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Abstract

Robots performing tasks constantly encounter changing environmental conditions. These changes
in the environment vary from the dramatic, such as rearrangement of furniture, to the subtle, such
as a burnt out light bulb or a different carpeting. We do not recognize many of these changes,
especially subtle changes, but robots do. These changes often lead to the failure of robots. In
this thesis, we develop an algorithm for detecting these changes. Traditional sensor models do
not capture all of the dependencies in the sensor data and are not capable of detecting all types
of signal changes while maintaining a strong probabilistic foundation. This thesis corrects these
shortcomings. We show how detecting the current conditions in which the robot is operating can
lead to increased performance and lower failure rates. The methods in this thesis are tested on real
tasks performed by a real robot, namely a Sony AIBO robot.
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Chapter 1

Introduction

1.1 Introduction

This thesis focuses on the problem of detecting changing environments in a online, signal-independent
manner and adapting to these changes. We focus on practical solutions that are applicable to a wide
range of robotic adaptation problems. We focus on discrete changes to the environment.

Autonomous robots must perceive the world around them, make decisions as to what actions to
take, and perform those actions. We are interested in autonomous robots that perform their decision
cycle in real time. Each of these three parts of the decision cycle is a core challenge in designing
autonomous robots.

In order to perceive the world, a robot needs a model of its sensors. This model is intrinsic to the
robot. An example would be a model for a camera which characterizes the pixel values obtained
by the particularly wavelengths of light hitting the sensor. The robot also needs a model of the
world. This model includes knowledge about what objects are in the world, their characteristics,
and how they change over time. An example would be a model which says that the ball of interest
to the robot is round and orange. Usually, these two models are combined into one sensor model
which maps from raw sensory information to percepts about the world. An example percept would
be the location relative to the robot of a ball of interest to the robot.

In order to make decisions, the robot must rely on its perception of the world around it to provide
needed information. The robot must also rely on its actions to successfully modify the environ-
ment. Once these requirements are satisfied, the robot can choose an appropriate action to respond
to the state of the world to move it towards its goals.

In order to perform actions in the world, the robot must have a model of what effect its actuators
have on the state of the world. Again, this actuator model combines aspects of the robot and the
environment. The parts of this model related to the forces generated by the robot’s motors in
response to commands are intrinsic to the robot. However, the change in the state of the world
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as a result of these forces depends on the environment. The same motor commands will produce
different results for a robot travelling over carpeting than one travelling over smooth tiles.

All of these models are crucial to the performance of the robot. This thesis addresses the problem
of how to detect changes in the environment and adapt to the change by the selection of appropriate
models to match the current environment. Furthermore, the thesis aims at detection and adaptation
methods that are online and not dependent on the particular sensor signal to be processed. The
thesis develops detection methods that are probabilistically well-founded, practical, and make no
assumptions that aren’t likely to hold in practice.

The rest of this chapter is organized as follows. Section 1.2 details the thesis problem. Section 1.3
discusses the approach taken. Section 1.4 describes the contributions from the work. Section 1.5
provides an overview of this thesis.

1.2 Thesis Problem

The central question of this thesis is:

Can a robot autonomously use sensors to identify changes in its environment online in a
signal-independent manner and adapt to those changes to improve its performance at a task?

By environment, we mean a set of conditions in the world under which the robot is operating. A
single environment will be consistent enough that a single sensor model plus a single action model
is sufficient to create a behavior which can effectively perform the robot’s task. Environments
could be position based such as different rooms in a building or attribute based such as the same
room under different lighting conditions.

We only considerchangesthat result in discrete changes in the environment.

By online, we mean that the current environment can be identified and adapted to in real-time with
low latency. By adaptation, we mean selecting an appropriate sensor and action model to match
the current environment.

Finally, we focus onsignal-independenttechniques, i.e. those techniques that do not depend on
any domain-specific knowledge or make any assumptions that are not typically satisfied in robotic
domains.

We investigate two different methods to improve the robot’s performance:

• Identification of a failure of the robot and execution of a recovery action.

• Identification of the environment to select an appropriate model for the behavior to use.
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1.3 Approach

We take the approach of creating a general state identification technique to be used to identify
the current environment. We concentrate on validating it on robotic sensor signals. We use only
information that is readily available on robots. Because we don’t want to limit ourselves to one type
of sensor, we make as few assumptions as possible. We focus on a mathematical approach based
on probability theory. By having a strong mathematical basis, the generated technique becomes
more open to analysis and the results more open to interpretation. To further reduce the number of
assumptions required, we base our technique on non-parametric statistics. By using non-parametric
statistics, we free ourselves from assumptions about the distribution of sensor signals and are able
to handle a broader collection of possible sensor signals.

We test the state identification technique in a variety of ways. We test in simulation to verify the
ability of the technique to discriminate a number of different possible changes that could occur
in signals. Testing in simulation allows us to systematically vary the input signals and test the
resolution of the system. We then test on a variety of real robot signals. These tests verify the
technique’s ability to successfully identify environments on real data streams with their more com-
plex characteristics than simulated signals. These tests also verify that the types of changes found
in real sensor signals are distinguishable by the technique. We finally test the technique in a real
robot task. This test verifies the technique’s utility in real situations.

1.4 Contributions

The main contributions of this thesis are:

Principle of environment identification and response for failure recovery. We show that the
principle of environment identification can be used for failure detection and recovery. We demon-
strate the utility of environment identification for failure recovery in the context of localization.
The change in environment, in this case, is a sudden mismatch between the position the localiza-
tion believes the robot to be in and the robot’s true position. In this case the failure detected is a
software failure. We show that detecting this change can be used to change the model used in the
localization and improve performance. We show improved performance of the localization system
when environment identification is used for failure recovery.

Principle of general environment identification and response to improve robot performance.
We show that sensors can be used to identify the current state of the robot’s environment. We show
how this knowledge can be used to improve robot performance. What little work as been done
in robotics to adapt to the environment has used heavy domain knowledge to distinguish between
different environments. The remaining work uses identification techniques that do not have the
robustness, probabilistic basis, and low latency of the thesis technique.

We demonstrate that the techniques and algorithms in this thesis lead to improved robot perfor-
mance. We demonstrate that states can be identified from sensor signals from real robots. We prove
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that this state identification leads to dramatically improved performance of real robots performing
real tasks. We also demonstrate that identifying and adapting to the environment outperforms
trying to perform well in all environments on a real robotic task.

General purpose algorithm for identifying the state of a system.We create a general purpose
algorithm for identifying the state of a Markovian system with discrete states from a sensor stream.
The algorithm makes very few assumptions, detects a wide variety of types of changes, is easy to
train, trains in real-time, runs in real-time, and has a strong probabilistic basis.

Other approaches do not have all of these properties. Hidden Markov Model approaches are miss-
ing a key dependence between neighboring sensor readings produced from the same environment.
We prove that ignoring this dependence leads to drastically reduced performance. Alternative tech-
niques such as auto-regressive models lack a strong probabilistic foundation which makes them
more difficult to integrate with probabilistic based decision rules. Auto-regressive models are also
inherently limited in the types of predictions they can make which limits their applicability to do-
mains in which the auto-regressive model can successfully predict the next sensor reading with
high accuracy. The thesis approach requires only that the distribution over next sensor readings is
consistent and continues working even if the next value itself cannot be predicted. Window-based
approaches inherently add latency to the system which is not the case for the technique in this
thesis. Window-based approaches also require the user to determine an appropriate window size
which can not readily be determined by the task at hand.

1.5 Guide to the Thesis

All readers are recommended to start with Chapter 2 for background about the robotic system
used to perform the tests described in the thesis. Chapter 3 provides motivation for the work that
follows and makes a contribution to robustness in localization. Chapters 4, 5, and 6 follow the
development of an algorithm for environment identification. The final version of the algorithm
presented in Chapter 6 is the most powerful version. Readers that wish to apply these techniques
may wish to skip directly to this chapter. Chapter 6 has been written such that it may be read
without reading the previous chapters, but the previous chapters help put the results in context.
Chapter 7 describes related work and may be read at any time. Chapter 8 summarizes the thesis
and may also be read at any time.

Chapter 2 - Background In this chapter we lay the ground work for the following chapters. We
cover background material needed to understand the thesis. We also discuss the robots, sensors,
software, and environments used in the thesis and the important properties of each.

Chapter 3 - Environment Identification in Localization In this chapter we perform a first explo-
ration of the principle of environment identification and response in the context of localization. We
examine the rationale behind the principle. We then apply the principle to the problem of detection
and recovery of localization failure. This application leads to the Sensor Resetting Localization
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algorithm that outperforms a similar approach which does not apply environment identification
and response.

Chapter 4 - Environment Identification in Vision In this chapter we present an algorithm for
environment identification. We apply the algorithm to detect lighting conditions for a simple vision
task. We show that detecting the current lighting conditions in this manner can lead to improved
robot performance.

Chapter 5 - Probable Series Classifier Version 1In this chapter we present version 1 of the
Probable Series Classifier algorithm for time series segmentation and environment identification.
The Probable Series Classifier algorithm is based heavily on the Probable Series Predictor algo-
rithm which is also presented in this chapter. The Probable Series Classifier algorithm is tested
for performance on simulated data to determine the capabilities of the algorithm. The Probably
Series Classifier algorithm is also tested on robotic data to verify the capabilities of the algorithm
for solving real problems.

Chapter 6 - Probable Series Classifier Version 2In this chapter we present version 2 of the Prob-
able Series Classifier algorithm for time series segmentation and environment identification. This
chapter forms the main algorithmic contribution of this thesis. The development of the algorithm
in this chapter does not depend on the development in the previous chapter. The tests from the
previous chapter are repeated with the new algorithm. The algorithm is then applied on-line to a
non-trivial robotic task and shown to drastically improve the performance of the robot.

Chapter 7 - Related Work In this chapter we discuss the related work to the thesis.

Chapter 8 - Conclusions and Future Work In this chapter we summarize the important results
and contributions of this thesis. We also give directions for future work.
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Chapter 2

Background

2.1 Introduction

This chapter provides necessary background to better understand the rest of the thesis. This chap-
ter is devoted to explaining the robotic system on which the thesis work has been carried out and
the technical background needed to understand the thesis. This robotic system was originally de-
veloped for use in the RoboCup Sony legged league which is an international autonomous robot
soccer competition. The section describing the robot and its sensors is particularly important for
understanding the signals used in this thesis. The section on vision is very important for under-
standing the task results in adapting to different lighting conditions.

Section 2.2 describes the robots used for the thesis work. The sensors on the robot and their im-
portant properties are also discussed. Section 2.3 describes the environment for which the robotic
system was initially designed and developed. Section 2.4 then provides an overview of the soft-
ware system used. The following sections provide a more detailed discussion of each component
of the robotic system. Section 2.9 provides background on probabilistic models which will be used
in this thesis.

2.2 Robots

We used Sony AIBO robots in the development of this thesis. Our work started with the ERS-110
AIBO (Figure 2.3) robots which were generously provided by Sony. We continued our work on
the newer ERS-210 (Figure 2.2) and ERS-7 (Figure 2.1) models. The final testing was all done
with a Sony ERS-7 AIBO robot as pictured in Figure 2.1. The robot is approximately 25cm long
and 20cm wide. It stands about 18cm tall at the shoulder and is approximately 25cm tall including
the head. The robot is commercially available from Sony. Sony has also provided a free software
development environment for the AIBOs which is available from their web site. The robot is
outfitted with many actuators, many sensors, and ample processing power.
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Figure 2.1: A Sony ERS-7 AIBO robot used in testing.

Figure 2.2: A Sony ERS-210 AIBO robot used in testing.
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Figure 2.3: Sony ERS-110 AIBO robots playing soccer.

The robot has many actuators as follows:

• 18 degrees of freedom controlled by continuous position servos.

– 3 degrees of freedom in each leg in a rotation-rotation-rotation configuration. Two
rotation joints are located in the shoulder and one is located in the knee.

– 3 degrees of freedom for positioning the head. These are setup in a tilt-pan-tilt config-
uration. The head is capable of panning through180◦.

– 2 degrees of freedom for positioning the tail

– 1 degree of freedom controlling the mouth

These 18 degrees of freedom are each controlled by a PID (proportional integral derivative)
controller which attempt to maintain an angle specified by the control software.

• 2 binary degrees of freedom in the ears which allow the ears to be twitched

• A speaker for audio output.

• Over 20 LEDs which are very useful for output.

The robot has many sensors as follows:

• The primary sensor is a CMOS camera which provides color images of resolution 208x160
at a rate of 30Hz. Black and white images can be extracted at a resolution of 416x320 but
this feature was not used in this thesis. The camera was used extensively in this thesis.
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• The robot has a 3-axis accelerometer. This sensor was also used heavily in this thesis. The
accelerometer provides information about accelerations experienced by the robot (including
the acceleration due to gravity).

• The robot’s feet are each outfitted with a binary contact switch. These switches were found
to be unreliable with the walk we usually use.

• Each joint has a position sensor for proprioceptive feedback. In addition to reporting the
position of each joint, the duty cycle of the servo controlling the joint is also reported.

• The robot is outfitted with stereo microphones for receiving audio input.

• The robot also has three range sensors. Two range sensors are mounted in the head and
point where the camera points. One of these sensors is tuned for determining range to close
objects while the other is tuned for ranging slightly further objects. The last range sensor is
located in the chest and pointed down and forward. It is primarily intended to detect negative
obstacles such as the edge of a table.

The CMOS camera plays an important role in the tests done later in the thesis. Understanding
the camera’s characteristics will lead to a greater appreciation of this thesis. The lens on the
camera provides a somewhat blurry image with significant color aberration in the corners of the
image. The corners of the image have a bluish tint and are darker than the rest of the image. The
camera image is captured using a rolling shutter which means that different lines of the image
are captured at slightly different times. This rolling shutter results in bending of the image when
the camera is moving. There is also very significant blurring when the camera is moving. These
camera limitations lead to a difficult vision problem. The camera has a field of view of57◦ in the
horizontal direction and45◦ in the vertical direction. The robot must make aggressive use of the
ability to aim the camera to keep track of the important objects in its environment. The images
captured from the camera are provided in YCrCb format. The Y channel of the image provides
information about the brightness of each pixel and is basically a black and white image. The Cr
and Cb channels of the image provide color information. The Cr channel provides information
about the redness of each pixel while the Cb channel does the same for the blueness of each pixel.

The accelerometer is used heavily in tests of this thesis. The accelerometer provides measures of
acceleration in 3 orthogonal directions aligned with the robot’s body. The acceleration is reported
as a floating point number ranging from -2 to +2 time the acceleration of gravity. From examining
the actual readings provided by the sensor, it is clear that the original signal is actually discrete
with 256 levels of values. Nonetheless, the signal is treated as if it is fully continuous in this thesis.
The accelerations experienced by the robot are reported at a rate of 125Hz, or every 8ms. Each
8ms period is called a frame and includes a measurement for each of the 3 measurement axes. The
8ms frames are collected into a set of 4 frames before being sent to the control software. These
sets of frames are also double buffered. The net result of this setup is that values from 4 times
separated by 8ms are reported to the control software every 32ms with a delay of between 32ms
and 64ms.
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The ERS-7 AIBO model uses a MIPS R4000 processor running at 584MHz. This processor is
responsible for all processing done on the robot. The robot is also equipped with a standard 802.11b
wireless networking card. This wireless networking is used in this thesis to allow for extra off-
board processing power. All of the basic processing is done on the robot. The experimental
processing done in this thesis was largely done off-board for expediency reasons. The computation
done off-board could also be moved onto the robot which some effort at optimizing the code.

2.3 RoboCup

The robotic system on which the thesis work is built was constructed for use in the RoboCup robot
soccer competition [19]. RoboCup is a robot soccer competition and conference which has the
stated aim to “By the year 2050, develop a team of fully autonomous humanoid robots that can win
against the human world soccer champion team”. RoboCup has many leagues which are designed
to cover a wide range of the technical challenges that need to be solved by 2050. Almost all of the
RoboCup leagues feature fully autonomous robotic systems which play soccer. The soccer games
feature a team of robots against another team of robots. This setup creates a challenging problem
which involved both cooperating and adversarial agents. The presence of adversarial agents leads
to a very fast-paced game where time to act must be highly optimized. The robots are completely
on their own once the game starts. Humans are not allowed to guide the robots in any manner. This
autonomy plus the number of games played requires very robust designs in order to do well in the
competition.

The intermediate goal of RoboCup is to advance the state of the art in robots. By advancing the
state of the art, it is hoped that the final goal for 2050 can be achieved. Towards this end, the rules
of each league change each year to encourage more robust solutions that work in more and more
natural environments. The apparent skill of the robots at playing soccer can improve or degrade
from year to year as the robots are faced with new challenges from changes to the rules.

Our robotic system was designed for the RoboCup legged league. The legged league uses a stan-
dard hardware platform and the entries are differentiated by the software used. The league uses
the Sony AIBO robot as the standard hardware platform. As Sony has released improved models,
the league has moved to the newer robots as the new standard platform. The league currently uses
the ERS-7 AIBO model. This platform was used for all of the robotic testing in this thesis. In the
legged league, modifications to the hardware are strictly forbidden. This restriction puts all of the
teams on an equal footing in terms of hardware and encourages software development and sharing
of software. All of the processing and sensing for this league is strictly on the robots. The robots
can communicate with each other via wireless LAN, but communication with off-board computers
is strictly forbidden.

Figure 2.4 shows a picture from 2000 of the ERS-110 AIBO robots playing soccer. A schematic
of the field from 2000 is shown in Figure 2.5. The robots play with an orange ball with a diameter
of 85cm. The ball is made of plastic and is fairly slippery. The robots recognize the ball based on
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Figure 2.4: The Sony quadruped robots playing soccer.
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Figure 2.5: The playing field for the RoboCup 2000 Sony legged robot league.

its color. The field is constructed of thin green carpeting. The green color of the carpeting helps to
identify the playing surface. The goals are also color coded with one team attempting to score on
the cyan goal and the other on the yellow goal. There are several markers placed around the field
to help the robots identify their location on the field. These markers consist of colored cylinders in
predefined locations relative to the field. Each marker has two colors placed on top of each other.
The colors used on each marker plus the relative position of the colors uniquely identifies each
marker. The robots are marked by color uniforms made of sticky colored patches. The field has
been surrounded by a wall from 1999 to 2004, but the field wall is being removed for 2005. The
number of markers has been reduced from an initial 6 markers to the present 4 markers. The size
of the field has grown from an initial size of 2.8m by 1.8m to a current size of 5.4m by 3.6m.

2.4 Software Overview

The software system on the robots was initially developed for the purposes of competing in the
RoboCup legged league. Our entry into the RoboCup legged league is called CMPack. The overall
architecture of the CMPack software is shown in Figure 2.6. The software is composed of several
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Figure 2.6: Overall architecture of the CMPack robot soccer software.

interacting cooperating modules. The overall goal of the software is to collect information from
camera images and use that information to select appropriate motion commands.

The main modules of the system are:

Vision The vision module is responsible for extracting information from camera images. The
vision system takes camera images as input. The primary output of the vision system is a
list of objects seen in each camera image (frame). For each object, the vision system reports
whether it was seen, the confidence that it was seen, and the estimated location of the object.
The objects seen are used by the behaviors and localization modules.

Localization The localization module is responsible for determining the position of the robot on
the RoboCup field. Localization takes observations of landmarks from vision and infor-
mation about motions executed (motion updates) from motion as input. Localization then
reports the estimated position of the robot on the field and the expected error in this estimate.
The output of localization is used in behaviors.

Behaviors The behavior system is responsible for deciding what the robot should do. The be-
havior system uses the objects seen in the image from vision (primarily the ball) and the
estimated position of the robot from localization as inputs. The behavior system selects a
motion command to be executed by the motion module. Typical commands are execute a
kick or walk at a certain velocity and angular velocity. The behavior system also instructs
the motion system on where to position the robot’s head.
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Motion The motion system is responsible for locomotion and manipulation. The motion system
takes instructions from the behaviors on what motion would be good to execute. The motion
system then determines the closest motion that can actually be performed while maintaining
balance and continuity constraints. Once a motion has been selected, the motion system
outputs target angles for each joint to the operating system to be used by the robot’s built-in
servo controllers. The motion system also reports the movements executed to the localization
as an estimate of the change in the robot’s pose.

These modules work together to control the robot based on the feedback from the robot’s camera.
The operation of each module is discussed in more detail in the sections that follow.

2.5 Vision

The vision system is responsible for interpreting data from the robots’ primary sensor, a camera
mounted in the nose. The images are digitized in the YCrCb color space [50]. The vision module
is responsible for converting raw YUV camera images into information about objects that the
robot sees. This is done in two major stages. The low level vision processes the whole frame and
identifies regions of the same symbolic color. We use CMVision [6, 5] for our low level vision
processing. The high level vision uses these regions to find objects of interest in the image. The
robot uses a 208 by 160 image size exclusively. The low level vision system and initial threshold
learning code was largely developed by James Bruce. Scott Lenser is responsible for most of the
high level vision and the current threshold learning code.

2.5.1 Low Level Vision

The low level vision converts raw YCrCb camera images into 4-connected regions of the same
symbolic color. It does this in several stages. The image is first segmented according to a threshold
table. This converts each pixel from a YCrCb value to a symbolic color like orange. The color
segmented image is then run length encoded to reduce the amount of memory consumed by the
image and speed further processing. The run length encoded (RLE) image is then analyzed to find
4-connected regions of the same color. Some noise is then removed by merging nearby regions of
the same color.

Color Segmentation

The robot uses a 3D lookup table for color segmenting the image. The lookup table is indexed
by the high bits of the raw Y, Cr (U), and Cb (V) values of the pixel. The number of bits used
from each component is configurable. We used 4 bits of Y and 6 bits each of U and V at the
competition for a total of 16 bits. The indexing scheme is shown graphically in Figure 2.7. This
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Figure 2.7: The threshold map indexing scheme.

yields a lookup table of size 65536 bytes. Each entry of the lookup table stores the index number
for the symbolic color to assign to the pixel or 0 if the pixel is background. The thresholds are
learned from example images as described in section 2.5.3. The color segmentation process uses
the threshold table on each pixel of the image to produce a color map (cmap) for the image (see
Figure 2.8 for the effect of this process). This cmap image is available to the high level vision to
check the symbolic color of individual pixels. We treat the field green and the marker green as the
same color when segmenting.

Region Generation

The cmap image is then processed to find 4-connected components which we refer to as regions.
This process is done in an efficient manner involving creating a run length encoded version of the
image. Each region contains a list of the runs found in the region. Nearby regions are joined using
a simple heuristic to combat noise. The regions are sorted by color and size and summary statistics
are calculated for each region. The summary statistics include bounding box, centroid, and area.

2.5.2 High Level Vision

The job of high level vision is to find objects of interest in the camera image and estimate the
position of these objects relative to the robot. The high level vision has access to the original
image, the colorized (cmap) image, the run length encoded (RLE) image, and the region data
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Figure 2.8: The result of classifying images from the robot. Source images on the left, classified
images on the right.
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structures from the low level vision in order to make its decisions. The region data structures form
the primary input to the high level vision. The high level vision also gets input from the motion
module in order to calculate the pose of the camera. The parameters sent from the motion object
(via shared memory) are the body height, body angle, head tilt, head pan, and head roll. The high
level vision looks for the ball, the goals, the markers, and the robots. For each object, the vision
calculates the location of the object, the leftmost and rightmost angles subtended by the object, a
confidence in the object, and a confidence that the IR sensor is pointing at the object. The location
of the object is a 3D location relative to a point on the ground directly beneath the base of the
robot’s neck. These position calculations are based upon a kinematic model of the head which
calculates the position and pose of the camera relative to this designated point. The confidence in
the object is a number between 0 and 1 which indicates how well the object fits the expectations
of the vision system, 0 indicating definitely not the object and 1 indicating no basis for saying it is
not the object. The IR sensor confidence is similar. The following sections explain how the various
objects in the image are located.

Ball Detection

The ball is found by scanning through the 10 largest orange regions and returning the one with the
highest confidence of being the ball.

Confidence Calculation The confidence is based on a bunch of components multiplied together
plus an additive bonus for having a large number of orange pixels. The following filters are used:

• A binary filter which checks that the ball is tall enough (3 pixels), wide enough (3 pixels),
and large enough (7 pixels).

• A real-valued filter which checks that the bounding box of the region is roughly square with
Gaussian falloff as the region gets less square. Regions on the edge of the image are given
more lenience.

• A real-valued filter which checks that the area of the region compared to the area of the
bounding box matches that expected from a circle. Again, Gaussian falloff is used. Regions
on the edge of the image are given more lenience.

• Two filters based on a histogram of the pixel colors of all pixels which are exactly 3 pixels
away from the bounding box of the region. The first filter is designed to filter out orange
fringe on the edge of the red uniforms for robots in the yellow goal. It is not clear if it is
effective. The second filter is designed to make sure that the ball is mostly surrounded by
the field, the wall, or other robots and not the yellow goal.

• NewA real-valued filter based upon the divergence in angle between the two different loca-
tion calculation methods (see below).
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Figure 2.9: Ball location estimation problem. The distance along the ground (g) is the unknown we
wish to solve for. All other variables are either known or estimated from known quantities. The dis-
tance to the ball (d) is estimated based off apparent size in the image and the known characteristics
of the camera. This problem is over-constrained.

These filters are multiplied together to get the confidence of the ball. The confidence is then
increased by the number of pixels divided by 1000 to ensure that we never reject really close balls.
The ball is then checked to make sure it is close enough to the ground. The robot rejects all balls
that are located more than5◦ above the robot’s head. The highest confidence ball in the image is
passed on to the behaviors.

Location Calculation The location of the ball relative to the robot is calculated by two different
means. The overall problem of estimating the ball position is shown in Figure 2.9. Both methods
rely on the kinematic model of the head to determine the position of the camera. The first method
uses the size of the ball in the image to calculate distance. Geometry is used to solve for the distance
to the ball using the position of the camera relative to the plane containing the ball and the estimated
distance of the ball. This method is shown in Figure 2.11. The disadvantage of this method is that
it assumes that the ball is always fully visible which obviously isn’t always true. The advantage is
that is less sensitive to errors in the position of the camera. The second method uses a ray projected
through the center of the ball. This ray is intersected with a plane parallel to the ground at the height
of the ball to calculate the position of the ball. This method is shown in Figure 2.10. The advantage
of this method is that its accuracy falls off more gracefully with occlusions or balls off the edge
of the frame. The disadvantage is that it can be numerically unstable if the assumption that the
ball and robot are on the ground is violated. The distance estimate is also slightly noisier than
the image size based method but only mostly at large distances. The robot uses the first method
whenever possible and the divergence between them is factored into the confidence.
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Figure 2.10: Ball location estimation when distance from robot is uncertain. This estimate is used
when the distance cannot be calculated based off apparent size due to the ball being partially off
the image.
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Figure 2.11: Ball location estimation in normal case. This estimate does not use the angle of the
camera which is often a very noisy estimate.
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Marker Detection

Markers are detected by considering all pairs of pink and yellow/green/cyan regions out of the
largest 10 regions of each color. The most confident marker readings are passed along to the
behaviors/localization.

Confidence Calculation The confidence in a marker reading is based upon the following real-
valued filters:

• The cosine of the angular spread between the projection of the ray through the center of the
two colored regions projected onto the ground plane. This filter is setup to fall to 0 at an
angular separation of15◦.

• The relative size of the two colored regions (we expect them to be the same size).

• The average size of the two colored regions relative to the square of the distance between
them (we expect these values to be equal).

Location Calculation Two rays are projected through the centers of the colored regions. These
rays are made coplanar by projecting both rays onto a vertical plane containing a ray formed by
averaging the two rays. The location of the center of the top of the marker is constrained to be
10cm above the center of the bottom of the marker. The location of the top of the marker is
also constrained to be directly vertically above the bottom of the marker. The resulting system of
equations is solved for the location of the marker.

2.5.3 Threshold Learning

Low level vision requires a threshold map from raw YCrCb pixel values to symbolic color. Thresh-
old learning is used to create this threshold map. The goal of threshold learning is to take a set of
hand labelled images and produce a threshold map. The threshold map should generalize from the
data as much as possible while correctly classifying as many pixels as possible. The threshold map
is a 3D table of color indices indexed by the high bits of YCrCb pixels. The basic idea is to spread
each pixel of data out across the entire table giving it more weight closer to its actual value and
much less weight further away. In order to do this efficiently, we use a mathematically simple form
of falloff for each pixel. The weight of each pixel falls off exponentially with Manhattan distance
from the actual data point. Weights are calculated for each color separately. The final step is to
determine the color to make each cell of the threshold map. This is simply done by looking for
the color with the most weight in each cell. This color is assigned to the cell if its proportion of
the weight is higher than a user set confidence threshold for the color. Any cell not meeting this
criterion or with a preponderance of background color is labelled background. This representation
and learning method allows us to handle colors with arbitrary distributions including concave and
disjoint distributions.
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2.5.4 Vision Summary

We find our vision system to be generally robust to noise and highly accurate in object detection
and determining object locations at the RoboCup competition. However, like many vision systems
it remains sensitive to lighting conditions, and requires a fair amount of time and effort to calibrate.

2.6 Localization

The localization module is responsible for determining the position of the robot on the RoboCup
field. It takes objects seen from vision and movements executed from motion and outputs the po-
sition of the robot and a confidence on this position. The localization system is based off a proba-
bilistic belief state of the robot’s position which is updated as new information becomes available.
The probabilistic localization algorithm we developed, Sensor Resetting Localization [38], ro-
bustly accommodates the poorly modeled movements of the quadruped robot and large errors due
to externally caused movements of the robots, such as pushing from other robots, and repositioning
done by the human referees during the game. Sensor Resetting Localization is very effective. The
localization system is discussed in more detail in Chapter 3.

2.7 Motions

The motion system was largely developed by James Bruce with more recent additions from Sonia
Chernova and Juan Fasola amongst others.

The motion system for CMPack has to balance requests made by the action selection mechanism
with the constraints of the robot’s capabilities and requirement for fast, stable motions. The desir-
able qualities of such a system are to provide stable and fast locomotion, which requires smooth
body and leg trajectories, and to allow smooth, unrestricted transitions between different types of
locomotion and other motions (such as object manipulation). The motion system is given requests
by the behavior system for high level motions to perform, such as walking in a particular direction,
looking for the ball with the head, or kicking using a particular type of kick. We decided to im-
plement our own motions for the robots so that we would have full parameterization and control,
which is not available using the default motions provided with the robot. The system we used for
CMPack was based on the design we developed in a previous year [37].

The walking system implemented a generic walk engine that can encode crawl, trot, or pace gaits,
with optional bouncing or swaying during the walk cycle to increase stability of a dynamic walk.
The walk parameters were encoded as a 51 parameter structure. Each leg had 11 parameters; the
neutral kinematic position (3D point), lifting and set down velocities (3D vectors), and a lift time
and set down time during the walk cycle. The global parameters were the z-height of the body
during the walk, the angle of the body (pitch), hop and sway amplitudes, the z-lift bound for front
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and back legs, and the walk period in milliseconds. In order to avoid compilation overhead during
gait development, the walk parameters could be loaded from permanent storage on boot up. This
system also allowed us to use different sets of parameters for different motions. Specifically, one
set of parameters was used for motions with a large rotation component, and a different set was
used for straight-line motions. Using two sets of parameters allowed us to optimize each for its
particular function resulting in faster, more stable movement. In order to switch between motion
parameters on the fly while maintaining stability, parameters were selected to be as similar as
possible without compromising their individual effectiveness. Using this interface, we developed
a semi-dynamic trotting gait with a maximum walking speed of 300 mm/sec forward or backward,
200 mm/sec sideways, or 2.2 rad/sec turning.

Additional motions could be requested from a library of motion scripts stored in files. This is
how we implemented get-up routines and kicks, and the file interface allowed easy development
since recompilation was not needed for modifications to an existing motion. Adding a motion still
requires recompilation, but this is not seen as much of a limitation since code needs to be added to
the behaviors to request that that motion be used.

The overall system was put together using a state machine that included states for walking, stand-
ing, and one for each type of kick and get-up motion. Requests from the behaviors would execute
code based on the current state that would try to achieve the desired state, maintaining smoothness
while attempting to transition quickly.

The technique we used in implementing the walk was to approach the problem from the point of
view of the body rather than the legs. Each leg is represented by a state machine; it is either down
or in the air. When it is down, it moves relative to the body to satisfy the kinematic constraint
of body motion without slippage on the ground plane. When the leg is in the air, it moves to a
calculated positional target. The remaining variables left to be defined are the path of the body,
the timing of the leg state transitions, and the air path and target of the legs when in the air. Using
this approach smooth parametric transitions can be made in path arcs and walk parameters without
very restrictive limitations on those transitions.

2.8 Behavior System

The behavior system is responsible for mapping from information about the world to an action to
execute. The input to the system is information about the objects seen (from the vision) and an
estimate of the robots location (from the localization). The output of the behaviors is a motion to be
executed. The motion can be a type of kick to execute (discrete) or a direction to walk (continuous)
for example. Developing robust behaviors for robots is a challenge. We use a simple but robust
and easy to use control strategy based upon the use of finite state machines.

The behavior system is implemented as a hierarchical collection of finite state machines. The
uppermost finite state machine is responsible for decisions such as attack or defend while lower
levels are responsible for progressively finer grained decisions. Each state within a state machine
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corresponds to a policy to follow. A state can either be a reactive behavior or contain a lower
level finite state machine. Each state provides a mapping from information about the world to an
action to execute. For instance, one state could correspond to approaching the ball while another
would implement searching for the ball. The transitions between states are triggered based upon
the information about the world. Each state transition has a boolean predicate associated with it
that if true causes the current state of the finite state machine to change.

2.9 Hidden Markov Models and Dynamic Bayes Nets

A Hidden Markov Model (HMM) is a system model for time series data. The model consists of:

• A set of possible statess1, . . . , sn.

• A set of possible observationsx1, . . . , xm.

• A transition probability from each state to each stateP (St = si|St−1 = sj).

• A observation probability from each stateP (Xt = xi|St = sj).

The model assumes that the system is composed of some numbern of discrete states. The current
state of the systemSt is always one of these discrete possibilities. The system is assumed to be
Markovian. A Markov system is one in which knowing the past history of the system provides no
new information if the current state of the system is known. The current state of the system transi-
tions according toP (St = si|St−1 = sj) which is time invariant. The observations are all assumed
to depend only on the current state of the system. The particular observation seen will depend on
the current state according toP (Xt = xi|St = sj) which is assumed to be time independent. This
output distribution can be extended to the continuous case by assuming a combination of Gaus-
sians (or through other means). A detailed tutorial [51] has been produced by Rabiner. Readers
unfamiliar with HMMs are encouraged to read a tutorial on them.

A Dynamic Bayes Net (DBN) is a graphical way of representing conditional independence assump-
tions amongst random variables. A thorough discussion of DBNs is available in Kevin Murphy’s
thesis [45]. General purpose algorithms for analysis in DBNs are available, but all of the algorithms
used in this thesis are derived in this thesis. The basic idea behind a DBN is to represent conditional
dependence between two random variables as an edge in a graph of random variables. Variables
which are not connected by an edge in this graph (or DBN) are assumed to be independent. This
thesis uses a simple DBN model to model time series. The model used in this thesis is shown in
Figure 2.12. The state of the system at different times is shown asS(j− 2), S(j− 1), S(j) and the
observations at different points in time are shown asX(j − 2), X(j − 1), X(j). With the removal
of the large, red arrows, this model makes the same independence assumptions as the standard
HMM model. The large, red arrows which are particular to this thesis work are very important for
modeling the interdependence of sensor readings from nearby points in time.
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Figure 2.12: A Dynamic Bayes Net model of signal generation.

2.10 Summary

In this chapter, we described the robotic system on which the thesis work has been carried out. We
described the characteristics of the robot which affect the sensor signals received and the ability of
the robot to perform different tasks. We also described the software system used on the robot. We
presented the main components of the software system, and discussed each component to give the
reader a basic understanding of each component. We provided a brief background on HMMs and
DBNs and pointed the interested reader to further resources.
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Chapter 3

Environment Identification in Localization

This chapter begins with a discussion of why environment identification is important and how it
can used for failure detection/recovery. The chapter then explores the usefulness of environment
identification through a running example in the context of localization. This example is our first
exploration of the environment identification concept. After providing a background on basic
probabilistic localization techniques, we go into more depth with a particular localization technique
known as Monte Carlo Localization (MCL). We show how using the principle of environment
identification for failure recovery results in a more robust algorithm with better performance, at
least for the conditions found on some robots. The results in this chapter were first published at
ICRA 2000 [38].

3.1 Motivation

It is extremely important that robots be able to autonomously adapt to their environment. Robust
robotic behavior depends on adapting to the current conditions in the environment, or the current
operating environment. A robot’s actions often need to change depending on the environment.
Consider a robot driving a car approaching an intersection. If the traffic light is red, the robot should
stop before the intersection. On the other hand, if the traffic light is green, the robot should proceed
through the intersection. The behavior of the robot depends upon the current environment. The
current environment also affects what the robot’s actions do. Consider the robotic driver attempting
to slow down quickly. If the car the robot is driving is currently on dry pavement, applying the
brakes strongly will result in bringing the car to a quick stop. If the same car is currently on ice,
however, applying the brakes strongly will most likely result in the car spinning out of control. In
this case, the robot should apply the brakes more slowly to maintain control. Thus, the behavior
that the robot should choose depends on the current environment, in this case the conditions of
the road and the type of braking system in the car. The behavior of the robot must change as the
environmental conditions change, adapting to the current operating environment.
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It is important to understand that in addition to dramatic changes like the ones illustrated above, the
robot must also adapt to countless more subtle changes as it carries out its assigned tasks. Robots
are extremely sensitive to small changes in their environment. Many changes in the environment
are encountered while performing even the most mundane tasks. Humans adapt so well that we
rarely notice these changes, but robots notice them because they adapt so poorly. Consider walking
around an office environment. Each room has a different arrangement of lights within the room, a
different number of lights, different objects casting shadows, different types of light bulbs emitting
different frequencies of light, and differing amounts of sunlight all causing changes in the per-
ceived lighting conditions. We usually do not notice this because our eyes and brains have built-in
mechanisms for automatically adjusting to different light levels and different colors of light.

To understand the effect even a small change in lighting conditions can have on a robot, let us
investigate two popular approaches to high speed vision. One approach is based on color and
maps pixel color to colors of interesting objects that are brightly colored. Each pixel value must
be mapped quickly into a symbolic color. Because further processing needs to be carried out
rapidly in subsequent processing stages, this mapping must be hard. For example, a pixel could
be labelled as “red” or “orange” but not “reddish orange”. With no adaptation, however, an object
that was “orange” in blue tinted fluorescent light can appear “red” in red tinted incandescent lights.
The color of the pixels captured by the camera turning redder causes the “orange” object to be
mistaken for “red”. Suddenly, the robot is unable to see the orange object at all, effectively making
the robot blind. Another popular high speed vision technique is to use gray scale images and look
for edges in the image and construct objects from these edges. This is done by taking the image
and looking for pixels that are brighter/darker than their neighbors. The difference in brightness
between the neighboring pixels is then thresholded into a binary image of edge/no-edge once again
to make further processing faster. The difference in brightness around actual edges depends on the
lighting in the environment. A few bright lights can cast strong shadows and result in strong edges.
In contrast, more diffuse lighting can result in softer edges. For this reason, the threshold must be
carefully tuned to the environment in which the robot is to operate. An incorrect threshold results
in objects being combined together or split apart erroneously. Using either vision method, the
robot effectively becomes more blind the more the lighting conditions in the environment change.

Other types of changes also affect robots. Consider a typical wheeled robot moving about a house.
The robot uses feedback from its motors to help it localize itself in the house. Most localization
techniques require the robot to have an internal model that maps the motor feedback it gets to the
distance it has traveled in the world. Suppose this model is programmed based upon the perfor-
mance of the robot on carpet. Now consider what happens when the robot enters a room with a
tiled floor. If the wheels of the robot slip more on the slicker surface, the mapping from motor
feedback to distance changes, making the robot think it has gone farther than it has. This can result
in such unpleasantness as the robot turning to enter a hallway and instead running into the wall next
to the hallway. The robot also needs to adapt to the openness of its surroundings. If the floor of the
room is very cluttered, perhaps a child’s room, the robot needs to move very slowly to ensure that
no obstacles are hit. If the room is very open, the robot can move faster to finish its tasks quicker.
These are just some of the many changes that robots need to detect and adapt to.
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Robots that do not adapt to their environment often fail to perform their tasks if the environment
changes. Environmental changes may violate the robot’s assumptions or cause its models to be-
come inaccurate. Such inaccurate models lead to unpredictable and erroneous behavior. Some
examples of the importance of environmental changes follow. Consider a walking robot. If the
robot walks like normal on an icy surface, the robot is likely to fall and hurt itself. Even worse
consequences are also possible. Now think of a robotic taxi driver driving across a bridge in Cal-
ifornia. The robot has a internal map detailing how to get everywhere around the area showing it
to go across this bridge and then turn right. Suddenly, a powerful earthquake hits and sections of
the bridge collapse. Luckily, the section with the robotic taxi driver is unaffected. If the robotic
taxi driver fails to detect and adapt to the new operating environment on the bridge, it will continue
driving right off of the bridge destroying itself and killing its passengers. If instead the robot adapts
to the changed conditions, it can stop the car and wait for it and its passengers to be safely rescued.

Robots must adapt to their environment in order to perform their tasks on the dynamic world. The
problem of adaptation must be addressed in order to have robust robotic performance because it
cannot be ignored or avoided. The problem cannot be ignored because the environment changes
frequently and robots that do not adapt can fail when the environment changes. Every time a door is
opened or closed the environment changes. Lighting conditions vary from room to room and from
indoor to outdoor. Flooring varies amongst tile, low-pile carpet, high-pile carpet, concrete, asphalt,
grass, and dirt. The environment changes due to the people in it: cafeterias become crowded at
lunch time, hallways become cluttered between classes, parking lots become empty at night. The
problem of adaptation cannot be avoided because environmental changes cannot be avoided if we
want robots to work in our environments and perform real tasks. Environmental changes occur due
to people or other agents which cannot be controlled. They are caused by movement to another
environment that is needed to perform the robot’s task. They are causes by damage or other changes
to the robot that may not be avoidable. They are also caused by the passage of time from day to
night. A robot that avoided all of theses changes would be useless, confined to a uniform room
inside a building with no other agents or people around were it could not be damaged. For all of
these reasons, robots must adapt to their environment.

In order to adapt to the current environment, the robot must either identify the current environment
or continuously adapt to the environment. If the robot identifies the environment, the robot can
adapt to the environment by choosing control parameters based upon the identified environment.
Without identify the environment, the robot must continuously adapt to the environment since the
environment is not segmented by the robot. Continuously adapting without identify the current
environment has serious drawbacks, however. When the environment changes, the robot may
perform poorly until it has adapted to the new environment. If continuous adaptation is used, this
is the same amount of time needed to adapt to a new environment including all the time needed to
learn about the new environment. If the robot uses environment identification to adapt, however,
the response time is limited to the time necessary to identify the new environment which is often
much shorter than adapting. This time reduction is important because the robot may perform
poorly, or even cause damage, before it adjusts to the new environment. Once the environment
has been identified, the robot can use this information to select the appropriate behaviors, sensor
models, and action models.
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This thesis focuses on the problem of identifying discrete environments. This implies sudden,
but not necessarily large, changes to the current operating environment. Many environmental
changes happen rapidly enough to be approximated profitably by a discrete transition. Examples
of environmental changes that happen suddenly include: doors opening/closing, lighting difference
between rooms, flooring differences between rooms, and people movements at lunch hour/breaks.
These are unsolved problems that occur frequently when attempting to use robots in the field. By
solving the problem of discrete environment identification, robots will be able to operate better
in these sorts of changing environments. Making this simplifying assumption will allow robust
algorithms to be developed for the discrete transition case which is itself an important problem. We
assume that the number of environments is known and each environment is able to be experienced
by the robot. This will be a large step towards the general problem of changing environmental
conditions.

Sensors are the only means to identify the environment. The problem of identifying the environ-
mental from sensor readings is often hard. Sensors usually have large amounts of noise in the
readings they produce. This noise often has non-Gaussian aspects and can be difficult to character-
ize. Individual sensor readings are usually uninformative. Consider the pixels of a camera or the
distance measurements from a sonar sensor. Each individual pixel or distance reading gives very
little information, but the entire set of readings provides a lot of information. Each sensor reading
is also influenced by multiple processes. Taking the example of pixels on an image, the value of
the pixel depends on where the camera is pointed, where the objects are around the camera, how
the camera is moving, and the lighting conditions. All of these processes affect the value of the
pixel that is eventually sensed. This makes it harder to identify changes due to one or two causes.
It also makes it difficult to obtain information only about the changes the robot is interested in.

Many techniques have been developed to approach this problem. Change detection (e.g. [2]) and
fault detection and identification (e.g. [27]), in particular, have received much attention in the
literature. Current techniques, however, are inadequate to determine the current environment from
sensor readings. Current techniques have one of the following problems (which are discussed more
in the related work chapter, Chapter 7): require too much human labor, have unmet assumptions,
are off-line only, or only solve part of the problem. Techniques that require too much human
labor are usually caused by the need to develop accurate mathematical models of the environment
and sensors by hand. Sensor models characterize the sensor readings to expect given the state
of the world. Developing accurate sensor models is expensive in terms of human effort. These
models depend on the exact characteristics of the sensors being used. Often an inverse model is
required which maps sensor readings to implications about the environment. These models are
even more expensive to develop than forward sensor models. These models are environment, and
hence task, specific. The degree of specificity varies with the sensor and model employed, but
these models usually need to be redone every time the sensor, the robot, or the task changes.
Other techniques have unmet assumptions. Some techniques require that a model be given that
is usually unknown. Some techniques require specific noise properties. Still other require that
the algorithm be able to accurately predict the sensor readings, requiring an excellent model to be
available. Other techniques cannot be run on-line and hence cannot be used on a robot while it
is continuously performing useful tasks. Finally, some techniques fail to address all parts of the

46



problem. In particular, robotic data has properties not found in most other kinds of data. These
properties cause many techniques from other fields to not be directly applicable. The shortcomings
of particular techniques are discussed more fully in the related work chapter, Chapter 7.

Environment identification can also be used for failure detection and recovery. Environment iden-
tification can be used to distinguish between a normal operating environment and a collection of
different failure operating environments. Once a failure has been identified, an appropriate recov-
ery action can be executed. For many failures, it is easy to create a recovery action simply by either
returning the robot to a more common state or forgetting information that led to confusion. These
recovery actions basically reset the robot to a state which has been more thoroughly tested and
where the robot has better performance. We examine this concept in the context of the localization
problem which is described in the next section.

3.2 Localization

The localization problem is to determine the location of a robot given a map of the environment,
readings from the robot’s sensors, and information about the robot’s motions. Readers that are
familiar with localization in general, and particle filters in particular may wish to skip to the next
section. The sensor readings for a robot are often riddled with error. Information about a robot’s
motion can take a variety of forms, from readings from sensors designed to measure robot motion
(such as wheel encoders, etc.) to inferred motion from commands sent to the robot’s actuators. In
all cases, the robot’s actual motion will deviate from that implied by motion updates (inferred or
sensed). To further complicate matters, the errors in sensor readings and motion updates are not
only noisy, but also have non-zero errors relative to ground truth in most cases. The localization
system must also run in real time in order to be used most effectively by the robot. All of these
factors, make localization a challenging problem.

Modern approaches to localization are based on a foundation of probability theory. The basic idea
is to keep track of a probability distribution over possible robot locations and update it as sensor
and motion update information becomes available. The probability density for the location of the
robotLt at a particular timet, can be described by:

B(Lt) = P (Lt|ot, ut−1, ot−1, ut−2, . . . , o1, u0) (3.1)

In Equation 3.1,B is known as the belief state and is a probability density which summarizes
all information known up to this point about the robot’s location. We will use capital letters for
random variables and lower case letters for known values. We will use letter case letters such as
ot as short hand forOt = ot, i.e. the event where the random variableOt takes on the constant
valueot. Lt is the location of the robot at timet. ot is observations from the robot’s sensors at
time t (this variable is sometimes calledz in localization). In the case of the AIBO robots,ot is
estimates of the distance and angle to any landmarks seen in the current camera frame.ut is the
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motion estimate for the motion which the robot starts to execute at timet. In the case of the AIBO
robots,ut is the motion command sent to the walk engine at timet.

In order to solve this equation, we will need to introduce another variable. We will take the joint
probability density over the robot’s current locationLt and the robot’s initial unknown location
L0. From this joint probability density, we can take the marginal over all possible values forL0

to return to a probability density overLt. The reason for introducing this variable is to provide
a natural base case for the recursive solution to the localization problem we will develop in this
section.

B(Lt) = P (Lt|ot, ut−1, ot−1, ut−2, . . . , o1, u0) (3.2)

=

∫
l0

P (Lt, L0|ot, ut−1, ot−1, ut−2, . . . , o1, u0) (3.3)

To simplify notation, we will also introduce another belief state which excludes the most recent
observation. We will designate this pre-observation belief state byB−(Lt). This belief state is the
same asB(Lt) except the conditioning on the latest observationot has been removed, i.e. the belief
before incorporating the most recent observation. The defining equation forB−(Lt) is:

B−(Lt) =

∫
l0

P (Lt, L0|ut−1, ot−1, ut−2, . . . , o1, u0) (3.4)

In order to make the problem tractable, a couple of simplifying assumptions are usually made.
These simplifying assumptions take the form of conditional independence assumptions. Together,
these assumptions make the problem Markovian, i.e. induce a form where the the belief state over
the robot’s locationB(Lt) fully summarizes all relevant information of all previous observations
and motion updates.

The first assumption is:

P (ok|Lk, uk−1, Lk−1, ok−1, . . . o1, u0, L0)) = P (ok|Lk). (3.5)

This assumes that the current observationok is only dependent on the current location of the robot
Lk, i.e. the current observation doesn’t depend on the where the robot was, how it got here, or
what observations the robot got in the past if the current location is known. The probability density
P (ok|Lk) is known as theobservation model. In practice, this observation model typically does
not correctly model the full dependence of the observation on the location of the robot. Typically
the model does not include bias in the sensor readings that are correlated with position. This
induces a dependence between neighboring observations that is not correctly modeled in most
localization methods. Although this introduces some error into the localization, it is nonetheless a
useful approximation which we will use going forward.

The second assumption is:

P (Lk|Lk−1, uk−1, ok−1, . . . o1, u0, L0)) = P (Lk|uk−1, Lk−1). (3.6)
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This assumes that the location of the robot after movingLk depends only on the movement expe-
rienceduk−1 and the previous location of the robotLk−1, i.e. the next location of the robot doesn’t
depend on any observations before the motion was executed or how the robot got here if the previ-
ous location and the movement experiences are known. The probability densityP (Lk|uk−1, Lk−1)
is known as themotion model. The movement experienceduk−1 is knowledge directly related to
the motion of the robot. In the case of the localization system for CMPack,uk−1 is the motion
requested of the motion system. In other robots,uk−1 could be a motion command, a sensed value
from wheel encoders or other motion sensors, or any other information that directly implies a mo-
tion for the robot. In practice, this independence assumption is satisfied in most cases. There are
two main instances in which this independence assumption may be violated in practice. The first
case is where the robot is moving over a different surface in different neighboring environments.
In many cases, the surface is consistent across all parts of the environment. The second case is
dependence on previous motions caused by dynamic effects. These dynamics occur occasionally
on the AIBOs, mostly when the robot is accelerating to transition from performing one motion to
performing a different motion. This independence assumption provides a good approximation of
the motion experienced by the robot.

Using these two independence assumptions, we can rewrite the belief state equation as follows:

B(Lt) =

∫
l0

P (Lt, L0|ot, ut−1, ot−1, ut−2, . . . , o1, u0) (3.7)

=

∫
l0

P (ot|L0, Lt, ut−1, ot−1, . . . , o1, u0)P (Lt, L0|ut−1, ot−1, . . . , o1, u0)

P (ot|ut−1, ot−1, ut−2, . . . , o1, u0)
(3.8)

=

∫
l0

P (ot|Lt)P (Lt, L0|ut−1, ot−1, ut−2, . . . , o1, u0)

P (ot|ut−1, ot−1, ut−2, . . . , o1, u0)
(3.9)

=
P (ot|Lt)

P (ot|ut−1, ot−1, ut−2, . . . , o1, u0)

∫
l0

P (Lt, L0|ut−1, ot−1, ut−2, . . . , o1, u0)(3.10)

=
P (ot|Lt)

β
B−(Lt) (3.11)

= ηP (ot|Lt)B−(Lt) (3.12)

∝ P (ot|Lt)B−(Lt) (3.13)

Equation 3.7 is a verbatim copy the equation for the belief state (Equation 3.3). Equation 3.8
is derived from Equation 3.7 by the application of Bayes’ Rule. In Equation 3.9, we have ap-
plied the conditional independence assumption of Equation 3.5. In Equation 3.10, we have moved
those expressions that do not depend onL0 outside the integral. In Equation 3.11, we note that
P (ot|ut−1, ot−1, ut−2, . . . , o1, u0) is a constant term which we replace by the constantβ. We also
note the occurrence of the pre-observation belief state in the equation and replace it with theB−
notation. Finally, we change the form of the constant and note that the belief stateB(Lt) is pro-
portional to the pre-observation belief stateB−(Lt) times the likelihood of the observation at the
robots current position.

Using these two independence assumptions, we can rewrite the pre-sensor update belief state equa-
tion as follows:
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B−(Lt) =

∫
l0

P (Lt, L0|ut−1, ot−1, ut−2, . . . , o1, u0) (3.14)

=

∫
l0,lt−1

P (Lt, Lt−1, L0|ut−1, ot−1, ut−2, . . . , o1, u0) (3.15)

=

∫
l0,lt−1

P (Lt|Lt−1, L0, ut−1, ot−1, ut−2, . . . , o1, u0) ·

P (Lt−1, L0|ut−1, ot−1, ut−2, . . . , o1, u0) (3.16)

=

∫
l0,lt−1

P (Lt|ut−1, Lt−1)P (Lt−1, L0|ot−1, ut−2, . . . , o1, u0) (3.17)

=

∫
lt−1

P (Lt|ut−1, Lt−1)

∫
l0

P (Lt−1, L0|ot−1, ut−2, . . . , o1, u0) (3.18)

=

∫
lt−1

P (Lt|ut−1, Lt−1)B(Lt−1) (3.19)

Equation 3.14 is a copy of the pre-observation belief equation (Equation 3.4. In Equation 3.15,
we have introduced the variableLt−1 and marginalized over it leaving the probability density
unchanged. In Equation 3.16, we have applied the fact thatP (A, B) = P (A|B)P (B) In Equa-
tion 3.17, we have used the independence assumption from Equation 3.6 to simplify the expression
on the right hand side. We note thatP (Lt|ut−1, Lt−1) does not involve the variableL0 and move
it outside the integration over possible values ofL0 in Equation 3.18. Finally, in Equation 3.19,
we note that the second term is the same as the belief equation from Equation 3.3. We see that
updating for motion consists of convolving the motion update equation with the previous belief
state to generate the pre-observation belief state.

These two equations give us a recursive method for updating for probability density representing
the robot’s location (the belief state). This method is composed of two update rules. We can update
for motion via

B−(Lk) =

∫
lk−1

P (Lk|uk−1, Lk−1)B(Lk−1)

This motion update requires the use of the motion model from Equation 3.6. We can update for
sensor readings via

B(Lk) ∝ P (ok|Lk)B−(Lk)

This update just corresponds to a multiplication by the likelihood of the sensor readings. This
update requires the use of the sensor model from Equation 3.5. We can initialize the system with
B(L0) = P (L0) which defines a prior expectation over possible robot starting locations.

The localization process can be seen more clearly through a simple example. In this example,
we will follow the process of a robot determining it’s position within a hallway. This example is
similar to the one by Fox et al. [18]. To simplify things, we will assume that the robot is only
concerned about it’s position along the length of the hallway (a 1-D problem). The robot will walk
down the hallway and will be assumed to have a detector that can detect square markers when
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they are next to the robot. The robot is given a map of the hallway with the positions of the three
markers.

The robot starts off in an unknown location in the hallway. This situation is pictured in Figure 3.1.
The top half of the figure shows the robot in the hallway and the 3 markers which the robot can
possibly detect. The bottom half of the picture shows the current belief state of the robot. The
farther the red line is away from the black axis line, the more likely that position of the robot
is. Since the robot starts off lost, all locations in the hallway are equally likely. The robot walks
to the right for a bit and detects a square marker (Figure 3.2). After detecting this marker, the
robot knows that it is in front of a marker. Since it had no idea where it was before detecting
this marker, it can now determine that it is in front of some marker. The robot cannot, however,
determine which marker it is in front of. This situation leads to a multimodel probability density
over possible robot locations with locations near a marker being more likely than other locations.
This probability density is pictured in the bottom half of Figure 3.2. The robot continues walking
to the right for a bit but hasn’t detected the second marker yet (Figure 3.3). As the robot walks, it
updates it estimated position to reflect the motion. The robot can’t be certain about how far it has
moved, though, so it must allow for some error in the estimate of distance travelled. The robot’s
new belief state is pictured in the bottom half of Figure 3.3. The three bumps from Figure 3.2
have moved along with the robot. Also, each of the three bumps have become wider due to more
uncertainty in the robot’s position due to the possibility of movement errors. Finally, the robot
sees the second marker. The update for this marker detection is depicted in Figure 3.4. The top
graph below the picture of the robot and hallway shows the belief state from the previous figure.
The middle graph shows the information from the current marker detection which indicates the
robot is likely to be in front of a marker. The update rule for observations is to multiply the prior
belief with the likelihood of the sensor reading (Equation 3.13). The result of this multiplication is
the new belief state which is pictured in the bottommost graph in Figure 3.4. The robot has now
determined its position in the hallway with high probability. There is some residual probability
of the robot being in front of one of the other marker or to the right of the second marker. This
residual probability is due to the chance that either the first or second marker sighting could have
been an erroneous detection.

3.3 Monte Carlo Localization

This section is devoted to describing Monte Carlo Localization (MCL). Monte Carlo Localiza-
tion(MCL) [16] uses the general Bayesian approach to localization.

At this point, we have explained the probabilistic foundations on which localization algorithms
are based. We have derived update rules to update the robot’s belief state as new information
becomes available. What we have not determined is how to represent this belief state. There are
several possible representations that can be used to represent this belief state. For some restricted
classes of problems, the belief state can be represented by a Gaussian. This representation is used
in Kalman filter based approaches. The disadvantage of this representation is that the belief state
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Figure 3.1: Robot starts off lost. See text for explanation.

Figure 3.2: Robot sees a marker to its side. See text for explanation.
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Figure 3.3: Robot continues moving to right. See text for explanation.

Figure 3.4: Robot sees another marker to its side. See text for explanation.
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only maintains this form for a very limited set of problems, specifically, those involving linear
systems with Gaussian noise on observations and motion updates. A more general representation
is to represent the probability density for the belief state by a set of samples (or particles, we will
use the terms interchangeably). Each sample is a particular location that the robot might be in.
The samples are chosen such that the expected number of samples at each possible location of
the robot is proportional to the likelihood of the robot being in that location. The tracking of the
robot’s belief state via these samples leads to a localization solution known as a particle filter. The
particle part of the name refers to the samples/particles used to represent the belief state. The filter
part of the name refers to the way the localization system acts like a filter to remove noise from the
sensor and motion updates. We will adopt the particle filter based approach to localization in our
investigation of change detection in the context of localization.

The idea behind particle filters is to approximate the probability density over robot positions
(poses) by a set of sample robot positions (x0, x1, . . . , xn−1). In the case of our AIBO robots,
xi is a particular Cartesian location on the ground in x/y coordinates and an orientation of the
robot. Since each sample is an exact point in pose space, updates of samples are easy to imple-
ment. The density of the samples in a region of pose space is proportional to the probability that the
robot is in that region. The quality of the approximation to the true probability density increases as
the number of samplen increases. Unfortunately, the computation time required goes up linearly
with the number of samples used. Complex probability densities tend to require more points for an
adequate approximation. We will also associate a weightwi with each particlexi. Each particle is
counted a number of times equal to its weight, so a sample with a weight of 3 counts as 3 samples,
with a weight of .5 counts as .5 samples, and so on. Since the points are not distributed evenly
across the entire locale space, MCL focuses computational resources where they are most needed
to increase the resolution near the believed location of the robot. Initially, particle filters often used
between 1,000 and 10,000 samples. For use on the AIBO robots, particle counts between 50 and
400 samples are more feasible due to processor limitations.

In the particle filter representation, the density of samples in an area around a point is proportional
to the likelihood of the robot being at that point. Equivalently, the number of samples in an area is
proportional to the probability of the the robot being in that area. This correspondence also carries
over into any sort of summary statistic we would like to calculate about the probability density.
We can convert from a summary statistic over the probability density to one over the samples as
follows: ∫

f(l)B(L = l)dl ≈
∑

i f(xi) · wi∑
i wi

. (3.20)

In this equation,f(l) represents a function from a locationl to any summary statistic we would
like to calculate. For instance, iff(l) is equal to the x coordinate ofl, then this equation calculates
the average x position of the robot.

Now that we have a representation for the belief state, we need to create procedures for imple-
menting the update rules we derived earlier using the particle filter representation. The first thing
we need to be able to do is to initialize the belief stateB(L0). Usually, the initial belief state is
initialized to a uniform distribution over the entire environment the robot might be located in. A
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Table 3.1: Pseudo-code for updating the set of particles in response to a movement update.

ProcedureMotionUpdate(uk−1,B(Lk−1))
Foreachsamplexk−1

i in B(Lk−1)
Generate samplexk−1

−,i from P (Lk|uk−1, Lk−1 = xk−1
i ).

Add xk−1
−,i with weightwk−1

i to B−(Lk).
ReturnB−(Lk).

uniform distribution is easy to create in samples. We just need to createn samples randomly over
the entire environment.

Recall the motion update has the form (Equation 3.19)

B−(Lk) =

∫
lk−1

P (Lk|uk−1, Lk−1)B(Lk−1)

By the relationship between integrals over probability densities and sums over samples, this be-
comes

B−(Lk) =

∑
i P (Lk|uk−1, Lk−1 = xk−1

i ) · wi∑
i wi

However, P (Lk|uk−1, Lk−1 = l) is itself a probability density that we will need to approxi-
mate. One solution would be to reuse the sampling idea. Generate a whole bunch of samples
of P (Lk|uk−1, Lk−1 = l) and use them to form the next belief state. We would like to keep the
number of samples constant over time. Instead, we will generate a set of samples that have the
sameexpectedprobability of occurrence as the large sample set idea. We can do this simply by
taking one sample fromP (Lk|uk−1, Lk−1 = l) and using that sample! This preserves all expec-
tations over the belief state. Note thatl anduk−1 are known here andLk may depend on both.
The pseudo-code for this process is shown in Table 3.1. The process simply consists of taking
each particle and updating it for motion separately. Each particle is replaced with a sample from
the distribution over future robot positions with the robot starting at that particle’s position and
executing the motion commanduk−1.

Recall the sensor update has the form (Equation 3.13)

B(Lk) ∝ P (ok|Lk)B−(Lk)

We can perform the same operation on the samples using only the weights

wk
i = P (ok|Lk = xk

−,i) ∗ wk
−,i

The new samples have the same positions as the old samples but different weights. The probability
density is implicitly normalized by the sum of the weights. The pseudo-code for this update is
shown in Figure 3.2. Unfortunately, there is a problem with this update rule. Over time, many of
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Table 3.2: Pseudo-code for updating the set of particles in response to a sensor update without
normalization.

ProcedureSensorUpdateNoNormalization(ok,B−(Lk))
Foreachsamplexk

−,i in B−(Lk)
Let wk

i ← P (ok|Lk = xk
−,i) ∗ wk

−,i.
Let xk

i ← xk
−,i.

Add xk
i with weightwk

i to B(Lk).
ReturnB(Lk).

particles will have weights that are nearly zero. We need to ensure that all the particles we keep
around are reasonably likely to achieve the best approximation to the true probability density. We
would like each particle to end up with the same weight as all the other particles. We can solve this
problem by introducing a renormalization step. This renormalization step is often called “Sample
Importance Resampling” for reasons that will be apparent shortly.

The total weight of the samples gives an indication of the approximation error in the resampling
step. This total weight is also proportional to the probability of the the position sample set given the
sensor readings. One possible use of this information is to adjust the sample set size dynamically
to try to keep errors roughly constant. We will use this measure in our development of Sensor
Resetting Localization in Section 3.5.

We need an operation that preserves the expected density of weights of the particles while renor-
malizing their weights. We can achieve this goal by generating a new set of particles with equal
weight but the same expected density of weights. This goal can be achieved by simply sampling
from the particles in proportion to their weights. By doing the sampling in this manner, we keep
the expected density of weights of the particles in all regions constant. Adding this procedure to
the sensor update results in the pseudo-code for a sensor update shown in Table 3.3. This sensor
update procedure is used in Monte Carlo Localization. Note that this step never generates any
new sample points. Optionally, some random noise can be added before each sensor update to
help the algorithm recover from errors. Alternatively, the normalization can be performed imme-
diately before the motion update procedure for the same effect. Together, the update procedure
for motion (Table 3.1) and the update procedure for sensing (Table 3.3) are known as Monte Carlo
Localization.

We can now return to our example of the robot in the hallway and follow the same steps as before
with our new particle filter representation. Again, our robot starts off in an unknown location in
the hallway. This situation is pictured in Figure 3.5. The top of the figure shows our robot in
the hallway. The bottom of the figure show the particles which make up the belief state. Each
particle is pictured as a red plus sign. The x position of each particle is the location in the hallway
which that particle represents. The y position of each particle is meaningless and is just used to
separate the particles for easier visibility. The robot detects the first marker in Figure 3.6. The
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Table 3.3: Pseudo-code for updating the set of particles in response to a sensor update with nor-
malization.

ProcedureSensorUpdate(ok,B−(Lk))
Foreachsamplexk

−,i in B−(Lk)
Let wk

i ← P (ok|Lk = xk
−,i) ∗ wk

−,i.
Let xk

i ← xk
−,i.

Add xk
i with weightwk

i to B′(Lk).
Foreachsamplexk

i

Calculate the cumulative weight of all samples before this samplecw(xk
i ) ←

∑i−1
j=0 wk

j .
Calculate total weight of all samplestw ←

∑
i w

k
i .

Foreachsampleyk
i we want inB(Lk)

Select samplexk
j fromB′(Lk) in proportion to their weights.

Generate a random numberr between 0 andtw.
Using binary search, find the sample with maximumcw(xk

j ) < r.
Let yk

i ← xk
j .

Add yk
i with weight1 to B(Lk).

ReturnB(Lk).

top portion of the figure shows the robot in its new location. The top density in the figure shows
the particles before the update is performed. The middle graph shows the particles after they
have been weighted by the sensor update. This graph can be thought of as a rotation of the top
graph after the height of each particle is adjusted to match its weight. The x position of each
particle is the location the particle represents in the hallway. The y height of each particle is
its weight after being weighted by the sensor reading. The bottom graph shows the probability
density after Sample Importance Resampling has been performed. At this point, all the sample
once again have equal weights, so we have rotated the graph back again to make the individual
particles easier to see. In Figure 3.7 the robot has moved to the right down the hallway but has
yet to detect the second marker. The top probability density is simply repeated from the previous
figure. The bottom probability density is after the movement update has been performed. The
particles in the bottom probability density are more diffuse due to movement error. Since each
particle is updated separately for motion by sampling from likely new locations, particles which
used to have the same location before the update have different locations after the update. Finally,
the robot sees the second marker (Figure 3.8). Again the samples are weighted by the probability
of the sensor reading and renormalized. The bottom graph shows the final distribution with the
robot well localized. The same alternative hypothesis that occurred in the continuous example also
happen in the particle filter representation. If you compare the final distribution in Figure 3.8 to
the final distribution in the original example (see Figure 3.4), you will see that the distributions
have the same general shape. We have simply converted the distribution to a form which is easy
to update algorithmically and takes a constant amount of processing time to update and memory
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space to store.

Now that we can track a belief state about the robot’s pose, we need to get this information to
behaviors in a useful form. Behaviors are interested in knowing the most likely pose of the robot.
We can approximate this by calculating the mean pose of the robot. Each position coordinate of
this mean pose can be calculated independently from the particle set as a simple weighted average.

x̄ =

∑
i xi.x ∗ wi∑

i wi

In this formula,xi.x is used to indicate the x coordinate of particlexi. The heading of this mean
pose can be calculated using a weighted average over heading vectors computed from each particle.

Behaviors also need a way to judge the reliability of the estimate. The covariance matrix provides
a convenient way to summarize the uncertainty in the result. This reports the variance in each
coordinate and their correlation. The covariance matrix can be easily calculated from the particles
using the standard statistics formulas. This information can be used to actively trigger behaviors
to gather information useful for localization amongst other uses.

For a more complete description of Monte Carlo Localization, please see Fox et al. [16] and Del-
laert et al. [11].
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Figure 3.5: Robot starts off lost. See text for explanation.

Figure 3.6: Robot sees a marker to its side. The first density is before the update and the last is
after the update. See text for explanation.
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Figure 3.7: Robot continues moving to right. The first density is before the update and the last is
after the update. See text for explanation.

Figure 3.8: Robot sees another marker to its side. The first density is before the update and the last
is after the update. See text for explanation.
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3.4 Limitations of Monte Carlo Localization

For certain robots, MCL provides a robust solution to the localization problem. The robot must
have sufficient computational power to process a large number of samples. A large number of
samples is needed in order to represent the belief state with sufficient resolution. An accurate
and complete model of the movement of the robot when different motion commands are executed
must be available. An accurate and complete model of the values that sensors can return must
be available. Unfortunately, for many robots these conditions are not met. In particular, in the
RoboCup domain in which we tested, none of these conditions are met. The algorithm may fail for
a number of reasons: inaccurate models of movement and sensor noise, external disturbance of the
robot’s location, or insufficient sample count to accurately approximate the probability density.

Accurate and complete motion models for the robot are not available. Due to the nature of legged
locomotion, significant errors in odometry occur as the robot moves about. These errors are diffi-
cult to model because they depend on the dynamics of the robot, the previous state of the robot’s
joints, and the particular properties of the flooring the robot is currently walking on. For instance,
a slight tilt in the floor can result in a significant arc in the motion of the robot when it is simply
trying to move straight forward. Further noise is introduced into odometry readings by frequent
extended collisions with the walls and other robots. Since we are unable to detect collisions and
are unable to locate other robots, we cannot model collisions with other robots introducing error in
our system. An additional complication is introduced by the rules which specify that under certain
circumstances the robot is to be moved by the referee without telling the robot. Even if we could
model all of these events, the cost in development time to develop all of these models would be
prohibitively expensive. Even worse, none of these models would be useful on a different robot or
in a different environment.

MCL is only capable of handling small systematic errors in movement. Every sensor reading gives
MCL a chance to correct a small amount of systematic error. The amount of systematic error that
can be corrected for increases with larger movement deviations and larger numbers of samples. If
the systematic error in movement gets too large, MCL will slowly accumulate more and more error.
We need to handle systematic errors in movement because measuring the movement parameters
for a robot is time consuming and error prone. Systematic errors in movement also occur when
the environment changes in unmodeled ways. For example, if the robot moves from carpeting to
a plastic surface such as the goal, the movement of the robot for the same motion commands is
likely to change.

MCL does not handle unexpected/unmodeled robot movements very well. The time MCL takes
to recover is proportional to the magnitude of the unexpected movement. During this time, MCL
reports incorrect locations. Unexpected movements happen frequently in the robot soccer domain
we are working in. Collisions with other robots and the walls result in motions having unexpected
results. Collisions are difficult to detect on our robots and thus cannot be modelled by the localiza-
tion algorithm. Another unexpected movement we incur is teleportation due to application of the
rules by the referee. MCL takes a long time to recover from this.
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Accurate and complete sensor models for the robot are unavailable. Sensor readings are often bi-
ased in different ways depending on the location of the robot. So, one location may consistently
give distance readings that are too low while another location may consistently give distance read-
ings that are too high. We have to ignore this dependence because it is too expensive to try to
calibrate the distance readings at every possible location the robot might be at and the distance
readings often depend on lighting conditions which can potentially change frequently. This sys-
tematic bias violates the independence assumption used to derive the localization algorithm leading
to inevitable errors in localization.

In addition to the problems with inaccurate and incomplete models, for many situations the number
of samples that can be processed is fewer than are needed due to processing constraints. Global
localization is the process of determining the robot’s location from an initially unknown location.
More samples are normally needed by Monte Carlo Localization during global localization than
when tracking since similar resolution is needed and the samples are spread over a much larger
area. If MCL is run with too few samples during global localization, the locale probability density
prematurely collapses to the few most likely points. With only 400 samples (to keep computational
load low) there is only 1 sample for every100cm2 ignoring orientation for the moment. During
testing with 1000 samples, we commonly observed the sample set collapse to 1–2 distinct samples
during global localization from a single marker observance. Thus, the probability density collapses
to very small number of samples from the infinitely many locations that are consistent with a single
marker observance. The number of samples remains constant, of course, but the number of distinct
samples is often reduced greatly during the sensor update phase. A single marker reading localizes
the robot to a circle around the marker at a set distance and a heading relative to the center of
the circle. Obviously, 1-2 distinct samples are not sufficient to represent this circle accurately.
Adaptive sample set sizes do not help much here since only one movement update step is resampled
from. If the robot takes 2 steps and then sees a marker, the probability density will consist of 1-2
tightly grouped blobs instead of 1-2 points which doesn’t fix the problem. The premature collapse
of the probability density results in increased time for global localization and more misleading error
in position during global localization. Since our robots are continually losing track of their position
due to collisions, being moved, falling down, etc., it is extremely important that the localization
algorithm be capable of globally localizing quickly.

Some of the drawbacks of MCL can be alleviated somewhat by adding adaptive sample set sizing.
Even with adaptive sample set sizing, MCL is still sensitive to systematic errors in movement.
MCL with adaptive sample set sizing requires different computational resources as the number of
samples changes. Adaptive sample set sizing as described in Fox et al. [16] can take an extremely
long time if the robot thinks it is one position and the sensor readings indicate a different position,
especially if robot movements are very accurate. We were unable to apply MCL with adaptive
sample set sizing since we are working in a real time domain and do not have any additional
computational power available.

A later approach to alleviating the drawbacks of MCL was introduced in 2000 by Thrun and Fox
after this work was completed [57]. In this approach, called Mixture-MCL, in addition to updating
samples for movement and weighting by sensor readings, samples are also generated by sensor
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readings and weighted by the motion model. This modification to the sample generation results in
a better approximation to the probability density predicted by the model and helps reduce the num-
ber of samples needed at the expense of more computation per sample used. Unfortunately, this
does nothing to directly correct for errors that might be present in the model. This new sampling
procedure recovers from a teleportation faster than normal MCL does, but the recovery rate is still
constrained by the motion model. A motion model with little error coupled with a observation
model with a much larger relative error will still result in a slow convergence rate to the correct
position after the robot is teleported.

In many ways, Mixture-MCL is a complementary approach. Mixture-MCL reduces the chance
that the probability density will fail to converge to the correct solution and Sensor Resetting Lo-
calization decreases the time to recover from a failure.

3.5 Sensor Resetting Localization

Sensor Resetting Localization (SRL) is an extension of Monte Carlo Localization [17] based on
the principle of change detection for failure recovery. The key idea behind SRL is to monitor
the likelihood of the sensor readings given the current estimate of the robot’s position. Failures
in localization can be detected by monitoring for operating environment changes reflected in this
signal. By monitoring this likelihood, the algorithm detects a phase transition between global
localization (localization from an unknown position) and tracking (updating position estimates as
the robot moves and senses). The algorithm also detects a phase transition between algorithm
failure (due to insufficient representative power of the probability distribution) and tracking. By
detecting these phase transitions, the algorithm is able to adapt by temporarily weighting the sensor
readings more heavily than usual. This adaptation is a failure recovery action that allows for quick
recovery.

SRL uses the same particle filter representation for the robot’s belief state as used in MCL. SRL is
heavily based on the MCL algorithm and readers are encouraged to read Section 3.2 and Section 3.3
before reading this section as concepts and procedures introduced in those sections are elided here
to avoid repetition.

SRL is motivated by the desire to use fewer samples, handle larger errors in modelling, and handle
unmodeled movements. SRL adds a new step, called sensor resetting, to the sensor update phase
of the algorithm. If the probability of the sensor readings is low given the position designated by
the samplesP (ok|Lk), we replace some samples with samples drawn from the probability density
given by the sensorsP (Lk|ok). The number of samples kept is proportional to the average prob-
ability of a locale sample given the sensors divided by an expected average probability of locale
samples. Thus if the average probability is above a threshold, all the samples are kept. As the
average probability of the locale samples falls below this threshold, more and more samples are
replaced by samples based on the sensor readingsP (Lk|ok). We call this sensor based resampling.
The logic behind this step is that the average probability of a locale sample is approximately pro-
portional to the probability that the locale sample set covers the actual location of the robot, i.e.
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Table 3.4: Pseudo-code for SRL for updating the set of particles in response to a sensor update.

ProcedureSensorUpdate(ok,B−(Lk))
Foreachsamplexk

−,i in B−(Lk)
Let wk

i ← P (ok|Lk = xk
−,i) ∗ wk

−,i.
Let xk

i ← xk
−,i.

Add xk
i with weightwk

i to B′(Lk).
Foreachsamplexk

i

Calculate the cumulative weight of all samples before this samplecw(xk
i ) ←

∑i−1
j=0 wk

j .
Calculate total weight of all samplestw ←

∑
i w

k
i .

Foreachsampleyk
i we want inB(Lk)

Select samplexk
j fromB′(Lk) in proportion to their weights.

Generate a random numberr between 0 andtw.
Using binary search, find the sample with maximumcw(xk

j ) < r.
Let yk

i ← xk
j .

Add yk
i with weight1 to B(Lk).

Calculate number of new samples to generate.
Let ns ← (1− tw/prob threshold) ∗ num samples
If (ns> 0) repeatnstimes

Draw sample(s′) from P (L|ok).
Replace a random sample fromB(Lk) with s′.

ReturnB(Lk).

the probability that we are where we think we are. Taking one minus this value as the probability
of being wrong, suggests that we should replace a proportion of samples equal to the probability
of being wrong with samples from the sensors. The constant of proportionality between the aver-
age probability of a locale sample and the probability of being wrong is a parameter that can be
tweaked to control how often the localization algorithm resets itself.

The SRL algorithm consists of a motion update procedure and a sensor update procedure. The mo-
tion update procedure is exactly the same as in MCL (see Table 3.1). The sensor update procedure
is the same as in MCL except that an additional sensor resetting step is added. This step checks for
the failure of the algorithm and executes a recovery action if necessary. This procedure is shown
in pseudo-code in Table 3.4.

3.6 Sensor Resetting Localization Discussion

The goal of sensor based resetting is to return the probability density to a sane state whenever
it appears that the algorithm may be failing. Here, a sane state means one that reflects all likely
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Figure 3.9: The sequence of belief states resulting from a robot in an unknown initial location
seeing one landmark.

locations of the robot. The algorithm may fail for a number of reasons: inaccurate models of
movement and sensor noise, external disturbance of the robot’s location, or insufficient sample
count to accurately approximate the probability density. We restore the probability density to a
sane state by replacing the density with one consistent with the robot’s current sensor readings and
the robot’s prior belief of likely locations to be located on the field (we use a uniform distribution
for this). We apply this resetting step any time we find that our belief state is inconsistent with the
current sensor readings. Inconsistency can be measured by using the sensor probability model to
estimate the likelihood of the sensor readings given our current belief state. See Figure 3.9(right)
for an example of the result of a reset event. Without this step, the algorithm is the same as the
popular Monte Carlo Localization technique [17].

This sensor resetting step was added to solve a problem recovering the robot’s location from an
initially unknown location (see Figure 3.9 left). With only 400 samples (to keep computational
load low) there is only 1 sample for every100cm2 and even less are available after accounting for
orientation. Usually only 1–4 of the 400 samples are consistent with a single landmark observation
observation (see Figure 3.9 middle). Resetting solves this problem by concentrating the samples
in locations that are consistent with the landmark observation (Figure 3.9 right) providing a much
better approximation of the infinitely many locations that are consistent with this marker reading.
Adding sensor based resetting also solved several other problems. By resetting, we automatically
recover from errors in the movement model and external disturbances. External disturbances are
caused by the referee moving the robot or collisions with other robots.

Sensor Resetting Localization is applicable in domains where it is possible to sample from the
sensor readingsP (L|o). This sample generation is not a problem if landmarks are being used
as the sensor readings as the sensor distributions are easy to sample from. However, this sample
generation can be difficult to do for sensor readings that entail complex distributions. If all possible
locations of the robot are known, this sensor based sampling can be done by rejection sampling.
However, rejection sampling increases the run time for resampling in proportion to the probability
of having to reject a sample. Other general sampling techniques such as Monte Carlo Markov
Chain techniques can be applied here to generate samples in accordance with arbitrary probability
densities, however, efficiency may be a concern depending on the precise form of the probability
density implied by the sensor readings.
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One of the advantages of SRL is that fewer samples can be used without sacrificing much accuracy.
This is possible in part because it is more efficient when globally localizing. When the first marker
is seen during global localization, the probability of almost all of the samples is very low. Thus
the average probability of a sample is ridiculously small and SRL replaces almost all the location
samples with samples from the sensors. This results in all of the samples being distributed evenly
around the circle determined by the marker. So, if we are using 400 samples, we have 400 sam-
ples instead of the 1–2 of MCL to represent the circle around the marker. Naturally, this reduces
misleading errors during global localization. This also reduces the time required to converge to
the correct localization since the correct answer has not been thrown out prematurely. After see-
ing another marker the circle collapses to a small area where the circles intersect. The average
probability of the locale samples now is much higher than after seeing the first marker since more
samples have been concentrated in the right place by the first sensor reading. Thus, if the threshold
for sensor based resampling is set correctly, no new samples will be drawn due to the second sensor
readings. As long as tracking is working, no new samples are generated from the sensors and the
algorithm behaves exactly like MCL.

SRL can handle larger systematic errors in movement because once enough error has accumulated,
SRL will replace the current estimate of the robot’s location with one based on the sensor readings,
effectively resetting the localization. Adaptive sample set sizing helps MCL, but MCL is still more
sensitive to systematic errors in movement and unexpected/unmodeled robot movements. SRL is
also easier to apply to real time domains since the running time per step is nearly constant and easy
to bound.

SRL can handle larger unmodeled movements than MCL. The localization algorithm needs to
handle extended collisions with other robots and the wall gracefully. SRL does this by resetting
itself if its estimate of current robot position gets too far off from the sensor readings. SRL is able
to handle large unmodeled movements such as movement by the referee easily. SRL does this by
resetting itself the first time it gets a sensor reading that conflicts with its estimated position. MCL
would take a long time to correct for long distance teleportation such as this since enough error in
movement has to occur to move the mean of the samples to the new location.

In summary, Sensor Resetting Localization offers the following benefits:

• Sensor based resetting allows for poorer approximations and models to be used.

• Sensor based resetting provides fault tolerance and failure recovery in the robot localization.

• Sensor Resetting Localization is robust to external disturbances.

3.7 Environment

Sensor Resetting Localization was developed for use in the Sony legged league of the robot soccer
competition RoboCup ’99. The algorithm has been tested in this domain, in separate tests with the
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same hardware and environment, and in simulation. These tests used an older version of the robot
and RoboCup field than those described in the background chapter. The basics about the robot,
software, and field used in these tests is described in this section. We also describe some of the
features of this domain make the localization problem especially challenging.

Hardware The robots used in the competition and tests were generously provided by Sony [19].
These robots are the AIBO ERS-110 model robots developed by Sony. The robots are a excellent
platform for research and development and provide us exceptional hardware that is commercially
viable. The robot consists of a quadruped designed to look like a small dog. The robot is approxi-
mately 20cm long plus another 10cm due to the head. The neck and four legs each have 3 degrees
of freedom. The neck can pan almost90◦ to each side, allowing the robot to scan around the field
for markers. The robot stands 20cm high at the shoulder with the head extending another 10cm.

Vision Vision is provided by a color CCD camera with a resolution of 88x60. The robot’s field of
view is about60◦ horizontally and40◦ vertically. The input from the camera is processed by color
separation hardware and analyzed by the vision system to return distance and angle to any markers
seen. Distance is estimated based on distance between color blob centers. Distance estimates vary
by about±15% when the robot is standing still. The mean value is usually within about 10% for
distance and7◦ for angle. Markers which are partially off of the camera look like noise to the vision
system. The sides and edges of markers are commonly missed by the vision system. Because of
these effects, sensor readings occasionally have much larger errors than usual. The vision system
subtracts out the neck angle before passing the result to the localization algorithm. The neck angle
is sensed using an on-board sensor that is very accurate but has a high granularity. These marker
detections with distance and angle provide the sensor readings used to perform sensor updates for
localization.

Locomotion The locomotion used in all our tests was developed by Sony. Due to the complex-
ities of legged locomotion, there is a lot of variability in the motion performed by the robot for
the same motion commands. Repeatedly executing a path of approximately 5m in length with two
turns results in final positions of the robot that vary by about 1m. As the robot moves, its feet slip
randomly on the surface of the field contributing to the large movement error. The robot can tran-
sition among different types of motion such as forward, forwardright, right forward, turnright,
backward, etc., each in different gaits. The robot slips randomly on the field surface when transi-
tioning from one motion to another. Slippage from transitions can be as much as5◦ but does not
tend to affectx,y position much. Additional errors in movement are introduced by different results
for the same robot behavior under slight changes to the environment such as slightly different field
surface or somewhat lower battery charge. These day to day variations in robot behavior are too
expensive to model because of the time it takes to determine model parameters. Systematic errors
of up to 25% have been observed in our lab.
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The Field The field on which the robot operates is 2.8m in length by 1.8m in width. The field
is surrounded by low sloped walls that keep the robots and the ball on the field. There is a color
coded goal at each end of the field, one cyan and one yellow, that were not used as input to the
localization. The surface of the field is a short carpeting except in the goals where the surface is a
smooth plastic.

The field is surrounded by 6 markers, 3 on each of the long sides of the field. There is a marker in
each corner, and one at each end of the center line. Each marker is a color coded cylinder mounted
20cm from the surface of the field which is about eye level to the robot. Each cylinder is 20cm high
and 10cm in diameter. The cylinder is divided vertically into two equal sized colored patches, one
pink and either cyan, green, or yellow to indicate position along the long axis of the field (which
we refer to as thex axis). Whether the pink is on the top or bottom indicates which side of the
field the marker is on. Thus, there are 6 uniquely distinguishable markers to which the robot can
estimate distance and angle.

Challenges The Sony legged league of the robot soccer competition RoboCup ’99 provides a
challenging domain in which to do localization. Due to the nature of legged locomotion, significant
errors in odometry occur as the robot moves about. Further noise is introduced into odometry
readings by frequent extended collisions with the walls and other robots. Since we are unable
to detect collisions and are unable to locate other robots, we cannot model collisions with other
robots introducing error in our system. Noise in the vision processing also makes localization more
difficult. An additional complication is introduced by the rules which specify that under certain
circumstances the robot is to be moved by the referee without telling the robot. The following
challenges must be addressed by the localization system:

• Errors(occasionally large) in sensor readings

• Systematic errors in sensor readings

• Large amounts of noise in odometry

• Systematic errors in odometry

• Collision induced unmodeled movements

• Referee induced large unmodeled movements

3.8 Implementation Details

This section describes implementation details of the localization used in testing. Unless other-
wise noted, all implementation details are the same between Monte Carlo Localization and Sensor
Resetting Localization.
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The particle locations are represented as an array ofn locations on the soccer field. High particle
counts tend to result in better accuracy and robustness at the cost of additional computation. We
usedn = 400 particles in our system as a reasonable compromise. There are three basic types
of updates we perform on the sample set: movement updates, sensor updates, and sensor based
resetting. The basic update cycle is: move robot, update for movement, read sensors, update for
sensors, reset if necessary, repeat. The mean of the samples is taken to be the best estimate for the
location of the robot and the standard deviation of the samples is used to estimate the uncertainty.

We modeled all of our movements by 3 Gaussians, one for movement distance, one for movement
direction, and one for heading change. We represented our sensor distributions as 2 Gaussians,
one for distance from the landmark and one for egocentric angle to the landmark. We set deviation
equal to a percentage of the mean for distance and a constant value for angle.

We attempted to do one sensor update stage for each movement update stage. However, we discov-
ered that even when using only 400 samples the localization algorithm was too slow. To make the
algorithm real time, we ignored sensor readings whenever the localization algorithm fell behind on
movement updates. When throwing away sensor readings, we were able to execute about twice as
fast but sacrificed a small amount of accuracy and a large amount of precision.

For Sensor Resetting Localization, we used a sensor based resampling threshold equal to the ex-
pected result of 20% of the samples being distributed according to the sensor Gaussians and the
other 80% having probability 0.

3.9 Results

We tested Sensor Resetting Localization on the robots provided by Sony and in simulation. In
simulation testing, we also compared Sensor Resetting Localization with Monte Carlo Localization
with and without random noise samples added.

We tested SRL on the real robots using the parameters we used at RoboCup ’99. We used 400
samples for all tests. In order to execute in real time, we were forced to ignore about 50% of the
sensor readings. Due to inevitable changes in conditions between measuring model parameters
and using them, the parameter for distance moved was off≈ 25%, for angle of movement≈ 10◦,
and for amount of rotation≈ .6◦/step. The deviations reported to the localization were 10% for
movement and 15% for vision. We had the test robot run through a set trajectory of 156 steps
while slowly turning it neck from side to side. The robot was instructed to stop after 7 different
numbers of steps had been executed. The final position of the robot was measured by hand for
each run. We did five runs at each of the 7 number of steps and averaged the results. We compared
the actual location of the robot at each of the 35 data points with the location reported by the
localization algorithm. We calculated the error in the mean position over time and the deviation
the localization reported over time. We also calculated an interval in each dimension by taking the
mean reported by the localization and adding/subtracting 2 standard deviations as reported by the
localization. We then calculated the distance from this interval in each dimension which we refer
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x (mm) y (mm) theta (◦)

average error 99.94 95.14 14.29
average interval error 15.18 4.91 2.07

rms interval error 34.92 13.94 3.82
in box percentage 74.29% 80.00% 57.14%

Table 3.5: Performance summary on real robots.

to as interval error. We report both average interval error and root mean squared interval error. We
feel that root mean squared interval is a more appropriate measure since it weights larger, more
misleading errors more heavily. We also calculated the percentage of time that the actual location
of the robot fell within the 3D box defined by thex,y, andθ intervals.

Table 3.5 shows the localization is accurate within about 10cm inx andy and15◦ in θ despite
the erroneous parameter values. The actual location of the robot is within the box most of the
time and when it is outside the box, it is close to the box. The fact that the localization seldom
gives misleading information is very important for making effective behaviors. Figure 3.10 show
that the error in position quickly converges to a steady level. Figure 3.11 shows that the deviation
reported by the algorithm quickly converges to a fairly steady level. The deviation tends to go up
at the same time the error goes up which keeps the interval error low and avoids misleading output.
In competition, we observed that the localization algorithm quickly resets itself when unmodeled
errors such as being picked up occur.

In simulation, we tested Sensor Resetting Localization against Monte Carlo Localization with and
without random noise. Since the developers of Monte Carlo Localization suggested adding a few
random samples to help the algorithm recover from errors, we tested Monte Carlo Localization
adding no random noise samples and adding 5% random noise samples. Each test was run 30
times and the results averaged. All tests were run with 400 samples unless otherwise noted. The
simulator models the movement of the robot with the same probability density used by the local-
ization algorithm. Each step the probability density for motion is sampled once to generate the
new position of the robot. The parameters for the movement model are the same parameters we
used in RoboCup ’99. The robot’s vision system is modelled by assuming that the vision system
correctly identifies everything within the robot’s view cone and estimates the correct distance and
angle to each marker. The reported deviation on the vision information as given to the localization
algorithm is 15%. We modelled the movement of the robot’s neck in the simulator by having it
sweep through a set of degrees relative to the body at the same pace that the real robot used. The
neck movement allowed the robot to see many different markers from almost all field positions.

Figure 3.12 shows that SRL has less error than MCL localization with small sample sets. Fig-
ures 3.12 and 3.13 show the mean error and 95% confidence interval error bands. Once the sample
set has increased to about 5000 samples, the two algorithms give almost identical performance.
Since performance of MCL with noise samples was slightly worse than MCL without noise sam-
ples, especially at small sample sizes, MCL with noise is not shown in these figures. Interestingly,
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Figure 3.10: Error on real robots versus time.
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Figure 3.11: Deviation reported by localization on real robots versus time.
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Figure 3.12: Simulation error versus number of samples.

the error of SRL stayed about constant above 100 samples was usable with only 10 samples. Fig-
ure 3.13 shows that SRL gives fewer misleading results than MCL. SRL gives fewer misleading
results even at intermediate sample counts where the error between SRL and MCL has almost
disappeared.

Figures 3.14 and 3.15 show that SRL is able to do global localization quicker than MCL using 400
samples. The figures show mean error and two standard deviations from the mean (the deviation
lines arenoterror bars). SRL is able to globally localize in about 10 steps whereas MCL takes about
60 steps. In noisy domains with adversarial robots, we can’t afford to spend 60 steps localizing.
The global localization performed by SRL is more consistent than MCL making its output easier
to reason with. Surprisingly, adding noise to MCL hurts global localization. We noticed in testing
that MCL with noise pays a penalty in larger deviations than the other two algorithms. Figure 3.16
shows the average interval error over time for the 3 algorithms (see the experiment on real robots
above for a description of interval error). Unlike SRL, MCL generates large interval errors during
global localization which indicates that it is producing very misleading outputs.

We also tested the response of SRL and MCL to systematic errors in movement and vision. We
simulated systematic movement errors by multiplying the actual distance the robot moved and
turned in the simulator by a constant factor between 0.1 and 1.9 without telling the localization
algorithm. This shows the sensitivity of the algorithm to movement parameters which is important
when movement parameters are expensive or difficult to measure. We also simulated systematic
error in vision by multiplying all distance estimates passed to the localization by a constant factor
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Figure 3.13: Simulation interval error versus number of samples.
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Figure 3.14: Simulation SRL and MCL with noise error versus time.
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Figure 3.15: Simulation SRL and MCL without noise error versus time.
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Figure 3.16: Simulation SRL and MCL interval error versus time.
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Figure 3.17: Simulation SRL and MCL error versus systematic model error.

between 0.7 and 1.75. Figure 3.17 shows that SRL is more robust to modelling error than MCL
especially in regards to systematic movement error. Shown in the figures is the mean and 95%
confidence interval error bands.

There is a tradeoff between robustness to systematic movement error and systematic vision error.
SRL and MCL with noise favor robustness to movement errors while MCL without noise favors
robustness to vision errors. MCL without noise performs better than SRL for large systematic
vision errors. SRL performs better than MCL with noise in all cases with similar response to
vision errors and lower errors when presented with movement errors. SRL is much more robust to
errors in movement than MCL without noise, especially when the movement error is larger than a
few standard deviations.

3.10 Conclusion

Sensor Resetting Localization(SRL) provides an effective localization option for real time sys-
tems with limited computational resources. The technique is applicable in Markovian domains
where locale samples can be drawn from the sensor readings, i.e. it must be possible to sample
from P (L|o). SRL requires a constant amount of processing power unlike Monte Carlo Localiza-
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tion(MCL) with adaptive sample set sizes which attempt to address some of the same issues as
SRL. SRL achieves better results than MCL using small sample sets, which translates into smaller
computational resource requirements. SRL is able to localize effectively using very small sample
sets and very little computational power. Part of the reason SRL is able to accomplish this is SRL’s
ability to globally localize using fewer samples. SRL automatically resets itself before errors can
accumulate too much allowing it to gracefully recover from errors in modelling such as collisions
and teleportation. SRL is less sensitive than MCL to systematic errors in modelling except for large
errors in vision when using MCL without random noise samples added. SRL is particularly robust
with respect to systematic errors in movement. In addition to these benefits, the algorithm almost
never returns misleading information. The algorithm correctly reports the reliability of its best
guess of the location of the robot. Sensor Resetting Localization is an accurate, easy to use tech-
nique that is able to perform robust localization with very small computational resources. These
benefits are due to the ability of SRL to determine the state of its own performance (or the cur-
rent operating conditions or environment for the localization) and adapt using that information. A
more recent comparison of localization techniques including SRL was created by Guttmann [22].
The best performing localization in the test was Adaptive-MCL(A-MCL) which is a derivative of
SRL which improves upon the detection of phase transitions in the performance of the algorithm.
These localization techniques can occasionally fail due to lack of resolution in the approximation
of the probability density representing the robot’s location or inaccurate models. SRL pioneered
addressing the problem of failure of the localization algorithm. As shown by the performance of
SRL and A-MCL in this evaluation, this work continues to show its value.

Applying the concept of environment identification for failure recovery to localization results in
a more robust localization algorithm. This improvement motivates the further investigation of the
power of environment identification for improving robot performance. As shown by A-MCL, a
more robust identification of the operating environment (and accompanying environment transi-
tions) leads to even better performance. The desire for a robust, general method for environment
identification leads to the development of the algorithms in the next chapters.

3.11 Summary

In this chapter, we applied the concept of environment identification for failure detection and re-
covery to the problem of localization. We explained how localization algorithms work in general
and how particle filters work in particular. We modified a popular particle filter approach to lo-
calization to include the concept of environment identification for failure recovery. We showed
through extensive testing, that using environment identification results in a more robust algorithm
with lower computational requirements.
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Chapter 4

Environment Identification in Vision

In this chapter, we continue our exploration in environment identification, this time in the context
of vision. We develop a more general on-line algorithm for environment identification that is based
on learning about the environments from training data. We use this algorithm to adapt to changing
lighting conditions to improve performance of our color-based vision. We show that the algorithm
leads to improved performance in a relatively simplistic task. Finally, we discuss the shortcomings
of this approach which we rectify in the algorithms presented in the following chapters.

4.1 Introduction

It is important that robots be able to identify the current operating environment. Without this
ability, the robot is unable to use information that has been acquired previously about the current
environment (through instruction or learning) to improve its behavior. While the robot may be
able to re-adapt to the revisited environment, this will almost certainly take longer than identifying
that the environment has re-occurred. Identifying the current environment (which may depend on
the state of other agents) allows the robot to adapt to the behaviors of other agents by recognizing
repetition in their actions.

In the trivial case, the current environment can be determined from a single observation. This
case is not very interesting and is handled well by current techniques. In many systems, however,
a single observation contains very little information about the current environment. Even all of
the observations at a single point in time are likely to be insufficient to determine the current
environment. This is usually due to each individual sensor reading providing only a small part
of the information and/or being subject to large levels of noise. For instance, a single pixel from
a camera image (or range from laser range finder/sonar) gives very little information about the
state of the world. A complete image (or range scan) provides a treasure trove of information if
it can only be extracted. Both of these problems can be overcome by aggregating the individual
sensor readings into probability distributions (over time or space). These probability distributions
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Figure 4.1: Robot used in testing.

must then be compared to detect similar distributions if repeated environments are to be identified.
Since the robot should generalize over nearby environments when possible, it is not enough to
simply use statistical tests to determine similarity. This is due to the nature of statistical tests in
merely determining different/same rather than giving an indication of the degree of difference thus
preventing the robot from identifying nearby environments.

Other researchers have also looked for ways to identify environments from windows of sensor sig-
nals. Like the approach described in this chapter, these approaches suffer from limitation imposed
by the use of windows. These limitations include inherit latency, ambiguous labelings for windows
which span across a transition point, and difficulty incorporating transition frequency information.
These other techniques are described and discussed in more detail in the related work chapter,
Chapter 7. Examples of other window based approached include those of Chen et al. [9] and Cao
et al. [7] amongst many others.

We applied this thinking to the problem of adapting to changing lighting conditions. The robot
used in this work is the commercially available AIBO ERS-210 robot built by Sony. The robot is
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pictured in Figure 4.1. Many practical color robotic vision systems rely on consistent pixel read-
ings that allow colors to be segmented without reference to the surrounding pixel context. We use
the free CMVision vision system to perform image processing [6, 5]. The vision algorithms used
by CMVision are also described in the background chapter (Chapter 2) in Section 2.5. Since actual
pixel readings vary with lighting conditions and the separation between colors is often small, these
systems are highly dependent on consistent lighting conditions. Changing the lighting conditions
involves recalibrating the vision system for the new conditions. We propose a solution to this prob-
lem which automatically detects the current lighting conditions and switches to a corresponding
human or machine supplied calibration.

We begin by describing the algorithm for segmenting the data into different environments in Sec-
tion 4.2. In Section 4.3, we describe the algorithm we use for converting segmented data into class
labels that identify the current environment. We describe how this knowledge is used to improve
the performance of robotic vision by adapting to the current environment in Section 4.4. We also
describe testing procedures and results in this section. We finish with a discussion of the limitations
of the algorithm and our conclusions in Sections 4.5 and 4.6, respectively.

4.2 Algorithm

In order to understand the on-line algorithm, it helps to start by considering the off-line version.
The basic problem is to identify the current lighting conditions from data summarizing what the
camera is seeing. It is desirable to use a small amount of information to summarize the overall
lighting of the scene captured by the camera to reduce memory and computation requirements.
Simply using the average luminance (or brightness) of the scene is sufficient for separation and
economical in representation. Of course, the average luminance of a scene depends highly on
what is being looked at. Therefore, instead of relying on a single measure of average luminance,
a distribution of luminance values over the recent past is considered. The basic problem then
becomes to segment the time series of average luminance values into distinct regimes (or regions)
which have similar distributions of average luminance measurements.

Having decided to look for similar distributions of measurements, it is now necessary to have a way
to determine whether two distributions are in fact the same distribution and how similar they are.
Since the shape and form of the distribution is unknown, a non-parametric distance metric is used.
The particular distance metric used affects the decisions of the clustering algorithm. The distance
metric controls the bias of the learning algorithm. Note that statistical difference tests such as the
Kuiper test [32] or Kolmogrov-Smirnov test are inappropriate as they measure the probability of
difference between two distributions but not the distance between them.

Now that the form of the input data has been determined, it is necessary to consider the form of
the output and the algorithm to use to produce it. For simplicity, the input data is split into equal
size windows of sizew. The window size is a parameter of the system and affects the latency
and robustness of the resulting detection. Larger window sizes are more robust but have higher
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Table 4.1: Off-line Segmentation of Data

ProcedureSegment(input space)
Split input spaceinto n non-overlapping windows

of sizew.
Create a leaf node for each window.
Initialize the setSto contain all of the leaf nodes.
while(|S| > 1)

Calculate distance(dist()) between all pairs
of elements ofS.

Choosep, q ∈ S such that
dist(p, q) <= dist(i, j)∀ i, j ∈ S.

Create new internal noder with
p andq as children.

S= S− {p, q}+ {r}.

latency. The basic idea for representing the output is to avoid making binary decisions until the
last possible moment. This is done by representing the division of the input space by a binary tree
where each leaf represents a region of the input space. Regions which are similar are stored close
to each other in the tree and have common ancestor nodes. Each internal node stores the distance
between its two children (as reported by the statistical test). Internal nodes which have internal
nodes as children use the union of all the data in the leaves when performing comparisons. The
resulting tree can be used to determine the number of modes of the data by applying a threshold
split criterion to the tree. Alternatively, if the number of different modes is known, the tree can be
used to select a segmentation of the data into the different modes. Thus the tree can be used for
determining the location and number of modes of the data and, as will be shown later, determining
the current mode of the system and relating it to available calibrations.

4.2.1 Off-line Segmentation

The tree is easy to construct with a simple but slow off-line algorithm. The algorithm starts by
dividing the input space inton non-overlapping windows of sizew. Each window is compared to
every other window to get a distance value. The two most similar windows are joined together by
creating a new internal node with the two windows as children. This new internal node is treated
as a mega-window which replaces the two original windows. This leavesn − 1 windows. The
process is repeated until all of the windows have been joined. The pseudo-code for this algorithm
is shown in Table 4.1.
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Table 4.2: On-line Segmentation of Data

ProcedureInsert(T:tree,w:window)
let n← root(T).
let S← {n}.
let done← false.
while(¬ done)

let R ← ∅.
foreachs∈ S

let c1,c2 ← children(s).
let d1 ← dist(c1,c2).
let d2 ← dist(c1,w).
let d3 ← dist(w,c2).
if d2< d1∨ d3< d1

if d2< d1
R ← R+ {c1}.

if d3< d1
R ← R+ {c2}.

elseR ← R+ {s}.
done← (R=S).
S ← R.

Chooseb∈ Sthat minimizes dist(b,w).
Create a new nodeo which has as childrenb andw.
Replaceb with o in the tree.
Update the similarity measurements of

all ancestors ofo.

4.2.2 On-line Segmentation

The main obstacle to building the tree on-line is to find an efficient way to insert a new window into
the growing tree. The first strategy tried was to simply start at the root and follow the branch with
which the new window was most similar. This was done recursively until a leaf node was reached
or the two children of the node were more similar to each other than to the node being inserted. This
algorithm works reasonably but sometimes fails to find the best place in the tree to insert the new
window. This usually happens because the top levels of the tree contain mixtures of very different
modes and the new window tends to look very different from all of them. This inherently has a lot
of noise compared to the distance signal produced by the actual similarity. A more robust algorithm
has been developed which improves on the naive algorithm by trying a few different branches of
the tree to find the best place to insert the new window. The pseudo-code for the insertion is shown
in Table 4.2. This algorithm recurses down the tree like the simpler algorithm. The algorithm
behaves differently when the comparison is ambiguous, however. If the new window to insert is
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more similar to both children than the children are to each other, the algorithm tries both branches.
In this case, the comparison at the higher level is not very informative about which branch to take
and both classes should be considered.

In practice this algorithm seems to only have to consider about 10% of the nodes, since the nodes
in the tree tend to have very similar children after traversing a very short depth down the tree.

4.2.3 Distance Metric

The distance metric used for measuring distances between probability distributions requires some
careful consideration. The distance metric should reflect the degree of similarity of the underlying
process generating the data. The distance metric should also make as few assumptions as possi-
ble. One possibility is to use a non-parametric statistical test as the distance metric. This makes
for a very poor distance metric because it doesn’t measure the degree of similarity between the
probability distributions. Instead, these tests measure the probability that the distributions differ.
This may seem similar to a distance measure but it is not. The problem is that two distributions
with low variance separated by a small distance have the same probability of being different as
two distributions with low variance separated by a large distance. Similar problems occur in more
general cases because these tests do not take into account the magnitude of the change except in
how it relates to the variance of the data. Another possible distance metric would be a measure of
the difference between the probability density functions. This has the same problem as the statis-
tical tests, namely that a small additive change appears to be a large change in distribution. The
distance metric should capture the amount of change required to make the probability distributions
the same.

The distance between the probability distributions can be measured as the distance the point sam-
ples from the two probability distributions have to be moved to coincide. This distance metric
captures the important features of similar probability distributions in that distributions which pro-
duce similar samples are considered similar. The usual measure of distance would be to use the
sum of the squared distance each point moves. Squaring the distance can lead to some bizarre ar-
tifacts, however. If two distributions are similar except for one point on completely opposite sides
of the input space, using squared distance will result in a large distance between these distributions
even though the probability distributions are similar. The usual motivation for using the distance
squared is so that the resulting function can be easily integrated. In this case, however, the proba-
bility distributions are made of discrete samples so this criterion is not important and the absolute
value of the distance can be used instead. The absolute value distance metric is a very simple mea-
sure of the average distance the data points from one distribution would need to be moved in order
to match the data points of a second distribution. This is the distance metric used in this work. A
cumulative probability distribution is formed for both distributions, call themF (x) andG(x). Let
F ′(p) andG′(p) be the inverse ofF (x) andG(x) respectively. Then the average distance points
must be moved to make one distribution match the other is given by∫ 1

p=0

|F ′(p)−G′(p)|dp
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Table 4.3: Labelling Classes

ProcedurePropagateClassesUp(n:node)
if leaf(n)

for c ← 0 to numclasses− 1
n.ClassCnts[c] ←

count(n.Examples.hand label=c).
n.class← argmaxc(n.classcnts[c]).

else
foreachchild of n.Children

PropogateClassesUp(child).
n.ClassCnts← 0.
foreachchild of n.Children

n.ClassCnts← n.ClassCnts+
child.ClassCnts.

n.class← argmaxc(n.classcnts[c]).

ProcedurePropagateClassesDown(n:node,last:class)
if n.class=UnknownClass

n.class← last.
foreachchild of n.Children

PropogateClassesDown(child,n.class).

ProcedureDetermineClasses(T:tree)
Clear class label of all nodes inT.
let n← root(T).
PropagateClassesUp(n).
PropagateClassesDown(n,UnknownClass).

4.3 Labelling Classes

Next, the class of the current window must be determined so that the robot can decide what the
current environment is. This is done by labelling the class of every node in the tree from scratch
each time a window/node is added to the tree (see Table 4.3). The algorithm starts by labelling each
leaf with any labelled examples with the most common class label in that leaf. Note that the may be
many very different states that correspond to the same label. These labels are then propagated up
the tree assigning each node the most common label found in its subtree. The remaining unlabeled
subtrees are labelled with the label of their parent. The class of the most recent window is taken as
the class of the current environment.
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4.4 Application

The algorithm was applied to the task of automatically selecting vision thresholds by automatically
identifying the current environment determined by the lighting and using the matching thresholds.
Robots are usually limited to working in a specific lighting condition for which they are trained.
This occurs because thresholds are often used in robotics because they are fast, leaving more
processing available for other non-vision tasks. By automatically selecting amongst several pre-
trained thresholds, a robot can better adapt to the current lighting conditions of the environment
it finds itself in. Rather than have to find a set of thresholds that generalize across all lighting
conditions, by applying the environment identification technique described above, the robot can
have several thresholds each of which generalizes over a much smaller region of the state space
of all possible lighting conditions. Since it is possible to find thresholds which generalize over
reasonable amounts of the lighting state space, this allows the robot to adapt to a large variety of
situations. The resulting more specialized thresholds also give better performance than the more
general thresholds at any given lighting level.

We measured the ability of a robot to correctly identify colors in an image under different light-
ing conditions using both the algorithm described above and simply using one set of thresholds
throughout.

4.4.1 Test Methodology

The robot was placed in front of a set of objects with easy to confuse colors (red, pink, orange,
and yellow) which we are interested in segmenting. The robot was started with lighting condi-
tions matching the thresholds used to allow it to auto-center the camera on the objects. The robot
recorded the colors it saw every fourth frame to a log file along with a few raw images from
the camera. The lighting conditions were changed between three different brightness levels on a
schedule timed by a stopwatch. The baseline (no adaptation, always use bright thresholds) and
the test case (adaptation via algorithm above) had to be run in two separate trials due to hardware
limitations. One of the raw images was selected from the log and hand labelled by a human. The
robot’s performance was then graded based on the number of pixels that robot classified correctly
out of the pixels labelled as a color by the human. The robot was not penalized for the few pix-
els that were not colored that the robot thought were one of the colors. This is because most of
these misclassifications are easily filtered out and the threshold generating algorithm tends not to
produce many of these errors.

4.4.2 Results

The results of testing the robot on its image segmentation performance are shown in Figure 4.2. In
all cases, the algorithm presented chose the correct thresholds after a small delay (to collect enough
data). The run with no adaptation used bright thresholds throughout and so did very well in bright
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Figure 4.2: Image Segmentation Results. The results with adaptation are shown in solid blue. The
results using only the bright thresholds are shown with dashed orange lines. In black and white, the
adaptation results are black and without adaptation is grey. Each line represents the results from
one run on the robot.
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conditions, fair in medium conditions, and poorly in dim conditions. The sequence of lighting
conditions used can be seen clearly in the performance of the no adaptation case (bright, dim, mid,
bright, mid, bright, dim). There is a small amount of registration error between the transitions of
the two runs due to starting the stop watch at slightly different times. Notice that when the robot
is adapting to conditions, the robot performs poorly for a small period of time before performance
approves again. This corresponds to the robot collecting enough information to determine that
the lighting conditions have indeed changed (enough time for a window transition plus one full
window’s worth of data). The strange looking performance at the beginning of the adaptation run
is largely an artifact of the test setup. Performance starts high (after the robot is well focused on
the objects) and then drops suddenly before improving again. This is due to the training data being
provided in the order bright, medium, dim so the robot starts off thinking the lighting conditions
were most recently dim. The sudden drop is when the first radio packet reaches the robot and
switches the thresholds to dim. The delay before switching back is due to the robot gathering data
which takes extra long since fewer radio packets are being sent since the robot is still starting up.

As can be seen in the figure, the adaptation dramatically improves the performance of the robot
in segmenting the image without degrading the performance when the lighting conditions are con-
sistent. This improvement in color segmentation of the image carries over to an improvement in
object identification which in turn improves the performance of the robot in almost every task.

4.5 Limitations

Although the algorithm is general and does help with this lighting task, there are still many im-
provements that can be made to the algorithm. The window based approach can break down due
to windows that contain data from 2 distinct classes. In this case, the algorithm is forced to group
that window with other windows from only one of the 2 classes. In some cases, these “bridge”
windows would act as a bridge which forced 2 very different classes into the same section of the
tree. This bridging can lead to problems in the correct placement of further windows which can
lead to incorrect classifications. The insertion algorithm can potentially take a long time since the
number of nodes which need to be visited depends upon the data.

Overall, we found the ability of the algorithm to discriminate different classes encouraging but
not as good as desired. This algorithm is also limited to using one dimensional data and it is not
clear how to scale it to using higher dimensional data. Using a windowed approach inherently adds
latency to the detection of a change which results in a period where the wrong vision thresholds
are used. We develop more robust algorithms in the following chapters.

4.6 Summary

In this chapter, we demonstrated a proof of concept system showing that sensors can be used
for environment identification and that this environment identification can be used to improve the
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performance of robots. Despite the limitations of this algorithm, the algorithm already performs
very useful tasks that are difficult to do with existing methods. The identification of repeated
environments is also the first step in generating a Markov (or higher order) model of the world. In
particular, we have shown how the algorithm can be used to improve the robustness/performance
of the robot in the face of varied lighting conditions. We develop more robust algorithms for
environment identification in the following chapters and test them in more realistic scenarios.
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Chapter 5

Probable Series Classifier Version 1

In this chapter we develop an improved algorithm for environment identification. We call this
new algorithm the Probable Series Classifier v. 1. This algorithm provides general, robust, on-line
environment identification given a relevant sensor signal to be used for recognition and examples
sensor signals from each of the environments to be recognized. The algorithm has very few param-
eters and the parameters it does have are easy to set. We analyze the performance of the algorithm
on a variety of simulated data and a variety of sensor signals from real robots. In all cases, the al-
gorithm performs well. In the next chapter, we will present some improvements on this algorithm
to make it even better.

5.1 Introduction

Segmentation of time series into discrete classes is an important problem in many fields. Many
researchers have approached this problem including Penny and Roberts [49] using autoregressive
Hidden Markov Models and Gharamani [20] using switching state-space models. This work differs
in being developed for practical robot application which requires properties not found in these
other techniques such as a general model and on-line performance. A detailed description of these
differences can be found in the related work chapter, Chapter 7. We approach the problem from
the field of robotics where time series generated by sensors are readily available. We are interested
in using these signals to identify sudden changes in the robot’s environment. By identifying these
changes in the sensor signals, the robot can intelligently respond to changes in its environment as
they occur. For this application, the signal segmentation must be performed in real time and on
line. Therefore, we are focused on algorithms which are amenable to on-line use. Also, usually
mathematical models of the processes that generate the sensor signal are unavailable as are the
number of possible generating processes. Therefore, we are focused on techniques that require
very little a priori knowledge and very few assumptions.

In the last chapter (Chapter 4), we developed a technique for segmenting a time series into different
classes given labelled example time series. In that work, we broke the time series into windows
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and used distance metrics over probability densities to determine from which class each window
was generated. In this chapter, we improve on our technique by allowing for smaller window
sizes, putting the segmentation on a strong probabilistic foundation, and taking into account the
conditional dependence of time series points on points in the recent past.

We have named our new algorithm for classifying time series the Probable Series Classifier (PSC).
It is based on a time series prediction component which we will refer to as the Probable Series
Predictor (PSP). It generates predictions based upon an internal non-parametric model which is
trained from an example time series. PSP uses this model and the most recent values from a time
series to predict the future values that are likely to be seen. PSP is typically used to predict the next
value in a running time series based on recent observed values, a new observation is obtained, and
the process is repeated. Unlike many other methods, PSP does not predict a single next value for
the time series, but instead predicts aprobability densityover next values. Because of the way this
prediction is done, PSP is capable of making multi-model predictions which is important in order
to represent realistic time series. PSC uses several PSP modules to classify a time series into one
of a set number of pre-trained generator classes. PSC uses one PSP module per generator class.
Each PSP module is pre-trained from an example time series generated by one of the generator
classes. PSC runs each PSP module on a time series to be classified and uses the one which best
predicts the time series to classify the unknown time series.

We take a very general approach where we detect a wide variety of types of changes to the signal
which sets PSC apart from most other techniques. Out algorithm requires no a priori knowledge
of the underlying structure of the system, which is not available for the robotic signals we are
interested in. PSC does not require much knowledge about the system structure, as we only require
labelled time series examples.

5.2 System Model

In this section, we describe the class of systems for which we wish our algorithm to work. We
describe the system model that is assumed to generate the signals we process. Our algorithm
is designed for detecting discrete state changes of a system with a finite and known number of
states (in our case, each state corresponds to an operating environment). We will use the terms
environment and state interchangeably. We concentrate primarily on the challenges created by
real-world, noisy sensor streams and less on possible complex relationships between states.

A pictorial representation of a system with three states is shown in Figure 5.1. The top part of the
figure shows an example possible sensor signal from the robot’s sensors. This particular example
is from accelerometer data from an AIBO robot. This sensor signal is the input to the algorithm.
The underlying system is shown in the bottom half of the figure. The system has three states
(S1,S2,S3). The robot may transition from any state/environment to any other state/environment
as shown by the dark arrows. Each environment generates a characteristic pattern of sensor signal
readings. An example signal generated in each environment is shown as a mini-graph next to
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Figure 5.1: An example system with three states.

the state diagram. At any given time, exactly one environment is the current environment and is
responsible for the generating the sensor signal seen. In this case, the example signal shown in the
top part of the graph is best explained as being generated from S1 until timestep≈ 450, S2 until
timestep≈ 2200, and S3 for the remaining time. The goal of the algorithm is to take the sensor
signal at the top of the graph and produce the series of environments that generated it (as in the
previous sentence) in an on-line fashion.

We will assume that the frequency of switching between different environments is relatively low
such that sequential sensor values are likely to be from the same environment. This assumption is
very reasonable for most robotic applications. Most sensors provide readings at rates of 25 times
per second or higher. We are usually interested in adapting to conditions that change slowly, less
than one change per 5 seconds. Even at the slowest sensing rate and the fastest environment change
rate, we will have 125 sensor readings before the environment changes.

We take a maximum likelihood approach to the problem. At any given time, we would like to
know which environment is most likely to be the current environment. More formally, we would
like to find the state/environment indexi at timej, that maximizes

P (sj = i|~xj, ~xj−1, . . . , ~x0) (5.1)

where~xj is the observation vector at timej andsj is the current state/environment at timej.
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5.3 Probable Series Classifier Algorithm

In this section, we develop the Probable Series Classifier algorithm, version 1. We derive the
formulation of the algorithm and detail the assumptions made along the way. The algorithm is
based on the Probable Series Predictor algorithm which is described in the next section.

We will take a windowed approach to the problem. At any given time, we will use a window of
data proceeding the current data point to determine the current state of the system. We will refer
to the size of this window asw. So, for example, the observations seen from timej − w + 1 to j
will be used to determine that state of the system at timej. We will assume that the state of the
system does not change during this time interval (we will remove this assumption is version 2 of
the algorithm in the next chapter).

We will proceed by simplifying Equation 5.1.

P (sj = i|~xj, ~xj−1, . . . , ~x0) =
P (~xj|~xj−1, . . . , ~x0, sj = i) · P (sj = i|~xj−1, . . . , ~x0)

P (~xj|~xj−1, . . . , ~x0, sj = i)
(5.2)

=
P (~xj|~xj−1, . . . , ~x0, sj = i) · P (sj = i|~xj−1, . . . , ~x0)

β
(5.3)

≈ νP (~xj|~xj−1, . . . , ~xj−m, sj = i)P (sj = i|~xj−1, . . . , ~x0) (5.4)

In Equation 5.2, we have taken Equation 5.1 and applied Bayes’ Rule. In Equation 5.3, we note
thatP (~xj|~xj−1, . . . , ~x0, sj = i) is a constant that does not depend on the state and replace it with
the constantβ. We move this constant in Equation 5.4 which results in the new constantν. In
moving from Equation 5.3 to Equation 5.4, we make the assumption/approximation that sensor
values more thanm time steps ago are not important in predicting the next sensor value. This
assumption is reasonable since observations in the distant past are not very useful in determining
the current state/environment. We will use a value ofm = 1 in all of our testing. Using a larger
value ofm produces a more exact model, but also requires more data to create a high quality
model and more processing time to use the resulting model. Using a smaller value ofm results in
a more approximate model that is easier to work with. It is important to havem >= 1 for robotic
applications. In robotic applications, it is very frequently the case that two sensor values generated
in the same environment are highly correlated. Using a value ofm = 0 would result in the typical
HMM assumption of independence of the previous value.

A value of m = 1 results in the DBN model shown in Figure 5.2. Each state depends on the
previous state the system was in as shown in the top of the figure. Each observation depends on
the state/environment the system is in, but also on the previous observation. This dependence on
the previous observation is a key difference of our system from other systems and standard HMM
techniques. These extra dependencies are highlighted in the figure with thick, red arrows.

In Equation 5.4, we are left with two terms to evaluate. We do not need to calculate the value of
ν since we are only interested in finding the state with the maximum likelihood and the value ofν
is the same for all states. The first term (P (~xj|~xj−1, . . . , ~xj−m, sj = i)) will be calculated by the
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Figure 5.2: A Dynamic Bayes Net model of signal generation.

Probable Series Predictor algorithm that we will present in the next section. This leaves only the
second term (P (sj = i|~xj−1, . . . , ~x0)). Since we have assumed that the state/environment does not
change during our window, we have:

P (sj = i|~xj−1, . . . , ~x0) = P (sj−1 = i|~xj−1, . . . , ~x0) (5.5)

Equation 5.5 is just Equation 5.1 shifted in time. We can apply this replacement for

P (sk = i|~xk−1, . . . , ~x0)

as long ask ∈ [j − w + 1, j]. Applying this reduction as much as possible, we can simply Equa-
tion 5.4 as follows:

P (sj = i|~xj, ~xj−1, . . . , ~x0)

≈ νP (~xj|~xj−1, . . . , ~xj−m, sj = i)P (sj = i|~xj−1, . . . , ~x0) (5.6)

∝

(
j∏

k=j−w+1

P (~xk|~xk−1, . . . , ~xk−m, sk = i)

)
P (sj−w = i|~xj−w−1, . . . , ~x0) (5.7)

Since we are only interested in using a window of data to determine the most likely environment,
we will further assume that all environments are equally likely at timej − w, i.e.

P (sj−w = i|~xj−w−1, . . . , ~x0) = P (sj−w = l|~xj−w−1, . . . , ~x0) ∀ i, l

Applying this assumption, we end up with the following final equation for calculating the likeli-
hood of an environment/state generating a particular window of sensor data:

P (sj = i|~xj, ~xj−1, . . . , ~x0) ∝
j∏

k=j−w+1

P (~xk|~xk−1, . . . , ~xk−m, sk = i) (5.8)

We will evaluate the termP (~xk|~xk−1, . . . , ~xk−m, sk = i) using the Probably Series Predictor algo-
rithm presented in the next section. In plain English, this equation states that the likelihood of an
environment/state generating a window of sensor values is equal to the product of the likelihoods
of it generating each sensor value in the window. This equation is useful for segmentation and
classification.

93



5.4 Probable Series Predictor Algorithm

This section describes version 1 of the Probable Series Predictor (PSP) algorithm. This algorithm
forms the basis of the probability calculations performed by PSC. This algorithm is also useful by
itself for predicting the next value that will be seen in a sensor signal. The algorithm requires that
an example signal be provided with the same characteristics as the signal for which predictions are
to be made. The algorithm produces a probability distribution over the next value that will be seen
in a sensor signal given this example signal and the values seen up to this point.

In order to complete our PSC algorithm, we need a prediction of the likelihood of new time series
values based upon previous values and the current statesj = i at timej.

P (~xj|~xj−1, . . . , ~xj−m, sj = i)

Note, thatsj = i is known in this case, so we know for which state we are making a prediction.
Assume we have previous time series values generated by this state. We can use these previous
examples to generate an estimate at timej given the previous values of the time series. We will
focus on the case wherem = 1 and~x is a single dimensional value.

We have

• a set of value pairs~xi,~xi−1 (from the example signal)

• a value at timej − 1: ~xj−1 (from the sensor signal up to this point)

We need to generate a probability for each possible~xj. We can use non-parametric statistical
techniques with a locally weighted approach. The problem is visualized in Figure 5.3. We need to
introduce some terminology to more easily discuss the problem.

base value(s)The time series value(s) used in generating a predicted value. These are the time
series values on which the output is conditioned. In the case ofm = 1, this is just~xj−1. The
conditioning on the state is accomplished by having a separate model for each state.

output value The value output by prediction.

model points Points in base/output space in the training data for a state. These points form the
model for this state. Each point is a pair of values: an output value~xj and associated base
value(s)~xj−1, . . . , ~xj−m.

model point base value(s)The base value(s) in a model point.

prediction query A query of the model which provides~xj−1, . . . , ~xj−m as input and generates a
probability density over~xj as output.

query base value(s)The base value(s) in the prediction query.

We will generate a probability density by generating a weighted set of output value predictions,
one from each model point. A kernel is used that assigns more weight to model points with base
value(s) near the query base value(s). The predicted output values must then be smoothed to form
a continuous probability density.
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Figure 5.3: Data prediction. The dots in the main graph show the data available for use in predic-
tion. The grey bar shows the range of values used in the prediction. The bottom graph shows the
weight assigned to each model point. The left graph shows the contribution of each point to the
predicted probability of a value at time t as dotted curves. The final probability assigned to each
possible value at time t is shown as a solid curve.
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We use a bandwidth limited kernel over base value(s) to weight model points for speed reasons.
The kernel used is the tri-weight kernel:

Kt(x, h) =

{
(1− (x/h)2)3 if |x/h| <= 1,

0 otherwise

This kernel is a close approximation to a Gaussian but is much cheaper to compute and reaches
zero in a finite bandwidth. The finite bandwidth allows some points to be eliminated from further
processing after this step. The bandwidthh is a smoothing parameter that controls the amount of
generalization performed. We need to select a bandwidthh for this kernel. From non-parametric
statistics, it is known that in order for the prediction to converge to the true function, asn → ∞
(wheren is the number of model points), the following two properties must hold:h → 0 and
n∗h→∞. These properties ensure that each estimate uses more data from a narrower window as
we gather more data. We use a ballooning bandwidth for our bandwidth selection. A ballooning
bandwidth chooses the bandwidth as a function of the distance to thekth nearest neighbor. Since the
average distance between neighbors grows as1/n, we choose a bandwidth equal to the distance to
the
√

n nearest neighbor, ensuring that the bandwidth grows as1/
√

n which satisfies the required
statistical properties. We add a small constantan to this bandwidth to ensure that a non-zero
number of points have non-zero weight. This constant is chosen equal to the minimum amount of
base value change that is considered meaningful. Each model point is assigned a weight by the
base kernelKt which is used to scale its prediction in the next stage.

We additionally constrain the approximation to use no more than
√

n points by only using the
√

n
nearest points to the query base value(s). In the case of points that are the same distance from the
query base value(s), we use newer model points in preference to older model points. Constraining
the number of points used is very important for the speed of the algorithm because the bandwidth
selection takes timeO(m2) wherem is the number of points used. By enforcingm =

√
n, the total

time for bandwidth selection becomesO(
√

n
2
) = O(n). This constraint drastically improves the

speed of the algorithm resulting in an≈ 25x speedup. This optimization was used in the generation
of the results from the robot data but was not yet implemented when the simulation results where
created.

Figure 5.3 illustrates the PSP algorithm. The dark circles represent model points that have already
been seen. The x axis shows the base value. The y axis shows the output value. The dark vertical
line shows the query base value. The grey bar shows the range of values that fall within the non-
zero range of the base kernel. The graph underneath the main graph shows the weight assigned to
each model point based on its distance from the query base value. A prediction is made based on
each model point that is simply equal to its output value (we will refine this estimate later). The
dotted lines leading from each model point used in the prediction shows these predicted output
values. PSP is described in pseudo-code in Table 5.1.

We need to smooth the predicted output values to get a continuous probability density. We will
once again turn to non-parametric techniques and use a Gaussian kernel centered over each point. A
Gaussian kernel is used because it assigns a non-zero probability to every possible outcome. If we
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Table 5.1: Probable Series Predictor algorithm.

ProcedurePredictOutput(generatormodel,basevalues)
let OP ← generatormodel.modelpoints
let D ← dist(OP.basevalues,basevalues)
Choosebasedistequal to thed

√
n eth smallestd ∈ D.

let hb ← basedist+ noisebase
let pred ← {z.output value| z ∈ OP ∧ dist(z.basevalues, basevalues) < hb}
Perform correlation correction onpred.
let base← {z.basevalues| z ∈ OP ∧ dist(z.basevalues, basevalues) < hb}
Chooseho that minimizesM(ho) overpred.
Return probability density equal to

pdf(z) =
∑

i Kg(predi − z, ho) ·Kt(basei − basevalues, hb)

chose a bandwidth limited kernel, we would have locations with zero probability. These zero prob-
ability regions would make entire sequences have zero probability for some states/environments, a
form of overfitting. The Gaussian kernel used is:

Kg(x, h) =
1

h
√

2π
∗ e−(x/h)2/2

We need a method for selecting a bandwidth forKg, the output kernel. We can’t reuse the bal-
looning method because it would result in an invalid probability density function which changes
as you query it. This output bandwidth can be found by a simple search if we first develop a metric
for determining the quality of a bandwidth. The error we are interested in is the ratio of predicted
probabilities to actual probabilities, not the distance between these two probabilities. We chose to
use the pseudo-likelihood cross validation measure [23, 15]. This method is known to minimize
the Kullback-Leibler distance between the estimated probability densities and the actual probabil-
ity density (for many classes of probability densities [24]), a close proxy for the desired error. The
Kullback-Leibler distance (

∫
f(x) ∗ ln(f(x)/g(x))dx) has a strong dependence on the ratio of the

two probability densities. The pseudo-likelihood cross validation method maximizes the likelihood
of the data predicting itself over all possible bandwidths. We use leave-one-out cross-validation
where each point is excluded from its own prediction. The pseudo-likelihood cross validation
measure is defined as:

M(h) =
∏

i

∑
j 6=i

Kg(
xi − xj

h
, h)

PSP does a search over all possible bandwidths starting from one corresponding roughly to ex-
pected measurement noise and ending with one corresponding to the range of possible values. The
search is done by starting at the low value and increasing the bandwidth each time by a constant
factor. The bandwidth with the maximum pseudo-likelihood cross validation measure is chosen as

97



the bandwidth. This initial bandwidth selection scheme was used in the generation of the simula-
tion results.

An optimization of this bandwidth scheme was used in the generation of the results from robot
data. The pseudo-likelihood measure seems to be unimodal (at least over our data). We have used
this to speed up the search and have noticed no degradation in performance over an exhaustive
search. The search is done by starting with a range over all possible bandwidths. Five bandwidths
are selected from this range (one at each end plus three in the middle) such that they have a constant
ratio. The maximum pseudo-likelihood measure amongst these points is found. A new range is
chosen equal to the range between the sample point smaller than the maximum and the sample
point larger than the maximum. The process is repeated until the ratio between the top of the range
and the bottom is less than a constantγ (we usedγ = 1.2). The bandwidth with the maximum
pseudo-likelihood is then chosen as the bandwidth. This new recursive bandwidth selection scheme
makes the algorithm run in60% of the time taken by the previous exhaustive search.

As exemplified in Figure 5.3, there is usually a strong correlation between the time series values
at timet andt − 1. This correlation causes a natural bias in predictions. Model points with base
values below/above the query base value tend to predict an output value which is too low/high,
respectively. We can remove this bias by compensating for the correlation betweenxt andxt−1.
We calculate a standard least squares linear fit betweenxt−1 andxt. Using the slope of this linear
fit, we can remove the bias in the predicted output values by shifting each prediction in both base
value and output value until the base value matches the query base value. This process is shown
in Figure 5.4, where we can see that the predicted output value can shift a substantial amount,
particularly when using points far from the query base value. This correlation removal was used in
all the tests performed in this thesis.

5.5 Evaluation in Simulation

We tested our PSC algorithm using simulated data, allowing us to know the correct classification
ahead of time. It also allowed us to systematically vary different parameters of the signal to see the
response of the classification algorithm.

5.5.1 Methodology

We used PSC to segment a signal generated from 2 classes. One generator class was a fixed
baseline signal. The other generator was a variation of the baseline signal formed by varying one
parameter of the signal. The algorithm was graded on its ability to correctly label segments of
the signal that it hadn’t been trained on into the 2 classes. We tested the performance of PSC by
varying the following test parameters:

Training window size The number of data points used to train on each generator. The smaller the
window size the harder the problem.
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Figure 5.4: Correlation removal. A linear fit to the model points (shown as dots) is shown. The
grey vertical bar shows the range of values actually used in the prediction. The short solid lines
show the effect of shifting the model points to match the base value of the query while taking into
account the correlation. The hollow squares show the predicted output values.
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Testing window size The number of data points used to classify each unknown time series seg-
ment. The smaller the window the harder the problem.

Parameter value The value of the parameter used in the modified signal. The closer the parameter
to the baseline value the harder the problem.

Parameter modified The parameter chosen for modification. We tested changes to the following
parameters:

• Mean
• Amplitude/Variance
• Observation Noise
• Period
• Signal Shape

For each test we generated a time series with 4000 data points. The baseline generator(class 1)
generated points 0–999,2000–2999 and the modified generator(class 2) generated points 1000–
1999,3000–3999. We chose to use a sine wave for the underlying signal for the baseline. We
added uniform observation noise to this underlying signal to better reflect a real world situation.
We did not try adding process noise. The signal is parameterized by amplitude, mean, period, and
noise amplitude resulting in 4 parameters. In addition, we ran some tests where the modified signal
was generated from a triangle wave with parameters as per the sine wave as shown in Figure 5.5.
The standard signal used an amplitude of5 ∗ 105, a mean of0, a period of20 observations, and a
noise amplitude of5 ∗ 104. This results in±10% noise on each observation point relative to the
range of the signal. We chose this signal because it is simple to generate and has a periodic nature
which is also found in many robotic sensor signals. Actual robotic sensor signals do not have such
a smooth sequencing within each period, however.

For each test we subdivided the 4000 data points into 100 data point long segments. We used
segments starting at0, 200, 400, . . . , 3800 for training models of classes. We used segments starting
at100, 300, 500, . . . , 3900 for testing the ability of the models to correctly label new data. For each
possible combination of testing segment, training segment for baseline signal (class 1), and training
segment for modified signal (class 2), we evaluated the likelihood of the test segment coming from
class 1 or 2 based upon the trained models. If the more likely class matched the actual class for
the test segment, we counted that trial a success. We used the fraction of correct labellings as the
metric for evaluating the performance of the algorithm. This metric is shown in most of the graphs.
A value of1 indicates a perfect segmentation of the test segments into classes. A value of0.5 is
the performance expected from randomly guessing the class. This metric equals the probability
of getting the correct labelling using a random training segment for class 1, a random training
segment for class 2, and a random testing segment.

5.5.2 Results

We summarized our test results in a series of figures. The y axis shows the fraction of correct
labellings achieved by PSC. In each figure, there is a point at which the performance of PSC falls
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Figure 5.5: Example signal. The first half of the figure shows the baseline sine wave and the second
half shows the triangle wave.

to chance levels (0.5). These points occur where the generators for class 1 and class 2 have the
same parameters and are hence the same signal. Since a signal cannot be segmented from itself,
we expect the algorithm’s performance to fall to chance levels at these points.

We considered two main usage scenarios for the availability of training/testing data. In the first
scenario, we considered applications where the training and testing windows are of the same size as
might occur in clustering applications. In the second scenario, we considered applications where a
constant, large amount of training data is available as would occur in on-line labeling applications.

Equal Size Training and Test Windows

Figure 5.6 shows the performance of PSC with respect to changes in the amplitude of the signal.
When the signals are the same, the performance drops to the chance level of0.5. The rest of
the time, PSC performs quite well even for extremely small window sizes. With a window size
of just 100 data points, PSC is successfully able to segment between even very small changes of
amplitude. Even with only 5 data points for training and another 5 for testing, PSC correctly labels
most of the test sequences. Using 5 data points corresponds to using data from only1/4 of the
period of the signal. PSC also matches intuition well in performing better for larger training/testing
window sizes and larger changes in the signal. This type of change to the signal would not be
detected by algorithms that are only sensitive to mean shifts as a change in amplitude does not
change the mean but only the variance.

Figure 5.7 shows the performance of PSC with respect to mean shifts. PSC performs well and is
able to detect small mean shifts. Detecting mean shifts requires more data points than some of the
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Figure 5.6: Detection of changes to the signal amplitude with equal sized training and testing
windows. The x axis shows the factor by which the amplitude was multiplied.

other changes, as multiple periods worth of data are desirable to confirm a mean shift. This type of
change to the signal can be detected by algorithms capable of detecting mean shifts. Many mean
shift algorithms would have trouble with a periodic signal like this sine wave, though, unless the
data was averaged over a full period which would slow detection time.

Figure 5.8 shows the performance of PSC with respect to changes in observation noise. This type
of change is very difficult to detect as it produces no mean shift in the signal and a negligible
variance change. Nevertheless, PSC is still able to detect this type of change very effectively. With
a window size of 100, PSC almost perfectly segments the data for a small 2x change in noise. We
are not aware of any other algorithms that can detect this kind of change to a signal.

Figure 5.9 shows the performance of PSC in detecting changes in the period of the signal. PSC
performs well at detecting a shortening of the period for a wide range of window sizes, with larger
windows providing better performance. PSC also performs well at detecting lengthening of the
period for the larger window sizes.

The performance at detecting lengthening of the period for small window sizes is erratic and often
poor. This poor performance is caused by a misalignment between the part of the period of the
signal used for training and the part used for testing. Since the training/testing windows for the
smaller window sizes are only a small part of one period, it is often the case that the training
window and the testing window come from different parts of the signal period. Naturally, the
predictions during the testing phase are poor when tested on a part of the signal that was never seen
during training. This effect accounts for the poor performance of PSC for long periods and short
window sizes. PSC performs well in the cases where the training data and testing data contain the
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Figure 5.7: Detection of changes to the signal mean with equal sized windows. The x axis shows
the mean shift as a fraction of the signal amplitude.

same parts of the signal. Usually, algorithms which detect period changes are highly specialized
to period changes and are incapable of detecting other changes.

Constant Size Training Windows

Figures 5.10, 5.11, 5.12, and 5.13 show the equivalent tests to Figures 5.6, 5.7, 5.8, and 5.9 re-
spectively, except that in all cases the training window size is fixed at 80. As can be seen from the
graphs, the extra training data results in an across the board improvement in the performance of
PSC. The graphs show that even very small window sizes are sufficient for detecting most signal
changes. The most dramatic improvement is in detection of period changes. With the longer train-
ing window size, small testing window sizes are now sufficient for detecting changes in the period
of the signal. This improvement is caused by the guarantee of the testing window overlapping the
same phase of the signal as at least some of the training window. PSC correctly selects the relevant
part of the training data and can detect even small changes in period.

Figure 5.14 shows the ability of PSC to segment signals based upon the shape of the signal. We
tested using two classes with identical parameters to the base signal except that for class 2 the
signal is based upon a triangle wave instead of a sine wave. The y axis shows the difference in the
log probability of the two classes for a window of 25 data points. As can be seen in the graph, the
most likely class is also the correct class in the vast majority of cases. We trained PSC on a window
of 100 data points for each class. We also ran the same experiment with a few different training
window sizes and testing window sizes. In all cases, we observed that increasing the amount of
available data resulted in larger margins in the classification (results not shown).
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Figure 5.8: Detection of changes to the observation noise with equal sized windows. The x axis
shows the observation noise as a fraction of the signal amplitude.

5.6 Evaluation on Robotic Data

We evaluated the Probable Series Classifier (PSC) using data logged by our robot as it performed
various tasks. The data was hand classified as a baseline for comparison with the automatic classi-
fication. We used a standard Sony AIBO ERS-210 for gathering all of our data.

5.6.1 Methodology

We generated a set of data series from the sensors on our robot. We used two different sensors, a
CMOS camera and an accelerometer. Since PSC currently only supports single dimensional data,
we reduced each data series down to a single dimensional data series. Each camera image was
reduced to an average luminance value (a measure of brightness), resulting in a 25Hz (samples per
second) luminance signal. The accelerometer data is inherently three dimensional with accelera-
tions along three axes. We chose to use the axis oriented towards the front of the robot (the other
axes gave similar results). The accelerometer data has a frequency of 125Hz. For each task, PSC
was trained on a segment of data for each possible class. PSC used a window of data to generate
each classification starting at the data item to be classified and extending backwards in time, i.e.
only data that would be available in an on-line scenario was used for classification. The PSC gen-
erated label was compared to a hand generated label to ascertain accuracy. In some of the signals,
there were segments of the test signal that did not correspond to any of the trained classes. These
segments were not used in calculating accuracy. We considered four different classification tasks,
two using each sensor stream.
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Figure 5.9: Detection of changes to the period with equal sized windows. The x axis shows the
period of the signal.

5.6.2 Results

Each figure show the results from one task. The bottom part of each figure shows the raw data
signal used for testing. Each of the other figures corresponds to one of the trained classes. The
class to which it corresponds is labelled to the left of each graph. The thick black line running
through parts of each class graph indicates when this class is the correct class according to the
human generated labelling. The small black dots show the probability that PSC assigned to this
class at each point in time (based on a window of data prior to this time point). Ideally, the
probability would be 1.0 when the thick black bar is present and 0.0 otherwise. In sections where
the test data series does not correspond to any of the trained classes, the indicator bar is absent and
the output of PSC for each class is irrelevant. Table 5.2 summarizes the results achieved by PSC.
Each task also has an accompany figure. The description for each figure in the text explains the
task in more detail.

Table 5.2: Accuracy of PSC in various test classification tasks.

Task Sensor Accuracy
Walk stability Accelerometer 99.19%

Walk interference Accelerometer 78.49%
Lights playing Camera 64.69%
Lights standing Camera 93.77%
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Figure 5.10: Detection of changes to the signal amplitude with a fixed training window size. The
x axis shows the factor by which the amplitude was multiplied.
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Figure 5.11: Detection of changes to the signal mean with a fixed training window size. The x axis
shows the mean shift as a fraction of the signal amplitude.
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Figure 5.12: Detection of changes to the observation noise with a fixed training window size. The
x axis shows the observation noise as a fraction of the signal amplitude.
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Figure 5.13: Detection of changes to the period with a fixed training window size. The x axis
shows the period of the signal.
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Figure 5.14: Segmentation between a sine wave and a triangle wave. The y axis shows the log
probability of the sine wave minus the log probability of the triangle wave. A value above 0
indicates the signal is probably a sine wave while a value below 0 indicates that a triangle wave is
more likely. Each data point shows the difference in log probability for the two possible signals
based on a window of 25 data points centered at the x coordinate of the point. The actual signal
was a sine wave from times 0–999 and 2000-2999 and a triangle wave the rest of the time.

Figure 5.15 shows the results from the first accelerometer task distinguishing between walking
down a metal ramp, across a soft carpet, and into a low wooden wall. This task is labelled as “walk
stability” in the results summary table. PSC was trained on one example sequence and tested on a
completely separate sequence. Each class was trained using 500 examples, except 400 examples
were used for training the “ramp” class. PSC was tested on windows of size 50 (.4 seconds of
data). PSC was tested after every 5 data points, i.e. the window was moved 5 data points at a time.
As the graphs show, PSC does an excellent job of distinguishing between these different walking
conditions achieving and accuracy of 99.19%.

Figure 5.16 shows the results from the second accelerometer task distinguishing between playing
soccer, walking into a wall, walking with one leg hooked on an obstacle, and standing still. The
playing class includes a wide variety of signals including walks in several different directions and
full body kicking motions such as diving on the ball. This task is labelled as “walk interference”
in the results summary table. PSC was trained on example sequences from the test sequence.
In other tests, we did not observe a noticeable difference between testing on training data and
testing on separate testing data. Each class was trained using 5000 examples. PSC was tested on
windows of size 125 (1 second of data), and was tested after every 100 data points. PSC performed
well overall, correctly classifying 78.49% of the test windows. PSC performed perfectly on the
standing still data. It had the most problems identifying hooked on an obstacle (59.84% accurate),
often confusing it with playing (69% of errors for this class).
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Figure 5.15: Use of accelerometer data to distinguish between walking down a ramp, walking
across a carpet, and walking into a wall.
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Figure 5.16: Use of accelerometer data to distinguish between playing soccer, walking into a wall,
walking with one leg caught on an obstacles, and standing still.
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Figure 5.17: Use of average luminance from images to distinguish between bright, medium, dim,
and off lights while playing soccer.
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Figure 5.18: Use of average luminance from images to distinguish between bright, medium, dim,
and off lights while standing still.
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Figure 5.17 shows the results from the first camera task distinguishing between bright, medium,
dim, and off lights while the robot is playing soccer. This task is labelled as “lights playing” in
the results summary table. PSC was trained on one example sequence and tested on a completely
separate sequence. Each class was trained using 1000 examples. PSC was tested on windows of
size 50 (2 seconds of data), and was tested after every 25 data points. PSC performed fair overall,
correctly classifying 64.69% of the test windows. Most of the errors were due to problems dis-
tinguishing between bright lights and medium lights. Confusion errors between these two classes
accounted for 54% of the errors the algorithm made during this test.

Figure 5.18 shows the results from the second camera task distinguishing between bright, medium,
dim, and off lights while the robot is standing still. The robot moved its head to look at different
objects. This task is labelled as “lights standing” in the results summary table. PSC was trained
on one example sequence and tested on a completely separate sequence. Each class was trained
using 150–200 examples. PSC was tested on windows of size 50 (2 seconds of data), and was
tested after every 10 data points. As the graphs show, PSC excels at distinguishing between these
different lighting conditions, achieving an accuracy of 93.77%.

5.7 Conclusion

We have presented an algorithm for generating predictions of future values of time series. We have
shown how to use that algorithm as the basis for a classification algorithm for time series. We
proved through testing that the resulting classification algorithm robustly detects a wide variety
of possible changes that signals can undergo including changes to mean, variance, observation
noise, period, and signal shape. The algorithm has the nice properties that the performance of the
algorithm improves when more training data is available, when more data is available before a
class label must be chosen, and when the difference between the signals becomes greater. These
properties should be expected of all prediction algorithms. The algorithm can be used to replace a
collection of algorithms tuned to detecting particular changes in signals with one algorithm which
can detect any change to the signal. We proved through testing on robotic sensor data that the
resulting classification algorithm can be used to differentiate between semantically different signal
classes.

5.8 Summary

In this chapter, we developed version 1 of an on-line algorithm for environment identification/classification
of a time series. The algorithm is called the Probable Series Classifier. The algorithm makes few
assumptions and can detect a wide variety of types of changes in a time series. The algorithm only
requires an example signal from each environment to be identified and is thus easy to train. The
algorithm has a strong probabilistic foundation. We proved the ability of the algorithm to detect
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environment transitions both in simulated data and in data from real robots. In the next chapter, we
improve on this algorithm and further test the capabilities of the algorithm.
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Chapter 6

Probable Series Classifier Version 2

In this chapter, we present and improved version of the Probable Series Classifier algorithm. This
algorithm builds upon and improves our initial version of the algorithm described in the previous
chapter. This chapter can be read without reading the previous chapter, but an understanding of
the previous chapter may help put some of the results in context. The algorithm provides general,
robust, on-line environment identification given a relevant sensor signal to be used for recognition
and examples sensor signals from each of the environments to be recognized. The algorithm has
very few parameters and the parameters it does have are easy to set. We analyze the performance
of the algorithm on a variety of simulated data and sensor signals from real robots and compare
the results with the previous version of the algorithm. We then apply the algorithm to a realistic
robotic task. We prove that using the algorithm for environment identification and adaptation leads
to improved performance of the robot.

6.1 Introduction

Noticing and adapting to changes is an important problem in many fields. We approach the prob-
lem from the field of robotics where time series generated by sensors are readily available. We are
interested in using these signals to identify sudden changes in the robot’s environment allowing the
robot to respond intelligently. For this application, the signal segmentation must be performed in
real time and on line, which requires algorithms that are amenable to on-line use. Usually a math-
ematical model of the process that generates the sensor signal is unavailable. Therefore, we focus
on techniques that require little a priori knowledge and few assumptions. Many researchers have
approached this problem including Penny and Roberts [49] using autoregressive Hidden Markov
Models and Gharamani [20] using switching state-space models. This work differs from previ-
ous work in being developed for practical robot application which requires properties not found in
these other techniques. A detailed description of these differences can be found in the related work
chapter, Chapter 7.
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In previous chapters (Chapter 4 and Chapter 5), we developed techniques for segmenting a time
series into different classes given labelled example time series. In Chapter 5, we showed that our
algorithm can successfully segment signals from robotic sensors. In this chapter, we improve on
our previous technique by replacing a windowed approach to signal classification with a recursive
solution based on a simple Dynamic Bayes Net (DBN).

In this chapter, we apply our algorithm to a realistic robotic task. We adapt the technique from
the previous chapter by showing how to successfully train the system in the presence of feedback
between the signal used for adaptation and the choices made by adaptation. We also show, for the
first time, that using this adaptation results in a large improvement in the robot’s performance in a
non-trivial task.

We have named our new algorithm for classifying time series the Probable Series Classifier (PSC).
It is based on a time series prediction component which we will refer to as the Probable Series
Predictor (PSP). Unlike many other methods, PSP predicts amulti-modelprobability density over
next values. PSC uses several PSP modules to classify a time series into one of a set number of
pre-trained states each of which corresponds to one environment. We will use the term state and
environment interchangeably. PSC uses one PSP module per state/environment. Each PSP module
is pre-trained from an example time series generated in one environment. PSP uses an internal
non-parametric model trained from an example time series to make its predictions. PSC runs each
PSP module on a time series to be classified and uses the one which best predicts the time series
as the classification of the unknown time series. We take a very general approach where we detect
a wide variety of types of changes to the signal which sets PSC apart from these other techniques.

PSC is a practical algorithm. PSC takesO(n log(n)) time forn observations in the current imple-
mentation. The chief advantages of PSC over previous approaches are:

• PSC is capable of predicting a multi-modal distribution over values.

• PSC is amenable to on-line training as more data from a particular environment becomes
available.

• PSC includes a dependence of each sensor reading on the previous sensor reading.

PSC requires no knowledge about the system structure, as it only requires labelled time series
examples. PSC also requires negligible training time since almost all of the work is done at query
time. While there are many methods from HMM research that predict a multi-modal distribution
over values, we are not aware of any that condition on the previous time series value at the same
time.

6.2 System Model

In this section, we describe the class of systems for which we wish our algorithm to work. This
model is the same as in the previous chapter (Section 5.2). We describe the system model that
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Figure 6.1: An example system with three states.

is assumed to generate the signals we process. Our algorithm is designed for detecting discrete
environment changes of a system with a finite and known number of environments. We concen-
trate primarily on the challenges created by real-world, noisy sensor streams and less on possible
complex relationships between states/environments.

A pictorial representation of a system with three states/environments is shown in Figure 6.1. The
top part of the figure shows an example possible sensor signal from the robot’s sensors. This
particular example is from accelerometer data from an AIBO robot. This sensor signal is the input
to the algorithm. The underlying system is shown in the bottom half of the figure. The system
has three states (S1,S2,S3). The robot may transition from any state/environment to any other
state/environment as shown by the dark arrows. Each environment causes a characteristic pattern
of sensor signal readings. An example signal generated in each environment is shown as a mini-
graph next to the state diagram. At any given time, exactly one environment is active and generates
the sensor signal seen. In this case, the example signal shown in the top part of the graph is best
explained as being generated from S1 until timestep≈ 450, S2 until timestep≈ 2200, and S3 for
the remaining time. The goal of the algorithm is to take the sensor signal at the top of the graph
and produce the series of states/environments that generated it (as in the previous sentence) in an
on-line fashion.

We will assume that the frequency of switching between different environments is relatively low
such that sequential sensor values are likely to be from the same environment. This assumption is
very reasonable for most robotic applications. Most sensors provide readings at rates of 25 times
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Figure 6.2: A Dynamic Bayes Net model of signal generation.

per second or higher. We are usually interested in adapting to conditions that change slowly, less
than one change per 5 seconds. Even at the slowest sensing rate and the fastest environmental
change rate, we will have 125 sensor readings before the environment changes.

We take a maximum likelihood approach to the problem. At any given time, we would like to
know which state/environment is most likely to be the state/environment that is responsible for the
current sensor signal. More formally, we would like to find the state/environment indexi at time
j, that maximizes

P (sj = i|~xj, ~xj−1, . . . , ~x0) (6.1)

where~xj is the observation vector at timej andsj is the current state at timej.

6.3 Probable Series Classifier Algorithm

In this version of the algorithm, we will replace our previous windowed approach with one based on
a DBN. Our DBN model is shown in Figure 6.2. The states/environments the system goes through
over time are shown at the top half of the figure. The observations at various times are shown in
the bottom half of the figure. Each arrow in the figure corresponds to a conditional probability
dependence. The dependencies which our algorithm keeps that a typical HMM approach ignores
are highlighted with thick, red arrows. The primary difference in our model is a dependence of
each sensor reading on the previous sensor reading (in addition to the current environment). This
extra dependence is important for robotics applications. In most cases, sensor readings that are
nearby in time are highly correlated because the sensors update faster than the world changes.
These sensor readings that are correlated are still within the same environment, however, because
the environment changes we are interested in are ones that change at a slow enough rate to allow
for adaptation.

We will define the belief state at timej for state/environmenti as the probability of it being the
current environment at timej given all available information (Equation 6.1).

B(sj = i) = P (sj = i|~xj, ~xj−1, . . . , ~x0) (6.2)
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We will like to simplify this equation into a form that we can use to calculate the most likely state
at any time. We proceed by simplifying the belief equation (Equation 6.2).

B(sj = i) = P (sj = i|~xj, ~xj−1, . . . , ~x0)

=
P (~xj|~xj−1, . . . , ~x0, sj = i) · P (sj = i|~xj−1, . . . , ~x0)

P (~xj|~xj−1, . . . , ~x0)
(6.3)

=
P (~xj|~xj−1, . . . , ~x0, sj = i) · P (sj = i|~xj−1, . . . , ~x0)

β
(6.4)

≈ νP (~xj|~xj−1, . . . , ~xj−m, sj = i) · P (sj = i|~xj−1, . . . , ~x0) (6.5)

In Equation 6.3, we have applied Bayes’ rule to Equation 6.2. In Equation 6.4, we note that
P (~xj|~xj−1, . . . , ~x0) is a normalizing constant that does not depend on the state. This normalizing
constant does not affect whichs = i has the maximum likelihood. We replace this expression
with the constantβ which we invert in Equation 6.5 to produce the constantν. In Equation 6.5,
we make themth-order Markov assumption that values> m time steps ago are negligible, given
more current readings. This assumption/approximation simplifiesP (~xj|~xj−1, . . . , ~x0, sj = i) to
P (~xj|~xj−1, . . . , ~xj−m, sj = i). This assumption is reasonable since sensor values from the distant
past are unlikely to be useful in predicting current sensor readings. We use a value ofm = 1
in all of our tests. A value ofm = 0 reduces the update equations to those used in HMMs. A
value ofm = 0 fails to condition on the previous sensor reading however. Our signals show a
strong correlation between neighboring signal values and thus the assumption implied bym = 0
is violated by our robotic data.

We now need to simplify the termP (sj = i|~xj−1, . . . , ~x0) in Equation 6.5.

P (sj = i|~xj−1, . . . , ~x0) =
∑

l

P (sj = i, sj−1 = l|~xj−1, . . . , ~x0) (6.6)

=
∑

l

P (sj = i|sj−1 = l, ~xj−1 . . . ~x0)P (sj−1 = l|~xj−1 . . . ~x0) (6.7)

=
∑

l

P (sj = i|sj−1 = l, ~xj−1 . . . ~x0) ·B(sj−1 = l) (6.8)

=
∑

l

P (sj = i|sj−1 = l) ·B(sj−1 = l) (6.9)

We begin by considering the joint distribution oversj = i andsj−1 = l and then marginalizing
over sj−1 = l in Equation 6.6. In Equation 6.7, we use the fact thatP (A, B) = P (A|B)P (B)
to rearrange the equation. We note thatP (sj−1 = l|~xj−1 . . . ~x0) = B(sj−1 = l) by definition
(Equation 6.2) and use this substitution to produce Equation 6.8. We make the assumption that the
current state is conditionally independent of old observations (before timej) given the previous
state, i.e.P (sj = i|sj−1 = l, ~xj−1 . . . ~x0) = P (sj = i|sj−1 = l). This assumption is reasonable
since observations from the past are only useful for determining the previous state which we are
given.
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Returning to the belief equation (Equation 6.2), we can now create a recursive solution for updating
the belief equation:

B(sj = i) = P (sj = i|~xj, ~xj−1, . . . , ~x0)

∝ P (~xj|~xj−1, . . . , ~x0, sj = i) · P (sj = i|~xj−1, . . . , ~x0) (6.10)

≈ νP (~xj|~xj−1, . . . , ~xj−m, sj = i) · P (sj = i|~xj−1, . . . , ~x0) (6.11)

= P (~xj|~xj−1 . . . ~xj−m, sj = i) ·
∑

l

P (sj = i|sj−1 = l)B(sj−1 = l) (6.12)

Equations 6.10 and 6.11 come from Equations 6.4 and 6.5, respectively. Equation 6.12 is the result
of using Equation 6.9 to substitute forP (sj = i|~xj−1, . . . , ~x0).

We assume a uniform distribution over all possible initial states/environments. We also assume
thatP (sj = i|sj−1 = l) = .999 if i = l and a uniform distribution of the remaining probability
over other states. The transition probability does not effect the most likely state/environment at
any given time much since the probability is dominated by the sensor readings. The self transition
probability can be derived from the expected switching frequency and the data sampling rate. For
instance, if the expected transition frequency is once every 30 seconds and the sensor readings
are available 25 times per second, we would expect one transition for every25 · 30 = 750 sensor
readings. So, we would expect to stay in the same state for749 out of 750 sensor readings for a
probability of 749/750 = .9986. The only term left to evaluate isP (~xj|~xj−1 . . . ~xj−m, sj = i).
This term is evaluated by our Probable Series Predictor algorithm which is detailed in the next
section. We usedm = 1 for all of our experiments.

This belief update equation is useful for segmentation and classification. Our Probable Series
Classifier algorithm classifies a time series by finding the most likely state at the each time step,
i.e. the state that maximizes the belief equation. Our algorithm runs in real time on a Athlon XP
2700 processing data at 125Hz.

6.4 Probable Series Predictor Algorithm

In this section, we describe version 2 of our Probable Series Predictor Algorithm. This version
includes several enhancements to the algorithm including: faster execution time, support for multi-
dimensional data, and improved prediction accuracy. These improvements are achieved via a new
method for output bandwidth selection, a bandwidth limited output kernel, and a new mixture
output model. These differences are highlighted in the description of the algorithm that follows.

We need a prediction of the likelihood of new time series values based upon previous values and
the current statei.

P (~xj|~xj−1, . . . , ~xj−m, sj = i)

Note, that statei is known in this case, so we know for which state we are generating a prediction.
Assume we have previous time series values generated by this state. We can use these previous
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Figure 6.3: Data prediction. The dots in the main graph show the data available for use in predic-
tion. The grey bar shows the range of values used in the prediction. The bottom graph shows the
weight assigned to each model point. The left graph shows the contribution of each point to the
predicted probability of a value at time t as dotted curves. The final probability assigned to each
possible value at time t is shown as a solid curve.

examples to generate an estimate at timej given the previous values of the time series. We will
focus on the case wherem = 1. Our examples in this section will focus on the case where
~x is a single dimensional value. The segmentation results presented later in the chapter use a
single dimensional value for the simulation and robotic data segmentation tests. The robotic task
presented later in the chapter uses the full three dimensions of the sensor signal.

We have: a set of value pairs~xi,~xi−1 and a value at timej−1 (~xj−1). We need to generate a
probability for each possible~xj. We can use non-parametric techniques with a locally weighted
approach. The problem is visualized in Figure 6.3. We need to introduce some terminology to
more easily discuss the problem.

base value(s)Those value(s) used in generating a predicted value. These are the time series values
on which the output is conditioned. In the case ofm = 1, this is just~xj−1. The conditioning
on the state is accomplished by having a separate model for each state.

output value The value output by prediction.
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model points Points in base/output space in the training data for a state. These points form the
model for this state. Each point is a pair of values: an output value~xj and associated base
value(s)~xj−1, . . . , ~xj−m.

prediction query A query of the model which provides~xj−1, . . . , ~xj−m as input and generates a
probability density over~xj as output.

We will generate a probability density by generating a weighted set of output value predictions,
one from each model point. A kernel is used that assigns more weight to model points with base
value(s) near the query base value(s). The predicted output values must then be smoothed to form
a continuous probability density.

We use a bandwidth limited kernel over base value(s) to weight model points for speed reasons.
The kernel used is the tri-weight kernel:

Kt(x, h) =

{
(1− (x/h)2)3 if |x/h| <= 1,

0 otherwise

This kernel is a close approximation to a Gaussian but is much cheaper to compute and reaches
zero in a finite bandwidth. The finite bandwidth allows some points to be eliminated from fur-
ther processing after this step. The bandwidthh is a smoothing parameter that must be selected
that controls the amount of generalization performed. From non-parametric statistics, it is known
that in order for the prediction to converge to the true function, asn → ∞ (the number of model
points), the following two properties must hold:h→ 0 andnh→∞. These properties ensure that
each estimate uses more data from a narrower window as we gather more data. We use a balloon-
ing bandwidth for our bandwidth selection. A ballooning bandwidth chooses the bandwidth as a
function of the distance to thekth nearest neighbor. Since the average distance between neighbors
grows as1/n, we choose a bandwidth equal to the distance to the

√
n nearest neighbor, ensuring

that the bandwidth grows as1/
√

n which satisfies the required statistical properties. We constrain
the model to only use the

√
n closest points for efficiency reasons in the bandwidth selection pro-

cess. If multiple points are equidistant from the query, a subset of the equidistant points is chosen
randomly to ensure that only

√
n points are used. Each model point is assigned a weight by the

base kernelKt which is used to scale its prediction in the next stage.

Figure 6.3 illustrates the PSP algorithm. The dark circles represent model points that have already
been seen. The x axis shows the base value. The y axis shows the output value. The dark vertical
line shows the query base value. The grey bar shows the range of values that fall within the non-
zero range of the base kernel. The graph underneath the main graph shows the weight assigned to
each model point based on its distance from the query base value. A prediction is made based on
each model point that is simply equal to its output value (we will refine this estimate later). The
dotted lines leading from each model point used in the prediction shows these predicted output
values. PSP is described in pseudo-code in Table 6.1.

We need to smooth the predicted output values to get a continuous probability density. We will
once again turn to non-parametric techniques and use a tri-weight kernel centered over each point.
Note that this is a different kernel than that used in version 1 of the algorithm. Version 1 of the
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Table 6.1: Probable Series Predictor algorithm.

ProcedurePredictOutput(generatormodel,basevalues)
let OP ← generatormodel.modelpoints
let D ← dist(OP.basevalues,basevalues)
Choosebasedistequal to thed

√
neth smallestd ∈ D.

let hb ← basedist+ noisebase
let pred ← {z.output value| z ∈ OP∧

dist(z.basevalues, basevalues) < hb}
Perform correlation correction onpred.
let base← {z.basevalues| z ∈ OP∧

dist(z.basevalues, basevalues) < hb}
Choosehi,o ∝ distance(d

√
neth) nearest prediction.

Return probability density equal to
pdf(z) =

∑
i Kg(predi − z, hi,o)∗

Kt(basei − basevalues, hb)

algorithm used a Gaussian kernel. Because this kernel has a finite bandwidth, it may assign a zero
probability to some points. This assignment is undesirable since we never have enough training
data to be absolutely sure the data could not have occurred in this state/environment. A similar
problem occurred with the Gaussian kernel, but in that case instead of the probability reaching zero,
it merely became extremely close to zero. To overcome this problem, we assume the sensor values
are generated according to a mixture model where the sensor value is generated with probability
.9999 from the probability density defined by the sum of tri-weight kernels and with probability
.0001 from a uniform distribution. Hence, we assign a .0001 probability that the time series value
is generated from a uniform distribution and a .9999 probability that it is generated according to
the estimated distribution. This assumption can be considered as a kind of prior belief about the
distribution of sensor values.

We need a method for selecting a bandwidth forKg, the output kernel. We use a modified form of
the ballooning method. For each output value prediction, we assign a bandwidth proportional to the
distance to the

√
n

th nearest output value with a minimum bandwidth. We used a proportionality
constant of 0.5. In the previous version of the algorithm, we used a bandwidth that was the same
for every output value example point and used cross validation to select an appropriate bandwidth.
We found that the proportional bandwidth selection method produced similar performance but ran
about 10 times faster than the previous method. We also found that this new bandwidth selection
method resulted in better modeling of the probability distribution in the tails were less data is
available. With all points having the same bandwidth, outlying data points in the tails of the
distribution were forced to have a small bandwidth because of points in the most likely parts of the
distribution. These small bandwidths on outlying points resulted in a lumpy representation which
poorly represented the actual uncertainty in the parts of the probability distribution for which less
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example data is available. By choosing bandwidths separately for each point, points in the tails
of the distribution can have larger bandwidths without affecting the rest of the distribution. We
found that the algorithm is very insensitive to the exact proportionality constant used. We didn’t
notice any change in performance for proportionality constants from .1 to 1.0. This new bandwidth
selection scheme allowed us to easily scale the algorithm up to more dimensions.

As exemplified in Figure 6.3, there is usually a strong correlation between the time series value
at timet and the value at timet − 1. This correlation causes a natural bias in predictions. Model
points with base values below the query base value tend to predict an output value which is too
low and model points with base values above the query base value tend to predict an output value
which is too high. We can correct for this bias by compensating for the correlation betweenxt and
xt−1. We calculate a standard least squares linear fit betweenxt−1 andxt. Using the slope of this
linear fit, we can remove the bias in the predicted output values by shifting each prediction in both
base value and output value until the base value matches the query base value. This process can
shift the predicted output value a substantial amount, particularly when using points far from the
query base value. This process improves the accuracy of the algorithm slightly. This correlation
removal was used in all the tests performed in this thesis.
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6.5 Evaluation in Simulation

We tested PSC using simulated data, allowing us to know the correct classification ahead of time.
It also allowed us to systematically vary different parameters of the signal to see the response of the
classification algorithm. We used a similar testing methodology as for version 1 of the algorithm.
The testing methodology was modified to take into account the new window-less nature of the
algorithm.

We used PSC to segment a signal generated from a 2 state generator. One state was a fixed baseline
signal. The other state was a variation of the baseline signal formed by varying one parameter of
the signal. The algorithm was graded on its ability to correctly label segments of the signal that it
hadn’t been trained on into the 2 states. We tested the performance of PSC by varying the following
test parameters:

Training window size The number of data points used to train on each state. The smaller the
window size the harder the problem.

Parameter value The value of the parameter used in the modified signal. The closer the parameter
to the baseline value the harder the problem.

Parameter modified The parameter chosen for modification. We tested changes to the following
parameters: mean, amplitude/variance, observation noise, and period.

For each test we generated a time series with 4000 data points. The baseline state (class 1) gen-
erated the first and third quarter of the data signal and the modified state (class 2) generated the
second and fourth quarter of the data. We chose to use a sine wave for the underlying signal for
the baseline. We added uniform observation noise to this underlying signal to better reflect a real
world situation. The signal is parameterized by amplitude, mean, period, and noise amplitude re-
sulting in 4 parameters. The standard signal used an amplitude of5 ∗ 105, a mean of0, a period
of 20 observations, and a noise amplitude of5 ∗ 104, resulting in±10% noise on each observation
relative to the signal range.

For each test, we trained a model of each state on an example signal from that state. This example
signal was not included in the testing data. The length of the example signal (training window) was
varied from 5 data points to 100 data points to show the effect on the results. We tested with 14
different example signals for each state and averaged the results. For each test, we calculated the
fraction of time the most likely state matched the actual state of the system. Note that in testing this
version of the algorithm, we determine a most likely state at each time point whereas with version
1 of the algorithm we only determined a mostly state at the end of select windows of data. This
fraction is reported on all of the result figures. A value of1 indicates a perfect segmentation of the
test segments into classes. A value of0.5 is the performance expected from randomly guessing the
class. This metric equals the probability of getting the correct labelling using a random training
example signal for each class.

We summarized our test results in a series of figures. The y axis shows the fraction of correct
labellings achieved by PSC. In each figure, there is a point at which the performance of PSC falls
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to chance levels (0.5). These points occur where the states for class 1 and class 2 have the same
parameters and are hence generate the same signal. Since a signal cannot be segmented from itself,
we expect the algorithm’s performance to fall to chance levels at these points. We gathered results
pertinent to applications where a constant amount of training data is available as would occur in
on-line labelling applications.

Figure 6.4 shows the performance of PSC with respect to changes in the amplitude of the signal.
PSC performs quite well even for small training window sizes. This type of change to the signal
would not be detected by algorithms that are only sensitive to mean shifts as a change in amplitude
does not change the mean but only the variance.

Figure 6.5 shows the performance of PSC with respect to mean shifts. PSC performs well and is
able to detect small mean shifts. This type of change to the signal can be detected by algorithms
capable of detecting mean shifts. Many mean shift algorithms would have trouble with a periodic
signal like this sine wave, though, unless the data was averaged over a full period which would
slow detection time.

Figure 6.6 shows the performance of PSC with respect to changes in observation noise. This type
of change is very difficult to detect as it produces no mean shift in the signal and a negligible
variance change. Nevertheless, PSC is still able to detect this type of change effectively. Many
algorithms fail to detect this kind of change to a signal.

Figure 6.7 shows the performance of PSC in detecting changes in the period of the signal. PSC
performs well at detecting a change of the period most of the time. PSC fails to detect the change
in the period for the case where the period is longer than the training sequence but in this case the
training signal is not fully representative of the full signal for the state.
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Figure 6.4: Detection of changes to the signal amplitude with a fixed training window size. The x
axis shows the factor by which the amplitude was multiplied.
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Figure 6.5: Detection of changes to the signal mean with a fixed training window size. The x axis
shows the mean shift as a fraction of the signal amplitude.
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Figure 6.6: Detection of changes to the observation noise with a fixed training window size. The x
axis shows the observation noise as a fraction of the signal amplitude.
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Figure 6.7: Detection of changes to the period with a fixed training window size. The x axis shows
the period of the signal.
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6.6 Evaluation on Robotic Data

We evaluated the Probable Series Classifier (PSC) using data logged by our robot as it performed
various tasks. The data was hand classified as a baseline for comparison with the automatic classi-
fication. We used a standard Sony AIBO ERS-210 for gathering all of our data.

6.6.1 Methodology

We generated a set of data series from the sensors on our robot. We used two different sensors, a
CMOS camera and an accelerometer. Since our PSC implementation currently only supports single
dimensional data, we reduced each data series down to a single dimensional data series. Each
camera image was reduced to an average luminance value (a measure of brightness), resulting in a
25Hz luminance signal. The accelerometer data is inherently three dimensional with accelerations
along three axes. We chose to use the axis oriented towards the front of the robot (the other axes
gave similar results). The accelerometer data has a frequency of 125Hz. For each task, PSC was
trained on a segment of data for each possible class. PSC used a window of data to generate
each classification starting at the data item to be classified and extending backwards in time, i.e.
only data that would be available in an on-line scenario was used for classification. The PSC
generated label was compared to a hand generated label to ascertain accuracy. In some of the
signals, there were segments of the test signal that did not correspond to any of the trained classes.
These segments were not used in calculating accuracy. We considered a total of five different
classification tasks.

6.6.2 Results

Each figure show the results from one task. The bottom part of each figure shows the raw data
signal used for testing. Each of the other figures corresponds to one of the trained classes. The
class to which it corresponds is labelled to the left of each graph. The thick black line running
through parts of each class graph indicates when this class is the correct class according to the
human generated labelling. The small black dots show the probability that PSC assigned to this
class at each point in time (based on a window of data prior to this time point). Ideally, the
probability would be 1.0 when the thick black bar is present and 0.0 otherwise. In sections where
the test data series does not correspond to any of the trained classes, the indicator bar is absent and
the output of PSC for each class is irrelevant. Table 6.2 summarizes the results achieved by PSC.
The column labeled “PSC v.1” shows the performance of our previous window based approach
(Chapter 5). The column labelled “PSC v.2” shows the accuracy of our new DBN based approach.
As the table shows, we see a significant reduction in errors by employing the DBN model.

We also compared the results generated by using an HMM model. The HMM model was con-
structed by removing the dependency on the previous sensor reading in the PSC v.2 algorithm.
This dependence was removed by artificially placing all model points’ base values at the query’s
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Table 6.2: Accuracy of PSC in various test classification tasks.

Task Sensor PSC v.1 PSC v.2 HMM
Walk stability Accelerometer 99.19% 98.26% 63.77%
Walk floors Accelerometer N/A 93.22% 56.12%

Walk interference Accelerometer 78.49% 85.62% 62.84%
Lights playing Camera 64.69% 82.01% 57.17%
Lights standing Camera 93.77% 99.98% 99.90%

base value, i.e. acting as if all model points are perfectly relevant for all queries. This methodology
results in an HMM model that has an output density defined by a non-parametric density. The
output density is a sub-sampled version from all the model points due to the limitation imposed
on the number of points used in forming the density. This limitation to using

√
n data points is in

place for efficiency reasons and is consistent between the PSC v.2 and HMM tests.

Figure 6.8 shows the results from the first accelerometer task distinguishing between walking down
a metal ramp, across a soft carpet, and into a low wooden wall. This task is labelled as “walk sta-
bility” in the results summary table. PSC was trained on one example sequence and tested on
a completely separate sequence. Each class was trained using 500 examples, except 400 exam-
ples were used for training the “ramp” class. As the graphs show, PSC does an excellent job of
distinguishing between these different walking conditions achieving and accuracy of 98.26%.

Figure 6.9 shows the results from the second accelerometer task distinguishing between walking
in place on cement, hard carpet, and soft carpet. This task is labelled as “walk floors” in the results
summary table. PSC was trained on one example sequence and tested on a completely separate
sequence. As the graphs show, PSC does an excellent job of distinguishing between these different
walking conditions achieving and accuracy of 93.22% despite the similarity between the two types
of carpet.

Figure 6.10 shows the results from the third accelerometer task distinguishing between playing
soccer, walking into a wall, walking with one leg hooked on an obstacle, and standing still. The
playing class includes a wide variety of signals including walks in several different directions
and full body kicking motions such as diving on the ball. Small portions of the playing class,
include standing in place making these sections look like the standing operating environment. This
task is labelled as “walk interference” in the results summary table. PSC was trained on example
sequences from the test sequence. In other tests, we did not observe a noticeable difference between
testing on training data and testing on separate testing data. Each class was trained using 5000
examples. PSC performed well overall, correctly classifying 85.62% of the data points. PSC
performed perfectly on the standing still data. It had the most problems identifying hooked on an
obstacle, often confusing it with playing.

Figure 6.11 shows the results from the first camera task distinguishing between bright, medium,
dim, and off lights while the robot is playing soccer. This task is labelled as “lights playing” in
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the results summary table. PSC was trained on one example sequence and tested on a completely
separate sequence. Each class was trained using 1000 examples. PSC performed fairly well over-
all, correctly classifying 82.01% of the data points. Most of the errors were due to problems
distinguishing between bright lights and medium lights.

Figure 6.12 shows the results from the second camera task distinguishing between bright, medium,
dim, and off lights while the robot is standing still. The robot moved its head to look at different
objects. This task is labelled as “lights standing” in the results summary table. PSC was trained
on one example sequence and tested on a completely separate sequence. Each class was trained
using 150–200 examples. Although this is an easy classification task, it is important to test that
the algorithm works on both easy and difficult tasks to ensure practicality of the algorithm. PSC
passes easily achieving 99.98% accuracy.
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Figure 6.8: Use of accelerometer data to distinguish between walking down a ramp, walking across
a carpet, and walking into a wall.
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Figure 6.9: Use of accelerometer data to distinguish between walking in place on cement, hard
carpet, and soft carpet.
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Figure 6.10: Use of accelerometer data to distinguish between playing soccer, walking into a wall,
walking with one leg caught on an obstacles, and standing still.
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Figure 6.11: Use of average luminance from images to distinguish between bright, medium, dim,
and off lights while playing soccer.
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Figure 6.12: Use of average luminance from images to distinguish between bright, medium, dim,
and off lights while standing still.
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Table 6.3: Training method for Probable Series Classifier.

ProcedureGenerateTrainingSignals()
defineT j

i = training signal for class i on iteration j
defineT j

? = {T j
1 , T j

2 , . . . , T j
n}

for i = 1 to n
T 0

i = signal recorded from robot while in environmenti while adaptation cycles through states
for j = 1 to z

Train PSC usingT j−1
? .

for i = 1 to n

T j
i = signal recorded from robot while in environmenti while using PSC for adaptation

return T z
?

6.7 Training in the Presence of Feedback

We would like to use the Probable Series Classifier (PSC) to perform a simple ball chasing task
across 3 different environments. Each environment has different lighting conditions and requires
different vision thresholds. For a discussion of our vision system, see Section 2.5. We would like
PSC to identify the current area in which the robot is operating (lab/hallway/office) and choose
the matching thresholds. In order to use the algorithm, we must provide an example time series
for each environment. The example time series should match the time series the robot sees when
performing the task while doing adaptation as much as possible. A complication arises, though,
because the selection of thresholds to use affects the output of vision, which affects the behavior
of the robot, which affects the images captured by the robot’s camera, which affects the feedback
signal used for adaptation. Thus, the fact that adaptation is occurring and affecting the signal used
for adaptation creates an interesting feedback loop.

Figure 6.13 shows the movement of information in the complete system. The first feedback loop
goes from behaviors to world to camera to vision and back to behaviors. This loop corresponds to
the task of chasing the ball. This loop responds to the relative position of the ball to the robot in
order to ensure that the robot successfully tracks the ball and reaches it. We are trying to optimize
the performance of this loop and thus the adaptation feeds into one component of this loop to try
to improve its performance, namely, vision. The second feedback loop goes from behaviors to
world to camera to adaptation to vision and back to behaviors. This feedback loop complicates
things because the signal that we are trying to use to optimize the first feedback loop changes as
we perform the adaptation.

We need a training signal that reflects the feedback signal we should expect for each environment.
This feedback signal depends on the choices of the adaptation, however, and hence on the training
signal we provide the adaptation. We solve this circular dependency using an iterative technique
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Figure 6.13: Information flow and feedback loops for the ball chasing task.

similar to Expectation Maximization. The idea is to provide successive approximations to the feed-
back signal to expect in the final system with each feedback signal being a better approximation
than the last. We start with a poor approximation of the expected feedback signal and improve
it each iteration. Each iteration using the signals from the previous iteration as a better example
of the expected feedback signal. The entire process is shown in pseudo-code form in Table 6.3.
Note, that although the method is presented in pseudo-code form, the procedure involves human
interaction to place the robot in the appropriate environment to gather each training signal. We
gathered 30 seconds of data for each example signal for each iteration, except for the last iteration
we gathered 120 seconds of data to provide a larger number of examples. We did 4 iterations (z =
4) and noticed an improvement on each iteration with diminishing returns on each iteration. The
final example signals gathered were used in all the tests that follow.

6.8 Evaluation in a Robotic Task

We evaluated the Probable Series Classifier (PSC) and our training method by running a number of
trials of a ball chasing task. The task consists of chasing an orange colored ball through three dif-
ferent areas: a lab, a hallway, and an office. The environments are unstructured and contain many
objects that are various shades of red, orange, and brown. The lighting conditions between the
environments are different and change the apparent color of orange as seen by the camera. When
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the robot reaches the ball, it is moved to the next in a list of static waypoints by a human. We tested
using PSC to identify the current area and choose appropriate threshold against 4 different static
thresholds, one trained on each environment (3 thresholds) and one trained on all environments at
once (1 threshold).

6.8.1 Methodology

We defined a ball chasing task for chasing an orange ball through 3 different areas (a lab, a hallway,
and an office) each with a different lighting conditions. The robot was started in the lab at a set
position marked with clear tape. A number of waypoints were marked on the floor with clear tape.
Each waypoint was 1 meter away from the previous waypoint. This distance is non-trivial for the
robot to see the ball, but well within the maximum vision range of approximately 3 meters in ideal
conditions. The robot was started by pressing a button and was programmed to run towards the
ball while keeping the camera looking at the ball. If sight of the ball was lost, the robot would
spin in place and scan with the head until the ball was seen again. Whenever the robot touched the
ball, the ball was immediately moved to the next waypoint by a human experimenter. The robot
was given 30 seconds to reach the next ball waypoint position after successful reaching the ball. A
total of 9 waypoints were defined, which resulted in a total travel distance of the robot of 9 meters.
The robot itself is about 20cm long. The waypoints were set up such that the robot travels 3 meters
in each area on a fully successful journey. If the robot reached the end, the trial was stopped and
deemed a success. The furthest waypoint reached by the robot on each run was recorded.

The setup is shown in Figure 6.14. The starting location is marked with a black x and is just
off the right side of the image. Each waypoint is marked in the image with a black dot and a
numeric identifier. The actual waypoints were marked with clear tape so as not to interfere with
vision. Waypoint 3 is on the boundary between lab and hallway and waypoint 6 is on the boundary
between hallway and office. The lab environment was much brighter than the either the hallway of
the office. The hallway and the office had somewhat different color temperatures which affected
the appearance of the ball.

Vision used a simple lookup table (thresholds) mapping pixel color in YCrCb color space to ball,
floor, or background. Connected components was run on the resulting image and the resulting
connected region were analyzed to look for a ball. The ball was defined by the vision system as
any vaguely round, orange object of approximately the right size and height off the ground, against
a background of floor. The thresholds were generated using a supervised learning algorithm. Ex-
ample images were taken in each environment and hand labeled as ball, floor, or background. The
resulting labeled example set of pixels is used to generate the threshold table trying to maximize
generalization without sacrificing accuracy on the training set. The vision system and threshold
learning tools were developed as part of the CMPack RoboCup legged team [61].

We tested 5 different conditions. We tested using PSC to select the appropriate threshold to use at
each frame. We also tested using static thresholds trained on all 3 areas. Finally, we tested using
static thresholds trained on just one of the areas for each possible area.
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Figure 6.14: Setup for the ball chasing task. Each waypoint is marked in the image with a black dot
and a numeric identifier. The actual waypoints were marked with clear tape so as not to interfere
with the vision of the robot. The robot and ball are visible in the picture between waypoints 3 and
4.
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Table 6.4: Success in a ball chasing task versus thresholds.

Forward Direction Reverse Direction
Thresholds Successes Success RateSuccesses Success Rate
Adaptation (PSC) 5/10 50% 10/10 100%
Static (All) 0/10 0% 0/10 0%
Static (Lab) 0/10 0% 0/10 0%
Static (Hallway) 1/10 10% 9/10 90%
Static (Office) 0/10 0% 0/10 0%

After testing the robot’s performance in this task, we reversed the direction of travel to have the
robot start in the office and travel to the lab. By having the robot travel in both directions, we
can verify the ability of the algorithm to detect all physically possible transitions between environ-
ments. The forward direction tests lab to hallway and hallway to office transitions while the reverse
direction tests hallway to lab and office to hallway transitions. We were unable to test office to lab
and lab to office transitions because the office and lab are not physically contiguous. Interestingly,
the different directions were very different in terms of difficulty and the adaptation process was
robust in providing a benefit in both the difficult and easy directions. The same waypoints were
used for this test, with the robot starting at waypoint 9 and proceeding to the x (waypoint 0). We
tested under the same 5 conditions as the other direction of travel.

Finally, we tested the ability of the robot to reach waypoints in each environment with each possible
threshold. For each environment and threshold combination, we tested the ability of the robot to
reach the ball at one waypoint from a nearby waypoint. We tested each waypoint traversal and
direction an equal number of times using the same rules as for the full task (30 seconds to reach
the ball). We started the robot looking at the ground to simulate the loss of tracking of the ball
that occurs when the ball is moved in the full task. We performed a total of 60 trials for each
environment/threshold combination. These tests allow us to make a theoretical model to predict
the robot’s performance to provide a baseline to compare our adaptation results against.

6.8.2 Results

The results of the experiment are shown in Figures 6.15 and 6.16 for the forward and reverse
directions, respectively. The x axis of this graph shows the waypoint number. The y axis shows
the number of times this waypoint was successfully reached out of 10 runs. The lines on the graph
have been artificially separated slightly to improve visibility. The number of successful runs is
an integer number in all cases. Since trials were stopped as soon as the robot failed to reach a
waypoint in 30 seconds, the number of successes is monotonically non-increasing for successively
higher waypoint numbers (or successively lower in the case of the reverse direction).

The main thing to notice from this graph is the number of successes for which the robot made
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Figure 6.15: Results from the ball chasing task in the forward direction. The x axis shows the
waypoint number. The y axis counts the successes in reaching this waypoint out of 10 runs.
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Figure 6.16: Results from the ball chasing task in the reverse direction. The x axis shows the
waypoint number. The y axis counts the successes in reaching this waypoint out of 10 runs.
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it to the last waypoint. The robot successfully made it to the last waypoint on 5 out of 10 trials
while using PSC for adaptation and only 1 out of 10 trials for the best set of static thresholds in the
forward direction. This result is summarized in Table 6.4. Using adaptation resulted in a five-fold
increase in number of successful runs. In the reverse direction, adaptation had a perfect success
rate but a static threshold also did very well successfully completing 9 out of 10 trials.

The reason for the large difference in successes is mostly due to the movement between waypoint
1 and 2. Going from waypoint 1 to 2, there are distracting objects that can be mistaken for ball
directly in front of the robot while the real ball is somewhat to the side of the robot. When going
from waypoint 2 to 1, the distracting objects are well to the side of robot and sometimes partially
occluded while the ball is still slightly to the side of the robot. The behaviors are biased towards
noticing objects in front of the robot since these locations can be seen during the kicking motion
performed when the robot reaches the ball. So, for the forward direction, this is a difficult transition
because of the confusing objects directly in front of the robot. For the reverse direction of travel,
this transition is much easier, because the distracting objects are so far to the side of the robot.

During testing, we observed that the thresholds trained for the office saw the carpeting in the lab as
the ball. This problem can be seen analytically with the poor performance of the office thresholds
in the lab environment as shown in Table 6.5. These thresholds still had some successes because
the grey mat is not mistaken for the ball. We also observed that avoiding seeing spurious balls in
the lab resulted in being unable to see the ball in the office. We also noticed some interference
between the color of the ball in the hallway and the lab carpeting but this was far less severe. The
thresholds trained for the hallway seemed to be a compromise, unlikely to see spurious balls in the
lab, somewhat reduced ball vision in the hallway, and poor vision of the ball in the office.

Looking at the results more closely, we see that using the thresholds trained on the lab performed
very well for the 3 waypoints located in the lab and was unable to successfully traverse the hallway.
The thresholds trained on the hallway performed well for the first 2 waypoints and often failed on
waypoint 3 which is on the border between the lab and hallway. These failures can mostly be
attributed to the robot confusing an orange colored toolbox for the ball and wandering off into the
lab. The lab thresholds did not suffer this problem because they successfully labeled the toolbox as
background. The hallway thresholds performed reasonably well once the robot was in the hallway
and office. The progress in the office was slow but steady with the robot often losing the ball and
re-acquiring it. The office thresholds never progressed far due to mistaking the carpeting in the lab
for the ball most of the time.

Using thresholds trained on all 3 areas resulted in slightly worse performance in the lab compared
to the lab thresholds due to a higher confusion rate of seeing other objects as the ball. These
combined thresholds worked well in the hallway also, but completely failed to be able to see the
ball in the office. This failure is caused by the identical pixel colors being observed on the ball in
the office and the carpeting in the lab. Using adaptation (PSC) to choose the thresholds, we see
the thresholds perform slightly worse in the lab than the lab thresholds or thresholds trained on all
areas. Using adaptation, the robot had some difficulty making the transition to the hallway as seen
by the 2 failures to get from waypoint 3 to waypoint 4. At this point, the robot is standing on the
border between the lab and hallway. If the robot loses the ball at this point and spins to search
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Table 6.5: Success rates for reaching waypoints per environment and threshold.

Threshold
Environment Lab Hallway Office

Lab 60/60 ( 100.00% ) 43/60 ( 71.67% ) 23/60 ( 38.33% )
Hallway 22/60 ( 36.67% ) 54/60 ( 90.00% ) 45/60 ( 75.00% )
Office 0/60 ( 0.00% ) 48/60 ( 80.00% ) 58/60 ( 96.67% )

Table 6.6: Adaptation perfomance compared to best possible threshold.

Environment Successes Best Threshold % of Best
Lab 55/57 ( 96.49% ) 100.00% 96.49%

Hallway 47/50 ( 94.00% ) 90.00% 104.44%
Office 45/45 ( 100.00% ) 96.67% 103.44%

for it, the camera is switching taking images from the hallway and lab at a high rate. This rapid
switching increases the chance of the wrong thresholds being chosen and the robot being confused
by another object. We also see, however, that with adaptation, the robot has no trouble seeing the
ball in the office as the conflict between the ball color in the office and the carpet color in the lab
is avoided. Adaptation is the only method that successfully sees the ball most of the time in all 3
areas.

We can attempt to model the theoretical best results for adaptation by attempting to model the
probability of success at several sub-tasks, namely, the task of moving from one waypoint to the
next. The probability of successfully completing the full task of chasing the ball from the starting
waypoint to the final waypoint can be approximated by the probability of reaching each waypoint
from the previous waypoint given the thresholds that are being used. For example, the probability
of reaching waypoint 9 from waypoint 0 using the hallway thresholds the entire way can be ap-
proximated byp3

lhp
3
hhp

3
oh wherepoh is the probability of successfully traversing one waypoint in

the office environment using hallway thresholds. Reading from Table 6.5, we see thatplh = .7167,
phh = .9, andpoh = .8. Using this model, we would predict that using hallway thresholds, we
would successfully reach waypoint 9p3

lhp
3
hhp

3
oh = .137 or 13.7% of the time. This prediction is a

fairly close match for the results of the forward prediction, but a horrible prediction for the reverse
direction. The problem is that the probability of successfully traversing from one waypoint to the
next depends on the particular waypoints involved and the direction of travel. As discussed in the
previous paragraph, the traversal from waypoint 1 to 2 is much harder than the other waypoint
traversals in the lab environment.

A similar model can be constructed for a theoretical perfect adaptation using the available thresh-
olds. A perfect adaptation would always use the thresholds for the current environment. For
traversing from waypoint 0 to waypoint 9, we would expect a success rate ofp3

llp
3
hhp

3
oo = .6586
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or 65.9%. This expectation is higher than the actual success rate of50% achieved in the forward
direction but lower than the100% success rate achieved in the reverse direction. The expected
number of successes based on this model are shown in Figures 6.15 and 6.16 as the dashed line
labeled “Theoretical Adapt.”. Overall performance is on par with that expected from a theoretical
best case adaptation, but is impossible to give a quantitative measure of performance without a
more accurate model.

Finally, we compare the performance of the adaptation method to the best static threshold at reach-
ing single waypoints in each environment. These results are summarized in Table 6.6. Looking
closely at the graphs of the adaptation performance for the forward and reverse directions, we see
that there are a total of 57 times that the robot needed to travel from one waypoint to the next
waypoint in the lab environment. Out of these 57 waypoint traversals, 55 were successful. Re-
sults for the hallway and office environments can be summarized in the same manner. The best
static threshold for each environment is the one that matches the environment. The performance
of these static thresholds in the correct can be seen in Table 6.5 along the diagonal. These results
are repeated in the column “Best Threshold” in Table 6.6. We would expect a perfect adaptation
to always select the thresholds which match the current environment. By always selecting the
thresholds matching the current environment, the adaptation should match the performance of the
static thresholds. Any deviation from the thresholds for the current environment would be expected
to hurt the performance of the robot. Accordingly, we compare the success rate with adaptation
to the best static thresholds. Surprisingly, the adaptation actually performs better than the static
threshold even for the environment for with the static threshold was specifically developed. The
performance of adaptation compared to the best static threshold is listed in column “% of Best”
in Table 6.6. The results show that adaptation performs nearly as well as static thresholds in the
lab environment and slightly better than static thresholds in the hallway and office environments.
In retrospect, this outcome shouldn’t be so surprising. Each environment encompasses different
conditions within the same room. The adaptation can exploit these differences for better perfor-
mance by using thresholds for other environments for the more unusual parts of each environment.
It is still somewhat surprising that this behavior emerges spontaneously, but shows the importance,
once again, of adapting to the local environmental conditions.

6.9 Conclusion

We have presented an algorithm for generating predictions of future values of time series. We have
shown how to use that algorithm as the basis for a classification algorithm for time series. The
algorithm runs in real-time and is amenable to on-line training. We proved through testing that the
resulting classification algorithm robustly detects a wide variety of possible changes that signals
can undergo including changes to mean, variance, observation noise, period, and signal shape. We
proved through testing that the resulting classification algorithm robustly classifies a wide variety
of robotic sensor signals. We verified the performance of the algorithm for a variety of sensors and
robot tasks.
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We have shown that adaptation using the Probably Series Classifier (PSC) improves the perfor-
mance of a robot on a non-trivial task. We developed a training method for training PSC in the
presence of feedback between the choices made by the the adaptation and the feedback signal used
for adaptation. We showed that the performance of the robot on a difficult task improved in a
ball chasing task versus a baseline algorithm with no adaptation. We also showed the ability of
adaptation using PSC to outperform a static approach when given the same training data. Given
the same training data, PSC was able to achieve success rates of 5/10 and 10/10 when the static
strategy achieved success rates of 1/10 and 9/10, respectively.

6.10 Summary

In this chapter, we presented version 2 of our Probable Series Classifier algorithm for environ-
ment identification. We showed improved results of this algorithm compared to version 1 of the
algorithm presented in the previous chapter. We tested the algorithm in simulation and with real
robotic data and in all cases it performed well. The new algorithm can use multi-dimensional data,
is much faster than the previous version, and produces better results. We showed that PSC can im-
prove the performance of robots on real tasks. In particular, we proved experimentally that using
PSC for adaptation resulted in an improvement over the best static approach. This result validates
the usefulness and practicality of using environment identification to guide adaptation and reduce
failures for robots performing real tasks.
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Chapter 7

Related Work

In this chapter, we describe how the algorithms developed in the previous chapters are related
to work that has been done by other researchers. We start off with an overview of the different
viewpoints from which the problem of environment/state identification has been approached in
Section 7.1. We then describe the related work and how it differs from the work presented in this
thesis in Section 7.2. We finish by highlighting the unique features of the work in this thesis in
Section 7.3.

7.1 Introduction

There is a large body of work on the analysis of signals. Signal analysis is a problem that occurs
in many fields. In addition to techniques developed by the statistics community, many techniques
have been developed to analyze signals by people working in a variety of fields. The primary ap-
plication for the earliest work in this field is for the detection of fault conditions in manufacturing
machinery. The fault detection problem has been further developed by researchers interested in
making robots more robust. Lately, many researchers have been looking at the problem of activity
recognition in order to make more interactive robots and environments. Activity recognition is
fundamentally the same problem as state/environment identification. This problem is being ac-
tively investigated by roboticists to make robots that can recognize the action of a human for better
interaction. The actions could be activities that the robot can assist in or commands that the robot
is intended to perform. The problem is being investigated by vision researchers who are interested
in creating a higher level representation of video sequences. The problem is also being investigated
by cognitive scientists who are trying to create possible models for activities that occur in the brain.
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7.2 Related Work

The work on state/environment identification can most easily be organized by the approach taken.
Since most of the work in this area is described in terms of general state-based models, we will
use the term states throughout this chapter. The problem of state identification and environment
identification are fundamentally the same as each environment just corresponds to one state in the
state model. The approaches that have been taken can be divided into the following categories:

• Probabilistic model-based

• Classification algorithms

• Prototype-based

• Clustering

• Connectionist

Approaches based upon probabilistic models build a Hidden Markov Model (HMM) or Dynamic
Bayes Net (DBN) model of the system. Probability theory is then applied to generate a state label
at each point in time. This approach is the primary approach taken in this thesis. Classification
algorithm based approaches use a section of recent sensor data to determine the current state. A
classification based approach was taken in Chapter 4. Prototype based approaches attempt to solve
a more general problem where the number of states is not knowna priori. These approaches create
a representation where new states are represented by a prototype of what the sensors should output
in that state. Distance to these prototypes is used to determine the current state of the system
and to create new prototypes as needed. Clustering based approaches attempt to group together
similar observations to deduce states. These approaches are sometimes used in conjunction with a
segmentation algorithm or a segmentation of the sensor stream is induced as with the classification
based approaches. Connectionist approaches are based on neural models where a large number of
nodes with important connections attempt to interpret the sensor signal.

7.2.1 Probabilistic Approaches

Much of the earliest work in state identification was done in the context of control of manufactur-
ing systems. Originally, this work was based on hand-coded rules built by practitioners of control
theory. Later, these rules were derived from basic probability theory using a HMM of the manu-
facturing system. Common to other HMM based techniques, these techniques fail to capture the
dependence of each sensor reading on the previous sensor reading. This dependence is extremely
common in robotic applications. Most of these techniques are focused solely on detecting mean
shifts in the sensor signal. A few are tuned to detecting excessive vibration which corresponds to
looking for a change in the variance of the signal. In both cases, the type of change that the system
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is looking for is known. Both of these cases assume that a parameterized system model is available
(possibly with unknown parameters). See Basseville [2] for an in-depth analysis of this work. Of
particular note from this literature, is Hidden Markov Model (HMM) Autoregressive (AR) tech-
niques. In this model, the system consists of some number of states which operate according to a
HMM. Each state is characterized by an AR model. An AR model is a model where the next sensor
reading is predicted as a linear combination of the previous sensor readings. A limitation of this
model is that an AR model can only predict a single next value for the time series. A Gaussian can
then be fit to this to account for some noise, but in all cases the predicted output will be uni-modal.
In many cases, the actual distribution may be multi-modal. Also, the success of this technique
depends on the ability of the linear AR model to accurately predict the next time series value. If a
simple model is not able to capture the dependency between sensor readings excessive errors may
result. An example of this approach being applied is provided by Penny and Roberts [49]. They
describe the way that Hidden Markov Model(HMM) autoregressive(AR) techniques can be used to
segment data. These techniques use EM to learn an HMM of the data with an AR model for each
state of the HMM. Another class of techniques which are trained off-line is switching state-space
models. These models assume that the state and sensor readings evolve according to particular,
given models. In many practical cases, these models are unavailable. See Gharamani [20] for an
overview of these techniques.

Various techniques based on HMMs have been proposed. None of these techniques are capable of
capturing dependencies between neighboring sensor readings (except through the state). In many
robotic applications, neighboring sensor readings from the same state are very strongly correlated.
Usually, the higher the sensor update rate, the more serious this problem becomes and the more
these techniques degrade relative to the performance that can be achieved if this dependency is
accounted for as it is in this thesis. Some of these techniques also make unrealistic assumptions
about the availability of models. These assumptions are pointed out for techniques for which this
is the case.

Goldberg [21] uses probabilistic tests to detect changes in data. In this case, the data that are seg-
mented are discrete and segmented based upon the properties of a Markov Model which represents
the behavior of the data. The technique is applied to adapt a robots behavior based upon changes
in the environment. The technique is fully on-line but since the data must be discrete for this
technique, it is not directly applicable to the case of continuous sensor data.

Hashimoto et al. [27] developed a technique for fault identification and adaptation for a mobile
robot. Sensor failures are detected and adapted to use probabilistic methods. The failure modes
and sensor readings are known a priori. This technique runs on-line but is trained by a human.

Bennewitz et al. [3] developed a system for learning the motion patterns of people. The data is
segmented based upon the person not moving for a lengthy period of time. The problem in this
case is to cluster the motions. The clustering is done off-line using EM and a Gaussian way point
representation of trajectories. The number of trajectory classes is found by a modification to the
EM procedure to drop useless classes and introduce new classes to work with trajectories with large
error. This technique doesn’t perform the actual segmentation and requires assumptions about the
distribution from which the data comes.
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Hashimoto et al. [26] propose a method for visual tracking objects. The object is assumed to switch
between following linear dynamics and circular dynamics. The current mode of the dynamics is
found by down sampling the data to reduce noise and then creating a certainty factor to represent
the likelihood of each class. The certainty factor also encodes the likelihood of transitions. The
identified class is used in the prediction of the visual tracker to improve tracking performance. This
technique requires that system models for each state be provided by a human. In many cases, this
cannot be done.

Kwan et al. [33] use HMMs to distinguish faults. They use a window of data which is mapped
via Principle Component Analysis and Vector Quantization into a discrete observation. This ob-
servation is then used in a HMM model. The use of a window of data to generate each discrete
observation leads to latency in the detection of a change. If the windows are made to overlap to
reduce latency, the dependency between observations will increase making the conditional inde-
pendence assumption of HMM based approaches even worse than usual.

Inamura et al. [30] use a Continuous HMM to compress time series data. A Continuous HMM
is a modification of a HMM to make continuous observation predictions via a sum of Gaussian
functions. In this work, they make strong assumptions about the meaning of the Gaussian functions
that result from optimizing the Continuous HMM parameters from a data set. The Continuous
HMM has the same lack of a dependency on the previous time series value as other HMM based
approaches. In addition, since the output of each state is represented as a sum of Gaussians, if an
appropriate number of Gaussians is not guessed by the designer, a poor approximation to the output
value may be generated. These assumptions are not necessary in our non-parametric representation
since the number of parameters is allowed to grow as more data becomes available.

Hashimoto et al. [28] use a HMM to identify failure conditions on a robot. Each state is modeled
using a Kalman Filter with hand-built models for that particular state. In addition to the usual
limitations of a HMM based approach, this method also requires a hand-made model of each state
to be constructed which is often a difficult task.

Patil, Rybski, Kanade, and Veloso [48] developed a system for tracking the activities of people
engaged in a meeting. They use a particular Dynamic Bayes Net structure which makes equivalent
independence assumptions to a HMM. Their solution requires using a priori knowledge specific
to the way people act in meetings. The goal of this thesis is to make this hand-coding of a priori
knowledge unnecessary.

Hamid et al. [25] use a HMM trained by the Baum-Welch algorithm to recognize activities per-
formed by a human. Their system uses a camera to detect the person’s movements which forms the
sensor signal used for activity recognition. This model fails to account for the dependence between
neighboring sensor readings.

7.2.2 Classification

A number of state identification methods are based on standard classification algorithms. In the
process of converting the state identification problem to a classification problem, the time series
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nature of the data is necessarily ignored in one way or another. These algorithms all suffer from this
ignorance of the true structure of the data to various degrees. The classification based algorithms
can be further broken into the following categories:

• Residual

• Windowed

• Single time step

Residual based algorithms function by making a prediction of the next time series value for each
possible state. The residual error in these predictions is used to determine the most likely state.
Windowed based approaches work on a window of recent sensory data. This window based ap-
proach was taken in Chapter 4. These approaches map a window of data to a state. The last
approach is to simply map from the observations at a single time step to a state label. All of these
approaches have drawbacks which are discussed in their respective sections.

Residual Approaches

Residual based approaches work by making a prediction and using the error in this prediction to
determine the most likely state. Each state makes a separate prediction of the next sensor value
that will be seen. The residual error between the prediction and the actual value is calculated for
each state. The state with the lowest residual error (possibly summed over some period of time)
is chosen as the current state. All of these system rely on the existence of accurate predictions
of the next sensor value. In many cases, accurate predictions cannot be made. In addition, all of
these methods predict a single next sensor value. They are not capable of representing a bi-modal
distribution over next sensor values.

Tsujiuchi et al. [59] use a residual based approach to classify EMG signals to control a prosthetic
hand. They use a Linear Multiple Regression Model to make their predictions of the next obser-
vation. Their observations are formed by taking the sensor readings and applying dimensionality
reduction via Independent Component Analysis.

Antonelli et al. [1] use a residual based approach to detect faults in Autonomous Aerial Vehicles.
They use a Support Vector Machine to make predictions about the next sensor readings. The error
in the sensor readings is then used to detect a fault. They use a simple threshold on the magnitude
of the components of the error to determine that a fault state has occurred.

Windowed Approaches

Windowed based approaches take a window of consecutive sensor values and use that window to
classify the current state of the system. A basic problem with window based approaches is that the
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designer must carefully choose an appropriate window size. A larger window size uses more data
and can result in a more accurate classification. Unfortunately, a larger window size also increases
the amount of time during which the window will span two classes. These windows which contain
two classes are problematic to classify. They do not follow the same distribution as either class
alone and are often misclassified. Many times these windows are even misclassified as a class that
is not actually present in the window. This type of error occurs most frequently when a window
containing two extreme classes gets mislabeled as a class that is in between these extremes. As the
window slides over this transition point, the classification is also very unstable and unpredictable.
Even if the window is correctly classified as the class which makes up the largest portion of the
window, a large window size results in a large latency in recognition of a transition. This delay
occurs even if the latest sensor observations are very informative. HMM based approaches do not
suffer from these problems.

Using a window of data to classify the current state results in a large dimensionality input vector
which must be mapped to a small number of discrete states. There are three basic approaches to
handling this large dimensionality input vector. Dimensionality reduction first reduces the dimen-
sionality of the input vector while retaining as much information as possible. The resulting low
dimensionality input vector is then classified using standard classification techniques. Another
approach is to summarize the high dimensional input vector using ad-hoc, hand-coded features
relevant to the task. Obviously, this requires task specific knowledge which may not be available.
The last approach is to directly compute distances between this high dimensionality vector and
other high dimensionality vectors associated with each state. This distance based approach was
taken in Chapter 4. The work based on these approaches is discussed in the following sections.

Dimensionality Reduction Chen et al. [9] use a window based technique to detect faults in
plant machinery. They use a combination of wavelets and genetic programming to reduce the
input vector down to a few highly informative features which are then used to classify the system
state.

Cao et al. [7] use a window based technique to classify motion from a videoclip. The use knowl-
edge of video properties to focus on the moving parts of the video clip. They use Support Vector
Machines to classify the resulting simplified video clips to determine the motion currently being
performed.

Mori et al. [44] use a windowed approach to classify motion sequence data into various actions.
They use a SVM to classify windows of motion data into the corresponding action.

Lee and Xu [36] use a windowed approach to classify human motions from video data. They
use vision techniques to determine the position of the head and hands of the human performing
the action. They use Principle Component Analysis and Independent Component Analysis to
reduce the dimension of the observation window. A Support Vector Machine then uses this reduced
representation to perform the actual classification.

Huang et al. [29] use a windowed approach to classify hand motion from EMG sensors. They
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perform dimensionality reduction via Kohonen Maps. The reduced dimensionality window is then
classified using Neural Networks.

Ad-hoc Features Sato et al. [52] use a windowed approach to classify a person as sitting, stand-
ing, or walking based on acceleration data. They use a strategically placed sensor to make the
data easier to segment. They apply a simple classification scheme based on hand-coded features
relevant to the task.

Douglas Vail and Manuela Veloso [60] use a windowed approach to classify the state of a robot
from accelerometer data. They use relatively generic features which allow them to generalize
across several tasks which have different states. The features they use are based on the variance
and covariance of various components of the acceleration signal. Although these features are
somewhat general, there are still changes to the signal that cannot be detected by these features
including mean shifts.

Distance Based Nakazawa et al. [46] use a windowed approach to match human motion data to
prerecorded classes. They use a distance based approach to find the closest example motion. They
use Dynamic Programming to find the best matching fit while allowing for time warping in the
data.

Other standard classification algorithms that can operate with distance metrics become applicable if
an appropriate distance metric can be defined (see Section 4.2.3 for one possibility). One example
of a possible classification algorithm is k-nearest neighbor. When only some of the available
data is labelled with classes, co-training can be used to improve the classification. Co-training
is the use of unlabeled data along with labelled data to improve the performance of a learner.
Dempster, et al. [12] introduced the well known EM approach to using unlabeled data. See Blum
and Mitchell [4] for more recent work on co-training.

Single Time Step Approaches

Additional state identification approaches attempt to identify the state from a the sensor readings
available at a single time step. Naturally, this is most practical in situations in which the sensor
readings are very informative which usually implies that they have high dimensionality as well.
Some of these techniques use some smoothing on the output of the classification to try to reduce
noise in the classification. A weakness of these approaches is that they are unable to use the
temporal nature of state transitions to improve their classification.

Todorovic et al. [58] use Hidden Markov Trees to segment parts of an image into sky and ground
categories. They do this in the context of an autonomous air vehicle. Other vision techniques for
image segmentation can also be viewed as single time step approaches to segmentation. The goal
in these approaches is more to segment over spatial position than to segment over time.
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Lamon et al. [34] use classification to identify locations in a topological map for a robot. They
extract features from an omni-directional camera and use the resulting feature sequence to identify
locations that have been seen before.

Sridharan and Stone [55] use classification to determine the current lighting conditions observed by
an AIBO and choose appropriate vision thresholds. This task is very similar to the one presented
in Section 6.8 except that the environment is constructed of easy to segment colors. They take a
very different approach to classification. Instead of focusing on accurate modeling of the temporal
aspects of the problem, they focus on capturing the high dimensional information available from
the camera. Their technique attempts to classify each image to determine the current lighting con-
ditions independent of neighboring images. They use a histogram of colors seen in each image and
compare images using the Kullback-Leibler divergence. They filter the resulting classification by
requiring a small number of classifications to agree before switching the current vision thresholds.
This method is unable to incorporate any information about the frequency of state transitions into
the classification procedure.

Searock and Browning [53] use classification to detect state that lead to failure on a balancing
mobile robot. They use the C4.5 decision tree algorithm to create a decision tree from current
sensor readings to a classification of the state of the robot. This classification is then filtered by
requiring several failure warnings in a row before a failure prevention action is taken.

Skaff et al. [54] use classification to improve the performance of filtering used to estimate the state
of a mobile robot. The particular robot used alternates time spent in free flight with time spent in
contact with the ground. They use an ad-hoc method to identify the current state of the system
by using an accelerometer and hand-coded rules to determine the current state of the system. In
situations where the current state is unclear, they use an Interacting Multiple Models method to
estimate the state of the robot. They show improved performance when the state of the robot can
be determined.

7.2.3 Prototypes

A variety of prototype methods have been developed for segmenting and clustering sensor data.
These techniques seek to determine the number of states that generate a time series and predict the
output of each state. They work by creating a prototypical example of the output from each state.
The incoming sensor readings are then compared to these prototypes to determine the current state
of the system and whether a new state has been experienced. These techniques rely on the ability
to create a good prototype for each state that fully characterizes the state, which is often difficult.
These states have some sort of distance metric for deciding whether to create a new prototype. A
new prototype is created if the current sensations are different enough from all previous sensations.
Here, different enough corresponds to the distance from all current prototypes being beyond some
threshold. These systems are sensitive to this distance threshold. These techniques lack a good
model of noise for extremely noisy sensors as is is much more difficult to create a compact proto-
type for noisy sensors. These techniques also do not provide a strong probabilistic foundation. A
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probabilistic foundation is important because it can be used as a unifying framework to combine
state identification with behavior and control.

Deng et al. [13] classify sensor data from a driving simulator into drunk and sober drivers. They
do this by constructing an Auto-Regressive Moving Average (ARMA) model of the sensor data.
The parameters of the ARMA model are then used by a local learning technique to classify the
performance into the pre-trained sober and drunk classes. This technique is reliant on being able
to generate a single value prediction of the next sensor value and hence is unable to handle distri-
butions that are multi-model.

Linåker and Niklasson [41] propose the Adaptive Resource Allocating Vector Quantization (AR-
AVQ) method for segmenting and clustering sensor data. This method learns a segmentation of
robotic sonar data on-line into regions of similarity. Updates to prototypes are conditioned on the
prototype being a good fit to the data. Prototypes are added when the distance of the sensor data
from existing prototypes exceeds a threshold. A moving average of the input vectors is used to
help combat noise. This technique lacks a proper model of the amount of noise in the sensor read-
ings and must resort to an ad-hoc averaging of the input vectors to combat noise. Also like most
techniques, it is incapable of noticing differences in the distribution of sensor readings that don’t
affect the mean.

Marsland [42] proposes the Grow When Required(GWR) network for segmenting data. The tech-
nique focuses on the problem of novelty detection. This technique is a topology preserving proto-
type method similar to Kohonen maps. Nodes are habituated when they are chosen as most similar
to input patterns. New nodes are created when no existing node is nearby and are not familiar
based on habituation. The technique has been used successfully on real robotic data from sonar
sensors and a camera with an attentional model. The novelty detector has also been extended to
the problem of detecting environments. This is done by training a novelty detector on each envi-
ronment that should be identified later. Environments are then identified based on which novelty
detector is detecting the least novelty.

Mattone [43] proposed the Growing Neural Map(GNM) technique for segmentation and clustering.
This technique is similar to a Kohonen map except that nodes are created based upon the ability
of the current hypothesized network to represent the data. This algorithm is an on-line clustering
algorithm.

Likhachev, Lee, Kaess, and Arkin [40, 35, 39] group data into states in a case-based reasoning
framework for robot navigation. Cases are created on-line[40] based upon spatial/temporal sim-
ilarity of the current situation to prototype cases and the performance of the current cases. Case
parameters for the matching case/prototype are adjusted by a learning algorithm. The technique is
used to choose behaviors from a behavior library to navigate a robot towards a goal. This technique
cannot handle general changes such as distributional changes and changes in extremely noisy data.

Kohlmorgen and Lemm [31] have developed a technique for automatically segmenting and cluster-
ing a time series. The input sequence is projected into a higher dimensional space by including in
each sensor reading delayed values of previous sensor readings. A sliding window is then moved
over the sensor values resulting in a series of probability distributions. The probability distributions
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are smoothed using a Gaussian kernel to generate a probability density function(pdf). Distances
between pdfs are computed using theL2-Norm. A cost function is defined which takes into account
the ability of prototype distributions to explain the data and the number of switches. Prototype dis-
tributions are selected on-line in order to minimize the cost function. The prototype distributions
are then clustered using a simple distance threshold. The technique was applied to EEG data. It is
unclear how this technique will perform in robotic domains. The problems with this technique are
the need to adjust the cost of a transition and the poor clustering method (which also influences the
segmentation). It is unclear in general how to choose an appropriate cost for a transition.

Chalodhorn, MacDorman, and Asada [8] developed a technique for extracting abstract motions
from humanoid motion data. They have a particularly novel representation of prototypes. Proto-
types are represented as Circular Constraint Nonlinear Principal Component Analysis (CNPLCA)
networks. This technique is residual based in that the error in the ability of prototype to learn the
sensor signal is used to decide on whether to create a new prototype. A clustering step using the
residual from networks is then used to merge similar sensor sequences. This technique requires
the user to determine the correct architecture (number of units) for the CNPLCA network and an
appropriate threshold for the creation of a new prototype network. Neither of these tasks has an
obvious solution.

7.2.4 Clustering

If the signal can been segmented into different regions which are approximately homogeneous,
the regions must then be grouped so that they correspond to different operating environments or
regimes. This can be viewed as an on-line clustering problem of the regions into regimes. Most
clustering algorithms are not applicable to this problem because they are either not on-line or
because they cannot cluster regions of data but only individual data points. Clustering individual
data points is not sufficient because the noise on each data point may to great to make the clustering
meaningful. It may also take many data points to characterize the underlying process enough to
make the clustering meaningful. Usually, clustering algorithms require a distance metric in order
to function. It is unclear what an appropriate distance metric for distributions of data would be.
See Section 4.2.3 for one possibility.

7.2.5 Connectionist

Connectionist approaches attempt to perform state identification in a more biologically inspired
manner. They focus on using networks on nodes where the processing is distributed amongst the
nodes and the connections between them. These techniques are complex, difficult to analyze, and
lack a probabilistic basis. In addition, these techniques require the selection of a network topology
which can be problematic in many cases. These techniques tend to suffer from long off-line training
times. These techniques also assume that the next sensor value can be predicted, i.e. that a single
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value can be predicted for the next sensor reading and be fairly accurate. This assumption precludes
the possibility of representing bi-modal distributions over next sensor values.

Das and Mozer [10] created a technique for improving the performance of neural networks at
representing finite state machines. The basic architecture is a recurrent neural network in which
the feedback loop from the hidden state is passed through a soft clustering module before being
fed back in on the input. The clustering becomes successively harder as training progress using a
temperature in the training procedure. Training uses gradient descent over a cost function including
the error of the network and the number of clusters. A Gaussian distribution of the hidden states
of the network is assumed. The hidden states correspond to environments, in this case of binary
language classes.

Weigend et al. [62] propose the technique of using a neural network for each environment and
another neural network (NN) to select the correct neural network to use. EM is used to associate
each data point (sensor reading) with one of the NN experts. The maximization step corresponds
to normal neural network training.

Nolfi and Tani [47] propose a technique of cascaded NNs. The lowest level NN tries to predict
the next sensor reading. The hidden units of this NN are then clustered into states by a neural
network. The clustered hidden states are then used to train a higher level NN which attempts to
learn the state transitions of the lower level NN. This method takes an extremely long time to train.
The method was successfully used to automatically segment robotic infrared range readings from
a Khepera robot in a simple environment. This technique is interesting in that it is one of the few
techniques to address the problem of identifying state at multiple time scales. Unfortunately, this
technique is slow to train and sensitive to the architecture of the NNs.

Tani [56] proposed a technique for analyzing and using sonar readings from a mobile robot to
navigate. The control is restricted to following a local maximum in the sonar reading. The robot
controls where it goes by making a binary decision between two local maxima at decision points in
the environment. Sonar readings are dimensionality reduced using a Kohonen map. The reduced
sonar readings and control decisions are used as training input to a NN which predicts the next
reduced sonar reading that will be experienced. The technique was successfully used to guide a
mobile robot.

Driancourt [14] proposed a connectionist technique for segmenting data. This technique has many
layers of networks built on top of each other to perform different parts of the segmentation task.
Like other connectionist approaches, the resulting structure is difficult to analyze and sensitive to
network size.

7.3 Summary

We have presented a summary of the relevant related work in environment identification with a
particular focus on applications to real-world sensor data. The algorithm presented in this thesis as
the following unique combination of features:

157



1. The technique has a sound probabilistic foundation.

2. The dependence of a sensor reading on the previous sensor reading is maintained.

3. The technique models the sequential dependence of the current environment, i.e. that the
environment at the next time step is likely the same as at the previous time step.

4. The technique requires almost no parameters and all parameters are easily determined. Every
parameter is determined solely from a simplistic knowledge of the system being modeled.
No models of the system need to be provided to use the technique.

5. The technique can detect signal changes of any variety.

6. The technique can make multi-modal predictions over sensor values. This ability means that
segmentation can be performed even when the next value cannot be predicted.

7. The technique is extremely fast to train and more training data can be added on-line if de-
sired.

8. The technique has been validated on real robotic data.

9. The technique performs environment identification in real time.

10. The environment identification has been performed on-line in a real task in the presence of
feedback.

It is important that the technique have a probabilistic foundation. This foundation allows the tech-
nique to be combined with techniques that can process probabilistic inputs. None of the techniques
described here have properties 2 and 3. The dependence of each sensor reading on the preceding
ones is important in robotic domains because these sensor readings are not independent even given
the robot’s current environment. The only other techniques that preserve this dependence are the
windowed based techniques and the prototype technique by Kohlmorgen and Lemm [31]. Nei-
ther of these techniques properly model the sequential nature of environment transitions or have
a probabilistic foundation. Property 5 is important because it allows the algorithm to be used in
situations in which the nature of the change to the signal is unknown. The ability to incorporate en-
vironmental/state transition information is important for combining the thesis technique with state
model learners such as Hidden Markov Model learners. The ability of the method to be trained
quickly and on-line is important for generalizing the technique to creating new environments as
needed. The thesis technique is one of very few that have been used to perform task adaptation in a
real task. None of the other approaches that have been used for this have these additional desirable
properties.

The Probably Series Classifier algorithm presented in this thesis has these important properties that
are not present in the currently available systems.
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Chapter 8

Conclusions and Future Work

In this chapter we reflect on this thesis work. We summarize the contributions of the thesis in
Section 8.1. We look to the future with new ways to extend the thesis in Section 8.2. We summarize
the entire thesis in Section 8.3

8.1 Contributions

The main contributions of this thesis are:

Principle of environment identification and response to improve robot performance.We show
that sensors can be used to identify the robot’s current environment. We show how this knowledge
can be used to improve robot performance.

Principle of environment identification and response to split the world into more manageable
pieces. Environment identification can be used to identify the current environment in which the
robot is operating. This identification can be used to select a response specifically tailored for
just this environment. This mechanism splits the world into smaller pieces. Splitting the world
into smaller pieces leads to better solutions to each piece. Combining these sub-solutions into a
complete solution leads to improved robot performance. We demonstrate through experimentation
that splitting the world using this mechanism results in better robot performance on a non-trivial
task.

Principle of environment identification and response for failure recovery. We show that the
same principle of environment identification can also be used for failure detection and recovery.
We demonstrate the utility of environment identification for failure recovery in the context of lo-
calization. In this case the failure detected is a software failure. We show improved performance
of the localization system when environment identification is used for failure recovery.

Probable Series Classifier algorithm for identifying the state of a system.We create a general
purpose algorithm for identifying the state of a system. The algorithm makes very few assump-
tions, detects a wide variety of types of changes, is easy to train, and runs in real-time.

159



8.1.1 Probable Series Classifier Contributions

Our Probable Series Classifier contributes many improvements over the current state of the art.
The Probable Series Classifier algorithm has the following desirable properties:

1. Sound probabilistic foundation

2. Maintains dependence of a sensor reading on the previous sensor reading

3. Models the sequential dependence of the environment, i.e. that the environment at the next
time step is likely the same as at the previous time step

4. Requires almost no parameters and all parameters are easily determined from available sys-
tem knowledge

5. Detects signal changes of any variety.

6. Makes multi-modal predictions over sensor values

7. Extremely fast to train

8. Training data can be added on-line

9. Validated on real robotic data

10. Runs in real time

11. Tested on-line in a real task in the presence of feedback

8.2 Future Work

There are many directions in which this work can be extended. The system described in this
thesis was conceived of as a step towards a more general system. Ideally, an algorithm would be
available to identify and model the states of a system given a sensor stream from the system. The
algorithm would identify the number of states in the system and characterize the sensor signals to
be expected from each state. The algorithm would identify states on different scales of operation,
grouping together small changes within larger changes and in the process building a hierarchical
finite state system representing the different environmental conditions under which the robot will
operate. The algorithm should incorporate both discrete and continuous changes. The algorithm
should continuously report the current operating environment. All of this should be performed
on-line. Nothing about the system should have to be described to the algorithm ahead of time.
This environmental description should then be used to identify when learning should take place
and guide the learning based on learning in similar situations.
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This thesis has taken a large step in this direction. The Probable Series Classifier is able to the
current operating environment. The only knowledge required about the system is the frequency of
changes. This parameter is needed simply to inform the algorithm of the scale at which changes
should be detected. The environment identification reported is used to use pre-learned solutions
for different environments.

There are a number of different directions for future work based on the gap between what the thesis
provides and an ideal solution. These are summarized briefly in the following sections.

8.2.1 Identification of the Number of Environments

This thesis focuses on the case when the number of environments is known. It would be interesting
to have a system that determined the number of environments during learning. The probabilistic
framework can still be maintained if a suitable probabilistic description of the chance of encounter-
ing new environments can be formulated. Most likely, a solution to this problem would require fur-
ther performance enhancements as multiple hypothesis about the number of environments would
be needed. Ideally, the system would determine the number of environments and which signal
corresponds to which environment, preferably on-line. The algorithm presented in this thesis is
capable of having new environments added on-line and new training data added to environments
on-line, but the required algorithms for using this ability have yet to be developed.

8.2.2 Incorporation of Continuous Changes

This thesis focuses on detecting discrete changes. It would be nice to have an algorithm that can
function with environments that vary over a range of values. The system should determine not only
the discrete environment in this case, but also the continuous parameters that describe it’s current
condition.

8.2.3 Combination with HMM Learners

This thesis assumes transition probabilities from one environment to another. It would be an im-
provement if the Probable Series Classifier was joined with a HMM or DBN learner to learn the
transition probabilities from the data.

8.2.4 Incorporation of Learning Modules

This thesis uses pre-learned information about each environment to improve performance. Ideally,
a learning module would be used to learn about new environments as they are encountered. As
environments are revisited, the learned information can then be used without an expensive learning
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phase being repeated. This system would result in much less learning being required and each
learning step can be faster since it will always be in the same environment.

8.3 Summary

This thesis has developed the concept of environment identification has a general method for re-
ducing the failure rate of robots. We have shown how environment identification can be used for
failure detection and recovery. We have shown that environment identification leads to more ro-
bust performance with fewer failures. We have proved this is the context of a real robotic task of
chasing a ball in varied lighting conditions. We have developed a real-time algorithm for envi-
ronment identification that is easy and fast to train. Our algorithm, the Probable Series Classifier,
correctly models the dependency between neighboring sensor readings, has a strong probabilistic
foundation, can detect a wide variety of signal changes, requires no a priori information about the
system besides the expected frequency of changes, runs in real-time, and is amenable to on-line
training. We have verified the accuracy of the algorithm on simulated data, robotic data, and during
a robotic task. This thesis has provided a robust, general, extensible approach to failure reduction
based on environment identification.
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[41] F. Linåker and L. Niklasson. Time series segmentation using an adaptive resource allocating
vector quantization network based on change detection. InProceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks (IJCNN 2000), pages 323–328,
2000.

[42] S. Marsland.On-line Novelty Detection Through Self-Organization, with Application to In-
spection Robotics. PhD thesis, University of Manchester, 2001.

[43] R. Mattone. The growing neural map: An on-line competitive clustering algorithm. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol-
ume 4, pages 3888–3893, 2002.

[44] T. Mori, M. Shimosaka, T. Harada, and T. Sato. Informative motion extractor for action
recognition with kernel feature alignment. InIEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 2009–2014, 2004.

[45] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, UC Berkeley, 2002.

[46] A. Nakazawa, S. Nakaoka, and K. Ikeuchi. Matching and blending human motions using tem-
poral scaleable dynamic programming. InIEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1068–1073, 2004.

[47] S. Nolfi and J. Tani. Extracting regularities in space and time through a cascade of prediction
networks: The case of a mobile robot navigating in a structured rnvironment.Connection
Science 11, 2:129–152, 1999.

[48] R. Patil, P. Rybski, T. Kanade, and M. Veloso. People detection and tracking in high resolu-
tion panoramic video mosaic. InIEEE International Conference on Robotics and Automation
(ICRA), pages 1323–1328, 2004.

[49] W. Penny and S. Roberts. Dynamic models for nonstationary signal segmentation.Computers
and Biomedical Research, 32(6):483–502, 1999.

166



[50] C. Poynton. Poynton’s color FAQ (http://www.inforamp.net/∼poynton/notes/colourandgamma/colorfaq.html).

[51] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. 37(2):257–286, 1989.

[52] T. Sato, S. Itoh, S. Otani, T. Harada, and T. Mori. Human behavior logging support sys-
tem utilizing pose/position sensors and behavior target sensors. InIEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1068–1073, 2003.

[53] J. Searock and B. Browning. Learning to prevent failure states for a dynamically balancing
robot. InAAAI, 2005.

[54] S. Skaff, A. Rizzi, H. Choset, and P.-C. Lin. A context-based state estimation technique for
hybrid systems. InProceedings of the 2005 IEEE International Conference on Robotics and
Automation (ICRA), pages 3935–3940. IEEE, April 2005.

[55] M. Sridharan and P. Stone. Towards illumination invariance in the legged league. pages
196–208, 2005.

[56] J. Tani. Model-Based learning for mobile robot navigation from the dynamical systems per-
spective.IEEE Transactions on Systems, Man, and Cybernetics, 26:421–436, 1996.

[57] S. Thrun and D. Fox. Monte carlo localization with mixture proposal distribution. InProceed-
ings of the AAAI National Conference on Artificial Intelligence, Austin, TX, 2000. AAAI.

[58] S. Todorovic, M. Nechyba, and P. Ifju. Sky/ground modeling for autonomous mav flight.
In IEEE International Conference on Robotics and Automation (ICRA), pages 1422–1427,
2003.

[59] N. Tsujiuchi, K. Takayuki, and M. Yoneda. Manipulation of a robot by emg signals using
linear multiple regression model. InIEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1991–1996, 2004.

[60] D. Vail and M. Veloso. Learning from accelerometer data on a legged robot. InIFAC Sym-
posium on Intelligent Autonomous Vehicles (IAV), 2004.

[61] M. Veloso, P. Rybski, S. Chernova, D. Vail, S. Lenser, C. McMillen, J. Bruce,
F. Tamburrino, J. Fasola, M. Carson, and A. Trevor. Cmpack’04: Team report
(http://www.cs.cmu.edu/∼coral-downloads/legged/papers/cmpack04teamreport.pdf).

[62] A. S. Weigend, M. Mangeas, and A. N. Srivastava. Nonlinear gated experts for time-series
- discovering regimes and avoiding overfitting.International Journal of Neural Systems,
6(4):373–399, 1995.

167


