing algorithm, we get an indexing time overhead of 186% to 400%.

Figure 5 shows how the number of events flushed is dynamically adjusted by the load balancing algorithm
to depend on the current system load. When the system load is in the range between SAFE LOAD and
NEGLIGIBLE LOAD, the number of events flushed increases exponentially; while when the system load is
between SAFE LOAD and CRITICAL LOAD, the number of events flushed decreases exponentially. This
allows the indexing operations to be performed without becoming a burden on the system.

Figure 6 and Figure 7 shows the percentage of events coalesced by the Inotify daemon before they are
flushed so unnecessary event processing can be eliminated. For the case with kernel untar and compile,
67.5% of the ACCESS events are coalesced, which are redundant file read that correspond to the same file
and so can be merged together. 17% of the MODIFY events are coalesced. This is a result of coalescing
CREATE-MODIFY event pairs into one CREATE event, or coalesing MODIFY-DELETE event pairs into
one DELETE event. Since the benchmark does not measure the operation of deleting all the temporary
working files after the benchmark terminates, no CREATE-DELETE event pairs are coalesced.

Figure 8 and Figure 9 shows how the system load varies with time when running the benchmark. The
vertical lines show the time when the benchmark terminates for each of the three scenarios. For the case
with kernel untar and compile, the benchmark shows a 20% slowdown when indexing with load balancing
and throttling is enabled as compared to the base-line case. However, when indexing is performed without
load balancing and throttling, this slowdown becomes 150%, and the extra system load imposed becomes
unacceptable. From the figures we can also see that the indexing operations continue in the background
after the benchmark terminates, but with load balancing and throttling, the extra system load imposed by
indexing is minimized.

From these results, we show that indexing frequency has a major impact on system performance. By
dynamically adjusting the indexing frequency based on the current system load, we can greatly reduce the
overhead our system imposes.

6 Conclusion and Future Work

Our system successfully allows the user to effectively combine metadata, user-defined labels, and Virtual
Folders as primary means of file organization and localization while preserving full backward compatibility
with today’s systems. There are many instances where search, labels and Virtual Folders can in fact signifi-
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cantly improve the efficiency of our daily file-system tasks. Through optimizations in coalescing file-system
events and controlling indexing frequency by system load balancing, our experiments show that indexing
performance can be greatly increased while imposing little overhead on system load.

In order for our approach to become even more effective in the future, it would be desirable to modify user-
space applications to automatically provide additional labels and meta-data. When saving a file, applications
could for example ask the user to apply any relevant labels. Generally, it would be interesting to explore
the possibilities in which our system could be integrated into existing graphical user-interfaces as a classical
file-tree view is not enough to fully represent our organizational space.

Another interesting extension to our system would be network-based querying between hosts. Locating
and organizing files among several machines using distributed indexing-servers is a problem that could be
approached in many different ways and should be considered a promising research project.
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7 Appendix A: List of Indexing Frequency Option Parameters

CRITICAL_LOAD - the system load value above which no indexing should be
performed, but instead wait until the system load reduces
SAFE_LOAD - if system load is between SAFE_LOAD and CRITICAL_LOAD, reduce
the number of events indexed; if system load is between SAFE_LOAD and
NEGLIGIBLE_LOAD, increase the number of events indexed
NEGLIGIBLE_LOAD - the system load below which we can perform indexing at
maximum frequency

8 Appendix B: List of Shell Commands

8.1 Stack Commands

a [VFOLDER/LABEL/SEARCH] - append a query as intersection ("and")
a+ [VFOLDER/LABEL/SEARCH] - append a query as union ("or")
a- [VFOLDER/LABEL/SEARCH] - append a query as subtraction ("and not")
a .. - remove the last item from the query-stack
a / - clear the query-stack

8.2 Operational Commands

apl [LABEL] [filename(s)] - will apply a label to a filename
rml [LABEL] [filename(s)] - will remove a label from a filename
s2f [VFOLDER] - create a new Virtual Folder, made of the current stack
f2s [VFOLDER] - deconstruct a Virtual Folder onto the stack
mklabel [LABEL] - create a new label
rmlabel [LABEL] - delete a label from the system (and remove it from all files)
rmfolder [VFOLDER] - delete a Virtual Folder
folders - list all available Virtual Folders and labels
fields - list all availabe meta-fields that we can search for
cd [(partial) physical path] - will append a search for this path to the stack ("and")
refresh - refresh search results by running the stack against the server again
check [physical_folder] - tell the server to (re-)index the given physical folder

References

[1] Apple - mac os x - spotlight. http://www.apple.com/macosx/features/spotlight/.

[2] The beagle project. http://beaglewiki.org/Main Page.

[3] Google desktop. http://desktop.google.com/.

[4] Network Appliance. Postmark: a new file system benchmark. Technical Report TR3022.

[5] C. Mic Bowman, Chanda Dharap, Mrinal Baruah, Bill Camargo, and Sunil Potti. A File System
for Information Management. In Proceedings of the ISMM International Conference on Intelligent
Information Management Systems, March 1994.

[6] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole Jr. Semantic file systems.
In Proceedings of 13th ACM Symposium on Operating Systems Principles, pages 16–25. Association for
Computing Machinery SIGOPS, 1991.

[7] Burra Gopal and Udi Manber. Integrating content-based access mechanisms with hierarchical file sys-
tems. In Operating Systems Design and Implementation, pages 265–278, 1999.

         54



[8] Richard Grimes. Code name winfs - revolutionary file storage system lets users search and manage files
based on content. http://msdn.microsoft.com/msdnmag/issues/04/01/WinFS/, January 2004.

[9] Craig A. N. Soules and Gregory R. Ganger. Connections: Using context to enhance file search. In
Proceedings of the 20th ACM symposium on operating system principles, pages 119–132, 2005.

[10] Paul Thurrott. Virtual folders: A windows vista technology showcase. http://www.winsupersite.
com/showcase/winvista\_virtualfolders.asp, July 2005.

         55



A Writable Semantic File System
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Abstract

Traditional hierarchical file systems present a single organizational view of the files. This
makes them cumbersome in situations where multiple views of a single file system are required.
Semantic file systems attempt to address this problem by extending the space of file names
to include searchable metadata in the form of key-value pairs. However, there is no unified
semantics for search and modify primitives. Search is traditionally implemented through virtual
directories, whereas modification is done by direct assignment to key-value pairs. Also, the set of
keys available to the user is fixed when the system is designed. We address both these issues by
defining a unified semantics for accessing metadata and permitting the user to define arbitrary
key-value pairs.

Every file in our file system is tagged by an arbitrary number of key-value pairs. Abstractly,
each key is assumed to define a different dimension in an attribute space. Each value that a
particular key can take is a value along the corresponding dimension. Under this abstract view,
each point in the attribute space is inhabited by at most one file, and each file has a unique
location in this space. All shell commands like cp, mv, rm, ls work on sets of points in the
attribute space rather than individual files or directories.

1 Introduction

Traditional hierarchical filesystems provide only a single schema for organizing files on a disk.
For many applications, the logical view of the filesystem expected by the user differs largely from
the hierarchical organization present on disk. As a result, the files become disorganized over a
period of time. Semantic filesystems were introduced in 1991 by Gifford et al. as a solution to
this problem. In a semantic file system, files can be tagged with metadata. This metadata can
be queried, allowing for arbitrarily complex organization schemes.

Unfortunately, most descriptions of semantic file systems to date are biased towards querying
as opposed to updating metadata. Most of them do not permit users to define their own meta-
data tags. Instead, they work with a fixed set of system generated metadata like modification
date, file type, summary of contents, etc. Additionally, no existing implementation provides
a uniform semantics for querying and updating metadata. They specify the meaning of file
operations in an ad-hoc manner.

In this paper, we propose a writable semantic file system (WSFS), where users can manip-
ulate file metadata in the form of arbitrary key-value pairs. As a simple example, the file rep-
resenting this paper can be given the attributes {project : wsfs, year : 2005, filetype : pdf}.
The semantics of our filesystem allows users to remove, add and modify such metadata tags us-
ing common filesystem operations like copy and move. Further, the semantics of our filesystem
is uniform, in the sense that it is based on a single view of metadata as a multi-dimensional
space. The example below illustrates how the common shell command mv can be used to modify
and add metadata in our filesystem.

1
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mv /local/(filetype:pdf + project:os)/foo.pdf /usr/(filetype:ps)/

We use + for disjunction. The above command affects all files that are in the directory
/local and either have filetype:pdf, or the project:os attribute. The command alters the
directory of all these files to /usr and changes the value associated with the key filetype for
each of these files to ps. If this key does not exist in the metadata set of some of these files, it
is created.

An important aspect of the above command is that its source is a set of files matching a
logical query. All common file operations in our system follow this pattern. Their arguments
are logical queries, and it is from this that our system derives a tremendous expressive power.

The rest of this paper is organized as follows. In section 2, we present details of the abstract
semantics of common file operations like move, copy, delete, create etc. In section 3, we describe
a partial implementation of a concrete subset of these semantics. We use a database backend to
manage our filesystem metadata. Section 4 describes quantitative and qualitative evaluation of
our proposed system. In section 5 we compare WSFS to existing semantic file systems. Section
6 concludes the paper with some directions for future work.

2 Semantics of WSFS operations

The simplest way to view our metadata is as a multi-dimensional space where each key forms
a different dimension. The data points along a dimension are the various data values that the
particular key can take. For example, the key filetype can take the data values ps, pdf, cc, txt,
etc. For uniformity, we treat name of a file as a metadata attribute having the key filename.
This particular dimension of the metadata space can take any valid filename as the data value.
Similarly, the physical path of a particular file is treated as a metadata attribute having the
special key pathname. In principle, the metadata space has infinite dimensionality, and many
dimensions have an infinite number of data points, but for a given file system at a particular
time, the number of dimensions and the number of data points along any dimension are finite.
For each key, we assume a special data point called null which is the value associated with the
key for files that actually do not have that particular key in their attribute set.

We now impose two consistency constraints on our metadata space. These are maintained
by all operations that we define.

1. (Uniformity) For any file, there is exactly one data value associated with every key. This
is only a theoretical concept. In reality, some files may not have any data associated
with particular keys. Implicitly, our semantics assume that in such cases the data null is
associated with these keys.

2. (Uniqueness) At any point in the metadata space, there is at most one file having the
given metadata. Realistically this means that given data values for all keys present in a
file system (including filename and pathname), at most one file has exactly those key-value
pairs.

Observe that the consistency constraints defined above allow two distinct files having the
same name and same physical path to co-exist if they differ in the value associated with some
other key. This kind of flexibility gives our file system tremendous expressive power. We now
describe how common operations like copying, moving, deletion, etc. are defined for our file
system. Perhaps the most novel feature of our semantics is that these operations are defined on
sets of files rather than single files. Performing these operations on a single file is a special case
of the general semantics where the sets under consideration are singletons.

The first important idea governing our operations is that the notion of a path (or current
directory) is replaced by a structured query that selects a subset F of the files present in the
file system. These queries (q) have the form:

2
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q ::= key:value | q1 ∨ q2 | q1 ∧ q2

For simplicity, we consider basic queries of the form key:value only but this can be gener-
alized to allow queries like key > value or wildcard matching for keys where such operations
make sense. Given the set of all files F in a file system, we define the meaning S(q) of a query
q to be a subset of files as follows:

S(k:v) = {f ∈ F|f has value v associated with key k}

S(q1 ∨ q2) = S(q1) ∪ S(q2)

S(q1 ∧ q2) = S(q1) ∩ S(q2)

The equivalent of the current working directory in our file system is a structured query which
we call the current query and denote by q0. We now define the equivalents of some common file
operations in our file system.

1. (cd) The equivalent of a change directory operation in our semantics is a refine query op-
eration, which takes a structured query q as an argument. The semantics of this operation
is to replace the current query q0 by q0 ∧ q if q is a relative query, and to replace q0 by
q if the latter is an absolute query. We distinguish absolute and relative queries much in
the same way that the shell distinguishes absolute pathnames from relative pathnames –
absolute pathnames start with a ‘/’.

2. (rm) The remove operation takes as argument a query q and deletes every file in S(q0 ∧ q).

3. (ls) This command should take a query q and list the entire set S(q0 ∧ q). In order to
make the listing user friendly and readable, our implementation extracts the physical path
from the query and lists all files having that physical path.

4. (mv) The file move command in our file system takes two queries q and q′ as arguments.
The essential restriction here is that q′ be a subspace of the multi-dimensional metadata
space. This is easily enforced by prohibiting the operator ∨ in q′. The semantics of the
move command is an orthogonal projection of the set S(q0∧ q) onto the subspace q′ in the
metadata space. More concretely, this amounts to changing some attributes of all files in
S(q0 ∧ q). For example, projecting the set S(pathname:/usr∨ filetype:pdf) onto the
subspace filetype:ps amounts to changing the filetype attribute of every file that is
either in the /usr directory, or has the attribute filetype:pdf to ps.

While taking the orthogonal projection, it is possible that many files get mapped to the
same destination file. This is an error condition because it violates the uniqueness invariant
stated above, and is reported to the user by our implementation. The user can then refine
the source query q and reissue the command. Similarly, in some cases, the projection may
try to overwrite an existing file (this is equivalent to moving onto an existing file in a
traditional file system). This is also an error condition.

5. (cp) This command takes exactly two queries like the mv command, the second of which
must be a subspace. It behaves like the mv command, except that instead of changing file
attributes in place, files are duplicated and the new files are given fresh attributes.

6. (create) The create operation takes a query q as an argument. First, it checks that both
the current query q0 and q are free of disjunctions (∨). Next, it ensures that the filename
and pathname attributes are both present in q0 ∧ q. If both these conditions are met, it
creates a new file containing every key:value pair that occurs in q0∧q, and setting all other
attributes to null. If there is already a file with exactly these attributes, the operation
returns an error.

3
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3 Implementation

The implementation of WSFS consists of two main components. There is a user level NFSv2
server frontend, and a backend comprising a query parser, and a database that manages the
metadata. Presently, the implementation of the backend is complete. We have not yet imple-
mented the frontend completely. On the whole, the system works as follows. NFS requests
generated by the client are passed to the server, which provides a cache and an interface to the
backend. The server makes appropriate calls to the parser, the database and the filesystem as
required. The client side of NFS remains unmodified, as does the system shell. However, the
meaning of commands like cp, mv, rm etc. changes in accordance with our semantics.

As mentioned in section 2, the file name and path are represented by metadata tags. The
physical files stored on disk are named using random strings, which we call nonces. A new nonce
is generated for each new file that is created. These files are physically stored in a single, flat
directory by the NFS server. The database maintains mappings between the nonces and the
attributes of the files they represent (including file name and path).

3.1 NFS Frontend

The frontend of our implementation is an NFS server. At present, we do not have a complete
implementation of this part. However, we have been able to use this partial implementation to
create traces of the exact database and parser calls that are generated during normal operation.
We used these traces to benchmark our parser and database backend. On the whole, we needed
to modify only five functions of a standard NFS server: lookup, remove, rename, readdir

and create.

3.2 Backend: Parser and Database

Our parser takes structured string queries, and parses them to an internal representation used
by the database backend. The database is implemented using SQLite. It is organized as follows.
For each metadata key, we have a separate database table, that associates nonces (files) present
in our system with their corresponding values for the key. There are two distinguished tables
filename and pathname, that map nonces to the actual names and paths of the files they
represent. Parsed queries are mapped directly to SQL queries which are run on the database.
At present, all the tables are stored in a single file on disk.

4 Experiments/Evaluation

We performed three types of evaluation on WSFS. First, we performed a number of microbench-
marks on common file system operations. These microbenchmarks show the general overhead
associated with tracking metadata during various single operations. Second, we ran a modified
Andrew benchmark at three different scales (NFS server, openSSH and linux kernel 2.6) to
determine how the system scales, as well as the overhead associated with quasi-representative
workloads. Both these benchmarks were run on a P4 3.0 GHz, 512KB L2 cache and 1GB RAM
with a 80GB hard drive, running Linux kernel 2.4.25. Third, in order to evaluate the expres-
siveness of our system, we describe the semantics of a revision control system (RCS) using the
operations provided by our filesystem.

4.1 Microbenchmarks

We microbenchmarked four common filesystem operations: create, delete, list directory and
move. We compared the overhead incurred in the parser and database backend to the time
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Figure 1: Variation in backend overhead with number of attributes involved

taken by the basic linux filesystem operation. The table below compares the average time taken
by the linux filesystem to our backend’s overhead. The average is taken over 60,000 operations.
The number of attributes involved in each operation varied from 1 to 30 and the number of files
involved varied from 1 to 20.

Operation Ext2fs (ms) Backend (ms) % overhead
Create 2.00 1.25 62.5%
Delete 19.1 3.99 20.8%
List 2.49 1.11 44.6%
Move 19.2 17.44 90.7%

Move has a huge overhead, because in our semantics a single move operation may move
many files, each with many attributes. This results in a large number of database operations.
The graph in figure 1 shows how the backend time for each operation varies with the number
of attributes involved. The linearity of the graph is a direct consequence of the fact that each
attribute is stored in a separate database table.

4.2 Andrew benchmarks

In order to test how the performance of our proposal scales, we ran a modified Andrew bench-
mark. We made two significant changes to the benchmark. First, we replaced the small payload
of the benchmark with heavier payloads. The payloads we used are (1) a standard client side
NFSv2 server (110 files), (2) openSSH version 2.5.2 (303 files) and (3) Linux kernel 2.6.14.4
(20,877 files). The second modification we made is that we added a phase that removes all
intermediary files (like *.o files) from any previous run of the benchmark. This phase was added
so that we could test our system on file remove commands.

We ran the benchmark on a mounted NFS system and collected call traces in the NFS server.
Then we ran a simulation of the query parse and database calls that this trace would generate
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in our semantics and timed them on our backend. All traces were collected on a cache that
had been warmed up by running the benchmark once before. During this simulation, we used
only two keys for file attributes: filename and physical path. The results of this experiment are
shown below.

Benchmark Trace length Time on ext2 (s) Backend (s) % overhead
NFSv2 server 799 5.63 0.48 8.52%

OpenSSH 2.5.2 8064 24.48 9.64 39.37%
Kernel 2.6.14.4 254,418 660.33 2574.92 389.94%

The second column above shows the number of lookup, rename, create, delete and
readdir NFS calls made by the benchmark. All other NFS commands do not require any
database/parser access and hence were not traced. The third column is the time taken by the
benchmark on the standard linux filesystem. The fourth column is our estimate of the extra
time needed by the backend to run the same traces. The last column shows the percentage
overhead induced by our file system.

The table indicates a super-linear relationship between the size of the benchmark and the
overhead of WSFS. While this is discouraging, we should note two facts. First, our implemen-
tation is non-optimized, and uses a standard database. In real practice, ACID guarantees are
not required to track filesystem metadata, so the implementation of the backend can be made
considerably faster. Second, we use a single file database for the entire filesystem. This slows
down searches when there are a large number of files.

4.3 RCS semantics

In order to evaluate the expressiveness of our semantics, we describe below a basic set of opera-
tions for an RCS server implemented using only basic shell functionality on a WSFS file system.
We use four attributes to track a file’s RCS status. The attribute HEAD=1 indicates that a file
in the RCS is the most recent version. The attribute REVISION indicates a revision number
(monotonically increasing). VERSION is a repository wide epoch number that indicates a stable
state. WORKING=1 indicates a working copy in the local image of the repository. We posit a
simple function getattr() which given a key and a file returns the value associated with the
key for that file. We note that all operations can be performed with very simple shell operations
with the exception of update, which requires additional logic to prevent a new version from
overwriting a locally modified copy of a file.

Checkout
cp -r /rcsroot/HEAD=1/ /sandbox/WORKING=1/

Checkin
R = getattr(REVISION, /rcsroot/HEAD=1/file.cpp) + 1

mv /rcsroot/HEAD=1/file.cpp /rcsroot/HEAD=0/file.cpp

cp /sandbox/file.cpp /rcsroot/HEAD=1/REVISION=$R/file.cpp

Add
cp -i /sandbox/file.cpp /rcsroot/REVISION=1/file.cpp

mv /rcsroot/REVISION=1/file.cpp HEAD=1/

Tag Branch
cp -r /rcsroot/HEAD=1/ /rcsroot/HEAD=0/VERSION=2/
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Rollback
cp -rf /rcsroot/VERSION=2/ /sandbox/WORKING=1/

Update
RA = getattr(REVISION,/sandbox/WORKING=1/file.cpp)

RB = getattr(REVISION,/rcsroot/HEAD=1/file.cpp)

if [$RB > $RA]

if [/sandbox/WORKING=1/file.cpp -nt /rcsroot/REVISION=$RA/file.cpp]

mv /sandbox/WORKING=1/file.cpp WORKING=0/

fi

cp -f /rcsroot/HEAD=1/file.cpp /sandbox/WORKING=1/

fi

Similar semantics can be used in any application that involves manipulation of large log-
ically defined sets of files. Examples of such applications include bibliographic management,
photographic workflow, implementation of access control lists for filesystems like AFS, and file
sharing across multiple project domains.

5 Related Work

SFS [GJSJ91] originated the concept of a semantic file system. The proposed semantics use
virtual directories to browse the attribute space. Queries can be formulated only on exact
matches, and only with conjunctive operators. Additionally, the attribute space is read only.
Metadata is created and updated only through the use of automated extractors, giving the
user no control over the key/value pairs. In a subsequent note [OG92], the authors argue the
usefulness of semantic attributes, based on their experience with the semantic file system. They
highlight the effectiveness of semantic attributes in organizing and searching vast and disparate
collections of files such as those found in the USENET newsgroups.

LISFS [PR03] presents a logic based file system for providing uniform associative and navi-
gational access. File metadata is in the form of boolean properties. These are used to simulate
key-value pairs, but only with a significant space and time overhead. LISFS restricts the source
of mv/touch to conjunctions of attributes. In contrast, we allow arbitrary groups of files as
sources of mv/touch. LISFS uses a complicated mechanism involving logical entailment to pro-
vide hierarchical attributes. This is non-intuitive. We prefer to use the ‘/’ operator for providing
hierarchical attributes.

HAC [GM99] provides content based access capabilities on top of a hierarchical file system.
Files can either be accessed by navigating through the hierarchy or by specifying a query. A
query in the HAC file system consists of two parts: a set of keywords, and a path in the
hierarchy which limits the scope of the search. The response to a query is defined as the set
of all files whose content matches the given keywords and are contained in the scope defined
by the path. Given a query, HAC creates a new semantic directory with symbolic links to all
the query results. In contrast to our approach, semantic directories are physically created on
the disk. These semantic directories are writable, and the user is free to add or remove files
from the query results. However, modifying physically existing semantic directories can lead
to an inconsistent file system (e.g., previously out-of-scope files that have been moved into the
scope of a query must show up in the corresponding directory). Maintaining consistency is
a major overhead in the HAC approach. Further, the results for a single query can be large
in number and since no further organization of results is provided, it can be cumbersome to
navigate through them. Query refinement leads to the creation of a new subdirectory with
replicated symbolic links. Also, HAC limits associative access to the content of a file, and a file
can not be assigned arbitrary associative attributes.
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[SM92] provides navigational support by enforcing hierarchical constraints over the associa-
tive attributes. It explains a multi-structured naming system which tries to blend traditional
hierarchical or graph structured naming (e.g., the UNIX file system) with flat attribute or set
based naming (e.g., SFS [GJSJ91]). It attempts to combine the “sense of place” present in graph-
based naming with the ability of set-based naming to retrieve files using any combination of
information about them. Rules can be defined over attributes which determine context or scope
in which the attributes are valid. Using these rules, the user can define ancestor-descendant
relationships on labels, and selectively loosen the relationships so that users can name files by
path names containing labels, queries or a combination of both. However, attributes are boolean
and queries return virtual directories which are not modifiable.

Essence [HS93] is an indexing tool that extends the idea of automatic extraction of file
attributes. Essence differs from the semantic file system in that it extracts metadata from files
depending on file types and produces summaries of files as well. It is primarily a search tool,
and provides no navigational access in the form of virtual directories.

Nebula [BDB+94] treats a file as an object consisting of a set of attributes. File objects have
well-specified types, which define the kind of attributes that they can possess (e.g., a file with
type C-source needs to have an attribute includes). Wherever possible, Nebula infers such
attributes automatically, but a file object can also have arbitrary user-specified attributes. The
user can define views (i.e., queries) as arbitrary boolean expressions involving file attributes and
browse through them. Nebula thus focuses on providing read-only associative access.

SynFS [BJ96] is similar to Nebula, and aims to provide a uniform interface to access informa-
tion in a heterogeneous environment. It builds a logical abstraction on top of the heterogeneous
data sources through a structure called a synopsis. A synopsis is a textual summary of the file it
represents, and consists of a list of key-value pairs. Abstractly, it is a typed object that defines
associated member data values and methods. Synopses help to hide away the heterogeneity of
the underlying information sources. A uniform interface for manipulating synopses is then built
on top of this layer. This interface has operations for addition, deletion, automatic generation,
search and display of the synopsis’ attributes. Again, associative access is read-only and no
navigational support is provided. However, the basic approach of abstracting heterogeneous
data sources into a semantic object can still be integrated with our work.

[XKTK03] presents a high-level design of an extensible schema-based semantic file system.
The schema are defined in RDF/XML, and can contain complex relationships, including one-to-
many groupings and inheritance. The system provides a default schema, and users are expected
to override or inherit this with their own constructions. Attributes are again managed only by
the operating system, and no consideration is given to implementation issues, or the formulation
of query semantics.

Another context in which associative access has been used is archiving, i.e., being able to
access older “versions” of a given file. None of these approaches try to integrate associative
access with navigational access. The Inversion File System [Ols93] (and the similar Cedar
system [MTX03]) aim to provide users with a rich set of archival services to manage a large
data store by leveraging the power of relational databases. Inversion File System is built on
top of the POSTGRES database and uses its no-overwrite storage feature to provide “time
travel” through different versions of files. In addition, it supports ad hoc search on various file
metadata such as owner, file type, etc. However, providing search is more a consequence of using
a database backend rather than being the motivation behind building the file system. Further,
the database schema predefines the set of attribute names that can be associated with a file,
and the user is not allowed to assign arbitrary metadata.

Deviating from the traditional way of organizing files on disk, several file systems have been
built on top of a relational database system. Some examples are BFS [Gia99], Oracle’s iFS,
Microsoft’s WinFS and Inversion File System [Ols93]. At the lowest level, the main operations
that our file system needs to perform are store, index, retrieve and intersect. The use of a
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database is therefore extremely appealing in our context. Given the prevalent use of databases
in academic as well as commercially available file systems, we feel that the use of a database is
the right choice for us.

In summary, past work on file systems providing associative access suffers from one (or more)
of the following drawbacks:

1. Associative access is effectively “read-only”, i.e., the user can only view the results of a
query, but he can not pro-actively add files to the set of results so that they can be retrieved
if the same query is issued later.

2. No provision for the user to define metadata attributes of his/her choice.

3. No uniform semantics for query and update of metadata.

We improve upon these limitations by proposing a unified semantics for query and update
of filesystem metadata. The semantics are intuitive to understand and easy to use.

6 Conclusion and Future Work

We have shown that semantic file systems can be extended with uniform write operations. This
enables a very rich file operation semantics, which can directly manipulate logically defined sets
of files with single operations. Such a filesystem can be used for several different applications.
The challenging part about this design is implementation. In particular, a database backend
(or its equivalent) is needed to maintain file metadata. Such a backend works well for small sets
of files, but with our naive implementation performance scales poorly as the number of files is
increased. We expect that this degradation in performance can be avoided through a carefully
designed metadata store. This is a promising avenue for future research. Another direction of
future work is a complete implementation of a filesystem that includes a front end. Once this
is done, it will be interesting to verify the utility of our semantics via a user study. Finally, our
file operation semantics do not incorporate concurrent access by multiple users. Such extensions
would be an obvious choice for future work.

7 Relationship to course material

The course focuses on design and analysis of selected aspects of operating systems and dis-
tributed systems. It examines design of various filesystems (e.g., LFS, DAFS, NFS, etc.) which
are a core component of any operating system. Our project aims to provide an intuitive and
useful design of the filesystem as a multi-dimensional semantic file store. As part of the project,
we have implemented our design’s backend and analyzed it using a number of evaluation strate-
gies like microbenchmarking and emulation of a revision control system. Our project incorpo-
rates work on filesystems, databases and RPC(NFS) which are major concepts discussed in the
course.
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