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Abstract

Exploits for new vulnerabilities, especially when incorporated within a fast spread-
ing worm, can compromise nearly all vulnerable hosts withina short amount of
time. This problem demonstrates the need for fast defenses which can react to a
new vulnerability quickly. In addition, a realistic defense system should (a) not
require source code since in practice most vulnerable systems do not have source
code access nor is there adequate time to involve the software vendor, (b) be accu-
rate, i.e., have a negligible false positive rate and low false negative rate, and (c) be
efficient, i.e., add little overhead to normal program execution.

We propose vulnerability-specific execution-based filtering (VSEF) – a new
approach for automatic defense which achieves a lower errorrate and wider appli-
cability than input filters and has better performance than full execution monitor-
ing. VSEF is anexecution-based filterwhich filters out attacks on a specific vul-
nerability based on the vulnerable program’s execution trace. We present VSEF,
along with a system for automatically creating VSEF filters and a hardened pro-
gram without access to source code. In our system, the time ittakes to create
the filter and generate the hardened program is negligible. The overhead of the
hardened program is only a few percent in most cases. The false positive rate is
zero in most cases, and the hardened program is resilient against polymorphic vari-
ants of exploits on the same vulnerability. VSEF therefore achieves the required
performance, accuracy, and response speed requirements todefend against current
fast-spreading exploits.



1 Introduction

The number of new vulnerabilities reported each year continues to grow. Accord-
ing to CERT/CC, in 1995 171 new vulnerabilities were reported, while less than
a decade later in 2004 over 3700 new vulnerabilities were discovered [9]. A new
exploit for a single vulnerability can readily be turned into worms which com-
promise hundreds of thousands of machines within only a few minutes [22, 35].
Thus, after a vulnerability is discovered it is important toquickly develop effective
mechanisms to protect vulnerable hosts so that (1) they willnot be compromised
by exploits of the vulnerability, and (2) provide service without disruption.

The speed at which new vulnerabilities are discovered and exploits created ne-
cessitates new defenses that meet several goals simultaneously: (1) Fast defense
development and deployment: there is often very little reaction time, especially
when the exploit comes in the form of a fast propagating worm.Thus, we need
to be able to develop and deploy defense mechanisms extremely quickly after the
detection of a vulnerability. (2)No requirement for source code: many vulnerable
programs are commodity software for which the source code isproprietary. To
respond quickly to new vulnerabilities, we need to be able todevelop a defense
mechanism without access to source code, so we do not rely on the cooperation of
the software vendor. (3)High accuracy and effectiveness: the defense mechanism
should protect against the vulnerability and should not have any undesirable side
effect on normal execution. It should have a low false positive rate (not blocking
legitimate requests) and a low false negative rate (even effective against polymor-
phic attacks). (4)Low performance overhead: the defense mechanism should have
low performance overhead, so a vulnerable host deploying the defense mechanism
can still provide critical services with little performance degradation.

Many defense mechanisms have been proposed to protect a vulnerable host af-
ter a vulnerability has been discovered. Previous work has various drawbacks and
do not satisfy all the above requirements. One popular approach is to automatically
generate network-basedinput filtersto filter out known exploits [16, 34, 18, 27, 26].
However, the accuracy and effectiveness of the network-based input filtering ap-
proach is fundamentally limited to syntactic properties ofthe input string and can-
not take into account application-specific semantic and context information. In
particular, there may be no syntax-based classifier to correctly distinguish between
malicious and innocuous traffic for certain applications orvulnerabilities due to
polymorphic attacks; and the lack of context information innetwork-based input
filtering can have high false positive rate for certain applications. Input filters also
have difficulty recognizing semantically equivalent inputs, such as alternate URL
encodings, which leads to false negatives. In the extreme case where an input filter
is used on an encrypted protocol, it must somehow be suppliedwith the decryption
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key, which is awkward and application-specific. Costa et. al. propose automatically
generatedhost-basedinput filters [11], which has greater accuracy than network-
based input filters, and can correctly recognize some semantically equivalent in-
puts. However, the approach still suffers difficulty when the correct classification
rule is complex and needs program state information, or wheninput is encrypted.
Therefore the input filtering approach is not a complete solution.

On the other hand, various host-based approaches have been proposed which
are more accurate, but fail to meet the other requirements. For example, previ-
ous approaches have focused on: (1)Patching: patching a new vulnerability can
be a time-consuming task—generating high quality patches often require source
code, manual effort, and extensive testing. Applying patches to an existing sys-
tem also often requires extensive testing to ensure that thenew patches do not
lead to any undesirable side effects on the whole system. (2)Binary-based full
execution monitoring: many approaches have been proposed to add protection to
a binary program. However, these previous approaches are either inaccurate and
only defend against a small classes of attacks [6, 31, 17, 23]or require hardware
modification or incur high performance overhead when used toprotect the entire
program execution [14, 27, 36, 11].

In this paper, we propose a new approach for automatic defense: vulnerability-
specific execution-based filtering(VSEF). At a high-level, VSEF filters out ex-
ploits based on the program’s execution, as opposed to filtering based solely upon
the input string. However, instead of instrumenting and monitoring the full exe-
cution, VSEF only monitors and instruments the part of program execution which
is relevant to the specific vulnerability. VSEF therefore takes the best of both
input-based filtering and full execution monitoring: it is much more accurate than
input-based filtering and much more efficient than full execution monitoring.

We also develop the first system for automatically creating aVSEF filter for a
known vulnerabilitygiven only a program binary, and a sample input that exploits
that vulnerability. Our VSEF Filter Generator automatically generates a VSEF
filter which encodes the information needed to detect futureattacks against the
vulnerability. Using the VSEF filter, the vulnerable host can use our VSEF Bi-
nary Instrumentation Engine to automatically add instrumentation to the vulnera-
ble binary program to obtain a hardened binary program. The hardened program
introduces very little overhead and for normal requests performs just as the original
program. On the other hand, the hardened program detects andfilters out attacks
against the same vulnerability. Thus, VSEF protects vulnerable hosts from attacks
and allow the vulnerable hosts to continue providing critical services.

Contributions. The central contribution of this paper is a new approach for auto-
matic defense against known vulnerabilities, called vulnerability-specific execution-
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based filtering. Using the execution trace of an exploit of a vulnerability, our
VSEF automatically generates a hardened program which can defend against fur-
ther (polymorphic) exploits of the same vulnerability. VSEF achieves three im-
portant goals: low performance overhead, fast generation,and a low error rate.
Specifically:

• Our VSEF is an extremely fast defense. In general, it takes a few millisec-
onds for our VSEF to generate the hardened program from an exploit execu-
tion trace.

• Our VSEF filtering techniques provide a way of detecting exploits of a vul-
nerability more accurately than input-based filters and more efficiently than
full execution monitoring.

• Our techniques do not require access to source code, and are thus applicable
in realistic environments.

• We provide two VSEF filtering mechanisms for detecting overwrite attacks,
including buffer overflows, double-free attacks, and format string vulnera-
bilities. The first mechanism, taint-based VSEF, is the mostaccurate and re-
quires potentially a longer filter. The second mechanism, destination-based
VSEF, is more efficient and is still highly accurate. Both mechanisms have
zero false positives in most cases, and are effective against polymorphic vari-
ants of the exploit of the vulnerability. Note that our approach is general, and
could potentially be applied to other faults such as integeroverflow, divide-
by-zero,etc.

• Our experiments show that the performance overhead of the hardened pro-
gram is usually only a few percent.

These properties make VSEF an attractive approach toward building an auto-
matic worm defense system that can react to extremely fast worms.

2 Approach: Vulnerability-Specific Execution-based Fil-
tering

Overview. We propose a new approach for automatically defending against just-
discovered attacks,vulnerability-specific execution-based filtering(VSEF). VSEF
is based on the observation that for a specific vulnerabilityonly the part of the
program execution that is relevant to the exploit of the vulnerability need be moni-
tored. VSEF monitoring has full context and semantic information, as opposed to
input-based filters which are limited to syntactic properties. Instrumenting the bi-
nary to perform the vulnerability-specific execution filtering results in a hardened
binary. As a result, VSEF is much more accurate than network-based filtering,
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and much more efficient than full execution monitoring. The combination of ac-
curacy and low overhead makes the VSEF approach very attractive for automatic
deployment schemes.

The main research questions for enabling VSEF include (1) what part of the
program should we monitor/instrument, (2) how can we detectand filter out the
attack when we only monitor/instrument part of the program,and (3) how can
we minimize the overhead of the VSEF defense. In this paper weaddress these
questions. In particular, we propose an architecture that will automatically create
VSEF filters and harden the vulnerable program given an exploit execution trace.

VSEF Architecture. Figure 1 shows the overall architecture. Our architecture
contains two main components: the VSEF Filter Generator andthe VSEF Binary
Instrumentation Engine. To enable VSEF, we assume that a sample exploit has
been detected by some exploit detector which outputs an exploit execution trace.
The exploit execution trace contains the information aboutthe program execution
up to the detected exploit of the vulnerability. The exploitexecution trace can be
a simple instruction trace dump of the program execution or some more intelligent
output from the exploit detector. The VSEF Filter Generatoruses the exploit exe-
cution trace to create a VSEF filter which encodes the information needed for the
monitoring to detect future attacks on the vulnerability. The VSEF filter can then
be disseminated.

Vulnerable hosts use the VSEF Binary Instrumentation Engine to apply a VSEF
filter to a binary. The result is a hardened binary program. The hardened program
functions like the original program for normal requests andintroduces very little
overhead. The hardened program, however, detects and filters out attacks against
the same vulnerability. Thus, VSEF protects vulnerable hosts from attacks and
allows the vulnerable hosts to continue to provide criticalservices.

VSEF Requirements. The vulnerability-specific execution filtering architecture
should have the following properties:

• Robust VSEF filters. A VSEF filter should be vulnerability-specific but ex-
ploit agnostic. For example, it should be able to detect the sample exploit
even when a polymorphic engine has been used to encrypt the payload [37].
Note that input filters are particularly vulnerable to polymorphism, as there
may not be enough syntactic information in the input to reliably detect poly-
morphic variants.

• Efficient generation of VSEF filters. Once a vulnerability isdiscovered, it
often takes days or months to prepare a suitable patch. However, fast worms
may be able to infect the entire Internet in under a few minutes. We should
be able to generate filters quickly enough to allow an effective response to
such flash events.
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Figure 1: VSEF architecture. Once an exploit is detected, anexecution log is
produced. The VSEF Filter Generator produces a filter that recognizes execution
patterns that exploit the vulnerability. These filters can then be disseminated. The
VSEF Filter Generator takes the filter and instruments the binary to recognize exe-
cution sequences that exploit the vulnerability, the result being a hardened binary.

• Efficient detection. The vulnerability-specific executionfiltering should add
as little overhead as possible to program execution.

3 Taint-based and Stack-based VSEF

In this section, we present two concrete examples of our VSEFsystem: the taint-
based VSEF and the destination-based VSEF. The taint-basedVSEF is based on
dynamic taint analysis and has high accuracy. The destination-based VSEF is an
optimistic version of taint-based that usually requires fewer instructions instru-
mented.

3.1 Taint-based VSEF

3.1.1 Overview

One effective method recently proposed to detect memory-safety based attacks is
dynamic taint analysis [14, 27, 36, 11]. Dynamic taint analysis marks data coming
from untrusted sources (such as the network)tainted, and then keeps track of what
data becomes tainted by untrusted input data by insertinginstrumentationinstruc-
tions to propagate the taint attribute. For example, it addsinstrumentation to each
data movement instruction (mov, push,pop, etc.), and data arithmetic instruction
(add, sub, xor, etc.), so that the result of the instruction will be marked tainted
if and only if any operand of the instruction is tainted. Dynamic taint analysis also
inserts extra instrumentation before every point where data is used in a sensitive
way (such as return addresses, function pointers, and format strings) to ensure that
the data is not tainted. Dynamic taint analysis has been shown to accurately detect
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a wide range of exploit attacks including buffer overrun, format string, and double
free attacks [14, 27, 36, 11], making it one of the most comprehensive protection
mechanisms that does not require access to source code.

However, dynamic taint analysis requires instrumenting many instructions. Ev-
ery data movement, arithmetic, and control transfer instructions that could poten-
tially touch a tainted memory location must be instrumentedin order to accurately
propagate the taint attribute and detect when tainted data is misused. Such exten-
sive instrumentation can add significant performance overhead — up to a factor of
30 or more in some cases [27].

We observe that when exploiting a particular vulnerability, only a handful of in-
structions are involved in propagating the tainted input tothe sensitive location that
is overwritten. When we know what those instructions are, wecan instrumentonly
thoseinstructions to propagate the taint attribute, and the instruction that unsafely
uses the tainted data, and still successfully detect attacks against that vulnerability.

Thus, in taint-based VSEF, we automatically identify and instrument the in-
struction positions that need to be instrumented to propagate the taint attribute and
to detect the misuse of tainted data to detect exploits of a particular vulnerability.
As a result, taint-based VSEF can detect exploits of the samevulnerability much
more efficiently than full execution monitoring.

3.1.2 Taint-based VSEF Filter Generation

A taint-based VSEF filter includes two parts: (1) the list of instruction positions
that we need to add instrumentation to for taint propagation, and (2) the instruction
position to which we need to add instrumentation to detect the misuse of tainted
data. Instruction positions can be expressed as absolute addresses, or as the name
of a shared library and offset into that library for increased portability.

The instruction position that we need to add instrumentation to to detect the
misuse of tainted data is simply the instruction position where tainted data was
detected being misused. The list of instruction positions that we need to add in-
strumentation to for taint propagation is the list of instructions that propagated the
taint attribute from the original malicious input to the point where it was detected
being misused in the exploit execution trace.

The VSEF Filter Generator can identify this list using 1) anyexploit detector
that can identify the tainted data that was misused and what instruction misused it,
and 2) a log of instructions that have been executed, and the values of dynamically
calculated addresses. The latter can be logged in software,or generated efficiently
using hardware support [7, 32]. The VSEF Filter Generator examines the trace
in a backward manner to determine which instructions propagated tainted data that
reached the vulnerability detection point. It begins at theend of the trace, called the
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C source IA-32 assembly Taint propagation
1 struct dummyt {
2 char buf[16];
3 void (*fnptr)(void);
4 };
5
6 void vuln(struct dummyt *dummy)
7 {
8 char bigbuf[100];
9 int i = 0;
10 int count = 0;
11 void (*fnptr)(void) = NULL;
12
13 fgets(bigbuf, 100, stdin); A int $0x80 0x3a966010← stdin

B repz movsb %ds:(%esi),%es:(%edi)0xafefea80← 0x3a966010
14 strcpy(dummy− >buf, bigbuf); C movzbl (%edx),%eax al← 0xafefea80

D mov %al,(%ecx,%edx,1) 0x80ad1b0← al
15 fnptr = dummy− >fnptr; E mov 0x10(%eax),%eax eax← 0x80ad1b0

F mov %eax,0xffffffcc(%ebp) 0xafefea64← eax
16 fnptr(); G mov 0xffffffcc(%ebp),%eax eax← 0xafefea64

H call *%eax illegal use of tainted eax
17 }

Table 1: Overwrite example: A piece of vulnerable code, and the instructions that
propagated and misused the tainted data when the vulnerability was exploited. In-
struction positionD is the overwrite point, where tainted data overwrites a function
pointer. Instruction positionH is the exploit point, where the tainted data is mis-
used.

exploit point, where the exploit was detected. The source operand to this instruc-
tion must have been tainted by some previous instruction in the trace (since this is
an overwrite attack using tainted data); and the source operand of that instruction
must have been tainted by some other previous instruction, etc.. The VSEF Filter
Generator continues performing the analysis recursively until it reaches the initial
instructions for reading the original untrusted input in the sample exploit.

By following the chain of tainted operations backwards, theVSEF Filter Gen-
erator can identify the list of instructions in the execution trace which were in-
volved in propagating the taint attribute from the originaluntrusted input to the
exploit point. This list of instructions is used in the filteras the list of instructions
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to be instrumented to propagate the taint attribute. This calculation is an instance
of flowback analysis [5], a well studied and efficient procedure [38].

An obvious choice for the exploit detector is a taint-based exploit detector [14,
27, 36, 11]. In particular, TaintCheck [27] already keeps a directed acyclic graph
(DAG) of where tainted data was propagated from, and at at what instruction
points. That is, each time tainted data is propagated, a nodeis generated that
contains the position of the currently executing instruction, and pointers to nodes
corresponding to each tainted operand. In this approach allthe information needed
to calculate the filter is already on hand. The VSEF Filter Generator simply follows
the DAG from the point(s) where tainted data was misused to the point(s) where it
was originally input, and records all the instruction positions on that path.

Table 1 shows an example of code that is vulnerable to an overwrite attack, in
this case a buffer overflow that overwrites a function pointer. The second column
shows the assembly instructions that are involved in propagating tainted data to
the point where it is misused. The third column shows the actual propagation,
with the data addresses as resolved at run time. In this example, the exploit is
detected at instructionH, where tainted data ineax is misused. The VSEF Filter
Generator traces backwards in the execution log (or the DAG if using TaintCheck)
and finds that instructionG was the last instruction to write toeax, and so on,
back to instructionA which performed aread system call. Hence, the taint-based
VSEF filter consists of positionH, where tainted data was misused, and positions
A throughG, which propagated the tainted data to that point.

3.1.3 Taint-based VSEF Binary Instrumentation

The Taint-based VSEF Filter Generator instruments each instruction in the taint-
based VSEF filter to propagate taint information, and inserts the appropriate safety
check at the exploit point. The instrumentation conceptually keeps a list of tainted
memory locations. When an instruction listed in the VSEF executes, the added
instrumentation checks to see if any source operand is a tainted location. If so,
it marks the destination as also tainted. The Taint-based VSEF Filter Generator
inserts instrumentation at the exploit point to detect if the sensitive value being
used is tainted, signifying an attack, and if so to take appropriate action. Here,
we assume the appropriate action is exiting the program. Others have investigated
other actions, such as returning an error code and continuing execution [30, 33].
The resulting program with the added instrumentation is thehardened binary.

When the hardened binary is run, the instrumentation propagates the taint at-
tribute throughout the program as would have been done by a full taint-based ex-
ploit detector. If the exploit point is reached, and the databeing used in a sensitive
way has been marked tainted, execution is aborted.
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Since the VSEF Filter Generator does not instrument all datamovement and
arithmetic instructions, tainted locations are not markeduntainted when overwrit-
ten with untainted data by uninstrumented instructions. This could potentially lead
to false positives in some cases. For example, suppose a stack-based buffer marked
as tainted is popped off the stack, and is later overwritten with a (legitimate) return
address, without being marked untainted.

We address this problem by having the hardened binary recordthe value that
a location takes on when it is marked as tainted. When anotherinstrumented in-
struction later checks to see if that location is tainted, italso checks to see if it
still has the same value. If not, then it has been overwrittenby an uninstrumented
instruction, and is marked as no longer tainted. This approach adds little overhead,
but there is still some potential for false positives. If an uninstrumented instruction
overwrites tainted data withthe same valuethat was already there, this heuristic
will not correctly untaint that location.

An alternative approach is to use existing memory watch-point techniques to
monitor tainted locations, and untaint them when other instructions write to them.
On the IA-32 architecture the debug registers can be used to monitor up to 4 mem-
ory locations (up to 4 bytes each). We can also use page-protection techniques
(e.g., setting tainted memory pages to be read-only) to be notified of writes to
tainted memory. Moreover, when available, we can also use ECC memory to be
notified of writes to tainted memory similar to techniques used in [28]. All of
these techniques generate a trap when the watched memory is accessed (or mem-
ory near the watched memory), allowing our code to untaint the watched location
if it has been rewritten by untainted data. The cost of generating traps when data
is untainted can be reduced by reducing the amount of data that gets tainted. One
way to achieve this is to modify the instrumentation of each of the data propaga-
tion instruction in the VSEF filter, so that it will only taintthe destination when
executing in the same call-stack context as during the original exploit. This tech-
nique comes with a trade-off of false negatives when data is tainted by the same
instructions, but in a different context, until the alternate contexts are discovered
and added to the VSEF filter. While we are unaware of existing mechanisms to
watch for writes to processor registers, we expect that a processor register will not
remain tainted for long before being overwritten with untainted data. Hence, when
a register becomes tainted, we can switch to monitoring all instructions until it be-
comes untainted again. We show how to efficiently turn full taint analysis on and
off at run time in [25].
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3.1.4 Analysis and Combining Filters

Performance. By design the taint-based VSEF filter can be created with infor-
mation already on hand to a Taint-based detector. As a result, filter generation is
almost instantaneous. The length of the filter is proportional to the number of in-
structions that propagate tainted data from the input to theexploit point. Similarly,
the execution overhead of the hardened program is proportional to this number
of instructions. By design, most programs attempt to minimize unnecessary data
copying, so this will intuitively be a small set of instructions. We verify this in our
experimental results.

Note that it is likely that one or more of the instructions that propagate tainted
data in the attack belong to a commonly used data movement function such as
strcpy or memcpy, and hence the instrumentation will be executed any time
that function is called. In our evaluation this was true, though we did not find it
to be a performance problem. If it were, we could use the techniques described in
Section 3.2 so that the instrumentation is only executed when the function is called
in the vulnerable context.

Accuracy. The VSEF-hardened binary has no false positives when memorywatch-
point techniques are used to ensure locations are correctlymarked untainted when
written to by uninstrumented instructions. There is nothing marked as tainted by
the instrumentation that was not actually derived from untrusted input, and during
detection we already determined that the attacker should not be able to write to the
sensitive value being guarded. Note that without using memory watchpoint sup-
port, the untaint heuristic will not correctly untaint dataif it has been overwritten by
untainted data with the same value, which could lead to falsepositives. However,
we have not encountered any in practice and expect them to be rare.

A false negative is when the same vulnerability is exploitedwithout being re-
ported. This can occur if the tainted input is propagated along a different code path
than in the sample exploit, or if the overwritten sensitive value is misused at a dif-
ferent location. Note polymorphic variants created by tools such as MetaSploit [3]
will be detected from a single filter. The reason is such polymorphic variants dif-
fer in the payload, which would be executed strictly after the exploit point. Only
an exploit that is polymorphic in the execution path exploited could be missed.
Specifically, it would be missed if and only if different instructions propagate the
tainted data to the exploit point, or there is a different exploit point. We expect that
there is a relatively small number of such possible variantsfor a particular vulnera-
bility, and that the attacker must identify them manually orby static analysis of the
vulnerable binary. Naturally, we can apply the same static analysis techniques to
preemptively identify the other paths that should be instrumented. This is discussed
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further in Section 3.3.

Combining filters. We may want to combine several different taint-based VSEF
filters. For example, a single binary may have several vulnerabilities that are not all
discovered simultaneously. We want to harden the binary as each new vulnerability
is discovered. Another example is vulnerabilities that canbe exercised via several
different code paths. We want to be able to re-harden the binary as each new code
path is discovered by the detector.

We combine taint-based VSEF filters by a simple union: any instruction listed
in either of the filters should be instrumented. The simplicity and efficiency of
combining filters is a nice property for defense systems using our approach since
it means the system does not become complex as new vulnerabilities and attackers
are discovered.

3.2 Destination-based VSEF

Overview. We next consider an optimistic filter that focuses on instrumenting
the point where sensitive data was illegitimately overwritten, rather than the point
where tainted data was illegitimately used. Conceptually,a taint-based VSEF filter
consists of a chain of data movement operations, and the instruction at the exploit
point, which misuses the tainted data. The taint-based VSEFfilter detects when the
tainted data is misused, which is a very accurate detection method. However, the
actual security violation is the data movement instructionin the chain that wrote to
an illegitimate destination, copying the tainted data to the overwrite target. We refer
to this instruction as the overwrite point. Therefore, we propose destination-based
VSEF, which monitors only the overwrite point,i.e., the specific instruction that
illegitimately wrote to a specific destination (such as a specific function pointer).
We use the term optimistic because of cases where destination-based VSEF may
have false positives. Destination-based VSEF is based on the idea that an overwrite
attack results in the instruction at the overwrite point writing to a destination that it
would not normally write to. This idea is supported by Zhouet. al. [44], who built
a system that successfully detects many memory faults (and overwrite attacks) by
detecting when an instruction writes to a destination that it hasn’t written to during
normal execution.

It is not enough to specify the overwrite point only by the position of the in-
struction that performed the overwrite. For example, suppose that the instruction
that performed the overwrite was amov insidememcpy. Because of a bug in the
way memcpy was called, it wrote past the end of a buffer and overwrote a sen-
sitive value, such as a function pointer. However, a different call tomemcpy in
another part of the program may be used to intentionally copylegitimate data to
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the same location. Therefore, we specify the overwrite point as the position of the
instruction that performed the overwrite, plus thecontextin which it was executed,
which we call thevulnerable context. We specify the context to be the list of return
addresses on the stack, which indicates the sequence of function calls that led to
the exploit.

Destination-based VSEF Filter Generation. To generate a destination-based
VSEF filter, the VSEF Filter Generator needs to determine (1)which data move-
ment instruction illegitimately wrote to a sensitive location (the overwrite point),
(2) the vulnerable stack configuration when that data movement takes place (the
vulnerable context), and (3) what destination(s) should not be overwritten by that
instruction, in that context. The VSEF Filter Generator canextract this information
from an execution log of a general purpose detector, or use a specialized detector
that makes this information immediately available.

To identify the data movement instruction that performed the illegitimate write,
the VSEF Filter Generator first identifies the chain of instructions that propagated
the tainted data to the exploit point, in the same manner as togenerate a taint-based
VSEF filter. The VSEF Filter Generator then identifies which of the instructions in
that taint propagation chain is the overwrite point.

When available, the VSEF Filter Generator can use debug information com-
piled into the program to help identify the overwrite point.Debug information can
be used to determine the allocated size of a buffer. Hence, for buffer overflows,
the VSEF Filter Generator can identify the overwrite point as a data movement in-
struction that calculates an address as a base plus an offset, where the offset causes
the calculated address to point outside of the buffer that the base pointer points to.

Debug information also provides information about thetypeof each memory
object. Hence, the VSEF Filter Generator can use this information to identify the
overwrite point as the the data movement instruction that caused a type violation,
e.g., a string copied over a function pointer. For programs that have not been
compiled with debug information, type information can sometimes be inferred at
run time. For example, return addresses can be identified forprograms that obey
normal stack conventions. It is possible to infer the types of other locations based
on how the data is used during normal execution [8].

When neither debug information nor type information is available, the VSEF
Filter Generator identifies the overwrite point as the last instruction in the propaga-
tion chain that writes to a dynamically calculated memory address. Heuristically
this will usually be true, given the assumptions that overwrite attacks are the result
of such a memory address taking on an unintended value, and that there are not any
other such copies that occur between the overwrite point andthe exploit point.

Using our previous example in Table 1, any of these techniques correctly iden-
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tifies the overwrite point as instructionD. Using buffer size information: While the
base address used at that point points todummy->buf, the offset causes the cal-
culated address to point todummy->fnptr. Using type information: Instruction
D is the first instruction in the chain where tainted data is written to a data type
that should not be tainted. Using neither: InstructionD is the last instruction in the
chain to write to a dynamically calculated address. Instructions E andG write to
processor registers. InstructionF writes to a hard-coded offset within the current
stack frame.

Once the overwrite point has been identified, the vulnerablecontext in which
it was executed can be found by examining the calls and returns up to that point in
the exploit execution trace. Alternatively, a specializeddetector such as TaintCheck
can log the call-stack state along with each tainted data propagation, so that the call-
stack is already on-hand when the overwrite point is reachedin the backwards trace
of the exploit execution trace. In our previous example fromTable 1, the stack con-
text at the overwrite point (instructionD) is [main + 47, vuln + 68, strcpy + 25].
That is, the instruction at offset 47 from the start ofmain calledvuln, the in-
struction at offset 68 from the start ofvuln calledstrcpy, and the instruction at
offset 25 from the start ofstrcpy is themov that overwrote the function pointer.
This example demonstrates why we need to keep track of the vulnerable context,
and not just the overwrite point instruction. Here, as in many cases, there is noth-
ing wrong with the instruction at the overwrite point, or even the function it is in
(strcpy). The problem is thatvuln calledstrcpy in an unsafe way.

The sensitive value overwritten is the destination operandof the data movement
instruction at the overwrite point. We express this location in a robust way in our
filter. For example, this can be done by denoting as an offset from an activation
record for stack-based locations, or as an offset from a buffer allocated in a certain
stack-context for heap-based locations. In the example from Table 1, the location
is offset 16 indummy. This is expressed as offset 16 from the buffer allocated at
context[main + 14].

In the case of buffer overruns, we would ideally like to specify that the write
does not continue past the end of the buffer, so that future exploits against the vul-
nerability are not able to overwrite data in between the end of the buffer and the
data that was detected as being misused. The VSEF Filter Generator can do this
if the binary was compiled with debug information (hence thelength of the buffer
is known). When this information is not available, the VSEF Filter Generator can
still sometimes create a tighter bound for what area should not be overwritten. For
example, it recognizes when the value overwritten was the return address. Instead
of only protecting the return address, it also protects the savedebp, which is adja-
cent to the return address, and could be overwritten withoutoverwriting the return
address.
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Destination-based VSEF Binary Instrumentation. We instrument the binary
program to check that the data movement instruction at the overwrite point does
not write to the sensitive destination when it is in the vulnerable stack context. Our
experiments in Section 4.2 show that this can be done by instrumenting a small
number of instructions- the data movement instruction, andthe call instruction
corresponding to each activation record in the vulnerable context. We also show
how this could be reduced to only instrumenting the data movement instruction by
making copies of each function in the vulnerable context.

Accuracy. When the program is run with the sample exploit, it will againreach the
overwrite point, in the vulnerable stack context. At that point, the instrumentation
detects that the destination address is illegitimate, signalling an attack.

As with taint-based VSEF filters, exploits that automatically alter their content
while using the same attack vector will still be caught. However, it is possible that
an attacker could alter the exploit so that the vulnerability is exploited in a different
vulnerable context (i.e. there may be multiple functions that call the vulnerable
function), or so that it overwrites a different sensitive value. There are unlikely
to be many such possible variations, and we may be able to find some of them
automatically using static analysis. For example, manual analysis of the vulnerable
ATPhttpd shows that there are only two contexts in which the vulnerable function
is called in an exploitable way.

We expect that most destination-based VSEF filters will havezero false posi-
tives. There are a few cases where a destination-based VSEF filter may have false
positives, all of which we expect to be very rare. A destination-based VSEF could
have false positives if 1) The VSEF Filter Generator identified the wrong instruc-
tion as the overwrite point, and hence the write to that address occurs in normal
usage. This problem should be straight-forward to detect and fix after using the fil-
ter. 2) The instruction at the overwrite point canlegitimatelywrite to the monitored
location in the vulnerable context. This can be true if the source is sometimes a
legitimate (non-tainted) value, or if the destination isn’t always used in a sensitive
way (e.g., a Cunion that could be a function pointer or a string buffer). In this
case a low-false-positive destination-based VSEF filter for that vulnerability is not
possible, and a taint-based VSEF filter should be used instead.

Combining Filters. It is straightforward to instrument a program with multiple
destination-based VSEF filters. The instrumentation for each filter can be added
independently of the other instrumentation. In some cases multiple filters will
instrument the same instruction. Each filter can add its own instrumentation inde-
pendently, without interfering with the other.

Performance. Destination-based VSEF allows the filter to be created almost in-
stantaneously. The length of the filter (as well as the total number of instructions
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instrumented), however, is bound by the depth of the call stack at the overwrite
point of sample exploit, plus the address of the overwrite point, plus the identi-
fier of the sensitive data to be guarded. In Section 4.2 we describe how we can
instrument even fewer instructions, further improving performance.

3.3 Static analysis extensions

Our adversarial model requires filters be generated quickly, and requires them to
be small enough to distribute rapidly. As a result, filter creation for both schemes
relies only on information already on-hand when the exploitis detected. However,
if we relax the speed requirement we may be able to generate more accurate filters
by performing more analysis.

Backward slicing. The filter we create recognizes the sample exploit along with
variants polymorphic in the exploit payload. However, an exploit may be poly-
morphic in the execution path followed. For example, the ATPhttpd webserver
vulnerability we investigate can be exploited along two different code paths: one
where the requested file is found but not readable and one if the file is not found
at all. The destination-based VSEF filter generated from onewill not detect the
other, because the overwrite occurs in a different vulnerable context. In this case,
the taint-based VSEF filter for onewill detect the other because the same instruc-
tions are involved in copying the tainted data in either case. However, if ATPhttpd
had been implemented to usememcpy to copy the tainted data on one path, and
strcpy to copy the tainted data on the other path, then the taint-based VSEF filter
generated from one path would not detect the other.

One can perform static analysis to recognize these alternate code paths, and
identify the additional instructions that would need to be instrumented to detect the
corresponding attacks. That is, alternate data propagation paths can be identified
and instrumented in taint-based VSEF filters, and alternatevulnerable contexts can
be identified and instrumented in destination-based VSEF filters. Note the static
analysis is sound but imprecise, so it is possible that more instructions will be
instrumented than necessary. However, including instrumentation for potential al-
ternate exploit paths, will result in a filter that detects future exploits polymorphic
both in the path taken and in the exploit payload.

4 Implementation & Evaluation

In this section we present our implementation and experimental evaluation of the
taint-based and destination-based VSEF Filter Generatorsand VSEF Binary In-
strumentation Engines. In our experiments we use TaintCheck [27] as the Exploit
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Detector, and to record the exploit execution trace.

4.1 Taint-based VSEF

4.1.1 Implementation

As discussed in Section 2, TaintCheck already records the information needed to
produce a taint-based VSEF filter. As the monitored program is executing it keeps
a directed acyclic graph (DAG) that represents how tainted data was propagated,
and what instructions propagated it. When an exploit is detected, part of the output
is the part of the DAG showing how the misused tainted data wasderived. We
implemented the taint-based VSEF Filter Generator by modifying TaintCheck to
save the set of instruction addresses from that part of the DAG into a separate file,
along with the instruction address where the tainted data was misused. This file is
the taint-based VSEF filter.

We also implemented the taint-based VSEF Binary Instrumentation Engine as
an extension to TaintCheck. Normally TaintCheck adds taint-propagation instru-
mentation to every instruction that propagates data, whichis most instructions. It
also adds taint-assertions to every instruction that couldpotentially misuse tainted
data. In our extension, TaintCheck accepts a taint-based VSEF filter as input,
and then only adds taint-propagation to the propagation instructions listed in the
VSEF filter, and taint-assertion instrumentation to the misuse instruction listed in
the VSEF filter.

Note that our current implementation of the taint-based VSEF Binary Instru-
mentation Engine is intended only as a prototype to show the relative difference
between monitoring nearly every instruction, and monitoring only the instructions
in the taint-based VSEF filter. However, TaintCheck is currently implemented on
Valgrind [24] (for Linux), and DynamoRIO [1] (for Windows).Both of these tools
are well suited for when the entire program needs to be monitored, but they each
add substantial overhead even when no instrumentation is added. A more efficient
implementation could be done using a tool such as Dyninst [2], which is better
suited for adding instrumentation to specific points of a program. (We use Dyninst
to implement the destination-based VSEF Binary Instrumentation Engine).

4.1.2 Evaluation

We evaluate the quality and efficiency of our taint-based VSEF using real world
exploits. We have tested the effectiveness of our taint-based VSEF approach on
Windows against the SQL Slammer attack [22], and on Linux against the ATPhttpd
exploit [29].
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Avg Time (s) Overhead

Native 121.4 -
DynamoRIO 135.05 11%
+ Taint-based VSEF filter 138.35 14%

Table 2: SQL taint-based VSEF benchmark.

Latency (ms) Overhead
Native .566 -

Valgrind 1.279 126%
+ Taint-based VSEF filter 1.360 140%
Full TaintCheck 9.797 1631%

Destination-based VSEF .585 3%

Table 3: ATPhttpd taint-based VSEF and destination-based VSEF benchmark. (1
KB pages)

Taint-based VSEF Filter Size.The filter generated for the ATPhttpd exploit con-
tains only 10 instructions that must be instrumented. The filter for the vulnerabil-
ity exploited by the SQL Slammer worm contains 200 instructions that must be
instrumented. Note that our Windows implementation of taint-based VSEF Fil-
ter Generator, which is based on the less mature DynamoRIO implementation of
TaintCheck, currently addseveryinstruction that operates on the misused tainted
data to the VSEF filter, rather than refining it to only the instructions that actu-
ally propagate the tainted data to the point where it is misused. This refinement is
straight-forward to implement, and should reduce the filtersize by an order of mag-
nitude. For comparison, the ATPhttpd VSEF filter contains 83instructions without
this refinement.

Taint-based VSEF Performance. The time to generate a VSEF and use it to
harden a binary is very small. For ATPhttpd it was 186 microseconds to generate
a VSEF from TaintCheck’s DAG, and 195 ms to use the VSEF to harden the AT-
Phttpd binary. Here, we measure the performance of the hardened Microsoft SQL
Server and the hardened ATPhttpd server. For both tests, we issue queries to the
server process from the same machine so as to not introduce network latency.

We subjected the Microsoft SQL server to the benchmark querydescribed
in [19]. We measured performance when the server was run natively, and when
it was run under DynamoRIO with and without the taint-based VSEF instrumen-
tation. Table 2 shows the results. The instrumentation added by the taint-based
VSEF causes the server to run only 14% slower than native, andonly 2% slower
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than running under DynamoRIO alone. Again, implementing the filter refinement
step for the Windows version of TaintCheck would reduce the number of instruc-
tions instrumented, and further reduce the taint-based VSEF overhead.

We used the Apache Flood tool [39] to measure the performanceof the hard-
ened ATPhttpd server when serving 1 KB files. Results are shown in Table 3. Our
results show that the hardened server runs only 6% slower than when running un-
der Valgrind alone. We also ran the same benchmark using Valgrind to count how
often the instrumented instructions are executed. We foundthat the 10 instructions
instrumented by the taint-based VSEF accounted for only 32,649 of 746,419,783
instructions executed (.00437%). This suggests that implementing the VSEF Bi-
nary Instrumentation Engine with more efficient instrumentation techniques (such
as DynamoRIO or Dyninst) should result in the taint-based VSEF having very little
performance overhead.

Taint-based VSEF Accuracy. We verified that the hardened ATPhttpd and Mi-
crosoft SQL server were able to successfully defend againstthe original exploit.
For ATPhttpd, we also created synthetic polymorphic variants of the exploit by re-
placing the code in the request with randomly generated bytes. We verified that
the hardened ATPhttpd successfully detected these modifiedversions of the ex-
ploit, thus demonstrating that our taint-based VSEF approach is effective against
polymorphic variants of the sample exploit.

During our benchmarks, neither hardened server had false positives. We also
sent the ATPhttpd server several anomalous requests that exercise similar code
paths as the exploit, without actually exploiting the server. The hardened ATPhttpd
correctly did not identify these as attacks.

4.2 Destination-based VSEF

4.2.1 Implementation

We implemented the destination-based VSEF Binary Instrumentation Engine us-
ing Dyninst [2], a binary instrumentation tool. Unlike Valgrind and DynamoRIO,
Dyninst performs static rewriting of the target binary. Instructions are instrumented
by overwriting them withjumps to trampoline functions that call our instrumen-
tation code, and then execute the overwritten instruction before returning. This
approach was chosen to avoid the run-time overhead of dynamic binary rewriting.
Dyninst and our destination-based VSEF Binary Instrumentation Engine run on
both Linux and Windows.

The destination-based VSEF filter consists of the address ofthe overwrite
point, the activation records on the stack when the overwrite point was executed in
the original exploit, and the normalized address of the datathat was overwritten.
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Given the exploit execution trace generated by TaintCheck,the destination-based
VSEF filter is generated using the algorithm from Section 3.2to identify which
instruction is the overwrite point, and pulling the rest of the information from the
exploit execution trace in a straight-forward manner. We assume the most difficult
scenario, in which no debug or type information is availableto help identify the
overwrite point.

We observe that the overwrite instruction is usually amov instruction, which
is usually too small to be overwritten by ajump instruction by Dyninst. Dyninst
handles this case by instead overwriting it with a 1 byte instruction to generate a
trap, which causes the operating system to deliver a signal to the process, and the
instrumentation code to be executed by the signal handler.1 This is undesirable,
since this is a relatively expensive process. We observe that in many cases, the
instrumentedmov is called frequently (i.e., it may be instrcpy), but usually
not in the vulnerable context. Therefore we address this problem by only having
the instrumentation be used when the function is called in the vulnerable context.
The most efficient way to do this is by copying the functions that make up the
vulnerable context, and rewriting the correspondingcall instructions so that the
instrumentedmov is only used in the vulnerable context. In cases where this is
infeasible, we can dynamically enable or disable themov instrumentation when
the vulnerable context is entered or left.

We currently implement the latter approach. We implementedthe VSEF Binary
Instrumentation Engine to instrument thecall instruction corresponding to each
activation record in the vulnerable context. This instrumentation incrementally
tracks which of the activation records of the vulnerable context are currently on the
stack. The instrumentation for the lastcall of the vulnerable context dynamically
adds or removes the instrumentation at the overwrite point when the vulnerable
context is entered or left. Note that if we instrumented onlythis call instead of
eachcall in the vulnerable context, the instrumentation would need to walk the
stack every time thatcall was executed to see if it was in the vulnerable context,
which would result in a higher performance cost.

The instrumentation at the overwrite point checks whether the instruction is
about to write to the protected location. If so, an attack is detected.

1Dyninst version 5, which is currently under development, uses a different method to insert in-
strumentation which should mostly eliminate the need to usetraps. Unfortunately, we were not able
to test this version at the time of writing.
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4.2.2 Evaluation

We evaluate the quality and efficiency of our destination-based VSEF using the
ATPhttpd exploit.2

Destination-based VSEF Filter Size.The filter generated for the ATPhttpd vul-
nerability consists of the addresses of 12 instructions (themov that causes the over-
write, and the 11call instructions corresponding to the vulnerable context), and a
range of offsets from the vulnerable stack frame to protect.The ATPhttpd exploit
overwrote the return address, so in this case we are protecting the return address,
which is located at offsets 4 to 7 in the vulnerable stack frame. (In our implementa-
tion, we recognize this case and extend the range to 0 to 7 to also protect the frame
pointer). To clarify, if we were protecting data inside the stack frame (such as a
local variable storing a function pointer), this offset would be negative.

Destination-based VSEF Performance. It takes a negligible amount of time
to create a destination-based VSEF filter from TaintCheck’slog, and to use the
destination-based VSEF Binary Instrumentation Engine to harden the vulnerable
binary. Here, we measure the performance of the hardened ATPhttpd server.

As in Section 4.1, we evaluate the performance of the hardened ATPhttpd
server using the Apache Flood tool to measure the time to serve requests for 1
KB files. Our results are shown in Table 3. Our results show that the server runs
only 3% slower than when the server is run without instrumentation.

We also used Valgrind to count how often the instrumented instructions are
executed during the benchmark. The 12 instrumented instructions accounted for
6,070 of 746,465,052 instructions executed(.000813%).

Destination-based VSEF Accuracy. We verified that the hardened ATPhttpd
server was able to successfully defend against the originalexploit. As in the taint-
based VSEF experiment, we also verified that server was able to defend against
polymorphic variations of the exploit, and that it correctly did not identify similar
but non-exploiting requests as attacks.

5 Deployment and Applications

Vulnerability-specific execution filtering meets three important goals: fast filter
generation, accurate detection, and low performance overhead. These requirements
address the most relevant threat to today’s Internet infrastructure: fast spreading
worms. Worms that exploit known vulnerabilities can cause millions of dollars

2At the time of writing, the Windows implementation of TaintCheck does not log the correct
information to create a destination-based VSEF, so we were unable to evaluate our destination-based
VSEF for the Microsoft SQL server exploit. However, doing sowould be straight-forward.
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Figure 2: The deployment scenario for vulnerability-specific execution filtering.
Upon (1) receiving an exploit of a new vulnerability, the (2)full instrumentation
engine detects it and creates an appropriate filter. The filter is (3) disseminated to
all hosts, which then (4) use the filter to instrument and produce a hardened binary.
The hardened binary cannot be then exploited (5). Note that the exploit in step 5
may be a polymorphic variant of step 1.

of damage. A worm exploiting an unknown vulnerability couldbe much more
devastating.

Figure 2 shows our envisioned architecture for defending against worms. Var-
ious full instrumentation detectors are placed across the Internet, for example on
honeypots or over-provisioned sites. When a new worm is released, the full instru-
mentation version detects the exploit and uses the VSEF Filter Generator to create
an execution filter. The filter is then distributed to other vulnerable hosts across
the Internet (that have the same vulnerable binary, similarshared libraries, etc.),
which use VSEF Binary Instrumentation Engine to harden their binaries against
subsequent infection. This hardening can be done without restarting the server for
destination-based VSEF, because Dyninst is able to attach to an already running
program and instrument it without restarting. Taint-basedVSEF could also be im-
plemented using Dyninst, which would also allow it to hardenthe program binary
without needing to restart the program.

Our architecture provides for completely automatic response and containment,
and therefore can respond to a rapid worm outbreak. Our system also works for
previously unknown vulnerabilities where the hardened binary can be used until
a proper patch can be installed. We note that sites may be unmotivated to install
automatically generated network filters with suspect accuracy. The accuracy of our
filters make automatic installation much more attractive.
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Our techniques and architecture also apply to other adversarial models. Host-
based privilege escalation attacks are a serious threat that previous automatic de-
fense systems have mostly ignored. Our scheme can be used to harden known
vulnerable programs against such attacks until the proper patch can be applied.
Note this is especially important for legacy systems where source code for the run-
ning applications may no longer exist or be accessible and thus a permanent patch
may never be created.

We present a distributed architecture for efficiently and securely generating,
using, and sharing VSEF filters in [25].

6 Related work

Sidiroglou et. al. proposed selective emulation as part of areactive approach for
handling software failure [33]. Their selective emulationis similar in some aspects
to our work. Like us, they note that partial instrumentationcan reduce total moni-
toring overhead. However their approach for defending against buffer overflow at-
tacks requires source code to instrument the binary, since it is based on a canary as
in StackGuard [12]. In addition, their instrumentation is at function call granular-
ity, and they use heuristics to find out what function calls need to be instrumented.
They leave as an open problem how to determine more precise instrumentation,
which we solve by using taint-based analysis.

Rinard et. al. has proposed using compiler extensions to deal with writes
to unallocated memory. The approach allows a program to execute even in the
presence of buffer overflow attacks[30]. These techniques are aimed at increasing
availability for services and are not necessarily safe and thus inappropriate as a
defense mechanism.

Shield [40] provides vulnerability-specific exploit generic protection. How-
ever, it uses manually generated signatures.

Costa et. al. propose a concurrent work to automatically generatedhost-based
input filters [11], which has greater accuracy than network-based input filters, and
can correctly recognize some semantically equivalent inputs. However, the ap-
proach still suffers difficulty when the correct classification rule is complex or
needs application state, or when input is encrypted.

IntroVirt [15] uses vulnerability-specific predicates to detect when a vulnera-
bility has been exploited. However, these predicates are manually generated.

DAKODA [13] provides a quantitative analysis for a number ofexploit vectors.
Their results show that network-based filters are not specific enough for exploits
against many vulnerabilities, and that there are a number ofvulnerabilities where
the attack vector is encrypted, making host-based input filters impractical. The
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paper also noted that return addresses are not suited to be used as signatures for
polymorphic worms which were used in several existing automatic signature gen-
eration methods [27, 20, 42].

We benefit directly from the active research for increasing the efficiency of
emulation [21, 41, 2]. For example, we use Valgrind and DynamoRIO for taint-
based instrumentation (on Linux and Windows, respectively), while Pin reports
emulation speeds 3.3x faster than Valgrind and 2x faster than DynamoRIO [21].

We use TaintCheck [27] to initially discover unknown vulnerabilities. Other
fine-grained dynamic bug detection tools could be used during initial filter cre-
ation, such as program shepherding [17], libsafe [4, 6], or Nethercote-Fitzhardinge
bounds checking [23]. We chose TaintCheck because the taint-based approach de-
tects the widest variety of attacks and is easy to augment to produce the taint log
needed for taint-based VSEF.

Slicing techniques [38, 43] can be used to help create or refine the VSEF filters,
as discussed in Section 3.3. We plan to investigate this approach in the future.

7 Conclusion

We propose vulnerability-specific execution filtering (VSEF), a new type of filter
that recognizes and filters out execution patterns of an exploit exercising a known
vulnerability. VSEF is more accurate than input filtering, and significantly faster
than full execution monitoring. We give two types of VSEF filters: taint-based
VSEF and destination-based VSEF. The former is more accurate while the latter
may require less instrumentation. We show how to automatically create both filters
using a VSEF Filter Generator. The filters can then be used to automatically harden
a binary against the vulnerability via the VSEF Binary Instrumentation Engine. We
provide an implementation for both components under Windows and Linux, and
run experiments that confirm the accuracy, performance, andgeneration speed. In
most cases the overhead of VSEF binary hardening is only a fewpercent.
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