
Applying Thread-Level Speculation to
Database Transactions

Christopher B. Colohan
CMU-CS-05-188

November 2005

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Todd C. Mowry, Chair

Anastassia Ailamaki, Chair
Seth C. Goldstein
David O’Hallaron

Kunle Olukotun, Stanford University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2005 Christopher B. Colohan

This research was sponsored by the National Aeronautics and Space Administration (NASA) under grant
nos. NAG2-1230 and NAG2-6054, and by generous donations from the Intel Corporation, IBM Corporation,
and the NSF.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the IBM Corporation, of Intel Corporation,
or the U.S. Government.

Keywords: TLS, Threads, Speculation, Architecture, Database Systems, Transac-
tions, Intra-Transaction Parallelism, Chip Multiprocessors, Cache design

For Lea.

iv

Abstract

Thread-level speculation (TLS) is a promising method of extracting paral-
lelism from both integer and scientific workloads. In this thesis we apply TLS
to exploit intra-transaction parallelism in database workloads. Exploiting
intra-transaction parallelism without using TLS in existing database systems
is difficult, for two reasons: first, significant changes are required to avoid
races or conflicts within the DBMS, and second, adding threads to transactions
requires a high level of sophistication from transaction programmers. In this
thesis we show how dividing a transaction into speculative threads (or epochs)
solves both problems—it minimizes the changes required to the DBMS, and
the details of parallelization are hidden from the transaction programmer. Our
technique requires a limited number of small, localized changes to a subset
of the low-level data structures in the DBMS. We also show that previous
hardware support for TLS is insufficient for the resulting large speculative
threads and the complexity of the dependences between them. In this thesis
we extend previous TLS hardware support in three ways to facilitate large
speculative threads: (i) we propose a method for buffering speculative state in
the L2 cache, instead of solely using an extended store buffer, L1 data cache,
or specialized table to track speculative changes; (ii) we tolerate cross-thread
data dependences through the use of sub-epochs, significantly reducing the
cost of mis-speculation; and (iii) with programmer assistance we escape spec-
ulation for database operations which can be performed non-speculatively.
With this support we can effectively exploit intra-transaction parallelism in a
database and dramatically improve transaction performance: on a simulated
4-processor chip-multiprocessor, we improve the response time by 46–66%
for three of the five TPC-C transactions.

vi

Acknowledgments

My first advisor was Todd Mowry. He brought me to Pittsburgh, taught me how to do
research, stuck with me through many challenging years, and provided the inspiration to
finish. Once I finally figured out that database systems are the perfect application for TLS,
Natassa Ailamaki was there to teach me everything I needed to know about databases,
provide much needed encouragement, and provide loads of guidance and advice. Thank
you very much to both of you, without your help this thesis would not exist.

Seth, Dave, and Kunle served on my thesis committee. Thank you for your probing
questions and extensive advice which made this thesis much more solid than it would
otherwise be.

I certainly would not have stuck with graduate school to completion if it wasn’t for the
CS department at CMU. The wonderful community formed by the faculty and students
there provide much needed support through the entire process. I would especially like to
thank Catherine Copetas and Sharon Burks for providing friendship, abuse, and
help throughout my grad school years.1

I would like to say “I did it all myself! This thesis is mine, mine, all mine!” Instead,
I can say something even better: this thesis grew out of a collaboration. The ideas used
in TLS grew out of the STAMPede project, which was created by Greg Steffan, Antonia
Zhai, Todd Mowry and myself. We designed hardware, built simulators, programmed
compilers, and argued over ideas. We drew upon the input of the rest our research group,
including Amit, Pedro, Shimin and Mengzhi. We learned from the efforts of our gifted
colleagues at other universities. This thesis is just a small facet of this entire project, and
could not exist in isolation. Thank you all.

I would also like to thank my friends, who helped keep me sane throughout school.
You have all touched me in so many ways: friends, climbing partners, dancers, roommates,
soul mates, fellow musicians, chefs, accomplices... I fear the prospect of listing you, for
I know I will inevitably leave someone out. Here goes: Ted, Addie, Leaf, Chris, Carrie,

1Why the large font? Catherine said that when I mentioned Sharon and her I should put their names in
a larger font to make it easier for everyone to find them. The things I put up with...

vii

Dave, Hope, Lily, Angela, Joe, Jason, Greg, Nancy, Donna, Dan, Yan, Francisco, Will,
Benoit, Elissa, Paul, Rob, Caitlin, Dean, Aaron, Jenn, Rob, Peter, Andy, Charlie, Dominic,
Anya, Rose, Derek, Ricardo, Rowan, Linda, Mark, Emily, Carrie, and the rest of the Los
Bailadores dance team. Thank you all.

Thank you to my family, and especially my parents, for providing years of support and
encouragement: I can not honestly answer the question of “when are you going to finish?”
The answer is: now.2

Last, but certainly not least: thank you to my fiancée, Lea. You are my love.

2Yes, the word “now” was the last word I typed in the creation of this entire document.

viii

Contents

1 Introduction 1
1.1 Thread-Level Speculation . 3
1.2 Small Software Changes for Large Performance Gains 5
1.3 Why Transaction Latency? . 7
1.4 Thesis Overview . 7
1.5 Related Work . 8

1.5.1 Parallel Programming Models 8
1.5.2 Intra-transaction Parallelism . 9
1.5.3 TLS Hardware Support . 10

1.6 Contributions . 12

2 A New TLS Programming Model for Large, Dependent Epochs 13
2.1 Dividing a transaction into epochs . 13
2.2 Sub-epochs . 17
2.3 Life Cycle of an Epoch . 20
2.4 Moving Code to Avoid Dependences . 21
2.5 Avoiding Dependences by Escaping Speculation 24
2.6 Inter-transaction Data Dependences . 27
2.7 Chapter Summary . 28

3 Applying TLS to Database Transactions 29
3.1 The Transaction Programmer: Choosing Epoch Boundaries 30

3.1.1 NEW ORDER . 31
3.1.2 DELIVERY . 31
3.1.3 STOCK LEVEL . 33
3.1.4 PAYMENT . 35
3.1.5 ORDER STATUS . 37

3.2 The Database System Programmer: Eliminating Dependences in the DBMS 37

ix

3.3 Performance Tuning the DBMS . 40
3.3.1 Resource Management . 41
3.3.2 The Log . 46
3.3.3 B-Trees . 47
3.3.4 Statistics Gathering . 47
3.3.5 Error Checks . 48
3.3.6 False Sharing . 48

3.4 Experimental Results . 48
3.4.1 Benchmark Infrastructure . 48
3.4.2 Simulation Infrastructure . 49
3.4.3 High Level Benchmark Characterization 51
3.4.4 Scaling Intra-Transaction Parallelism 54
3.4.5 Impact of Each Optimization . 57

3.5 Chapter Summary . 60

4 Hardware Support for Large, Dependent Epochs 61
4.1 Hardware Support for Large Epochs . 62

4.1.1 A Protocol for Two-Level Speculative State Tracking and Buffering 63
4.2 Using TLS to Incrementally Parallelize Database Transactions 72

4.2.1 Profiling Violated Inter-Epoch Dependences 72
4.2.2 Hardware Support for Escaping Speculation 73

4.3 Tolerating Dependences with Sub-Epochs 74
4.3.1 Hardware Support for Sub-Epochs 76
4.3.2 Choosing Sub-epoch Boundaries 79

4.4 Experimental Results . 79
4.4.1 Sub-epoch Support . 79
4.4.2 Cache Configuration . 83

4.5 Chapter Summary . 87

5 Conclusions 89

A Transaction Source Code 93
A.1 DELIVERY . 93
A.2 NEW ORDER . 96
A.3 ORDER STATUS . 99
A.4 PAYMENT . 104
A.5 STOCK LEVEL . 108

B L2 Coherence Actions 111

x

Bibliography 117

Glossary 123

xi

xii

List of Figures

1.1 The NEW ORDER transaction. In brackets are the database tables touched
by each operation. 2

1.2 How TLS ensures that all reads and writes occur in the original sequential
order. 3

1.3 How the transaction programmer and database system programmer use TLS. 6

2.1 Simplified main loop from the NEW ORDER transaction. 14
2.2 TLS execution of the example loop. 15
2.3 Eliminating the first dependence in an epoch can hurt performance. . . . 18
2.4 Sub-epochs reduce the impact of a dependence late in the epoch. 19
2.5 Example loop with TLS primitives . 22
2.6 Detailed view of an epoch showing TLS primitives and how they break an

epoch into regions of execution. 23
2.7 Removing dependences between malloc and free. 25
2.8 Wrapper for the malloc function which escapes speculation to avoid de-

pendences. 26

3.1 The NEW ORDER transaction. 32
3.2 The DELIVERY transaction. 34
3.3 The STOCK LEVEL transaction. 35
3.3 Continued. 36
3.4 The PAYMENT transaction. 38
3.5 The ORDER STATUS transaction. 39
3.5 Continued. 40
3.6 Adapting latches for use under TLS execution. 42
3.7 Delaying latch release operations until after a epoch commits can intro-

duce deadlock. 43
3.8 Overall performance of optimized benchmark on 4 CPUs. 52
3.8 Continued. 53

xiii

3.9 Performance of optimized benchmark while varying the number of CPUs. 55
3.10 Performance impact on the TPC-C transactions of adding each optimiza-

tion one-by-one on a four CPU machine. 57
3.10 Continued. 58

4.1 An overview of the CMP architecture that we target, and how it is extended
to support TLS. 63

4.2 L1 cache line state transition diagram. 64
4.3 Step-by-step example demonstrating cache line replication for a single

cache line. Cache line replication avoids violations when a replica con-
flict occurs. 68

4.4 Wrapper for the pin page function which allows the ordering between
epochs to be relaxed. 73

4.5 Sub-epochs improve performance when dependences exist. 75
4.6 The two sources of performance improvement from sub-epochs. 76
4.7 The effect of chain violations with and without sub-epoch dependence

tracking. 77
4.8 Performance when varying the number of sub-epochs per epoch. 80
4.8 Continued. 81
4.8 Continued. 82
4.9 Performance of optimized benchmark without sub-epoch support, without

NSL message, and without replication in the L1 cache. 84
4.9 Continued. 85

xiv

List of Tables

3.1 Simulated memory system parameters. 50
3.2 Benchmark statistics. 51
3.3 Explanation of graph breakdown. 54

4.1 Explanation of cache line states. 65
4.2 Explanation of actions. 65
4.3 Explanation of messages from L1 to L2 cache. 65
4.4 Explanation of responses from L2 cache to L1 cache. 66
4.5 Maximum number of victim cache entries (lines) used versus L2 cache

associativity. 86

xv

xvi

Chapter 1

Introduction

We are in the midst of a revolution in microprocessor design: all of the major com-
puter manufacturers are producing computer systems that feature chip multiprocessors
(CMPs) and simultaneous multithreading (SMT). Examples include Intel’s “Smithfield”
(dual-core Pentium IV’s with 2-way SMT), IBM’s Power 5 (combinable, dual-core, 2-
way SMT processors), AMD’s Opteron (dual-core), and Sun Microsystems’s Niagara
(an 8-processor CMP). How can database systems exploit this increasing abundance of
hardware-supported threads? Currently, for OLTP workloads, threads are primarily used
to increase transaction throughput; ideally, we could also use these parallel resources to de-
crease transaction latency. Although most commercial database systems do exploit intra-
query parallelism within a transaction, this form of parallelism is only useful for long
running queries, while OLTP workloads tend to issue multiple short queries. To the best
of our knowledge, commercial database systems do not exploit intra-transaction paral-
lelism [24, 37, 69], and for good reason.

Parallelizing a transaction is difficult. First, the DBMS must be modified to support
multiple threads per transaction. Latches1 (a.k.a. mutexes) must be added to data struc-
tures which are shared between threads in the transaction. These latches add complexity
and hinder performance. Second, the transaction must be divided into parallel threads.
Consider the NEW ORDER transaction, which is the prevalent transaction in TPC-C [15]
(Figure 1.1). We can parallelize the main loop (which represents 78% of the execution
time), such that each loop iteration runs as a thread. The transaction programmer must
understand when these threads may interfere with each other, and add inter-thread locks
to avoid problems; e.g., the thread should use inter-thread locks to ensure that only one
thread updates the quantity of an item in the stock table at a time. Finally, the transaction

1A latch provides mutual exclusion between two threads. Latch is a database systems term, a latch is
known as a mutex in operating systems parlance.

1

begin transaction {
Read customer info [customer, warehouse]
Read & increment order # [district]
Create new order [orders, neworder]
for(each item in order){

Get item info [item]
if(invalid item)

abort transaction
Read item quantity from stock [stock]
Decrement item quantity
Record new item quantity [stock]
Compute price
Record order info [order line]

}

 78
%

of
tr

an
sa

ct
io

n
ex

ec
ut

io
n

tim
e

} end transaction

Figure 1.1: The NEW ORDER transaction. In brackets are the database tables touched by
each operation.

programmer must test the new transaction to ensure that the resulting parallel execution is
correct and ensure that no new deadlock conditions or subtle race conditions were intro-
duced, and then repeat the entire process until satisfactory performance is achieved.

Significant effort is required to add appropriate latches to the DBMS and transac-
tion code. Once synchronization is added, significant tuning must be performed to avoid
over-synchronization. Can the process of extracting parallelism from transactions be au-
tomated?

The difficulty in parallelizing a transaction lies in data dependences between threads.
When any two threads may share data, synchronization must be added to preserve program
semantics. By adding locks and latches into the source code, the programmer is letting the
system know what invariants must hold to compute the correct result. But the programmer
must be conservative, and protect against all possible sharing patterns. The problem with
this conservative programming model is that the initial assumption is that everything is run
in parallel, and then the programmer must add in latches and locks to preserve correctness.
If the programmer does not has have a deep understanding of the entire program then they
will either unknowingly introduce bugs by omitting needed locks, or reduce performance
by adding unnecessary locks.

To avoid burdening the programmer, can we can automatically detect data dependences
as they occur at run time? Out-of-order CPUs can detect the fine-grained data dependences

2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

*p=...

*q=...

...=*p

...=*q

Ti
m

e

(a) Sequential execution.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Violation!

Ep
oc

h
1

Ep
oc

h
2

*p=...

*q=...

...=*p

�
�
�
�

�
�
�
�

...=*p

...=*q

(b) Parallel execution with TLS.

Figure 1.2: How TLS ensures that all reads and writes occur in the original sequential
order.

between individual instructions at run time to extract instruction level parallelism (ILP).
We would like to automate dependence checking at the granularity of thread-level paral-
lelism (TLP) as well.

1.1 Thread-Level Speculation

Thread-Level Speculation (TLS) [18, 60, 63] provides a middle ground between program-
mer intensive explicit parallelization and ILP. With TLS, the programmer specifies where
to break a transaction into threads, or epochs,23 and the TLS mechanism executes them in
parallel while preserving the original sequential semantics of the program. The TLS mech-
anism preserves sequential semantics by tracking data dependences between epochs and
restarting epochs when their execution diverges from the original sequential execution. In
essence, dividing a transaction into epochs improves performance without affecting cor-
rectness.

Under TLS, sequential code (Figure 1.2(a)) is divided into epochs, which are executed
in parallel by the system (Figure 1.2(b)). The system is aware of the original sequential
order of the epochs, and also observes every read and write to memory that the epoch
performs (i.e. the reads and writes through p and q).

2We refer to the parallel threads in TLS as epochs to differentiate them from the explicit threads which
may also exist in the system. For example, in a database system each transaction runs on a thread, and we
break each of those transaction threads up into epochs.

3There are many new terms used in this thesis. Please note that there is a Glossary located at the back of
the thesis for your convenience.

3

The system observes whether epoch 1 ever writes to a memory location which has
already been read by epoch 2—if so, then epoch 2 has violated sequential semantics, and
is rewound and re-executed with the correct value. For example, in Figure 1.2(b) we see
that epoch 2 read p before epoch 1 wrote to p, so we restart epoch 2. On the second
execution epoch 2 reads the new value. Note that the read of q does not cause a violation,
since it executes after the write to q, and thus reads the correct value. By observing all
loads and stores, and restarting an epoch whenever it consumes an incorrect value, the
TLS mechanism ensures that the parallel execution is identical to the original sequential
execution.

To support TLS-style execution, the system must have two capabilities. First, the sys-
tem must be able to detect mis-speculation caused by data dependences between epochs.
Once detected, the dependence triggers a violation which rewinds the epoch. Second, the
system must buffer any changes to the system state performed by an epoch, so if the epoch
is violated then the changes can be rewound.

Prior to the work in this thesis, if TLS were applied to the main loop of a transaction
then there would be no performance gain. This is because:

1. The epochs in the transaction frequently invoke the database management system
(DBMS). The DBMS performs many operations on shared data structures, and this
means that each epoch has many data dependences on prior epochs.

2. TLS restarts an epoch when a violation is detected. With frequent violations only
the oldest epoch is never restarted. This results in the oldest epoch making forward
progress while the other epochs frequently restart—which results in an execution
very similar to sequential execution.

3. The epochs in the transaction are large, which means that the TLS system has to
buffer a large amount of speculative state. Prior TLS designs assumed that the spec-
ulative state would fit into small buffers, and do not perform well when speculative
buffers overflow.4

This thesis describes how small changes can be made to the DBMS to avoid the most prob-
lematic data dependences, how to modify the TLS hardware to be more tolerant of frequent
data dependences, and how to modify the TLS hardware to buffer large amounts of specu-
lative state. The result is a significant latency improvement for database transactions—on
a simulated 4-processor chip-multiprocessor, the response time is improved by 46–66%
for three of the five TPC-C transactions. Fundamentally, this thesis answers the question

4Prvulovic et. al. have developed hardware techniques [47] to buffer the large epochs found in scientific
workloads, but their design does not perform well when epochs frequently restart.

4

“how can we parallelize the central loop of a transaction?” More formally, the thesis
statement is:

Thread-level speculation can be used to parallelize database transactions.
This effectively reduces transaction latency without changing the transactions
software, with minor changes to the DBMS software, and with practical hard-
ware support.

1.2 Small Software Changes for Large Performance Gains

To achieve these impressive performance benefits we need to modify both the transaction
code and the code in the DBMS. For TLS to be widely adopted, these software changes
must be reasonable.

Transaction programmers are primarily concerned with creating functional applica-
tions. We do not want to teach transaction programmers new sophisticated programming
techniques, nor do we want to introduce new failure modes into their applications. We let
the transaction programmer treat TLS as a switch. This switch can be enabled or disabled
for any loop in the transaction, and the only effect visible to the transaction programmer is
that TLS may provide improved performance when TLS is enabled (Figure 1.3(a)). TLS is
a black box which can add parallelism to transaction without changing the original sequen-
tial execution semantics, which means that TLS will not introduce any new bugs (although
the change in performance may trigger race conditions which already existed in the orig-
inal code). The interface to TLS used by the transaction programmer can be simple: they
provide a performance hint, without having to modify the transaction software.

Database vendors want to provide high performance database systems to customers. At
the same time, existing database systems are very large and complex systems, and so the
database system programmers are reluctant to make changes which modify large portions
of the database system. To apply TLS, the database system programmer engages in an
iterative process (Figure 1.3(b)). They start with a sequential transaction, mark some loops
for TLS execution, and then examine the profile information provided by the hardware.
This profile information says which loads and stores caused dependence violations, and
hence are reducing performance. The database system programmer then optimizes just
this performance critical code, and repeats the process. This thesis shows that this tuning
process requires modifying only a small fraction of the DBMS code (we only modified
1200 out of 180,000 lines of code in BerkeleyDB), and yet eliminates the majority of the
data dependences which cause violations. This means that the gains of TLS can be had
with a small effort on the part of the database vendor.

5

Mark loops as
"TLS parallel"

Run transaction

Transaction

Faster?

Be happy

Try different loops

Yes

No

(a) Transaction programmer work flow.

Mark loops as
"TLS parallel"

Run transaction

Transaction

Violation profile

Examine profile and
identify bottlenecks

Remove performance
bottlenecks from DBMS

Yes

No
Fast

Enough?

Be happy

spent mis−speculating?
Significant time

Address other performance
issues, such as load imbalance,

insufficient parallelism.
lack of coverage, or

Yes

No

(b) Database system programmer work flow.

Figure 1.3: How the transaction programmer and database system programmer use TLS.

6

1.3 Why Transaction Latency?

You may believe that transaction throughput is all that matters for database systems, and in
particular for OLTP workloads. Why are we attacking transaction latency? First, there is
the obvious reason to improve latency: improving latency makes users happy by improving
system response time.

The second reason is more subtle: on modern systems OLTP workloads such as TPC-C
are frequently lock-bound [35]. If the system is lock-bound, then to improve performance
we need to decrease the time spent waiting for locks. TLS can be used to improve the
latency of the transaction which holds the contended locks, and hence it will release the
contended locks more quickly. This latency improvement causes an improvement in trans-
action throughput [36].

1.4 Thesis Overview

This thesis explains the application of TLS to databases in a top-down fashion. In Chap-
ter 2 we explain the fundamentals of TLS, as viewed by the user of TLS. At the end of
Chapter 2 the reader should understand how to divide an application up into epochs, how
epochs interact with each other as they execute, the performance impact of data depen-
dences, and what mechanisms TLS can provide to avoid performance limiting data depen-
dences (value forwarding, aggressive update propagation, sub-epochs, isolated undoable
operations, delaying until arrival of homefree token).

Once we have thoroughly explained how TLS works, the thesis proceeds to apply TLS
to database transactions. Chapter 3 walks the reader through the process of applying TLS
to transactions from the TPC-C benchmark, and shows that even if the transaction appears
to be fully parallel, the database management system (DBMS) functions invoked by the
transaction are not. We fix this one step at a time, through a iterative performance tuning
process. This tuning process involves changes to all of the major DBMS subsystems, in-
cluding locking, B-tree management, logging, performance monitoring, buffer pool man-
agement, and memory allocation. Chapter 3 shows how TLS can be used to improve the
latency of transactions.

Chapter 3 presupposes that hardware which can handle the execution of large epochs
with many dependences between them exists. In Chapter 4 we show how to design TLS
hardware which can deal with large epochs with many dependences. The hardware design
in Chapter 4 has three unique aspects: first, speculative state is stored in multiple levels
of the cache hierarchy. Second, the speculation mechanism can be temporarily disabled to
allow software to manage speculation when desired. Third, dependences between epochs

7

are tolerated, and the hardware includes mechanisms which avoid mis-speculation and
reduce the penalty of mis-speculation when it occurs.

1.5 Related Work

The allure of parallelizing programs has attracted many software and hardware researchers.
Parallel programs should be able to perform much better than sequential programs, since
they can harness the power of many CPUs at once. The work which inspired and influ-
enced this thesis can be divided into three categories: research in parallel programming
models, research in intra-transaction parallelism, and research in TLS hardware support.

1.5.1 Parallel Programming Models

Decades of work have been invested in parallelizing compilers and parallel programming
languages. TLS promises the holy grail of parallel performance—to allow any program,
no matter what language it is written in, to be automatically transformed into a full parallel
program with no programmer effort. As a result, most TLS research has assumed that the
compiler would be parallelizing programs, and not a human [5, 25, 44, 65]. This compiler
work grew out of the pioneering work of Knight and Halstead, who developed functional
languages with support for TLS-style execution [17, 28]. In this thesis we wanted to
parallelize database transactions. Database transactions and the DBMSs they utilize are
not written in functional languages, and it is not practical to re-implement them in func-
tional languages. Compiler based techniques tend to assume perfect knowledge about the
whole program to be parallelized, while with databases the transaction is usually compiled
separately from the DBMS, and the interface between the transaction and DBMS is kept
deliberately simple for portability reasons. In this thesis we found that transactions natu-
rally decompose into threads which are much larger and more complex than the threads
generated by compiler based techniques.

In this thesis we use hardware-assisted speculative execution to simplify manual paral-
lelization. Prabhu and Olukotun showed that using TLS to assist in manual parallelization
has great promise, since it works well when applied to SPEC benchmarks on the Hydra
multiprocessor [18, 46]. Prabhu and Olukotun’s work gave us hope that applying TLS to
the much larger epochs from the outer loops of database transactions would be worthwhile
as well.

Hammond et. al. pushes the idea of programming with epochs to its logical extreme,
making the program consist of nothing but epochs, resulting in a simpler architecture [20],
but requires the programmer to always use epochs [19]. We believe that it is not practical to

8

apply this approach to existing database systems. As a result the work in this thesis does
not enforce a single programming model: programmers can use TLS and epochs when
they are desirable, and use either traditional sequential execution or threaded execution as
well. The price paid for this programmer simplicity and flexibility is a minor increase in
hardware complexity.

1.5.2 Intra-transaction Parallelism

Traditionally, high-performance database systems have targeted inter-transaction paral-
lelism, or intra-operation parallelism, while this thesis introduces new techniques for ex-
ploiting intra-transaction parallelism. Previous work on intra-transaction parallelism has
focused on techniques which do not require modifying the DBMS: With Sagas the pro-
grammer is able to define a long-running transaction, known as a saga, which is com-
posed of several DBMS-visible transactions. By using sagas a long transaction could
execute without holding locks for an extended period of time. To allow a sagas to abort
the transaction programmer would have to create compensating transactions which undo
the side-effects of the individual transactions within the saga. TLS is complimentary to
sagas—TLS can be used instead of sagas to allow a long running transaction to complete
faster (and release its locks faster); TLS can also be used in addition to sagas to improve
the response time of the individual transactions within a saga. TLS is easier to use since
the hardware automates the restarting of epochs, meaning that when using TLS there is
no need for the transaction programmer to write compensating epochs to allow epochs to
abort.

The work on sagas evolved into work on TP-Monitors [27, 52], which coordinate the
execution of the transactions within a saga and allow some of those transactions to execute
in parallel, improving performance further. This resulted in work by Shasha et. al., who
developed a theoretical basis for automatically breaking a saga into transactions. Shasha
showed that if a conflict graph can be constructed for a set of transactions, then the transac-
tions can be chopped into smaller transactions which increases the degree of concurrency
in the workload [53]. The conflict graph is a static analysis, which allows the transactions
within a saga to execute in parallel in the absence of any possible dependences between
them. In contrast, TLS is more optimistic: TLS allows epochs to execute in parallel, and
only restarts epochs when dependences actually occur. As a result, TLS is able to ex-
ploit more parallelism, since it takes advantage of dependence information which is only
available at runtime.

9

1.5.3 TLS Hardware Support

The basic idea behind TLS is inspired by Kung and Robinson’s optimistic concurrency
control (OCC) work [29]. In Kung and Robinson’s paper they propose a mode of ex-
ecution similar to TLS’s epochs—transactions execute without using locks, and before
committing a check for conflicts is performed, and the transaction rewinds if a conflict is
detected. OCC was implemented in software, and achieved reasonable performance by
considering only dependences caused by accesses to the database itself. TLS tracks de-
pendences caused by accesses to both the database and the meta-data used to maintain
the database. This has two benefits: first TLS is able to extract parallelism from within
a single transaction (instead of increasing parallelism between transactions). This means
that when speculation fails less work is undone, since only a fragment of the transaction’s
execution is rewound. Second, this thesis shows that the changes to the DBMS software
required for achieving good performance with TLS are localized, while applying OCC
requires changing the fundamental locking methodology used by the entire DBMS.

The optimistic concurrency control work inspired a hardware implementation called
transactional memory [23], which showed how the processor caches can be used to buffer
speculative state. The transactional memory work led to a tech report which did a prelim-
inary investigation of TLS-style execution [39]. The hardware design in this thesis builds
on this idea, using the caches to buffer speculative state.

The first major study of how to implement a complete TLS system in hardware was the
Multiscalar project from Wisconsin [9, 55]. The initial Multiscalar featured an architecture
optimized purely for TLS-style execution. Programs were broken up into tasks (equivalent
to TLS epochs), and each task was run on a separate CPU. Register dependences were
handled through a fast register forwarding ring, and memory dependences were resolved
through a centralized address resolution buffer [9]. Later this design was refined to use the
caches to detect and buffer memory dependences, in the form of the speculative versioning
cache [14]. The success of the Multiscalar project inspired numerous other TLS research
projects, including the IACOMA project [47], the Hydra project [18], and our Stampede
project [58, 59, 60, 61, 67, 68]. This research also inspired work on a few software-only
TLS designs [16, 49, 51] and hardware-only TLS designs [1, 32, 50]. An interesting
comparison of many of these schemes was done by Garzarán et. al. [11].

One of the ways which we avoid dependences in this thesis is to delay lock and latch
operations during the execution of an epoch, and optimistically assume there will not be
conflicts before the epoch commits. There are two differences between this technique and
optimistic concurrency control [23, 29]: (i) epochs are much smaller than transactions (in
our experiments we have between 2 and 192 epochs per transaction), and (ii) transactions
using speculation in our TLS scheme are able to correctly interact with non-speculative

10

transactions with no changes to the non-speculative transactions.

This thesis adds an important capability to prior hardware designs: we use sub-epochs
to tolerate data dependences between speculative epochs. Sub-epochs are a form of check-
pointing, and in this thesis sub-epochs are used to reduce the penalty due to failed specu-
lation. Using checkpoints in epochs was previously proposed by Olukotun et. al. [43]—
in their work they found that checkpoints had little benefit, since they were considering
workloads with small epochs. The large epochs found in our database workloads improve
dramatically with the use of sub-epochs (checkpoints). Prior work has also used check-
pointing to simulate an enlarged reorder buffer by storing multiple checkpoints in the
load/store queue [2, 7], and a single checkpoint in the cache [33]. Martinez’s checkpoint-
ing scheme [33] effectively enlarges the reorder buffer and is also integrated with TLS,
and is thus it is unsurprising that his hardware design is close to the design in this thesis.
The sub-epoch design in this thesis could be used to provide a superset of the features in
Martinez’s work: sub-epochs could provide multiple checkpoints with a large amount of
state in the L2 cache. Martinez’s scheme, being simpler and involving only the L1 cache,
would likely be faster. Tuck and Tullsen showed how thread contexts in a SMT processor
could be used to checkpoint the system and recover from failed value prediction, expand-
ing the effective instruction window size [64]—the techniques used to create sub-epochs
in this thesis could also be used to create checkpoints at high-confidence prediction points
using the techniques from Tuck’s thesis. Instead of using sub-epochs to tolerate data de-
pendences other studies have explored predicting data dependences and turning them into
synchronization [40, 61], or have used the compiler to mark likely dependent loads and
tried to predict the consumed values at run time [61]. It is not practical to use these pre-
dictors instead of sub-epochs for the large epochs examined in this thesis: the epochs in
this thesis have many dependences between them, which means that the predictors would
have to be extremely accurate to avoid mis-predictions which restart the entire epoch. On
the other hand, using sub-epochs significantly reduces the cost of mis-speculation, which
means that applying these prediction techniques may improve the results in this thesis even
further.

To implement both shared cache TLS support and sub-epochs we store multiple ver-
sions of values in the cache. Multiple versions are also supported in Speculative Versioning
Cache (SVC) and the IACOMA [14, 47] approach. In this thesis we show how to store
speculative versions of lines in multiple levels of the cache hierarchy, allowing us to take
advantage of the larger sizes and associativities of the caches further from the CPUs. By
limiting the visibility of replicas to just the CPUs sharing an L2 cache, we avoid the need
for the version ordering list used in SVC. In this thesis we detail a design for a speculative
victim cache, which we find is sufficient to capture cache set overflows for our database
applications. The IACOMA speculative buffer overflow technique [47] or techniques de-

11

veloped for supporting large transactions in transactional memory [3, 48] can be used if
victim cache overflow becomes an issue.

1.6 Contributions
This thesis has three primary contributions. This thesis:

1. Provides a programming methodology which lets a programmer start with correct
sequential code, and incrementally modify the code to create correct parallel code
with a minimal amount of programmer effort.

2. Demonstrates the applicability of this methodology by using it to parallelize the
central loop of database transactions.

3. Increases the scope and applicability of this methodology by extending TLS hard-
ware designs to support incremental improvements of large, partially-dependent
epochs.

12

Chapter 2

A New TLS Programming Model for
Large, Dependent Epochs

To use TLS, the first step is to divide the transaction into epochs. The programmer or
compiler must choose epochs which will result in a performance improvement. In this
chapter we start with a brief review of what epochs are, how they interact with each other.
We then introduce new techniques and tools for tolerating data dependence violations
between epochs, and optimizing the performance of large epochs.

2.1 Dividing a transaction into epochs
Consider the for-loop in Figure 2.1, which is a highly simplified version of the cen-
tral loop of the NEW ORDER transaction from TPC-C. This loop simply finds items in a
database table and decrements their quantity field. Let’s assume that the programmer
knows that the elements in the items array are disjoint—this means that if the program-
mer looked at just the loop, they would presume that the loop is parallel, and each loop
iteration could be run as a parallel epoch. If a transaction programmer were trying to apply
TLS, then this loop would be a good candidate for parallelization.

But what about the select and update functions? If we look at the definitions of
those functions (also in Figure 2.1), we see that they increment the variables num selects
and num updates. The increments will cause data dependences between our epochs,
shown in Figure 2.2(a). In addition, the select and update functions call btree lookup,
and we do not know what dependences may exist in the B-tree code.

The data dependences between epochs must be preserved for correct execution. To
preserve dependences any load in epoch 2 must load the correct value from the last store
to that memory location by epoch 1 or any earlier epoch. In Figure 2.2(a) we show sev-

13

for(i=1...num items) {
row = stock table.select(items[i]);
row.quantity--;
stock table.update(items[i], row);

}

E
ac

h
ite

ra
tio

n
is

an
ep

oc
h

Row
StockTable::select(ItemId item)
{
num selects++;
return *btree lookup(item);

}

void
StockTable::update(ItemId item, Row row)
{
num updates++;
Row *bt row = btree lookup(item);

*bt row = row;
}

Figure 2.1: Simplified main loop from the NEW ORDER transaction.

eral backwards dependences, where the load executes before the last store in the previous
epoch executes. When TLS detects a backwards dependence it is known as a dependence
violation, and it restarts the epoch (Figure 2.2(b)). 1 In addition to restarting the epoch,
all later epochs are restarted as well through a chain violation since they may have con-
sumed incorrect speculative values from the violated epoch. When the violated epoch re-
executes, the backwards dependence that triggered the violation is turned into a forwards
dependence, and hence the correct result is computed.

Since violations cause work to be discarded and re-executed, violations limit perfor-

1In this discussion we assume that only backwards dependences can cause violations. This is because
the TLS hardware described in Chapter 4 makes an epoch’s stores (updates) available to later epochs as
soon as possible. This is known as aggressive update propagation. Using a design with aggressive update
propagation ensures that the number of violations is minimized, which is important when the epochs are
large (and hence the penalty of a violation is large).

14

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1Dependence

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Dependence

Ep
oc

h
2

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Dependence

Dependence

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

Ep
oc

h
3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Ep
oc

h
1

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

Ti
m

e

(a) Execution of epochs in parallel results in dependences backwards in time.

�
�
�
�
�

�
�
�
�
�

r1 = load num_selects;
inc r1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

Violation! �
�
�
�
�

�
�
�
�
�

r1 = load num_selects;
inc r1

Violation! �
�
�
�
�

�
�
�
�
�Ep

oc
h

1

Ep
oc

h
3

Ep
oc

h
2

r1 = load num_selects;
inc r1 Chain Violation!

Ti
m

e

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

Dependence

Dependence

Dependence

Dependence

(b) Backwards dependences cause mis-speculation. Violations recover from mis-speculation by restarting the epoch.

Figure 2.2: TLS execution of the example loop.

15

mance. To mitigate this performance hit, prior work has done the following:

Limit epoch sizes. Restarting large epochs throws away a large amount of work, which is
not efficient. Using small epochs limits the amount of wasted work when a violation
occurs.

Choose epochs to avoid dependences. Dependences can be avoided by carefully choos-
ing when to apply TLS at all, and by carefully choosing epoch boundaries. [65]

Choose epochs to avoid backwards dependences. Sometimes dependences can not be avoided
completely—in these cases it makes sense to either choose epochs to try and avoid
backwards dependences, or to apply compiler scheduling techniques to the epochs
in an attempt to turn backwards dependences into forwards dependences. [65, 68]

Use compiler managed synchronization. If a dependence occurs frequently, insert ex-
plicit synchronization between the last store in an epoch and the first load of the
next epoch to avoid a violation. [68]

Use hardware managed synchronization. If hardware detects a load-store pair which
causes frequent violations, insert synchronization which ensures that the load does
not issue until the store retires. [61]

Use value prediction. Detect which loads frequently cause violations, and use a value
predictor to predict the correct value consumed by the load. [45]

To parallelize database transactions, we started with a simple division into epochs—we
made each loop iteration in the transaction into an epoch. We chose a simple division
to minimize the amount of work that is performed by the transaction programmer. The
resulting epochs had the following properties:

• The epochs were large. With epochs much larger than previous work had studied, we
found that violations discarded huge amounts of execution. Previous work has stud-
ied epochs with various size ranges, including 3.9–957.8 dynamic instructions [65],
140–7735 dynamic instructions [46], 30.8–2,252.7 dynamic instructions [61], and
up to 3,900–103,300 dynamic instructions [11]. The epochs studied in this thesis are
quite large, with 7,574–489,877 dynamic instructions. Large epochs result in lots of
wasted work when a violation occurs.

• There were many violation causing dependences between epochs.

16

• The epochs were not amenable to compiler based synchronization techniques. The
majority of dependences were caused by state managed by the DBMS code, and
not the transaction code. The DBMS code is shared by many transactions, and
synchronization inserted for the benefit of one transaction was not useful for the
execution of other transactions.

• The execution challenged hardware prediction and synchronization techniques. Each
epoch in our database transactions had tens to hundreds of data dependences which
would have to be handled. A mis-prediction triggers a violation, which rewinds the
entire epoch. A very accurate predictor would be required to be able to reliably
perform tens to hundreds of predictions in a row without making a single error.

Clearly something had to be done. We did not want to change the selection of epochs,
since keeping epoch selection simple makes using TLS much more attractive for transac-
tion programmers. We instead adopted a two pronged approach:

1. Modify the DBMS to avoid or remove data dependences which frequently trigger vi-
olations. In this chapter we examine how removing or avoiding dependences affects
performance; Chapter 3 applies these techniques to the DBMS to remove depen-
dences.

2. Modify the hardware so that violations do not cause the entire epoch to be rewound.
This is done by dividing the epoch into sub-epochs. We explain how sub-epochs
work in this chapter, in Chapter 4 we explain how they are implemented in hardware.

2.2 Sub-epochs
Data dependences between epochs cause failed speculation, which limits performance. If
the transaction was executing on a dataflow architecture [4] then modifying or re-arranging
the code to remove data dependences would directly lead to a performance improvement.
Unfortunately, under TLS-style execution performance is limited not only by dependences,
but also by where in the epoch they are located. A dependence located early in an epoch
causes only a small amount of execution to be rewound, while a dependence located late in
an epoch causes most of the epoch to be rewound. In Figure 2.3 we see that if a program-
mer eliminates a dependence early in the epoch’s execution then it may hurt performance
by exposing a dependence which occurs later in the epoch’s execution.

Performance is hurt because on a violation the TLS mechanism rewinds both the mis-
speculated execution which depends on the errant load and all of the correct execution
which precedes the errant load. When a dependence occurs late in the epoch’s execution

17

������ ������

lo
a
d

Vi
ol

at
io

n!

���������������� ����������������

lo
ad

st
or
e

������������ ������������

Vi
ol

at
io

n!

������������ ������������

Epoch 1

Epoch 2

Epoch 3

Ch
ai

n
Vi

ol
at

io
n!

Vi
ol

at
io

n!

���������������� 																

 ������

������

Epoch 1 s
to
re

l
oa
d

l
oa
d

s
to
re

Epoch 2 lo
a
d

Epoch 3

Vi
ol

at
io

n!
lo
a
d

Ch
ai

n
Vi

ol
at

io
n!

Lo
ng

er
!

(b
) A

fte
r e

lim
in

at
in

g
de

pe
nd

en
ce

(a
) B

ef
or

e
el

im
in

at
in

g
de

pe
nd

en
ce

lo
ad

lo
ad

Time

���������������� ����������������

��������������� ���������������

lo
a
d

st
o
re

lo
a
d

st
o
re

lo
a
d

st
o
r
e

lo
a
d

st
o
r
e

��������������� ���������������

lo
ad

st
or
e

����������� �����������

lo
ad

Dependence

Dependence

D
ep

en
de

nc
e

D
ep

en
de

nc
e

D
ep

en
de

nc
e

D
ep

en
de

nc
e

��������������� ���������������

lo
ad

st
or
e

{
Fi

gu
re

2.
3:

E
lim

in
at

in
g

th
e

fir
st

de
pe

nd
en

ce
in

an
ep

oc
h

ca
n

hu
rt

pe
rf

or
m

an
ce

.

18

�������� ��������
�������� ��������

�������� ��������

�������� ��������

��� 			

 ���

Epoch 1a
Epoch 1b

Epoch 2a
Epoch 2b

Epoch 3a
Epoch 3b

Ch
ai

n
Vi

ol
at

io
n!

lo
ad

st
or

e

Vi
ol

at
io

n!

Vi
ol

at
io

n!
Vi

ol
at

io
n!

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

lo
ad

st
or

e

����������� �����������

Vi
ol

at
io

n!

����������� �����������

Epoch 1

Epoch 2

Epoch 3

Ch
ai

n
Vi

ol
at

io
n!

Sh
or

te
r!

(b
) E

xe
cu

tio
n

w
ith

 su
b−

ep
oc

hs
.

(a
) E

xe
cu

tio
n

w
ith

ou
t s

ub
−e

po
ch

s.

Time

lo
ad

lo
ad

lo
ad

lo
ad

���� ����

�������� ��������
lo

ad
lo

ad

st
or

e

��������������� ���������������

lo
ad

st
or

e

����������� �����������

lo
ad

D
ep

en
de

nc
e

D
ep

en
de

nc
e

Dependence

Dependence

�������� ��������

lo
ad

st
or

e

��������������� ���������������

lo
ad

st
or

e
}

Fi
gu

re
2.

4:
Su

b-
ep

oc
hs

re
du

ce
th

e
im

pa
ct

of
a

de
pe

nd
en

ce
la

te
in

th
e

ep
oc

h.

19

then more correct execution is rewound. We can limit the amount of correct execution
rewound by using sub-epochs. A sub-epoch can be viewed as a checkpoint of an epoch,
or like a nested transaction [41]. Each epoch is divided into multiple sub-epochs. When
a violation is detected, it detects which sub-epoch contained the dependent load, and only
that sub-epoch (and later sub-epochs) is restarted.

Figure 2.4 shows the effect of dividing each epoch into two sub-epochs. Since the
errant load occurs shortly after the second sub-epoch starts, very little correct execution is
rewound when the violation is detected. If you compare Figures 2.3(a) and 2.4(b) you see
that when using sub-epochs, eliminating the first dependence in Figure 2.3(a) improves
performance.

If using sub-epochs had no cost, then the best performance would be obtained by start-
ing a new sub-epoch before every load instruction—this would completely avoid rewind-
ing correct execution when a violation occurs. In Chapter 4 we will see that each sub-epoch
consumes finite hardware resources: each additional sub-epoch adds state to each cache
line and adds complexity to dependence tracking logic. To conserve these resources we
adopt a scheme where new sub-epochs are started periodically during the execution of an
epoch (every n instructions issued), so that the maximum number of correct instructions
discarded due to a violation is less than n.

2.3 Life Cycle of an Epoch
To parallelize the loop from Figure 2.1, we need to break the loop up into epochs. The
code which does this is shown in Figure 2.5. Note that the loop body is untouched, and we
have just added template code to add TLS functionality. In particular, the added template
code of Figure 2.5 does the following:

¬ A new function, tfork, is used to create a thread to run each loop iteration as an
epoch.2 Note that the loop is structured so that tfork can fail if there are no CPUs
(or epoch contexts on a CPU) available to run another thread—this allows TLS to
dynamically adapt to the number of available CPUs.

 Each thread receives arguments using a designated portion of the stack known as the
forwarding frame.

® The boundaries of speculative execution are marked with the become speculative
and become nonspeculative functions.

2Although we are showing new function calls which implement TLS functionality, in our implementation
each of these function calls expands to be a single inline assembly instruction.

20

¯ Ensures that the epochs commit their speculative changes in the original sequential
program order by passing a homefree token from one thread to the next. When a
thread possesses the homefree token it is said to be homefree, and will no longer be
violated by an older epoch.

The execution of our sample loop with these primitives added is illustrated in Figure 2.6(a).

2.4 Moving Code to Avoid Dependences
By making these basic TLS primitives (forking epochs, homefree token passing, specu-
lation boundaries) visible to software, we allow the software to be flexible in its use of
epochs. In Figure 2.6(b), we show four interesting regions of an epoch’s execution where
transaction code can be placed. The default location for all of the code in the epoch is
in the speculative region (· in Figure 2.6(b))—code placed in the speculative region exe-
cutes speculatively, and the TLS mechanism ensures that execution in speculative region
is equivalent to the original sequential execution. When parallelizing software using TLS
the programmer would first place all code in the speculative region. Profile feedback will
show if a data dependence is causing frequent violations. The programmer can then at-
tempt to move the offending code upwards or downwards into the other regions, which are
described below.

Most loops parallelized with TLS contain a loop index computation. The loop in-
dex computation can be as simple as incrementing an integer, or can involve a linked list
traversal or moving a database cursor. The loop index computation frequently causes a
data dependence between epochs, but the index computation is usually not dependent on
the body of the loop. If the loop index computation has no side effects then it can be moved
up above the speculative region of the loop to the pre-fork region (¶ in Figure 2.6(b)). The
tfork call effectively acts like a synchronization primitive between epochs, ensuring that
the loop index computation for an epoch completes before the next epoch begins. This
avoids violations due to the loop index. If the tfork primitive supports argument passing
between threads (in this thesis we assume it does) then the loop index value becomes an
argument to the next epoch.

Any code placed in the post-homefree region (¸ in Figure 2.6(b)) will not be violated
by an earlier thread, since waiting for the homefree token ensures that earlier threads will
have committed all of their speculative writes. If some code frequently causes violations,
and if that code’s execution can be delayed without affecting correctness, then delaying it
until the homefree token has arrived (the post-homefree region) will avoid violations. An
example of this is the generation of log sequence numbers in a database system: an epoch
in a transaction only generates log sequence numbers, and never consumes them. Because

21

/* Structure for passing arguments

* to epochs: */
struct {

int i;
} forward;
forwarding frame(&forward);
forwarding size(sizeof(forward));

for(forward.i=1...num items) {
/* Spawn thread to run next epoch: */
ThreadDescriptor td = tfork(); }¬

if(td != 0) {
/* Parent thread--child will

* execute next loop iteration */
int i = forward.i; }

become speculative(); }®

row = stock table.select(items[i]);
row.quantity--;
stock table.update(items[i], row);

O
ri

gi
na

ll
oo

p
bo

dy

wait for homefree token(); }¯

become nonspeculative(); }®

commit speculative writes();
if(td != TFORK FAILED) {

pass homefree token(td); }¯

end thread();
}

}
}

Figure 2.5: Example loop with TLS primitives

22

wait_for_homefree_token
become_nonspeculative
commit_speculative_writes
pass_homefree_token
end_thread

load
store

load
store

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Ep
oc

h
1

tfork
become_speculative tfork

become_speculative

tfork
become_speculative

load

load

Ep
oc

h
2

Ep
oc

h
3

load
store

load
store

wait_for_homefree_token
become_nonspeculative
commit_speculative_writes
pass_homefree_token
end_thread

Ti
m

e

wait_for_homefree_token
become_nonspeculative
commit_speculative_writes
pass_homefree_token
end_thread

load
store

load
store

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Violation!

Violation!

Chain Violation!

(a) TLS primitives in action.

tfork

end_thread

become_speculative

wait_for_homefree_token

become_nonspeculative
commit_speculative_writes
pass_homefree_token

·

¸

¹

¶ pre−fork region

speculative region

post−homefree region

post−commit region

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

(b) Regions of an epoch’s execution.

Figure 2.6: Detailed view of an epoch showing TLS primitives and how they break an
epoch into regions of execution.

23

no code in the epoch depends on the generated numbers, it is safe to delay their generation
until the post-homefree region.

If too much code is relocated to the post-homefree region then the homefree token
may become a bottleneck, serializing execution. To avoid this one can move code further
down, after speculation has committed and the homefree token has been passed to the next
epoch. This region of execution is known as the post-commit region (¹ in Figure 2.6(b)).
To delay execution until after the homefree token has been passed the code must be thread
safe, since it will be executed non-speculatively in parallel with other threads. An example
of code which can be delayed until the post-commit region is calls to free. When a
transaction frees memory its execution will be unchanged if the free is delayed until
after the epoch commits.

In Chapter 3 we will show numerous examples of how moving code out of the spec-
ulative region and into the pre-fork region, post-homefree region and post-commit region
can avoid violations when parallelizing the DBMS.

2.5 Avoiding Dependences by Escaping Speculation

Dependences between epochs can often be easier to understand if you look at the higher-
level operations being performed, instead of focusing on the individual loads and stores
which cause the dependence. For example, consider two epochs which invoke malloc
and free, as shown in Figure 2.7(a). Both the malloc and free routines read and
modify shared data structures, namely the free list maintained by the memory allocator.
Because of this, any invocations of malloc or free which occur out of the original
sequential program order will cause violations.

Since we know that the system allocator is thread safe, it is safe to invoke in the post-
commit region. We observe that delaying the freeing of some memory will not affect the
correct execution of the program. Therefore it is safe to avoid any dependences caused by
free by moving the call to free down to the post-commit region (Figure 2.7(b)).

It is not possible to move the call to malloc downwards, since the epoch can not pro-
ceed until the requested memory is allocated. Instead, we avoid the dependence by escap-
ing the speculation mechanism. Fundamentally, to escape speculation we non-speculatively
allocate the memory when requested, and recover by freeing the memory again if specu-
lation fails. To escape the speculation mechanism, we wrap the malloc function with a
routine which temporarily disables the speculation mechanism while executing malloc.
This wrapper must also carefully check the arguments to malloc (to avoid ridiculously
large or frequent memory allocations, which could cause memory exhaustion), and register
a handler which will call free on the allocated memory if the epoch is later violated.

24

malloc
free

malloc
free

malloc
free

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Ep
oc

h
1

Violation!

Ep
oc

h
2

Ti
m

e

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

malloc
free

(a) Dependence between malloc and free
causes a violation

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Ep
oc

h
1

Violation!

Ep
oc

h
2

malloc

malloc

free
free

malloc

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

malloc

free

homefree

homefree

homefree

(b) Delaying free until after homefree depen-
dence between malloc and free, but exposes
dependence between malloc and malloc.

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�Ep

oc
h

1

Ep
oc

h
2

malloc

malloc

free
free

malloc

free
homefree

(c) Escaping speculation for malloc eliminates last dependence.

Figure 2.7: Removing dependences between malloc and free.

25

void *malloc wrapper(size t size) {
static intra transaction mutex mut; }

void *ret;

suspend speculation(); }®

check malloc arguments(id); }¬

acquire mutex(&mut); }

ret = malloc(size);

release mutex(&mut); }

on violation call(free, ret); }¯

resume speculation(); }®

return ret;
}

Figure 2.8: Wrapper for the malloc function which escapes speculation to avoid depen-
dences.

The code wrapper shown in Figure 2.8 implements this modified version of malloc.
In particular, this code does the following:

¬ Provides thorough argument checking. Since this routine is called from a speculative
thread, the parameters could be invalid.

 Acquires a mutex which provides mutual exclusion between epochs within a trans-
action, to guard against the possibility that mallocwas not implemented with intra-
transaction concurrency in mind. Note that most implementations of malloc are
indeed thread safe, so this extra paranoia can be eliminated once the programmer
confirms this.

® Temporarily escapes speculation. While speculation is escaped, the epoch is non-
speculative and hence all reads will observe committed machine state and all writes
will be immediately visible to the rest of the system (i.e., no buffering occurs). Since
no speculative reads are performed, the reads performed by malloc will not cause
violations.

¯ Saves a pointer to the recovery function, free. If the epoch is violated then free

26

will be called to undo the memory allocation. This is similar to nested top actions
in ARIES [38], since we modify the execution but preserve higher level semantics.

Escaping speculation simplifies coding: instead of redesigning the memory allocator
to be amenable to TLS execution, we place this simple wrapper around the allocation func-
tion. However, this method requires that the malloc function be an isolated undoable
operation. The malloc function is undoable: calling free undoes the call to malloc.
The malloc function is also isolated: when it is undone via free no other transaction or
earlier epoch is forced to rewind or otherwise alter its execution. We can apply the tech-
nique of escaping speculation to any operation which satisfies the isolated and undoable
properties—in Chapter 3 we will see further examples of escaping speculation in use.

2.6 Inter-transaction Data Dependences
Up until this point we have discussed the TLS execution of a single transaction. A trans-
action runs on a thread, which may be further subdivided into epochs. How do the specu-
lative epochs within a transaction’s thread interact with other threads in the DBMS?

As a thread executes it performs loads and stores to memory, and acquires and releases
mutexes and locks. All other threads in the system interact with the thread by observ-
ing the results of these memory and synchronization operations. To the other threads in
the system, a thread which has been divided into epochs with TLS looks like any other
thread, but with bursty store behavior—an executing epoch performs no externally visible
stores, and all of the epoch’s stores become visible when the epoch commits. You might
imagine that performing the stores in a batch instead of in their original program order
could introduce concurrency bugs, but modern parallel software already has to tolerate
store reordering in hardware, and uses explicit synchronization for communication, based
on release consistency [12].3

When an epoch executes it speculatively executes all loads, assuming that the loaded
values will not change in memory before the epoch commits. If a loaded value is changed
before the epoch commits then it triggers a violation, which restarts the epoch from the
start of the appropriate sub-epoch. The loaded value can be changed by three sources:
(i) by a store performed by an earlier epoch in the same thread; (ii) by a store performed
by any non-speculative thread; or (iii) by an epoch from another thread committing. This
means that stores from the other threads in the system can cause an epoch to be violated.

Does this mean that epochs will be constantly violated by the other threads (running
other transactions) in the system? Not at all. A violation is caused by a data dependence

3Chapter 3 contains further details on how synchronization primitives such as mutexes and locks are
correctly handled in TLS execution.

27

between the other thread and the epoch. In Chapter 3 we show software transformations
which eliminate data dependences between epochs in a single thread. These software
transformations also serve to eliminate data dependences between threads.

2.7 Chapter Summary
• TLS lets programmers introduce parallelism into a transaction without having to

fully understand what data dependences exist in the DBMS’s code.

• Sub-epochs allow transactions to tolerate backwards data dependences by allowing
a violation to discard mis-speculated execution without discarding a large amount
of correct execution.

• Moving code in an epoch either upwards or downwards can be used to avoid perfor-
mance limiting data dependences.

• For certain operations speculation can be escaped to avoid performance limiting
data dependences.

• A transaction’s use of TLS does not impact the correctness of other transactions,
although data dependences between other transactions and a transaction using TLS
may incur additional violations.

28

Chapter 3

Applying TLS to Database Transactions

In the previous chapter, we showed techniques for parallelizing programs using TLS. In
this chapter we apply TLS to database transactions. We do this by parallelizing the trans-
actions in the TPC-C benchmark [15].

In Section 3.1 we start with the perspective of the transaction programmer. This sec-
tion shows an implementation of the TPC-C transactions [15] based on the BerkeleyDB
DBMS [42], and shows how the transaction programmer can divide the transactions into
epochs without detailed knowledge of the internals of the DBMS.

The performance of the resulting epochs is limited by data dependences between them.
The majority of these dependences are due to code in the DBMS. This chapter describes
the performance bottlenecks we encountered (Section 3.3), and provides a generalized
technique for eliminating the data dependences which cause them (Section 3.2).

While in this chapter we evaluate TPC-C transactions running on BerkeleyDB, our
techniques can be generalized in two important ways. First, the changes we made were to
DBMS data structures and functions which are shared by all transactions, hence the opti-
mizations we describe can be applied to any transaction. Second, we change fundamental
primitives used by all database systems (such as latches and locks), hence our techniques
are not specific to BerkeleyDB and can be applied to other database systems. Applying
our techniques required changing less than 1200 lines out of 180,000 lines of code in the
DBMS, and took a graduate student about one month of work. As a result we eliminate
46 to 66% of the latency from three out of five TPC-C transactions on a four CPU system
(Section 3.4).

29

3.1 The Transaction Programmer: Choosing Epoch Bound-
aries

To apply TLS to database transactions, the transaction programmer (or compiler) must
first divide the transaction code into epochs. To understand this process, we worked our
way through several examples. We chose to apply TLS to the transactions from the TPC-C
benchmark [15]: these transactions represent an important class of workloads (commercial
workloads).

Since the TPC-C benchmark specification [62] describes the transactions in English,
the first thing we required was an implementation. We implemented the five transactions
from TPC-C (NEW ORDER, DELIVERY, STOCK LEVEL, PAYMENT and ORDER STATUS)
on top of the BerkeleyDB storage manager [42]. The implementation is a straightforward
and reasonably efficient implementation of the transactions as specified, and does not con-
tain extensive performance optimizations (the complete transaction code is listed in Ap-
pendix A). We did not heavily optimize the transactions since we assume that if TLS is
readily available and easy to use then one of the first performance optimizations attempted
by the transaction programmer would be to enable TLS.

The transaction programmer has limited knowledge of the internals of the DBMS,
and chooses epochs to minimize data dependences which are apparent in the transaction
code they are writing. In Section 3.2 we will show how to eliminate the most frequent
dependences within the DBMS, so that the dependences in the transaction code are all that
the transaction programmer has to consider. In the transactions in this thesis the transaction
programmer interacts with the DBMS through four basic operations on tables:

Select: The select operation locates the specified row in the table and reads it.

Update: The update operation locates the specified row in the table and modifies it.

Insert: The insert operation adds a new row to the table.

Cursors: A cursor is used to scan through a number of items in the table.

From the transaction programmer’s perspective dependences between epochs are caused
by reads and writes performed by the transaction, and by the database operations per-
formed by the transaction. Database operations can form dependences in two ways: (i) a
read-after-write (RAW) dependence occurs when an epoch performs an update operation
(or updates a row through a cursor), and a later epoch performs a select operation (or reads
a row through a cursor). (ii) an insert dependence occurs when a later epoch performs a
select operation (or reads a row through a cursor) then an earlier epoch inserts a new row
which changes the result of the later epoch’s select operation.

30

The TLS mechanism can detect when a RAW or insert dependence on the database
data violates the original sequential order, and will restart the epoch or sub-epoch as ap-
propriate. To the TLS mechanism database operations look just like any other memory
operations. This is because the database data is mapped into memory whenever it is used.
As a result, the TLS mechanism is able to detect violations caused by database operations
using the same mechanism which lets it detect violations caused by memory operations.

In the following sections we look at each transaction from TPC-C in detail, examining
the dependences which occur due to reads and writes to local variables and due to database
operations.

3.1.1 NEW ORDER

In Figure 3.1(a) we show a simplified version of the main loop from NEW ORDER. The
NEW ORDER transaction is the main transaction from the TPC-C workload, representing
at least 45% of executed transactions. NEW ORDER executes on behalf of a customer
placing an order for a list of 5–15 items from a warehouse.

We have chosen to make each loop iteration into an epoch. Since the loop covers 78%
of the transaction’s execution time, parallelizing it should result in a substantial perfor-
mance benefit. Examining the code in Figure 3.1(a), it appears that the only dependence
between epochs is due to reads and writes to the stock table. The benchmark specifies
that the items to be purchased will be chosen randomly from a uniform distribution of
100,000 items. This means that subsequent epochs are very unlikely to access the same
item and cause a data dependence violation.

In Figure 3.1(b) we show the expected TLS execution: first, the code before the loop
begins is executed. Then the loop is run in parallel, and the only violations are caused by
infrequent data dependences in the stock table. Recall that when a violation occurs a chain
violation causes all later epochs to restart since they may have consumed invalid results
from the violated epoch. Since violations are infrequent, we expect this loop to perform
quite well—in Section 3.4 we will see that this is true.

3.1.2 DELIVERY

The DELIVERY transaction (Figure 3.2(a)) loops through all of the districts in a warehouse
and delivers the oldest outstanding order in each district. This transaction presents two
possibilities for parallelization—the inner and outer loops. We chose to parallelize both
the inner loop and the outer loop separately (we call the outer loop variant DELIVERY

OUTER).

31

// New Order: Customer ordering a list of items from a

// warehouse.

w row = warehouse table.select(w id);

c row = customer table.select(w id, d id, c id);

d row = district table.select(w id, d id);

o id = d row.next o id;

d row.next o id++;

district table.update(w id, d id, d row);

o row.id = c id;

o row.carrier = 0;

order table.insert(w id, d id, o id, o row);

neworder table.insert(w id, d id, o id);

for(i=1...num items) {
i row = item table.select(items[i]);
st row = stock table.select(items[i]);
st row.quantity--;
stock table.update(items[i], st row);

ol row.item = items[i];
ol row.price = i row.price;
orderline table.insert(w id, d id, o id, i, ol row);

}

 Pa
ra

lle
liz

e
th

is
lo

op

(a) Simplified transaction source code.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Ti
m

e

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

very infrequent dependence in
stock table

�
�
�
�
�

�
�
�
�
�

(b) Transaction programmer’s expected execution with TLS.

Figure 3.1: The NEW ORDER transaction.

32

The inner loop represents 63% of the transaction’s execution time. We parallelize this
loop such that each iteration is an epoch. The only dependence between epochs is caused
by the update of the variable ol total. Although it is possible to use accumulator vari-
able expansion1 [31] to transform the transaction to avoid the ol total dependence,
we assume that the transaction programmer has not optimized it away. When executed,
the dependence causes a violation at the end of each and every epoch, as shown in Fig-
ure 3.2(b). From this figure one can see that a frequent dependence violation which causes
a small amount of execution to be rewound will have a small impact if TLS is using a small
number of CPUs. As the number of CPUs grows, the fraction of execution time spent re-
executing epochs grows, since the dependence becomes more and more of a bottleneck.
In Section 3.4 we shall see that with up to 8 CPUs this is not a critical bottleneck.

The outer loop of the DELIVERY transaction has no dependences, as illustrated in
Figure 3.2(c). In fact, it is completely parallel. The TPC-C benchmark specification allows
implementors of TPC-C to take advantage of this by running each outer loop iteration as
a separate transaction. We try parallelizing the outer loop using TLS instead of using
separate transactions to explore what happens if TLS is used with very large epochs—the
epochs in this outer loop decomposition contain an average of 490,000 instructions each.

3.1.3 STOCK LEVEL

The STOCK LEVEL transaction (Figure 3.3(a)) is a read-only transaction which checks
recently ordered items to see if any items in the warehouse have almost run out. This
transaction contains one loop which dominates the transaction’s execution, representing
98% of the transaction execution time. We can parallelize the main loop so that each
iteration is an epoch.

The main loop of STOCK LEVEL iterates over a table using a cursor—at the start of
each epoch the cursor is read, and at the end of each epoch the cursor is incremented.
This forms a dependence from the end of each epoch to the start of the next epoch, which
completely serializes execution. To avoid this problem we turn the do-while loop into a
while loop, as shown in Figure 3.3(b). This makes the critical path caused by the cursor
as short as possible.

The cursor still forms a dependence between the epochs, which causes each epoch
to be violated near the start of its execution, as shown in Figure 3.3(b). We could add
explicit synchronization to the loop to avoid this violation, but we do not do so since we

1Accumulator variable expansion is used to eliminate a data dependence caused by a variable which
accumulates a value, such as a sum in a dot product. In the DELIVERY example each epoch would be given
a private copy of the ol total variable to update, and once the loop was complete all of those private
variables would be summed to generate the final value.

33

// Delivery: deliver the oldest order in each district in

// the warehouse.

for(d id=1...DIST PER WAREHOUSE) {
cursor = new order table.new cursor(w id, d id,

OLDEST O ID);
no row = cursor.fetch next();
cursor.delete();
no o id = no row.id;

o row = order table.select(no o id, w id, d id);
o row.carrier id = carrier id;
order table.update(no o id, w id, d id, o row);

ol total = 0;
for(item=1...o row.ol cnt) {

ol row = orderline table.select(w id, d id,
no o id, item);

ol row.date = date();
ol total += ol row.amount;

}

Pa
ra

lle
liz

e
th

is
lo

op

c row = customer table.select(c id);
c row.balance += ol total;
order table.update(c id, c row);

}

Pa
ra

lle
liz

e
th

is
lo

op

(a) Simplified transaction source code.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

	
	
	
	
	
	
	

�
�
�
�
�
�
�

Ti
m

e

� �� ���� ��

ol_total

�� �� �� ���� ! "#$% &'()

(b) Transaction programmer’s expected exe-
cution with TLS.

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Ti
m

e

(c) Transaction programmer’s expected exe-
cution with TLS—outer loop.

Figure 3.2: The DELIVERY transaction.

34

// Stock Level: examine all items ordered in the last 20

// orders to see if stock is running low.

low stock = 0;

d row = district table.select(w id, d id);

found items = empty set();

cursor = orderline table.new cursor(w id, d id,

o id - 20);
do {

ol row = cursor.data();
item id = ol row.id;
if(!found items.contains(item id)) {

found items.insert(item id);

s row = stock table.select(w id, item id);
if(s row.quantity < threshold) {

low stock++;
}

}
} while(cursor = cursor.next());

Pa
ra

lle
liz

e
th

is
lo

op

(a) Simplified transaction source code.

Figure 3.3: The STOCK LEVEL transaction.

wish to demonstrate the performance gains possible with minimal effort by the transaction
programmer. The violations caused by the cursor dependence causes the execution of the
rest of the epochs to be somewhat skewed in time. This skew ensures that the infrequent
dependences on the found items set and low stock variable which occur later in the
epoch are executed in-order, which prevents them from causing additional violations.

3.1.4 PAYMENT

The PAYMENT transaction (Figure 3.4(a)) is a short transaction which records a payment
made by a customer. This transaction contains no loops which cover a significant fraction
of execution time. Since the last two operations on the DBMS are independent (updating
the customer table and inserting into the history table) we run them as two parallel

35

ol row = cursor.data();
item id = ol row.id;
if(!found items.contains(item id)) {

found items.insert(item id);

s row = stock table.select(w id, item id);
if(s row.quantity < threshold) {

low stock++;
}

}

E
po

ch
1

while(cursor = cursor.next()) {
ol row = cursor.data();
item id = ol row.id;
if(!found items.contains(item id)) {

found items.insert(item id);

s row = stock table.select(w id, item id);
if(s row.quantity < threshold) {

low stock++;
}

}
}

E
po

ch
s

2.
..n

(b) Do-while loop transformed into while loop to minimize impact of cursor dependence.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
	
	

�
�
��

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��

�
�

�
�
�

!
!
!

"
"
"

#
#
#

$
$
$

%
%
%

&
&
&

'
'
'

(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)

*
*
*

+
+
+

Ti
m

e

,
,
,
,
,
,
,

-
-
-
-
-
-
-

.
.
.
.
.
.
.

/
/
/
/
/
/
/

0
0
0
0
0
0
0

1
1
1
1
1
1
1

2
2
2
2
2
2
2

3
3
3
3
3
3
3

infrequent dependence in
found_items set

infrequent dependence
due to low_stock

4
4
4
4
4
4
4

5
5
5
5
5
5
5

6
6
6
6
6
6
6

7
7
7
7
7
7
7

cursor

(c) Transaction programmer’s expected execution with TLS.

Figure 3.3: Continued.

36

threads, as shown in Figure 3.4(b). These two threads cover only 30% of the transaction’s
execution, which means that they should not offer a large performance gain.

3.1.5 ORDER STATUS

The ORDER STATUS transaction (Figure 3.5(a)) looks up the status of each item ordered
by a customer. This transaction contains two loops which cover 38% of the transaction’s
execution. The majority of the work done in each loop iteration is a cursor lookup and
increment, which forms a dependent chain. Both of these loops are dominated by a depen-
dence on the cursor used in them, so even if run in parallel they will execute in a serialized
fashion (shown in Figure 3.5(b)).

3.2 The Database System Programmer: Eliminating De-
pendences in the DBMS

While our transaction-level analysis concludes that TLS parallelization is promising for
three of the five TPC-C transactions, the implementation details of query execution algo-
rithms and access methods in the DBMS reveal more potentially performance-limiting data
dependences: read/write accesses to locks, latches, the buffer pool, logging, and B-tree in-
dexes will cause data dependences between epochs. To eliminate these data dependences
we propose and analyze three techniques:

1. Partition data structures. A memory allocation operation (malloc) typically
uses a single pool of memory, hence parallel accesses to this shared pool will con-
flict. Using a separate pool of memory for each concurrent epoch avoids such con-
flicts. Many other dependences are also due to multiple epochs sharing a resource
in memory—these dependences can be avoided by partitioning that resource.

2. Escape speculation for isolated undoable operations (IUOs). This mechanism
was introduced in Section 2.5. The TLS mechanism ensures that all attempts to
fetch and pin a page (pin page) in the buffer pool by one epoch complete be-
fore any invocations of pin page in the next epoch begin, due to conflicts in the
data structures which maintain LRU information. We prefer to allow pin page
operations to complete in any order. An epoch can simply call pin page with
speculation escaped: if the epoch is violated then the fetched page just remains in
the buffer pool, and unpin page can be invoked to release the page. This works
because the pin page operation is undoable and isolated.

37

// Payment: Record customer’s payment.

w row = warehouse table.select(w id);

w row.ytd += payment amount;

warehouse table.update(w id, w row);

d row = district table.select(w id, d id);

d row.ytd += payment amount;

district table.update(w id, d id, d row);

if(byname) {
// Customer specified by name. Find all of the
// customers who’s name matches, and pick the one
// in the middle:
namecnt = count rows(customer table.select(customer name));
cursor = customer table.new cursor(customer name);
for(i=1...namecnt/2) {

cursor = cursor.next();
}
c row = cursor.data();

} else {
c row = customer table.select(c id);

}
c row.balance += payment amount;
customer table.update(c id, c row);

}
Thread 1

h row.date = date();
h row.amount = payment amount;
history table.insert(w id, d id, c id, h row);

}
Thread 2

(a) Simplified transaction source code.

��
��
��
��
�

��
��
��
��
�

���
�

Ti
m

e

(b) Transaction programmer’s expected execution with TLS.

Figure 3.4: The PAYMENT transaction.

38

// Order Status: Find the last order by the customer and

// return the status of each item in the order.

if(byname) {
// Customer specified by name. Find all of the
// customers who’s name matches, and pick the one
// in the middle:
namecnt = count rows(customer table.select(customer name));
cursor = customer table.new cursor(customer name);
for(i=1...namecnt/2) {

cursor = cursor.next();
}
c row = cursor.data();
c id = c row.id;

} else {
c row = customer table.select(c id);

}

cursor = order table.new cursor(c id)
do {

o row = cursor.data();
o id = o row.id;

} while(cursor = cursor.next());

Pa

ra
lle

liz
e

th
is

lo
op

i = 0;

cursor = order line table.new cursor(o id);

do {
results[i++] = cursor.data();

} while(cursor = cursor.next());

Pa

ra
lle

liz
e

th
is

lo
op

(a) Simplified transaction source code.

Figure 3.5: The ORDER STATUS transaction.

39

��
�
��
�

��
�
��
�

��
�
��
�

���
�

��	
	

��
��
��
�

��
Ti

m
e ��

�
��
�

��
�
��
�

��
�
��
�

cursor

���
�

���
�

���
�

cursor��
�
��
�

��
�
��
�

���
�

 !
!""

""

##
##

$$%
%

(b) Transaction programmer’s expected execution with TLS.

Figure 3.5: Continued.

3. Postpone operations until the end of the epoch. Techniques for postponing oper-
ations were introduced in Section 2.4. When a log entry is generated, it is assigned
a log sequence number and increments a global variable. This log sequence number
counter forms a dependence between these two epochs. Our key insight was that
an epoch never uses log sequence numbers—it only generates them. We can gen-
erate log entries during the execution of the epoch, and assign all of the sequence
numbers at the end of the epoch after all previous epochs have completed, and just
before committing the epoch (which makes the new log entries visible to the rest
of the system). When an operation has no impact on the execution of the epoch,
and instead only affects other transactions then it can be delayed until the end of the
epoch.

In the next section we explore the major subsystems of the DBMS, and show how these
three techniques can be used to eliminate the critical dependences we encountered while
tuning the TPC-C transactions.

3.3 Performance Tuning the DBMS
When we first parallelized the TPC-C transactions we encountered many dependences
throughout the DBMS code. Some dependences are easy to eliminate through a local
change to the source code: for example, false sharing [22] dependences (see Section 3.3.6)
can be eliminated by inserting padding in data structures so that independent variables do

40

not share a single cache line. Other data dependences are inherent in the basic design of the
database system, such as the creation of log sequence numbers or the locking subsystem.
In the following sections we tour the database system’s major components, and explain
how the database system programmer can eliminate or avoid dependences on the common
path in order to increase concurrency for TLS parallelization.

3.3.1 Resource Management
A large portion of every DBMS is concerned with the management of resources, including
latches, locks, cursors, private and shared memory, and pages in the buffer pool. All of
these resources can be acquired and released. Dependences between epochs occur when
two epochs try to acquire the same resource, or when the data structures which track
unused resources are shared between epochs. In the next sections we examine each of
these resources and develop strategies for executing them in parallel.

Latches

The database system uses latches2 extensively to protect data structures, and as a building
block for locks. Latches are required for correct execution when multiple transactions are
executing concurrently, and ensure that only one thread is accessing a given shared data
structure at any time. Latches are typically held only briefly—in Section 3.3.1 we discuss
locks, which offer concurrency control for database entities.

Latches form a dependence between epochs because of how they are implemented:
a typical implementation uses a read-test-write cycle on a memory location (which may
be implemented as a test-and-set, load-linked/store-conditional, atomic increment, etc.).
This read-test-write cycle can cause a data dependence violation between epochs (Fig-
ure 3.6(a)).

The TLS mechanism already ensures that any data protected by the latch is accessed
in a serializable order within a transaction, namely the original sequential program order.
However, latches do ensure that mutual exclusion is maintained between transactions, and
TLS does not perform that function. So we cannot simply discard the latches; we must
instead ensure that they preserve mutual exclusion between transactions without causing
violations between the epochs within a transaction.

There are two operations performed on a latch: acquire and release. Let us first con-
sider release operations. When a latch is released, the latch and the data it protects become
available to other transactions. Since the modifications made by an epoch are buffered

2The term latch is from the field of databases. A latch is equivalent to a mutex in operating systems
parlance.

41

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Release
...work...
Acquire Violation! Acquire

(a) Latch operations create dependences.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

...work...

Acquire
...work...
(enqueue release)

Commit work

...work...
(enqueue release){Large critical section oldest

oldest

latch_cnt++

latch_cnt−−

latch_cnt++

latch_cnt−−

latch_cnt++

Commit work

Release
latch_cnt−−

(b) Aggressive latch acquire. The long critical section that results may cause performance issues.

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Sm
al

l c
rit

ic
al

 se
ct

io
ns

Acquire
Commit work
Release

Acquire
Commit work
Release

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Acquire
...work...
Release

...work...
(enqueue acquire)

(enqueue release)
...work...
(enqueue acquire)

(enqueue release)
{

{
{

oldest

oldest

(c) Lazy latch acquire. Delaying the acquire shrinks the critical section.

Figure 3.6: Adapting latches for use under TLS execution.

until it commits, we must postpone all release operations until after the epoch has fully
committed (the post-commit region of the epoch from Figure 2.6(b)). Release operations
can be postponed by building a list of pending release operations as the epoch executes,
and then performing all of the releases in the pending list when the epoch commits. If the
epoch is violated, we simply reset this list.

Next we consider acquire operations. During normal execution, when a latch is ac-
quired it prevents other transactions in the system from changing the associated data.
A naı̈ve approach to handling a latch acquire under TLS is to perform the acquire non-
speculatively at the point when it is encountered. This can be implemented by a recursive
latch, which counts the number of acquires and releases, and makes the latch available to
other transactions only when the count reaches zero. This aggressive approach, shown in

42

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Acquire 2
Release 2

Release 1
Acquire 1

Transaction 1 Transaction 2

Acquire 1
Release 1

Acquire 2
Release 2

Ti
m

e

(a) Latch operations before re-ordering.
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Release 2Release 1
Release 2 Release 1

Transaction 1 Transaction 2

Acquire 1Acquire 2
Acquire 1 Acquire 2

Ti
m

e

Deadlock

(b) Latch operations after re-ordering.

Figure 3.7: Delaying latch release operations until after a epoch commits can introduce
deadlock.

Figure 3.6(b), has a major drawback: since latch releases have been delayed until the end
of the epoch, we have increased the overall size of the critical section. In addition, since
we have parallel overlap between multiple critical sections in a single transaction, the latch
may be held for an extended period of time.

To avoid long critical sections, we can also postpone acquires to the post-homefree re-
gion of the epoch as shown in Figure 3.6(c). This lazy approach has three parts: (i) all latch
acquires are performed at the end of the epoch, (ii) the buffered speculative modifications
are committed, and finally (iii) all latch releases are performed. This method results in
much smaller critical sections, even when acquire and release operations for a given latch
are encountered repeatedly during an epoch. A potential disadvantage of this approach is
that if another transaction changes the protected data, the epoch will violate and restart.3

Both the lazy and aggressive latch schemes have a potential problem: they re-order the
latch release operations relative to the latch acquire operations as specified in the original
program. If multiple latches are acquired by a single epoch, a deadlock may emerge that is
not possible in the sequential execution, as shown in Figure 3.7. Although such deadlocks
should be rare, there are two strategies to remedy them: avoidance and recovery. Deadlock
can be avoided using two traditional techniques: (i) perform all latch acquires in a single
atomic operation, or (ii) enforce a global latch acquire ordering [54], such as by sorting the
acquire queue by latch address. If avoidance is not possible, we can instead recover from
deadlock once detected (perhaps through a time-out) by violating and restarting one of the
deadlocked epochs. Forward progress is guaranteed because there is always at least one

3This is similar to optimistic concurrency control [29], except that the optimism is at the granularity of
an epoch instead of a transaction. A latch is held optimistically only for the duration of the epoch (instead
of for the entire transaction), and when a conflict occurs only the epoch rewinds (instead of rewinding the
entire transaction).

43

epoch (the oldest) which executes non-speculatively. The key insight is that restarting an
epoch is much cheaper than restarting the entire transaction since there are many epochs
per transaction.

Locks

Locks are a more sophisticated form of concurrency control than latches. Instead of pro-
viding simple mutual exclusion, locks allow multiple threads into a critical section at the
same time if the lock types are compatible: multiple readers are allowed into a critical sec-
tion at a time, while writers have exclusive access. Locks also provide deadlock detection,
since multiple locks can be held at once and they are meant to be held for longer periods
of time than latches.

We start by parallelizing locks using a lazy locking scheme, similar to the lazy latch
scheme in Section 3.3.1. When an acquire operation is encountered in speculative code,
we cannot simply delay the entire acquire operation until the post-homefree region of the
epoch, since a handle must be returned. Instead, we return an indirect handle, which is a
pointer to an empty handle that is filled in at the end of the epoch when the lock acquire is
actually performed.

To summarize our scheme so far, at the end of an epoch all of the lock acquires en-
countered in that epoch are performed, the changes made by the epoch are committed, and
then all of the lock releases encountered in the epoch are performed. This scheme will re-
sult in correct execution, but holding all of the locks used by an epoch simultaneously can
be a performance bottleneck in the database, particularly for the locks used for searching
B-trees. We avoid this problem by recongizing that we can treat read-only and read/write
locks differently: at the end of the epoch we (i) acquire and release all read-only locks in
the order that the acquire and release operations were encountered during the epoch, we
then (ii) perform all read/write lock acquires that were encountered during the epoch, (iii)
commit the epoch’s changes to memory, and then (iv) perform all read/write lock releases
that were encountered during the epoch. Since a B-tree search involves briefly acquiring
a large number of read-only locks, this ensures that those locks are held for minimal time;
we need not hold the read-only locks during the epoch commit because the system view of
an epoch commit is similar to a transaction commit: it either succeeds or fails. By acquir-
ing and releasing the locks we ensure that the epoch commit does not occur in the middle
of a non-read-only critical section in some other transaction.4 If latches were labeled as
read-only or read/write then this optimization could also be applied to latches in addition

4Our method of executing lock acquires may also possibly cause a deadlock situation. Similarly to
latches, we can recover from a detected deadlock situation by violating and restarting one of the deadlocked
epochs.

44

to locks.

Cursor Management

Cursors are data structures used to index into and traverse B-trees. Since they are used
quite frequently and their creation is expensive, they are maintained in pre-allocated stacks.
Unused cursors are stored in a free cursor stack. A dependence between epochs is created
when one epoch puts a cursor onto the free cursor stack and the next epoch removes that
cursor from the stack, since both operations manipulate the free pointer. Preserving this
dependence is not required for correct execution: the second epoch did not need to get
the exact same cursor, but instead wanted to get any cursor from the free stack. We can
eliminate this dependence by partitioning the stack, and hence maintaining a separate stack
for each processor. This implies that more cursors will have to be allocated, but that each
cursor will only be used by the CPU which allocated it, increasing cache locality and
eliminating dependences between epochs. An alternative technique would be to escape
speculation when allocating cursors, as described in Section 2.5.

Memory Allocation

The free cursor pool mentioned above is just a special case of memory allocation. The
general purpose memory allocators (such as malloc) in the database system introduce
dependences between epochs when they update their internal data structures. To avoid
these dependences, we must substitute an allocator designed with TLS in mind: in the
common case, such an allocator should not communicate between CPUs. Fortunately,
this is also a requirement of highly scalable parallel applications. The Hoard memory
allocator [8] is one such allocator, which maintains separate free lists for each CPU, so
that most requests for memory do not communicate. An alternative technique would be to
escape speculation when allocating memory, as described in Section 2.5.

To avoid dependences caused by free operations we delay the execution of free
operations until the post-commit region of the epoch.

Buffer Pool Management

When either a transaction or the DBMS itself need to read a page of the database, they
request that page by invoking the pin page operation on the buffer pool. This operation
reads the requested page into memory (if it is not already there), pins it in memory, and
returns a pointer to it. Once finished with the page, it is released by the unpin page
operation.

45

Conceptually, the buffer pool is very similar to the memory allocator, since it manages
memory. However, the buffer pool is different because users explicitly name the memory
they want, and different pin page operations can pin the same page. Therefore, simply
partitioning the page pool between epochs will not suffice. Instead, we exploit the fact
that the order in which pin page operations take place does not matter. If a speculative
epoch fetches the wrong page from disk, we simply must return that page to the free
pool. We implement this by executing the pin page function non-speculatively, so that
it really does get the page and pin it in a way which is visible to the entire system. If
the epoch which called pin page is later violated, we can undo this action by calling
unpin page. (This is similar to the compensating transactions used in Sagas [10].)

To execute the pin page function non-speculatively we escape speculation, as de-
scribed in Section 2.5. Relaxing ordering constraints simplifies coding: instead of re-
designing the buffer pool to be amenable to TLS execution, we place a simple wrapper
around the allocation function. However, this method requires that the pin page func-
tion be an isolated undoable operation. The pin page function is undoable: calling
unpin page undoes the call to pin page. The pin page is also isolated: when it
is undone via unpin page no other transaction or earlier epoch is forced to rewind or
otherwise alter its execution.

Similar reasoning shows that the cursor allocation function and malloc are also iso-
lated undoable operations, and so this code template could be applied to these functions
instead of partitioning their free pools. The lock acquire and latch acquire func-
tions also look like isolated undoable operations—but as we found above in Section 3.3.1,
without great care speculatively executing these functions out of original sequential order
can cause performance problems (by increasing critical section sizes) or create deadlock
conditions (by re-ordering lock and latch acquires).

The unpin page operation for the buffer pool is not undoable, since an attempt
to undo it with a pin page operation may cause the page to be mapped at a different
address. Because of this, we treat it similarly to a lock or latch release operation, and
enqueue it to be executed in the post-commit region of the epoch.

3.3.2 The Log

Every time the database is modified the changes are appended to the log. For recovery
to work properly (using ARIES [38]) each log entry must have a log sequence number.
Unfortunately, incrementing the log sequence number causes a data dependence between
epochs. To avoid this dependence, we modify the logging code to append log entries for
speculative epochs to a per-CPU buffer. In the post-homefree region of the epoch we loop
over this buffer to assign log sequence numbers to log entries, then append the entire buffer

46

to the log.

3.3.3 B-Trees

B-trees are used extensively in the database system to index the database. The primary op-
erations involving the B-tree are reading records, updating existing records, and inserting
new records. Neither reading nor updating records modify the B-tree, and hence will not
cause dependences between epochs. In contrast, insert operations modify the leaf pages
of the B-tree. Therefore if the changes made by two epochs happen to fall on the same
page then the update of the free space count for that page can cause a violation. If such
a violation happens frequently then it may be possible to change the B-tree comparison
function so that subsequent inserts do not fall on the same leaf page.

One strength of TLS parallelization is that infrequent data dependences need not be
addressed, since the TLS mechanism will ensure correctness in such cases. An example
of such an infrequent data dependence is a B-tree page split. Page splits can also cause
many data dependences, but since they happen infrequently (by design), we can afford
to just ignore them. In the rare cases when page splits occur, the TLS mechanism will
ensure their correct sequential execution. The TLS mechanism provides a valuable fall-
back, allowing the programmer to avoid the effort of designing a algorithm for parallel
page-splits.

The B-tree code in BerkeleyDB contains a simple performance optimization: when a
search is requested, it begins the search by inspecting the page located by the previous
search through a “last page referenced” pointer (this assumes some degree of locality in
accesses). Accesses to this pointer cause a data dependence between epochs. Since the
resulting violations can hurt performance, we decided to disable this “last page” optimiza-
tion for TLS execution. Alternatively, one could retain this optimization without causing
violations by maintaining a separate “last page reference” pointer per CPU.

3.3.4 Statistics Gathering

The database system gathers statistics on its internal operations by incrementing counters.
Every time a counter is incremented in two consecutive epochs a dependence is created.
Since these counters are frequently updated and rarely read, they are parallelized by creat-
ing a private copy of each counter per CPU. When the counter is read the sum of all of the
private values is computed.

47

3.3.5 Error Checks
This work indicates that error checking code in the database system can occasionally cause
dependences between epochs. The most important of these is a dependence caused by ref-
erence counting for cursors—a mechanism in the DBMS which tracks how many cursors
are currently in use by a transaction, and ensures that none are in use when the transaction
commits. Since this code is solely for debugging a transaction implementation, it can be
safely removed once the transaction has been thoroughly tested.

3.3.6 False Sharing
To minimize overhead, the TLS mechanism tracks data dependences at the granularity of
a cache-line. However, accesses to different variables which happen to be allocated on the
same cache line can cause data dependence violations due to false sharing. This prob-
lem can be remedied by inserting padding to ensure that variables which are frequently-
accessed by different CPUs are not allocated on the same cache line.5

3.4 Experimental Results
In this section we evaluate the ease with which a database system programmer can paral-
lelize transactions, and show the resulting performance gains.

3.4.1 Benchmark Infrastructure
Our experimental workload is composed of the five transactions from TPC-C (NEW OR-
DER, DELIVERY, STOCK LEVEL, PAYMENT and ORDER STATUS).6 We have parallelized
both the inner and outer loop of the DELIVERY transaction, and denote the outer loop
variant as DELIVERY OUTER. We have also modified the input to the NEW ORDER trans-
action to simulate a larger order of between 50 and 150 items (instead of the default 5
to 15 items), and denote that variant as NEW ORDER 150. All transactions are built on
top of BerkeleyDB 4.1.25. Evaluations of techniques to increase concurrency in database

5Insertion of padding works for most data structures, but is not appropriate for data structures which
mirror disk-resident data, such as B-tree page headers. In this case, changes will have to be made to the
B-tree data structure itself (see Section 3.3.3).

6Our workload was written to match the TPC-C spec as closely as possible, but has not been validated.
The results we report in this thesis are speedup results from a simulator and not TPM-C results from an actual
system. In addition, we omit the terminal I/O, query planning, and wait-time portions of the benchmark.
Because of this, the performance numbers in this thesis should not be treated as actual TPM-C results, but
instead should be treated as representative transactions.

48

systems typically configure TPC-C to use multiple warehouses, since transactions would
quickly become lock-bound with only one warehouse. In contrast, our technique is able
to extract concurrency from within a single transaction, and so we configure TPC-C with
only a single warehouse. A normal TPC-C run executes a concurrent mix of transac-
tions and measures throughput; since we are concerned with latency we run the individual
transactions one at a time. TLS improves the performance of CPU bound transactions: if
a transaction spends the majority of its execution time awaiting buffer pool requests then
the transaction is disk bound and not CPU bound. To ensure we are studying CPU bound
transactions, we configure the DBMS with a large (100MB) buffer pool.7

The parameters for each transaction are chosen according to the TPC-C run rules using
the Unix random function, and each experiment uses the same seed for repeatability. The
benchmark executes as follows: (i) start the DBMS; (ii) execute 10 transactions to warm
up the buffer pool; (iii) start timing; (iv) execute 100 transactions; (v) stop timing.

All code is compiled using gcc 2.95.3 with O3 optimization on a SGI MIPS-based
machine. The BerkeleyDB database system is compiled as a shared library, which is linked
with the benchmark that contains the transaction code.

To apply TLS to this benchmark we started with the unaltered transaction, marked the
main loop within it as parallel, and executed it on a simulated system with TLS support.
The system reports back the load and store program counters of the instructions which
caused speculation to fail, and we use that information to determine the cause (in the
source code) of the most critical performance bottleneck. We then apply the appropriate
optimization from Section 3.3 and repeat.

3.4.2 Simulation Infrastructure
We perform our evaluation using a detailed, trace-driven simulation of a chip-multiprocessor
composed of 4-way issue, out-of-order, superscalar processors similar to the MIPS R14000 [66],
but modernized to have a 128-entry reorder buffer. Each processor has its own physically
private data and instruction caches, connected to a unified second level cache by a cross-
bar switch. Register renaming, the reorder buffer, branch prediction (GShare [34] with
16KB, 8 history bits), instruction fetching, branching penalties, and the memory hierarchy
(including bandwidth and contention) are all modeled, and are parameterized as shown
in Table 3.1. The TLS mechanism is implemented using the hardware design which is
described later in Chapter 4, which includes hardware support for large epochs and 8 sub-
epochs per epoch. Latencies due to disk accesses are not modeled, and hence these results
are most readily applicable to situations where the database’s working set fits into main
memory.

7This is roughly the size of the entire dataset for a single warehouse.

49

Table 3.1: Simulated memory system parameters.

Pipeline Parameters
Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters
Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 4-way set-assoc,2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Speculative Victim Cache 64 entry
Miss Handlers 128 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency 10 cycles
to Secondary Cache
Minimum Miss Latency 75 cycles
to Local Memory
Main Memory Bandwidth 1 access per 20 cycles

The simulator used to generate these results is a trace driven simulator, which means
that the instruction stream of a sequential run is used to drive a parallel timing simulation.
Trace driven simulation allows simulation results to be deterministic and allows us to
model oracle hardware, but also means that accurately measuring interactions between
parallel speculative threads is more challenging. For example, the wrong code paths due
to mis-speculation (both due to TLS and due to branch mis-speculations) are simulated
by executing the correct path twice, which may slightly underestimate instruction cache
misses. Recovery code (such as code executed to undo mis-speculated page get or
malloc calls) invoked on a violation is currently not simulated—these functions should
take very little time to execute due to the small amount of work they must perform. When
a violation is detected while speculation is escaped the epoch restarts immediately, instead

50

Table 3.2: Benchmark statistics.

Sequential Average Epoch Stats
Benchmark Exec. Time Coverage Size Spec. Insts. Threads per

(Mcycles) (Dyn. Instrs.) per Epoch Transaction
NEW ORDER 62 78% 62k 35k 9.7
NEW ORDER 150 509 94% 61k 35k 99.6
DELIVERY 374 63% 33k 20k 10.0
DELIVERY OUTER 374 99% 490k 327k 10.0
STOCK LEVEL 253 98% 17k 10k 191.7
PAYMENT 26 30% 52k 32k 2.0
ORDER STATUS 17 38% 8k 4k 12.7

of delaying the violation until speculation resumes.

3.4.3 High Level Benchmark Characterization

We start by characterizing the benchmarks, so we can better understand them. As a start-
ing point for comparison, we run our original sequential benchmark, which shows the
execution time with no TLS instructions or any other software transformations running on
one CPU of the machine (which is configured with 4 CPUs, cache line replication, and
sub-epoch support enabled). This SEQUENTIAL experiment takes between 17 and 509
million cycles (Table 3.2) to execute, but this time is normalized to 100 in Figure 3.8.
(Note that the large percentage of Idle is caused by three of the four CPUs idling in a se-
quential execution.) When we transform the software to support TLS we introduce some
software overheads which are due to new instructions used to manage epochs, and also
due to the changes to the DBMS we made to parallelize it. The TLS-SEQ experiment
in Figure 3.8 shows the performance of this parallelized executable running on a single
CPU—the additional software overhead is reasonable, varying from -5% to 11% (nega-
tive overheads are due to our added code inadvertently improving the performance of the
compiler optimizer).

When we apply TLS with our BASELINE hardware configuration (described further in
Chapter 4, with 4 CPUs, 8 sub-epochs per epoch, 5000 speculative instructions per sub-
epoch) we see a significant performance improvement for three of the five transactions,
with a 46%–66% reduction in execution time. The PAYMENT and ORDER STATUS trans-
actions do not benefit from TLS: as we saw in Section 3.1 the PAYMENT contains no loops
worth parallelizing, and the threads we chose were limited by a dependence in the locking

51

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

3
TL

S-
Se

q
54

*B
as

el
in

e
51

No
 S

pe
cu

la
tio

n

(a) NEW ORDER

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

2
TL

S-
Se

q
38

*B
as

el
in

e
35

No
 S

pe
cu

la
tio

n

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

3
TL

S-
Se

q
68

*B
as

el
in

e
60

No
 S

pe
cu

la
tio

n

(c) DELIVERY

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
95

TL
S-

Se
q

34
*B

as
el

in
e

33
No

 S
pe

cu
la

tio
n

(d) DELIVERY OUTER

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

8
TL

S-
Se

q
47

*B
as

el
in

e
36

No
 S

pe
cu

la
tio

n

(e) STOCK LEVEL

Figure 3.8: Overall performance of optimized benchmark on 4 CPUs.

52

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

5
TL

S-
Se

q
10

2
*B

as
el

in
e

10
0

No
 S

pe
cu

la
tio

n

(f) PAYMENT

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
11

1
TL

S-
Se

q
99

*B
as

el
in

e
87

No
 S

pe
cu

la
tio

n

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(g) ORDER STATUS

Bar Explanation
Sequential No modifications or TLS code added.
TLS-Seq Optimized for TLS, but run on a single CPU.
Baseline Execution on hardware described in this thesis.
No Speculation Upper bound—modified hardware to treat all speculative writes as

non-speculative.

Figure 3.8: Continued.

code which did not affect the other transactions; the main loop in ORDER STATUS contains
an unavoidable dependence on a cursor operation.

Is it possible to do better? In the NO SPECULATION experiment we show the perfor-
mance if the same program is run purely in parallel, incorrectly treating all speculative
memory accesses as non-speculative (and hence ignoring all data dependences between
epochs)—this is an upper bound on performance, since it shows what would happen if
speculation never failed and if no cache space was devoted to the storage of speculative
state. This execution does not show linear speedup due to the non-parallelized portions of
execution (Amdahl’s law), and due to a loss of locality and communication costs due to
spreading of execution over four caches. We find that for NEW ORDER, NEW ORDER 150
and DELIVERY OUTER we are very close to this ideal, and further optimization is not
worthwhile. For DELIVERY further improvements are limited by an output dependence in

53

Table 3.3: Explanation of graph breakdown.

Category Explanation
Idle Not enough threads were available to keep the CPUs busy.
Failed CPU executed code which was later undone due to a violation (includes all time

spent executing failed code.)
Latch Stall Stalled awaiting latch; latch is used when escaping speculation.
Cache Miss Stalled on a cache miss.
Busy CPU was busy executing code.

the ORDER LINE table. The STOCK LEVEL transaction is limited by dependences on the
cursor used to scan the ORDER LINE table.

3.4.4 Scaling Intra-Transaction Parallelism
In Figure 3.9 we see the performance of the fully optimized transactions as the number of
CPUs is varied. The SEQUENTIAL bar represents the unmodified benchmark running on
a single core of an 8 core chip multiprocessor, while the 2 CPU, 4 CPU and 8 CPU bars
represent the execution of full TLS-optimized executables running on 2, 4 and 8 CPUs.
Large improvements in transaction latency can be obtained by using 2 or 4 CPUs, although
the additional benefits of using 8 CPUs are small.

Each bar is divideded into subdivisions which show what each CPU is doing for each
cycle of execution. The subdivisions are explained in Table 3.3. In Figure 3.9 we have
normalized all bars to the 8 CPU case so that the subdivisions of each bar can be directly
compared. This means that the SEQUENTIAL breakdown shows one CPU executing and
seven CPUs idling, the 2 CPU breakdown shows two CPUs executing and six CPUs idling,
etc.

The NEW ORDER, NEW ORDER 150 and DELIVERY OUTER bars show that very lit-
tle time was spent on failed speculation—this means that our performance tuning was suc-
cessful at eliminating performance-critical data dependences for those transactions. The
DELIVERY transaction has some failed speculation due to a dependence in updating the
ORDER LINE table, and the STOCK LEVEL transaction has failed speculation due to a
dependence in the cursor used to scan the ORDER LINE table. As the number of CPUs
increases there is a nominal increase in both failed speculation and time spent awaiting the
latch used to serialize isolated undoable operations: as more epochs are executed concur-
rently, contention increases for both shared data and the latch. As the number of CPUs
increases there is also an increase in time spent awaiting cache misses: spreading the exe-

54

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
70

2
CP

Us
54

*4
 C

PU
s

47
8

CP
Us

(a) NEW ORDER

|0

|100

10
0

Se
qu

en
tia

l
61

2
CP

Us
38

*4
 C

PU
s

30
8

CP
Us

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

|0

|100

10
0

Se
qu

en
tia

l
76

2
CP

Us
68

*4
 C

PU
s

64
8

CP
Us

(c) DELIVERY

|0

|100

10
0

Se
qu

en
tia

l
56

2
CP

Us
34

*4
 C

PU
s

26
8

CP
Us

(d) DELIVERY OUTER

|0

|100

10
0

Se
qu

en
tia

l
71

2
CP

Us
47

*4
 C

PU
s

45
8

CP
Us

(e) STOCK LEVEL

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
99

2
CP

Us
10

0
*4

 C
PU

s
10

0
8

CP
Us

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(f) PAYMENT

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
97

2
CP

Us
99

*4
 C

PU
s

11
0

8
CP

Us

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(g) ORDER STATUS

Figure 3.9: Performance of optimized benchmark while varying the number of CPUs.

55

cution of the transaction over more CPUs decreases cache locality, since the execution is
partitioned over more level 1 caches. We also see a much larger increase in the number
of cache misses for the STOCK LEVEL transaction—a large amount of cache state can be
invalidated when speculation fails, leading to increased cache misses. The negative ef-
fects of cache misses overwhelm any parallel overlap in the ORDER STATUS transaction,
resulting in a slowdown as the number of CPUs increases.

The dominant component of the bars in NEW ORDER and DELIVERY is idle time, for
three reasons. First, in the SEQUENTIAL, 2 CPU and 4 CPU case we show the unused
CPUs as idle to allow direct comparison with the other bars. Second, the loop that we
parallelized in the transaction only covers 78% of the transaction’s execution time for
NEW ORDER, and 63% for DELIVERY: during the remaining time only one CPU is in
use. Third, TPC-C specifies that both transactions will deal with orders which contain
between 5 and 15 items, which means that on average each transaction will have only 10
epochs—this means that as we execute the last epochs in the loop load imbalance will
leave CPUs idling. The effects of all three of these issues are magnified as more CPUs
are added. To see the impact of reducing this idle time, we modified the invocation of the
NEW ORDER transaction so that each order contains between 50 and 150 items (which is
the NEW ORDER 150 transaction). We found that this modification decreases the amount
of time spent idling, and does not significantly affect the trends in cache usage or failed
speculation.

Figure 3.9 shows a performance trade-off: devoting more CPUs to executing a single
transaction improves performance, but results in increased contention, a decrease in cache
locality, and/or diminishing returns due to a lack of available parallelism, thus resulting
in diminishing returns as more CPUs are added. One of the strengths of using TLS for
intra-transaction parallelism is that it can be enabled or disabled at any time, and the num-
ber of CPUs can be dynamically tuned. The database system’s scheduler can dynamically
increase the number of CPUs available to a transaction if CPUs are idling, or to speed up
a transaction which holds heavily contended locks. If many epochs are being violated,
and thus the intra-transaction parallelism is providing little performance benefit, then the
scheduler could reduce the number of CPUs available to the transaction. If the transaction
compiler simply emitted a TLS parallel version of all loops in transactions then the sched-
uler could use sampling to choose loops to parallelize: the scheduler could periodically
enable TLS for loops which are not already running in parallel, and periodically disable
TLS for loops which are running in parallel. If the change improves performance then the
scheduler can make it permanent.

56

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

5
No

 O
pt

im
iza

tio
ns

10
9

La
zy

 L
at

ch
10

5
La

zy
 L

oc
ks

10
7

IU
O

 M
al

lo
c/

Fr
ee

74
IU

O
 B

uf
fe

r P
oo

l
73

Sp
lit

Cu
rs

or
 Q

ue
ue

57
Re

m
ov

e
Er

ro
r C

he
ck

54
Fa

lse
 S

ha
rin

g
54

Re
m

ov
e

Pe
rf

O
pt

54
De

la
y

Lo
g

En
tri

es
54

Sp
lit

Lo
ck

er
 ID

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(a) NEW ORDER

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

6
No

 O
pt

im
iza

tio
ns

11
4

La
zy

 L
at

ch
11

0
La

zy
 L

oc
ks

11
0

IU
O

 M
al

lo
c/

Fr
ee

59
IU

O
 B

uf
fe

r P
oo

l
56

Sp
lit

Cu
rs

or
 Q

ue
ue

48
Re

m
ov

e
Er

ro
r C

he
ck

39
Fa

lse
 S

ha
rin

g
39

Re
m

ov
e

Pe
rf

O
pt

40
De

la
y

Lo
g

En
tri

es
40

Sp
lit

Lo
ck

er
 ID

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

Figure 3.10: Performance impact on the TPC-C transactions of adding each optimization
one-by-one on a four CPU machine.

3.4.5 Impact of Each Optimization

In Figure 3.10 we see the results of the optimization process for the benchmarks which
sped up on a four CPU system. In this experiment the breakdown of the bars is normalized
to a four CPU system, and so 3

4
of the SEQUENTIAL bars is Idle, since three of the four

CPUs are idling during the entire execution. The NO OPTIMIZATIONS bars show what
happens if we parallelize the transaction and make no other optimizations—the existing
data dependences in the DBMS prevent any parallelism from being exploited, and the fact
that we have taken a sequential transaction and run it on four CPUs has reduced cache
locality, causing it to slow down between 5 and 8%.

Consider the NEW ORDER transaction in Figure 3.10(a). The major source of failed
speculation in our newly-parallelized transaction are the reads and writes to latches; hence
we perform the lazy latch optimization described in Section 3.3.1. This optimization fixes
the first performance bottleneck, and exposes the next bottleneck which is in the lock code.
The first optimization also results in a slight slowdown, since the next bottleneck merely
delays detection of failed speculation (as illustrated in Figure 2.3)—hence more execution
has to be rewound.

Once we have eliminated latches as a bottleneck in NEW ORDER, the next bottleneck
exposed is in the locking subsystem. We remove the lock bottleneck by implementing lazy
locks from Section 3.3.1. We continue to remove the bottlenecks one by one: applying the

57

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

8
No

 O
pt

im
iza

tio
ns

96
La

zy
 L

oc
ks

11
2

La
zy

 L
at

ch
10

9
Sp

lit
Cu

rs
or

 Q
ue

ue
11

0
Re

m
ov

e
Er

ro
r C

he
ck

11
0

IU
O

 M
al

lo
c/

Fr
ee

83
IU

O
 B

uf
fe

r P
oo

l
63

Fa
lse

 S
ha

rin
g

66
Re

m
ov

e
Pe

rf
O

pt
69

De
la

y
Lo

g
En

tri
es

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(c) DELIVERY

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

5
No

 O
pt

im
iza

tio
ns

12
7

La
zy

 L
at

ch
13

0
Sp

lit
Cu

rs
or

 Q
ue

ue
12

1
Re

m
ov

e
Er

ro
r C

he
ck

92
La

zy
 L

oc
ks

72
IU

O
 M

al
lo

c/
Fr

ee
35

IU
O

 B
uf

fe
r P

oo
l

34
Fa

lse
 S

ha
rin

g
35

De
la

y
Lo

g
En

tri
es

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(d) DELIVERY OUTER

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
13

7
No

 O
pt

im
iza

tio
ns

14
8

La
zy

 L
at

ch
14

8
La

zy
 L

oc
ks

12
6

Sp
lit

Cu
rs

or
 Q

ue
ue

12
8

IU
O

 M
al

lo
c/

Fr
ee

10
1

IU
O

 B
uf

fe
r P

oo
l

57
Re

m
ov

e
Er

ro
r C

he
ck

40
Fa

lse
 S

ha
rin

g

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(e) STOCK LEVEL

Figure 3.10: Continued.

58

code template from Figure 2.8 to db malloc and the pin page operation, parallelizing
the free cursor pool, removing dependence causing error checks (Section 3.3.5), adding
padding to avoid violations due to false sharing (Section 3.3.6), removing the “last page
referenced” pointer from the B-tree search code (Section 3.3.3), delaying the generation
of log entries until epochs are ready to commit (Section 3.3.2), and parallelizing the as-
signment of locker ids.

It is tempting to look at Figure 3.10(a) and conclude that the most important optimiza-
tion was parallelizing the buffer pool, since adding this optimization caused the execution
time to drop by 32%. However, this is not the case since the impact of the optimiza-
tions is cumulative. If we take the NO OPTIMIZATIONS build and just enable the buffer
pool optimization then the normalized performance is 0.98. Instead, Figure 3.10 implies
that the iterative optimization process which we used works well—as the database sys-
tem programmer removes performance limiting dependences performance gradually im-
proves (and exposes new dependences). Removing dependences decreases the time spent
on failed execution, and improves performance.

Figure 3.10(b) shows the same experiment performed on the larger NEW ORDER 150
transaction. This transaction mirrors the NEW ORDER transaction, except the idling
caused by load imbalance is no longer dominant with more epochs.

Figures 3.10(c), (d) and (e) show the same experiment for the DELIVERY, DELIV-
ERY OUTER, and STOCK LEVEL transactions. The order in which each bottleneck de-
pendence becomes dominant varies from transaction to transaction. Also, not all of the
bottlenecks found in NEW ORDER need to be removed to get the best performance out
of these three transactions—for the STOCK LEVEL transaction performance actually de-
grades from 0.40 to 0.47 when the additional code to eliminate bottlenecks experienced
by NEW ORDER is applied. STOCK LEVEL also shows that applying TLS can hurt perfor-
mance: in the early rounds of optimization the transaction suffers dramatically from the
decreased cache locality introduced by parallel execution, and there is insufficient parallel
overlap to compensate for this effect. Overall, in DELIVERY, DELIVERY OUTER, and
STOCK LEVEL the iterative process works quite well, resulting in significant performance
improvements for each transaction.

We have shown an iterative optimization process in action. When should the iteration
stop? Consider the FAILED segment of the bars in Figure 3.10. Note that eliminating a
dependence avoids a violation, and hence only improves the performance of the FAILED

portion of execution. The database system programmer chooses to stop when any potential
gains in performance outweigh the perceived difficulty of eliminating the next bottleneck
data dependence.

59

3.5 Chapter Summary
• To parallelize a transaction with TLS the transaction programmer only has to choose

epoch boundaries.

• Choosing epoch boundaries can be as simple as choosing an appropriate loop nest.

• The database system programmer optimizes for TLS through an iterative perfor-
mance tuning process.

• Localized changes to the DBMS can remove performance limiting data dependences.

• Our experimental results demonstrate that we can speed up the latency (not just the
throughput) of three of the five transactions in TPC-C by 46–66% by exploiting TLS
on a chip multiprocessor with four CPU cores, or by 29–44% with two cores.

60

Chapter 4

Hardware Support for Large,
Dependent Epochs

In the previous chapters we saw that applying TLS to database transactions is quite worth-
while, and TLS is able to reduce transaction latency by a factor of two on a simulated
4-CPU machine. This success required us to overcome some new challenges that did not
arise in previous studies of smaller programs such as the SPEC [56] benchmarks. In par-
ticular, after breaking up the TPC-C transactions based upon natural sources of parallelism
in the SQL code, the resulting speculative epochs were much larger than in previous stud-
ies (the majority of the TPC-C transactions that we studied had more than 50,000 dynamic
instructions per epoch), and there were far more inter-epoch data dependences (due to in-
ternal database structures—not the SQL code itself) than in previous studies. As a result,
we observed no speedup on a conventional TLS architecture.

There were three aspects to overcoming these challenges so that we could go from no
speedup to significant (e.g., twofold) speedup. First, the baseline TLS hardware needed
to support large epochs and aggressive value forwarding between epochs. Second, the
programmer needs to be able to identify data dependence bottlenecks and eliminate them
through a combination of data dependence profiling feedback and the ability to temporarily
escape speculation. Finally, to avoid wasting useful work when the remaining dependences
still cause speculation to fail, we propose a mechanism for tolerating failed speculation
by using lightweight checkpoints to roll a epoch back to an intermediate point before
speculation failed.

61

4.1 Hardware Support for Large Epochs

TLS allows us to break a program’s sequential execution into parallel speculative epochs,
and ensures that data dependences between the newly created epochs are preserved. Any
read-after-write dependence between epochs which is violated must be detected, and cor-
rected by re-starting the offending epoch. Hardware support for TLS makes the detection
of violations and the restarting of epochs inexpensive [18, 47, 55, 60].

Our database benchmarks stress TLS hardware support in new ways which have not
been previously studied, since the epochs are necessarily so much larger. Previous work
has studied epochs with various size ranges, including 3.9–957.8 dynamic instructions [65],
140–7735 dynamic instructions [46], 30.8–2,252.7 dynamic instructions [61], and up to
3,900–103,300 dynamic instructions [11]. The epochs studied in this thesis are quite large,
with 7,574–489,877 dynamic instructions. These larger epochs present two challenges.
First, more speculative state has to be stored for each epoch (from 3KB to 35KB, before
storing multiple versions of cache lines for sub-epochs). Most existing approaches to TLS
hardware support cannot buffer this large amount of speculative state. Second, these larger
epochs have many data dependences between them which cannot be easily synchronized
and forwarded by the compiler, since they appear deep within the database system in very
complex and varied code paths. This problem is exacerbated by the fact that the database
system is typically compiled separately from the database transactions, meaning that the
compiler cannot easily use transaction specific knowledge when compiling the database
system. This makes runtime techniques for tolerating data dependences between epochs
attractive.

Previous work on TLS assumes that the speculative state of a epoch fits in either spec-
ulative buffers [18, 55] or in the L1 cache [6, 14, 60]. With the large amount of speculative
state per epoch used by our database benchmarks we find that we suffer from conflict
misses in the L1 cache (which cause speculation to fail). Increasing the associativity does
not necessarily solve the problem, since even fully associative L1 caches may not be large
enough to avoid capacity misses.

Two prior approaches address the problem of cache overflow: Prvulovic et. al. pro-
posed a technique which allows speculative state to overflow into main memory [47]; and
Cintra et. al. proposed a hierarchical TLS implementation which allows the oldest epoch
in a CMP to buffer speculative state in the L2 cache (while requiring that the earlier epochs
running on a CMP be restricted to the L1 cache) [6]. In this thesis, we propose a similar hi-
erarchical implementation, with one important difference from Cintra’s scheme: it allows
all epochs to store their speculative state in the larger L2 caches. With this support (i) all
epochs can take advantage of the large size of the L2 cache, (ii) epochs can aggressively
propagate updates to other more recent epochs, and (iii) we can more easily implement

62

Interconnect/Memory

CPU

L1 $

CPU

L1 $

CPU

L1 $

CPU

L1 $

crossbar

Speculative
Victim
Cache

L2 $

Chip

CPU

L1 $

CPU

L1 $

CPU

L1 $

CPU

L1 $

crossbar

Speculative
Victim
Cache

L2 $

Chip

= Speculative State

...

Figure 4.1: An overview of the CMP architecture that we target, and how it is extended to
support TLS.

sub-epochs, described later in Section 4.3.

4.1.1 A Protocol for Two-Level Speculative State Tracking and Buffer-
ing

In this section we describe the underlying chip multiprocessor (CMP) architecture and
how we extend it to handle large epochs. We assume a CMP where each core has a private
L1 cache, and multiple cores share a single chip-wide L2 cache (Figure 4.1). For sim-
plicity, in this thesis each CPU executes a single epoch. We buffer speculative state in the
caches, detecting violations at a cache line granularity. Both the L1 and L2 caches main-
tain speculative state: each L1 cache buffers cache lines that have been speculatively read
or modified by the epoch executing on the corresponding CPU, while the L2 caches main-
tain inclusion, and buffer copies of all speculative cache lines that are cached in any L1 on
that same chip. Detection of violations between epochs running on the same chip is per-
formed within the L2 cache through the two-level protocol described below. For detection
of violations between epochs running on different chips, we assume support for an existing
scheme for distributed TLS cache coherence, such as the STAMPede protocol [60].1

1In this thesis, all experiments are within the boundaries of a single chip; the amount of communication
required to aggressively propagate all speculative stores between chips is presumed to be too costly.

63

Invalid

Valid

R(read)

R()
W(update)

(a) Basic write-through pro-
tocol.

Invalid

Stale

Valid

SpL

[stale]

[clean]

W(update)
R()

R()
W(update)

[SpM]
R(read)

RSp(readSp)

Violation

WSp(updateSp)
RSp()

Violation

WSp(updateSp)

Violation

Violation

SpL
SpM &

RSp()
R()
W(update)

RSp(notifySpL)

Violation

WSp(updateSp)[clean]

(b) Enhanced with TLS support.

Figure 4.2: L1 cache line state transition diagram. Any transitions not shown (for exam-
ple, action R for a line in the state SpM) is due to an impossible action: the tag match
will fail, and the transition will be treated as a miss. Line states are explained in Table 4.1.
Edges are labeled with the processor action (Table 4.2), followed by the message to the L2
cache in round brackets (Table 4.3). Square brackets show responses from the L2 cache
(Table 4.4).

L1 Cache State

Our design has the following two goals: (i) to reduce the number of dependence violations,
by aggressively propagating store values between epochs; (ii) to reduce the amount of
time wasted on failed speculation, by ensuring that any dependence violation is detected
promptly. In our two-level approach, the L2 cache is responsible for detecting dependence
violations, and must therefore be informed of loads and stores from all epochs.

In Figure 4.2 we illustrate how to take a simple write-through L1 cache line state
transition diagram and enhance it for use with our shared L2 cache design. In the following
discussion we explain the new states and the functionality they offer.

To track the first speculative load of an epoch we add the speculatively loaded (SpL)
bit to each cache line in the L1 cache. The first time the processor tries to speculatively

64

Table 4.1: Explanation of cache line states.

Invalid Invalid line, contains no useful data.
Valid Line contains data which mirrors committed memory state.
Stale Line contains data which mirrors committed memory state, but there may

exist a more speculative version generated by the L1 cache’s CPU.
SpL Line is valid, but has been speculatively loaded by the L1 cache’s CPU.
SpM & SpL Line has been has been speculatively loaded by the L1 cache’s CPU,

and the L2 cache returned a line which was speculatively modified by a
earlier epoch.

Table 4.2: Explanation of actions.

R Processor read a memory location.
W Processor wrote a memory location.
RSp Processor read a memory location while executing speculatively.
WSp Processor wrote a memory location while executing speculatively.
Violation Violation detected (action generated by L2 cache).

Table 4.3: Explanation of messages from L1 to L2 cache.

read Read memory location, L1 cache miss.
readSp Read memory location while executing speculatively, L1 cache miss.
update Wrote to memory location.
updateSp Wrote to memory location while executing speculatively.
notifySpL Read memory location while executing speculatively, L1 cache hit.

65

Table 4.4: Explanation of responses from L2 cache to L1 cache.

clean Requested line has not been speculatively modified by any earlier epoch.
stale Requested line has been speculatively modified by an earlier epoch, but return-

ing non-speculative (committed) version of the line.
SpM Requested line has been speculatively modified by an earlier epoch, returning

speculative version of the line.

load a line this bit will be set, and if the load hits in the L1 cache a notify speculatively
loaded (notifySpL) message will be sent to the L2 cache, informing it that a speculative
load has occurred. If the processor tries to speculatively load a line which is not present in
the L1 cache, it will trigger a speculative miss (readSp) to the L2 cache.

The SpL bit acts as a filter—it ensures that the L2 cache is not notified multiple times
of a line being speculatively loaded. The L2 cache learns of speculative loads through
the notifySpL message and readSp request. The readSp request is blocking, since the
load which triggers it can not complete until the cache miss is serviced. The readSp
request returns the most up-to-date replica of the cache line. The notifySpL message is
non-blocking, so the load which triggers it can complete immediately. The purpose of the
notifySpL message is to allow the L2 cache to detect potential violations—to avoid race
conditions which would result in not detecting a violation, all notifySpL messages must be
processed by the L2 cache before an epoch can commit, and any notifySpL messages in
transit from the L1 to the L2 cache must be compared against invalidations being sent from
the L2 to the L1 cache (this is similar to how a store buffer must check for invalidations).
An alternative to using the notifySpL message is to instead always use a readSp message for
the first speculative load of an epoch. This effectively makes each epoch start with a cold
L1 cache—the notifySpL message is a performance optimization, based on the assumption
that the L1 cache will rarely contain out-of-date replicas of cache lines (if the L2 cache
receives a notifySpL message for a line which has been speculatively modified by an earlier
epoch, then this will generate a violation for the loading epoch). In Section 4.4.2 we
evaluate the performance impact of this optimization.

Detecting the last store to a memory location by an epoch is more challenging. Al-
though we do not evaluate it here, a sophisticated design could combine a write-back
cache with a last-touch predictor [30] to notify the L2 of only the last store performed
by a epoch. However, for now we take the more conservative approach of making the
L1 caches write-through, ensuring that store values are aggressively propagated to the L2
where dependent epochs may load those values to avoid dependence violations. Each L1

66

cache line also has a speculatively-modified bit (SpM) which is set on the first speculative
store, so that it can be flash-invalidated if the epoch violates a dependence (rather than
relying on an invalidation from the L2 cache).

In our design when the L1 cache holds a line which is marked speculative we assume it
holds the most up-to-date replica of the line (containing all changes made by older epochs).
Since the write merging used to generate the most up-to-date replica is performed in the
L2 cache, the L1 cache can not transition a Valid line into a SpM line without querying
the L2 cache. Because of this, in Figure 4.2 you will see that a speculative write to a Valid
line invalidates the line so that any loads to that line retrieve the correct speculative replica
from the L2 cache.

When an epoch commits the L1 cache can simply clear all of the SpM and SpL bits,
since none of the state associated with the committing epoch or any earlier epoch is spec-
ulative. If multiple epochs share a single L1 cache then the SpM and SpL bits can be
replicated, one per epoch, as is done for the shared cache TLS protocol proposed in prior
work [57].

The Stale state in Figure 4.2 is used for temporarily escaping speculation, and is dis-
cussed further in Section 4.2.2.

L2 Cache State

The L2 cache buffers speculative state and tracks data dependences between epochs using
the same techniques as used by the TLS protocol proposed in prior work [57]. Instead of
observing each load and store from a CPU the L2 cache observes read, readSp, notifySpL,
update and updateSp messages from the L1 caches. Each message from an L1 cache is
tagged with an epoch number, and these numbers are mapped onto the epoch contexts in
the L2 cache. Each epoch context represents the state of a running epoch. Each cache line
has a SpM and SpL bit per epoch context. Dependences between epochs sharing the same
L2 cache are detected when an update is processed, by checking for SpL bits set by later
epochs. Dependences between epochs running on different L2 caches are tracked using
the extended cache coherence proposed in prior work [57].

With the large epochs that are found in database transactions we need to tolerate storing
large amounts of speculative state in the L2 cache from multiple epochs. Often there are
two conflicting versions of a line that need to be stored—for example, if a line is modified
by different epochs then each modification must be tracked separately so that violations
can efficiently undo the work from a later epoch without undoing the work of an earlier
epoch. When conflicting versions of a line must be stored we replicate the cache line
and maintain two versions. Maintaining multiple versions of cache lines has been studied
previously in the Multiscalar project [14]; we present our replication scheme in detail in

67

tim
e

load 1

IRB flushpass homefree commit 1

store 11 1 1
replicate

1

load 1 1

violatedstore 11

CPU0
(homefree) (epoch 1) (epoch 2)

CPU2CPU1

Key:

Re
pl

load 11 1
replicate&miss

Sp
L0

Sp
M

0
Sp

L1
Sp

M
1

Sp
L2

Sp
M

2

Figure 4.3: Step-by-step example demonstrating cache line replication for a single cache
line. Cache line replication avoids violations when a replica conflict occurs.

the next section to illustrate an alternate implementation, and since we build upon our
replication scheme to implement sub-epochs in Section 4.3.

If a speculative line is evicted from the cache then we need to continue tracking the
line’s speculative state. With large epochs and cache line replication this becomes more
of a problem than it was in the past: we use a speculative victim cache [26, 58] to hold
evicted speculative lines and track violations caused by these lines. We have found that
a small victim cache is sufficient to hold our overflow, but if more space is required we
could use a memory-based overflow area such as the scheme proposed by Prvulovic [47]
to store the overflowed speculative state.

Cache Line Replication

In a traditional cache design, each address in memory maps to a unique cache set, and
tag lookup leads you to a unique cache line. When we have several epochs storing their
speculative state in the same cache there can be replica conflicts: a replica conflict is when
two epochs need to keep different versions of the cache line to make forward progress.
There are three cases where a replica conflict can arise. The first class of replica conflict is
if an epoch loads from a cache line and a more speculative epoch has speculatively modi-
fied that cache line. In this case we do not want the load to observe the more speculative
changes to the cache line, since they are from an epoch which occurs later in the original

68

sequential program order. The second class of replica conflict is if an epoch stores to a
cache line that any other epoch has speculatively modified. Since we want to be able to
commit speculative changes to memory one epoch at a time, we cannot mix the stores from
two epochs together. The third class of replica conflict is if an epoch stores to a cache line
that any earlier epoch has speculatively loaded. The problem is that a cache line contains
both speculative state and speculative meta-state (the SpM and SpL bits). In this case we
want to be able to quickly completely discard the cache line (the speculative state) if the
storing epoch is later violated, but we do not want to discard the SpL bits (the speculative
meta-state) if they are set. To avoid this problem we treat it as a replica conflict.

What can we do if a replica conflict arises? Every replica conflict involves two epochs:
if the replica conflict arises when a store is performed by the later epoch, then the later
epoch can be stalled until the earlier epoch commits; if the replica conflict arises when
a load or store is performed by the earlier epoch then it can be resolved by violating
the later epoch. One approach is to stall an epoch until it is homefree when a replica
conflict is detected, or to violate an epoch when a replica conflict is detected. Both of
these approaches hurt performance severely if replica conflicts happen frequently. Another
approach is to replicate cache lines—when a replica conflict arises make a fresh copy of
the conflicting cache line and use the copy instead (Figure 4.3, Appendix B). As epochs
commit these replicas are reunited into a single line.

If there exist multiple replicas of a cache line then any access to the cache has to
decide which of those replicas to use. The correct answer is to use the most recent replica
with respect to the current epoch. If epoch e is accessing the cache, then it wants to use
replica which was last speculatively modified by epoch e, or if that does not exist then
epoch e − 1, or if that does not exist then epoch e − 2, etc. If the current epoch has not
speculatively modified the line and no prior epoch has speculatively modified the line then
the clean replica is used. The clean replica is the replica of the cache line which contains
no speculative modifications. Note that if the clean replica is not present in the cache then
it can always be retrieved from the next level of the memory hierarchy via a cache miss.

Because the most recent replica with respect to the current epoch must be located,
cache lookup for a replicated line may be slightly more complex than a normal cache
lookup. To limit the impact of this to lines with replicas, we add a replica bit to each cache
line which indicates that a replica of the line may exist, which is set when a replica of a
line is created.

Replicas are always created from the most recent replica. A copy of the source line is
made, and the SpM, SpL and directory bits (which indicate which L1 caches above the L2
cache may have copies of the line) are copied as well. The SpM, SpL and directory bits
representing epochs older than the current epoch are cleared on the newly created line,
while the bits representing the current epoch and newer epochs are cleared on the source

69

line. This way the responsibility for tracking speculative state is divided so that older state
resides on the source line, and the newly created replica tracks state associated with the
current and later epochs.

The existence of replicas slightly complicates store operations. When a store is per-
formed, the changes must be propagated to the newer replicas of the cache line. This
means that a store has to write to the most recent replica and also to any newer replicas
if they have not already overwritten the same word in the line. The fine-grained SpM bits
(used for write merging between L2 caches) specify which words in a cache line have been
speculatively written to, and they can be used to determine which (if any) newer replicas
need to be updated.2

When an epoch commits all speculatively modified cache lines associated with the
committing epoch are transformed into dirty cache lines, which become clean replicas
(since they no longer hold speculative modifications). There may only be one clean replica
of a cache line in the cache at a time, we ensure this by having the commit operation first
invalidate any clean replicas which are made obsolete by the commit operation. The lines
which need to be invalidated are tracked through the invalidation required buffer (IRB),
which operates in a similar fashion to the ORB [57]. There is one IRB per epoch context.
An IRB entry is simply a cache tag, and says “the cache line associated with this address
and epoch may have an older replica.” When a replica is created it may generate up to two
IRB entries. If there exists any replica with state older than the newly created replica’s
state then an entry is added to the newly created replica’s IRB. If there exists any replicas
with state newer than the newly created replica’s state then an entry is added to the IRB
of the oldest of the newer replicas. When an epoch is violated the IRB for that epoch is
cleared. When an epoch commits, the cache first invalidate any clean replicas named by
IRB entries, then clears the SpM and SpL bits associated with the committing epoch.

With multiple versions of a single cache line in the L2 cache, it is easy to believe that
tracking which L1 cache has which version of the cache line, and keeping the L1 caches
up to date is made more complex. This is not the case. Each version in the L2 cache has
directory bits which track which L1 caches may have a replica of the line (just like in a
cache without replication), and when a replica is updated or invalidated an invalidation is
sent to the appropriate L1 caches. In effect, properly maintaining inclusion ensures that
the L1 caches are always consistent with the L2 cache.

2Alternatively, speculatively modified cache lines can be merged with the clean replica at commit time.
This is much harder to implement, since the clean replica can be evicted from the cache at any time if the
cache is short on space. This means that a committing epoch may suffer cache misses to bring those clean
replicas back into the cache for merging. Another alternative would be to pin the clean replicas of cache
lines in the cache until all replicas of a line are merged, but this wastes cache space.

70

Speculative Victim Cache

One potential problem with storing speculative state in the cache is that cache lines with
speculative state cannot be easily evicted from the cache, as this would result in a loss
of information crucial to speculation. Replication creates even more speculative cache
lines in each cache set (since each line may have multiple replicas), and this increases
cache pressure. One way of dealing with overflowing cache sets is to either suspend the
execution of an epoch to avoid the eviction or to violate an epoch if its state is evicted. To
avoid costly violations and/or stalls, we add a speculative victim cache to the L2 cache.
A speculative victim cache is just like a normal victim cache [26], with the addition of
mechanisms to:

• check contained lines for violations whenever a write is performed or an external
invalidation is received;

• merge writes into newer replicas, as is already done in the L2 cache;

• invalidate speculative lines on a violation;

• reset speculative bits on epoch commit, and flush non-speculative lines from the
victim cache;

• only speculative lines are placed in the speculative victim cache when evicted, non-
speculative lines are evicted in the normal manner.

When an access hits in the L2 cache and the line has replicas, the victim cache must
also be probed to determine if it contains relevant replicas. If these victim cache probes
happen too often then there are two optimizations which can be done to minimize their
frequency: first, only probe the victim cache if no line which is modified by the current
epoch e is located in the L2 cache; and second, have a may have victim flag associated
with each cache set which indicates that a line was evicted to the victim cache from that
set in the past. Since the victim cache only caches speculative lines, the victim cache is
expected to empty periodically, when the program runs a non-TLS-parallelized portion of
code. When this happens all of the may have victim flags can be flash invalidated.

In our experiments with database software we found that when using a 2MB 4-way
set associative L2 cache a 25-entry speculative victim cache was sufficient to contain all
overflowed state.

71

4.2 Using TLS to Incrementally Parallelize Database Trans-
actions

As we discussed earlier in Chapter 3, the epochs we extract from TPC-C transactions
are large (the average epoch has 7,574–489,877 dynamic instructions) and contains many
data dependences (the average epoch in NEW ORDER performs 292 loads which depend
on values generated by the immediately previous epoch). In Chapter 3 we saw an iterative
process for removing performance critical data dependences: (i) execute the speculatively-
parallelized transaction on a TLS system; (ii) use profile feedback to identify the most
performance critical dependences; (iii) modify the DBMS code to avoid violations caused
by those dependences; and (iv) repeat. This process allows the programmer to treat paral-
lelization of transactions as a form of performance tuning: a profile guides the programmer
to the performance hot spots, and extra speed is obtained by modifying only the critical
regions of code. Going through this process reduces the total number of data dependences
between epochs (from 292 dependent loads per epoch to 75 dependent loads for NEW OR-
DER), but more importantly removes dependences from critical path.

The hardware assists in this iterative performance tuning process in two ways: (i) it
provides mechanisms to track most performance-critical dependences; and (ii) it provides
a mechanism for escaping speculation to avoid violations caused by database operations
which are safe to execute in parallel (described further in Section 2.5).

4.2.1 Profiling Violated Inter-Epoch Dependences
To track which load and store program counter (PC) pairs cause the most harmful depen-
dence violations we could use a simulator or a software instrumentation pass. However,
hardware support for such profiling would be preferable and would only require a few
extensions to basic TLS hardware support, as described by the following. Each proces-
sor must maintain an exposed load table [61]—a moderate-sized direct-mapped table of
PCs, indexed by cache tag, which is updated with the PC of every speculative load which
is exposed (i.e., has not been preceded in the current sub-epoch by a store to the same
location—as already tracked by the basic TLS support). Each processor also maintains
cycle counters which measure the duration of each sub-epoch.

When the L2 dependence tracking mechanism observes that a store has caused a vi-
olation: (i) the store PC is requested from the processor that issued the store; (ii) the
corresponding load PC is requested from the processor that loaded the cache line (this is
already tracked by the TLS mechanism), and the cache line tag is sent along with the re-
quest. That processor uses the tag to look-up the PC of the corresponding exposed load,
and sends the PC along with the sub-epoch cycles back to the L2; in this case the cycle

72

¬ if(some work()) {
 escape speculation();
® p = malloc(50);
¯ on violation call(free, p);
° resume speculation();

}
± some more work();

Figure 4.4: Wrapper for the pin page function which allows the ordering between
epochs to be relaxed.

count represents failed speculation cycles. At the L2, we maintain a list of load/store PC
pairs, and the total failed speculation cycles attributed to each. When the list overflows,
we want to reclaim the entry with the least total cycles. Finally, we require a software in-
terface to the list, in order to provide the programmer with a profile of problem load/store
pairs, who can use the cycle counts to order them by importance.

4.2.2 Hardware Support for Escaping Speculation
It is easiest to explain escaping speculation with an example. Consider the code in Fig-
ure 4.4. In line ¬, some work runs speculatively. In line speculation is escaped, so the
call to malloc in line ® runs non-speculatively. Since malloc runs non-speculatively,
any loads it performs will not cause violations. In line ¯ we register a recovery function
with the hardware. The hardware maintains a short list of recovery functions and param-
eters, and if a violation occurs the hardware invokes all of the recovery functions on the
list. In this example, if speculation fails we call free to release the memory. Line ° then
resumes speculation so that some more work is run speculatively.

To escape speculation, the hardware temporarily treats the executing epoch as non-
speculative. This means that all loads by the escaped epoch return committed memory
state, and not speculative memory state. All stores performed by the epoch are not buffered
by the TLS mechanism, and are immediately visible to all other epochs. A side effect of
this is if an escaped epoch writes to a location speculatively loaded by any speculative
epoch, including itself, it can cause that epoch to be violated. The only communication be-
tween the speculative execution preceding the escaped speculation and the escaped epoch
is through registers, which can be carefully checked for invalid values caused by mis-
speculation. To avoid false dependences caused by writing temporary variables and return
addresses to the stack, the escaped epoch should use a separate stack (using a mecha-

73

nism such as stacklets [13, 59]).3 If an escaped epoch is violated, it does not restart until
speculation resumes—this way the escaped code does not have to be written to handle
unexpected interrupts due to violations.

When an escaped epoch loads data into the L1 cache it may perform loads which
evict lines which were speculatively modified by the current epoch. If the epoch resumes
speculative execution and then loads the same line it must get the evicted copy of the line,
and not the clean copy which just replaced it. To avoid this situation, we add one more
state bit to each cache line in the L1 cache, called the stale bit. When a clean replica is
retrieved from the L2 cache (and a speculative version exists) then the L2 cache indicates
that the line is stale in its response, and the stale bit gets set for this line in the L1 cache.
The next speculative read of this line will then miss to the L2 cache to retrieve the proper
speculative version.

We found that the use of the stale bit caused speculative and clean replicas of cache
lines to ping-pong to the L2 cache, dramatically increasing the number of L1 cache misses.
This harmed performance, so to avoid this problem we modified the L1 cache to allow a
limited form of replication—a set can hold both the speculative and clean replica version
of a cache line (an alternative solution which should have similar performance is to put a
victim cache underneath the L1 cache to catch these ping-ponging lines).

Since the escaped code takes non-speculative actions, the wrapper around it has to be
carefully written to avoid causing harm to the rest of the program when mis-speculation
happens. For example, a mis-speculating epoch may go into an infinite loop allocating
memory. The mis-speculating epoch must not be allowed to allocate so much memory
that allocation fails in the homefree epoch. This potential problem can be avoided through
software: one way is to place limits on the amount of memory allocated by a speculative
epoch. Another solution is to have homefree epochs first violate any speculative epochs
(and hence have them release all resources) before allowing any allocation request to fail.

4.3 Tolerating Dependences with Sub-Epochs
When speculation fails for a large speculative epoch, the amount of work discarded is itself
large, making this a costly event to be avoided. To tune performance, we want to allow the

3TLS already assumes that each executing epoch has a private stacklet for storing local variables and
the return addresses of called functions. If two epochs shared a common stack then an action as simple as
calling a function would cause a violation, since each epoch would spill registers, write return addresses and
write return values onto the stack. We assume that local stack writes are not intended to be shared between
epochs (the compiler can check this assumption at compile time), and give each epoch a separate stacklet to
use while it executes. To avoid conflicts between escaped execution and speculative execution, we allocate
another stacklet for use by a epoch when it escapes speculation.

74

Violation!�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Ep
oc

h
1

Ep
oc

h
2

*q=... ...=*q�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

{Longer!

Violation!

Ep
oc

h
1

Ep
oc

h
2

*p=...

*q=...

...=*p

Ti
m

e

�
�
�
�

	
	
	
	

...=*q

�
�
�
�

...=*p

...=*q

(a) Eliminating *p dependence can hurt performance.

���
�

��
��

��
��

Ep
oc

h
1

Violation!*q=...

���
�

...=*q

���
�

...=*q

Ep
oc

h
2a

Ep
oc

h
2b

(b) Execution with
sub-epochs.

�
�
�
�

�
�
�
�

�
�
�
�
�
�

Done

Stall

...=*q
*q=... �

�
�
�

(c) Idealized parallel
execution.

Figure 4.5: Sub-epochs improve performance when dependences exist.

programmer to eliminate dependences one-by-one; but eliminating one dependence may
expose an even-later dependence, which can potentially make performance worse (Fig-
ure 4.5(a)). Previous work has proposed data dependence predictors and value predictors
to tolerate inter-epoch dependences [40, 61]: if a dependence between two epochs can be
predicted, then it is automatically synchronized to avoid a violation; if the value used by a
dependence is predictable, then a value predictor can avoid the data dependence altogether.
In our database benchmarks the epochs are so large that they contain many dependences
(between 20 and 75 dependent loads per epoch after optimization), hence any predictor
would have to be very accurate to avoid violations.

In this thesis we do not rely on predictors to avoid violations—instead, we reduce the
cost of violations by using sub-epochs (first introduced in Section 2.2). A sub-epoch is like
a checkpoint during the execution of a epoch: when a violation occurs, execution rewinds
back to the start of the sub-epoch which loaded the incorrect value (Figure 4.5(b)). When
a violation occurs, TLS rewinds both the mis-speculated execution following the errant
load and also rewinds the correct execution preceding the errant load—hence sub-epochs
reduce the amount of correct execution which is rewound. With enough sub-epochs per
epoch, TLS execution approximates an idealized parallel execution (Figure 4.5(c)) where
data dependences limit performance by effectively stalling loads until the correct value is
produced. Note that sub-epochs are complimentary to prediction: the use of sub-epochs
reduces the penalty of a mis-prediction, and thus makes predictor design easier.

When we first experimented with sub-epochs we found that they also had a secondary
effect: by reducing the penalty of a violation, sub-epochs make it easier for later epochs
to fall into a state of “self-synchronization”: if the start of an epoch is delayed by just
enough, then backwards data dependences will be turned into forwards dependences. For-
wards dependences do not cause violations, since aggressive update propagation commu-

75

Backwards dependence turned into a
forwards dependence: avoids a violation.

��
��
�

��
��
�

���
�

���
�

Less execution re−done
when a violation occurs.

��
��
��
��

��
��
��
��

��
��
��
��

		
		
		
		

��
��
��
�� ��

�

��
��
��
��

��
��
��
��

��
�
��
�

��
��
��

��
��
�� ��

�
��
�

��
�
��
�

��
��
��

��
��
��

��
��
�

��
��
�

��
�
��
�

��
�
��
�

!!
!

""
"
##
#

$$
$$
$$

%%
%%
%%

&&
&&
&&

''
''
''

Ep
oc

h
1

Ep
oc

h
3

Ep
oc

h
4

Ep
oc

h
1a

Ep
oc

h
1b

Ep
oc

h
2

(a) Without sub−epochs. (b) With sub−epochs.

Ep
oc

h
1c

Ep
oc

h
2a

Ep
oc

h
2b

Ep
oc

h
2c

Ep
oc

h
3a

Ep
oc

h
3b

Ep
oc

h
3c

Ep
oc

h
4a

Ep
oc

h
4b

Ep
oc

h
4c

((
((
(

))
))
)**+

+

,,
,,
,,
,

--
--
--
-

..
..
..
.

//
//
//
/

00
00
00
0

11
11
11
1

22
22
22
2

33
33
33
3

44
44
44
4

55
55
55
5 }

66
66
66
6

77
77
77
7

Figure 4.6: The two sources of performance improvement from sub-epochs.

nicates values between epochs. In Figure 4.6, we see that the addition of two sub-epochs
allows the violated epochs to restart at slightly different points in their execution, which
introduces just enough skew between epochs to avoid further violations.

4.3.1 Hardware Support for Sub-Epochs
Sub-epochs are implemented by allocating multiple hardware epoch contexts in the L2
cache for the execution of a single epoch. For example, assume that the L2 cache supports
the execution of four epochs (and hence has four epoch contexts): to support two sub-
epochs per epoch, we modify the L2 cache to support eight epoch contexts, and use the
first two contexts for the first epoch, the next two for the second epoch, and so on. When
each sub-epoch starts, a copy of the registers is made and all memory accesses from that
point onwards use the next epoch context. Once all of the epoch contexts associated with
a epoch are in use, no more sub-epochs can be created.

76

���
�

���
� ���� ������	

	

��
��

Ep
oc

h
1

Violation!*q=...

��

���
�

���
�

...=*q

���
�

...=*q

���
�

���
�

Ep
oc

h
3b

Ep
oc

h
3a

Ep
oc

h
4a

Ep
oc

h
4b

Ep
oc

h
2a

Ep
oc

h
2b

(a) All later sub-epochs restart.

���
�

���
�

���
�

��
��

��
��

Ep
oc

h
1

Violation!*q=...

��	
	

�
�

��

...=*q

���
�

...=*q ���
�

���
�

Ep
oc

h
3b

Ep
oc

h
3a

Ep
oc

h
4a

Ep
oc

h
4b

Ep
oc

h
2a

Ep
oc

h
2b

(b) Only dependent sub-epochs restart.

Figure 4.7: The effect of chain violations with and without sub-epoch dependence track-
ing.

In TLS, violations are detected between epoch contexts, so if each epoch context tracks
a sub-epoch then a violation will specify which epoch and sub-epoch needs to be restarted.
Since a given epoch’s sub-epochs execute in-order, there will be no dependence violations
between them. It is also unnecessary (for correctness) to make the L1 cache aware of the
sub-epochs: when a violation occurs all speculative state in the L1 cache is invalidated,
and the L1 cache retrieves any needed state from the L2 cache when the epoch re-executes.
If invalidating all speculative state in the L1 cache on a violation causes too many cache
misses then the L1 could be extended to track sub-epochs as well (in our experiments we
have not found this to be a significant performance problem). Therefore no additional
hardware is required to detect dependence violations between epochs at a sub-epoch gran-
ularity, other than providing the additional epoch contexts.

In our baseline TLS system, when a epoch is violated due to a data dependence we call
this a primary violation; since later epochs may have consumed incorrect values generated
by the primary violated epoch all later epochs are restarted with a chain violation. With
sub-epochs this behavior is suboptimal, as illustrated in Figure 4.7(a). In this figure sub-
epochs 3a and 4a are restarted, even though these epochs completed before sub-epoch 2b
started. Since sub-epochs 3a and 4a could not have consumed any data from the restarted
sub-epoch 2b, it is unnecessary to restart sub-epochs 3a and 4a. If the hardware tracked
the temporal relationship between sub-epochs, then better performance would result, as
shown in Figure 4.7(b). This temporal relationship between sub-epochs can be tracked
with a sub-epoch start table, which is described in detail in the next section.

The sub-epochs within an epoch are executed in sequential order, so it is not necessary
to check for violations between the epoch contexts used for a single epoch, and hence

77

those checks can be omitted. It is also not necessary to make the L1 cache aware of the
sub-epochs for correct execution: when a violation occurs all speculative state in the L1
cache is invalidated, and the L1 cache retrieves any needed state from the L2 cache when
the epoch re-executes. If invalidating all speculative state in the L1 cache on a violation
causes too many cache misses then the L1 could be extended to track sub-epochs as well
(we have not found this to be a significant problem).

One IRB, ORB and violation recovery function list exists for each epoch, and they are
appended to as an epoch executes. When a new sub-epoch is started the current IRB, ORB
and violation recovery function list pointers are checkpointed (just like the registers), and
they are restored on a violation.

Sub-epoch Start Table

To ensure that chain violations do not cause too much work to be redone we track the
relationships between sub-epochs using the sub-epoch start table. The table records the
sub-epochs which were executing for all later epochs when each sub-epoch begins. If the
sub-epoch currently being executed by an epoch e is represented by Se, then this table
takes the following form:

T (e, p, s) = The value of Se when epoch p started sub-epoch s

With this table, if epoch e receives a chain violation which indicates that epoch p just
rewound to the start of sub-epoch s, then epoch e only needs to rewind to the start of
sub-epoch T (e, p, s).

This table must be maintained as sub-epochs start, new epochs begin, and violations
occur. Each time a sub-epoch starts it records the sub-epoch being executed by all later
epochs in the table.4 If the epoch and sub-epoch starting are ps and ss then:

∀e : T (e, ps, ss) :=

{
Se if e is later then ps

T (e, ps, ss) otherwise

When a new epoch starts executing it clears all entries which refer to it in the table. If the
new epoch is en then:

∀p, s : T (en, p, s) := 0

When a violation occurs, we reset the sub-epoch Se to an earlier value, and must update
table entries which point at sub-epochs which we have undone. If the violated epoch is ev,
and the updated sub-epoch is Se new then:

∀p, s : T (ev, p, s) := min(Se new, T (ev, p, s))

4This can be done somewhat lazily, as long as the update is complete before any writes performed by a
sub-epoch are made visible to any later epochs.

78

4.3.2 Choosing Sub-epoch Boundaries

As a given epoch executes, when should the system start each new sub-epoch? How many
sub-epochs are necessary for good performance? The answer to these questions balances
two competing factors: first, using more sub-epochs decreases the penalty of a violation.
Second, adding hardware support for more sub-epochs is inexpensive, but not free—in the
design outlined here each sub-epoch context requires two additional bits of storage per
cache line in the L2 cache. By intelligently choosing sub-epoch boundaries we reduce the
need for using many sub-epochs.

Inter-epoch dependences (and hence violations) are rooted at loads from memory, and
so we want to start new sub-epochs just before loads. For each load, this leads to two
important questions. First, is this load likely to cause a dependence violation? We want to
start sub-epochs before loads which frequently cause violations, to minimize the amount
of correct execution rewound in the common case. Previously proposed predictors can be
used to detect such loads loads [61]. Second, if the load does cause a violation, how much
correct execution will the sub-epoch avoid rewinding? If the load is near the start of the
epoch or a previous sub-epoch, then a violation incurred at this point will have a minimal
impact on performance. Instead, we would rather save the valuable sub-epoch context for
a more troublesome load. A simple strategy that works well in practice is to start a new
sub-epoch every nth speculative instruction—however, the key is to choose n carefully.
We investigate several possibilities later in Section 4.4.1.

4.4 Experimental Results

In this section we assume that the database system programmer has created a TLS-parallel
version of TPC-C, and use it to evaluate the hardware design decisions presented in this
thesis. For further information on how the programmer parallelizes the transactions, see
Chapter 3. All of the results in this chapter use the same benchmarks and simulation
infrastructure, which was described in detail in Section 3.4.

4.4.1 Sub-epoch Support

Adding sub-epochs to the hardware adds some complexity, but here we show that the
extra cost is worth it. In the NO SUB-EPOCH bar in Figure 4.9 we disable support for sub-
epochs. Compared to the performance of the BASELINE bar, sub-epoch support is clearly
beneficial as it dramatically reduces the penalty of mis-speculation.

79

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

63
25

0
62

50
0

62
10

0
61

25
00

60
50

00
57

10
00

0
72

25
00

0

2 Sub-epochs

63
25

0
59

50
0

58
10

0
56

25
00

54
50

00
57

10
00

0
72

25
00

0

4 Sub-epochs

59
25

0
57

50
0

56
10

0
54

25
00

54
*5

00
0

57
10

00
0

72
25

00
0

8 Sub-epochs

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(a) NEW ORDER

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

51
25

0
50

50
0

51
10

0
47

25
00

47
50

00
45

10
00

0
59

25
00

0

2 Sub-epochs

51
25

0
46

50
0

44
10

0
42

25
00

41
50

00
44

10
00

0
59

25
00

0

4 Sub-epochs

47
25

0
44

50
0

42
10

0
39

25
00

38
*5

00
0

44
10

00
0

59
25

00
0

8 Sub-epochs

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

Figure 4.8: Performance of optimized benchmark when varying the number of supported
sub-epochs per epoch from 2 to 8, varying the number of speculative instructions per
sub-epoch from 250 to 25000. The BASELINE experiment has 8 sub-epochs and 5000
speculative instructions per epoch.

80

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

76
25

0
75

50
0

75
10

0
72

25
00

69
50

00
85

10
00

0
91

25
00

0

2 Sub-epochs

76
25

0
69

50
0

67
10

0
65

25
00

68
50

00
85

10
00

0
91

25
00

0

4 Sub-epochs
70

25
0

67
50

0
64

10
0

65
25

00
68

*5
00

0
85

10
00

0
91

25
00

0

8 Sub-epochs

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(c) DELIVERY

|0
|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

35
25

0
36

50
0

36
10

0
36

25
00

35
50

00
36

10
00

0
61

25
00

0

2 Sub-epochs

35
25

0
36

50
0

36
10

0
36

25
00

34
50

00
36

10
00

0
70

25
00

0

4 Sub-epochs

36
25

0
35

50
0

36
10

0
35

25
00

34
*5

00
0

36
10

00
0

69
25

00
0

8 Sub-epochs

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(d) DELIVERY OUTER

Figure 4.8: Continued.

81

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

48
25

0
56

50
0

57
10

0
58

25
00

47
50

00
58

10
00

0
58

25
00

0

2 Sub-epochs
48

25
0

55
50

0
49

10
0

43
25

00
47

50
00

58
10

00
0

58
25

00
0

4 Sub-epochs

50
25

0
48

50
0

43
10

0
43

25
00

47
*5

00
0

58
10

00
0

58
25

00
0

8 Sub-epochs

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(e) STOCK LEVEL

Figure 4.8: Continued.

Sub-epoch Size and Placement

How many sub-epochs are needed, and when should the system use them? In Figure 4.8
we show an experiment where we varied the number of sub-epochs available to the hard-
ware, and varied the spacing between sub-epoch start points. We would expect that the
best performance would be obtained if the use of sub-epochs is conservative, since this
minimizes the number of replicate versions of each speculative cache line, and hence min-
imizes cache pressure. Since each sub-epoch requires a hardware epoch context, using a
small number of sub-epochs also reduces the amount of required hardware. A sub-epoch
would ideally start just before the first mis-speculating instruction in a epoch, so that when
a violation occurs the machine rewinds no further than required.

If the hardware could predict the first dependence very accurately, then supporting 2
sub-epochs per epoch would be sufficient. With 2 sub-epochs the first sub-epoch would
start at the beginning of the epoch, and the second one would start immediately before the
load instruction of the predicted dependence. In our experiments we do not have such a
predictor, and so instead we start sub-epochs periodically as the epoch executes.

In Figure 4.8 we vary both the number and size of the sub-epochs used for executing
each transaction. Surprisingly, adding more sub-epochs does not seem to have a negative
effect due to increased cache pressure. Instead, the additional sub-epochs serve to either

82

increase the fraction of the epoch which is covered by sub-epochs (and hence protected
from a large penalty if a violation occurs), or increase the density of sub-epoch start points
within the epoch (decreasing the penalty of a violation).

We found that chosing a fixed distance between sub-epochs of 5000 dynamic instruc-
tions works quite well. This distance covers most of the NEW ORDER transaction with 8
sub-epochs per epoch. Closer inspection of both the epoch sizes listed in Table 3.2 and
the graphs of Figure 4.8 reveals that instead of choosing a fixed sub-epoch size, a better
strategy for choosing the sub-epoch size for small epochs is to measure the average epoch
size and divide by the number of available sub-epochs.

One interesting case is DELIVERY OUTER, in Figure 4.8(d). In this case a data depen-
dence early in the epoch’s execution causes all but the non-speculative epoch to restart.
With small sub-epochs the restart modifies the timing of the epoch’s execution such that
a data dependence much later in the epoch’s execution occurs in-order, avoiding viola-
tions. Without sub-epochs, or with very large sub-epochs (such as the 25000 case in
Figure 4.8(d)) this secondary benefit of sub-epochs does not occur.

4.4.2 Cache Configuration

In this chapter we have introduced a new cache design for executing large, dependent
epochs. In the next section we examine performance as optional features of the design are
removed, and as design parameters are varied.

L1 Cache

When escaping speculation we found that the L1 cache often suffered from thrashing,
caused by a line which was repeatedly loaded by speculative code, and then loaded by
escaped code. To combat this effect we added replication to the L1 cache, which lets an L1
cache hold both a speculative and non-speculative version of a cache line simultaneously.
In the NO REPL bar in Figure 4.9 we have removed this feature. If you compare it to the
baseline, you can see that once the benchmark has been optimized this feature is no longer
performance critical.

In our baseline design when the L1 cache receives a request to speculatively load a
line, and a non-speculative version of the line already exists in the cache then the line is
promoted to become speculative, and the L2 cache is notified through a notify speculatively
loaded (notifySpL) message. This design optimistically assumes that the non-speculative
line in the L1 cache has not been made obsolete by a more speculative line in the L2.
If our optimism is misplaced then a violation will result. To see if this was the correct
trade-off, in the NO NOTIFYSPL bar in Figure 4.9 we remove this message, and cause a

83

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
73

No
 S

ub
-e

po
ch

54
No

 n
ot

ify
Sp

L
54

No
 R

ep
lic

at
io

n
54

*B
as

el
in

e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(a) NEW ORDER

|0
|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
60

No
 S

ub
-e

po
ch

39
No

 n
ot

ify
Sp

L
38

No
 R

ep
lic

at
io

n
38

*B
as

el
in

e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
91

No
 S

ub
-e

po
ch

69
No

 n
ot

ify
Sp

L
68

No
 R

ep
lic

at
io

n
68

*B
as

el
in

e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(c) DELIVERY

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
79

No
 S

ub
-e

po
ch

35
No

 n
ot

ify
Sp

L
35

No
 R

ep
lic

at
io

n
34

*B
as

el
in

e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(d) DELIVERY OUTER

Figure 4.9: Performance of optimized benchmark without sub-epoch support, without
NSL message, and without replication in the L1 cache.

84

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
59

No
 S

ub
-e

po
ch

41
No

 n
ot

ify
Sp

L
47

No
 R

ep
lic

at
io

n
47

*B
as

el
in

e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(e) STOCK LEVEL
|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
10

5
No

 S
ub

-e
po

ch
10

2
No

 n
ot

ify
Sp

L
10

2
No

 R
ep

lic
at

io
n

10
0

*B
as

el
in

e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(f) PAYMENT

|0

|100

 No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

10
0

Se
qu

en
tia

l
99

No
 S

ub
-e

po
ch

10
1

No
 n

ot
ify

Sp
L

99
No

 R
ep

lic
at

io
n

99
*B

as
el

in
e

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(g) ORDER STATUS

Bar Explanation
Sequential No modifications or TLS code added.
TLS-Seq Optimized for TLS, but run on a single CPU.
No Sub-epoch Baseline execution with sub-epoch support disabled.
No notifySpL Baseline execution without the use of notifySpL messages from the L1

to L2 cache.
No Repl Baseline execution without support for replication in the L1 cache.
Baseline Execution on hardware described in this thesis.
No Spec Upper bound—modified hardware to treat all speculative writes as

non-speculative.

Figure 4.9: Continued.

85

Table 4.5: Maximum number of victim cache entries (lines) used versus L2 cache associa-
tivity.

Benchmark 4-way 8-way 16-way
NEW ORDER 54 4 0
NEW ORDER 150 64 39 0
DELIVERY 14 0 0
DELIVERY OUTER 62 4 0
STOCK LEVEL 40 0 0

speculative load of a line which exists non-speculatively in the L1 cache to be treated as an
L1 cache miss. We see that the notifySpL message offers a very minor performance gain to
NEW ORDER, NEW ORDER 150, DELIVERY and DELIVERY OUTER, but the optimism
causes non-trivial slowdown for STOCK LEVEL. As a result, we conclude that unless the
optimism that the notifySpL message offers is tempered, using the notifySpL message is a
bad idea.

To quantify the impact of using a write-through (as opposed to a write-back) L1 cache,
we ran the SEQUENTIAL benchmarks with two system configurations: on a system with
write-back caches, and on our baseline system with a write-through cache. (All other
system parameters are identical.) We found that with a write-back cache the write miss
rate was roughly 1%—this means that 99 out of a hundred writes were not visible to the
L2 cache. With a write-through design that filter is removed, and we observed that in the
write-through model the L2 cache receives between 80 and 250 times as many update mes-
sages as it receives write-back messages in a write-back design. Since we configured our
CPUs with ample write buffers and L1–L2 bandwidth, this does not significantly impact
the performance of the machine. Note that providing this additional bandwidth on chip is
practical: for example, the Intel Pentium 4 uses a 4-way set associative 8KB write-through
L1 cache [21].

L2 Cache

We have added a speculative victim to our design to avoid violations caused by evicting
speculative cache lines from the L2 cache. How large does it have to be? We expect that
sub-epoch induced replication may exacerbate the problem of eviction induced violations.

In this study we used a 64-entry victim cache, but also measured how many entries
are actually used in the cache. With our baseline 4-way L2 cache and using a 4-CPU
machine, we see in Table 4.5 that only one experiment (NEW ORDER 150) uses all of
the entries in the victim cache. If we increase the associativity of the L2 cache to 8-way

86

then only 4 entries are ever used, and with a 16-way L2 the victim cache is never utilized.
From this we conclude that the victim cache can be made quite small and remain effective.
In addition, our experiments have found that increasing the L2 associativity (under the
optimistic assumption that changing associativity has no impact on cycle time) has a less
than 1% impact on performance.

4.5 Chapter Summary
• When applying TLS to database transactions the resulting epochs are large (7k–

500k dynamic instructions per epoch), and contain many dependences between them
(before optimization NEW ORDER averaged 292 exposed loads per epoch).

• To perform well, the hardware must be able to buffer these large epochs, and also be
able to tolerate dependences between them without resorting to sequential execution.

• A design which stores speculative state in a shared L2 cache with a speculative
victim cache was presented.

• A 2MB L2 cache with a 64-entry victim cache is sufficient to buffer even the largest
epochs encountered.

• Storing speculative state in a shared cache allows dependent values to propagate to
consumer epochs quickly, avoiding violations caused by slow value propagation.

• Hardware support for profiling TLS execution is presented. This hardware support
enables the optimizations presented in previous chapters.

• Sub-epochs are implemented by adding additional epoch contexts to the hardware
design, and adding a sub-epoch start table to track the temporal relationships be-
tween sub-epochs. We demonstrate that extending our TLS design to support sub-
epochs is straightforward.

• We find that a straightforward scheme for choosing sub-epoch boundaries (periodi-
cally starting a new sub-epoch) is effective at eliminating the majority of the cycles
wasted on failed speculation for the optimized benchmarks.

• Violations caused by overflow of the associative sets in the L2 cache can be avoided
with a small victim cache. For a 4-way associative 2MB L2 cache 64 entries is
sufficient, while for an 8-way cache 39 entries is sufficient to avoid violations. For
a 16-way associative cache the victim cache is not required.

87

88

Chapter 5

Conclusions

Chip multiprocessing has arrived, as evidenced by recent products (and announced road
maps) from Intel, AMD, IBM and Sun Microsystems. While the database community has
long embraced parallel processing, the fact that an application must exploit parallel threads
to tap the performance potential of these additional CPU cores presents a major challenge
for desktop applications. Processor architects have responded to this challenge through a
new mechanism—thread-level speculation (TLS)—that enables optimistic parallelization
on chip multiprocessors. In this thesis we have shown that although TLS was originally
designed to overcome the daunting challenge of parallelizing desktop applications, it also
allows us to tap new forms of parallelism within a DBMS that had previously been too
painful to consider.

We have focused on one such opportunity enabled by TLS: exploiting intra-transaction
parallelism. Our experimental results demonstrate that we can speed up the latency of three
of the five transactions in TPC-C by 46–66% by exploiting TLS on a chip multiprocessor
with four CPU cores, or by 29–44% with two cores. This provides the database’s sched-
uler with a new capability: with TLS the scheduler can use idle CPU cores to improve
transaction latency. In contrast with previous approaches to exploiting intra-transaction
parallelism, we place almost no burden on the transaction programmer (they merely de-
marcate epoch boundaries). In the future this burden could easily be shifted to the trans-
action compiler. Although changes to the DBMS code are required to achieve this benefit,
they affected less than 1200 out of 180,000 lines of code in BerkeleyDB, they were imple-
mented in roughly a month by a graduate student, and we expect that they would generalize
to other DBMSs. The hardware changes that enable this intra-transaction parallelism are
feasible: we have shown a novel two-level cache protocol that: (i) allows a CMP with
TLS support to buffer large epochs, (ii) allows the hardware to tolerate inter-epoch data
dependences, and (iii) can profile those data dependences so the programmer can improve

89

performance further. In short, we have shown that localized changes to transactions, the
DBMS, and hardware work in concert to enable this new form of parallelism.

Previous work has shown that TLS works well for integer and numeric codes [18, 47,
55, 60], but the results in this thesis show that TLS works particularly well for database
transactions. Why does TLS work so well for transactions? First, TLS enables an op-
timization process: performance improves dramatically when the programmer removes
performance limiting data dependences. Previous work studying TLS has focused on pro-
grams that require fully automated parallelization techniques. In the domain of database
systems it is worthwhile to apply hand-analysis to the DBMS, since optimizations to the
DBMS code benefit all transactions that use the DBMS. Second, transactions spend a sig-
nificant portion of their execution time executing routines with clearly defined interfaces,
which can be modified to avoid data dependences (by escaping speculation, delaying their
execution until homefree, or by substituting parallel routines). Third, the epochs found in
transactions are quite large. In comparison to these large epochs the overheads of epoch
initialization and committing are small.

Hardware that supports the concurrent execution of many threads is already here, and
the number of concurrent threads will only grow with time. To harness this power requires
parallel programs: writing parallel programs is hard, and rewriting existing programs to
add parallelism may be even harder. Here we have shown a hybrid alternative: a program
running on a TLS machine can alternate between sequential execution, parallel execution,
and speculatively parallel execution as desired. We have demonstrated that even within a
single loop the epochs can transition between speculative and non-speculative (escaped)
execution to maximize performance. This flexibility makes it easier to create parallel
programs, and to add parallelism to existing software.

The results in this thesis inspire many more interesting research questions: can our
iterative performance tuning methodology be applied to other classes of programs? Does
designing a TLS system which is tolerant of violations make it easier to design a compiler
which generates TLS-parallel programs? Can TLS be applied elsewhere in the DBMS to
improve performance? Can a single hardware design be created that efficiently supports
both TLS-style execution within a transaction and hardware-supported optimistic concur-
rency control [20, 23] between transactions? In this thesis, we used simulation to gather
a dependence profile for our optimization process—can hardware be designed that pro-
files dependences continuously without impacting performance? Can compilers be made
intelligent enough to completely automate this optimization process?

TLS can provide exciting performance benefits to important domains beyond general-
purpose and scientific computing. This thesis shows that it is possible to implement a com-
plete system that can provide significant latency improvements for database transactions.
These compelling results show that TLS support should be implemented in hardware, and

90

database systems should use TLS to improve transaction latency.

91

92

Appendix A

Transaction Source Code

The results in this paper are derived from an implementation of a TPC-C like benchmark
on top of the BerkeleyDB storage manager. The source code (before parallelization) for
the 5 transactions used is listed for your reference—for complete benchmark source code
in electronic format, please contact the authors.

A.1 DELIVERY

void delivery(DbEnv *env,
Tables *tables,
int thread_id,
int warehouse,
int carrier_id)

{
for(int fail = 0;;) {
try {
AutoTxn txn(env);

//
// BEGIN TRANSACTION

For DELIVERY OUTER benchmark, TLS-parallelize this loop:
for(int district = 0; district < DISTRICTS_PER_WAREHOUSE;

district++) {

int order = 0;
int c_id = 0;

93

AutoCursor cur(tables->neworder.new_cursor(txn.tid()));
NewOrderTable::Key key(warehouse, district, 0);
Dbt key_dbt((void *)&key, sizeof(key));
Dbt row_dbt;

if(cur->get(&key_dbt, &row_dbt, DB_SET_RANGE | DB_RMW) == 0) {
NewOrderTable::Key *key = (NewOrderTable::Key *)

key_dbt.get_data();
assert(key);

assert(key->warehouse == warehouse);
assert(key->district == district);

order = key->order;

// Delete the row from the NewOrder table:
cur->del(0);

} else {
// No orders to deliver!
assert(0);

}

malloc_ptr<OrderTable::Row>
order_r(tables->order.lookup(txn.tid(), true,

warehouse, district, order));
assert(order_r);
c_id = order_r->c_id;
order_r->carrier_id = carrier_id;
tables->order.update(txn.tid(), warehouse, district, order,

order_r.get());

int total_amount = 0;

For DELIVERY benchmark, TLS-parallelize this loop:
for(int line_num = 0; line_num < order_r->ol_cnt; line_num++) {
malloc_ptr<OrderlineTable::Row>

orderline_r(tables->orderline.lookup(txn.tid(), true,
warehouse,

94

district,
order, line_num));

assert(orderline_r);
strcpy(orderline_r->delivery_d, datetime);
tables->orderline.update(txn.tid(), warehouse, district,

order, line_num,
orderline_r.get());

total_amount += orderline_r->amount;

}

malloc_ptr<CustomerTable::Row>
cust_r(tables->customer.lookup(txn.tid(), true, warehouse,

district, c_id));
assert(cust_r);
cust_r->balance += total_amount;
tables->customer.update(txn.tid(), warehouse, district,

c_id, cust_r.get());
}

// END TRANSACTION
//

// Done! Commit transaction:
txn.commit();

break;
}
catch(DbException err) {
env->err(err.get_errno(), "d: Caught exception, fail=d\n",

thread_id, fail);

if(fail++ > 4) {
abort();

}
}

}
}

95

A.2 NEW ORDER

void new_order(DbEnv *env,
Tables *tables,
int thread_id,
int warehouse,
int district,
int customer,
int order_count,
int item_w[],
int item_id[],
int item_qty[])

{
for(int fail = 0;;) {
try {
AutoTxn txn(env);

//
// BEGIN TRANSACTION

// Find customer and warehouse info:
malloc_ptr<WarehouseTable::Row>

ware_r(tables->warehouse.lookup(txn.tid(), false, warehouse));
assert(ware_r);
malloc_ptr<CustomerTable::Row>

cust_r(tables->customer.lookup(txn.tid(), false, warehouse,
district, customer));

assert(cust_r);

// Get and increment order number:
malloc_ptr<DistrictTable::Row>

dist_r(tables->district.lookup(txn.tid(), true, warehouse,
district));

assert(dist_r);

int o_id = dist_r->next_o_id;
dist_r->next_o_id++;

tables->district.update(txn.tid(), warehouse,
district, dist_r.get());

96

// Create a new order:
OrderTable::Row orderRow;
orderRow.c_id = customer;
strcpy(orderRow.entry_d, datetime);
orderRow.carrier_id = 0;
orderRow.ol_cnt = order_count;
// Must adjust this code to support multiple warehouses
orderRow.all_local = 1;

tables->order.insert(txn.tid(), warehouse, district, o_id,
&orderRow);

tables->neworder.insert(txn.tid(), warehouse, district, o_id);

// Process each item in the order:
For NEW ORDER benchmark, TLS-parallelize this loop:
for(int o_num=0; o_num < order_count; o_num++) {
malloc_ptr<ItemTable::Row>

item_r(tables->item.lookup(txn.tid(), false,
item_id[o_num]));

if(!item_r) {
throw InvalidItem();

}

malloc_ptr<StockTable::Row>
stock_r(tables->stock.lookup(txn.tid(), true,

item_w[o_num],
item_id[o_num]));

assert(stock_r);

if(stock_r->quantity > item_qty[o_num]) {
stock_r->quantity -= item_qty[o_num];

} else {
stock_r->quantity = stock_r->quantity -

item_qty[o_num] + 91;
}

tables->stock.update(txn.tid(), item_w[o_num],
item_id[o_num], stock_r.get());

97

float fprice = ((float)item_qty[o_num]) *
((float)item_r->price / 100.0) *
((float)(100 + ware_r->tax + dist_r->tax) / 100.0) *
((float)(100 - cust_r->discount) / 100.0);

int price = (int)(fprice * 100.0);

tables->orderline.insert(txn.tid(), warehouse, district,
o_id, o_num, item_id[o_num],
item_w[o_num], datetime,
item_qty[o_num], price,
"dist info");

}

// END TRANSACTION
//

// Done! Commit transaction:
txn.commit();
break;

}
catch(DbException err) {
env->err(err.get_errno(), "%d: Caught exception, fail=%d",

thread_id, fail);

if(fail++ > 4) {
abort();

}
}
catch(InvalidItem ii) {
break;

}
}

}

98

A.3 ORDER STATUS

void order_status(DbEnv *env,
Tables *tables,
int thread_id,
int warehouse,
int district,
bool byname,
int customer,
char *cust_name,
OrderlineTable::Row *results[15])

{
for(int fail = 0;;) {
CustomerTable::Key *cust_k = NULL;
CustomerTable::Row *cust_r = NULL;

try {
AutoTxn txn(env);

//
// BEGIN TRANSACTION

{// New scope for autocursor destruction
if(byname) {
malloc_ptr<CustomerTable::Elem> matches(

(CustomerTable::Elem *)
malloc(sizeof(CustomerTable::Elem) * 3000));

int num_matches = 0;

AutoCursor cur(tables->custbyname.new_cursor(txn.tid()));
CustByNameTable::Key key(warehouse, district, cust_name);
Dbt key_dbt((void *)&key, sizeof(key));
Dbt pkey_dbt;
Dbt row_dbt;

pkey_dbt.set_flags(DB_DBT_MALLOC);
row_dbt.set_flags(DB_DBT_MALLOC);

if(cur->pget(&key_dbt, &pkey_dbt, &row_dbt, DB_SET) == 0) {
do {
CustomerTable::Key *key = (CustomerTable::Key *)

99

pkey_dbt.get_data();
CustomerTable::Row *row = (CustomerTable::Row *)

row_dbt.get_data();
assert(key);
assert(row);

if(key->warehouse == warehouse &&
key->district == district &&
strcmp(row->last, cust_name) == 0) {

assert(num_matches < 3000);
matches[num_matches].key = key;
matches[num_matches].row = row;
num_matches++;

} else {
free(key);
free(row);
break;

}
} while(cur->pget(&key_dbt, &pkey_dbt, &row_dbt,

DB_NEXT) == 0);
}

assert(num_matches > 0);

qsort(matches.get(), num_matches,
sizeof(CustomerTable::Elem),
CustomerTable::compare_first);

int midpoint_match;
if(num_matches % 2) {
midpoint_match = num_matches / 2;

} else {
midpoint_match = (num_matches+1) / 2;

}

for(int n = 0; n < num_matches; n++) {
if(n == midpoint_match) {
cust_r = matches[n].row;
cust_k = matches[n].key;

} else {
free(matches[n].row);

100

free(matches[n].key);
}

}

customer = cust_k->customer;
} else {
cust_r =

tables->customer.lookup(txn.tid(), true,
warehouse, district, customer);

assert(cust_r);
}

// Find last order by this customer in the order table:
AutoCursor cur(tables->orderbycust.new_cursor(txn.tid()));
OrderByCustTable::Key key(warehouse, district, customer);
Dbt key_dbt((void *)&key, sizeof(key));
Dbt pkey_dbt;
Dbt row_dbt;
int order_id = -1;

pkey_dbt.set_flags(DB_DBT_MALLOC);
row_dbt.set_flags(DB_DBT_MALLOC);

if(cur->pget(&key_dbt, &pkey_dbt, &row_dbt, DB_SET) == 0) {
For ORDER STATUS benchmark, TLS-parallelize this loop:
do {
OrderTable::Key *key = (OrderTable::Key *)

pkey_dbt.get_data();
OrderTable::Row *row = (OrderTable::Row *)

row_dbt.get_data();
assert(key);
assert(row);

if(key->warehouse == warehouse &&
key->district == district &&
row->c_id == customer) {

if(key->order > order_id) {
order_id = key->order;

}
} else {
free(key);

101

free(row);
break;

}
free(key);
free(row);

} while(cur->pget(&key_dbt, &pkey_dbt, &row_dbt,
DB_NEXT) == 0);

}

assert(order_id != -1);

AutoCursor ocur(tables->orderline.new_cursor(txn.tid()));
OrderlineTable::Key ol_key(warehouse, district, order_id, 0);
Dbt ol_key_dbt((void *)&ol_key, sizeof(ol_key));
Dbt ol_row_dbt;

ol_key_dbt.set_flags(DB_DBT_MALLOC);
ol_row_dbt.set_flags(DB_DBT_MALLOC);

int i = 0;

if(ocur->get(&ol_key_dbt, &ol_row_dbt, DB_SET_RANGE) == 0) {
For ORDER STATUS benchmark, TLS-parallelize this loop:
do {
OrderlineTable::Key *key = (OrderlineTable::Key *)

ol_key_dbt.get_data();
OrderlineTable::Row *row = (OrderlineTable::Row *)

ol_row_dbt.get_data();
assert(key);
assert(row);

if(order_id != key->order_id ||
district != key->district ||
warehouse != key->warehouse) {

free(key);
free(row);
break;

}

assert(i < 15);
results[i] = row;

102

i++;

free(key);
} while(ocur->get(&ol_key_dbt, &ol_row_dbt, DB_NEXT) == 0);

} else {
assert(0);

}
}
// END TRANSACTION
//

// Done! Commit transaction:
txn.commit();

// Free all allocated memory:
free(cust_r);
free(cust_k);
break;

}
catch(DbException err) {
env->err(err.get_errno(), "%d: Caught exception, fail=%d\n",

thread_id, fail);

// Free all allocated memory:
free(cust_r);
free(cust_k);

if(fail++ > 4) {
abort();

}
}

}
}

103

A.4 PAYMENT

void payment(DbEnv *env,
Tables *tables,
int thread_id,
int warehouse,
int district,
bool byname,
int customer,
char *cust_name,
long amount)

{
for(int fail = 0;;) {
CustomerTable::Key *cust_k = NULL;
CustomerTable::Row *cust_r = NULL;

try {
AutoTxn txn(env);

//
// BEGIN TRANSACTION

malloc_ptr<WarehouseTable::Row>
ware_r(tables->warehouse.lookup(txn.tid(), true, warehouse));

assert(ware_r);
ware_r->ytd += amount;
tables->warehouse.update(txn.tid(), warehouse, ware_r.get());

malloc_ptr<DistrictTable::Row>
dist_r(tables->district.lookup(txn.tid(), true,

warehouse, district));
assert(dist_r);
dist_r->ytd += amount;
tables->district.update(txn.tid(), warehouse,

district, dist_r.get());

if(byname) {
malloc_ptr<CustomerTable::Elem> matches(

(CustomerTable::Elem *)malloc(sizeof(CustomerTable::Elem) *
3000));

int num_matches = 0;

104

AutoCursor cur(tables->custbyname.new_cursor(txn.tid()));
CustByNameTable::Key key(warehouse, district, cust_name);
Dbt key_dbt((void *)&key, sizeof(key));
Dbt pkey_dbt;
Dbt row_dbt;

pkey_dbt.set_flags(DB_DBT_MALLOC);
row_dbt.set_flags(DB_DBT_MALLOC);

if(cur->pget(&key_dbt, &pkey_dbt, &row_dbt,
DB_SET_RANGE | DB_RMW) == 0) {

do {
CustomerTable::Key *key = (CustomerTable::Key *)

pkey_dbt.get_data();
CustomerTable::Row *row = (CustomerTable::Row *)

row_dbt.get_data();
assert(key);
assert(row);

if(key->warehouse == warehouse &&
key->district == district &&
strcmp(row->last, cust_name) == 0) {

assert(num_matches < 3000);
matches[num_matches].key = key;
matches[num_matches].row = row;
num_matches++;

} else {
free(key);
free(row);
break;

}
} while(cur->pget(&key_dbt, &pkey_dbt, &row_dbt,

DB_NEXT | DB_RMW) == 0);
}

assert(num_matches > 0);

qsort(matches.get(), num_matches, sizeof(CustomerTable::Elem),
CustomerTable::compare_first);

105

int midpoint_match;
if(num_matches % 2) {
midpoint_match = num_matches / 2;

} else {
midpoint_match = (num_matches+1) / 2;

}

for(int n = 0; n < num_matches; n++) {
if(n == midpoint_match) {
cust_r = matches[n].row;
cust_k = matches[n].key;

} else {
free(matches[n].row);
free(matches[n].key);

}
}

} else {
cust_r =

tables->customer.lookup(txn.tid(), true,
warehouse, district, customer);

assert(cust_r);
}

For PAYMENT benchmark, start one epoch here...
cust_r->balance += amount;

if(strstr(cust_r->credit, "BC")) {
char new_data[500];
sprintf(new_data, "| %4d %2d %4d %2d %4d $%7.2f %12s",

byname ? cust_k->customer : customer,
district, warehouse,
district, warehouse, ((float)amount)/100.0, datetime);

strncat(new_data, cust_r->data, 500 - strlen(new_data));
strcpy(cust_r->data, new_data);

}

tables->customer.update(txn.tid(), warehouse, district, customer,
cust_r);

...and the next one here:
char h_data[25];

106

strncpy(h_data, ware_r->name, 10);
h_data[10] = ’\0’;
strncat(h_data, dist_r->name, 10);
h_data[20] = ’\0’;
h_data[21] = ’\0’;
h_data[22] = ’\0’;
h_data[23] = ’\0’;

tables->history.insert(txn.tid(), warehouse, district, customer,
district, warehouse, datetime, amount,
h_data);

// END TRANSACTION
//

// Done! Commit transaction:
txn.commit();

// Free all allocated memory:
free(cust_r);
free(cust_k);
break;

}
catch(DbException err) {
env->err(err.get_errno(), "%d: Caught exception, fail=%d\n",

thread_id, fail);

// Free all allocated memory:
free(cust_r);
free(cust_k);

if(fail++ > 4) {
abort();

}
}

}
}

107

A.5 STOCK LEVEL

void stock_level(DbEnv *env,
Tables *tables,
int thread_id,
int warehouse,
int district,
int threshold,
int *low_stock_cnt)

{
for(int fail = 0;;) {
try {
AutoTxn txn(env);

//
// BEGIN TRANSACTION

int low_stock = 0;

{// New scope for autocursor destruction
malloc_ptr<DistrictTable::Row>

dist_r(tables->district.lookup(txn.tid(), false, warehouse,
district));

assert(dist_r);
int o_id = dist_r->next_o_id;

AutoCursor cur(tables->orderline.new_cursor(txn.tid()));
OrderlineTable::Key key(warehouse, district, o_id - 20, 0);
Dbt key_dbt((void *)&key, sizeof(key));
Dbt row_dbt;

std::set<int, ltint> found_items;

if(cur->get(&key_dbt, &row_dbt, DB_SET_RANGE) == 0) {
For STOCK LEVEL benchmark, TLS-parallelize this loop:
do {
OrderlineTable::Key *key = (OrderlineTable::Key *)

key_dbt.get_data();
OrderlineTable::Row *row = (OrderlineTable::Row *)

row_dbt.get_data();
assert(key);

108

assert(row);

if(key->warehouse != warehouse ||
key->district != district ||
key->order_id > o_id) {

break;
}
assert(key->order_id >= o_id - 20);

if(found_items.find(row->i_id) ==
found_items.end()) {

found_items.insert(row->i_id);

malloc_ptr<StockTable::Row>
stock_r(tables->stock.lookup(txn.tid(),

false,
warehouse,
row->i_id));

assert(stock_r);

if(stock_r->quantity < threshold) {
low_stock++;

}
}

} while(cur->get(&key_dbt, &row_dbt, DB_NEXT) == 0);
}

}

// END TRANSACTION
//

// Done! Commit transaction:
txn.commit();

*low_stock_cnt = low_stock;

break;
}
catch(DbException err) {
env->err(err.get_errno(), "%d: Caught exception, fail=%d\n",

thread_id, fail);

109

if(fail++ > 4) {
abort();

}
}

}
}

110

Appendix B

L2 Coherence Actions

This Appendix contains pseudo-code which describes in detail the algorithms used to se-
lect the appropriate cache line (amongst a set of replicas) and check for violations when
the L2 cache receives a reference.

// What happens at a high level when the L1 cache receives a
// request from a L1 cache:
(Bool is_clean, Line line)
request_from_L1(Addr addr,

Ref ref,
EpochNum epoch)

{
Tag tag = addr2tag(addr);
CacheSet set = cache.set_lookup(addr2set(addr));
LineSet lines = set.matches(tag) union victim_cache.matches(tag);

(Bool is_hit, LinePtr linep) = select_line(lines, ref, epoch, set);

if(!is_hit) {
linep = set.lru();
linep.evict();

if(lines != empty_set && ref == UpSp) {
(EpochNum most_recent_epoch, LinePtr most_recent_line) =
find_most_recent(lines, epoch);

if(most_recent_epoch != -1) {
// In cache replicate:

111

linep.copy(most_recent_line);
}

}

linep.miss_to_next_cache();
}

// Note: does not show coherence messages sent to other L2 caches,
// nor does this show invalidations sent to L1 caches:
switch(ref) {
case R:
return (true, linep);
break;

case RSp:
linep.set_SL(epoch);
return ((linep.SM_bits() == empty_set), linep);
break;

case Up:
linep.update();
break;

case UpSp:
linep.update();
linep.set_SM(epoch);
break;

case notifySL:
linep.set_SL(epoch);
break;

}

return (true, linep);
}

// How a line is selected from the set of replicas:
(Bool is_hit, LinePtr linep)
select_line(LineSet lines,

Ref ref,
EpochNum epoch,

112

CacheSet set)
{
if(lines != empty_set) {
check_for_violations(lines, ref, epoch);

(Bool is_compat, LinePtr linep) = compatible(lines, ref, epoch);

if(is_compat) {
if(victim_cache.contains(linep)) {
LinePtr evicted_linep = set.lru();
evicted_linep.evict();
linep.move_to(evicted_linep);

}
return (true, linep);

}
}

return (false, NULL);
}

// Given a reference and a set of matching lines, are there any
// violations?
void
check_for_violations(LineSet lines,

Ref ref,
EpochNum epoch)

{
switch(ref) {
case Up:
foreach(line in lines) {
if(line.SL_bits() != empty_set) {
violate(bits2epochSet(line.SL_bits()));

}
}
break;

case UpSp:
foreach(line in lines) {
if(line.SL_bits((epoch+1)...infinity) != empty_set) {
violate(bits2epochSet(line.SL_bits((epoch+1)...infinity)));

113

}
}
break;

case notifySL:
foreach(line in lines) {
if(line.SM_bits(0...(epoch-1)) != empty_set) {
violate(epoch);

}
}
break;

case R:
case RSp:
break;

}
}

// Given a reference and a set of matching lines, which line should we
// use?
(Bool is_compat, LinePtr linep)
compatible(LineSet lines,

Ref ref,
EpochNum epoch)

{
switch(ref) {
case R:
case Up:
foreach(line in lines) {
if(line.SM_bits() == empty_set) {
return (true, &line);

}
}
break;

case RSp:
case notifySL:
(EpochNum most_recent_epoch, LinePtr most_recent_line) =
find_most_recent(lines, epoch);

114

if(most_recent_epoch != -1) {
return (true, &most_recent_line);

}
break;

case UpSp:
foreach(line in lines) {
if(line.SM_bits(epoch...epoch) != empty_set) {
return (true, &line);

}
}
foreach(line in lines) {
if(line.SM_bits() == empty_set &&

line.SL_bits(0...(epoch-1)) == empty_set) {
return (true, &line);

}
}
break;

}

return (false, NULL);
}

// Find the line in the given set which has been modified by the most
// recent epoch which is earlier than or equal to the given epoch:
(EpochNum most_recent_epoch, LinePtr most_recent_line)
find_most_recent(LineSet lines,

EpochNum epoch)
{
EpochNum most_recent_epoch = -1;
LinePtr most_recent_line;

foreach(line in lines) {
if(line.SM_bits() == empty_set && most_recent == -1) {
most_recent_line = &line;
most_recent_epoch = 0;

} else {
if(line.SM_bits(0...epoch) != empty_set &&

bit2epoch(line.SM_bits(0...epoch)) > most_recent_epoch) {
most_recent_line = &line;
most_recent_epoch = bit2epoch(line.SM_bits(0...epoch));

115

}
}

}
return (most_recent_epoch, most_recent_line);

}

116

Bibliography

[1] H. Akkary and M. Driscoll. A dynamic multithreading processor. In MICRO-31,
December 1998. 10

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and recovery:
Towards scalable large instruction window processors. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, December 2003.
11

[3] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie. Unbounded trans-
actional memory. In Proceedings of the 11th HPCA, 2005. 12

[4] Arvind and D. Culler. Dataflow architectures. In Annual Review in Computer Sci-
ence, volume 1, pages 225–253, 1986. 17

[5] A. Bhowmik and M. Franklin. A general compiler framework for speculative multi-
threading. In Proceedings of the 14th SPAA, August 2002. 8

[6] M. Cintra, J. Martı́nez, and J. Torrellas. Architectural Support for Scalable Specu-
lative Parallelization in Shared-Memory Multiprocessors. In ISCA 27, June 2000.
62

[7] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-order commit processors. In
Proceedings of the 10th HPCA, February 2004. 11

[8] E.D. Berger and K.S. McKinley and R.D. Blumofe and P.R. Wilson. Hoard: A
scalable memory allocator for multithreaded applications. In Proceedings of the 9th
ASPLOS, 2000. 45

[9] M. Franklin and G. Sohi. ARB: A hardware mechanism for dynamic reordering of
memory references. IEEE Transactions on Computers, 45(5), May 1996. 10

117

[10] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the 1987 ACM SIGMOD
international conference on Management of data, pages 249–259. ACM Press, 1987.
ISBN 0-89791-236-5. doi: http://doi.acm.org/10.1145/38713.38742. 46

[11] M. Garzarán, M. Prvulovic, J. Llaberı́a, V. Viñals, L. Rauchwerger, and J. Torrellas.
Tradeoffs in buffering memory state for thread-level speculation in multiprocessors.
In Proceedings of the 9th HPCA, February 2003. 10, 16, 62

[12] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiprocessors.
In Proceedings of the 17th Annual International Symposium on Computer Architec-
ture, pages 15–26, May 1990. 27

[13] S. Goldstein, K. Schauser, and D. Culler. Lazy threads: Implementing a fast parallel
call. Journal of Parallel and Distributed Computing, 37(1):5–20, August 1996. 74

[14] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning cache. In
Proceedings of the 4th HPCA, February 1998. 10, 11, 62, 67

[15] J. Gray. The Benchmark Handbook for Transaction Processing Systems. Morgan-
Kaufmann Publishers, Inc., 1993. 1, 29, 30

[16] M. Gupta and R. Nim. Techniques for speculative run-time parallelization of loops.
In Supercomputing ’98, November 1998. 10

[17] R. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM
TOPLAS, 7(4):501–538, 1985. 8

[18] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun. The
Stanford Hydra CMP. IEEE Micro Magazine, March-April 2000. 3, 8, 10, 62, 90

[19] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis, and
K. Olukotun. Programming with transactional coherence and consistency (TCC). In
Proceedings of the 11th ASPLOS, October 2004. 8

[20] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coherence
and consistency. In Proceedings of the 31th ISCA, June 2004. 8, 90

[21] B. Hayes. Differences in optimizing for the pentium 4 processor versus the pentium
iii processor. http://www.intel.com/cd/ids/developer/asmo-na/
eng/44010.htm, 2005. 86

118

http://www.intel.com/cd/ids/developer/asmo-na/eng/44010.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/44010.htm

[22] J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach:
Second Edition. Morgan Kaufmann, 1996. 40

[23] M. Herlihy and J. Moss. Transactional memory: Architectural support for lock-free
data structures. In Proceedings of the 20th ISCA, 1993. 10, 90

[24] IBM Corporation. IBM DB2 Universal Database Administration Guide: Perfor-
mance. IBM Corporation, 2004. 1

[25] T. Johnson, R. Eigenmann, and T. Vijaykumar. Min-cut program decomposition for
thread-level speculation. In Proc. ACM SIGPLAN 04 Conference on Programming
Language Design and Implementation, June 2004. 8

[26] N. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers. In Proceedings of the 17th ISCA,
pages 364–373, May 1990. 68, 71

[27] H. Kaufmann and H. Schek. Extending TP-monitors for intra-transaction parallelism.
In Proceedings of the 4th PDIS, 1996. 9

[28] T. Knight. An architecture for mostly functional languages. In Proceedings of the
ACM Lisp and Functional Programming Conference, pages 500–519, August 1986.
8

[29] H. Kung and J. Robinson. On optimistic methods for concurrency control. ACM
TODS, pages 213–226, June 1981. 10, 43

[30] A. Lai and B. Falsafi. Selective, accurate, and timely self-invalidation using last-
touch prediction. In ISCA 27, June 2000. 66

[31] S. Mahlke, W. Chen, J. Gyllenhaal, and W. Hwu. Compiler code transformations for
superscalar-based high-performance systems. In In Proceedings of the International
Conference on Supercomputing, 1992. 33

[32] P. Marcuello and A. González. Clustered speculative multithreaded processors. In
Proc. of the ACM Int. Conf. on Supercomputing, June 1999. 10

[33] J. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry: Check-
pointed early resource recycling in out-of-order microprocessors. In Proceedings of
the 35th Annual IEEE/ACM International Symposium on Microarchitecture, Novem-
ber 2002. 11

119

[34] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital West-
ern Research Laboratory, June 1993. 49

[35] D. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter. Priority mech-
anisms for OLTP and transactional web applications. In Proceedings of the IEEE
International Conference on Data Engineering, March 2004. 7

[36] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter. Improving
preemptive prioritization via statistical characterization of OLTP locking. In Pro-
ceedings of the IEEE International Conference on Data Engineering, 2005. 7

[37] J. Miller and H. Lau. Microsoft SQL Server 2000 Resource Kit, chapter RDBMS
Performance Tuning Guide for Data Warehousing, pages 575–653. Microsoft Press,
2001. 1

[38] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transac-
tion recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM TODS, March 1992. 27, 46

[39] G. Morrisett and M. Herlihy. Optimistic parallelization. Technical Report CMU-CS-
93-171, School of Computer Science, Carnegie Mellon University, October 1993.
10

[40] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic speculation and
synchronization of data dependences. In Proceedings of the 24th ISCA, June 1997.
11, 75

[41] J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, MIT, April 1981. Tech Rep MIT/LCS/TR-260. Also available from MIT
press, 1985. 20

[42] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proceedings of the Summer
Usenix Technical Conference, June 1999. 29, 30

[43] K. Olukotun, L. Hammond, and M. Willey. Improving the performance of specu-
latively parallel applications on the hydra cmp. In 13th Annual ACM International
Conference on Supercomputing, 1999. 11

[44] C. L. Ooi, S. W. Kim, I. Park, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar.
Multiplex: Unifying conventional and speculative thread-level parallelism on a chip
multiprocessor. In In Proceedings of the International Conference on Supercomput-
ing, June 2001. 8

120

[45] J. Oplinger, D. Heine, and M. Lam. In search of speculative thread-level parallelism.
In Proceedings of PACT ’99, October 1999. 16

[46] M. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual par-
allelization. In The ACM SIGPLAN 2003 Symposium on Principles & Practice of
Parallel Programming, June 2003. 8, 16, 62

[47] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J. Torrellas. Removing architec-
tural bottlenecks to the scalability of speculative parallelization. In Proceedings of
the 28th ISCA, June 2001. 4, 10, 11, 62, 68, 90

[48] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proceed-
ings of the 32th ISCA, 2005. 12

[49] L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. IEEE Transactions on
Parallel and Distributed System, 10(2):160–172, 1999. 10

[50] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors. In Proceed-
ings of the 30th Annual IEEE/ACM International Symposium on Microarchitecture,
December 1997. 10

[51] P. Rundberg and P.Stenstrom. Low-cost thread-level data dependence speculation on
multiprocessors. In Fourth Workshop on Multithreaded Execution, Architecture and
Compilation, December 2000. 10

[52] M. Rys, M. Norrie, and H. Schek. Intra-transaction parallelism in the mapping of
an object model to a relational multi-processor system. In Proceedings of the 22nd
VLDB, 1996. 9

[53] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Algorithms
and performance studies. ACM TODS, 20(3):325–363, 1995. URL citeseer.
ist.psu.edu/shasha95transaction.html. 9

[54] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. John Wiley
& Sons, Inc., 2002. 43

[55] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In Proceedings of
the 22nd ISCA, June 1995. 10, 62, 90

[56] Standard Performance Evaluation Corporation. The SPEC Benchmark Suite. http:
//www.specbench.org. 61

121

citeseer.ist.psu.edu/shasha95transaction.html
citeseer.ist.psu.edu/shasha95transaction.html
http://www.specbench.org
http://www.specbench.org

[57] J. Steffan. Hardware Support for Thread-Level Speculation. PhD thesis, Carnegie
Mellon University, School of Computer Science, April 2003. 67, 70

[58] J. Steffan and T. Mowry. The potential for using thread-level data speculation to
facilitate automatic parallellization. In Proceedings of the 4th HPCA, February 1998.
10, 68

[59] J. Steffan, C. Colohan, and T. Mowry. Architectural support for thread-level data
speculation. Technical Report CMU-CS-97-188, School of Computer Science,
Carnegie Mellon University, November 1997. 10, 74

[60] J. Steffan, C. Colohan, A. Zhai, and T. Mowry. A scalable approach to thread-level
speculation. In ISCA 27, June 2000. 3, 10, 62, 63, 90

[61] J. Steffan, C. Colohan, A. Zhai, and T. Mowry. Improving value communication for
thread-level speculation. In Proceedings of the 8th HPCA, February 2002. 10, 11,
16, 62, 72, 75, 79

[62] Transaction Processing Performance Council. TPC benchmark C standard specifica-
tion revision 5.4. http://www.tpc.org, April 2005. 30

[63] M. Tremblay. MAJC: Microprocessor architecture for java computing. HotChips
’99, August 1999. 3

[64] N. Tuck and D. M. Tullsen. Multithreaded value prediction. In Proceedings of the
11th HPCA, February 2005. 11

[65] T. Vijaykumar. Compiling for the Multiscalar Architecture. PhD thesis, University
of Wisconsin-Madison, January 1998. 8, 16, 62

[66] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April 1996.
49

[67] A. Zhai, C. Colohan, J. Steffan, and T. Mowry. Compiler Optimization of Scalar
Value Communication Between Speculative Threads. In Proceedings of the 10th
ASPLOS, October 2002. 10

[68] A. Zhai, C. Colohan, J. Steffan, and T. Mowry. Compiler optimization of memory-
resident value communication between speculative threads. In International Sympo-
sium on Code Generation and Optimization, March 2004. 10, 16

[69] C. Zuzarte. Personal communication, 2005. 1

122

http://www.tpc.org

Glossary

Aggressive update propagation: When an epoch stores to a memory location the new
value is made available to later epochs as soon as possible. This avoids violations
caused by forwards dependences., 14

Backwards dependence: A dependence between two epochs where the second epoch
loads a memory location before the first epoch stores to that memory location. A
backwards dependence causes a violation., 14

Buffer pool: The buffer pool is the subset of the database pages which currently reside
in memory. The buffer pool manager (similar to a virtual memory manager in an
operating system) is responsible for retrieving needed pages from disk and writing
dirty pages back to disk in response to pin page and unpin page requests., 45

Chain violation: When an epoch is restarted due to a violation it forces all later epochs to
restart as well through a chain violation. This is because the later epochs may have
consumed incorrect speculative values generated by the violated epoch., 14

Clean replica: if replication has created multiple versions of a cache line, the clean replica
is the version with no speculative modifications., 69

Cursor: A cursor is a transaction visible pointer to a location in a database table. A
cursor is typically used for traversing the table to scan a range of records in the
table. Database systems can also use cursors internally for implementing B-tree
searches., 33

Data dependence: When a load is executed it expects to receive the value placed in the
memory location by the previous store in the original program order. The relation-
ship between the load and the previous store is a data dependence. TLS re-orders
the execution of the program, and must ensure that data dependences are preserved
to preserve correct execution., 13

123

Epoch context: The hardware which stores the speculative state for a single epoch (or
sub-epoch)., 67

Epoch: The parallel unit of work performed by a speculative thread. An epoch either
commits its work to memory or violates (undoes its execution)., 3

Escaping speculation: Temporarily disabling the speculation mechanism while the epoch
executes to avoid dependences. While the CPU is in escaped mode all loads and
stores are performed as if the epoch is homefree. The software is responsible for
undoing the effects of escaped code if the epoch is later violated and restarted., 24

Exposed load table: A table which tracks which PC performed the first load to each
memory address accessed by an epoch., 72

Exposed load: The first load to any particular memory location performed by an epoch.
When a data dependence violation is detected then the consuming epoch must rewind
execution at least to the exposed load which caused the violation., 72

False sharing: Data dependences in TLS are tracked at a cache line granularity. If two
variables happen to reside on the same cache line, then a write to one variable may
cause a violation if the other variable is read. This is a false dependence, caused by
false sharing. The most common fix for this problem is to re-arrange the variables,
or to insert padding between shared variables to ensure they reside on separate cache
lines., 48

Forwarding frame: The portion of the stack used by TLS to pass initial arguments from
one epoch to the next., 20

Homefree token: A token passed from one epoch to the next to indicate that the epoch
can no longer be violated by prior epochs, or is homefree., 21

Homefree: The oldest epoch is said to be homefree, since there are no prior epochs which
can cause it to be violated. An epoch becomes homefree when it receives the home-
free token from the previous epoch., 21

Invalidation required buffer (IRB): A list of cache lines which have been replicated. At
epoch commit time invalidations may have to be sent out for each of these lines to
remove stale replicas from the L1 caches., 70

Isolated undoable operation: A function which has a corresponding undo function (is
undoable), and if that undo function is invoked no other transaction or earlier epoch
is forced to rewind or otherwise alter its execution., 27

124

Last-touch predictor: Hardware which attempts to predict the last time an epoch writes
to a memory location., 66

Latch: A latch provides mutual exclusion between two threads. Latch is a database sys-
tems term, a latch is known as a mutex in operating systems parlance., 1

Latency: The latency of a transaction is how long it takes from the start of the transac-
tion’s execution until its completion., 49

Lock: A lock is used to allow safe concurrent access to an object by multiple threads.
Locks allow multiple threads into a critical section at the same time if the lock types
are compatible: multiple readers are allowed into a critical section at a time, while
writers have exclusive access. Locks also provide deadlock detection, since multiple
locks can be held at once and they are meant to be held for longer periods of time
than latches., 44

Ownership required buffer (ORB): A list of cache lines which have been speculatively
modified but are not owned exclusively by a cache. When an epoch commits it sends
out invalidations for all lines listed in the ORB to ensure that it has the only copy of
a line before committing speculative changes., 70

Post-commit region: The region of an epoch’s execution after the epoch has committed
and passed the homefree token. Code which causes violations but is safe to be
executed in parallel can be delayed until this region of the epoch., 24

Post-homefree region: The region of an epoch’s execution after the homefree token has
arrived but before the token is passed on to the next epoch. Code which frequently
causes violations can be moved down to this region., 21

Pre-fork region: The region of an epoch’s execution where the loop index is computed
before starting the following epoch., 21

Primary violation: A violation caused by reading an incorrect speculative value. When
an epoch is restarted due to a primary violation, it restarts all later epochs with a
chain violation., 77

Recovery function: A user-specified function which is invoked when an epoch is vio-
lated. This is used when escaping speculation to ensure that the system state is
properly restored if a violation occurs., 73

125

Replica conflict: A replica conflict is when two epochs need to keep different versions
of a cache line in order to make forward progress. The TLS hardware presented in
this thesis will replicate the cache line and maintain two versions to avoid a replica
conflict., 68

Replication: (of a cache line) Making a duplicate version of a cache line to avoid a replica
conflict., 67

Speculative region: The main body of an epoch; the region of an epoch’s execution
where the TLS mechanism ensures that execution is equivalent to the original se-
quential execution., 21

Speculative victim cache: A victim cache is a small fully-associative cache which stores
cache lines which have been recently evicted from the main cache. A speculative
victim cache is a victim cache which only stores speculative lines. The purpose of
the speculative victim cache is to avoid violations caused by evicting speculative
state., 68

Sub-epoch start table: This is a table which tracks the temporal relationship between
sub-epochs. It is used to limit the amount of execution that is undone when an
epoch receives a chain violation., 78

Sub-epoch: Epochs are broken up into sub-epochs to reduce the penalty of a violation.
When a violation occurs the epoch is rewound to the start of the sub-epoch which
contained the mis-speculated load, and not back to the start of the entire epoch. Sub-
epochs can be thought of as a way to provide periodic checkpoints of the epoch’s
execution., 17

TPC-C: Transaction Processing Council benchmark C. This benchmark attempts to sim-
ulate the workload on a database server owned by a bank or business selling wid-
gets. Further information and the benchmark specification can be found at http:
//www.tpc.org., 1

Thread: In this thesis a thread refers to the unit of parallelism used by software without
TLS. A database system typically maintains a pool of threads, and each thread runs
a transaction. TLS adds parallelism by further dividing each thread into epochs., 27

Throughput: In a database context, throughput is the rate of transaction execution (trans-
actions executed per minute)., 49

126

http://www.tpc.org
http://www.tpc.org

Violation: When TLS detects that an epoch has speculatively loaded an incorrect value,
it generates a violation. The violation causes the epoch to rewind and restart. On the
second execution the correct value will be consumed., 14

127

	1 Introduction
	1.1 Thread-Level Speculation
	1.2 Small Software Changes for Large Performance Gains
	1.3 Why Transaction Latency?
	1.4 Thesis Overview
	1.5 Related Work
	1.5.1 Parallel Programming Models
	1.5.2 Intra-transaction Parallelism
	1.5.3 TLS Hardware Support

	1.6 Contributions

	2 A New TLS Programming Model for Large, Dependent Epochs
	2.1 Dividing a transaction into epochs
	2.2 Sub-epochs
	2.3 Life Cycle of an Epoch
	2.4 Moving Code to Avoid Dependences
	2.5 Avoiding Dependences by Escaping Speculation
	2.6 Inter-transaction Data Dependences
	2.7 Chapter Summary

	3 Applying TLS to Database Transactions
	3.1 The Transaction Programmer: Choosing Epoch Boundaries
	3.1.1 New Order
	3.1.2 Delivery
	3.1.3 Stock Level
	3.1.4 Payment
	3.1.5 Order Status

	3.2 The Database System Programmer: Eliminating Dependences in the DBMS
	3.3 Performance Tuning the DBMS
	3.3.1 Resource Management
	3.3.2 The Log
	3.3.3 B-Trees
	3.3.4 Statistics Gathering
	3.3.5 Error Checks
	3.3.6 False Sharing

	3.4 Experimental Results
	3.4.1 Benchmark Infrastructure
	3.4.2 Simulation Infrastructure
	3.4.3 High Level Benchmark Characterization
	3.4.4 Scaling Intra-Transaction Parallelism
	3.4.5 Impact of Each Optimization

	3.5 Chapter Summary

	4 Hardware Support for Large, Dependent Epochs
	4.1 Hardware Support for Large Epochs
	4.1.1 A Protocol for Two-Level Speculative State Tracking and Buffering

	4.2 Using TLS to Incrementally Parallelize Database Transactions
	4.2.1 Profiling Violated Inter-Epoch Dependences
	4.2.2 Hardware Support for Escaping Speculation

	4.3 Tolerating Dependences with Sub-Epochs
	4.3.1 Hardware Support for Sub-Epochs
	4.3.2 Choosing Sub-epoch Boundaries

	4.4 Experimental Results
	4.4.1 Sub-epoch Support
	4.4.2 Cache Configuration

	4.5 Chapter Summary

	5 Conclusions
	A Transaction Source Code
	A.1 Delivery
	A.2 New Order
	A.3 Order Status
	A.4 Payment
	A.5 Stock Level

	B L2 Coherence Actions
	Bibliography
	Glossary

